
SIEBEL PORTAL
FRAMEWORK GUIDE

 MIDMARKET EDITION
VERSION 7.5

SEPTEMBER 2002

12-CQRVPZ

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2002 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

The full text search capabilities of Siebel eBusiness Applications include technology used under license from
Hummingbird Ltd. and are the copyright of Hummingbird Ltd. and/or its licensors.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Supportsoft™ is a registered trademark of Supportsoft, Inc. Other product names, designations, logos, and
symbols may be trademarks or registered trademarks of their respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents
Introduction
Revision History . 8

What’s New for 7.5 . 9

Chapter 1. About Siebel Portal Framework
Portal Framework Overview . 12

Portal Framework Architecture . 13

Enterprise Application Integration . 13

Portal Agents . 13

XML Web Interface . 14

Chapter 2. Integrating External Content
Understanding Portal Agents . 16

Portal Agents and Authentication Strategies . 17
About Disposition Types . 18

Inline . 18

IFrame . 19

Web Control . 20

Form Redirect . 20
Server Redirect . 21

Portal Agent Restrictions . 22
Disposition Types Summary . 23

Task Overview for Creating Portal Agents . 24

Determining the Login Requirements . 25
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 3

Contents
Portal Agent Configuration . 28

Configuring Business Components to Handle External Data 28

Displaying External Content Within an Applet . 29

Displaying External Content Outside of an Applet 30

Portal Agent Administration . 31

Defining the External Host . 31

Defining Web Applications . 32
Defining Symbolic URLs . 33
Defining Symbolic URL Arguments . 36

Defining Content Fixup . 39

Defining End User Login Credentials . 40

Example Portal Agent .41

Reviewing the SWE Log File . 47

Portal Agent Command Reference . 48

EncodeURL . 48

IFrame . 48

NoCache . 49

NoFormFixup . 49
PreLoadURL . 50

PostRequest . 50
UserLoginId . 51

UserLoginPassword . 51

UseSiebelLoginId . 52

UseSiebelPassword . 52
WebControl . 53

Chapter 3. Delivering Content to External Web Applications
Overview of the XML Web Interface . 56

Accessing Siebel XML . 56

Siebel OM and Web Server Configuration and Markup Determination . . . 58
4 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Contents
Connecting to the XML Web Interface . 60

Submitting HTTP Requests Through the Web Server 60

Submitting Requests Using the Web Engine Interface 63

XML Request Structure . 69

Query String . 69

XML Command Block . 69

XML Response Structure . 77

Errors . 77

XML Response . 77

HTML Response . 84

Common Operations . 85

Logging In . 85
Logging Off . 86

Navigating to a Screen . 86

Navigating Within a Screen . 87
Querying Items . 88

Adding Records . 89

Modifying Records . 91

Deleting Records . 95

Picking Records . 97

SWE API .100

SWE Commands . 100
SWE Methods . 105

SWE Arguments . 111

Document Type Definition . 115

Inbound DTD . 115
Outbound DTD . 116

Manipulating Siebel XML with XSL Stylesheets and XSLT 123

Defining SWTs Stylesheet Tags . 123

XML-Specific Template Tag . 123

Chapter 4. Web Engine HTTP TXN Business Service
Scenario . 126
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 5

Contents
Sample HTTP TXN BS Code . 127
Sample Output by HTTP TxN BS . 131

Web Engine HTTP TXN Business Service API . 132
6 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Introduction
This book provides a detailed discussion of Siebel Portal Framework. It provides
overview information, tasks for integrating external content into the Siebel user
interface, and reference information about the XML Web interface used to deliver
content to external applications.

NOTE: All Siebel MidMarket product names include the phrase MidMarket Edition
to distinguish this product from other Siebel eBusiness Applications. However, in
the interest of brevity, after the first mention of a MidMarket product in this
document, the product name will be given in abbreviated form. For example, after
Siebel Call Center, MidMarket Edition, has been mentioned once, it will be referred
to simply as Siebel Call Center. Such reference to a product using an abbreviated
form should be understood as a specific reference to the associated Siebel
MidMarket Edition product, and not any other Siebel Systems offering. When
contacting Siebel Systems for technical support, sales, or other issues, note the full
name of the product to make sure it will be properly identified and handled.

Although job titles and duties at your company may differ from those listed in the
following table, the audience for this guide consists primarily of employees in these
categories:

Call Center
Administrators

Persons responsible for setting up and maintaining a call center.
Duties include designing and managing Computer Telephony
Integration (CTI), SmartScripts, and message broadcasts.

Siebel Application
Administrators

Persons responsible for planning, setting up, and maintaining
Siebel applications.

Siebel Application
Developers

Persons who plan, implement, and configure Siebel applications,
possibly adding new functionality.

Siebel System
Administrators

Persons responsible for the whole system, including installing,
maintaining, and upgrading Siebel applications.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 7

Introduction

Revision History
Revision History
Siebel Portal Framework Guide, MidMarket Edition, Version 7.5
8 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Introduction

What’s New for 7.5
What’s New for 7.5
New Portal Framework features for version 7.5 are described in Table 1.

Table 1. 7.5 Portal Framework Features

Feature Description

Session Management
and Session Re-Use

Allows the Siebel application to manage sessions that are
integrated with third-party application servers, and recognizes
when these sessions can be re-used, retaining the user’s session
context, and preventing the buildup of session overhead on the
third-party application server. As these sessions time-out due to
inactivity, the Siebel server automatically re-authenticates with
the third-party application server, requiring no further entry of
user credentials on the part of the user.

Personalized Content
Displayed Inline

Prior to version 7.5, external content delivered to a specific user
(after authentication) had to be displayed in a new window. In
version 7.5, the Portal Framework has been enhanced to support
the display of personalized external content adjacent to other
applets in the Siebel user interface.

Profile attributes sent
in the HTTP request

You can configure Portal Agents to retrieve data from the
Personalization business component and send it as part of the
HTTP request. This allows the Portal Agent to send the external
application user-specific preferences, such as the user’s time
zone, or preferred language.

Support for server
redirects

The Siebel Web Engine now has the ability to recognize when a
request sent to an external host is redirected to another host (the
one that actually conducts the session). This includes handling
cascaded redirects, redirects across domains, and redirects
invoked by JavaScript. It allows session management to continue
after a redirect occurs.

Displaying external
content outside of an
applet

You can now display external content outside of an applet, such
as in the banner frame, using Web Page Items. Web Page Items
can now be associated with a symbolic URL. Note that this
feature does not apply to administering Page Items in the Portal
Administration screen.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 9

Introduction

What’s New for 7.5
10 Siebel Portal Framework Guide MidMarket Edition Version 7.5

About Siebel Portal Framework 1
This chapter provides an overview of the Siebel Portal Framework and summarizes
the technologies that make up the Portal Framework.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 11

About Siebel Portal Framework

Portal Framework Overview
Portal Framework Overview
Enterprises are often composed of many different information technology resources,
such as:

■ Shared network directories.

■ Department intranet sites.

■ Legacy applications.

■ Applications developed in-house.

■ Purchased Web applications.

With many disparate applications and technologies, IT resources are difficult to
maintain and difficult to use. For example, applications:

■ Follow different user interface guidelines.

■ Are rendered with different themes.

■ Track profile attributes differently.

■ Vary in the quality of online assistance.

■ Have separate login and password credentials.

■ Have different search functionality.

One solution to this problem is to integrate the various applications and content
sources used in an enterprise and present them in a single user interface, called a
portal. The Siebel Portal Framework allows you to do this. The Portal Framework
provides you with the tools and supporting technologies that allow you to:

■ Aggregate external data with Siebel data and present it in the Siebel user
interface.

■ Deliver Siebel data to external applications.

■ Integrate external application business logic and data with Siebel applications.
12 Siebel Portal Framework Guide MidMarket Edition Version 7.5

About Siebel Portal Framework

Portal Framework Architecture
Portal Framework Architecture
The portal framework includes the following framework components:

■ Enterprise Application Integration

■ Portal Agents that integrate external content into the Siebel user interface

■ XML Web interface for delivery of Siebel content to external applications

Enterprise Application Integration
Siebel EAI provides mechanisms for sharing data and business logic with other
applications, including:

■ Integration Objects

■ Virtual Business Objects

■ Programming APIs

■ Predefined adapters and connectors

For more information about Siebel EAI, see Overview: Siebel eBusiness Application
Integration Volume I, MidMarket Edition and other EAI titles on the Siebel Bookshelf.

Portal Agents
Portal Agents provide you with a mechanism to retrieve content from a non-Siebel
source and display it in the Siebel user interface. The Portal Agent retrieves content
on behalf of the user, logging on to the external application using the user’s
credentials and retrieving only the content that is targeted for the user. Portal Agents
provide single sign-on capability and a profile tracking mechanism.

See “Understanding Portal Agents” on page 16 for more information about Portal
Agents.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 13

About Siebel Portal Framework

Portal Framework Architecture
XML Web Interface
In enterprises where a non-Siebel portal framework is already established, you need
to be able to deliver Siebel content to other applications and frameworks. The XML
Web interfaces provides you with a mechanism to deliver Siebel data to external
applications as XML documents. This provides the external application with a
flexible format for integrating Siebel data into its user interface.

See Chapter 3, “Delivering Content to External Web Applications,” for more
information.
14 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content 2
This chapter provides an overview of Portal Agents. It covers the configuration and
administration tasks necessary to display external content in the Siebel user
interface. It also includes a reference section that lists all the commands available
for use with Portal Agents.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 15

Integrating External Content

Understanding Portal Agents
Understanding Portal Agents
Portal Agents allow you to integrate external data into the Siebel user interface.
Portal Agents retrieve data by sending HTTP requests to external applications, and
then display the HTML results in a Siebel applet or on some other portion of a Siebel
Web page.

Portal Agents combine a set of features and technologies that allow you to integrate
external content at the user interface layer, including:

Single Sign-On technology (SS0). For applications who are participating in a single
sign-on framework, this feature eliminates the need for the user to enter login
credentials, such as username and password, more than once per work session.

Session Management and Session Re-Use. Allows the Siebel application and the
external application to maintain a user's session context, without re-authenticating
for subsequent requests. This minimizes session resource overhead on the external
application, and allows the user to retain session context, such as Shopping Cart
contents.

Time-out Handling. The Siebel server automatically re-authenticates when a request
is submitted after the external application's timeout period has passed.

Symbolic URLs, with multiple disposition types. Allows content to be displayed in
different ways, such as in a new browser window, inline with the other content, in
an <iframe> tag, or as an ActiveX object embedded in the Siebel application Web
page. See “About Disposition Types” on page 18 for more information.

Session Proxy. For content integrated using a disposition type of Inline, the Siebel
server manages the interactions with external applications on behalf of the user. For
more information about the Inline disposition type, see “Inline” on page 18.
16 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Understanding Portal Agents
Symbolic URL Commands. Commands that direct the Portal Agent to assemble the
URL for the external application in a number of ways. These include dynamically
referencing the user’s login and password, retrieving stored login and password
values, retrieving data from the user’s personalization profile, establishing the size
of an <iframe> tag, and determining whether to set the browser cookies from the
application server’s login page. For a complete list of commands, see “Portal Agent
Command Reference” on page 48.

NOTE: Portal Agents do not integrate data at the data layer or integrate business
logic. Other mechanisms in the Siebel Portal Framework, such as Integration
Objects and Virtual Business Components, are designed to meet those types of
integration needs. See Overview: Siebel eBusiness Application Integration Volume I,
MidMarket Edition for more information about EAI.

Portal Agents and Authentication Strategies
Portal Agents can be configured to support different authentication strategies:

■ Simple Portal Agents. External application does not require any authentication
parameters.

■ Single Sign-On Portal Agents. External application requires authentication
parameters.

■ NCSA-basic Portal Agents send a username and password as part of the URL
in plain text. NCSA is no longer widely used as an authentication
mechanism.

■ Form-based Portal Agents send authentication parameters as part of the body
portion of the HTTP request.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 17

Integrating External Content

Understanding Portal Agents
About Disposition Types
One of the steps in setting up a Portal Agent is creating a Symbolic URL. The
Symbolic URL specifies the information necessary to construct the HTTP request to
send to the external application. Symbolic URLs can be one of several disposition
types. The disposition type determines:

■ The interaction between the browser, the Siebel Server, and the external
application.

■ How external content is displayed in the user interface.

It is important to understand these disposition types and determine the one that
suits your integration needs. Each disposition type is discussed in one of the
following sections:

■ “Inline” on page 18

■ “IFrame” on page 19

■ “Web Control” on page 20

■ “Form Redirect” on page 20

The procedure for defining Symbolic URLs is covered in “Defining Symbolic URLs”
on page 33.

Inline
With a symbolic URL disposition type of Inline, the Siebel server receives content
sent by an external application. It combines the external content with Siebel-
produced content and composes a single HTML page, which it then sends to the
client browser for display to the user. Optionally, links in the aggregated content are
rewritten so they reference the Siebel server (proxy), rather than referencing the
external application server directly. This allows the Siebel server to handle links in
the aggregated content so that from the user’s perspective the content comes from
one integrated application rather than from different application servers.

The inline disposition type supports Session Management. Session Management is
a feature that allows the Siebel Server to manage session cookies and allows it to
automatically re-login to an external application after a time out occurs.
18 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Understanding Portal Agents
Although the Inline disposition type is the preferred disposition type, it will only
work in rare cases. The inline disposition type is a good option when the page you
trying to integrate is a simple HTML page with simple JavaScript. If the page you
are trying to integrate has complex JavaScript or references frames, then the Inline
disposition type will not work and you should try the IFrame disposition type. The
Inline disposition type supports the GET method only. Also, the number of
characters that can appear in the URL is limited to 2048 characters.

IFrame
Use this disposition type when aspects of the external application do not allow
content to be aggregated with other Siebel content. See “Portal Agent Restrictions”
on page 22 for more information about when this may occur.

The IFrame disposition type uses the <iframe> tag to create an Internal Frame as
part of the page generated by the Siebel server. It allows the Portal Agent to retrieve
content to populate the Internal Frame. This content does not pass through the
Siebel server, but is directly requested by the client and sent by the application
server to the user's browser. Although this disposition type is not as preferable as
the Inline disposition type, in most cases, it is the method that works.

The IFrame disposition type supports JavaScript and Frames. Therefore, if the Inline
disposition type does not work, the IFrame option is the best option. The IFrame
disposition type also supports the Session Keep Alive feature. However, it does not
support Session Management.

The IFrame disposition type will work in many cases. However, it does not work
when frames displayed within the <iframe> tag refer to top-level JavaScript
objects. If frames in the page you are trying to integrate refer to top-level JavaScript
objects, then try the Web Control disposition type.

NOTE: The IFrame disposition type is supported on Internet Explorer 5.5 and above.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 19

Integrating External Content

Understanding Portal Agents
Web Control
Use the Web control disposition type when IFrame or Inline disposition types do not
work. Typically this is because of hardcoded references to specific frame names in
the external application's HTML. See “Portal Agent Restrictions” on page 22 for
more information.

The Web Control disposition type embeds an Internet Explorer ActiveX object in the
Siebel page and provides it to the external application. In the Web Control
disposition type, similar to the IFrame type, the external application sends content
directly to the user’s browser, bypassing the Siebel server. The external application
then behaves as if the ActiveX IE instance is an independent Web browser.

NOTE: The Web Control disposition type is supported for Internet Explorer 4.0 and
above.

Form Redirect
The Form Redirect disposition type is not commonly used with Siebel eBusiness
applications, version 7.5.

In the Form Redirect scenario, the Siebel Web client submits a request to the Siebel
server. The Siebel server creates a form with the necessary authentication
information in it, and then sends the form back to the browser. The browser loads
the form and then submits it to the external host for processing. The external host
sends back the results, which the browser displays in a new window.

The Form Redirect disposition option is usually displayed in a new window, rather
than inline with other Siebel applets.
20 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Understanding Portal Agents
Server Redirect
The Server Redirect disposition type is no longer used in version 7.5, but is included
in this guide for customers running prior versions of Siebel eBusiness applications.

In the Server Redirect scenario, the browser sends a request to Siebel Server. The
Siebel Server sends the authentication request to the external application. After it
receives a response from the external application, it creates a 302 Response, which
contains the value of the target URL in the header. The Siebel Sever sends the 302
Response back to the browser and the browser is redirected to the target host.

Like Form Redirect, Portal Agents that use the Server Redirect disposition type
should be configured to display the results in a new window rather than inline with
other Siebel applets.

When using the Server Redirect disposition type, there is one required argument
and several optional arguments. The arguments are defined below:

■ SSO_REDIRECT_PATH. This is a required argument that defines the URL to
which the browser is to be redirected. The value of this argument is sent as the
URL in the header of the 302 Response.

■ SSO_COOKIE_DOMAIN. This is an optional argument that specifies a domain
for which the cookie is valid. If this argument is not defined, the domain of the
external host (as defined in Host Administration view) is used.

■ SSO_COOKIE_NAMES. This is an optional argument that allows you to define
the cookies to be sent to the browser from the external application. If no cookie
names are defined, the Portal Agent sends all cookies from the external site to
client browser. For example, the argument defined in Table 2 specifies that only
the cookies named Pid and tid are to be sent to the browser from the external
host.

■ SSO_COOKIE_PATH. This is an optional argument that allows you to define a
subset of URLs to which the cookies apply.

You define these arguments in the Symbolic URL Argument applet. See “Defining
Symbolic URL Arguments” on page 36 for instructions on how to do this.

