Siebel Brightware™

Integration Development Kit Guide

Version 8.1.6

ORACLE

Copyright © 2005, 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are
provided under a license agreement containing restrictions on use and disclosure and are also protected by
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other independently
created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. This document is not warranted to be error-free. Except as
may be expressly permitted in your license agreement for these Programs, no part of these Programs may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are optional and for which
you may nhot have purchased a license. Siebel’s Sample Database also includes data related to these optional
modules. As a result, your software implementation may differ from descriptions in this guide. To find out more
about the modules your organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or *commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement,
and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software-
-Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all
risks associated with the use of such content. If you choose to purchase any products or services from a third
party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality
of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party,
including delivery of products or services and warranty obligations related to purchased products or services.
Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle

Table of Contents

Chapter-1. ADOUL ThiS GUITE ...cccoiiiiieeeeeee ettt e e e e e e e e e e e e e e aaeeeraeennnnas 1
HOW thisS GUIAE IS OFJANIZEMuvuueiiiii i i e e e e e e e e e e e e e e et e e e e e e s e e a e e s s e r e s e e e aeaaaaaaaeees 1
Related DOCUMENTALIONeiiiiiiiie ittt ettt e e e e e e s s s s bbb e e et e et e e eeeessesaansbbbbeeeeeaeaaeeesanaanns 1
(670] 01 V7=T o1 1 o] o 1< TP TP PPT PP 2
L o U A L= =0 T T 2

INFOrMALION T0 PrOVIAE ...t e e e e e e e e e e e e e e s bbb e e e e e e e e e e e e annes 3
Contacting Oracle’s Siebel Technical SUPPOITccoiii i e e e e e e e e 3

Chapter-2. Overview and Getting Startedcccooiiiiiiiiiiiiii e 5

1] (o o 18 Tox 1o o I USSR 5
IDK COMPONENLSiiiiiiiiiiiiiiitet et e e e e e e e e e e e e et e ettt eeetes s beba b s o e oa oo o2 2 e e e e aeaeeeteeeeeeesnbsessbenansbebnb s s as 6
DevelopmeENnt PrOCESS OVEIVIEWccoiiiiuiiiiieeiteeta e e e e e e ettt b et e eeeaaaeaas s s aababeseeeeeaaaaeeasaaaansbabbeeseeeeesaaaannn 6

[V7T (o 1 1= o | USSP 7

[1Sy = 1 = 4o o ISR 7

Chapter-3. The Event APl and Database Interfaceuuuviiiiiiiiiiiiien 9
[a1 (oo [¥ o1 i o] s NPT SSP PP 9
1 o\ = W - (ol 1= To [PP PUPPRP 9
UsiNg the Database INTEITACEoouiiiiiiii et rab et e e ennee s 10
USING the BEVENES AP ...ttt ettt e s o bbbttt e e s bbb et e e e aa bbbt e e s abbe e e e e annnneeas 15
(DI o108 o o |1 o RO PP PP OUPPPPTRPPPPPRTN 18

Chapter-4. Workflow (Agent Desktop) INntegrationcooeeuiiiiiiiiiinneeeee e 19
[a (oo [8 o1 1 o] o HNRU PRSPPI 19
LI LS o o 0 - T o SRR 19

Use and DiStribULION OF XSLciiiiiiiiiii ittt e e et e e e e sbe e e e e e nanees 20
Access t0 the “Agent DESKIOP CONEXE" ...oiiiiiiiii it e e e e e e e e e e e s e s s erereeeeeeesennnns 21
Access to Database Integration APl Provided by the IDK ... 23

Examples of Integration Scenarios and POSSIDIlItIESueviiiieeiiiiiiiir e 24

Chapter-5. HTML Formatting of Outbound MeSSagescevvvvrrrriiiiiiiiieeeeeeeeeeeeeeeeenenns 25
T oo [N Lot o] o E PP OUPUPPR ORI 25
FRALUIES ..ttt e oottt e e et e oo 4 e s o bt e ettt e e e e e e e e e e bR e e et et e e e e ea e nn e e ne e et e e eeeeaanana 26
Template CONfIQUIALIONueiiiie et s et e e e e sttt e e s et bt e e e s anbe e e e s anbaeeeeeannees 27
Support for Mail Clients Incapable of Rendering HTIMLcooiiiiiiiiiiiiie e 29

Appendix-A. Understanding EVENt SEQUENCESuuiiiiiiiiiiieeeeeeeeeeeeeetes e 31
T oo [N Lot o] o E PP OUPUPPR ORI 31
SEIVET STANUD PrOCESSES ...iiiiiiiiiieeiiii ettt e s s et e s et e e e eeeete ettt et eeeaetetatesss s aaasaasasaeeaeeaaeaaaeeeeeeenrnnnnnnns 31
Server SNULHOWN PIOCESSESuiiiiiiiiiiiie ittt e sttt e st e e e sttt e e s e s bt et e e s e anbbeeeesanbbeeeeeeaneees 33

Oracle iii

Table of Contents

Siebel Brightware Component Processes and EVent FiriNGcccvvvvieviiiiieeoi e 34

T 0=] o =T o =0 =t o 1 = PP 34

L@ T8 1T BTN /=TT T T S RRR 35

N0 1= Q0TS 24 (o o P RSSEERR 35
Contact Center CONSOIE BEVENESvviiiiiiiiiie ettt st e e e st e e e e s snbeeeeen e 38

NEW EVENTS ..ottt a e e e e e e e e e e e e e et et et e e e e e e e e ne e n e r i n s 41
Appendix-B. Example Event HandIer ... 43
RUNNING the EXAMPIEeeiiieiiiiiiiiee et e e s e e e e e e e e e e e e s st ae e e e e eaaaeeeessassnsabnrneeeeeaeeeeannannns 43
The EXAMPIE SOUICE COUE ...oeieiiieiieeiie ittt e e e s s e e e e e e e e e s e s s e e e e eeeaaeeesesanansnntanaenaeeesesannnnnns 44

iv Oracle

About This Guide 1

This manual describes how to use the Integration Development Kit (IDK). It is intended for anyone
involved in using the IDK. It is assumed that anyone using this guide is an experienced Java and JSP
programmer.

How this Guide is Organized

Chapter 1, “About This Guide” provides general information.

Chapter 2, “Overview and Getting Started” provides an overview of the IDK, and parameters for its
use.

Chapter 3, “The Event API and Database Interface” provides general usage information for the
IDK.

Chapter 4, “Workflow (Agent Desktop) Integration” provides an introduction and specifics for
integrating Agent Desktop with other complementary products, third-party applications, and
custom components (without the need to modify the core Siebel Brightware product).

Appendix A, “Understanding Event Sequences” describes and clarifies event sequences.

Appendix B, “Example Event Handler” describes an example event handler.

Related Documentation

For more information about Oracle’s Siebel Brightware please see these documents included in
PDF format on the Installation CD:

Installation Guide

Agent Guide

Contact Center Console Guide
Knowledge Engineer Handbook
Implementation Guide
Analytics Overview Guide

DB Administrator Guide
Report Developer Guide

Oracle 1

Chapter 1 - About This Guide

Conventions

The following typographic conventions are used in this document:

m [tems that you are instructed to click or select, such as button names and hyperlinks, are bold:
= Select Add Response.
= Click the OK button.

m Documents, headings, and chapter titles are italicized:
e “Refer to the Reference Manual for more information.”

m Notes are flagged along the left margin:

This icon indicates noteworthy information.

m Cautions are flagged along the left margin:

This icon indicates critical information.

m Programming code and system messages appear in a fixed-width font:
Set-request-condition (<condition>)

m Hyperlinks and Cross References - If viewing a document online, you can navigate through it
using hyperlinks, which appear in blue text, and cross references. Although not displayed in
blue, the Table of Contents and Index entries are also hyperlinks. Cross references are specific
page number references. Click the page humber to navigate to that page:

= Referto “If You Need Help”, on page 2.

m The term Type usually refers to typing information on your keyboard:
= Type the number of decimal places you want displayed.

m The term Enter typically refers to the “Enter” key on your keyboard:
= Type the number of decimal places you want displayed and press the Enter key.

m When a directory path is given, the hard drive letter is omitted since it is unknown what hard
drive the system is installed on. Only the default install path is supported:

= Documents are available under edocs\Brightware\docs\.

If You Need Help

Technical Support is available to customers who have an active maintenance and support contract
with Oracle. Technical Support engineers can help you install, configure, and maintain your Oracle
application.

This guide contains general troubleshooting guidelines intended to empower you to resolve
problems on your own. If you are still unable to identify and correct an issue, contact Technical
Support for assistance.

Oracle

Integration Development Kit Guide

Information to Provide

Before contacting Oracle’s Siebel Technical Support, try resolving the problem yourself using the
information provided in this guide. If you cannot resolve the issue on your own, be sure to gather
the following information and have it handy when you contact technical support. This enables your
Oracle support engineer to more quickly assess your problem and get you back up and running
more quickly.

Please be prepared to provide Technical Support the following information:

Contact information
m Your name and role in your organization.
= Your company's name
= Your phone number and best times to call you
= Your e-mail address

Product and platform
m Inwhich Oracle Self-Service product did the problem occur?
m What version of the product do you have?
m What is your operating system version? RDBMS? Other platform information?

Specific details about your problem
m Did your system crash or hang?
m What system activity was taking place when the problem occurred?

m Did the system generate a screen error message? I so, please send us that message. (Type the
error text or press the Print Screen button and paste the screen into your email.)

m How did the system respond to the error?
m What steps have you taken to attempt to resolve the problem?

m What other information would we need to have (supporting data files, steps we'd need to take)
to replicate the problem or error?

Problem severity

m Clearly communicate the impact of the case (Severity I, II, 111, 1V) as well as the Priority
(Urgent, High, Medium, Low, No Rush).

m Specify whether the problem occurred in a production or test environment.

Contacting Oracle’s Siebel Technical Support

You can contact Technical Support online, by email, or by telephone.

Worldwide Support Center
Telephone: 800-214-0400 or 650-341-0700

Oracle 3

Chapter 1 - About This Guide

Oracle’s Siebel SupportWeb

https://ebusiness.siebel.com/supportweb/

Email Support

mailto: siebelsupport@oracle.com

4 Oracle

Overview and Getting Started

Introduction
This document explains the process of creating a third-party integration using the Siebel Brightware
IDK.
:\-:;ﬁc::r;z IDK Packages Brightware Server
Data Integration& -
Custom Actions
>
L
CRM
cT
Enterprise Data < Event API <
L
Database Interface Brightware
Database
g

Figure 2-1. Siebel Brightware IDK

The Siebel Brightware IDK provides a comprehensive software development kit for creating
applications that integrate Siebel Brightware applications with external third-party systems like
CRM or CTI applications. Figure 2-1, “Siebel Brightware IDK” shows the typical third-party
integration where the Siebel Brightware applications are running on an application server. These
applications communicate to the third-party system through three main facilities: Event
notification, the Database Interface (DBI), and Custom Action / Data Integration Plugins. While
Figure 2-1 only shows one third-party system, concurrent integration of many such systems can be
supported through the same means.

