
BUSINESS PROCESSES AND RULES:
 SIEBEL eBUSINESS APPLICATION INTEGRATION

GUIDE VOLUME IV
 MIDMARKET EDITION
VERSION 7.5

SEPTEMBER 2002

12-C3RL7B

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2002 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

The full text search capabilities of Siebel eBusiness Applications include technology used under license from
Hummingbird Ltd. and are the copyright of Hummingbird Ltd. and/or its licensors.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Supportsoft™ is a registered trademark of Supportsoft, Inc. Other product names, designations, logos, and
symbols may be trademarks or registered trademarks of their respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents
Introduction
How This Guide Is Organized . 9

Additional Resources . 10

Revision History . 10

Chapter 1. Defining Workflows for eAI
Sample Integration Workflows . 12

Import Account (File) . 13
Export Account (File) . 15

Import Employee (MQSeries) . 18

Export Employee (MQSeries) . 21

Testing the Workflow Integration Process . 25

Chapter 2. Creating and Using Dispatch Rules
Overview of EAI Dispatch Service . 28

EAI Dispatch Service Rule Hierarchy . 29

EAI Dispatch Service Methods . 30

Search Expression Grammar . 31

Output Transformation . 32

EAI Dispatch Service . 34

Inbound and Outbound Requests . 35

Implementing EAI Dispatch Service . 37

Creating a Workflow . 38
Defining Rule Sets . 39
Version 7.5 Business Processes and Rules MidMarket Edition 3

Contents
Defining Rules . 39
Defining Transforms . 40

Invoking a Workflow Process From an EAI Dispatch Service 41

Testing Your EAI Dispatch Service Using Argument Tracing 42

Differences Between EAI Dispatch Service and Workflow 43

ProcessAggregateRequest Method . 44

EAI Dispatch Service Scenarios . 46

Outbound Scenario . 46
Inbound Scenario . 48

Outbound Scenarios Using ProcessAggregateRequest 49

Examples of Search Expression Grammar . 52

Examples of Dispatch Output Property Set . 54

Chapter 3. Data Mapping Using the Siebel Data Mapper
Overview . 58

EAI Data Mapping Engine . 60

EAI Data Mapping Engine Methods . 60

Using the EAI Data Mapping Engine . 61

The Siebel Data Mapper . 62

Integration Object Maps . 63

Integration Component Maps . 64

Integration Field Maps . 64

Creating Data Maps . 65

Define Integration Objects . 65
Determining Required Maps . 66

Creating New Data Maps . 66

Creating Integration Component Maps . 68

Creating Integration Field Maps . 69
Validating the Data Map . 69
4 Business Processes and Rules MidMarket Edition Version 7.5

Contents
Examples of Workflow Process . 70

Outbound Workflow Process . 70
Inbound Workflow Process . 75

Executing the Workflow . 79

EAI Data Mapping Engine Expressions . 80

Addressing Fields in Components . 84

Data Mapping Scenario . 85

Mapping Between Siebel and an External Application 85

Chapter 4. Data Mapping Using Scripts
Overview . 88

EAI Data Transformation . 90

Setting Up a Data Transformation Map . 90

DTE Business Service Method Arguments . 93

Map Functions . 95

EAIExecuteMap() Method . 96

The Data Transformation Functions . 97

Siebel Message Objects and Methods . 98

Integration Message Objects . 98
CSSEAIIntMsgIn . 99
CSSEAIIntMsgOut . 102

Integration Object Objects . 104

CSSEAIIntObjIn . 104

CSSEAIIntObjOut . 106
Primary Integration Component Objects . 107

CSSEAIPrimaryIntCompIn . 107
CSSEAIPrimaryIntCompOut . 110

Integration Component Objects . 113

CSSEAIIntCompIn . 114
CSSEAIIntCompOut . 117
Version 7.5 Business Processes and Rules MidMarket Edition 5

Contents
MIME Message Objects and Methods . 120

CSSEAIMimeMsgIn . 120
CSSEAIMimeMsgOut . 124

Attachments and Content Identifiers in MIME Messages 127

XML Property Set Functions . 129

Top-Level Property Set Functions . 129

XML Element Accessors . 131
Examples . 137

EAI Value Maps . 138

EAIGetValueMap Function . 139

CSSEAIValueMap Translate Method . 140
EAIGetValueMap unmappedKeyHandler Argument 141
EAIGetValueMap() Method . 143

Exception Handling Considerations . 144

Error Codes and Error Symbols . 145

Data Transformation Error Processing . 145
Exception Handling Functions . 146

Sample Siebel eScript . 148

Chapter 5. Troubleshooting Techniques
Service Arguments Tracing . 152

Index
6 Business Processes and Rules MidMarket Edition Version 7.5

Introduction
This guide explains the details of the business procedures and rules—including data
transformation, data mapping, and so on—of Siebel eAI, MidMarket Edition.

NOTE: All Siebel MidMarket product names include the phrase MidMarket Edition
to distinguish these products from other Siebel eBusiness Applications. However, in
the interest of brevity, after the first mention of a MidMarket product in this
document, the product name will be given in abbreviated form. For example, after
Siebel Call Center, MidMarket Edition, has been mentioned once, it will be referred
to simply as Siebel Call Center. Such reference to a product using an abbreviated
form should be understood as a specific reference to the associated Siebel
MidMarket Edition product, and not any other Siebel Systems offering. When
contacting Siebel Systems for technical support, sales, or other issues, note the full
name of the product to make sure it will be properly identified and handled.

Although job titles and duties at your company may differ from those listed in the
following table, the audience for this guide consists primarily of employees in these
categories:

Business Analysts Persons responsible for analyzing application integration
challenges and planning integration solutions at an enterprise.

Database
Administrators

Persons who administer the database system, including data
loading, system monitoring, backup and recovery, space
allocation and sizing, and user account management.

Siebel Application
Administrators

Persons responsible for planning, setting up, and maintaining
Siebel applications.

Siebel Application
Developers

Persons who plan, implement, and configure Siebel applications,
possibly adding new functionality.
Version 7.5 Business Processes and Rules MidMarket Edition 7

Introduction
The audience for this book also needs to have experience in data integration, data
transformation (data mapping), scripting or programming, and XML.

Siebel Integration
Developers

Persons responsible for analyzing a business situation or using the
analysis of a business analyst to build the integration solution at
an enterprise for Siebel applications.

Siebel System
Administrators

Persons responsible for the whole system, including installing,
maintaining, and upgrading Siebel applications.

System Integrators Persons responsible for analyzing a business situation or using an
analysis of a business analyst to build the integration solution at
an enterprise for specific applications, and or to develop custom
solutions.
8 Business Processes and Rules MidMarket Edition Version 7.5

Introduction

How This Guide Is Organized
How This Guide Is Organized
This book is organized in a way that presents information on discreet components
of the eAI business rules and processes, such as using data transformation, using
workflows, and so on as individual chapters. Additional information, as applicable,
can be found in the appendices.

This book is Volume 4 of a six-volume set. The full set includes:

■ Overview: Siebel eBusiness Application Integration Volume I, MidMarket Edition

■ Platform Technologies: Siebel eBusiness Application Integration Volume II,
MidMarket Edition

■ Transports and Interfaces: Siebel eBusiness Application Integration Volume III,
MidMarket Edition

■ Business Processes and Rules: Siebel eBusiness Application Integration Volume IV,
MidMarket Edition

■ XML Reference: Siebel eBusiness Application Integration Volume V, MidMarket
Edition

■ Application Services Interface Reference: Siebel eBusiness Application Integration
Volume VI, MidMarket Edition
Version 7.5 Business Processes and Rules MidMarket Edition 9

Introduction

Additional Resources
Additional Resources
The product documentation set for Siebel eBusiness Applications is provided on the
Siebel Bookshelf or in the Online Help. The following integration related books and
online help describe the tools required to implement integration:

■ Siebel Tools Online Help, MidMarket Edition

■ Siebel Tools Reference, MidMarket Edition

■ Siebel Business Process Designer Administration Guide, MidMarket Edition

■ Siebel Enterprise Integration Manager Administration Guide, MidMarket Edition,
if you perform bulk loading or unloading of data.

Revision History
Business Processes and Rules: Siebel eBusiness Application Integration Guide,
Volume IV, MidMarket Edition, Version 7.5
10 Business Processes and Rules MidMarket Edition Version 7.5

Defining Workflows for eAI 1
This chapter describes workflow integration processes and how to use them to
develop your integration projects. The chapter depends on several sample
workflows that are included in the Sample database. For information on using
Siebel Business Process Designer to create workflow processes and workflow
policies, see Siebel Business Process Designer Administration Guide, MidMarket
Edition.
Version 7.5 Business Processes and Rules MidMarket Edition 11

Defining Workflows for eAI

Sample Integration Workflows
Sample Integration Workflows
Siebel eAI includes several sample workflows that illustrate how you can receive,
process, and send integration messages. This chapter includes four of those
samples, along with brief descriptions that are intended to help you understand the
workflow elements specific to Siebel eAI. One of the methods of invoking a
workflow process is through a workflow policy. To invoke a workflow process that
contains steps that call eAI adapters from a workflow policy, you must create a
workflow policy action that is based on the Run Integration Process program. For
details on Siebel eAI and Run Time Events, see Platform Technologies: Siebel
eBusiness Application Integration Volume II, MidMarket Edition.

The sample workflows described in this chapter include:

■ Import Account (File), see “Import Account (File)” on page 13.

■ Export Account (File), see “Export Account (File)” on page 15.

■ Import Employee (MQSeries), see “Import Employee (MQSeries)” on page 18.

■ Export Employee (MQSeries), see “Export Employee (MQSeries)” on page 21.
12 Business Processes and Rules MidMarket Edition Version 7.5

Defining Workflows for eAI

Sample Integration Workflows
Import Account (File)
This is a sample workflow process that reads an XML file (c:\account.xml), imports
the account information into the Siebel environment, and then uses the EAI XML
Read from File adapter to convert the data.

To create a workflow to import an account

1 Navigate to the Workflow Process Designer.

2 Create a workflow with Start, End, and two business services.

The business services need to be set up for the tasks they have to accomplish.

3 Define the process properties.

Workflow process properties are global to the entire workflow. For example, as
shown in the following table, the Import Account (File) workflow has several
properties. The Account Message is defined to identify the output of the Read
File step (a parsed version of the XML Account Message) as a hierarchical
structure. The Error Message, Error Code, Object Id, and Siebel Operation Object
Id properties are included in each workflow by default.

Name Data Type In/Out

Account Message Hierarchy In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Process Instance Id String In/Out

Siebel Operation Object Id String In/Out
Version 7.5 Business Processes and Rules MidMarket Edition 13

Defining Workflows for eAI

Sample Integration Workflows
4 Set up the first business service, after Start, to read the information from the
XML file.

This step uses the Read Siebel Message method of the EAI XML Read from File
business service to convert XML from a file into an integration object hierarchy
with the following Input argument.

Note how the path and file name are specified as a string in the Value field of
the Input Arguments applet.

You also need to set up the following output property for this step.

5 Set up the second business service to update the Account in the database.

This step uses the EAI Siebel Adapter with the Insert or Update method to read
the Siebel Message and insert or update the Account object in your Siebel
application with the information from the XML file. This business service uses
the input arguments shown below.

Since the Insert or Update method is specified on the EAI Siebel Adapter
business service, this step checks the Siebel database to see if the Account object
defined in the XML file already exists in the database. If the account exists, then
it updates the account in the database with the account instance from the XML
file; otherwise, it inserts the account into the database.

Input Arguments Type Value

File Names Literal c:\account.xml

Property Name Type Output Argument

Account Message Output Argument Siebel Message

Arguments Type Property Name Property Data Type

Siebel Message Process Property Account Message Hierarchy
14 Business Processes and Rules MidMarket Edition Version 7.5

Defining Workflows for eAI

Sample Integration Workflows
Export Account (File)
This is a sample workflow process that exports an account to a file in an XML
format. This workflow uses the EAI Siebel Adapter and the EAI XML Write to File
adapter to convert the data from the Siebel business object to an XML document.

To create a workflow to export an account

1 Navigate to the Workflow Process Designer.

2 Create a workflow with Start, End, and two business services. Set up the
business services for the tasks they have to accomplish.
Version 7.5 Business Processes and Rules MidMarket Edition 15

Defining Workflows for eAI

Sample Integration Workflows
3 Define the process properties.

Workflow process properties are global to the entire workflow. For example, as
shown in the following table, the Export Account (File) workflow has several
properties. The Account Message is defined to identify the outbound Account as
a hierarchical structure. The Error Message, Error Code, Object Id, Process
Instance Id, and Siebel Operation Object Id properties are included in each
workflow by default.

Note also how the Object Id process property is set to the account number 1-6,
in the Default column. This string identifies an actual account in the Siebel
database by its Row Id. You may set this workflow to use the active account
instead of specifying a hard-coded account number. You can accomplish this by
creating a button that invokes this workflow from the Account screen or you can
pass the value of the Object Id into the workflow process as an input argument.

Name Data Type In/Out Default String

Account Message Hierarchy In/Out -

Error Code String In/Out -

Error Message String In/Out -

Object Id String In/Out 1-6

Process Instance Id String In/Out -

Siebel Operation Object Id String In/Out -
16 Business Processes and Rules MidMarket Edition Version 7.5

Defining Workflows for eAI

Sample Integration Workflows
4 Set up the first business service, after Start, to get the account information from
the database.

This step uses the EAI Siebel Adapter to query an account from your Siebel
application, using the following input arguments.

Note that Output Integration Object Name of Sample Account is part of the query
criteria. The Sample Account integration object describes the structure of the
Account business object and was created using the Integration Object Builder.
The other part of the query criteria is the Object Id, which is a process property
that contains the account number 1-6 defined as a process property before.

You also need to set up the following output property for this step.

The output from this step is Account Message. Account Message is a process
property that will contain the Siebel Message, which is the instance of Account
that contains data for account number 1-6. The format is specified by the Sample
Account integration object.

Input Arguments Type Value Property Name Property Data Type

Output Integration
Object Name

Literal Sample
Account

- -

Object Id Process
Property

- Object Id String

Property Name Type Output Argument

Account Message Output Argument Siebel Message
Version 7.5 Business Processes and Rules MidMarket Edition 17

Defining Workflows for eAI

Sample Integration Workflows
5 Set up the second business service to convert the Message to XML and write it
to a file.

This step invokes the EAI XML Write to File adapter with the Write Siebel
Message method using the following input arguments.

The EAI XML Write to File Adapter converts the hierarchical message to XML
and writes the resulting document to the file named in the File Name argument.

Import Employee (MQSeries)
This is a sample workflow process that receives an XML string from an IBM
MQSeries queue and updates the Employee instance in the Siebel database.

To create a workflow to import employee using MQSeries

1 Navigate to the Workflow Process Designer.

2 Create a workflow with Start, End, and three business services. Set up each of
the business services for the task it must accomplish.

Input Arguments Type Value Property Name Property Data Type

File Name Literal c:\account.xml - -

Siebel Message Process
Property

- Account
Message

Hierarchy
18 Business Processes and Rules MidMarket Edition Version 7.5

Defining Workflows for eAI

Sample Integration Workflows
NOTE: When using the MQSeries Receiver, remember the MQ Receiver task will
read the message from the queue and pass it into your Workflow Process in the
<Value> field. This means your Workflow Process does not need to read the
message from the MQSeries Queue. To get the XML string that has been read,
you need to create a Process Property and set its default value as follows:
Name=MyXMLStringProperty and Default=<Value>. You should use this
Process Property as the input to the EAI XML Converter service.

3 Define the process properties.

Workflow process properties are global to the entire workflow. For example, as
shown in the following table, the Import Employee (MQSeries) workflow has
several properties. The Employee Message contains the object as an integration
object hierarchy, when converted. The object must be in that format before it
can be inserted or updated in the Siebel environment. The Employee XML
property defines the MQSeries message as XML recognizable by Siebel
applications. The Error Code, Error Message, Object Id, Process Instance Id, and
Siebel Operation Object Id properties are included in each workflow by default.

Name Data Type

Employee Message Hierarchy In/Out

Employee XML Binary In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Process Instance Id String In/Out

Siebel Operation Object Id String In/Out
Version 7.5 Business Processes and Rules MidMarket Edition 19

Defining Workflows for eAI

Sample Integration Workflows
4 Set up the first business service, after Start, to receive the Inbound Message from
IBM MQSeries.

This step uses the Receive method of the EAI MQSeries Server Transport to get
the inbound message from the Employee physical queue named in the Physical
Queue Name argument with the following input arguments.

As shown below, the output from this step is put into the Employee XML process
property with the assumption that the inbound message is already in XML
format.

5 Set up the second business service to convert the inbound message.

This step uses the XML to Property Set method of the EAI XML Converter to
convert the inbound message to the Siebel business object format, with the
following input arguments.

The output from this step is passed in the Employee Message output argument
as shown below.

Input Arguments Type Value

Physical Queue Name Literal Employee

Queue Manager Name Literal Siebel

Property Name Type Output Argument

Employee XML Output Argument Message Text

Input Arguments Type Property Name Property Data Type

XML Document Process Property Employee XML Binary

Property Name Type Output Argument

Employee Message Output Argument Siebel Message
20 Business Processes and Rules MidMarket Edition Version 7.5

Defining Workflows for eAI

Sample Integration Workflows
6 Set up the third business service to update the employee record.

This step uses the Insert or Update method of the EAI Siebel Adapter with the
input arguments shown below to perform the updating task.

The EAI Siebel Adapter checks the Siebel database for an Employee record that
matches the current instance of Employee in the Employee Message property. If
an Employee record matching the current instance does not exist in the
database, the EAI Siebel Adapter inserts the record into the database; otherwise,
it updates the existing record with the instance.

Export Employee (MQSeries)
This is a sample workflow process that sends an XML string for an employee to an
IBM MQSeries queue.

To create a workflow to Export Employee using MQSeries

1 Navigate to the Workflow Process Designer.

2 Create a workflow with Start, End, and three business services. Set up each of
the business services for the task it must accomplish.

Input Arguments Type Property Name Property Data Type

Siebel Message Process Property Employee Message Hierarchy
Version 7.5 Business Processes and Rules MidMarket Edition 21

Defining Workflows for eAI

Sample Integration Workflows
3 Define the process properties.

Workflow process properties are global to the entire workflow. For example, as
shown in the following table, the Export Employee (MQSeries) workflow has
multiple properties. The Employee Message contains the object as an integration
object hierarchy, before conversion. The Employee XML property specifies the
Siebel object that has been converted to XML. The Error Code, Error Message,
Object Id, Process Instance Id, and Siebel Operation Object Id properties are
included in each workflow by default.

Name Data Type In/Out Default

Employee Message Hierarchy In/Out

Employee XML Binary In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out 1-548

Process Instance Id String In/Out

Siebel Operation Object Id String In/Out
22 Business Processes and Rules MidMarket Edition Version 7.5

Defining Workflows for eAI

Sample Integration Workflows
4 Set up the first business service, after Start, to query the employee record.

This step uses the Query method of the EAI Siebel Adapter with the input
argument as shown below to get an instance of an employee record from the
Siebel database. The Sample Employee integration object describes the structure
of the Employee business object and was created using the Integration Object
Builder wizard. The other part of the query criteria is the Object Id, which is a
process property containing value 1-548.

The output from this step is passed in the Employee Message output argument
as shown below.

Input Arguments Type Value Property Name Property Data Type

Output Integration
Object Name

Literal Sample
Employee

- -

Object Id Process
Property

- Object Id String

Property Name Type Output Argument

Employee Message Output Argument Siebel Message
Version 7.5 Business Processes and Rules MidMarket Edition 23

Defining Workflows for eAI

Sample Integration Workflows
5 Set up the second business service to convert the outbound message.

This step uses the Property Set to XML method of the EAI XML Converter to
convert the outbound Siebel Message to XML and store it in the Employee XML
output argument with the input argument shown below.

The output from this step is passed in the Employee XML output argument as
shown in the following table.

