
S i e b e l  B r i g h t w a r e ™

Integration Development Kit Guide

Version 8.1.6



Copyright © 2005, 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are 
provided under a license agreement containing restrictions on use and disclosure and are also protected by 
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or 
decompilation of the Programs, except to the extent required to obtain interoperability with other independently 
created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the 
documentation, please report them to us in writing. This document is not warranted to be error-free. Except as 
may be expressly permitted in your license agreement for these Programs, no part of these Programs may be 
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are optional and for which 
you may not have purchased a license. Siebel’s Sample Database also includes data related to these optional 
modules. As a result, your software implementation may differ from descriptions in this guide. To find out more 
about the modules your organization has purchased, see your corporate purchasing agent or your Siebel sales 
representative.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on 
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, 
use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and 
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, 
and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software-
-Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such 
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. 
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. 
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all 
risks associated with the use of such content. If you choose to purchase any products or services from a third 
party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality 
of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, 
including delivery of products or services and warranty obligations related to purchased products or services. 
Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.
Oracle



Table of Contents
Chapter-1. About This Guide ............................................................................................ 1
How this Guide is Organized .......................................................................................................................1
Related Documentation ...............................................................................................................................1
Conventions ................................................................................................................................................2
If You Need Help .........................................................................................................................................2

Information to Provide ...........................................................................................................................3
Contacting Oracle’s Siebel Technical Support ......................................................................................3

Chapter-2. Overview and Getting Started ........................................................................ 5
Introduction .................................................................................................................................................5

IDK Components ...................................................................................................................................6
Development Process Overview ...........................................................................................................6

Environment ................................................................................................................................................7
Installation ...................................................................................................................................................7

Chapter-3. The Event API and Database Interface .......................................................... 9
Introduction .................................................................................................................................................9
IDK Java Packages .....................................................................................................................................9
Using the Database Interface ....................................................................................................................10
Using the Events API ................................................................................................................................15
Debugging .................................................................................................................................................18

Chapter-4. Workflow (Agent Desktop) Integration ........................................................ 19
Introduction ...............................................................................................................................................19
The Approach ............................................................................................................................................19

Use and Distribution of XSL ................................................................................................................20
Access to the “Agent Desktop Context” ..............................................................................................21
Access to Database Integration API Provided by the IDK ..................................................................23

Examples of Integration Scenarios and Possibilities .................................................................................24

Chapter-5. HTML Formatting of Outbound Messages .................................................. 25
Introduction ...............................................................................................................................................25
Features ....................................................................................................................................................26
Template Configuration .............................................................................................................................27
Support for Mail Clients Incapable of Rendering HTML ............................................................................29

Appendix-A. Understanding Event Sequences ............................................................. 31

Introduction ...............................................................................................................................................31
Server Startup Processes .........................................................................................................................31
Server Shutdown Processes .....................................................................................................................33
iiiOracle



Table of Contents
Siebel Brightware Component Processes and Event Firing .....................................................................34
Intelligence Engine ..............................................................................................................................34
Queue Manager ..................................................................................................................................35
Agent Desktop .....................................................................................................................................35
Contact Center Console Events ..........................................................................................................38
New Events .........................................................................................................................................41

Appendix-B. Example Event Handler ............................................................................. 43

Running the Example ................................................................................................................................43
The Example Source Code .......................................................................................................................44
iv Oracle



Chapter

1
About This Guide
This manual describes how to use the Integration Development Kit (IDK). It is intended for anyone 
involved in using the IDK. It is assumed that anyone using this guide is an experienced Java and JSP 
programmer. 

How this Guide is Organized
Chapter 1, “About This Guide” provides general information.

Chapter 2, “Overview and Getting Started” provides an overview of the IDK, and parameters for its 
use.

Chapter 3, “The Event API and Database Interface” provides general usage information for the 
IDK.

Chapter 4, “Workflow (Agent Desktop) Integration” provides an introduction and specifics for 
integrating Agent Desktop with other complementary products, third-party applications, and 
custom components (without the need to modify the core Siebel Brightware product).

Appendix A, “Understanding Event Sequences” describes and clarifies event sequences.

Appendix B, “Example Event Handler” describes an example event handler.

Related Documentation
For more information about Oracle’s Siebel Brightware please see these documents included in 
PDF format on the Installation CD:

Installation Guide
Agent Guide
Contact Center Console Guide
Knowledge Engineer Handbook
Implementation Guide
Analytics Overview Guide
DB Administrator Guide
Report Developer Guide
Oracle 1



Chapter 1 - About This Guide
Conventions
The following typographic conventions are used in this document:

Items that you are instructed to click or select, such as button names and hyperlinks, are bold:
• Select Add Response.
• Click the OK button.

Documents, headings, and chapter titles are italicized:
• “Refer to the Reference Manual for more information.” 

Notes are flagged along the left margin:

This icon indicates noteworthy information.

Cautions are flagged along the left margin:

, This icon indicates critical information.

Programming code and system messages appear in a fixed-width font:
Set-request-condition (<condition>)

Hyperlinks and Cross References - If viewing a document online, you can navigate through it 
using hyperlinks, which appear in blue text, and cross references. Although not displayed in 
blue, the Table of Contents and Index entries are also hyperlinks. Cross references are specific 
page number references. Click the page number to navigate to that page:

• Refer to “If You Need Help”, on page 2.

The term Type usually refers to typing information on your keyboard:
• Type the number of decimal places you want displayed.

The term Enter typically refers to the “Enter” key on your keyboard:
• Type the number of decimal places you want displayed and press the Enter key.

When a directory path is given, the hard drive letter is omitted since it is unknown what hard 
drive the system is installed on. Only the default install path is supported:

• Documents are available under edocs\Brightware\docs\.

If You Need Help
Technical Support is available to customers who have an active maintenance and support contract 
with Oracle. Technical Support engineers can help you install, configure, and maintain your Oracle 
application.

This guide contains general troubleshooting guidelines intended to empower you to resolve 
problems on your own. If you are still unable to identify and correct an issue, contact Technical 
Support for assistance. 
2 Oracle



Integration Development Kit Guide
Information to Provide
Before contacting Oracle’s Siebel Technical Support, try resolving the problem yourself using the 
information provided in this guide. If you cannot resolve the issue on your own, be sure to gather 
the following information and have it handy when you contact technical support. This enables your 
Oracle support engineer to more quickly assess your problem and get you back up and running 
more quickly.

Please be prepared to provide Technical Support the following information:

Contact information
 Your name and role in your organization.
 Your company's name
 Your phone number and best times to call you
 Your e-mail address

Product and platform
 In which Oracle Self-Service product did the problem occur?
 What version of the product do you have?
 What is your operating system version? RDBMS? Other platform information?

Specific details about your problem
 Did your system crash or hang? 
 What system activity was taking place when the problem occurred?
 Did the system generate a screen error message? If so, please send us that message. (Type the 
error text or press the Print Screen button and paste the screen into your email.)
 How did the system respond to the error?
 What steps have you taken to attempt to resolve the problem?
 What other information would we need to have (supporting data files, steps we'd need to take) 
to replicate the problem or error?

Problem severity
 Clearly communicate the impact of the case (Severity I, II, III, IV) as well as the Priority 
(Urgent, High, Medium, Low, No Rush).
 Specify whether the problem occurred in a production or test environment.

Contacting Oracle’s Siebel Technical Support
You can contact Technical Support online, by email, or by telephone. 

Worldwide Support Center
Telephone: 800-214-0400 or 650-341-0700
Oracle 3



Chapter 1 - About This Guide
Oracle’s Siebel SupportWeb
https://ebusiness.siebel.com/supportweb/

Email Support
mailto: siebelsupport@oracle.com
4 Oracle



Chapter

2
Overview and Getting Started
Introduction
This document explains the process of creating a third-party integration using the Siebel Brightware 
IDK. 

Figure 2-1. Siebel Brightware IDK

The Siebel Brightware IDK provides a comprehensive software development kit for creating 
applications that integrate Siebel Brightware applications with external third-party systems like 
CRM or CTI applications. Figure 2-1, “Siebel Brightware IDK” shows the typical third-party 
integration where the Siebel Brightware applications are running on an application server. These 
applications communicate to the third-party system through three main facilities: Event 
notification, the Database Interface (DBI), and Custom Action / Data Integration Plugins. While 
Figure 2-1 only shows one third-party system, concurrent integration of many such systems can be 
supported through the same means.

‘’’’’’
Oracle 5



Chapter 2 - Overview and Getting Started
IDK Components

The Database Interface (DBI) provides a completely Java Bean based API that provides access 
to Siebel Brightware data objects such as Agents, Queues, and Messages. See “Using the 
Database Interface”, on page 10 for an explanation of the Database API.
The Events API includes events to notify the partner applications of processes occurring in the 
components, for example placing an email message in a queue or changing the state of an 
Agent from online to offline. You code external responses as an event listener, which 
determines the response to the corresponding event. See “Using the Events API”, on page 15 
for an explanation of using the Events API.
The Custom Action / Data Integration Plugins API provides direct interaction with the 
Intelligence Engine via extension of NLP actions, and extraction / reaction to operations. 
Unlike the Event API, the Plugins are synchronous to the operations of the Siebel Brightware 
Server.

Development Process Overview
The recommended process of integration between Siebel Brightware and third-party applications is 
as follows:

Installation
The Siebel Brightware Server installer installs the IDK and supporting files, providing an 
environment suitable for IDK development.

Development
Once the IDK is installed, you can begin writing and testing your code. See Chapter 3, “The Event 
API and Database Interface”, on page 9 for an explanation of how to develop using the IDK.

Final Integration
Final integration involves installing the IDK on the production server, along with the integration 
classes you have developed.
6 Oracle



Integration Development Kit Guide
Environment
IDK development should be done on a development computer that is networked to a computer 
running the Siebel Brightware Server. See the Installation Guide for installation and configuration 
instructions.

IDK development requires that Sun’s Java Development Kit version 1.3 be installed on the 
development computer. While the IDK can be installed on the Siebel Brightware Server, it is 
recommended that the IDK be on a separate computer.

