SIEBEL./

eBusiness

SIEBEL PORTAL
FRAMEWORK GUIDE

MIDMARKET EDITION

VERSION 7.5

12-CQRVPZ

SEPTEMBER 2002

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2002 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

The full text search capabilities of Siebel eBusiness Applications include technology used under license from
Hummingbird Ltd. and are the copyright of Hummingbird Ltd. and/or its licensors.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Supportsoft™ is a registered trademark of Supportsoft, Inc. Other product names, designations, logos, and
symbols may be trademarks or registered trademarks of their respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or

FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents

Introduction
Revision History e 8
What’s New for 7.5 9

Chapter 1. About Siebel Portal Framework

Portal Framework Overview 12
Portal Framework Architecture 13
Enterprise Application Integration 13
Portal Agents it 13
XML Web Interfacet 14

Chapter 2. Integrating External Content

Understanding Portal Agents 16
Portal Agents and Authentication Strategies 17
About Disposition Typest 18
Inline 18
IFrame 19
Web Control 20
Form Redirect 20
Server Redirect 21
Portal Agent Restrictions 22
Disposition Types SUMIMAryttt 23

Task Overview for Creating Portal Agents 24

Determining the Login Requirements 25

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 3

‘ Contents

Portal Agent Configuration, 28
Configuring Business Components to Handle External Data 28
Displaying External Content Within an Applet 29
Displaying External Content Outside of an Applet 30

Portal Agent Administration 31
Defining the External Host 31
Defining Web Applications 32
Defining Symbolic URLs i 33
Defining Symbolic URL ATgUMENtSoiueeiinennnn... 36
Defining Content Fixup 39

Defining End User Login Credentials 40

Example Portal Agent 41

Reviewing the SWE Log File 47

Portal Agent Command Reference 48
EncodeURL 48
IFrame e 48
NoCache 49
NOFOrmMEIXUD . . . oo e e 49
PreLoadURL 50
PoStReqUEeSt e 50
UserLoginld 51
UserLoginPasswordttt 51
UseSiebelLoginld 52
UseSiebelPassword 52
WebControl 53

Chapter 3. Delivering Content to External Web Applications

Overview of the XML Web Interface 56
Accessing Siebel XML 56

Siebel OM and Web Server Configuration and Markup Determination ... 58

4 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Version 7.5

Contents |
Connecting to the XML Web Interface 60
Submitting HTTP Requests Through the Web Server 60
Submitting Requests Using the Web Engine Interface 63
XML Request Structure e 69
QUETY SITING . . . ot e 69
XML Command Block 69
XML Response Structure 77
BIrors . .. 77
XML RESPONSE e e 77
HTML ReSPONSeottt e e e e e e e e e e 84
Common Operationso v vttt it et e e e e e e e 85
Logging INo 85
Logging Off 86
Navigating to @ SCreenttt 86
Navigating Withina Screen 87
Querying Items 88
Adding Records 89
Modifying Records 91
Deleting Records 95
Picking Records 97
SWE API . . 100
SWE Commandsttt 100
SWE Methods e e 105
SWE Arguments e 111
Document Type Definition 115
Inbound DTD 115
Outbound DTD e 116
Manipulating Siebel XML with XSL Stylesheets and XSLT 123
Defining SWTs Stylesheet Tags, 123
XML-Specific Template Tagottt 123
Chapter 4. Web Engine HTTP TXN Business Service
SCENATIO . . . ot e 126

Siebel Portal Framework Guide MidMarket Edition 5

‘ Contents

Sample HTTP TXNBS Code
Sample Output by HTTP TXNBS

Web Engine HTTP TXN Business Service API

6 Siebel Portal Framework Guide MidMarket Edition

Version 7.5

Introduction

Version 7.5

This book provides a detailed discussion of Siebel Portal Framework. It provides
overview information, tasks for integrating external content into the Siebel user
interface, and reference information about the XML Web interface used to deliver
content to external applications.

NOTE: All Siebel MidMarket product names include the phrase MidMarket Edition
to distinguish this product from other Siebel eBusiness Applications. However, in
the interest of brevity, after the first mention of a MidMarket product in this
document, the product name will be given in abbreviated form. For example, after
Siebel Call Center, MidMarket Edition, has been mentioned once, it will be referred
to simply as Siebel Call Center. Such reference to a product using an abbreviated
form should be understood as a specific reference to the associated Siebel
MidMarket Edition product, and not any other Siebel Systems offering. When
contacting Siebel Systems for technical support, sales, or other issues, note the full
name of the product to make sure it will be properly identified and handled.

Although job titles and duties at your company may differ from those listed in the
following table, the audience for this guide consists primarily of employees in these
categories:

Call Center Persons responsible for setting up and maintaining a call center.
Administrators Dyties include designing and managing Computer Telephony
Integration (CTI), SmartScripts, and message broadcasts.

Siebel Application Persons responsible for planning, setting up, and maintaining
Administrators Sjehe] applications.

Siebel Application Persons who plan, implement, and configure Siebel applications,
Developers possibly adding new functionality.

Siebel System Persons responsible for the whole system, including installing,
Administrators maintaining, and upgrading Siebel applications.

Siebel Portal Framework Guide MidMarket Edition 7

‘ Introduction

Revision History

Revision History

Siebel Portal Framework Guide, MidMarket Edition, Version 7.5

8 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Introduction |

Version 7.5

What’s New for 7.5

What's New for 7.5

New Portal Framework features for version 7.5 are described in Table 1.

Table 1.

7.5 Portal Framework Features

Feature

Session Management
and Session Re-Use

Personalized Content
Displayed Inline

Profile attributes sent
in the HTTP request

Support for server
redirects

Displaying external
content outside of an
applet

Description

Allows the Siebel application to manage sessions that are
integrated with third-party application servers, and recognizes
when these sessions can be re-used, retaining the user’s session
context, and preventing the buildup of session overhead on the
third-party application server. As these sessions time-out due to
inactivity, the Siebel server automatically re-authenticates with
the third-party application server, requiring no further entry of
user credentials on the part of the user.

Prior to version 7.5, external content delivered to a specific user
(after authentication) had to be displayed in a new window. In
version 7.5, the Portal Framework has been enhanced to support
the display of personalized external content adjacent to other
applets in the Siebel user interface.

You can configure Portal Agents to retrieve data from the
Personalization business component and send it as part of the
HTTP request. This allows the Portal Agent to send the external
application user-specific preferences, such as the user’s time
zone, or preferred language.

The Siebel Web Engine now has the ability to recognize when a
request sent to an external host is redirected to another host (the
one that actually conducts the session). This includes handling
cascaded redirects, redirects across domains, and redirects
invoked by JavaScript. It allows session management to continue
after a redirect occurs.

You can now display external content outside of an applet, such
as in the banner frame, using Web Page Items. Web Page Items
can now be associated with a symbolic URL. Note that this
feature does not apply to administering Page Items in the Portal
Administration screen.

Siebel Portal Framework Guide MidMarket Edition 9

‘ Introduction

What’s New for 7.5

10 Siebel Portal Framework Guide MidMarket Edition Version 7.5

About Siebel Portal Framework 1

This chapter provides an overview of the Siebel Portal Framework and summarizes
the technologies that make up the Portal Framework.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 11

‘ About Siebel Portal Framework

Portal Framework Overview

Portal Framework Overview

Enterprises are often composed of many different information technology resources,
such as:

Shared network directories.
Department intranet sites.
Legacy applications.
Applications developed in-house.

Purchased Web applications.

With many disparate applications and technologies, IT resources are difficult to
maintain and difficult to use. For example, applications:

Follow different user interface guidelines.

Are rendered with different themes.

Track profile attributes differently.

Vary in the quality of online assistance.

Have separate login and password credentials.

Have different search functionality.

One solution to this problem is to integrate the various applications and content
sources used in an enterprise and present them in a single user interface, called a
portal. The Siebel Portal Framework allows you to do this. The Portal Framework
provides you with the tools and supporting technologies that allow you to:

Aggregate external data with Siebel data and present it in the Siebel user
interface.

Deliver Siebel data to external applications.

Integrate external application business logic and data with Siebel applications.

12 Siebel Portal Framework Guide MidMarket Edition Version 7.5

About Siebel Portal Framework |

Portal Framework Architecture

Portal Framework Architecture

The portal framework includes the following framework components:
= Enterprise Application Integration
= DPortal Agents that integrate external content into the Siebel user interface

= XML Web interface for delivery of Siebel content to external applications

Enterprise Application Integration

Siebel EAI provides mechanisms for sharing data and business logic with other
applications, including:

Integration Objects

Virtual Business Objects

Programming APIs
m Predefined adapters and connectors

For more information about Siebel EAI, see Overview: Siebel eBusiness Application
Integration Volume I, MidMarket Edition and other EAI titles on the Siebel Bookshelf.

Portal Agents

Portal Agents provide you with a mechanism to retrieve content from a non-Siebel
source and display it in the Siebel user interface. The Portal Agent retrieves content
on behalf of the user, logging on to the external application using the user’s
credentials and retrieving only the content that is targeted for the user. Portal Agents
provide single sign-on capability and a profile tracking mechanism.

See “Understanding Portal Agents” on page 16 for more information about Portal
Agents.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 13

‘ About Siebel Portal Framework

Portal Framework Architecture

XML Web Interface

In enterprises where a non-Siebel portal framework is already established, you need
to be able to deliver Siebel content to other applications and frameworks. The XML
Web interfaces provides you with a mechanism to deliver Siebel data to external
applications as XML documents. This provides the external application with a
flexible format for integrating Siebel data into its user interface.

See Chapter 3, “Delivering Content to External Web Applications,” for more
information.

14 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content 2

This chapter provides an overview of Portal Agents. It covers the configuration and
administration tasks necessary to display external content in the Siebel user
interface. It also includes a reference section that lists all the commands available
for use with Portal Agents.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 15

‘ Integrating External Content

Understanding Portal Agents

Understanding Portal Agents

Portal Agents allow you to integrate external data into the Siebel user interface.
Portal Agents retrieve data by sending HTTP requests to external applications, and
then display the HTML results in a Siebel applet or on some other portion of a Siebel
Web page.

Portal Agents combine a set of features and technologies that allow you to integrate
external content at the user interface layer, including:

Single Sign-On technology (SS0). For applications who are participating in a single
sign-on framework, this feature eliminates the need for the user to enter login
credentials, such as username and password, more than once per work session.

Session Management and Session Re-Use. Allows the Siebel application and the
external application to maintain a user's session context, without re-authenticating
for subsequent requests. This minimizes session resource overhead on the external
application, and allows the user to retain session context, such as Shopping Cart
contents.

Time-out Handling. The Siebel server automatically re-authenticates when a request
is submitted after the external application's timeout period has passed.

Symbolic URLs, with multiple disposition types. Allows content to be displayed in
different ways, such as in a new browser window, inline with the other content, in
an <i f rame> tag, or as an ActiveX object embedded in the Siebel application Web
page. See “About Disposition Types” on page 18 for more information.

Session Proxy. For content integrated using a disposition type of Inline, the Siebel
server manages the interactions with external applications on behalf of the user. For
more information about the Inline disposition type, see “Inline” on page 18.

16 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Understanding Portal Agents

Symbolic URL Commands. Commands that direct the Portal Agent to assemble the
URL for the external application in a number of ways. These include dynamically
referencing the user’s login and password, retrieving stored login and password
values, retrieving data from the user’s personalization profile, establishing the size
of an <i f rane> tag, and determining whether to set the browser cookies from the
application server’s login page. For a complete list of commands, see “Portal Agent
Command Reference” on page 48.

NOTE: Portal Agents do not integrate data at the data layer or integrate business
logic. Other mechanisms in the Siebel Portal Framework, such as Integration
Objects and Virtual Business Components, are designed to meet those types of
integration needs. See Overview: Siebel eBusiness Application Integration Volume I,
MidMarket Edition for more information about EAI

Portal Agents and Authentication Strategies

Portal Agents can be configured to support different authentication strategies:

= Simple Portal Agents. External application does not require any authentication
parameters.

= Single Sign-On Portal Agents. External application requires authentication
parameters.

= NCSA-basic Portal Agents send a username and password as part of the URL
in plain text. NCSA is no longer widely used as an authentication
mechanism.

= Form-based Portal Agents send authentication parameters as part of the body
portion of the HTTP request.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 17

‘ Integrating External Content

Understanding Portal Agents

About Disposition Types

Inline

One of the steps in setting up a Portal Agent is creating a Symbolic URL. The
Symbolic URL specifies the information necessary to construct the HTTP request to
send to the external application. Symbolic URLs can be one of several disposition
types. The disposition type determines:

» The interaction between the browser, the Siebel Server, and the external
application.

» How external content is displayed in the user interface.

It is important to understand these disposition types and determine the one that
suits your integration needs. Each disposition type is discussed in one of the
following sections:

= “Inline” on page 18

s “[Frame” on page 19

= “Web Control” on page 20
s “Form Redirect” on page 20

The procedure for defining Symbolic URLSs is covered in “Defining Symbolic URLs”
on page 33.

With a symbolic URL disposition type of Inline, the Siebel server receives content
sent by an external application. It combines the external content with Siebel-
produced content and composes a single HTML page, which it then sends to the
client browser for display to the user. Optionally, links in the aggregated content are
rewritten so they reference the Siebel server (proxy), rather than referencing the
external application server directly. This allows the Siebel server to handle links in
the aggregated content so that from the user’s perspective the content comes from
one integrated application rather than from different application servers.

The inline disposition type supports Session Management. Session Management is
a feature that allows the Siebel Server to manage session cookies and allows it to
automatically re-login to an external application after a time out occurs.

18 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Understanding Portal Agents

Although the Inline disposition type is the preferred disposition type, it will only
work in rare cases. The inline disposition type is a good option when the page you
trying to integrate is a simple HTML page with simple JavaScript. If the page you
are trying to integrate has complex JavaScript or references frames, then the Inline
disposition type will not work and you should try the IFrame disposition type. The
Inline disposition type supports the GET method only. Also, the number of
characters that can appear in the URL is limited to 2048 characters.

IFrame

Use this disposition type when aspects of the external application do not allow
content to be aggregated with other Siebel content. See “Portal Agent Restrictions”
on page 22 for more information about when this may occur.