6 Set up the third business service of the workflow to send the outbound message.

This business service invokes the EAI MQSeries Server Transport with the Send
method to put the XML message onto the MQSeries queue, Employee. The
message is represented by the Message Text argument, as shown in the following
table.

The Queue Manager that handles the request is called Siebel. The XML message
is put onto the Employee queue, where it remains until another application
retrieves it from the queue.

Input Arguments Type Property Name Property Data Type

Siebel Message Process Property Employee Message Hierarchy

Property Name Type Value Output Argument

Employee XML Output Argument - XML Document

Input Arguments Type Value Property Name
Property
Data Type

Message Text Process Property - Employee XML Binary

PhysicalQueueName Literal Employee - -

QueueManagerName Literal Siebel - -
24 Business Processes and Rules MidMarket Edition Version 7.5

Defining Workflows for eAI

Testing the Workflow Integration Process
Testing the Workflow Integration Process
When you have finished defining your workflow integration process, you can use
the Workflow Process Simulator to test its behavior.

NOTE: You can also enable detailed client logging and use the /s option for creating
SQL spool scripts. This option provides more detailed information when running
the integration workflow process in the simulator. For details, see Siebel Remote
Administration Guide, MidMarket Edition.

The Workflow Process Simulator, included in the Workflow Process Manager,
allows you to validate your processes before deploying them in production
environments.

When you simulate an integration process that performs some external action—for
example, the Export Account (File) workflow writes an XML file to a disk location—
you can verify the end result by checking if the output object exists, or if a
predetermined event has occurred.

To test a process

1 Choose a process to simulate; for example, Export Account (File).

2 Choose the Process Simulator tab.

3 Click Start to initiate a process.

The border of the Start shape turns blue to indicate that it is the active element.

4 Click Next Step to initiate the next business service.

As you step through the process, the border of each active shape turns blue in
turn, unless the simulator encounters an error, in which case it displays an error
message alert.

5 Click Next Step until the simulator has processed every step and no additional
steps have blue borders.
Version 7.5 Business Processes and Rules MidMarket Edition 25

Defining Workflows for eAI

Testing the Workflow Integration Process
For more information about running the Process Simulator, reviewing process
values, and using Workflow Process Manager and Workflow Batch Manager, see
Siebel Business Process Designer Administration Guide, MidMarket Edition.

NOTE: Use the Process Simulator only for testing purposes. Do not use the Process
Simulator to load data.
26 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules 2
This chapter gives an overview on the EAI Dispatch Service, transforming output,
and implementing a new dispatch service.
Version 7.5 Business Processes and Rules MidMarket Edition 27

Creating and Using Dispatch Rules

Overview of EAI Dispatch Service
Overview of EAI Dispatch Service
The EAI Dispatch Service is a rule-based dispatching business service that invokes
business services based on the properties of its input property set. EAI Dispatch
Service can execute transformations on an input property set before dispatching it
to the target business service. Such transformations can be useful for setting
business service arguments or workflow process properties. They can also be used
to do limited hierarchy manipulation such as discarding the envelope of an XML
document. Figure 1 illustrates the EAI Dispatch Service process.

Although the EAI Dispatch Service is a utility to invoke one business service from
another business service based on specified rules, one of its primary uses is to
accomplish inbound and outbound integration. The EAI Dispatch Service can be the
first business service of the inbound integration to decide which business service
should process an incoming document. It can also be the last step of the outbound
integration to send the outgoing document to the right transport. The EAI Dispatch
Service is similar to the branching in Workflow. To determine whether to use
Workflow or the EAI Dispatch Service, see “Differences Between EAI Dispatch
Service and Workflow” on page 43.

Figure 1. EAI Dispatch Service Process
28 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

Overview of EAI Dispatch Service
EAI Dispatch Service Rule Hierarchy
The EAI Dispatch Service has a three-layer rules hierarchy as illustrated in Figure 2.

Rule Sets
Rule Sets are set of rules that you define in a particular sequence. EAI Dispatch
Service parses the input document using these rules in sequence until it finds a rule
that matches the input.

Rules
Rules are individual entities in a rule set. You define rules using search expression
grammar to establish how you want an input message to be routed. Each rule
consists of data transformations and search expression grammar. Each rule contains
zero or more rule transforms. For details on search expression grammar, see “Search
Expression Grammar” on page 31.

Data Transformation
A transform specifies how the intermediate output is going to be generated before
it is dispatched to the service and the method you specified in the rule. For details,
see “Output Transformation” on page 32.

Figure 2. EAI Dispatch Service Rule Hierarchy
Version 7.5 Business Processes and Rules MidMarket Edition 29

Creating and Using Dispatch Rules

Overview of EAI Dispatch Service
EAI Dispatch Service Methods
EAI Dispatch Service uses the methods described in the following table.

The EAI Dispatch Service executes the following at run time:

■ Matches the input with a dispatch rule.

■ Evaluates the transforms.

■ Dispatches the output to a business service if the method is set to Dispatch.

Method Description

Dispatch The Dispatch method parses the input against the rules, and then it
dispatches it to the appropriate business service and business service method
for further processing.

Lookup The Lookup method returns the intermediate output generation as specified
by the rule output properties without dispatching it to any business service.
You use this method for debugging purposes, as well as manipulating
property sets within business service or workflow.

ProcessAg
gregateReq
uest

The ProcessAggregateRequest method allows you to do multiple invocations
of business services in a single request. The output for each request will be
combined into a single Siebel property set or XML document. The input to
this method is an XML document. For details see “ProcessAggregateRequest
Method” on page 44.

Purge The Purge method clears any data that has been cached by the EAI Dispatch
Service and does not take in any input arguments.
30 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

Overview of EAI Dispatch Service
Search Expression Grammar
Search expression grammar is used by the EAI Dispatch Service to parse incoming
messages and determine the course of action. Search expression grammar is based
on the XPath standard. Table 1 lists the definitions you use to construct a search
expression.

NOTE: See “Examples of Search Expression Grammar” on page 52 for additional
information and examples.

Table 1. Definitions for Constructing Search Expressions

Symbols Description

/ A forward slash indicates a new level in the hierarchy. The first slash indicates
the root of the hierarchy.

@ An at symbol indicates the attribute.

* An asterisk indicates no specific criteria and that everything matches in the
input. Asterisks cannot be used with attributes.

Name This is the literal value for which the EAI Dispatch Service searches the
document.
Version 7.5 Business Processes and Rules MidMarket Edition 31

Creating and Using Dispatch Rules

Output Transformation
Output Transformation
Before dispatching the incoming hierarchy to the business service, EAI Dispatch
Service can be used to perform some transformations to the hierarchy to make it
appropriate for the target business service. A transform specifies how the
intermediate output, in the memory, is going to be generated before it is dispatched
to the service and the method you specified in the rule.

If you do not define any transforms, the EAI Dispatch Service will send the input
directly to the business service. However, if you define transforms, the EAI Dispatch
Service will create intermediate output based on the values of the transforms before
sending the input to the business service you have defined in your rule.

Transforms are specified using one or more of the following targets in permissible
combination.

RootHierarchy
This target creates a new output root hierarchy based on the source expression. The
source expression specifies a node in the input hierarchy. The hierarchy rooted at
this node is copied as the target root hierarchy. You can use the root hierarchy for
minor modifications, such as adding a property, to the input hierarchy.

Only one root hierarchy transform can be specified because this transform always
creates a new hierarchy. The root hierarchy transform is always executed before any
other transforms in the combination.

NOTE: For the following targets, if an output hierarchy does not exist at the time of
invoking the target, an output hierarchy is first created with just an empty root node
before the target is applied.

ChildHierarchy
This target creates a new hierarchy as a child of the current output root hierarchy,
based on the source expression. The source expression specifies a node in the input
hierarchy. The hierarchy rooted at this node is copied as a new child hierarchy. You
can use the child hierarchy for adding service arguments to an incoming document
before dispatching to workflow or business service.
32 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

Output Transformation
Type
This target sets the Type field to Source Expression in the root node of output
hierarchy.

Value
This target sets the Value field to Source Expression in the root node of output
hierarchy.

Property
This target creates or overwrites a property with name Property Name and value
Source Expression in the root node of output hierarchy. You can use property to add
business service arguments or workflow process properties.

For certain targets, in addition to the dispatch grammar, literal values can be used
for the Source Expression property to retrieve the data from the input message.

NOTE: You can combine one or more of the above transforms to achieve the desired
transformation. The combination should not include more than one Root Hierarchy
transform, Type transform, or Value transforms but it can include multiple Property
transforms as long as the names of the properties are different.

Target Source Expression Property Name

Property Dispatch grammar or a literal value enclosed in
quotes to search for a value

Name of the
Property

ChildHierarchy Grammar to search for the hierarchy N/A

RootHierarchy Grammar to search for the hierarchy N/A

Type Dispatch grammar or Literal value enclosed in
quotes to search for a value

N/A

Value Literal value enclosed in quotes N/A
Version 7.5 Business Processes and Rules MidMarket Edition 33

Creating and Using Dispatch Rules

EAI Dispatch Service
EAI Dispatch Service
You can use the EAI Dispatch Service to:

■ Respond to a request from an external system. This can be a request to query
data or a request to insert data into the Siebel database.

■ Send data to an external system based on an event in Siebel applications. See
“Outbound Requests” on page 36.

The EAI Dispatch Service works with the hierarchy in the property set, which may
be in some cases different from the hierarchy in your document. When dispatching
XML documents, you should use the XML Hierarchy Converter because it generates
a hierarchy matching the hierarchy in the XML document.

NOTE: For details on the XML Hierarchy Converter, see XML Reference: Siebel
eBusiness Application Integration Volume V, MidMarket Edition.

Use the business service argument tracing facility provided by the EAI Dispatch
Service to understand the input property set hierarchy. This facility dumps the input
and the output of the EAI Dispatch Service as XML. For details, see “Testing Your
EAI Dispatch Service Using Argument Tracing” on page 42.
34 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

EAI Dispatch Service
Inbound and Outbound Requests
The steps for creating an inbound or an outbound EAI Dispatch Service are very
similar, as illustrated below.

Inbound Requests
Figure 3 illustrates high-level architecture of an inbound EAI Dispatch Service.

Figure 3. Inbound EAI Dispatch Service
Version 7.5 Business Processes and Rules MidMarket Edition 35

Creating and Using Dispatch Rules

EAI Dispatch Service
Outbound Requests
The steps for creating an outbound EAI Dispatch Service are the same as the steps
for an inbound EAI Dispatch Service with some differences in the workflow.
Figure 4 illustrates the high-level architecture of an outbound Dispatch Service. For
details on how to create an outbound workflow, see “Outbound Scenario” on
page 46.

Figure 4. Outbound EAI Dispatch Service
36 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

Implementing EAI Dispatch Service
Implementing EAI Dispatch Service
The following checklist lists the steps you need to take to implement a new EAI
Dispatch Service. These steps are the same whether an external system is requesting
data from a Siebel application, or inserting data into a Siebel application, or when
a Siebel application sends a request to an external system.

Checklist

❑ Create a Workflow to be called by the EAI Dispatch Service.

For details, see “Creating a Workflow” on page 38.

❑ Define a Rule Set.

For details, see “Defining Rule Sets” on page 39.

❑ Define Rules.

For details, see “Defining Rules” on page 39.

❑ Define Transforms.

For details, see “Defining Transforms” on page 40.

❑ Set up the EAI Dispatch Service to invoke the workflow.

For details, see “Creating a Workflow” on page 38.

❑ Test your EAI Dispatch Service.

For details, see “Testing Your EAI Dispatch Service Using Argument Tracing” on
page 42.
Version 7.5 Business Processes and Rules MidMarket Edition 37

Creating and Using Dispatch Rules

Implementing EAI Dispatch Service
Creating a Workflow
Design a workflow process to be called by EAI Dispatch Service upon receiving a
request from an external system.

NOTE: For details on how to use Workflow Process Manager, see Siebel Business
Process Designer Administration Guide, MidMarket Edition.

To design a workflow to receive a request from an external system

1 Navigate to the Workflow Process Designer.

2 Set up a workflow process to include the following steps: Start, EAI Data
Mapping Engine, EAI Siebel Adapter, End.

3 Create process properties to pass incoming data from the EAI Dispatch Service.

Because you have to pass data (as a hierarchy) from the EAI Dispatch Service to
the workflow, you need to create a process property of type Hierarchy to receive
this data. The name of the property should match the root tag of the hierarchy
you are passing. If you use XML Hierarchy Converter with the EAI Dispatch
Service, then you use the property XMLHierarchy.

Also, you may want to pass other parameters, such as what data map to use,
from the EAI Dispatch Service. Create process properties of type String to receive
such parameters. The name of the property should match the Property Name
used in your dispatch transform.
38 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

Implementing EAI Dispatch Service
Defining Rule Sets
Rule sets are used by the EAI Dispatch Service to search the incoming data for
specific criteria.

To define a rule set

1 From the application-level menu, choose View > Site Map > Integration
Administration > EAI Dispatch Service View.

2 Click New on the Rule Sets list applet to create a new rule set.

3 Give this rule set a meaningful name such as AribaAccountToSiebel.

4 Save the rule set.

Defining Rules

To define rules

1 Click New on the Rules list applet on the EAI Dispatch Service View.

2 Provide the following fields for this record:

Sequence: Enter a sequence number. This determines the sequence in which the
application evaluates the rules.

Search Expression: Actual logic behind what the rule is looking for in the input.
Define the Search Expression using Dispatch Rule Grammar. For details, see
“Search Expression Grammar” on page 31.

Property Value (Optional): Populate this field with the value for the property that
the input is to be matched with.

Dispatch Service: The business service that you want to dispatch the input to. You
leave this blank if you intend to use the Lookup method.

Dispatch Method: Pick a method for the business service you defined in the
Dispatch Service field.

3 Save your rules.

The system validates search expression grammar. If you have not set your rules
properly, you will receive an error message. See Table 3 on page 53 for examples
of valid search expressions.
Version 7.5 Business Processes and Rules MidMarket Edition 39

Creating and Using Dispatch Rules

Implementing EAI Dispatch Service
Defining Transforms

To define transforms

1 Click New on the Transforms list applet on the EAI Dispatch Service View to
create a new transform.

2 Provide the following fields for the new record:

Target: Defines how the intermediate output is going to be generated before it is
dispatched to the service and the method you specified in the rule. For details,
see “Output Transformation” on page 32.

Source Expression: The source expression is used to assign a value to the target.
You can either use a search expression pointing to a node in the input hierarchy
or a literal value enclosed in quotes. For details, see “Search Expression
Grammar” on page 31.

Property Name: The name of the property to be set. This value is only used when
the Target is set to Property. For the other Target types this field is inactive.

NOTE: See “EAI Dispatch Service Scenarios” on page 46 and “Examples of Search
Expression Grammar” on page 52 for more details on these parameters.

3 Save your transform.

This saves and validates your transform.
40 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

Implementing EAI Dispatch Service
Invoking a Workflow Process From an EAI Dispatch Service
Once you created your workflow, you need to set up your EAI Dispatch Service to
invoke it.

To invoke a workflow process with an EAI Dispatch Service

1 From the application-level menu, choose View > Site Map > Integration
Administration > EAI Dispatch Service View.

2 Select the target Rule Set.

3 Select the rule that invokes the workflow process.

4 For the selected rule set the following values:

■ Dispatch Service. Workflow Process Manager

■ Dispatch Method. Execute Process

5 For the selected rule insert a new record in the Transforms applet and fill in the
following values:

■ Target—Property. You can select the Property value from a list of values.

■ Source Expression—<Name of the workflow process to run>. Make sure you
include double quotes around the name. For example, “my workflow
process.”

■ Property Name—Process Name. You can select the Property Name value from
a list applet.
Version 7.5 Business Processes and Rules MidMarket Edition 41

Creating and Using Dispatch Rules

Testing Your EAI Dispatch Service Using Argument Tracing
Testing Your EAI Dispatch Service Using Argument
Tracing

You should use the Business Service Simulator to test your EAI Dispatch Service
before using it in your production environment. You can use argument tracing to
write the input and the output of the EAI Dispatch Service as XML.

NOTE: For details on how to use the Business Service Simulator, see Platform
Technologies: Siebel eBusiness Application Integration Volume II, MidMarket
Edition.

To use the EAI dispatch service argument tracing

1 Set the server parameter EnableServiceArgTracing to true.

2 Set the appropriate event level for EAIDispatchSvcArgTrc on your server
component:

Event level 3. Leads to input arguments being written out when errors occur.

Event level 4. Leads to both input and output being written out.

If arguments are written out, there will be a trace log entry indicating the
filename in the log directory. The filenames will have the following form:

<service name>_<input|output>_args_<big number>.dmp

For example:

EAIDispatchService_input_args_270613751.dmp

NOTE: To open the file in a XML editor, you can rename the extension to XML.
42 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

Differences Between EAI Dispatch Service and Workflow
Differences Between EAI Dispatch Service and Workflow
Although the EAI Dispatch Service is very similar to Workflow in initiating a task
based on a condition, there are some limitations in Workflow that you can overcome
using the EAI Dispatch Service. Workflow operates on business components as
opposed to property sets, so Workflow can only branch based on fields in a business
component. Furthermore, with Workflow you cannot route incoming documents
based on property sets since the Workflow decision points cannot search inside of
arbitrary property sets.

Table 2 provides some guidance to help you determine the best method for your
business requirements.

Table 2. Siebel EAI Dispatch Methods and Workflow

Requirements

EAI
Dispatch
Service Workflow Notes

Need to route the
incoming document
based on its structure or
content

✓ The EAI Dispatch Service can route
incoming documents based on
property sets, whereas Workflow can
only branch based on fields in a
business component.

Multiple dispatch targets ✓ The EAI Dispatch Service is a better
choice because writing a workflow to
include every branch can be
unwieldy, but you can have many EAI
Dispatch Service rules.

Need to change input
property set before
dispatching

✓ The EAI Dispatch Service is the better
choice since it has more powerful
mapping capabilities than Workflow.

Need more complex
processing on the input
message before
dispatching

✓ The EAI Dispatch Service can branch
based on the content of the input
document, whereas Workflow can
branch based on business service.

Workflow options are
sufficient for your
requirements

✓ In this case, Workflow is the best
choice.
Version 7.5 Business Processes and Rules MidMarket Edition 43

Creating and Using Dispatch Rules

ProcessAggregateRequest Method
ProcessAggregateRequest Method
The ProcessAggregateRequest method allows you to perform multiple invocations
of business services in a single request. The method bundles the output for each
request into a single Siebel property set or XML document.

When using the ProcessAggregateRequest method with the EAI Dispatch Service
business service, you need to define an input argument called
AggregatedServiceRequest, with type Hierarchy for the EAI Dispatch Service to use
to store the incoming data.

The following example is the input argument for this method, using XML to
represent the PropertySet.

....

<PropertySet>

<AggregatedServiceRequest>

This is the input/output method argument for the ProcessAggregatedRequest
method. The EAI Dispatch Service with ProcessAggregateRequest Method looks for
this XML tag within the XML document to determine where it needs to start reading
the document.

<BusinessServiceWrapper

wrapper around the business service. The name of the wrapper has no effect on the
EAI Dispatch Service.

BusinessServiceName=...

XML tag for business service

BusinessServiceMethod=...>

XML tag for business service method

<ArgumentWrapper

wrapper around the business service arguments. The name of the wrapper has no
effect on the EAI Dispatch Service.

XMLTagArgument1=...
44 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

ProcessAggregateRequest Method
XML tag for the first argument. Replace this tag with the correct XML tag for the
argument your business service method is using.

XMLTagArgument2=...

XML tag for the second argument. Replace this tag with the correct XML tag for the
argument your business service method is using.

.../>

</BusinessServiceWrapper>

NOTE: For examples, see “Outbound Scenarios Using ProcessAggregateRequest” on
page 49.
Version 7.5 Business Processes and Rules MidMarket Edition 45

Creating and Using Dispatch Rules

EAI Dispatch Service Scenarios
EAI Dispatch Service Scenarios
The following business scenarios explains how you might accomplish commonly
performed tasks using the EAI Dispatch Service.