, Development should never occur on a production server or database!

Installation
The IDK is installed by default during any installation. It is installed from the Siebel Brightware 
installer. To install the Siebel Brightware IDK refer to the Installation Guide.

Before development can begin, the installed Siebel Brightware files must be set in your classpath. 
In the list below, the installationDir% directory represents the directory where you installed 
Siebel Brightware:

installationDir%\lib\common\common.jar
installationDir%\lib\common\components.jar

installationDir%\lib\common\components-boot.jar

installationDir%\lib\common\commons-collections.jar
installationDir%\cluster\lib\common\dependent.jar

installationDir%\cluster\lib\common\provider.jar

installationDir%\cluster\lib\common\bcmf.jar
installationDir%\cluster\lib\common\domain.jar

installationDir%\cluster\lib\common\log4j.jar

installationDir%\cluster\lib\common\server.jar
installationDir%\lib\common\xerces.jar

installationDir%\wlserver6.1\lib\weblogic.jar

installationDir%\lib\integration\integration.jar
installationDir%\jdk131\jre\lib\rt.jar

Once the files are added to your classpath, you are ready to begin development.
Oracle 7



Chapter 2 - Overview and Getting Started
Code Sample 2-1.  Sample Classpath
C:\edocs\Brightware\lib\common\common.jar;C:\edocs\Brightware\lib\
common\components.jar;C:\edocs\Brightware\lib\common\components-
boot.jar;C:\edocs\Brightware\lib\common\commons-
collections.jar;C:\edocs\Brightware\cluster\lib\common\dependent.j
ar;C:\edocs\Brightware\cluster\lib\common\provider.jar;C:\Pedocs\B
rightware\cluster\lib\common\bcmf.jar;C:\edocs\Brightware\cluster\
lib\common\domain.jar;C:\edocs\Brightware\cluster\lib\common\log4j
.jar;C:\edocs\Brightware\cluster\lib\common\server.jar;C:\edocs\Br
ightware\lib\common\xerces.jar;C:\edocs\Brightware\wlserver6.1\lib
\weblogic.jar;C:\edocs\Brightware\lib\integration\integration.jar;
C:\edocs\Brightware\jdk131\jre\lib\rt.jar
8 Oracle



Chapter

3
The Event API and Database Interface
Introduction
This chapter covers two components: The Events API and the Database Interface (DBI). The Events 
API is used when coordination between the Siebel Brightware application and third-party 
application is required, while the database interface can be used when access to Siebel Brightware 
data is needed. The sections below explain how to use both components.

Additional information and an example to aid your integration has been provided in the appendices:

Appendix A, “Understanding Event Sequences”
Appendix B, “Example Event Handler”

IDK Java Packages
The IDK Events API and DBI includes the following packages:

JavaDocs are installed with the IDK Events API and DBI. They can be accessed via the Start menu. 
Click the Start menu and select Programs. Then select Siebel Brightware, then Documentation, 
Java Docs, and finally click on IDK to display the JavaDocs. 

When running Siebel Brightware DBI or Event application make sure to set the system property 
com.firepond.provider.library.url to <Brightware Installation Dir>/platform\weblogic-platform.jar. For example: java -
Dcom.firepond.provider.library.url=file:\\\<Brightware Installation Dir>\platform\weblogic-platform.jar 
myDBIapp.class

Table 3-1. Siebel Brightware IDK Packages

Package Description

com.firepond.dbi Database Interface (DBI) classes

com.firepond.event base event classes

com.firepond.event.agent agent-related event classes

com.firepond.event.group group-related event classes

com.firepond.event.queue queue-related event classes

com.firepond.event.request request-related event classes

com.firepond.event.sponsor sponsor-related event classes

com.firepond.example example package explained in Appendix B
Oracle 9



Chapter 3 - The Event API and Database Interface
Using the Database Interface 
The DBI is a JavaBean-based interface to the Siebel Brightware system. It consists of Value Beans 
and Helper Beans. Value Beans are used to store the value of a stored object’s representation, while 
the Helper Beans perform utility functions, including returning Value Beans when required. Each 
Value Bean class has a corresponding helper and key class. The key class is simply the unique 
identifier for a Value Bean. It is used by the users of the system as well as internally for accessing 
specific Value Beans. 

Because the DBI package is a pure Java API, the steps required to use it are the same as those 
required to use any Java package: install the IDK and set the classpath, create an instance of the 
DBI, then write and execute your own implementation of the DBI classes.

Task 1: Install the IDK and set your classpath
Follow the instructions in Chapter 2, “Overview and Getting Started”, on page 5 to install the IDK 
files and set your classpath.

Task 2: Create an Instance of the DBI
In order to use the DBI you must first initialize it. This is accomplished by creating a new instance 
of the DBI class and supplying the constructor the proper values for dnsName and port. This will 
create a new instance of the DBI class as well as initialize the rest of the system. You do not need to 
store the newly created DBI instance, as it will never be used by you again. The code sample below 
performs this task:

Code Sample 3-1.  Initializing the DBI Class
DBI dbi = null;

dbi = new DBI("localhost", "7001");

In the example above, localhost should be replaced with the name of the server where the Siebel 
Brightware Server is running and the port represents the port on which the Siebel Brightware 
Server is listening, which will most likely be the same value as shown in the sample (7001).

Task 3: Implement the DBI Classes 
Once the DBI is initialized (and the server is up and running properly), all classes should be fully 
operational. What’s next depends on what you need to do. Consult the JavaDocs for a complete 
listing of all classes, attributes, and methods provided with the DBI.

In order to use the DBI you must import the com.firepond.dbi package in your code using the 
following line:

import com.firepond.dbi.*;

The following examples illustrate some of the tasks your implementation might perform.
10 Oracle



Integration Development Kit Guide
Example 1: Add an Agent
This example will add an agent profile to the Siebel Brightware database. The comments explain 
each step as it occurs. 

In order to add an agent you must first create an instance of the AgentBean (a value bean) and fill it 
with all required columns.

Code Sample 3-2.  Adding an Agent
AgentBean anAgentBean = null;

AgentHelperBean anAgentHelperBean = null;

// Create an empty instance of the value bean class

anAgentBean = new AgentBean();

// Fill the required fields

anAgentBean.setUserName("example agent");

anAgentBean.setFirstName("Example");

anAgentBean.setMiddleName("C.");

anAgentBean.setLastName("Agent");

anAgentBean.setEmailAddress("example.c.agent@somecompany.com");

anAgentBean.setNote("This is an agent created through the DBI");

// Create a helper and execute the add

anAgentHelperBean = new AgentHelperBean();

try {anAgentHelperBean.add(anAgentBean);

catch (HelperException e) {

System.out.println("Helper exception : " + e.toString());

}

catch (InvalidObjectStateException e) {

System.out.println("you didn't fill in all the required fields." +

e.toString());

}

The add method will fill in the primary key for the newly added agent so you can find it again if you 
need to refresh the state. 
Oracle 11



Chapter 3 - The Event API and Database Interface
Example 2: Retrieve Data
All helper beans have getter methods to get instances of the value beans. Lets go through an 
example of getting some data from the system. To expand on the example above, this example will 
retrieve a vector of the agent bean created in the first example.

Code Sample 3-3.  Retrieve Agent Data
// Declare a vector to store the results

Vector      aVector = null;

Enumeration anEnum  = null;

// Ask the helper bean to return all the agents in the system

aVector = anAgentBeanHelper.getAgents();

anEnum = aVector.elements();

while (anEnum.hasMoreElements()) {

anAgentBean = (AgentBean) anEnum.nextElement();

/*

* Do something with the AgentBean instance

*/

}

All helper beans work in this same way: they return a vector of the beans that are requested. If no 
beans are found, an empty Vector will be returned. All helper beans check the validity of the value 
bean passed to them if you are trying to add, update, or remove a bean and will throw an 
InvalidObjectStateException if something is incorrect and it can’t save the bean contents.

Example 3: Searching with Keys
These methods require you to pass the key class from the desired bean. To accommodate this 
feature, all Value Beans have a method on them to get the key class from the bean instance. This 
allows you to navigate through the object hierarchy without having to create a key instance yourself.

Continuing with the example above, if you wanted to find all the requests associated with one of the 
agents returned by the getAgents() method that was called above you could do the following:

Code Sample 3-4.  Searching with Keys
Vector requests = null;

RequestHelperBean aRequestHelperBean = new RequestHelperBean();

requests = aRequestHelperBean.getRequestByAgent(anAgentBean.getKey());

This will return a Vector of RequestBeans that are assigned to the agent (anAgentBean).

Example 4: Search Using Status
Some helper methods require a list of states or status codes in order to get the desired beans 
returned. For example the RequestHelperBean allows you to find requests by their current state. To 
find requests matching more than one state you logically OR the states together to get the desired 
output. For example, the code below will retrieve all the requests that are open and all the requests 
that are pending in the system. 
12 Oracle



Integration Development Kit Guide
Code Sample 3-5.  Specifying Requests Types
aVector = aRequestHelperBean. getRequests(

RequestBean.OPEN | RequestBean.PENDING);

All methods that can accept this type of parameter are marked in the JavaDoc.

Example 5: Search Using Actor Key
The RequestHelperBean has some methods that allow you to assign requests to queues and agents. 
These all accept an ActorKey as their initial parameter. An ActorKey represents the Agent or 
Supervisor that is performing the action requested. Code Sample 3-6,“Using the ActorKey” below 
demonstrates use of the ActorKey to reassign a request to a specific queue.