Table 2. Example Symbolic URL Argument

Name Argument Type Argument Value

SSO_COOKIE_NAME Constant Pid;tid
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 21

Integrating External Content

Understanding Portal Agents
Portal Agent Restrictions
Portal Agents are meant to bring existing applications and content into the Siebel
user interface without requiring additional modifications of the external
application. However, this is not always possible due to the way HTML and Web
browsers are designed. For example:

■ The use of frames by an external application may not be amenable to inline
aggregation methods.

■ Specific frame references in the returned content referring to global frames
(_NEW, _TOP, .parent()) may not be amenable to inline aggregation methods.

■ Reliance on JavaScript functions defined in (assumed) external frames may not
be amenable to inline aggregation methods.

■ URLs that are created dynamically by JavaScript may not be amenable to any
fixup techniques, as the URLs would not be easily parsed on the HTML content.

■ <head> sections of Web pages are normally stripped by fixup code. If
<head >sections contain JavaScript functions definitions, these may be
stripped by fixup code and dependent JavaScript would not run properly.

For these reasons, an Inline disposition type does not work often. However, if you
control both the Siebel application instance as well as the external application, and
can resolve some of these issues, you should be able to get the Inline disposition
type to work correctly. For more information about the Inline disposition type, see
“Inline” on page 18.

If you do not have control over the external application, the IFrame disposition type
is the most likely method that will provide satisfactory results. It works with about
80% of the form-based application sites tested. For more information about the
IFrame disposition type, see “IFrame” on page 19.
22 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Understanding Portal Agents
Disposition Types Summary
Table 3 summarizes the characteristics of each disposition type.

Table 3. Disposition Type Summary

Disposition Type Benefits Drawbacks

Inline ■ Inline integration into the Siebel user
interface.

■ Session Management, including
managing session cookies and
automatic re-login after time out.

■ Only works in very few cases.

■ Will not work with complex
JavaScript.

■ Will not work if there are reference to
frames.

■ Supports the GET method only.

■ URL limited to 2048 characters.

IFrame ■ Inline integration into the Siebel user
interface.Supports complex
JavaScript.

■ Supports references to frames.

■ Session Keep Alive supported.

■ Works for most cases.

■ No session management.

■ Only supported by IE5.5 and higher.

■ Does not support frames that
reference top-level JavaScript objects.

Web Control ■ Supports frames that reference top-
level JavaScript Objects, because
JavaScript does not refer to objects
outside of the Web control.

■ No session management.

■ Browser functionality, such as the
back button, is only available by
right-clicking in the Web control.

■ ActiveX objects that contain other
objects are reset if you change tabs
and then return to the Web control.

■ Web control requires more system
overhead than IFrame.

■ Only supported for IE4 and higher.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 23

Integrating External Content

Task Overview for Creating Portal Agents
Task Overview for Creating Portal Agents
To create a Portal Agent, the following tasks are required:

1 Determining the Login Requirements on page 25.

2 Configuring Business Components to Handle External Data on page 28.

3 Complete one of the following:

■ Displaying External Content Within an Applet on page 29.

■ Displaying External Content Outside of an Applet on page 30.

4 Defining Web Applications on page 32.

5 Defining Symbolic URLs on page 33.

6 Defining Symbolic URL Arguments on page 36.
24 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Determining the Login Requirements
Determining the Login Requirements
Before you configure Portal Agents, you need to understand what information is
required by the external application to authenticate users. Typically this information
is gathered using a form page, also called a login page, and then sent to the external
application. You must determine exactly what information the form gathers from
the user and sends to the external application, including field names and values.

In cases where you have specific knowledge about how an external application is
implemented and can consult with authoritative sources regarding how the
application authenticates users, determining the required input fields and values is
relatively simple.

In cases where you do not have specific knowledge about how an external
application is implemented, you must attempt to understand its authentication
method by examining the application’s login page. The steps below describe an
approach that you can use to reverse engineer a login page and provide related
Portal Agent configuration tips.

NOTE: It is not always possible to reverse engineer a login page. For example,
JavaScript may process login field values prior to delivering the POST back to the
application server, session values may be encoded in the form itself, or session
values may be stored in the browser’s session cookies.

To reverse engineer a login page

1 Navigate to the external application’s login page and determine whether the
external application uses NCSA Basic Authentication or Form-based
authentication.

NCSA Basic is an older authentication mechanism that requires the browser to
prompt the user for login name and password before displaying the page. NCSA
Basic provides rudimentary protection against trespassers. Usually, you can tell
if a site is using NCSA basic because a small popup dialog box will appear asking
for login credentials. If this is the case, you can configure the Portal Agent using
NCSA basic as the authentication method. See “Defining Symbolic URLs” on
page 33 for more information.

2 If the external application uses form-based authentication, view the login page’s
HTML using your browser’s view source command.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 25

Integrating External Content

Determining the Login Requirements
3 Identify the form on the login page that asks for user credentials (often the form
will ask for other information as well) and identify the input fields in this form
used to authenticate users.

It is usually best to strip out all non-form lines of HTML and to isolate the
<input> tags. That is, remove lines previous to <form…> and after </form> and
remove lines not part of the <input> tags.

4 Determine if the method attribute of the form tag is POST.

If it is POST, you will need to define the PostRequest command as an argument
of the symbolic URL. See “Defining Symbolic URL Arguments” on page 36 and
“PostRequest” on page 50 for more information.

If it is GET, you do not need to define a symbolic URL command, because the
default method of symbolic URLs is GET.

5 Determine the target of the from’s action attribute, which is usually specified as
action ="some string".

If the target of the action attribute is an absolute URL, one that begins with http,
or a forward slash (/), use this URL as the base of the Portal Agent.

If it is a relative address, you also need to determine where the root of the URL
is defined. It could be defined relative to the URL of the login page itself (most
common), in a <codebase>tag (rare), or in JavaScript (hard to determine).

The target URL is defined using the Host Administration View and the Symbolic
URL Administration view. See “Defining the External Host” on page 31 and
“Defining Symbolic URLs” on page 33 for more information.

6 Determine any argument values defined in the target URL.

These are the characters after the “?” character. Usually these are simple field-
value constants. The exception is when a field or a value is a session identifier
that is dynamically assigned by the external application server and is only valid
for a a period of time before it times out. In this case, it may not be possible to
configure a Portal Agent.

You will define any argument values contained in the target URL as symbolic
URL arguments. See “Defining Symbolic URL Arguments” on page 36 for more
information on how to do this.
26 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Determining the Login Requirements
7 Identify each of the form’s <input> tags and determine which ones are
necessary to send to the external application for authentication.

Often there are <input> tags in the form with a type attribute of hidden that
are not evident when interacting with the application. Determining whether
hidden fields are optional or required is often process of trial and error.

Some <input> tags will not have values identified. Either these fields are
awaiting input to be entered by the user (for example, login name or password),
or they are hidden fields with no values.

■ If the input field is specific to the user (it asks for the user’s login name and
password), you can use UserLoginId and UserLoginPassword commands to
instruct the Portal Agent to retrieve the user’s credentials from the user’s My
Logins view. See “Defining End User Login Credentials” on page 40 for more
information.

■ If there are hidden fields with no values, when you enter them as symbolic
URL arguments, make sure that the Required Argument column is not
checked. If it is checked, and the input field has no value, the Portal Agent
will not send this request to the target application server because there is no
value to put in its place.

You will need to define the input fields and values as symbolic URL arguments.
See “Defining Symbolic URL Arguments” on page 36 for more information.

NOTE: The Mozilla browser includes a page info command (^I) that analyzes forms
on a page and displays the method, input fields, and so on.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 27

Integrating External Content

Portal Agent Configuration
Portal Agent Configuration
Using Portal Agents to integrate external content into the Siebel user interface
requires some simple configuration in Siebel Tools. You must configure a field on
the business component to handle external data and then configure either an applet
or a Web page item to display the content in the user interface. An applet displays
external content inside the applet container on a view. A Web page item displays
external content outside of an applet, such as in the banner frame for example.

NOTE: This section describes the configuration tasks that are unique to integrating
external content with the Siebel user interface. It does not describe standard
configuration tasks that you may be required to perform. For example, after you
configure an applet to display external content, you may have to associate that
applet with a view, add the view to a responsibility, and so on. These additional
tasks are standard procedures for configuring Siebel applications and are outside
the scope of this book. For more information about configuring Siebel applications,
see Siebel Tools Reference.

Configuring Business Components to Handle External Data
To configure business components to handle external data using a Symbolic URL,
you need to create a new calculated field on the business component. Rather than
representing structured content, such as records in a database, this field will
represent the HTML content sent from an external host.

NOTE: Although a symbolic URL displays data that is not stored in the database, the
business component must have at least one record stored in an underlying table so
that it is instantiated at run-time.

To configure a business component to handle external data using a Symbolic URL

1 Create a new field on the business component.

2 Set the field’s Calculated property to TRUE.

3 Set the field’s Type property to DTYPE_TEXT.
28 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Configuration
4 In the Calculated Value field, enter the name of the Symbolic URL (enclosed in
double quotes) that you want to use to submit the HTTP request.

The name of the symbolic URL in the Calculated Value field must be enclosed in
double quotes so that it evaluates as a constant.

See the business component named AnalyticsSSO in the Siebel Repository for an
example of fields configured this way.

Displaying External Content Within an Applet
After you have created the calculated field on the business component, you need to
expose it in the user interface. You display the external content using a control in a
form applet or list applet.

NOTE: You can also expose external content outside an applet, such as in the banner
area. See “Displaying External Content Outside of an Applet” on page 30.

To display external content within an applet

1 Create an applet that you want to use to display the external content.

The applet must be based on the business component that you configured in
“Configuring Business Components to Handle External Data” on page 28.

2 Add a new control or list column to the applet.

3 Associate the control or list column with a calculated field on the business
component that is configured to represent the external data.

4 Set the control or list column’s Field Retrieval Type property to Symbolic URL.

5 Set the control or list column’s HTML Type property to Field.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 29

Integrating External Content

Portal Agent Configuration
Displaying External Content Outside of an Applet
After you have created the calculated field on the business component, you need to
expose it in the user interface. You can display the external content outside of an
applet using Web Page Items.

NOTE: You can also expose external inside an applet using an Applet Control or List
Column. See “Displaying External Content Within an Applet” on page 29.

To display content outside of an applet

1 Go to the Web Page object type and select the Web page on which you want to
display external data.

2 Create a new Web Page Item or use an existing one.

3 Set the Type property of the Web Page Item to Field.

4 Create the following two Web Page Item Parameters:

NOTE: The Symbolic URL is mapped to the calculated field defined for the
business component.

Name Value

FieldRetrievalType Symbolic URL

SymbolicURL [name of symbolic URL]
30 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Administration
Portal Agent Administration
You administer Portal Agents through several views located under the Integration
Administration Screen in the Siebel Web client. These views allow you to define
how links should be handled, define the external host, and define the HTTP request
that is sent to the external host.

Defining the External Host
You define the external data hosts in the Host Administration view. This view allows
you to:

■ Maintain external host names in a single place.

■ Specify NCSA Basic authentication credentials.

■ Define how links should be handled (fixed-up) after external HTML content is
rendered.

To define a data host

1 Navigate to Site Map > Integration Administration > Host Administration view.

2 Enter a new record and define the necessary fields.

Some of the fields are described in the following table:

Field Comments

Name Name of the external host.

Virtual Name User-defined name for the host.

Authentication
Type

Select NCSA Basic if the external application requires username and
password values sent in plain text in the request header.

Leave this value blank in either of the following cases:

■ The external application has no authentication requirements.

■ The external application uses form-based authentication and
thus requires authentication arguments sent in the header or
body of the request. Arguments to be sent along in the request
are defined using the Symbolic URL Arguments applet. See
“Defining Symbolic URLs” on page 33 for more information.

Authentication
Value

Enter the values required for NCSA Basic authentication.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 31

Integrating External Content

Portal Agent Administration
Defining Web Applications
Web applications allow multiple Symbolic URLs to send requests to the same Web
application and share the same session. This is useful if you have two different
applet controls that use Symbolic URLs to submit requests to the same Web
application. You can associate these Symbolic URLs to a single Web application and
define whether or not they should share the same session.

There may be cases in which you do not want requests to share the same session.
For example, you may not want to share a session when a session cookie contains
more information than the session ID, as this could result in unexpected behavior.
When you define a Web application, you specify whether or not it should share
sessions.

Web applications also allow you to define the Time Out value for the session time
out feature. The Session Time Out feature is only applicable to Symbolic URLs with
a Disposition type of Inline.

To define a Web application

1 Navigate to Site Map > Integration Administration > Web Application.

2 Enter a record and complete the fields.

Some fields are described in the table below:

Field Description

Shared Indicates whether or not requests generated by Symbolic
URLs associated with this Web application share the same
session.

Time Out Defines the time out parameter for the Session Management
feature, which is only applicable to Symbolic URLs with a
disposition type of Inline.
32 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Administration
Defining Symbolic URLs
You use the Symbolic URL Administration view to specify how the HTTP request to
the external application should be constructed and to define any arguments and
values to be sent as part of the request.

To define a Symbolic URL

1 Navigate to Site Map > Integration Administration > Symbolic URL
Administration.

2 In the Symbolic URL Administration view, enter a new record.

Some fields are defined in the following table:

Field Description

URL Use the URL field to enter a URL for the external application. A
best practice is to substitute the host’s Virtual Name, the one that
you defined in the Host Administration view, for the host’s actual
name. Doing this makes administering host names easier,
because you may have many symbolic URLs pointing to one host.
If the host name changes, you only need to change it in the Host
Administration applet rather than having to change it in several
Symbolic URL definitions.

For example, https://Virtual_Host/path...

For applications that use form-base authentication, the URL is
identified by the action attribute of the Form tag. See
“Determining the Login Requirements” on page 25 for more
information.

Host Name The Virtual Name of the host defined in the Host Administration
view.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 33

Integrating External Content

Portal Agent Administration
Fixup Name Name of the fixup type defined in the Fixup Administration view.
The fixup type defines how links embedded in the external
HTML content are rendered. For example:

Default. Use this fixup type with the IFrame disposition type.
Link fixup is inside the view. This fixup does not affect any of the
links. The links (relative or absolute) remain as they are with the
content being passed back in its original form.

InsideApplet. This fixup converts all of the relative links to
absolute links and any links using a host defined in the Host
Administration view are proxied in order to maintain SWE
context.

OutsideApplication. This fixup converts all of the relative links
to absolute links using the host and path of the parent URL. No
links are proxied.

Multivalue
Treatment

Determines how arguments are handled. Possible values are:

Comma Separated. Instructs SWE to insert a comma between
the values defined in the Symbolic URL arguments when
appending the arguments to the URL. It inserts a comma after the
value in the first Argument Value field and the first value in the
second Argument Value field. The second Argument Value field
is simply a text string entered by the user.

Separate Arguments. Instructs SWE to enter separate arguments
for each value defined in the two Argument Value fields.

Use First Record Only. Uses the first record in the current record
set.

Field Description
34 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Administration
SSO Disposition The value selected in this field determines how the HTTP request
is constructed and sent and how the external content is rendered
in the user interface. Possible values are:

■ Inline. Proxies the request through the Siebel Server and
displays content inline with other applets on a view.

■ IFrame. Uses the <iframe> tag to display content inline
with other applets on a view.

■ Web Control. Uses an ActiveX control to display content
inline with other applets on a view.

■ Form Redirect. SWE constructs a form which it sends back to
the browser, which the browser then sends to the external
host. The content received is displayed in a new window.

■ Server Redirect. SWE sends the browser a 302 Response
with the value of the external host’s URL in the header. The
browser is redirected to the external host. The content
received is displayed in a new window. Note that for Server
Redirect there is a required Symbolic URL argument. See
“Server Redirect” on page 21 for a description.

See “Understanding Portal Agents” on page 16 for detailed
descriptions of each Disposition Type.

Web Application Associates a Web Application with this Symbolic URL. For more
information about Web Applications, see “Defining Web
Applications” on page 32.

Field Description
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 35

Integrating External Content

Portal Agent Administration
Defining Symbolic URL Arguments
Symbolic URL Arguments allow you to configure Portal Agents in several ways. You
use them for two purposes, to define data to be sent to an external host and to
submit commands to SWE that affect the behavior of Portal Agents.

When defining arguments that send data, such as authentication requirements, the
Argument Name and Argument Value are appended to the URL as a attribute-value
pair. You can define symbolic URL arguments that send data as constants or that
dynamically retrieve data from the Siebel database. Symbolic URLs allow you to
retrieve data from the user’s instantiated Siebel business component, such as
Service Request or Account, or retrieve data from the Siebel Personalization
business component, such as the user’s ZIP Code or Language.

NOTE: See “Determining the Login Requirements” on page 25 for information about
how to determine required data for applications that use form-based authentication.

Symbolic URL Arguments also allow you to implement commands which you use
to define the behavior of Portal Agents. See “Portal Agent Command Reference” on
page 48 for usage descriptions of available commands.

To define Symbolic URL Arguments

1 Navigate to Site Map > Integration Administration > Symbolic URL
Administration.

2 In the Symbolic URL Administration applet, select the Symbolic URL you want
to configure.
36 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Administration
3 In the Symbolic URL Arguments applet, enter the arguments that need to be sent
to the external host.

Some of the fields are defined in the following table:

Field Description

Name Name of the argument. For arguments of type Constant, Field, and Personalization
Attribute, this field defines the exact field name expected by the external application.
It is the first part of a attribute-value pair appended to the URL.

