
 

 

Screen Orchestrator Guide
Version 2004.5

September 2004
 



 

 

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404 

Copyright © 2004 Siebel Systems, Inc.  

All rights reserved. 

Printed in the United States of America 

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in 
any way, including but not limited to photocopy, photographic, magnetic, or other record, 
without the prior agreement and written permission of Siebel Systems, Inc. 

Siebel, the Siebel logo, TrickleSync, Universal Agent, and other Siebel names referenced 
herein are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions. 

Other product names, designations, logos, and symbols may be trademarks or registered 
trademarks of their respective owners.  

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are 
optional and for which you may not have purchased a license. Siebel’s Sample Database also 
includes data related to these optional modules. As a result, your software implementation 
may differ from descriptions in this guide. To find out more about the modules your 
organization has purchased, see your corporate purchasing agent or your Siebel sales 
representative. 

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, 
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement, 
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer 
Software and Commercial Computer Software Documentation, and as such, any use, 
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be 
subject to the restrictions contained in the applicable Siebel license agreement. All other use, 
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the 
U.S. Government shall be subject to the applicable Siebel license agreement and the 
restrictions contained in subsection (c) of FAR 52.227-19, Commercial Computer Software - 
Restricted Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including 
Alternate III (June 1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 
Bridgepointe Parkway, San Mateo, CA 94404. 

 

Proprietary Information 

Siebel Systems, Inc. considers information included in this 
documentation and in Siebel eBusiness Applications Online 
Help to be Confidential Information. Your access to and use 
of this Confidential Information are subject to the terms 
and conditions of: (1) the applicable Siebel Systems 
software license agreement, which has been executed and 
with which you agree to comply; and (2) the proprietary 
and restricted rights notices included in this 
documentation. 

 

 



Contents  

Screen Orchestrator Guide Version 2004.5 ■ 3 

Contents 

1 Overview................................................................................................................................ 8 

2 Statechart and State Machine Concepts............................................................................ 9 

2.1 WHAT ARE STATECHARTS? .......................................................................................... 9 
2.2 WHAT IS THE STATE MACHINE? .................................................................................. 10 
2.3 WHY USE STATECHARTS AND THE STATE MACHINE? .................................................. 10 
2.4 STATECHART NOTATION EXPLAINED............................................................................ 11 
2.4.1 States ....................................................................................................................................................11 
2.4.2 Events ...................................................................................................................................................13 
2.4.3 State Transitions.................................................................................................................................... 13 
2.4.4 Pseudo-States ....................................................................................................................................... 15 
2.4.5 Chart Notes ...........................................................................................................................................17 
2.5 SIMPLE STATECHART EXAMPLE................................................................................... 18 

3 Basic Orchestrator Drawing.............................................................................................. 20 

3.1 THE MAIN ORCHESTRATOR WINDOW........................................................................... 20 
3.2 THE STATECHART DRAWING COMPONENTS ................................................................. 23 
3.2.1 Drawing States or Pseudo-states...........................................................................................................23 
3.2.2 Drawing State Transitions ......................................................................................................................25 
3.2.3 Drawing Chart Notes..............................................................................................................................30 
3.3 MORE DRAWING STATE DETAILS................................................................................. 31 
3.3.1 Adding Child States ...............................................................................................................................31 
3.3.2 Moving States........................................................................................................................................ 32 
3.3.3 Editing State Details...............................................................................................................................32 
3.3.4 Resizing States...................................................................................................................................... 34 
3.3.5 Deleting states....................................................................................................................................... 35 
3.4 MORE DRAWING TRANSITION DETAILS......................................................................... 35 
3.4.1 Note On Transition Arrows.....................................................................................................................35 
3.4.2 Drawing Transitions To The Master State ..............................................................................................36 
3.4.3 Drawing Transitions To And From Parent And Child States ................................................................... 38 
3.4.4 Drawing Transitions To And From Non-Related Child States ................................................................. 38 
3.4.5 Editing Transition Details .......................................................................................................................38 
3.4.6 Deleting Transitions ...............................................................................................................................39 
3.5 MORE DRAWING STATECHART DETAILS....................................................................... 39 
3.5.1 The Statechart Name.............................................................................................................................40 
3.5.2 Renaming The Statechart ......................................................................................................................40 
3.5.3 Saving A Statechart ...............................................................................................................................41 
3.5.4 Renaming a Saved Statechart ...............................................................................................................42 
3.5.5 Opening A Statechart.............................................................................................................................42 
3.6 MISCELLANEOUS DRAWING FEATURES ........................................................................ 42 



 

4 ■ Screen Orchestrator Guide Version 2004.5 

3.6.1 Using The Grid And Snap To Features .................................................................................................. 42 
3.6.2 Using The Navigation Panel...................................................................................................................43 
3.6.3 Printing Statecharts................................................................................................................................44 
3.6.4 Export StateChart as a GIF....................................................................................................................44 

4 Preview And Web Deployment Capabilities .................................................................... 45 

4.1 INTRODUCTION ........................................................................................................... 45 
4.2 PREVIEW CAPABILITY.................................................................................................. 45 
4.3 WEB DEPLOYMENT CAPABILITY................................................................................... 48 
4.3.1 Install an appropriate web server ...........................................................................................................48 
4.3.2 WAR properties saved per statechart..................................................................................................... 48 
4.3.3 Configuring the WAR file within the tool ................................................................................................. 49 
4.3.4 Deploying the war file.............................................................................................................................49 

5 Designing Events With Processes And Guard Conditions............................................ 51 

5.1 HANDLING AN EVENT .................................................................................................. 51 
5.2 ASSOCIATING PROCESSES WITH EVENTS AND TRANSITIONS ......................................... 51 
5.3 SETTING THE INPUT REQUIREMENTS............................................................................ 53 
5.4 DELETING INPUT REQUIREMENTS ................................................................................ 54 
5.5 HOW THE REQUEST DATAPACKETS ARE BUILT.............................................................. 54 
5.6 DEFINING GUARD CONDITIONS.................................................................................... 55 
5.6.1 NullGuardCondition................................................................................................................................55 
5.6.2 FixedValueGuardCondition ....................................................................................................................55 
5.6.3 InputBasedGuardCondition....................................................................................................................56 
5.6.4 ResultBasedGuardCondition..................................................................................................................57 
5.6.5 TimeoutGuardCondition.........................................................................................................................58 
5.6.6 EmptyResponseGuardCondition............................................................................................................59 
5.7 OTHER CONTROLLER CLASSES.................................................................................... 60 
5.7.1 The SimpleController .............................................................................................................................60 
5.7.2 The AutoViewController .........................................................................................................................60 
5.7.3 Additional Controllers.............................................................................................................................61 
5.7.4 Custom Controllers ................................................................................................................................61 
5.8 ADD COMMON FIELDS TO EVERY REQUEST ................................................................. 61 
5.9 WORKED EXAMPLE..................................................................................................... 62 
5.10 BLOCKING EVENTS FROM STATES ............................................................................... 66 

6 Writing Controller Classes ................................................................................................ 68 

6.1 THE RESPONSIBILITIES OF A CONTROLLER ................................................................... 68 
6.2 THE ICONTROLLER INTERFACE.................................................................................... 69 
6.3 THE SIMPLECONTROLLER CLASS ................................................................................ 71 
6.4 THE MAIN CONTROLLER CLASS................................................................................... 71 
6.5 THE MODIFIED CONTROLLER CONTRACT ..................................................................... 72 



Contents  

Screen Orchestrator Guide Version 2004.5 ■ 5 

6.5.1 The Inputs Object .................................................................................................................................. 73 
6.6 EXTENDING THE CONTROLLER CLASS ......................................................................... 73 
6.7 ADDING A NEW CONTROLLER TO THE ORCHESTRATOR ............................................... 76 
6.7.1 Do Nothing.............................................................................................................................................76 
6.7.2 Add the controller to the statechart.properties file ..................................................................................76 
6.7.3 Create a Customizer for the Controller ................................................................................................... 77 

7 Writing Guard Condition Classes ..................................................................................... 79 

7.1 THE RESPONSIBILITY OF A GUARD CONDITION............................................................ 79 
7.2 THE IGUARDCONDITION INTERFACE ............................................................................ 79 
7.3 ADDING A NEW GUARD CONDITION TO THE ORCHESTRATOR....................................... 79 
7.3.1 Do Nothing.............................................................................................................................................79 
7.3.2 Add the guard condition to the statechart.properties file.........................................................................79 
7.3.3 Create a customizer for the guard condition...........................................................................................80 

8 Writing JSPs ....................................................................................................................... 81 

8.1 RESPONSIBILITIES OF A JSP ....................................................................................... 81 
8.2 GETTING DATA INTO THE JSP...................................................................................... 81 
8.2.1 Inputs bean............................................................................................................................................81 
8.2.2 ProcessExecutionRecords bean ............................................................................................................82 
8.2.3 State bean .............................................................................................................................................82 
8.2.4 View bean..............................................................................................................................................82 
8.2.5 RequestContext bean ............................................................................................................................82 
8.3 FIRING AN EVENT FROM A JSP .................................................................................... 83 
8.3.1 Using the .jsm URL extension................................................................................................................83 
8.3.2 Using the StateMachine URL.................................................................................................................83 

9 Orchestrator Process Integration ..................................................................................... 84 

9.1 INTRODUCTION ........................................................................................................... 84 
9.2 IMPORTING IN PROCESSES FROM AN AUTOMATED METHODOLOGY MODEL ..................... 84 
9.3 MANUALLY INPUTTING PROCESS INFORMATION............................................................. 86 
9.4 REMOVING ALL SESSIONS FROM THE SIEBEL PROCESS LIST.......................................... 88 
9.5 EDITING/DELETING PROCESSES .................................................................................. 88 
9.6 ASSIGNING PROCESSES TO THE STATE CHART.............................................................. 88 
9.6.1 Assigning processes to a state............................................................................................................... 88 
9.6.2 Adding Processes to a State Transition ................................................................................................. 89 

10 Advanced Drawing ............................................................................................................. 94 

10.1 UNDO / REDO FEATURES ............................................................................................ 94 
10.1.1 Undo Example................................................................................................................................... 94 
10.1.2 Redo Example................................................................................................................................... 97 
10.2 COPY, CUT & PASTE FEATURES ................................................................................. 99 



 

6 ■ Screen Orchestrator Guide Version 2004.5 

10.2.1 Copy Example ................................................................................................................................. 100 
10.2.2 Cut & Paste Example ...................................................................................................................... 102 
10.3 PARENT STATES AS SUB-CHARTS ............................................................................. 104 
10.3.1 Transitions Leaving And Entering Parent States.............................................................................. 107 
10.3.2 Bringing Sub-charts To The Front.................................................................................................... 108 
10.3.3 Why Use The Sub-chart Feature? ................................................................................................... 109 
10.4 MULTIPLE USER SUPPORT ........................................................................................ 109 
10.4.1 Note on users working on the same files ......................................................................................... 111 

11 Introduction To Writing A Swing Application................................................................ 112 

11.1 OVERVIEW ............................................................................................................... 112 
11.1.1 StateMachineEvent class ................................................................................................................ 112 
11.1.2 StateMachineEventSource interface................................................................................................ 113 
11.1.3 StateMachineEventDispatcher class................................................................................................ 113 
11.1.4 ViewContainer interface................................................................................................................... 113 
11.2 WRITING THE APPLICATION MAIN CLASS ..................................................................... 113 
11.2.1 Create and display a ViewContainer................................................................................................ 113 
11.2.2 Create a StateMachineEventDispatcher .......................................................................................... 113 
11.2.3 Fire the first Event ........................................................................................................................... 113 
11.3 WRITING THE VIEWCONTAINER CLASS ....................................................................... 113 
11.4 WRITING THE VIEW CLASSES..................................................................................... 114 
11.4.1 IView interface................................................................................................................................. 114 
11.4.2 StateMachineEventSource interface................................................................................................ 114 
11.5 PUTTING THE VIEW CLASSES IN THE CHART................................................................ 115 
11.6 MANAGING VIEWPROPERTIES ................................................................................... 115 
11.7 THE TOOL VIEW REQUIREMENTS ................................................................................ 115 
11.7.1 The JSPView class.......................................................................................................................... 117 
11.7.2 The JSPViewBeanInfo Class........................................................................................................... 121 
11.8 THE SWING APPLICATION REQUIREMENTS................................................................... 123 
11.8.1 The ViewController interface............................................................................................................ 124 
11.8.2 Setting the application properties..................................................................................................... 124 
11.8.3 The state machine events................................................................................................................ 124 
11.9 A SWING APPLICATION EXAMPLE................................................................................ 125 

12 Validating Input Requirements........................................................................................ 133 

12.1 DEFINE THE VALIDATION RULES ................................................................................ 133 
12.2 HOW THE STATE MACHINE HANDLES THE VALIDATION CHECK....................................... 134 

13 Generating JSP and Swing Panels ................................................................................. 137 

13.1 RUNNING THE GENERATOR ....................................................................................... 137 

14 MCA Services Timing Points........................................................................................... 139 



Contents  

Screen Orchestrator Guide Version 2004.5 ■ 7 

 



Overview ■ What Are Statecharts?  

8 ■ Screen Orchestrator Guide Version 2004.5 

1 Overview 
The Screen Orchestrator is a tool that allows a user to design and implement an application using statechart 

principles. It allows the user to visually draw a statechart representation of their proposed application and 

interactively allows the user to specify the actual processes and state types that will be used by the 

application when run. Finally it allows the actual visually drawn statechart to be deployed on a live HTTP or 

application server. There the application can be run and controlled by the state machine. The state machine 

reads the deployed statechart and uses it to control the actual application. 

 

Understanding statechart principles and notation is a prerequisite to using the orchestrator tool correctly. It is 

extremely important that the following subsections are read in order to get a basic understanding of 

statecharts, their notation and the state machine, as these are the basic premises on which the tool 

operates. 



Statechart and State Machine Concepts ■ What Are Statecharts?  

Screen Orchestrator Guide Version 2004.5 ■ 9 

2 Statechart and State Machine Concepts 

2.1 What Are Statecharts? 

The UML definition of a statechart diagram is as follows: 

Statechart diagrams represent the behaviour of entities capable of dynamic behaviour by specifying its 

response to the receipt of event instances. Typically, it is used for describing the behaviour of class 

instances, but statecharts may also describe the behaviour of other entities such as use-cases, actors, 

subsystems, operations, or methods. (from www.omg.org) 

 

For us, the key concept in understanding why we use statecharts to represent user interfaces is the fact that 

statechart diagrams are capable of handling or modelling dynamic behaviour through events. Users interact 

with a user interface dynamically through events. Statecharts are therefore ideally suited to describing how a 

user interacts with a user interface. 

 

For example, consider the following user interaction with a login screen in a user interface. To login the user 

must first enter their username and password. The user must click the login button to activate the login 

request. If the login is successful then the user is allowed into the rest of the system. If the login fails then 

the user is taken to the login-failed screen. The clicking of the login button is an event that must occur for the 

request to be processed. The event has two possible outcomes in this instance, it is either successful or it 

fails. The statechart representation of this user interaction is shown in the following figure (the statechart 

notation will be explained in a later section). 

 
Login statechart diagram. 
 

The statechart in the figure shows how a login user interface can be modelled in statechart notation. When 

the user interacts with a screen an event is created. An event can be created when a user presses a button, 



Statechart and State Machine Concepts ■ What Is The State Machine?  

10 ■ Screen Orchestrator Guide Version 2004.5 

or checks a radio button, or submits a form, or for whatever action the designer may wish the user to take. 

States in terms of the tool are often what the user sees on the computer screen (the view). In the login 

example, we have three states or screens, the login screen itself, the loginFailed screen and the 

AuthenticatedArea, where one or more screens and hence states, may exist. 

 

Statecharts, in terms of the orchestrator tool, are used therefore to capture the user’s interaction with the 

user interface through the modelling of the events that describe that system. Statecharts can also for other 

purposes. For example, it can be used to capture the flow of a process on the server-side of the application. 

It can be used in long-lived multiple transitions to route a process from one state of the transition to the next. 

This user guide will concentrate primarily with using statecharts for the design and implementation of user 

interfaces. 

2.2 What Is The State Machine? 

While a statechart is the representation of the modelled user interaction of a user interface, the state 

machine is a framework that allows that statechart to be actually used to control the real user interface. With 

the state machine framework, a statechart drawn by the orchestrator tool can be used to directly control a 

real user interface. The state machine framework is based upon an open source project, the jstatemachine 

(www.jstatemachine.org). This framework has been extended to be aware of Siebel Retail Finance 

processes and is part of MCA Services. The state machine framework is loaded and runs on any HTTP 

server that supports Java servlets and Java Server Pages (JSPs). The state machine reads the statecharts 

produced by the orchestrator tool and uses that chart to control the real user interaction coming from the 

user interface. The key thing to remember here is that the tool constructs the statecharts, while the state 

machine loads that statechart and uses it to control the actual user interface. 

2.3 Why Use Statecharts And The State Machine? 

Any large system’s user interface today is usually designed using a modern integrated development 

environment (or IDE). While these tools are extremely powerful in building complex user interfaces, 1user 

interface software often has the following characteristics: 

■ The code can be difficult to understand and review thoroughly 

■ The code can be difficult to test in a systemic and thorough way 

■ The code can contain bugs even after extensive testing and bug fixing 

■ The code can be difficult to enhance without introducing unwanted side effects 

■ The quality of the code tends to deteriorate as enhancements are made to it 

Despite the obvious problems associated with user interface development, little effort has been made to 

improve the situation. The use of statecharts to specify the flow and control of the user interface is a major 

step in improving this situation. The user interface design can now be captured and easily understood, and 

can be interpreted by existing and new users developing the system. The user now has the visual record of 

the flow of control of the system. They can also see the side effects any change on the user interface will 

have. Statecharts and their notation are ideally suited to this.  

                                                           
1 Constructing the User Interface with Statecharts by Ian Horrocks  



Statechart and State Machine Concepts ■ Statechart Notation Explained  

Screen Orchestrator Guide Version 2004.5 ■ 11 

 

The design of the user interface is too often left almost entirely to the developer and their understanding of 

the use cases. Greater design work needs to be done on the user interface in order that the user interface 

can be more easily understand, developed and maintained. Statecharts can play a key part in achieving this. 

 

An extension of using statecharts is the state machine. If the user interface can be described using a 

statechart, then why can’t the actual statechart be used within the user interface application to maintain 

control of the actual system? Any changes in the statechart can then be automatically reflected back in the 

actual application. This is precisely what the state machine does. It takes the actual specified statechart and 

controls the application directly with it. The user interface developer is then free to concentrate on building 

and creating the views for the system.  

 

Statecharts and the state machine enforce the model-view-controller (MVC) programming model. The 

controller of the user interface is the statechart that was drawn, while the state machine is the runtime 

environment for that chart. The developer can now create views for the application that will contain view 

code only. The model is defined by the input parameters to the states, events and transitions (later sections 

will describe what is meant by input parameters and the maintaining of the model details used in the 

statecharts). Additionally the state machine and the statechart drawing tool are aware of Siebel Retail 

Finance processes. They can invoke them and more importantly interpret their responses so that zero or 

minimum control code is required to be written by the user. This leads to a user interface system that is 

highly controlled and whose side effects can be easily understood and changed as the system grows and 

enhancements are added, the direct opposite to the normal problems associated user interface designs. 

2.4 Statechart Notation Explained 

Statechart notation is essentially broken down into two representations: states and state transitions. States 

are represented in the Orchestrator by a rectangular box, while an arrow represents state transitions. 