Code Sample 3-6.  Using the ActorKey
/* Assign a request to a queue specifying an agent as 

 * the one performing the assignment

 */

aRequestHelperBean.assignRequestToQueue(anAgentBean.getKey(),  

aRequestBean.getKey(),

aQueueBean.getKey(), aReasonCodeBean,"initial assignment of this 

request to a queue");

Notice that this method has a few more parameters than previous examples. These are ReasonCode 
and a free form comment used to explain the reason for the action. You can get a list of 
AssignmentReasonCodeBeans from the AssignmentReasonCodeHelperBean.
Oracle 13



Chapter 3 - The Event API and Database Interface
Example 6: Using the AttachmentHelperBean
The AttachmentHelperBean deserves further explanation. This bean represents a file attachment 
on a MessageBean and can be used to get the actual file down from the persistent store, storing it on 
the local hard drive. Code Sample 3-7,“Using the AttachmentHelperBean” below demonstrates the 
use of the AttachmentHelperBean. In this example, a message bean key is used to find all the 
attachments for the message specified. It then downloads all the files associated with the message 
to the local disk and places them in the c:\temp directory. The bean uses the original name of the 
file which is stored in the description attribute of the MessageBean object.

The downloadAttachmentFile method will throw an Exception if the file is already there.

Code Sample 3-7.  Using the AttachmentHelperBean
Vector aVector = null;

Enumeration anEnum = null;

/*

 * Create an instance of the helper and declare 

 * a place to hold our returned value bean.

 */

AttachmentHelperBean anAttachmentHelperBean = 

new AttachmentHelperBean();

AttachmentBean anAttachmentBean = null;

/* This is where we actually get the bean. You must locate

* it based on the message that it is attached to.

*/

aVector = anAttachmentHelperBean.getAttachments(aMessage.getKey());

anEnum = aVector.elements();

while (anEnum.hasMoreElements()) {

anAttachmentBean = (AttachmentBean) anEnum.nextElement();

/*

* This will write the file out to the directory

* c:\temp using the original name for the file.

*/

try {

anAttachmentHelperBean.downloadAttachmentFile(

anAttachmentBean.getKey(), "c:\temp\"+ anAttachmentBean.getDescription());

} catch (HelperException e) {System.out.println(e.toString());

}

}

14 Oracle



Integration Development Kit Guide
Using the Events API
Before attempting to integrate with other applications, you must have a thorough understanding of 
how Siebel Brightware processes mail. See the Contact Center Console Guide for an overview of 
message flow through the Siebel Brightware system.

The Events API is intended to be used to allow one or more third-party applications to be notified 
of the actions occurring within a running Siebel Brightware system. During normal operation, 
Queue Manager, the Contact Center Console, the Agent desktop, and the Intelligence Engine all 
communicate with the Siebel Brightware Server. Actions that agents, supervisors, Queue Manager, 
and the Intelligence Engine perform cause events to “fire” from the Siebel Brightware Server to the 
third-party system. These events are asynchronous to the operation of the Siebel Brightware Server, 
and are also queued to allow the third-party system to handle them at its own pace. The events, 
small Java objects, are transmitted or signaled to the third-party’s EventListeners via Remote 
Method Invocation (RMI). You write EventListeners that will listen for and respond to the events 
when they are signaled. For example, an event listener could invoke the Database Interface to 
access or modify Siebel Brightware data objects.

Basic Integration Tasks
While your integration will depend upon your needs, there are certain tasks that all integrations 
must perform to get up and running. These are:

Import the IDK classes.
Declare an EventListener.
Initialize the Event Registry and your EventListener.
Unregister the EventListener.

Additional information and an example to aid your integration has been provided in the appendices:

Appendix A, “Understanding Event Sequences”
Appendix B, “Example Event Handler”

Task 1: Import the IDK Classes
To use the Events API you must import the following packages in your code:

Code Sample 3-8.  Import Statements for EventListener
import com.firepond.event.*;

import com.firepond.event.agent.*;

import com.firepond.event.queue.*;

import com.firepond.event.group.*;

import com.firepond.event.request.*;

import com.firepond.event.sponsor.*;
Oracle 15



Chapter 3 - The Event API and Database Interface
Task 2: Declare an EventListener
Declaring an event listener for the specific event of interest is as easy as declaring a new class that 
implements the com.firepond.event.EventListener interface. The code sample below declares 
a new ServerStartedEventListener:

Code Sample 3-9.  Declaring an EventListener
public class ServerStartedEventListener implements EventListener, Serializable 
{

/** Listen for ServerStartedEvent. If received, it will call log it to 

* the console

* @param event The event that is being signalled

* @since 1.0

*/

public void signal( Event event ) {

try {if ( ! (event instanceof ServerStartedEvent)) {

System.out.println( "ServerStartedEventListener: Wrong event,"  

+ event.toString() );

return;

}

System.out.println( "ServerStartedEventListener: received" );

} catch (Exception ex) {System.out.println( 

"ServerStartedEventListener: " + ex );

}

}

}

Task 3: Initialize the EventListener Registry and Event Listeners
After declaring event listeners for each event of interest, the integration component should initialize 
the EventRegistry and register the event listeners. Initializing the EventRegistry also connects 
the integration component to the Siebel Brightware Server. 

, Be sure to specify the DNS name of the computer running the queue manager and the port on which that server is 
listening.

The events registry is initialized as illustrated below:

Code Sample 3-10.  Initializing the Event Registry
// Initialize the Event registry.  Connects to the server.

EventRegistry registry = null;

String serverName = "myServer";

int port = 7001;

try {System.out.println( "start: Connecting to " + serverName );

DependentParameters.initProvidersForStandaloneApplication(serverName,PORT);

registry = new EventRegistry( "example", serverName, port, false );
16 Oracle



Integration Development Kit Guide
System.out.println( "start: Connected to " + serverName );

} catch (Exception e) {

System.out.println( "start: Can not locate the server, " + serverName 

+ ": " + e.toString() );

throw e;

}

Registering event listeners is also a simple process. Code Sample 3-11,“Registering 
EventListener” below registers an example event listener. In the sample code below 
registry.register(CreatedAgentEvent.class, new CreatedAgentEventListener()) 
registers an instance of the class CreatedAgentEventListener to listen only for the 
CreatedAgentEvent. The CreatedAgentEventListener's signal(Event event) method will 
only be invoked if the CreatedAgentEvent occurs. 

The first argument in the above call can be any IDK Event located in the following packages: 
com.firepond.event.agent, com.firepond.event.queue, com.firepond.event.group, 
com.firepond.event.request, com.firepond.event.sponsor 

Code Sample 3-11.  Registering EventListener
// Register event handlers

try {registry.register(ServerStartedEvent.class,new 
ServerStartedEventListener());

registry.register(CreatedAgentEvent.class, new CreatedAgentEventListener());

} catch (Exception e) {System.out.println( "start: Failed to register 
listener: " + e.toString() );

throw e;

}

Once registered, a listener will be invoked when the event occurs by calling the signal(Event 
event) method with the event that occurred as shown in Code Sample 3-9, on page 16.
Oracle 17



Chapter 3 - The Event API and Database Interface
Task 4: Unregister your EventListener
When the Siebel Brightware Server is shut down, the event listeners should be unregistered and the 
event registry shut down as well. Code Sample 3-12,“Unregister Event Listener and Quit the Event 
Registry” below uses the unregister method to unregister the listener and the terminate method to 
shut down the registry.

Code Sample 3-12.  Unregister Event Listener and Quit the Event Registry
public void stop()throws Exception

{

// Unregister event handlers

try {registry.unregister( ServerStartedEvent.class );

registry.unregister( CreatedAgentEvent.class );

} catch (Exception e) {

System.out.println( "stop: Failed to unregister from event" );

throw e;

}

// Terminate the registry - disconnects it from the server 
registry.terminate();

}

Debugging
Edit the following section in the \cluster\lib\common\log-config.xml file installed on the Siebel 
Brightware Server and set priority value to “info”. This will cause the Siebel Brightware Server to 
log each event to the console.

<category name="fp.integration">

  <priority value="debug" />

</category> 

You can generate logging on the client by passing true as the last parameter to the EventRegistry 
constructor. Initialized this way, EventRegistry will generate an event.log file on disk where 
information about the event registry is displayed. This log file will be created in the current 
directory. The log will show initialization of the registry, each event that the client receives, and 
termination of the registry.
18 Oracle



Chapter

4
Workflow (Agent Desktop) Integration
Introduction
Siebel Brightware provides the tools and information necessary to assist an agent in quickly and 
accurately processing a message for a customer. The Desktop Agent interface provides access to 
relevant information that is managed and maintained “inside” the system (for example: suggested 
responses and action history). There may be times, however, when an agent is processing a message 
and requires access to information maintained “outside” the Siebel Brightware product.

Access to outside information can be used to:

1. Extract information from external information stores or systems and use it to embellish the 
current response.

2. Take information supplied by the customer and update other information stores or systems.

The use of variables, custom actions, and the IDK in general can often be used to provide access to 
outside information when possible without Agent interaction. It is worth recognizing that 
companies often have considerable investments in existing legacy applications that could be 
harnessed to help an Agent compose an appropriate response or process information. It is the goal 
of the Siebel Brightware product to make integration with existing third-party applications as 
smooth and seamless as possible. Part of fulfilling this goal involves allowing the Agent Desktop 
application to be integrated with other applications.

The Approach
The Agent Desktop has been developed as a thin-client browser-based application. This aspect is 
one reason it is possible to integrate the Agent Desktop with other applications. For example, since 
the content rendered within the browser is all HTML, it is possible to use HTML framesets 
consisting of multiple frames, some of which derive their content from the standard Siebel 
Brightware product, while other frames in the same screen display relevant content rendered by 
other complementary applications. Furthermore, JavaScript and XML, downloaded within the 
HTML, can also be used in countless ways.

Examples of how JavaScript, downloaded within a page, can be employed to create an 
enhanced Agent Desktop environment:

Popup a new window linked to a third-party browser-based application.
Pass data between different frames or windows on the client side.
Execute methods on a downloaded applet or ActiveX object designed to interact with stand-
alone desktop applications or client-server systems.
Oracle 19



Chapter 4 - Workflow (Agent Desktop) Integration
Figure 4-1. Example of Agent Desktop Integration

Considering the flexibility of HTML, JavaScript, and XML, along with the ability to download 
ActiveX objects and proprietary applets within the HTML, the integration possibilities on the Agent 
Desktop client computer are endless.

Besides the power and flexibility of HTML and JavaScript, three distinct aspects of the Siebel 
Brightware architecture play an important role in making a meaningful integration within the Agent 
Desktop possible:

1. Use and distribution of XSL templates to render content.
2. Access to the “Agent Desktop context” (for use by external applications).
3. Access to the database integration API provided by the IDK.