For argument types of commands, the Name can usually be anything. The only
exception to this is for the EncodeURL and PreloadURL commands. See “Portal Agent
Command Reference” on page 48.

Required When this field is checked (default) the argument must have a value. If you are
configuring an argument that does not have a value, uncheck the Required field. If an
argument has no value and the Required field is checked, the request is not sent
because there is no value to append to the URL.

Argument Type They Argument Type determines the source of the data to be send along in the HTTP
request. Possible values are:

Constant. Sends the value defined in the Argument Value field in the request.

Field. Sends the value of a field from the current Siebel business component.

Personalization Attribute. Sends the value of a field from the Personalization business
component.

URL Argument. Data comes from the named argument of the current request.

Language Value. The user’s current language setting; for example, ENU.

Command. Implements commands that allow you to affect the behavior of the
symbolic URL. For a complete list of commands see “Portal Agent Command
Reference” on page 48.

Field - All Values. Data from all records in the working record set for the current
business component are sent in the request. The value defined for the Multivalue
Treatment on the Symbolic URL determines how these values are sent. See “Defining
Symbolic URLs” on page 33.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 37

Integrating External Content

Portal Agent Administration
NOTE: If the disposition type of the symbolic URL is Server Redirect, then there is a
required argument and several optional arguments that provide the data necessary
for SWE to construct the header in the 302 Response. See “Server Redirect” on
page 21 for the details.

Argument Value The value of the argument varies depending on the Argument Type. Descriptions of
possible values for each argument type are described below.

If the Argument Type is:

■ Constant, the Argument Value is the second part of the attribute-value pair that is
appended to the URL.

■ Field, the Argument Value defines a field from the current business component.
The data from that field is the second part of a attribute-value pair that is
appended to the URL. The syntax for defining the field is the field name enclosed
in brackets, for example[Last Name].

■ Profile Attribute, the Argument Value defines a field on the Siebel personalization
business component. Data from this field will be appended to the URL as the
second part of the attribute-value pair. The syntax for defining the field is the field
name enclosed in brackets, for example[Postal Code].

■ URL Argument, the Argument Value defines the name of the argument on the
incoming SWE request.

■ Language Value, the Argument Value is left null.

■ Command, the Argument Value typically defines the name of the command. See
“Portal Agent Command Reference” on page 48.

■ Field - All Value, the Argument Value defines the field name on the current
business component from which data is to be retrieved.

Argument Value Although this field is rarely used, it can be used to identify additional arguments.

Append as
Argument

When this field is checked (default), the value is added as a URL argument on the
outgoing request. If this field is not checked, the value will be substituted in the text
of the outgoing URL.

Sequence Determines the sequence of the arguments. In some cases the target host requires
arguments in a particular order.

Field Description
38 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Administration
Defining Content Fixup
The Fixup Administration view allows you to define how links embedded within
external HTML content should be rendered in the Siebel user interface. The fixup
types you define here will be associated with Symbolic URLs.

To define a fixup type

1 Navigate to Site Map > Integration Administration > Fixup Administration.

2 Enter a new record and define the fields.

Some of the fields are described in the following table:

NOTE: Fixup is required for all links within high-interactivity applications.

Field Comments

Link Context Select one of the following values:

■ Do Nothing. This fixup does not affect any of the links. The links
(relative or absolute) remain as they are with the content being
passed back in its original form.

■ Outside Application. This fixup converts all of the relative links to
absolute links using the host and path of the parent URL. No links
are proxied.

■ Inside Application. This fixup converts all of the relative links to
absolute links and any links using a host defined in the Host
Administration view are proxied in order to maintain SWE context.
After the user clicks a link, this fixup type renders HTML in the
view, using the entire view for display.

■ Inside Applet. This fixup handles links the same way as the Inside
Application fixup type. However, in this case, when a user clicks a
link, it renders HTML within an applet. The other applets remain
present on the view.

Context
View Name

Name of view that will display the link. This is optional.

Link Target Specifies the name of a specific target frame of the link. For example,
“_blank” for a new browser window or “AnyName” to open a window
of that name. This option is not often used.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 39

Integrating External Content

Defining End User Login Credentials
Defining End User Login Credentials
The Portal Framework provides a mechanism to store user login credentials for
external Web applications. The SSO Systems Administration view allows you to
specify an external application and then enter login credentials on behalf of users.
The My Logins view, located in the User Preferences screen, is used by end users to
maintain their own credentials.

To specify an external Web application and define login credentials

1 Navigate to View > Site Map > Integration Administration > SSO Systems
Administration.

2 In the SSO Systems list, enter a new record and define the following:

3 If you are defining login credentials on behalf of end users, in the SSO System
Users list, enter end-user login names and passwords.

Field Description

System Name Name of the external Web application.

Symbolic URL Name Select the name of the Symbolic URL that interacts with the
external Web application.

The symbolic URL must be configured with the UserLoginId
and UserLoginPassword commands as arguments. These
arguments instruct the symbolic URL to pass the stored login
credentials when authenticating with an external Web
application.

Description Enter a description of the Web application.
40 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Example Portal Agent
Example Portal Agent
This section provides an example of using a symbolic URL to integrate content from
Siebel.COM. The high-level steps for doing this are:

1 Review the Login Form.

2 Define the External Host.

3 Define the Symbolic URL.

4 Define Symbolic URL Arguments.

5 Define User Login Credentials.

6 Test.

Each of these steps is covered in the following sections.

NOTE: This example assumes the underlying objects are already configured to
support the symbolic URL. See “Portal Agent Configuration” on page 28 for
information on how to do this.

Review the Login Form
By reviewing the login page at www.siebel.com, you can determine the target URL
of the Action attribute and the required arguments that are being passed to the Web
application. The login page at www.siebel.com contains the following <form> tag
and <input> tags:

<form action="/index.shtm" method="POST" name="frmPassLogin"
onsubmit="return logincheck();">

<input TYPE="TEXT" NAME="SearchString" SIZE="18" MAXLENGTH="100"
VALUE= ""

<input type="hidden" value="All" name="sc">

<input type="hidden" value="ON" name="FreeText">

<input type="image" src="/images/nav/button/bttn_form_arrow.gif"
NAME="Action" border="0"/ alt="Submit Search"></td>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 41

Integrating External Content

Example Portal Agent
<input type="text" name="username" size="18">

<input type="password" name="password" size="18">

<input type="image" src="/images/nav/button/bttn_form_arrow.gif"
border="0" name='login' />

<input type="checkbox" name="remember" checked/> <span
class="bdDkGray">Remember my Login
</span

</form>

From the action attribute of the form tag you can determine that the target URL is
relative to the root of the login page’s URL. Therefore the target URL is:

www.siebel.com/index.shtm

You can also determine that the method attribute of the form tag is post:

method="POST"

After reviewing the <input> tags, you can determine that the required arguments
are:

username

password

NOTE: Notice that not all input fields are necessary for login.

For more information about reviewing login forms, see “Determining the Login
Requirements” on page 25.
42 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Example Portal Agent
Define the External Host
The external host is simply the address of the login page. In this example it is
www.siebel.com. Be sure to provide a meaningful name in the Virtual Host Name
field. This value is used when defining the Symbolic URL definition rather than the
actual host name. This will make administration easier if the host name changes.
Also notice that there is no value for the Authentication Type. A value is necessary
only when using NCSA basic authentication.

Figure 1 shows the external host defined for this example.

For more information see “Defining the External Host” on page 31

Define the Symbolic URL
After you define the external host you can define the symbolic URL. Notice that the
URL defined here uses the Virtual Name of the host, not the actual name. Also
notice that when you select the external host from the Host Name field, it is
populated with the actual host name. When SWE constructs the URL, it substitutes
the actual Host Name for the Virtual Name in the URL. In this example, the fixup
type is Default because the page will be displayed in the browser using the
<iframe> tag and therefore, links should not be fixed up in any way.

Figure 1. External Host Administration
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 43

Integrating External Content

Example Portal Agent
Figure 2 shows the Symbolic URL defined for this example.

For more information about defining Symbolic URLs, see “Defining Symbolic URLs”
on page 33.

Define Symbolic URL Arguments
You use symbolic URL Arguments to define the information that you want to
append as arguments to the URL. You also use Symbolic URL Arguments to define
commands that you want to execute. In this case, the following arguments
commands are required:

■ PostRequest. This command instructs SWE to submit the request using a POST
method rather than GET, which is the default. In this case, you know POST is
required because the method attribute of the form tag specifies POST.

■ UserLoginPassword. This command instructs SWE to retrieve the password stored
for the user and pass it to the external application. The name of this argument
is the name of the input field expected by the external application. In this case,
it is password.

■ UserLoginID. This command instructs SWE to retrieve the stored login name for
the user and pass it to the external application. The name of this argument is the
name of the input field expected by the external application. In this case, it is
username.

Figure 2. Symbolic URL
44 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Example Portal Agent
Figure 3 shows the symbolic URL arguments defined for this example.

For more information about Symbolic URL arguments, see “Defining Symbolic URL
Arguments” on page 36.

For more information about Symbolic URL commands, see “Portal Agent Command
Reference” on page 48.

Define User Login Credentials
Finally you must define login credentials for a user. The values defined here will be
appended as arguments to the URL constructed by SWE. In this case, the following
username and password are defined:

■ username = Joe_Smith@yahoo.com

■ password = abracadabra

Figure 3. Symbolic URL Arguments
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 45

Integrating External Content

Example Portal Agent
Test
After completing the previous steps, you can test the integration. Log out of the
application, and then log back in as the test user. Navigate to the applet or Web page
item that is associated with the Symbolic URL. Content from the external host, in
this case Siebel.COM, is displayed in the Siebel user interface, as shown in Figure 4.
Notice that the Joe Smith is logged into Siebel.COM.

Figure 4. External Content Displayed in the Siebel User Interface
46 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Reviewing the SWE Log File
Reviewing the SWE Log File
The SWE log file can help you debug errors in your Portal Agent configuration.

■ The location of the log file is, siebsrvr_root\log.

■ The name of the log file is, swelog_xxx.log, where xxx=process id.

The log file is not enabled by default.

To enable the SWE Log file

1 Open your application’s configuration file, for example uagent.cfg.

Application configuration files are located in the
siebsrvr_root\BIN\language_code.

2 Find the parameter SWELOG and change its value to Enable.

SWELOG = Enable
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 47

Integrating External Content

Portal Agent Command Reference
Portal Agent Command Reference
The following commands allow you to do things such as use a set of stored
credentials for authentication or define additional attributes for the <iframe> tag.
These commands are entered as Symbolic URL Arguments. See “Defining Symbolic
URLs” on page 33.

EncodeURL

Usage Use the EncodeURL command to specify whether or not the symbolic arguments
should be encoded when appended to the URL. By default the URL is encoded.
However, some servers do not recognize standard encoding, in which case you can
use this command to not encode the URL.

Symbolic
URL

Arguments

Define the following fields in the Symbolic Arguments applet:

IFrame

Usage Use the IFrame command to define additional HTML attributes for the <iframe>
tag.

Symbolic
URL

Arguments

Define the following fields in the Symbolic URL Arguments applet:

Disposition
Types

Use the IFrame disposition type with the IFrame disposition type.

Field Value

Name EncodeURL

Argument Value TRUE or FALSE

Field Value Example

Name Any Name

Argument Value IFrame [attribute] - [value] IFrame Height=100 Width=500
48 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Command Reference
NoCache

Usage Use the NoCache command to instruct SWE not to cache Inline responses on the
server. This command is only valid for the Inline disposition type.

Symbolic
URL

Arguments

Define the following fields on the Symbolic URL Arguments applet:

NoFormFixup

Usage Use the NoFormFixup command to Instruct SWE not to fix up a form by putting
proxy SWE arguments into links that appear on the page.

Symbolic
URL

Arguments

Define the following fields in the Symbolic URL Arguments applet:

Field Value

Name Any name

Argument Value NoCache

Field Value

Name Any name

Argument Value NoFormFixup
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 49

Integrating External Content

Portal Agent Command Reference
PreLoadURL

Usage Use this command to specify a preloaded URL. Use this command when the
external application gathers information from a preloaded cookie on the client
machine. Use this command with disposition types of IFrame and Web Control.

Symbolic
URL

Arguments

Define the following fields in the Symbolic URL Arguments applet:

PostRequest

Usage Use PostRequest to configure the Portal Agent to use the POST method instead of
the GET method, which is the default. Use this command when the method of the
action attribute is POST. This method avoids displaying user information on a Web
page or browser status bar. Use this command with disposition types of IFrame and
Web Control only.

Symbolic
URL

Arguments

Define the following fields in the Symbolic URL Arguments applet:

Field Value

Name PreLoadURL

Argument Value [URL]

Field Value

Name Any Name

Argument Value PostRequest
50 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Command Reference
UserLoginId

Usage Use the UserLoginId command to send the stored user login ID for a particular Web
application. The command gets the user’s Login ID from the My Login Credential
business component.

See “Defining End User Login Credentials” on page 40 for more information about
how user login IDs are entered into this business component.

Symbolic
URL

Arguments

Define the following fields in the Symbolic URL Arguments applet:

UserLoginPassword

Usage Use the UserLoginPassword command to send the stored user password for a
particular Web application. The command gets the user’s password from the My
Login Credential business component.

See “Defining End User Login Credentials” on page 40 for more information about
how user passwords are entered into this business component.

Symbolic
URL

Arguments

Define the following fields in the Symbolic URL Arguments applet:

Field Value

Name [input field name]

Argument Value UserLoginId

Field Value

Name [input field name]

Argument Value UserLoginPassword
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 51

Integrating External Content

Portal Agent Command Reference
UseSiebelLoginId

Usage Use the UseSiebelLoginId command to retrieve the user’s Siebel login ID from the
stored set of credentials.

Symbolic
URL

Arguments

Define the following fields in the Symbolic URL Arguments applet:

UseSiebelPassword

Usage Use the UseSiebelPassword command to retrieve the user’s Siebel password from
the stored set of credentials.

Symbolic
URL

Arguments

Define the following fields in the Symbolic URL Arguments applet:

Field Value

Name [input field name]

Argument Value UseSiebelLoginId

Field Value

Name [input field name]

Argument Value UseSiebelPassword
52 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Command Reference
WebControl

Usage Use the WebControl command to define additional HTML attributes for Portal
Agents with a disposition type of Web Control.

Symbolic
URL

Arguments

Define the following fields in the Symbolic URL Arguments applet:

Field Value Example

Name Any Name

Argument
Value

WebControl [attribute] - [value] WebControl Height=100 Width=500
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 53

Integrating External Content

Portal Agent Command Reference
54 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web
Applications 3
This chapter describes how to use the XML Web Interface to deliver content to
external portal frameworks and Web application environments. The XML interface
provides industry-standard integration to third-party development environments,
such as ASP and JSP, as well as providing a model consistent with emerging Web
technologies. The XML interface can be used across all Siebel eBusiness
Applications, although some specialized applets may have limited support for this
interface.

Developers can configure Siebel applications to support different markups, such as
cHTML and xHTML, by combining the XML interface with XSL style sheets and the
eAI XSLT business service.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 55

Delivering Content to External Web Applications

Overview of the XML Web Interface
Overview of the XML Web Interface
The XML interface provides access to Siebel eBusiness Applications through the
Siebel Web Engine (SWE). SWE generates user interface, in HTML or WML, using
views, applets, and templates. These UI constructs provide access to and filtering
for business object and business component data. They also provide access to
visibility, navigation, and security. By rendering the XML based on the underlying
SWE technology, the XML interface exposes business object and business
component data, and UI elements and constructs, such as visibility, navigation, edit
presence, personalization, and security. Most Siebel applets, with the exception of
applets based on certain specialized applet classes, can be rendered in XML through
the XML interface. The XML interface can be invoked using the following methods:

■ Server configuration parameters

■ Inbound URL query string parameters

■ Inbound HTTP post of XML document

■ Using the Web Engine Interface business service

Accessing Siebel XML
By default, Siebel eBusiness Applications present a standard HTML-based user
interface (UI) to end users. When you use the XML interface, the standard
architecture changes slightly; an XML interface layer is introduced. The XML
interface layer accesses Siebel eBusiness Applications through the SWE using the
UI constructs, views, applets, and templates. It provides visibility into Siebel
business objects and business components. These UI constructs provide not only
filtering and access to business object and business component data, but also
provide access to visibility, navigation, and security.

You can use the XML interface to retrieve data and UI constructs from your Siebel
eBusiness Application and display it to end users according to your business needs.
You can also combine this interface with XSL style sheets and the XSLT business
service to generate custom HTML or other markup languages directly from the
Siebel application.
56 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Accessing Siebel XML
For example, you can display a Siebel view using XML format rather than HTML by
using a SWE command to set the markup language to XML. This example uses the
Account view as an example.

To view the Accounts view in XML

1 Log in to your Siebel application.

2 Type the following SWE commands and arguments appended to the URL in your
browser:

SWEcmd=GotoPageTab&SWEScreen=Accounts+Screen&SWESetMarkup=XML

For example, using the mobile Web client, the URL would look like the
following:

http://localhost/start.swe
?SWECmd=GotoPageTab&SWEScreen=Accounts+Screen&SWESetMarkup=XML

The Accounts view is rendered in XML format as shown in the following figure.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 57

Delivering Content to External Web Applications

Siebel OM and Web Server Configuration and Markup Determination
Siebel OM and Web Server Configuration and Markup
Determination

The Siebel Web Engine (SWE) can be configured to produce output in HTML and
XML markup languages. The default markup for a given object manager is set using
the SWEMarkup parameter in the SWE section of the object manager configuration
file. Based on browser or device detection or parameters set on the inbound request,
this default markup may be overridden.