Outbound Scenario
For this scenario, you want to dispatch a service request as soon as it is created. The
scenario assumes that:

■ You are only interested in service requests logged against eAI.

■ You know how to design a workflow that gets triggered as a new service request
is created.

NOTE: There are number of different ways to trigger a workflow process. For
details, see Siebel Business Process Designer Administration Guide, MidMarket
Edition.

■ You want the other non-eAI service requests to be sent to an MQSeries.

Figure 5 illustrates this scenario.

Figure 5. Dispatching Service Request
46 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

EAI Dispatch Service Scenarios
To create this scenario

1 Create a rule set with a search expression to check if the Service Request Area
is set to eAI or not.

2 Create a workflow that is triggered when the criteria defined in Step 1 is
matched.

Your workflow should contain the following steps:

■ Start

■ EAI Dispatch Service

■ End
Version 7.5 Business Processes and Rules MidMarket Edition 47

Creating and Using Dispatch Rules

EAI Dispatch Service Scenarios
Inbound Scenario
For this scenario, you want to receive an XML document from an external system
through MQ, HTTP, MSMQ, or other means and have the EAI Dispatch Service write
to an error file if certain criteria are not met, as illustrated in Figure 6. The scenario
assumes that:

■ You are only interested in the message if it contains an OrderReport element;
otherwise, you want an error written to the error log.

■ You know how to create a workflow.

Figure 6. EAI Dispatching Service Request
48 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

EAI Dispatch Service Scenarios
To create this scenario

1 Create a rule set with a rule that searches the message for the OrderReport
element.

2 Create a workflow that contains the following steps:

■ Start

■ EAI Data Mapping Engine

■ EAI Siebel Adapter

■ End

3 Create an EAI Dispatch Service that triggers your workflow, once the criteria in
Step 1 are matched.

Outbound Scenarios Using ProcessAggregateRequest
The ProcessAggregateRequest method allows you to have multiple invocation of
one or more methods in one or more business services using a single request. The
following examples illustrate the use of this method to query account and employee
information.

Querying the Account Integration Object
The following example shows how you can invoke multiple business services and
setting arguments for each of the services. This is done using simple arguments for
the services and by having the aggregate request invoke the QueryPage method of
the EAI Siebel Adapter twice, with different SearchSpecs.

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet>

<AggregatedServiceRequest>
<BusinessServiceWrapper
BusinessServiceName="EAI Siebel Adapter"
BusinessServiceMethod="QueryPage">

<Argument Wrapper
PageSize="4"
StartRowNum="0"
OutputIntObjectName="Sample Account"
SearchSpec="[Account.Name] LIKE 'Aa*'"/>

</BusinessServiceWrapper>
Version 7.5 Business Processes and Rules MidMarket Edition 49

Creating and Using Dispatch Rules

EAI Dispatch Service Scenarios
<BusinessServiceWrapper
BusinessServiceName="EAI Siebel Adapter"
BusinessServiceMethod="QueryPage">

<ArgumentWrapper
PageSize="4"
StartRowNum="0"
OutputIntObjectName="Sample Account"
SearchSpec="[Account.Name] LIKE 'Bb*'"/>

</BusinessServiceRequest>
</AggregatedServiceRequest>

</PropertySet>

Querying the Employee Integration Object
The following example shows how you can set complex type business service
method arguments. The aggregate request invokes the EAI Siebel Adapter twice,
and, instead of using searchspec, uses query by example by passing in a
SiebelMessage.

NOTE: All simple arguments are attributes of the ArgumentWrapper element, and
the complex argument is a child element.

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet>
<AggregatedServiceRequest>

<BusinessServiceWrapper
BusinessServiceName="EAI Siebel Adapter"
BusinessServiceMethod="Query">
<ArgumentWrapper>
<SiebelMessage

MessageType="Integration Object"
IntObjectName="Sample Employee"
IntObjectFormat="Siebel Hierarchical">
<ListOfSampleEmployee>

<Employee EMailAddr="madams@siebel.com" />
</ListOfSampleEmployee>

</SiebelMessage>
</ArgumentWrapper>
</BusinessServiceWrapper>
<BusinessServiceWrapper

BusinessServiceName="EAI Siebel Adapter"
BusinessServiceMethod="Query">
<ArgumentWrapper>
<SiebelMessage
50 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

EAI Dispatch Service Scenarios
MessageType="Integration Object"
IntObjectName="Sample Employee"
IntObjectFormat="Siebel Hierarchical">
<ListOfSampleEmployee>

<Employee FirstName="John" LastName="Doe"/>
</ListOfSampleEmployee>

</SiebelMessage>
</ArgumentWrapper>

</BusinessServiceWrapper>
</AggregatedServiceRequest>
</PropertySet>
Version 7.5 Business Processes and Rules MidMarket Edition 51

Creating and Using Dispatch Rules

Examples of Search Expression Grammar
Examples of Search Expression Grammar
In the following example, assume that the XML document is a typical document
your system receives and that you want to set some rules for the EAI Dispatch
Service to use to parse this document.

<?xml version="1.0" encoding="UTF-8" ?>

- <cXML payloadID="3223232@ariba.acme.com" timestamp="1999-03-
12T18:39:09-08:00" xml:lang="en-US">

- <Header>
- <From>

- <Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>

</Credential>
- <Credential domain="AribaNetworkUserId" type="marketplace">

<Identity>bigadmin@marketplace.org</Identity>
</Credential>
- <Credential domain="BT">

<Identity>2323</Identity>
</Credential>

</From>

- <To>
- <Credential domain="DUNS">

<Identity>942888711</Identity>
</Credential>

</To>

- <Sender>
- <Credential domain="AribaNetworkUserId">

<Identity>admin@acme.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba.com Network V1.0</UserAgent>

</Sender>

</Header>

- <Request deploymentMode="test">
-<OrderRequest>

- <OrderRequestHeader orderID="DO1234" orderDate="1999-03-
12" type="new">

- <Total>
<Money currency="USD">12.34</Money>
52 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

Examples of Search Expression Grammar
</Total>
- <ShipTo>

.......

.......

Table 3 provides some valid search expression examples.

Following are examples of invalid rules:

Rule: /*/*@DeploymentMode/Request/SiebelMessage

Interpretation: This is not a valid rule. A search for a property value must be specified at the very
end. A correct form would be the following, which will have a different result.

/*/Request/*@DeploymentMode

Rule: /*@PayLoadID@TimeStamp

Interpretation: This also is not a valid rule. It is not possible to specify more than one property
name. The correct form would use two different rules to represent this:

/*@PayLoadID

and

/*@TimeStamp

Table 3. Dispatch Rule Grammar

Search Expression Description

/*/Header Go to the second level and look at the type value of each
property set and check whether it is of value Header.

/*/*@DeploymentMode Go to the second level and look at the properties of each
property set and check whether any of them has the name
(not the value) of DeploymentMode.

/*/*/
Request@DeploymentMode

Go to the third level and look at each property set for type
of value Request and property of name DeploymentMode.

/cXML/*/OrderRequest Search at the top level for type of value cXML and then
upon matching, find a grandchild (not child) of type of
value OrderRequest.
Version 7.5 Business Processes and Rules MidMarket Edition 53

Creating and Using Dispatch Rules

Examples of Dispatch Output Property Set
Examples of Dispatch Output Property Set
This example shows different output property sets generated by EAI Dispatch
Service based on the hierarchy input shown in Figure 7 and certain Target and
Source Expression as shown in Table 4.

Table 4 describes the intermediate output based on the value of the Target.

Figure 7. A Hierarchy Input

Table 4. Output Property Generated by EAI Dispatch Service

Target Source Expression Property Name Output Property Set

RootHierarchy /* N/A

RootHierarchy /*/B N/A

RootHierarchy /*/*@C1 N/A
54 Business Processes and Rules MidMarket Edition Version 7.5

Creating and Using Dispatch Rules

Examples of Dispatch Output Property Set
ChildHierarchy /* N/A

ChildHierarchy /*/*/D N/A

Type “abc” N/A

Type /*/B N/A

Type /*/*@B1 N/A

Value “abc” N/A

Property “foo” Boo

Property /*/*/*@D1 Boo

Table 4. Output Property Generated by EAI Dispatch Service

Target Source Expression Property Name Output Property Set
Version 7.5 Business Processes and Rules MidMarket Edition 55

Creating and Using Dispatch Rules

Examples of Dispatch Output Property Set
You can also combine different Targets to search the input message as shown on
Table 5.

Table 5. Complex Output Property Generated by EAI Dispatch Service

Target Source Expression
Property
Name Output Property

RootHierarchy

ChildHierarchy

ChildHierarchy

Type

Property

Property

/*

/*/*/D

/*/*@C1

“demo”

“this”

“that”

N/A

N/A

N/A

N/A

A1

f

ChildHierarchy

ChildHierarchy

Type

Property

Property

/*/*/D

/*/*@C1

“demo”

“this”

“that”

N/A

N/A

N/A

A1

f

56 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper 3
This chapter describes the process of using the Siebel Data Mapper to convert your
external data to the Siebel format and your Siebel data to your external data
specifications.
Version 7.5 Business Processes and Rules MidMarket Edition 57

Data Mapping Using the Siebel Data Mapper

Overview
Overview
The Siebel Data Mapper provides you with a declarative interface to specify maps
for both inbound and outbound data transformation. The maps you set up using the
Siebel Data Mapper call the EAI Data Mapping Engine to complete the data
transformation. Using the Siebel Data Mapper can often reduce or even eliminate
the number of scripts you need to write. Figure 8 illustrates the EAI Data Mapping
Engine architecture.

Figure 8. EAI Data Mapping Engine Architecture
58 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Overview
For data mapping within Siebel eBusiness Applications, Siebel applications now
support two data mapping solutions, the Siebel Data Mapper and Siebel eScript
Data Mapping. The Siebel Data Mapper has a declarative interface and requires no
programming skills. The Siebel eScript Data Mapping uses scripts programmed in
eScript as data maps. Since the Siebel Data Mapper is based on a declarative
interface, it does not have the flexibility that script-based data mapping has. Use
Siebel Data Mapper for most of your integration needs, except for complex mapping
situations requiring aggregation, joins, or programmatic flow control.
Version 7.5 Business Processes and Rules MidMarket Edition 59

Data Mapping Using the Siebel Data Mapper

EAI Data Mapping Engine
EAI Data Mapping Engine
In order to use the EAI Data Mapping Engine, you need to enable the following
component groups:

■ Siebel Workflow

■ Siebel eAI

EAI Data Mapping Engine Methods
The EAI Data Mapping Engine business service has two methods: Execute and
Purge.

Execute
Use the Execute method when your integration requires data transformation. Input
and output arguments for the Execute method are shown in Table 6 and Table 7.

Table 6. Input Arguments for Execute Method

Input Argument Description

Map Name Name of your data map.

Output Integration Object Name (Optional) The target integration object in your map. If
you use this argument you have to match it
with the data map.

Siebel Message The instance of your source integration
object.

Map Arguments (Optional) Used as an argument when you call your
map from a Workflow.

Table 7. Output Arguments for the Execute Method

Property Name Description

Name of the property The output integration object in Siebel Message format.
60 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

EAI Data Mapping Engine
Purge
This method is only for development mode. Use the Purge method to purge the
database of an existing map. Use this method when you have made a change to a
map and you would like to run Execute after these changes. This method does not
require any input or output arguments.

Using the EAI Data Mapping Engine
The following checklist outlines the main steps required to use the EAI Data
Mapping Engine.

Checklist

❑ Create integration objects.

For details, see “Define Integration Objects” on page 65.

❑ Create data maps.

For details, see “Creating New Data Maps” on page 66.

❑ Validate data maps.

For details, see “Validating the Data Map” on page 69.
Version 7.5 Business Processes and Rules MidMarket Edition 61

Data Mapping Using the Siebel Data Mapper

The Siebel Data Mapper
The Siebel Data Mapper
The Siebel Data Mapper maps one integration object, source, to another integration
object, target. Integration objects contain one or more integration components,
which in turn contain one or more Integration Fields. For details on integration
objects, see Platform Technologies: Siebel eBusiness Application Integration Volume
II, MidMarket Edition.

Figure 9 illustrates the Siebel Data Mapping architecture.

Figure 9. The Siebel Data Mapper and the EAI Data Mapping Engine Architecture
62 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

The Siebel Data Mapper
A data map defines the relationship between source and target object format. The
map controls the transformation process. Transformation maps are stored in the
Siebel database as explained in Table 8.

Integration Object Maps
An integration object map is the top-level data map specifying mapping from one
integration object to another. An integration object map contains one or more
integration component maps and can optionally contain integration map
arguments.

Integration Map Arguments
Data maps can be parameterized using integration map arguments. Map arguments
can be referenced in any expression, including the integration field map expression,
Source Spec expression, precondition expression, and post condition expressions.
For example, you may want to have a field map that creates an Order Number in
the target object by prefixing the Order Number in the source object with a constant.

You may want to use this map for orders coming from multiple partners and use a
different prefix for each partner. To achieve this with a single data map, you can
define an argument Prefix in the Integration Map Argument List, and use this
argument Prefix in the field map source expression: [&Prefix]+[Order Number].
Then in the input method arguments in EAI Data Mapping Engine business service,
you can specify any value for Prefix.

Table 8. Maps and Data Table Relationship

Map Type Siebel Data Table

Integration Object maps S_INT_OBJMAP

Integration Object Component maps S_INT_COMPMAP

Integration Object Field maps S_INT_FLDMAP
Version 7.5 Business Processes and Rules MidMarket Edition 63

Data Mapping Using the Siebel Data Mapper

The Siebel Data Mapper
Integration Component Maps
Integration component maps specify how integration components in the source
object get mapped to integration objects in the target object. For every occurrence
of the source component in the source integration object instance, an instance of
the target component is created in the target object instance. An integration
component map contains one or more integration field maps. For details on
integration component maps, see “Creating Integration Component Maps” on
page 68.

Integration Field Maps
Integration field maps specify how fields in the source integration object are
mapped to fields in the target integration component. An integration field map
target is always a field in the target component of the parent component. An
integration field map source can be a constant, a reference to a map argument, a
field in the source component, or other legally addressable components such as
ancestors of the source component. It can also be a Siebel Query Language
expression using one or more of the preceding elements.

NOTE: For details on integration field maps, see “Creating Integration Field Maps”
on page 69. For details on addressing fields in components other than the source
component, see “Addressing Fields in Components” on page 84. For details on
Source Expression, see “Source Expressions” on page 80.
64 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Creating Data Maps
Creating Data Maps
The following checklist provides the high-level steps for creating data maps.

Define Integration Objects
Before you create a data map, you need to verify that valid integration objects exist
for the source and the target data you want to map. For details on creating and
validating integration objects, see Platform Technologies: Siebel eBusiness
Application Integration Volume II, MidMarket Edition.

Checklist

❑ Define and validate integration objects and determine the required maps.

For details, see “Define Integration Objects.”

❑ List components and fields within the Siebel object to use.

For details, see “Define Integration Objects.”

❑ Create a map between the two integration objects.

For details, see “Creating New Data Maps” on page 66.

❑ Create maps between the components of the objects you mapped.

For details, see “Creating Integration Component Maps” on page 68.

❑ Create maps between individual fields within the components you mapped.

For details, see “Creating Integration Field Maps” on page 69.

❑ Validate the data maps.

For details, see “Validating the Data Map” on page 69.
Version 7.5 Business Processes and Rules MidMarket Edition 65

Data Mapping Using the Siebel Data Mapper

Creating Data Maps
Determining Required Maps
The Integration Object Browser lists the existing integration object maps. Use this
browser to determine which maps you need to create.

To determine which maps to create

1 From the application-level menu, choose View > Site Map > Integration
Administration > Data Map Browser.

The Integration Object Map appears.

2 Query for the integration objects you want to map.

Creating New Data Maps
Once you determine what objects you need to map, use the Data Map form to create
data maps. See “Define Integration Objects” on page 65.

To create a new data map

1 From the application-level menu, choose View > Site Map > Integration
Administration > Data Map.

The Integration Object Map list appears.

2 In the Integration Object Map list, click New to create a new map.

3 Provide the necessary fields:

Name. Enter a name for the map you are creating.

Source Object Name. From the list of values, select the source integration object
you want to create the data mapping for.

Target Object Name. From the list of values, select the target integration object
into which you want the data to be transferred.

4 Click Save.
66 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Creating Data Maps
Creating Maps Using Auto-Map
Once you have created your integration object map, you can use the Auto-Map
button to have the Siebel application create the necessary mappings between the
underlying components. The root components are always mapped by Auto-Map,
whether they have the same name or not. Once the root components are mapped,
the Auto-Map will recursively walk through all components and their fields to map
them. If the components have the same name, the Auto-Map continues to map their
fields and their children components. However, if the components have different
names, the Auto-Map ignores the current components, their fields, and their
children components, and moves on to map the next component. In cases where
only the field names are different, the Auto-Map only ignores that one field and
continues with its recursive mapping.

NOTE: You can also use the Auto-Map on an existing mapping when you modify the
integration object. The Auto-Map does not overwrite your manual mappings.

Defining Arguments for a Data Map (Optional)
After you create a data map, you can define the arguments for your map. You can
then use these arguments when you call the map within workflow. To define
arguments, use the Integration Map Argument list on the Integration Object Map
form.

To define integration map arguments

1 Create a new record in the Integration Map Argument list.

2 Provide the following fields:

Name. Enter a name for the argument.

Data Type. From the list of values, select the Siebel Data Type for the argument.

Display Name. Enter the name that you want displayed.

3 Click Save.
Version 7.5 Business Processes and Rules MidMarket Edition 67

Data Mapping Using the Siebel Data Mapper

Creating Data Maps
Creating Integration Component Maps
Once you have defined a data map (see “Creating New Data Maps” on page 66),
you need to set up the mapping between the components and the fields within the
objects you have mapped. You do this using the Data Map Editor form. The
Integration Object Editor list displays existing object maps and provides views in
which you can define maps for components and for fields. You use the Integration
Component Map view to create integration component maps.

To define integration component maps

1 From the application-level menu, choose View > Site Map > Integration
Administration > Data Map Editor.

2 In the Integration Object Map list, select the map for which you want to define
integration component maps.

3 Create a new record in the Integration Component Map list.

4 Provide the following fields.

Name. Name of the map you are creating.

Source Component Name. The component where you are getting the data.

Target Component Name. The component where you want to store the data.

Source Search Specification (optional). The search criteria based on which the
records are filtered. See “Source Search Specifications” on page 81 for details.

Parent Component Map Name (optional). The parent component field is used when
there is a mapping to two target components that share multiple parent
components. You can exclude data from one of these child objects by choosing
a parent component.

Precondition (optional). See “Preconditions” on page 82 for details.

Postcondition (optional). See “Postconditions” on page 83 for details.

5 Click Save.
68 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Creating Data Maps
Creating Integration Field Maps
You define the integration field map between your source and target fields using the
Integration Field Map form.

To define a integration field map

1 Create a new record in the Integration Field Map list.

2 Provide the following fields:

Target Field Name. Name of the field in the Target Component where the value
will be assigned.

Source Expression. An expression that is used to calculate a value for the
Destination Field. See “Source Expressions” on page 80 for details.

3 Click Save.

Validating the Data Map
Once you have created your data map, you need to validate your data map.

To validate your data map

1 From the application-level menu, choose View > Site Map > Integration
Administration > Data Maps.

2 Select your data map.

3 Click Validate to validate your data map.

4 Take necessary action to fix the problems with your map or the associated
integration objects.
Version 7.5 Business Processes and Rules MidMarket Edition 69

Data Mapping Using the Siebel Data Mapper

Examples of Workflow Process
Examples of Workflow Process
Depending on whether you are preparing for an outbound or an inbound data
exchange, you need to design different workflow processes as described in the
following two procedures.