Use and Distribution of XSL
XSL is a J2EE standard that is used in the Agent Desktop architecture. Instead of having content 
rendered by servlets streamed directly to the browser, most of the servlets within the Agent Desktop 
generate data in the form of XML. The XML is then merged with XSL templates of the server (using 
XSLT) to create the final HTML content which is streamed back to the client’s browser. While the 
XML data is generated dynamically for each request to the server, the XSL is in the form of static 
text files, in a readable form, and are distributed with the application. It is therefore both possible 
and practical for an integrator to modify these XSL files after installing the product with the help of 
any text editor. Integrators could use this as a means of modifying the effective layout, content, and 
the “look and feel” of the Agent Desktop application.
20 Oracle



Integration Development Kit Guide
Examples of changes made through modifying the XSL include (but are not limited to):

Modification of framesets
Changing references to images
Colors
Fonts
Addition of both HTML and JavaScript

To locate a list of all XSL files used within the product, see the contents of the install folder, under 
\config\eservice\applications\DefaultWebApp_myserver.

Some of these XSL files are used to generate corresponding HTML files at the time the server is 
started (you can tell these files apart by looking at the file timestamps). These files are not context-
sensitive to a particular agent or to a particular message being processed. However, the remainder 
of the XSL files are used to generate HTML at runtime, and could therefore be context-sensitive to 
a specific agent and the message they are currently processing. The naming convention of the XSL 
files makes it easy to correlate them with where they are used within the Agent Desktop.

Access to the “Agent Desktop Context”
Modifications to the XSL is in itself sufficient to allow changing the branding or linking to external 
applications from within the Agent Desktop. However, in most cases that action alone is unlikely 
to be enough to achieve a meaningful integration of the Agent Desktop. This is because third-party 
applications will often require information about the state of a particular Agent’s desktop in order 
to be able to display relevant information. In other words, the “integrated third-party application” 
needs to be provided the “context” of the agent’s desktop in order to allow it to function in a 
“context-sensitive” manner. 

For example, to integrate an external application which displays a customer’s account information 
would require some means of establishing the customer’s identity; such as the customer’s “from 
address” (which is part of the “Agent Desktop Context”).

Two separate means are provided to make the “Agent Desktop Context” available:

1. Through elements published in XML.
2. Through defined variables within a dynamic JavaScript file.

Elements published in XML
This technique has not been made widely available–it is limited for now to use within 
WorkingRequest.xsl and WorkingRequestForm.xsl. As alluded to earlier, the XSL standard allows 
one to extract the values supplied in XML elements and to use them to control the generated HTML 
output. Different XML elements are generated dynamically by different servlets within the product, 
depending on the context in which they are invoked. Whenever one of the two XSL files (referred 
to above) is invoked, the following XML elements are also defined, and are therefore available for 
referencing within the XSL: 

MESSAGE_ID
FROM
Oracle 21



Chapter 4 - Workflow (Agent Desktop) Integration
REQUEST_ID
QUEUE_ID
SPONSOR_ID
ORIGINAL_MSG_ID
AGENT_ID

These elements are child elements of the HEADER element. For example, part of the XML 
generated at runtime might look something like this:

<HEADER>

<MESSAGE_ID> 802 </MESSAGE_ID>

<FROM> customer@myclient.com </FROM>

<REQUEST_ID> 107 </REQUEST_ID>

...

...

</HEADER>

Refer to the WorkingRequest_X.xsl file as an example of how XSL tags can be used to extract the 
contextual information from the XML elements described above. This file is not actually used by 
the system, but could be used to replace WorkingRequest.xsl to provide a demonstration of what is 
possible. In the example, an additional frame is created within the “working request view”. The 
frame is designed to receive its content from an external URL (in this case www.edocs.com), and to 
have specific information from the Agent Desktop Context passed to it as parameters. See Figure 4-
1, “Example of Agent Desktop Integration”, on page 20.

Variable Defined within Dynamic JavaScript
This technique is more widely available–it involves accessing and using the attributes of the Agent 
Desktop Context and is actually easier to use. A special servlet has been created to provide access 
to attributes of the Agent Desktop Context. This is done through JavaScript variables defined within 
a JS file. Since the context is different for each agent, this is not a static JavaScript file, but is instead 
generated dynamically, and therefore dependent upon the HTTP session. On any particular server 
(<myserver>) this file can be accessed at:

http://<myserver>:portnumber/WadContext.js

or for example:

http://localhost:7001/WadContext.js

An example of what you might expect to be returned by a request to WadContext.js:

WAD_MESSAGE_ID = 771;

WAD_REQUEST_ID = 602;

WAD_FROM = 'agent20@mycompany.com';

WAD_ORIGINAL_MSG_ID = 770;

WAD_QUEUE_ID = 102;

WAD_SPONSOR_ID = 2;

WAD_AGENT_ID = 120;
22 Oracle



Integration Development Kit Guide
The response effectively defines several JavaScript variables (WAD_MESSAGE_ID, 
WAD_REQUEST_ID, etc). By including a link to this JavaScript in any HTML or XSL file, you 
can reference and use the defined values in a variety of ways. For example, here’s the HTML code 
to create a link to WadContext.js:

<SCRIPT SRC="WadContext.js" language="JavaScript"></SCRIPT>

Here is how you might use the defined variables:

<SCRIPT>
function useWadContext()
{

sURL = "http://www.yahoo.com?from=" + WAD_FROM +
"&amp;agent=" + WAD_AGENT_ID;
window.open(sURL, 'my_new_window');

}
</SCRIPT>

The function could then be called in a variety of ways, for example:

<a href="#" onclick="javascript:useWadContext();">

More info...

</a>

The WadContext.js file could be referenced in HTML files served up by any application on any 
application server–not just the set of XSL files within the Siebel Brightware product. The right set 
of values will be retrieved as long as the HTTP request is made from the same session as is used by 
the Agent Desktop. The variables will all be initialized to zero if the HTTP request is not made from 
the same session as used by Agent Desktop.

The WadContext.js file can also be used to acquire the values of all the variables 
(Extraction/Match/Phrase/External) defined within the context of a request. This can be done by 
passing it a parameter named “variables”. For example:

<SCRIPT SRC="WadContext.js?variables" language="JavaScript"></SCRIPT>

The resulting generated JavaScript will then include JavaScript variables for all the defined system 
variables. This feature is highly significant because the values of variables extracted from an 
incoming message are often the most relevant information that needs to be passed on to external 
systems. Variable values can be accessed and passed on in this manner without the need to write 
additional supporting IDK code.

Access to Database Integration API Provided by the IDK
The IDK’s database integration kit (DBI) provides the ability to retrieve data from different kinds 
of Siebel Brightware databases. The Agent Desktop Context provides access to the values of certain 
fields (such as the Request ID) which can then be used to retrieve any amount of more detailed 
information, if necessary, through the DBI. Without access to the Agent Desktop Context, it is not 
possible to use the IDK alone to suitably parameterize other applications so that they provide 
context-sensitive content. At the same time, the set of keys provided in the context will not provide 
Oracle 23



Chapter 4 - Workflow (Agent Desktop) Integration
access to the depth of information that is sometimes required–it merely provides access to the “tip 
of the iceberg”. Therefore, the Agent Desktop Integration complements the functionality available 
through the IDK. 

Examples of Integration Scenarios and Possibilities
A new frame can be created to link to a browser-based third-party application, and pass 
relevant information from the desktop context to parameterize it appropriately.
A hyperlink can be added into one of the existing pages that, when clicked, pops up a new 
window that is linked to an external application (that once again is suitably parameterized with 
the agent desktop context).
JavaScript can be added into an existing page (WorkingRequestForm.xsl, for example) that 
will cause a new window to pop up automatically as soon as the page is loaded.
Instead of linking directly to an external application, one could link to a servlet deployed with 
the rest of the Siebel Brightware application. This custom-built servlet could use IDK to 
extract more data, perform some processing, and then perform one of two things:

• Serve up the response itself, or
• Redirect to a different URL (possibly external) with an updated set of parameters

In all the examples, it is largely assumed that the application being integrated with is deployed on a 
web server capable of accepting HTTP requests and serving up browser-based content. That 
however, does not always need to be the case. It is possible to integrate with non web-based 
applications as well–it is just more cumbersome. To launch a “thick client” application on the 
agent’s desktop, an applet or ActiveX object can be embedded within the downloaded HTML. The 
ActiveX object could be custom built using a tool like Microsoft Visual Basic, and designed to 
launch and then interact with any kind of application on the agent’s computer. For example, each 
time a new message is processed by the agent, JavaScript can be used to invoke methods on the 
downloaded ActiveX object that will in turn update the context of the complimentary stand-alone 
third-party application.

, Even though modification of branding functionality through changes to the XSL files are made technically possible, 
arbitrary modifications to the XSL by third-party implementers and system integrators could possibly detract from 
the functionality of the product, or even introduce defects! Further, such modifications (if made) cannot be 
supported by Siebel Brightware Technical Support, or remain intact when the product is upgraded from one 
version to a newer one. However, it is believed that to achieve a meaningful integration, minimal changes to a very 
small subset of the available XSL files are generally required, and system integrators will need to reintroduce the 
changes to a newly installed upgraded version of the product.
24 Oracle



Chapter

5
HTML Formatting of Outbound Messages
This chapter describes the concept of HTML Formatting of Outbound Messages and how to 
configure a template to allow this feature to be used within the Agent Desktop application.

Introduction
Branding plays an important part in building every company’s image. The email messages that 
contain responses to customers also play an important role in creating and building perceptions of 
the company that sends them. The more professional looking the email, the more positive its effect 
on the image of the company. Allowing outgoing email messages to be formatted as HTML opens 
up a world of possibilities for creating professional looking messages. HTML formatting allows the 
use of background images, company logos, and fine control over colors and fonts. It also offers the 
use of forms or the inclusion of hyperlinks to a company’s corporate website (for example).