The IFrame disposition type uses the <i f r ame> tag to create an Internal Frame as
part of the page generated by the Siebel server. It allows the Portal Agent to retrieve
content to populate the Internal Frame. This content does not pass through the
Siebel server, but is directly requested by the client and sent by the application
server to the user's browser. Although this disposition type is not as preferable as
the Inline disposition type, in most cases, it is the method that works.

The IFrame disposition type supports JavaScript and Frames. Therefore, if the Inline
disposition type does not work, the IFrame option is the best option. The IFrame
disposition type also supports the Session Keep Alive feature. However, it does not
support Session Management.

The IFrame disposition type will work in many cases. However, it does not work
when frames displayed within the <i f r ame> tag refer to top-level JavaScript
objects. If frames in the page you are trying to integrate refer to top-level JavaScript
objects, then try the Web Control disposition type.

NOTE: The IFrame disposition type is supported on Internet Explorer 5.5 and above.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 19

‘ Integrating External Content

Understanding Portal Agents

Web Control

Use the Web control disposition type when [Frame or Inline disposition types do not
work. Typically this is because of hardcoded references to specific frame names in
the external application's HTML. See “Portal Agent Restrictions” on page 22 for
more information.

The Web Control disposition type embeds an Internet Explorer ActiveX object in the
Siebel page and provides it to the external application. In the Web Control
disposition type, similar to the IFrame type, the external application sends content
directly to the user’s browser, bypassing the Siebel server. The external application
then behaves as if the ActiveX IE instance is an independent Web browser.

NOTE: The Web Control disposition type is supported for Internet Explorer 4.0 and
above.

Form Redirect

The Form Redirect disposition type is not commonly used with Siebel eBusiness
applications, version 7.5.

In the Form Redirect scenario, the Siebel Web client submits a request to the Siebel
server. The Siebel server creates a form with the necessary authentication
information in it, and then sends the form back to the browser. The browser loads
the form and then submits it to the external host for processing. The external host
sends back the results, which the browser displays in a new window.

The Form Redirect disposition option is usually displayed in a new window, rather
than inline with other Siebel applets.

20 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Understanding Portal Agents

Server Redirect

The Server Redirect disposition type is no longer used in version 7.5, but is included
in this guide for customers running prior versions of Siebel eBusiness applications.

In the Server Redirect scenario, the browser sends a request to Siebel Server. The

Siebel Server sends the authentication request to the external application. After it
receives a response from the external application, it creates a 302 Response, which
contains the value of the target URL in the header. The Siebel Sever sends the 302
Response back to the browser and the browser is redirected to the target host.

Like Form Redirect, Portal Agents that use the Server Redirect disposition type
should be configured to display the results in a new window rather than inline with
other Siebel applets.

When using the Server Redirect disposition type, there is one required argument
and several optional arguments. The arguments are defined below:

SSO_REDIRECT_PATH. This is a required argument that defines the URL to
which the browser is to be redirected. The value of this argument is sent as the
URL in the header of the 302 Response.

SSO_COOKIE_DOMAIN. This is an optional argument that specifies a domain
for which the cookie is valid. If this argument is not defined, the domain of the
external host (as defined in Host Administration view) is used.

SSO_COOKIE_NAMES. This is an optional argument that allows you to define

the cookies to be sent to the browser from the external application. If no cookie
names are defined, the Portal Agent sends all cookies from the external site to
client browser. For example, the argument defined in Table 2 specifies that only
the cookies named Pid and tid are to be sent to the browser from the external

host.

Table 2. Example Symbolic URL Argument

Name Argument Type Argument Value

SSO_COOKIE_NAME Constant Pid;tid

SSO_COOKIE_PATH. This is an optional argument that allows you to define a
subset of URLs to which the cookies apply.

You define these arguments in the Symbolic URL Argument applet. See “Defining
Symbolic URL Arguments” on page 36 for instructions on how to do this.

Version 7.5

Siebel Portal Framework Guide MidMarket Edition 21

‘ Integrating External Content

Understanding Portal Agents

Portal Agent Restrictions

Portal Agents are meant to bring existing applications and content into the Siebel
user interface without requiring additional modifications of the external
application. However, this is not always possible due to the way HTML and Web
browsers are designed. For example:

» The use of frames by an external application may not be amenable to inline
aggregation methods.

= Specific frame references in the returned content referring to global frames
(_NEW, _TOP, .parent()) may not be amenable to inline aggregation methods.

» Reliance on JavaScript functions defined in (assumed) external frames may not
be amenable to inline aggregation methods.

m URLs that are created dynamically by JavaScript may not be amenable to any
fixup techniques, as the URLs would not be easily parsed on the HTML content.

m <head> sections of Web pages are normally stripped by fixup code. If
<head > sections contain JavaScript functions definitions, these may be
stripped by fixup code and dependent JavaScript would not run properly.

For these reasons, an Inline disposition type does not work often. However, if you
control both the Siebel application instance as well as the external application, and
can resolve some of these issues, you should be able to get the Inline disposition
type to work correctly. For more information about the Inline disposition type, see
“Inline” on page 18.

If you do not have control over the external application, the IFrame disposition type
is the most likely method that will provide satisfactory results. It works with about
80% of the form-based application sites tested. For more information about the
[Frame disposition type, see “IFrame” on page 19.

22 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Disposition Types Summary

Table 3. Disposition Type Summary

Understanding Portal Agents

Table 3 summarizes the characteristics of each disposition type.

Disposition Type

Inline

IFrame

Web Control

Benefits

= Inline integration into the Siebel user
interface.

= Session Management, including
managing session cookies and
automatic re-login after time out.

= Inline integration into the Siebel user
interface.Supports complex
JavaScript.

» Supports references to frames.
= Session Keep Alive supported.

= Works for most cases.

= Supports frames that reference top-
level JavaScript Objects, because
JavaScript does not refer to objects
outside of the Web control.

Drawbacks

= Only works in very few cases.

= Will not work with complex
JavaScript.

» Will not work if there are reference to
frames.

= Supports the GET method only.
» URL limited to 2048 characters.

= No session management.
= Only supported by IES.5 and higher.

= Does not support frames that
reference top-level JavaScript objects.

= No session management.

= Browser functionality, such as the
back button, is only available by
right-clicking in the Web control.

= ActiveX objects that contain other
objects are reset if you change tabs
and then return to the Web control.

= Web control requires more system
overhead than IFrame.

= Only supported for IE4 and higher.

Version 7.5

Siebel Portal Framework Guide MidMarket Edition 23

‘ Integrating External Content

Task Overview for Creating Portal Agents

Task Overview for Creating Portal Agents

To create a Portal Agent, the following tasks are required:
1 Determining the Login Requirements on page 25.
2 Configuring Business Components to Handle External Data on page 28.
3 Complete one of the following:
= Displaying External Content Within an Applet on page 29.
= Displaying External Content Outside of an Applet on page 30.
4 Defining Web Applications on page 32.
5 Defining Symbolic URLs on page 33.
6 Defining Symbolic URL Arguments on page 36.

24 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Determining the Login Requirements

Determining the Login Requirements

Version 7.5

Before you configure Portal Agents, you need to understand what information is
required by the external application to authenticate users. Typically this information
is gathered using a form page, also called a login page, and then sent to the external
application. You must determine exactly what information the form gathers from
the user and sends to the external application, including field names and values.

In cases where you have specific knowledge about how an external application is
implemented and can consult with authoritative sources regarding how the
application authenticates users, determining the required input fields and values is
relatively simple.

In cases where you do not have specific knowledge about how an external
application is implemented, you must attempt to understand its authentication
method by examining the application’s login page. The steps below describe an
approach that you can use to reverse engineer a login page and provide related
Portal Agent configuration tips.

NOTE: It is not always possible to reverse engineer a login page. For example,
JavaScript may process login field values prior to delivering the POST back to the
application server, session values may be encoded in the form itself, or session
values may be stored in the browser’s session cookies.

To reverse engineer a login page

1 Navigate to the external application’s login page and determine whether the
external application uses NCSA Basic Authentication or Form-based
authentication.

NCSA Basic is an older authentication mechanism that requires the browser to
prompt the user for login name and password before displaying the page. NCSA
Basic provides rudimentary protection against trespassers. Usually, you can tell
if a site is using NCSA basic because a small popup dialog box will appear asking
for login credentials. If this is the case, you can configure the Portal Agent using
NCSA basic as the authentication method. See “Defining Symbolic URLs” on
page 33 for more information.

2 If the external application uses form-based authentication, view the login page’s
HTML using your browser’s view source command.

Siebel Portal Framework Guide MidMarket Edition 25

‘ Integrating External Content

Determining the Login Requirements

3 Identify the form on the login page that asks for user credentials (often the form

will ask for other information as well) and identify the input fields in this form
used to authenticate users.

It is usually best to strip out all non-form lines of HTML and to isolate the
<i nput > tags. That is, remove lines previous to <f or m.> and after </ f or m> and
remove lines not part of the <i nput > tags.

Determine if the method attribute of the form tag is POST.

If it is PCST, you will need to define the PostRequest command as an argument
of the symbolic URL. See “Defining Symbolic URL Arguments” on page 36 and
“PostRequest” on page 50 for more information.

If it is GET, you do not need to define a symbolic URL command, because the
default method of symbolic URLs is GET.

Determine the target of the from’s action attribute, which is usually specified as
action ="sone string".

If the target of the action attribute is an absolute URL, one that begins with ht t p,
or a forward slash (/), use this URL as the base of the Portal Agent.

If it is a relative address, you also need to determine where the root of the URL
is defined. It could be defined relative to the URL of the login page itself (most
common), in a <codebase>tag (rare), or in JavaScript (hard to determine).

The target URL is defined using the Host Administration View and the Symbolic
URL Administration view. See “Defining the External Host” on page 31 and
“Defining Symbolic URLs” on page 33 for more information.

Determine any argument values defined in the target URL.

These are the characters after the “?” character. Usually these are simple field-
value constants. The exception is when a field or a value is a session identifier
that is dynamically assigned by the external application server and is only valid
for a a period of time before it times out. In this case, it may not be possible to
configure a Portal Agent.

You will define any argument values contained in the target URL as symbolic
URL arguments. See “Defining Symbolic URL Arguments” on page 36 for more
information on how to do this.

26 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Determining the Login Requirements

7 Identify each of the form’s <i nput > tags and determine which ones are
necessary to send to the external application for authentication.

Often there are <i nput > tags in the form with a t ype attribute of hi dden that
are not evident when interacting with the application. Determining whether
hidden fields are optional or required is often process of trial and error.

Some <i nput > tags will not have values identified. Either these fields are
awaiting input to be entered by the user (for example, login name or password),
or they are hidden fields with no values.

= If the input field is specific to the user (it asks for the user’s login name and
password), you can use UserLoginld and UserLoginPassword commands to
instruct the Portal Agent to retrieve the user’s credentials from the user’s My
Logins view. See “Defining End User Login Credentials” on page 40 for more
information.

= If there are hidden fields with no values, when you enter them as symbolic
URL arguments, make sure that the Required Argument column is not
checked. If it is checked, and the input field has no value, the Portal Agent
will not send this request to the target application server because there is no
value to put in its place.

You will need to define the input fields and values as symbolic URL arguments.
See “Defining Symbolic URL Arguments” on page 36 for more information.

NOTE: The Mozilla browser includes a page info command () that analyzes forms
on a page and displays the method, input fields, and so on.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 27

‘ Integrating External Content

Portal Agent Configuration

Portal Agent Configuration

Using Portal Agents to integrate external content into the Siebel user interface
requires some simple configuration in Siebel Tools. You must configure a field on
the business component to handle external data and then configure either an applet
or a Web page item to display the content in the user interface. An applet displays
external content inside the applet container on a view. A Web page item displays
external content outside of an applet, such as in the banner frame for example.

NOTE: This section describes the configuration tasks that are unique to integrating
external content with the Siebel user interface. It does not describe standard
configuration tasks that you may be required to perform. For example, after you
configure an applet to display external content, you may have to associate that
applet with a view, add the view to a responsibility, and so on. These additional
tasks are standard procedures for configuring Siebel applications and are outside
the scope of this book. For more information about configuring Siebel applications,
see Siebel Tools Reference.

Configuring Business Components to Handle External Data

To configure business components to handle external data using a Symbolic URL,
you need to create a new calculated field on the business component. Rather than
representing structured content, such as records in a database, this field will
represent the HTML content sent from an external host.

NOTE: Although a symbolic URL displays data that is not stored in the database, the
business component must have at least one record stored in an underlying table so
that it is instantiated at run-time.

To configure a business component to handle external data using a Symbolic URL

1 Create a new field on the business component.
2 Set the field’s Calculated property to TRUE.

3 Set the field’s Type property to DTYPE_TEXT.

28 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Configuration

4 1In the Calculated Value field, enter the name of the Symbolic URL (enclosed in
double quotes) that you want to use to submit the HTTP request.

The name of the symbolic URL in the Calculated Value field must be enclosed in
double quotes so that it evaluates as a constant.

See the business component named AnalyticsSSO in the Siebel Repository for an
example of fields configured this way.

Displaying External Content Within an Applet

After you have created the calculated field on the business component, you need to
expose it in the user interface. You display the external content using a control in a
form applet or list applet.

NOTE: You can also expose external content outside an applet, such as in the banner
area. See “Displaying External Content Outside of an Applet” on page 30.

To display external content within an applet

1 Create an applet that you want to use to display the external content.

The applet must be based on the business component that you configured in
“Configuring Business Components to Handle External Data” on page 28.

2 Add a new control or list column to the applet.

3 Associate the control or list column with a calculated field on the business
component that is configured to represent the external data.

4 Set the control or list column’s Field Retrieval Type property to Symbolic URL.

5 Set the control or list column’s HTML Type property to Field.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 29

‘ Integrating External Content

Portal Agent Configuration

Displaying External Content Qutside of an Applet

After you have created the calculated field on the business component, you need to
expose it in the user interface. You can display the external content outside of an
applet using Web Page Items.

NOTE: You can also expose external inside an applet using an Applet Control or List
Column. See “Displaying External Content Within an Applet” on page 29.