The following is a summary of how the markup will be determined for a given
request. The following three steps are used in the markup determination process for
a given request. They are listed by priority.

1 Inbound request, SWESetMarkup="XML or HTML". This is an optional inbound
request parameter that can be used to override the User Agent Service and Server
configuration. Valid values for this are XML or HTML. The User Agent Service
and server configuration are not used to determine the markup when the
SWESetMarkup parameter is defined on the inbound request.

2 User agent service. This service is used to determine the markup based on the
device or browser that generated the request. The service will take information
from the request header and look up the designated markup in the device table.
The resulting markup is passed to the next step. Note, if no match is found in
the device table the default markup is HTML.

3 Dynamic markup comparison. Assuming that no markup is specified by the
inbound request SWESetMarkup parameter, the markup from the user agent
service is compared to the server default configuration to determine what
markup will be generated. The server default markup is designated by the
SWEMarkup parameter in the OM .cfg file.
58 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Siebel OM and Web Server Configuration and Markup Determination
Table 4 shows a summary of the markup that will be generated for a given request
based on the intersection of the server configuration markup and the markup from
the user agent service.

Table 4. Markup Summary

Server Configuration Value User Agent Markup Value

HTML XML

HTML HTML XML

XML XML XML
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 59

Delivering Content to External Web Applications

Connecting to the XML Web Interface
Connecting to the XML Web Interface
The XML Web Interface can be used against any Siebel eBusiness Application.
Requests to generate XML from Siebel eBusiness Applications can be submitted
through a Siebel Web Server or using the Web Engine Interface business service. In
both cases, requests can take the form of a query string or an XML command block.

Submitting HTTP Requests Through the Web Server
You can send HTTP requests to SWE through the Siebel Web Server using a query
string or XML command block. Examples of these two methods are provided in the
following sections.

Query String
You can send HTTP requests to SWE using a query string. For example, the
following code sample illustrates an Active Server Page that uses MSXML to make
an HTTP request. The request logs in to the Siebel application and navigates to the
Accounts screen. The XML response from SWE is transformed into HTML using
XSLT.

<% @LANGUAGE="VBScript" %>

<%

'--

'Open HTTP connection and send XML command req

'--

strURL = "http://" & Request.form ("swe") & "/
start.swe?SWECmd=ExecuteLogin&SWEDataOnly=1&SWEUserName=sadmin&SWE
Password=sadmin&SWESetMarkup=XML
ZO Set xmlhttp = Server.CreateObject("MSXML2.ServerXMLHTTP")

xmlhttp.open "GET", strURL, False
xmlhttp.send ()
Set ologinXmlDoc = xmlhttp.responseXML

strCookie = xmlhttp.getResponseHeader ("Set-Cookie")
On Error Resume Next
If strCookie = "" Then
60 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Connecting to the XML Web Interface
Response.Write ("Unable to connect to Siebel Web Server.
Please check Login Name, Password, and Siebel Web Server URL")

Response.End

End If
strSessionId =

mid(strCookie,inStr(strCookie,"!"),inStr(strCookie,";")-
inStr(strCookie,"!"))

strURL = "http://" & Request.form ("swe") & "/
start.swe?SWECmd=GotoPageTab&SWEScreen=Accounts+Screen&SWESetMarku
p=XML&SWEDataOnly=1" & "&_sn=" & strSessionId

Set xmlhttp = Nothing
Set xmlhttp = Server.CreateObject("MSXML2.ServerXMLHTTP")
xmlhttp.open "GET", strURL, False
xmlhttp.send ()
Set oXmlDoc = xmlhttp.responseXML

'-----------

'Session Var

'-----------

Session ("SWESessionId") = strSessionId
Session ("swe") = Request.form ("swe")

'-----------

'Prepare XSL

'-----------

sXsl = "acctresponse.xsl"
Set oXslDoc = Server.CreateObject("Msxml2.DOMDocument")
oXslDoc.async = false
oXslDoc.load(Server.MapPath(sXsl))

%>

<HTML>

<HEAD>

<TITLE>My Portal</TITLE>...

<BODY>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 61

Delivering Content to External Web Applications

Connecting to the XML Web Interface
...

<TD colSpan=2><%Response.Write (oXmlDoc.transformNode(oXslDoc))%>
</TD>

...

</BODY>

</HTML>

XML Command Block
You can use an XML command block to send the HTTP request through the Siebel
Web server. For example, you can submit inbound XML documents to SWE as the
HTTP request body data. In the Java code sample below, the XML command block
opens a socket connection to the Web server and writes the request data stream to
the socket’s OutputStream.

public static final String FULL_XML_PROC_STR = "<?xml version=\"1.0\"
encoding=\"UTF-8\"?>\n";

InputStream in;
BufferedReader fromServer;
PrintWriter toServer;
Socket socket;
String payload;
String line;

try

 {

 if (request != null && request.length() > 0)

 {

 // send request

 socket = new Socket(url.getHost(), url.getPort());

 toServer = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));

in = socket.getInputStream();

payload = FULL_XML_PROC_STR + request;
toServer.println("POST " + url.toString() + " HTTP/1.0");

toServer.println("Cookie: " + sessionID);
toServer.println("Content-Type: text/xml");
toServer.print("Content-Length: ");
toServer.println(payload.length());
62 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Connecting to the XML Web Interface
toServer.println("");
toServer.println(payload);
toServer.flush();

fromServer = new BufferedReader(new InputStreamReader(in));

 // read the response
while ((line = fromServer.readLine()) != null)
{
. . .
}

fromServer.close();
toServer.close();
socket.close();

 }
}

 catch (Exception ex)

 {

 System.err.println(ex.toString());

 }

Submitting Requests Using the Web Engine Interface
Using Siebel’s Object Interfaces you can access business services. The Web Engine
Interface business service allows you to make requests to the Siebel Web Engine
without having to submit requests through the Web server. Commands can be a
query string or XML command block. The response is in the XML output property
set of the business service.

For example, using the com.siebel.data.SiebelDataBean JavaBean class, you
can access SWE as a business service from within the JSP environment. The
SiebelDataBean provides a direct connection to SWE using the SISNAPI protocol;
you can establish this connection without going through a Web server and the
Siebel Web Extension plug-in. Once the data bean is instantiated, the SWE business
service is obtained as an instance of com.siebel.data.SiebelService by calling
the GetService() method on the data bean with the service name “Web Engine
Interface.”
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 63

Delivering Content to External Web Applications

Connecting to the XML Web Interface
The following code fragments shows four tasks required to make the request:

1 Instantiate the business service.

2 Define the input properties.

3 Invoke the method.

4 Define the output property.

For example, the following code fragment instantiates the Web Engine Interface
business service:

import com.siebel.data.*;

public class myBean

{

 . . .

protected void init(String uName, String passwd, String conn) throws Exception

 {

 if (uName != null && passwd != null && conn != null)

 {

 SiebelDataBean sdBean = new SiebelDataBean();

 sdBean.login(conn, uName, passwd, locale);

 SiebelService service = sdBean.getService(“Web Engine Interface”);

 . . .

 }

 . . .

 }

}

The following code fragment defines the input properties:

 try

 {

 SiebelPropertySet pi = sdBean.newPropertySet();

 SiebelPropertySet po = sdBean.newPropertySet();
64 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Connecting to the XML Web Interface
 pi.setProperty("UserName", getUserName());

 pi.setProperty("RemoteUser", getUserName());

 pi.setProperty("Method","GET");

 pi.setProperty("HTTPPort", "80");

 pi.setProperty("HTTPSPort", "443");

 pi.setProperty("ServerName", getServerName());

 pi.setProperty("ServerPort", getServerPort());

 pi.setProperty("UseCookie", "F");

You can invoke SWE business service methods by calling the SiebelService class
method InvokeMethod() and passing in the method name and the input and output
property sets (com.siebel.data.SiebelPropertySet). Results from the method
invocation are generated as a property in the output property set. Here is a sample
code fragment for invoking the “Start” method:

 // initialize the swe

 if (service.invokeMethod("Start",pi,po))

 {

 printInfo("Done initializing SWE!");

The following code fragment retrieves the output property:

String response = po.getProperty("RespData");

 }

 else

 {

 printInfo("Failed to initialize SWE!");

 }

 }

 catch (SiebelException ex)

 {

 . . .

 }
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 65

Delivering Content to External Web Applications

Connecting to the XML Web Interface
Query String
Using the Web Engine Interface, you can send requests to SWE either as a URL
query string or as an XML document in the request body data. To send a request
using URL, set the property “QueryString” to the URL query string with all the SWE
commands and parameters.

For example, the following code sample defines the input properties (Step 2 in the
SiebelDataBean example) using a query string:

pi.setProperty("UserName", userName);

 pi.setProperty("Mode", "0");

 pi.setProperty("ServerName", getServerName());

 pi.setProperty("ServerPort", getServerPort());

 pi.setProperty("Method", "GET");

 pi.setProperty("RequestBodyType", "text/xml");

 pi.setProperty("RequestURI", uri);

 pi.setProperty("RequestBodyLength", "0");

 pi.setProperty("RequestBodyLengthTotal", "0");

 pi.setProperty("RequestBodyData", "");

String query =
SWECmd=ExecuteLogin&SWEDataOnly=1&SWEUserName=sadmin&SWEPassword=
sadmin&SWESetMarkup=XML

pi.setProperty("QueryString", query);

 pi.setProperty("ScriptName", uri);

 pi.setProperty("Channel", (isSecure ? "https" : "http"));

 //pi.setProperty("SessionID", "1"); // creates if necessary

 pi.setProperty("Client", "client-machine-name");

 pi.setProperty("UseCookie", "F");
66 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Connecting to the XML Web Interface
The following code fragment invokes the Request Web Engine Interface business
service method (Step 3 in the SiebelDataBean example):

boolean result = swe.invokeMethod("Request", pi, po);

NOTE: The Request method is the most commonly used Web Engine Interface
method.

XML Command Block
To send a request using an XML command block, set the input properties
“RequestBodyData,” “RequestBodyLength,” and “RequestBodyLengthTotal.”
The property “RequestBodyData” must contain the XML request as specified in
“Outbound DTD” on page 116. You should either leave the query string blank
or make sure it does not contain the parameter “SWECmd” or its short form “C”
(for example, SWECmd=GotoView or C=Gv).

For example, the following code sample defines the input properties (Step 2 in the
SiebelDataBean example) using an XML command block:

 String testCmd = "<EXEC PATH=\"/sales/start.swe\">" +

 "<CMD NAME=\"SWECmd\" VALUE=\"GotoPageTab\">" +

 "<ARG NAME=\"SWENeedContext\">false</ARG>" +

 "<ARG NAME=\"SWEScreen\">Products Screen</ARG>" +

 "</CMD>" +

 "</EXEC>";

 pi.setProperty("UserName", userName);

 pi.setProperty("Mode", "0");

 pi.setProperty("ServerName", getServerName());

 pi.setProperty("ServerPort", getServerPort());

 pi.setProperty("Method", "POST");

 pi.setProperty("RequestBodyType", "text/xml");
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 67

Delivering Content to External Web Applications

Connecting to the XML Web Interface
 pi.setProperty("RequestURI", uri);

 String xmlRequest = "<?xml version=\"1.0\"?> " + testCmd;

int lenUniCode = (new Integer(xmlRequest.length()))*2String len
=lenUniCode.toString();

 pi.setProperty("RequestBodyLength", len);

 pi.setProperty("RequestBodyLengthTotal", len);

 pi.setProperty("RequestBodyData", xmlRequest);

 pi.setProperty("QueryString", “”);

 pi.setProperty("ScriptName", uri);

 pi.setProperty("Channel", (isSecure ? "https" : "http"));

 pi.setProperty("Client", "client-machine-name");

 pi.setProperty("UseCookie", "F");

The following code fragment invokes the Request Web Engine Interface business
service method (Step 3 in the SiebelDataBean example):

boolean result = swe.invokeMethod("Request", pi, po);
68 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Request Structure
XML Request Structure
The XML API offers developers access to the objects within Siebel eBusiness
Applications. Although it is not required that you have a complete understanding of
Siebel object definitions and architecture, it is strongly recommended that you be
familiar with them.

You can structure requests using a query string or a command block.

Query String
To construct a request using a query string, you append SWE commands and
arguments to a URL. Each command or argument and its value is separated by an
“&”. For example:

SWECmd=ExecuteLogin&SWEDataOnly=1&SWEUserName=sadmin&SWEPassword=
sadmin&SWESetMarkup=XML

For a list of commonly used SWE commands and arguments see “SWE API” on
page 100.

XML Command Block
To initiate an action on a Siebel eBusiness XML screen, you must use a specific set
of XML tags and they must conform to a specific structure. Table 5 lists the three
valid XML tags that are used to perform a command.

Table 5. XML Tags

Tag Description

<EXEC> The root tag for each command that you want to send to the SWE. The
<EXEC> tag encloses the <CMD> and <ARG> tags. This tag
represents a single command.

<CMD> This tag indicates the SWE command that you want to access and
encloses all arguments for the command.

<ARG> This tag indicates the object on which the command is to be executed
and any additional parameters that are required. Unlike the <EXEC>
and <CMD> tags, which are used only once in a command block, you
can have multiple arguments within a command block.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 69

Delivering Content to External Web Applications

XML Request Structure
For example, using the information from Table 5, a valid syntax format for an XML
command block is as follows:

<EXEC>

<CMD NAME=”SWEcmd” VALUE=”command name”>

<ARG NAME=”argumentName”>argument1Value</ARG>

<ARG NAME=”argumentName”>argument2Value</ARG>

...

<ARG NAME=”argumentName”>argumentNValue</ARG>

<ARG NAME="SWESetMarkup"> XML | HTML </ARG>

<ARG NAME="SWEDataOnly"> TRUE | FALSE </ARG>

<ARG NAME="SWESetNoTempl"> TRUE </ARG>

</CMD>

</EXEC>

Each <EXEC> tag encloses a complete command block. The <CMD> and
<ARG> tags are enclosed within the <EXEC> tag, and their attributes and values
specify which commands are executed by the SWE.

A valid XML command block must conform to a specific structure. It must have a
valid execute tag followed by a command tag that encloses the arguments. The
syntax of the name-value pairs and the attributes that accompany the XML tags
within a command block must follow a specific format. This section details the
syntax of each XML tag. For the DTD for the inbound XML document, see “Inbound
DTD” on page 115.

EXE Tag
The Execute tag is the root tag for each command that you want to execute.

Description
Think of the Execute tag as a container. Each container represents a single SWE
command or screen action. Enclosed within an Execute tag are the commands,
arguments, and information required to complete a single command. There should
be only one <EXEC> tag for each command that you want to execute. The PATH
attribute is the only attribute used by the <EXEC> tag, although it is not required.
70 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Request Structure
Attributes
Table 6 lists the attributes used with the Execute tag:

Example
The following example uses the Execute tag to enclose the login command.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="ExecuteLogin">

<ARG NAME="SWEUserName">jdoe</ARG>

<ARG NAME="SWEPassword">jdoepassword</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTempl">TRUE</ARG>

</CMD>

</EXEC>

CMD Tag
The Command tag is required for each command block and is used to indicate the
SWE command that you want to execute.

Description
Like the Execute tag, the Command tag also acts as a container. Enclosed between
the open and close Command tags are the arguments required to complete a
command. There should be only one <CMD> tag for each command block that
you want to execute.

Table 6. EXEC Tag Attributes

Attribute Description

PATH The PATH attribute is used to indicate the location of the SWE object
manager. By default, the eBusinessSWEXML application looks in its root
directory for the SWE object manager. If you want to specify an object
manager for the Web application to use, you must indicate its location
using the PATH attribute.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 71

Delivering Content to External Web Applications

XML Request Structure
Attributes
Table 7 lists the attributes that are used with the Command tag:

Example
Using the information from the table above, the following example illustrates how
to use the Command tag to execute a login command:

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="ExecuteLogin">

<ARG NAME="SWEUserName">jdoe</ARG>

<ARG NAME="SWEPassword">jdoepassword</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTempl">TRUE</ARG>

</CMD>

</EXEC>

Table 7. CMD Tag Attributes

Attribute Description

NAME The NAME attribute should always be set to “SWECmd.” This indicates
that the type of command you want to execute is a SWE command.

VALUE The VALUE attribute specifies which SWECmd you want to execute.
Listed below are the SWE commands most commonly used with
eBusiness:

■ ExecuteLogin

■ GotoPageTab

■ InvokeMethod

■ LogOff
72 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Request Structure
ARG Tag
A command block can contain multiple Argument tags. Each Argument tag
indicates an additional command parameter required to complete the action
specified in the command block.

Description
The Argument tag uses name/value pairs to send command parameters to the SWE.
A command will not execute without having all the appropriate parameters passed
to the SWE.

Attributes
Table 8 lists the attributes that are used with the Argument tag.

Table 8. ARG Tag Attributes

Attribute Description

NAME This is the only attribute used by the Argument tag. The NAME attribute
is used to indicate an argument, or the name of a parameter, for which
you are sending additional information. The parameter’s value is entered
between the open and close Argument tags.