Figure 5-1. Standard plain-text message.
Oracle 25



Chapter 5 - HTML Formatting of Outbound Messages
Figure 5-2. HTML enhanced message.

Features
Siebel Brightware support for HTML formatting of outbound messages features the following:

Ability to insert images (to support the use of company logos) and alter fonts and colors.
Ability to use background images to create the effect of using “stationery”.
The addition of HTML support does not change the way an Agent or Supervisor interacts with 
the system (the User Interface design and underlying infrastructure for creating responses, 
such as reviewing, forwarding, assigning, transferring, and rejecting messages all remain 
unaffected).
Ability to use templates to allow automatic compliance with approved company branding and 
formatting standards of every message leaving the system.
Allows messages to be uniquely formatted for the different Business Units and queues (if 
desired) by using different templates for each.
Allows Agents to preview the formatted version of a message.
The different parts of the message (original message, tracking text, and the reply) can receive 
different formatting options.
26 Oracle



Integration Development Kit Guide
Supports plain-text formatting in addition to HTML. Support for plain-text is important 
because it is the lowest common denominator supported by even the most primitive of mail 
clients.
Identifies the mail client signature used to generate an incoming message and provides the 
ability to format messages based on the mail client used. Allows “optimistic” and 
“pessimistic” options that dictate if an outgoing message is formatted as HTML or plain-text.
Allows expansion of recognized mail clients list through the modification of a configuration 
file (without the need for code changes).
Allows the use of a formatting template even for messages sent in plain-text. It can, however, 
be used to enhance the text with headers and footers to provide a suitable alternative to HTML 
elements (such as images).
When using HTML formatting, an option is available to send out HTML and plain-text as 
separate parts of a multipart message – allowing messages to be viewed in both formats.
Supports the option of using plain-text or HTML at a Business Unit level rather than just as 
one system-wide setting.

Template Configuration
The approach used in formatting a message as HTML involves the provision and use of a template. 
This alleviates the need for an Agent to spend time and energy applying formatting to individual 
messages, and ensures the consistent branding of all outgoing messages across all Agents. The 
template is used to format a message when an Agent invokes the preview function within the Agent 
Desktop (working request view) as well as when the Outbound Mail Handler sends out a message.

A single physical file named OutboundMsg.xsl represents the template for all outbound messages. 
This file is located within the install folder:

\config\eservice\applications\DefaultWebApp_myserver

This one file can contain several different templates that could be applied as needed for use with 
different Business Units and queues. The file can also contain a template that would be used 
exclusively to format messages intended for plain-text.

At runtime, the components of the application merge the response in the form of an XML document 
with the template (an XSL file) to generate the message that is sent to the client. The XML 
document contains several different kinds of XML elements that represent various parts of the 
message as well as information about it – such as which Business Unit and queue it came from. The 
information in these XML elements are used in the XSL template (XSL essentially is a template for 
generating HTML).

XSL is a well documented non-proprietary standard and it is beyond of the scope of this document 
to cover. An elementary understanding of the XSL syntax is required to configure or customize a 
template. An alternative is to use one of many third-party off-the-shelf tools to edit the XSL file. 
The Siebel Brightware product already includes a basic usable out-of-the-box template, as well as 
a sample of a template file (OutboundMsg_X.xsl) that demonstrates many of the formatting 
possibilities. For example, how to achieve a distinct look and feel for different Business Units or 
hide the tracking text.
Oracle 27



Chapter 5 - HTML Formatting of Outbound Messages
The following is a list of XML elements generated within the XML document that represent an 
outgoing message: <root>, <reply>, <trackingText>, <originalMessage>, <sponsor>, <queue>, and 
<plainText>. The <root> element is the parent of all the other elements. 

NOTE: The <sponsor> element represents the business unit.

For example, an XML document for a message might look similar to this:

<root>

<reply>

Dear Sir,

Thanks for contacting us. We will be responding within the

next few days with the information you requested.

</reply>

<trackingText>

TRACKING NUMBER: A00000000604-00000001268

</trackingText>

<originalMessage>

-----Original Message-----

From: customer@edocs.com

Sent: 25 Nov 02 16:55:28

To: sales@coldwaterfinancial.com

Cc: 

Subject: Enquiry

Hi,

Could you please enlighten me? (Soon!)

</originalMessage>

<sponsor> Initial </sponsor>

<queue> Sales & Service </queue>

<plainText> true </plainText>

</root>
28 Oracle



Integration Development Kit Guide
Support for Mail Clients Incapable of Rendering HTML
There are many reasons why a company would want to send the majority of messages formatted as 
HTML. However, as mentioned earlier, it is important to have some support for primitive mail 
clients that cannot recognize HTML content.

Siebel Brightware provides several levels of support for primitive mail clients and several 
configuration options that will determine how a message is formatted:

The use of HTML in formatting messages can be disabled for any specific Business Unit or all 
Business Units. This can be specified under the Business Unit tab from the Contact Center 
Console. HTML formatting is enabled by default. If it is disabled, messages will be sent as 
plain-text, regardless of the kind of mail client used by the mail recipient.
A system wide setting is provided to allow a Supervisor or System Administrator to specify 
that whenever a message is being formatted as HTML, a textual representation of the same 
message should be included – just in case the mail client cannot recognize HTML. This is done 
by sending out a multi-part MIME message, one part contains HTML and the other contains 
plain-text. Different mail clients have different ways of displaying multi-part messages. 
Outlook Express may display the different parts one below the other, while Outlook would 
display the plain-text part as an attachment on the primary (HTML) message. This setting is 
provided through the configuration parameter called always.include.plaintext.version and is 
turned off by default.
The decision of whether or not to use HTML formatting can be based on the mail client used 
to send out the original incoming message. The system detects the signature of the mail client 
used to send an incoming email message. This corresponds to the X-Mailer header of the 
email. Each mail client has a unique signature. Based upon a knowledge of which common 
mail clients do or do not support HTML, and their signatures, the best decision can be made 
about whether or not to use HTML in outbound messages. Three configuration parameters are 
provided with relation to this feature:

• The parameter plain.text.email.clients should be used to configure a semicolon 
delimited list of signatures of all mail clients that cannot read HTML. For example, the 
signature for AOL Version 4.0 will be a member of this list. Each element of the list 
need only be a sub-string of the entire X-Mailer header. This list is incomplete since 
there are a large number of obscure or little-used mail clients in use. The more 
complete the list is, the more effective it will be. The completeness of this list is only 
relevant when the optimistic option is in use (see the third bullet below).

• The parameter html.enabled.email.clients should be used to configure a semicolon 
delimited list of signatures of all mail clients that are known to read HTML. This list is 
incomplete. The more complete it is, the more effective it will be. The completeness of 
this list is only relevant when the pessimistic option is in use (see the third bullet 
below).
Oracle 29



Chapter 5 - HTML Formatting of Outbound Messages
• The parameter named use.html.formatting.optimistically is what eventually dictates 
the algorithm used to decide what format should be used. It also dictates which of the 
two lists becomes relevant. 

Optimistic Approach: If this parameter is set to true, HTML formatting is used unless 
the mail client of the recipient definitively belongs to the category of known clients that 
cannot read HTML.

Pessimistic Approach: If this parameter is set to false, HTML formatting is used only 
if the mail client of the recipient is one of the clients definitively known to be able to 
read HTML. This is the safer approach, and what is used if the reliability of email 
responses is especially important. Note that most clients that cannot render HTML can 
still read HTML and render it as plain-text anyway – making HTML the more viable 
choice.

Since the lists of mail client signatures are configurable, they can be progressively updated by System 
Administrators without changes to the core product. Its important to note, that even if the lists are trivial, they can 
still be effective. For example, if the only element of the HTML enabled client list consisted only of the word 
Outlook, and one also chose the pessimistic option, it would still make it possible to reach over 60% of clients with 
HTML, while the remainder would receive plain-text (which is better than 100% of clients receiving plain-text).

In addition to the above, support for use of templates in formatting and message composition is 
provided even if a message is being sent as plain-text. This allows an outgoing message to be 
enhanced with additional content (such as headers and footers) just as is the case for HTML 
messages. The XML element <plainText> passed to the template holds the value of true or false, and 
is provided for just this purpose.
30 Oracle



Appendix

A
Understanding Event Sequences
Introduction
This appendix is provided to give you a background of what activities occur within the Siebel 
Brightware application during certain actions. Use these scenario explanations to plan your 
integration, or use the JavaDocs to determine how to best integrate your applications.

Server Startup Processes
The Siebel Brightware or third-party systems may be started in any order. The integration must 
handle this requirement. How this requirement is satisfied is left to the integrator.

When the Siebel Brightware system starts, it initializes many components and draws upon the 
information in the variable-pool.xml file. In terms of integration, the important components are 
RMI, JMS, the Event Registry, and the Event Topics. During startup, the Siebel Brightware Server 
will attempt to start an external process specified in the configuration file. After the Siebel 
Brightware Server has completed its initialization it will fire the ServerStarted event. Your 
integration code can be started by the exec()call. It should register a listener for each event that you 
find important. The integration code can also initialize the DBI at this time (see Figure A-1, on 
page 32).

, Please note that the variable-pool.xml file contains information the system requires to run. This file is located in the 
install directory and should not be moved.
Oracle 31



Appendix A - Understanding Event Sequences
Figure A-1. Server Startup

The external process started by the exec call is configurable in the config.cml file as is the delay 
from starting the external process to the signaling of the ServerStarted event. Code Sample A-1, 
“config.cml”, on page 32 is a snippet from config.cml, an XML based configuration file for 
the server. This file is found in the root directory of the Siebel Brightware Server installation. The 
external process is configured using the eventservice parameter. It must follow the standards for 
an executable process. The value of the trace parameter will be appended to the eventservice 
parameter as an argument. You can configure a delay in milliseconds using the startupdelay 
parameter.