To display content outside of an applet

1 Go to the Web Page object type and select the Web page on which you want to
display external data.

2 Create a new Web Page Item or use an existing one.
3 Set the Type property of the Web Page Item to Field.

4 Create the following two Web Page Item Parameters:

Name Value
FieldRetrievalType Symbolic URL
SymbolicURL [name of symbolic URL]

NOTE: The Symbolic URL is mapped to the calculated field defined for the
business component.

30 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Administration

Portal Agent Administration

You administer Portal Agents through several views located under the Integration
Administration Screen in the Siebel Web client. These views allow you to define
how links should be handled, define the external host, and define the HTTP request
that is sent to the external host.

Defining the External Host

You define the external data hosts in the Host Administration view. This view allows

you to:

= Maintain external host names in a single place.

m Specify NCSA Basic authentication credentials.

» Define how links should be handled (fixed-up) after external HTML content is

rendered.

To define a data host

1 Navigate to Site Map > Integration Administration > Host Administration view.

2 Enter a new record and define the necessary fields.

Some of the fields are described in the following table:

Field

Comments

Name
Virtual Name

Authentication
Type

Authentication
Value

Name of the external host.
User-defined name for the host.

Select NCSA Basic if the external application requires username and
password values sent in plain text in the request header.

Leave this value blank in either of the following cases:
» The external application has no authentication requirements.

» The external application uses form-based authentication and
thus requires authentication arguments sent in the header or
body of the request. Arguments to be sent along in the request
are defined using the Symbolic URL Arguments applet. See
“Defining Symbolic URLs” on page 33 for more information.

Enter the values required for NCSA Basic authentication.

Version 7.5

Siebel Portal Framework Guide MidMarket Edition 31

‘ Integrating External Content

Portal Agent Administration

Defining Web Applications

Web applications allow multiple Symbolic URLs to send requests to the same Web
application and share the same session. This is useful if you have two different
applet controls that use Symbolic URLs to submit requests to the same Web
application. You can associate these Symbolic URLs to a single Web application and
define whether or not they should share the same session.

There may be cases in which you do not want requests to share the same session.
For example, you may not want to share a session when a session cookie contains
more information than the session ID, as this could result in unexpected behavior.
When you define a Web application, you specify whether or not it should share
sessions.

Web applications also allow you to define the Time Out value for the session time
out feature. The Session Time Out feature is only applicable to Symbolic URLs with
a Disposition type of Inline.

To define a Web application
1 Navigate to Site Map > Integration Administration > Web Application.
2 Enter a record and complete the fields.

Some fields are described in the table below:

Field Description

Shared Indicates whether or not requests generated by Symbolic
URLs associated with this Web application share the same
session.

Time Out Defines the time out parameter for the Session Management

feature, which is only applicable to Symbolic URLs with a
disposition type of Inline.

32 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Administration

Defining Symbolic URLs

You use the Symbolic URL Administration view to specify how the HTTP request to
the external application should be constructed and to define any arguments and
values to be sent as part of the request.

To define a Symbolic URL

1 Navigate to Site Map > Integration Administration > Symbolic URL
Administration.

2 In the Symbolic URL Administration view, enter a new record.

Some fields are defined in the following table:

Field Description

URL Use the URL field to enter a URL for the external application. A
best practice is to substitute the host’s Virtual Name, the one that
you defined in the Host Administration view, for the host’s actual
name. Doing this makes administering host names easier,
because you may have many symbolic URLs pointing to one host.
If the host name changes, you only need to change it in the Host
Administration applet rather than having to change it in several
Symbolic URL definitions.

For example, https://Virtual _Host/path. ..

For applications that use form-base authentication, the URL is
identified by the action attribute of the Form tag. See
“Determining the Login Requirements” on page 25 for more
information.

Host Name The Virtual Name of the host defined in the Host Administration
view.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 33

‘ Integrating External Content

Portal Agent Administration

Field Description

Fixup Name Name of the fixup type defined in the Fixup Administration view.
The fixup type defines how links embedded in the external
HTML content are rendered. For example:

Default. Use this fixup type with the IFrame disposition type.
Link fixup is inside the view. This fixup does not affect any of the
links. The links (relative or absolute) remain as they are with the
content being passed back in its original form.

InsideApplet. This fixup converts all of the relative links to
absolute links and any links using a host defined in the Host
Administration view are proxied in order to maintain SWE
context.

OutsideApplication. This fixup converts all of the relative links
to absolute links using the host and path of the parent URL. No
links are proxied.

Multivalue Determines how arguments are handled. Possible values are:

Treatment Comma Separated. Instructs SWE to insert a comma between

the values defined in the Symbolic URL arguments when
appending the arguments to the URL. It inserts a comma after the
value in the first Argument Value field and the first value in the
second Argument Value field. The second Argument Value field
is simply a text string entered by the user.

Separate Arguments. Instructs SWE to enter separate arguments
for each value defined in the two Argument Value fields.

Use First Record Only. Uses the first record in the current record
set.

34 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content |

Portal Agent Administration

Field Description

SSO Disposition The value selected in this field determines how the HTTP request
is constructed and sent and how the external content is rendered
in the user interface. Possible values are:

= Inline. Proxies the request through the Siebel Server and
displays content inline with other applets on a view.

= IFrame. Uses the <i f r ane> tag to display content inline
with other applets on a view.

= Web Control. Uses an ActiveX control to display content
inline with other applets on a view.

= Form Redirect. SWE constructs a form which it sends back to
the browser, which the browser then sends to the external
host. The content received is displayed in a new window.

= Server Redirect. SWE sends the browser a 302 Response
with the value of the external host’s URL in the header. The
browser is redirected to the external host. The content
received is displayed in a new window. Note that for Server
Redirect there is a required Symbolic URL argument. See
“Server Redirect” on page 21 for a description.

See “Understanding Portal Agents” on page 16 for detailed
descriptions of each Disposition Type.

Web Application Associates a Web Application with this Symbolic URL. For more
information about Web Applications, see “Defining Web
Applications” on page 32.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 35

‘ Integrating External Content

Portal Agent Administration

Defining Symbolic URL Arguments

Symbolic URL Arguments allow you to configure Portal Agents in several ways. You
use them for two purposes, to define data to be sent to an external host and to
submit commands to SWE that affect the behavior of Portal Agents.

When defining arguments that send data, such as authentication requirements, the
Argument Name and Argument Value are appended to the URL as a attribute-value
pair. You can define symbolic URL arguments that send data as constants or that
dynamically retrieve data from the Siebel database. Symbolic URLs allow you to
retrieve data from the user’s instantiated Siebel business component, such as
Service Request or Account, or retrieve data from the Siebel Personalization
business component, such as the user’s ZIP Code or Language.

NOTE: See “Determining the Login Requirements” on page 25 for information about
how to determine required data for applications that use form-based authentication.

Symbolic URL Arguments also allow you to implement commands which you use
to define the behavior of Portal Agents. See “Portal Agent Command Reference” on
page 48 for usage descriptions of available commands.

To define Symbolic URL Arguments

1 Navigate to Site Map > Integration Administration > Symbolic URL
Administration.

2 In the Symbolic URL Administration applet, select the Symbolic URL you want
to configure.

36 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Administration

3 Inthe Symbolic URL Arguments applet, enter the arguments that need to be sent

Field

to the external host.

Some of the fields are defined in the following table:

Description

Name

Required

Argument Type

Name of the argument. For arguments of type Constant, Field, and Personalization
Attribute, this field defines the exact field name expected by the external application.
It is the first part of a attribute-value pair appended to the URL.

For argument types of commands, the Name can usually be anything. The only
exception to this is for the EncodeURL and PreloadURL commands. See “Portal Agent
Command Reference” on page 48.

When this field is checked (default) the argument must have a value. If you are
configuring an argument that does not have a value, uncheck the Required field. If an
argument has no value and the Required field is checked, the request is not sent
because there is no value to append to the URL.

They Argument Type determines the source of the data to be send along in the HTTP
request. Possible values are:

Constant. Sends the value defined in the Argument Value field in the request.
Field. Sends the value of a field from the current Siebel business component.

Personalization Attribute. Sends the value of a field from the Personalization business
component.

URL Argument. Data comes from the named argument of the current request.
Language Value. The user’s current language setting; for example, ENU.

Command. Implements commands that allow you to affect the behavior of the
symbolic URL. For a complete list of commands see “Portal Agent Command
Reference” on page 48.

Field - All Values. Data from all records in the working record set for the current
business component are sent in the request. The value defined for the Multivalue
Treatment on the Symbolic URL determines how these values are sent. See “Defining
Symbolic URLs” on page 33.

Version 7.5

Siebel Portal Framework Guide MidMarket Edition 37

‘ Integrating External Content

Portal Agent Administration

Field Description

Argument Value The value of the argument varies depending on the Argument Type. Descriptions of
possible values for each argument type are described below.

If the Argument Type is:

Constant, the Argument Value is the second part of the attribute-value pair that is
appended to the URL.

Field, the Argument Value defines a field from the current business component.
The data from that field is the second part of a attribute-value pair that is
appended to the URL. The syntax for defining the field is the field name enclosed
in brackets, for example[Last Nane] .

Profile Attribute, the Argument Value defines a field on the Siebel personalization
business component. Data from this field will be appended to the URL as the
second part of the attribute-value pair. The syntax for defining the field is the field
name enclosed in brackets, for example[Post al Code] .

URL Argument, the Argument Value defines the name of the argument on the
incoming SWE request.

Language Value, the Argument Value is left null.

Command, the Argument Value typically defines the name of the command. See
“Portal Agent Command Reference” on page 48.

Field - All Value, the Argument Value defines the field name on the current
business component from which data is to be retrieved.

Argument Value Although this field is rarely used, it can be used to identify additional arguments.

Append as Wh

en this field is checked (default), the value is added as a URL argument on the

Argument outgoing request. If this field is not checked, the value will be substituted in the text
of the outgoing URL.

Sequence Determines the sequence of the arguments. In some cases the target host requires
arguments in a particular order.

NOTE: If the disposition type of the symbolic URL is Server Redirect, then there is a

required
for SWE

argument and several optional arguments that provide the data necessary
to construct the header in the 302 Response. See “Server Redirect” on

page 21 for the details.

38 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Portal Agent Administration

Defining Content Fixup

The Fixup Administration view allows you to define how links embedded within
external HTML content should be rendered in the Siebel user interface. The fixup
types you define here will be associated with Symbolic URLs.

To define a fixup type
1 Navigate to Site Map > Integration Administration > Fixup Administration.
2 Enter a new record and define the fields.

Some of the fields are described in the following table:

Field Comments

Link Context Select one of the following values:

= Do Nothing. This fixup does not affect any of the links. The links
(relative or absolute) remain as they are with the content being
passed back in its original form.

= Outside Application. This fixup converts all of the relative links to
absolute links using the host and path of the parent URL. No links
are proxied.

= Inside Application. This fixup converts all of the relative links to
absolute links and any links using a host defined in the Host
Administration view are proxied in order to maintain SWE context.
After the user clicks a link, this fixup type renders HTML in the
view, using the entire view for display.

= Inside Applet. This fixup handles links the same way as the Inside
Application fixup type. However, in this case, when a user clicks a
link, it renders HTML within an applet. The other applets remain
present on the view.

Context Name of view that will display the link. This is optional.
View Name

Link Target Specifies the name of a specific target frame of the link. For example,
“_blank” for a new browser window or “AnyName” to open a window
of that name. This option is not often used.

NOTE: Fixup is required for all links within high-interactivity applications.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 39

‘ Integrating External Content

Defining End User Login Credentials

Defining End User Login Credentials

The Portal Framework provides a mechanism to store user login credentials for
external Web applications. The SSO Systems Administration view allows you to
specify an external application and then enter login credentials on behalf of users.
The My Logins view, located in the User Preferences screen, is used by end users to
maintain their own credentials.

To specify an external Web application and define login credentials

1 Navigate to View > Site Map > Integration Administration > SSO Systems
Administration.

2 In the SSO Systems list, enter a new record and define the following:

Field Description

System Name Name of the external Web application.

Symbolic URL Name Select the name of the Symbolic URL that interacts with the
external Web application.

The symbolic URL must be configured with the UserLoginld
and UserLoginPassword commands as arguments. These
arguments instruct the symbolic URL to pass the stored login
credentials when authenticating with an external Web
application.

Description Enter a description of the Web application.

3 If you are defining login credentials on behalf of end users, in the SSO System
Users list, enter end-user login names and passwords.

40 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Example Portal Agent

Example Portal Agent

Version 7.5

This section provides an example of using a symbolic URL to integrate content from
Siebel.COM. The high-level steps for doing this are:

1 Review the Login Form.

2 Define the External Host.

3 Define the Symbolic URL.

4 Define Symbolic URL Arguments.
5 Define User Login Credentials.

6 Test.

Each of these steps is covered in the following sections.

NOTE: This example assumes the underlying objects are already configured to
support the symbolic URL. See “Portal Agent Configuration” on page 28 for
information on how to do this.

Review the Login Form

By reviewing the login page at www.siebel.com, you can determine the target URL
of the Action attribute and the required arguments that are being passed to the Web
application. The login page at www.siebel.com contains the following <f or n» tag
and <i nput > tags:

<form action="/index.shtn' method="POST" nane="frmPassLogi n"
onsubmit="return | ogi ncheck();">

<i nput TYPE="TEXT" NAME="SearchString" Sl ZE="18" MAXLENGTH="100"
VALUE= "

<i nput type="hi dden" value="All" nane="sc">
<i nput type="hi dden" val ue="ON' nane="FreeText">

<i nput type="inmage" src="/inages/nav/button/bttn_formarrow. gif"
NAME="Acti on" border="0"/ alt="Subnmit Search"></td>

Siebel Portal Framework Guide MidMarket Edition 41

‘ Integrating External Content

Example Portal Agent

<i nput type="text" name="usernane" size="18">
<i nput type="password" nanme="password" size="18">

<i nput type="inmage" src="/inmages/nav/button/bttn_formarrow. gif"
border="0" name='login />

<i nput type="checkbox" name="renenber" checked/ > Renenber mny Logi n
</span

</formp

From the act i on attribute of the form tag you can determine that the target URL is
relative to the root of the login page’s URL. Therefore the target URL is:

waw. si ebel . cond i ndex. shtm
You can also determine that the nmet hod attribute of the form tag is post:
nmet hod=" POST"

After reviewing the <i nput > tags, you can determine that the required arguments
are:

user name

password

NOTE: Notice that not all input fields are necessary for login.