Outbound Workflow Process
To execute the map for an outbound process create a workflow process to query the
database, purge the data map, execute the data map, and then write the XML into
a file. The following examples illustrate integration between contact and employee
business objects.

To create an outbound workflow process

1 Navigate to Workflow Process Designer.

2 Create a workflow process consisting of Start, End, and four business services.
Set up each business service according to the task it needs to accomplish.

NOTE: The EAI Data Mapping Engine Purge step should only be used in a
development environment.
70 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Examples of Workflow Process
3 Define the process properties, using the following table as a guide.

Input Argument Type

Contact Message Hierarchy

DTE XML Hierarchy

Process Instance Id String

Error Code String

Error Message String

Object Id String

Siebel Operation Object Id String
Version 7.5 Business Processes and Rules MidMarket Edition 71

Data Mapping Using the Siebel Data Mapper

Examples of Workflow Process
4 The second business service queries the information from the database using the
EAI Siebel Adapter business service with Query method.

NOTE: For more information on using the EAI Siebel Adapter, see Platform
Technologies: Siebel eBusiness Application Integration Volume II, MidMarket
Edition.

5 The third business service purges the map using the Data Mapping Engine
business service with the Purge method. This step is only for development mode
so that the latest map is picked for the process and should not be used in a
production environment. This step does not require any input or output
arguments.

Field Value

Name Siebel Query

Business Service EAI Siebel Adapter

Method Query

Input Argument Type Value

Output Integration Object Name literal An Employee

Search Specification Literal [Employee.Last Name] LIKE “Peterson”

Property Name Type Output Argument

Employee Message Output Argument Siebel Message

Field Value

Name DDTE Purge

Business Service EAI Data Mapping Engine

Method Purge
72 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Examples of Workflow Process
6 The forth business service executes the data map using the EAI Data Mapping
Engine business service with the Execute method.

Field Value

Name DDTE Execute

Business Service EAI Data Mapping Engine

Method Execute

Input
Argument Type Value Property Name

Property Data
Type

Map Name Literal Outbound
DDTE Map

Output
Integration
Object Name

Literal My DTE

Siebel
Message

Process
Property

- Employee
Message

Hierarchy

Property Name Type Output Argument

IntObjName Output Argument Siebel Message
Version 7.5 Business Processes and Rules MidMarket Edition 73

Data Mapping Using the Siebel Data Mapper

Examples of Workflow Process
7 The last business service writes the XML into a file using the EAI XML Write to
File business service with the Write Siebel Message method.

This step requires the following input argument.

The output argument for this step is optional and can be defined as follows.

Field Value

Name Write XML to File

Business Service EAI XML Write to File

Method Write Siebel Message

Input Argument Type Value Property Name Property Data Type

File Name Literal c:\emp.xml

Siebel Message Process Property - Int.ObjName Hierarchy

Property Name Type Value Output Argument

IntObjName Output Argument - Siebel Message
74 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Examples of Workflow Process
Inbound Workflow Process
To execute the map for an inbound process you need to create a workflow process
to read the data from a file, purge the data map, execute the data map, and then
write the XML into a file.

To create an inbound workflow process

1 Navigate to Workflow Process Designer.

2 Create a workflow process consisting of Start, End and four business services.
Set up each business service according to the task it needs to accomplish.

NOTE: The DDTE Purge step should only be used in a development environment.

3 Define the process properties using the following table as a guide.

Name Data Type

Employee Message Hierarchy

IntObjName Hierarchy

Process Instance Id String

Error Code String

Error Message String

Object Id String

Siebel Operation Object Id String
Version 7.5 Business Processes and Rules MidMarket Edition 75

Data Mapping Using the Siebel Data Mapper

Examples of Workflow Process
4 The first business service reads the information from a file using the EAI XML
Read from File business service with the Read Siebel Message method.

5 The second business service purges the map using the Data Mapping Engine
business service with the Purge method. This step is only for development mode
so that the latest map is picked for the process and should not be used in a
production environment.

This step does not require any input or output arguments.

Field Value

Name Read QA DTE from File

Business Service EAI XML Read from File

Method Read Siebel Message

Input Argument Type Value

File Name Literal c:\emp.xml

Property Name Type Output Argument

DTE Message Output Argument Siebel Message

Field Value

Name DDTE Purge

Business Service EAI Data Mapping Engine

Method Purge
76 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Examples of Workflow Process
6 The third business service executes the data map using the EAI Data Mapping
Engine business service with the Execute method.

Field Value

Name DDTE Execute

Business Service EAI Data Mapping Engine

Method Execute

Input Argument Type Value Property Name Property Data Type

Map Name Literal Inbound DDTE Map

Output
Integration
Object Name

Literal A Contact

Siebel Message Process
Property

- DTE Message Hierarchy

Property Name Type Output Argument

Contact Message Output Argument Siebel Message
Version 7.5 Business Processes and Rules MidMarket Edition 77

Data Mapping Using the Siebel Data Mapper

Examples of Workflow Process
7 The last business service writes the data into the database using the EAI Siebel
Adapter business service with Insert or Update method.

This step requires the following input argument.

This step does not require output parameters.

NOTE: For more information on using the EAI Siebel Adapter, see Platform
Technologies: Siebel eBusiness Application Integration Volume II, MidMarket
Edition.

8 Use the Workflow Simulator to run through the steps you created in your
workflow process to test your process.

NOTE: For details on creating a workflow process and using the Workflow
Simulator to test your workflow process, see Siebel Business Process Designer
Administration Guide, MidMarket Edition.

Field Value

Name Upsert Contact

Business Service EAI Siebel Adapter

Method Insert or Update

Input Argument Type Property Name Property Data Type

Siebel Message Process Property Contact Message Hierarchy
78 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Executing the Workflow
Executing the Workflow
Once you have designed and tested your workflow, you can run it in your
production using Workflow Process Manager Server.

NOTE: For more details on how to activate and execute a workflow, see Siebel
Business Process Designer Administration Guide, MidMarket Edition.
Version 7.5 Business Processes and Rules MidMarket Edition 79

Data Mapping Using the Siebel Data Mapper

EAI Data Mapping Engine Expressions
EAI Data Mapping Engine Expressions
The EAI Data Mapping Engine uses four categories of expressions:

■ Source expressions

■ Source search specifications

■ Preconditions

■ Postconditions

These expressions support Siebel Query Language expressions. These expressions
can address fields in the source component, map arguments, and constants. In
addition to fields in the source component, fields in certain other components in the
source integration object can be addressed. For details, see “Addressing Fields in
Components” on page 84. These expressions are just like Siebel Query Language
support invocations of predefined functions and custom business services.

NOTE: For details on the Siebel Query Language, see Siebel Tools Online Help,
MidMarket Edition.

Source Expressions
Source Expressions is a required field for every integration field map. The source
expression can be a literal or based on scripting if you need to parse data, or if you
need to query the database for a specific value. The source expression is associated
with an instance of the input integration component named in the integration
component map, which is the parent of the integration field map that contains the
source expression. An example of a source expression is:

[First Name] + “ “ + [Last Name]
80 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

EAI Data Mapping Engine Expressions
This expression concatenates the First Name and the Last Name and separates them
with a space to be moved into a target field such as Full Name.

NOTE: Only a subset of Siebel Query Language Expressions that do not require
context of a business component, is supported by EAI Data Mapping Engine. You
can not use the following Siebel Query Language Expressions that require context
of a business component in the Source Expression: BCName (), Count (mvlink),
IsPrimary (), Min (mvfield), Max (mvfield), ParentBCName (), ParentFieldValue
(field_name), Sum (mvfield), GetXAVal (), GetXAValAsNum (), GetXAValAsInt (),
GetXAValAsDate (), and XAIsClass ().

Source Search Specifications
Source Search Specification is a Boolean expression that is used to determine if a
given component instance satisfies given criteria. It may only appear in an
integration object map or a integration component map together with an integration
component name. Defining a Search Specification is optional, and if you do not
define it then it does not apply any criteria and returns True.

If a field in the current integration component has the same name as a field in a
parent component then you can only address the parent component field by using
dot ('.') notation. An example of a Source Component Search Specification is:

[Role] = “Billing”

The expression returns True only if the current input integration component has the
value Billing in the Role field.

NOTE: If no Search Specification is provided, then every input integration
component whose type matches the input component of the integration component
map is processed.
Version 7.5 Business Processes and Rules MidMarket Edition 81

Data Mapping Using the Siebel Data Mapper

EAI Data Mapping Engine Expressions
Preconditions
You can use preconditions to make sure that a field of the input object has a certain
value or otherwise terminate the process. An error is generated if the field in the
input object has any other value, or no value. Preconditions are evaluated
immediately before their containing integration component map is executed. If the
condition is true then the process continues. If the condition is false then the whole
transformation is aborted and EAI Data Mapping Engine returns an error to the
caller. An example of a precondition is:

[Role]=”Billing” Or [Role]=”Shipping”

This precondition makes sure that the field Role of the input object either has a
value Billing or a value Shipping before it proceeds with the process of data
transformation.

The precondition is only applied to the input components that are selected by the
Source Search Specification. The input components that fail to match the Source
Search Specification will not be checked against the precondition.

A precondition expression may address any field in the current input component,
and any of its parent components. It can also address any service call parameter that
has been declared as a map argument.

NOTE: The default value for the precondition is True. If the precondition is omitted
from an integration component map then no constraint is enforced.
82 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

EAI Data Mapping Engine Expressions
Postconditions
Postconditions are evaluated and applied to the newly created objects when you
execute the containing integration component map. If the result of the
postcondition is true then the process continues. If the result is false, the whole
transformation is aborted and EAI Data Mapping Engine returns an error. Here is an
example of a postcondition:

[Object ID]<>”” Or ([First Name]<>”” And [Last Name]<>””)

This postcondition checks the output component for a value in the Object ID or in
both the First Name and the Last Name.

NOTE: Since there is no search specification for output components, the
postcondition is applied only once for every output component instantiated because
it executes its containing integration component map.

The type of the expression may be any type that can be assigned to the Destination
Field type either directly or after applying standard conversions to the result of the
expression.
Version 7.5 Business Processes and Rules MidMarket Edition 83

Data Mapping Using the Siebel Data Mapper

Addressing Fields in Components
Addressing Fields in Components
You may want to address fields in components other than the source component
because your target component may depend on more than one component in the
source object. In such cases, you cannot use different component maps with
different source components and the same target component because each
component map creates a different instance of the target component. Data Mapping
Engine Expressions allow addressing fields in source integration object components
other than the source component using the dot notation, [Component Name.Field
Name].

NOTE: The picklist for the source expression in the Data Mapper View does not list
fields in components other than the source component. Such fields should be typed
in using the dot notation.

Addressing fields in other components is legal only if the cardinality of the
component is less than or equal to one relative to the source component—that is,
only if the component can be uniquely identified from the context of the source
component without using any qualifiers other than the component name. If a field
in a component that is not legally addressable is used in the source expression then
it leads to a runtime error to the effect that such a field does not exist. Any
component that is an ancestor of the source component in the integration object
hierarchy has a relative cardinality of 1 which means it can always be uniquely
identified from the source component. Therefore, fields in ancestor components can
always be legally addressed.

Sibling components can be uniquely identified from the context of the source
component only if they do not occur multiple times—that is have a cardinality of
less than or equal to 1. Only such siblings can be legally addressed. Therefore, it is
not legal to address repeated sibling components. Components that are descendants
of a sibling component can be legally addressed only if there is no repeated
component in the hierarchical path from the sibling component to the component.

Further, components that are descendants of a sibling of some ancestor of a source
component can be legally addressed only if there is no multiply-occurring
component in the hierarchical path from the sibling-of-ancestor-of-source
component to the component.
84 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using the Siebel Data Mapper

Data Mapping Scenario
Data Mapping Scenario
The scenarios below concern an IT developer named Chris Conway, who works for
a computing company, PCS Computing. One of his responsibilities is creating and
maintaining the data mappings between Siebel and the other applications in use at
PCS. The first task he is assigned to is to create mapping between Siebel
applications and the external application they need to integrate with.

Mapping Between Siebel and an External Application
Chris is in charge of integrating PCS’s Siebel implementation with a custom in-
house application. The purpose is to exchange customer information between the
two systems.

After weighing various options, Chris decides to use the Siebel Data Mapper instead
of scripts to perform the data mapping. He creates the Internal Integration Object
using the Siebel Integration Object Wizard from within Siebel Tools. He also creates
an external integration object using the external application’s DTD.

When Chris is ready to map the two integration objects, he navigates to the Data
Mapper and creates a new entry by supplying the name of the map and associating
the internal integration object with the external integration object, as explained in
“Creating New Data Maps” on page 66. He then uses the Map Editor form to create
object, component, and field maps, as explained in “Creating Integration
Component Maps” on page 68.

When he finishes creating the map, Chris navigates to the Siebel Workflow Process
Designer form to define the integration flow. For one of the workflow steps, he
defines an invocation of the Siebel Data Mapper. He supplies the appropriate
parameters, including the name of the map, and saves his work.
Version 7.5 Business Processes and Rules MidMarket Edition 85

Data Mapping Using the Siebel Data Mapper

Data Mapping Scenario
86 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts 4
This chapter describes the process of using the Siebel eScript Data Mapping to
convert your external data to the Siebel format and your Siebel data to your external
data specifications.
Version 7.5 Business Processes and Rules MidMarket Edition 87

Data Mapping Using Scripts

Overview
Overview
You can accomplish your data transformation requirements in Siebel eBusiness
applications by using the Data Transformation Function or Siebel Data Mapper, as
illustrated in Figure 10.

For customers who want to do data mapping within Siebel applications, Siebel
applications now support two data mapping solutions—Siebel Data Mapper and
Siebel eScript Data Mapping. Siebel Data Mapper has a declarative interface and
requires no programming skills. Siebel eScript Data Mapping uses scripts
programmed in eScript as data maps.

Data maps defined using Siebel Data Mapper are easy to maintain and upgrade.
These maps also perform better than eScript Data Maps. Since Siebel Data Mapper
is based on a declarative interface, it does not have the full flexibility and power that
the data mapping using eScript has. Siebel Data Mapper should suffice for most
integration needs except some complex mapping situations requiring aggregation,
joins, or programmatic flow control.

Figure 10. Data Transformation Options
88 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Overview
The following checklist outlines the main steps required to accomplish your data
transformation requirements using the Data Transformation Functions.

Checklist

❑ Define integrationt objects in Siebel Tools—one to represent Siebel objects and
another to represent external data.
For details, see Platform Technologies: Siebel eBusiness Application Integration
Volume II, MidMarket Edition.

❑ Set up the Data Transformation Map.
For details, see “Setting Up a Data Transformation Map” on page 90.

❑ Write the Siebel eScript code to perform the data transformation.
For details, see “To write a script for DTE business service” on page 91.
Version 7.5 Business Processes and Rules MidMarket Edition 89

Data Mapping Using Scripts

EAI Data Transformation
EAI Data Transformation
The Siebel Data Transformation Functions are a framework for building data
transformation maps. Data transformation maps act as import and export filters,
preparing data from an external system for entry into Siebel applications and
preparing data in Siebel applications for export.

Data transformation maps are created as business services using Siebel eScript. You
invoke them as part of an eAI Workflow process.

A data transformation map reads data from an input structure and transfers it to an
output structure, transforming it along the way. The map developer creates a
custom eScript function to do the transformation. The Data Transformation
Functions provide a convenient way to read the input data and generate results.
They also provide a framework for invoking your map functions, handling errors,
and accessing other eAI resources.

Setting Up a Data Transformation Map
You create your data transformation map in Siebel Tools in a business service, then
you compile it into an .srf file. You can organize your maps in many different ways.
Each business service you create can contain one or more maps. You can, in fact,
use several business services to organize a large number of maps into logical
groups.

To define a data transformation business service in Siebel Tools

1 Run Siebel Tools.

2 Choose a locked project.

3 Create a new business service.

4 Choose the CSSEAIDTEScriptService class for the business service.
90 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

EAI Data Transformation
5 Double-click the Business Services Methods folder and add the method Execute.

Select the Business Service Method Arg folder and add the arguments for the
Execute method. For a list of arguments and their description, see “DTE Business
Service Method Arguments” on page 93.The arguments to include are:

■ MapName

■ An input argument. Select one of SiebelMessage, XMLHierarchy, or
MIMEHierarchy as the argument name, based on the type of input.

■ An output argument. Required if the output object is a different type than the
input argument. Select one of SiebelMessage, XMLHierarchy, or
MIMEHierarchy as the argument name.

■ If the input and output types are the same then the same argument entry is
used for both.

■ OutputType

■ InputType (Optional). This is required only when passing the business
service input property set to the map function without interpretation. This is
done by specifying the InputType as ServiceArguments.

NOTE: Most transform maps use SiebelMessage for both the input and output
arguments. This is for mapping one integration object to another. For details, see
“DTE Business Service Method Arguments” on page 93.

Once you have created the business service you need to write the Siebel eScript
code to perform the data transformation.

To write a script for DTE business service

1 Choose the Business Service object and select the business service you want to
contain the transformation map.

2 Right-click to display the pop-up menu.

3 Choose Edit Server Scripts and choose eScripts as the scripting language if you
are prompted to select scripting language.
Version 7.5 Business Processes and Rules MidMarket Edition 91

Data Mapping Using Scripts

EAI Data Transformation
4 In the (declarations) procedure of the (general) object, add the line:

#include “eaisiebel.js”

5 In the Service_PreInvokeMethod function of the service, change the function to
the following:

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)
{

return EAIExecuteMap (MethodName, Inputs, Outputs);
}

Your data transformation map is run as a business service invoked from a
Workflow process. Business service scripts have a standard entry point,
Service_PreInvokeMethod. Although the script environment provides you with a
boilerplate function by this name, you need to modify it, as described in the
preceding steps, to include the call to the EAIExecuteMap function.

a The MethodName must be Execute and is used by Siebel Workflow. The name
of your function is the name you supply for the MapName argument to the
Execute method.

b Inputs is the input message from Workflow containing service arguments—
for example, MapName and Output Integration Object Name—and the
integration message to be transformed. Outputs is the argument used to
return data—for example, Siebel Message. MapName specifies the map
function to be executed and must be the name of one of the functions you
defined in the business service.
92 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

DTE Business Service Method Arguments
DTE Business Service Method Arguments
Table 9 lists the arguments for the Execute method of the DTE business services.

You can set these arguments in Siebel Tools.

MapName. The name of the eScript function to call to perform the transformation.

InputType. The type of input object to pass to the transformation function. The value
will be one of SiebelMessage, MIMEHierarchy, XMLHierarchy, or
ServiceArguments. This argument is required only when you use ServiceArguments
as the value. When ServiceArguments is used the business service, PropertySet is
passed to the map function without interpretation.

OutputType. The type of the output object to pass to the transformation function. The
types are the same as the ones for Input Type.

Table 9. DTE Business Service Method Arguments

Name & Display Name Data Type Type Optional Storage Type PickField PickList

MapName

Map Name

String Input No Property

InputType

Input Type

String Input No Property Value EAI Message Type
PickList

OutputType

Output Type

String Input No Property Value EAI Message Type
PickList

SiebelMessage

Siebel Message

Hierarchy Input/Output Yes Hierarchy

MIMEHierarchy

MIME Hierarchy

Hierarchy Input/Output Yes Hierarchy

XMLHierarchy

XML Hierarchy

Hierarchy Input/Output Yes Hierarchy
Version 7.5 Business Processes and Rules MidMarket Edition 93

Data Mapping Using Scripts

DTE Business Service Method Arguments
SiebelMessage. You use this argument when the input and or or output object is a
SiebelMessage. SiebelMessage is used when converting to or from an integration
object. SiebelMessage is the correct choice when mapping one integration object to
another.Your map function is passed an object of type CSSEAIIntMsgIn for the
SiebelMessage that is the input to the transformation and an object of type
CSSEAIIntMsgOut for the SiebelMessage that is produced by the transformation.

