IEBEL

Retail Finance

4

Screen Orchestrator Guide

Version 2004.5
September 2004

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2004 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photographic, magnetic, or other record,
without the prior agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, Universal Agent, and other Siebel names referenced
herein are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered
trademarks of their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation,
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement,
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer
Software and Commercial Computer Software Documentation, and as such, any use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be
subject to the restrictions contained in the applicable Siebel license agreement. All other use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the
U.S. Government shall be subject to the applicable Siebel license agreement and the
restrictions contained in subsection (c) of FAR 52.227-19, Commercial Computer Software -
Restricted Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including
Alternate III (June 1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207
Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this
documentation and in Siebel eBusiness Applications Online
Help to be Confidential Information. Your access to and use
of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems
software license agreement, which has been executed and
with which you agree to comply; and (2) the proprietary
and restricted rights notices included in this
documentation.

Contents

1

L0 2= T 8
Statechart and State Machine Concepts..........oociiiiiiiii i 9
2.1 WHAT ARE STATECHARTS? ..uttiiiiiieii ittt ieeeeeessetiateeeeeaesesaassssaseeaaeessasnsntaneeaaesesaansnsnens 9
2.2 WHAT IS THE STATE MACHINE? ...ttt e e e e e e e e e e e e e e e s nnrnees 10
2.3 WHY USE STATECHARTS AND THE STATE MACHINE?ovviiiiiiiieieeeeeeeeeeerererevevevevnesnnnns 10
24 STATECHART NOTATION EXPLAINEDccciiiiiieee e 11
241] €= (T PP P ST PP ORISR PRSP 11
242 BV BNES e ettt et s e et 13
243 SHAtE TrANSIHIONS ... et e st e r e et sn e e n e 13
244 PSEUAO-SEALES ...ttt bt et ettt er et 15
245 Chart Notes

2.5 SIMPLE STATECHART EXAMPLEcuitiiiiiie ettt sta e e e e e e e eeeeaeas 18
Basic Orchestrator Drawing........cccoccerinimninemne s s 20
3.1 THE MAIN ORCHESTRATOR WINDOW.......ccuvuutieeieeierererererererssersrsssssrsrsssrsrsssssrsrsnsrnrann. 20
3.2 THE STATECHART DRAWING COMPONENTSeevvieiireeereeereresererererssersrsrsrsrsrsssssrsrsrnse. 23
3.2.1 Drawing States or PSEUAO-STALEScc.uiiiiiiii it 23
3.2.2 Drawing State TranSItIONSiiiiiiii ettt et e e e e et e s 25
3.2.3 Drawing Chart NOES.c..uiiiiiiii ittt rb ettt a et e et eb et e e e naeeenns 30
3.3 MORE DRAWING STATE DETAILSutiiiiiieieiiiiiieiee e e e e e ettt e e e e e e e st e e e e e e s s e sanraneeeeaens 31
3.31 Adding Child States

3.3.2 MOVING SEALES ...ttt et ra ettt h e bt e a et na e et ne e
3.3.3 Editing State DEtalls.eeiiiiiieiee e 32
3.3.4 RESIZING SIS ...ttt 34
3.35 DEIEEING STATESeee ettt 35
34 MORE DRAWING TRANSITION DETAILS......coooiiiiiiieiiieeee 35
3.4.1 NOte ON TranSItioN AITOWScouviiiieieieiee ettt s e e e s e e e s e e r e sene s e e nneeenns
3.4.2 Drawing Transitions To The Master State

3.4.3 Drawing Transitions To And From Parent And Child Statesccoviiiiiiiiiiiiiicc e 38
3.4.4 Drawing Transitions To And From Non-Related Child Statescccoooiriiiiiiiiiic e 38
3.4.5 Editing Transition DELalSeiiiiiiiiiii et 38
3.4.6 Deleting TranSItioNSc.uii ettt 39
3.5 MORE DRAWING STATECHART DETAILStiiiiieeeeeececiiiteeee e e e e e eeitnreeeeeae s e eeennraeneeaee s 39
3.5.1 The StateChart NAME........oocii et
3.5.2 Renaming The Statechart....

3.5.3 SAVING A STALECNAITeiieiiiei et e e
3.5.4 Renaming @ Saved StateChartcoiiiiiiiii s 42
3.5.5 OPENING A SEAEECNAM. ... ittt et e st e e aab e e s nbe e e abeeeeenes 42
3.6 MISCELLANEOUS DRAWING FEATURESccooiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 42

Screen Orchestrator Guide Version 2004.5 W 3

3.6.1

Using The Grid And Snap To Features

3.6.2 Using The Navigation Panel............cooui it
3.6.3 Printing StatECNAIS.ooieiii et
3.6.4 ExXport StateChart @s @ GIF ..o 44
4 Preview And Web Deployment Capabilitiesccooeommiiiiiccciis e 45
4.1 INTRODUGCTION ...ttt e e e e e ettt e e ettt e e e e s s bbbt et e e e e e e e e s aab e et e e e e e e e e annnbeneeeaeeeaans 45
4.2 PREVIEW CAPABILITY ...ttt 45
4.3 VWEB DEPLOYMENT CAPABILITY ...eevtttttueeeeeseesssesesessssssrsssssssssssssssssssssssssssrsssssssssmsnnssnsnes 48
4.31 Install an appropriate WED SEIVETcoiiiii e e 48
4.3.2 WAR properties saved per StateChart...............uiiiiiiiiiiii e e 48
433 Configuring the WAR file Within the 1001cooiiiiii e 49
434 Deploying the WA fil©..........oiiiiiiiie ettt 49
5 Designing Events With Processes And Guard Conditions..........cccccccevrrrniicccsseeenennnnnn. 51
5.1 HANDLING AN EVENT ... 51
5.2 ASSOCIATING PROCESSES WITH EVENTS AND TRANSITIONScutiiiiiieeiiiiiiieeeeeee e e 51
5.3 SETTING THE INPUT REQUIREMENTS......uuttieiiiiieeesiieeeesnteeeesnteeeesennteeessnnseeessnneeesennees 53
54 DELETING INPUT REQUIREMENTScttitiiieiiiitietee e e e e aaiistetee e e e e e st ee e e e e e s s nnneeeeeeee s 54
5.5 HOW THE REQUEST DATAPACKETS ARE BUILT ...cetteiieiiitiieeteeeaeeeaiineeeeeeee e s siinbeeeeeeee s 54
5.6 DEFINING GUARD CONDITIONSccciiiiiiiiie e 55
5.6.1 NUHGUArACONAItION. ...t
5.6.2 FixedValueGuardCondition
5.6.3 InputBasedGuardCondition
5.6.4 ResultBasedGuardCoNditioN...............oiiiiiiii e e 57
5.6.5 TIMeoutGUArdCONAILION ..o e e s 58
5.6.6 EmptyResponseGUardCONGItION...........eoiiiiiiiiiieiiiee ittt ettt e e e 59
5.7 OTHER CONTROLLER CLASSES........cciiieieeeeeeeeeeeeeee ettt 60
5.7.1 The SIMPIECONLIOIIETeeieee ettt e e e e s et e e e e e e e teeeeeeesassaaeeeaeesansssaeaeesassssnneeeeessnsnnes
5.7.2 The AutoViewController
5.7.3 Additional CONIOIEIS.........c.eiiiii e e
5.7.4 CUSLOM CONLIOIEIS ... e e e s s e e 61
58 ADD COMMON FIELDS TO EVERY REQUESTuuuiiiiiiiccecccccc e 61
59 VVORKED EXAMPLEeutttttttteueetteesesssessrerersssressserararerararerara..—.—————.—.—a...arasnsnsnsnnnnnnnnnnns 62
510 BLOCKING EVENTS FROM STATESuuiiieiitiiieeitiieeeastieeeeessteeeessnteeeessnseeeessseeeessnseeeesans 66
6 Writing Controller ClasSescccieirminsirminsr s 68
6.1 THE RESPONSIBILITIES OF A CONTROLLERutiiieeitieeeeeieeeeseiieeesanteeeesnteeesenneeeeeenees 68
6.2 THE ICONTROLLER INTERFACEuttiieeitieeeeatieeeeetteeeeestteeeeasnteeeeennteeeeesnbeeeessnneeeeennnes 69
6.3 THE SIMPLECONTROLLER CLASSoiiiiiiiiitittieetererereseresererererersrsrsrsrsrsrersrersrsre—.——. 71
6.4 THE MAIN CONTROLLER CLASS.....ccutttitittettererererererereresersrersrersrsrsrersrsrsrsrarers——————. 71
6.5 THE MODIFIED CONTROLLER CONTRACT ...ccvvviviirrtrreeeresererereressrsssssssrsssrsrsssrssnrsnsrnrsme. 72

4 M Screen Orchestrator Guide Version 2004.5

10

6.5.1 The INputs ODBJECteovieiiiiiiicie e
6.6 EXTENDING THE CONTROLLER CLASS

6.7 ADDING A NEW CONTROLLER TO THE ORCHESTRATORuuuuuiiiiiieieceeeneee e e e e anans 76
6.7.1 DO NOTNING. ...ttt e ettt e e st e e et e e s eae e e s e e e st e e e e
6.7.2 Add the controller to the statechart.properties file

6.7.3 Create a Customizer for the CONLrOIIENiiiiiiii e
Writing Guard Condition ClasSesccccvcemireriiiiiscsssecerer s ssssssrr e s ssssns e e e eessnnnnn 79
71 THE RESPONSIBILITY OF A GUARD CONDITIONccuvtiiiiirereeeeererererereresersrnserssersrsrnree. 79
7.2 THE IGUARDCONDITION INTERFACEcvvvviveetreresererereressressseressrsssssrsrsssrsrsrsssrsrsrsnna. 79
7.3 ADDING A NEW GUARD CONDITION TO THE ORCHESTRATOR......uuuuuinininnnnnnns 79
7.31 DO NOENING. ... ettt e e st e e et e e s eae e e s e e e st e e e e
7.3.2 Add the guard condition to the statechart.properties file...

7.3.3 Create a customizer for the guard CONAItIONcoiiiiiiiiiii e
WIEING JSPS ...oeeeiiiiii et sssr e s s s s ss s e e e e s s s s s snmn e e e e e e s n s anmne s e e e ee s e nnnnennnesnssnnns 81
8.1 RESPONSIBILITIESOF AJSP ..o 81
8.2 GETTING DATAINTO THE JSP ..o 81
8.2.1 INPUES DBAN ...ttt st e e e e e st e e et e e e 81
8.2.2 ProcessEXeCUtIONRECOIAS DEANuiiiiiiiiiiii et e e s 82
8.2.3 SHALE DEAN ... bbbt
8.2.4 VIBW DIBAN ...ttt ettt et e e et a ettt ettt
8.25 RequestContext bean

8.3 FIRING AN EVENT FROM A JSPttt ee e e 83
8.3.1 Using the .jSmM URL @XtENSIONoiiiiiiiiiii et 83
8.3.2 Using the StateMaching URLcooiiiiiiiiii ettt ettt e e et e e 83
Orchestrator Process Integrationccccceiiiiiiccccccceninin e ssss e nmnees 84
9.1 INTRODUCTION ...ttt e ee e e e e s e e ae e e e e e e e e e e e e aese e e ae s e s e aeseaeseaeaesesaaeaaaeaaaeaaaaaaaaaaaaaaaeens 84
9.2 IMPORTING IN PROCESSES FROM AN AUTOMATED METHODOLOGY MODELcuuuuunn... 84
9.3 MANUALLY INPUTTING PROCESS INFORMATION.......cceeeiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 86
94 REMOVING ALL SESSIONS FROM THE SIEBEL PROCESS LISTccoiciviiieieeeeeeceirreeeea e 88
9.5 EDITING/DELETING PROCESSESvutitiiieeeeiiititteieeeaeesseasssreeeseaesssasssssseessassssansnsssseesass 88
9.6 ASSIGNING PROCESSES TO THE STATE CHART ...t 88
9.6.1 Assigning processes to a state

9.6.2 Adding Processes to @ State Transitioncc.oiiiiiiiiiiii e 89
AdVaNCed DIraWingc.ceeiiiurieiisieisrs s s s 94
10.1 UNDO / REDO FEATURESccoiiiiiiiie e, 94
10.11 UNAO EXAMPIE....c.oniiiiiie ettt ettt e et 94
10.1.2 L= Te Lo TN e 1o o] o] = PSSR 97
10.2 COPY, CUT & PASTE FEATURESctvttiitiiiieeterereeesereseresersrssersrsrsrsrsssrsrsrerersrsrsra—... 99

Screen Orchestrator Guide Version 2004.5 W 5

1"

12

13

14

10.2.1 Copy Example

10.2.2 CUt & Paste EXAMIPIE ...ttt ettt 102
10.3 PARENT STATES AS SUB-CHARTSccoiiiiitiiiieeeeeeeeitireeee e e e s e sniaseeeeeaesssnntsseeeeaaeeeanns 104
10.3.1 Transitions Leaving And Entering Parent States...........ccooiiiiiiiiiiiiii e 107
10.3.2 Bringing Sub-Charts TO The FrONt..........coouiiiiiiiiiii e 108
10.3.3 Why Use The SUb-Chart FEAtUIE?coouiiiiiiii i 109
10.4 MULTIPLE USER SUPPORTcctttttttttttttteseeessresessssssssssssssssssssssssssrsrsrsssssrsssnsrsrsrssnrnnnne 109
10.4.1 Note on users working on the SAaMEe filescuiiiiiiiii e 111
Introduction To Writing A Swing Application.........cccccccccciriiiiscc e e 112
R I O 1Y/ = Y | SR 112
11.11 StateMaChiNEEVENT ClasSciuiiiiiiiii ittt 112
11.1.2 StateMachineEventSource iNterfaCe...........couuii i 113
11.1.3 StateMachineEventDiSPatCher CIass...........ooiiiiiiiiiii e 113
11.1.4 ViEWCONTAINET INTEITACE. ...ttt e bbb e as 113
11.2 WRITING THE APPLICATION MAIN CLASScevvveereerererereererssssesssesssssssssssssssssssssssesssssenes 113
11.21 Create and display @ VIEWCONLAINETooouiiiiiiiiiieiee et 113
11.2.2 Create a StateMachineEventDiSpatCher.............ooii i 113
11.2.3 Fire the firSt EVENTcoeiiiie ettt ettt 113
11.3 WRITING THE VIEWCONTAINER CLASSuuuiiiiieeeeeiiiirtteeeeeeeessssssneeeeaessssnnsnneeesaaseesnnns 113
114 WRITING THE VIEW CLASSES.....eettttttutueeereerererersssrsssrsssssssssssssssssrsrsrsrsssrsrsrersrsrennrans 114
11.41 IVIEW INEEITACE ...ttt et e e et e e e ae e e e tb e e e enbeeesnreaaenneaean 114
11.4.2 StateMachineEventSource iNtErfaCe...........couuii i 114
11.5 PUTTING THE VIEW CLASSES IN THE CHARTcetittiiirereeeeeereeeesseeeeesssssssssssssssssssssesesenes 115
11.6 MANAGING VIEWPROPERTIEScovttuttttiutretsseerererersssssrersrsrerssssessrsrsrsrsrsrsrsrsrsrne... 115
11.7 THE TOOL VIEW REQUIREMENTS ...cetieeiiiiuttieeeeeeeeesaiusrreeeeeasssssnssneeeeeassssnnssseseeasssssnnns 115
11.71 THE JSPVIEW ClaSS.....ccueeii ittt ettt et e e et e e e e e saeeeabeeeeas 117
11.7.2 The JSPVIeWBEaNINfO Classcouiiiiiiiiiii et 121
11.8 THE SWING APPLICATION REQUIREMENTS.....cciiieiiiiitrreeeeeeeeeisirrsneesaessesssssssseseaeeseannnes 123
11.8.1 The VieWCONTroller iNtEITACE.ii it 124
11.8.2 Setting the application ProPerties....... ..ot 124
11.8.3 The state MacChing EVENES........ccouiiiiiiii et 124
11.9 A SWING APPLICATION EXAMPLEcuvvtteuereereeerereressssssssssssssssssssssssssssssssssrsnsssssrssssnnnnes 125
Validating Input Requirements...........cccceeiiiiiiiiiiimsissssssssssssssss s s e s s s s s sssnsnsnsnss 133
12.1 DEFINE THE VALIDATION RULEScoi ittt 133
12.2 HOW THE STATE MACHINE HANDLES THE VALIDATION CHECKcveeieeeiiiiiirieeeeeeeeenenns 134
Generating JSP and Swing Panels..........cccciiminminssss e 137
13.1 RUNNING THE GENERATORittiiieiieeeeeeeiiete e e e e e e e e siaataaeeeaeesaesnntssaeeeaeesesnnsssnneeaens 137
MCA Services Timing POINtS........ccooiiicciiiiiniiiisscccsecrre s s s e ee s sns s e e s e s sssssssnnnns 139

6 M Screen Orchestrator Guide Version 2004.5

Screen Orchestrator Guide Version 2004.5 W 7

1 Overview

The Screen Orchestrator is a tool that allows a user to design and implement an application using statechart
principles. It allows the user to visually draw a statechart representation of their proposed application and
interactively allows the user to specify the actual processes and state types that will be used by the
application when run. Finally it allows the actual visually drawn statechart to be deployed on a live HTTP or
application server. There the application can be run and controlled by the state machine. The state machine
reads the deployed statechart and uses it to control the actual application.

Understanding statechart principles and notation is a prerequisite to using the orchestrator tool correctly. It is
extremely important that the following subsections are read in order to get a basic understanding of
statecharts, their notation and the state machine, as these are the basic premises on which the tool
operates.

8 M Screen Orchestrator Guide Version 2004.5

Statechart and State Ma

2 Statechart and State Machine Concepts

2.1 What Are Statecharts?

The UML definition of a statechart diagram is as follows:

Statechart diagrams represent the behaviour of entities capable of dynamic behaviour by specifying its
response to the receipt of event instances. Typically, it is used for describing the behaviour of class
instances, but statecharts may also describe the behaviour of other entities such as use-cases, actors,
subsystems, operations, or methods. (from www.omg.org)

For us, the key concept in understanding why we use statecharts to represent user interfaces is the fact that
statechart diagrams are capable of handling or modelling dynamic behaviour through events. Users interact
with a user interface dynamically through events. Statecharts are therefore ideally suited to describing how a

user interacts with a user interface.

For example, consider the following user interaction with a login screen in a user interface. To login the user
must first enter their username and password. The user must click the login button to activate the login
request. If the login is successful then the user is allowed into the rest of the system. If the login fails then
the user is taken to the login-failed screen. The clicking of the login button is an event that must occur for the
request to be processed. The event has two possible outcomes in this instance, it is either successful or it
fails. The statechart representation of this user interaction is shown in the following figure (the statechart
notation will be explained in a later section).

= =<higyr== Lagin[Failed] | ==Migwy==
Login LoginFailed

Login[Successiul]

Login statechart diagram.

The statechart in the figure shows how a login user interface can be modelled in statechart notation. When
the user interacts with a screen an event is created. An event can be created when a user presses a button,

Screen Orchestrator Guide Version 2004.5 W 9

ts B What Is The State Machine?

or checks a radio button, or submits a form, or for whatever action the designer may wish the user to take.
States in terms of the tool are often what the user sees on the computer screen (the view). In the login
example, we have three states or screens, the login screen itself, the loginFailed screen and the

AuthenticatedArea, where one or more screens and hence states, may exist.

Statecharts, in terms of the orchestrator tool, are used therefore to capture the user’s interaction with the
user interface through the modelling of the events that describe that system. Statecharts can also for other
purposes. For example, it can be used to capture the flow of a process on the server-side of the application.
It can be used in long-lived multiple transitions to route a process from one state of the transition to the next.
This user guide will concentrate primarily with using statecharts for the design and implementation of user

interfaces.

2.2 What Is The State Machine?

While a statechart is the representation of the modelled user interaction of a user interface, the state
machine is a framework that allows that statechart to be actually used to control the real user interface. With
the state machine framework, a statechart drawn by the orchestrator tool can be used to directly control a
real user interface. The state machine framework is based upon an open source project, the jstatemachine
(www.jstatemachine.org). This framework has been extended to be aware of Siebel Retail Finance
processes and is part of MCA Services. The state machine framework is loaded and runs on any HTTP
server that supports Java servlets and Java Server Pages (JSPs). The state machine reads the statecharts
produced by the orchestrator tool and uses that chart to control the real user interaction coming from the
user interface. The key thing to remember here is that the tool constructs the statecharts, while the state

machine loads that statechart and uses it to control the actual user interface.

23 Why Use Statecharts And The State Machine?

Any large system’s user interface today is usually designed using a modern integrated development
environment (or IDE). While these tools are extremely powerful in building complex user interfaces, user
interface software often has the following characteristics:

m The code can be difficult to understand and review thoroughly

m The code can be difficult to test in a systemic and thorough way

m The code can contain bugs even after extensive testing and bug fixing

m The code can be difficult to enhance without introducing unwanted side effects

m The quality of the code tends to deteriorate as enhancements are made to it
Despite the obvious problems associated with user interface development, little effort has been made to
improve the situation. The use of statecharts to specify the flow and control of the user interface is a major
step in improving this situation. The user interface design can now be captured and easily understood, and
can be interpreted by existing and new users developing the system. The user now has the visual record of
the flow of control of the system. They can also see the side effects any change on the user interface will

have. Statecharts and their notation are ideally suited to this.

! Constructing the User Interface with Statecharts by lan Horrocks

10 M Screen Orchestrator Guide Version 2004.5

Statechart and State Machine Concep

The design of the user interface is too often left almost entirely to the developer and their understanding of
the use cases. Greater design work needs to be done on the user interface in order that the user interface

can be more easily understand, developed and maintained. Statecharts can play a key part in achieving this.

An extension of using statecharts is the state machine. If the user interface can be described using a
statechart, then why can’t the actual statechart be used within the user interface application to maintain
control of the actual system? Any changes in the statechart can then be automatically reflected back in the
actual application. This is precisely what the state machine does. It takes the actual specified statechart and
controls the application directly with it. The user interface developer is then free to concentrate on building

and creating the views for the system.

Statecharts and the state machine enforce the model-view-controller (MVC) programming model. The
controller of the user interface is the statechart that was drawn, while the state machine is the runtime
environment for that chart. The developer can now create views for the application that will contain view
code only. The model is defined by the input parameters to the states, events and transitions (later sections
will describe what is meant by input parameters and the maintaining of the model details used in the
statecharts). Additionally the state machine and the statechart drawing tool are aware of Siebel Retail
Finance processes. They can invoke them and more importantly interpret their responses so that zero or
minimum control code is required to be written by the user. This leads to a user interface system that is
highly controlled and whose side effects can be easily understood and changed as the system grows and

enhancements are added, the direct opposite to the normal problems associated user interface designs.

24 Statechart Notation Explained

Statechart notation is essentially broken down into two representations: states and state transitions. States
are represented in the Orchestrator by a rectangular box, while an arrow represents state transitions.
Events, another important statechart element, are not pictorially represented. Events can however be

identified in a statechart by examining the labels attached to state transitions.