Oracle 5

Chapter 2 - Overview and Getting Started

IDK Components

m The Database Interface (DBI) provides a completely Java Bean based API that provides access
to Siebel Brightware data objects such as Agents, Queues, and Messages. See “Using the
Database Interface”, on page 10 for an explanation of the Database API.

m The Events API includes events to notify the partner applications of processes occurring in the
components, for example placing an email message in a queue or changing the state of an
Agent from online to offline. You code external responses as an event listener, which
determines the response to the corresponding event. See “Using the Events API”, on page 15
for an explanation of using the Events API.

m The Custom Action / Data Integration Plugins API provides direct interaction with the
Intelligence Engine via extension of NLP actions, and extraction / reaction to operations.
Unlike the Event API, the Plugins are synchronous to the operations of the Siebel Brightware
Server.

Development Process Overview
The recommended process of integration between Siebel Brightware and third-party applications is

as follows:

Installation
The Siebel Brightware Server installer installs the IDK and supporting files, providing an
environment suitable for IDK development.
Development
Once the IDK is installed, you can begin writing and testing your code. See Chapter 3, “The Event
API and Database Interface”, on page 9 for an explanation of how to develop using the IDK.
Final Integration

Final integration involves installing the IDK on the production server, along with the integration
classes you have developed.

6 Oracle

Integration Development Kit Guide

Environment

IDK development should be done on a development computer that is networked to a computer
running the Siebel Brightware Server. See the Installation Guide for installation and configuration
instructions.

IDK development requires that Sun’s Java Development Kit version 1.3 be installed on the
development computer. While the IDK can be installed on the Siebel Brightware Server, it is
recommended that the IDK be on a separate computer.

Development should never occur on a production server or database!

Installation

The IDK is installed by default during any installation. It is installed from the Siebel Brightware
installer. To install the Siebel Brightware IDK refer to the Installation Guide.

Before development can begin, the installed Siebel Brightware files must be set in your classpath.
In the list below, the instal lationDir% directory represents the directory where you installed
Siebel Brightware:

instal lationDir%\lib\common\common. jar
installationDir%\lib\common\components. jar

instal lationDir%\lib\common\components-boot. jar
instal lationDir%\lib\common\commons-collections. jar
instal lationDir%\cluster\lib\common\dependent. jar
installationDir%\cluster\lib\common\provider.jar
installationDir%\cluster\lib\common\bcmf_jar
installationDir%\cluster\lib\common\domain. jar
installationDir%\cluster\lib\common\log4j.jar
instal lationDir%\cluster\lib\common\server.jar
instal lationDir%\lib\common\xerces. jar
installationDir%\wlserver6._1\lib\weblogic.jar
installationDir%\lib\integration\integration.jar
installationDir%\jdki131\jre\lib\rt._jar

Once the files are added to your classpath, you are ready to begin development.

Oracle 7

Chapter 2 - Overview and Getting Started

Code Sample 2-1. Sample Classpath

C:\edocs\Brightware\lib\common\common. jar;C:\edocs\Brightware\lib\
common\components. jar ;C:\edocs\Brightware\lib\common\components-
boot. jar;C:\edocs\Brightware\lib\common\commons-

collections. jar;C:\edocs\Brightware\cluster\lib\common\dependent. j
ar;C:\edocs\Brightware\cluster\lib\common\provider.jar;C:\Pedocs\B
rightware\cluster\lib\common\bcmf. jar;C:\edocs\Brightware\cluster\
lib\common\domain. jar;C:\edocs\Brightware\cluster\lib\common\log4j
-jar;C:\edocs\Brightware\cluster\lib\common\server.jar;C:\edocs\Br
ightware\lib\common\xerces. jar;C:\edocs\Brightware\wlserver6._1\lib
\weblogic.jar;C:\edocs\Brightware\lib\integration\integration.jar;
C:\edocs\Brightware\jdk131\jre\lib\rt_jar

Oracle

The Event APl and Database Interface

Introduction

This chapter covers two components: The Events API and the Database Interface (DBI). The Events
API is used when coordination between the Siebel Brightware application and third-party
application is required, while the database interface can be used when access to Siebel Brightware
data is needed. The sections below explain how to use both components.

Additional information and an example to aid your integration has been provided in the appendices:

= Appendix A, “Understanding Event Sequences”
m Appendix B, “Example Event Handler”

IDK Java Packages

The IDK Events APl and DBI includes the following packages:
Table 3-1. Siebel Brightware IDK Packages

Package Description

com. firepond.dbi Database Interface (DBI) classes
com.Firepond.event base event classes

com. Firepond.event.agent agent-related event classes

com. firepond.event.group group-related event classes

com. Firepond.event.queue queue-related event classes

com. firepond.event.request request-related event classes

com. firepond.event.sponsor sponsor-related event classes
com.Firepond.example example package explained in Appendix B

JavaDocs are installed with the IDK Events APl and DBI. They can be accessed via the Start menu.
Click the Start menu and select Programs. Then select Siebel Brightware, then Documentation,
Java Docs, and finally click on IDK to display the JavaDocs.

When running Siebel Brightware DBI or Event application make sure to set the system property
com.firepond.provider.library.url to <Brightware Installation Dir>/platform\weblogic-platform.jar. For example: java -
Dcom.firepond.provider.library.url=file:\\<Brightware Installation Dir>\platform\weblogic-platform.jar
myDBlapp.class

Oracle 9

Chapter 3 - The Event API and Database Interface

Using the Database Interface

The DBI is a JavaBean-based interface to the Siebel Brightware system. It consists of Value Beans
and Helper Beans. Value Beans are used to store the value of a stored object’s representation, while
the Helper Beans perform utility functions, including returning Value Beans when required. Each
Value Bean class has a corresponding helper and key class. The key class is simply the unique
identifier for a Value Bean. It is used by the users of the system as well as internally for accessing
specific Value Beans.

Because the DBI package is a pure Java API, the steps required to use it are the same as those
required to use any Java package: install the IDK and set the classpath, create an instance of the
DBI, then write and execute your own implementation of the DBI classes.

Task 1: Install the IDK and set your classpath

Follow the instructions in Chapter 2, “Overview and Getting Started”, on page 5 to install the IDK
files and set your classpath.

Task 2: Create an Instance of the DBI

In order to use the DBI you must first initialize it. This is accomplished by creating a new instance
of the DBI class and supplying the constructor the proper values for dnsName and port. This will
create a new instance of the DBI class as well as initialize the rest of the system. You do not need to
store the newly created DBI instance, as it will never be used by you again. The code sample below
performs this task:

Code Sample 3-1. Initializing the DBI Class
DBI dbi = null;
dbi = new DBI("localhost", "7001');
In the example above, localhost should be replaced with the name of the server where the Siebel

Brightware Server is running and the port represents the port on which the Siebel Brightware
Server is listening, which will most likely be the same value as shown in the sample (7001).

Task 3: Implement the DBI Classes

Once the DBI is initialized (and the server is up and running properly), all classes should be fully
operational. What’s next depends on what you need to do. Consult the JavaDocs for a complete
listing of all classes, attributes, and methods provided with the DBI.

In order to use the DBI you must import the com. Firepond.dbi package in your code using the
following line:

import com.firepond.dbi.*;

The following examples illustrate some of the tasks your implementation might perform.

10

Oracle

Integration Development Kit Guide

Example 1: Add an Agent

This example will add an agent profile to the Siebel Brightware database. The comments explain
each step as it occurs.

In order to add an agent you must first create an instance of the AgentBean (a value bean) and fill it
with all required columns.

Code Sample 3-2. Adding an Agent
AgentBean anAgentBean = null;
AgentHelperBean anAgentHelperBean = null;
// Create an empty instance of the value bean class
anAgentBean = new AgentBean();
// Fill the required fields
anAgentBean.setUserName("'example agent');
anAgentBean.setFirstName(""Example'™);
anAgentBean.setMiddleName(*'C."");
anAgentBean.setlLastName("'Agent');
anAgentBean.setEmai lAddress('example.c.agent@somecompany.com™);
anAgentBean.setNote("'This is an agent created through the DBI'™);
// Create a helper and execute the add
anAgentHelperBean = new AgentHelperBean();
try {anAgentHelperBean.add(anAgentBean);
catch (HelperException e) {
System.out.printIn(""Helper exception : ™ + e.toString());
}
catch (InvalidObjectStateException e) {
System.out.printIn("'you didn*"t Ffill in all the required fields." +
e.toString(Q));
}

The add method will fill in the primary key for the newly added agent so you can find it again if you
need to refresh the state.

Oracle 11

Chapter 3 - The Event API and Database Interface

Example 2: Retrieve Data

All helper beans have getter methods to get instances of the value beans. Lets go through an
example of getting some data from the system. To expand on the example above, this example will
retrieve a vector of the agent bean created in the first example.

Code Sample 3-3. Retrieve Agent Data

// Declare a vector to store the results

Vector aVector = null;

Enumeration anEnum = null;

// Ask the helper bean to return all the agents iIn the system

aVector = anAgentBeanHelper.getAgents();

anEnum = aVector.elements();

while (anEnum.hasMoreElements()) {

anAgentBean = (AgentBean) anEnum.nextElement();

/*

* Do something with the AgentBean instance

*/

}
All helper beans work in this same way: they return a vector of the beans that are requested. If no
beans are found, an empty Vector will be returned. All helper beans check the validity of the value

bean passed to them if you are trying to add, update, or remove a bean and will throw an
Inval idObjectStateException if something is incorrect and it can’t save the bean contents.

Example 3: Searching with Keys

These methods require you to pass the key class from the desired bean. To accommodate this
feature, all Value Beans have a method on them to get the key class from the bean instance. This
allows you to navigate through the object hierarchy without having to create a key instance yourself.

Continuing with the example above, if you wanted to find all the requests associated with one of the
agents returned by the getAgents() method that was called above you could do the following:

Code Sample 3-4. Searching with Keys

Vector requests = null;
RequestHelperBean aRequestHelperBean = new RequestHelperBean();
requests = aRequestHelperBean.getRequestByAgent(anAgentBean.getKey());

This will return a Vector of RequestBeans that are assigned to the agent (anAgentBean).

Example 4: Search Using Status

Some helper methods require a list of states or status codes in order to get the desired beans
returned. For example the RequestHe lperBean allows you to find requests by their current state. To
find requests matching more than one state you logically OR the states together to get the desired
output. For example, the code below will retrieve all the requests that are open and all the requests
that are pending in the system.