Events, another important statechart element, are not pictorially represented. Events can however be 

identified in a statechart by examining the labels attached to state transitions. 

2.4.1 States 

The statechart that the user defines for their user interface is merely the representation of the possible 

states of the interface. A state, in the case of the state machine and the orchestrator, represents what the 

user sees on the computer screen. In terms of the orchestrator a screen is termed a view. A standard state 

drawn on a statechart in the orchestrator is shown in the following figure. 

 
A standard state. 

 

Every state has a title and subtitle. In the case shown in the above figure the text “<<Auto View>>” is a title, 

and the text “Login” is a subtitle. The subtitle on each state indicates the name of the state or view. The title 



Statechart and State Machine Concepts ■ Statechart Notation Explained  

12 ■ Screen Orchestrator Guide Version 2004.5 

always indicates the type of state that the state represents. The orchestrator provides three basic state 

types, an “Auto View”, a “View” and a “No View”. Each state type available in the orchestrator tool is shown 

in the figures below. 

 
An ‘Auto View’ state. 

 

 
A ‘View’ state. 

 

 
A ‘No View’ state. 

 

The states as shown in the previous figures are colour coded for easy identification. An “Auto View” state 

indicates that the user is representing a view by the state but that no current view is available to be attached 

to the state. The state machine can generate an automatic view for this state dependent on the state input 

parameters and the events leaving the state. The “View” state indicates that the user is representing a view 

by the state and that the user has an actual view that can be attached to the state. When the state machine 

runs the application, the attached view will be displayed to the user. The “No View” state if often used to 

indicate that the state will be a parent state (although an AutoView and View state can also be parent 

states). Parent states can be used to split the user interface into subsystems. The “No View” state can also 

be used to represent server-side states as these states do not represent any particular view of the system. 

2.4.1.1 Parent and child states 

States can be added to other parent states. Once a state is added to another state, that state becomes a 

child of the enclosing state. The following figure shows the AuthenticatedArea state as a parent state of the 

child states Page1 and Page2. 

 
Parent and child states 



Statechart and State Machine Concepts ■ Statechart Notation Explained  

Screen Orchestrator Guide Version 2004.5 ■ 13 

 

States can inherit events and transitions from their parent states. That is an event or transition available from 

the parent state is also available from its child states, with the exception of the case where a child state has 

an event of the same name. 

2.4.2 Events 

When the user interacts with the screen an event is initiated. They may be pressing a button, checking off a 

radio button, submitting a form, or any action the designer may wish the user to take. An event is identified 

in the state machine by its source and name. In the earlier example, clicking the login button on the login 

screen is an event being initiated. 

2.4.3 State Transitions 

Arrows represent state transitions on a statechart. Using the name of the event the transition arrow on the 

statechart can be followed to one and only one logical endpoint, i.e. another state. Not all states are 

reachable at once. Each transition is guarded by a condition or set of conditions, mutually exclusive that 

must return true for a particular transition to be followed. After the event occurs the guard condition of each 

transition possible for that event will be tested. One of the conditions will return true and the state machine 

will follow that transition to the resultant state. Having attained that state the state machine will then inform 

the user interface and the display will be updated to show what is proper for that state. The next figure 

indicates the login event and its transitions. 

 
Identifying events and transitions on a statechart. 

 

The syntax for a transition arrow’s label has three parts, all of which are optional: Event [Guard] / Action. 



Statechart and State Machine Concepts ■ Statechart Notation Explained  

14 ■ Screen Orchestrator Guide Version 2004.5 

Actions are associated with transitions and are considered to be processes that occur as a result of a 

transition. Actions are also termed as “side effects”. When a transition occurs an action or side effect may 

result. In the login example we could extend the Login[Successful] transition to include an action to store the 

user’s userId in the user’s session.  

 
Extending the login example to include a transition action. 

 

When the login button is then pressed the login event is fired. The login results will be tested to see if the 

login was successful. If the login was successful then the Login[Successful]/StoreUserId transition will be 

followed. The action associated with this transition is to take the user’s userId and store it in the user’s http 

session. 

2.4.3.1 Self-Transition 

A self-transition behaves exactly as a normal transition would except that its start state and end state are the 

same. The figure that follows indicates how a self-transition is drawn on the orchestrator tool. 

 

 
Self Transition 

 

A self-transition is used when you wish to send the user back to the currently displayed screen if a certain 

guard condition is met. In the example in the figure, when the Login event is fired, if the guard condition is 

“TryAgain” then the Login screen is re-displayed by the state machine. 



Statechart and State Machine Concepts ■ Statechart Notation Explained  

Screen Orchestrator Guide Version 2004.5 ■ 15 

2.4.4 Pseudo-States 

A number of pseudo-states are also available within statechart notation. Pseudo-states represent special 

types of states that indicate very specific types of behavior when included on the statechart. 

2.4.4.1 Initial State 

A solid circle as shown in the next figure represents an initial pseudo-state.  

 
An initial pseudo-state. 

 

An initial pseudo-state indicates the starting point or state for a statechart. Initial pseudo-states can also be 

used in parent states to indicate when a user enters a parent state where the starting point is within that 

parent state. The next figure shows the login example extended to include child states in the 

AuthenticatedArea parent state.  

 
Using initial pseudostates. 

 

The statechart has two initial pseudo-states. One to indicate where the application starts and the second to 

indicate which state is displayed first when the AuthenticatedArea state is entered (e.g. Page1). 

2.4.4.2 History 

A circle enclosing a “H” as shown in the next figure represents a history pseudo-state.  

 
A history pseudo-state. 

 

A history pseudo-state refers to children of a state that have recently been visited by the user. The history 



Statechart and State Machine Concepts ■ Statechart Notation Explained  

16 ■ Screen Orchestrator Guide Version 2004.5 

pseudo-state allows the user to return to the state that was the most recently visited immediate child of the 

history pseudo-state. The following figure shows a history pseudo-state in the AuthenticatedArea. 

 
The login example extended to use a history pseudo-state. 

 

In this example, if the user cancels their logout event while on the confirm state, the user is returned to the 

last previously opened state within the Authenticated area (i.e. either Page1 or Page2, depending on which 

of the two screens have been displayed before the Confirm state was displayed). 

2.4.4.3 History-Star 

A circle enclosing a “H*” as shown in the next figure represents a history-star pseudo-state.  

 
A history-star pseudo-state. 

 

A history-star pseudo-state is very similar to the history pseudo-state. However, the history-star pseudo-

state will recursively return the user to the immediate child of the history-star pseudo-state ending with the 

deepest visited state. 

 

For example, if the statechart in the previous figure was modified to use history-star rather than history, the 

state machine would allow the user to return to the last displayed state and its deepest visited state. So if the 

user visited Page1 followed by a child state of Page1 the user will be returned to the child state of Page1. 

2.4.4.4 Final State 

A solid circle enclosed by an outer circle as shown in the next figure represents a final pseudo-state.  



Statechart and State Machine Concepts ■ Statechart Notation Explained  

Screen Orchestrator Guide Version 2004.5 ■ 17 

 
A final pseudo-state. 

 

The final pseudo-state is used to indicate the final activity allowed on a statechart. It triggers a transition for 

leaving the application fired from the connected state to the final pseudo-state. 

2.4.4.5 Exception State 

A circle with an “X” across it as shown in the next figure represents an exception pseudo-state. 

 
An exception pseudo-state. 

 

An exception pseudo-state is not part of the standard UML statechart notation. It was added to the state 

machine for exception handling. The state machine recognises that exceptions can occur during event 

processing, and allows you to specify states within your user interface as exception states. When an 

exception is thrown the user interface will be placed properly in the appropriate exception state, with the 

user session still intact. 

2.4.4.6 Effects of Pseudo-States On State Transitions 

Pseudo-States indicate very specific behaviour when used on a statechart. Similarly, pseudo-states have 

effects on state transitions that you should be aware of. Some pseudo-states can start a state transition but 

can’t be used to end a state transition. While other pseudo-states can’t be used to start a state transition but 

can be used to end a state transition. The table that follows indicates the type of behaviors that are allowed 

by pseudo-states when drawing a state transition with them on a statechart. 

State Transition Behavior Pseudo-state 
Start state in a transition End state in a transition 

Initial  Yes No 
History No Yes 
History-star No Yes 
Final No Yes 
Exception No Yes 

2.4.5 Chart Notes 

The orchestrator allows various notes to be added to the statechart. One visual note type is the chart note. 

The following figure shows a chart note. 

 
A chart note. 



Statechart and State Machine Concepts ■ Simple Statechart Example  

18 ■ Screen Orchestrator Guide Version 2004.5 

 

Chart notes can be added anywhere within a statechart and can be used to visually comment the statechart. 

The state machine makes no use of these notes. They are only used to explain the statechart to other users. 

2.5 Simple Statechart Example 

In the previous sections we have used a login example to demonstrate the statechart notation. We will 

extend that example to produce the statechart as shown in the following figure. The purpose of this section 

is to explain what we mean by this statechart and how a user should interpret it. Later sections introduce 

more advanced features that the orchestrator is capable of, for now we will concern ourselves only with the 

basics. 

 
A simple statechart example. 

 

The figure above provides a simple statechart that represents a user interface that allows a user to login to 

an authenticated area, move around that area and then to restart the application by logging out of the 

application. Initially, when the user starts the application, the welcome view will be displayed as indicated by 

the statecharts initial pseudo-state. On the welcome screen or view is a next button. When the next button is 

pressed the state machine will display the login view to the user. On the login view the user can enter their 

username and password. When the user clicks the login button a login event is fired. The state machine 

handles the result of the login and determines which guard condition is met. 

 

If the guard condition Failed is met the state machine follows the Login[Failed] transition and displays the 



Statechart and State Machine Concepts ■ Simple Statechart Example  

Screen Orchestrator Guide Version 2004.5 ■ 19 

LoginFailed screen to the user. On the LoginFailed view is a restart button and a try again button. If the user 

clicks the try again button then the state machine displays the Login screen again. However, if the user 

clicks the restart button the state machine displays the welcome screen. 

 

If we go back to the login guard condition and the guard condition Successful is met, the state machine then 

follows the Login[Successful]/StoreUserId transition. When the guard condition Successful is met the state 

machine performs the StoreUserId action or side effect. The StoreUserId side effect requires the state 

machine to take the userId returned from the login process and to store that userId in the user’s http 

session. Once the side effect has been completed the state machine will enter the AuthenticatedArea of the 

application and will display the Page1 view to the user as indicated by the initial pseudo-state in the 

AuthenticatedArea. 

 

The user can move between Page1 and Page2 in the AuthenticatedArea by menu or form buttons on the 

AuthenticatedArea screens. The AuthenticatedArea indicates that there is a Logout event. This event is 

inherited by the AuthenticatedArea’s child states. This implies that both the Page1 and Page2 screens will 

have a logout button so that the user can fire the Logout event. Note how the statechart does not require a 

logout state transition arrow to be drawn from Page1 and Page2 to the Confirm state. They automatically 

inherit the event by being child states of the AuthenticatedArea. 



Basic Orchestrator Drawing ■ The Main Orchestrator Window  

20 ■ Screen Orchestrator Guide Version 2004.5 

3 Basic Orchestrator Drawing 
This section will introduce the basic drawing capabilities of the orchestrator tool. After completion of this 

section you should be able to build a standard statechart with the tool. 

3.1 The Main Orchestrator Window 

When the orchestrator window starts, the screen in the following figure will be displayed: 

 
The orchestrator window. 

 

The orchestrator application provides a menu and toolbar to access the major functions of the tool. The main 

drawing components of the tool with which statecharts are drawn are always displayed in the upper left 

hand-side of the application. The next figure indicates the statechart drawing components used by the tool. 



Basic Orchestrator Drawing ■ The Main Orchestrator Window  

Screen Orchestrator Guide Version 2004.5 ■ 21 

 
Drawing components used in creating statecharts. 

 

Below the drawing component’s panel on the main window is a navigation window that allows the user to 

see a miniature view of the statechart they are currently drawing. This window can be used to navigate a 

statechart to a particular area within the currently visible statechart window. 

 
Navigate window. 

 

Below the navigate window panel is a further panel, the “Siebel Processes” panel. This panel is used to 

display the available list of Siebel processes available to the user to use when populating a statechart with 

process information. 



Basic Orchestrator Drawing ■ The Main Orchestrator Window  

22 ■ Screen Orchestrator Guide Version 2004.5 

 
Siebel processes panel. 

 

Beside the “Siebel Processes” is a further panel, the “Application Metrics” panel. This panel is used to 

display the number of states, view states, autoviews, events, complex controllers, transitions and complex 

guard conditions in a statechart. This information can be used to determine the complexity of the statechart, 

to help with task estimation and to track progress of the application i.e. the number of autoviews left to be 

coded to actual views. 

 



Basic Orchestrator Drawing ■ The Statechart Drawing Components  

Screen Orchestrator Guide Version 2004.5 ■ 23 

Application Metrics panel. 

 

As stated previously this section will concentrate on the basic drawing of statecharts using the tool, later 

sections will explain fully the use of the process panel. 

 

Finally, to the right of these panels is the main drawing area. The orchestrator tool provides an MDI (multiple 

document interface) desktop in which statecharts can be drawn. The tool allows a user to create or edit a 

single statechart at a time. However, larger parent states can be opened into smaller sub-chart windows 

within the desktop. Opening parent states as sub-charts will be explained in detail in the section titled 

“Advanced Statechart Drawing”.  

3.2 The Statechart Drawing Components 

The statechart drawing components as shown in the next figure represent the statechart notation as 

described in the statechart concepts section of the user guide. 

 
Statechart notation components palette used for drawing statecharts. 

3.2.1 Drawing States or Pseudo-states 

To create a state or a pseudo-state on the statechart window the user must click on the state required from 

the component palette with the mouse and drag the state using the mouse onto the statechart window. The 

user must release the mouse button over an area in the statechart window where they wish to drop the 

state. Once released a state or pseudo-state will be created by the tool on the dropped location in the 

statechart.  

 

Once a state (not a pseudo-state) is dropped and created the tool will display the “Enter State Details” 

dialog. The user can then enter the state’s details. The following figure shows the “Enter State Details” 

dialog. 



Basic Orchestrator Drawing ■ The Statechart Drawing Components  

24 ■ Screen Orchestrator Guide Version 2004.5 

 
Enter state details dialog. 

 

For now we will leave the details as is and only enter a title for the state. In this case we will enter a title 

“Welcome” for the state. When the “OK” button is pressed the dialog will be closed and the state will be 

displayed with the appropriate title and state type. The next figure indicates the state that would be drawn by 

following the previous related procedure. 



Basic Orchestrator Drawing ■ The Statechart Drawing Components  

Screen Orchestrator Guide Version 2004.5 ■ 25 

 
Welcome state drawn. 

 

The “Enter State Details” Dialog will only be displayed when creating or editing states. Pseudo-states do not 

require titles or require to be configured in any way. The state or pseudo-state can be moved at any time by 

clicking with the mouse on the state and dragging the state to any new location within the statechart window. 

3.2.2 Drawing State Transitions 

To connect two states together to represent a state transition the user must click with the mouse on the 

transition component and then drag the component onto the statechart and drop or release the mouse 

button directly over the 2header of the state, or anywhere over a pseudo-state that will be the starting state 

of a state transition. 

 
State transition component. 

 

The tool will immediately change the cursor to that of a transition crosshair – as shown below. 

                                                           
2 To understand what the header of a state means, please see the later subsection entitled “State 

header”. 



Basic Orchestrator Drawing ■ The Statechart Drawing Components  

26 ■ Screen Orchestrator Guide Version 2004.5 

 
Transition crosshair. 

 

The user must then move the mouse to the state or pseudo-state that will be the endpoint of the transition. 

As the mouse is moved about the statechart towards the end state of the transition a temporary state 

transition line will be drawn for each mouse movement towards the end state. Once the mouse is over the 

header of the state or anywhere over a pseudo-state the user must click the mouse on the state. The cursor 

will be returned to the default cursor and the state transition will be drawn. The “Transition Wizard” dialog as 

shown in the next figure will then be displayed. 

 
Transition Wizard dialog. 

 

The user must enter an event name of the transition or select an existing event on the starting state of the 

transition if one already exists. For example, in the login example used in the statechart concepts section, if 

we were drawing a transition from the welcome state to the login state, then the next event would be created 

for this transition. Enter the event name, in this case “Next”, into the combo box for the event name. At this 

stage we will only consider the basic drawing functions of the statechart and so for now we will ignore the 

other features on the dialog. Press the “Next” button to move the wizard onto the next screen. 



Basic Orchestrator Drawing ■ The Statechart Drawing Components  

Screen Orchestrator Guide Version 2004.5 ■ 27 

 
The next screen on the transition wizard dialog. 

 

On this screen in the transition wizard dialog, the user can enter an action description and guard condition 

for the state transition. In the state transition from the Welcome state to Login state no action or guard 

condition exists. Again, later sections will describe in more detail the remaining properties of this dialog. 

Once the “Finish” button is pressed, the dialog is closed and the state transition entitled Next[default] is 

created as shown in the next figure. 

 
The Next[default] state transition drawn. 

 

If we were drawing the Login[Successful]/StoreUserId state transition then the following information as 

shown in the figures below would be entered in the transition wizard dialog screens. 



Basic Orchestrator Drawing ■ The Statechart Drawing Components  

28 ■ Screen Orchestrator Guide Version 2004.5 

 
Entering the Login event name. 



Basic Orchestrator Drawing ■ The Statechart Drawing Components  

Screen Orchestrator Guide Version 2004.5 ■ 29 

 
Entering the Login StoreUserId action and Successful guard condition. 

 
The Login[Successful]/StoreUserId state transition 

3.2.2.1 Drawing Self-Transitions 

To draw a self-transition, the user only needs to mouse click on the self-transition component and holding 

the mouse button down, drag the component onto a state header. Pseudo-states do not support self-

transitions and will be ignored. The user will be warned if they attempt to drop a self-transition on a pseudo-

state. 

 
The self-transition component. 

 

Releasing the mouse button over a state will invoke the tool to draw a self-transition around the state and to 

display the “Transition Wizard” dialog as described in the previous section. Remember a self-transition has 

exactly the same properties as a state transition, except its start state and end state are the same. The next 

figure shows a self-transition drawn around a Login state, when the Login event’s guard condition is 



Basic Orchestrator Drawing ■ The Statechart Drawing Components  

30 ■ Screen Orchestrator Guide Version 2004.5 

TryAgain. If the login fails, the state machine can re-display the Login state allowing the user to try logging in 

again. 

 
The Login[TryAgain] self-transition. 

3.2.2.2 State Header 

When dropping a transition or self-transition on a state you must drop the drawing component on the state’s 

header. Similarly, when specifying the end state of a state transition, the user must click the mouse on the 

state’s header for the tool to identify the state that should be used for the end state of that transition. The 

state header is the top rectangular box of the state where the state’s type and name (or title) is displayed. 

The following figure highlights the header area of a number of states. 

State headers

 
The state header area. 

The bottom rectangular box of a state is where child states can be added to the state. Adding child states to 

a parent state will be discussed in a later section. 

3.2.3 Drawing Chart Notes 

Chart notes can be added anywhere to the statechart. The statechart component is shown in the following 

figure. 

 
Chart note component. 