2.41 States

The statechart that the user defines for their user interface is merely the representation of the possible
states of the interface. A state, in the case of the state machine and the orchestrator, represents what the
user sees on the computer screen. In terms of the orchestrator a screen is termed a view. A standard state
drawn on a statechart in the orchestrator is shown in the following figure.

==ALto Yiews==
Laogin

A standard state.

Every state has a title and subtitle. In the case shown in the above figure the text “<<Auto View>>" is a title,

and the text “Login” is a subtitle. The subtitle on each state indicates the name of the state or view. The title

Screen Orchestrator Guide Version 2004.5 W 11

ation Explained

always indicates the type of state that the state represents. The orchestrator provides three basic state
types, an “Auto View”, a “View” and a “No View”. Each state type available in the orchestrator tool is shown
in the figures below.

==ALt0 Yiew==
Login

An ‘Auto View’' state.

A ‘View’ state.

A ‘No View’ state.

The states as shown in the previous figures are colour coded for easy identification. An “Auto View” state
indicates that the user is representing a view by the state but that no current view is available to be attached
to the state. The state machine can generate an automatic view for this state dependent on the state input
parameters and the events leaving the state. The “View” state indicates that the user is representing a view
by the state and that the user has an actual view that can be attached to the state. When the state machine
runs the application, the attached view will be displayed to the user. The “No View” state if often used to
indicate that the state will be a parent state (although an AutoView and View state can also be parent
states). Parent states can be used to split the user interface into subsystems. The “No View” state can also
be used to represent server-side states as these states do not represent any particular view of the system.

2411 Parent and child states

States can be added to other parent states. Once a state is added to another state, that state becomes a
child of the enclosing state. The following figure shows the AuthenticatedArea state as a parent state of the
child states Page1 and Page2.

==Aut0 Yiews== ==Auto Yiews==
FPage Fage2

Parent and child states

12 M Screen Orchestrator Guide Version 2004.5

Statechart and State

States can inherit events and transitions from their parent states. That is an event or transition available from
the parent state is also available from its child states, with the exception of the case where a child state has

an event of the same name.

2.4.2 Events

When the user interacts with the screen an event is initiated. They may be pressing a button, checking off a
radio button, submitting a form, or any action the designer may wish the user to take. An event is identified
in the state machine by its source and name. In the earlier example, clicking the login button on the login

screen is an event being initiated.

24.3 State Transitions

Arrows represent state transitions on a statechart. Using the name of the event the transition arrow on the
statechart can be followed to one and only one logical endpoint, i.e. another state. Not all states are
reachable at once. Each transition is guarded by a condition or set of conditions, mutually exclusive that
must return true for a particular transition to be followed. After the event occurs the guard condition of each
transition possible for that event will be tested. One of the conditions will return true and the state machine
will follow that transition to the resultant state. Having attained that state the state machine will then inform
the user interface and the display will be updated to show what is proper for that state. The next figure
indicates the login event and its transitions.

Event label (Login)

Guard condition (Failed)

Login[F ailed]

Lo I

Login[Successisl]
F 3

Transition arrows

Guard condition (Successful)

Identifying events and transitions on a statechart.

The syntax for a transition arrow’s label has three parts, all of which are optional: Event [Guard] / Action.

Screen Orchestrator Guide Version 2004.5 W 13

on Explained

Actions are associated with transitions and are considered to be processes that occur as a result of a
transition. Actions are also termed as “side effects”. When a transition occurs an action or side effect may
result. In the login example we could extend the Login[Successful] transition to include an action to store the

user’s userld in the user’s session.

Lonin[Failed] ,H

Login[SuccessiulliStorellserld

el

Extending the login example to include a transition action.

When the login button is then pressed the login event is fired. The login results will be tested to see if the
login was successful. If the login was successful then the Login[Successful]/StoreUserld transition will be
followed. The action associated with this transition is to take the user’s userld and store it in the user’s http

session.

2.4.31 Self-Transition

A self-transition behaves exactly as a normal transition would except that its start state and end state are the
same. The figure that follows indicates how a self-transition is drawn on the orchestrator tool.

Lagin[Trdgain)

Self Transition
A self-transition is used when you wish to send the user back to the currently displayed screen if a certain

guard condition is met. In the example in the figure, when the Login event is fired, if the guard condition is
“TryAgain” then the Login screen is re-displayed by the state machine.

14 M Screen Orchestrator Guide Version 2004.5

244 Pseudo-States

A number of pseudo-states are also available within statechart notation. Pseudo-states represent special
types of states that indicate very specific types of behavior when included on the statechart.

2.4.41 Initial State

A solid circle as shown in the next figure represents an initial pseudo-state.

An initial pseudo-state.

An initial pseudo-state indicates the starting point or state for a statechart. Initial pseudo-states can also be
used in parent states to indicate when a user enters a parent state where the starting point is within that
parent state. The next figure shows the login example extended to include child states in the

AuthenticatedArea parent state.

Login[Failed

Login[Successfull/StorelUserld

==Auto View=:= Mextldefaulf } ==Auto Wiews==
Pagei Fage2

Using initial pseudostates.

The statechart has two initial pseudo-states. One to indicate where the application starts and the second to
indicate which state is displayed first when the AuthenticatedArea state is entered (e.g. Page1).

2442 History

A circle enclosing a “H” as shown in the next figure represents a history pseudo-state.

()

A history pseudo-state.

A history pseudo-state refers to children of a state that have recently been visited by the user. The history

Screen Orchestrator Guide Version 2004.5 W 15

ation Explained

pseudo-state allows the user to return to the state that was the most recently visited immediate child of the
history pseudo-state. The following figure shows a history pseudo-state in the AuthenticatedArea.

Login(F ailed

Logoutfdefault] +

Login[SuccessiullfStorel)serld

FPagelMenultern[defaulf] (PageZMenultern|defauli] Mofdefaulf]
==AUt0 Views== == AUTD Wiew==
Fanel Fage2

The login example extended to use a history pseudo-state.

In this example, if the user cancels their logout event while on the confirm state, the user is returned to the
last previously opened state within the Authenticated area (i.e. either Page1 or Page2, depending on which

of the two screens have been displayed before the Confirm state was displayed).

2443 History-Star

A circle enclosing a “H*” as shown in the next figure represents a history-star pseudo-state.

(i)

A history-star pseudo-state.

A history-star pseudo-state is very similar to the history pseudo-state. However, the history-star pseudo-
state will recursively return the user to the immediate child of the history-star pseudo-state ending with the

deepest visited state.

For example, if the statechart in the previous figure was modified to use history-star rather than history, the
state machine would allow the user to return to the last displayed state and its deepest visited state. So if the
user visited Page1 followed by a child state of Page1 the user will be returned to the child state of Page1.

2444 Final State

A solid circle enclosed by an outer circle as shown in the next figure represents a final pseudo-state.

16 M Screen Orchestrator Guide Version 2004.5

Statechart and State Machin

®

A final pseudo-state.

The final pseudo-state is used to indicate the final activity allowed on a statechart. It triggers a transition for

leaving the application fired from the connected state to the final pseudo-state.

2445 Exception State

A circle with an “X” across it as shown in the next figure represents an exception pseudo-state.

&

An exception pseudo-state.

An exception pseudo-state is not part of the standard UML statechart notation. It was added to the state
machine for exception handling. The state machine recognises that exceptions can occur during event
processing, and allows you to specify states within your user interface as exception states. When an
exception is thrown the user interface will be placed properly in the appropriate exception state, with the
user session still intact.

2.4.4.6 Effects of Pseudo-States On State Transitions

Pseudo-States indicate very specific behaviour when used on a statechart. Similarly, pseudo-states have
effects on state transitions that you should be aware of. Some pseudo-states can start a state transition but
can’t be used to end a state transition. While other pseudo-states can’t be used to start a state transition but
can be used to end a state transition. The table that follows indicates the type of behaviors that are allowed

by pseudo-states when drawing a state transition with them on a statechart.

Pseudo-state State Transition Behavior
Start state in a transition End state in a transition

Initial Yes No

History No Yes
History-star No Yes

Final No Yes

Exception No Yes

245 Chart Notes

The orchestrator allows various notes to be added to the statechart. One visual note type is the chart note.

The following figure shows a chart note.

Thiz is a chart note.

A chart note.

Screen Orchestrator Guide Version 2004.5 W 17

chart Example

Chart notes can be added anywhere within a statechart and can be used to visually comment the statechart.
The state machine makes no use of these notes. They are only used to explain the statechart to other users.

25 Simple Statechart Example

In the previous sections we have used a login example to demonstrate the statechart notation. We will
extend that example to produce the statechart as shown in the following figure. The purpose of this section
is to explain what we mean by this statechart and how a user should interpret it. Later sections introduce
more advanced features that the orchestrator is capable of, for now we will concern ourselves only with the
basics.

e o‘ &

Restartdefault] Restari{default]

Mext[default]

JriAnainfdefault

Logaut[defaulf]

Login[SuccessfulliStorel)serld

PagelMenultem[defaull] |Page2Menultem[defaull]

Maldefaulf]

S<AUTD Wigy == =< Auto Views=
Pagel Page?

A simple statechart example.

The figure above provides a simple statechart that represents a user interface that allows a user to login to
an authenticated area, move around that area and then to restart the application by logging out of the
application. Initially, when the user starts the application, the welcome view will be displayed as indicated by
the statecharts initial pseudo-state. On the welcome screen or view is a next button. When the next button is
pressed the state machine will display the login view to the user. On the login view the user can enter their
username and password. When the user clicks the login button a login event is fired. The state machine
handles the result of the login and determines which guard condition is met.

If the guard condition Failed is met the state machine follows the Login[Failed] transition and displays the

18 M Screen Orchestrator Guide Version 2004.5

Statechart and Stat

LoginFailed screen to the user. On the LoginFailed view is a restart button and a try again button. If the user
clicks the try again button then the state machine displays the Login screen again. However, if the user
clicks the restart button the state machine displays the welcome screen.

If we go back to the login guard condition and the guard condition Successful is met, the state machine then
follows the Login[Successfull/StoreUserld transition. When the guard condition Successful is met the state
machine performs the StoreUserld action or side effect. The StoreUserld side effect requires the state
machine to take the userld returned from the login process and to store that userld in the user’s http
session. Once the side effect has been completed the state machine will enter the AuthenticatedArea of the
application and will display the Page1 view to the user as indicated by the initial pseudo-state in the
AuthenticatedArea.

The user can move between Page1 and Page2 in the AuthenticatedArea by menu or form buttons on the
AuthenticatedArea screens. The AuthenticatedArea indicates that there is a Logout event. This event is
inherited by the AuthenticatedArea’s child states. This implies that both the Page1 and Page2 screens will
have a logout button so that the user can fire the Logout event. Note how the statechart does not require a
logout state transition arrow to be drawn from Page1 and Page2 to the Confirm state. They automatically
inherit the event by being child states of the AuthenticatedArea.

Screen Orchestrator Guide Version 2004.5 W 19

3 Basic Orchestrator Drawing

This section will introduce the basic drawing capabilities of the orchestrator tool. After completion of this
section you should be able to build a standard statechart with the tool.

3.1 The Main Orchestrator Window

When the orchestrator window starts, the screen in the following figure will be displayed:

@ Orchestrator

L —

% Eontec Processes

The orchestrator window.
The orchestrator application provides a menu and toolbar to access the major functions of the tool. The main

drawing components of the tool with which statecharts are drawn are always displayed in the upper left
hand-side of the application. The next figure indicates the statechart drawing components used by the tool.

20 M Screen Orchestrator Guide Version 2004.5

Drawing components used in creating statecharts.

Below the drawing component’s panel on the main window is a navigation window that allows the user to
see a miniature view of the statechart they are currently drawing. This window can be used to navigate a
statechart to a particular area within the currently visible statechart window.

L

Navigate window.
Below the navigate window panel is a further panel, the “Siebel Processes” panel. This panel is used to

display the available list of Siebel processes available to the user to use when populating a statechart with

process information.

Screen Orchestrator Guide Version 2004.5 W 21

% Eontec Processes

Siebel processes panel.

Beside the “Siebel Processes” is a further panel, the “Application Metrics” panel. This panel is used to
display the number of states, view states, autoviews, events, complex controllers, transitions and complex
guard conditions in a statechart. This information can be used to determine the complexity of the statechart,
to help with task estimation and to track progress of the application i.e. the number of autoviews left to be
coded to actual views.

Application Metrics

States: .
LU TS [‘I.‘!.:
BubaViens: I
Events. .
Complex conbelles: I‘
Transifions: 1"2
Comples quarsCendiiens 13:

A |

22 M Screen Orchestrator Guide Version 2004.5

Basic Orchestrator Drawi

Application Metrics panel.

As stated previously this section will concentrate on the basic drawing of statecharts using the tool, later
sections will explain fully the use of the process panel.

Finally, to the right of these panels is the main drawing area. The orchestrator tool provides an MDI (multiple
document interface) desktop in which statecharts can be drawn. The tool allows a user to create or edit a
single statechart at a time. However, larger parent states can be opened into smaller sub-chart windows
within the desktop. Opening parent states as sub-charts will be explained in detail in the section titled
“Advanced Statechart Drawing”.

3.2 The Statechart Drawing Components

The statechart drawing components as shown in the next figure represent the statechart notation as
described in the statechart concepts section of the user guide.

. 3
Initial State State
il e

Self Transition Transition

(30 ()

Shallow History|| Deep History
() ®
Exception Final State

=
Chart Mote

Statechart notation components palette used for drawing statecharts.

3.21 Drawing States or Pseudo-states

To create a state or a pseudo-state on the statechart window the user must click on the state required from
the component palette with the mouse and drag the state using the mouse onto the statechart window. The
user must release the mouse button over an area in the statechart window where they wish to drop the
state. Once released a state or pseudo-state will be created by the tool on the dropped location in the
statechart.

Once a state (not a pseudo-state) is dropped and created the tool will display the “Enter State Details”

dialog. The user can then enter the state’s details. The following figure shows the “Enter State Details”

dialog.

Screen Orchestrator Guide Version 2004.5 W 23

ponents

@ Enter State Details x|
Title: [|
State Type: ||:|:|m.hank‘frame.fe.atatemachine.E}d.c|:|nnecturs.aewletﬁutwiew | - | ﬂ

—State Details:

~Processes:

~Input Requirements:

NAame | description | defaultyalue | reguirerment | validationRule
REQUIRED
Edit note 1k Cancel

Enter state details dialog.

For now we will leave the details as is and only enter a title for the state. In this case we will enter a title
“Welcome” for the state. When the “OK” button is pressed the dialog will be closed and the state will be
displayed with the appropriate title and state type. The next figure indicates the state that would be drawn by
following the previous related procedure.

24 M Screen Orchestrator Guide Version 2004.5

@ Orchestrator

X mEae ola

==Lt Views>
Welcome

o Eontec Processes

Welcome state drawn.

The “Enter State Details” Dialog will only be displayed when creating or editing states. Pseudo-states do not
require titles or require to be configured in any way. The state or pseudo-state can be moved at any time by
clicking with the mouse on the state and dragging the state to any new location within the statechart window.

3.2.2 Drawing State Transitions

To connect two states together to represent a state transition the user must click with the mouse on the
transition component and then drag the component onto the statechart and drop or release the mouse
button directly over the header of the state, or anywhere over a pseudo-state that will be the starting state
of a state transition.

|

State transition component.

The tool will immediately change the cursor to that of a transition crosshair — as shown below.

% To understand what the header of a state means, please see the later subsection entitled “State
header”.

Screen Orchestrator Guide Version 2004.5 W 25

ng Components

T,

Transition crosshair.

The user must then move the mouse to the state or pseudo-state that will be the endpoint of the transition.
As the mouse is moved about the statechart towards the end state of the transition a temporary state
transition line will be drawn for each mouse movement towards the end state. Once the mouse is over the
header of the state or anywhere over a pseudo-state the user must click the mouse on the state. The cursor
will be returned to the default cursor and the state transition will be drawn. The “Transition Wizard” dialog as

shown in the next figure will then be displayed.

@ Transition Wizard |

~Enter Transition's Event Details

*Event: | | - |

Contraller: | |V| @

~Contraller Propedies:

[_] walidate event's input requirements?

CInputReguirerments:

name | description | defaultalue | requirament | validationRule |
REGIUIRED

(™ Indicates mandatory fields)

Edit transition naote H et || Cancel

Transition Wizard dialog.

The user must enter an event name of the transition or select an existing event on the starting state of the
transition if one already exists. For example, in the login example used in the statechart concepts section, if
we were drawing a transition from the welcome state to the login state, then the next event would be created
for this transition. Enter the event name, in this case “Next”, into the combo box for the event name. At this
stage we will only consider the basic drawing functions of the statechart and so for now we will ignore the
other features on the dialog. Press the “Next” button to move the wizard onto the next screen.

26 M Screen Orchestrator Guide Version 2004.5

Basic Orchestrat

x|
rEnter Transition Details

Action Description: | |

* Guard Description: |defau|t |

* Guard Condition Class: |u:u:um.bankframe.fe.statemachine.ext.applu:uaders.NuIIGuardCondition v| ﬂ

~Guard Caondition Properies:

(™ Indicates mandatory fields)

Edit event note || Edit transition naote H Back || Finish || Cancel

The next screen on the transition wizard dialog.

On this screen in the transition wizard dialog, the user can enter an action description and guard condition
for the state transition. In the state transition from the Welcome state to Login state no action or guard
condition exists. Again, later sections will describe in more detail the remaining properties of this dialog.

Once the “Finish” button is pressed, the dialog is closed and the state transition entitled Next[default] is
created as shown in the next figure.

==Aut0 Yiews==
‘Welcome

Mext[default]

¥
==ALt0 Views==
Lagin

The Next[default] state transition drawn.

If we were drawing the Login[Successful]/StoreUserld state transition then the following information as

shown in the figures below would be entered in the transition wizard dialog screens.

Screen Orchestrator Guide Version 2004.5 W 27

|
~Enter Transition's Event Details

*Event: |Lngin | - |

=1 8]

Contraller: |

Contraller Properies:

[_] walidate event's input requirements?

CInputReguirerments:
name | description | defaultalue | requirament | validationRule
| | |REQUIRED
(™ Indicates mandatory fields)
Edit event note ‘ | Edit transition naote | ‘ et | | Cancel

Entering the Login event name.

28 M Screen Orchestrator Guide Version 2004.5

Basic Orchestrat

x|
~Enter Transition Details
Action Description: |StnreUserId |
* Guard Description: |Suu:u:essfu| |
* Guard Condition Class: |u:u:um.bankframe.fe.statemachine.ext.applu:uaders.NuIIGuardCondition v| ﬂ

~Guard Caondition Properies:

(™ Indicates mandatory fields)

Edit event note || Edit transition naote H Back || Finish || Cancel

Entering the Login StoreUserld action and Successful guard condition.

==Lt View== Login[SuccessiulliStorellserld
Login

The Login[Successful]/StoreUserld state transition

3.2.21 Drawing Self-Transitions

To draw a self-transition, the user only needs to mouse click on the self-transition component and holding
the mouse button down, drag the component onto a state header. Pseudo-states do not support self-
transitions and will be ignored. The user will be warned if they attempt to drop a self-transition on a pseudo-
state.

l

Self Transition

The self-transition component.

Releasing the mouse button over a state will invoke the tool to draw a self-transition around the state and to
display the “Transition Wizard” dialog as described in the previous section. Remember a self-transition has
exactly the same properties as a state transition, except its start state and end state are the same. The next
figure shows a self-transition drawn around a Login state, when the Login event’s guard condition is

Screen Orchestrator Guide Version 2004.5 W 29

ing Components

TryAgain. If the login fails, the state machine can re-display the Login state allowing the user to try logging in

Login[Trdoain

The Login[TryAgain] self-transition.

again.

==ALUtD View==
Login

3.2.2.2 State Header

When dropping a transition or self-transition on a state you must drop the drawing component on the state’s
header. Similarly, when specifying the end state of a state transition, the user must click the mouse on the
state’s header for the tool to identify the state that should be used for the end state of that transition. The
state header is the top rectangular box of the state where the state’s type and name (or title) is displayed.
The following figure highlights the header area of a number of states.

State headers

= =AUt Wiews== =<=AUL0 Views= I
£l Page

The state header area.
The bottom rectangular box of a state is where child states can be added to the state. Adding child states to
a parent state will be discussed in a later section.

3.23 Drawing Chart Notes

Chart notes can be added anywhere to the statechart. The statechart component is shown in the following
figure.

=
Chart Mote

Chart note component.

To add a chart note component to the statechart click the mouse button on the component shown in the
previous figure and holding the mouse down, drag the component onto the statechart. Release the mouse
button where you want the chart note to be located. Click the mouse into the chart note and the user can
then type text directly into the note. The note will grow automatically in size as more text is typed. A chart
note is shown in the following figure. The statechart can have as many notes as you wish and they can be
added to states just as any child state can be added to any parent state.

30 M Screen Orchestrator Guide Version 2004.5

[mewapplicatian®

==ALtD Views=
Welcame
Mext[defaul]
k.

==Auto Views== =l

Login &

Login[TryAgain]
S2AUtD Viewy=> =AUt View==
Pagel Page2

Login[SuccessfulliStarelserld

¥

This statechart represents the
login example used in the
user guide ofthis application.

A statechart showing a chart note attached.

3.3 More Drawing State Details

States and pseudo-states can be created or moved anywhere within other states. They can be resized and
their details edited - e.g. their names can be changed and state types can be altered. The following

subsections indicate how these features can be accessed.

3.31 Adding Child States

To add a state or pseudo-state as a child to a parent state, simply drag and drop a state component from the
component palette onto the parent state’s statechart area. Every state has a statechart area on which child

states can be added. The next figure indicates the statechart area available for each state.

= =AUt Wiews== =<<AUt0 Views=

— :

Statechart areas

Statechart areas attached to states.

Once a state is dropped onto a parent state’s statechart area, the parent state will be resized to fit the child

Screen Orchestrator Guide Version 2004.5 W 31

tails

state and any other child states of the parent. If the child state is then moved further around the parent state,
the parent state will continue to be resized if required.

3.3.2 Moving States

Once a state or pseudo-state has been dropped and created, the user is free to move the state to any
location in the statechart. To move any state simply mouse click anywhere on the state’s header or, if it is a
pseudo-state, anywhere on the body of the pseudo-state, and drag the state to its new location. Releasing
the mouse button over the new location will move the state. If the state is moved inside a parent state the
parent state will be resized automatically if necessary. You can move a state anywhere you wish. If the state
is outside a parent state but should be inside it, then dragging the state inside the parent state is allowed.
The state will immediately become a child state of the parent state.

==AUto Wiews= ==AUto Wiews=
==ALt0 Yiews== Fagel Pange?

Pagel

==AUto Wiews=
Fagez

Moving Page2 state into the AuthenticatedArea state.

Similarly the reverse is also true. If a state has been initially located as a child state of some parent state,
moving the child state anywhere outside the parent state will immediately release the state as a child state
of the parent state.

3.3.3 Editing State Details

The state details, such as changing the state’s title, view type, view details or input parameters, can be
changed at any time. Right-clicking anywhere on a state’s header will bring up the state’s popup menu - as
shown in the following figure.