12

Oracle

Integration Development Kit Guide

Code Sample 3-5. Specifying Requests Types
aVector = aRequestHelperBean. getRequests(
RequestBean.OPEN | RequestBean.PENDING);

All methods that can accept this type of parameter are marked in the JavaDoc.

Example 5: Search Using Actor Key

The RequestHelperBean has some methods that allow you to assign requests to queues and agents.
These all accept an ActorKey as their initial parameter. An ActorKey represents the Agent or
Supervisor that is performing the action requested. Code Sample 3-6,“Using the ActorKey” below
demonstrates use of the ActorKey to reassign a request to a specific queue.

Code Sample 3-6. Using the ActorKey
/* Assignh a request to a queue specifying an agent as
* the one performing the assignment
*/
aRequestHelperBean.assignRequestToQueue(anAgentBean.getkKey(),
aRequestBean.getkKey(),
aQueueBean.getKey(), aReasonCodeBean,'initial assignment of this
request to a queue'™);

Notice that this method has a few more parameters than previous examples. These are ReasonCode
and a free form comment used to explain the reason for the action. You can get a list of
AssignmentReasonCodeBeans from the AssignmentReasonCodeHelperBean.

Oracle 13

Chapter 3 - The Event API and Database Interface

Example 6: Using the AttachmentHelperBean

The AttachmentHelperBean deserves further explanation. This bean represents a file attachment
on a MessageBean and can be used to get the actual file down from the persistent store, storing it on
the local hard drive. Code Sample 3-7,“Using the AttachmentHelperBean” below demonstrates the
use of the AttachmentHelperBean. In this example, a message bean key is used to find all the
attachments for the message specified. It then downloads all the files associated with the message
to the local disk and places them in the c:\temp directory. The bean uses the original name of the

file which is stored in the description attribute of the MessageBean object.

The downloadAttachmentFi le method will throw an Exception if the file is already there.

Code Sample 3-7. Using the AttachmentHelperBean

Vector aVector = null;
Enumeration anEnum = null;
/*
* Create an instance of the helper and declare
* a place to hold our returned value bean.
*/
AttachmentHelperBean anAttachmentHelperBean =
new AttachmentHelperBean();
AttachmentBean anAttachmentBean = null;
/* This is where we actually get the bean. You must locate
* it based on the message that it is attached to.
*/
aVector = anAttachmentHelperBean.getAttachments(aMessage.getkKey());
anEnum = aVector.elements();
while (anEnum.hasMoreElements()) {
anAttachmentBean = (AttachmentBean) anEnum.nextElement();
/*
* This will write the file out to the directory
* c:\temp using the original name for the file.
*/
try {
anAttachmentHelperBean.downloadAttachmentFile(
anAttachmentBean.getKey(), "c:\temp\'"+ anAttachmentBean.getDescription());
} catch (HelperException e) {System.out.println(e.toString());
}
}

14

Oracle

Integration Development Kit Guide

Using the Events API

Before attempting to integrate with other applications, you must have a thorough understanding of
how Siebel Brightware processes mail. See the Contact Center Console Guide for an overview of
message flow through the Siebel Brightware system.

The Events API is intended to be used to allow one or more third-party applications to be notified
of the actions occurring within a running Siebel Brightware system. During normal operation,
Queue Manager, the Contact Center Console, the Agent desktop, and the Intelligence Engine all
communicate with the Siebel Brightware Server. Actions that agents, supervisors, Queue Manager,
and the Intelligence Engine perform cause events to “fire” from the Siebel Brightware Server to the
third-party system. These events are asynchronous to the operation of the Siebel Brightware Server,
and are also queued to allow the third-party system to handle them at its own pace. The events,
small Java objects, are transmitted or signaled to the third-party’s EventListeners via Remote
Method Invocation (RMI). You write EventListeners that will listen for and respond to the events
when they are signaled. For example, an event listener could invoke the Database Interface to
access or modify Siebel Brightware data objects.

Basic Integration Tasks

While your integration will depend upon your needs, there are certain tasks that all integrations
must perform to get up and running. These are:

= Import the IDK classes.

m Declare an EventListener.

m [nitialize the Event Registry and your EventListener.
m Unregister the EventListener.

Additional information and an example to aid your integration has been provided in the appendices:

m Appendix A, “Understanding Event Sequences”
= Appendix B, “Example Event Handler”

Task 1: Import the IDK Classes

To use the Events API you must import the following packages in your code:

Code Sample 3-8. Import Statements for EventListener
import com.firepond.event.*;
import com.firepond.event.agent.™*;
import com.firepond.event.queue.*;
import com.firepond.event.group.™;
import com.firepond.event.request.*;
import com.firepond.event.sponsor.*;

Oracle 15

Chapter 3 - The Event API and Database Interface

Task 2: Declare an EventListener

Declaring an event listener for the specific event of interest is as easy as declaring a new class that
implements the com. firepond.event._EventListener interface. The code sample below declares
a new ServerStartedEventListener:

Code Sample 3-9. Declaring an EventListener

public class ServerStartedEventListener implements EventListener, Serializable

{

/** Listen for ServerStartedkEvent. If received, it will call log it to
* the console
* @param event The event that is being signalled
* @since 1.0
*/
public void signal(Event event) {
try {if (! (event instanceof ServerStartedEvent)) {
System.out.println("ServerStartedEventListener: Wrong event,"
+ event._toString());
return;
}
System.out.printIn(“ServerStartedEventListener: received");
} catch (Exception ex) {System.out.printin(
"ServerStartedEventListener: ™ + ex);
}
}
}

Task 3: Initialize the EventListener Registry and Event Listeners

After declaring event listeners for each event of interest, the integration component should initialize
the EventRegistry and register the event listeners. Initializing the EventRegistry also connects
the integration component to the Siebel Brightware Server.

Be sure to specify the DNS name of the computer running the queue manager and the port on which that server is
! listening.

The events registry is initialized as illustrated below:

Code Sample 3-10. Initializing the Event Registry

// Initialize the Event registry. Connects to the server.

EventRegistry registry = null;

String serverName = "myServer';

int port = 7001;

try {System.out.println("start: Connecting to ™ + serverName);
DependentParameters.initProvidersForStandaloneApplication(serverName,PORT);
registry = new EventRegistry("example'™, serverName, port, false);

16

Oracle

Integration Development Kit Guide

System.out.printin("start: Connected to
} catch (Exception e) {
System.out.printin("start: Can not locate the server, " + serverName

+ serverName);

+ " "+ e_toString()):
throw e;
3

Registering event listeners is also a simple process. Code Sample 3-11,“Registering
EventListener” below registers an example event listener. In the sample code below
registry.register(CreatedAgentEvent.class, new CreatedAgentEventListener())
registers an instance of the class CreatedAgentEventListener to listen only for the
CreatedAgentEvent. The CreatedAgentEventListener's signal (Event event) method will
only be invoked if the CreatedAgentEvent OcCurs.

The first argument in the above call can be any IDK Event located in the following packages:
com.firepond.event._agent, com.firepond.event.queue, com.firepond.event_group,
com.firepond.event.request, com.firepond.event.sponsor

Code Sample 3-11. Registering EventListener

// Register event handlers

try {registry.register(ServerStartedEvent.class,new
ServerStartedEventListener());

registry.register(CreatedAgentEvent.class, new CreatedAgentEventListener());

} catch (Exception e) {System.out.println("start: Failed to register
listener: " + e.toString());

throw e;

}

Once registered, a listener will be invoked when the event occurs by calling the signal (Event
event) method with the event that occurred as shown in Code Sample 3-9, on page 16.

Oracle

17

Chapter 3 - The Event API and Database Interface

Task 4: Unregister your EventListener

When the Siebel Brightware Server is shut down, the event listeners should be unregistered and the
event registry shut down as well. Code Sample 3-12,“Unregister Event Listener and Quit the Event
Registry” below uses the unregister method to unregister the listener and the terminate method to

shut down the registry.

Code Sample 3-12. Unregister Event Listener and Quit the Event Registry

public void stop()throws Exception

{

// Unregister event handlers

try {registry.unregister(ServerStartedEvent.class);
registry.unregister(CreatedAgentEvent.class);

} catch (Exception e) {

System.out._printiIn("stop: Failed to unregister from event");
throw e;

}

// Terminate the registry - disconnects it from the server
registry.terminate();

}

Debugging

Edit the following section in the \cluster\lib\common\log-config.xml file installed on the Siebel
Brightware Server and set priority value to “info”. This will cause the Siebel Brightware Server to

log each event to the console.
<category name="fp.integration'>
<priority value="debug" />
</category>

You can generate logging on the client by passing true as the last parameter to the EventRegistry
constructor. Initialized this way, EventRegistry will generate an event. log file on disk where
information about the event registry is displayed. This log file will be created in the current
directory. The log will show initialization of the registry, each event that the client receives, and
termination of the registry.

18

Oracle

Workflow (Agent Desktop) Integration

Introduction

Siebel Brightware provides the tools and information necessary to assist an agent in quickly and
accurately processing a message for a customer. The Desktop Agent interface provides access to
relevant information that is managed and maintained “inside” the system (for example: suggested
responses and action history). There may be times, however, when an agent is processing a message
and requires access to information maintained “outside” the Siebel Brightware product.

Access to outside information can be used to:

1. Extract information from external information stores or systems and use it to embellish the
current response.

2. Take information supplied by the customer and update other information stores or systems.

The use of variables, custom actions, and the IDK in general can often be used to provide access to
outside information when possible without Agent interaction. It is worth recognizing that
companies often have considerable investments in existing legacy applications that could be
harnessed to help an Agent compose an appropriate response or process information. It is the goal
of the Siebel Brightware product to make integration with existing third-party applications as
smooth and seamless as possible. Part of fulfilling this goal involves allowing the Agent Desktop
application to be integrated with other applications.

The Approach

The Agent Desktop has been developed as a thin-client browser-based application. This aspect is
one reason it is possible to integrate the Agent Desktop with other applications. For example, since
the content rendered within the browser is all HTML, it is possible to use HTML framesets
consisting of multiple frames, some of which derive their content from the standard Siebel
Brightware product, while other frames in the same screen display relevant content rendered by
other complementary applications. Furthermore, JavaScript and XML, downloaded within the
HTML, can also be used in countless ways.

Examples of how JavaScript, downloaded within a page, can be employed to create an
enhanced Agent Desktop environment:

m Popup a new window linked to a third-party browser-based application.
m Pass data between different frames or windows on the client side.

m Execute methods on a downloaded applet or ActiveX object designed to interact with stand-
alone desktop applications or client-server systems.