 

To add a chart note component to the statechart click the mouse button on the component shown in the 

previous figure and holding the mouse down, drag the component onto the statechart. Release the mouse 

button where you want the chart note to be located. Click the mouse into the chart note and the user can 

then type text directly into the note. The note will grow automatically in size as more text is typed. A chart 

note is shown in the following figure. The statechart can have as many notes as you wish and they can be 

added to states just as any child state can be added to any parent state. 



Basic Orchestrator Drawing ■ More Drawing State Details  

Screen Orchestrator Guide Version 2004.5 ■ 31 

 
A statechart showing a chart note attached. 

3.3 More Drawing State Details 

States and pseudo-states can be created or moved anywhere within other states. They can be resized and 

their details edited - e.g. their names can be changed and state types can be altered. The following 

subsections indicate how these features can be accessed. 

3.3.1 Adding Child States 

To add a state or pseudo-state as a child to a parent state, simply drag and drop a state component from the 

component palette onto the parent state’s statechart area. Every state has a statechart area on which child 

states can be added. The next figure indicates the statechart area available for each state. 

Statechart areas
 

Statechart areas attached to states. 

 

Once a state is dropped onto a parent state’s statechart area, the parent state will be resized to fit the child 



Basic Orchestrator Drawing ■ More Drawing State Details  

32 ■ Screen Orchestrator Guide Version 2004.5 

state and any other child states of the parent. If the child state is then moved further around the parent state, 

the parent state will continue to be resized if required. 

3.3.2 Moving States 

Once a state or pseudo-state has been dropped and created, the user is free to move the state to any 

location in the statechart. To move any state simply mouse click anywhere on the state’s header or, if it is a 

pseudo-state, anywhere on the body of the pseudo-state, and drag the state to its new location. Releasing 

the mouse button over the new location will move the state. If the state is moved inside a parent state the 

parent state will be resized automatically if necessary. You can move a state anywhere you wish. If the state 

is outside a parent state but should be inside it, then dragging the state inside the parent state is allowed. 

The state will immediately become a child state of the parent state.  

 
Moving Page2 state into the AuthenticatedArea state. 

 

Similarly the reverse is also true. If a state has been initially located as a child state of some parent state, 

moving the child state anywhere outside the parent state will immediately release the state as a child state 

of the parent state. 

3.3.3 Editing State Details 

The state details, such as changing the state’s title, view type, view details or input parameters, can be 

changed at any time. Right-clicking anywhere on a state’s header will bring up the state’s popup menu - as 

shown in the following figure. 



Basic Orchestrator Drawing ■ More Drawing State Details  

Screen Orchestrator Guide Version 2004.5 ■ 33 

 
The AuthenticatedArea’s popup menu. 

 

Clicking the Edit -> Details menu item will bring up the state’s “Enter State Details” dialog. Any of the state’s 

details can then be changed using the dialog. 

 
Enter State Details dialog. 



Basic Orchestrator Drawing ■ More Drawing State Details  

34 ■ Screen Orchestrator Guide Version 2004.5 

 

 
Changing the AuthenticatedArea’s view type. 

 

The previous figures show the AuthenticatedArea’s state type being changed from an “AutoView” state type 

to a “No View” or (NONE) state type. Clicking the “Enter State Details” Ok button will save and update any 

changes made. 

3.3.4 Resizing States 

The states are automatically resized when adding child states or moving states within a parent state. 

However, the user can also specify a state’s actual size by entering the state’s width and height through the 

Edit -> Size menu item. Right-clicking anywhere on a state’s header will bring up the popup menu for the 

state. 

 
The AuthenticatedArea’s Edit, Size menu item. 

 

Clicking the Edit, Size menu item will bring up the “Enter State Size” dialog. 

 
The “Enter State Size” dialog. 

 

This dialog will indicate the current width and height of the state and indicate the best-fit size for the state. 

The user can enter the width and height they would like in the “Enter size:” text fields. Clicking the OK button 

will alter the size accordingly. 



Basic Orchestrator Drawing ■ More Drawing Transition Details  

Screen Orchestrator Guide Version 2004.5 ■ 35 

3.3.5 Deleting states 

Any state or pseudo-state can be deleted by launching the popup menu for the state. If the user selects the 

Delete menu item, as shown below, then a confirm delete state dialog will be displayed. 

 
The Delete menu item. 

 
The confirm delete dialog. 

 

The important thing to remember when deleting a state, particularly if it’s a parent state with child states, is 

that when you delete a parent state all its child states, transitions and child transitions will also be deleted.  

3.4 More Drawing Transition Details 

Transitions can be drawn between any two states, however only certain types of transitions can be drawn 

between states and pseudo-states. See the table – “indicating effects pseudo-states have on state 

transitions” in the statechart concepts section of this user guide to see what transitions are supported by 

pseudo-states.  

3.4.1 Note On Transition Arrows 

When a transition is drawn between any two states (regardless if any state is a pseudo-state), the tool will 

determine how the transition arrow is drawn between them. The user has no real control over how the 

transition arrow is drawn. However, moving the states that participate in the transition can alter how the 

transition arrow is drawn. For example, the figure that follows indicates the types of transition arrows that will 

be drawn given the location of one state in relation to the other state in the transition. 



Basic Orchestrator Drawing ■ More Drawing Transition Details  

36 ■ Screen Orchestrator Guide Version 2004.5 

 
Types of transition arrows drawn by the tool. 

 

If you need to change a transition arrow and how it’s drawn you will need to adjust the location of one of the 

transition’s states. Moving one of the states involved in the transition further away or closer or at a different 

angle to the other state will force the transition arrow to be drawn differently. 

3.4.2 Drawing Transitions To The Master State 

The desktop window that displays the statechart is a state itself and as such can have transitions drawn to it. 

Within the tool this state is known as the master or application state. State transitions are often drawn to the 

master state to indicate that the application should be restarted. In the login example described in the simple 

statechart example from the statechart concepts section of the user guide, a state transition arrow is drawn 

from the LoginFailed state and the Confirm state to the master state to indicate that the application should 

be restarted as a result of these transitions. 

 

To connect a state to the master state, commence a transition as stated in the drawing state transitions 

section of this user guide. To end the transition, click the mouse anywhere in the desktop window’s 

statechart area. Ensure that you click in an area where no parent or child state already exists. The following 

figure indicates where the end transition mouse click was to draw the Restart transition arrow on the Confirm 

state. 



Basic Orchestrator Drawing ■ More Drawing Transition Details  

Screen Orchestrator Guide Version 2004.5 ■ 37 

 
Creating a transition from a state to the master state. 

 

Once the mouse is clicked the “Transition Wizard” dialog is displayed. The transition’s details can be 

entered. The next figure shows the completed Restart transition for the confirm state. 

 
The Restart transition from the Confirm state to the master state. 



Basic Orchestrator Drawing ■ More Drawing Transition Details  

38 ■ Screen Orchestrator Guide Version 2004.5 

3.4.3 Drawing Transitions To And From Parent And Child States 

Transitions can be drawn between parents and child states just as a normal state transitions would be 

drawn. Dragging the transition component onto the parent state’s header starts the transition and clicking 

the mouse on the child state’s header ends the drawing of the transition as normal. The previous figure 

shows a couple of such transitions. The AuthenticatedArea has parent to child transition arrows to the 

Page1 and Page2 states. 

3.4.4 Drawing Transitions To And From Non-Related Child States 

Transitions can be drawn to and from states that are non-related child states. What this in effect means is 

that a transition arrow can be drawn between any two states anywhere on the statechart, regardless of 

whether they are children of the same parent state, not children or just child states of the statechart itself. 

The only limit on drawing a transition arrow is when one of the states is a pseudo-state. Again see the table 

in the statechart concepts of the user guide to confirm what transitions can be drawn with pseudo-states. 

3.4.5 Editing Transition Details 

Any transition can be edited by right-clicking on the start state of the transition arrow and launching the 

state’s popup menu. Select Transitions -> Edit, followed by the transition’s label menu item. The 

Login[Failed] transition menu item is shown in the next figure. 

 
The Login[Failed] transition’s edit menu item. 

 

Clicking on the transition’s menu item will bring up that transition’s “Transition Wizard” dialog, where the 

transition’s details can be changed. Clicking the OK button will close the dialog and update the transition 

with the edited changes. 

3.4.5.1 Selecting Transitions Directly 

To select a transition so that it can be edited or deleted right-click anywhere or the transition that you wish to 

edit or delete. Right-clicking on the Login[Failed] transition will bring up that transition’s popup edit menu as 

shown in the following figure. 



Basic Orchestrator Drawing ■ More Drawing Statechart Details  

Screen Orchestrator Guide Version 2004.5 ■ 39 

 
Directly selecting transitions by right-clicking on them. 

3.4.6 Deleting Transitions 

To delete any transition, the user must right-click on the starting state of the transition to bring up the start 

state’s popup menu. The user must then select Transitions -> Delete, followed by the transition’s label menu 

item, to delete the transition. The following figure shows the delete transition menu item for the Login[Failed] 

transition. 

 
The Login[Failed] transition’s delete menu item. 

 

Once the transition’s delete menu item is selected, the user will be asked to confirm the deletion of the 

transition. 

 
The confirm delete transition dialog. 

 

When the user has confirmed the delete transition, the transition will be removed from the statechart. The 

transition can also be selected for deletion by right-clicking on the transition directly and displaying the 

transition’s edit popup menu as described in the “Selecting Transitions Directly”. 

3.5 More Drawing Statechart Details 

Additional to drawing states and transitions, the user can edit details of the statechart itself. The following 

sub-sections indicate features directly related to the statechart itself. 



Basic Orchestrator Drawing ■ More Drawing Statechart Details  

40 ■ Screen Orchestrator Guide Version 2004.5 

3.5.1 The Statechart Name 

Each statechart represents an application. The name of the statechart is also the application name and the 

name of the master state of the statechart. The name of the statechart is displayed in the title bar for the 

desktop window of the statechart. 

The statechart name

 
The statechart or application name highlighted. 

 

The previous figure indicates where the statechart name is displayed. 

3.5.2 Renaming The Statechart 

Right-clicking anywhere on the statechart where no state is currently located will display the statechart’s 

popup menu. The following figure shows the statechart’s popup menu. 

 
The statechart’s popup menu. 

 

Selecting the “Edit Application Title” menu item will display the input dialog for editing the application’s title. 

 
Input dialog for editing the application title of the statechart. 



Basic Orchestrator Drawing ■ More Drawing Statechart Details  

Screen Orchestrator Guide Version 2004.5 ■ 41 

 

Once the OK button is pressed on the input dialog the title bar of the statechart window is changed to reflect 

the new application title. 

3.5.3 Saving A Statechart 

A statechart can be saved at any time by pressing the save button on the toolbar or by selecting File -> Save 

XML from the menu. If the statechart hasn’t been saved before then the user will be asked to enter a 

filename for the statechart. By default the statechart’s filename will be the same as the statechart’s 

application title. The user can enter whatever filename they wish, however we suggest that you leave the 

filename to be same name as the statechart’s application name. 

 

Once the statechart has been saved to a file, the title bar of the statechart window will be updated to include 

the filename of the statechart. The following figure shows the highlighted title bar of an application saved to 

a file. 

File name of the statechart.

 
The highlighted title bar indicating the filename of the statechart. 

 

The statechart can also be saved to another file at any time, by selecting  File -> “Save XML As..” from the 

menu. A file chooser dialog will be displayed and the user will be allowed to enter a new name for the file 

name of the statechart. 

 

As you add items to a statechart, such as states, pseudo-states, transitions, or move any state in the 

statechart, as well as editing any states or transition details, the tool will indicate that a file save is required 

by adding an asterisk to the statechart’s window title bar. 



Basic Orchestrator Drawing ■ Miscellaneous Drawing Features  

42 ■ Screen Orchestrator Guide Version 2004.5 

3.5.4 Renaming a Saved Statechart 

If you started a statechart and built it up over some period of time, you will have already named the 

statechart and saved it in a file. Over time you may then wish to rename the statechart to a more appropriate 

name. Renaming the statechart as shown in the “Renaming the statechart” section earlier in this document 

can do this. When you rename the statechart’s application title, the tool will also rename the file associated 

with the statechart to the same name automatically. The tool tries to maintain a match between the 

statechart name and the file name in which the statechart is saved. By changing the statechart’s application 

name you will also change the filename in which the statechart is saved. 

3.5.5 Opening A Statechart 

You can open a statechart at any time by pressing the open button on the toolbar, or by selecting File -> 

Open or, if the statechart was opened recently, by selecting the file from the recently opened file list on the 

File menu. If you already have a statechart opened you will be asked to save it (if it requires saving) before 

opening the selected statechart. 

3.6 Miscellaneous Drawing Features 

The following sub-sections detail the remaining important features required for basic drawing with the tool. 

More advanced drawing features will be covered in a later section entitled “Advanced statechart drawing”. 

3.6.1 Using The Grid And Snap To Features 

The tool provides a grid and snap to features for drawing your statechart application. The grid tool allows a 

visible grid to be used to position and align states drawn on the statechart. The snap to tool allows states to 

be located on actual grid points regardless of whether the grid is visible or not to the user. If a state is 

created or moved while the snap to tool is on, then the state will be automatically located to the nearest grid 

point. The following figure indicates the grid and snap features available on the orchestrator’s component 

palette. 

 
The grid and snap to palette buttons. 

 

By default the grid is off, while the snap to feature is on, when you start the Orchestrator tool. If you wish to 

switch the grid on, press the “Show Grid” button. Pressing the “Show Grid” button will switch the grid on and 

the statechart windows will show a grid as shown in the next figure. 



Basic Orchestrator Drawing ■ Miscellaneous Drawing Features  

Screen Orchestrator Guide Version 2004.5 ■ 43 

 
The grid switched on. 

 

The “Show Grid” button will also be toggled to a “Hide Grid” button, so that the user can hide the grid when 

required. One small result of switching on the grid is that specifying transitions is slightly slower. This is a 

known bug that will be fixed in a later release. The grid size can be adjusted by moving the grid size slider 

left or right. Moving it left will decrease the grid size down to a minimum of 5 pixels per grid square. Moving 

the slider to the right will allow the grid size to be increased to a maximum of 50 pixels per grid square. The 

default grid size is 10 pixels per grid square. 

 

Pressing the “Snap Off” button will switch the snap to feature off. When you create or move states they will 

be located exactly where they are dropped. Pressing the “Snap Off” button will toggle the button to a “Snap 

On” button, which will allow the snap to feature to be switched back on. 

3.6.2 Using The Navigation Panel 

As a statechart gets larger and moves outside the size of the desktop statechart window, that window will 

become scrollable. To help navigate around the window, a navigation panel has been incorporated into the 

tool. The following figure shows the navigation panel for a scrollable statechart. 



Basic Orchestrator Drawing ■ Miscellaneous Drawing Features  

44 ■ Screen Orchestrator Guide Version 2004.5 

 
The navigation panel for a scrollable statechart. 

 

The navigation panel displays a miniature representation of the statechart. The red box in the panel 

indicates the currently visible area in the statechart’s desktop window. If inside the red box is clicked the 

cursor will change to a hand and while the mouse button is held down the user can drag the box to a new 

location within the navigation panel. As the mouse is dragged the statechart window will be moved and 

located to correspond with the area visible in the navigation panel. 

3.6.3 Printing Statecharts 

Statecharts can be printed at any time by pressing the print buttons on the toolbar or by selecting File -> 

Print from the menu. Pressing the “Print All” button will print the currently selected desktop window 

statechart. The statechart will be printed to scale and if it is larger than a single page, all the pages will be 

printed. 

 

Pressing the “Print On One Page” button will print the currently selected desktop window statechart. 

However, if the statechart is larger than a single page the statechart will be scaled to fit on a single page. 

3.6.4 Export StateChart as a GIF 

Statecharts can be exported as GIF files at any time by selecting ‘File’ -> ‘Export as a GIF file’ from the 

menu. The GIF file can then be imported into design documents or sent electronically which allows the 

statechart to be viewed and analysed without having a Screen Orchestrator installation.  



Preview And Web Deployment Capabilities ■ Introduction  

Screen Orchestrator Guide Version 2004.5 ■ 45 

4 Preview And Web Deployment Capabilities 

4.1 Introduction 

The state machine framework can run the application that is produced by the orchestrator tool. The 

application is typically web based and must therefore be packaged into a web archive (WAR) file and 

deployed on a suitable Web server. The orchestrator tool provides an in-built swing based preview window 

for testing and verifying the statechart design. It also provides an in-built mechanism for creating and 

deploying a war file for web based applications. The following sections show how these mechanisms can de 

used. 

4.2 Preview Capability 

As the statechart is being developed, the designer or developer can preview the statechart at any time by 

invoking the preview feature of the orchestrator tool. The following figure indicates where the button to 

launch the preview feature is located. 

 
Highlighted preview launch button. 

 

The preview window will display the initial state and allow the user to fire events to the next state in the 

drawn statechart. The preview window does not use the specified view state type but instead uses a swing-

based autoview to display the state. If the state’s events have the correct controllers and guard condition 



Preview And Web Deployment Capabilities ■ Preview Capability  

46 ■ Screen Orchestrator Guide Version 2004.5 

classes then the preview window can be used to follow the actual transitions that would occur in the real 

application. 

 

The screen orchestrator tool also allows you to use a special controller with the preview window. If the user 

when drawing the statechart uses the AutoViewController for events then the preview window will allow the 

user to actually select the transition they want to follow. This is extremely useful for verifying all the 

statecharts transitions including those that might represent rare behaviour that is difficult to duplicate. The 

following table with figures show the earlier login example with AutoViewController used for events with 

more than one transition and the way in which the transitions can be followed using the preview feature. 

 

Initial state of the example application is the Welcome state. The Next event will be fired by pressed the 

Next button. 

 
The Next event takes you to the Login state. This state’s Login event has 2 possible transitions. The event is 

either successful or it fails. The AutoView Controller is used for this event which allows the user to select the 

Successful transition to be followed when the Login button is pressed. 

 
The Login was successful and so the initial state of the AuthenticatedArea is the Page1 state. We will now 

press the Logout button to fire the Logout event. 



Preview And Web Deployment Capabilities ■ Preview Capability  

Screen Orchestrator Guide Version 2004.5 ■ 47 

 
 



Preview And Web Deployment Capabilities ■ Web Deployment Capability  

48 ■ Screen Orchestrator Guide Version 2004.5 

 

4.3 Web Deployment Capability 

As stated in the introduction of this section the orchestrator tool can be used to produce a WAR file for 

deployment of web-based applications. The following sub-sections indicate how this feature can be 

accessed and used. 

4.3.1 Install an appropriate web server 

The state machine framework can be deployed on any suitable http server that supports Java servlets and 

JSPs. The state machine and the war file produced by the orchestrator tool has being tested on the following 

application servers: 

■ JBoss 3.0.x and higher 

■ JBoss 3.0.x with Tomcat and higher 

■ WebLogic 6.1 and higher 

■ WebSphere 5.x and higher (may need to update the jdom.jar installed with this server for the state 

machine to work correctly). 

4.3.2 WAR properties saved per statechart 

War properties were previously only set for the tool rather than for individual statecharts. This has been 

changed so that war properties can now be set per statechart. The tool maintains a set of default values for 

the war properties. When a new chart is created the default war properties are automatically assigned. 

These properties can then be changed for that specific statechart. When the statechart is saved these war 

properties will be saved with the statechart. When the statechart is re-opened the charts war properties are 



Preview And Web Deployment Capabilities ■ Web Deployment Capability  

Screen Orchestrator Guide Version 2004.5 ■ 49 

then set according to the values obtained from the statechart. This allows each statechart to have different 

war properties. 