32 M Screen Orchestrator Guide Version 2004.5

Basic O

2=fUto Vi = =l

Authenticated
Delete
Transitions

The AuthenticatedArea’s popup menu.

==ALt0 View==

ST Editthis state to change its details,
Page1

Clicking the Edit -> Details menu item will bring up the state’s “Enter State Details” dialog. Any of the state’s
details can then be changed using the dialog.

@ Enter State Details x|
Title: | |
State Type: cam.bankframe fe.statemachine. ext.connectors. serdet Autohiew b ﬂ
(MOME)

—5State Details:

com.hankframe.fe.statemachine. ext.connectors. serdet Autoview
com.hankframe fe statermachine ext.connectors. serdet JSPYiew
cam.hankframe fe statemachine ext.connectors. sendet XSLTAUtD i ew
com.bankframe fe.statemachine.ext.connectors. swing Autoiiewn
cam.bankframe fe.statermachine. ext.connectors. swwing. Swingiemw

~Processes;

~lnput Reguirements:

name | description | defaultvalue | reguirerment | validationRule |
REGQLUIRED
Edit note 0]4 Cancel

Enter State Details dialog.

Screen Orchestrator Guide Version 2004.5 W 33

==AUt0 Yiew== ==AUto Viewy==
FPagel Page?

Changing the AuthenticatedArea’s view type.

The previous figures show the AuthenticatedArea’s state type being changed from an “AutoView” state type
to a “No View” or (NONE) state type. Clicking the “Enter State Details” Ok button will save and update any
changes made.

3.34 Resizing States

The states are automatically resized when adding child states or moving states within a parent state.
However, the user can also specify a state’s actual size by entering the state’s width and height through the
Edit -> Size menu item. Right-clicking anywhere on a state’s header will bring up the popup menu for the
state.

Details

==Autn Yiew== Delete

FPage1

Transitions » U Modify the size of this state.

The AuthenticatedArea’s Edit, Size menu item.

Clicking the Edit, Size menu item will bring up the “Enter State Size” dialog.

x
Width Height
Current size: |281 | |11EI |
Bestftsize: <01 | 110 |
Entersize: 281 | 110 |
Ok Cancel

The “Enter State Size” dialog.

This dialog will indicate the current width and height of the state and indicate the best-fit size for the state.
The user can enter the width and height they would like in the “Enter size:” text fields. Clicking the OK button
will alter the size accordingly.

34 M Screen Orchestrator Guide Version 2004.5

Basic Orche

3.35 Deleting states

Any state or pseudo-state can be deleted by launching the popup menu for the state. If the user selects the
Delete menu item, as shown below, then a confirm delete state dialog will be displayed.

==ALt0 Views==
Page1

i 5ellnaltenthis state, its sub states and all its transitions.
|

The Delete menu item.

Confirm delete x|

Delete state AuthenticatedArea

[0

E
i3]

The confirm delete dialog.

The important thing to remember when deleting a state, particularly if it's a parent state with child states, is
that when you delete a parent state all its child states, transitions and child transitions will also be deleted.

3.4 More Drawing Transition Details

Transitions can be drawn between any two states, however only certain types of transitions can be drawn
between states and pseudo-states. See the table — “indicating effects pseudo-states have on state
transitions” in the statechart concepts section of this user guide to see what transitions are supported by
pseudo-states.

3.41 Note On Transition Arrows

When a transition is drawn between any two states (regardless if any state is a pseudo-state), the tool will
determine how the transition arrow is drawn between them. The user has no real control over how the
transition arrow is drawn. However, moving the states that participate in the transition can alter how the
transition arrow is drawn. For example, the figure that follows indicates the types of transition arrows that will
be drawn given the location of one state in relation to the other state in the transition.

Screen Orchestrator Guide Version 2004.5 W 35

ransition Details

==AULD Views= =2AULD View==
StariState StariState2

eventidefauli]

event[defauli]

v ¥
22Auto Views= evemrdefaultg =2Mt0 Wiews s
StantStates EndState ==80tn Wins =

4—‘ StartStated
eventfdefaulf]

/ff/ewmﬁj?fadt]

==AutD Views=
StateStates

event[defauli]

==Aut0 Views==
StateStated

Types of transition arrows drawn by the tool.

If you need to change a transition arrow and how it's drawn you will need to adjust the location of one of the
transition’s states. Moving one of the states involved in the transition further away or closer or at a different
angle to the other state will force the transition arrow to be drawn differently.

3.4.2 Drawing Transitions To The Master State

The desktop window that displays the statechart is a state itself and as such can have transitions drawn to it.
Within the tool this state is known as the master or application state. State transitions are often drawn to the
master state to indicate that the application should be restarted. In the login example described in the simple
statechart example from the statechart concepts section of the user guide, a state transition arrow is drawn
from the LoginFailed state and the Confirm state to the master state to indicate that the application should
be restarted as a result of these transitions.

To connect a state to the master state, commence a transition as stated in the drawing state transitions
section of this user guide. To end the transition, click the mouse anywhere in the desktop window’s
statechart area. Ensure that you click in an area where no parent or child state already exists. The following
figure indicates where the end transition mouse click was to draw the Restart transition arrow on the Confirm
state.

36 M Screen Orchestrator Guide Version 2004.5

Click mouse on the desktop window's statechart

to end the transition to the master state

] 078 D | Gomacmn | e | s | e || B st [

Creating a transition from a state to the master state.

Once the mouse is clicked the “Transition Wizard” dialog is displayed. The transition’s details can be

entered. The next figure shows the completed Restart transition for the confirm state.

[Mewapplication [0ivaultEclipsetwarkspaceistatemachingiScreenCoordinatorversion Ziresourcesimill serGuideSarmple 2 xmi]

Mext[defauli]

w IrAgain[defaul]

—

Logout{default]

[

Restart[defauli]

Login[Successull/StarelUserld

Fage1Menultem|defauli]

==Auto Views==

==Auto Views:=
FPage2

._,,. Fagel

Fage2Menultem[defaul]

Mo[defd

The Restart transition from the Confirm state to the master state.

Screen Orchestrator Guide Version 2004.5

n Details

3.43 Drawing Transitions To And From Parent And Child States

Transitions can be drawn between parents and child states just as a normal state transitions would be
drawn. Dragging the transition component onto the parent state’s header starts the transition and clicking
the mouse on the child state’s header ends the drawing of the transition as normal. The previous figure
shows a couple of such transitions. The AuthenticatedArea has parent to child transition arrows to the

Page1 and Page2 states.

344 Drawing Transitions To And From Non-Related Child States

Transitions can be drawn to and from states that are non-related child states. What this in effect means is
that a transition arrow can be drawn between any two states anywhere on the statechart, regardless of
whether they are children of the same parent state, not children or just child states of the statechart itself.
The only limit on drawing a transition arrow is when one of the states is a pseudo-state. Again see the table
in the statechart concepts of the user guide to confirm what transitions can be drawn with pseudo-states.

3.4.5 Editing Transition Details

Any transition can be edited by right-clicking on the start state of the transition arrow and launching the
state’s popup menu. Select Transitions -> Edit, followed by the transition’s label menu item. The
Login[Failed] transition menu item is shown in the next figure.

Login[F ailed]

Edit b
Delete

reAdain]defauli]

Delete k

Login[SuccessiullfStorel)serld

The Login[Failed] transition’s edit menu item.

Clicking on the transition’s menu item will bring up that transition’s “Transition Wizard” dialog, where the
transition’s details can be changed. Clicking the OK button will close the dialog and update the transition

with the edited changes.

3.4.51 Selecting Transitions Directly

To select a transition so that it can be edited or deleted right-click anywhere or the transition that you wish to
edit or delete. Right-clicking on the Login[Failed] transition will bring up that transition’s popup edit menu as

shown in the following figure.

38 M Screen Orchestrator Guide Version 2004.5

Bas

Delete Lagin[Failed]

Logoutfdefaulf]

Directly selecting transitions by right-clicking on them.

3.4.6 Deleting Transitions

To delete any transition, the user must right-click on the starting state of the transition to bring up the start
state’s popup menu. The user must then select Transitions -> Delete, followed by the transition’s label menu
item, to delete the transition. The following figure shows the delete transition menu item for the Login[Failed]

transition.

Login[Failed]

Edit [
Delete

4

reAnain[defauli]

Login[SuccessiullfStorellserld

The Login[Failed] transition’s delete menu item.

Once the transition’s delete menu item is selected, the user will be asked to confirm the deletion of the
transition.

Confirm transition delete? x|

E Delete transition: Login(F ailed]

[0

E
i3]

The confirm delete transition dialog.

When the user has confirmed the delete transition, the transition will be removed from the statechart. The
transition can also be selected for deletion by right-clicking on the transition directly and displaying the

transition’s edit popup menu as described in the “Selecting Transitions Directly”.

3.5 More Drawing Statechart Details

Additional to drawing states and transitions, the user can edit details of the statechart itself. The following

sub-sections indicate features directly related to the statechart itself.

Screen Orchestrator Guide Version 2004.5 W 39

Details

3.5.1 The Statechart Name

Each statechart represents an application. The name of the statechart is also the application name and the
name of the master state of the statechart. The name of the statechart is displayed in the title bar for the
desktop window of the statechart.

The statechart name

\

(B} vewsopicatonfi 2 s s s s o of

The statechart or application name highlighted.

The previous figure indicates where the statechart name is displayed.

3.5.2 Renaming The Statechart

Right-clicking anywhere on the statechart where no state is currently located will display the statechart’s
popup menu. The following figure shows the statechart’s popup menu.

[newspplication

Cut
Copy

Faste

Edit Application Size

The statechart’'s popup menu.

Selecting the “Edit Application Title” menu item will display the input dialog for editing the application’s title.

put . i

Enter nesy application title:

|Newﬂpplicatinn| |

0] Cancel

Input dialog for editing the application title of the statechart.

40 M Screen Orchestrator Guide Version 2004.5

Basic Orche

Once the OK button is pressed on the input dialog the title bar of the statechart window is changed to reflect
the new application title.

3.5.3 Saving A Statechart

A statechart can be saved at any time by pressing the save button on the toolbar or by selecting File -> Save
XML from the menu. If the statechart hasn’t been saved before then the user will be asked to enter a
filename for the statechart. By default the statechart’s filename will be the same as the statechart’s
application title. The user can enter whatever filename they wish, however we suggest that you leave the
filename to be same name as the statechart’s application name.

Once the statechart has been saved to a file, the title bar of the statechart window will be updated to include
the filename of the statechart. The following figure shows the highlighted title bar of an application saved to
a file.

E NewAppHcaqu [dwaultEclipseworkspaceistalemachine\Screenc oordinatorversion 2iresourceskmiiUserGuideSample2 xml]l e n"z"

¥

File name of the statechart.

Restart[defaul]

MNext[defaul]

Logout[defauli]

Login itorelJs erld

FagelMenultern[default] PagezMenultern(defaul]

<=Auto View== < <ALt Views>

._. Page? Page2? i

The highlighted title bar indicating the filename of the statechart.

The statechart can also be saved to another file at any time, by selecting File -> “Save XML As..” from the
menu. A file chooser dialog will be displayed and the user will be allowed to enter a new name for the file
name of the statechart.

As you add items to a statechart, such as states, pseudo-states, transitions, or move any state in the

statechart, as well as editing any states or transition details, the tool will indicate that a file save is required
by adding an asterisk to the statechart’s window title bar.

Screen Orchestrator Guide Version 2004.5 W 41

s Drawing Features

3.54 Renaming a Saved Statechart

If you started a statechart and built it up over some period of time, you will have already named the
statechart and saved it in a file. Over time you may then wish to rename the statechart to a more appropriate
name. Renaming the statechart as shown in the “Renaming the statechart” section earlier in this document
can do this. When you rename the statechart’s application title, the tool will also rename the file associated
with the statechart to the same name automatically. The tool tries to maintain a match between the
statechart name and the file name in which the statechart is saved. By changing the statechart’s application
name you will also change the filename in which the statechart is saved.

3.5.5 Opening A Statechart

You can open a statechart at any time by pressing the open button on the toolbar, or by selecting File ->
Open or, if the statechart was opened recently, by selecting the file from the recently opened file list on the
File menu. If you already have a statechart opened you will be asked to save it (if it requires saving) before
opening the selected statechart.

3.6 Miscellaneous Drawing Features

The following sub-sections detail the remaining important features required for basic drawing with the tool.
More advanced drawing features will be covered in a later section entitled “Advanced statechart drawing”.

3.6.1 Using The Grid And Snap To Features

The tool provides a grid and snap to features for drawing your statechart application. The grid tool allows a
visible grid to be used to position and align states drawn on the statechart. The snap to tool allows states to
be located on actual grid points regardless of whether the grid is visible or not to the user. If a state is
created or moved while the snap to tool is on, then the state will be automatically located to the nearest grid
point. The following figure indicates the grid and snap features available on the orchestrator's component

palette.
Show Grid Snap off
Grid size: 10

The grid and snap to palette buttons.
By default the grid is off, while the snap to feature is on, when you start the Orchestrator tool. If you wish to

switch the grid on, press the “Show Grid” button. Pressing the “Show Grid” button will switch the grid on and
the statechart windows will show a grid as shown in the next figure.

42 M Screen Orchestrator Guide Version 2004.5

E UserGuideSamnple [diwauliEclipsewworkspaceistatermachinelScreenCoordinatorversion 2resourceswmhlUserGuide Sample xmi]
[

Restart[defauli]

Mext[defaulf]

i Trefoainfdefault]

H

Logoutfdefault]

Login[SuccessfulliStorelserld

Fage1Menultem[derauli] Page2henultern|defauli]
=< AULD Yiew== =<AULD Yiew== Moldefdii)
._. Pagel Page?

The grid switched on.

The “Show Grid” button will also be toggled to a “Hide Grid” button, so that the user can hide the grid when
required. One small result of switching on the grid is that specifying transitions is slightly slower. This is a
known bug that will be fixed in a later release. The grid size can be adjusted by moving the grid size slider
left or right. Moving it left will decrease the grid size down to a minimum of 5 pixels per grid square. Moving
the slider to the right will allow the grid size to be increased to a maximum of 50 pixels per grid square. The
default grid size is 10 pixels per grid square.

Pressing the “Snap Off” button will switch the snap to feature off. When you create or move states they will
be located exactly where they are dropped. Pressing the “Snap Off” button will toggle the button to a “Snap
On” button, which will allow the snap to feature to be switched back on.

3.6.2 Using The Navigation Panel

As a statechart gets larger and moves outside the size of the desktop statechart window, that window wiill
become scrollable. To help navigate around the window, a navigation panel has been incorporated into the
tool. The following figure shows the navigation panel for a scrollable statechart.

Screen Orchestrator Guide Version 2004.5 W 43

g Features

The navigation panel for a scrollable statechart.

The navigation panel displays a miniature representation of the statechart. The red box in the panel
indicates the currently visible area in the statechart's desktop window. If inside the red box is clicked the
cursor will change to a hand and while the mouse button is held down the user can drag the box to a new
location within the navigation panel. As the mouse is dragged the statechart window will be moved and
located to correspond with the area visible in the navigation panel.

3.6.3 Printing Statecharts

Statecharts can be printed at any time by pressing the print buttons on the toolbar or by selecting File ->
Print from the menu. Pressing the “Print All” button will print the currently selected desktop window
statechart. The statechart will be printed to scale and if it is larger than a single page, all the pages will be
printed.

Pressing the “Print On One Page” button will print the currently selected desktop window statechart.
However, if the statechart is larger than a single page the statechart will be scaled to fit on a single page.

3.6.4 Export StateChart as a GIF

Statecharts can be exported as GIF files at any time by selecting ‘File’ -> ‘Export as a GIF file’ from the
menu. The GIF file can then be imported into design documents or sent electronically which allows the
statechart to be viewed and analysed without having a Screen Orchestrator installation.

44 M Screen Orchestrator Guide Version 2004.5

4 Preview And Web Deployment Capabilities

4.1 Introduction

The state machine framework can run the application that is produced by the orchestrator tool. The
application is typically web based and must therefore be packaged into a web archive (WAR) file and
deployed on a suitable Web server. The orchestrator tool provides an in-built swing based preview window
for testing and verifying the statechart design. It also provides an in-built mechanism for creating and
deploying a war file for web based applications. The following sections show how these mechanisms can de
used.

4.2 Preview Capability

As the statechart is being developed, the designer or developer can preview the statechart at any time by
invoking the preview feature of the orchestrator tool. The following figure indicates where the button to
launch the preview feature is located.

alalxl
Fis Bt Windoe Processss bl

cewE x wE@ a3

§ S o e |

Preview launch button

Wl Eonies Pracessas
= [Apgd atonid

& B Gusue

&= [SerisloeSion
= I Logon

0 [Loantuos

Highlighted preview launch button.
The preview window will display the initial state and allow the user to fire events to the next state in the
drawn statechart. The preview window does not use the specified view state type but instead uses a swing-

based autoview to display the state. If the state’s events have the correct controllers and guard condition

Screen Orchestrator Guide Version 2004.5 W 45

review Capability

classes then the preview window can be used to follow the actual transitions that would occur in the real
application.

The screen orchestrator tool also allows you to use a special controller with the preview window. If the user
when drawing the statechart uses the AutoViewController for events then the preview window will allow the
user to actually select the transition they want to follow. This is extremely useful for verifying all the
statecharts transitions including those that might represent rare behaviour that is difficult to duplicate. The
following table with figures show the earlier login example with AutoViewController used for events with
more than one transition and the way in which the transitions can be followed using the preview feature.

Initial state of the example application is the Welcome state. The Next event will be fired by pressed the
Next button.

i@ State Chart Editor Preview -0 x|

State: Welcome

Event: Mext (from state Welcome)

Transitions fram this event:

i I=¥

Close Preview

The Next event takes you to the Login state. This state’s Login event has 2 possible transitions. The event is
either successful or it fails. The AutoView Controller is used for this event which allows the user to select the
Successful transition to be followed when the Login button is pressed.

i@ State Chart Editor Preview =10l x|

State: Login

Event: Login ifrom state Login)

Transitions fram this event:

Successiul to state AuthenticatedArea (DEFALILT)
Failed to state LoginFailed (DEFALILT)

Login

Close Preview

The Login was successful and so the initial state of the AuthenticatedArea is the Page1 state. We will now
press the Logout button to fire the Logout event.

46 M Screen Orchestrator Guide Version 2004.5

i@ State Chart Editor Preview -0 x|

State: Page1
~Event: Logout (fram state AuthenticatedArea)

Transitions fram this event:
default to state Confirm (DEFALILT)

~EBvent: Fage?2 {from state AuthenticatedArea)

Transitions fram this event:
defaultto state Page2 (DEFALILT)

Fage?

~BEvent: Fage1 {from state AuthenticatedArea)

Transitions fram this event:
defaultto state Page1 (DEFALILT)

Fagel

Close Prewview

Screen Orchestrator Guide Version 2004.5 W 47

eb Deployment Capability

i@ State Chart Editor Preview -0 x|

State: Confirm

Event. Restart ffrom state Confirm)

Transitions fram this event:

Restart

Event: Cancel {from state Confirm

Transitions fram this event:

Cancel

Close Prewview

4.3 Web Deployment Capability

As stated in the introduction of this section the orchestrator tool can be used to produce a WAR file for
deployment of web-based applications. The following sub-sections indicate how this feature can be
accessed and used.

431 Install an appropriate web server

The state machine framework can be deployed on any suitable http server that supports Java servlets and
JSPs. The state machine and the war file produced by the orchestrator tool has being tested on the following
application servers:

m JBoss 3.0.x and higher

m JBoss 3.0.x with Tomcat and higher

m Weblogic 6.1 and higher

m WebSphere 5.x and higher (may need to update the jdom.jar installed with this server for the state

machine to work correctly).

4.3.2 WAR properties saved per statechart

War properties were previously only set for the tool rather than for individual statecharts. This has been
changed so that war properties can now be set per statechart. The tool maintains a set of default values for
the war properties. When a new chart is created the default war properties are automatically assigned.
These properties can then be changed for that specific statechart. When the statechart is saved these war
properties will be saved with the statechart. When the statechart is re-opened the charts war properties are

48 M Screen Orchestrator Guide Version 2004.5

Preview And Web Deployme

then set according to the values obtained from the statechart. This allows each statechart to have different
war properties.

4.3.3 Configuring the WAR file within the tool

In the orchestrator tool go to File>>>>War Properties. You will then be presented with the following dialog:

i@ Confirm War Properties _|

*

Destination Dir |=‘rogram Filesweontac llll'nrkbench'\rncu:lules’tScreenDrchestratoﬂresourceﬂbuildideploy{ Change..

Temp Dir |:".F'rc-gram Filesieantes WarkbenshimadulesSereenOrch estratoriresaurs essbuildtemp| Change..

Libraries Dir |D:'\Pn:-grarn Filesweantes WakbenshmodulesiSsraenOrshestratofresourcesibuildilib | Change..

Classes Dir |’n:-grarn Filesweontac 'Lﬂ.l'nrkbench'l.rnndulefl.ScreenDrchestratoﬁ.resources‘l.build'l.classes| Change..

HTML Directary |J:".F‘roglam Files\eantec Wokbenchimodules\5oreenOrchestratafrezours esibuildihtmi| Change..

fi

| Ok H Save Properies || Cancel

This dialog will be populated with default values for the war file. You can change them if you wish.

4.3.3.1 Destination Dir

This value will probably be changed most often. It is where the application will put the packaged war file.
You should point this to the “webapps” folder of the web server e.g. if you were using JBoss then you might
pointitto a “.\jboss-3.0.x\server\default\deploy” directory. Once the war file has been generated

it will be transferred to this location for deployment.

4.3.3.2 Temp Dir

This is the folder where the WAR will be generated and packaged before it is copied to the $Destination Dir
value.

4.3.3.3 Classes

This is where the application’s additional classes should be located to be included in the WAR. If the
application uses any additional controllers or guard condition classes in the application then they should be
placed here so that they will be included in the application’s WAR file.

4.3.3.4 HTML Directory

Any html or JSP files that the WAR needs should be located in this directory. Any additional directories and
files such as images and style sheets should also be located under this directory.

4.3.4 Deploying the war file

When you are happy with the properties for the war file you can deploy the webapp by choosing File >>>
Save XML and regenerate war.

Screen Orchestrator Guide Version 2004.5 W 49

pability

This will create the war file and place it the directory specified in the $Destination Dir variable in the war
properties. Some application servers will have the ability to hot re-deploy the war, for those that do not then
the application server will have to be re-started.

Generally, the URL to run the application will be of the following format.
http://<<serverName>>:<<portNumber>>/<<ApplicationName>>/StateMachine

e.g. if a EbankingExample.xml file was open and deployed on an application server installed locally and
on a port number of 8080, then the URL would be: http://localhost:8080/EBankingExample/StateMachine.

50 M Screen Orchestrator Guide Version 2004.5

http://localhost:8080/EBankingExample/StateMachine

Designing Events With Processes A

5 Designing Events With Processes And Guard
Conditions

This document describes how to define complex events in the editor including processes, guard conditions
and side effects. It goes through the sequence followed by the state machine when handling an event, and
how to add processes and useful guard conditions to that sequence to control a real user interface.