For more information about reviewing login forms, see “Determining the Login
Requirements” on page 25.

42 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content |

Example Portal Agent

Define the External Host

The external host is simply the address of the login page. In this example it is
www.siebel.com. Be sure to provide a meaningful name in the Virtual Host Name
field. This value is used when defining the Symbolic URL definition rather than the
actual host name. This will make administration easier if the host name changes.
Also notice that there is no value for the Authentication Type. A value is necessary
only when using NCSA basic authentication.

Figure 1 shows the external host defined for this example.

HTTP Host
Query Results

rFs Arrtl Arvitl

Hame Virtual Hame Value

Type

Wiy siebel.com Siebel

Figure 1. External Host Administration

For more information see “Defining the External Host” on page 31

Define the Symbolic URL

After you define the external host you can define the symbolic URL. Notice that the
URL defined here uses the Virtual Name of the host, not the actual name. Also
notice that when you select the external host from the Host Name field, it is
populated with the actual host name. When SWE constructs the URL, it substitutes
the actual Host Name for the Virtual Name in the URL. In this example, the fixup
type is Default because the page will be displayed in the browser using the

<i frame> tag and therefore, links should not be fixed up in any way.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 43

‘ Integrating External Content

Example Portal Agent

Figure 2 shows the Symbolic URL defined for this example.

Symbolic URL
=% Query Results

Hame URL Host Hame Fixup Hame

PattnerDashbosrd] http: iSiebel/searchindex shim ey Siebel com Detautt

Figure 2. Symbolic URL

For more information about defining Symbolic URLs, see “Defining Symbolic URLs”
on page 33.

Define Symbolic URL Arguments

You use symbolic URL Arguments to define the information that you want to
append as arguments to the URL. You also use Symbolic URL Arguments to define
commands that you want to execute. In this case, the following arguments
commands are required:

= PostRequest. This command instructs SWE to submit the request using a POST
method rather than GET, which is the default. In this case, you know POST is
required because the method attribute of the form tag specifies POST.

= UserloginPassword. This command instructs SWE to retrieve the password stored
for the user and pass it to the external application. The name of this argument
is the name of the input field expected by the external application. In this case,
it is password.

m UserLoginID. This command instructs SWE to retrieve the stored login name for
the user and pass it to the external application. The name of this argument is the
name of the input field expected by the external application. In this case, it is
username.

44 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Version 7.5

Example Portal Agent

Figure 3 shows the symbolic URL arguments defined for this example.

Symbolic URL Arguments

{ oI~ M I Query]

Hame Required Argument Argument Type - Argument Value Argument Value Append as Argun Substitute in Texd Sequence 2 -
USErname v Command UserLoginld v 1
password v Command UserLoginPassword vy 2
aNYNEme Zommand PostReguest 3

Figure 3. Symbolic URL Arguments

For more information about Symbolic URL arguments, see “Defining Symbolic URL
Arguments” on page 36.

For more information about Symbolic URL commands, see “Portal Agent Command

Reference” on page 48.

Define User Login Credentials

Finally you must define login credentials for a user. The values defined here will be
appended as arguments to the URL constructed by SWE. In this case, the following
username and password are defined:

m username = Joe_Smith@yahoo.com

m password = abracadabra

Siebel Portal Framework Guide MidMarket Edition 45

‘ Integrating External Content

Example Portal Agent

Test

After completing the previous steps, you can test the integration. Log out of the
application, and then log back in as the test user. Navigate to the applet or Web page
item that is associated with the Symbolic URL. Content from the external host, in
this case Siebel.COM, is displayed in the Siebel user interface, as shown in Figure 4.
Notice that the Joe Smith is logged into Siebel. COM.

[rad by SAEBEL
S s

] [WEELGEENEUIEN | Sales Analytics || Service Analytics || My Dashboard || Answers || Delivers || Events || Messages || Product Analytics || Application Administra ‘4| [k

File Edit ‘“iew Help

Show: | Executive Analytics 'I J JERE T2 J E] J Queries: vl J # 0 J H
Search
SearCh Resu Its Tipz for searching
Products Welcome,
Alliances Joe Smith
Services < Change Profils - Logout
Training & Support -
Global Web Sites ©J
e [Weroes - -
Events Select a country =]
Comgpany Information E E
Backto to Quick Links
Ta leam how Siebel [3ump to a product =1
Systems! salutions can
B HOwW To BUY

help your business, call
500-366-5818. Non-US
callers, clidk here.

B CoNTAST US

2 EMAIL THIS PAGE

Figure 4. External Content Displayed in the Siebel User Interface

46 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

Reviewing the SWE Log File

Reviewing the SWE Log File

Version 7.5

The SWE log file can help you debug errors in your Portal Agent configuration.
m The location of the log file is, si ebsrvr_root\| og.

= The name of the log file is, swel og_xxx. | og, where xxx = process id.

The log file is not enabled by default.

To enable the SWE Log file

1 Open your application’s configuration file, for example uagent.cfg.

Application configuration files are located in the
siebsrvr_root\BIN\language_code.

2 Find the parameter SWELOG and change its value to Enable.
SWELOG = Enable

Siebel Portal Framework Guide MidMarket Edition 47

‘ Integrating External Content

Portal Agent Command Reference

Portal Agent Command Reference

EncodeURL

Usage

Symbolic
URL
Arguments

IFrame

Usage

Symbolic
URL
Arguments

Disposition
Types

48 Siebel Portal Framework Guide MidMarket Edition

The following commands allow you to do things such as use a set of stored
credentials for authentication or define additional attributes for the <i f r ame> tag.
These commands are entered as Symbolic URL Arguments. See “Defining Symbolic
URLs” on page 33.

Use the EncodeURL command to specify whether or not the symbolic arguments
should be encoded when appended to the URL. By default the URL is encoded.
However, some servers do not recognize standard encoding, in which case you can
use this command to not encode the URL.

Define the following fields in the Symbolic Arguments applet:

Field Value
Name EncodeURL
Argument Value TRUE or FALSE

Use the IFrame command to define additional HTML attributes for the <i f r ame>
tag.

Define the following fields in the Symbolic URL Arguments applet:

Field Value Example

Name Any Name

Argument Value [Frame [attribute] - [value] IFrame Height =100 Width =500

Use the IFrame disposition type with the IFrame disposition type.

Version 7.5

Integrating External Content

Portal Agent Command Reference

NoCache
Usage Use the NoCache command to instruct SWE not to cache Inline responses on the
server. This command is only valid for the Inline disposition type.
Symbolic Define the following fields on the Symbolic URL Arguments applet:
URL
Arguments
Field Value
Name Any name
Argument Value NoCache
NoFormFixup
Usage Use the NoFormFixup command to Instruct SWE not to fix up a form by putting
proxy SWE arguments into links that appear on the page.
Symbolic Define the following fields in the Symbolic URL Arguments applet:
URL
Arguments
Field Value
Name Any name
Argument Value NoFormFixup
Version 7.5

Siebel Portal Framework Guide MidMarket Edition 49

‘ Integrating External Content

Portal Agent Command Reference

PreLoadURL

Usage

Use this command to specify a preloaded URL. Use this command when the
external application gathers information from a preloaded cookie on the client
machine. Use this command with disposition types of [Frame and Web Control.

Symbolic Define the following fields in the Symbolic URL Arguments applet:
URL
Arguments
Field Value
Name PreLoadURL
Argument Value [URL]
PostRequest
Usage Use PostRequest to configure the Portal Agent to use the POST method instead of
the GET method, which is the default. Use this command when the method of the
action attribute is POST. This method avoids displaying user information on a Web
page or browser status bar. Use this command with disposition types of IFrame and
Web Control only.
Symbolic Define the following fields in the Symbolic URL Arguments applet:
URL
Arguments

Field Value

Name Any Name

Argument Value PostRequest

50 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content

UserLoginld

Usage

Portal Agent Command Reference

Use the UserLoginld command to send the stored user login ID for a particular Web
application. The command gets the user’s Login ID from the My Login Credential
business component.

See “Defining End User Login Credentials” on page 40 for more information about
how user login IDs are entered into this business component.

Symbolic Define the following fields in the Symbolic URL Arguments applet:
URL
Arguments
Field Value
Name [input field name]
Argument Value UserLoginld
UserLoginPassword
Usage Use the UserLoginPassword command to send the stored user password for a
particular Web application. The command gets the user’s password from the My
Login Credential business component.
See “Defining End User Login Credentials” on page 40 for more information about
how user passwords are entered into this business component.
Symbolic Define the following fields in the Symbolic URL Arguments applet:
URL
Arguments

Version 7.5

Field Value

Name [input field name]

Argument Value UserLoginPassword

Siebel Portal Framework Guide MidMarket Edition 51

‘ Integrating External Content

Portal Agent Command Reference

UseSiebelLoginld

Usage Use the UseSiebelLoginld command to retrieve the user’s Siebel login ID from the
stored set of credentials.

Symbolic Define the following fields in the Symbolic URL Arguments applet:

URL
Arguments
Field Value
Name [input field name]
Argument Value UseSiebelLoginld
UseSiebelPassword

Usage Use the UseSiebelPassword command to retrieve the user’s Siebel password from
the stored set of credentials.

Symbolic Define the following fields in the Symbolic URL Arguments applet:
URL
Arguments

Field Value

Name [input field name]

Argument Value UseSiebelPassword

52 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Integrating External Content |

Portal Agent Command Reference

WebControl

Usage Use the WebControl command to define additional HTML attributes for Portal
Agents with a disposition type of Web Control.

Symbolic Define the following fields in the Symbolic URL Arguments applet:
URL
Arguments

Field Value Example

Name Any Name

Argument WebControl [attribute] - [value] WebControl Height =100 Width = 500
Value

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 53

‘ Integrating External Content

Portal Agent Command Reference

54 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web 3
Applications

Version 7.5

This chapter describes how to use the XML Web Interface to deliver content to
external portal frameworks and Web application environments. The XML interface
provides industry-standard integration to third-party development environments,
such as ASP and JSP, as well as providing a model consistent with emerging Web
technologies. The XML interface can be used across all Siebel eBusiness
Applications, although some specialized applets may have limited support for this
interface.

Developers can configure Siebel applications to support different markups, such as
cHTML and xHTML, by combining the XML interface with XSL style sheets and the
eAl XSLT business service.

Siebel Portal Framework Guide MidMarket Edition 55

‘ Delivering Content to External Web Applications

Overview of the XML Web Interface

Overview of the XML Web Interface

The XML interface provides access to Siebel eBusiness Applications through the
Siebel Web Engine (SWE). SWE generates user interface, in HTML or WML, using
views, applets, and templates. These UI constructs provide access to and filtering
for business object and business component data. They also provide access to
visibility, navigation, and security. By rendering the XML based on the underlying
SWE technology, the XML interface exposes business object and business
component data, and Ul elements and constructs, such as visibility, navigation, edit
presence, personalization, and security. Most Siebel applets, with the exception of
applets based on certain specialized applet classes, can be rendered in XML through
the XML interface. The XML interface can be invoked using the following methods:

m Server configuration parameters
= Inbound URL query string parameters
s Inbound HTTP post of XML document

= Using the Web Engine Interface business service

Accessing Siebel XML

By default, Siebel eBusiness Applications present a standard HTML-based user
interface (UI) to end users. When you use the XML interface, the standard
architecture changes slightly; an XML interface layer is introduced. The XML
interface layer accesses Siebel eBusiness Applications through the SWE using the
UI constructs, views, applets, and templates. It provides visibility into Siebel
business objects and business components. These Ul constructs provide not only
filtering and access to business object and business component data, but also
provide access to visibility, navigation, and security.

You can use the XML interface to retrieve data and UI constructs from your Siebel
eBusiness Application and display it to end users according to your business needs.
You can also combine this interface with XSL style sheets and the XSLT business
service to generate custom HTML or other markup languages directly from the
Siebel application.

56 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Version 7.5

Accessing Siebel XML

For example, you can display a Siebel view using XML format rather than HTML by
using a SWE command to set the markup language to XML. This example uses the
Account view as an example.

To view the Accounts view in XML

1
2

Log in to your Siebel application.

Type the following SWE commands and arguments appended to the URL in your
browser:

SWEcnd=Cot oPageTab&SWEScr een=Account s+Scr een&SVIEESet Mar kup=XM.

For example, using the mobile Web client, the URL would look like the
following:

http://1ocal host/start. swe
?SVEChd=Cot oPageTab&SVEEScr een=Account s+Scr een&SVESet Mar kup=XM.

The Accounts view is rendered in XML format as shown in the following figure.

2 http:/flocalhostfstart.swe?SWECmd=GotoPageTab&SWEScreen=Accounts+Screend&SWESetMa. ..
J File Edit “iew Favortes Tools Help

J Back + = - (D 7t | ‘@ Search [Favortes £ Histom ‘%v =2 ¥ 2

jAddress I@ http: /Aocalhost/ start swe?SWE Cmd=GotoP ageT abiSWE Screen=booounts+SoreentSWE Sath atkup=:ML

<7uml version="1.0" encoding="UTF-8" 7>
- <APPLICATION MaME="Siebel Universal Agent">
<IJSER_AGENT MARKUP="HTML" /=
- <MAVIGATION_ELEMEMNTS>
- <MEMNU NAME="AppletMenul">
<MEMU_ITEM T¥PE="Separator" />
— <MEMU_ITEM TY¥PE="Command" ENARLED="TRUE" NAME="New Record"=
- =ANCHOR PATH="/start.swe">
- <CWMD VaLUE="InvokeMethod" NAME="SWECmMd">
<ARG NAME="SWEApplet">Account List Applet</ARG>
ARG NAME="SWEVYiew":Account List View« /ARG
<ARG NAME="SWERowId">1-6</4RG>
<ARG NAME="SWEMNeedContext"=true< /ARG
=ARG NAME="SWEReqRowId">0=/ARG>
ARG NAME="SWEMethod">NewRecord«/ /RG>

</ CMD=
<INFO NAME="SWEG">5</INFO>
</ BNCHOR
|@ Done E Local intrang

Siebel Portal Framework Guide MidMarket Edition 57

‘ Delivering Content to External Web Applications

Siebel OM and Web Server Configuration and Markup Determination

Siebel OM and Web Server Configuration and Markup
Determination

The Siebel Web Engine (SWE) can be configured to produce output in HTML and
XML markup languages. The default markup for a given object manager is set using
the SWEMarkup parameter in the SWE section of the object manager configuration
file. Based on browser or device detection or parameters set on the inbound request,
this default markup may be overridden.