MIMEHierarchy. You use this argument if the input and or or output object is a
MIMEHierarchy. MIMEHierarchy is used when converting to or from MIME
Hierarchy objects. Your map function is passed two object types; CSSEAIMineMsgIn
for the MMIEHierarchy that is the input to the transformation and
CSSEAIMimeMsgOut for the MIMEHierarchy that is produced by the
transformation. MIME Hierarchy objects are defined by the EAI MIME Doc
Converter business service. For details on the EAI MIME Doc Converter, see
Platform Technologies: Siebel eBusiness Application Integration Volume II,
MidMarket Edition.

XMLHierarchy. You use this argument if the input and or or output object is an
XMLHierarchy. XMLHierarchy is used when converting to or from XML Hierarchy
objects. Your map function is passed an object of type XML Property Set for both
input and output XMLHierarchy. XML Hierarchy objects are defined by the XML
Hierarchy Converter business service. For details on XML Hierarchy Converter, see
XML Reference: Siebel eBusiness Application Integration Volume V, MidMarket
Edition.
94 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Map Functions
Map Functions
A map function has the following signature:

function MapFnName (objectIn, objectOut)

The function name signified by MapFnName is the name of your transformation
function. It is the value passed as the MapName argument to the business service.
The Input Type and Output Type business service arguments determine the types of
the objectIn and objectOut arguments and default to the type Integration Message.
You should name these arguments according to type. For example, to use the default
values, you would specify a function that transforms one integration object to
another as:

function MapFnName (intMsgIn, intMsgOut)

If you define a function that transforms an XML property set to an integration
object, you might specify it as:

function MapFnName (xmlPropSetIn, intMsgOut)

The arguments to these functions are contained within the input and output
arguments to the business service’s Service_PreInvokeMethod function. The
EAIExecuteMap function—called by Service_PreInvokeMethod—interprets the
arguments and passes them to MapFnName. MapFnName reads from the input
object and writes to the output object using the appropriate API for each type of
object.

If you define a function to access input integration object, you might specify it as:

Function myMapFn (ObjectIn, ObjectOut) {
inIntObj = ObjectIn.GetIntObj(); //Get Integration Object
//Iterate over all Integration Object Instances
While (inIntObj.NextInstance()) {

//Get the Primary Component which is called “Order Entry - Orders”
primaryIntComp = inIntObj.GetPrimaryIntComp(“Order Entry - Orders”);
//Iterate over all instances of Primary Component
while (primaryIntComp.NextRecord()) {

OrderId = primaryIntComp.GetFieldValue (“Id”);
//Get component “Order Entry - Line Items” which is child of

"Order Entry - Orders"
comp = primaryIntComp.GetIntComp (“Order Entry - Line Items”);
//Process component similar to primary component
while (comp.NextRecord()) {
Version 7.5 Business Processes and Rules MidMarket Edition 95

Data Mapping Using Scripts

Map Functions
OrderItemId = comp. GetFieldValue (“Id”);
And to define a function to create output integration object, you
might specify it as:
Function myMapFn (ObjectIn, ObjectOut) {
outIntObj = ObjectOut.CreateIntObj(“Sample Order”);
While (Need new integration object instances) {

 outIntObj.NewInstance();
//Create Primary Component which is called “Order Entry -

Orders”
primaryIntComp = inIntObj.CreatePrimaryIntComp(“Order Entry -
Orders”);
while (Need new instances of primary int component) {

 primaryIntComp.NewRecord();
 primaryIntComp.SetFieldValue (“Id”, OrdertemId);
//Create component Order Item which is child of Order
comp = primaryIntComp.CreateIntComp (“Order Entry - Order

Items”);
//Process component similar to primary component
while (need new instances of component) {

comp.NewRecord();
comp. SetFieldValue (“Id”, OrdertemId);

EAIExecuteMap() Method
This method executes a user-defined data transformation function. Table 10 lists the
parameters for this method.

Syntax EAIExecuteMap(methodName, inputPropSet, outputPropSet)

Returns CancelOperation or ContinueOperation. The Service_PreInvokeMethod function
should return the value returned by the EAIExecuteMap.

Usage See “Setting Up a Data Transformation Map” on page 90.

Table 10. Parameters for EAIExecuteMap() Method

Parameter Description

methodName The business service method should be Execute.

inputPropSet Input message and service arguments.

outputPropSet Output message and service arguments.
96 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

The Data Transformation Functions
The Data Transformation Functions
The data transformation API consists of global functions and classes that represent
the different parts of input and output data. The data transformation functions are
implemented as Siebel eScript. You must use Siebel eScript to create your data
transformation maps.

Three different top-level data types are supported:

■ Siebel Messages. See “Siebel Message Objects and Methods” on page 98.

■ MIME Messages. See “MIME Message Objects and Methods” on page 120.

■ XML Property Sets. See “XML Property Set Functions” on page 129.

The data type is determined by the InputType and OutputType arguments, as
described in “DTE Business Service Method Arguments” on page 93.

Siebel Messages are the most common data type. Siebel Messages are a hierarchical
type represented at the top level by an Integration Message message. See “Siebel
Message Objects and Methods” on page 98.

It is also possible to operate directly on the business service input and output
property sets. This is accomplished by specifying the InputType or OutputType as
ServiceArguments. In this case the business service property set arguments are
passed directly to the map function. The standard property set functions can be
used to access them.
Version 7.5 Business Processes and Rules MidMarket Edition 97

Data Mapping Using Scripts

Siebel Message Objects and Methods
Siebel Message Objects and Methods
A Siebel Message is a message containing the data of individual integration object
instances. It is hierarchically structured and composed of several different types of
objects.

The data transform API uses several different eScript classes to represent a Siebel
Message:

■ An integration message. This represents the top-level message container. See
“Integration Message Objects” on page 98.

■ An integration object. See “Integration Object Objects” on page 104.

■ A primary integration component. See “Primary Integration Component Objects”
on page 107.

■ Integration components. See “Integration Component Objects” on page 113.

Each of these parts of a Siebel Message has two classes: one for input and one for
output. Each class provides methods for specific purposes.

Integration Message Objects
The integration message is the top-level piece of a message. The workflow process
passes the integration message to the Data Mapping Engine as input. The Data
Mapping Engine returns another message as output. The integration message object
provides access to workflow arguments, integration message arguments, and the
integration object that is contained in the message.

The following integration message objects are provided:

■ CSSEAIIntMsgIn

■ CSSEAIIntMsgOut
98 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
CSSEAIIntMsgIn
This object represents an integration message that is open for reading. The object
provides GetArgument and GetIntObj methods.

GetArgument() Method
This method gets the value of a business service argument. For example, this could
get the name of a map function in the business service. Table 11 lists the parameters
for this method.

Syntax GetArgument(name [, defaultIfNull [, defaultIfEmpty]])

Returns String or null.

Usage Use this method to get the value of an argument passed to the business service. For
example, if the MapName argument passed to the business service is
MapExtOrderToOrder, the call:

intMsgIn.GetArgument ("MapName");

returns the name of the map, MapExtOrderToOrder, passed to the business
service.

If the named argument does not exist, null is returned. If the named argument
exists but the value is the empty string, the empty string is returned. You can use
the defaultIfNull and defaultIfEmpty optional arguments to change this behavior.

The arguments defaultIfNull and defaultIfEmpty are optional; however, if you
specify defaultIfEmpty, you must also specify the defaultIfNull argument.

Table 11. Parameters for GetArgument() Method

Parameter Description

name The name of a business service argument.

defaultIfNull Returned if a service argument of the specified name does not exist.

defaultIfEmpty Returned if the service argument is set to an empty string.
Version 7.5 Business Processes and Rules MidMarket Edition 99

Data Mapping Using Scripts

Siebel Message Objects and Methods
GetIntObj() Method

This method returns an instance of the integration object and opens it for reading.
Table 12 lists the parameter for this method.

Syntax GetIntObj(name)

Returns CSSEAIIntObjIn Integration Object

Usage An integration object instance is always returned even if the integration object does
not exist. Call the returned object’s Exist method to test for this before calling other
methods on the object. An error is raised if an integration object is present but the
name is not correct.

NOTE: Currently an integration message can contain only one integration object.

GetAttachmentCount () Method
This method returns the number of attachments in the input integration message.

Syntax GetAttachmentcount()

Returns The number of attachments in the input integration message.

Table 12. Parameter for GetIntObj() Method

Parameter Description

name The name of an integration object in the active integration message.
100 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
GetAttachment () Method
This method returns the attachment specified by the index. Table 13 lists the
parameter for this method.

Syntax GetAttachment(index)

Returns The attachment (a PropertySet) specified by the index. The index is zero based.
Returns null if index is out of bounds.

GetAttachmentByCID () Method
This method retrieves an attachment based on the Content Identifier (CID). Table 14
lists the parameter for this method.

Syntax GetAttachmentByCID(cid)

Returns The attachment (a PropertySet) specified by the CID. Returns null if there is no
attachment with the specified CID.

Table 13. Parameters for GetAttachment() Method

Parameter Description

index The index of the attachment to return.

Table 14. Parameters for GetAttachmentByCID() Method

Parameter Description

cid The Content Identifier of the attachment.
Version 7.5 Business Processes and Rules MidMarket Edition 101

Data Mapping Using Scripts

Siebel Message Objects and Methods
CSSEAIIntMsgOut
This object represents an output integration message that is open for writing. The
object provides CreateIntObj and SetArgument methods:

CreateIntObj() Method
This method creates a new integration object. Table 15 lists the parameter for this
method.

Syntax CreateIntObj(name)

Returns CSSEAIIntObjOut Output Integration Object

Usage An integration message can contain only one integration object, so multiple calls to
this method on one integration message raises an error. The name must agree with
the business service argument OutputIntObjName, if that argument is passed to the
service.

SetArgument() Method
This method sets the value of a business service argument. Table 16 lists the
parameters for this method.

Syntax SetArgument(name, value)

Table 15. Parameter for CreatIntObj() Method

Parameter Description

name Creates a new integration object and adds it to the integration message.

Table 16. Parameters for SetArgument() Method

Parameter Description

name The name of an argument in the active business service.

value The string value corresponding to the argument named by the name
parameter.
102 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
Returns Not applicable

Usage You can call the SetArgument method to establish the value of a given output
argument for the business service method invocation.

SetAttachmentSource () Method
This method establishes the source object to copy attachment objects from. The
source object must be a CSSEAIIntMsgIn, CSSEAIMimeMsgIn, or other object
implementing the GetAttachmentByCID method. Table 17 lists the parameter for this
method.

Syntax SetAttachmentSource(source)

CopyAttachment (cid) Method
This method copies an attachment from the attachment source to the output
integration object. The attachment is referenced by the MIME Content Identifier
(CID). The attachment source must be established by calling
CSSEAIIntMsgOut.SetAttachmentSource prior to calling this method. Table 18 lists
the parameter for this method.

Syntax CopyAttachment(cid)

Returns The attachment copy is returned as a property set. This method returns null if the
attachment source does not contain an attachment with the specified CID.

Table 17. Parameters for SetAttachmentSource() Method

Parameter Description

source The attachment source.

Table 18. Parameters for CopyAttachment() Method

Parameter Description

cid MIME content identifier.
Version 7.5 Business Processes and Rules MidMarket Edition 103

Data Mapping Using Scripts

Siebel Message Objects and Methods
Integration Object Objects
The integration object contains one or more integration components. The following
integration object objects are provided:

■ CSSEAIIntObjIn

■ CSSEAIIntObjOut

CSSEAIIntObjIn
This object represents an input integration object, open for reading, that is
contained in the integration message. The integration object has a name and
contains zero or more instances of actual integration objects. Integration object
instances are accessed one at a time, similar to accessing database records. Each
instance has a primary integration component that contains data and every
subordinate integration components. The object provides the Exists, FirstInstance,
GetPrimaryIntComp, and NextInstance methods.

Exists() Method
This method checks to see if the integration object is actually present in the input
data. It takes no parameters.

Syntax Exists()

Returns Boolean

Usage Call Exists after retrieving the integration object from the integration message. If the
integration object was found and is open for reading, the Exists method returns
true.

FirstInstance() Method
This method moves to the first integration object instance and sets it as the active
instance.

Syntax FirstInstance()

Returns Boolean

Usage The FirstInstance method returns true if the instance exists, false otherwise.
104 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
GetPrimaryIntComp() Method
This method returns the primary integration component of the active instance of the
integration object. Table 19 lists the parameter for this method.

Syntax GetPrimaryIntComp(name)

Returns CSSEAIPrimaryIntCompIn Input Primary Integration Component

Usage Gets the primary integration component of the active instance of the integration
object and opens it for input.

This method always returns an input primary integration component object, even if
the component does not exist. Call the Exists method on the returned object to test
for this condition. If there is no active instance, a call to this method raises an error.

NextInstance() Method
This method moves a pointer to the next logical integration object instance in the
active integration message.

Syntax NextInstance()

Returns Boolean

Usage Moves to the next integration object instance and makes it the active instance. This
method returns true if the instance exists, or false if there are no more instances.
If neither the NextInstance or the FirstInstance method has been called previously,
the NextInstance method moves to the first instance in the message.

Table 19. Parameter for GetPrimaryIntComp() Method

Parameter Description

name The name of a primary integration component in the active integration object
instance.
Version 7.5 Business Processes and Rules MidMarket Edition 105

Data Mapping Using Scripts

Siebel Message Objects and Methods
CSSEAIIntObjOut
This object represents an output integration object, open for writing, that is
contained in the integration message. It provides CreatePrimaryIntComp and
NewInstance methods as an interface to the output integration object.

CreatePrimaryIntComp() Method
This method creates a new primary integration component. Table 20 lists the
parameter for this method.

Syntax CreatePrimaryIntComp(name)

Returns CSSEAIPrimaryIntCompOut Primary Integration Component, open for output

Usage Use the Exists method to test for existence of the integration object instance, then
create a new integration object instance and set it as the active instance, using the
NewInstance method. You must perform these tasks before calling the
CreatePrimaryIntComp() method.

NewInstance() Method
This method creates a new instance of an integration object and makes it the active
instance.

Syntax NewInstance()

Returns Not applicable

Table 20. Parameter for CreatePrimaryIntComp() Method

Parameter Description

name Assigned as the name of the Primary Integration Component.
106 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
Primary Integration Component Objects
A primary integration component represents the integration component contained
within an integration object instance. It has a name and contains records with data
from actual integration components. Each record may have fields and subordinate
integration components.

The following primary integration component objects are provided:

■ CSSEAIPrimaryIntCompIn

■ CSSEAIPrimaryIntCompOut

CSSEAIPrimaryIntCompIn
This object represents the input primary integration component, open for reading.
Your data transformation maps can use this object’s methods to traverse integration
components. The object provides Exists, FirstRecord, GetFieldValue, GetIntComp,
and NextRecord methods:

Exists() Method
This method checks to see if the primary integration component is actually present
in the input data. It takes no parameters.

Syntax Exists()

Returns Boolean

Usage Call Exists after retrieving the primary integration component with the
CSSEAIIntObjIn.GetPrimaryIntComp method, and before invoking the primary
integration component’s other methods.

If the primary integration component was found and is open for reading, the Exists
method returns true.
Version 7.5 Business Processes and Rules MidMarket Edition 107

Data Mapping Using Scripts

Siebel Message Objects and Methods
FirstRecord() Method
This method moves a pointer to the first component record in the primary
integration component.

Syntax FirstRecord()

Returns Boolean

Usage Moves to the first integration component record and sets it as the active record. This
method returns true if the record exists, false if the integration component has no
records.

GetFieldValue() Method
This method returns the value of the primary integration component field from the
active record. Table 21 lists the parameters for this method.

Syntax GetFieldValue(name [, defaultIfNull [, defaultIfEmpty]])

Returns String or null

Usage A null value is returned if the active record does not contain the field. Otherwise,
a string containing the value in the field is returned. If there is no active record, this
method raises an error.

If the named argument does not exist, null is returned. If the named argument
exists but the value is the empty string, the empty string is returned. You can use
the defaultIfNull and defaultIfEmpty optional arguments to change this behavior.

The arguments defaultIfNull and defaultIfEmpty are optional; however, if you
specify defaultIfEmpty, you must also specify the defaultIfNull argument.

Table 21. Parameters for GetFieldValue() Method

Parameter Description

name The name of a primary integration component field.

defaultIfNull Optional. Sets the default value if the field does not exist.

defaultIfEmpty Optional. Sets the default value if the field is set to an empty string.
108 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
GetIntComp() Method
This method returns the named integration component from the active record and
opens it for input. Table 22 lists the parameter for this method.

Syntax GetIntComp(name)

Returns CSSEAIIntCompIn Input Integration Component

Usage This method always returns an input integration component object, even if the
component does not exist. Call the Exists method on the returned object to test for
this condition. If there is no active record, a call to this method raises an error.

NextRecord() Method
This method moves a pointer to the next logical record in the active integration
component.

Syntax NextRecord()

Returns Boolean

Usage Moves to the next record and makes it the active record. Returns true if the record
exists, or false if there are no more records. Moves to the first record if neither the
NextRecord method nor the FirstRecord method has been called previously.

Table 22. Parameter for GetIntComp() Method

Parameter Description

name The name of an integration component in the active record.
Version 7.5 Business Processes and Rules MidMarket Edition 109

Data Mapping Using Scripts

Siebel Message Objects and Methods
CSSEAIPrimaryIntCompOut
This object represents the output primary integration component. You can use the
object’s methods to create output integration components and records and to copy
input data records to output data records. The object provides CopyFieldValue,
CreateIntComp, NewRecord, SetCopySource, and SetFieldValue methods.

CopyFieldValue() Method
This method sets the value of a field in the active record to the value of a field in
the current source record. Table 23 lists the parameters for this method.

Syntax CopyFieldValue(targetName, sourceName [, defaultIfNull [, defaultIfEmpty]])

Returns Not applicable

Usage Use this method to copy a field from an input integration component to the output
primary integration component. You could achieve the same results by calling the
GetFieldValue method on the input component and the SetFieldValue on the output
component; however, using CopyFieldValue is easier.

You must call the SetCopySource method first to specify the source integration
component. CopyFieldValue uses the active records of the input and output
components of the active integration component.

If the integration component is not set with the SetCopySource method first, a call
to the CopyFieldValue method raises an error. An error also occurs if either input or
output component does not have an active record.

Table 23. Parameters for CopyFieldValue() Method

Parameter Description

targetName Name of the field to set in the output integration component.

sourceName Name of the field to retrieve from the input integration component.

defaultIfNull Optional value that specifies what should be inserted into the target, if
the source field does not exist.

defaultIfEmpty Optional value that specifies what to use as a source value if the source
field is empty.
110 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
If you set the copy source using the following statement:

outIntComp.SetCopySource (inIntComp);

the following two statements are equivalent:

outIntComp.SetFieldValue("Fld-A", inIntComp.GetFieldValue("X"));

outIntComp.CopyFieldValue("Fld-A", "X");

Using the second convention is convenient if you are copying many fields between
the same components.

CreateIntComp() Method
This method creates a new integration component. Table 24 lists the parameters for
this method.

Syntax CreateIntComp(name [, createNow])

Returns CSSEAIIntCompOut. Output Integration Component

Usage Use this method to create a new integration component, open it for writing, and add
it to the active record of the integration component.

NOTE: This method raises an error if you call it without an active integration
component record. Use the NewRecord method to create a new record and set the
active record.

Table 24. Parameters for CreateIntComp() Method

Parameter Description

name The name of the new integration component.

createNow Optional. By default, the underlying data object is created in the output data
object at the time this method is called. To change this behavior, specify the
optional createNow argument as false. If you specify createNow as false,
the underlying data object is not created until you make the first NewRecord
call on the newly created integration component. Defaults to true.
Version 7.5 Business Processes and Rules MidMarket Edition 111

Data Mapping Using Scripts

Siebel Message Objects and Methods
NewRecord() Method
This method creates a new record in a primary integration component.

Syntax NewRecord()

Returns Not applicable

Usage This method adds a new primary integration component record and makes it the
active record.