5.1 Handling an Event

When the state machine receives an event, it follows the sequence in this diagram.

:Requesthanager . Controller . Event . Process . Transition MCAClent

getResult() ' ' ' ' :

getProcesses() ! : : :
etRe LestDataF’ackets;::wputs, InputRequiréments)
For each N N e % ' i
Process Tl iiL L _sendDataPackets()

For each I . I I |—|
transition STerftmmenea-eoo. ___c_hg?thua_rdCDndltlur]l() |_|

doSideEffects() -

' getProcesses() ¢

etRe LestDataF‘ackets(lhputs, InputRequiréments) |_|
For each I T ELFL :
process s-bteeeeeoi sendDatabackets(]

When the event is received the state machine calls the Controller's getResult method. The controller calls all
the processes associated with the event and then calls the checkGuardCondition method for each of the
transitions. One of the guard conditions is going to evaluate to TRUE. The getResult method will return that
transition.

The state machine will then call the doSideEffects method. The controller will call all the processes
associated with the transition.

(Note: This is the sequence followed by the com.bankframe.fe.statemachine.ext.apps.Controller class. Other
controller classes may behave differently)

5.2 Associating Processes with Events and Transitions

At its simplest, associating processes with events and transitions is just a matter of dragging the process
from the process tree to the transition wizard dialog.

Screen Orchestrator Guide Version 2004.5 W 51

oewa x

sz@ a3

sociating Processes with Events and

a2zl

-
Tranition

v e
sortunes T
[
|
H‘ﬂ[':-'“

swos | smpon

Orid sizw: 10 |
) —

E.

Wl Eonies Pracessas
= [Apgd atonid

& B Gusue

&= [SerisloeSion

[@ronmen e x|

Enéer TrarsBon's Event Details

Confroler. :l:um banidame e strlamatirg el apps Conboiler

Cordraler Progeries:

COMPANY_CODE Aty inpotDeinden ba
DATA PACKET Potsaf At inpotDainssn Ba
LISER_LOGON_NAME Aulo iInpuiDefndion ba
FASSWORD Aty inpotDainden ba
_ﬁ[ﬂl,(ﬁT_l} Auis npetDeingen Ba
LOGON Aty inpstDetndon ba

" Indcates mandatory Selde)

1TI4EETEA0N 245

LOQOH

BTo

T

Edtwmninen ||

DPFTIOHAL

OFTIONAL
REQLERED
REQLERED
OFTIONAL
DPTIINAL
REQLERED

Edtimsllannce || Mt |} ceocdl |

See the “Process Integration” section for details on loading and editing processes on the process tree.

The transition wizard dialog has two pages. To associate a process with an event, drag the process onto the

first page of the wizard, as shown above. To associate a process with a transition drag the process onto the

second page of the dialog, as below.

Processes on the event (the first page) will be called when the event is received from the user before any

guard conditions are tested, as described in the ‘Handling an Event’ section. Processes on the transition will

be called after the transition’s guard condition is tested and only if the guard condition evaluates to ‘true’.

52 M Screen Orchestrator Guide Version 2004.5

Designing Events With Processes And Guard

Filg Edl Windrs Probidies Ml
Dewd * « 2@ &aa

. = i : S]
e || mme | Meostesere R R I

1] -~
SefTraniios | Trngiion |

2 o e |
Shallow Herlory, DeveHSA [} o Trarson Detatis

&

e-Eu Final Stae | defisn Danescon

=
et “Guard Descriphan: [defaut

8| L] “Ouard Condion Class. | com bankirema f stalemachine el apaleaders RubGuandCangdon -
e ot || Esepon | Guad Condiion Propedes:
i s 10

-
il Ecnless Procasses
it I A abonid
W O

= BET_CURRENT_GUE]

® SAVE_MMENDENTE _D|
& W Sarisimidion
o e
o W LoanCuot ET_CURRENT_CUEUE

™ Iredc afies mandaloey Selds)
it wviend nta i Wrans o rle Bk Fintsh Cancal

|+ . |
A
5.3 Setting the Input Requirements

When you add a process to an event or transition, the parameters to that process become input
requirements to the event. (The transition does not have independent input requirements, so all parameters
to all processes on an event and all its transitions are considered input requirements to the event.)
For each input requirement there are four attributes to be set: the parameter name, the (optional) parameter
description, the (optional) default value, and the requirement type. The parameter name and requirement
type must be provided. In most cases, the parameter name will be a DataPacket key, as used by a process
the event references.
The requirement type must take one of the following five values:
m REQUIRED: indicates that the parameter value must be supplied by the user
m OPTIONAL: indicates that the parameter value may be supplied by the user
m CONSTANT: indicates that the parameter value will always be the supplied default value
m CODED: indicates that the parameter value will be supplied by customised code (this option will be
used very rarely)
m PROCESS: indicates that the parameter value will be supplied by the process definition (this option
will be used for parameters such as the DATA PACKET NAME and REQUEST_ID)
The input requirements are set in the table on the first page of the transition dialog.

Note that you may add input requirements that are not required by any process. For example: if you are

Screen Orchestrator Guide Version 2004.5 W 53

ditions M Deleting Input Requirements

using an InputBasedGuardCondition (described below) you can add the parameter being tested by that
guard condition to the input requirements.

54 Deleting Input Requirements

When events or states no longer use certain input requirements, the tool provides the means to remove
these parameters by deleting them from the input requirements table by right hand clicking on the selected

parameter in that table.

@ Transition Wizard x|

~Enter Transition's Event Details

*Event: |Lngnff | - |

Contraller: |cDm.eDntec.statemachine.heIpers.ChannelCIientCDntmIler |v| @

~Contraller Propedies:

Channel Client Mame{com. bankframe ei.channel.client HitpClient

rPracesses:
LOGOFF_LISER

[_] walidate event's input requirements?

CInputReguirerments:

name | description | defaultalue | reguirement | validationRule | |
COMPANY_CODE Auto InputDefinition b... REGQUIRED -
UJSER_ID REGQUIRED
REQUEST_ID Delete All Input Reqguirements REQUIRED -

(™ Indicates mandatory fields)

Edit event note || Edit transition naote H et || Cancel

Either the selected input requirement is deleted or all the input requirements are deleted from the

InputRequirements table.

5.5 How the request DataPackets are built

To be sure the correct data is being sent to the processes, it is important to understand how the Controller
and Process objects build up the DataPackets that are sent through the MCA Services client.
The main deciding factor is the requirement type specified in the input requirements for each parameter,
according to these rules:
m REQUIRED: The value will be taken from the request received from the user. If the value is not in
the request, a null value will be used.
m OPTIONAL: The value will be taken from the request received from the user if possible. If the
request doesn’t contain a parameter of the correct name, the value will be the default value for this

input requirement.

54 M Screen Orchestrator Guide Version 2004.5

Designing Events With Processes Al

m CONSTANT: The value will always be the default value for this input requirement.
m CODED: The value must be provided by custom-written Java code in the controller.
m PROCESS: The value will be taken from the DataPacket definition in the Process.
The DataPackets will be built to contain all the keys specified in the DataPacket definitions in the Process.

5.6 Defining Guard Conditions

With the processes defined and receiving the correct data from the user interface, the next detail is to define

the guard conditions on the event’s transitions.

The basic rule you have to remember is: “For every event, no matter what inputs are provided from the user
or received from the processes, exactly one of the guard conditions on the event’s transitions must be true.

All other guard conditions must be false.”

There is one exception to this rule: if an event has only one transition, that transition will always be followed

no matter what the guard condition.

There are four types of guard condition available by default in the editor:

5.6.1 NullGuardCondition

This is a guard condition that always returns an undefined value, neither true nor false. You should use this
guard condition only if the event has only one transition, or you are using a controller that does not test
guard conditions (such as the AutoViewController or SimpleController).

5.6.2 FixedValueGuardCondition

This is a guard condition that will always return either true or false as set in the transition dialog. You can
use this guard condition during testing of an application to force it along a particular route to an area you

need to test.

Screen Orchestrator Guide Version 2004.5 W 55

_ﬁnirIg B

@ Transition Wizard |

rEnter Transition Details

Action Description: | |

* Guard Description: |defau|t |

* Guard Condition Class: |c0m.hankframe.fe.statemachine.ex‘t.appl0aders.bean.FixedVaIueGuardCondition | - | @

~Guard Caondition Properies:

Guard Condition Yalue: |fa|se v"

true

rPracesses:

(™ Indicates mandatory fields)

‘ Edit event note || Edit transition naote H Back H Finish || Cancel

5.6.3 InputBasedGuardCondition

The InputBasedGuardCondition tests some value received from the user or in the user session.
The options you can set are:

m Whether or not the input must contain or not contain the specified value

m Whether or not the test should be case sensitive

m Where or not the value is for testing

m The name of the input

m The value to test for

56 M Screen Orchestrator Guide Version 2004.5

Designing Events With Proce

@ Transition Wizard

rEnter Transition Details

Action Description: | |

* Guard Description: |defau|t |

* Guard Caondition Class: |com.hankframe.fe.statemau:hine.ext.appIoaders.bean.InputBasedGuarannditinn |v| @

~Guard Caondition Properies:

Input must: contain the following hd
Case Sensitive: | false -
Input Source: AR hd

Parameter Mame;

Pararmeter Value:

rPracesses:

(™ Indicates mandatory fields)

‘ Edit event note || Edit transition naote H Back H Finish || Cancel

5.6.4 ResultBasedGuardCondition

The ResultBasedGuardCondition tests the result from a process associated with the event.
The options you must set on this are:
m Whether or not the result should contain or not contain the value
m Whether or not the test should be case sensitive
m The name of the process that was called
m The name of the DataPacket in the result DataPackets that should be tested
m The key/value pair within that DataPacket to be tested.
Note that the DataPacket name and key will always be considered case sensitive, only the value would be
tested for case sensitivity.

Screen Orchestrator Guide Version 2004.5 W 57

Defining Guard Conditions

@ Transition Wizard |

rEnter Transition Details

Action Description: | |

* Guard Description: |defau|t |

* Guard Condition Class: |c0m.hankframe.fe.statemachine.ex‘t.appl0aders.bean.ResultBasedGuardCondition| |v| @

~Guard Caondition Properies:

Result must: cantain the follawing

Case Sensitive: false

Process Mame:

Response DataPacket Mame:
CataPacket key:

Walue:

rPracesses:

(™ Indicates mandatory fields)

‘ Edit event note || Edit transition naote H Back H Finish || Cancel

5.6.5 TimeoutGuardCondition

The TimeoutGuardCondition tests whether a timeout has resulted from a process associated with the event.

The variables to be set are:
m The timeout parameter to test the process against, e.g. TIMEOUT STARTED would start counting

the timeout from the time the process started.
m The timeout threshold is the number of milliseconds that would constitute a timeout.

58 M Screen Orchestrator Guide Version 2004.5

Designing Events With Procf

@ Transition Wizard
rEnter Transition Details

x|
Action Description: |

* Guard Description:

|
[Matidentified

* Guard Condition Class: |com.eontec.statemachine.heIpers.TimeoutGuardCondition|

|~ 9]
~Guard Caondition Properies:

Timeout Farameter: TIMEQUT_STARTED
Timeout Threshold {millisecs);]150000

(For example 150000 millisecs is 2.5 minutes)

rPracesses:

(™ Indicates mandatory fields)

‘ Edit event note || Edit transition naote H Back H Finish || Cancel

5.6.6 EmptyResponseGuardCondition

The EmptyResponseGuardCondition tests whether the response from a process associated with the event
is an empty response. The variable to be set is:

m The name of the process that was called

Screen Orchestrator Guide Version 2004.5 B 59

ons M Other Controller classes

@ Transition Wizard |

rEnter Transition Details

Action Description: | |

* Guard Description: |Nntldentiﬂed |

* Guard Caondition Class: |c0m.e0ntec.statemachine.heIpers.EmptyResponseGuarannditinn | - | @

~Guard Caondition Properies:

Process Mame|[DENTIFY_CUSTOMER

rPracesses:

(™ Indicates mandatory fields)

‘ Edit event note || Edit transition naote H Back H Finish || Cancel

5.7 Other Controller classes

All of the above assumes you are using the com.bankframe.fe.statemachine.ext.apps.Controller class as the
event controller.

There are other controller classes that you can use in different circumstances.

5.71 The SimpleController

The SimpleController class, com.bankframe.fe.statemachine.base.apps.SimpleController,
can be used to handle all trivial events. All events with just one transition and no associated processes can
be handled by the SimpleController. The SimpleController will handle these trivial events faster than the

main Controller class.

5.7.2 The AutoViewController

The AutoViewController class,
com.bankframe.fe.statemachine.base.apps.AutoViewController, can be used in conjunction
with the AutoView, XSLTAutoView, or preview features to allow you choose which transition to follow based
on selecting from a list of available transitions.

60 M Screen Orchestrator Guide Version 2004.5

Designing Events With Processes And Guard Conditions

5.7.3 Additional Controllers

The following controllers are available in the com.eontec.statemachine.helpers package:

m ChannelClientController: This controller provides a mechanism for specifying what channel client
is used when executing processes. By default is it set to use HttpClient and in this mode it behaves
in the exactly same way as the standard main controller.

m DataCollectorController: This controller is a subclass of the ChannelClientController, but it adds
very special behaviour in handled DataPackets. This controller can build multiple DataPackets from
the input request values and can append these DataPackets to any request that will be executed
by any process specified by the event or transition.

m MultipleRequestController: A new controller, the MultipleRequestController has been developed
to handle more complex multiple DataPacket requests. The state machine has also been modified
to handle multiple DataPacket requests and these modifications in association with the
MultipleRequestController are designed to better enable the state machine to handle these
complex requests.

m ClearUserSessionController: This controller is a subclass of the ChannelClientController and can
be used to clear values in the Inputs object

m AddToUserSessionController: This controller is a subclass of the ChannelClientController and
can be used to add values to the Inputs user session

Please read the JavaDocs for these classes for further information on how they should be used.

5.7.4 Custom Controllers

There may be some times when the standard processes, controllers and guard conditions are not enough to
meet the requirements of the user interface. In that case it is possible to write controller classes with custom
code to meet the requirements. See the document called ‘Writing Controller classes’ for more information on
how this is done.

If a custom Controller class has been written for an event, enter the class name (including package name) in

the ‘Controller’ box on the transition dialog.

5.8 Add Common Fields to Every Request

The state machine has now the ability to add common items to every request sent to a Siebel Retail Finance
server. For example, an application that uses Entitlements will require the following values to be contained

within every request:

ENTITLEMENTS CHANNEL ID
ENTITLEMENTS ACTOR_ID
ENTITLEMENTS ACCESS_PROVIDER ID
ENTITLEMENTS ACCOUNT_ NUMBER

ENTITLEMENTS BRANCH CODE

Screen Orchestrator Guide Version 2004.5 W 61

ions M Worked Example

The state machine can be configured to add these items to every request by setting the following keys and

values in the BankframeResource.properties file:

‘# Common Request Items

HHAHHH A HHAHH A FH A HHAH
common.request.items.enable=true

common.request.items.fields=ENTITLEMENTS CHANNEL ID;
ENTITLEMENTS ACTOR_ID; ENTITLEMENTS ACCESS PROVIDER ID;
ENTITLEMENTS ACCOUNT NUMBER;ENTITLEMENTS BRANCH CODE’

These items are not required to be in the process definition but must have their key names listed in the
"common.request.items.fields" value in the BankframeResource.properties file and the
"common.request.items.enable" value must be set to true. The values for these fields must be available in
the inputs object used by the state machine to hold user data. If the value for these fields is not in the inputs

object already then they are put into the request as blank values.

5.9 Worked Example

This worked example describes how you might code an event with a process call, a result-based guard

condition, and a side effect on one of the transitions. This would appear as follows:

[DocumentationExamples*

==Aut0 View==
GatherTransferDetails

TransferfamountTooHigh]

TransferfAmountOk)PerformTransfer

¥

==ALt0 Views=
TransferCaomplete

62 M Screen Orchestrator Guide Version 2004.5

Designing Events With Pr

The user interface is intended to allow a user request a funds transfer between two accounts they own.
Users are restricted in the amount they can transfer in any given day, so the system must check whether the
amount chosen is above the limit. If it is not above the limit the transfer must be performed and the user

given a transaction record number.

To support this, there are two tier-1 methods defined. The first determines whether the amount specified is
within the allowed range, the second performs the transfer and returns the record number.

Starting with just the two transitions, the first step is to add one of the transitions. I'll start with the
[AmountTooHigh] transition.

Drag from the self transition button on the palette bar onto the GatherTransferDetails state, and set the
event name (‘Transfer’) and controller name (‘com.bankframe.fe.statemachine.ext.apps.Controller’).

Drag the ‘CHECK_DAILY_LIMIT_FOR_ACCOUNT process onto the event.

o Transition Wizard H! x|
Shorw Grid Snap off r Enber Transition's Everi Debails -
Guid size 10 *Event ;_‘_fransfer 1=
7 || Cortraller Ecum bankrame fo. stabemachine, gd apps. Controller - ,,F
gl-.—- [ControBer Propertios: il

€ | MainlainBensliciaries | &
- § Tollerstan0hay [Fracesses
&= § BusinessDanProcesging CHECK_DAILY_UMIT_FOR_ACCOUNT
&= § Transacionf eas
&= § CheckBatching
@ 8 Transfers
:ﬁ:ﬁﬁim' [0 Valiciabe svant’s ingi requinements?
& MAKE_TRANSFER [InputREquirements:
:EE:?—PENm - | name | description defaultvaiue requirement | validalionRule
EVE_PE 2| | amounT AUt IngADefingon b... REQUIRED
:gg:g:&:xﬁg: ||| erancH_cooe Austs IngnADelinan o REQUIRED
|| ||comPany_coDE Autn InguACelindon b... 00000000 CONSTANT
::E;”'E'“'E-'”‘WSF [DATAPACKET NAME Aute InguaDefinion b, [CHECK_DAILY_LIMIT . PROCESS
E_TRANSFER_{ REQUEST_ID At InpuitDelindon b.. MCADOCS PROCESS
= |5_TRANSFER_WIT |SOURCE_ACCOUNT... Auto InguaDefingon b,.. REQUIRED
® CHECK_DAILY. L = | E— I SEALIBER L=

&= I Sysleruailability
& | Closefccourd
0F =

i | Edtevertnote || Ectvansmionnote || Nea | cancel

You will see the InputRequirements box filled with values taken from the process definition. You need to set

| ¢ Indicates mandasary finlds)

the requirement type for each of these inputs correctly.
The amount, branch code and source account number will all be supplied by the user, and so are
‘REQUIRED’. The company code will not change from the value supplied, and so can be set ‘CONSTANT'.

The data packet name and request ID are both particular to the process, so should be set ‘PROCESS’.

Now set the guard condition for this transition. We want this transition to be followed if the process does not
return a DataPacket called ‘AMOUNT_OK’. A ResultBasedGuardCondition can make that test.

Screen Orchestrator Guide Version 2004.5 W 63

Worked Example

Select the ResultBasedGuardCondition and enter the following values for each corresponding gurad
condition property — as per the screen shot below:

m Result must: not contain the following

m Case Sensitive: false

m Process name: CHECK_DAILY_LIMIT_FOR_ACCOUNT

m Response DataPacket name: AMOUNT_OK

m DataPacket key: DATA PACKET NAME

m Value: TRANSFER_OK
(Since we are testing the data packet name, the key we need to test is ‘DATA PACKET NAME’ and the

value is the data packet name to test for.)

You should also set the guard description to something meaningful, such as AmountTooHigh.

[$rransionwizard x
Shiorw Grid Snap off ~Enter Transition Details
Grid size: 10 Action Description: [
e
I*l:ward Diescriglion; [srountToaHih
Eh__ *Guard Condon CEss; [c?na.mame.re staternachine et apploaders bean ResulBasedGuand Condison - !}
Guard Condition Properies:
8 MamtainBenehcianies |~ f| o o Lo ot contsin the following ‘l
€= § TellerStarDay musmcmanoosanomon .
&= § BusinessDanProcesging Cage Sansilie: Talse - |
€= § Transacionf zes : T
& § CheckBatthing Bt ERae; CHECK DALY LM FOR ACCOUNT |
@ 8 Translers Regponse DataPacke! Mame aMOLUNT_OK |
{_[EF|MAKE_TRAN DataPacked Koy DATA PACKET MAME |
& AMEND_PENDIMNG_] Valug: TRANBFER_OK |
o MAKE_TRANSFER
& REMCAVE_PENDING
% RETRIEVE_PENDIN
® RETRIEVE_TRAMSF
% RETRIEVE_TRAMSF FrocEssas:
® RETRIEVE_TRARMSF)
& MAKE_TRAMSFER_!
™ |5_TRANSFER_WIT
& CHECK_DBILY.

& 8 Syslemavailability

& 8 Closefccoun | I(‘IHMS‘IEE mandatony ields)

| Editweninote || Editwansionnote || Back | Finish | Cancel

[AmountTooHigh] transition.

Finish that transition and start the [AmountOK] transition from the GatherTransferDetails state to the
TransferComplete state. Drag from the transition button on the palette bar to the GatherTransferDetails
state, then click on the TransferComplete state.

Select the ‘Transfer’ event from the event drop-down list, and you should see the controller, process and
input requirements data all filled as in the previous transition. Move on to the second page to set the guard

condition.

The guard condition on this transition is the opposite of the [AmountTooHigh] transition. Enter exactly the

64 M Screen Orchestrator Guide Version 2004.5

Designing Events

same details, changing just the first to read ‘Result must: contain the following’. That will ensure no matter
what is returned from the CHECK_DAILY_LIMIT_FOR_ACCOUNT process one of the two guard conditions
will be true. Set the guard description to something meaningful, such as ‘AmountOK’.

This transition also has an action associated with it, as it must actually complete the transfer requested by
the user. Enter an action description such as ‘PerformTransfer’, and drag the MAKE_TRANSFER process
onto the transition dialog.

8| | [Breansitionwizard x|
Shirw Grid | Snap off ~Enter Transition Details -]
Gaid size. 10 Action Descriphan: |PertormiTranzsar
“Guard Deseriglion; [Amountdk
@.h__ *Cusand Condon Clgs; |tl.'|l"r'| Dankirarme, @ sLalerna hine il apﬁlnaﬂars DeEan ResullBazed GuadCondibon - L,’
~Guand Condilion Properties:
- Result must contain the folowing -
&= 1§ MainlanBenencianes =| -
€= § TallerStanOay Cage Sensitie: falze =
:: E'—'Eiﬂﬂﬂﬂr:‘!*"m%ﬂs Frocess Mame: CHECK_DAILY_LIMIT_FOR_ACCOUNT |
ransationteas
© § CheckBatning Response DataPacket Mame AMOUNT_0kK |
© B Transiors DralaF ackel Kt CIATA PACKET MAME |
® {_DEF)MAKE_TRAN Vahug: TRANSFER_OK |
= AMEND_PENDING]
» MAKE_TRAMSFER
® REMCVE_PENDING) |
® RETRIEVE_PENDIN [[ProEeEses:
% RETRIEVE_TRAMSF MAKE_TRAMSFER
= RETRIEVE_TRAMSF
RETRIEVE_TRAMSF
& MAKE_TRAMEFER_
® |3_TRANSFER_VATH " Indicates mandatary fields)
& CHECE DALY _ LM - - .
€ 1§ Systemavallabllity |
4 i - | Edtewntnote || Edfttanstionnote || Back | Fimsh || cance

Press the ‘Back’ button now and you should see that the InputRequirements table has an extra line. The
MAKE TRANSFER process requires three more parameters than the CHECK DAILY LIMIT FOR ACCOUNT
process, the destination account number VO
(FINANCIAL_TRANSACTION_DESTINATION_ACCOUNT_VO_IMPL), some common system attributes VO
(FINANCIAL_TRANSACTION_COMMON_ATTRIBUTES_VO_IMPL) and the source account VO
(FINANCIAL_TRANSACTION_SOURCE_ACCOUNT_VO_IMPL). These are other parameters that must be
supplied by the user, so make sure the last column for these three InputRequirements read ‘REQUIRED’.