The following is a summary of how the markup will be determined for a given
request. The following three steps are used in the markup determination process for
a given request. They are listed by priority.

1

Inbound request, SWESetMarkup="XML or HTML". This is an optional inbound
request parameter that can be used to override the User Agent Service and Server
configuration. Valid values for this are XML or HTML. The User Agent Service
and server configuration are not used to determine the markup when the
SWESetMarkup parameter is defined on the inbound request.

User agent service. This service is used to determine the markup based on the
device or browser that generated the request. The service will take information
from the request header and look up the designated markup in the device table.
The resulting markup is passed to the next step. Note, if no match is found in
the device table the default markup is HTML.

Dynamic markup comparison. Assuming that no markup is specified by the
inbound request SWESetMarkup parameter, the markup from the user agent
service is compared to the server default configuration to determine what
markup will be generated. The server default markup is designated by the
SWEMarkup parameter in the OM .cfg file.

58 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications |

Siebel OM and Web Server Configuration and Markup Determination

Table 4 shows a summary of the markup that will be generated for a given request
based on the intersection of the server configuration markup and the markup from
the user agent service.

Table 4. Markup Summary

Server Configuration Value User Agent Markup Value

HTML XML
HTML HTML XML
XML XML XML

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 59

‘ Delivering Content to External Web Applications

Connecting to the XML Web Interface

Connecting to the XML Web Interface

The XML Web Interface can be used against any Siebel eBusiness Application.
Requests to generate XML from Siebel eBusiness Applications can be submitted
through a Siebel Web Server or using the Web Engine Interface business service. In
both cases, requests can take the form of a query string or an XML command block.

Submitting HTTP Requests Through the Web Server

You can send HTTP requests to SWE through the Siebel Web Server using a query
string or XML command block. Examples of these two methods are provided in the
following sections.

Query String

You can send HTTP requests to SWE using a query string. For example, the
following code sample illustrates an Active Server Page that uses MSXML to make
an HTTP request. The request logs in to the Siebel application and navigates to the
Accounts screen. The XML response from SWE is transformed into HTML using
XSLT.

<% @QANGUAGE="VBScri pt" %
<%

strURL = "http://" & Request.form ("swe") & "/
start. swe?SWECd=Execut eLogi n&SWEDat aOnl y=1&SWEUser Nane=sadm n&SWE
Passwor d=sadmi n&SWESet Mar kup=XM.
ZO Set xm http = Server. CreateQbj ect (" MSXM.2. Ser ver XMLHTTP")

xm http. open "CGET", strURL, Fal se

xm http.send ()

Set ol ogi nXm Doc = xm http. responseXVL

strCooki e = xml http. get ResponseHeader (" Set- Cookie")
On Error Resune Next
If strCookie = "" Then

60 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Version 7.5

Connecting to the XML Web Interface

Response. Wite ("Unable to connect to Siebel Wb Server.
Pl ease check Login Nane, Password, and Siebel Wb Server URL")
Response. End

End I f

strSessionld =
m d(strCookie,inStr(strCookie,"!"),inStr(strCookie,";")-
inStr(strCookie,"!"))

strURL = "http://" & Request.form ("swe") & "/
start. swe?SWECTd=Cot oPageTab&SWEScr een=Account s+Scr een&SWESet Mar ku
p=XM_&SWVEDat aOnl y=1" & "& sn=" & strSessionld

Set xm http = Not hi ng

Set xm http = Server. Creat eCbj ect ("MXM.2. Server XMLHTTP")

xm http. open "CGET", strURL, Fal se

xm http.send ()

Set oXm Doc = xm http.responseXM

' Sessi on Var

Sessi on ("SWESessionld") = strSessionld
Session ("swe") = Request.form ("swe")

' Prepare XSL

sXsl = "acctresponse. xsl "
Set oXsl Doc = Server. Creat eCbj ect ("Msxm 2. DOVDocunent ")
oXsl Doc. async = fal se
oXsl Doc. | oad(Server. MapPat h(sXsl))
%
<HTM.>
<HEAD>
<TI TLE>My Portal </ TI TLE>. ..

<BODY>

Siebel Portal Framework Guide MidMarket Edition 61

‘ Delivering Content to External Web Applications

Connecting to the XML Web Interface

<TD col Span=2><%Response. Wite (oXm Doc. transformode(oXsl Doc)) %

</ TD>

</ BODY>

</ HTM.>

XML Command Block

You can use an XML command block to send the HTTP request through the Siebel
Web server. For example, you can submit inbound XML documents to SWE as the
HTTP request body data. In the Java code sample below, the XML command block
opens a socket connection to the Web server and writes the request data stream to

the socket’s OutputStream.

public static final String FULL_XM._PROC_STR

encodi ng=\"UTF- 8\ "?>\n";

I nput St r eam

in;

Buf f er edReader fronBerver;
PrintWiter t oServer;
Socket socket ;
String payl oad;
String line;
try
{
if (request !'= null && request.length() > 0)
{
/'l send request
socket = new Socket (url.getHost(), url.getPort());
toServer = new PrintWiter(new
Qut put St reanWiter(socket.getQutputStrean()));
in = socket.get | nputStrean();

payl oad = FULL_XM._PROC_STR + request;

toServer. println("POST "

toServer. println("Cookie:

+ url.toString() + "

+ sessionlD);

toServer.println("Content-Type: text/xm");
toServer. print("Content-Length: ");
toServer. println(payl oad.|ength());

62 Siebel Portal Framework Guide MidMarket Edition

HTTP/ 1.0");

= "<?xm version=\"1.0\"

Version 7.5

Delivering Content to External Web Applications

Connecting to the XML Web Interface

toServer.println("");
toServer. println(payl oad);
toServer.flush();

fromServer = new Buf f eredReader (new | nput St reanReader (in));

/'l read the response
while ((line = fronServer.readLine()) != null)

{

fronServer. cl ose();
toServer.close();
socket . cl ose();

}
}

catch (Exception ex)

{
Systemerr.printin(ex.toString());

Submitting Requests Using the Web Engine Interface

Using Siebel’s Object Interfaces you can access business services. The Web Engine
Interface business service allows you to make requests to the Siebel Web Engine
without having to submit requests through the Web server. Commands can be a
query string or XML command block. The response is in the XML output property
set of the business service.

For example, using the com si ebel . dat a. Si ebel Dat aBean JavaBean class, you
can access SWE as a business service from within the JSP environment. The
SiebelDataBean provides a direct connection to SWE using the SISNAPI protocol;
you can establish this connection without going through a Web server and the
Siebel Web Extension plug-in. Once the data bean is instantiated, the SWE business
service is obtained as an instance of com si ebel . dat a. Si ebel Servi ce by calling
the GetService() method on the data bean with the service name “Web Engine
Interface.”

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 63

‘ Delivering Content to External Web Applications

Connecting to the XML Web Interface

The following code fragments shows four tasks required to make the request:

1 Instantiate the business service.
2 Define the input properties.

3 Invoke the method.

4 Define the output property.

For example, the following code fragment instantiates the Web Engine Interface
business service:

import com si ebel . data. *;

public class nyBean

{

protected void init(String uNane, String passwd, String conn) throws Exception

{
if (uNanme != null && passwd != null && conn !'= null)
{
Si ebel Dat aBean sdBean = new Si ebel Dat aBean() ;
sdBean. | ogi n(conn, uNane, passwd, |ocale);
Si ebel Service service = sdBean. get Service(“Wb Engine Interface”);
}
}

}
The following code fragment defines the input properties:

try

{
Si ebel PropertySet pi = sdBean. newPropertySet();

Si ebel PropertySet po = sdBean. newPropertySet();

64 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications |

Connecting to the XML Web Interface

pi . set Property("User Nane", getUserNane());

pi . set Property("RenpteUser", getUserNanme());

pi . set Property("Method", "GET");

pi .setProperty("HTTPPort", "80");

pi . set Property("HTTPSPort", "443");

pi . set Property("Server Nane", get ServerNanme());
pi .setProperty("ServerPort", getServerPort());

pi . set Property("UseCookie", "F");

You can invoke SWE business service methods by calling the Si ebel Ser vi ce class
method InvokeMethod() and passing in the method name and the input and output
property sets (com si ebel . dat a. Si ebel PropertySet). Results from the method
invocation are generated as a property in the output property set. Here is a sample
code fragment for invoking the “Start” method:

/1 initialize the swe
if (service.invokeMethod("Start", pi, po))

{
printinfo("Done initializing SWE'");

The following code fragment retrieves the output property:

String response = po.getProperty("RespData");

}
el se
{
printinfo("Failed to initialize SWE");
}
}
catch (Siebel Exception ex)
{
}

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 65

‘ Delivering Content to External Web Applications

Connecting to the XML Web Interface

Query String

Using the Web Engine Interface, you can send requests to SWE either as a URL
query string or as an XML document in the request body data. To send a request
using URL, set the property “QueryString” to the URL query string with all the SWE

commands and parameters.

For example, the following code sample defines the input properties (Step 2 in the

SiebelDataBean example) using a query string:

pi . set Property("User Name", user Nane);

pi . set Property("Mde", "0");

pi . set Property("ServerNane", get ServerNanme());

pi . set Property("ServerPort", getServerPort());

pi . set Property("Method", "GET");

pi . set Property("Request BodyType", "text/xm");

pi .setProperty("RequestURI", uri);

pi . set Property("Request BodyLength", "0");

pi . set Property("Request BodyLengt hTotal ",
pi . set Property("Request BodyData", "");

String query =

SWECnd=Execut eLogi n&SWEDat aOnl y=1&SWEUser Name=sadm n&SWEPasswor d=

sadm n&SVESet Mar kup=XM.
pi . setProperty("QueryString", query);

pi .setProperty("ScriptNanme", uri);

pi . set Property("Channel ", (isSecure ? "https"
/I pi.setProperty("SessionlD', "1"); // creates if necessary

pi.setProperty("Cient", "client-nmachine-nane");

pi . set Property("UseCookie", "F");

66 Siebel Portal Framework Guide MidMarket Edition

Version 7.5

Delivering Content to External Web Applications

Version 7.5

Connecting to the XML Web Interface

The following code fragment invokes the Request Web Engine Interface business
service method (Step 3 in the SiebelDataBean example):

bool ean result = swe.invokeMethod("Request", pi, po);

NOTE: The Request method is the most commonly used Web Engine Interface
method.

XML Command Block

To send a request using an XML command block, set the input properties
“RequestBodyData,” “RequestBodyLength,” and “RequestBodyLengthTotal.”
The property “RequestBodyData” must contain the XML request as specified in
“Outbound DTD” on page 116. You should either leave the query string blank

or make sure it does not contain the parameter “SWECmd” or its short form “C”
(for example, SWECmd = GotoView or C=GvV).

For example, the following code sample defines the input properties (Step 2 in the
SiebelDataBean example) using an XML command block:

String testCnd = "<EXEC PATH=\"/sal es/start.swe\">" +
"<CVD NAME=\"SWECnd\" VALUE=\"Got oPageTab\">" +
" <ARG NAME=\" SWENeedCont ext\ " >f al se</ ARG" +
"<ARG NAME=\"SWEScreen\">Products Screen</ ARG" +
"</ CND>" +

"</ EXEC>" ;

pi . set Property("User Nane", user Nane);

pi . set Property("Mde", "0");

pi . set Property("ServerNane", get ServerNanme());
pi .setProperty("ServerPort", getServerPort());
pi . set Property("Method", "POST");

pi . set Property("Request BodyType", "text/xm");

Siebel Portal Framework Guide MidMarket Edition 67

‘ Delivering Content to External Web Applications

Connecting to the XML Web Interface

pi . setProperty("RequestURI ", uri);
String xm Request = "<?xm version=\"1.0\"?> " + testOnd;

int lenUni Code = (new Integer(xm Request.length()))*2String len
=l enUni Code. toString();

pi . set Property("Request BodyLength", |en);
pi . set Property("Request BodyLengt hTotal ", |en);

pi . set Property("Request BodyDat a", xnl Request);

pi .setProperty("QueryString", “");
pi . set Property("ScriptNane", uri);
pi . set Property("Channel ", (isSecure ? "https" : "http"));
pi.setProperty("Cient", "client-nmachine-nane");
pi . set Property("UseCookie", "F");
The following code fragment invokes the Request Web Engine Interface business
service method (Step 3 in the SiebelDataBean example):

bool ean result = swe.invokeMet hod("Request", pi, po);

68 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Request Structure

XML Request Structure

The XML API offers developers access to the objects within Siebel eBusiness
Applications. Although it is not required that you have a complete understanding of
Siebel object definitions and architecture, it is strongly recommended that you be
familiar with them.

You can structure requests using a query string or a command block.

Query String

To construct a request using a query string, you append SWE commands and
arguments to a URL. Each command or argument and its value is separated by an
“&”. For example:

SVECd=Execut eLogi n&SVEEDat aOnl y=1&SVEUser Nanme=sadm n&SVEPasswor d=
sadm n&SWESet Mar kup=XM.

For a list of commonly used SWE commands and arguments see “SWE API” on
page 100.

XML Command Block

Version 7.5

To initiate an action on a Siebel eBusiness XML screen, you must use a specific set
of XML tags and they must conform to a specific structure. Table 5 lists the three
valid XML tags that are used to perform a command.

Table 5. XML Tags

Tag Description

<EXEC> The root tag for each command that you want to send to the SWE. The
<EXEC > tag encloses the <CMD > and < ARG > tags. This tag
represents a single command.

<CMD > This tag indicates the SWE command that you want to access and
encloses all arguments for the command.