SetCopySource() Method
This method establishes the integration component from which a field value will be
copied. Table 25 lists the parameter for this method.

Syntax SetCopySource(IntComp)

Returns Not applicable

Usage Call this method prior to a call to the CopyFieldValue method.

Table 25. Parameter for SetCopySource() Method

Parameter Description

IntComp The integration component object—either CSSEAIPrimaryIntCompIn or
CSSEAIIntCompIn.
112 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
SetFieldValue() Method
This method sets the value of the named field in the active integration component
record. Table 26 lists the parameters for this method.

Syntax SetFieldValue(name, value)

Returns Not applicable

Usage Both the name and value arguments should be strings.

The field is not set if the value is null. This method provides no return value.

This method raises an error if called while there is no active record.

NOTE: Siebel eScript automatically converts most types to strings as necessary.

Integration Component Objects
An integration component object represents integration components. The following
integration component objects are provided:

■ CSSEAIIntCompIn

■ CSSEAIIntCompOut

Table 26. Parameters for SetFieldValue() Method

Parameter Description

name The name of a field in the active record of the primary integration component.

value The string value to be put into the field given in the name parameter.
Version 7.5 Business Processes and Rules MidMarket Edition 113

Data Mapping Using Scripts

Siebel Message Objects and Methods
CSSEAIIntCompIn
This object represents the input integration component, open for reading. You can
use the object’s methods to traverse actual integration components and to retrieve
data from those integration components. The object provides Exists, FirstRecord,
GetFieldValue, GetIntComp, and NextRecord methods.

Exists() Method
This method checks to see if the integration component is actually present in the
input data. It takes no parameters.

Syntax Exists()

Returns Boolean

Usage Call Exists after retrieving the integration component from its parent object using
the GetIntComp method, and before invoking the integration component’s other
methods.

If the integration component is found and is open for reading, the Exists method
returns true.

FirstRecord() Method
This method moves a pointer to the first component record in the integration
component.

Syntax FirstRecord()

Returns Boolean

Usage Moves to the first integration component record and sets it as the active record. This
method returns true if the record exists, false if the integration component has no
records.
114 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
GetFieldValue() Method
This method returns the value of the integration component field from the active
record. Table 27 lists the parameters for this method.

Syntax GetFieldValue(name [, defaultIfNull [, defaultIfEmpty]])

Returns String or null

Usage A null value is returned if the active record does not contain the field. Otherwise,
a string containing the value in the field is returned. If there is no active record, this
method raises an error.

If the named argument does not exist, null is returned. If the named argument
exists but the value is the empty string, the empty string is returned. You can use
the defaultIfNull and defaultIfEmpty arguments to change this behavior.

NOTE: The arguments defaultIfNull and defaultIfEmpty are optional. However, if you
specify defaultIfEmpty, you must also specify the defaultIfNull argument.

Table 27. Parameters for GetFieldValue() Method

Parameter Description

name The name of an integration component field.

defaultIfNull Optional. Value to return if the field does not exist.

defaultIfEmpty Optional. Value to return if the field is set to an empty string.
Version 7.5 Business Processes and Rules MidMarket Edition 115

Data Mapping Using Scripts

Siebel Message Objects and Methods
GetIntComp() Method
This method returns the integration component from the active record and opens it
for input. Table 28 lists the parameter for this method.

Syntax GetIntComp(name)

Returns CSSEAIIntCompIn Input Integration Component

Usage This method always returns an input integration component object, even if the
component does not exist. Call the Exists method on the returned object to test for
this condition.

NOTE: If there is no active record, a call to this method raises an error.

NextRecord() Method
This method moves a pointer to the next logical record in the active integration
component.

Syntax NextRecord()

Returns Boolean

Usage Moves to the next record and makes it the active record. Returns true if the record
exists, or false if there are no more records. Moves to the first record if neither the
NextRecord method nor the FirstRecord method has been called previously.

Table 28. Parameter for GetIntComp() Method

Parameter Description

name The name of an integration component in the active record.
116 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
CSSEAIIntCompOut
This object represents the output integration object, open for writing. You can use
this object’s methods to create new output integration components and to copy or
set actual data in the records of the integration components. The object provides
CopyFieldValue, CreateIntComp, NewRecord, SetCopySource, and SetFieldValue
methods.

CopyFieldValue() Method
This method sets the value of a field in the active record to the value of a field in
the current source record. Table 29 lists the parameters for this method.

Syntax CopyFieldValue(targetName, sourceName [, defaultIfNull [, defaultIfEmpty]])

Returns Not applicable

Usage Use this method to copy a field from an input integration component to the output
integration component. You could achieve the same results by calling the
GetFieldValue method on the input component and the SetFieldValue on the output
component; however, using CopyFieldValue is easier.

You must call the SetCopySource method first to specify the source integration
component. CopyFieldValue uses the active records of the input and output
components of the active integration component.

Table 29. Parameters for CopyFieldValue() Method

Parameter Description

targetName Name of the field to set in the output integration component.

sourceName Name of the field to retrieve from the input integration component.

defaultIfNull Optional value that specifies what should be inserted into the target, if
the source field does not exist.

defaultIfEmpty Optional value that specifies what to use as a source value if the source
field is empty.
Version 7.5 Business Processes and Rules MidMarket Edition 117

Data Mapping Using Scripts

Siebel Message Objects and Methods
If the integration component is not set with the SetCopySource method first, a call
to the CopyFieldValue method raises an error. An error also occurs if either input or
output component does not have an active record.

If you set the copy source using the following statement:

outIntComp.SetCopySource (inIntComp);

the following two statements are equivalent:

outIntComp.SetFieldValue("Fld-A", inIntComp.GetFieldValue("X"));

outIntComp.CopyFieldValue("Fld-A", "X");

Using the second convention is convenient if you are copying many fields between
the same components.

CreateIntComp() Method
This method creates a new integration component. Table 30 lists the parameters for
this method.

Syntax CreateIntComp(name [, createNow])

Returns CSSEAIIntCompOut. Output Integration Component

Usage Use this method to create a new integration component, open it for writing, and add
it to the active record of the integration component.

This method raises an error if you call it without an active integration component
record. Use the NewRecord method to create a new record and set the active record.

Table 30. Parameters for CreateIntComp() Method

Parameter Description

name The name of the new integration component.

createNow Optional. By default, the underlying data object is created in the output data
object at the time this method is called. To change this behavior, specify the
optional createNow argument as false. If you specify createNow as false,
the underlying data object is not created until you make the first NewRecord
call on the newly created integration component. Defaults to true.
118 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Siebel Message Objects and Methods
SetCopySource() Method
This method establishes the integration component from which a field value will be
copied. Table 31 lists the parameter for this method.

Syntax SetCopySource(IntComp)

Returns Not applicable

Usage Call this method prior to a call to the CopyFieldValue method.

SetFieldValue() Method
This method sets the value of the named field in the active integration component
record. Table 32 lists the parameters for this method.

Syntax SetFieldValue(name, value)

Returns Not applicable

Usage Both the name and value arguments should be strings.

The field is not set if the value is null. This method provides no return value.

This method raises an error if called while there is no active record.

NOTE: Siebel eScript automatically converts most types to strings as necessary.

Table 31. Parameter for SetCopySource() Method

Parameter Description

IntComp The integration component object—either CSSEAIPrimaryIntCompIn or
CSSEAIIntCompIn.

Table 32. Parameters for SetFieldValue() Method

Parameter Description

name The name of a field in the active record of the integration component.

value The string value to be put into the field given in the name parameter.
Version 7.5 Business Processes and Rules MidMarket Edition 119

Data Mapping Using Scripts

MIME Message Objects and Methods
MIME Message Objects and Methods
Siebel eAI represents MIME documents using a property set format. This is the
format used by the EAI MIME Doc Converter Business Service. The objects and
methods described here provide access to this property set format, and are intended
for use in conjunction with transforming pieces of the MIME message to and from
Siebel Integration Messages.

NOTE: The EAI MIME Hierarchy Converter Business Service is the preferred method
of converting between the property set representation Siebel Messages.

The following MIME message objects are provided:

■ CSSEAIMimeMsgIn

■ CSSEAIMimeMsgOut

CSSEAIMimeMsgIn
This object represents an input MIME Message, open for reading. The MIME
message is in the property set format generated by the EAI MIME Doc Converter.
The object consists of a series of MIME parts forming the different pieces of the
message.

This object provides GetArgument, GetPartCount, GetPart, GetPartByCID,
GetAttachmentByCID, and GetXMLRootPart methods:
120 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

MIME Message Objects and Methods
GetArgument ()Method
This method gets the value of a business service argument. For example, this could
get the name of a map function in the business service. Table 33 lists the parameters
for this method.

Syntax GetArgument(name [, defaultIfNull [, defaultIfEmpty]])

Returns String or null

Usage Use this method to get the value of an argument passed to the business service. For
example, if the MapName argument passed to the business service is
MapExtOrderToOrder, the call:

intMsgIn.GetArgument ("MapName");

returns the name of the map, MapExtOrderToOrder, passed to the business
service.

If the named argument does not exist, null is returned. If the named argument
exists but the value is the empty string, the empty string is returned. You can use
the defaultIfNull and defaultIfEmpty optional arguments to change this behavior.

The arguments defaultIfNull and defaultIfEmpty are optional; however, if you
specify defaultIfEmpty, you must also specify the defaultIfNull argument.

Table 33. Parameters for GetArgument() Method

Parameter Description

name The name of a business service argument.

defaultIfNull Returned if a service argument of the specified name does not exist.

defaultIfEmpty Returned if the service argument is set to an empty string.
Version 7.5 Business Processes and Rules MidMarket Edition 121

Data Mapping Using Scripts

MIME Message Objects and Methods
GetPartCount () Method
This method returns the number of parts in the MIME message. Table 34 lists the
parameter for this method.

Syntax GetPartCount()

Returns This method returns the number of parts in the MIME message.

GetPart () Method

Syntax GetPart(index)

Returns Property set. Returns the part, a property set, specified by the index. The index is
zero based. Returns null if the index is out of bounds.

GetPartByCID () Method
Retrieve a MIME part based on the MIME Content Identifier (CID). Table 35 lists the
parameter for this method.

Syntax GetPartByCID(cid)

Returns Returns null if there is no part with the specified CID.

Table 34. Parameters for GetPart() Method

Parameter Description

index Index of the MIME part to return.

Table 35. Parameters for GetPartByCID() Method

Parameter Description

cid MIME Content Identifier to retrieve.
122 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

MIME Message Objects and Methods
GetAttachmentByCID () Method
The same functionality as CSSEAIMimeMsgIn.GetPartByCID. Supports using a
CSSEAIMimeMsgIn as an attachment source for copying attachments to output
objects. Table 36 lists the parameter for this method.

Syntax GetAttachmentByCID(cid)

Returns The attachment (a property set) specified by the CID. Returns null if there is no
attachment with the specified CID.

GetXMLRootPart () Method
Finds the first MIME part that is an XML message in property set format and returns
the root element of the XML document. The XML message must be in property set
format as produced by the XML Hierarchy Converter Business Service. An error is
raised is the XML message is not found. The method is intended for use with MIME
messages that consist of an XML message and a series of related attachments. The
property set returned is consistent with what XPSGetRootElement returns, and can
be accessed with the XML Property Set functions. See “XML Property Set Functions”
on page 129.

Syntax GetXMLRootPart()

Returns MIME body part representing an XML document.

Table 36. Parameters for GetAttachmentByCID() Method

Parameter Description

cid MIME Content Identifier to retrieve.
Version 7.5 Business Processes and Rules MidMarket Edition 123

Data Mapping Using Scripts

MIME Message Objects and Methods
CSSEAIMimeMsgOut
This object represents an output MIME message, open for writing. The object
provides SetArgument, CreateXMLPart, SetAttachmentSource, and CopyAttachment
methods:

SetArgument() Method
This method sets the value of a business service argument. Table 37 lists the
parameters for this method.

Syntax SetArgument(name, value)

Returns Not applicable

Usage You can call the SetArgument method to establish the value of a given output
argument for the business service method invocation.

Table 37. Parameters for SetArgument() Method

Parameter Description

name The name of an argument in the active business service.

value The string value corresponding to the argument named by the name
parameter.
124 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

MIME Message Objects and Methods
CreateXMLPart () Method
This method is similar to XPSCreateRootElement. See “XPSCreateRootElement()”
on page 130. It creates an XML MIME part and adds it to the MIME document. The
property set representing the XML root element is returned. The property set
returned can be populated using the XML Property Set functions. See “XML
Property Set Functions” on page 129. Table 38 lists the parameter for this method.

Syntax CreateXMLPart(xmlRootTagName)

Returns Property set

SetAttachmentSource () Method
This method establishes the source object from which to copy attachment objects.
The source object must be a CSSEAIIntMsgIn, CSSEAIMimeMsgIn, or other object
implementing the GetAttachmentByCID method. Table 39 lists the parameter for this
method.

Syntax SetAttachmentSource(source)

Table 38. Parameters for CreateXMLPart() Method

Parameter Description

xmlRootTagName The name you want to supply as the root element name in the XML
document.

Table 39. Parameters for SetAttachmentSource() Method

Parameter Description

source The attachment source.
Version 7.5 Business Processes and Rules MidMarket Edition 125

Data Mapping Using Scripts

MIME Message Objects and Methods
CopyAttachment () Method
This method copies an attachment from the attachment source to the output MIME
message object. The attachment is referenced by the MIME Content Identifier (CID).
The attachment copy, a property set, is returned. The attachment source must be
established by calling CSSEAIMimeMsgOut.SetAttachmentSource prior to calling
this method. Table 40 lists the parameter for this method.

Syntax CopyAttachment(cid)

Returns Property set. This method returns null if the attachment source does not contain an
attachment with the specified CID.

Table 40. Parameters for CopyAttachment() Method

Parameter Description

cid MIME Content Identifier of the attachment to copy.
126 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Attachments and Content Identifiers in MIME Messages
Attachments and Content Identifiers in MIME Messages
A MIME message contains one or more parts, each representing a separate piece of
the message. One common use of multipart MIME messages is to include
attachments with a message.

NOTE: All the examples have to be typed single-spaced and without word wrap.

Each MIME body part has an optional Content Identifier (CID) used to identify it.
The Content Id is part of the MIME part header, for example:

--unique_boundary_123

Content-Type : image/jpeg

Content-ID : <001110.102215@abc.com>

Then the CID is 001110.102215@abc.com. The CID is usually referenced from
another part of the MIME message. A common scheme is to use an XML document
as the main part of the MIME message, and use Content IDs to reference the other
attachments in the message. The following is an example of a MIME message with
attachment.

MIME-Version: 1.0

Content-Type: multipart/related;

 boundary="unique_boundary_123";

 type="application/xml"

Content-Transfer-Encoding: binary

--unique_boundary_123

Content-Type: application/xml; charset="UTF-8"

Content-Transfer-Encoding: binary

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Memo SYSTEM "Memo.dtd">

<Memo>
Version 7.5 Business Processes and Rules MidMarket Edition 127

Data Mapping Using Scripts

Attachments and Content Identifiers in MIME Messages
 <To>All Employees</To>

 <Subject>Map and Directions</Subject>

 <Body>Maps to company headquarters are attached.</Body>

 <ListOfAttachments>

 <Attachment>

 <URI>cid:001110.102203@siebel.com</URI>

 <Filename>largemap.jpg</Name>

 </Attachment>

 <Attachment>

 <URI>cid:001110.102211@siebel.com</URI>

 <Filename>detailmap.jpeg</Filename>

 </Attachment>

 </ListOfAttachment>

</Memo>

--unique_boundary_123

Content-Type: image/jpeg

Content-Transfer-Encoding: binary

Content-ID: <001110.102203@siebel.com>

 [... Raw JPEG Image ...]

--unique_boundary_123

Content-Type: image/jpeg

Content-Transfer-Encoding: binary

Content-ID: <001110.102211@siebel.com>

 [... Raw JPEG Image ...]

--unique_boundary_123-
128 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

XML Property Set Functions
XML Property Set Functions
Siebel eAI represents XML documents using the property set format. While Siebel
eAI does not always require using the property set format, this representation is
used by EAI Business Services such as the EAI XML Converter. The functions
described in this section provide a simple interface for manipulating XML
documents using the property set format.

Top-Level Property Set Functions
These functions are used to manipulate the top-level property set passed to the Map
function.

XPSGetRootElement()
This function returns the property set representing the root element of the XML
document. If the root element is not present, the system raises an error. Table 41
lists the parameter for this function.

Syntax XPSGetRootElement(xmlPropSetIn)

Returns Property set

Usage Use this function to return the root element of an XML document.

Table 41. Parameter for XPSGetRootElement() Method

Parameter Description

xmlPropSetIn The name of the property set representing the root element of the XML
document.
Version 7.5 Business Processes and Rules MidMarket Edition 129

Data Mapping Using Scripts

XML Property Set Functions
XPSCreateRootElement()
This function creates the root element in an output XML document and returns the
property set representing it. The element tag in the XML document is set to the
value of the tagName argument. Table 42 lists the parameters for this function.

Syntax XPSCreateRootElement(xmlPropSetOut, tagName)

Returns Property set

Usage Use this function to create the root element of an XML document that represents a
property set. Because the root element does not directly map to a component in the
property set, you can give it any representative name.

As an example of how the two prior functions work, consider the following XML
document:

<?xml version="1.0"?>
<!DOCTYPE LETTER SYSTEM "letter.dtd">
<letter>

<from>Mary Smith</from>
<to>Paul Jones</to>
<text>Hello!</text>

</letter>

The root element is <letter>. The property set for the <letter> element can be
retrieved from the input property set using EAIXPS_GetRootElement, or it can be
created in the output property set using EAIXPS_CreateRootElement.

A map function that converts a letter to a memo might start with the following code:

function ConvertLetterToMemo (xmlPropSetIn, xmlPropSetOut)
{

var xmlLetter = XPSGetRootElement (xmlPropSetIn);

Table 42. Parameters for XPSCreateRootElement() Method

Parameter Description

xmlPropSetOut The output property set.

tagName The name you want to supply as the root element name in the XML
document.
130 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

XML Property Set Functions
var xmlMemo = XPSCreateRootElement (xmlPropSetOut, "memo");

... Code to fill in the 'memo' from the 'letter' ...
}

XML Element Accessors
These functions provide access to elements represented by property sets. Table 43
lists the parameter for this function.

XPSGetTagName()
Retrieves the tag name of an XML element.

Syntax XPSGetTagName (xmlPropSet)

Returns String. If xmlPropSet is null, XPSGetTagName returns null.

XPSSetTagName()
This function sets the tag name of an XML element. Table 44 lists the parameters
for this function.

Syntax XPSSetTagName (xmlPropSet, tagName)

Returns String

Table 43. Parameter for XPSGetTagName() Method

Parameter Description

xmlPropSet The output property set.

Table 44. Parameters for XPSSetTagName() Method

Parameter Description

xmlPropSet The property set.

tagName The name you want to supply as the current element name in the XML
document.
Version 7.5 Business Processes and Rules MidMarket Edition 131

Data Mapping Using Scripts

XML Property Set Functions
XPSGetTextValue()
This function returns the text value of an XML element as a string. Table 45 lists the
parameters for this function.

Syntax XPSGetTextValue (xmlPropSet [, defaultIfNull [, defaultIfEmpty]])

Returns String or null

Usage If xmlPropSet is null then null is returned. You can use the optional defaultIfNull
and defaultIfEmpty arguments to override null and empty string ("") return values.
An element’s text value is the text between an XML element's start and end tags,
excluding child elements.

XPSSetTextValue()
This function sets the text value of an XML element. Table 46 lists the parameters
for this function.

Syntax XPSSetTextValue (xmlPropSet, text)

Returns Not applicable

Table 45. Parameters for XPSGetTextValue() Method

Parameter Description

xmlPropSet The output property set.

defaultIfNull Specify a value to override the null default value that results if
xmlPropSet is null.

defaultIfEmpty Specify a value to override an empty string ("") contained in xmlPropSet.