Screen Orchestrator Guide Version 2004.5 W 65

Blocking Events from States

£ = [FrransivionWizord)
Showoid | Snap off [Enter Tranisition's Evert Datails
'3'1“: n | *Event [Transter -
Contraller [c-:-m.banmme f2.slatemathing. ed apps. Contraller = _ 2
g-_,—- Coniroar Properties:
€ @ MaintainBeneicianies ||
& § Teller3tanDay Frocessas:
& B BusinessDinProcessing CHECK_DAILY_LIMIT_FOR_ACCOUNT
&= § Transactonfeas
&= § CheckBalching
¢ 8 Transfers
® (_DEF)MAKE_TRAN
 AMEND,_PENDING] | [Walidaba eveni's input requirements?
o Make_TransrER| | ||| inputRequirements:
® REMCVE_PENDING -
o RETREvE, peron T narme : Agsigton | cemvaiue | irgrmientsalioationr.
® RETRIEVE_TRAMSF) IFINH'IGHLJWNS-‘DTDUNLGOHMUN_MIEUTEE_H.. Auba InpusDie,, REQUIRED:
® RETRIEVE_TRANSF FINANCIAL_TRANSACTION_DESTIMATHIN_ACCOUNT... Auto InpusDier.. REQUIRED
& RETRIEVE TRAMSF \REQUEET_ID Auto InpusDer,. MCADOCE PROCESE
- WE_TH-ﬁ_I‘lSFER_E [FIMANCIAL_TRAMSACTION_SOURCE_ACCOUNT_V_0.. Auto InpusDe... REQUIRED
® |5_TRANSFER_WITH |SOURGCE_ACCOUNT_NUMEER At InpusDer...| REQUIRED
® CHECHK_DaLy_LiMi i REGUIRED
&= | Systemavailability |
& 8 Closebceount | | £* Ingicatas mandatory fialds)
A v

Edievertncte || Ecibanstionnote | Ned | Cancel

Finish that transition.

In this worked example you have created an event with two transitions, set guard conditions such that the
correct transition will be followed, added a process to be called before the guard conditions are checked and
another process to be called if one of the transitions is followed.

5.10 Blocking Events from States

In order to block events from states other than the current state the most important thing is that the
Exception State is used in conjunction with setting the block.states key to true in the

BankframeResources.properties file.

block.states=true

In the diagram below the states B, C and D will all inherit the "Exception” event. If an event is to be drawn to
an exception state it must be called "Exception” (otherwise it will not work). When the C state is displayed
and the back button is pressed on the browser the B state will be displayed. If the E1 event is then pressed
the statemachine will throw an exception which will force the application to follow the "Exception" event and
hence will display the ErrorState view. From the ErrorState the user can be brought back into the application
via the "Home" event. The "ErrorState" can be anything you want, as long as the ExceptionState is a child of
a viewable state.

66 M Screen Orchestrator Guide Version 2004.5

Designing Events With Process

==AUt0 Yiews==
B

Exception[defauli]
=4auto Views== [=]
ErrorState

¥

&

E1[defaulf]

¥
==Auto Yiews==
z

E2[defaulf]

¥

== AUt0 Yievw==
D

Haome[defauli]

Blocking Event from States Example

There is one scenario that cannot be blocked and that is when the user is on a state, then presses the back
button and then the forward button on the browser. In this scenario the user can fire the event. The browser

is back displaying the correct state and therefore the event will be allowed.

The ScreenOrchestrator\resources\BankframeResources.properties file will have to set the
block.states to true at the end of the file, but when building the WAR double check that the WAR
properties settings can find the relevant properties file. Also ensure that the WAR properties lib jars have

also been updated with the current mca . jar

The NewApplication.xml file in the StateMachineExamples.zip shows how to use the event

blocking feature.

Screen Orchestrator Guide Version 2004.5 W 67

s of a Controller

6 Writing Controller Classes

This section describes how to write Controller classes. It goes through the responsibilities of such classes,
the APlIs to be used, and some of the classes that are provided by default. It also includes a section on
adding your controller classes to the editor.

6.1 The responsibilities of a Controller

Controller classes are the implementation of the control logic of the user interface. Controllers are the event
handlers, with every event having a Controller configuration of its own.

Controllers have two basic responsibilities:

m To choose one the event’s transitions to follow.
When the Controller receives an event it must look at the data that has been supplied by the user
and perhaps request information from the model. Based on this it must choose one of the event’s
transitions to follow. A Controller can choose a different transition each time the event is received,
based on the business logic, the data supplied by the user and the state of the model.

m To perform any side effects required by that transition.
Having chosen a transition, the Controller must perform any side effects that are required by that

transition.

[DocumentationExamples*

==Aut0 View==
GatherTransferDetails

TransferfamountTooHigh]

TransferfAmountOk)PerformTransfer

¥

==ALt0 Views=
TransferCaomplete

For example: an application might allow a user to make a funds transfer between two accounts if the amount
transferred in any single day is less than some limit. The Controller would first test that the amount is under

68 M Screen Orchestrator Guide Version 2004.5

the limit and choose one of the two transitions based on that. If it chose the transition to the

TransferComplete state it would then perform the side effect of completing the transfer.

6.2

The IController Interface

All Controller classes must conform to the com.bankframe.fe.statemachine.base.apps.IController interface.

This interface defines two methods reflecting the two primary responsibilities of the Controller classes:

IStateTransition getResult (RequestContext requestContext, IEvent event)
throws StateMachineUserException

This method represents the Controller’'s responsibility to choose between the transitions on the
event. The RequestContext object contains all the information about the current user and request,
while the IEvent object is the event that is to be processed. Typically this method is implemented as
a series of calls to the model or tests on the input parameters, followed by a call to
event.getTransition (transitionName) in order to getthe IStateTransition object to
return.

void doSideEffects (RequestContext requestContext, IStateTransition
transition) throws StateMachineUserException

This method represents the Controller’s responsibility to perform any side effects required by the
transition. The requestContext will be the same object as given to the getResult method,
while the transition object will be the one returned by the getResult method.

Typically this will be implemented as a series of if/then/else if/ blocks testing the name of the
transition. Within each should be the code to perform the required side effects.

Please refer to the MCA Services JavaDocs for further API details.

Assuming appropriate processes were deployed, the event above might be handled by the code below:

public IStateTransition getResult (RequestContext requestContext,

IEvent event) throws StateMachineUserException ({

try {

ChannelClient client =

ChannelClientFactory.getChannelClient () ;

DataPacket requestData = new

DataPacket ("CHECK DAILY LIMIT FOR_ACCOUNT") ;

requestData.put (DataPacket .REQUEST ID,

TRANSFERS REQUEST 1ID) ;

requestData.put ("COMPANY CODE",

requestContext.getRequest () .getParameterValues ("COMPANY_ CODE") [0]) ;

requestData.put ("BRANCH CODE",

requestContext.getRequest () .getParameterValues ("BRANCH_ CODE") [0]) ;

Screen Orchestrator Guide Version 2004.5 B 69

requestData.put ("SOURCE_ACCOUNT NUMBER",
requestContext.getRequest () .getParameterValues ("SOURCE ACCOUNT NUMBER") [0]

)i

requestData.put ("AMOUNT",
requestContext.getRequest () .getParameterValues ("AMOUNT") [0]) ;

Vector requestVector = new Vector (1) ;
requestVector.add (requestData) ;

Vector responseData = client.send(requestVector) ;

if
(((DataPacket)responseData.firstElement ()) .getName () .equals ("AMOUNT OK"))
{
return event.getTransition ("AmountOK") ;
} else {

return event.getTransition ("AmountTooHigh") ;

}

} catch (ProcessingErrorException ex) {

throw new StateMachineUserException (ex) ;

public void doSideEffects (RequestContext requestContext,

IStateTransition transition) throws StateMachineUserException {
if (transition.getName () .equals ("AmountOK")) {

try {

ChannelClient client =

ChannelClientFactory.getChannelClient () ;

DataPacket requestData = new

DataPacket ("TRANSFER FUNDS") ;

requestData.put (DataPacket .REQUEST ID,

TRANSFERS_REQUEST_1ID) ;

requestData.put ("COMPANY CODE",
requestContext.getRequest () .getParameterValues ("COMPANY CODE") [0]) ;

70 M Screen Orchestrator Guide Version 2004.5

Writin

requestData.put ("BRANCH_ CODE",
requestContext.getRequest () .getParameterValues ("BRANCH CODE") [0]) ;

requestData.put ("SOURCE_ACCOUNT NUMBER",
requestContext .getRequest () .getParameterValues ("SOURCE_ACCOUNT_NUMBER") [0]
)i

requestData.put ("DEST ACCOUNT NUMBER",
requestContext .getRequest () .getParameterValues ("DEST ACCOUNT NUMBER") [0]) ;

requestData.put ("AMOUNT",

requestContext.getRequest () .getParameterValues ("AMOUNT") [0]) ;
Vector requestVector = new Vector(1l);
requestVector.add (requestData) ;
Vector responseData = client.send(requestVector) ;
} catch (ProcessingErrorException ex) {

throw new StateMachineUserException (ex) ;

6.3 The SimpleController Class

The com.bankframe.fe.statemachine.base.apps.SimpleController class is an implementation
of IController thatis intended to control events with only one transition and no side effects. In many

applications, particularly web applications, there will be many events that are simply navigation events. That
is: they take the user from one screen to another and do nothing else. The SimpleController can handle

all of these events.

6.4 The Main Controller Class

The Controller class that will be most commonly used is the
com.bankframe. fe.statemachine.ext.apps.Controller class. This class is a complex and
complete implementation of the IController interface that can use process, input requirements and

guard condition data entered in the Orchestrator to carry out all the responsibilities of a Controller.

This class follows the steps below:
m The getResult method will call all of the processes defined for the event in the correct order,
using data from the user input, input requirements and process definitions as appropriate to build
up the DataPackets to be sent through MCA Services. Results from the process calls will be

added to the user session.

Screen Orchestrator Guide Version 2004.5 W 71

ller Contract

m For each transition on the event, the Controller will call the checkGuardCondition method.
Depending on the configuration of the transition, this could check the user inputs, the results from
the processes, or other data in order to decide whether the transition should be followed.

m One of the transition checkGuardCondition methods should return IGuardCondition. TRUE.
This transition will be returned from the Controller's getResult method.

m The dosideEffects method will call all of the processes defined for the transition in the correct
order, using data from the user input, input requirements and process definitions as appropriate to
build up the DataPackets to be sent through MCA Services. Again, results from the process calls
will be added to the user session.

These steps should be enough to handle the majority of all events that will be included in an application user

interface.

For those events that this will not handle, it is possible to extend the Controller class in various ways to add

extra functions.

6.5 The Modified Controller Contract

The contract defined by the IController interface is a very general contract that can be used in any
environment. The Controller class in the com.bankframe. fe.statemachine.ext.apps package
provides a different definition of the getResult and doSideEffects methods geared more specifically to

the Automated Methodology:
B TIStateTransition getResult (IEvent event, Inputs inputs, RequestContext
requestContext) throws StateMachineUserException,

ProcessingErrorException

B void doSideEffects (IEvent event, IStateTransition transition, Inputs
inputs, RequestContext requestContext) throws

StateMachineUserException, ProcessingErrorException

Please refer to the MCA Services JavaDocs for further AP| details.

The IEvent, IStateTransition and Inputs objects passed into these methods have all been

customized.

The IEvent and IStateTransition objects have a getProcesses method that returns an Iterator over
all the processes associated with the event or transition. The IEvent object has a
getInputRequirements method that makes available all the requirements and default values entered by
a designer in the Orchestrator. IStateTransition includes a checkGuardCondition method, to test

whether the transition’s guard condition has been met.

72 M Screen Orchestrator Guide Version 2004.5

6.5.1

Writing Controll

The Inputs Object

The Inputs object provides a single view of all the data provided by the user or recorded previously in the

current user’s session. It combines three different data sources:

The Request - contains the data entered by the user in the user interface before firing the current
event.

The Visit - will generally be empty, but may contain data placed there by another Controller or
View. The visit is intended to store data that might be needed by a View. The visit is stored by the
state machine so that it can be reloaded if we return to the same result state via a History or Deep
History pseudo-state.

The User Session - can store data about the user that might be required anywhere in the
application. This may include details like the user’'s name, active role, actor ID, etc.

Inputs provides five methods for getting and setting parameter values:

6.6

Enumeration getParameterNames () - this method provides an Enumeration over all the
names of all the parameters in the three data sources.

Object getparameter (String parameterName) - this method provides the value of the
named parameter. It will look first in the request, then the visit, and finally the user session.
Object getparameter (String parameterName, int inputSource) - this method
provides the value of the named parameter in the specified input source. The input source must be
one of INPUT SOURCE_ANY, INPUT SOURCE_REQUEST, INPUT SOURCE_VISIT or

INPUT SOURCE_USER_SESSION.

void setParameter (String parameterName, Object parameterValue) - this method
sets a parameter value in the request.

void setParameter (String parameterName, Object parameterValue, int

inputSource) - this method sets a parameter in the specified input source.

Extending The Controller Class

In addition to the steps described above, the Controller class calls a number of empty methods at different

times during the processing. You can override these empty methods to add extra functionality.

The full sequence of method calls is:

The framework calls getResult.
getResult calls getResultPreProcess - override getResultPreProcess if you need to manipulate the
user inputs or perform any other tasks before the controller does anything.
For each process in the event:
— getResult calls modifyProcess - override modifyProcess to change the automatically-
produced request DataPackets. Note that modifyProcess may be called many times by
getResult and by doSideEffects, so make sure you are modifying the correct process call!

— getResult calls executeProcess.

Screen Orchestrator Guide Version 2004.5 W 73

r Class

m getResult calls chooseTransition - override chooseTransition if you want to choose the transition
yourself, instead of using the transition.checkGuardCondition methods. You must override
chooseTransition if any of the transition guard conditions might return
IGuardCondition.UNDEFINED.

m getResult calls getResultPostProcess - override getResultPostProcess if you need to extract
certain pieces of information from the process responses, or if you want to change the default
behaviour of adding the response data to the user session.

m getResultPostProcess calls addResultsToUserSession.

m getResult returns the chosen transition to the framework.

m The framework calls doSideEffects.

m doSideEffects calls doSideEffectsPreProcess - override doSideEffectsPreProcess if there is
anything you need to do before the side effects are performed.

m For each process in the transition:

— doSideEffects calls modifyProcess - this is the same modifyProcess method as is called
by getResult, so be careful when overriding it to modify only the processes you need to.
— doSideEffects calls executeProcess.

m doSideEffects calls doSideEffectsPostProcess - this is your last chance to change the behaviour of
the controller.

m doSideEffectsPostProcess calls addResultsToUserSession.

The following sequence diagrams show the previously mentioned methods and where they are called when
a com.bankframe.fe.statemachine.ext.apps.Controller’'s getResult and doSideEffect methods are invoked.

74 M Screen Orchestrator Guide Version 2004.5

EntryServlet RequestManger Controller Process GuardCondition

doPost / doGet
—>

:I delegateToRequestManager

manageRequest

:I processSingleEvent

etResult(RequestContext, IEyen

=

)

getResult(IEvent ,(Inputs, RequestContext)

getResultPreProcess

loop for each process getDataPackets

modifyProcess

execufeProcess

chooseTransition

AN

loop of each transition checkGuardCondition
until guard conditipn is datified

getResultPostProgess

addResultsToUsetSession

It

A

The com.bankframe.fe.statemachine.ext.apps.Controller sequence diagram.

Screen Orchestrator Guide Version 2004.5 W 75

he Orchestrator

EntryServlet RequestManger Controller Process GuardCondition

doSideEffects(RequestContext, IStateTransition)

doSideEffects(IEvent, [StateTransition, Inputs, RequestContext)

:I doSideEffectsPreHrocess

loop for each process getDataPackets

modifyProcess

execufeProcess

doSideEffectsPostProcess

addResultsToUserSession

Lt)]

A

The com.bankframe.fe.statemachine.ext.apps.Controller sequence diagram continued.

Full details on all of these methods, including the method signatures, can be found in the MCA Services

JavaDocs.

6.7 Adding A New Controller To The Orchestrator

When you create a new controller class, there are several ways to include it in the editor:

6.7.1 Do Nothing

It is possible to do nothing at all. When a designer needs to use the new controller they type the name into

the ‘Controller’ combo box on the transition dialog.

6.7.2 Add the controller to the statechart.properties file

The controller classes loaded into the transitions dialog box are listed in the statechart.properties file. The
file contains three controllers by default:

B com.bankframe.fe.statemachine.base.apps.SimpleController

B com.bankframe.fe.statemachine.base.apps.AutoViewController
B com.bankframe.fe.statemachine.ext.apps.Controller
|

com.eontec.statemachine.helpers.ChannelClientController

76 M Screen Orchestrator Guide Version 2004.5

Writing Controlle

B com.eontec.statemachine.helpers.DataCollectorController
B com.eontec.statemachine.helpers.ClearUserSessionController
|

com.eontec.statemachine.helpers.AddToUserSessionController
To add a new controller, type the controller class name in the ‘Controller’ combo box on the transition dialog

On the right-hand side of the combo box is a register controller button as highlighted in the next figure.

@ Transition Wizard

X
‘Enter Transition's Event Details
*Event %Lugin |TI
Controller: %cum.enntec.st&rtemachine.hBlpars.DataGnllectannntmllBr |L| E

~Confroller Properies:

Channel Client Mame:|com.bankframe.ei.channel.client HitpClient
Data store: Uzer session
ey names:;

Enter a ' delimited list of data packet names that should be fired in the request excluding the header datapacket.
Leave blank to send all data packels in the request.

S Register controller class permanently

[_] Validate event's input requirements?

InpuiReguirements: -
name | description | defaulivalue | requiremnent | validationRule |
REGLIRED
(* Indicates mandatory fields)
Editeventnote || Edittransifionnote || Ned || Cancel

Highlighted register controller button.

The ‘Controller’ combo box on the transition dialog will now contain your new controller class in the default
list.

6.7.3 Create a Customizer for the Controller

The ‘Controller Properties’ box on the transitions dialog is managed by loading bean customizer classes for

the controller class selected. If you create a customizer for your controller class and add it to the classpath

Screen Orchestrator Guide Version 2004.5 W 77

rator

for the editor, the dialog will load your customizer. This allows you to completely control how your controller
looks in the editor. The controllerProperties will contain an entry for each attribute exposed by the bean. For
information on creating a customizer, see the JavaBeans AP| and documentation.

78 M Screen Orchestrator Guide Version 2004.5

Writing Guard Condition Classes

7 Writing Guard Condition Classes

This section describes how to write guard condition classes. It goes through the responsibilities of such
classes, the APlIs to be used, and some of the classes that are provided by default. It also includes a section

on adding your guard condition classes to the editor.

71 The Responsibility Of A Guard Condition

A guard condition class has a very simple responsibility: to decide whether a transition should be followed in

any given case.

7.2 The IGuardCondition Interface

All GuardCondition classes must implement the
com.bankframe.fe.statemachine.ext.apploaders.lGuardCondition interface. This interface defines two
methods for you to implement:

m int checkGuardCondition (Inputs inputs, Vector processExecutionRecords,
RequestContext requestContext, IStateTransition stateTransition) - this
method must return either IGuardCondition. TRUE or IGuardCondition.FALSE. If it returns TRUE,
the transition will be followed, if FALSE, the transition will not be followed.

The Inputs, RequestContext and IStateTransition objects, supplied are the same as described
above for the Controller class. The processExecutionRecords vector contains
com.bankframe.fe.statemachine.ext.apps.ProcessExecutionRecord objects, listing the details of all
the processes executed by the Controller before calling checkGuardCondition.

m void setGuardConditionProperties (Properties guardConditionProperties) - this
method will be called before checkGuardCondition. The guardConditionProperties will contain any

information provided by the designer.

7.3 Adding A New Guard Condition To The Orchestrator

When you create a new guard condition class, there are several ways to include it in the editor:

7.31 Do Nothing

It is possible to do nothing at all. When a designer needs to use the new guard condition they type the name
into the ‘Guard Condition Class’ combo box on the transition dialog. They will be presented with a standard

Properties editor in which they can enter the guard condition properties.

7.3.2 Add the guard condition to the statechart.properties file

The guard condition classes loaded into the transitions dialog box are listed in the statechart.properties file.
The file contains three guard conditions by default:
B com.bankframe.fe.statemachine.ext.apploaders.bean.ResultBasedGuardConditi

on

Screen Orchestrator Guide Version 2004.5 W 79

ard Condition To The Orchestrator

B com.bankframe.fe.statemachine.ext.apploaders.bean.InputBasedGuardConditio
n
B com.bankframe.fe.statemachine.ext.apploaders.bean.FixedValueGuardConditio
n
B com.eontec.statemachine.helpers.TimeoutGuardCondition
B com.eontec.statemachine.helpers.EmptyResponseGuardCondition
To add a new guard condition, type the guard condition class name in the ‘Guard Condition Class’ combo
box on the transition dialog. On the right-hand side of the combo box is a register guard condition button as
highlighted in the next figure.

i@ Transition Wizard X
#

- Enter Transition Details

Action Description: |
* Guard Description: [Falled
T Guard Condition Class: |t:um.e ontec statemachine. helpers EmptyResponseduardCondition =] "'|
Guard Condilion Properies:

Reqister guard condition class permanently

Process Mame:

Frocesses:

{* Indicates mandatory fields)

Editeventnote || Edittansionnote || Back || Finish || Cancel

Highlighted register guard condition button.

The ‘Guard Condition Class’ box on the transition dialog will now contain your new guard condition class in
the default list.

7.3.3 Create a customizer for the guard condition

The ‘Guard Condition Properties’ box on the transitions dialog is managed by loading bean customizer
classes for the guard condition class selected. If you create a customizer for your guard condition class and
add it to the classpath for the editor, the dialog will load your customizer. This allows you to completely
control how your guard condition looks in the editor.

The guardConditionProperties will contain an entry for each attribute exposed by the bean.

For information on creating a customizer, see the JavaBeans AP| and documentation.