<ARG > This tag indicates the object on which the command is to be executed
and any additional parameters that are required. Unlike the <EXEC >
and <CMD > tags, which are used only once in a command block, you
can have multiple arguments within a command block.

Siebel Portal Framework Guide MidMarket Edition 69

‘ Delivering Content to External Web Applications

XML Request Structure

For example, using the information from Table 5, a valid syntax format for an XML
command block is as follows:

<EXEC>
<CMD NAME=" SWEcrmd” VALUE=" command nane” >
<ARG NAME=" ar gunent Name” >ar gunent 1Val ue</ ARG>

<ARG NAME=" ar gunent Name” >ar gunent 2Val ue</ ARG>

<ARG NAME=" ar gunent Name” >ar gunment Nval ue</ ARG>
<ARG NAME=" SVESet Mar kup"> XML | HTM. </ ARG>
<ARG NAME="SWEDat aOnl y"> TRUE | FALSE </ ARG>
<ARG NAME=" SVESet NoTenpl "> TRUE </ ARG

</ CND>

</ EXEC>

Each <EXEC> tag encloses a complete command block. The < CMD > and
< ARG > tags are enclosed within the < EXEC > tag, and their attributes and values
specify which commands are executed by the SWE.

A valid XML command block must conform to a specific structure. It must have a
valid execute tag followed by a command tag that encloses the arguments. The
syntax of the name-value pairs and the attributes that accompany the XML tags
within a command block must follow a specific format. This section details the
syntax of each XML tag. For the DTD for the inbound XML document, see “Inbound
DTD” on page 115.

EXE Tag

The Execute tag is the root tag for each command that you want to execute.

Description

Think of the Execute tag as a container. Each container represents a single SWE
command or screen action. Enclosed within an Execute tag are the commands,
arguments, and information required to complete a single command. There should
be only one <EXEC > tag for each command that you want to execute. The PATH
attribute is the only attribute used by the < EXEC > tag, although it is not required.

70 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Version 7.5

XML Request Structure

Attributes
Table 6 lists the attributes used with the Execute tag:

Table 6. EXEC Tag Attributes

Attribute Description

PATH The PATH attribute is used to indicate the location of the SWE object
manager. By default, the eBusinessSWEXML application looks in its root
directory for the SWE object manager. If you want to specify an object
manager for the Web application to use, you must indicate its location
using the PATH attribute.

Example
The following example uses the Execute tag to enclose the login command.

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CVD NAME=" SWECnd" VALUE="Execut elLogi n">
<ARG NAME="SVEUser Nane" >j doe</ ARG>
<ARG NAME=" SVEEPasswor d" >j doepasswor d</ ARG>
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>
<ARG NAME=" SVEEDat aOnl y" >TRUE</ ARG>
<ARG NAME="SVESet NoTenpl " >TRUE</ ARG>
</ CND>

</ EXEC>

CMD Tag

The Command tag is required for each command block and is used to indicate the
SWE command that you want to execute.

Description

Like the Execute tag, the Command tag also acts as a container. Enclosed between
the open and close Command tags are the arguments required to complete a
command. There should be only one <CMD > tag for each command block that
you want to execute.

Siebel Portal Framework Guide MidMarket Edition 71

‘ Delivering Content to External Web Applications

XML Request Structure

Attributes
Table 7 lists the attributes that are used with the Command tag:

Table 7. CMD Tag Attributes

Attribute Description

NAME The NAME attribute should always be set to “SWECmd.” This indicates
that the type of command you want to execute is a SWE command.

VALUE The VALUE attribute specifies which SWECmd you want to execute.
Listed below are the SWE commands most commonly used with
eBusiness:

= ExecutelLogin
= GotoPageTab

= InvokeMethod
= LogOff

Example
Using the information from the table above, the following example illustrates how
to use the Command tag to execute a login command:

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CVD NAME=" SWECnd" VALUE="Execut eLogi n">
<ARG NAME=" SWEUser Nane" >j doe</ ARG>
<ARG NAME=" SVEEPasswor d" >j doepasswor d</ ARG>
<ARG NAME=" SWESet Mar kup" >XM.</ ARG>
<ARG NAME=" SWEDat aOnl y" >TRUE</ ARG>
<ARG NAME="SVEESet NoTenpl " >TRUE</ ARG>
</ CVD>

</ EXEC>

72 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Version 7.5

XML Request Structure

ARG Tag

A command block can contain multiple Argument tags. Each Argument tag
indicates an additional command parameter required to complete the action
specified in the command block.

Description
The Argument tag uses name/value pairs to send command parameters to the SWE.
A command will not execute without having all the appropriate parameters passed
to the SWE.

Attributes
Table 8 lists the attributes that are used with the Argument tag.

Table 8. ARG Tag Attributes

Attribute Description

NAME This is the only attribute used by the Argument tag. The NAME attribute
is used to indicate an argument, or the name of a parameter, for which
you are sending additional information. The parameter’s value is entered
between the open and close Argument tags.

Listed below are the parameter names most commonly used with
eBusiness:

= SWEApplet

= SWEDataOnly

= SWEMethod

= SWEPassword

s SWEScreen

» SWESetNoTempl
» SWESetMarkup
= SWESetRowCount
» SWEStyleSheet

= SWEUserName

= SWEView

Table 9 on page 76 lists the values that are most commonly used with
these parameter names.

Siebel Portal Framework Guide MidMarket Edition 73

‘ Delivering Content to External Web Applications

XML Request Structure

Example

For each argument name that you include in a command block, you must also
indicate a value for the argument. For example, to use the InvokeMethod command,
you must indicate which method you want to invoke. Additionally, if the method
is one that requires parameters, as is the case with the WriteRecord, you must send
those parameters to the SWE. With the WriteRecord method, you need to indicate
the view and the applet you are working with. You also need to indicate the column
to which you want to write the record, and finally you need to indicate what
information you want to write. The following example illustrates how to use
Argument tags to send the required parameters for a WriteRecord method:

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CVD NAME=" SWECmd" VALUE="|nvokeMet hod" >
<ARG NAME=" SVEEMet hod" >W i t eRecor d</ ARG>
<ARG NAME="SWEVi ew' >Account Li st Vi ew</ ARG
<ARG NAME="SWEAppl et " >Account Li st Appl et </ ARG
<ARG NAME="Lot Nane">65 netal car</ ARG
<ARG NAME="Starting Price">3.00</ ARG
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>
<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME="SVESet NoTenpl " >TRUE</ ARG>
</ CND>

</ EXEC>hr

Required Arguments
The following three arguments are required for each command block sent to
the SWE:

<ARG NAME="SWESet Mar kup">XM. | HTML | WML</ ARG>
<ARG NAME="SWEDat aOnl y">TRUE | FALSE</ ARG>

<ARG NAME="SWESet NoTenp" >TRUE</ ARG>

74 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications |

XML Request Structure

m SWESetMarkup. The SWE returns a response for each command block it receives.
You can use the SWESetMarkup attribute to indicate whether a response is
returned as XML or HTML.

You can also set the response markup format by allowing the User Agent (UA)
service to retrieve the default markup from the UA device table, or by setting the
SWESetMarkup property in the appropriate Siebel Server configuration file.
The SWESetMarkup tag is not required in the payload when you use one of
these alternatives.

NOTE: The examples in this chapter specify the response markup format using
the SWESetMarkup attribute in the payload.

= SWEDataOnly. In addition to specifying the type of markup language for a SWE
response, you must also indicate whether the response should include data only
or data and user interface information, such as non-data controls (anchors and
navigation controls). You can set the SWEDataOnly attribute to TRUE to indicate
that only data should be returned, or you can set it to FALSE to indicate that both
data and user interface information should be returned.

NOTE: If the SWEDataOnly parameter is not included, the default is FALSE.

m SWESetNoTempl. By default, Siebel eBusiness XML uses a server-side Web
template to filter specific items and controls from SWE responses. When using
XML, you can control whether a response will return all the information related
to the request or a subset of it dictated by the Web template. Setting the attribute
to TRUE makes sure that the Web template is not used and that the SWE
response contains all the necessary information to complete an action. When a
SWESetNoTempl attribute is set to FALSE, the Web template is used and the page
items and controls specified in the template are filtered from the response.

NOTE: If the SWESetNoTempl parameter is not included, the default is FALSE.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 75

‘ Delivering Content to External Web Applications

XML Request Structure

Common Name-Value Pairs
Table 9 lists commonly used argument name-value pairs.

Table 9. ARG Parameter Name-Values Pairs

Parameter Name

SWEApplet
SWEDataOnly

SWEMethod

SWEPassword
SWEScreen

SWESetMarkup

SWEUserName
SWEView

Parameter Values

Appl et nane
TRUE

FALSE

= DeleteRecord
= EditRecord

= ExecuteQuery
= GoToNextSet
= GotoPageTab
= NewRecord
s NewQuery

= WriteRecord
Passwor d
Screen nane
HTML

XML

User name

Vi ew nanme

NOTE: When determining what arguments to define, it is a good idea to look at the
XML Response. The response will include what arguments are expected.

76 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Response Structure

XML Response Structure

Errors

When you send a command block to a Siebel eBusiness SWEXML application, you
access the Siebel eBusiness XML application screens. If the action specified in the
command block is successfully executed, the data and all of the objects from the
resulting screen are returned within an HTTP response. The format of the response
is XML or HTML, depending on the SWESetMarkup setting that was sent in the
request payload.

You must develop the mechanism by which your Web server handles XML
responses. Using the information provided in this section you can develop a parser,
a Web application, or another control to extract the necessary data from XML
responses and display the appropriate information to users. For the DTD for the
outbound XML document, see “Outbound DTD” on page 116.

If a command block contains an error or is unsuccessful, the specified action is not
executed. Instead, the Siebel eBusiness XML user interface retains its current state
and the SWE returns an error. Based on the markup format you have specified, an
error response is returned as XML or HTML.

An XML error response contains an < ERROR > tag within the payload. Descriptive
text for the error is enclosed between the open and close < ERROR > tags.

XML Response

Version 7.5

When the SWESetMarkup attribute in a command block is set to XML, the response
payload from the Siebel eBusiness XML Web server is returned in XML format. The
payload consists of an XML declaration followed by the core XML tags that contain
and describe the data.

Each XML tag represents an object from a Siebel eBusiness XML application screen
that you requested. The attributes within each tag are read-only and represent the
properties of the object.

Siebel Portal Framework Guide MidMarket Edition 77

‘ Delivering Content to External Web Applications

XML Response Structure

Table 10 lists the major XML tags that are returned in a response in which the
SWEDataOnly attribute is set to TRUE.

NOTE: The response tags described in this appendix are a subset of the tags that can
be returned by the SWE.

Table 10. XML Response Tags

Tag

< APPLICATION >

< SCREEN >

< VIEW >

Description and Attributes

The root tag for each response that is returned from the SWE. The < APPLICATION >
tag encloses all the XML response data.

Attribute:

s NAME. This attribute indicates the name of the application from which the
response is generated. For XML requests, the application name in the response will
always be “Siebel eBusiness XML.”

This tag identifies the eBusiness screen that is the result of, or is accessed by, the
command in your request. The < SCREEN > tag also encloses all of the XML tags that
identify the data within the screen.

Attributes:
» CAPTION. This attribute indicates the caption of the screen.

» ACTIVE. A value of TRUE indicates that the screen is active. A value of FALSE
indicates that the screen is inactive.

= NAME. This attribute indicates the screen name, which is used to identify the
screen.

This tag identifies the eBusiness view that is the result of, or is accessed by, the
command block in your request. This tag also encloses all of the XML tags that identify
the data within the view.

Attributes:
» TITLE. This attribute indicates the title of the view.

= ACTIVE. A value of TRUE indicates that the view is active. A value of FALSE
indicates that the view is inactive.

s NAME. This attribute indicates the view name, which is used to identify the view.

78 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Response Structure

Table 10. XML Response Tags

Tag

<APPLET >

<APPLET >

(Continued

<LIST >

Version 7.5

Description and Attributes

This tag identifies the eBusiness applet that is the result of, or is accessed by, the
command block in your request. It also encloses all of the XML tags that identify the
data within the applet.

Attributes:

= ROW_COUNTER. This attribute indicates how many records out of the entire set of
records are currently displayed. The ROW_COUNTER attribute is a string of the
form, I -nof N.

= NO_DELETE. A value of TRUE indicates that the records in the applet cannot be
deleted. A value of FALSE indicates that the records in the applet can be deleted.

= NO_EXEC_QUERY. A value of TRUE indicates that a query cannot be executed in
the applet. A value of FALSE indicates that a query can be executed in the applet.

s NO_UPDATE. A value of TRUE indicates that the records in the applet cannot be
updated. A value of FALSE indicates that the records in the applet can be updated.

= MODE. Indicates the mode of the applet, which can be one of the following: Base,
Edit, New, Query, Sort.

Attributes:
» TITLE. This attribute title of the applet.

= NO_INSERT. A value of TRUE indicates that records cannot be inserted into the
applet.

» CLASS. Indicates the class being used by the applet.

s NO_MERGE. A value of TRUE indicates that records in the applet have not been
merged. A value of FALSE indicates that the records in the applet have been merged.

= ACTIVE. A value of TRUE indicates that the applet is active. A value of FALSE
indicates that the applet is inactive.

= ID. This attribute indicates the applet ID, and can be used to identify the applet.

= NAME. This attribute indicates the applet name, which is used to identify the
applet.

This tag encloses the table of records that is returned from your request. The following
two tags and their subordinate tags are enclosed within the <LIST > tag:

<RS_HEADER >
< RS_DATA >

There are no attributes associated with the <LIST > tag.

Siebel Portal Framework Guide MidMarket Edition 79

‘ Delivering Content to External Web Applications

XML Response Structure

Table 10. XML Response Tags

Tag Description and Attributes

<RS_HEADER > This tag encloses all the header information about the columns in a list that your
request returns. The < COLUMN >, < METHOD >, and <ERROR > tags can be
enclosed within this tag.

< COLUMN > A response can return multiple < COLUMN > tags. Each < COLUMN > tag within an
<RS_HEADER > tag indicates another column within the parent list.
Attributes:

s NUMBER_BASED. A value of TRUE indicates that the data in the column are
numeric. A value of FALSE indicates that the data are not numeric.

s CALCULATED. A value of TRUE indicates that the data in the column are calculated
from other values, as opposed to being input. A value of FALSE indicates that the
data are not calculated.