Listed below are the parameter names most commonly used with
eBusiness:

■ SWEApplet

■ SWEDataOnly

■ SWEMethod

■ SWEPassword

■ SWEScreen

■ SWESetNoTempl

■ SWESetMarkup

■ SWESetRowCount

■ SWEStyleSheet

■ SWEUserName

■ SWEView

Table 9 on page 76 lists the values that are most commonly used with
these parameter names.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 73

Delivering Content to External Web Applications

XML Request Structure
Example
For each argument name that you include in a command block, you must also
indicate a value for the argument. For example, to use the InvokeMethod command,
you must indicate which method you want to invoke. Additionally, if the method
is one that requires parameters, as is the case with the WriteRecord, you must send
those parameters to the SWE. With the WriteRecord method, you need to indicate
the view and the applet you are working with. You also need to indicate the column
to which you want to write the record, and finally you need to indicate what
information you want to write. The following example illustrates how to use
Argument tags to send the required parameters for a WriteRecord method:

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">WriteRecord</ARG>

<ARG NAME="SWEView">Account List View</ARG>

<ARG NAME="SWEApplet">Account List Applet</ARG>

<ARG NAME="Lot Name">65 metal car</ARG>

<ARG NAME="Starting Price">3.00</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTempl">TRUE</ARG>

</CMD>

</EXEC>hr

Required Arguments
The following three arguments are required for each command block sent to
the SWE:

<ARG NAME="SWESetMarkup">XML | HTML | WML</ARG>

<ARG NAME="SWEDataOnly">TRUE | FALSE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>
74 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Request Structure
■ SWESetMarkup. The SWE returns a response for each command block it receives.
You can use the SWESetMarkup attribute to indicate whether a response is
returned as XML or HTML.

You can also set the response markup format by allowing the User Agent (UA)
service to retrieve the default markup from the UA device table, or by setting the
SWESetMarkup property in the appropriate Siebel Server configuration file.
The SWESetMarkup tag is not required in the payload when you use one of
these alternatives.

NOTE: The examples in this chapter specify the response markup format using
the SWESetMarkup attribute in the payload.

■ SWEDataOnly. In addition to specifying the type of markup language for a SWE
response, you must also indicate whether the response should include data only
or data and user interface information, such as non-data controls (anchors and
navigation controls). You can set the SWEDataOnly attribute to TRUE to indicate
that only data should be returned, or you can set it to FALSE to indicate that both
data and user interface information should be returned.

NOTE: If the SWEDataOnly parameter is not included, the default is FALSE.

■ SWESetNoTempl. By default, Siebel eBusiness XML uses a server-side Web
template to filter specific items and controls from SWE responses. When using
XML, you can control whether a response will return all the information related
to the request or a subset of it dictated by the Web template. Setting the attribute
to TRUE makes sure that the Web template is not used and that the SWE
response contains all the necessary information to complete an action. When a
SWESetNoTempl attribute is set to FALSE, the Web template is used and the page
items and controls specified in the template are filtered from the response.

NOTE: If the SWESetNoTempl parameter is not included, the default is FALSE.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 75

Delivering Content to External Web Applications

XML Request Structure
76 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Common Name-Value Pairs
Table 9 lists commonly used argument name-value pairs.

NOTE: When determining what arguments to define, it is a good idea to look at the
XML Response. The response will include what arguments are expected.

Table 9. ARG Parameter Name-Values Pairs

Parameter Name Parameter Values

SWEApplet Applet name

SWEDataOnly TRUE

FALSE

SWEMethod ■ DeleteRecord

■ EditRecord

■ ExecuteQuery

■ GoToNextSet

■ GotoPageTab

■ NewRecord

■ NewQuery

■ WriteRecord

SWEPassword Password

SWEScreen Screen name

SWESetMarkup HTML

XML

SWEUserName User name

SWEView View name

Delivering Content to External Web Applications

XML Response Structure
XML Response Structure
When you send a command block to a Siebel eBusiness SWEXML application, you
access the Siebel eBusiness XML application screens. If the action specified in the
command block is successfully executed, the data and all of the objects from the
resulting screen are returned within an HTTP response. The format of the response
is XML or HTML, depending on the SWESetMarkup setting that was sent in the
request payload.

You must develop the mechanism by which your Web server handles XML
responses. Using the information provided in this section you can develop a parser,
a Web application, or another control to extract the necessary data from XML
responses and display the appropriate information to users. For the DTD for the
outbound XML document, see “Outbound DTD” on page 116.

Errors
If a command block contains an error or is unsuccessful, the specified action is not
executed. Instead, the Siebel eBusiness XML user interface retains its current state
and the SWE returns an error. Based on the markup format you have specified, an
error response is returned as XML or HTML.

An XML error response contains an <ERROR> tag within the payload. Descriptive
text for the error is enclosed between the open and close <ERROR> tags.

XML Response
When the SWESetMarkup attribute in a command block is set to XML, the response
payload from the Siebel eBusiness XML Web server is returned in XML format. The
payload consists of an XML declaration followed by the core XML tags that contain
and describe the data.

Each XML tag represents an object from a Siebel eBusiness XML application screen
that you requested. The attributes within each tag are read-only and represent the
properties of the object.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 77

Delivering Content to External Web Applications

XML Response Structure
Table 10 lists the major XML tags that are returned in a response in which the
SWEDataOnly attribute is set to TRUE.

NOTE: The response tags described in this appendix are a subset of the tags that can
be returned by the SWE.

Table 10. XML Response Tags

Tag Description and Attributes

<APPLICATION> The root tag for each response that is returned from the SWE. The <APPLICATION>
tag encloses all the XML response data.

Attribute:
■ NAME. This attribute indicates the name of the application from which the

response is generated. For XML requests, the application name in the response will
always be “Siebel eBusiness XML.”

<SCREEN> This tag identifies the eBusiness screen that is the result of, or is accessed by, the
command in your request. The <SCREEN> tag also encloses all of the XML tags that
identify the data within the screen.

Attributes:
■ CAPTION. This attribute indicates the caption of the screen.

■ ACTIVE. A value of TRUE indicates that the screen is active. A value of FALSE
indicates that the screen is inactive.

■ NAME. This attribute indicates the screen name, which is used to identify the
screen.

<VIEW> This tag identifies the eBusiness view that is the result of, or is accessed by, the
command block in your request. This tag also encloses all of the XML tags that identify
the data within the view.

Attributes:
■ TITLE. This attribute indicates the title of the view.

■ ACTIVE. A value of TRUE indicates that the view is active. A value of FALSE
indicates that the view is inactive.

■ NAME. This attribute indicates the view name, which is used to identify the view.
78 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Response Structure
<APPLET> This tag identifies the eBusiness applet that is the result of, or is accessed by, the
command block in your request. It also encloses all of the XML tags that identify the
data within the applet.

Attributes:
■ ROW_COUNTER. This attribute indicates how many records out of the entire set of

records are currently displayed. The ROW_COUNTER attribute is a string of the
form, 1 - n of N.

■ NO_DELETE. A value of TRUE indicates that the records in the applet cannot be
deleted. A value of FALSE indicates that the records in the applet can be deleted.

■ NO_EXEC_QUERY. A value of TRUE indicates that a query cannot be executed in
the applet. A value of FALSE indicates that a query can be executed in the applet.

■ NO_UPDATE. A value of TRUE indicates that the records in the applet cannot be
updated. A value of FALSE indicates that the records in the applet can be updated.

■ MODE. Indicates the mode of the applet, which can be one of the following: Base,
Edit, New, Query, Sort.

<APPLET>

(Continued

Attributes:
■ TITLE. This attribute title of the applet.

■ NO_INSERT. A value of TRUE indicates that records cannot be inserted into the
applet.

■ CLASS. Indicates the class being used by the applet.

■ NO_MERGE. A value of TRUE indicates that records in the applet have not been
merged. A value of FALSE indicates that the records in the applet have been merged.

■ ACTIVE. A value of TRUE indicates that the applet is active. A value of FALSE
indicates that the applet is inactive.

■ ID. This attribute indicates the applet ID, and can be used to identify the applet.

■ NAME. This attribute indicates the applet name, which is used to identify the
applet.

<LIST> This tag encloses the table of records that is returned from your request. The following
two tags and their subordinate tags are enclosed within the <LIST> tag:

<RS_HEADER>

<RS_DATA>

There are no attributes associated with the <LIST> tag.

Table 10. XML Response Tags

Tag Description and Attributes
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 79

Delivering Content to External Web Applications

XML Response Structure
<RS_HEADER> This tag encloses all the header information about the columns in a list that your
request returns. The <COLUMN>, <METHOD>, and <ERROR> tags can be
enclosed within this tag.

<COLUMN> A response can return multiple <COLUMN> tags. Each <COLUMN> tag within an
<RS_HEADER> tag indicates another column within the parent list.

Attributes:
■ NUMBER_BASED. A value of TRUE indicates that the data in the column are

numeric. A value of FALSE indicates that the data are not numeric.

■ CALCULATED. A value of TRUE indicates that the data in the column are calculated
from other values, as opposed to being input. A value of FALSE indicates that the
data are not calculated.

■ LIST_EDITABLE. A value of TRUE indicates that the data in the column are editable.
A value of FALSE indicates the data are not editable.

■ HTML_TYPE. This attribute is used to indicate the type of object that is represented
in the column.

■ SCALE. A value of TRUE indicates that the data in the column are scaled. A value of
FALSE indicates that the data are not scaled.

■ FIELD. This attribute indicates the field name associated with the column. The
value in the field name is the same as the column name.

■ HIDDEN. A value of TRUE indicates that the data in the column are hidden on the
eBusiness screen. A value of FALSE indicates that the data are visible on the
eBusiness screen.

Table 10. XML Response Tags

Tag Description and Attributes
80 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Response Structure
<COLUMN> ■ DATATYPE. This attribute indicates the Siebel data-type of the data in the column.

■ DISPLAY _NAME. This attribute indicates the text string that would appear in the
user interface.

■ TEXT_LENGTH. This attribute indicates the maximum length of field entries in the
column.

■ TYPE. This attribute is used to indicate the type of object that is represented in the
column.

■ ID. This attribute indicates the unique ID of the column.

■ TEXT_BASED. A value of TRUE indicates that the data in the column is text based.
A value of FALSE indicates that the data is not text based.

■ NAME. A value of TRUE indicates that the data in the column are hidden on the
eBusiness screen. A value of FALSE indicates that the data are visible on the
eBusiness screen.

■ REQUIRED. A value of TRUE indicates that the data in the column are required. A
value of FALSE indicates that the data are not required.

■ READ_ONLY. A value of TRUE indicates that the data in the column are read-only
and cannot be modified. A value of FALSE indicates that the data are editable.

<RS_DATA> This tag encloses table rows that are returned from your request. The <RS_DATA>
tag encloses the <ROW> tag and the <ROW> tag’s subordinate tags.

Table 10. XML Response Tags

Tag Description and Attributes
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 81

Delivering Content to External Web Applications

XML Response Structure
<ROW> A response can return multiple <ROW> tags. Each <ROW> tag within an
<RS_DATA> tag indicates another record within the table. The <ROW> tag
encloses the <FIELD> tag.

Attributes:
■ SELECTED. This attribute indicates whether the current row is selected. A value of

TRUE indicates that the row is selected. A value of FALSE indicates it is not.

■ ROWID. This attribute is used to identify the row.

<FIELD> A response can return multiple <FIELD> tags. Each <FIELD> tag within a <ROW>
tag indicates another item of data within the record. The field’s value is entered
between the open and close <FIELD> tags.

Attributes:
■ VARIABLE. This attribute indicates the column to which the field is associated. The

value of the VARIABLE attribute should coincide with the NAME attribute of a
column.

■ NAME. This attribute is used to identify the field. In most cases, the field name is
identical to the column name.

Table 10. XML Response Tags

Tag Description and Attributes
82 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Response Structure
A valid syntax format for an XML response is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<APPLICATION NAME="Siebel Sales MidMarket">

<SCREEN CAPTION="caption" ACTIVE="TRUE" NAME="screen name">

<VIEW TITLE="title" ACTIVE="TRUE | FALSE" NAME="view name">

<APPLET ROW_COUNTER="n - N of X" NO_DELETE="TRUE | FALSE"
NO_EXEC_QUERY="TRUE | FALSE" NO_UPDATE="TRUE | FALSE" MODE="Base" TITLE="applet
title" NO_INSERT="TRUE | FALSE" CLASS="CSSSWEFrameLotList" NO_MERGE="TRUE | FALSE"
ACTIVE="TRUE | FALSE" ID="N" NAME="applet name">

<LIST>

<RS_HEADER>

<COLUMN NUMBER_BASED="TRUE | FALSE" CALCULATED="TRUE | FALSE"
LIST_EDITABLE="Y | N" HTML_TYPE="Field" SCALE="TRUE | FALSE" FIELD="Accept Less"
HIDDEN="TRUE | FALSE" DATATYPE="text" TEXT_LENGTH="255" TYPE="Field"
TOTAL_REQUIRED="TRUE | FALSE" ID="N" TEXT_BASED="TRUE | FALSE" NAME="Accept Less"
REQUIRED="TRUE | FALSE" READ_ONLY="TRUE | FALSE"/>

</RS_HEADER>

<RS_DATA>

<ROW SELECTED="TRUE | FALSE" ROWID="id number1">

<FIELD VARIABLE="column name" NAME="field name1">

field value1

</FIELD>

...

<FIELD VARIABLE="column name" NAME="field nameN">

field valueN

</FIELD>

</ROW>

...

<ROW SELECTED="TRUE | FALSE" ROWID="id number1">

<FIELD VARIABLE="column name" NAME="field name1">

field value1

</FIELD>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 83

Delivering Content to External Web Applications

XML Response Structure
...

<FIELD VARIABLE="column name" NAME="field nameN">

field valueN

</FIELD>

</ROW>

</RS_DATA>

</LIST>

</APPLET>

</VIEW>

</SCREEN></APPLICATION>

HTML Response
When the SWESetMarkup attribute in a command block is set to HTML, the
response payload from the Siebel eBusiness Application Web server is going to be
in HTML format. The HTML option allows you to display the returned data in a
read-only mode. The HTML response includes all the data and navigation controls
that are exposed in the user interface.
84 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations
Common Operations
There are various combinations of XML commands you can use to execute an action
in a Siebel eBusiness XML application. Each section below offers one solution for
executing a Siebel eBusiness Application action.

TIP: To get a better understanding of the objects available on a specific screen, you
can use a Web browser to access the user interface by navigating to the following
URL: http://<machine name>/callcenter/start.swe. <machine name>. This
is the Web server where the Siebel eBusiness Application is installed.

Logging In
Logging in is required to start a new Siebel eBusiness XML session. The first
command block of a new session should always be an ExecuteLogin command.

Detailed below is an example of how to construct a login command block for XML:

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="ExecuteLogin">

<ARG NAME="SWEUserName">user name</ARG>

<ARG NAME="SWEPassword">user’s password</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 85

Delivering Content to External Web Applications

Common Operations
Logging Off
The last command block of a session should always be a Logoff command.

Detailed below is an example of how to construct a logoff command block for XML:

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="ExecuteLogoff">

<ARG NAME="SWEUserName">user name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

Navigating to a Screen
You use the GotoPageTab command to navigate to a specific screen. The Web
application returns either an XML or HTML response containing data about the
screen’s views and applets. For a complete list of the screen names to which you
can navigate, see Table 10 on page 78.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="GotoPageTab">

<ARG NAME="SWEScreen">screen name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
86 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations
Navigating Within a Screen
When you use the InvokeMethod to execute an XML command, you must also
indicate the view and the applet that you want to access. For example, you may
want to modify or add a record. To add a record, you must first issue the NewRecord
command, and then you must indicate to which view and applet you want the
record to be added. To perform an action on a screen, you must navigate to the
object within the screen that is to receive the action. The following two arguments
are used to navigate within a screen:

■ SWEView

■ SWEApplet

For a complete list of the view and applet names to which you can navigate, see
Table 10 on page 78. The example below details how to specify the view and applet:

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">method name</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 87

Delivering Content to External Web Applications

Common Operations
Querying Items
To successfully perform a query, you must first navigate to a screen that allows
queries. You must then send two separate requests to the eBusinessSWEXML
application. The first request executes the Create New Query action, and the second
executes the Execute Query action.

NewQuery
<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">NewQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

ExecuteQuery
In the ExecuteQuery command block, you must include an <ARG> tag. The tag
must include a NAME parameter to identify the column (the field you want to
search), and a value to indicate the search criteria.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe"

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">ExecuteQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="column name">search criteria</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>
88 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations
<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

The auction items that match the query are returned in the response. The returned
payload contains complete lot names and IDs for each item.

TIP: Each row (or record) within a response contains an ID that uniquely identifies
it. You can use a row ID as a parameter in a query to selectively single out a record
so that you can modify or delete it.

Adding Records
To successfully add a record to a list, you must first navigate to a screen that allows
records to be inserted. Then, you must send two separate requests to the SWEXML
application. The first request executes the New Record action. The second executes
the WriteRecord action.

NewRecord
In a NewRecord command block, you use <ARG> tags to indicate the view and
applet to which you want to add the NewRecord.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">
<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">NewRecord</ARG>
<ARG NAME="SWEView">view name</ARG>
<ARG NAME="SWEApplet">applet name</ARG>
<ARG NAME="SWESetMarkup">XML</ARG>
<ARG NAME="SWEDataOnly">TRUE</ARG>
<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 89

Delivering Content to External Web Applications

Common Operations
WriteRecord
In a WriteRecord command block, you must include an <ARG> tag for each field
you want to add to the new record. The NAME attribute identifies the field name,
and the value between the open and close <ARG> tags indicates the field’s value.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">WriteRecord</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="column name1">field value</ARG>

<ARG NAME="column name2">field value</ARG>

...