4.3.3 Configuring the WAR file within the tool 

In the orchestrator tool go to File>>>>War Properties. You will then be presented with the following dialog: 

 
This dialog will be populated with default values for the war file. You can change them if you wish. 

4.3.3.1 Destination Dir 

This value will probably be changed most often. It is where the application will put the packaged war file. 

You should point this to the “webapps” folder of the web server e.g. if you were using JBoss then you might 

point it to a “.\jboss-3.0.x\server\default\deploy” directory. Once the war file has been generated 

it will be transferred to this location for deployment. 

4.3.3.2 Temp Dir 

This is the folder where the WAR will be generated and packaged before it is copied to the $Destination Dir 

value. 

4.3.3.3 Classes 

This is where the application’s additional classes should be located to be included in the WAR. If the 

application uses any additional controllers or guard condition classes in the application then they should be 

placed here so that they will be included in the application’s WAR file. 

4.3.3.4 HTML Directory 

Any html or JSP files that the WAR needs should be located in this directory. Any additional directories and 

files such as images and style sheets should also be located under this directory. 

4.3.4 Deploying the war file 

When you are happy with the properties for the war file you can deploy the webapp by choosing File >>> 

Save XML and regenerate war.  



Preview And Web Deployment Capabilities ■ Web Deployment Capability  

50 ■ Screen Orchestrator Guide Version 2004.5 

 

This will create the war file and place it the directory specified in the $Destination Dir variable in the war 

properties. Some application servers will have the ability to hot re-deploy the war, for those that do not then 

the application server will have to be re-started.  

 

Generally, the URL to run the application will be of the following format. 

http://<<serverName>>:<<portNumber>>/<<ApplicationName>>/StateMachine 

 

e.g. if a EbankingExample.xml file was open and deployed on an application server installed locally and 

on a port number of 8080, then the URL would be: http://localhost:8080/EBankingExample/StateMachine.  

http://localhost:8080/EBankingExample/StateMachine


Designing Events With Processes And Guard Conditions ■ Handling an Event  

Screen Orchestrator Guide Version 2004.5 ■ 51 

5 Designing Events With Processes And Guard 
Conditions 

This document describes how to define complex events in the editor including processes, guard conditions 

and side effects. It goes through the sequence followed by the state machine when handling an event, and 

how to add processes and useful guard conditions to that sequence to control a real user interface. 

5.1 Handling an Event 

When the state machine receives an event, it follows the sequence in this diagram. 

 
When the event is received the state machine calls the Controller’s getResult method. The controller calls all 

the processes associated with the event and then calls the checkGuardCondition method for each of the 

transitions. One of the guard conditions is going to evaluate to TRUE. The getResult method will return that 

transition. 

 

The state machine will then call the doSideEffects method. The controller will call all the processes 

associated with the transition. 

(Note: This is the sequence followed by the com.bankframe.fe.statemachine.ext.apps.Controller class. Other 

controller classes may behave differently) 

5.2 Associating Processes with Events and Transitions 

At its simplest, associating processes with events and transitions is just a matter of dragging the process 

from the process tree to the transition wizard dialog. 



Designing Events With Processes And Guard Conditions ■ Associating Processes with Events and 
Transitions  

52 ■ Screen Orchestrator Guide Version 2004.5 

 
 

See the “Process Integration” section for details on loading and editing processes on the process tree. 

 

The transition wizard dialog has two pages. To associate a process with an event, drag the process onto the 

first page of the wizard, as shown above. To associate a process with a transition drag the process onto the 

second page of the dialog, as below. 

 

Processes on the event (the first page) will be called when the event is received from the user before any 

guard conditions are tested, as described in the ‘Handling an Event’ section. Processes on the transition will 

be called after the transition’s guard condition is tested and only if the guard condition evaluates to ‘true’. 



Designing Events With Processes And Guard Conditions ■ Setting the Input Requirements  

Screen Orchestrator Guide Version 2004.5 ■ 53 

 

5.3 Setting the Input Requirements 

When you add a process to an event or transition, the parameters to that process become input 

requirements to the event. (The transition does not have independent input requirements, so all parameters 

to all processes on an event and all its transitions are considered input requirements to the event.) 

For each input requirement there are four attributes to be set: the parameter name, the (optional) parameter 

description, the (optional) default value, and the requirement type. The parameter name and requirement 

type must be provided. In most cases, the parameter name will be a DataPacket key, as used by a process 

the event references. 

The requirement type must take one of the following five values: 

■ REQUIRED: indicates that the parameter value must be supplied by the user 

■ OPTIONAL: indicates that the parameter value may be supplied by the user 

■ CONSTANT: indicates that the parameter value will always be the supplied default value 

■ CODED: indicates that the parameter value will be supplied by customised code (this option will be 

used very rarely) 

■ PROCESS: indicates that the parameter value will be supplied by the process definition (this option 

will be used for parameters such as the DATA PACKET NAME and REQUEST_ID) 

The input requirements are set in the table on the first page of the transition dialog. 

 

Note that you may add input requirements that are not required by any process. For example: if you are 



Designing Events With Processes And Guard Conditions ■ Deleting Input Requirements  

54 ■ Screen Orchestrator Guide Version 2004.5 

using an InputBasedGuardCondition (described below) you can add the parameter being tested by that 

guard condition to the input requirements. 

5.4 Deleting Input Requirements 

When events or states no longer use certain input requirements, the tool provides the means to remove 

these parameters by deleting them from the input requirements table by right hand clicking on the selected 

parameter in that table. 

 
Either the selected input requirement is deleted or all the input requirements are deleted from the 

InputRequirements table. 

5.5 How the request DataPackets are built 

To be sure the correct data is being sent to the processes, it is important to understand how the Controller 

and Process objects build up the DataPackets that are sent through the MCA Services client. 

The main deciding factor is the requirement type specified in the input requirements for each parameter, 

according to these rules: 

■ REQUIRED: The value will be taken from the request received from the user. If the value is not in 

the request, a null value will be used. 

■ OPTIONAL: The value will be taken from the request received from the user if possible. If the 

request doesn’t contain a parameter of the correct name, the value will be the default value for this 

input requirement. 



Designing Events With Processes And Guard Conditions ■ Defining Guard Conditions  

Screen Orchestrator Guide Version 2004.5 ■ 55 

■ CONSTANT: The value will always be the default value for this input requirement. 

■ CODED: The value must be provided by custom-written Java code in the controller. 

■ PROCESS: The value will be taken from the DataPacket definition in the Process. 

The DataPackets will be built to contain all the keys specified in the DataPacket definitions in the Process. 

5.6 Defining Guard Conditions 

With the processes defined and receiving the correct data from the user interface, the next detail is to define 

the guard conditions on the event’s transitions. 

 

The basic rule you have to remember is: “For every event, no matter what inputs are provided from the user 

or received from the processes, exactly one of the guard conditions on the event’s transitions must be true. 

All other guard conditions must be false.” 

 

There is one exception to this rule: if an event has only one transition, that transition will always be followed 

no matter what the guard condition. 

 

There are four types of guard condition available by default in the editor: 

5.6.1 NullGuardCondition 

This is a guard condition that always returns an undefined value, neither true nor false. You should use this 

guard condition only if the event has only one transition, or you are using a controller that does not test 

guard conditions (such as the AutoViewController or SimpleController). 

5.6.2 FixedValueGuardCondition 

This is a guard condition that will always return either true or false as set in the transition dialog. You can 

use this guard condition during testing of an application to force it along a particular route to an area you 

need to test. 



Designing Events With Processes And Guard Conditions ■ Defining Guard Conditions  

56 ■ Screen Orchestrator Guide Version 2004.5 

 

5.6.3 InputBasedGuardCondition 

The InputBasedGuardCondition tests some value received from the user or in the user session. 

The options you can set are: 

■ Whether or not the input must contain or not contain the specified value 

■ Whether or not the test should be case sensitive 

■ Where or not the value is for testing 

■ The name of the input 

■ The value to test for 



Designing Events With Processes And Guard Conditions ■ Defining Guard Conditions  

Screen Orchestrator Guide Version 2004.5 ■ 57 

 

5.6.4 ResultBasedGuardCondition 

The ResultBasedGuardCondition tests the result from a process associated with the event. 

The options you must set on this are: 

■ Whether or not the result should contain or not contain the value 

■ Whether or not the test should be case sensitive 

■ The name of the process that was called 

■ The name of the DataPacket in the result DataPackets that should be tested 

■ The key/value pair within that DataPacket to be tested. 

Note that the DataPacket name and key will always be considered case sensitive, only the value would be 

tested for case sensitivity. 



Designing Events With Processes And Guard Conditions ■ Defining Guard Conditions  

58 ■ Screen Orchestrator Guide Version 2004.5 

 

5.6.5 TimeoutGuardCondition 

The TimeoutGuardCondition tests whether a timeout has resulted from a process associated with the event. 

The variables to be set are: 

■ The timeout parameter to test the process against, e.g. TIMEOUT_STARTED would start counting 

the timeout from the time the process started. 

■ The timeout threshold is the number of milliseconds that would constitute a timeout. 



Designing Events With Processes And Guard Conditions ■ Defining Guard Conditions  

Screen Orchestrator Guide Version 2004.5 ■ 59 

 

5.6.6 EmptyResponseGuardCondition 

The EmptyResponseGuardCondition tests whether the response from a process associated with the event 

is an empty response. The variable to be set is: 

■ The name of the process that was called 



Designing Events With Processes And Guard Conditions ■ Other Controller classes  

60 ■ Screen Orchestrator Guide Version 2004.5 

 

5.7 Other Controller classes 

All of the above assumes you are using the com.bankframe.fe.statemachine.ext.apps.Controller class as the 

event controller. 

 

There are other controller classes that you can use in different circumstances. 

5.7.1 The SimpleController 

The SimpleController class, com.bankframe.fe.statemachine.base.apps.SimpleController, 

can be used to handle all trivial events. All events with just one transition and no associated processes can 

be handled by the SimpleController. The SimpleController will handle these trivial events faster than the 

main Controller class. 

5.7.2 The AutoViewController 

The AutoViewController class, 

com.bankframe.fe.statemachine.base.apps.AutoViewController, can be used in conjunction 

with the AutoView, XSLTAutoView, or preview features to allow you choose which transition to follow based 

on selecting from a list of available transitions. 



Designing Events With Processes And Guard Conditions ■ Add Common Fields to Every Request  

Screen Orchestrator Guide Version 2004.5 ■ 61 

5.7.3 Additional Controllers 

The following controllers are available in the com.eontec.statemachine.helpers package: 

■ ChannelClientController: This controller provides a mechanism for specifying what channel client 

is used when executing processes. By default is it set to use HttpClient and in this mode it behaves 

in the exactly same way as the standard main controller. 
■ DataCollectorController: This controller is a subclass of the ChannelClientController, but it adds 

very special behaviour in handled DataPackets. This controller can build multiple DataPackets from 

the input request values and can append these DataPackets to any request that will be executed 

by any process specified by the event or transition. 

■ MultipleRequestController: A new controller, the MultipleRequestController has been developed 

to handle more complex multiple DataPacket requests. The state machine has also been modified 

to handle multiple DataPacket requests and these modifications in association with the 

MultipleRequestController are designed to better enable the state machine to handle these 

complex requests. 
■ ClearUserSessionController: This controller is a subclass of the ChannelClientController and can 

be used to clear values in the Inputs object 
■ AddToUserSessionController: This controller is a subclass of the ChannelClientController and 

can be used to add values to the Inputs user session 

Please read the JavaDocs for these classes for further information on how they should be used. 

5.7.4 Custom Controllers 

There may be some times when the standard processes, controllers and guard conditions are not enough to 

meet the requirements of the user interface. In that case it is possible to write controller classes with custom 

code to meet the requirements. See the document called ‘Writing Controller classes’ for more information on 

how this is done. 

If a custom Controller class has been written for an event, enter the class name (including package name) in 

the ‘Controller’ box on the transition dialog. 

5.8 Add Common Fields to Every Request 

The state machine has now the ability to add common items to every request sent to a Siebel Retail Finance 

server. For example, an application that uses Entitlements will require the following values to be contained 

within every request: 

ENTITLEMENTS_CHANNEL_ID

ENTITLEMENTS_ACTOR_ID

ENTITLEMENTS_ACCESS_PROVIDER_ID

ENTITLEMENTS_ACCOUNT_NUMBER

ENTITLEMENTS_BRANCH_CODE



Designing Events With Processes And Guard Conditions ■ Worked Example  

62 ■ Screen Orchestrator Guide Version 2004.5 

 

The state machine can be configured to add these items to every request by setting the following keys and 

values in the BankframeResource.properties file: 

‘# Common Request Items

#######################

common.request.items.enable=true

common.request.items.fields=ENTITLEMENTS_CHANNEL_ID;

ENTITLEMENTS_ACTOR_ID;ENTITLEMENTS_ACCESS_PROVIDER_ID;

ENTITLEMENTS_ACCOUNT_NUMBER;ENTITLEMENTS_BRANCH_CODE’

 

These items are not required to be in the process definition but must have their key names listed in the 

"common.request.items.fields" value in the BankframeResource.properties file and the 

"common.request.items.enable" value must be set to true. The values for these fields must be available in 

the inputs object used by the state machine to hold user data. If the value for these fields is not in the inputs 

object already then they are put into the request as blank values. 

5.9 Worked Example 

This worked example describes how you might code an event with a process call, a result-based guard 

condition, and a side effect on one of the transitions. This would appear as follows: 

 



Designing Events With Processes And Guard Conditions ■ Worked Example  

Screen Orchestrator Guide Version 2004.5 ■ 63 

The user interface is intended to allow a user request a funds transfer between two accounts they own. 

Users are restricted in the amount they can transfer in any given day, so the system must check whether the 

amount chosen is above the limit. If it is not above the limit the transfer must be performed and the user 

given a transaction record number. 

 

To support this, there are two tier-1 methods defined. The first determines whether the amount specified is 

within the allowed range, the second performs the transfer and returns the record number. 

 

Starting with just the two transitions, the first step is to add one of the transitions. I’ll start with the 

[AmountTooHigh] transition. 

 

Drag from the self transition button on the palette bar onto the GatherTransferDetails state, and set the 

event name (‘Transfer’) and controller name (‘com.bankframe.fe.statemachine.ext.apps.Controller’). 

 

Drag the ‘CHECK_DAILY_LIMIT_FOR_ACCOUNT’ process onto the event. 

 
You will see the InputRequirements box filled with values taken from the process definition. You need to set 

the requirement type for each of these inputs correctly. 

 

The amount, branch code and source account number will all be supplied by the user, and so are 

‘REQUIRED’. The company code will not change from the value supplied, and so can be set ‘CONSTANT’. 

The data packet name and request ID are both particular to the process, so should be set ‘PROCESS’. 

 

Now set the guard condition for this transition. We want this transition to be followed if the process does not 

return a DataPacket called ‘AMOUNT_OK’. A ResultBasedGuardCondition can make that test. 



Designing Events With Processes And Guard Conditions ■ Worked Example  

64 ■ Screen Orchestrator Guide Version 2004.5 

 

Select the ResultBasedGuardCondition and enter the following values for each corresponding gurad 

condition property – as per the screen shot below: 

■ Result must: not contain the following 

■ Case Sensitive: false 

■ Process name: CHECK_DAILY_LIMIT_FOR_ACCOUNT 

■ Response DataPacket name: AMOUNT_OK 

■ DataPacket key: DATA PACKET NAME 

■ Value: TRANSFER_OK 

(Since we are testing the data packet name, the key we need to test is ‘DATA PACKET NAME’ and the 

value is the data packet name to test for.) 

 

You should also set the guard description to something meaningful, such as AmountTooHigh. 

 
[AmountTooHigh] transition. 

 

Finish that transition and start the [AmountOK] transition from the GatherTransferDetails state to the 

TransferComplete state. Drag from the transition button on the palette bar to the GatherTransferDetails 

state, then click on the TransferComplete state. 

 

Select the ‘Transfer’ event from the event drop-down list, and you should see the controller, process and 

input requirements data all filled as in the previous transition. Move on to the second page to set the guard 

condition. 

 

The guard condition on this transition is the opposite of the [AmountTooHigh] transition. Enter exactly the 



Designing Events With Processes And Guard Conditions ■ Worked Example  

Screen Orchestrator Guide Version 2004.5 ■ 65 

same details, changing just the first to read ‘Result must: contain the following’. That will ensure no matter 

what is returned from the CHECK_DAILY_LIMIT_FOR_ACCOUNT process one of the two guard conditions 

will be true. Set the guard description to something meaningful, such as ‘AmountOK’. 

 

This transition also has an action associated with it, as it must actually complete the transfer requested by 

the user. Enter an action description such as ‘PerformTransfer’, and drag the MAKE_TRANSFER process 

onto the transition dialog. 

 
Press the ‘Back’ button now and you should see that the InputRequirements table has an extra line. The 

MAKE_TRANSFER process requires three more parameters than the CHECK_DAILY_LIMIT_FOR_ACCOUNT 

process, the destination account number VO 

(FINANCIAL_TRANSACTION_DESTINATION_ACCOUNT_VO_IMPL), some common system attributes VO 

(FINANCIAL_TRANSACTION_COMMON_ATTRIBUTES_VO_IMPL) and the source account VO 

(FINANCIAL_TRANSACTION_SOURCE_ACCOUNT_VO_IMPL). These are other parameters that must be 

supplied by the user, so make sure the last column for these three InputRequirements read ‘REQUIRED’. 



Designing Events With Processes And Guard Conditions ■ Blocking Events from States  

66 ■ Screen Orchestrator Guide Version 2004.5 

 
Finish that transition. 

 

In this worked example you have created an event with two transitions, set guard conditions such that the 

correct transition will be followed, added a process to be called before the guard conditions are checked and 

another process to be called if one of the transitions is followed. 

5.10 Blocking Events from States 

In order to block events from states other than the current state the most important thing is that the 

Exception State is used in conjunction with setting the block.states key to true in the 

BankframeResources.properties file. 

block.states=true

 

In the diagram below the states B, C and D will all inherit the "Exception" event. If an event is to be drawn to 

an exception state it must be called "Exception" (otherwise it will not work). When the C state is displayed 

and the back button is pressed on the browser the B state will be displayed. If the E1 event is then pressed 

the statemachine will throw an exception which will force the application to follow the "Exception" event and 

hence will display the ErrorState view. From the ErrorState the user can be brought back into the application 

via the "Home" event. The "ErrorState" can be anything you want, as long as the ExceptionState is a child of 

a viewable state. 



Designing Events With Processes And Guard Conditions ■ Blocking Events from States  

Screen Orchestrator Guide Version 2004.5 ■ 67 

 
Blocking Event from States Example 

 

There is one scenario that cannot be blocked and that is when the user is on a state, then presses the back 

button and then the forward button on the browser. In this scenario the user can fire the event. The browser 

is back displaying the correct state and therefore the event will be allowed.  

 

The ScreenOrchestrator\resources\BankframeResources.properties file will have to set the 

block.states to true at the end of the file, but when building the WAR double check that the WAR 

properties settings can find the relevant properties file. Also ensure that the WAR properties lib jars have 

also been updated with the current mca.jar 

 

The NewApplication.xml file in the StateMachineExamples.zip shows how to use the event 

blocking feature. 