Oracle 19

Chapter 4 - Workflow (Agent Desktop) Integration

Figure 4-1

My
Qs Lees

Cutbound
Ry s s

W

Options

you &

= 3 re y \ .
(Losour) OFFLINE @ [GO ONLINE) [HELP

,“ LA working Request:RE: HTML
IE@%@@E@@@T-

: P . — = 7 2 Use the Agent Deskto
@# Original Message: BJ Initial Default Critical 97:58 hrs Iﬁ More info I\ m.egm[;?,me,pa,,dahe

Mare Info link to access

HTHL \
L _T0: |agen120@cheuv?,com \ outside information..
\ cC: '}l
(Bee: |
Subject: [RE: HTML =
T rm——— Include original message
i i -
oopervisor Reviews: =1 |[TRACKING NUMER: A00000000602-00000000770 B
w:"g“e‘ted ————— Original Message-----
ESpONsSes
r\.—guueue Frequent
Responses
Response LIbrary From: agent20@chevy?.com
Proot Sent: 14 Oct 02 14:06:08
(. To: agent12@chevy?.com j
- Example of what can be

done using the Agent

Desktop Integration.

. Example of Agent Desktop Integration

Considering the flexibility of HTML, JavaScript, and XML, along with the ability to download
ActiveX objects and proprietary applets within the HTML, the integration possibilities on the Agent
Desktop client computer are endless.

Besides the power and flexibility of HTML and JavaScript, three distinct aspects of the Siebel
Brightware architecture play an important role in making a meaningful integration within the Agent
Desktop possible:

1. Use and distribution of XSL templates to render content.
2. Access to the “Agent Desktop context” (for use by external applications).
3. Access to the database integration API provided by the IDK.

Use and Distribution of XSL

XSL is a J2EE standard that is used in the Agent Desktop architecture. Instead of having content
rendered by servlets streamed directly to the browser, most of the servlets within the Agent Desktop
generate data in the form of XML. The XML is then merged with XSL templates of the server (using
XSLT) to create the final HTML content which is streamed back to the client’s browser. While the
XML data is generated dynamically for each request to the server, the XSL is in the form of static
text files, in a readable form, and are distributed with the application. It is therefore both possible
and practical for an integrator to modify these XSL files after installing the product with the help of
any text editor. Integrators could use this as a means of modifying the effective layout, content, and
the “look and feel” of the Agent Desktop application.

20

Oracle

Integration Development Kit Guide

Examples of changes made through modifying the XSL include (but are not limited to):

= Modification of framesets

m Changing references to images

m Colors

m Fonts

m Addition of both HTML and JavaScript

To locate a list of all XSL files used within the product, see the contents of the install folder, under
\config\eservice\applications\DefaultWebApp_myserver.

Some of these XSL files are used to generate corresponding HTML files at the time the server is
started (you can tell these files apart by looking at the file timestamps). These files are not context-
sensitive to a particular agent or to a particular message being processed. However, the remainder
of the XSL files are used to generate HTML at runtime, and could therefore be context-sensitive to
a specific agent and the message they are currently processing. The naming convention of the XSL
files makes it easy to correlate them with where they are used within the Agent Desktop.

Access to the “Agent Desktop Context”

Modifications to the XSL is in itself sufficient to allow changing the branding or linking to external
applications from within the Agent Desktop. However, in most cases that action alone is unlikely
to be enough to achieve a meaningful integration of the Agent Desktop. This is because third-party
applications will often require information about the state of a particular Agent’s desktop in order
to be able to display relevant information. In other words, the “integrated third-party application”
needs to be provided the “context” of the agent’s desktop in order to allow it to function in a
“context-sensitive” manner.

For example, to integrate an external application which displays a customer’s account information
would require some means of establishing the customer’s identity; such as the customer’s “from
address” (which is part of the “Agent Desktop Context”).

Two separate means are provided to make the “Agent Desktop Context” available:

1. Through elements published in XML.
2. Through defined variables within a dynamic JavaScript file.

Elements published in XML

This technique has not been made widely available—it is limited for now to use within
WorkingRequest.xsl and WorkingRequestForm.xsl. As alluded to earlier, the XSL standard allows
one to extract the values supplied in XML elements and to use them to control the generated HTML
output. Different XML elements are generated dynamically by different servlets within the product,
depending on the context in which they are invoked. Whenever one of the two XSL files (referred
to above) is invoked, the following XML elements are also defined, and are therefore available for
referencing within the XSL.:

m MESSAGE_ID
= FROM

Oracle 21

Chapter 4 - Workflow (Agent Desktop) Integration

REQUEST_ID

QUEUE_ID

SPONSOR_ID

ORIGINAL_MSG_ID

AGENT_ID

These elements are child elements of the HEADER element. For example, part of the XML

generated at runtime might look something like this:

<HEADER>
<MESSAGE_ID> 802 </MESSAGE_ID>
<FROM> customer@myclient.com </FROM>
<REQUEST_ID> 107 </REQUEST_ID>

</HEADER>
Refer to the WorkingRequest_X.xsl file as an example of how XSL tags can be used to extract the
contextual information from the XML elements described above. This file is not actually used by
the system, but could be used to replace WorkingRequest.xsl to provide a demonstration of what is
possible. In the example, an additional frame is created within the “working request view”. The
frame is designed to receive its content from an external URL (in this case www.edocs.com), and to
have specific information from the Agent Desktop Context passed to it as parameters. See Figure 4-
1, “Example of Agent Desktop Integration”, on page 20.

Variable Defined within Dynamic JavaScript

This technique is more widely available—it involves accessing and using the attributes of the Agent
Desktop Context and is actually easier to use. A special servlet has been created to provide access
to attributes of the Agent Desktop Context. This is done through JavaScript variables defined within
a JS file. Since the context is different for each agent, this is not a static JavaScript file, but is instead
generated dynamically, and therefore dependent upon the HTTP session. On any particular server
(<myserver>) this file can be accessed at:

http://<myserver>:portnumber/WadContext. js
or for example:
http://localhost:7001/WadContext. js

An example of what you might expect to be returned by a request to WadContext.js:

WAD_MESSAGE_ID = 771;
WAD_REQUEST_ID = 602;

WAD_FROM = "agent20@mycompany.com”;
WAD_ORIGINAL_MSG_ID = 770;
WAD_QUEUE_ID = 102;

WAD_SPONSOR_ID = 2;

WAD_AGENT_ID = 120;

22

Oracle

Integration Development Kit Guide

The response effectively defines several JavaScript variables (WAD_MESSAGE_ID,
WAD_REQUEST_ID, etc). By including a link to this JavaScript in any HTML or XSL file, you
can reference and use the defined values in a variety of ways. For example, here’s the HTML code
to create a link to WadContext.js:

<SCRIPT SRC="WadContext.js" language="JavaScript'></SCRIPT>

Here is how you might use the defined variables:

<SCRIPT>
function useWadContext()
{
sURL = "http://www.yahoo.com?from=" + WAD_FROM +
“"&agent=" + WAD_AGENT_ID;
window.open(sURL, "my_new_window");

}
</SCRIPT>

The function could then be called in a variety of ways, for example:

More info...

The WadContext.js file could be referenced in HTML files served up by any application on any
application server—not just the set of XSL files within the Siebel Brightware product. The right set
of values will be retrieved as long as the HTTP request is made from the same session as is used by
the Agent Desktop. The variables will all be initialized to zero if the HTTP request is not made from
the same session as used by Agent Desktop.

The WadContext.js file can also be used to acquire the values of all the variables
(Extraction/Match/Phrase/External) defined within the context of a request. This can be done by
passing it a parameter named “variables”. For example:

<SCRIPT SRC="WadContext.js?variables" language="JavaScript'"></SCRIPT>

The resulting generated JavaScript will then include JavaScript variables for all the defined system
variables. This feature is highly significant because the values of variables extracted from an
incoming message are often the most relevant information that needs to be passed on to external
systems. Variable values can be accessed and passed on in this manner without the need to write
additional supporting IDK code.

Access to Database Integration APl Provided by the IDK

The IDK’s database integration kit (DBI) provides the ability to retrieve data from different kinds
of Siebel Brightware databases. The Agent Desktop Context provides access to the values of certain
fields (such as the Request ID) which can then be used to retrieve any amount of more detailed
information, if necessary, through the DBI. Without access to the Agent Desktop Context, it is not
possible to use the IDK alone to suitably parameterize other applications so that they provide
context-sensitive content. At the same time, the set of keys provided in the context will not provide

Oracle 23

Chapter 4 - Workflow (Agent Desktop) Integration

access to the depth of information that is sometimes required—it merely provides access to the “tip
of the iceberg”. Therefore, the Agent Desktop Integration complements the functionality available
through the IDK.

Examples of Integration Scenarios and Possibilities

= Anew frame can be created to link to a browser-based third-party application, and pass
relevant information from the desktop context to parameterize it appropriately.

m A hyperlink can be added into one of the existing pages that, when clicked, pops up a new
window that is linked to an external application (that once again is suitably parameterized with
the agent desktop context).

m JavaScript can be added into an existing page (WorkingRequestForm.xsl, for example) that
will cause a new window to pop up automatically as soon as the page is loaded.

m Instead of linking directly to an external application, one could link to a servlet deployed with
the rest of the Siebel Brightware application. This custom-built servlet could use IDK to
extract more data, perform some processing, and then perform one of two things:

= Serve up the response itself, or
= Redirect to a different URL (possibly external) with an updated set of parameters

In all the examples, it is largely assumed that the application being integrated with is deployed on a
web server capable of accepting HTTP requests and serving up browser-based content. That
however, does not always need to be the case. It is possible to integrate with non web-based
applications as well-it is just more cumbersome. To launch a “thick client” application on the
agent’s desktop, an applet or ActiveX object can be embedded within the downloaded HTML. The
ActiveX object could be custom built using a tool like Microsoft Visual Basic, and designed to
launch and then interact with any kind of application on the agent’s computer. For example, each
time a new message is processed by the agent, JavaScript can be used to invoke methods on the
downloaded ActiveX object that will in turn update the context of the complimentary stand-alone
third-party application.

Even though modification of branding functionality through changes to the XSL files are made technically possible,
arbitrary modifications to the XSL by third-party implementers and system integrators could possibly detract from
the functionality of the product, or even introduce defects! Further, such modifications (if made) cannot be
supported by Siebel Brightware Technical Support, or remain intact when the product is upgraded from one
version to a newer one. However, it is believed that to achieve a meaningful integration, minimal changes to a very
small subset of the available XSL files are generally required, and system integrators will need to reintroduce the
changes to a newly installed upgraded version of the product.

24

Oracle

5

HTML Formatting of Outbound Messages

This chapter describes the concept of HTML Formatting of Outbound Messages and how to
configure a template to allow this feature to be used within the Agent Desktop application.

Introduction

Branding plays an important part in building every company’s image. The email messages that
contain responses to customers also play an important role in creating and building perceptions of
the company that sends them. The more professional looking the email, the more positive its effect
on the image of the company. Allowing outgoing email messages to be formatted as HTML opens
up aworld of possibilities for creating professional looking messages. HTML formatting allows the
use of background images, company logos, and fine control over colors and fonts. It also offers the
use of forms or the inclusion of hyperlinks to a company’s corporate website (for example).