<ARG NAME="column nameN">field value</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
90 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations
Modifying Records
To successfully modify a record using XML, you must first navigate to a screen
that allows records to be modified. Then, the following four requests must be sent
separately to the SWEXML application:

1 Activate a new query.

2 Execute the query.

3 Activate the edit record method.

4 Write the record.

NOTE: When modifying a record, you should use a primary key (such as a row ID)
as the parameter for the query. This makes sure that only one record is returned and
selected in the response. If you do not use a primary key to perform the query,
several records may be returned in the response. There is a chance that the record
you want to update is not the one selected.

NewQuery
When you modify a record, you must first execute a query to find the record
you want to modify. The records that are returned as a result of the query are
then accessible through XML.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">NewQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 91

Delivering Content to External Web Applications

Common Operations
ExecuteQuery
When you use the ExecuteQuery command block in an effort to modify a record,
you must include an <ARG> tag that identifies the primary key of the record you
want to modify. This makes sure that the query returns only one record, which is
automatically selected. You can then use the EditRecord command to update the
selected record.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">ExecuteQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="primary key column name">primary key value</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
92 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations
EditRecord
After executing the query the eBusiness screen is populated with the record
you want to modify. You use the EditRecord to access the record.

NOTE: If you do not use a primary key to perform the query, several records
may be returned in the response.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">EditRecord</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 93

Delivering Content to External Web Applications

Common Operations
WriteRecord
In a WriteRecord command block, you must include an <ARG> tag for each
field you want to modify in an existing record.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">WriteRecord</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="column name1">field value</ARG>

<ARG NAME="column name2">field value</ARG>

...

<ARG NAME="column nameN">field value</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
94 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations
Deleting Records
To successfully remove a record from the database, you must first navigate to a
screen that allows records to be deleted. Then, the following three requests must
be sent separately to the eBusinessSWEXML application:

1 Activate a new query.

2 Execute the query.

3 Delete the selected record.

NOTE: When deleting a record, you should use a primary key (such as a row ID)
as the parameter for the query. This makes sure that only one record is returned and
selected in the response. If you do not use a primary key to perform the query,
several records may be returned in the response. There is a chance that the record
you want to delete is not the one selected.

NewQuery
When you delete a record, you must first execute a query to find the record you
want to delete. You should use search criteria, such as a primary key, to make sure
that the query returns only one record.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">NewQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 95

Delivering Content to External Web Applications

Common Operations
ExecuteQuery
When you use the ExecuteQuery command block in an effort to delete a record,
you must include an <ARG> tag that identifies the primary key of the record
you want to delete. This makes sure that the query returns only one record, which
is automatically selected. You can then use the DeleteRecord command to delete the
selected record.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">ExecuteQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="primary key column name">primary key value</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

DeleteRecord
You use <ARG> tags to indicate the view and applet that contain the selected
record you want to delete.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">DeleteRecord</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>
96 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations
<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

Picking Records
To pick a value from a pick list and then save the value in the database, first you
need to navigate to a screen and then submit three requests:

1 Navigate to a screen.

2 Get a pick list.

3 Get the RowId of the record to pick.

4 Write the record to the database.

GotoPageTab
First you need to navigate to a screen. For example:

<EXEC PATH="/callcenter/start.swe">

 <CMD VALUE="GotoPageTab" NAME="SWECmd">

 <ARG NAME="SWEScreen">Accounts Screen</ARG>

 <ARG NAME="SWENeedContext">false</ARG>

 <ARG NAME="SWEBID">-1</ARG>

 </CMD>

 <INFO NAME="SWEC">12</INFO>

 </EXEC>

EditField
To return the pick list using the EditField method, you must define arguments that
identify the applet, view, and field on which the pick list is based. For example:

<EXEC PATH="/callcenter/start.swe">

 <CMD VALUE="InvokeMethod" NAME="SWECmd">

 <ARG NAME="SWEApplet">Account Entry Applet</ARG>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 97

Delivering Content to External Web Applications

Common Operations
 <ARG NAME="SWEW">0</ARG>

 <ARG NAME="SWEView">Account List View</ARG>

 <ARG NAME="SWERowId">1-6</ARG>

 <ARG NAME="SWEField">Currency</ARG>

 <ARG NAME="SWEDIC">true</ARG>

 <ARG NAME="SWENeedContext">true</ARG>

 <ARG NAME="SWEH">0</ARG>

 <ARG NAME="SWEReqRowId">1</ARG>

 <ARG NAME="SWESP">true</ARG>

 <ARG NAME="SWEMethod">EditField</ARG>

 </CMD>

 <INFO NAME="SWEC">9</INFO>

 </EXEC>

PickRecord
The PickRecord method returns the RowId of the record to be picked. For example:

<EXEC PATH="/callcenter/start.swe">

 <CMD VALUE="InvokeMethod" NAME="SWECmd">

 <ARG NAME="SWEApplet">Currency Pick Applet</ARG>

 <ARG NAME="SWEView">Account List View</ARG>

 <ARG NAME="SWERowId">0-5129</ARG>

 <ARG NAME="SWENeedContext">false</ARG>

 <ARG NAME="SWEReqRowId">1</ARG>

 <ARG NAME="SWEP">14_Account Entry Applet9_EditField3_1-68_Currency1_1</ARG>

 <ARG NAME="SWEMethod">PickRecord</ARG>

 </CMD>

 <INFO NAME="SWEC">1</INFO>

 </EXEC>

NOTE: The value for the SWEP argument can be found in the XML response from
EditField method.
98 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations
WriteRecord
The WriteRecord method writes the record to the database. For example:

<EXEC PATH="/callcenter/start.swe">

 <CMD VALUE="InvokeMethod" NAME="SWECmd">

 <ARG NAME="SWEApplet">Account Entry Applet</ARG>

 <ARG NAME="SWEView">Account List View</ARG>

 <ARG NAME="SWERowId">1-6</ARG>

 <ARG NAME="SWENeedContext">true</ARG>

 <ARG NAME="SWEReqRowId">1</ARG>

 <ARG NAME="SWEMethod">WriteRecord</ARG>

 </CMD>

 <INFO NAME="SWEC">2</INFO>

 </EXEC>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 99

Delivering Content to External Web Applications

SWE API
100 Siebel Portal Framework Guide MidMarket Edition Version 7.5

SWE API
This section contains reference information about SWE commands, methods, and
arguments.

SWE Commands
Table 11 provides a list of commonly used SWE Commands.

Table 11. SWE Commands

Supported Values
Short
Format Description

Required Args
(with Description)

Optional Args
(with Description)

CanInvokeMethod

For a list of
commonly used
methods, see
Table 12 on
page 105.

C Checks whether a
method can be invoked
on an applet, a
business service, a
buscomp, or the SWE
application.

Called only when OM
is in High Interactivity
mode.

The optional
SWEService,
SWEBusComp, and
SWEApplet arguments
are used to specify the
Siebel object that the
method should be
invoked on. If none of
these are specified,
SWE will check the
CanInvokeMethod
state of the method on
the SWE application
object, which currently
supports a limited set
of InvokeMethod, such
as Logoff, SortOrder,
SaveQuery, and
SaveQueryAs.

SWEMethod - name
of the method.

SWEService - name of
the business service to
check whether the
method can be invoked.

SWEBusComp - name of
the business component
to check whether the
method can be invoked.

SWEApplet - name of the
applet to check whether
the method can be
invoked.

Delivering Content to External Web Applications

SWE API
ExecuteLogin Xlg Executes login for a
user.

SWEUserName -
user name.

SWEPassword -
password.

None

ExecuteNamedQuery Xnq Executes a PDQ. SWEView - name of
the view.

SWEQueryName -
name of the PDQ.

None

GotoPage Gp Goes to a Siebel Web
page (this is the Web
page object defined in
Siebel Tools).

SWEPage - name of
the Web page.

None

GotoPageTab Gt Goes to a Siebel screen.
Will show the default
view for the screen.

SWEScreen - name
of the screen.

None

Table 11. SWE Commands

Supported Values
Short
Format Description

Required Args
(with Description)

Optional Args
(with Description)
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 101

Delivering Content to External Web Applications

SWE API
GotoView Gv Goes to a Siebel view.

If the SWEPostnApplet
and SWEPostnRowId
arguments are
specified, it will
execute a search for the
specified rowId in the
specified applet.

If SWEQMApplet and
SWEQMMethod
arguments are
specified, it will invoke
the method after going
to the view.

SWEView - name of
the view.

SWEKeepContext - if
TRUE, keeps the current
business object context,
when requesting to a
view based on the same
business object.

SWEPostnApplet - name
of the applet on which
the search should
executed.

SWEPostnRowId - row Id
to search for.

SWEQMApplet - name of
the QueueMethod applet.
This is the applet where
the method (as specified
in SWEQMMethod)
should be invoked after
going to the view.

SWEQMMethod - name
of the QueueMethod
method to be invoked.
You can invoke only one
method.

SWEQMArgs - arguments
of the QueueMethod
method.

Table 11. SWE Commands

Supported Values
Short
Format Description

Required Args
(with Description)

Optional Args
(with Description)
102 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

SWE API
InvokeMethod

For a list of
commonly used
methods, see
Table 12.

Inv Invokes a method on
an applet, a business
service, a business
component, or the
SWE application.

The optional
SWEService,
SWEBusComp, and
SWEApplet arguments
are used to specify the
Siebel object on which
the method should be
invoked. If none of
these are specified,
SWE will invoke on the
SWE application
object, which currently
supports a limited set
of InvokeMethod such
as Logoff, SortOrder,
SaveQuery, and
SaveQueryAs.

SWEMethod - name
of the method.

SWEService - name of
the business service to
invoke the method.

SWEBusComp - name of
the business component
to invoke the method.

SWEApplet - name of
the applet to invoke the
method.

LoadService Loads a business
service on the server
side.

SWEService - name
of the business
service to load.

None

Login Lg Loads the login view or
login page. SWE first
looks at the
Acknowledgment Web
View property of the
application object in
the repository for the
login view to show. If
not specified, the
default is the
"Acknowledgment
Web Page" property to
show the login page.

None None

Table 11. SWE Commands

Supported Values
Short
Format Description

Required Args
(with Description)

Optional Args
(with Description)
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 103

Delivering Content to External Web Applications

SWE API
NOTE: The SWEAC command allows users to string two SWE commands in a single
request. For example the follow URL does a SWECmd=ExecuteLogin, and then a
SWEAC=GotoPageTab.

SWECmd=ExecuteLogin&SWEUserName=joe&SWEPassword=passwd&SWEAuxCmd=S
WECmd=GotoPageTab&SWEScreen=Accounts+Screen&SWEReloadFrames=1.

Logoff Bye Executes the database
logoff, then shows the
logoff view or page.
SWE first looks at the
Logoff
Acknowledgment Web
Page property of the
application object in
the repository for the
login page to show. If
none is specified, SWE
will show the login
view or login page,
depending on how
you log in.

None None

ReloadCT Reloads
personalization info.
SWE loads the initial
personalization on
startup, and when the
personalization rules
are changed, SWE does
not update the info
automatically since
there is cost in
performance, so SWE
provides this command
to reload the info.

None None

Table 11. SWE Commands

Supported Values
Short
Format Description

Required Args
(with Description)

Optional Args
(with Description)
104 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

SWE API
SWE Methods
The InvokeMethod command allows you to invoke methods on a applet, business
component, business service, or application. Table 12 lists SWE methods commonly
used with the InvokeMethod SWE command.

Table 12. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)

CollapseTreeItem Used in a tree control to
collapse an expanded item
on the tree.

SWETreeItem: Specify the
path of the item relative to
root. The path is a string of
the form n.n.n.n…where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name
of the view. SWEApplet:
Name of the applet.

None

CopyRecord Performs initialization,
then calls CopyRecord on
the business component.

None None

CreateRecord Performs initialization,
then calls NewRecord on
the business component.

None None

DeleteQuery Deletes a named query. SweNamedQueries: Specify
the name of the named
query to be deleted.

None

DeleteRecord Deletes a record. None None

Drilldown Drills down on the field as
specified in the argument
SWEField.

SWEField: Specify the
name of the applet field that
you want to drilldown on.
The drilldown information
is specified in the
repository.

None
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 105

Delivering Content to External Web Applications

SWE API
EditRecord Edits a record. None SWESeq: Specify the
sequence number of the
Edit template to show.
You can have many Edit
templates for an applet in
Siebel Tools, each identified
by the sequence number.

ExecuteQuery Executes a query. The
query spec of the fields is
specified in the list of
arguments.

None List of arguments with
name and value, where the
name specifies the field
name and the value
specifies the field query
spec. Will set field query
spec before executing the
query.

ExpandTreeItem Used in a tree control to
expand an item on the tree.

SWETreeItem: Specify the
path of the item relative to
root. The path is a string of
the form n.n.n.n…where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name
of the view. SWEApplet:
Name of the applet.

None

GotoFirstSet Goes to the first set of
records. The number of
rows in a set is specified in
the repository.

None None

GotoLastSet Goes to the last set of
records.

None None

GotoNextSet Goes to the next set of
records.

None None

GotoPreviousSet Goes to the previous set of
records.

None None

Table 12. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)
106 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

SWE API
GotoView Goes to a Siebel view.

If the SWEPostnApplet and
SWEPostnRowId
arguments are specified,
will execute a search for the
specified rowId in the
specified applet.

If SWEQMApplet and
SWEQMMethod arguments
are specified, will invoke
the method after going to
the view.

SWETargetView - name of
the view.

SWEKeepContext - if
TRUE, keeps the current
business object if going to
a view that uses the same
business object.

SWEPostnApplet - name
of the applet that the search
should be executed on.

SWEPostnRowId - rowId
to search for.

SWEQMApplet - name of
the QueueMethod applet.
This is the applet where the
method (as specified in
SWEQMMethod) should be
invoked after going to the
view.

SWEQMMethod - name of
the QueueMethod method.
The method to be invoked.
You can invoke only one
method.

SWEQMArgs - arguments
of the QueueMethod
method.

Indent For a hierarchical applet,
moves the current record
down the hierarchy by one
level.

None None

MoveDown For a hierarchical applet,
moves the current record
down the hierarchy within
the same level.

None None

MoveUp For a hierarchical applet,
moves the current record
up the hierarchy within the
same level.

None None

Table 12. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 107

Delivering Content to External Web Applications

SWE API
NewQuery Begins a new query. None None

NewRecord If the applet has an
association applet, shows
the association popup
applet. Otherwise, creates a
new record.

None None

NextTreeItem Used in a tree control to
scroll the tree to the next set
of record.

SWETreeItem: Specifies the
path of the item relative to
root. The path is a string of
the form n.n.n.n…where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name of
the view. SWEApplet:
Name of the applet.

None

Outdent For a hierarchical applet,
moves the current record
down the hierarchy by one
level.

None None

PickNone Makes sure the parent
applet field has nothing
picked from the pick applet.

None None

PickRecord Picks the current row in a
pick applet.

None None

PositionOnRow Positions the record as
specified in the arguments
SWERowIds and
SWERowId. If no
arguments, does nothing.

None SWERowIds: a string
specifying the row Id of
the parent buscomps.

SWERowId: the row Id of
the record to position to.

Table 12. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)
108 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

SWE API
PostChanges Sets the field values as
specified in the list of
arguments to the record
being created or edited.

None List of arguments with
name and value where the
name specifies the field
name and the value
specifies the field value.
Will set these field values
before committing the
record.

PreviousTreeItem Used in a tree control to
scroll the tree to the
previous set of records.

SWETreeItem: Specify the
path of the item relative to
root. The path is a string of
the form n.n.n.n…where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name of
the view. SWEApplet:
Name of the applet.

None

RefineQuery Keeps the current field
query spec and queries
again.

None None

SaveQueryAs Saves the current query as a
named query. The name is
specified in the argument
_SweNamedQueries.

SweNamedQueries: Specify
the name to save the query
as.

None

Table 12. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 109

Delivering Content to External Web Applications

SWE API
SelectTreeItem Used in a tree control to
select an item of the tree.

SWETreeItem: Specifies the
path of the item relative to
root. The path is a string of
the form n.n.n.n…where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name
of the view. SWEApplet:
Name of the applet.

None

SortAscending Sorts the field as specified
in the argument SWEField
in ascending order.

SWEField: Specifies the
name of the applet field that
you want to sort in
ascending order.

None

SortDescending Sorts the field as specified
in the argument SWEField
in descending order.

SWEField: Specifies the
name of the applet field that
you want to sort in
descending order.

None

ToggleTo Toggles to a different
toggle applet.

SWESeq: Sequence number
of the togglet applet to
toggle to.

None

UndoRecord Undoes a record that is
being created or edited.

None None

WriteRecord Commits a record that is
being created or edited.

None List of arguments with
name and value where the
name specifies the field
name and the value
specifies the field value.
Will set these field values
before commiting the
record.

Table 12. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)
110 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

SWE API
SWE Arguments
Table 13 lists some commonly used SWE arguments.

Table 13. SWE Arguments

URL Argument
Short
Format Description Usage Examples

SWECount C Dynamically
generates an index
number for each
hyperlink for the
purpose of
bookmarking each
request.

SWEC=n, where n is a
positive integer number.
<ARG
NAME=“SWEC”>n</
ARG>

SWEC=1, or <ARG
NAME=“SWEC”>1<
/ARG>

SWEDataOnly Discards all UI
content (including
anchors) if set to
TRUE.