Writing Controller Classes ■ The responsibilities of a Controller  

68 ■ Screen Orchestrator Guide Version 2004.5 

6 Writing Controller Classes 
This section describes how to write Controller classes. It goes through the responsibilities of such classes, 

the APIs to be used, and some of the classes that are provided by default. It also includes a section on 

adding your controller classes to the editor. 

6.1 The responsibilities of a Controller 

Controller classes are the implementation of the control logic of the user interface. Controllers are the event 

handlers, with every event having a Controller configuration of its own. 

 

Controllers have two basic responsibilities: 

■ To choose one the event’s transitions to follow. 

When the Controller receives an event it must look at the data that has been supplied by the user 

and perhaps request information from the model. Based on this it must choose one of the event’s 

transitions to follow. A Controller can choose a different transition each time the event is received, 

based on the business logic, the data supplied by the user and the state of the model. 

■ To perform any side effects required by that transition. 

Having chosen a transition, the Controller must perform any side effects that are required by that 

transition. 

 
For example: an application might allow a user to make a funds transfer between two accounts if the amount 

transferred in any single day is less than some limit. The Controller would first test that the amount is under 



Writing Controller Classes ■ The IController Interface  

Screen Orchestrator Guide Version 2004.5 ■ 69 

the limit and choose one of the two transitions based on that. If it chose the transition to the 

TransferComplete state it would then perform the side effect of completing the transfer. 

6.2 The IController Interface 

All Controller classes must conform to the com.bankframe.fe.statemachine.base.apps.IController interface. 

This interface defines two methods reflecting the two primary responsibilities of the Controller classes: 

■ IStateTransition getResult(RequestContext requestContext, IEvent event)

throws StateMachineUserException 

This method represents the Controller’s responsibility to choose between the transitions on the 

event. The RequestContext object contains all the information about the current user and request, 

while the IEvent object is the event that is to be processed. Typically this method is implemented as 

a series of calls to the model or tests on the input parameters, followed by a call to 

event.getTransition(transitionName) in order to get the IStateTransition object to 

return. 

■ void doSideEffects(RequestContext requestContext, IStateTransition

transition) throws StateMachineUserException 

This method represents the Controller’s responsibility to perform any side effects required by the 

transition. The requestContext will be the same object as given to the getResult method, 

while the transition object will be the one returned by the getResult method. 

Typically this will be implemented as a series of if/then/else if/ blocks testing the name of the 

transition. Within each should be the code to perform the required side effects. 

Please refer to the MCA Services JavaDocs for further API details. 

 

Assuming appropriate processes were deployed, the event above might be handled by the code below: 
public IStateTransition getResult(RequestContext requestContext,

IEvent event) throws StateMachineUserException {

try {

ChannelClient client =

ChannelClientFactory.getChannelClient();

DataPacket requestData = new

DataPacket("CHECK_DAILY_LIMIT_FOR_ACCOUNT");

requestData.put(DataPacket.REQUEST_ID,

TRANSFERS_REQUEST_ID);

requestData.put("COMPANY_CODE",

requestContext.getRequest().getParameterValues("COMPANY_CODE")[0]);

requestData.put("BRANCH_CODE",

requestContext.getRequest().getParameterValues("BRANCH_CODE")[0]);



Writing Controller Classes ■ The IController Interface  

70 ■ Screen Orchestrator Guide Version 2004.5 

requestData.put("SOURCE_ACCOUNT_NUMBER",

requestContext.getRequest().getParameterValues("SOURCE_ACCOUNT_NUMBER")[0]

);

requestData.put("AMOUNT",

requestContext.getRequest().getParameterValues("AMOUNT")[0]);

Vector requestVector = new Vector(1);

requestVector.add(requestData);

Vector responseData = client.send(requestVector);

if

(((DataPacket)responseData.firstElement()).getName().equals("AMOUNT_OK"))

{

return event.getTransition("AmountOK");

} else {

return event.getTransition("AmountTooHigh");

}

} catch (ProcessingErrorException ex) {

throw new StateMachineUserException(ex);

}

}

public void doSideEffects(RequestContext requestContext,

IStateTransition transition) throws StateMachineUserException {

if (transition.getName().equals("AmountOK")) {

try {

ChannelClient client =

ChannelClientFactory.getChannelClient();

DataPacket requestData = new

DataPacket("TRANSFER_FUNDS");

requestData.put(DataPacket.REQUEST_ID,

TRANSFERS_REQUEST_ID);

requestData.put("COMPANY_CODE",

requestContext.getRequest().getParameterValues("COMPANY_CODE")[0]);



Writing Controller Classes ■ The SimpleController Class  

Screen Orchestrator Guide Version 2004.5 ■ 71 

requestData.put("BRANCH_CODE",

requestContext.getRequest().getParameterValues("BRANCH_CODE")[0]);

requestData.put("SOURCE_ACCOUNT_NUMBER",

requestContext.getRequest().getParameterValues("SOURCE_ACCOUNT_NUMBER")[0]

);

requestData.put("DEST_ACCOUNT_NUMBER",

requestContext.getRequest().getParameterValues("DEST_ACCOUNT_NUMBER")[0]);

requestData.put("AMOUNT",

requestContext.getRequest().getParameterValues("AMOUNT")[0]);

Vector requestVector = new Vector(1);

requestVector.add(requestData);

Vector responseData = client.send(requestVector);

} catch (ProcessingErrorException ex) {

throw new StateMachineUserException(ex);

}

}

}

6.3 The SimpleController Class 

The com.bankframe.fe.statemachine.base.apps.SimpleController class is an implementation 

of IController that is intended to control events with only one transition and no side effects. In many 

applications, particularly web applications, there will be many events that are simply navigation events. That 

is: they take the user from one screen to another and do nothing else. The SimpleController can handle 

all of these events. 

6.4 The Main Controller Class 

The Controller class that will be most commonly used is the 

com.bankframe.fe.statemachine.ext.apps.Controller class. This class is a complex and 

complete implementation of the IController interface that can use process, input requirements and 

guard condition data entered in the Orchestrator to carry out all the responsibilities of a Controller. 

 

This class follows the steps below: 

■ The getResult method will call all of the processes defined for the event in the correct order, 

using data from the user input, input requirements and process definitions as appropriate to build 

up the DataPackets to be sent through MCA Services. Results from the process calls will be 

added to the user session. 



Writing Controller Classes ■ The Modified Controller Contract  

72 ■ Screen Orchestrator Guide Version 2004.5 

■ For each transition on the event, the Controller will call the checkGuardCondition method. 

Depending on the configuration of the transition, this could check the user inputs, the results from 

the processes, or other data in order to decide whether the transition should be followed. 

■ One of the transition checkGuardCondition methods should return IGuardCondition.TRUE. 

This transition will be returned from the Controller’s getResult method. 

■ The doSideEffects method will call all of the processes defined for the transition in the correct 

order, using data from the user input, input requirements and process definitions as appropriate to 

build up the DataPackets to be sent through MCA Services. Again, results from the process calls 

will be added to the user session. 

These steps should be enough to handle the majority of all events that will be included in an application user 

interface. 

 

For those events that this will not handle, it is possible to extend the Controller class in various ways to add 

extra functions. 

6.5 The Modified Controller Contract 

The contract defined by the IController interface is a very general contract that can be used in any 

environment. The Controller class in the com.bankframe.fe.statemachine.ext.apps package 

provides a different definition of the getResult and doSideEffects methods geared more specifically to 

the Automated Methodology: 
■ IStateTransition getResult(IEvent event, Inputs inputs, RequestContext

requestContext) throws StateMachineUserException,

ProcessingErrorException

■ void doSideEffects(IEvent event, IStateTransition transition, Inputs

inputs, RequestContext requestContext) throws

StateMachineUserException, ProcessingErrorException

Please refer to the MCA Services JavaDocs for further API details. 

 

The IEvent, IStateTransition and Inputs objects passed into these methods have all been 

customized. 

 

The IEvent and IStateTransition objects have a getProcesses method that returns an Iterator over 

all the processes associated with the event or transition. The IEvent object has a 

getInputRequirements method that makes available all the requirements and default values entered by 

a designer in the Orchestrator. IStateTransition includes a checkGuardCondition method, to test 

whether the transition’s guard condition has been met. 



Writing Controller Classes ■ Extending The Controller Class  

Screen Orchestrator Guide Version 2004.5 ■ 73 

6.5.1 The Inputs Object 

The Inputs object provides a single view of all the data provided by the user or recorded previously in the 

current user’s session. It combines three different data sources: 

■ The Request - contains the data entered by the user in the user interface before firing the current 

event. 

■ The Visit - will generally be empty, but may contain data placed there by another Controller or 

View. The visit is intended to store data that might be needed by a View. The visit is stored by the 

state machine so that it can be reloaded if we return to the same result state via a History or Deep 

History pseudo-state. 

■ The User Session - can store data about the user that might be required anywhere in the 

application. This may include details like the user’s name, active role, actor ID, etc. 

 

Inputs provides five methods for getting and setting parameter values: 

■ Enumeration getParameterNames() - this method provides an Enumeration over all the 

names of all the parameters in the three data sources. 

■ Object getparameter(String parameterName) - this method provides the value of the 

named parameter. It will look first in the request, then the visit, and finally the user session. 

■ Object getparameter(String parameterName, int inputSource) - this method 

provides the value of the named parameter in the specified input source. The input source must be 

one of INPUT_SOURCE_ANY, INPUT_SOURCE_REQUEST, INPUT_SOURCE_VISIT or 

INPUT_SOURCE_USER_SESSION. 

■ void setParameter(String parameterName, Object parameterValue) - this method 

sets a parameter value in the request. 

■ void setParameter(String parameterName, Object parameterValue, int

inputSource) - this method sets a parameter in the specified input source. 

6.6 Extending The Controller Class 

In addition to the steps described above, the Controller class calls a number of empty methods at different 

times during the processing. You can override these empty methods to add extra functionality. 

 

The full sequence of method calls is: 

■ The framework calls getResult. 

■ getResult calls getResultPreProcess - override getResultPreProcess if you need to manipulate the 

user inputs or perform any other tasks before the controller does anything. 

■ For each process in the event: 

−−−−    getResult calls modifyProcess - override modifyProcess to change the automatically-

produced request DataPackets. Note that modifyProcess may be called many times by 

getResult and by doSideEffects, so make sure you are modifying the correct process call! 

−−−−    getResult calls executeProcess. 



Writing Controller Classes ■ Extending The Controller Class  

74 ■ Screen Orchestrator Guide Version 2004.5 

■ getResult calls chooseTransition - override chooseTransition if you want to choose the transition 

yourself, instead of using the transition.checkGuardCondition methods. You must override 

chooseTransition if any of the transition guard conditions might return 

IGuardCondition.UNDEFINED. 

■ getResult calls getResultPostProcess - override getResultPostProcess if you need to extract 

certain pieces of information from the process responses, or if you want to change the default 

behaviour of adding the response data to the user session. 

■ getResultPostProcess calls addResultsToUserSession. 

■ getResult returns the chosen transition to the framework. 

■ The framework calls doSideEffects. 

■ doSideEffects calls doSideEffectsPreProcess - override doSideEffectsPreProcess if there is 

anything you need to do before the side effects are performed. 

■ For each process in the transition: 

−−−−    doSideEffects calls modifyProcess  - this is the same modifyProcess method as is called 

by getResult, so be careful when overriding it to modify only the processes you need to. 

−−−−    doSideEffects calls executeProcess. 

■ doSideEffects calls doSideEffectsPostProcess - this is your last chance to change the behaviour of 

the controller. 

■ doSideEffectsPostProcess calls addResultsToUserSession. 

The following sequence diagrams show the previously mentioned methods and where they are called when 

a com.bankframe.fe.statemachine.ext.apps.Controller’s getResult and doSideEffect methods are invoked. 



Writing Controller Classes ■ Extending The Controller Class  

Screen Orchestrator Guide Version 2004.5 ■ 75 

EntryServlet

doPost / doGet

delegateToRequestManager

RequestManger

manageRequest

processSingleEvent

Controller GuardCondition

getResult(RequestContext, IEvent)

getResultPreProcess

Process

getDataPackets

modifyProcess

executeProcess

loop for each process

chooseTransition

loop of each transition
until guard condition is satified

checkGuardCondition

getResultPostProcess

addResultsToUserSession

getResult(IEvent , Inputs, RequestContext)

 

The com.bankframe.fe.statemachine.ext.apps.Controller sequence diagram. 



Writing Controller Classes ■ Adding A New Controller To The Orchestrator  

76 ■ Screen Orchestrator Guide Version 2004.5 

EntryServlet RequestManger Controller GuardConditionProcess

doSideEffects(RequestContext, IStateTransition)

doSideEffectsPreProcess

getDataPackets

modifyProcess

executeProcess

loop for each process

doSideEffectsPostProcess

addResultsToUserSession

doSideEffects(IEvent, IStateTransition, Inputs, RequestContext)

 

The com.bankframe.fe.statemachine.ext.apps.Controller sequence diagram continued. 

 

Full details on all of these methods, including the method signatures, can be found in the MCA Services 

JavaDocs. 

6.7 Adding A New Controller To The Orchestrator 

When you create a new controller class, there are several ways to include it in the editor: 

6.7.1 Do Nothing 

It is possible to do nothing at all. When a designer needs to use the new controller they type the name into 

the ‘Controller’ combo box on the transition dialog.  

6.7.2 Add the controller to the statechart.properties file 

The controller classes loaded into the transitions dialog box are listed in the statechart.properties file. The 

file contains three controllers by default: 
■ com.bankframe.fe.statemachine.base.apps.SimpleController

■ com.bankframe.fe.statemachine.base.apps.AutoViewController

■ com.bankframe.fe.statemachine.ext.apps.Controller

■ com.eontec.statemachine.helpers.ChannelClientController



Writing Controller Classes ■ Adding A New Controller To The Orchestrator  

Screen Orchestrator Guide Version 2004.5 ■ 77 

■ com.eontec.statemachine.helpers.DataCollectorController

■ com.eontec.statemachine.helpers.ClearUserSessionController

■ com.eontec.statemachine.helpers.AddToUserSessionController

To add a new controller, type the controller class name in the ‘Controller’ combo box on the transition dialog. 

On the right-hand side of the combo box is a register controller button as highlighted in the next figure. 

 
Highlighted register controller button. 

 

The ‘Controller’ combo box on the transition dialog will now contain your new controller class in the default 

list. 

6.7.3 Create a Customizer for the Controller 

The ‘Controller Properties’ box on the transitions dialog is managed by loading bean customizer classes for 

the controller class selected. If you create a customizer for your controller class and add it to the classpath 



Writing Controller Classes ■ Adding A New Controller To The Orchestrator  

78 ■ Screen Orchestrator Guide Version 2004.5 

for the editor, the dialog will load your customizer. This allows you to completely control how your controller 

looks in the editor. The controllerProperties will contain an entry for each attribute exposed by the bean. For 

information on creating a customizer, see the JavaBeans API and documentation. 



Writing Guard Condition Classes ■ The Responsibility Of A Guard Condition  

Screen Orchestrator Guide Version 2004.5 ■ 79 

7 Writing Guard Condition Classes 
This section describes how to write guard condition classes. It goes through the responsibilities of such 

classes, the APIs to be used, and some of the classes that are provided by default. It also includes a section 

on adding your guard condition classes to the editor. 

7.1 The Responsibility Of A Guard Condition 

A guard condition class has a very simple responsibility: to decide whether a transition should be followed in 

any given case. 

7.2 The IGuardCondition Interface 

All GuardCondition classes must implement the 

com.bankframe.fe.statemachine.ext.apploaders.IGuardCondition interface. This interface defines two 

methods for you to implement: 

■ int checkGuardCondition(Inputs inputs, Vector processExecutionRecords,

RequestContext requestContext, IStateTransition stateTransition) - this 

method must return either IGuardCondition.TRUE or IGuardCondition.FALSE. If it returns TRUE, 

the transition will be followed, if FALSE, the transition will not be followed. 

The Inputs, RequestContext and IStateTransition objects, supplied are the same as described 

above for the Controller class. The processExecutionRecords vector contains 

com.bankframe.fe.statemachine.ext.apps.ProcessExecutionRecord objects, listing the details of all 

the processes executed by the Controller before calling checkGuardCondition. 

■ void setGuardConditionProperties(Properties guardConditionProperties) - this 

method will be called before checkGuardCondition. The guardConditionProperties will contain any 

information provided by the designer. 

7.3 Adding A New Guard Condition To The Orchestrator 

When you create a new guard condition class, there are several ways to include it in the editor: 

7.3.1 Do Nothing 

It is possible to do nothing at all. When a designer needs to use the new guard condition they type the name 

into the ‘Guard Condition Class’ combo box on the transition dialog. They will be presented with a standard 

Properties editor in which they can enter the guard condition properties. 

7.3.2 Add the guard condition to the statechart.properties file 

The guard condition classes loaded into the transitions dialog box are listed in the statechart.properties file. 

The file contains three guard conditions by default: 
■ com.bankframe.fe.statemachine.ext.apploaders.bean.ResultBasedGuardConditi

on



Writing Guard Condition Classes ■ Adding A New Guard Condition To The Orchestrator  

80 ■ Screen Orchestrator Guide Version 2004.5 

■ com.bankframe.fe.statemachine.ext.apploaders.bean.InputBasedGuardConditio

n

■ com.bankframe.fe.statemachine.ext.apploaders.bean.FixedValueGuardConditio

n

■ com.eontec.statemachine.helpers.TimeoutGuardCondition

■ com.eontec.statemachine.helpers.EmptyResponseGuardCondition

To add a new guard condition, type the guard condition class name in the ‘Guard Condition Class’ combo 

box on the transition dialog. On the right-hand side of the combo box is a register guard condition button as 

highlighted in the next figure. 

 
Highlighted register guard condition button. 

 

The ‘Guard Condition Class’ box on the transition dialog will now contain your new guard condition class in 

the default list. 

7.3.3 Create a customizer for the guard condition 

The ‘Guard Condition Properties’ box on the transitions dialog is managed by loading bean customizer 

classes for the guard condition class selected. If you create a customizer for your guard condition class and 

add it to the classpath for the editor, the dialog will load your customizer. This allows you to completely 

control how your guard condition looks in the editor. 

The guardConditionProperties will contain an entry for each attribute exposed by the bean. 

For information on creating a customizer, see the JavaBeans API and documentation. 



Writing JSPs ■ Responsibilities of a JSP  

Screen Orchestrator Guide Version 2004.5 ■ 81 

8 Writing JSPs 
This section describes the responsibilities of a JSP in the orchestrator framework, and goes through the 

beans and tags available to help build JSPs. 

8.1 Responsibilities of a JSP 

In this framework a JSP has two very simple responsibilities: 

■ Display data to the user - the JSP is required to format and display the data the user expects to 

see, including all the formatting, framing, branding and general prettiness that is required in the 

user interface. 

■ Give the user the opportunity to fire events - for every state the user interface is in, there will be 

events that the user can fire. The JSP must provide buttons, links or similar widgets for the user to 

allow events to be fired. 

Within these two simple responsibilities, how you code the JSP is very flexible. There is, however, one thing 

that you must not do: 

■ You must not include any tests in the JSP that result in loading new pages, forwarding or 

redirecting the JSP. If there is ever a circumstance where you want to redirect or forward to another 

JSP based on some test in the JSP, you must change the state chart design so that the test is 

handled in a Controller class. 

8.2 Getting data into the JSP 

The JSP is required to display data to the user. This data is made available to the JSP through a set of 

beans placed in the servlet request context. 