Table 46. Parameters for XPSSetTextValue() Method

Parameter Description

xmlPropSet The property set.

text A string you want inserted between start and end tags of an XML element.
132 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

XML Property Set Functions
Usage The text argument should be a string. An element’s text value is the text between
the element’s start and end tags, excluding child elements.

XPSGetAttribute()
This function retrieves an element’s attribute of the given name and returns it as a
string. Table 47 lists the parameters for this function.

Syntax XPSGetAttribute (xmlPropSet, name [, defaultIfNull [, defaultIfEmpty]])

Returns String

Usage A null value is returned if xmlPropSet is null or the element does not have the
named attribute. The optional defaultIfNull and defaultIfEmpty arguments can be
used to override null and empty string ("") return values.

Table 47. Parameters for XPSGetAttribute() Method

Parameter Description

xmlPropSet The output property set.

name The name you want to supply as the root element name in the XML
document.

defaultIfNull Specify a value to override the null default value that results if
xmlPropSet is null.

defaultIfEmpty Specify a value to override an empty string ("") contained in xmlPropSet.
Version 7.5 Business Processes and Rules MidMarket Edition 133

Data Mapping Using Scripts

XML Property Set Functions
XPSSetAttribute()
This function sets an element attribute value. Table 48 lists the parameters for this
function.

Syntax XPSSetAttribute (xmlPropSet, name, value)

Returns String

Usage No action is taken if any of the arguments are null.

XPSGetChildCount()
This function returns the number of children of an element. Table 49 lists the
parameter for this function.

Syntax XPSGetChildCount(xmlPropSet)

Returns Number

Usage All children of an element are also elements.

Table 48. Parameters for XPSSetAttribute() Method

Parameter Description

xmlPropSet The output property set.

name Attribute name.

value String value you want to supply as the attribute value.

Table 49. Parameter for XPSGetChildCount() Method

Parameter Description

xmlPropSet The property set.
134 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

XML Property Set Functions
XPSGetChild()
This function returns the nth child element as specified by the index. Table 50 lists
the parameters for this function.

Syntax XPSGetChild(xmlPropSet, index)

Returns Property set

Usage Child elements are specified using a zero-based index. A value of null is returned
if the index is invalid.

XPSFindChild()
This function returns the first child element with the tagName. Table 51 lists the
parameters for this function.

Syntax XPSFindChild (xmlPropSet, tagName)

Returns Property set.

Usage A value of null is returned if there is no child with the specified tag name.

Table 50. Parameters for XPSGetChild() Method

Parameter Description

xmlPropSet The property set.

index Number, starting at zero, of child elements of another element in an XML
document.

Table 51. Parameters for XPSFindChild() Method

Parameter Description

xmlPropSet The property set.

tagName An XML element tag that signifies the first child element of another XML
element.
Version 7.5 Business Processes and Rules MidMarket Edition 135

Data Mapping Using Scripts

XML Property Set Functions
XPSAddChild()
This function creates a new child element with the tagName and appends it to the
list of xmlPropSet’s children. Table 52 lists the parameters for this function.

Syntax XPSAddChild (xmlPropSet, tagName [, textValue])

Returns Property set

Table 52. Parameters for XPSAddChild() Method

Parameter Description

xmlPropSet The property set.

tagName The name you want to give to the new child element.

textValue Optional. Sets the text value of the new element.
136 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

XML Property Set Functions
Examples
The following example converts a <letter> to a <memo>.

NOTE: The input letter in this example is slightly different from the previous
example.

The input XML document is:

<letter
from="Mary Smith"
to="Paul Jones">
<text>Hello!</text>

</letter>

The conversion function converts this to a memo format, as follows:

<memo>
<type>Interoffice Memo</type>
<header>
<from>Mary Smith</from>
<to>Paul Jones</to>
</header>
<body>Hello!</body>

</memo>

The map function that performs this conversion is shown below:

function ConvertLetterToMemo (xmlPropSetIn, xmlPropSetOut)
{

var letter = XPSGetRootElement (xmlPropSetIn);
var memo = XPSCreateRootElement (xmlPropSetOut, "memo");
XPSAddChild (memo, "type", "Interoffice Memo");
var header = XPSAddChild (memo, "header");
XPSAddChild (header, "from", XPSGetAttribute (letter,

"from"));
XPSAddChild (header, "to", XPSGetAttribute (letter, "to"));
XPSAddChild (memo, "body", XPSGetTextValue (XPSFindChild

(letter, "text")));
}

Version 7.5 Business Processes and Rules MidMarket Edition 137

Data Mapping Using Scripts

EAI Value Maps
EAI Value Maps
EAI Value Maps correlate Siebel data values with external data values.

If you are:

■ Sending and receiving data, you can create inbound and outbound maps for the
same data

■ Receiving data only, you need only to define an inbound map

■ Sending data only, you need only to define an outbound map

Consider an example of how EAI Value Maps provide correlations between Siebel
applications and the SAP R/3 system. SAP country codes, which are represented as
two-character codes, are different from Siebel country codes, represented by the
country name spelled out. An EAI Value Map provides a lookup table that lists these
two sets of data side by side.

The EAI Value Map entries are stored in the EAI Value Map table. You can view and
administer this table from the EAI Value Maps view in the Integration
Administration screens in the Siebel client. The Siebel client groups the entries
logically based on the Type and Direction columns.

Figure 11 shows the entries form two logical groupings, with entries for the Siebel
inbound and Siebel outbound entries.

Figure 11. EAI Value Maps for Country Codes
138 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

EAI Value Maps
The Direction field determines the direction of the mapping and is either Siebel
Outbound or Siebel Inbound. In a Siebel Outbound mapping, the Siebel Value field
is the lookup key; the External System Value is the translation. In a Siebel Inbound
mapping, the External System Value field is the lookup key; the Siebel Value is the
translation.

You can add, remove, or modify entries in the Type group on the EAI Lookup Map
view in the Siebel client. The EAI_LOOKUP_MAP_TYPE list of values defines type
values. You can modify the list from the Application Administration views in the
Siebel client.

NOTE: You cannot change the values of the Direction field, which must be Siebel
Outbound or Siebel Inbound.

The data transformation methods include an interface to EAI Value Maps for
translating the codes of one database to another. You use the EAIGetValueMap
function to obtain an interface to the mappings of specific Type-Direction pairs. You
use the interface object’s Translate method to find specific keys in the Type-
Direction map and retrieve the translated values.

EAIGetValueMap Function
You use the following statement in your Siebel eScript code to return a value map:

EAIGetValueMap (type, direction [,unmappedKeyHandler])

This object returns a value map for translating lookup keys using the Type-Direction
combination.

■ The type argument is a string found in the Type field of the EAI Value Map table.

■ The direction argument must be either Siebel Inbound or Siebel Outbound string
values.

A call to this function returns a CSSEAIValueMap object.
Version 7.5 Business Processes and Rules MidMarket Edition 139

Data Mapping Using Scripts

EAI Value Maps
You can use the optional unmappedKeyHandler argument to control the behavior of
the Translate method when it gets keys that do not have mappings in the table. The
unmappedKeyHandler argument can be either a literal value or a function. If you
pass a literal value, it is used as the default value. Otherwise, if you pass a function,
the method calls that function, then uses the value returned by the function.

The unmappedKeyHandler defaults to an empty string ("").

CSSEAIValueMap Translate Method
The CSSEAIValueMap object has one method: Translate. The Translate method
takes one argument, as follows:

Translate (key)

The Translate method looks up the key value in the EAI Value Map and returns the
translated value. The EAIGetValueMap call establishes the set of mappings for the
translation using the type and direction arguments. The call looks for the key in
either the Siebel Value column or in the External System Value column, depending
on the value of the type argument.

■ If the type is “Siebel Outbound,” the method returns the key found in the Siebel
Value column. The translated value is in the External System Value column.

■ If the type is “Siebel Inbound,” the method returns the key found in the External
System Value column. The translated value is in the Siebel Value column.

■ If key is null then the return value is null.

■ If key is an empty string, the lookup is performed.

If there is no mapping, an empty string is returned.

If a nonempty string does not have a mapping, the unmappedKeyHandler value
specified in the call to the EAIGetValueMap function is used to determine the
translation.
140 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

EAI Value Maps
EAIGetValueMap unmappedKeyHandler Argument
The unmappedKeyHandler provides a flexible mechanism for handling cases where
keys are not found in the EAI Value Map. In most situations, you can use literal
values for defaults or you can use one of several predefined handler functions.
However, you can also provide your own handler function.

The technique you use for handling unmapped values depends on the data being
mapped.

Typical strategies include:

■ Use the empty string as the translation.

This is the default strategy. This clears the field if the data is being imported into
your Siebel application. To follow this approach, omit the unmappedKeyHandler
argument or pass it as an empty string. For example:

var langMap = EAIGetValueMap("SAP Language","Siebel
Inbound","");

This example looks up a nonexistent language code. This returns an empty
string. For example:

langMap.Translate (“ABC”); // returns an empty string

■ Use null as the translation.

This technique makes the result unspecified rather than empty. For data
imported to Siebel applications, this keeps the existing value from being
overridden when performing updates. Use null as the unmappedKeyHandler.
For example:

var langMap = EAIGetValueMap(“SAP Language”,”Siebel Inbound”, null);

■ Use a literal string as the translation.

Specify the string as the unmappedKeyHandler. For example:

var langMap = EAIGetValueMap(“SAP Language”,”Siebel Inbound”,
“Unknown Language”);
Version 7.5 Business Processes and Rules MidMarket Edition 141

Data Mapping Using Scripts

EAI Value Maps
■ Raise an error.

This may be the best strategy if the Value Map should contain mappings for
every key. You can use the EAIValueMap_NoEntry_RaiseError function. For
example:

var langMap = EAIGetValueMap (“SAP Language”, “Siebel Inbound”,
EAIValueMap_NoEntry_RaiseError);

■ Use the untranslated value.

The predefined function EAIValueMap_NoEntry_ReturnLookupKey implements
this strategy. For example:

var langMap = EAIGetValueMap ("SAP Language", "Siebel Inbound",
EAIValueMap_NoEntry_ReturnLookupKey);

Trying to look up a nonexistent language code (for example, “ABC”) will return
the original key. For example:

langMap.Translate (“ABC”); // returns “ABC”

You can also write a custom handler function. You need to write a function taking
three arguments: key, type, and direction. The value your function returns is used
as the translation. For example:

function MyUnmappedLangHandler (key, type, direction)
{
 return ("Unknown Language: " + key);
}

var langMap = EAIGetValueMap ("SAP Language", "Siebel Inbound",
MyUnmappedLangHandler);

// Lookup a nonexistent language code.

langMap.Translate ("ABC"); // returns "Unknown Language: ABC"
142 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

EAI Value Maps
EAIGetValueMap() Method
This method retrieves objects for the required Type-Direction mapping. Table 53
lists the parameters for this method.

Syntax EAIGetValueMap(type, direction [, unmappedKeyHandler])

Returns An object you can use to access the EAI Value Maps.

Usage Use this method at the beginning of a script function to retrieve objects for the
required Type-Direction mapping. Then call the object’s Translate method to get the
translation of a code from the map table as needed within the function.

NOTE: Providing a Type-Direction pair that does not have an entry in the EAI Value
Map raises an error at the first call to the Translate method.

Table 53. Parameters for EAIGetValueMap() Method

Parameter Description

type Specifies the type of transformation map.

direction A string specifying the direction of the message. The possible
values are:

“Siebel Inbound”

“Siebel Outbound”

unmappedKeyHandler Specifies the value to pass to the map for an unmapped key. Can
be an empty string, null, a literal, or the name of a predefined
function.
Version 7.5 Business Processes and Rules MidMarket Edition 143

Data Mapping Using Scripts

Exception Handling Considerations
Exception Handling Considerations
There are three categories of errors you might encounter in the data transformation
area of your integration. These categories are:

■ Siebel errors. Errors signaled by the built-in facilities that execute a map; for
example, run-time Siebel eScript errors, business service invocation errors,
BusComp errors, and errors in the data transformation functions.

■ Siebel errors are fatal, terminating execution of the map immediately.

■ The business service returns an error code other than OK. No specific error
code is guaranteed, and they are not intended for workflow branching.
Workflow processes can branch on the indication of an error occurrence, but
not on a specific code.

■ The CSSService error stack will contain useful error information. In
particular, data transformation function errors will generate error stacks
describing the particular error.

■ User errors. Errors signaled in custom maps using the EAIRaiseErrorCode call.
These are similar to Siebel Framework errors, except that the map developer
selects the error code and uses them for Workflow branching.

■ User errors are fatal, terminating execution of the map immediately.

■ The service returns the error code specified in the call to EAIRaiseErrorCode.
Your workflow can branch on this code.

■ Available error codes are those in the Workflow generic error set.

■ You specify the entire error text for these generic errors in the call to
EAIRaiseErrorCode.

■ You can use the function EAIRaiseError to raise an error without specifying a
particular error code.

■ Map status flags. The map developer can use the SetArgument method to set
custom status information in the output property set. For example, you can use
the SetArgument method to indicate that a required field is missing. This can be
used for Workflow branching, if desired. This mechanism is independent of calls
made to EAIRaiseError.
144 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Exception Handling Considerations
Error Codes and Error Symbols
All errors each have an error code, which is a unique integer. A subset of errors also
each have an error symbol. An error symbol is a text string that allows you to
reference specific error codes in Siebel Workflow and in Siebel eScript. Errors that
do not have an error symbol cannot be used for branch decisions and cannot be
raised as user errors.

Error codes returned by a data transformation service may or may not have an
associated error symbol. User errors will have error symbols. Currently, errors
generated by Data Transformation Functions have error symbols. Errors occurring
outside the data transformation framework often will not have error symbols.

Data Transformation Error Processing
This section describes how the Data Transformation Functions handle errors, and
how the top-level error code returned by the data transformation business service
invocation is determined.

■ Framework errors occurring outside the Data Transformation Context. These errors
are passed through without change to the CSSService script invocation
mechanism. That mechanism takes control and returns an error of its choice. For
example, if your map invokes a BusComp and the BusComp signals an error, an
exception is thrown that will be ignored by the Data Mapping Engine but passed
to the CSSService script invocation mechanism, which sets up the error state and
returns an error from the business service invocation.

■ Framework errors generated by Data Transformation Functions. These are caught by
an exception handler that sets up the state in the output PropertySet and passes
control to the CSSEAIDTEScriptService class. CSSEAIDTEScriptService sets the
error code on the business service as in the state, transforming error symbols to
error codes in the process. Error symbols are specific to the failure.

■ User errors. These are processed the same way as errors generated by the Data
Transformation Functions, except that you specify the error symbols and error
text in your maps.
Version 7.5 Business Processes and Rules MidMarket Edition 145

Data Mapping Using Scripts

Exception Handling Considerations
Exception Handling Functions
When writing your data transformation scripts, you can use the following functions
to handle error conditions:

■ EAIRaiseError

■ EAIRaiseErrorCode

■ EAIFormatMessage

NOTE: Before proceeding, read “Exception Handling Considerations” on page 144.

EAIRaiseError() Method
This method raises a fatal error and terminates the script. Table 54 lists the
parameters for this method.

Syntax EAIRaiseError(msg [, formatParameters])

Usage You can provide format parameters to format the message text. For details, see
“EAIFormatMessage() Method” on page 147.

Table 54. Parameters for EAIRaiseError() Method

Parameter Description

msg Error message text from the Data Mapping Engine.

formatParameters Optional string arguments inserted in the return value in the positions
specified by the positional arguments in the msg parameter. A
maximum of nine format parameters are allowed.
146 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Exception Handling Considerations
EAIRaiseErrorCode() Method
This method raises a fatal error, terminates the script, and returns an error symbol
that it receives from the business service.

Syntax EAIRaiseErrorCode(errorSymbol, msg)

Usage You can use this function when you want to pass an error symbol to a workflow as
an indication to branch on an exception. If you are not branching on the specific
error code in your workflow, use EAIRaiseError instead.

EAIFormatMessage() Method
This method formats strings that have position-independent arguments. Table 55
lists the parameters for this method.

Syntax EAIFormatMessage(msg [, formatParameters])

Returns A string of the formatParameters argument values in the positions specified by the
positional arguments included in the msg parameter.

Usage You can use this function to generate messages from strings that are translated and
whose positions have changed as a result of the translation.

Example EAIFormatMessage("Data: '%2', '%3', '%1'", "A", "B", "C")

returns the string:

"Data: 'B', 'C', 'A'"

Table 55. Parameters for EAIFormatMessage() Method

Parameter Description

msg A string that contains positional arguments. The substitution
operation replaces the percent sign followed by a digit with the
corresponding format parameter.

formatParameters Optional string arguments inserted in the return value in the positions
specified by the positional arguments in the msg parameter. A
maximum of nine format parameters are allowed.
Version 7.5 Business Processes and Rules MidMarket Edition 147

Data Mapping Using Scripts

Sample Siebel eScript
Sample Siebel eScript
This section provides a sample Siebel eScript map for transforming data from a
Siebel Account to SAP to retrieve an order list. The map is used to convert between
the Siebel Account object and the equivalent SAP R/3 objects.

function GetSAPOrderStatus_SiebelToBAPI (inputMsg, outputMsg)
{

/* Input Objects' Integration Components
 * Order Object (Order - Get SAP Order Status (Siebel))
 * Order
 *
 * Output Object's Integration Components:
 * BAPI Import (Order - Get SAP Order Status (BAPI Input))
 * Import Parameters
 */

/*
 * Set up EAI Lookup objects
 */

/*
 * Set up EAI Input Message objects
 */

 var iOrderObj; // Siebel Order instance
 var iOrderComp; // Order

/*
 * Set up EAI Output Message objects
 */

 var oGSObj; // BAPI instance
 var oGSImportComp; // Import Parameters

/*
 * Find and create top-level integration object
 */

iOrderObj = inputMsg.GetIntObj ("Order - Get SAP Order Status
(Siebel)");

oGSObj = outputMsg.CreateIntObj ("Order - Get SAP Order
Status
(BAPI Input)");

/*
 * Read int object instances from EAI message
 */

while (iOrderObj.NextInstance ())
{

148 Business Processes and Rules MidMarket Edition Version 7.5

Data Mapping Using Scripts

Sample Siebel eScript
/*
 * Create "Get Status" object
 */

oGSObj.NewInstance ();

/*
 * Read "Order" component
 */

iOrderComp = iOrderObj.GetPrimaryIntComp ("Order");

oGSImportComp = oGSObj.CreatePrimaryIntComp
("Import Parameters");

if (iOrderComp.NextRecord ())
{

/*
 * Write "Import Parameters" component
 */

oGSImportComp.NewRecord ();
oGSImportComp.SetCopySource (iOrderComp);
oGSImportComp.CopyFieldValue ("SALESDOCUMENT",

"Integration Id");
}

}
}

Version 7.5 Business Processes and Rules MidMarket Edition 149

Data Mapping Using Scripts

Sample Siebel eScript
150 Business Processes and Rules MidMarket Edition Version 7.5

Troubleshooting Techniques A
This chapter describes various troubleshooting techniques to help debugging
problems you might encounter while using EAI Siebel Adapter or EAI Dispatcher.
Version 7.5 Business Processes and Rules MidMarket Edition 151

Troubleshooting Techniques

Service Arguments Tracing
Service Arguments Tracing
You can export input and output arguments (property sets) in XML format to a file.
This facilitates the debugging of problems with the EAI Siebel Adpater and EAI
Dispatcher business services.

To output arguments in XML format

1 Set server parameter EnableServiceArgTracing to True.

If you are running in Siebel Dedicated Web Client, add the following to your .cfg
file:

[EAISubsys]

EnableServiceArgTracing = TRUE

This prevents the dump of the arguments when log events is set to ALL.

2 Set the appropriate event level on your server component through the server
manager on the server or SIEBEL_LOG_EVENTS in Siebel Dedicated Web Client.
One of the following events should be set.