Code Sample A-1.  config.cml
<application name="Firepond.event.application">
      <dependency application="Firepond.bus.application"/>

      <instance instance-of="Firepond.event.registry" name="Firepond.event.handler">

          <parameter-group>

              <parameter-group name="event">
                  <parameter name="shutdowndelay" value="5000"/>

                  <parameter name="eventservice" value="starteventcompatibility.cmd"/>

                  <parameter name="eventorder" value="true"/>
                  <parameter name="trace" value="false"/>

                  <parameter name="startupdelay" value="40000"/>

              </parameter-group>
          </parameter-group>

      </instance>

  </application>
32 Oracle



Integration Development Kit Guide
The remainder of this discussion assumes that the Integration Component, shown in Figure A-1, on 
page 32, was started using the exec() command from the Siebel Brightware Server. The 
Integration component should create an EventRegistry and register an EventListener for each 
event of interest. The remaining event scenario diagrams assume that the startup and registration 
process is complete.

Server Shutdown Processes
The Siebel Brightware or third-party systems may be shut down in any order.

Figure A-2. Siebel Brightware Server Shutdown

See Figure A-2, “Siebel Brightware Server Shutdown” above. When the Siebel Brightware Server 
stops, it signals the ServerStopped event, waits a short time, and then terminates the Integration 
Component started during the Siebel Brightware Server startup procedure as in Figure A-1, “Server 
Startup”. You can configure the delay between the ServerStopped event and the termination of the 
Integration Component in the config.cml file. The shutdowndelay parameter in Code Sample A-
1,“config.cml” expresses this delay in milliseconds.
Oracle 33



Appendix A - Understanding Event Sequences
Siebel Brightware Component Processes and Event Firing
The following section describes the Events API.

Intelligence Engine

1. Start the Intelligence Engine.
ApplicationStartedEvent("firepond.answeragent.application" ) 
ServerStartedEvent

2. Retrieves a new email from the mail server, determines which Business Unit the request 
belongs to and stores the request in the Inbound Queue of that Business Unit.

EnqueueEvent(Inbound)
3. Analyze the request email content and determine the intent. Upon completing NLP 

processing the request is stored in the database.
CreatedRequestEvent
AssignMessage(AA)
DeliveredMessageEvent(AA) 
UnAssignMessage(AA)
DequeueEvent(INBOUND)
DequeueEvent(OUTBOUND) in case when you have Enqueue(outbound)

4. Based on the intent and action rules defined in the knowledge base, it proceeds to one of the 
following:
(a) If the request is Threaded (this event will fire even when threading is disabled).

ThreadedRequestReceivedEvent
(b) If the intent is certain and the Auto Response feature is on, then generate the auto reply 
and close the request.

AutoReplySentEvent 
ClosedRequestEvent
EnqueueEvent(OUTBOUND) 
DequeueEvent

(c) Otherwise bundle the suggested replies, if any, to the request and assign the request to a 
queue.

RequestAssignedbyAnswerEvent
EnqueueEvent(SUBJECT)

(d) If an incoming request triggers an auto close rule then:
CloseRequestEvent
EnqueueEvent(INBOUND)
DequeueEvent(OUTBOUND)

5. If Auto Acknowledge feature is on then generate auto acknowledge reply for the request.
AutoAcknowledgeReplySentEvent 
EnqueueEvent(OUTBOUND)
34 Oracle



Integration Development Kit Guide
DequeueEvent
6. Cycle repeats starting at step 2.
7. Siebel Brightware Intelligence Engine stops.

ApplicationStoppedEvent("firepond.answeragent.application" )
ServerStoppedEvent

Queue Manager

1. Queue Manager server is started.
ApplicationStartedEvent("firepond.email.router.application" )
ServerStartedEvent

2. The Contact Center database is polled at a predefined interval.
(a) If any outbound request replies are seen, then send them out via the connected email 
server.

ReplySentEvent
DequeueEvent(OUTBOUND)

(b) If an available agent and a request that has been directly assigned to that agent are seen, 
then deliver the request to the agent.

DeliveredRequestEvent 
DeliveredMessageEvent

(c) If an available agent is found, then deliver a request that is waiting in a queue to the agent 
based on the routing criteria.

DeliveredRequestEvent 
AssignedMessageEvent
DeliveredMessageEvent

3. QueueManager detects change in queue status. 
QueueOKEvent
QueueWarningEvent
QueueCriticalEvent

4. Queue Manager server is shutdown.
ApplicationStoppedEvent("firepond.email.router.application" )
ServerStoppedEvent

Agent Desktop

1. Agent Desktop launched by the agent. Agent state changed to online.
AgentOnlineEvent
MakeAgentOnlineEvent

2. Agent performs one of the actions/tasks as follows:
(a) Make available – The Agent clicks the Go Online button to make himself available.
Oracle 35



Appendix A - Understanding Event Sequences
AgentReadyEvent
MakeAgentBeReadyEvent

If there are open requests waiting for the agent, one will be delivered to the agent.
AgentWorkingEvent
MakeAgentWorkingEvent

(b) Make unavailable – The Agent clicks the Go Offline button to make himself unavailable.
AgentUnavailableEvent
MakeAgentUnavailableEvent

(c) Send reply – The Agent clicks Send to send a response to the customer.
ReplySentEvent
EnqueueEvent(OUTBOUND)
Dequeue(OUTBOUND)

If the agent is under review (the flag Send all replies composed by this agent to 
review is checked in the Contact Center Console).

AssignedRequestToReviewEvent
(d) Close request – The Agent clicks the Close button to close the request.

ClosedRequestEvent 
UnassignedMessageEvent
DequeueEvent
AgentReadyEvent
MakeAgentBeReadyEvent

If there are new requests in the agent’s queue:
AgentWorkingEvent
MakeAgentWorkingEvent

(e) Send&Close – The Agent clicks the Send&Close button to send the response and close the 
request at the same time.

Fires all applicable events in (d) and (e).
(f) Pend request – The Agent clicks the Pend button to pend the currently working request.

PendedRequestEvent
AgentReadyEvent
MakeAgentBeReadyEvent

If the agent has requests waiting in his queue:
AgentWorkingEvent
MakeAgentWorkingEvent

(g) Unpend request – The Agent clicks the Unpend button to unpend the request:
UnpendedRequestEvent
AgentWorkingEvent
MakeAgentWorkingEvent

(h) Reassign request – The Agent clicks the Reassign button to reassign the request to another 
agent or queue.

ReassignRequestEvent
36 Oracle



Integration Development Kit Guide
UnassignedMessageEvent
DequeueEvent
EnqueueEvent
AssignedMessageEvent (if agent specified)
AgentReadyEvent
MakeAgentBeReadyEvent

If the agent has requests waiting in his queue:
AgentWorkingEvent
MakeAgentWorkingEvent

(i) Forward the request – The Agent clicks the Forward button.
ForwardedRequestEvent
DequeueEvent
EnqueueEvent

(j) Pass the current request to the supervisor for review – The Agent clicks the Review button 
to send a response to the supervisor to review.

AssignedRequestToReviewEvent 
UnassignedMessageEvent
DequeueEvent
EnqueueEvent
AgentReadyEvent
MakeAgentBeReadyEvent 

If the agent has requests waiting in his queue:
AgentWorkingEvent
MakeAgentWorkingEvent

(k) Transfer request. The agent clicks the Transfer button.
TransferRequestEvent
Unassign
Dequeue
CloseRequest

(l) Reopen request. The agent clicks the reopen button.
OpenedRequestEvent
Enqueue

(m) Agent Initiated Mail – Agent works in the Agent Initiated Mail View and clicks the 
Send&Close button to send out the message.

CreatedRequestEvent
AgentInitiatedRequestEvent
EnqueueEvent(outbound)
DequeueEvent(outbound)

(n) Agent goes offline – The Agent clicks the availability button to make himself unavailable.
AgentUnAvailableEvent
MakeAgentUnAvailableEvent
Oracle 37



Appendix A - Understanding Event Sequences
AgentOfflineEvent
MakeAgentOfflineEvent

Contact Center Console Events
A supervisor logs on to Contact Center Console to perform the following tasks:

1. Close request – The request is closed using the Close button.
ClosedRequestEvent 
UnassignedMessageEvent
DequeueEvent
AgentReadyEvent
MakeAgentBeReadyEvent
If the agent has requests waiting in his queue:
AgentWorkingEvent
MakeAgentWorkingEvent

2. Reassign request – Supervisor reassigns request via the Contact Center Console.
ReassignRequestEvent
UnassignedMessageEvent
DequeueEvent
EnqueueEvent
AssignedMessageEvent
AgentReadyEvent
MakeAgentBeReadyEvent
If the agent has requests waiting in his queue:
AgentWorkingEvent
MakeAgentWorkingEvent

3. Approve review – Response in supervisor review is approved via the Contact Center Console.
CloseRequestEvent()
ReplySentEvent()
ApprovedRequestEvent()
AssignedRequestFromReview ()
Dequeue(ReviewQueueID)
Enqueue(OutboundQueueID)
Dequeue(OutboundQueueID)

4. Close review – Response in supervisor review is closed via the Contact Center Console.
RejectRequestEvent 
ClosedRequestEvent (If a request in the Review queue had been closed in the regular queue 
this event will not fire).
RequestAssignedFromReview(RequestID, -1)-d
Dequeue(ReviewQueue)-d
38 Oracle



Integration Development Kit Guide
5. Reassign review – Response in supervisor review is reassigned via the Contact Center 
Console.
RejectRequestEvent
ReassignRequestEvent
RequestAssignedFromReview()
Dequeue(ReviewQueue)
Enqueue(AgentQueue)
AssignedMessage(ToAgentID)
Create a Sponsor (Business Unit)
If the request was just Sent for review, the following events will fire in addition to events 
above:
UnAssignMessage()
Dequeue()

6. CreatedSponsorEvent
QueueCreatedEvent (5 times for the 5 system queues that are created for the Business Unit 
by default)

7. Delete a Sponsor (Business Unit)
DeletedSponsorEvent
DeletedQueueEvent (fires the number of times equal to the number queues the sponsor has)
If any agents were assigned to this Sponsor the following event might fire:
UnassignedAgentFromSponsorEvent