8.2.1 Inputs bean 

The Inputs bean contains all the data included in the request from the user, the current user session and the 

current state visit. It is loaded using the tag: 
<jsp:useBean id="Inputs" scope="request"

class="com.bankframe.fe.statemachine.ext.apps.Inputs" />

It is also useful to import the Inputs class to reference static members: 
<%@ page import="com.bankframe.fe.statemachine.ext.apps.Inputs" %>

Inputs provides five methods for getting and setting parameter values: 

■ Enumeration getParameterNames() - this method provides an Enumeration over all the 

names of all the parameters in the three data sources. 

■ Object getParameter(String parameterName) - this method provides the value of the 

named parameter. It will look first in the request, then the visit, and finally the user session. 

■ Object getParameter (String parameterName, int inputSource) - this method 

provides the value of the named parameter in the specified input source. The input source must be 



Writing JSPs ■ Getting data into the JSP  

82 ■ Screen Orchestrator Guide Version 2004.5 

one of INPUT_SOURCE_ANY, INPUT_SOURCE_REQUEST, INPUT_SOURCE_VISIT or 

INPUT_SOURCE_USER_SESSION. 

■ void setParameter(String parameterName, Object parameterValue) - this method 

sets a parameter value in the request. 

■ void setParameter (String parameterName, Object parameterValue, int

inputSource) - this method sets a parameter in the specified input source. 

See the JavaDocs for further details on the API 

8.2.2 ProcessExecutionRecords bean 

The ProcessExecutionRecords bean is a Vector of ProcessExecutionRecord objects, containing all of the 

processes executed while handling the current event. The responses from these processes, available as 

Vectors of DataPackets, will contain all the data retrieved from the server by the Controller or View classes. 

Load the ProcessExecutionRecords bean with the tag: 
<jsp:useBean id="ProcessExecutionRecords" scope="request"

class="java.util.Vector" />

8.2.3 State bean 

The State bean is the state that is to be displayed by the JSP. It is possible to use the same JSP to display 

different states, and the State bean will give you the current stateId or title. 

Load the state bean with the tag: 
<jsp:useBean id="State" scope="request"

class="com.bankframe.fe.statemachine.ext.apploaders.IState" />

8.2.4 View bean 

The View bean is the View class that is including the JSP. 

This can be loaded with the tag: 
<jsp:useBean id="View" scope="request"

class="com.bankframe.fe.statemachine.ext.connectors.servlet.JSPView" />

8.2.5 RequestContext bean 

The RequestContext bean contains other miscellaneous objects, including the statemachine configuration, 

the application loader, user session, user session manager and logger. You will probably not need this bean 

in most cases. 

The RequestContext can be loaded with the tag: 
<jsp:useBean id="RequestContext" scope="request"

class="com.bankframe.fe.statemachine.base.RequestContext" />



Writing JSPs ■ Firing an event from a JSP  

Screen Orchestrator Guide Version 2004.5 ■ 83 

8.3 Firing an event from a JSP 

The JSP will need to supply the user with buttons or links to fire events. There are two distinct mechanisms 

you can use to fire these events. Do not mix these two mechanisms. If you start using one of these two 

approaches, keep using that one. Any attempt to mix them will cause events to fail. 

8.3.1 Using the .jsm URL extension 

The statemachine servlet is configured to respond to all requests that end with .jsm. It expects the stateId 

and event name to be supplied in the URL in the form <stateID>.<event name>.jsm. 

This URL format can be used on both simple links and forms, using the following code: 
<a href="<jsp:getProperty name="State" property="id" />.event.jsm"> event

</a>

<form action="<jsp:getProperty name="State" property="id" />.event.jsm">

…

</form>

Replace ‘event’ in these code samples with the correct event name. 

8.3.2 Using the StateMachine URL 

The statemachine servlet is also configured to respond to requests with the URL /StateMachine (relative to 

the web application root). You can retrieve the absolute URL from the View bean. 

You must supply two parameters with this URL called ‘statemachineEventName’ and 

statemachineStateName’. Use the following code as a guide: 
<a href="<jsp:getProperty name="View" property="requestURL"

/>?statemachineStateName=<jsp:getProperty name="State" property="id"

/>&statemachineEventName=event">event</a>

<form action="<jsp:getProperty name="View" property="requestURL" />">

<input type="hidden" name="statemachineStateName" value="<jsp:getProperty

name="State" property="id" />">

<input type="hidden" name="statemachineEventName" value="event">

…

</form>

Replace ‘event’ in these code samples with the correct event name. 



Orchestrator Process Integration ■ Introduction  

84 ■ Screen Orchestrator Guide Version 2004.5 

9 Orchestrator Process Integration 

9.1 Introduction 

The Orchestrator supports the ability to hook financial processes to the front end components generated by 

the tool.  

 

In terms of this tool, a process is a unit of work performed within a deployed session bean. There can 

therefore be many processes within one session. The manner in which the methods are called being 

tweaked by the value of the DATA PACKET NAME key being passed in. In this sense the tool regards a 

session as an encapsulation of one or many financial processes. 

 

Process integration within the tool generally consists of two steps 

■ Importing in processes from an external source, either manually or from an Automated 

Methodology model. 

■ Associating these processes with events and/or transitions. 

9.2 Importing in processes from an Automated Methodology model 

To import in processes from an Automated Methodology model, right click on the root node of the “Siebel 

Processes” node and select “Import new sessions from model”. 

 



Orchestrator Process Integration ■ Importing in processes from an Automated Methodology model  

Screen Orchestrator Guide Version 2004.5 ■ 85 

You should then be presented with the following dialog: 

 
Click the button to the right of the text field and point the file chooser to an xml file representing an 

Automated Methodology model. If you wish, you can use the sample xml file shipped with the application. It 

lies in the “xml” folder that the file chooser defaults into and is called “RetailAccount.xml”. When you have 

done this, the process tree should be populated with process information and resemble the following: 



Orchestrator Process Integration ■ Manually inputting process information  

86 ■ Screen Orchestrator Guide Version 2004.5 

 
When processes are imported into the Screen Orchestrator from an Automated Methodology model, the 

session name, process name, process signature and process return type are automatically converted to the 

key/value pairings required for Request and Response DataPackets. Functional parameter objects, non-

functional parameter objects, banking objects and primary key classes used in the signature of a process 

are also automatically converted to the expected Request and Response DataPacket format. If a parameter 

is not defined as a result of the import process, it may be that the class type is not defined correctly in the 

Automated Methodology model. 

9.3 Manually inputting process information 

To manually input a process right click on the root node of the process tree and select “Add new session 

manually”. You should then be presented with the following dialog: 



Orchestrator Process Integration ■ Manually inputting process information  

Screen Orchestrator Guide Version 2004.5 ■ 87 

 
Key in a session name and then click next. You should then be presented with the following: 

 
Input all relevant information. To add or remove fields use the +/- buttons. To state whether the response is 

a vector or single DataPacket type, use the checkbox. 

 

The above dialog refers to one process contained in the session. As explained earlier there can be many 

processes to a session. Therefore, if one wishes to add another process, click the next button and you will 

see another copy of this panel representing another process on this session. Note also that you must supply 

a DataPacket name value with each process. This is used to name the node on the tree. When you are 

finished, click OK. The process information should be added to the process tree. 



Orchestrator Process Integration ■ Removing all sessions from the Siebel Process list  

88 ■ Screen Orchestrator Guide Version 2004.5 

9.4 Removing all sessions from the Siebel Process list 

To remove all the sessions in the Siebel Process list, right click on any process node and select “Delete all 

sessions”. A dialogue box will appear to confirm if you wish to remove all the process definitions, click ‘Yes’ 

to confirm. 

9.5 Editing/Deleting processes 

To edit the details of any process, right click on any process node and select “Edit Process”. You should get 

a dialog similar to the following, with different process information: 

 
Edit the process details and then click ok. 

To delete a process, right click on it on the tree and select “Delete Process”. 

9.6 Assigning processes to the state chart 

9.6.1 Assigning processes to a state 

To assign a process to a state, go to the process tree, hold down the left mouse button and drag the process 

over a state on the chart, then release the left mouse button. You will then be presented with a dialog 

resembling the following: 



Orchestrator Process Integration ■ Assigning processes to the state chart  

Screen Orchestrator Guide Version 2004.5 ■ 89 

 
If you wish to add further processes to this state, drag them on to this dialog from the process tree and drop 

them either onto the white text area entitled “Processes” or drop them onto the table entitled “Input 

Requirements”. Click OK to save the process details. 

9.6.2 Adding Processes to a State Transition 

To add processes to a state transition, make a new transition between two states. You will be presented with 

the following dialog: 



Orchestrator Process Integration ■ Assigning processes to the state chart  

90 ■ Screen Orchestrator Guide Version 2004.5 

 
Enter the event name and select a controller from the drop-down list (other than SimpleController or 

AutoViewController, which are used only for simple state navigation and do not invoke processes). 



Orchestrator Process Integration ■ Assigning processes to the state chart  

Screen Orchestrator Guide Version 2004.5 ■ 91 

 
To add processes to this transition, drag and drop them from the tree, into the text area entitled “Processes”. 

This will add them to the transition’s event details. 



Orchestrator Process Integration ■ Assigning processes to the state chart  

92 ■ Screen Orchestrator Guide Version 2004.5 

 
 

You can also add processes to the transition details (as opposed to the transition event details). This will 

invoke the process as a side effect on the transition. To do this, click next on the above dialog and drag and 

drop the processes on to the text area entitled “Processes”. 



Orchestrator Process Integration ■ Assigning processes to the state chart  

Screen Orchestrator Guide Version 2004.5 ■ 93 

 
Transition Details screen 

 

For more information on how processes are managed by the state machine framework after they have been 

assigned, please refer to the “Designing Events With Processes And Guard Conditions” section. 



Advanced Drawing ■ Undo / Redo Features  

94 ■ Screen Orchestrator Guide Version 2004.5 

10 Advanced Drawing 
The following section provides details of the advanced drawing capabilities of the orchestrator tool. 

10.1 Undo / Redo Features 

The Orchestrator tool provides the ability to undo and redo drawing instructions. If the user creates, moves, 

edits or deletes a state then the tool can undo that change. The tool can also undo any transition create, edit 

or delete. Only the last 5 drawing instructions can be undone. The tool provides an Edit menu with Undo and 

Redo menu items to access these features. The textual description of the Undo and Redo menu items 

change as the user creates undo and redo instructions. The textual description is useful for the user to 

determine what instruction will be undone or redone if the menu item is selected. 

10.1.1 Undo Example 

This section will show an example of using the undo feature to undo a move instruction. The first figure that 

follows shows the original location of the test1 state. The second figure indicates the new position of this 

state. 



Advanced Drawing ■ Undo / Redo Features  

Screen Orchestrator Guide Version 2004.5 ■ 95 

 
The original location of the test1 state. 



Advanced Drawing ■ Undo / Redo Features  

96 ■ Screen Orchestrator Guide Version 2004.5 

 

 
The new location of the test1 state. 

 
This move instruction will now be undone by selecting Edit -> Undo move state test1 as highlighted in the 

next figure. 



Advanced Drawing ■ Undo / Redo Features  

Screen Orchestrator Guide Version 2004.5 ■ 97 

 
The “Undo move state test1” menu item highlighted. 

 

Once the “Undo move state test1” menu item is selected the test1 state will be returned to its original 

position as shown in the first diagram of this section. 

10.1.2 Redo Example 

The undo example as described in the previous section will be used as the basis of this example. We will 

now redo the previous undo so that the move instruction is done as originally specified. When an instruction 

is ‘undo’, the redo menu item is changed so that its textual description details what undo instruction will be 

redone. The next figure indicates the “Redo move state test1” menu item. 



Advanced Drawing ■ Undo / Redo Features  

98 ■ Screen Orchestrator Guide Version 2004.5 

 
The “Redo move state test1” menu item highlighted. 

 

Once the “Redo move state test1” menu item is selected the test1 state move will be done and the 

statechart will look as shown below. 



Advanced Drawing ■ Copy, Cut & Paste Features  

Screen Orchestrator Guide Version 2004.5 ■ 99 

 
The test1 state move redone. 

10.2 Copy, Cut & Paste Features 

The Orchestrator tool can also copy and cut states to different parts of the statechart and from different 

statechart files. When copying or cutting a state all its child states and transitions, apart from any transitions 

either entering or leaving the state, will also be copied or pasted. To copy or cut any state right-click on the 

state to bring up its popup edit menu. On the popup edit menu will be a menu item to copy or cut the state. 

Select either one according to what you want to do. Once selected, move the mouse to an area in the 

statechart (this can be within any state on the statechart) and right-hand click on that area. The popup menu 

will appear and you can then select the paste menu item to copy or cut the state to that area. 

 

You can copy and cut and paste from one statechart to another. To do this you must first open the statechart 

that you wish to copy or cut the state from. Select the state and press the copy or cut menu item. Then open 

the statechart you wish to copy or paste the state into. Once the statechart is opened press the paste menu 

item where you want to state to be pasted too. 



Advanced Drawing ■ Copy, Cut & Paste Features  

100 ■ Screen Orchestrator Guide Version 2004.5 

10.2.1 Copy Example 

In this example we will copy a search parent state and its child states to another parent state in the 

statechart. The next figure shows a small statechart for a sample application. We will copy the search state 

in the OpenAccount parent state to the DrawDown parent state. 

 
The OpenAccount Search state. 

 

Right-click on the OpenAccount’s Search state to bring up the state’s popup menu. Select the Edit, Copy 

menu item as shown in the next figure. 



Advanced Drawing ■ Copy, Cut & Paste Features  

Screen Orchestrator Guide Version 2004.5 ■ 101 

 
The Search state’s Edit, Copy menu item selected. 

 

Move the mouse to an area in the DrawDown state where child states can be added. Right-click the mouse 

in this area to bring up the state’s popup menu. Select the Edit, Paste menu item and the Search state will 

be copied in this state as shown in the next figure. 

 
The Search state copied to the DrawDown state. 

 

Please note that the Retrieve[default] transition was not copied as this transition leaves the Search state and 



Advanced Drawing ■ Copy, Cut & Paste Features  

102 ■ Screen Orchestrator Guide Version 2004.5 

hence is ignored when the copy is done. Also note that the initial state transition coming into the Search 

state is also ignored by the copy. 

10.2.2 Cut & Paste Example 

In this example we will cut and paste a search parent state and its child states to another parent state in the 

statechart. The next figure shows a small statechart for a sample application. We will cut and paste the 

search state in the OpenAccount parent state to the DrawDown parent state. 

 
The OpenAccount Search state. 

 

Right-click on the OpenAccount’s Search state to bring up the state’s popup menu. Select the Edit, Cut 

menu item as shown in the next figure. 



Advanced Drawing ■ Copy, Cut & Paste Features  

Screen Orchestrator Guide Version 2004.5 ■ 103 

 
The Search state’s Edit, Cut menu item selected. 

 

 
The Search state cut from the OpenAccount state. 



Advanced Drawing ■ Parent States As Sub-charts  

104 ■ Screen Orchestrator Guide Version 2004.5 

 

Move the mouse to an area in the DrawDown state where child states can be added. Right-click the mouse 

in this area to bring up the state’s popup menu. Select the Edit, Paste menu item and the Search state will 

be pasted in this state as shown in the next figure. 

 
The Search state cut and pasted to the DrawDown state. 

 

Please note that the Retrieve[default] transition was not pasted as this transition leaves the Search state and 

hence is ignored when the cut and paste is done. Also note that the initial state transition coming into the 

Search state is also ignored by the cut and paste. These transitions are also removed from the 

OpenAccount state. 

10.3 Parent States As Sub-charts 

The orchestrator tool has the ability to minimize and maximize parent states. A parent state is any state that 

has any child states. When the state becomes a parent state two new icon buttons will appear in the right-

hand side of the state’s header. The following figure shows a normal state alongside a parent state. 

 
A normal state along side a parent state. 

 

The highlighted area (the red box) in the previous figure shows the additional icon buttons added to the 

header area of the parent state. The top button, which is initially enabled, allows the user to minimize the 

parent state. Once minimized the bottom button will become enabled as shown in the following figure. 



Advanced Drawing ■ Parent States As Sub-charts  

Screen Orchestrator Guide Version 2004.5 ■ 105 

 
The parent state minimized. 

 

The top button will also change icons and when pressed again will maximize the parent state back to its 

original size. The top button is therefore interchangeable. It cycles between minimize and maximize icons 

and will only enable the bottom button when the parent state is minimized.  

 

When the bottom button is enabled the user will be able to open that parent state in a new window. The next 

figure shows the parent state opened as a sub-chart window after the open button was pressed. 

 
The parent state opened as a sub-chart. 

 

Once opened as a sub-chart the user can draw on it as if it were a normal statechart. In the following figure 

a new child state has being added to the parent state sub-chart and a new transition. 



Advanced Drawing ■ Parent States As Sub-charts  

106 ■ Screen Orchestrator Guide Version 2004.5 

 
Using the ParentState sub-chart to add new states and transitions. 

 

When the user closes this window and maximizes the ParentState from the main statechart window the 

added states and transitions will have been added to the state. 

 
The ParentState maximized. 



Advanced Drawing ■ Parent States As Sub-charts  

Screen Orchestrator Guide Version 2004.5 ■ 107 

 

One thing to note is that when a parent state is minimized you will not be able to add states to it unless you 

maximize it. 

10.3.1 Transitions Leaving And Entering Parent States 

The Orchestrator tool handles transitions leaving and entering parent states when minimized or opened in a 

separate sub-chart in a special way. When parent states are minimized any transitions entering or leaving 

the parent state will be shown by drawing a blue box in the upper left-hand corner of the parent state and the 

transitions leaving and entering the parent state will be drawn to it. In the two figures that follow a transition 

enters the parent state to a child state and a transition leaves a child state to a state external to the parent 

state. The figures indicate what happens to the transitions when the parent state is minimized. 

 
The ParentState maximized. 

 

 
The ParentState minimized. 

 

Similarly, when the parent state is opened in a sub-chart, the sub-chart window will also indicate which 

transitions leave or enter the parent state by drawing a small blue box in the upper left-hand corner of the 

sub-chart window as shown in the following window. 



Advanced Drawing ■ Parent States As Sub-charts  

108 ■ Screen Orchestrator Guide Version 2004.5 

 
The ParentState opened in a sub-chart window. 

10.3.2 Bringing Sub-charts To The Front 

The orchestrator tool can allow any number of parent states to be opened as sub-charts in the desktop area. 

Where multiple internal windows are open, you can bring any opened window to the front by selecting the 

Window -> Bring To Front from the menu. This provides a menu item list for each window opened in the 

tool’s desktop area. To bring a window to the front, select that window from the menu list. The following 

figure shows the NewApplication menu item highlighted so that it can be brought to the front of the desktop. 

 



Advanced Drawing ■ Multiple User Support  

Screen Orchestrator Guide Version 2004.5 ■ 109 

The NewApplication menu item selected so that it can be brought to the front. 

10.3.3 Why Use The Sub-chart Feature? 

This feature is extremely useful when the statechart becomes very large. For an application such as a teller 

or call centre the statechart for the application will be huge, often with over 200 states and transitions. 

Building the statechart becomes more and more difficult as the application grows in size. This feature is 

extremely helpful when the statechart grows to such a size. You can more easily edit particular parent states 

in separate windows helping to reduce the clutter from the other states in the application. This mechanism is 

also the basis behind the multiple user support feature described in the next section. 