) Apent Desktop for Web - Microsolt Intemet Exploeer B =&l =]
Fle Bt Wew Fguorbes Took Hep n
dameck < = - () 7] 43| Dhseach [ifFavontes Fimeds o | By Sh] - 5] ¥ Lirks *
Agdress [bipsiflocabost: 001 rorkingRequestian b =] @5 .

Y¥OU AT CurTent
(]

LoGOUT | ONL| 2-—f—--'-:,uu=n.ms- [HELP

Sl LB W arking Request:RE: keep up the good work

e A AT AN

ol Origgimal M tH = = - fo
["'y ___”'J""' cEsant 3 itial 2| pefault Bl ok] ooones T W
vear Sir)
Py Il likz you to knows hivw mch e I 1o) eustomes@msprguyenst
Requesis enjoyed the excellent serace v P 1 I
expanenced over 1he years Tom DHL —
Feep up he greal wark] [meoo I
Rogards, Suhject: [RE: keep ap the gond work =

E I Lee Plaased
¥ Include original message
Crsar Les, =]

we're glad you ke what vou ses! Kesp in touch...
Jarmes Bond

TRACKING WUHBER: ANDDOOIONES0-00000001520
----- original Hesssge-----

Fram: customerdmspaguyenst

Eﬁupl'rui\ur Rewiews Sank: 05 Dec 02 130738

Draft To; sales@poldwaterfinancial .cam
R el=
_'f';!‘"'m“uﬂ Responses Subject: keep up the good wark
ﬂ-:"lluﬂu‘ Freguent Responses Ciear Sir,

Recponse Librasy ['d lica o B0 kg hom mich T've snjoyed the excallant sarass T've acpecmndsd over the years from DHL,

r.'ﬁ"ﬂ.n-nt Keep up the grest work!
Aegards,

E Z Lot Pleased

2 javasrptishowersngRegquesti urtion| Shouisassgri aquest] B Locdl ineraret
Figure 5-1. Standard plain-text message.

Oracle 25

Chapter 5 - HTML Formatting of Outbound Messages

) Agent Desktop for Web - Microsodt Intemet Explosst B ¢ : TS|

Fle Gt ew P Jech ek | @ |
ook - - D [45| Dseonn Calrovortes Preda |- I - H ¥ | »
agdrec (] etpaf/locshast A00LNvorkngFoquestHin bl =] we

U AN Gumsnt Fy
| Loour o ouLln’E—m;un OFFLINE | { HELF 1

@ﬂngmnl Message: cwss
Diear Sir,
I'd likz you to know hiow uch e -
enjoyed the excallant semics 'va

expenenced over the years oo DHL
Keep up he grial wark] -
Regards,
E ILee Plaased =

Wig'te glad you like what you seel Keep in touch
larmngs Bond

L I R

]
-

[B 5 upervisor Reviews =
(B orate -
'E-'?Euq:ul::ud Responses

L Queue Freguent Responses

@Rm;nmr— Library -
at

Subjact: keap un tha good wor

Ciaar Sir

1 ik you to knaew b moch v enjoyed the excallent semvics 've sxgenenced over tha years from
CHL

]
P eeeseeewe

| &) one
Figure 5-2. HTML enhanced message.

Features

Siebel Brightware support for HTML formatting of outbound messages features the following:

m Ability to insert images (to support the use of company logos) and alter fonts and colors.
m Ability to use background images to create the effect of using “stationery”.

m The addition of HTML support does not change the way an Agent or Supervisor interacts with
the system (the User Interface design and underlying infrastructure for creating responses,
such as reviewing, forwarding, assigning, transferring, and rejecting messages all remain
unaffected).

m Ability to use templates to allow automatic compliance with approved company branding and
formatting standards of every message leaving the system.

m Allows messages to be uniquely formatted for the different Business Units and queues (if
desired) by using different templates for each.

m Allows Agents to preview the formatted version of a message.

m The different parts of the message (original message, tracking text, and the reply) can receive
different formatting options.

26

Oracle

Integration Development Kit Guide

m Supports plain-text formatting in addition to HTML. Support for plain-text is important
because it is the lowest common denominator supported by even the most primitive of mail
clients.

m Identifies the mail client signature used to generate an incoming message and provides the
ability to format messages based on the mail client used. Allows “optimistic” and
“pessimistic” options that dictate if an outgoing message is formatted as HTML or plain-text.

m Allows expansion of recognized mail clients list through the modification of a configuration
file (without the need for code changes).

m Allows the use of a formatting template even for messages sent in plain-text. It can, however,
be used to enhance the text with headers and footers to provide a suitable alternative to HTML
elements (such as images).

m When using HTML formatting, an option is available to send out HTML and plain-text as
separate parts of a multipart message — allowing messages to be viewed in both formats.

m Supports the option of using plain-text or HTML at a Business Unit level rather than just as
one system-wide setting.

Template Configuration

The approach used in formatting a message as HTML involves the provision and use of a template.
This alleviates the need for an Agent to spend time and energy applying formatting to individual
messages, and ensures the consistent branding of all outgoing messages across all Agents. The
template is used to format a message when an Agent invokes the preview function within the Agent
Desktop (working request view) as well as when the Outbound Mail Handler sends out a message.

Assingle physical file named OutboundMsg.xsl represents the template for all outbound messages.
This file is located within the install folder:

\config\eservice\applications\DefaultWebApp_myserver

This one file can contain several different templates that could be applied as needed for use with
different Business Units and queues. The file can also contain a template that would be used
exclusively to format messages intended for plain-text.

At runtime, the components of the application merge the response in the form of an XML document
with the template (an XSL file) to generate the message that is sent to the client. The XML
document contains several different kinds of XML elements that represent various parts of the
message as well as information about it — such as which Business Unit and queue it came from. The
information in these XML elements are used in the XSL template (XSL essentially is a template for
generating HTML).

XSL is a well documented non-proprietary standard and it is beyond of the scope of this document
to cover. An elementary understanding of the XSL syntax is required to configure or customize a
template. An alternative is to use one of many third-party off-the-shelf tools to edit the XSL file.
The Siebel Brightware product already includes a basic usable out-of-the-box template, as well as
a sample of a template file (OutboundMsg_X.xsl) that demonstrates many of the formatting
possibilities. For example, how to achieve a distinct look and feel for different Business Units or
hide the tracking text.

Oracle 27

Chapter 5 - HTML Formatting of Outbound Messages

The following is a list of XML elements generated within the XML document that represent an
outgoing message: <root>, <reply>, <trackingText>, <originalMessage>, <sponsor>, <queue>, and
<plainText>. The <root> element is the parent of all the other elements.

NOTE: The <sponsor> element represents the business unit.

For example, an XML document for a message might look similar to this:

<root>
<reply>
Dear Sir,
Thanks for contacting us. We will be responding within the
next few days with the information you requested.
</reply>

<trackingText>
TRACKING NUMBER: A00000000604-00000001268
</trackingText>

<originalMessage>

From: customer@edocs.com

Sent: 25 Nov 02 16:55:28

To: sales@coldwaterfinancial .com

Cc:

Subject: Enquiry

Hi,

Could you please enlighten me? (Soon!)
</originalMessage>

<sponsor> Initial </sponsor>

<queue> Sales & Service </queue>

<plainText> true </plainText>
</root>

28

Oracle

Integration Development Kit Guide

Support for Mail Clients Incapable of Rendering HTML

There are many reasons why a company would want to send the majority of messages formatted as
HTML. However, as mentioned earlier, it is important to have some support for primitive mail
clients that cannot recognize HTML content.

Siebel Brightware provides several levels of support for primitive mail clients and several
configuration options that will determine how a message is formatted:

m Theuse of HTML in formatting messages can be disabled for any specific Business Unit or all
Business Units. This can be specified under the Business Unit tab from the Contact Center
Console. HTML formatting is enabled by default. If it is disabled, messages will be sent as
plain-text, regardless of the kind of mail client used by the mail recipient.

m A system wide setting is provided to allow a Supervisor or System Administrator to specify
that whenever a message is being formatted as HTML, a textual representation of the same
message should be included — just in case the mail client cannot recognize HTML. This is done
by sending out a multi-part MIME message, one part contains HTML and the other contains
plain-text. Different mail clients have different ways of displaying multi-part messages.
Outlook Express may display the different parts one below the other, while Outlook would
display the plain-text part as an attachment on the primary (HTML) message. This setting is
provided through the configuration parameter called always.include.plaintext.version and is
turned off by default.

m The decision of whether or not to use HTML formatting can be based on the mail client used
to send out the original incoming message. The system detects the signature of the mail client
used to send an incoming email message. This corresponds to the X-Mailer header of the
email. Each mail client has a unique signature. Based upon a knowledge of which common
mail clients do or do not support HTML, and their signatures, the best decision can be made
about whether or not to use HTML in outbound messages. Three configuration parameters are
provided with relation to this feature:

= The parameter plain.text.email.clients should be used to configure a semicolon
delimited list of signatures of all mail clients that cannot read HTML. For example, the
signature for AOL Version 4.0 will be a member of this list. Each element of the list
need only be a sub-string of the entire X-Mailer header. This list is incomplete since
there are a large number of obscure or little-used mail clients in use. The more
complete the list is, the more effective it will be. The completeness of this list is only
relevant when the optimistic option is in use (see the third bullet below).

= The parameter html.enabled.email.clients should be used to configure a semicolon
delimited list of signatures of all mail clients that are known to read HTML. This list is
incomplete. The more complete it is, the more effective it will be. The completeness of
this list is only relevant when the pessimistic option is in use (see the third bullet
below).

Oracle 29

Chapter 5 - HTML Formatting of Outbound Messages

= The parameter named use.html.formatting.optimistically is what eventually dictates
the algorithm used to decide what format should be used. It also dictates which of the
two lists becomes relevant.

Optimistic Approach: If this parameter is set to true, HTML formatting is used unless
the mail client of the recipient definitively belongs to the category of known clients that
cannot read HTML.

Pessimistic Approach: If this parameter is set to false, HTML formatting is used only
if the mail client of the recipient is one of the clients definitively known to be able to
read HTML. This is the safer approach, and what is used if the reliability of email
responses is especially important. Note that most clients that cannot render HTML can
still read HTML and render it as plain-text anyway — making HTML the more viable
choice.

Since the lists of mail client signatures are configurable, they can be progressively updated by System
Administrators without changes to the core product. Its important to note, that even if the lists are trivial, they can
still be effective. For example, if the only element of the HTML enabled client list consisted only of the word
Outlook, and one also chose the pessimistic option, it would still make it possible to reach over 60% of clients with
HTML, while the remainder would receive plain-text (which is better than 100% of clients receiving plain-text).