SWEDataOnly={TRUE |
FALSE}<ARG
NAME=“SWEDataOnly”
>TRUE|FALSE</ARG>

SWEDataOnly=TRUE
<ARG
NAME=“SWEDataOnl
y”>TRUE</ARG>

SWEExclude Uses the comma-
separated UI
element names
specified as the
value of the
parameter to
exclude UI elements
from appearing in
the output
document.

SWEExclude=“list of
names”. Names can be
MENU, SCREENBAR,
TOOLBAR, THREADBAR,
PAGEITEM,
VIEWBAR.<ARG
NAME=“SWEExcludet”>
list of names</ARG>

SWEExclude=”MENU,
SCREENBAR”<ARG
NAME=“SWEExclude
”>
MENU,SCREENBAR
</ARG>

SWEField F Specifies the name
of the applet field.

SWEField=<field
name><ARG
NAME=“SWEField”>fiel
d name</ARG>

SWEField=Revenue<
ARG
NAME=“SWEField”>
Revenue</ARG>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 111

Delivering Content to External Web Applications

SWE API
SWEFullRefresh Forces a full refresh
of the Siebel Web
Client. Used by the
High Interactivity
client to send a SWE
command to load
the High
Interactivity client
completely.
Typically used for
session interleaving
from a non-Siebel
session to the Siebel
High Interactivity
client application.

SWEFullRefresh={TRUE |
FALSE}<ARG
NAME=“SWEFullRefresh
”>TRUE|FALSE</ARG>

SWEFullRefresh=TRU
E<ARG
NAME=”SWEFullRefr
esh”>TRUE</ARG>

SWEGetApplet This parameter is
used to filter the
outbound XML
document so only
the applet named as
the value of the
parameter will be
allowed in the
output. All other
document content
will be discarded.

SWEGetApplet=<name
of the applet><ARG
NAME=“SWEGetApplet”
>name of the applet</
ARG>

SWEGetApplet=Accou
nt+List+Applet<AR
G
NAME=“SWEGetAppl
et”>Account List
Applet</ARG>

SWEGetPDQ Discards all XML
content and returns
only PDQ list when
set to TRUE.

SWEGetPDQ={TRUE |
FALSE}<ARG
NAME=“SWEGetPDQ”>
TRUE|FALSE</ARG>

SWEKeepContext Kx Keeps the current
business object if
going to a view that
uses the same
business object, if
set to TRUE.

SWEKeepContext={TRUE
| FALSE}<ARG
NAME=“SWEKeepContex
t”>TRUE|FALSE</
ARG>

SWEKeepContext=TR
UE<ARG
NAME=“SWEKeepCo
ntext”>TRUE</
ARG>

Table 13. SWE Arguments

URL Argument
Short
Format Description Usage Examples
112 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

SWE API
SWENeedContext Nct Skips restoring the
state of the view,
applet, busobj, and
buscomp when
going back to a
previously viewed
page, if set to
FALSE.

Default is TRUE for
a view or applet and
FALSE for a Web
page.

SWENeedContext={TRUE
| FALSE}<ARG
NAME=“SWENeedConte
xt”>TRUE|FALSE</
ARG>

SWENeedContext=TR
UE<ARG
NAME=“SWENeedCo
ntext”>TRUE</
ARG>

SWENoAnchor Discards all anchors
if set to TRUE.

SWENOAnchor={ TRUE |
FALSE }<ARG
NAME=“SWENoAnchor”
>TRUE|FALSE</ARG>

SWENoAnchor=TRUE
<ARG
NAME=“SWENoAnch
or”>TRUE</ARG>

SWEReloadFrames RF Forces the reloading
of all HTML frames
when set to TRUE.

SWERF={TRUE|FALSE},
or <ARG
NAME=“SWERF”>TRUE
| FALSE</ARG>

SWERF=TRUE, or
<ARG
NAME=“SWERF”>T
RUE</ARG>

SWEReqRowId Rqr Needs to position to
the row specified in
the argument
SWERowI, if set to
TRUE.

SWEReqRowId={ TRUE |
FALSE }<ARG
NAME=“SWEReqRowId”
>TRUE|FALSE</ARG>

SWEReqRowId=TRUE
<ARG
NAME=“SWEReqRowI
d”>TRUE</ARG>

SWERows Rs Specifies the
number of rows to
be used as an
attribute of an
HTML frameset.

SWERs=n, where n is a
positive integer number.
Or <ARG
NAME=“SWERs”>n</
ARG>

SWERs=1, or <ARG
NAME=“SWERs”>1
</ARG>

SWERowId R The rowId of the
record to position
to.

SWERowId=<rowid><
ARG
NAME=“SWERowId”>
rowid</ARG>

SWERowId=12-
XI46FG<ARG
NAME=“SWERowId”
>12-XI46FG</ARG>

Table 13. SWE Arguments

URL Argument
Short
Format Description Usage Examples
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 113

Delivering Content to External Web Applications

SWE API
SWERowIds Rs A string specifying
the rowId of the
parent buscomps.

SWERowIds=<string of
rowids><ARG
NAME=“SWERowId”>
string of rowids</ARG>

SWERowIds=SWERow
Id0%3d12-
61W25L<ARG
NAME=“SWERowId”
>SWERowId=12-
61W25L</ARG>

SWESetMarkup Temporarily sets the
markup language to
use in the output
document.

SWESetMarkup=<name
of the markup
language><ARG
NAME=“SWESetMarkup”
>markup language</
ARG>

SWESetMarkup=HTM
L<ARG
NAME=“SWESetMark
up”>HTML</ARG>

SWESetNoTempl Disables the use of
templates during
the generation of
the outbound
document.

SWESetNoTempl={TRUE
| FALSE}<ARG
NAME=“SWESetNoTempl
”>TRUE|FALSE</ARG>

SWESetNoTempl=TRU
E<ARG
NAME=“SWESetNoTe
mpl”>TRUE</ARG>

SWESetRowCnt Temporarily sets the
workset size or row
number of list
applets in the view.

SWESetRowCnt=<numb
er of list rows><ARG
NAME=“SWESetRowCnt”
>number of list rows</
ARG>

SWESetRowCnt=50<
ARG
NAME=“SWESetRowC
nt”>number of list
rows</ARG>

SWEXslStyleSheet Specifies the name
of the XSLT
stylesheet to use to
perform the XSLT
on the XML output
document.

SWEXslStyleSheet=<styl
esheet name>. The
stylesheet needs to be in
the application’s webtempl
directory.<ARG
NAME=“SWEXslStyleShe
et”>name of the XSLT
stylesheet</ARG>

SWEXslStyleSheet=ui.
xsl<ARG
NAME=“SWEXslStyle
Sheet”>ui.xsl</
ARG>

Table 13. SWE Arguments

URL Argument
Short
Format Description Usage Examples
114 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Document Type Definition
Document Type Definition
This section lists Document Type Definitions (DTD) for the inbound and outbound
documents used with the XML Web Interface.

Inbound DTD
<!-- Copyright (c) 2001 Siebel Systems, Inc. -->

<!ELEMENT EXEC (CMD, INFO*) >
<!ATTLIST EXEC

ATTR CDATA #IMPLIED
PATH CDATA #IMPLIED
TARGET CDATA #IMPLIED

>
<!ELEMENT CMD (ARG*) >
<!ATTLIST CMD

NAME CDATA #REQUIRED
VALUE CDATA #REQUIRED

>
<!ELEMENT ARG (#PCDATA) >
<!ATTLIST ARG

NAME CDATA #REQUIRED
>
<!ELEMENT INFO (#PCDATA) >
<!ATTLIST INFO

NAME CDATA #REQUIRED
>

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 115

Delivering Content to External Web Applications

Document Type Definition
Outbound DTD
<!-- Copyright (c) 2001 Siebel Systems, Inc. -->

<!ELEMENT APPLICATION (ERROR*, (USER_AGENT?, NAVIGATION_ELEMENTS*, (SCREEN
| APPLET | FORM | PDQ_BAR)*), ERROR*) >
<!ATTLIST APPLICATION

 NAME CDATA #REQUIRED
>

<!ELEMENT USER_AGENT EMPTY>
<!ATTLIST USER_AGENT

MARKUP CDATA #REQUIRED
TYPE CDATA #IMPLIED

>

<!ELEMENT NAVIGATION_ELEMENTS (MENU*,

 TOOL_BAR*,

 SCREEN_BAR*,

 THREAD_BAR*,

 VIEW_BAR*,

 PAGE_ITEM*) >

<!ELEMENT MENU (MENU_ITEM | ERROR)* >
<!ATTLIST MENU

 NAME CDATA #REQUIRED

>

<!ELEMENT MENU_ITEM (#PCDATA | ANCHOR | MENU_ITEM | ERROR)* >
<!ATTLIST MENU_ITEM

NAME CDATA #IMPLIED
ENABLED (TRUE | FALSE) #IMPLIED
TYPE CDATA #IMPLIED

>

<!ELEMENT ANCHOR ((CMD, INFO*) | ERROR*) >
<!ATTLIST ANCHOR
116 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Document Type Definition
ATTR CDATA #IMPLIED
PATH CDATA IMPLIED
TARGET CDATA #IMPLIED

>

<!ELEMENT CMD (ARG*) >
<!ATTLIST CMD

NAME CDATA #REQUIRED
VALUE CDATA #REQUIRED

>

<!ELEMENT ARG (#PCDATA) >
<!ATTLIST ARG

 NAME CDATA #REQUIRED

>

<!ELEMENT INFO (#PCDATA) >
<!ATTLIST INFO

 NAME CDATA #REQUIRED
>

<!ELEMENT TOOL_BAR (TOOL_ITEM | ERROR)* >
<!ATTLIST TOOL_BAR

NAME CDATA #REQUIRED
PATH CDATA #IMPLIED

>

<!ELEMENT TOOL_ITEM (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST TOOL_ITEM

NAME CDATA #REQUIRED
TYPE CDATA #REQUIRED

ATTR CDATA #IMPLIED
MAX_LENGTH CDATA #IMPLIED

>

<!ELEMENT SCREEN_BAR (SCREEN_TAB | VIEW_BAR | ERROR)* >

<!ELEMENT SCREEN_TAB (#PCDATA | VIEW_BAR | ANCHOR | ERROR)* >
<!ATTLIST SCREEN_TAB

NAME CDATA #REQUIRED
ACTIVE (TRUE | FALSE) "FALSE"

 CAPTION CDATA #IMPLIED
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 117

Delivering Content to External Web Applications

Document Type Definition
>

<!ELEMENT THREAD_BAR (THREAD | ERROR)* >

<!ELEMENT THREAD (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST THREAD

 TITLE CDATA #REQUIRED
>

<!ELEMENT VIEW_BAR (VIEW_TAB | ERROR)* >
<!ATTLIST VIEW_BAR

MODE CDATA #IMPLIED
SCREEN CDATA #IMPLIED
TYPE CDATA #IMPLIED

>

<!ELEMENT VIEW_TAB (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST VIEW_TAB

NAME CDATA #REQUIRED
SELECTED (TRUE | FALSE) "FALSE"
TITLE CDATA #IMPLIED

>

<!ELEMENT PAGE_ITEM (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST PAGE_ITEM

NAME CDATA #REQUIRED
ATTR CDATA #IMPLIED
CAPTION CDATA #IMPLIED
TYPE CDATA #REQUIRED

>

<!ELEMENT SCREEN (VIEW | ERROR*) >
<!ATTLIST SCREEN

NAME CDATA #REQUIRED
ACTIVE (TRUE | FALSE) "FALSE"
CAPTION CDATA #IMPLIED

>

<!ELEMENT VIEW (SUB_VIEW_BAR | PDQ_BAR | APPLET | IMG | FORM | ERROR)* >
<!ATTLIST VIEW

NAME CDATA #REQUIRED
ACTIVE (TRUE | FALSE) "FALSE"
CATEGORY CDATA #IMPLIED
TITLE CDATA #IMPLIED

>

<!ELEMENT APPLET (FORM | CONTROL | CALENDAR | TREE | (LIST |
(RS_HEADER, RS_DATA)) | SORT_FIELD | APPLET_TOGGLE | ERROR)* >
118 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Document Type Definition
<!ATTLIST APPLET

NAME CDATA #REQUIRED
ACTIVE CDATA #IMPLIED
CLASS CDATA #IMPLIED
ID CDATA #IMPLIED
MODE CDATA #IMPLIED
NO_DELETE (TRUE | FALSE) "FALSE"
NO_EXEC_QUERY (TRUE | FALSE) "FALSE"
NO_INSERT (TRUE | FALSE) "FALSE"
NO_MERGE (TRUE | FALSE) "FALSE"
NO_UPDATE (TRUE | FALSE) "FALSE"
ROW_COUNTER CDATA #IMPLIED
TITLE CDATA #IMPLIED

>

<!ELEMENT FORM ((CONTROL | CALENDAR | TREE | (LIST | (RS_HEADER,
RS_DATA)) | SORT_FIELD | APPLET_TOGGLE | PDQ_BAR | SUB_VIEW_BAR)* | ERROR*) >

<!ATTLIST FORM

NAME CDATA #IMPLIED
ACTION CDATA #IMPLIED
ATTR CDATA #IMPLIED
METHOD CDATA #IMPLIED
TARGET CDATA #IMPLIED

>

<!ELEMENT CONTROL (#PCDATA | IMG | ANCHOR | PICK_LIST | ERROR)* >
<!ATTLIST CONTROL

NAME CDATA #REQUIRED
ATTR CDATA #IMPLIED
CALCULATED (TRUE | FALSE) "FALSE"
CAPTION CDATA #IMPLIED
DATATYPE CDATA #IMPLIED
ENABLED (TRUE | FALSE) "FALSE"
FIELD CDATA #IMPLIED
FORMAT CDATA #IMPLIED
HIDDEN (TRUE | FALSE) "FALSE"
HTML_TYPE CDATA #IMPLIED
ID CDATA #IMPLIED
MAX_LENGTH CDATA #IMPLIED
NUMBER_BASED (TRUE | FALSE) "FALSE"
READ_ONLY (TRUE | FALSE) "FALSE"
REQUIRED (TRUE | FALSE) "FALSE"
REQUIRED_INDICATOR CDATA #IMPLIED
SCALE CDATA #IMPLIED
TEXT_ALIGN CDATA #IMPLIED
TEXT_BASED (TRUE | FALSE) "FALSE"
TYPE CDATA #IMPLIED
VARIABLE CDATA #IMPLIED

>

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 119

Delivering Content to External Web Applications

Document Type Definition
<!ELEMENT PICK_LIST (OPTION | ERROR)* >
<!ATTLIST PICK_LIST

NAME CDATA #IMPLIED
ATTR CDATA #IMPLIED
VALUE CDATA #IMPLIED

>

<!ELEMENT OPTION (#PCDATA | ERROR)* >
<!ATTLIST OPTION

CAPTION CDATA #IMPLIED
SELECTED (TRUE | FALSE) "FALSE"

>

<!ELEMENT LIST ((RS_HEADER, RS_DATA) | ALERT | ERROR*) >

<!ELEMENT RS_HEADER (METHOD | COLUMN | ERROR)* >

<!ELEMENT RS_DATA (ROW | ERROR)* >

<!ELEMENT METHOD (#PCDATA | ANCHOR)* >

<!ATTLIST METHOD

NAME CDATA #REQUIRED
CAPTION CDATA #IMPLIED
FIELD CDATA #IMPLIED

>

<!ELEMENT COLUMN (METHOD | ERROR)* >

<!ATTLIST COLUMN

NAME CDATA #REQUIRED
CALCULATED (TRUE | FALSE) "FALSE"
DISPLAY_NAME CDATA #IMPLIED
DATATYPE CDATA #IMPLIED
FIELD CDATA #IMPLIED
FORMAT CDATA #IMPLIED
HIDDEN (TRUE | FALSE) "FALSE"
HTML_TYPE CDATA #IMPLIED
ID CDATA #IMPLIED
LIST_EDITABLE CDATA #IMPLIED
NUMBER_BASED (TRUE | FALSE) "FALSE"
READ_ONLY (TRUE | FALSE) "FALSE"
REQUIRED (TRUE | FALSE) "FALSE"
SCALE CDATA #IMPLIED
TEXT_ALIGN CDATA #IMPLIED
TEXT_BASED (TRUE | FALSE) "FALSE"
TEXT_LENGTH CDATA #IMPLIED
TOTAL_REQUIRED (TRUE | FALSE) "FALSE"
TYPE CDATA #IMPLIED
120 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Document Type Definition
>

<!ELEMENT ROW (#PCDATA | FIELD | ERROR)* >

<!ATTLIST ROW

ROWID CDATA #REQUIRED
SELECTED (TRUE | FALSE) "FALSE"

>

<!ELEMENT FIELD (#PCDATA | PICK_LIST | ANCHOR | ERROR)* >
<!ATTLIST FIELD

NAME CDATA #REQUIRED
VARIABLE CDATA #IMPLIED
>

<!ELEMENT TREE (ITEM | ERROR)* >
<!ATTLIST TREE

 NAME CDATA #REQUIRED
>

<!ELEMENT ITEM (#PCDATA | ACTION | ITEM | ERROR)* >

<!ATTLIST ITEM

ATTR CDATA #IMPLIED
CAPTION CDATA #IMPLIED
PATH CDATA #REQUIRED
SELECTED (TRUE | FALSE) "FALSE"
TYPE CDATA #IMPLIED

>

<!ELEMENT ACTION (#PCDATA | ANCHOR)* >
<!ATTLIST ACTION

ATTR CDATA #IMPLIED
TYPE CDATA #REQUIRED

>

<!ELEMENT CALENDAR EMPTY>
<!ATTLIST CALENDAR

TITLE CDATA #IMPLIED
>

<!ELEMENT SORT_FIELD (PICK_LIST | ERROR)* >
<!ATTLIST SORT_FIELD

NAME CDATA #REQUIRED
SEQUENCE CDATA #IMPLIED

>

<!ELEMENT APPLET_TOGGLE (TOGGLE_ITEM | ERROR)* >
<!ATTLIST APPLET_TOGGLE
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 121

Delivering Content to External Web Applications

Document Type Definition
 TYPE CDATA #IMPLIED
>

<!ELEMENT TOGGLE_ITEM (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST TOGGLE_ITEM

APPLET_NAME CDATA #REQUIRED
TITLE CDATA #IMPLIED
SELECTED (TRUE | FALSE) "FALSE"

>

<!ELEMENT SUB_VIEW_BAR (VIEW_TAB | ERROR)* >

<!ELEMENT PDQ_BAR (PDQ | ERROR)* >

<!ELEMENT PDQ (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST PDQ

NAME CDATA #REQUIRED
SELECTED (TRUE | FALSE) "FALSE"

>

<!ELEMENT IMG (#PCDATA) >
<!ATTLIST IMG

ALT CDATA #IMPLIED
SRC CDATA #IMPLIED

>

<!ELEMENT ERROR (#PCDATA | ERROR)* >

<!ELEMENT ALERT (#PCDATA) >
122 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Manipulating Siebel XML with XSL Stylesheets and XSLT
Manipulating Siebel XML with XSL Stylesheets and XSLT
SWE can perform embedded XSL transformation on outbound XML documents. In
this way, you can generate outbound documents in the desired markup language or
format directly from SWE, without requiring a middle-tier server to perform the
transformation. To do so, application developers must provide the XSL stylesheets
used for the transformation and specify the names of the stylesheets to SWE.