10.4 Multiple User Support 

The Orchestrator tool can be used for defining very large applications involving multiple users. Parent states 

opened in sub-chart windows can be saved to separate files linked to the main statechart XML file. Users 

can open the main statechart for the application and then open parent states as sub-charts. The parent state 

can then be saved to a separately linked file. The user can then edit this parent state independently of other 

users and save changes to this file. 

 

The following example indicates how the ParentState can be saved to a separately linked file. First open the 
ParentState as a sub-chart. Next select the Window -> Save Window To File from the menu. This will 

display a list of menu items of states that can be saved to a separate linked file. Select the “Sub-State: 

ParentState” menu item. This will save the ParentState’s details to a separate file. 

 
Saving the ParentState to a linked file. 

 

The format of the textual description of the menu items for the Save Window To File menu list is very 

specific. The format is: 



Advanced Drawing ■ Multiple User Support  

110 ■ Screen Orchestrator Guide Version 2004.5 

 

Sub-State: << State Name>>  

 

for example: 

 

“Sub-State: ParentState” in the example. 

When a parent state is saved to a file, the state’s window title will be updated to indicate this. The following 

figure shows the ParentState’s updated window title. 

 
The ParentState window title updated to show the filename of the linked file. 

 

The format of the filename of the ParentState is also very specific. The format is: 

 

<<Application Name>>.<< State Name>>.part 

 

for example: 

 

“NewApplication.ParentState.part”. 

 

If the application is renamed then all its linked state files will also be renamed to ensure that the part files 

can be easily seen to link to the main application statechart file. When a parent state is saved to a linked file, 

its header will indicate that its contents are contained in a linked file by displaying a special icon. The  icon 

is used to indicate states whose contents are contained in a linked file. The following figure indicates this 

behaviour after the ParentState was saved to a linked file. 



Advanced Drawing ■ Multiple User Support  

Screen Orchestrator Guide Version 2004.5 ■ 111 

 
The ParentState displaying the  icon. 

 

It must be remembered that to open a linked file you must open the application statechart first. Individual 

state linked files cannot be opened on their own. They must be opened through their parent application 

statecharts. Also note that when you edit the parent state in the sub-chart window the application statechart 

will only be updated when you either save the changes or close the window. 

10.4.1 Note on users working on the same files 

The Orchestrator tool is very much like any other tool in that it produces a number of flat files. Any user can 

edit these files and overwrite other users changes. It is therefore important that any files produced by the 

Orchestrator tool where multiple users are involved are version controlled. The only additional feature 

provided by the Orchestrator tool is that it will not allow statechart files to be saved if they are marked as 

read-only. In short it is the job of the users to ensure that their files are under version control and that they 

do not undo each other’s work.  

 

A statechart can be broken up into multiple part files allowing different users to work on separate part files. 

The main application file, which links all the part files together, should be given special attention. It effects all 

the part files and should only be maintained and modified by a single person. 



Introduction To Writing A Swing Application ■ Overview  

112 ■ Screen Orchestrator Guide Version 2004.5 

11 Introduction To Writing A Swing Application 

11.1 Overview 

This section describes in brief what is required for a swing application to use the state machine.  

 

The state machine framework supports applications deployed using the swing API as well as those deployed 

as web applications through the servlet API. 

 

Designing swing applications is virtually identical to designing web applications.  The same concern should 

be given to the behavior and flow control through the application in the state chart, and the same Controller 

and Process integration classes can be used. 

 

Deploying a swing application using the state machine requires you to use the classes and interfaces in the 

 com.bankframe.fe.statemachine.ext.connectors.swing package. 

 

The structure of your application will be: 

■ An application main class acting as a Window or Applet for the application. 

■ The main class will contain a ViewContainer. The ViewContainer is a container within which all the 

application views will be displayed. 

■ The main class will also contain a StateMachineEventDispatcher, which will listen for 

StateMachineEvents fired from your views. 

■ The View classes will all implement IView and StateMachineEventSource. Whenever the user does 

anything that triggers an event on the state chart, the view must fire a StateMachineEvent. 

■ The sequence for processing an event is: 

■ The view class will fire a StateMachineEvent. 

■ The StateMachineEventDispatcher will receive the event and forward it to the RequestManager in 

the statemachine. 

■ The RequestManager will return the new view class. 

■ The StateMachineEventDispatcher will register itself as a StateMachineEventListener on the view, 

so that it will receive the next StateMachineEvent that is fired. 

■ The StateMachineEventDispatcher will pass the view to the ViewContainer. 

■ The ViewContainer will display the new view. 

The important classes and interfaces are: 

11.1.1 StateMachineEvent class 

The StateMachineEvent class takes on the role of the Request. All user events that are to be processed by 

the state machine must be fired from the view as StateMachineEvents. 



Introduction To Writing A Swing Application ■ Writing the application main class  

Screen Orchestrator Guide Version 2004.5 ■ 113 

11.1.2 StateMachineEventSource interface 

The StateMachineEventSource inteface must be implemented by all View classes in addition to the IView 

interface. The interface contains methods for adding and removing StateMachineEventListeners to the view. 

11.1.3 StateMachineEventDispatcher class 

The StateMachineEventDispatcher manages the StateMachineEvents fired by the views, passing them on 

into the state machine. It also gives the resultant view to the ViewContainer for display. 

11.1.4 ViewContainer interface 

The ViewContainer interface marks the JContainer that will hold and display the views. 

11.2 Writing the application main class 

The application main class has a few tasks and responsibilities it must complete. Once these three steps are 

completed correctly it does not matter whether the main class is an applet, frame, or neither. 

11.2.1 Create and display a ViewContainer 

The application main class must create and display some class that implements ViewContainer.  This will be 

where all the application views are displayed. 

11.2.2 Create a StateMachineEventDispatcher 

The application main class must create a StateMachineEventDispatcher. The dispatcher requires a 

ViewContainer and the state machine configuration Properties. The main class can also set a logger, user 

session manager and application manager if necessary. (In general, these can be loaded automatically 

based on the values in the configuration Properties.) 

11.2.3 Fire the first Event 

To start the application, the application main class must fire the first StateMachineEvent into the 
StateMachineEventDispatcher. Create a StateMachineEvent with this as the target and a null event name. 

The state machine will locate the start state for the application and give the appropriate view to the 

ViewContainer. 

11.3 Writing the ViewContainer class 

The ViewContainer class has one very simple responsibility. It must display the views that are given to it 

through the displayView(IView) method. 

 

The ViewContainer is normally going to be a JPanel or other JContainer. When it receives a view it should 

check that the view is a JComponent, remove or hide the previous view and display the new one. 

 

Note that the view might not be a JComponent. It could be any class. When writing the ViewContainer you 



Introduction To Writing A Swing Application ■ Writing the View classes  

114 ■ Screen Orchestrator Guide Version 2004.5 

should be aware of the types of view that will be written for the application, and should have a way of 

displaying all of them. 

 

For example: another type of view that might be supplied is a JDialog, in which case the ViewContainer 

should call the show() method to display the dialog. (Note that only modal dialogs should be used.) 

11.4 Writing the View classes 

As in the servlet environment, the view classes have two very simple and closely-related responsibilities. 

They must display information suitable to the current state, and they must present controls (e.g. buttons) to 

the user to allow them fire events. 

 

The view classes must implement two interfaces: 

11.4.1 IView interface 

The IView interface includes three methods that you must implement. There are two variants of the build 

method, one inherited from the com.bankframe.fe.statemachine.base.apps.IView interface, and one defined 

in the com.bankframe.fe.statemachine.ext.apps.IView interface. 

 

You can define the first of these two methods with the following block of standard code: 
public void build(RequestContext requestContext, IState currentState) {

com.bankframe.fe.statemachine.ext.apps.View.

build(requestContext, currentState, this);

}

The second version of the build method must be implemented in order to populate the view with the values 

that should be displayed to the user. 

 

The third method is the populateFromProperties method, mentioned in the 'Managing ViewProperties' 

section below. 

11.4.2 StateMachineEventSource interface 

The two methods in the StateMachineEventSource interface can be implemented using the standard code 

below: 
// listenerList is an instance of javax.swing.event.EventListenerList

public void addStateMachineEventListener(StateMachineEventListener

listener) {

listenerList.add(StateMachineEventListener.class, listener);

}



Introduction To Writing A Swing Application ■ Putting the View classes in the chart  

Screen Orchestrator Guide Version 2004.5 ■ 115 

public void removeStateMachineEventListener(StateMachineEventListener

listener) {

listenerList.remove(StateMachineEventListener.class, listener);

}

When you need to fire a StateMachineEvent, use the code below as a guide: 
StateMachineEvent event = new StateMachineEvent(this, eventName);

// set the parameters as required in the event.

StateMachineEventDispatcher.fireStateMachineEvent(event, listenerList);

11.5 Putting the View classes in the chart 

Adding the swing view classes to your chart is as simple as putting the fully-qualified class name into the 

View Class text box on the StateDetails dialog. 

 

If your view requires any viewProperties, you can add these in the StateDetails dialog also. 

11.6 Managing ViewProperties 

ViewProperties are the means through which you can include information in the state chart to be used by the 

View class. For example: viewProperties contain the jspName for the JSPView and the stylesheetURI for the 

XSLTAutoView. 

 

You can use viewProperties by implementing the populateFromProperties method on your view to read 

values from the viewProperties and copy them to attributes that can later be used in the build method. 

11.7 The tool view requirements 

When a state is created in the Orchestrator tool the “Enter State Details” dialog is displayed as follows:  



Introduction To Writing A Swing Application ■ The tool view requirements  

116 ■ Screen Orchestrator Guide Version 2004.5 

 
The “Enter State Details” dialog. 

 

Using this dialog the user must specify the type of view this state will represent. By default the tool provides 

six types, None, AutoView (JSP), XSLTAutoView, JSPView, AutoView (Swing) and SwingView. To specify 

new swing, JSP or XSLT views, the user must therefore provide a new view type. Writing your own swing 

view type class can do this. A view type class must implement the 

com.bankframe.fe.statemachine.ext.apps.IView interface. Additionally, a BeanInfo class can 

also be defined for the new view type. When the user selects the new type from the view type combo box 

the BeanInfo class for the view type can be loaded by the tool and displayed in the “View Details” area of the 

“Enter State Details” dialog. The BeanInfo class allows the user to customize the view and is written 

according to the JavaBeans standard. 

 

An example of creating an IView class and a BeanInfo class for it can be seen in the following code 

samples. Here we show how the JSPView and the JSPViewBeanInfo classes were written. 



Introduction To Writing A Swing Application ■ The tool view requirements  

Screen Orchestrator Guide Version 2004.5 ■ 117 

11.7.1 The JSPView class 
public class JSPView extends View {

protected String jspName;

protected String requestURL;

/**

* The JSP can expect an attribute in the request with the key

* STATE_ATTRIBUTE_NAME that contains the IState implementor for the

* current state.

* <br>

* The value of STATE_ATTRIBUTE_NAME is "State"

*/

public static String STATE_ATTRIBUTE_NAME = "State";

/**

* The JSP can expect an attribute in the request with the key

* VIEW_ATTRIBUTE_NAME that contains the instance of JSPView that was

* used.

* You might use this to build subclasses of JSPView that perform

extra

* processing of the data in the ResponseData, exposing the results of

that

* processing through methods on the view.

* <br>

* The value of VIEW_ATTRIBUTE_NAME is "View"

*/

public static String VIEW_ATTRIBUTE_NAME = "View";

/**

* The JSP can expect an attribute in the request with the key



Introduction To Writing A Swing Application ■ The tool view requirements  

118 ■ Screen Orchestrator Guide Version 2004.5 

* INPUTS_ATTRIBUTE_NAME that contains the instance of Inputs that was

* used.

* <br>

* You can use this in the JSP to gain access to the data from the

* incoming request, the user session, and the response data populated

* by the controller.

* <br>

* The value of INPUTS_ATTRIBUTE_NAME is "Inputs"

*/

public static String INPUTS_ATTRIBUTE_NAME = "Inputs";

/**

* The JSP can expect an attribute in the request with the key

* REQUEST_CONTEXT_ATTRIBUTE_NAME that contains the current

RequestContext.

* <br>

* The value of REQUEST_CONTEXT_ATTRIBUTE_NAME is "RequestContext"

*/

public static String REQUEST_CONTEXT_ATTRIBUTE_NAME =

"RequestContext";

public static String RESPONSE_DATA_ATTRIBUTE_NAME = "ResponseData";

/**

* Constructor for JSPView.

*/

public JSPView() {

super();

}

/**



Introduction To Writing A Swing Application ■ The tool view requirements  

Screen Orchestrator Guide Version 2004.5 ■ 119 

* @see com.bankframe.fe.statemachine.ext.apps.View#build(IState,

Inputs, RequestContext)

*/

public void build(

IState state,

Inputs inputs,

RequestContext requestContext) throws StateMachineUserException

{

HttpServletRequest request =

((Request)inputs.getRequest()).getRequest();

Response response = (Response)requestContext.getResponse();

requestURL = request.getRequestURL().toString();

request.setAttribute(STATE_ATTRIBUTE_NAME, state);

request.setAttribute(VIEW_ATTRIBUTE_NAME, this);

request.setAttribute(INPUTS_ATTRIBUTE_NAME, inputs);

request.setAttribute(REQUEST_CONTEXT_ATTRIBUTE_NAME,

requestContext);

request.setAttribute(RESPONSE_DATA_ATTRIBUTE_NAME,

response.getResponseData());

RequestDispatcher dispatcher =

request.getRequestDispatcher(jspName);

try {

dispatcher.include(request, response.getResponse());

} catch (ServletException ex) {

throw new StateMachineUserException(ex);

} catch (IOException ex) {

throw new StateMachineUserException(ex);

}

}

/**

* Returns the jspName.



Introduction To Writing A Swing Application ■ The tool view requirements  

120 ■ Screen Orchestrator Guide Version 2004.5 

* @return String

*/

public String getJspName() {

return jspName;

}

/**

* Sets the jspName.

* @param jspName The jspName to set

*/

public void setJspName(String jspName) {

this.jspName = jspName;

}

/**

* Returns the jspName.

* @return String

* @deprecated

*/

public String getJSPName() {

return jspName;

}

/**

* Sets the jspName.

* @param jspName The jspName to set

* @deprecated

*/

public void setJSPName(String jspName) {

this.jspName = jspName;



Introduction To Writing A Swing Application ■ The tool view requirements  

Screen Orchestrator Guide Version 2004.5 ■ 121 

}

/**

* Returns the requestURL.

* @return String

*/

public String getRequestURL() {

return requestURL;

}

/**

* @see

com.bankframe.fe.statemachine.ext.apps.IView#populateFromProperties(Proper

ties)

*/

public void populateFromProperties(Properties viewProperties) {

if (viewProperties != null) {

if (viewProperties.getProperty("jspName") != null) {

setJspName(viewProperties.getProperty("jspName"));

}

}

}

}

11.7.2 The JSPViewBeanInfo Class 
public class JSPViewBeanInfo extends SimpleBeanInfo {

protected PropertyDescriptor[] propertyDescriptors;

protected BeanDescriptor beanDescriptor;



Introduction To Writing A Swing Application ■ The tool view requirements  

122 ■ Screen Orchestrator Guide Version 2004.5 

/**

* Constructor for JSPViewBeanInfo.

*/

public JSPViewBeanInfo() throws IntrospectionException {

super();

PropertyDescriptor jspNameDescriptor = new

PropertyDescriptor("jspName", JSPView.class, "getJspName", "setJspName");

PropertyDescriptor requestURLDescriptor = new

PropertyDescriptor("requestURL", JSPView.class, "getRequestURL", null);

propertyDescriptors = new

PropertyDescriptor[]{jspNameDescriptor, requestURLDescriptor};

beanDescriptor = new BeanDescriptor(JSPView.class,

GenericCustomizer.class);

}

/**

* Returns the propertyDescriptors.

* @return PropertyDescriptor[]

*/

public PropertyDescriptor[] getPropertyDescriptors() {

return propertyDescriptors;

}

/**

* Returns the beanDescriptor.

* @return BeanDescriptor

*/

public BeanDescriptor getBeanDescriptor() {

return beanDescriptor;

}

}



Introduction To Writing A Swing Application ■ The swing application requirements  

Screen Orchestrator Guide Version 2004.5 ■ 123 

The JSPViewBeanInfo class allows the user to enter the JSP filename for that particular state. When the 

JSPView is selected in the enter state details dialog the following customizer is loaded in the “View Details” 

area as a result of providing the JSPViewBeanInfo class: 

 
The JSPViewBeanInfo class loaded. 

11.8 The swing application requirements 

The statemachine comes complete with two different connector packages, designed to allow deployment of 

applications within swing or servlet environments.  

 

This section describes how to write a swing application based on the statemachine. 

 

Before you set up your application you should have already created your statechart for the application and 

identified your views and controllers. If your application requires any special controller classes, please read 

the section on creating controller classes. On start-up there are a few steps your application needs to take in 

order to use the statemachine. First, it needs to designate an object to contain and display the views as they 



Introduction To Writing A Swing Application ■ The swing application requirements  

124 ■ Screen Orchestrator Guide Version 2004.5 

are produced. This object will probably be an instance of JPanel or another JContainer, and must implement 

the ViewContainer interface.  

11.8.1 The ViewController interface 

The com.bankframe.fe.statemachine.ext.connectors.swing.ViewContainer interface has one method that 

must be implemented and that is the displayView(IView view) method. When the state machine calls 

this method, the container class that implements the method must display the specified view to the user. 

Please see the API JavaDocs for further details on using this interface. 

11.8.2 Setting the application properties 

The swing application then needs to set up the properties required by the UserSessionManagerFactory, 

ApplicationManagerFactory, ApplicationManager and RequestContext. The default values for these classes 

when using running a swing application are:  
com.bankframe.fe.statemachine.base.UserSessionManager=

com.bankframe.fe.statemachine.ext.sessionmanagers.

inmemory.UserSessionManager

com.bankframe.fe.statemachine.base.ApplicationManager=

com.bankframe.fe.statemachine.ext.apploaders.sax.ApplicationManager

11.8.3 The state machine events 

Next, your swing application must create an instance of the StateMachineEvent Dispatcher class passing in 

the ViewContainer and Properties as parameters to the constructor of the class. Finally, create a 

StateMachineEvent and pass it into the StateMachineEventDispatcher. The StateMachineEventDispatcher 

and StateMachine Event classes can be found in the 

com.bankframe.fe.statemachine.ext.connectors.swing package. This initial event can have the 

ViewContainer as its target and a null event name. This will cause the statemachine to load the application, 

locate the start state, build the appropriate view, and pass it back into the ViewContainer via the displayView 

method.  

 

To complete the circle and ensure all subsequent events are properly handled, there are two remaining 

details. The views for the application must be sources of StateMachineEvents, implementing the 

StateMachineEventSource interface. The view must be able to recognize those user actions that are events 

described on the statechart and fire StateMachineEvents appropriately. The ViewContainer must ensure that 

all views it displays have the StateMachineEventDispatcher registered as a StateMachineEventListener with 

the view. This ensures that when the view fires a StateMachineEvent, the dispatcher receives it, passes it to 

the RequestManager, and passes the result view back to the ViewContainer.  



Introduction To Writing A Swing Application ■ A swing application example  

Screen Orchestrator Guide Version 2004.5 ■ 125 

11.9 A swing application example 

The Orchestrator tool provides a preview frame for loading the currently opened statechart and stepping 

through the statechart using a swing AutoView class. This is a simple example of a swing application using 

the state machine. We will use it here to provide a simple example of how a swing application can be 

created using the state machine. The following code is the PreviewFrame used by the Orchestrator tool: 
/**

* The PreviewFrame class.