In addition to the above, support for use of templates in formatting and message composition is
provided even if a message is being sent as plain-text. This allows an outgoing message to be
enhanced with additional content (such as headers and footers) just as is the case for HTML
messages. The XML element <plainText> passed to the template holds the value of true or false, and
is provided for just this purpose.

30

Oracle

Appendix

A

Understanding Event Sequences

Introduction

This appendix is provided to give you a background of what activities occur within the Siebel
Brightware application during certain actions. Use these scenario explanations to plan your
integration, or use the JavaDocs to determine how to best integrate your applications.

Server Startup Processes

The Siebel Brightware or third-party systems may be started in any order. The integration must
handle this requirement. How this requirement is satisfied is left to the integrator.

When the Siebel Brightware system starts, it initializes many components and draws upon the
information in the variable-pool.xml file. In terms of integration, the important components are
RMI, JMS, the Event Registry, and the Event Topics. During startup, the Siebel Brightware Server
will attempt to start an external process specified in the configuration file. After the Siebel
Brightware Server has completed its initialization it will fire the ServerStarted event. Your
integration code can be started by the exec)call. It should register a listener for each event that you
find important. The integration code can also initialize the DBI at this time (see Figure A-1, on
page 32).

Please note that the variable-pool.xml file contains information the system requires to run. This file is located in the
1 install directory and should not be moved.

Oracle 31

Appendix A - Understanding Event Sequences

- |
|

Figure A-1. Server Startup

. Brightwary startedEwvent : reqistry : senerStatedLlis tener integrationC o mponert : 2 9rd Party
Senwer SenerStatedEwvent | | EventReqis try [Eventl istener) Process Systemn
| 1 e | | | 2: Contact
I I I 2rdP arty |
| Systemn |
o3 EJentRegistrg.("hﬂyD". "Lorst.c-:-mparrg.r.cu:-m". fak &)
| I |
| | | & EwentListenean)
I a: register&en.erStartedExrent.clis. senerStatedlistenen)
L |
B: SenerStarte dEyent | | | I

|?: signaksta rte-:IEv‘elntj | |

| & Tell the 3rd F'Iarl'g.r zystem

|

_

The external process started by the exec call is configurable in the config.cml file as is the delay
from starting the external process to the signaling of the ServerStarted event. Code Sample A-1,
“config.cml”, on page 32 is a snippet from config.cml, an XML based configuration file for
the server. This file is found in the root directory of the Siebel Brightware Server installation. The
external process is configured using the eventservice parameter. It must follow the standards for
an executable process. The value of the trace parameter will be appended to the eventservice

parameter as an argument. You can configure a delay in milliseconds using the startupdelay

parameter.

Code Sample A-1. config.cml

<application name="Firepond.event.application">
<dependency application="Firepond.bus.application'/>
<instance instance-of="Firepond.event.registry" name="Firepond.event.handler">

<parameter-group>

<parameter-group name="event''>
name=""shutdowndelay" value='"5000"/>
name="eventservice" value="starteventcompatibility.cmd'"/>
name=""eventorder" value="true"/>
name=""trace" value="false"/>
name="startupdelay” value='"40000"/>
</parameter-group>

<parameter
<parameter
<parameter
<parameter
<parameter

</parameter-group>
</instance>
</application>

32

Oracle

Integration Development Kit Guide

The remainder of this discussion assumes that the Integration Component, shown in Figure A-1, on
page 32, was started using the exec() command from the Siebel Brightware Server. The
Integration component should create an EventRegistry and register an EventListener for each
event of interest. The remaining event scenario diagrams assume that the startup and registration
process is complete.

Server Shutdown Processes

The Siebel Brightware or third-party systems may be shut down in any order.

. Brighware stoppedEwent : senerStoppedlistener registoy inte gration ompon :3rd Parky
Sgoyer SenverStoppe dEvent [Ewentl istener EvertRegistry ent : Process System

1: SenverStoppe -:IEl‘ent(i

1

2= ignadstu:-ppe dEwent)

& destrog’)

\‘ 3: Tef the 3 Patty systm	
T

|
|
|
|
T
|
|

5 unregisten]Class
G: Motify Zrd Paﬁ System

Figure A-2. Siebel Brightware Server Shutdown

See Figure A-2, “Siebel Brightware Server Shutdown” above. When the Siebel Brightware Server
stops, it signals the serverStopped event, waits a short time, and then terminates the Integration
Component started during the Siebel Brightware Server startup procedure as in Figure A-1, “Server
Startup”. You can configure the delay between the ServerStopped event and the termination of the
Integration Component in the config.cml file. The shutdowndelay parameter in Code Sample A-
1,“config.cml” expresses this delay in milliseconds.

Oracle 33

Appendix A - Understanding Event Sequences

Siebel Brightware Component Processes and Event Firing

The following section describes the Events API.

Intelligence Engine

1. Start the Intelligence Engine.
ApplicationStartedEvent(*'firepond.answeragent.application™)
ServerStartedEvent

2. Retrieves a new email from the mail server, determines which Business Unit the request
belongs to and stores the request in the Inbound Queue of that Business Unit.

EnqueueEvent(Inbound)

3. Analyze the request email content and determine the intent. Upon completing NLP
processing the request is stored in the database.

CreatedRequestEvent

AssignMessage(AA)

DeliveredMessageEvent(AA)

UnAssignMessage(AA)

DequeueEvent(INBOUND)

DequeueEvent(OUTBOUND) in case when you have Enqueue(outbound)

4. Based on the intent and action rules defined in the knowledge base, it proceeds to one of the
following:

(a) If the request is Threaded (this event will fire even when threading is disabled).
ThreadedRequestReceivedEvent

(b) If the intent is certain and the Auto Response feature is on, then generate the auto reply
and close the request.

AutoReplySentEvent
ClosedRequestEvent
EnqueueEvent(OUTBOUND)
DequeueEvent

(c) Otherwise bundle the suggested replies, if any, to the request and assign the request to a
queue.

RequestAssignedbyAnswerEvent
EnqueueEvent(SUBJECT)
(d) If an incoming request triggers an auto close rule then:

CloseRequestEvent
EnqueueEvent(INBOUND)
DequeueEvent(OUTBOUND)

5. If Auto Acknowledge feature is on then generate auto acknowledge reply for the request.
AutoAcknowledgeReplySentEvent
EnqueueEvent(OUTBOUND)

34 Oracle

Integration Development Kit Guide

DequeueEvent

6. Cycle repeats starting at step 2.

7. Siebel Brightware Intelligence Engine stops.
ApplicationStoppedEvent(**firepond.answeragent.application™)
ServerStoppedEvent

Queue Manager

1. Queue Manager server is started.
ApplicationStartedEvent(**firepond.email.router.application™)
ServerStartedEvent

2. The Contact Center database is polled at a predefined interval.

(a) If any outbound request replies are seen, then send them out via the connected email
server.

ReplySentEvent
DequeueEvent(OUTBOUND)

(b) If an available agent and a request that has been directly assigned to that agent are seen,
then deliver the request to the agent.

DeliveredRequestEvent
DeliveredMessageEvent

(c) If an available agent is found, then deliver a request that is waiting in a queue to the agent
based on the routing criteria.

DeliveredRequestEvent
AssignedMessageEvent
DeliveredMessageEvent
3. QueueManager detects change in queue status.
QueueOKEvent
QueueWarningEvent
QueueCriticalEvent
4. Queue Manager server is shutdown.
ApplicationStoppedEvent(**firepond.email.router.application™)
ServerStoppedEvent

Agent Desktop

1. Agent Desktop launched by the agent. Agent state changed to online.
AgentOnlineEvent
MakeAgentOnlineEvent

2. Agent performs one of the actions/tasks as follows:
(a) Make available — The Agent clicks the Go Online button to make himself available.

Oracle 35

Appendix A - Understanding Event Sequences

AgentReadyEvent
MakeAgentBeReadyEvent
If there are open requests waiting for the agent, one will be delivered to the agent.
AgentWorkingEvent
MakeAgentWorkingEvent
(b) Make unavailable — The Agent clicks the Go Offline button to make himself unavailable.
AgentUnavailableEvent
MakeAgentUnavailableEvent
(c) Send reply — The Agent clicks Send to send a response to the customer.
ReplySentEvent
EnqueueEvent(OUTBOUND)
Dequeue(OUTBOUND)

If the agent is under review (the flag Send all replies composed by this agent to
review is checked in the Contact Center Console).

AssignedRequestToReviewEvent
(d) Close request — The Agent clicks the Close button to close the request.
ClosedRequestEvent
UnassighedMessageEvent
DequeueEvent
AgentReadyEvent
MakeAgentBeReadyEvent
If there are new requests in the agent’s queue:
AgentWorkingEvent
MakeAgentWorkingEvent

(e) Send&Close — The Agent clicks the Send&Close button to send the response and close the
request at the same time.

Fires all applicable events in (d) and (e).
(f) Pend request — The Agent clicks the Pend button to pend the currently working request.
PendedRequestEvent
AgentReadyEvent
MakeAgentBeReadyEvent
If the agent has requests waiting in his queue:
AgentWorkingEvent
MakeAgentWorkingEvent
(9) Unpend request — The Agent clicks the Unpend button to unpend the request:
UnpendedRequestEvent
AgentWorkingEvent
MakeAgentWorkingEvent

(h) Reassign request — The Agent clicks the Reassign button to reassign the request to another
agent or queue.

ReassignRequestEvent

36 Oracle

Integration Development Kit Guide

UnassignedMessageEvent
DequeueEvent
EnqueueEvent
AssignedMessageEvent (if agent specified)
AgentReadyEvent
MakeAgentBeReadyEvent
If the agent has requests waiting in his queue:

AgentWorkingEvent
MakeAgentWorkingEvent

(i) Forward the request — The Agent clicks the Forward button.
ForwardedRequestEvent
DequeueEvent
EnqueueEvent

(j) Pass the current request to the supervisor for review — The Agent clicks the Review button
to send a response to the supervisor to review.

AssignedRequestToReviewEvent
UnassignedMessageEvent
DequeueEvent
EnqueueEvent
AgentReadyEvent
MakeAgentBeReadyEvent
If the agent has requests waiting in his queue:

AgentWorkingEvent
MakeAgentWorkingEvent

(k) Transfer request. The agent clicks the Transfer button.
TransferRequestEvent
Unassign
Dequeue
CloseRequest

(I) Reopen request. The agent clicks the reopen button.
OpenedRequestEvent
Enqueue

(m) Agent Initiated Mail — Agent works in the Agent Initiated Mail View and clicks the
Send&Close button to send out the message.

CreatedRequestEvent
AgentlnitiatedRequestEvent
EnqueueEvent(outbound)
DequeueEvent(outbound)
(n) Agent goes offline — The Agent clicks the availability button to make himself unavailable.
AgentUnAvailableEvent
MakeAgentUnAvailableEvent

Oracle 37

Appendix A - Understanding Event Sequences

AgentOfflineEvent
MakeAgentOfflineEvent

Contact Center Console Events

A supervisor logs on to Contact Center Console to perform the following tasks:

1.