8. Save modified Sponsor (Business Unit) property value
UpdatedSponsorEvent

9. Create an agent for the selected Business Unit
CreatedAgentEvent
AssignedAgentToSponsorEvent

10. Delete an agent
UnassignedAgentFromQueueEvent
UnassignedAgentFromGroupEvent
DeletedAgentEvent
UnassignedAgentFromSponsorEvent

11. Save modified agent property values (such Agent’s Custom Signature, Email Address, First 
Name, Last Name, Login ID, Notes and Review Status)
UpdatedAgentEvent
AgentPropertiesChangedEvent
UpdatedAgentEvent
MakeAgentActiveEvent  or MakeAgentInactiveEvent
AgentActiveEvent or AgentInactiveEvent

12. Create a queue
CreatedQueueEvent

13. Delete a queue
Oracle 39



Appendix A - Understanding Event Sequences
UnassingedAgentFromQueueEvent 
UnassignedGroupFromQueueEvent
DeletedQueueEvent

14. Save modified queue property value
UpdatedQueueEvent

15. Create a group
CreatedGroupEvent

16. Delete a group
UnassignedAgentFromGroupEvent
UnassignedGroupFromQueueEvent
DeletedGroupEvent

17. Save modified group property value
UpdatedGroupEvent

18. Assign an agent to queues 
AssignedAgentToQueueEvent

19. Un-assign an agent from queues 
UnassignedAgentFromQueueEvent

20. Assign an agent to groups 
AssignedAgentToGroupEvent
AssignedAgentToQueueEvent

21. Un-assign an agent from groups 
UnassignedAgentFromGroupEvent
UnassignedAgentFromQueueEvent

22. Assign a group to queues
AssignedGroupToQueueEvent
AssignedAgentToQueueEvent

23. Un-assign a group from queues 
UnassignedGroupFromQueueEvent
UnassignedAgentFromQueueEvent
40 Oracle



Integration Development Kit Guide
New Events
CreatedSponsorEvent(SponsorKey spk)
DeletedSponsorEvent(SponsorKey spk)
UpdatedSponsorEvent(SponsorKey spk)
AgentPropertiesChangedEvent(AgentKey apk)
AssignedAgentToSponsorEvent(AgentKey apk, SponsorKey spk)
UnassignedAgentFromSponsorEvent(AgentKey apk, SponsorKey spk)
AgentInitiatedRequestEvent(SponsorKey spk, RequestKey rpk, AgentKey apk, MessageKey 
mpk)
Oracle 41



Appendix A - Understanding Event Sequences
42 Oracle



Appendix

B
Example Event Handler
The root directory of the Oracle’s Siebel Brightware IDK, here after known as IDKROOT, is typically 
C:\edocs\Brightware. This directory is the place you chose to install the IDK. Please substitute the 
actual directory location for IDKROOT in the example.

Running the Example
The example source code is installed by the IDK installer to 
IDKROOT\lib\integation\Example\ExampleEventHandler.java. Also, 
testExampleEventHandler.cmd is installed in the IDKROOT directory. Running this command file 
from the IDKROOT directory will execute the example code. The TestExampleEventHandler.cmd 
file now contains an extra parameter called -DWeblogic.RootDirectory="InstalledDirectrory". This 
parameter should be implemented in any CMD file used when testing the IDK. After starting the 
ExampleEventHandler, create a new agent using the Contact Center Console and you should see 
something like the following:

Figure B-1. Example Class Output
Oracle 43



Appendix B - Example Event Handler
The Example Source Code 
package com.firepond.example;

// The firepond event imports
import com.firepond.event.*;
import com.firepond.event.agent.*;
import com.firepond.event.queue.*;
import com.firepond.event.group.*;
import com.firepond.event.request.*;

import com.firepond.dbi.*;

import java.io.Serializable;

/**
 * 
 * Demonstrates a simple event handler.<p>  The example initializes the event registry as 
 * well as the DBI, then registers several event handlers with the event API.  These event
 * handlers use the DBI to access information about the objects that the events are 
 * notifying about.  Once the information is found, they simply print that information
 * to the screen for the sake of the example.  You may want to do something a little
 * more useful then that.<p>
 * 
 * @author  Chris Zielke, Tony Stone
 * @version 2.0
 */
public class ExampleEventHandler extends java.lang.Object {
    public static String    PORT = "7001";
    
 /**
 * 
 * A simple event handler to handle <code>ServerStartedEvent</code> events.<p>
 * 
 */
    public class ServerStartedEventListener implements EventListener, Serializable {

        /** Listen for ServerStartedEvent. If received, it will call log it to the console
         * @param event The event that is being signalled
         * @since 1.0
         */
        public void signal( Event event ) {
            try {
                if ( ! (event instanceof ServerStartedEvent)) {
                    System.out.println( this.getClass().getName() + ": Wrong type of Event, " + 
event.toString() );
                    return;
                }
                System.out.println( this.getClass().getName() + ":  received" );
            } catch (Exception ex) {
                System.out.println( this.getClass().getName() + ": " + ex );
            }
        }
    }
    
 /**
44 Oracle



Integration Development Kit Guide
 * 
 * A simple event handler to handle <code>CreatedAgentEvent</code> events.<p>
 * This handler simply traps the event and looks up the beans that were involved
 * in the event.  It then prints that information out to the screen.<p>
 * 
 */
    public class CreatedAgentEventListener implements EventListener, Serializable {
  private AgentHelperBean anAgentHelperBean = new AgentHelperBean();

        /** 
         * Listen for ServerStartedEvent.<p> If received, it will call log it to the console and
         * set the agentCreated flag to true.<p>
         *
         * @param event The event that is being signalled
         * @since 1.0
         */
        public void signal( Event event ) {
        AgentBean anAgentBean = null;
        
            try {
                if ( ! (event instanceof CreatedAgentEvent)) {
                    System.out.println( this.getClass().getName() + ": Wrong type of Event, " + 
event.toString() );
                    return;
                }
                CreatedAgentEvent cae = (CreatedAgentEvent) event;
                
 // Ask the DBI to get the new agent for you
 anAgentBean = anAgentHelperBean.getAgentByKey(cae.getAgentKey());

 // Do something with the Agent. In this case we just print it to the screen
                System.out.println( this.getClass().getName() + ":  Agent, " + anAgentBean.getKey().getId() 
+ ", created" );
 System.out.println( this.getClass().getName() + ":  login name: " + anAgentBean.getUserName());
 System.out.println( this.getClass().getName() + ":  first Name: " + anAgentBean.getFirstName());
 System.out.println( this.getClass().getName() + ": middle Name: " + anAgentBean.getMiddleName());
 System.out.println( this.getClass().getName() + ":   last Name: " + anAgentBean.getLastName());

            } catch (Exception ex) {
                System.out.println( this.getClass().getName() + ": " + ex );
            }
        }
    }

 /**
 * 
 * A simple event handler to handle <code>EnqueueEvent</code> events.<p>
 * This handler simply traps the event and looks up the beans that were involved
 * in the event.  It then prints that information out to the screen.<p>
 * 
 */
public class EnqueueEventListener implements EventListener, Serializable {
  private QueueHelperBean  aQueueHelperBean= new QueueHelperBean();
     private MessageHelperBean aMessageHelperBean = new MessageHelperBean();
    
        /** 
         * Listen for EnqueueEvent.<p>
Oracle 45



Appendix B - Example Event Handler
         *
         * @param event The event that is being signalled
         * @since 1.0
         */
        public void signal( Event event ) {
     EnqueueEvent eqe = null;
     
            try {
                if ( ! (event instanceof EnqueueEvent)) {
                    System.out.println( this.getClass().getName() + ": Wrong type of Event, " + 
event.toString() );
                    return;
                }
                eqe = (EnqueueEvent) event;

                /*
                 * In this example we will check the queue type to be sure that
                 * the type is something we want to pay attention to.
                 */
                if (eqe.getQueueType() == com.Firepond.domain.QueueType.SUBJECT) {
                QueueBean aQueueBean = aQueueHelperBean.getQueueByKey(eqe.getQueueKey());
 MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(eqe.getMessageKey());

 /*
  * Here we simply print the results.
  */ 
 System.out.println(this.getClass().getName() + ": A message was queued to the " + aQueueBean.getName() + 
" queue"); 
 System.out.println(this.getClass().getName() + ":      the message subject is '" + aMessageBean.getSub-
ject() + "'");
 
                } else {
                System.out.println(this.getClass().getName() + ": A message was queued to a queue that we 
are not interested in");
                }
            } catch (Exception ex) {
                System.out.println( this.getClass().getName() + ": " + ex );
            }
        }
    }
    
 /**
 * 
 * A simple event handler to handle <code>DequeueEvent</code> events.<p>
 * This handler simply traps the event and looks up the beans that were involved
 * in the event.  It then prints that information out to the screen.<p>
 * 
 */
public class DequeueEventListener implements EventListener, Serializable {
  private QueueHelperBean  aQueueHelperBean= new QueueHelperBean();
     private MessageHelperBean aMessageHelperBean = new MessageHelperBean();
    

        /** 
         * Listen for DequeueEvent.<p>
         *
         * @param event The event that is being signalled
46 Oracle



Integration Development Kit Guide
         * @since 1.0
         */
        public void signal( Event event ) {
        DequeueEvent dqe = null;
        
            try {
                if ( ! (event instanceof DequeueEvent)) {
                    System.out.println( this.getClass().getName() + ": Wrong type of Event, " + 
event.toString() );
                    return;
                }
                dqe = (DequeueEvent) event;
                 
                /*
                 * In this example we will check the queue type to be sure that
                 * the type is something we want to pay attention to.
                 */
                if (dqe.getQueueType() == com.Firepond.domain.QueueType.SUBJECT) {
                /*
                 * Get the beans associated with this dequeue event
                 */ 
                QueueBean aQueueBean = aQueueHelperBean.getQueueByKey(dqe.getQueueKey());
 MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(dqe.getMessageKey());

 /*
  * We simply print them here.
  */
 System.out.println(this.getClass().getName() + ": A message was dequeued from the " + aQueueBean.get-
Name() + " queue"); 
 System.out.println(this.getClass().getName() + ":      the message subject is '" + aMessageBean.getSub-
ject() + "'");
                } else {
                System.out.println(this.getClass().getName() + ": A message was dequeued to a queue that 
we are not interested in");
                }                