= LIST_EDITABLE. A value of TRUE indicates that the data in the column are editable.
A value of FALSE indicates the data are not editable.

s HTML_TYPE. This attribute is used to indicate the type of object that is represented
in the column.

s SCALE. A value of TRUE indicates that the data in the column are scaled. A value of
FALSE indicates that the data are not scaled.

= FIELD. This attribute indicates the field name associated with the column. The
value in the field name is the same as the column name.

= HIDDEN. A value of TRUE indicates that the data in the column are hidden on the
eBusiness screen. A value of FALSE indicates that the data are visible on the
eBusiness screen.

80 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

XML Response Structure

Table 10. XML Response Tags

Tag

< COLUMN >

<RS_DATA >

Version 7.5

Description and Attributes

DATATYPE. This attribute indicates the Siebel data-type of the data in the column.

DISPLAY _NAME. This attribute indicates the text string that would appear in the
user interface.

TEXT_LENGTH. This attribute indicates the maximum length of field entries in the
column.

TYPE. This attribute is used to indicate the type of object that is represented in the
column.

ID. This attribute indicates the unique ID of the column.

TEXT_BASED. A value of TRUE indicates that the data in the column is text based.
A value of FALSE indicates that the data is not text based.

NAME. A value of TRUE indicates that the data in the column are hidden on the
eBusiness screen. A value of FALSE indicates that the data are visible on the
eBusiness screen.

REQUIRED. A value of TRUE indicates that the data in the column are required. A
value of FALSE indicates that the data are not required.

READ_ONLY. A value of TRUE indicates that the data in the column are read-only
and cannot be modified. A value of FALSE indicates that the data are editable.

This tag encloses table rows that are returned from your request. The <RS_DATA >
tag encloses the <ROW > tag and the <ROW > tag’s subordinate tags.

Siebel Portal Framework Guide MidMarket Edition 81

‘ Delivering Content to External Web Applications

XML Response Structure

Table 10. XML Response Tags

Tag

<ROW >

< FIELD >

Description and Attributes

A response can return multiple < ROW > tags. Each < ROW > tag within an

<RS_DATA > tag indicates another record within the table. The <ROW > tag

encloses the <FIELD > tag.

Attributes:

= SELECTED. This attribute indicates whether the current row is selected. A value of
TRUE indicates that the row is selected. A value of FALSE indicates it is not.

= ROWID. This attribute is used to identify the row.

A response can return multiple <FIELD > tags. Each <FIELD > tag withina <ROW >
tag indicates another item of data within the record. The field’s value is entered
between the open and close <FIELD > tags.

Attributes:

= VARIABLE. This attribute indicates the column to which the field is associated. The
value of the VARIABLE attribute should coincide with the NAME attribute of a
column.

= NAME. This attribute is used to identify the field. In most cases, the field name is
identical to the column name.

82 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Version 7.5

XML Response Structure

A valid syntax format for an XML response is as follows:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<APPLI CATI ON NAME="Si ebel Sal es M dMarket">
<SCREEN CAPTI ON="capti on" ACTI VE="TRUE" NAME="screen nange">
<VIEWTITLE="title" ACTIVE="TRUE | FALSE' NAME="vi ew nane">
<APPLET ROW COUNTER="n - N of X" NO DELETE="TRUE | FALSE"
NO_EXEC_QUERY="TRUE | FALSE" NO UPDATE="TRUE | FALSE' MODE="Base" TI TLE="appl et
title" NO_INSERT="TRUE | FALSE' CLASS="CSSSWEFr aneLot Li st" NO MERGE="TRUE | FALSE"
ACTI VE="TRUE | FALSE" |ID="N' NAME="appl et nanme">
<LI ST>
<RS_HEADER>
<COLUWMN NUMBER BASED="TRUE | FALSE" CALCULATED="TRUE | FALSE"
LI ST_EDI TABLE="Y | N' HTM_L_TYPE="Fi el d" SCALE="TRUE | FALSE' FI ELD="Accept Less"
HI DDEN="TRUE | FALSE" DATATYPE="text" TEXT_LENGTH="255" TYPE="Fi el d"
TOTAL_REQUI RED="TRUE | FALSE" | D="N' TEXT_BASED="TRUE | FALSE" NAME="Accept Less"
REQUI RED="TRUE | FALSE" READ_ONLY="TRUE | FALSE"/>
</ RS_HEADER>
<RS_DATA>
<ROW SELECTED="TRUE | FALSE' ROW D="id nunber1">
<FI ELD VARI ABLE="col um nane" NAME="field nanel">

field val uel

</ FI ELD>

<FI ELD VARI ABLE="col um nane" NAME="field naneN'>
field val ueN
</ FI ELD>

</ ROV

<ROW SELECTED="TRUE | FALSE' ROW D="id nunber1">
<FI ELD VARI ABLE="col um nanme" NAME="field nanmel">
field valuel

</ FI ELD>

Siebel Portal Framework Guide MidMarket Edition 83

‘ Delivering Content to External Web Applications

XML Response Structure

<FI ELD VARI ABLE="col utm nane" NAME="fiel d nameN'>
field val ueN

</ FI ELD>

</ ROV
</ RS_DATA>
</ LI ST>
</ APPLET>
</ VI EW»

</ SCREEN></ APPL| CATI ON>

HTML Response

When the SWESetMarkup attribute in a command block is set to HTML, the
response payload from the Siebel eBusiness Application Web server is going to be
in HTML format. The HTML option allows you to display the returned data in a
read-only mode. The HTML response includes all the data and navigation controls
that are exposed in the user interface.

84 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations

Common Operations

There are various combinations of XML commands you can use to execute an action
in a Siebel eBusiness XML application. Each section below offers one solution for
executing a Siebel eBusiness Application action.

TIP: To get a better understanding of the objects available on a specific screen, you
can use a Web browser to access the user interface by navigating to the following
URL: http://<machi ne nane>/cal | center/start.swe. <machi ne name>. This
is the Web server where the Siebel eBusiness Application is installed.

Logging In
Logging in is required to start a new Siebel eBusiness XML session. The first
command block of a new session should always be an ExecuteLogin command.

Detailed below is an example of how to construct a login command block for XML:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<EXEC PATH="/cal |l center/start.swe">
<CMVMD NAME="SWECnd" VALUE="Execut eLogi n">
<ARG NAME=" SVEUser Nane" >user nane</ ARG
<ARG NAME="S\EEPasswor d" >user’s passwor d</ ARG>
<ARG NAME=" SVEESet Mar kup" >XM_</ ARG>
<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME="SVEESet NoTenp" >TRUE</ ARG>
</ C\ND>

</ EXEC>

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 85

Delivering Content to External Web Applications

Common Operations

Logging Off
The last command block of a session should always be a Logoff command.

Detailed below is an example of how to construct a logoff command block for XML:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<EXEC PATH="/cal |l center/start.swe">
<CVD NAME=" SWECmd" VALUE="Execut eLogof f">
<ARG NAME="SWEUser Name" >user nane</ ARG
<ARG NAME=" SVEESet Mar kup" >XM.</ ARG>
<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME=" SVESet NoTenp" >TRUE</ ARG>
</ C\ND>

</ EXEC>

Navigating to a Screen

You use the GotoPageTab command to navigate to a specific screen. The Web
application returns either an XML or HTML response containing data about the
screen’s views and applets. For a complete list of the screen names to which you
can navigate, see Table 10 on page 78.

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CVD NAME=" SVECd" VALUE="Got oPageTab" >
<ARG NAME="SWEScr een" >scr een nane</ ARG
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>
<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME="SVEESet NoTenp" >TRUE</ ARG>
</ CVD>

</ EXEC>

86 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications |

Common Operations

Navigating Within a Screen

When you use the InvokeMethod to execute an XML command, you must also
indicate the view and the applet that you want to access. For example, you may
want to modify or add a record. To add a record, you must first issue the NewRecord
command, and then you must indicate to which view and applet you want the
record to be added. To perform an action on a screen, you must navigate to the
object within the screen that is to receive the action. The following two arguments
are used to navigate within a screen:

s SWEView
s SWEApplet

For a complete list of the view and applet names to which you can navigate, see
Table 10 on page 78. The example below details how to specify the view and applet:

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal | center/start.swe">
<CMD NAME="SWECmd" VALUE="|nvokeMet hod" >
<ARG NAME="SWEMet hod" >net hod nane</ ARG
<ARG NAME="SVEVi ew' >vi ew name</ ARG
<ARG NAME=" SVEEAppl et " >appl et nane</ ARG>
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>
<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME=" SVIESet NoTenp" >TRUE</ ARG>
</ CND>

</ EXEC>

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 87

‘ Delivering Content to External Web Applications

Common Operations

Querying ltems

To successfully perform a query, you must first navigate to a screen that allows
queries. You must then send two separate requests to the eBusinessSWEXML
application. The first request executes the Create New Query action, and the second
executes the Execute Query action.

NewQuery

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CVD NAME=" SWECnd" VALUE="|nvokeMet hod" >
<ARG NAME=" SVEMet hod" >NewQuer y</ ARG>
<ARG NAME="SVEVi ew' >vi ew nane</ ARG>
<ARG NAME="SWEAppl et " >appl et nane</ ARG
<ARG NAME=" SVESet Mar kup" >XM_.</ ARG>
<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME=" SVESet NoTenp" >TRUE</ ARG>
</ C\ND>

</ EXEC>

ExecuteQuery

In the ExecuteQuery command block, you must include an < ARG > tag. The tag
must include a NAME parameter to identify the column (the field you want to
search), and a value to indicate the search criteria.

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe"
<CMVMD NAME="SWECnd" VALUE="I nvokeMet hod" >
<ARG NAME=" SVEMet hod" >Execut eQuer y</ ARG>
<ARG NAME="SVEVi ew' >vi ew nane</ ARG>
<ARG NAME="SWEAppl et " >appl et nane</ ARG
<ARG NAME="col utmm nane" >sear ch criteria</ ARG

<ARG NAME="SWESet Mar kup" >XM.</ ARG>

88 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications |

Common Operations

<ARG NAME=" SWEDat aOnl y" >TRUE</ ARG>
<ARG NAME=" SWESet NoTenp" >TRUE</ ARG>
</ C\ND>

</ EXEC>

The auction items that match the query are returned in the response. The returned
payload contains complete lot names and IDs for each item.

TIP: Each row (or record) within a response contains an ID that uniquely identifies
it. You can use a row ID as a parameter in a query to selectively single out a record
so that you can modify or delete it.

Adding Records

To successfully add a record to a list, you must first navigate to a screen that allows
records to be inserted. Then, you must send two separate requests to the SWEXML
application. The first request executes the New Record action. The second executes
the WriteRecord action.

NewRecord
In a NewRecord command block, you use < ARG > tags to indicate the view and
applet to which you want to add the NewRecord.

<?xm version="1.0" encodi ng="UTF-8"?>

<EXEC PATH="/cal |l center/start.swe">

<CVMD NAME=" SWECnd" VALUE="1nvokeMet hod" >
<ARG NAME=" SVEMet hod" >NewRecor d</ ARG>
<ARG NAME="SWEVi ewW' >vi ew nane</ ARG
<ARG NAME="SWEAppl et " >appl et nane</ ARG
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>
<ARG NAME="SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME="SWESet NoTenp" >TRUE</ ARG>

</ C\ND>

</ EXEC>

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 89

‘ Delivering Content to External Web Applications

Common Operations

WriteRecord
In a WriteRecord command block, you must include an < ARG > tag for each field
you want to add to the new record. The NAME attribute identifies the field name,
and the value between the open and close < ARG > tags indicates the field’s value.

<?xm version="1.0" encodi ng="UTF-8"?>

<EXEC PATH="/cal |l center/start.swe">

<CVD NAME=" SWECmd" VALUE="InvokeMet hod" >

<ARG
<ARG
<ARG
<ARG

<ARG

<ARG
<ARG
<ARG
<ARG
</ C\VD>

</ EXEC>

NAME=" SVEEMet hod" >W i t eRecor d</ ARG>
NAME=" SVEVi eW' >vi ew nane</ ARG>

NAME=" SVEApp! et " >appl et nane</ ARG>
NAME="col um nanel">fiel d val ue</ ARG

NAME="col um nane2">fi el d val ue</ ARG

NAMVE="col utmm naneN'>fi el d val ue</ ARG
NAME=" S\ESet Mar kup" >XM_</ ARG>
NAME=" SWEDat aOnl y" >TRUE</ ARG>

NAME=" SWESet NoTenp" >TRUE</ ARG>

90 Siebel Portal Framework Guide MidMarket Edition

Version 7.5

Delivering Content to External Web Applications

Common Operations

Modifying Records

Version 7.5

To successfully modify a record using XML, you must first navigate to a screen
that allows records to be modified. Then, the following four requests must be sent
separately to the SWEXML application:

1 Activate a new query.
2 Execute the query.
3 Activate the edit record method.

4 Write the record.

NOTE: When modifying a record, you should use a primary key (such as a row ID)
as the parameter for the query. This makes sure that only one record is returned and
selected in the response. If you do not use a primary key to perform the query,
several records may be returned in the response. There is a chance that the record
you want to update is not the one selected.

NewQuery

When you modify a record, you must first execute a query to find the record
you want to modify. The records that are returned as a result of the query are
then accessible through XML.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<EXEC PATH="/cal |l center/start.swe">
<CVD NAME=" SWECnd" VALUE="1nvokeMet hod" >
<ARG NAME=" SVEMet hod" >NewQuer y</ ARG>
<ARG NAME="SVEVi ew' >vi ew nane</ ARG>
<ARG NAME="SVEEAppl et " >appl et nane</ ARG>
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>
<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME=" SVESet NoTenp" >TRUE</ ARG>
</ C\VD>

</ EXEC>

Siebel Portal Framework Guide MidMarket Edition 91

‘ Delivering Content to External Web Applications

Common Operations

ExecuteQuery

When you use the ExecuteQuery command block in an effort to modify a record,
you must include an < ARG > tag that identifies the primary key of the record you
want to modify. This makes sure that the query returns only one record, which is
automatically selected. You can then use the EditRecord command to update the
selected record.