80 M Screen Orchestrator Guide Version 2004.5

8 Writing JSPs

This section describes the responsibilities of a JSP in the orchestrator framework, and goes through the

beans and tags available to help build JSPs.

8.1 Responsibilities of a JSP

In this framework a JSP has two very simple responsibilities:

m Display data to the user - the JSP is required to format and display the data the user expects to
see, including all the formatting, framing, branding and general prettiness that is required in the
user interface.

m Give the user the opportunity to fire events - for every state the user interface is in, there will be
events that the user can fire. The JSP must provide buttons, links or similar widgets for the user to
allow events to be fired.

Within these two simple responsibilities, how you code the JSP is very flexible. There is, however, one thing
that you must not do:

m You must not include any tests in the JSP that result in loading new pages, forwarding or
redirecting the JSP. If there is ever a circumstance where you want to redirect or forward to another
JSP based on some test in the JSP, you must change the state chart design so that the test is

handled in a Controller class.

8.2 Getting data into the JSP

The JSP is required to display data to the user. This data is made available to the JSP through a set of
beans placed in the servlet request context.

8.2.1 Inputs bean

The Inputs bean contains all the data included in the request from the user, the current user session and the
current state visit. It is loaded using the tag:
<jsp:useBean id="Inputs" scope="request"

class="com.bankframe.fe.statemachine.ext.apps.Inputs" />

It is also useful to import the Inputs class to reference static members:

<%@ page import="com.bankframe.fe.statemachine.ext.apps.Inputs" %>

Inputs provides five methods for getting and setting parameter values:
m Enumeration getParameterNames () - this method provides an Enumeration over all the
names of all the parameters in the three data sources.
m Object getParameter (String parameterName) - this method provides the value of the
named parameter. It will look first in the request, then the visit, and finally the user session.
m Object getParameter (String parameterName, int inputSource) - this method

provides the value of the named parameter in the specified input source. The input source must be

Screen Orchestrator Guide Version 2004.5 W 81

one of INPUT SOURCE_ANY, INPUT_ SOURCE_REQUEST, INPUT SOURCE_VISIT or
INPUT SOURCE_USER_SESSION.

m void setParameter (String parameterName, Object parameterValue) - this method
sets a parameter value in the request.

m void setParameter (String parameterName, Object parameterValue, int
inputSource) - this method sets a parameter in the specified input source.

See the JavaDocs for further details on the API

8.2.2 ProcessExecutionRecords bean

The ProcessExecutionRecords bean is a Vector of ProcessExecutionRecord objects, containing all of the
processes executed while handling the current event. The responses from these processes, available as
Vectors of DataPackets, will contain all the data retrieved from the server by the Controller or View classes.
Load the ProcessExecutionRecords bean with the tag:

<jsp:useBean id="ProcessExecutionRecords" scope="request"

class="java.util.Vector" />

8.2.3 State bean

The State bean is the state that is to be displayed by the JSP. It is possible to use the same JSP to display
different states, and the State bean will give you the current stateld or title.
Load the state bean with the tag:

<jsp:useBean id="State" scope="request"

class="com.bankframe.fe.statemachine.ext.apploaders.IState" />

8.24 View bean

The View bean is the View class that is including the JSP.
This can be loaded with the tag:
<jsp:useBean id="View" scope="request"

class="com.bankframe.fe.statemachine.ext.connectors.servlet.JSPView" />

8.2.5 RequestContext bean

The RequestContext bean contains other miscellaneous objects, including the statemachine configuration,
the application loader, user session, user session manager and logger. You will probably not need this bean
in most cases.
The RequestContext can be loaded with the tag:

<jsp:useBean id="RequestContext" scope="request"

class="com.bankframe.fe.statemachine.base.RequestContext" />

82 M Screen Orchestrator Guide Version 2004.5

8.3 Firing an event from a JSP

The JSP will need to supply the user with buttons or links to fire events. There are two distinct mechanisms

you can use to fire these events. Do not mix these two mechanisms. If you start using one of these two

approaches, keep using that one. Any attempt to mix them will cause events to fail.

8.3.1 Using the .jsm URL extension

The statemachine servlet is configured to respond to all requests that end with .jsm. It expects the stateld
and event name to be supplied in the URL in the form <statelD>.<event name>.jsm.
This URL format can be used on both simple links and forms, using the following code:

<a href="<jsp:getProperty name="State" property="id" />.event.jsm"> event

<form action="<jsp:getProperty name="State" property="id" />.event.jsm">

</form>

Replace ‘event’ in these code samples with the correct event name.

8.3.2 Using the StateMachine URL

The statemachine servlet is also configured to respond to requests with the URL /StateMachine (relative to
the web application root). You can retrieve the absolute URL from the View bean.
You must supply two parameters with this URL called ‘statemachineEventName’ and
statemachineStateName’. Use the following code as a guide:
<a href="<jsp:getProperty name="View" property="requestURL"
/>?statemachineStateName=<jsp:getProperty name="State" property="id"

/>&statemachineEventName=event">event

<form action="<jsp:getProperty name="View" property="requestURL" />">

<input type="hidden" name="statemachineStateName" value="<jsp:getProperty

name="State" property="id" />">

<input type="hidden" name="statemachineEventName" value="event"s>

</form>

Replace ‘event’ in these code samples with the correct event name.

Screen Orchestrator Guide Version 2004.5 W 83

9 Orchestrator Process Integration

9.1 Introduction

The Orchestrator supports the ability to hook financial processes to the front end components generated by
the tool.

In terms of this tool, a process is a unit of work performed within a deployed session bean. There can
therefore be many processes within one session. The manner in which the methods are called being
tweaked by the value of the DATA PACKET NAME key being passed in. In this sense the tool regards a

session as an encapsulation of one or many financial processes.

Process integration within the tool generally consists of two steps
m Importing in processes from an external source, either manually or from an Automated
Methodology model.
m Associating these processes with events and/or transitions.

9.2 Importing in processes from an Automated Methodology model

To import in processes from an Automated Methodology model, right click on the root node of the “Siebel

Processes” node and select “Import new sessions from model”.

@ Orchestrator : == x|
File Edit Window Processes Help

Dl =@ & [l (alal
. 5

2 Mewapplication® 35 :

Initial State State
A

Self Transitian Transitian

Shallow History | Deep Histary

& ®
Exception Final State
=
Chart Mote
==Auto View==
‘Wielcam
Show Grid Snap off
Grid size: 10

]

nexlderdult]

==Auto Views==
weltom2

% Eontec Pro

Add hew session manually

Delete all sessions

84 M Screen Orchestrator Guide Version 2004.5

Orchestrator Pr

You should then be presented with the following dialog:

¥ Import Process Definitions

Click the button to the right of the text field and point the file chooser to an xml file representing an
Automated Methodology model. If you wish, you can use the sample xml file shipped with the application. It
lies in the “xml” folder that the file chooser defaults into and is called “RetailAccount.xml”. When you have
done this, the process tree should be populated with process information and resemble the following:

Screen Orchestrator Guide Version 2004.5 B 85

ess information

DewE *x &= 98
- =

 inital State Sl 2 mewpplicalion 22
1} e
SelTransmon | Teantiion |

] (%) 05)
Ehallow Hislory Daep History |
) *
| Exegbon Final State

=5
Chart Mot

= C|
Bfhire Grid Snap off
Orifl gipe; 0
Lot

[Eontec Frocesses

| @ B CustomerSeanch
% RETRIEVE _ACCOUNT.
RETRIEVE _ALL_ACCO
@ RETRIEVE _CUSTOMER
& RETRIEVE _CLUETOMER

When processes are imported into the Screen Orchestrator from an Automated Methodology model, the
session name, process name, process signature and process return type are automatically converted to the
key/value pairings required for Request and Response DataPackets. Functional parameter objects, non-
functional parameter objects, banking objects and primary key classes used in the signature of a process
are also automatically converted to the expected Request and Response DataPacket format. If a parameter
is not defined as a result of the import process, it may be that the class type is not defined correctly in the
Automated Methodology model.

9.3 Manually inputting process information

To manually input a process right click on the root node of the process tree and select “Add new session
manually”. You should then be presented with the following dialog:

86 M Screen Orchestrator Guide Version 2004.5

Orchestrator Procf

i@ Enter session name

Session MName ||

C e e

Key in a session name and then click next. You should then be presented with the following:

@ Process 1, set details =lalx|

KEY SAMPLE WALUE
DATA PACKET NAME DATA PACKET NAME
REQUEST_ID

sk et || e |

Input all relevant information. To add or remove fields use the +/- buttons. To state whether the response is

a vector or single DataPacket type, use the checkbox.

The above dialog refers to one process contained in the session. As explained earlier there can be many
processes to a session. Therefore, if one wishes to add another process, click the next button and you will
see another copy of this panel representing another process on this session. Note also that you must supply
a DataPacket name value with each process. This is used to name the node on the tree. When you are
finished, click OK. The process information should be added to the process tree.

Screen Orchestrator Guide Version 2004.5 W 87

from the Siebel Process list

9.4 Removing all sessions from the Siebel Process list

To remove all the sessions in the Siebel Process list, right click on any process node and select “Delete all
sessions”. A dialogue box will appear to confirm if you wish to remove all the process definitions, click ‘Yes’
to confirm.

9.5 Editing/Deleting processes

To edit the details of any process, right click on any process node and select “Edit Process”. You should get
a dialog similar to the following, with different process information:

,‘."3; Edit Process: retrieveAccountD etailsForBranchCodeAndAccountdumber

_+ | =
KEY SAMPLE WALUE
companyCode COMPANY_CODE
branchCode ACCOUNT_NUMBER
accounttumber ACCOUNT_CURREMNCY
userld ACCOUNT_BALANCE
DATA PACKET MAME retrieveAccountDetailsFo... BRAMCGH_CODE

ACCOUNT_MAME

PRODUCT_ID
UMNCLEARED_FUNDS_WALUE
JOINT_ACCOUNT_INDICATOR
OPEN_ACCOUNT_DATE
NEXT_CHEQUEBOOK_FACILITY_MNUMEER
MANDATE_TYPE
NEXT_MOVEMENT_MUMBER
NEXT_CARD_COMNTROL_MUMBER

o

Edit the process details and then click ok.

To delete a process, right click on it on the tree and select “Delete Process”.

9.6 Assigning processes to the state chart

9.6.1 Assigning processes to a state

To assign a process to a state, go to the process tree, hold down the left mouse button and drag the process
over a state on the chart, then release the left mouse button. You will then be presented with a dialog
resembling the following:

88 M Screen Orchestrator Guide Version 2004.5

Orchestrator Process Inte

i@ Enter State Details

Title: \state

State Type: ||:|:|m.hank‘frame.fe.atatemachine.E}d.c|:|nnecturs.aewletﬁutwiew | - | ﬂ

—State Details:

~Processes:

RETRIEVE_BRAMCH_DETAILS_BY_COMPANY_CODE_AMND_BRAMCH_CODE

~Input Requirements:

NAame | description | defaultyalue | reguirerment | validationRule
COMPARY_CODE |Auto InputDefiniti... REGQUIRED
BRAMCH_CODE |Auto InputDefiniti... REGQUIRED
USER_ID Auta InputDefiniti... REGUIRED
RECUEST_ID Auta InputDefiniti. . REGQUIRED
REGQUIRED
Edit note 1k Cancel

If you wish to add further processes to this state, drag them on to this dialog from the process tree and drop

them either onto the white text area entitled “Processes” or drop them onto the table entitled “Input

Requirements”. Click OK to save the process details.

9.6.2 Adding Processes to a State Transition

To add processes to a state transition, make a new transition between two states. You will be presented with

the following dialog:

Screen Orchestrator Guide Version 2004.5 B 89

state chart

@ Transition Wizard

~Enter Transition's Event Details

*Event: |

Contraller: | |V| E

Contraller Properies:

[] walidate event's input requirements?

rInputReguirerments:

name | description | defaultalue | requirament | validationRule
| | |REQUIRED

(™ Indicates mandatory fields)

Edit event note H Edit transition naote H et || Cancel |

Enter the event name and select a controller from the drop-down list (other than SimpleController or

AutoViewController, which are used only for simple state navigation and do not invoke processes).

90 M Screen Orchestrator Guide Version 2004.5

& Transition Wizard
~ Enter Transition's Evant Details

Event jevent! |~

Controller: Iu:um.hankﬁa me fe_staternachine_ext apps. Controller]_‘_'J E

~Coniroller Properies:

“Processes:

[Walidate event's input reguirements?

“InpuiRegquirements:;

name | description defaultvalue | requirement | validationRule
| REQUIRED

(* Indicates mandatory fields)

Editeventnote | Edittransifionnote || Ned || Cancel

To add processes to this transition, drag and drop them from the tree, into the text area entitled “Processes”.
This will add them to the transition’s event details.

Screen Orchestrator Guide Version 2004.5 W 91

ek e

CORTBSE [oom Banirame. e stabemaching L 3pps. Conober = [®

RETRIEVE_ACCOUNT_DETALE_FOR_BRAMCH_CODE_AND_ACCOUNT_NUMBER

ol Ecndes Procasses
% B Cuslomarneuh 1 Wl wbe evans gl reguiemaenis 7
Inpurfecitmants 1
__ naew | descrgion | oeulvis | meguesment | I
:“"E,“"Eﬂ'E-ﬂgﬁ IACCOUPT_NUMBER _ huts nprtDsfiiien b, REGUIRED -
= COMPANT_COOE AueinpuiDefnBon b | REQLIRED
BRAMCH_CODE Marte InpulDenSeon b | REGURED
USER_ID [tz inputDatnmen .. | RECLARED =
o inddicales mnandsion elds)

Esowntea || Estranstonnce | Ned || concel |

You can also add processes to the transition details (as opposed to the transition event details). This will
invoke the process as a side effect on the transition. To do this, click next on the above dialog and drag and
drop the processes on to the text area entitled “Processes”.

92 M Screen Orchestrator Guide Version 2004.5

& Transition Wizard
- Enter Transition Details

Action Description: |

“Guard Deseription: |default

|

*Guard Condition Class: I[:|:|m.hankﬁame.fe.slatemachine.srtappluaders.hean.F'med‘u"aluEGuaranndilinn

~ @

~Guard Condition Properties:

Guard Condition Value: | false

-

~Protesses:
RETRIEVE_CUSTOMERS_BY_FIRST_MAME_AMD_SURNAME
(* Indicates mandatory fields)
Editeventnote || Edittransiionnote || Back || Finish || Cancel

Transition Details screen

For more information on how processes are managed by the state machine framework after they have been

assigned, please refer to the “Designing Events With Processes And Guard Conditions” section.

Screen Orchestrator Guide Version 2004

S5 W 93

10 Advanced Drawing

The following section provides details of the advanced drawing capabilities of the orchestrator tool.

101 Undo / Redo Features

The Orchestrator tool provides the ability to undo and redo drawing instructions. If the user creates, moves,
edits or deletes a state then the tool can undo that change. The tool can also undo any transition create, edit
or delete. Only the last 5 drawing instructions can be undone. The tool provides an Edit menu with Undo and
Redo menu items to access these features. The textual description of the Undo and Redo menu items
change as the user creates undo and redo instructions. The textual description is useful for the user to

determine what instruction will be undone or redone if the menu item is selected.

10.1.1 Undo Example

This section will show an example of using the undo feature to undo a move instruction. The first figure that
follows shows the original location of the test1 state. The second figure indicates the new position of this

state.

94 M Screen Orchestrator Guide Version 2004.5

@ Orchestrator

[Newanplication™ 7737717 i i

The original location of the test1 state.

Screen Orchestrator Guide Version 2004.5 B 95

ewhpplication* 777 7

The new location of the test1 state.

This move instruction will now be undone by selecting Edit -> Undo move state test1 as highlighted in the

next figure.

96 M Screen Orchestrator Guide Version 2004.5

==Auto View=>
_stated

¥ Orchestrator

File | Edit Window Processes Help
D LA
[newapplication™ ;

Initial State State

r i
Self Transition | Transition

())

Shallow History| Deep History

& ®
Exception | Final State

=
Chart Note

(8]
Show Grid Snap off

Grid size: 10

=7 |

S =AutD Views==
statet

The “Undo move state test1” menu item highlighted.

Once the “Undo move state test1” menu item is selected the test1 state will be returned to its original
position as shown in the first diagram of this section.

10.1.2 Redo Example

The undo example as described in the previous section will be used as the basis of this example. We will
now redo the previous undo so that the move instruction is done as originally specified. When an instruction
is ‘undo’, the redo menu item is changed so that its textual description details what undo instruction will be
redone. The next figure indicates the “Redo move state test1” menu item.

Screen Orchestrator Guide Version 2004.5 W 97

@ Orchestrator

File | Edit| Window Processes Help

ol

Undo move state state

i

Redo the last drawin tm:-un-:lﬂ_r"":]‘ﬂ"':E“i""wr i

==Auto Views=
statel

Initial 5t reres
7l b
Self Transition Transition
() ()
Shallow History| Deep History
454 ®
Exception Final State
=
Chart Note
(5]
Show Grid Snap off
Grid size: 10

The “Redo move state test1” menu item highlighted.

Once the “Redo move state test1” menu item is selected the test1 state move will be done and the

statechart will look as shown below.

98 M Screen Orchestrator Guide Version 2004.5

& Orchestrator

File Edit Window Processes Help

DsE8 * @26 28

L = . P e
", Ne lication™ 3
Initial State State E iz —
B e

Self Transition | Transition
Shallow Histary| Deep Histary
X ®

Exception Final State

B
Chart Mote

Show Grid Snap off

Grid size: 10

==AUtD Views==
state

The test1 state move redone.

10.2 Copy, Cut & Paste Features

The Orchestrator tool can also copy and cut states to different parts of the statechart and from different
statechart files. When copying or cutting a state all its child states and transitions, apart from any transitions
either entering or leaving the state, will also be copied or pasted. To copy or cut any state right-click on the
state to bring up its popup edit menu. On the popup edit menu will be a menu item to copy or cut the state.
Select either one according to what you want to do. Once selected, move the mouse to an area in the
statechart (this can be within any state on the statechart) and right-hand click on that area. The popup menu

will appear and you can then select the paste menu item to copy or cut the state to that area.

You can copy and cut and paste from one statechart to another. To do this you must first open the statechart
that you wish to copy or cut the state from. Select the state and press the copy or cut menu item. Then open
the statechart you wish to copy or paste the state into. Once the statechart is opened press the paste menu
item where you want to state to be pasted too.

Screen Orchestrator Guide Version 2004.5 B 99

10.2.1 Copy Example

In this example we will copy a search parent state and its child states to another parent state in the
statechart. The next figure shows a small statechart for a sample application. We will copy the search state

in the OpenAccount parent state to the DrawDown parent state.

e [

==AUL0 Wiew==
Search[Failed]

._h SearchCriteria
Search[Shccessiul]

¥

==AUt0 Views=
SearchResults

Retrigve[defauli]

=AUt Views=
FrocessOpenaccount

The OpenAccount Search state.

Right-click on the OpenAccount’s Search state to bring up the state’s popup menu. Select the Edit, Copy

menu item as shown in the next figure.

100 M Screen Orchestrator Guide Version 2004.5

=i Celate

.._.. Searchl Transitions »

Search[Siccessiul]

L 4

==Aut0 Views==
SearchResults

Retrigre[default]

==huto Views==
ProcessOpenAccount

The Search state’s Edit, Copy menu item selected.

Move the mouse to an area in the DrawDown state where child states can be added. Right-click the mouse
in this area to bring up the state’s popup menu. Select the Edit, Paste menu item and the Search state will

be copied in this state as shown in the next figure.

sAUto Views=
Search[Failed]

._. SearchCriteria
Search[Shccessful]

==Auto Wiew==
SearchResults

o

==Auto Wiew==
SearchCriteria

Search[Syccas

Search[Failed]

sful]

==Auto Views»
SearchResults

Retrigre[defaul]

=AUt View==
ProcessOpenAccount

The Search state copied to the DrawDown state.

Please note that the Retrieve[default] transition was not copied as this transition leaves the Search state and

Screen Orchestrator Guide Version 2004.5 W 101

hence is ignored when the copy is done. Also note that the initial state transition coming into the Search
state is also ignored by the copy.

10.2.2 Cut & Paste Example

In this example we will cut and paste a search parent state and its child states to another parent state in the
statechart. The next figure shows a small statechart for a sample application. We will cut and paste the
search state in the OpenAccount parent state to the DrawDown parent state.

¢
==Auto Views=
Search[Failed]

._.. SearchCriteria
Search[Slccessiul]

¥

=AUt Views=
SearchResults

Retriegre[dafault]

==AUt0 Views=
ProcessOpenAccount

The OpenAccount Search state.

Right-click on the OpenAccount’s Search state to bring up the state’s popup menu. Select the Edit, Cut

menu item as shown in the next figure.

102 M Screen Orchestrator Guide Version 2004.5

Celate
=<Auto Vie

.._.. SearchCritg Transitions ¥ opgy

Details

Search[Siccessiul]

L 4

==Aut0 Views==
SearchResults

Paste
gean gize

Retrigre[default]

==huto Views==
ProcessOpenAccount

The Search state’s Edit, Cut menu item selected.

==Auto View==
FrocessOpenAccalunt

The Search state cut from the OpenAccount state.

Screen Orchestrator Guide Version 2004.5 W 103

Move the mouse to an area in the DrawDown state where child states can be added. Right-click the mouse
in this area to bring up the state’s popup menu. Select the Edit, Paste menu item and the Search state will
be pasted in this state as shown in the next figure.

=l
=

u

ol

==Auto Views==

._> SearchCriteria

Search[Failed]

Search[Syccessful]

==Auto Wiews=»
SearchResults

==Auto Yiews==
ProcessOpeniAccount

The Search state cut and pasted to the DrawDown state.

Please note that the Retrieve[default] transition was not pasted as this transition leaves the Search state and
hence is ignored when the cut and paste is done. Also note that the initial state transition coming into the
Search state is also ignored by the cut and paste. These transitions are also removed from the
OpenAccount state.

10.3 Parent States As Sub-charts

The orchestrator tool has the ability to minimize and maximize parent states. A parent state is any state that
has any child states. When the state becomes a parent state two new icon buttons will appear in the right-
hand side of the state’s header. The following figure shows a normal state alongside a parent state.

==Auln Views== ==l Views=
MormalState ParantState
==AutD View==
ChildState

A normal state along side a parent state.
The highlighted area (the red box) in the previous figure shows the additional icon buttons added to the

header area of the parent state. The top button, which is initially enabled, allows the user to minimize the
parent state. Once minimized the bottom button will become enabled as shown in the following figure.

104 M Screen Orchestrator Guide Version 2004.5

=Lt Wiews= ==Auta Yiews== |3
MarmalState ParentState =

PRy ——
==l X b 1

The parent state minimized.

The top button will also change icons and when pressed again will maximize the parent state back to its
original size. The top button is therefore interchangeable. It cycles between minimize and maximize icons
and will only enable the bottom button when the parent state is minimized.

When the bottom button is enabled the user will be able to open that parent state in a new window. The next
figure shows the parent state opened as a sub-chart window after the open button was pressed.