Close request — The request is closed using the Close button.
ClosedRequestEvent

UnassighedMessageEvent

DequeueEvent

AgentReadyEvent

MakeAgentBeReadyEvent

If the agent has requests waiting in his queue:

AgentWorkingEvent

MakeAgentWorkingEvent

Reassign request — Supervisor reassigns request via the Contact Center Console.
ReassignRequestEvent

UnassighedMessageEvent

DequeueEvent

EnqueueEvent

AssignedMessageEvent

AgentReadyEvent

MakeAgentBeReadyEvent

If the agent has requests waiting in his queue:

AgentWorkingEvent

MakeAgentWorkingEvent

Approve review — Response in supervisor review is approved via the Contact Center Console.
CloseRequestEvent()

ReplySentEvent()

ApprovedRequestEvent()

AssignedRequestFromReview ()

Dequeue(ReviewQueuel D)

Enqueue(OutboundQueuelD)

Dequeue(OutboundQueuelD)

Close review — Response in supervisor review is closed via the Contact Center Console.
RejectRequestEvent

ClosedRequestEvent (If a request in the Review queue had been closed in the regular queue
this event will not fire).

RequestAssignedFromReview(RequestID, -1)-d
Dequeue(ReviewQueue)-d

38

Oracle

Integration Development Kit Guide

10.

11.

12.

13.

Reassign review — Response in supervisor review is reassigned via the Contact Center
Console.

RejectRequestEvent
ReassignRequestEvent
RequestAssignedFromReview()
Dequeue(ReviewQueue)
Enqueue(AgentQueue)
AssignedMessage(ToAgentiD)
Create a Sponsor (Business Unit)

If the request was just Sent for review, the following events will fire in addition to events
above:

UnAssignMessage()
Dequeue()
CreatedSponsorEvent

QueueCreatedEvent (5 times for the 5 system queues that are created for the Business Unit
by default)

Delete a Sponsor (Business Unit)

DeletedSponsorEvent

DeletedQueueEvent (fires the number of times equal to the number queues the sponsor has)
If any agents were assigned to this Sponsor the following event might fire:
UnassignedAgentFromSponsorEvent

Save modified Sponsor (Business Unit) property value
UpdatedSponsorEvent

Create an agent for the selected Business Unit

CreatedAgentEvent

AssignedAgentToSponsorEvent

Delete an agent

UnassignedAgentFromQueueEvent
UnassignedAgentFromGroupEvent

DeletedAgentEvent

UnassignedAgentFromSponsorEvent

Save modified agent property values (such Agent’s Custom Signature, Email Address, First
Name, Last Name, Login ID, Notes and Review Status)

UpdatedAgentEvent

AgentPropertiesChangedEvent

UpdatedAgentEvent

MakeAgentActiveEvent or MakeAgentlinactiveEvent
AgentActiveEvent or AgentlnactiveEvent

Create a queue

CreatedQueueEvent

Delete a queue

Oracle 39

Appendix A - Understanding Event Sequences

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

UnassingedAgentFromQueueEvent
UnassighedGroupFromQueueEvent
DeletedQueueEvent

Save modified queue property value
UpdatedQueueEvent

Create a group

CreatedGroupEvent

Delete a group
UnassighedAgentFromGroupEvent
UnassighedGroupFromQueueEvent
DeletedGroupEvent

Save modified group property value
UpdatedGroupEvent

Assign an agent to queues
AssignedAgentToQueueEvent
Un-assign an agent from queues
UnassighedAgentFromQueueEvent
Assign an agent to groups
AssignedAgentToGroupEvent
AssignedAgentToQueueEvent
Un-assign an agent from groups
UnassighedAgentFromGroupEvent
UnassighedAgentFromQueueEvent
Assign a group to queues
AssignedGroupToQueueEvent
AssignedAgentToQueueEvent
Un-assign a group from queues
UnassighedGroupFromQueueEvent
UnassighedAgentFromQueueEvent

40

Oracle

Integration Development Kit Guide

New Events

CreatedSponsorEvent(SponsorKey spk)
DeletedSponsorEvent(SponsorKey spk)
UpdatedSponsorEvent(SponsorKey spk)
AgentPropertiesChangedEvent(AgentKey apk)
AssignedAgentToSponsorEvent(AgentKey apk, SponsorKey spk)
UnassignedAgentFromSponsorEvent(AgentKey apk, SponsorKey spk)

AgentlinitiatedRequestEvent(SponsorKey spk, RequestKey rpk, AgentKey apk, MessageKey

mpk)

Oracle

41

Appendix A - Understanding Event Sequences

42 Oracle

Example Event Handler

Appendix

B

The root directory of the Oracle’s Siebel Brightware IDK, here after known as 1DKROOT, is typically
C:\edocs\Brightware. This directory is the place you chose to install the IDK. Please substitute the
actual directory location for IDKROOT in the example.

Running the Example

The example source code is installed by the IDK installer to

IDKROOT\ I ib\integation\Example\ExampleEventHandler . java. Also,
testExampleEventHandler.cmd is installed in the 1DKROOT directory. Running this command file
from the IDKROOT directory will execute the example code. The TestExampleEventHandler.cmd
file now contains an extra parameter called -DWeblogic.RootDirectory="InstalledDirectrory". This
parameter should be implemented in any CMD file used when testing the IDK. After starting the
ExampleEventHandler, create a new agent using the Contact Center Console and you should see
something like the following:

2K System32 cmd.exe

.exanple
.example
.exanple
.example
.exanple
.exanple
.exanple

.ExampleEventHandler: Connecting to localhost

.ExampleEventHandler: Connected to localhost
.ExanpleEventHandleréCreatedigentEventListener: fAgent, 181, create
.ExampleEventHandler$CreatedfigentEventListener: login name: barney
.ExanpleEventHandleréCreatedfigentEventListene first Hame: Barney
.ExanpleEventHandler5CreatedfigentEventListener: middle Mame:
.ExampleEventHandler$CreatedfigentEventListener: last Mame: Pebhle

Figure B-1. Example Class Output

Oracle 43

Appendix B - Example Event Handler

The Example Source Code

package com.firepond.example;

// The firepond event imports
import com.firepond.event.*;

import com.firepond.event.agent.*;
import com.firepond.event.queue.*;
import com.firepond.event._.group.*;
import com.firepond.event.request.*;

import com.firepond.dbi.*;

import java.io.Serializable;

*

*
*
*

*/

Demonstrates a simple event handler.<p> The example initializes the event registry as
well as the DBI, then registers several event handlers with the event API. These event
handlers use the DBl to access information about the objects that the events are
notifying about. Once the information is found, they simply print that information

to the screen for the sake of the example. You may want to do something a little

more useful then that.<p>

@author Chris Zielke, Tony Stone
@version 2.0

public class ExampleEventHandler extends java.lang.Object {

public static String PORT = "7001";

/>

*

*

*

*/

A simple event handler to handle <code>ServerStartedEvent</code> events.<p>

public class ServerStartedEventListener implements EventListener, Serializable {

/** Listen for ServerStartedEvent. If received, it will call log it to the console
* @param event The event that is being signalled
* @since 1.0
*/
public void signal(Event event) {
try {
if (! (event instanceof ServerStartedEvent)) {
System.out_printin(this.getClass().getName() + ": Wrong type of Event,

event_toString());

return;
}
System.out.printin(this.getClass().getName() + ": received");
} catch (Exception ex) {
System.out.printin(this.getClass().getName() + ": " + ex);
3
3
3
/**

44

Oracle

Integration Development Kit Guide

A simple event handler to handle <code>CreatedAgentEvent</code> events.<p>
This handler simply traps the event and looks up the beans that were involved
in the event. It then prints that information out to the screen.<p>

ok X % %

*
N

public class CreatedAgentEventListener implements EventListener, Serializable {
private AgentHelperBean anAgentHelperBean = new AgentHelperBean();

/**
* Listen for ServerStartedEvent.<p> If received, it will call log it to the console and
* set the agentCreated flag to true.<p>
*
* @param event The event that is being signalled
* @since 1.0
*/
public void signal(Event event) {
AgentBean anAgentBean = null;

try {
if (! (event instanceof CreatedAgentEvent)) {
System.out.printIn(this.getClass().getName() + '": Wrong type of Event, " +
event.toString()):
return;

¥
CreatedAgentEvent cae = (CreatedAgentEvent) event;

// Ask the DBI to get the new agent for you
anAgentBean = anAgentHelperBean.getAgentByKey(cae.getAgentKey());

// Do something with the Agent. In this case we just print it to the screen

System.out.printIn(this.getClass().getName() + ": Agent, " + anAgentBean.getKey().getld()
+ ", created");
System.out._printin(this.getClass().getName() + ": login name: " + anAgentBean.getUserName());
System.out._printIn(this.getClass().getName() + ": TFfirst Name: " + anAgentBean.getFirstName());
System.out.printin(this.getClass().getName() + ": middle Name: " + anAgentBean.getMiddleName());
System.out.printin(this.getClass().getName() + ": last Name: " + anAgentBean.getLastName());

} catch (Exception ex) {
System.out.printin(this.getClass().getName() + ": " + ex);
3

/**

A simple event handler to handle <code>EnqueueEvent</code> events.<p>
This handler simply traps the event and looks up the beans that were involved
in the event. It then prints that information out to the screen.<p>

N I B .

*/
public class EnqueueEventListener implements EventListener, Serializable {
private QueueHelperBean aQueueHelperBean= new QueueHelperBean();
private MessageHelperBean aMessageHelperBean = new MessageHelperBean();

/**
* Listen for EnqueueEvent.<p>

Oracle 45

Appendix B - Example Event Handler

*

* @param event The event that is being signalled
* @since 1.0
*/
public void signal(Event event) {
EnqueueEvent ege = null;

try {
if (! (event instanceof EnqueueEvent)) {

System.out.printIn(this.getClass().getName() + '": Wrong type of Event, " +
event.toString());
return;

}

eqe = (EnqueueEvent) event;

/*

* In this example we will check the queue type to be sure that

* the type is something we want to pay attention to.