If you set event to:

■ 3, then input arguments will be output when an error happens.

■ 4, then input and output arguments will be output to a file.

When arguments are output, there will be a trace log entry that indicates the file
name (in the log directory).

EAIDispatchSvcArgTrc

EAISiebAdptSvcArgTrc

The filenames will take this form:

<service name>_<input|output>_args_<big number>.dmp

For example:

EAIDispatchService_input_args_270613751.dmp
152 Business Processes and Rules MidMarket Edition Version 7.5

Index
A
ancestor components, addressing 84
argument tracing 42
arguments 147

See also individual argument entries
positional 147
setting the values of 102, 124

attachments, MIME sample 127

B
business scenario, data mapping 85
Business Service Simulator 42
business services

See also EAI Siebel Adapter
arguments, setting value of 102, 124
data transformation, defining 90
EAI Dispatch Service, overview 28
EAI MIME Doc Converter 120
EAI MIME Hierarchy Converter 120
EAI XML Read from File 14, 76
errors in 144
mapping directly from 94
script entry point 92
transforms, role of 32

C
CancelOperation 96
child components, addressing 84
Child Hierarchy target 32
classes. See individual class (CSS) entries
Content ID, MIME messages 127
ContinueOperation 96
CopyAttachment method 126
CopyFieldValue method 110, 117
CreateIntComp method 106, 111, 118

CreateIntObj method 102
CreatePrimaryIntComp method 106
CSSEAIDTEScriptService class 90
CSSEAIIntCompIn 114
CSSEAIIntCompOut 117
CSSEAIIntMsgIn 98, 99
CSSEAIIntMsgOut 98, 102
CSSEAIIntObjIn 104
CSSEAIIntObjOut 106
CSSEAIMimeMsgIn 120
CSSEAIMimeMsgOut 124
CSSEAIPrimaryIntCompIn 107
CSSEAIPrimaryIntCompOut

about 110
methods 110

CSSEAIValueMap object 139, 140
CSSEAIValueMap Translate method 140

D
data mapping

architecture diagram 62
business scenario 85
declarative and programmatic options,

compared 59
postconditions, use of 83
preconditions, use of 82

data mapping engine. See EAI Data Mapping
Engine

data maps
arguments, defining 67
component mappings, defining 68
creating 66
creation process overview 65
EAI Value Maps 138
field mappings, defining 69
Version 7.5 Business Processes and Rules MidMarket Edition 153

Index
function of 90
inbound Workflow, creating 75
integration object maps 63
integration object maps, viewing 66
map types and storage locations 63
outbound Workflow, creating 70
performance consideration 59
role of 63
validating 69

data transformation
data transformation business service,

defining 90
declarative and programmatic options,

compared 59
and empty strings 141
errors 144
functions 90
functions, about 97
integration component objects 113
literal strings 141
methods. See individual method entries
null values 141
options diagram 88
output integration objects 117
process overview 89
raising errors 142
Siebel Data Mapper, about 58
transformation function 95
unspecified results 141
untranslated values 142
XML property to integration object 95

data types
conversion to strings 113
supported data types, listed 97

data, correlating between systems 138
debugging. See troubleshooting
declarative interface. See data

transformation
defaultIfEmpty parameter 99, 110
defaultIfNull parameter 99, 110
Dispatch method 30
dispatch rule grammar

example 52
search expression symbols 31

dispatch service. See EAI Dispatch Service

DTE business service
methods and method arguments 93
script, creating 91

E
EAI Data Mapping Engine

architecture diagram 58, 62
component groups, required 60
data map, executing 73
Execute method 60
expression categories 80
inbound data map, executing 77
methods 60
multiple source components,

addressing 84
process overview 61
Purge method 61
purging a development map 76

EAI Dispatch Service
See also transforms; hierarchy, incoming;

hierarchy, output
architecture diagram, inbound dispatch

service 35
architecture diagram, outbound dispatch

service 36
argument tracing 42
compared to Workflow 43
hierarchy diagram 29
inbound dispatch workflow, creating 38
inbound dispatch, business scenario 48
input and output, debugging 42
methods used 30
outbound dispatch, business

scenario 46
outbound property set, business

scenario 54
overview 28
process diagram 28
process overview 37
property sets, about use of 43
rule set, creating 39
rules, defining 39
run-time tasks 30
Search Expression definitions 31
154 Business Processes and Rules MidMarket Edition Version 7.5

Index
EAI MIME Doc Converter Business
Service 120

EAI MIME Hierarchy Converter Business
Service 120

EAI MQSeries Server Transport 20
sample 20

EAI Siebel Adapter
export example query 17, 23
importing account information,

example 14
inbound data map, writing to

database 78
outbound data maps 72

EAI Value Maps
about 138
accessing 143

EAI XML Converter, example 20
EAI XML Read from File business

service 14, 76
EAI XML Write to File adapter, export

example 18
EAI XML Write to File business service 74
EAIDispatchSvcArgTrc 42
EAIExecuteMap 96
EAIExecuteMap function 92
EAIFormatMessage 147
EAIFormatMessage method 147
EAIGetValueMap 139, 141
EAIGetValueMap method 143
EAIRaiseError method 146
EAIRaiseErrorCode method 147
empty strings 141
EnableServiceArgTracing parameter 42
Error Code property 16
Error Message property 16
error symbols 147
errors

capturing 146
categories of 144
EAIFormatMessage method 147
raising 142

exception handling, in data transformation
scripts 144

Execute method 60, 73, 92
Exists method 104, 107, 114
export example 18

F
fatal errors 146, 147
fields

copying 112, 117
setting a value for 113
setting values of 119

fields, copying 110
FirstInstance method 104
FirstRecord method 108, 114
formatParameters parameter 147

G
GetArgument method 99, 121
GetAttachment method 101
GetAttachmentByCID method 101, 123
GetAttachmentCount method 100
GetFieldValue method 108, 115
GetIntComp method 109, 116
GetIntObj method 100
GetPart method 122
GetPartByCID method 122
GetPartCount method 122
GetPrimaryIntComp Method 105
GetXMLRootPart method 123

H
handlers, custom written 142
hierarchy diagram, EAI Dispatch

Service 29
hierarchy, incoming

data, passing to workflow 38
routing methods, compared 43
transforms, role of 32

hierarchy, output
business service arguments, adding 33
Child Hierarchy target, about 32
Property Name target, about 33
root hierarchy target, about 32
Version 7.5 Business Processes and Rules MidMarket Edition 155

Index
Source Expression, setting Type field
to 33

Source Expression, setting Value field
to 33

workflow process properties, adding
to 33

I
import example 14
inbound dispatch

architecture diagram 35
business scenario 48
process overview 37
rule set, creating 39
rules, defining 39
workflow, creating 38

inbound message
converting to business object format,

example 20
receiving from MQSeries 20

#include file 92
input integration component, copying

fields 110
inputPropSet 96
Insert method 14
integration component

creating a new 111, 118
primary integration component, opening

for input 105
setting field value 119

integration component maps
about 64
defining 68
parent component field, addressing 81
postconditions, use of 83
preconditions, use of 82
Source Search Specifications, role of 81

integration field maps
defining 69
multiple source components,

addressing 84
Source Expression example 80
validating 69

integration message objects 98
integration object maps

about 63
arguments, about 63
arguments, defining 67
creating 66
Source Search Specifications, role of 81
viewing 66

integration objects
about 104
creating a new instance of 106
CSSEAIIntObjIn 104
CSSEAIIntObjIn, methods 104
CSSEAIIntObjOut 106
new integration object, method 102
output 117
role in data mapping process 62
transforming from XML property set,

specification 95
integration process, testing 25

K
key values, translating 140

L
letter to memo conversion, code

sample 137
letter, converting to memo (map

function) 130
Lookup method 30
lookup tables, accessing 143

M
map function, converting letter to

memo 130
MapFn function 95
MapName argument 92
memo, converting from a letter, code

sample 137
message, inbound

business object format, converting
example 20
156 Business Processes and Rules MidMarket Edition Version 7.5

Index
receiving from MQSeries Server
Transport, example 20

methodName 96
methods

CopyAttachment 126
CopyAttachmentCID 103
CopyFieldValue 110, 117
CreateIntComp 111, 118
CreateIntObj 102
CreatePrimaryIntComp 106
Dispatch method 30
EAIFormatMessage 147
EAIGetValueMap 143
EAIRaiseError 146
EAIRaiseErrorCode 147
Execute 92
Execute method 60, 73
Exists 104, 107, 114
FirstInstance 104
FirstRecord 108, 114
GetArgument 99, 121
GetAttachment 101
GetAttachmentByCID 101, 123
GetAttachmentCount 100
GetFieldValue 108, 115
GetIntComp 109, 116
GetIntObj 100
GetPart 122
GetPartByCID 122
GetPartCount 122
GetPrimaryIntComp 105
GetXMLRootPart 123
Lookup method 30
NewInstance 106
NewRecord 112
NextInstance 105
NextRecord 109, 116
Purge method 61, 72, 76
Read Siebel Message method 76
SetArgument 102
SetAttachmentSource 103, 125
SetCopySource 112, 119

SetFieldValue 113, 119
Write Siebel Message method 74

MIME
about MIME messages 127
Content ID 127
CSSEAIMimeMsgIn, object and

methods 120
CSSEAIMimeMsgOut, object and

methods 124
messages and objects, about 120
MIMEHierarchy argument 94
sample message with attachment 127

MIMEHierarchy argument 94
MQSeries

export example 21
import example 18
process properties, exporting

example 22
msg parameter 147

N
name parameter 99, 100
NewInstance method 106
NewRecord method 112
NextInstance method 105
NextRecord method 109, 116
null value 108, 141

O
Object Id property 16
outbound dispatch

architecture diagram 36
business scenario 46
process overview 37
property set, business scenario 54

outbound Siebel Messages 24
output integration component, copying

fields 110
OutputIntObjectName output

argument 102
outputPropSet 96
Version 7.5 Business Processes and Rules MidMarket Edition 157

Index
P
parameters. See individual parameter

entries
positional arguments 147
postconditions 83
preconditions 82
primary integration component

checking existence of 107
creating new record 112
defined 107
field value, returning 108
getting for input 109

primary output integration component
methods 106

process properties
export in XML example 16
import using MQSeries queue,

example 19
importing account information,

example 13
inbound data map, creating 75
MQSeries, exporting example 22
outbound data maps 71
output hierarchy root node, adding to 33
passing data to workflow 38

Property Name target 33
property set format, functions for

manipulating 129
property sets

dispatch method comparison 43
root element in output XML,

creating 130
root element of XML document,

returning 129
Workflow limitation in use of 43

Purge method 61, 72, 76

Q
Query method, EAI Siebel Adapter 23

R
Read Siebel Message method 76

Receive method, EAI MQSeries Server
Transport example 20

records, accessing next record 109
root hierarchy target 32
rules

invalid rules 53
rule sets, creating 39
rules, defining 39

S
scripts

See also Siebel eScript
for DTE business service 91
exception handling 144
terminating on error 146, 147

search expression grammar
expressions, symbols used in 31
sample 52

Service_PreInvokeMethod function, data
transformation 92

ServiceArguments 94
SetAttachmentSource method 125
SetCopySource method 112, 119
SetFieldValue method 113, 119
Siebel Data Mapper

about 58
architecture diagram 62
business scenario 85
performance 59

Siebel Errors, in data transformation
scripts 144

Siebel eScript
See also scripts
data type conversion 113
including eaisiebel.js 92
role in data transformation functions 97

Siebel Inbound argument 140
Siebel Message argument 94
Siebel Messages

converting outbound to XML 24
CSSEAIIntCompIn, object and

methods 114
158 Business Processes and Rules MidMarket Edition Version 7.5

Index
CSSEAIIntCompOut, object and
methods 117

CSSEAIIntMsgIn integration message
object 99

CSSEAIIntMsgIn object and methods 99
CSSEAIIntMsgOut object and

methods 102
CSSEAIIntObjIn object and methods 104
CSSEAIIntObjOut object and

methods 106
CSSEAIPrimaryIntCompIn object and

methods 107
CSSEAIPrimaryIntCompOut object and

methods 110
integration message objects, about 98
objects and methods, overview 98
outbound 24

Siebel Outbound argument 140
Siebel Tools, data transformation business

service, defining 90
Source Expression

example 80
Property Name 33
Type field, setting to 33
Value field, setting to 33

Source Search Specification
postconditions, use of 83
preconditions, use of 82

sourceName parameter 110
strings, data transformation of 141

T
targetName parameter 110
targets. See transforms
testing, integration processes 25
transformation maps. See data maps
transforms

business services 32
Child Hierarchy target 32
combining transforms 33
defining 40
overview 32
Property Name target 33

root hierarchy target 32
Type target 33
Value target 33

troubleshooting
argument tracing 42
dispatch service input and output,

debugging 42
Lookup method, role of 30

Type target 33

U
unmapped values 141
unmappedKeyHandler

about 140
uses of 141

untranslated values 142
Update method 14

V
Value target 33

W
Workflow

compared to EAI Dispatch Service 43
data maps, running 92
inbound data map, creating

Workflow 75
inbound dispatch, creating 38
integration processes, overview 11
outbound data map, creating

Workflow 70
passing incoming hierarchy to 38

workflow examples
account information, exporting in

XML 15
account information, importing 13
exporting using MQSeries queue 21
importing using MQSeries queue 18

Workflow Process Simulator 25
Workflow Simulator, testing inbound

Workflow 78
Write Siebel Message method 74
Version 7.5 Business Processes and Rules MidMarket Edition 159

Index
X
XML

dispatch input and output,
debugging 42

element accessor functions 131
exporting information, example 15
outbound data mapping Workflow

example 74
Search Expression example 52
top-level property set functions 129
transforming to integration object,

specification 95
XML functions

example 137
XPSAddChild 136
XPSCreateRootElement 130
XPSFindChild 135
XPSGetAttribute 133
XPSGetChild 135
XPSGetChildCount 134

XPSGetRootElement 129
XPSGetTagName 131
XPSGetTextValue 132
XPSSetAttribute 134
XPSSetTagName 131
XPSSetTextValue 132

XML Hierarchy argument 94
XPath standard 31
XPSAddChild function 136
XPSCreateRootElement function 130
XPSFindChild function 135
XPSGetAttribute function 133
XPSGetChild function 135
XPSGetChildCount function 134
XPSGetRootElement function 129
XPSGetTagName function 131
XPSGetTextValue function 132
XPSSetAttribute function 134
XPSSetTagName function 131
XPSSetTextValue function 132
160 Business Processes and Rules MidMarket Edition Version 7.5

	Contents
	Introduction
	How This Guide Is Organized
	Additional Resources
	Revision History

	Defining Workflows for eAI
	Sample Integration Workflows
	Import Account (File)
	Export Account (File)
	Import Employee (MQSeries)
	Export Employee (MQSeries)

	Testing the Workflow Integration Process

	Creating and Using Dispatch Rules
	Overview of EAI Dispatch Service
	EAI Dispatch Service Rule Hierarchy
	Rule Sets
	Rules
	Data Transformation

	EAI Dispatch Service Methods
	Search Expression Grammar

	Output Transformation
	RootHierarchy
	ChildHierarchy
	Type
	Value
	Property

	EAI Dispatch Service
	Inbound and Outbound Requests
	Inbound Requests
	Outbound Requests

	Implementing EAI Dispatch Service
	Checklist
	Creating a Workflow
	Defining Rule Sets
	Defining Rules
	Defining Transforms
	Invoking a Workflow Process From an EAI Dispatch Service

	Testing Your EAI Dispatch Service Using Argument Tracing
	Differences Between EAI Dispatch Service and Workflow
	ProcessAggregateRequest Method
	EAI Dispatch Service Scenarios
	Outbound Scenario
	Inbound Scenario
	Outbound Scenarios Using ProcessAggregateRequest
	Querying the Account Integration Object
	Querying the Employee Integration Object

	Examples of Search Expression Grammar
	Examples of Dispatch Output Property Set

	Data Mapping Using the Siebel Data Mapper
	Overview
	EAI Data Mapping Engine
	EAI Data Mapping Engine Methods
	Execute
	Purge

	Using the EAI Data Mapping Engine
	Checklist

	The Siebel Data Mapper
	Integration Object Maps
	Integration Map Arguments

	Integration Component Maps
	Integration Field Maps

	Creating Data Maps
	Checklist
	Define Integration Objects
	Determining Required Maps
	Creating New Data Maps
	Creating Maps Using Auto-Map
	Defining Arguments for a Data Map (Optional)

	Creating Integration Component Maps
	Creating Integration Field Maps
	Validating the Data Map

	Examples of Workflow Process
	Outbound Workflow Process
	Inbound Workflow Process

	Executing the Workflow
	EAI Data Mapping Engine Expressions
	Source Expressions
	Source Search Specifications
	Preconditions
	Postconditions

	Addressing Fields in Components
	Data Mapping Scenario
	Mapping Between Siebel and an External Application

	Data Mapping Using Scripts
	Overview
	Checklist

	EAI Data Transformation
	Setting Up a Data Transformation Map

	DTE Business Service Method Arguments
	Map Functions
	EAIExecuteMap() Method

	The Data Transformation Functions
	Siebel Message Objects and Methods
	Integration Message Objects
	CSSEAIIntMsgIn
	GetArgument() Method
	GetIntObj() Method
	GetAttachmentCount () Method
	GetAttachment () Method
	GetAttachmentByCID () Method

	CSSEAIIntMsgOut
	CreateIntObj() Method
	SetArgument() Method
	SetAttachmentSource () Method
	CopyAttachment (cid) Method

	Integration Object Objects
	CSSEAIIntObjIn
	Exists() Method
	FirstInstance() Method
	GetPrimaryIntComp() Method
	NextInstance() Method

	CSSEAIIntObjOut
	CreatePrimaryIntComp() Method
	NewInstance() Method

	Primary Integration Component Objects
	CSSEAIPrimaryIntCompIn
	Exists() Method
	FirstRecord() Method
	GetFieldValue() Method
	GetIntComp() Method
	NextRecord() Method

	CSSEAIPrimaryIntCompOut
	CopyFieldValue() Method
	CreateIntComp() Method
	NewRecord() Method
	SetCopySource() Method
	SetFieldValue() Method

	Integration Component Objects
	CSSEAIIntCompIn
	Exists() Method
	FirstRecord() Method
	GetFieldValue() Method
	GetIntComp() Method
	NextRecord() Method

	CSSEAIIntCompOut
	CopyFieldValue() Method
	CreateIntComp() Method
	SetCopySource() Method
	SetFieldValue() Method

	MIME Message Objects and Methods
	CSSEAIMimeMsgIn
	GetArgument ()Method
	GetPartCount () Method
	GetPart () Method
	GetPartByCID () Method
	GetAttachmentByCID () Method
	GetXMLRootPart () Method

	CSSEAIMimeMsgOut
	SetArgument() Method
	CreateXMLPart () Method
	SetAttachmentSource () Method
	CopyAttachment () Method

	Attachments and Content Identifiers in MIME Messages
	XML Property Set Functions
	Top-Level Property Set Functions
	XPSGetRootElement()
	XPSCreateRootElement()

	XML Element Accessors
	XPSGetTagName()
	XPSSetTagName()
	XPSGetTextValue()
	XPSSetTextValue()
	XPSGetAttribute()
	XPSSetAttribute()
	XPSGetChildCount()
	XPSGetChild()
	XPSFindChild()
	XPSAddChild()

	Examples

	EAI Value Maps
	EAIGetValueMap Function
	CSSEAIValueMap Translate Method
	EAIGetValueMap unmappedKeyHandler Argument
	EAIGetValueMap() Method

	Exception Handling Considerations
	Error Codes and Error Symbols
	Data Transformation Error Processing
	Exception Handling Functions
	EAIRaiseError() Method
	EAIRaiseErrorCode() Method
	EAIFormatMessage() Method

	Sample Siebel eScript

	Troubleshooting Techniques
	Service Arguments Tracing

	Index