@ Orchestrator

File Edit Window Processes Help

TEFT X ez@m a8

Mewapplication™ =
Inlial State E‘Iate E
n L
Self Transition Transition
() ()
Shallow History| Deep History
@ & A rto Views s «<Auto Views> [g|
Exception Final State MarmalState ParentState =
=
Chart Mote
@ [sub-State: Parentstate™ 222270 i o' I
Show Grid Snap off
| Grid size: 10
R]

ChildState

| = |

The parent state opened as a sub-chart.

Once opened as a sub-chart the user can draw on it as if it were a normal statechart. In the following figure

a new child state has being added to the parent state sub-chart and a new transition.

Screen Orchestrator Guide Version 2004.5 W 105

(@orchestrator
File Edit Window Processes Help

Dezv (¥ e=@ &aa

MewaApplication™
Initial State | Ewm L -
n A’
Self Transition | Transition
() i)
Shallow History, Deep History
® i ® =apyto Yiews» =<Aut0 View=> @I
Exception Fifal Sista MormalState ParentState =
= .
Chart Mote
B Eswsacraensae . &d]
Shona Grid Snap off
= ==Aulo Yiew==
Gig'“- 10 ChildState
— 1 ==Auto Views»
Igi wi ulll childstatez

Using the ParentState sub-chart to add new states and transitions.

When the user closes this window and maximizes the ParentState from the main statechart window the
added states and transitions will have been added to the state.

File Edit Window Processes Hil

B r SEE (sl

— Evewwicator 00

[i
Sell Transition 'IHI'I‘BHI'I

EMIMIHhm| DHII Hisbary |

cepuba Viewss =<huln Views=> =
Euanlun | qum | HomalStita Parenltstate -
=
_ ChaiMote <AL VB
ChildState
3| C|
Show Grid Sniap off

Grid size: 10
:@:

] <xAulo Vigws>
E ChildSlste?

The ParentState maximized.

106 M Screen Orchestrator Guide Version 2004.5

One thing to note is that when a parent state is minimized you will not be able to add states to it unless you

maximize it.

10.3.1 Transitions Leaving And Entering Parent States

The Orchestrator tool handles transitions leaving and entering parent states when minimized or opened in a
separate sub-chart in a special way. When parent states are minimized any transitions entering or leaving
the parent state will be shown by drawing a blue box in the upper left-hand corner of the parent state and the
transitions leaving and entering the parent state will be drawn to it. In the two figures that follow a transition
enters the parent state to a child state and a transition leaves a child state to a state external to the parent
state. The figures indicate what happens to the transitions when the parent state is minimized.

==Auto Views= [=]
FarentState c
=AUt View== tdefault [==Autn Views=
MarmalState] ChildState
H [defaulf]
=AUt Yigw== “AL_HD Yigw==
MorrmalState 2 taldetault ChildState2
P |

The ParentState maximized.

==Auto View== [g]
Jetaly Parentstate (=l
==AUL0 Wiew==
MormalState ==
3[defauli]

==AUL0 Wiew==
MormalStates

The ParentState minimized.

Similarly, when the parent state is opened in a sub-chart, the sub-chart window will also indicate which

transitions leave or enter the parent state by drawing a small blue box in the upper left-hand corner of the

sub-chart window as shown in the following window.

Screen Orchestrator Guide Version 2004.5 W 107

I [Sub-State: ParentState

ZALTD View==

%Nﬁe

\ 13[dprault

m«uﬂ
¥

==Auto Views=
ChildState2

The ParentState opened in a sub-chart window.

10.3.2 Bringing Sub-charts To The Front

The orchestrator tool can allow any number of parent states to be opened as sub-charts in the desktop area.
Where multiple internal windows are open, you can bring any opened window to the front by selecting the
Window -> Bring To Front from the menu. This provides a menu item list for each window opened in the
tool’s desktop area. To bring a window to the front, select that window from the menu list. The following
figure shows the NewApplication menu item highlighted so that it can be brought to the front of the desktop.

@ Orchestrator
File Edi‘t|WInduw| Processes Help

0| & EBring To Front H o Mewdpplication
Save Window To File »| Sub-State: ParentState
L J
Initial State State
1 s

Self Transition Transition

(0)

shallow History| Deep History

() ®
Exception Final State
= Nesdidefault
Chart Mote
=<Auto Views=»
E ChildState2
Showe Grid Snap off
Grid size: 10

108 M Screen Orchestrator Guide Version 2004.5

The NewApplication menu item selected so that it can be brought to the front.

10.3.3 Why Use The Sub-chart Feature?

This feature is extremely useful when the statechart becomes very large. For an application such as a teller
or call centre the statechart for the application will be huge, often with over 200 states and transitions.
Building the statechart becomes more and more difficult as the application grows in size. This feature is
extremely helpful when the statechart grows to such a size. You can more easily edit particular parent states
in separate windows helping to reduce the clutter from the other states in the application. This mechanism is
also the basis behind the multiple user support feature described in the next section.

10.4 Multiple User Support

The Orchestrator tool can be used for defining very large applications involving multiple users. Parent states
opened in sub-chart windows can be saved to separate files linked to the main statechart XML file. Users
can open the main statechart for the application and then open parent states as sub-charts. The parent state
can then be saved to a separately linked file. The user can then edit this parent state independently of other
users and save changes to this file.

The following example indicates how the ParentState can be saved to a separately linked file. First open the
ParentState as a sub-chart. Next select the Window -> Save Window To File from the menu. This will
display a list of menu items of states that can be saved to a separate linked file. Select the “Sub-State:
ParentState” menu item. This will save the ParentState’s details to a separate file.

i@ Orchestrator
File Edit m Processes Hel

IEJ @ Bring To Front
. < —
Initial State | State
rn ' v
Self Transition | Transition
e it =
& @ \\ ildState
Shallow History| Deep History \Niﬂ[da]
2 ®
Exceplion Final State
= ¥
Chart Mote
==AUt0 Views==
ChildState2
Show Grid Snap off
Grid size: 10
= 1

Saving the ParentState to a linked file.

The format of the textual description of the menu items for the Save Window To File menu list is very
specific. The format is:

Screen Orchestrator Guide Version 2004.5 B 109

Sub-State: << State Name>>

for example:

“Sub-State: ParentState” in the example.

When a parent state is saved to a file, the state’s window title will be updated to indicate this. The following
figure shows the ParentState’s updated window title.

@ Orchestrator
File Edit Window Processes Help

oewe # (&= (s
. =

Initial State State I
n o
Self Transition | Transition
. @ b adify==
ildState
Shallow History| Deep History il ulf]
& : ®
Exception | Final State
= it
Chart Mote [}
==Auto Yiew==>
ChildState2
ShowGrid | Snap off
Grid size: 10

The ParentState window title updated to show the filename of the linked file.

The format of the filename of the ParentState is also very specific. The format is:

<<Application Name>>.<< State Name>>.part

for example:

“NewApplication.ParentState.part”.

If the application is renamed then all its linked state files will also be renamed to ensure that the part files
can be easily seen to link to the main application statechart file. When a parent state is saved to a linked file,
its header will indicate that its contents are contained in a linked file by displaying a special icon. The {E icon

is used to indicate states whose contents are contained in a linked file. The following figure indicates this
behaviour after the ParentState was saved to a linked file.

110 M Screen Orchestrator Guide Version 2004.5

15 <<put0 View==» -
ParentState -
==AuUlD Views== idefaull | [<<auto View=
MormalState ChildState
H [default]
=AUt Views»
==At0 Views==
MarmalState? ChildState2
12[defaulf]
e ————

The ParentState displaying the & icon.

It must be remembered that to open a linked file you must open the application statechart first. Individual
state linked files cannot be opened on their own. They must be opened through their parent application
statecharts. Also note that when you edit the parent state in the sub-chart window the application statechart

will only be updated when you either save the changes or close the window.

10.4.1 Note on users working on the same files

The Orchestrator tool is very much like any other tool in that it produces a number of flat files. Any user can
edit these files and overwrite other users changes. It is therefore important that any files produced by the
Orchestrator tool where multiple users are involved are version controlled. The only additional feature
provided by the Orchestrator tool is that it will not allow statechart files to be saved if they are marked as
read-only. In short it is the job of the users to ensure that their files are under version control and that they
do not undo each other’s work.

A statechart can be broken up into multiple part files allowing different users to work on separate part files.

The main application file, which links all the part files together, should be given special attention. It effects all

the part files and should only be maintained and modified by a single person.

Screen Orchestrator Guide Version 2004.5 W 111

Overview

11 Introduction To Writing A Swing Application

1.1 Overview

This section describes in brief what is required for a swing application to use the state machine.

The state machine framework supports applications deployed using the swing API as well as those deployed
as web applications through the serviet API.

Designing swing applications is virtually identical to designing web applications. The same concern should
be given to the behavior and flow control through the application in the state chart, and the same Controller
and Process integration classes can be used.

Deploying a swing application using the state machine requires you to use the classes and interfaces in the

com.bankframe.fe.statemachine.ext.connectors.swing package.

The structure of your application will be:
= An application main class acting as a Window or Applet for the application.
m The main class will contain a ViewContainer. The ViewContainer is a container within which all the
application views will be displayed.
m The main class will also contain a StateMachineEventDispatcher, which will listen for
StateMachineEvents fired from your views.
m The View classes will all implement IView and StateMachineEventSource. Whenever the user does
anything that triggers an event on the state chart, the view must fire a StateMachineEvent.
m The sequence for processing an event is:
m The view class will fire a StateMachineEvent.
m The StateMachineEventDispatcher will receive the event and forward it to the RequestManager in
the statemachine.
m The RequestManager will return the new view class.
m The StateMachineEventDispatcher will register itself as a StateMachineEventListener on the view,
so that it will receive the next StateMachineEvent that is fired.
m The StateMachineEventDispatcher will pass the view to the ViewContainer.
m The ViewContainer will display the new view.
The important classes and interfaces are:

11.1.1 StateMachineEvent class

The StateMachineEvent class takes on the role of the Request. All user events that are to be processed by
the state machine must be fired from the view as StateMachineEvents.

112 M Screen Orchestrator Guide Version 2004.5

Introduction To Writing A Swing Appl

11.1.2 StateMachineEventSource interface

The StateMachineEventSource inteface must be implemented by all View classes in addition to the View
interface. The interface contains methods for adding and removing StateMachineEventListeners to the view.

11.1.3 StateMachineEventDispatcher class

The StateMachineEventDispatcher manages the StateMachineEvents fired by the views, passing them on
into the state machine. It also gives the resultant view to the ViewContainer for display.

11.1.4 ViewContainer interface

The ViewContainer interface marks the JContainer that will hold and display the views.

11.2 Writing the application main class

The application main class has a few tasks and responsibilities it must complete. Once these three steps are
completed correctly it does not matter whether the main class is an applet, frame, or neither.

11.2.1 Create and display a ViewContainer

The application main class must create and display some class that implements ViewContainer. This will be
where all the application views are displayed.

11.2.2 Create a StateMachineEventDispatcher

The application main class must create a StateMachineEventDispatcher. The dispatcher requires a
ViewContainer and the state machine configuration Properties. The main class can also set a logger, user
session manager and application manager if necessary. (In general, these can be loaded automatically
based on the values in the configuration Properties.)

11.2.3 Fire the first Event

To start the application, the application main class must fire the first StateMachineEvent into the
StateMachineEventDispatcher. Create a StateMachineEvent with this as the target and a null event name.
The state machine will locate the start state for the application and give the appropriate view to the

ViewContainer.

11.3 Writing the ViewContainer class

The ViewContainer class has one very simple responsibility. It must display the views that are given to it
through the displayView(IView) method.

The ViewContainer is normally going to be a JPanel or other JContainer. When it receives a view it should
check that the view is a JComponent, remove or hide the previous view and display the new one.

Note that the view might not be a JComponent. It could be any class. When writing the ViewContainer you

Screen Orchestrator Guide Version 2004.5 W 113

ting the View classes

should be aware of the types of view that will be written for the application, and should have a way of
displaying all of them.

For example: another type of view that might be supplied is a JDialog, in which case the ViewContainer
should call the show() method to display the dialog. (Note that only modal dialogs should be used.)

1.4 Writing the View classes

As in the servlet environment, the view classes have two very simple and closely-related responsibilities.
They must display information suitable to the current state, and they must present controls (e.g. buttons) to
the user to allow them fire events.

The view classes must implement two interfaces:

11.4.1 IView interface

The IView interface includes three methods that you must implement. There are two variants of the build
method, one inherited from the com.bankframe.fe.statemachine.base.apps.IView interface, and one defined
in the com.bankframe.fe.statemachine.ext.apps.IView interface.

You can define the first of these two methods with the following block of standard code:

public void build(RequestContext requestContext, IState currentState)

com.bankframe. fe.statemachine.ext.apps.View.

build(requestContext, currentState, this);

}

The second version of the build method must be implemented in order to populate the view with the values
that should be displayed to the user.

The third method is the populateFromProperties method, mentioned in the 'Managing ViewProperties'

section below.

11.4.2 StateMachineEventSource interface

The two methods in the StateMachineEventSource interface can be implemented using the standard code
below:

// listenerList is an instance of javax.swing.event.EventListenerList

public void addStateMachineEventListener (StateMachineEventListener

listener) {

listenerList.add (StateMachineEventListener.class, listener) ;

}

114 M Screen Orchestrator Guide Version 2004.5

Introduction To Writing A Swing A

public void removeStateMachineEventListener (StateMachineEventListener

listener)
listenerList.remove (StateMachineEventListener.class, listener);

}

When you need to fire a StateMachineEvent, use the code below as a guide:

StateMachineEvent event = new StateMachineEvent (this, eventName) ;
// set the parameters as required in the event.

StateMachineEventDispatcher.fireStateMachineEvent (event, listenerList) ;

11.5 Putting the View classes in the chart

Adding the swing view classes to your chart is as simple as putting the fully-qualified class name into the
View Class text box on the StateDetails dialog.

If your view requires any viewProperties, you can add these in the StateDetails dialog also.

11.6 Managing ViewProperties

ViewProperties are the means through which you can include information in the state chart to be used by the
View class. For example: viewProperties contain the jspName for the JSPView and the stylesheetURI for the
XSLTAutoView.

You can use viewProperties by implementing the populateFromProperties method on your view to read
values from the viewProperties and copy them to attributes that can later be used in the build method.

11.7 The tool view requirements

When a state is created in the Orchestrator tool the “Enter State Details” dialog is displayed as follows:

Screen Orchestrator Guide Version 2004.5 W 115

ol view requirements

@ Enter State Details 3 .EI

Title: []
State Type: |com.bankirame fe statemachine.extconnectors.sendetAutoview | w | [
~State Details: | ot
com. bankframe fe.statermachine. ext.connectors. sendet JSPView
corm. bankframe.fe.statermaching. ext.connectors, serdet KELTAUDView
com.bankframe fe statemachine.ext connectors. swing AutoView
corn.bankframe.fe. staternachine ext.connectors swing SwingView
com.bankframe fe.statemachine.ext connectors. swing XSLTSwingView
Processes:

~Input Requirements:

name |. description | defaultvalue | requirement | wvalidationRule |
| REGUIRED '
Edit note (8]4 Cancel

The “Enter State Details” dialog.

Using this dialog the user must specify the type of view this state will represent. By default the tool provides
six types, None, AutoView (JSP), XSLTAutoView, JSPView, AutoView (Swing) and SwingView. To specify
new swing, JSP or XSLT views, the user must therefore provide a new view type. Writing your own swing
view type class can do this. A view type class must implement the

com.bankframe. fe.statemachine.ext.apps.IView interface. Additionally, a Beaninfo class can
also be defined for the new view type. When the user selects the new type from the view type combo box
the Beanlinfo class for the view type can be loaded by the tool and displayed in the “View Details” area of the
“Enter State Details” dialog. The BeanlInfo class allows the user to customize the view and is written
according to the JavaBeans standard.

An example of creating an IView class and a BeanlInfo class for it can be seen in the following code
samples. Here we show how the JSPView and the JSPViewBeanlInfo classes were written.

116 M Screen Orchestrator Guide Version 2004.5

11.71 The JSPView class

public class JSPView extends View

protected String jspName;

protected String requestURL;

/**

* The JSP can expect an attribute in the request with the key

* STATE ATTRIBUTE NAME that contains the IState implementor for the
* current state.

*

* The value of STATE ATTRIBUTE NAME is "State"

*/

public static String STATE_ATTRIBUTE NAME = "State";

/**

* The JSP can expect an attribute in the request with the key

* VIEW_ATTRIBUTE_NAME that contains the instance of JSPView that was
* used.

* You might use this to build subclasses of JSPView that perform

extra

* processing of the data in the ResponseData, exposing the results of

that
* processing through methods on the view.
* <brs>
* The value of VIEW ATTRIBUTE_NAME is "View"
*/
public static String VIEW ATTRIBUTE NAME = "View";
/**

* The JSP can expect an attribute in the request with the key

Screen Orchestrator Guide Version 2004.5 W 117

ents

* INPUTS_ATTRIBUTE NAME that contains the instance of Inputs that was
* used.

* <brs>

* You can use this in the JSP to gain access to the data from the

* incoming request, the user session, and the response data populated
* by the controller.

* <brs>

* The value of INPUTS_ATTRIBUTE NAME is "Inputs"

*/

public static String INPUTS ATTRIBUTE NAME = "Inputs";

/**
* The JSP can expect an attribute in the request with the key

* REQUEST CONTEXT ATTRIBUTE NAME that contains the current

RequestContext.
*

* The value of REQUEST CONTEXT ATTRIBUTE NAME is "RequestContext"

*/
public static String REQUEST CONTEXT_ ATTRIBUTE NAME =
"RequestContext";
public static String RESPONSE_DATA ATTRIBUTE_NAME = "ResponseData";
/**

* Constructor for JSPView.
*/
public JSPView() {

super () ;

/**

118 M Screen Orchestrator Guide Version 2004.5

* @see com.bankframe.fe.statemachine.ext.apps.View#fbuild (IState,

Inputs, RequestContext)
*/
public void build(
IState state,

Inputs inputs,

RequestContext requestContext) throws StateMachineUserException

HttpServletRequest request =
((Request) inputs.getRequest ()) .getRequest () ;

Response response = (Response)requestContext.getResponse() ;
requestURL = request.getRequestURL() .toString() ;
request.setAttribute (STATE ATTRIBUTE NAME, state);
request.setAttribute (VIEW ATTRIBUTE NAME, this);
request.setAttribute (INPUTS_ATTRIBUTE NAME, inputs);

request.setAttribute (REQUEST CONTEXT ATTRIBUTE_NAME,

requestContext) ;

request.setAttribute (RESPONSE DATA ATTRIBUTE NAME,

response.getResponseData ()) ;

RequestDispatcher dispatcher =

request .getRequestDispatcher (jspName) ;
try {
dispatcher.include (request, response.getResponse()) ;
} catch (ServletException ex) {
throw new StateMachineUserException (ex) ;
} catch (IOException ex)

throw new StateMachineUserException (ex) ;

/**

* Returns the jspName.

Screen Orchestrator Guide Version 2004.5 W 119

nts

* @return String

*/
public String getJspName () {

return jspName;

/**
* Sets the jspName.
* @param jspName The jspName to set
*/
public void setJspName (String jspName) {

this.jspName = jspName;

/**
* Returns the jspName.
* @return String
* @deprecated
*/
public String getJSPName () {

return jspName;

/**
* Sets the jspName.
* @param jspName The jspName to set
* @deprecated
*/
public void setJSPName (String jspName) {

this.jspName = jspName;

120 M Screen Orchestrator Guide Version 2004.5

/**
* Returns the requestURL.
* @return String
*/
public String getRequestURL()

return requestURL;

/**

* @see
com.bankframe.fe.statemachine.ext.apps.IView#populateFromProperties (Proper

ties)
*/
public void populateFromProperties (Properties viewProperties) {
if (viewProperties != null)
if (viewProperties.getProperty ("jspName") != null) {

setJspName (viewProperties.getProperty ("jspName")) ;

11.7.2 The JSPViewBeanInfo Class

public class JSPViewBeanInfo extends SimpleBeanInfo {

protected PropertyDescriptor[] propertyDescriptors;

protected BeanDescriptor beanDescriptor;

Screen Orchestrator Guide Version 2004.5 W 121

ents

/**

* Constructor for JSPViewBeanInfo.
*/
public JSPViewBeanInfo() throws IntrospectionException {
super () ;

PropertyDescriptor jspNameDescriptor = new

PropertyDescriptor ("jspName", JSPView.class, "getdspName", "setJspName") ;

PropertyDescriptor requestURLDescriptor = new

PropertyDescriptor ("requestURL", JSPView.class, "getRequestURL", null);

propertyDescriptors = new

PropertyDescriptor [] {jspNameDescriptor, requestURLDescriptor};

beanDescriptor = new BeanDescriptor (JSPView.class,

GenericCustomizer.class) ;

}

/**
* Returns the propertyDescriptors.
* @return PropertyDescriptor[]
*/
public PropertyDescriptor[] getPropertyDescriptors() {

return propertyDescriptors;

/**
* Returns the beanDescriptor.
* @return BeanDescriptor
*/
public BeanDescriptor getBeanDescriptor() {

return beanDescriptor;

122 M Screen Orchestrator Guide Version 2004.5

Introduction To Writing A Swing A

The JSPViewBeanlnfo class allows the user to enter the JSP filename for that particular state. When the
JSPView is selected in the enter state details dialog the following customizer is loaded in the “View Details”
area as a result of providing the JSPViewBeanlInfo class:

@ Enter State Details x|
Title: | |
State Type: |cum.hankframe.fe.statemachinE.E}d.cnnnecturs.sewlet.JEF'\-"iew | - | ﬂ

—State Details:

jspMarme: |we|c|:|me.j5p

~Processes:

~Input Requirements:

NAame | description | defaultyalue | reguirerment | validationRule |
REGQUIRED
Edit note 1k Cancel

The JSPViewBeanlnfo class loaded.

11.8 The swing application requirements

The statemachine comes complete with two different connector packages, designed to allow deployment of
applications within swing or servlet environments.

This section describes how to write a swing application based on the statemachine.
Before you set up your application you should have already created your statechart for the application and
identified your views and controllers. If your application requires any special controller classes, please read

the section on creating controller classes. On start-up there are a few steps your application needs to take in
order to use the statemachine. First, it needs to designate an object to contain and display the views as they

Screen Orchestrator Guide Version 2004.5 W 123

B The swing application requirements

are produced. This object will probably be an instance of JPanel or another JContainer, and must implement
the ViewContainer interface.

11.8.1 The ViewController interface

The com.bankframe.fe.statemachine.ext.connectors.swing.ViewContainer interface has one method that
must be implemented and that is the displayView (IView view) method. When the state machine calls
this method, the container class that implements the method must display the specified view to the user.
Please see the API JavaDocs for further details on using this interface.