*/

if (ege.getQueueType() == com.Firepond.domain.QueueType.SUBJECT) {

QueueBean aQueueBean = aQueueHelperBean.getQueueByKey(ege.getQueueKey());
MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(eqge.getMessageKey());

/*
* Here we simply print the results.
*/
System.out.printin(this.getClass().getName() + ": A message was queued to the " + aQueueBean.getName() +
" queue™);
System.out.printin(this.getClass().getName() + ": the message subject is "' + aMessageBean.getSub-
jectQ + "T);

} else {
System.out.printin(this.getClass().getName() + ": A message was queued to a queue that we
are not interested in");

3
} catch (Exception ex) {
System.out.printin(this.getClass().getName() + ": " + ex);

}
ke
/**
A simple event handler to handle <code>DequeueEvent</code> events.<p>

This handler simply traps the event and looks up the beans that were involved
in the event. It then prints that information out to the screen.<p>

L T

4
public class DequeueEventListener implements EventListener, Serializable {
private QueueHelperBean aQueueHelperBean= new QueueHelperBean();
private MessageHelperBean aMessageHelperBean = new MessageHelperBean();

/**
* Listen for DequeueEvent.<p>

*

* @param event The event that is being signalled

46 Oracle

Integration Development Kit Guide

* @since 1.0

*/

public void signal(Event event) {
DequeueEvent dge = null;

try {
if (! (event instanceof DequeueEvent)) {

System.out.printIn(this.getClass().getName() + '": Wrong type of Event, " +
event.toString()):
return;

}

dge = (DequeueEvent) event;

/*
* In this example we will check the queue type to be sure that
* the type is something we want to pay attention to.

*/

if (dge.getQueueType() == com.Firepond.domain.QueueType.SUBJECT) {
/*

* Get the beans associated with this dequeue event

*/

QueueBean aQueueBean = aQueueHelperBean.getQueueByKey(dge.getQueueKey());
MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(dge.getMessageKey());

/*
* We simply print them here.
*/
System.out._printin(this.getClass().getName() + ": A message was dequeued from the " + aQueueBean.get-
Name() + " queue'™);
System.out._printin(this.getClass().getName() + ": the message subject is "' + aMessageBean.getSub-

ject() + "3

} else {

System.out.printin(this.getClass().getName() + ": A message was dequeued to a queue that
we are not interested in');

}

} catch (Exception ex) {
System.out.printIn(this.getClass().getName() + ": " + ex);

}
}
/**
A simple event handler to handle <code>AssignedMessageEvent</code> events.<p>

This handler simply traps the event and looks up the beans that were involved
in the event. It then prints that information out to the screen.<p>

ok o+ F %

*/
public class AssignedMessageEventListener implements EventListener, Serializable {
private MessageHelperBean aMessageHelperBean = new MessageHelperBean();
private AgentHelperBeananAgentHelperBean = new AgentHelperBean();

Yokl

* Listen for AssignedMessageEvent.<p>
*

* @param event The event that is being signalled
* @since 1.0

Oracle 47

Appendix B - Example Event Handler

*
/

public void signal(Event event) {
AssignedMessageEvent ame = null;

try {
if (! (event instanceof AssignedMessageEvent)) {

System.out.printIn(this.getClass().getName() + '": Wrong type of Event, " +
event.toString()):
return;

}

ame = (AssignedMessageEvent) event;

/*
* Get information about the message and the agent that that message
* was assigned to.
*/
MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(ame.getMessageKey());
AgentBeananAgentBean = anAgentHelperBean.getAgentByKey(ame.getAgentKey());

System.out._printin(this.getClass().getName() + ": A message was assigned to the agent "' + anAgent-
Bean.getUserName() + ""');

System.out._printin(this.getClass().getName() + '": the message subject is "" + aMessageBean.getSubject() +
ey

} catch (Exception ex) {
System.out.printin(this.getClass().getName() + ": " + ex);
¥

/**

* A simple event handler to handle <code>DeliveredMessageEvent</code> events.<p>

* This handler simply traps the event and looks up the beans that were involved

* in the event. It then prints that information out to the screen.<p>

*

*/

public class DeliveredMessageEventListener implements EventListener, Serializable {

private MessageHelperBean aMessageHelperBean = new MessageHelperBean();

private AgentHelperBeananAgentHelperBean = new AgentHelperBean();

/**

* Listen for DeliveredMessageEvent.<p>

*

* @param event The event that is being signalled
* @since 1.0

*/

public void signal(Event event) {
DeliveredMessageEvent dme = null;

try {
if (! (event instanceof DeliveredMessageEvent)) {

System.out.printIn(this.getClass().getName() + '": Wrong type of Event, " +
event._toString()):
return;

}

dme = (DeliveredMessageEvent) event;

48 Oracle

Integration Development Kit Guide

/*
* Get information about the message and the agent that that message
* was delivered to.
*/
MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(dme.getMessageKey());
AgentBeananAgentBean = anAgentHelperBean.getAgentByKey(dme.getAgentKey());

System.out.printin(this.getClass().getName() + ": A message was delivered to the agent "' + anAgent-
Bean.getUserName() + ""');

System.out.printin(this.getClass().getName() + *: the message subject is "' + aMessageBean.getSub-
jectQ + "T);

} catch (Exception ex) {
System.out.printin(this.getClass().getName() + ": " + ex);
¥

/**

A simple event handler to handle <code>UnassignedMessageEvent</code> events.<p>
This handler simply traps the event and looks up the beans that were involved
in the event. It then prints that information out to the screen.<p>

ok o+ % %

*/
public class UnassignedMessageEventListener implements EventListener, Serializable {
private MessageHelperBean aMessageHelperBean = new MessageHelperBean();
private AgentHelperBeananAgentHelperBean = new AgentHelperBean();

/**

* Listen for UnassignedMessageEvent.<p>

*

* @param event The event that is being signalled
* @since 1.0

*/

public void signal(Event event) {
UnassignedMessageEvent ume = null;

try {
if (! (event instanceof UnassignedMessageEvent)) {
System.out.printin(this.getClass().getName() + *": Wrong type of Event, " +
event.toString());
return;

}

ume = (UnassignedMessageEvent) event;

/*
* Get information about the message and the agent that that message
* was assigned to.
*/
MessageBeanaMessageBean = aMessageHelperBean.getMessageByKey(ume.getMessageKey());
AgentBeananAgentBean = anAgentHelperBean.getAgentByKey(ume.getAgentKey());

System.out.printIn(this.getClass().getName() + ': A message was unassigned from the agent "' + anAgent-
Bean.getUserName() + ""');

Oracle 49

Appendix B - Example Event Handler

System.out.printin(this.getClass().getName() + ": the message subject is "' + aMessageBean.getSub-
Ject() + ")

} catch (Exception ex) {
System.out.printin(this.getClass().getName() + ": " + ex);
3

/**

*

* Shutdown handler if the process is terminated externally.<p>
*
*/
public class Shutdown extends Thread {
public Shutdown(ExampleEventHandler handler) {
this.handler = handler;

}

public void run(Q) {
try {
System.out.printIn(**Shutdown: Stopping the integration component™);
if (handler == null) {
System.out.printIn(*Shutdown: no handler specified");
return;
}
handler.stop();
} catch (Exception e) {
System.out._printIn(*'Shutdown: Error stopping integration component: " + e.toString());
3
b

private ExampleEventHandler handler = null;

}

private EventRegistry registry = null;
/**
* Creates new ExampleEventHandler.<p>

*

* @param serverName The name of the Siebel Brightware Server
*
*/
public ExampleEventHandler(String serverName)
throws Exception
{
// Setup a shutdown handler to ensure a clean exit
Shutdown shutdown = new Shutdown(this);
Runtime.getRuntime() .addShutdownHook(shutdown);

// Initialize the Event registry. Connects to the server.

try {
System.out.printIn(this.getClass().getName() + ": Connecting to " + serverName);
registry = new EventRegistry("example', serverName, Integer.parselnt(PORT), false);
System.out.printIn(this.getClass().getName() + ": Connected to " + serverName);

} catch (Exception e) {

50 Oracle

Integration Development Kit Guide

System.out._printin(this.getClass().getName() + ": Can not locate the server, " + serverName +
"o "+ e.toString();
throw e;

}

// Register event handlers

try {
registry.register(ServerStartedEvent.class, new ServerStartedEventListener());
registry.register(CreatedAgentEvent.class, new CreatedAgentEventListener());
registry.register(EnqueueEvent.class, new EnqueueEventListener());
registry.register(DequeueEvent.class, new DequeueEventListener());
registry.register(AssignedMessageEvent.class, new AssignedMessageEventListener());
registry.register(DeliveredMessageEvent.class, new DeliveredMessageEventListener());
registry.register(UnassignedMessageEvent.class, new UnassignedMessageEventListener());

} catch (Exception e) {
System.out._printin(this.getClass().getName() + ": Failed to register listener: " +
e.toString());
throw e;
3

}
/**

*

* A main for the Compatibility Event Service executable.<p>
*

*/
public static void main(String args[])

{
DBl dbi = null;

if (args.length < 1) {
System.out.printin("Usage:");
System.out.printin("java com.firepond.example.exampleEventHandler hostname™);
return;

}

String serverName = args[0];

try {
// Initialize the DBI

dbi = new DBI(serverName, PORT);

// Create a handler
ExampleEventHandler handler = new ExampleEventHandler(serverName);

while(true) {
try {
Thread.sleep(1000);
} catch (Exception e) {

}

} catch (Exception e) {
System.out.printIn("main: " + e.toString(Q);
3
3
/**
* When the JVM shuts down this method is called to unregister the event

Oracle 51

Appendix B - Example Event Handler

* listeners from the server.<p>
*
*/
public void stop() throws Exception {
// Unregister event handlers
System.out.printin(*"stop: Stopping the integration component.™);
try {
registry.unregister(ServerStartedevent.class);
registry.unregister(CreatedAgentEvent.class);
registry.unregister(EnqueueEvent.class);
registry.unregister(DequeueEvent.class);
registry.unregister(AssignedMessageEvent.class);
registry.unregister(DeliveredMessageEvent.class);
registry.unregister(UnassignedMessageEvent.class);

} catch (Exception e) {
System.out.printIn(“stop: Failed to unregister from event™);
throw e;

// Terminate the registry - disconnects it from the server
registry.terminate();

System.out._printin("stop: Stopped the integration component.');

[y

52 Oracle

	Contents
	About This Guide
	How this Guide is Organized
	Related Documentation
	Conventions
	If You Need Help
	Information to Provide
	Contacting Oracle’s Siebel Technical Support

	Overview and Getting Started
	Introduction
	IDK Components
	Development Process Overview

	Environment
	Installation

	The Event API and Database Interface
	Introduction
	IDK Java Packages
	Using the Database Interface
	Using the Events API
	Debugging

	Workflow (Agent Desktop) Integration
	Introduction
	The Approach
	Use and Distribution of XSL
	Access to the “Agent Desktop Context”
	Access to Database Integration API Provided by the IDK

	Examples of Integration Scenarios and Possibilities

	HTML Formatting of Outbound Messages
	Introduction
	Features
	Template Configuration
	Support for Mail Clients Incapable of Rendering HTML

	Understanding Event Sequences
	Introduction
	Server Startup Processes
	Server Shutdown Processes
	Siebel Brightware Component Processes and Event Firing
	Intelligence Engine
	Queue Manager
	Agent Desktop
	Contact Center Console Events
	New Events

	Example Event Handler
	Running the Example
	The Example Source Code