* This class provides a swing frame for running a preview of a drawn

statechart.

* @author Brian O'Byrne

*/

public class PreviewFrame extends JFrame implements ViewContainer {

private StateMachineEventDispatcher eventDispatcher;

private JScrollPane scrollPane;

private JPanel viewportComponent;

/**

* The PreviewFrame constructor.

* @param appDoc Document is the XML document representation of the

statechart to be previewed.

*/

public PreviewFrame(Document appDoc) {

this(appDoc, "State Chart Editor Preview");

}

/**

* The PreviewFrame constructor.

* @param app Application is the statechart application to be

previewed.

*/

public PreviewFrame(Application app) {



Introduction To Writing A Swing Application ■ A swing application example  

126 ■ Screen Orchestrator Guide Version 2004.5 

this(app, "State Chart Editor Preview");

}

/**

* The PreviewFrame constructor.

* @param appDoc Document the statechart xml.

* @param title String

*/

public PreviewFrame(Document appDoc, String title) {

super(title);

initComponents();

Properties applicationProperties = new

Properties(System.getProperties());

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.Appl

icationManager", "com.eontec.statechart.preview.ApplicationManager");

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.User

SessionManager",

"com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionMan

ager");

applicationProperties.setProperty(RequestManager.VIEW_OVERRIDE_KEY,

"com.bankframe.fe.statemachine.ext.connectors.swing.AutoView");

try {

eventDispatcher = new StateMachineEventDispatcher(this,

applicationProperties);

ApplicationManager appManager =

(ApplicationManager)eventDispatcher.getApplicationManager();

appManager.loadApplication(appDoc);

appManager.getDefaultApplication();

eventDispatcher.handleStatemachineEvent(new

StateMachineEvent(this, null));

} catch (StateMachineException ex) {



Introduction To Writing A Swing Application ■ A swing application example  

Screen Orchestrator Guide Version 2004.5 ■ 127 

ex.printStackTrace();

}

}

/**

* The PreviewFrame constructor.

* @param app Application the statechart.

* @param title String

*/

public PreviewFrame(Application app, String title) {

super(title);

initComponents();

Properties applicationProperties = new

Properties(System.getProperties());

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.Appl

icationManager", "com.eontec.statechart.preview.ApplicationManager");

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.User

SessionManager",

"com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionMan

ager");

applicationProperties.setProperty(RequestManager.VIEW_OVERRIDE_KEY,

"com.bankframe.fe.statemachine.ext.connectors.swing.AutoView");

try {

eventDispatcher = new StateMachineEventDispatcher(this,

applicationProperties);

ApplicationManager appManager =

(ApplicationManager)eventDispatcher.getApplicationManager();

appManager.loadApplication(app);

appManager.getDefaultApplication();

eventDispatcher.handleStatemachineEvent(new

StateMachineEvent(this, null));



Introduction To Writing A Swing Application ■ A swing application example  

128 ■ Screen Orchestrator Guide Version 2004.5 

} catch (StateMachineException ex) {

ex.printStackTrace();

}

}

/**

* This method initializes the frame.

*/

private void initComponents() {

addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent evt) {

exitForm(evt);

}

});

this.getContentPane().setLayout(new BorderLayout());

scrollPane = new JScrollPane();

JButton closeButton = new JButton();

closeButton.setActionCommand("CLOSE_BUTTON_CMD");

closeButton.setText("Close Preview");

closeButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent actionEvent) {

exitForm(actionEvent);

}

});

viewportComponent = new JPanel();

viewportComponent.setLayout(new BorderLayout());

JPanel viewportComponentFiller = new JPanel();

viewportComponent.add(viewportComponentFiller,

BorderLayout.CENTER, 0);

viewportComponent.add(new JPanel(), BorderLayout.NORTH, 1);



Introduction To Writing A Swing Application ■ A swing application example  

Screen Orchestrator Guide Version 2004.5 ■ 129 

scrollPane.setViewportView(viewportComponent);

scrollPane.setBackground(null);

this.getContentPane().add(scrollPane, BorderLayout.CENTER);

this.getContentPane().add(closeButton, BorderLayout.SOUTH);

this.setIconImage(ImageLoader.getImageIcon("STATE_MACHINE_ICON").getIm

age());

this.setSize(new Dimension(550,600));

}

/**

* This method hides the preview frame.

*/

private void exitForm(java.awt.event.WindowEvent evt) {

this.hide();

}

/**

* This method hides the preview frame.

*/

private void exitForm(ActionEvent evt) {

this.hide();

}

/**

* This method will display the specified view in the preview frame.

* @see

com.bankframe.fe.statemachine.ext.connectors.swing.ViewContainer#displayVi

ew(IView)

*/

public void displayView(IView view) {



Introduction To Writing A Swing Application ■ A swing application example  

130 ■ Screen Orchestrator Guide Version 2004.5 

((StateMachineEventSource)view).addStateMachineEventListener(eventDispatch

er);

viewportComponent.remove(1);

viewportComponent.add((Component)view, BorderLayout.NORTH, 1);

validate();

repaint();

}

/**

* This method adds a StateMachineProcessingListener to the

statemachine event dispatcher.

* @param listener StateMachineProcessingListener

*/

public void

addStateMachineProcessingListener(StateMachineProcessingListener listener)

{

this.eventDispatcher.addStateMachineProcessingListener(listener);

}

/**

* This method removes a StateMachineProcessingListener to the

statemachine event dispatcher.

* @param listener StateMachineProcessingListener

*/

public void

removeStateMachineProcessingListener(StateMachineProcessingListener

listener) {

this.eventDispatcher.removeStateMachineProcessingListener(listener);

}



Introduction To Writing A Swing Application ■ A swing application example  

Screen Orchestrator Guide Version 2004.5 ■ 131 

/**

* This method adds a collection of StateMachineProcessingListeners to

the statemachine event dispatcher.

* @param listeners Collection

*/

public void addStateMachineProcessingListener(Collection listeners) {

this.eventDispatcher.addStateMachineProcessingListener(listeners);

}

/**

* This method removes a collection of StateMachineProcessingListener

to the statemachine event dispatcher.

* @param listeners Collection

*/

public void removeStateMachineProcessingListener(Collection listeners)

{

this.eventDispatcher.removeStateMachineProcessingListener(listeners);

}

}

The important things to look at in the code example are the constructors for the class. They create the 

application properties for the statemachine and set them specifically for this application. The preview frame 

provides its own ApplicationManager; this class is used to load the specified statechart application or xml 

document in this instance. 
applicationProperties.setProperty("com.bankframe.fe.statemachine.base.Appl

icationManager", "com.eontec.statechart.preview.ApplicationManager");

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.User

SessionManager",

"com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionMan

ager");



Introduction To Writing A Swing Application ■ A swing application example  

132 ■ Screen Orchestrator Guide Version 2004.5 

applicationProperties.setProperty(RequestManager.VIEW_OVERRIDE_KEY,

"com.bankframe.fe.statemachine.ext.connectors.swing.AutoView");

 

It also sets a view override, which informs the statemachine that all views specified in the statechart must be 

ignored and only the swing AutoView class must be used as views for the preview frame. This will not be 

required in your swing applications, as you will want your application to load the views that you specify. 

 

Next the constructor creates a StateMachineEventDispatcher using the previously highlighted properties. 
eventDispatcher = new StateMachineEventDispatcher(this,

applicationProperties);

The PreviewFrame class implements the ViewController interface and can therefore be used in the 

constructor of the StateMachineEventDispatcher class. The displayView method, which is required to be 

implemented by the PreviewFrame, is highlighted next. It is a simple method whose responsibility is only to 

display the next view. It also registers the event dispatcher with the view. 
public void displayView(IView view) {

((StateMachineEventSource)view).addStateMachineEventListener(eventDispatch

er);

viewportComponent.remove(1);

viewportComponent.add((Component)view, BorderLayout.NORTH, 1);

validate();

repaint();

}

The AutoView instances, which are IView interfaces, will then fire events to the statemachine using the 

registered event dispatcher. 



Validating Input Requirements ■ Define the Validation Rules  

Screen Orchestrator Guide Version 2004.5 ■ 133 

12 Validating Input Requirements 
An additional feature that has now been added to the orchestrator and state machine is the ability for the 

orchestrator tool to be used to define validation rules for various input requirements and for the state 

machine to execute these rules before any event is handled. This is a very useful feature for web-based 

applications where no validation can be done on the actual JSP (for example no dynamic scripting is allowed 

on the page) and the form submitted to the state machine must be validated before any processing is done. 

12.1 Define the Validation Rules  

A new checkbox and table column has been added to the event transition wizard. The screen shot below 

shows the “Validate event’s input requirements?” checkbox and the input requirement table’s new 

validationRule column. 

 
Event’s input requirement table with highlighted validationRule column. 

 

The “Validate event’s input requirements?” checkbox must be selected if the event’s input requirements are 

to be validated. To specify a validation rule for an input requirement double-click in the validationRule cell for 

that input requirement. This will open the “Specify validation rule for input requirement:” dialog box, which 

allows the user to specify the rule for that input requirement. The following screen shot shows the dialog box 

that is displayed. 



Validating Input Requirements ■ How the state machine handles the validation check  

134 ■ Screen Orchestrator Guide Version 2004.5 

 
The validationRule dialog box. 

12.2 How the state machine handles the validation check 

Once the orchestrator has been used to define the validation rules, the state machine can be used to run the 

actual application. When an event is submitted to the state machine its first task is to determine if validation 

of the event’s inputs is required before the event is processed and its transition followed. If validation is 

required then the state machine reads the rules for each input requirement and then validates each input 

based on the specified rule. Each input is tested in turn and a record is built up of all the inputs that fail 

validation. If no input fails validation then the state machine proceeds as normal. However if any of the 

input’s fail validation then the record of failed inputs and their validation exceptions are added to the request 

as a collection of “FAILED_VALIDATION_ERRORS”. The state machine then returns the user to the last 

displayed state. The view for that state can then display the failed validation rules to the user. The following 

screen shots show the orchestrator’s preview frame running a test application and failing input validations. 



Validating Input Requirements ■ How the state machine handles the validation check  

Screen Orchestrator Guide Version 2004.5 ■ 135 

 
The orchestrator preview frame for testing an application. 



Validating Input Requirements ■ How the state machine handles the validation check  

136 ■ Screen Orchestrator Guide Version 2004.5 

 

 
The “E1” event fired and the resultant validation failure results displayed. 



Generating JSP and Swing Panels ■ Running the Generator  

Screen Orchestrator Guide Version 2004.5 ■ 137 

13 Generating JSP and Swing Panels 
The state machine has a concept of autoviews. If no view exists for a particular state then the state machine 

can supply an autoview for that state during runtime. This autoview was only created on the fly during 

runtime and was not a permanent file that could be used. A new feature has now being added to the 

orchestrator that allows the user to generate out the actually jsp or swing panels that the autoview would 

create. The files are very useful for providing initial starting points for view states for developing the 

application. The user can draw their statechart and generate a starting set of JSPs and/or swing panels from 

which the initial application can be tested and developed. The user can take these files and change or edit 

them as required. The JSPs and swing panels are created using a set of style sheets. The user has access 

to these and can modify them to change the look and feel of the files that get generated. The jsp style sheet 

is the <<orchestrator-install-dir>>\resources\jspTemplate.xsl file, while the swing panel style sheet is the 

<<orchestrator-install-dir>>\resources\ 

panelTemplate.xsl. These files can be edited directly by the user to change what is produced when the 

orchestrator generator is used. 

13.1 Running the Generator 

Pressing the generator button  on the orchestrator tool bar will access the orchestrator view generator 

feature. When pressed the “Confirm file generation?” dialog is displayed as shown in the following screen 

shot. 

 
The confirm file generation dialog. 

 

The confirm file generation dialog will allow you to generate all the JSPs and/or Panels for the currently 

opened statechart. It generates the files to a special directory. This can be changed to point to any directory 

you wish or it can be pointed to the chart’s specified HTML directory. When the “Ok” button is pressed the 

files are generated. If any file already exists the user will be asked to confirm if they wish to overwrite that file 

and all files in the folder. 

 

When generating JSPs the filename for each state will be the jspName specified in the JSPView state. If it is 



Generating JSP and Swing Panels ■ Running the Generator  

138 ■ Screen Orchestrator Guide Version 2004.5 

an autoview the JSP filename will be the state name post fixed with a “.jsp” extension. When generating 

swing panels, the filename will be based on the fully qualified classname specified for each SwingView’s 

state panelName. If it is an autoview, then the panel name will be based on the state name and the package 

name will be defaulted to “temp”. 



MCA Services Timing Points ■ Running the Generator  

Screen Orchestrator Guide Version 2004.5 ■ 139 

14 MCA Services Timing Points 
Timing points have been added to various points in the state machine for performance testing purposes. To 

record the overall time for a statemachine request timing points have been added as follows: 

• In the com.bankframe.fe.statemachine.ext.connectors.servlet.EntryServlet for 

JSP/HTML applications the public void

delegateToRequestManager(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException; method records the overall time to handle a html 

request to the statemachine. 

• In the 

com.bankframe.fe.statemachine.ext.connectors.swing.StateMachineEventDispa

tcher for swing applications the public void

handleStatemachineEvent(StateMachineEvent evt) method records the overall time to 

handle a swing request to the statemachine. 

 

Additional timing points have also been added to the 

com.bankframe.fe.statemachine.ext.apps.Controller class and to two public methods: 

• public com.bankframe.fe.statemachine.base.apploaders.

IStateTransition getResult(RequestContext requestContext,

com.bankframe.fe.statemachine.base.apploaders.IEvent event)

throws StateMachineUserException;

• public void doSideEffects(RequestContext requestContext,

com.bankframe.fe.statemachine.base.apploaders.IStateTransition

transition) throws StateMachineUserException

These timings determine how long it takes for the statemachine to get the correct transition to follow and to 

do the side effects for that chosen transition. 

 

If any of these methods are overwritten, the timing code should also be put into the overwritten methods. 

 

Timings have been added as follows: 

TimingPoint tp = new TimingPoint("NAMEOFCOMPONENT",

BankFrameLogConstants.STATEMACHINE_SUBSYSTEM, "", this);

….code here..... 

tp.exit(this);

 

The descriptions used in the state machine classes were: 
"StateMachine EntryServlet request round trip time"



MCA Services Timing Points ■ Running the Generator  

140 ■ Screen Orchestrator Guide Version 2004.5 

"StateMachineEventDispatcher request round trip time"

"Controller getResult round trip time"

"Controller doSideEffects round trip time" 

 

The MCA 1.2 and later versions already have timing code for measuring the time for executing actual MCA 

requests. This time should be removed from the state machine times if requests are being sent to the EJB 

server by the statemachine controller classes to determine the correct state machine round trip time. 

 

 


	Overview
	Statechart and State Machine Concepts
	What Are Statecharts?
	What Is The State Machine?
	Why Use Statecharts And The State Machine?
	Statechart Notation Explained
	States
	Parent and child states

	Events
	State Transitions
	Self-Transition

	Pseudo-States
	Initial State
	History
	History-Star
	Final State
	Exception State
	Effects of Pseudo-States On State Transitions

	Chart Notes

	Simple Statechart Example

	Basic Orchestrator Drawing
	The Main Orchestrator Window
	The Statechart Drawing Components
	Drawing States or Pseudo-states
	Drawing State Transitions
	Drawing Self-Transitions
	State Header

	Drawing Chart Notes

	More Drawing State Details
	Adding Child States
	Moving States
	Editing State Details
	Resizing States
	Deleting states

	More Drawing Transition Details
	Note On Transition Arrows
	Drawing Transitions To The Master State
	Drawing Transitions To And From Parent And Child States
	Drawing Transitions To And From Non-Related Child States
	Editing Transition Details
	Selecting Transitions Directly

	Deleting Transitions

	More Drawing Statechart Details
	The Statechart Name
	Renaming The Statechart
	Saving A Statechart
	Renaming a Saved Statechart
	Opening A Statechart

	Miscellaneous Drawing Features
	Using The Grid And Snap To Features
	Using The Navigation Panel
	Printing Statecharts
	Export StateChart as a GIF


	Preview And Web Deployment Capabilities
	Introduction
	Preview Capability
	Web Deployment Capability
	Install an appropriate web server
	WAR properties saved per statechart
	Configuring the WAR file within the tool
	Destination Dir
	Temp Dir
	Classes
	HTML Directory

	Deploying the war file


	Designing Events With Processes And Guard Conditions
	Handling an Event
	Associating Processes with Events and Transitions
	Setting the Input Requirements
	Deleting Input Requirements
	How the request DataPackets are built
	Defining Guard Conditions
	NullGuardCondition
	FixedValueGuardCondition
	InputBasedGuardCondition
	ResultBasedGuardCondition
	TimeoutGuardCondition
	EmptyResponseGuardCondition

	Other Controller classes
	The SimpleController
	The AutoViewController
	Additional Controllers
	Custom Controllers

	Add Common Fields to Every Request
	Worked Example
	Blocking Events from States

	Writing Controller Classes
	The responsibilities of a Controller
	The IController Interface
	The SimpleController Class
	The Main Controller Class
	The Modified Controller Contract
	The Inputs Object

	Extending The Controller Class
	Adding A New Controller To The Orchestrator
	Do Nothing
	Add the controller to the statechart.properties file
	Create a Customizer for the Controller


	Writing Guard Condition Classes
	The Responsibility Of A Guard Condition
	The IGuardCondition Interface
	Adding A New Guard Condition To The Orchestrator
	Do Nothing
	Add the guard condition to the statechart.properties file
	Create a customizer for the guard condition


	Writing JSPs
	Responsibilities of a JSP
	Getting data into the JSP
	Inputs bean
	ProcessExecutionRecords bean
	State bean
	View bean
	RequestContext bean

	Firing an event from a JSP
	Using the .jsm URL extension
	Using the StateMachine URL


	Orchestrator Process Integration
	Introduction
	Importing in processes from an Automated Methodology model
	Manually inputting process information
	Removing all sessions from the Siebel Process list
	Editing/Deleting processes
	Assigning processes to the state chart
	Assigning processes to a state
	Adding Processes to a State Transition


	Advanced Drawing
	Undo / Redo Features
	Undo Example
	Redo Example

	Copy, Cut & Paste Features
	Copy Example
	Cut & Paste Example

	Parent States As Sub-charts
	Transitions Leaving And Entering Parent States
	Bringing Sub-charts To The Front
	Why Use The Sub-chart Feature?

	Multiple User Support
	Note on users working on the same files


	Introduction To Writing A Swing Application
	Overview
	StateMachineEvent class
	StateMachineEventSource interface
	StateMachineEventDispatcher class
	ViewContainer interface

	Writing the application main class
	Create and display a ViewContainer
	Create a StateMachineEventDispatcher
	Fire the first Event

	Writing the ViewContainer class
	Writing the View classes
	IView interface
	StateMachineEventSource interface

	Putting the View classes in the chart
	Managing ViewProperties
	The tool view requirements
	The JSPView class
	The JSPViewBeanInfo Class

	The swing application requirements
	The ViewController interface
	Setting the application properties
	The state machine events

	A swing application example

	Validating Input Requirements
	Define the Validation Rules
	How the state machine handles the validation check

	Generating JSP and Swing Panels
	Running the Generator

	MCA Services Timing Points