11.8.2 Setting the application properties

The swing application then needs to set up the properties required by the UserSessionManagerFactory,

ApplicationManagerFactory, ApplicationManager and RequestContext. The default values for these classes

when using running a swing application are:
com.bankframe.fe.statemachine.base.UserSessionManager=
com.bankframe.fe.statemachine.ext.sessionmanagers.

inmemory.UserSessionManager

com.bankframe.fe.statemachine.base.ApplicationManager=

com.bankframe.fe.statemachine.ext.apploaders.sax.ApplicationManager

11.8.3 The state machine events

Next, your swing application must create an instance of the StateMachineEvent Dispatcher class passing in
the ViewContainer and Properties as parameters to the constructor of the class. Finally, create a
StateMachineEvent and pass it into the StateMachineEventDispatcher. The StateMachineEventDispatcher
and StateMachine Event classes can be found in the

com.bankframe. fe.statemachine.ext.connectors.swing package. This initial event can have the
ViewContainer as its target and a null event name. This will cause the statemachine to load the application,
locate the start state, build the appropriate view, and pass it back into the ViewContainer via the displayView
method.

To complete the circle and ensure all subsequent events are properly handled, there are two remaining
details. The views for the application must be sources of StateMachineEvents, implementing the
StateMachineEventSource interface. The view must be able to recognize those user actions that are events
described on the statechart and fire StateMachineEvents appropriately. The ViewContainer must ensure that
all views it displays have the StateMachineEventDispatcher registered as a StateMachineEventListener with
the view. This ensures that when the view fires a StateMachineEvent, the dispatcher receives it, passes it to
the RequestManager, and passes the result view back to the ViewContainer.

124 M Screen Orchestrator Guide Version 2004.5

Introduction To W

1.9 A swing application example

The Orchestrator tool provides a preview frame for loading the currently opened statechart and stepping
through the statechart using a swing AutoView class. This is a simple example of a swing application using
the state machine. We will use it here to provide a simple example of how a swing application can be
created using the state machine. The following code is the PreviewFrame used by the Orchestrator tool:

/**
* The PreviewFrame class.

* This class provides a swing frame for running a preview of a drawn

statechart.
* @author Brian O'Byrne
*/

public class PreviewFrame extends JFrame implements ViewContainer {

private StateMachineEventDispatcher eventDispatcher;
private JScrollPane scrollPane;

private JPanel viewportComponent;

/**
* The PreviewFrame constructor.

* @param appDoc Document is the XML document representation of the

statechart to be previewed.
*/
public PreviewFrame (Document appDoc) {

this (appDoc, "State Chart Editor Preview") ;

/**
* The PreviewFrame constructor.

* @param app Application is the statechart application to be

previewed.
*/

public PreviewFrame (Application app) {

Screen Orchestrator Guide Version 2004.5 W 125

example

this (app, "State Chart Editor Preview") ;

/**

* The PreviewFrame constructor.
* @param appDoc Document the statechart xml.
* @param title String
*/
public PreviewFrame (Document appDoc, String title) {
super (title) ;
initComponents () ;

Properties applicationProperties = new

Properties (System.getProperties()) ;

applicationProperties.setProperty ("com.bankframe.fe.statemachine.base.Appl

icationManager", "com.eontec.statechart.preview.ApplicationManager") ;

applicationProperties.setProperty ("com.bankframe.fe.statemachine.base.User
SessionManager",
"com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionMan

ager") ;

applicationProperties.setProperty (RequestManager.VIEW OVERRIDE KEY,

"com.bankframe.fe.statemachine.ext.connectors.swing.AutoView") ;

try {

eventDispatcher = new StateMachineEventDispatcher (this,

applicationProperties) ;

ApplicationManager appManager =

(ApplicationManager)eventDispatcher.getApplicationManager () ;
appManager.loadApplication (appDoc) ;
appManager .getDefaultApplication() ;

eventDispatcher.handleStatemachineEvent (new

StateMachineEvent (this, null)) ;

} catch (StateMachineException ex) {

126 M Screen Orchestrator Guide Version 2004.5

Introductio

ex.printStackTrace () ;

/**
* The PreviewFrame constructor.
* @param app Application the statechart.
* @param title String
*/
public PreviewFrame (Application app, String title) {
super (title) ;
initComponents () ;

Properties applicationProperties = new

Properties (System.getProperties()) ;

applicationProperties.setProperty ("com.bankframe.fe.statemachine.base.Appl

icationManager", "com.eontec.statechart.preview.ApplicationManager") ;

applicationProperties.setProperty ("com.bankframe.fe.statemachine.base.User
SessionManager",
"com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionMan

ager") ;

applicationProperties.setProperty (RequestManager.VIEW OVERRIDE KEY,

"com.bankframe.fe.statemachine.ext.connectors.swing.AutoView") ;

try {

eventDispatcher = new StateMachineEventDispatcher (this,

applicationProperties) ;

ApplicationManager appManager =

(ApplicationManager)eventDispatcher.getApplicationManager () ;
appManager.loadApplication (app) ;
appManager .getDefaultApplication() ;

eventDispatcher.handleStatemachineEvent (new

StateMachineEvent (this, null));

Screen Orchestrator Guide Version 2004.5 W 127

xample

} catch (StateMachineException ex) {

ex.printStackTrace () ;

/**
* This method initializes the frame.
*/
private void initComponents () {
addWindowListener (new java.awt.event.WindowAdapter () {
public void windowClosing(java.awt.event.WindowEvent evt) {

exitForm(evt) ;

P

this.getContentPane () .setLayout (new BorderLayout ()) ;

scrollPane = new JScrollPane() ;

JButton closeButton = new JButton() ;

closeButton.setActionCommand ("CLOSE BUTTON CMD") ;

closeButton.setText ("Close Preview") ;

closeButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent actionEvent) ({

exitForm(actionEvent) ;

P

viewportComponent = new JPanel() ;
viewportComponent.setLayout (new BorderLayout ()) ;
JPanel viewportComponentFiller = new JPanel () ;

viewportComponent .add (viewportComponentFiller,

BorderLayout .CENTER, O0) ;

viewportComponent .add (new JPanel (), BorderLayout.NORTH, 1) ;

128 M Screen Orchestrator Guide Version 2004.5

scrollPane.setViewportView (viewportComponent) ;
scrollPane.setBackground (null) ;
this.getContentPane () .add (scrollPane, BorderLayout.CENTER) ;

this.getContentPane () .add (closeButton, BorderLayout.SOUTH) ;

this.setIconImage (ImageLoader.getImageIcon ("STATE MACHINE ICON") .getIm

age()) ;

this.setSize (new Dimension (550,600)) ;

/**
* This method hides the preview frame.
*/
private void exitForm(java.awt.event.WindowEvent evt)

this.hide() ;

/**
* This method hides the preview frame.
*/

private void exitForm(ActionEvent evt) {

this.hide() ;

/**
* This method will display the specified view in the preview frame.

* @see
com.bankframe.fe.statemachine.ext.connectors.swing.ViewContainer#displayVi

ew (IView)
*/

public void displayView(IView view) {

Screen Orchestrator Guide Version 2004.5 W 129

xample

((StateMachineEventSource)view) .addStateMachineEventListener (eventDispatch

er) ;
viewportComponent .remove (1) ;
viewportComponent .add ((Component)view, BorderLayout.NORTH, 1) ;
validate() ;

repaint () ;

/**

* This method adds a StateMachineProcessingListener to the

statemachine event dispatcher.
* @param listener StateMachineProcessingListener
*/

public void

addStateMachineProcessinglListener (StateMachineProcessinglListener listener)

{

this.eventDispatcher.addStateMachineProcessinglListener (listener) ;

}

/**

* This method removes a StateMachineProcessingListener to the

statemachine event dispatcher.
* @param listener StateMachineProcessingListener
*/

public void
removeStateMachineProcessingListener (StateMachineProcessingListener

listener) {

this.eventDispatcher.removeStateMachineProcessinglListener (listener) ;

}

130 M Screen Orchestrator Guide Version 2004.5

Introduction To Writ

/**

* This method adds a collection of StateMachineProcessinglListeners to

the statemachine event dispatcher.
* @param listeners Collection
*/

public void addStateMachineProcessinglListener (Collection listeners)

this.eventDispatcher.addStateMachineProcessingListener (listeners) ;

}

/**
* This method removes a collection of StateMachineProcessingListener
to the statemachine event dispatcher.
* @param listeners Collection
*/

public void removeStateMachineProcessingListener (Collection listeners)

this.eventDispatcher.removeStateMachineProcessinglListener (listeners) ;

}

}

The important things to look at in the code example are the constructors for the class. They create the
application properties for the statemachine and set them specifically for this application. The preview frame
provides its own ApplicationManager; this class is used to load the specified statechart application or xml
document in this instance.

applicationProperties.setProperty ("com.bankframe.fe.statemachine.base.Appl

icationManager", "com.eontec.statechart.preview.ApplicationManager") ;

applicationProperties.setProperty ("com.bankframe.fe.statemachine.base.User
SessionManager",
"com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionMan

ager") ;

Screen Orchestrator Guide Version 2004.5 W 131

plication example

applicationProperties.setProperty (RequestManager.VIEW OVERRIDE KEY,

"com.bankframe.fe.statemachine.ext.connectors.swing.AutoView") ;

It also sets a view override, which informs the statemachine that all views specified in the statechart must be
ignored and only the swing AutoView class must be used as views for the preview frame. This will not be
required in your swing applications, as you will want your application to load the views that you specify.

Next the constructor creates a StateMachineEventDispatcher using the previously highlighted properties.
eventDispatcher = new StateMachineEventDispatcher (this,

applicationProperties) ;

The PreviewFrame class implements the ViewController interface and can therefore be used in the
constructor of the StateMachineEventDispatcher class. The displayView method, which is required to be
implemented by the PreviewFrame, is highlighted next. It is a simple method whose responsibility is only to
display the next view. It also registers the event dispatcher with the view.

public void displayView(IView view) {

((StateMachineEventSource)view) .addStateMachineEventListener (eventDispatch

er) ;

viewportComponent .remove (1) ;
viewportComponent.add ((Component)view, BorderLayout.NORTH, 1) ;
validate () ;

repaint () ;

}

The AutoView instances, which are IView interfaces, will then fire events to the statemachine using the

registered event dispatcher.

132 M Screen Orchestrator Guide Version 2004.5

Validating Input

12 Validating Input Requirements

An additional feature that has now been added to the orchestrator and state machine is the ability for the
orchestrator tool to be used to define validation rules for various input requirements and for the state
machine to execute these rules before any event is handled. This is a very useful feature for web-based
applications where no validation can be done on the actual JSP (for example no dynamic scripting is allowed
on the page) and the form submitted to the state machine must be validated before any processing is done.

12.1 Define the Validation Rules

A new checkbox and table column has been added to the event transition wizard. The screen shot below
shows the “Validate event’s input requirements?” checkbox and the input requirement table’s new
validationRule column.

Transition Wizard i x
=

Enter Transition's Event Defails

*Event E1 -

Controller: |com eantec. statemachine helpers. ChannelClientController - | !ﬂ

Controller Properties:

h itandcheck SubmitindCheck

Must be selected for l!
validation to be done |

rProcesses:
TESTOP validationRule Column I

I E Ualidate sueate fapit papireraent= |

InpuiReguirements.

narme 1 description i defaultyalue | requirarment | validalionRule | !

DATA PACKET MAME | Auto InpuitDefinition b, TEST OPTIOMAL ||
PARAM1 Auto npudCoainiion ... REQIRED True;true e 10FOR_.
PARAM2 REQUIRED trwe;true frue10;FOR_.. |
REGQUEST_ID Auto InputDefindion b.. J0000(OFTIONAL - |
]

{* Indicates mandatory felds)

Editeventnole || Edibansiionnote || Ned | Cancel

Event’s input requirement table with highlighted validationRule column.

The “Validate event’s input requirements?” checkbox must be selected if the event’s input requirements are
to be validated. To specify a validation rule for an input requirement double-click in the validationRule cell for
that input requirement. This will open the “Specify validation rule for input requirement:” dialog box, which
allows the user to specify the rule for that input requirement. The following screen shot shows the dialog box
that is displayed.

Screen Orchestrator Guide Version 2004.5 W 133

ine handles the validation check

E& Specify validation rule for inpuk requiremen ﬂ

Yalidate this input requirement? [w]

—Walidation Rule

Mandatary? (vl Exact length? [

Maximum length 10

Rule FOR_MOTHING_EXTRA ™
keywiFattern
mHlame ofvalue pararm

0] 4 Cancel

The validationRule dialog box.

12.2 How the state machine handles the validation check

Once the orchestrator has been used to define the validation rules, the state machine can be used to run the
actual application. When an event is submitted to the state machine its first task is to determine if validation
of the event’s inputs is required before the event is processed and its transition followed. If validation is
required then the state machine reads the rules for each input requirement and then validates each input
based on the specified rule. Each input is tested in turn and a record is built up of all the inputs that fail
validation. If no input fails validation then the state machine proceeds as normal. However if any of the
input’s fail validation then the record of failed inputs and their validation exceptions are added to the request
as a collection of “FAILED_VALIDATION_ ERRORS”. The state machine then returns the user to the last
displayed state. The view for that state can then display the failed validation rules to the user. The following

screen shots show the orchestrator’s preview frame running a test application and failing input validations.

134 M Screen Orchestrator Guide Version 2004.5

Validating Input Requiremen

i#¥ State Chart Editor Preview

_|of x|
State: A
~Event: E1 {from state &)
PARAMZ (REQLIRELD)
DATA FPACKET MAME TEST
REGQLUEST_ID bbb
PARAMT (REQLIRED) 232
Transitions from this event:
default to state B (DEFALILT)
E1
~Ewvent: Home (from state TEST)
Transitions from this event:
default to state TEST (DEFALILT)
Home
Cloze Preview
The orchestrator preview frame for testing an application.

Screen Orchestrator Guide Version 2004.5 W 135

ndles the validation check

i@ State Chart Editor Preview

=10l x|

State: A

~Failed validation exceptions

Yalidation Exception, the "param?2” is mandatory.
Yalidation Exception, the "param1" is required to bhe of exact length 10.

~Ewent: E1 {ftom state &)

PARAMZ (REQLIFEED)
DATA PACIKET MAME
REQLIEST_ID
FPARARMT (REQLIRED)

TEST

Transitions fraom this event:

defaultto state B ({DEFALILT)

~Ewvent: Horme ffrom state TEST)

Transitions from this event:

default to state TEST (DEFALILT)

Horme

Close Preview

The “E1” event fired and the resultant validation failure results displayed.

136 M Screen Orchestrator Guide Version 2004.5

Generating JSP

13 Generating JSP and Swing Panels

The state machine has a concept of autoviews. If no view exists for a particular state then the state machine
can supply an autoview for that state during runtime. This autoview was only created on the fly during
runtime and was not a permanent file that could be used. A new feature has now being added to the
orchestrator that allows the user to generate out the actually jsp or swing panels that the autoview would
create. The files are very useful for providing initial starting points for view states for developing the
application. The user can draw their statechart and generate a starting set of JSPs and/or swing panels from
which the initial application can be tested and developed. The user can take these files and change or edit
them as required. The JSPs and swing panels are created using a set of style sheets. The user has access
to these and can modify them to change the look and feel of the files that get generated. The jsp style sheet
is the <<orchestrator-install-dir>>\resources\jspTemplate.xsl file, while the swing panel style sheet is the
<<orchestrator-install-dir>>\resources\

panelTemplate.xsl. These files can be edited directly by the user to change what is produced when the
orchestrator generator is used.

13.1 Running the Generator

4]

Pressing the generator button ™* on the orchestrator tool bar will access the orchestrator view generator
feature. When pressed the “Confirm file generation?” dialog is displayed as shown in the following screen
shot.

i@ Confirm file generation? x|

Generate files to following directorny:

DowaultEclipsewarkspacelorchestratoriresourcesihuildigenerated

Chanoe.. [[] Use chart's specified HTML directony?

Generate what? [w] JSPs |j5p_5r|: |

] Panels |panel_src |

0]y Cancel

The confirm file generation dialog.

The confirm file generation dialog will allow you to generate all the JSPs and/or Panels for the currently
opened statechart. It generates the files to a special directory. This can be changed to point to any directory
you wish or it can be pointed to the chart’s specified HTML directory. When the “Ok” button is pressed the
files are generated. If any file already exists the user will be asked to confirm if they wish to overwrite that file
and all files in the folder.

When generating JSPs the filename for each state will be the jspName specified in the JSPView state. Ifit is

Screen Orchestrator Guide Version 2004.5 W 137

an autoview the JSP filename will be the state name post fixed with a “.jsp” extension. When generating
swing panels, the filename will be based on the fully qualified classname specified for each SwingView’s
state panelName. If it is an autoview, then the panel name will be based on the state name and the package
name will be defaulted to “temp”.

138 M Screen Orchestrator Guide Version 2004.5

14

MCA Services Timing Points

Timing points have been added to various points in the state machine for performance testing purposes. To

record the overall time for a statemachine request timing points have been added as follows:

In the com.bankframe.fe.statemachine.ext.connectors.servlet.EntryServlet for
JSP/HTML applications the public void

delegateToRequestManager (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException; method records the overall time to handle a html
request to the statemachine.

In the
com.bankframe.fe.statemachine.ext.connectors.swing.StateMachineEventDispa
tcher for swing applications the public void

handleStatemachineEvent (StateMachineEvent evt) method records the overall time to

handle a swing request to the statemachine.

Additional timing points have also been added to the

com.bankframe.fe.statemachine.ext.apps.Controller class and to two public methods:

public com.bankframe.fe.statemachine.base.apploaders.
IStateTransition getResult (RequestContext requestContext,
com.bankframe.fe.statemachine.base.apploaders.IEvent event)
throws StateMachineUserException;

public void doSideEffects (RequestContext requestContext,
com.bankframe.fe.statemachine.base.apploaders.IStateTransition

transition) throws StateMachineUserException

These timings determine how long it takes for the statemachine to get the correct transition to follow and to

do the side effects for that chosen transition.

If any of these methods are overwritten, the timing code should also be put into the overwritten methods.

Timings have been added as follows:

TimingPoint tp = new TimingPoint ("NAMEOFCOMPONENT",

BankFrameLogConstants.STATEMACHINE SUBSYSTEM, "", this);

....code here.....

tp.exit (this) ;

The descriptions used in the state machine classes were:

"StateMachine EntryServlet request round trip time"

Screen Orchestrator Guide Version 2004.5 W 139

"StateMachineEventDispatcher request round trip time"

"Controller getResult round trip time"

"Controller doSideEffects round trip time"
The MCA 1.2 and later versions already have timing code for measuring the time for executing actual MCA

requests. This time should be removed from the state machine times if requests are being sent to the EJB

server by the statemachine controller classes to determine the correct state machine round trip time.

140 M Screen Orchestrator Guide Version 2004.5

	Overview
	Statechart and State Machine Concepts
	What Are Statecharts?
	What Is The State Machine?
	Why Use Statecharts And The State Machine?
	Statechart Notation Explained
	States
	Parent and child states

	Events
	State Transitions
	Self-Transition

	Pseudo-States
	Initial State
	History
	History-Star
	Final State
	Exception State
	Effects of Pseudo-States On State Transitions

	Chart Notes

	Simple Statechart Example

	Basic Orchestrator Drawing
	The Main Orchestrator Window
	The Statechart Drawing Components
	Drawing States or Pseudo-states
	Drawing State Transitions
	Drawing Self-Transitions
	State Header

	Drawing Chart Notes

	More Drawing State Details
	Adding Child States
	Moving States
	Editing State Details
	Resizing States
	Deleting states

	More Drawing Transition Details
	Note On Transition Arrows
	Drawing Transitions To The Master State
	Drawing Transitions To And From Parent And Child States
	Drawing Transitions To And From Non-Related Child States
	Editing Transition Details
	Selecting Transitions Directly

	Deleting Transitions

	More Drawing Statechart Details
	The Statechart Name
	Renaming The Statechart
	Saving A Statechart
	Renaming a Saved Statechart
	Opening A Statechart

	Miscellaneous Drawing Features
	Using The Grid And Snap To Features
	Using The Navigation Panel
	Printing Statecharts
	Export StateChart as a GIF

	Preview And Web Deployment Capabilities
	Introduction
	Preview Capability
	Web Deployment Capability
	Install an appropriate web server
	WAR properties saved per statechart
	Configuring the WAR file within the tool
	Destination Dir
	Temp Dir
	Classes
	HTML Directory

	Deploying the war file

	Designing Events With Processes And Guard Conditions
	Handling an Event
	Associating Processes with Events and Transitions
	Setting the Input Requirements
	Deleting Input Requirements
	How the request DataPackets are built
	Defining Guard Conditions
	NullGuardCondition
	FixedValueGuardCondition
	InputBasedGuardCondition
	ResultBasedGuardCondition
	TimeoutGuardCondition
	EmptyResponseGuardCondition

	Other Controller classes
	The SimpleController
	The AutoViewController
	Additional Controllers
	Custom Controllers

	Add Common Fields to Every Request
	Worked Example
	Blocking Events from States

	Writing Controller Classes
	The responsibilities of a Controller
	The IController Interface
	The SimpleController Class
	The Main Controller Class
	The Modified Controller Contract
	The Inputs Object

	Extending The Controller Class
	Adding A New Controller To The Orchestrator
	Do Nothing
	Add the controller to the statechart.properties file
	Create a Customizer for the Controller

	Writing Guard Condition Classes
	The Responsibility Of A Guard Condition
	The IGuardCondition Interface
	Adding A New Guard Condition To The Orchestrator
	Do Nothing
	Add the guard condition to the statechart.properties file
	Create a customizer for the guard condition

	Writing JSPs
	Responsibilities of a JSP
	Getting data into the JSP
	Inputs bean
	ProcessExecutionRecords bean
	State bean
	View bean
	RequestContext bean

	Firing an event from a JSP
	Using the .jsm URL extension
	Using the StateMachine URL

	Orchestrator Process Integration
	Introduction
	Importing in processes from an Automated Methodology model
	Manually inputting process information
	Removing all sessions from the Siebel Process list
	Editing/Deleting processes
	Assigning processes to the state chart
	Assigning processes to a state
	Adding Processes to a State Transition

	Advanced Drawing
	Undo / Redo Features
	Undo Example
	Redo Example

	Copy, Cut & Paste Features
	Copy Example
	Cut & Paste Example

	Parent States As Sub-charts
	Transitions Leaving And Entering Parent States
	Bringing Sub-charts To The Front
	Why Use The Sub-chart Feature?

	Multiple User Support
	Note on users working on the same files

	Introduction To Writing A Swing Application
	Overview
	StateMachineEvent class
	StateMachineEventSource interface
	StateMachineEventDispatcher class
	ViewContainer interface

	Writing the application main class
	Create and display a ViewContainer
	Create a StateMachineEventDispatcher
	Fire the first Event

	Writing the ViewContainer class
	Writing the View classes
	IView interface
	StateMachineEventSource interface

	Putting the View classes in the chart
	Managing ViewProperties
	The tool view requirements
	The JSPView class
	The JSPViewBeanInfo Class

	The swing application requirements
	The ViewController interface
	Setting the application properties
	The state machine events

	A swing application example

	Validating Input Requirements
	Define the Validation Rules
	How the state machine handles the validation check

	Generating JSP and Swing Panels
	Running the Generator

	MCA Services Timing Points