            } catch (Exception ex) {
                System.out.println( this.getClass().getName() + ": " + ex );
            }
        }
    }     
    
 /**
 * 
 * A simple event handler to handle <code>AssignedMessageEvent</code> events.<p>
 * This handler simply traps the event and looks up the beans that were involved
 * in the event.  It then prints that information out to the screen.<p>
 * 
 */
public class AssignedMessageEventListener implements EventListener, Serializable {
     private MessageHelperBean aMessageHelperBean = new MessageHelperBean();
  private AgentHelperBeananAgentHelperBean = new AgentHelperBean();
    
        /** 
         * Listen for AssignedMessageEvent.<p>
         *
         * @param event The event that is being signalled
         * @since 1.0
Oracle 47



Appendix B - Example Event Handler
         */
        public void signal( Event event ) {
AssignedMessageEvent ame = null;
        
            try {
                if ( ! (event instanceof AssignedMessageEvent)) {
                    System.out.println( this.getClass().getName() + ": Wrong type of Event, " + 
event.toString() );
                    return;
                }
                ame = (AssignedMessageEvent) event;

                /*
                 * Get information about the message and the agent that that message 
                 * was assigned to.
                 */
 MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(ame.getMessageKey());
 AgentBeananAgentBean = anAgentHelperBean.getAgentByKey(ame.getAgentKey());

 System.out.println(this.getClass().getName() + ": A message was assigned to the agent '" + anAgent-
Bean.getUserName() + "'"); 
 System.out.println(this.getClass().getName() + ": the message subject is '" + aMessageBean.getSubject() + 
"'");               

            } catch (Exception ex) {
                System.out.println( this.getClass().getName() + ": " + ex );
            }
        }
    }       

 /**
 * 
 * A simple event handler to handle <code>DeliveredMessageEvent</code> events.<p>
 * This handler simply traps the event and looks up the beans that were involved
 * in the event.  It then prints that information out to the screen.<p>
 * 
 */
public class DeliveredMessageEventListener implements EventListener, Serializable {
     private MessageHelperBean aMessageHelperBean = new MessageHelperBean();
  private AgentHelperBeananAgentHelperBean = new AgentHelperBean();
  
        /** 
         * Listen for DeliveredMessageEvent.<p>
         *
         * @param event The event that is being signalled
         * @since 1.0
         */
        public void signal( Event event ) {
         DeliveredMessageEvent dme = null;
        
            try {
                if ( ! (event instanceof DeliveredMessageEvent)) {
                    System.out.println( this.getClass().getName() + ": Wrong type of Event, " + 
event.toString() );
                    return;
                }
                dme = (DeliveredMessageEvent) event;
48 Oracle



Integration Development Kit Guide
                /*
                 * Get information about the message and the agent that that message 
                 * was delivered to.
                 */
 MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(dme.getMessageKey());
 AgentBeananAgentBean = anAgentHelperBean.getAgentByKey(dme.getAgentKey());
 
 System.out.println(this.getClass().getName() + ": A message was delivered to the agent '" + anAgent-
Bean.getUserName() + "'"); 
 System.out.println(this.getClass().getName() + ":      the message subject is '" + aMessageBean.getSub-
ject() + "'");               
            
            } catch (Exception ex) {
                System.out.println( this.getClass().getName() + ": " + ex );
            }
        }
    }      

 /**
 * 
 * A simple event handler to handle <code>UnassignedMessageEvent</code> events.<p>
 * This handler simply traps the event and looks up the beans that were involved
 * in the event.  It then prints that information out to the screen.<p>
 * 
 */
public class UnassignedMessageEventListener implements EventListener, Serializable {
     private MessageHelperBean aMessageHelperBean = new MessageHelperBean();
  private AgentHelperBeananAgentHelperBean = new AgentHelperBean();    

        /** 
         * Listen for UnassignedMessageEvent.<p>
         *
         * @param event The event that is being signalled
         * @since 1.0
         */
        public void signal( Event event ) {
         UnassignedMessageEvent ume = null;
        
            try {
                if ( ! (event instanceof UnassignedMessageEvent)) {
                    System.out.println( this.getClass().getName() + ": Wrong type of Event, " + 
event.toString() );
                    return;
                }
                ume = (UnassignedMessageEvent) event;

                /*
                 * Get information about the message and the agent that that message 
                 * was assigned to.
                 */
 MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(ume.getMessageKey());
 AgentBeananAgentBean = anAgentHelperBean.getAgentByKey(ume.getAgentKey());

 System.out.println(this.getClass().getName() + ": A message was unassigned from the agent '" + anAgent-
Bean.getUserName() + "'"); 
Oracle 49



Appendix B - Example Event Handler
 System.out.println(this.getClass().getName() + ":      the message subject is '" + aMessageBean.getSub-
ject() + "'");               
                

            } catch (Exception ex) {
                System.out.println( this.getClass().getName() + ": " + ex );
            }
        }
    }      
     
     
    /**
     * 
     * Shutdown handler if the process is terminated externally.<p>
     *
     */
    public class Shutdown extends Thread {
        public Shutdown( ExampleEventHandler handler ) {
            this.handler = handler;
        }

        public void run() {
            try {
                System.out.println("Shutdown: Stopping the integration component" );
                if (handler == null) {
                    System.out.println("Shutdown: no handler specified" );
                    return;
                }
                handler.stop();
            } catch (Exception e) {
                System.out.println("Shutdown: Error stopping integration component: " + e.toString() );
            }
        }
        
        private ExampleEventHandler handler = null;
    }
    
    private EventRegistry registry = null;
    /** 
     * Creates new ExampleEventHandler.<p>
     *
     * @param serverName The name of the Siebel Brightware Server
     *
     */
    public ExampleEventHandler( String serverName )
        throws Exception
    {
        // Setup a shutdown handler to ensure a clean exit
        Shutdown shutdown = new Shutdown( this );
        Runtime.getRuntime().addShutdownHook( shutdown );

        // Initialize the Event registry.  Connects to the server.
        try {
            System.out.println( this.getClass().getName() + ": Connecting to " + serverName );
            registry = new EventRegistry( "example", serverName, Integer.parseInt(PORT), false );
            System.out.println( this.getClass().getName() + ": Connected to " + serverName );
        } catch (Exception e) {
50 Oracle



Integration Development Kit Guide
            System.out.println(this.getClass().getName() + ": Can not locate the server, " + serverName + 
": " + e.toString() );
            throw e;
        }

        // Register event handlers
        try {
            registry.register( ServerStartedEvent.class, new ServerStartedEventListener() );
            registry.register( CreatedAgentEvent.class, new CreatedAgentEventListener() );
            registry.register( EnqueueEvent.class, new EnqueueEventListener());
            registry.register( DequeueEvent.class, new DequeueEventListener());
            registry.register( AssignedMessageEvent.class, new AssignedMessageEventListener());

registry.register( DeliveredMessageEvent.class, new DeliveredMessageEventListener());
registry.register( UnassignedMessageEvent.class, new UnassignedMessageEventListener());

            
        } catch (Exception e) {
            System.out.println( this.getClass().getName() + ": Failed to register listener: " + 
e.toString() );
            throw e;
        }
    }
    /**
     *
     * A main for the Compatibility Event Service executable.<p>
     *
     */
    public static void main( String args[] ) 
    {
     DBI dbi = null;
     
        if (args.length < 1) {
            System.out.println( "Usage:" );
            System.out.println( "java com.firepond.example.exampleEventHandler hostname" );
            return;
        }
        String serverName = args[0];
        
        try {
         // Initialize the DBI
dbi = new DBI(serverName, PORT);
        
            // Create a handler
            ExampleEventHandler handler = new ExampleEventHandler( serverName );
            
            while( true ) {
                try {
                    Thread.sleep( 1000 );
                } catch (Exception e) {
                }
            }
            

        } catch (Exception e) {
            System.out.println( "main: " + e.toString() );
        }
    }
/**
 * When the JVM shuts down this method is called to unregister the event
Oracle 51



Appendix B - Example Event Handler
 * listeners from the server.<p>
 *
 */
public void stop() throws Exception {
   // Unregister event handlers
   System.out.println("stop: Stopping the integration component.");
   try {
      registry.unregister(ServerStartedEvent.class);
      registry.unregister(CreatedAgentEvent.class);
      registry.unregister(EnqueueEvent.class);
      registry.unregister(DequeueEvent.class);
      registry.unregister(AssignedMessageEvent.class);
      registry.unregister(DeliveredMessageEvent.class);
      registry.unregister(UnassignedMessageEvent.class);

   } catch (Exception e) {
      System.out.println("stop: Failed to unregister from event");
      throw e;
   }

   // Terminate the registry - disconnects it from the server
   registry.terminate();

   System.out.println("stop: Stopped the integration component.");
}
}

52 Oracle


	Contents
	About This Guide
	How this Guide is Organized
	Related Documentation
	Conventions
	If You Need Help
	Information to Provide
	Contacting Oracle’s Siebel Technical Support


	Overview and Getting Started
	Introduction
	IDK Components
	Development Process Overview

	Environment
	Installation

	The Event API and Database Interface
	Introduction
	IDK Java Packages
	Using the Database Interface
	Using the Events API
	Debugging

	Workflow (Agent Desktop) Integration
	Introduction
	The Approach
	Use and Distribution of XSL
	Access to the “Agent Desktop Context”
	Access to Database Integration API Provided by the IDK

	Examples of Integration Scenarios and Possibilities

	HTML Formatting of Outbound Messages
	Introduction
	Features
	Template Configuration
	Support for Mail Clients Incapable of Rendering HTML

	Understanding Event Sequences
	Introduction
	Server Startup Processes
	Server Shutdown Processes
	Siebel Brightware Component Processes and Event Firing
	Intelligence Engine
	Queue Manager
	Agent Desktop
	Contact Center Console Events
	New Events


	Example Event Handler
	Running the Example
	The Example Source Code