Defining SWTs Stylesheet Tags
There are two ways in which you can request SWE to transform the outbound XML
document into the desired format using XSLT. You can either pass in a query
parameter SWEXslStyleSheet=name-of-the-stylesheet, or you can specify the
stylesheets to use in the Siebel templates by means of the <swe:xsl-stylesheet>
tag (see “XML-Specific Template Tag”).

XML-Specific Template Tag
The XML-specific template tag looks like this:

<swe:xsl-stylesheet>

Purpose:

Specifies the name of the XSLT stylesheet to perform the XSLT on the XML output
document. The stylesheet must reside in the application’s webtempl directory.
There is only one <swe:xsl-stylesheet> tag for each view. If more than one
<swe:xslstylesheet> tag is specified in the view, the last tag found gets used.

Attributes:

name. Specifies the name of the stylesheet.

mode. You can set the mode to either process or embed. When set to process, SWE
performs XSLT processing on the XML output and sends the transformed document
as the response back to the client. When set to embed, SWE inserts an XML
processing instruction in the beginning of the XML document for external XSLT
processing.

Example
<swe:xsl-stylesheet name= ”table.xsl” mode= “process”/>
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 123

Delivering Content to External Web Applications

Manipulating Siebel XML with XSL Stylesheets and XSLT
124 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service 4
HTTP provides several means to allow Web Servers to obtain information from the
browser. The most familiar example is when a user enters data into a form on a Web
page and the data is sent to the Web Server, which can access the value of each form
field. This example illustrates sending form field parameters to the Web Server with
a POST method. In general, a browser can send cookies, headers, query string
parameters, and form field parameters to the Web Server. Web Servers can also
respond to the browser with cookies and custom headers. The Web Engine HTTP
TXN Business Service (BS) allows Siebel eBusiness Applications to retrieve or set
cookies, headers, and query string and form field parameters.

The Web Engine HTTP TXN Business Service can be invoked by scripts or by
workflow. The inbound HTTP request to the Siebel Web Engine (SWE) is parsed and
the BS returns property sets containing cookies, headers, or parameters. In addition,
server variables, which are not a part of the HTTP request header, can also be
retrieved. The BS can also set a custom cookie or header in the HTTP response
header generated by the SWE. The BS gives complete control over the request
header received and response header sent by the SWE.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 125

Web Engine HTTP TXN Business Service

Scenario
Scenario
A customer has a portal Web application that automatically links the user to Siebel
Call Center with Siebel Web Single Sign On. The customer also wants to pass a
custom header to the Siebel application during the single-sign-on process. The
custom headers provide credentials to log into another application that is embedded
in the Siebel application. Additionally, the portal Web application uses cookies to
store a user profile that needs to be synchronized with the Siebel profile.

This example explains how to pass custom cookies, headers, and query string
parameters to Siebel applications during login.

An external Web application such as ASP or JSP sets the header, cookie, or query
string parameter and either sends the request to the Siebel application or redirects
the browser to the Siebel application.

The following sample ASP code will log in a Siebel User and call the HTTP TXN
Business Service to retrieve HTTP variables:

<% @language=VBScript %>

<% Response.buffer =true

'Set my URL parameter

'The following URL will log a Siebel User into Siebel and call
the HTTP TxN Business Service to retrieve HTTP variables.

strURL = "http://bng/callcenter/
start.swe?SWECmd=ExecuteLogin&SWEUserName=SADMIN&SWEPassword=SADMI
N&myParm=Vanilla"

Set Http = Server.CreateObject ("WinHttp.WinHttpRequest.5")

Http.Open "GET", strURL, False

'Set my Cookie

Http.SetRequestHeader "Cookie", "myCookie=Chocolate"
126 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service

Scenario
'Set my Header

Http.SetRequestHeader "myHeader", "Strawberry"

Http.Send

Response.Write ("Request Sent... Check your Siebel Business
Service output")

Set Http = Nothing

%>

When the Siebel Web Engine receives the ExecuteLogin request, it triggers a user-
defined runtime event to call a Business Service. Refer to Personalization
Administration Guide, MidMarket Edition for information on creating a runtime
event and associating an action to the event. In this example, the action will call the
HTTP TXN Business Service and invoke the getHTTPVars method.

The HTTP TXN Business Service is actually a wrapper function that calls the Web
Engine HTTP TXN BS to retrieve HTTP and Server variables. The sample code
below shows how to retrieve cookies, headers, and query string parameters and
print them out to a text file. In an actual implementation, you may want to save the
HTTP variables as profile attributes and use them in other scripts in the application.

Sample HTTP TXN BS Code

Function Service_PreInvokeMethod (MethodName As String, Inputs As
PropertySet, Outputs As PropertySet) As Integer

If MethodName = "getHTTPVars" Then

Dim FS As Object

Dim oFile As Object

Dim oBS As Service

Dim In As PropertySet
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 127

Web Engine HTTP TXN Business Service

Scenario
Dim Out As PropertySet

Dim oChild As PropertySet

Set fs = CreateObject("Scripting.FileSystemObject")

If fs.FileExists("c:\testfile.txt") Then

Set oFile = fs.OpenTextFile("c:\testfile.txt", 8,0)

Else

Set oFile = fs.CreateTextFile("c:\testfile.txt", True)

End If

Set oBS = theApplication.GetService("Web Engine HTTP TXN")

Set In = theApplication.NewPropertySet()

Set Out = theApplication.NewPropertySet()

oFile.WriteLine("----Headers----")

oBS.InvokeMethod "GetAllRequestHeaders", In, Out

strName = Out.GetFirstProperty()

While strName <> ""

oFile.WriteLine(strName & " : " & Out.GetProperty(strName))

strName = Out.GetNextProperty()

Wend

In.Reset

Out.Reset
128 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service

Scenario
oFile.WriteLine("----URL Params----")

oBS.InvokeMethod "GetAllRequestParameters", In, Out

strName = Out.GetFirstProperty()

While strName <> ""

oFile.WriteLine(strName & " : " & Out.GetProperty(strName))

strName = Out.GetNextProperty()

Wend

In.Reset

Out.Reset

oFile.WriteLine("----Cookies----")

oBS.InvokeMethod "GetAllRequestCookies", In, Out

For nChild = 0 To Out.GetChildCount() - 1

Set oChild = Out.GetChild(nChild)

strName = oChild.GetFirstProperty()

oFile.WriteLine("TYPE : " & oChild.GetType())

oFile.WriteLine("VALUE : " & oChild.GetValue())

While strName <> ""

oFile.WriteLine(strName & " : " & oChild.GetProperty(strName)
)

strName = oChild.GetNextProperty()

Wend

Next nChild
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 129

Web Engine HTTP TXN Business Service

Scenario
oFile.Close

Set oChild = Nothing

Set oFile = Nothing

Set fs = Nothing

Service_PreInvokeMethod = CancelOperation

TheApplication.GotoView "Home Page View (WCC)", Nothing

Else

Service_PreInvokeMethod = ContinueOperation

End If

End Function
130 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service

Scenario
Sample Output by HTTP TxN BS
----Headers----

COOKIE : myCookie=Chocolate

HOST : bng

CONTENT-LENGTH : 0

CONNECTION : Keep-Alive

USER-AGENT : Mozilla/4.0 (compatible; Win32;
WinHttp.WinHttpRequest.5)

MYHEADER : Strawberry

ACCEPT : */*

----URL Params----

SWEUserName : SADMIN

myParm : Vanilla

SWECmd : ExecuteLogin

SWEPassword : SADMIN

----Cookies----

TYPE : myCookie

VALUE : Chocolate

Domain :

Path :

Max-Age : -1
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 131

Web Engine HTTP TXN Business Service

Web Engine HTTP TXN Business Service API
Web Engine HTTP TXN Business Service API
Table 14 lists the methods exposed by the Web Engine HTTP TXN Business Service.

Table 14. Web Engine HTTP TXN Business Service API

Method Description Parameters

GetAllRequestCookies Retrieves all request
cookies.

InputArguments: Ignored.
OutputArguments: Property
Set hierarchy. Each cookie is
a child Property Set with the
TYPE property set to the
cookie name.

GetAllRequestHeaders Retrieves all request
parameters.

InputArguments: Ignored.
OutputArguments: Property
Set containing the HTTP
Parameter name-value pairs.

GetAllResponseCookies Retrieves all response
cookies.

InputArguments: Ignored.
OutputArguments: Property
Set hierarchy. Each cookie is
a child Property Set with the
TYPE property set to the
cookie name.

GetAllResponseHeaders Retrieves all response
headers.

InputArguments: Ignored.
OutputArguments: Property
Set containing the HTTP
Header name-value pairs.

GetAllServerVariables Retrieves all server
variables.

InputArguments: Ignored.
OutputArguments: Property
Set containing the Server
Variable name-value pairs.

GetClientCertificate Retrieves the client
certificate info.

InputArguments: Ignored.
OutputArguments: Property
Set containing certificate
name-value pairs. Currently
only returns Common Name
(CN) property of the
certificate.
132 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service

Web Engine HTTP TXN Business Service API
GetRequestCookies Retrieves the request
cookies named in
InputArguments.

InputArguments: Property
Set containing the cookie
names to retrieve.
OutputArguments: Property
Set hierarchy. Each cookie is
a child Property Set with the
TYPE property set to the
cookie name.

GetRequestHeaders Retrieves the request
headers named in
InputArguments.

InputArguments: Property
Set containing the header
names to retrieve.
OutputArguments: Property
Set containing the HTTP
Header name-value pairs.

GetRequestInfo Retrieves the request
Web Session, Headers,
Cookies, Parameters
and Client Certificate
information in one call.

InputArguments: Ignored
OutputArguments: Property
Set hierarchy. Each section is
a child Property Set with the
TYPE property set to
'Headers', 'Cookies',
'Parameters' or
'ClientCertificate'. The Web
Session information is simply
stored as properties of
OutputArguments.

GetRequestParameters Retrieves the request
parameters named in
InputArguments.

InputArguments: Property
Set containing the parameter
names to retrieve.
OutputArguments: Property
Set containing the HTTP
Parameter name-value pairs.

GetResponseCookies Retrieves the response
cookies named in
InputArguments.

InputArguments: Property
Set containing the cookie
names to retrieve.
OutputArguments: Property
Set hierarchy. Each cookie is
a child Property Set with the
TYPE property set to the
cookie name.

Table 14. Web Engine HTTP TXN Business Service API

Method Description Parameters
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 133

Web Engine HTTP TXN Business Service

Web Engine HTTP TXN Business Service API
GetResponseHeaders Retrieves the response
headers named in
InputArguments.

InputArguments: Property
Set containing the header
names to retrieve.
OutputArguments: Property
Set containing the HTTP
Header name-value pairs.

GetResponseInfo Retrieves the response
Headers and Cookies in
one call.

InputArguments: Ignored.
OutputArguments: Property
Set hierarchy. Each section is
a child Property Set with the
TYPE property set to
'Headers' or 'Cookies'.
Content Type and Status are
simply stored as properties of
OutputArguments.

GetServerVariables Retrieves the server
variables named in
InputArguments.

InputArguments: Property
Set containing the server
variable names to retrieve.
OutputArguments: Property
Set containing the Server
Variable name-value pairs.

GetWebSessionInfo Retrieves the client’s
Web session
information.

InputArguments: Ignored.
OutputArguments: Property
Set containing the Web
session name-value pairs—
SessionName;
Cookie Name;
SessionId;
Web Session ID;
SessionFrom (Value is 'URL'
or 'COOKIE').

Table 14. Web Engine HTTP TXN Business Service API

Method Description Parameters
134 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service

Web Engine HTTP TXN Business Service API
SetResponseCookies Sets the response
cookies to the values in
InputArguments.

InputArguments: Property
Set hierarchy. Each cookie is
a child Property Set with the
TYPE property set to the
cookie name. The
PERSISTENT property
determines whether the
cookie will persist between
sessions. If the value is Y, the
cookie persists between
browser sessions. Otherwise,
the cookie exists on a per
session basis.

OutputArguments: Ignored.

SetResponseHeaders Sets the response
headers to the values in
InputArguments.

InputArguments: Property
Set containing the HTTP
Header name-value pairs.
OutputArguments: Ignored.

SetResponseInfo Sets the response
Headers and Cookies in
one call.

InputArguments: Property
Set hierarchy. Each section is
a child Property Set with the
TYPE property set to
'Headers' or 'Cookies'.
Content Type and Status are
simply stored as properties of
InputArguments.
OutputArguments: Ignored.

Table 14. Web Engine HTTP TXN Business Service API

Method Description Parameters
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 135

Web Engine HTTP TXN Business Service

Web Engine HTTP TXN Business Service API
136 Siebel Portal Framework Guide MidMarket Edition Version 7.5

	Contents
	Introduction
	Revision History
	What’s New for 7.5

	About Siebel Portal Framework
	Portal Framework Overview
	Portal Framework Architecture
	Enterprise Application Integration
	Portal Agents
	XML Web Interface

	Integrating External Content
	Understanding Portal Agents
	Portal Agents and Authentication Strategies
	About Disposition Types
	Inline
	IFrame
	Web Control
	Form Redirect
	Server Redirect
	Portal Agent Restrictions
	Disposition Types Summary

	Task Overview for Creating Portal Agents
	Determining the Login Requirements
	Portal Agent Configuration
	Configuring Business Components to Handle External Data
	Displaying External Content Within an Applet
	Displaying External Content Outside of an Applet

	Portal Agent Administration
	Defining the External Host
	Defining Web Applications
	Defining Symbolic URLs
	Defining Symbolic URL Arguments
	Defining Content Fixup

	Defining End User Login Credentials
	Example Portal Agent
	Review the Login Form
	Define the External Host
	Define the Symbolic URL
	Define Symbolic URL Arguments
	Define User Login Credentials
	Test

	Reviewing the SWE Log File
	Portal Agent Command Reference
	EncodeURL
	IFrame
	NoCache
	NoFormFixup
	PreLoadURL
	PostRequest
	UserLoginId
	UserLoginPassword
	UseSiebelLoginId
	UseSiebelPassword
	WebControl

	Delivering Content to External Web Applications
	Overview of the XML Web Interface
	Accessing Siebel XML
	Siebel OM and Web Server Configuration and Markup Determination
	Connecting to the XML Web Interface
	Submitting HTTP Requests Through the Web Server
	Query String
	XML Command Block

	Submitting Requests Using the Web Engine Interface
	Query String
	XML Command Block

	XML Request Structure
	Query String
	XML Command Block
	EXE Tag
	Description
	Attributes
	Example

	CMD Tag
	Description
	Attributes
	Example

	ARG Tag
	Description
	Attributes
	Example
	Required Arguments
	Common Name-Value Pairs

	XML Response Structure
	Errors
	XML Response
	HTML Response

	Common Operations
	Logging In
	Logging Off
	Navigating to a Screen
	Navigating Within a Screen
	Querying Items
	NewQuery
	ExecuteQuery

	Adding Records
	NewRecord
	WriteRecord

	Modifying Records
	NewQuery
	ExecuteQuery
	EditRecord
	WriteRecord

	Deleting Records
	NewQuery
	ExecuteQuery
	DeleteRecord

	Picking Records
	GotoPageTab
	EditField
	PickRecord
	WriteRecord

	SWE API
	SWE Commands
	SWE Methods
	SWE Arguments

	Document Type Definition
	Inbound DTD
	Outbound DTD

	Manipulating Siebel XML with XSL Stylesheets�and�XSLT
	Defining SWTs Stylesheet Tags
	XML-Specific Template Tag
	Example

	Web Engine HTTP TXN Business Service
	Scenario
	Sample HTTP TXN BS Code
	Sample Output by HTTP TxN BS

	Web Engine HTTP TXN Business Service API