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CVMD NAME=" SWECnd" VALUE="1nvokeMet hod" >
<ARG NAME=" SVEEMet hod" >Execut eQuer y</ ARG>
<ARG NAME="SVEVi ew' >vi ew nane</ ARG>
<ARG NAME=" SVEEAppl et " >appl et nane</ ARG>
<ARG NAME="primary key colum nanme">primary key val ue</ ARG
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>
<ARG NAME=" SWEDat aOnl y" >TRUE</ ARG>
<ARG NAME="SVESet NoTenp" >TRUE</ ARG>
</ CND>

</ EXEC>

92 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications |

Common Operations

EditRecord

After executing the query the eBusiness screen is populated with the record
you want to modify. You use the EditRecord to access the record.

NOTE: If you do not use a primary Kkey to perform the query, several records
may be returned in the response.

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal | center/start.swe">
<CVD NAME=" SWECmd" VALUE="|nvokeMet hod" >
<ARG NAME=" SVEEMet hod" >Edi t Recor d</ ARG>
<ARG NAME="SWEVi ew' >vi ew name</ ARG
<ARG NAME="SWEAppl et " >appl et nane</ ARG
<ARG NAME=" SVEESet Mar kup" >XM.</ ARG>
<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME=" SVESet NoTenp" >TRUE</ ARG>
</ C\ND>

</ EXEC>

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 93

‘ Delivering Content to External Web Applications

Common Operations

WriteRecord

In a WriteRecord command block, you must include an < ARG > tag for each
field you want to modify in an existing record.

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CVD NAME=" SWECnd" VALUE="1nvokeMet hod" >
<ARG NAME=" SVEEMet hod" >W i t eRecor d</ ARG>
<ARG NAME="SVEVi ew' >vi ew nane</ ARG>
<ARG NAME=" SVEEAppl et " >appl et nane</ ARG>
<ARG NAME="col um nanel">field val ue</ ARG

<ARG NAME="col um nane2">field val ue</ ARG

<ARG NAME="col um nanmeN'>fi el d val ue</ ARG
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>
<ARG NAME=" SVEEDat aOnl y" >TRUE</ ARG>
<ARG NAME=" SVEESet NoTenp" >TRUE</ ARG>
</ CND>

</ EXEC>

94 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations

Deleting Records

To successfully remove a record from the database, you must first navigate to a
screen that allows records to be deleted. Then, the following three requests must
be sent separately to the eBusinessSWEXML application:

1 Activate a new query.
2 Execute the query.

3 Delete the selected record.

NOTE: When deleting a record, you should use a primary key (such as a row ID)
as the parameter for the query. This makes sure that only one record is returned and
selected in the response. If you do not use a primary key to perform the query,
several records may be returned in the response. There is a chance that the record
you want to delete is not the one selected.

NewQuery

When you delete a record, you must first execute a query to find the record you
want to delete. You should use search criteria, such as a primary key, to make sure
that the query returns only one record.

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CMVMD NAME="SWECnd" VALUE="I nvokeMet hod" >
<ARG NAME=" SVEEMet hod" >NewQuer y</ ARG>
<ARG NAME="SVEVi ew' >vi ew name</ ARG>
<ARG NAME="SVEEAppl et " >appl et nane</ ARG>
<ARG NAME=" SVEESet Mar kup" >XM_</ ARG>
<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>
<ARG NAME=" SVEESet NoTenp" >TRUE</ ARG>
</ C\VD>

</ EXEC>

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 95

‘ Delivering Content to External Web Applications

Common Operations

ExecuteQuery

When you use the ExecuteQuery command block in an effort to delete a record,
you must include an < ARG > tag that identifies the primary key of the record
you want to delete. This makes sure that the query returns only one record, which
is automatically selected. You can then use the DeleteRecord command to delete the
selected record.

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CVMD NAME=" SWECnd" VALUE="1nvokeMet hod" >
<ARG NAME=" SVEEMet hod" >Execut eQuer y</ ARG>
<ARG NAME="SVEVi ew' >vi ew nane</ ARG>
<ARG NAME=" SVEEAppl et " >appl et nane</ ARG>
<ARG NAME="primary key colum nanme">primary key val ue</ ARG
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>
<ARG NAME=" SWEDat aOnl y" >TRUE</ ARG>
<ARG NAME="SVESet NoTenp" >TRUE</ ARG>
</ CND>

</ EXEC>

DeleteRecord
You use < ARG > tags to indicate the view and applet that contain the selected
record you want to delete.

<?xm version="1.0" encodi ng="UTF-8"?>
<EXEC PATH="/cal |l center/start.swe">
<CMD NAME="SWECmd" VALUE="|nvokeMet hod" >
<ARG NAME="SWEMet hod" >Del et eRecor d</ ARG>
<ARG NAME="SVEVi ew' >vi ew nane</ ARG>
<ARG NAME="SWEAppl et " >appl et nane</ ARG
<ARG NAME=" SVESet Mar kup" >XM_</ ARG>

<ARG NAME=" SVEDat aOnl y" >TRUE</ ARG>

96 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Common Operations

<ARG NAME=" SVIESet NoTenp" >TRUE</ ARG>
</ C\VD>

</ EXEC>

Picking Records

Version 7.5

To pick a value from a pick list and then save the value in the database, first you
need to navigate to a screen and then submit three requests:

1 Navigate to a screen.

2 Get a pick list.

3 Get the Rowld of the record to pick.
4

Write the record to the database.

GotoPageTab
First you need to navigate to a screen. For example:
<EXEC PATH="/cal | center/start.swe">
<CMD VALUE=" Got oPageTab" NAME="SWECmd" >
<ARG NAME="SVEEScr een" >Accounts Screen</ ARG
<ARG NAME="SWENeedCont ext " >f al se</ ARG>
<ARG NAME=" SVEEBI D' >- 1</ ARG>
</ C\ND>
<I NFO NAME=" SVEC' >12</ | NFO>

</ EXEC>

EditField

To return the pick list using the EditField method, you must define arguments that
identify the applet, view, and field on which the pick list is based. For example:

<EXEC PATH="/cal |l center/start.swe">
<CMD VALUE="I| nvokeMet hod" NAME="SWECnd" >

<ARG NAME=" SVEEAppl et " >Account Entry Appl et </ ARG>

Siebel Portal Framework Guide MidMarket Edition 97

‘ Delivering Content to External Web Applications

Common Operations

<ARG
<ARG
<ARG
<ARG
<ARG
<ARG
<ARG
<ARG
<ARG

<ARG

NAME=" SV\EW >0</ ARG>

NAME=" SVEVi ew' >Account List Vi ew</ ARG
NAME=" SWERow d" >1- 6</ ARG>

NAME=" SVEFi el d" >Cur r ency</ ARG>

NAME=" SWEDI C" >t r ue</ ARG>

NAME=" S\ENeedCont ext " >t r ue</ ARG>
NAME=" SVEH" >0</ ARG>

NAME=" SWEReqRow d" >1</ ARG>

NAME=" SWESP" >t r ue</ ARG>

NAME=" SVEMet hod" >Edi t Fi el d</ ARG>

</ C\ND>

<I NFO NAME=" SVEEC' >9</ | NFC>

</ EXEC>

PickRecord

The PickRecord method returns the Rowld of the record to be picked. For example:

<EXEC PATH="/cal Il center/start.swe">

<CVD VALUE="I nvokeMet hod" NAME="SWECM" >

<ARG

<ARG

<ARG

<ARG

<ARG

<ARG

<ARG

NAME=" SWEAppl et ">Currency Pi ck Appl et </ ARG

NAME=" SVEVi ew' >Account List Vi ew</ ARG

NAME=" SW\ERowl d" >0- 5129</ ARG>

NAME=" SWENeedCont ext " >f al se</ ARG>

NAME=" S\ EReqRowi d" >1</ ARG>

NAME=" SWEP" >14_Account Entry Applet9_EditFi el d3_1-68_Currencyl_1</ ARG

NAME=" SWEMet hod" >Pi ckRecor d</ ARG>

</ C\ND>

<I NFO NAME=" SVEC' >1</ | NFO>

</ EXEC>

NOTE: The value for the SWEP argument can be found in the XML response from
EditField method.

98 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications |

Common Operations

WriteRecord
The WriteRecord method writes the record to the database. For example:
<EXEC PATH="/cal |l center/start.swe">
<CMD VALUE="| nvokeMet hod" NAME="SWECd" >
<ARG NAME=" SVEEAppl et " >Account Entry Appl et </ ARG>
<ARG NAME="SVEVi ew'>Account List Vi ew</ ARG
<ARG NAME=" SVERow d" >1- 6</ ARG>
<ARG NAME=" SVIEENeedCont ext " >t r ue</ ARG>
<ARG NAME=" SVEEReqRow d" >1</ ARG>
<ARG NAME=" SVEMet hod" >W i t eRecor d</ ARG>
</ C\ND>
<I NFO NAME=" SWEC' >2</ | NFO>

</ EXEC>

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 99

‘ Delivering Content to External Web Applications

SWE API

SWE API

This section contains reference information about SWE commands, methods, and

arguments.

SWE Commands

Table 11 provides a list of commonly used SWE Commands.

Table 11. SWE Commands
Short Required Args Optional Args
Supported Values Format Description (with Description) (with Description)

CanlnvokeMethod C

For a list of
commonly used
methods, see
Table 12 on
page 105.

Checks whether a
method can be invoked
on an applet, a
business service, a
buscomp, or the SWE
application.

Called only when OM
is in High Interactivity
mode.

The optional
SWEService,
SWEBusComp, and
SWEApplet arguments
are used to specify the
Siebel object that the
method should be
invoked on. If none of
these are specified,
SWE will check the
CanlnvokeMethod
state of the method on
the SWE application
object, which currently
supports a limited set
of InvokeMethod, such
as Logoff, SortOrder,
SaveQuery, and
SaveQueryAs.

SWEMethod - name
of the method.

100 Siebel Portal Framework Guide MidMarket Edition

SWEService - name of
the business service to
check whether the
method can be invoked.

SWEBusComp - name of
the business component
to check whether the

method can be invoked.

SWEApplet - name of the
applet to check whether
the method can be
invoked.

Version 7.5

Delivering Content to External Web Applications

SWE API

Table 11. SWE Commands
Short Required Args Optional Args
Supported Values Format Description (with Description) (with Description)
ExecuteLogin Xlg Executes login for a SWEUserName - None
user. user name.
SWEPassword -
password.
ExecuteNamedQuery = Xnq Executes a PDQ. SWEView - name of = None
the view.
SWEQueryName -
name of the PDQ.
GotoPage Gp Goes to a Siebel Web SWEPage - name of None
page (this is the Web the Web page.
page object defined in
Siebel Tools).
GotoPageTab Gt Goes to a Siebel screen. = SWEScreen - name = None
Will show the default of the screen.
view for the screen.
Version 7.5 Siebel Portal Framework Guide MidMarket Edition 101

‘ Delivering Content to External Web Applications

SWE API
Table 11. SWE Commands
Short Required Args Optional Args
Supported Values Format Description (with Description) (with Description)
GotoView Gv Goes to a Siebel view. SWEView - name of = SWEKeepContext - if

If the SWEPostnApplet
and SWEPostnRowld
arguments are
specified, it will
execute a search for the
specified rowld in the
specified applet.

If SWEQMApplet and
SWEQMMethod
arguments are
specified, it will invoke
the method after going
to the view.

the view.

102 Siebel Portal Framework Guide MidMarket Edition

TRUE, keeps the current
business object context,
when requesting to a
view based on the same
business object.

SWEPostnApplet - name
of the applet on which
the search should
executed.

SWEPostnRowld - row Id
to search for.

SWEQMApplet - name of
the QueueMethod applet.
This is the applet where
the method (as specified
in SWEQMMethod)
should be invoked after
going to the view.

SWEQMMethod - name
of the QueueMethod
method to be invoked.
You can invoke only one
method.

SWEQMArgs - arguments
of the QueueMethod
method.

Version 7.5

Delivering Content to External Web Applications

Table 11.

SWE Commands

SWE API

Supported Values

InvokeMethod

For a list of
commonly used
methods, see
Table 12.

LoadService

Login

Version 7.5

Short
Format

Inv

Lg

Description

Invokes a method on
an applet, a business
service, a business
component, or the
SWE application.

The optional
SWEService,
SWEBusComp, and
SWEApplet arguments
are used to specify the
Siebel object on which
the method should be
invoked. If none of
these are specified,
SWE will invoke on the
SWE application
object, which currently
supports a limited set
of InvokeMethod such
as Logoff, SortOrder,
SaveQuery, and
SaveQueryAs.

Loads a business
service on the server
side.

Loads the login view or
login page. SWE first
looks at the
Acknowledgment Web
View property of the
application object in
the repository for the
login view to show. If
not specified, the
default is the
"Acknowledgment
Web Page" property to
show the login page.

Siebel Portal Framework Guide MidMarket Edition

Required Args
(with Description)

SWEMethod - name
of the method.

SWEService - name
of the business
service to load.

None

Optional Args
(with Description)

SWEService - name of
the business service to
invoke the method.

SWEBusComp - name of
the business component
to invoke the method.

SWEApplet - name of
the applet to invoke the
method.

None

None

103

‘ Delivering Content to External Web Applications

SWE API

Table 11.

SWE Commands

Supported Values

Logoff

ReloadCT

Short
Format Description

Bye Executes the database
logoff, then shows the
logoff view or page.
SWE first looks at the
Logoff
Acknowledgment Web
Page property of the
application object in
the repository for the
login page to show. If
none is specified, SWE
will show the login
view or login page,
depending on how
you log in.

Reloads
personalization info.
SWE loads the initial
personalization on
startup, and when the
personalization rules
are changed, SWE does
not update the info
automatically since
there is cost in
performance, so SWE
provides this command
to reload the info.

Required Args
(with Description)

None

None

Optional Args
(with Description)

None

None

NOTE: The SWEAC command allows users to string two SWE commands in a single
request. For example the follow URL does a SWECmd = ExecuteLogin, and then a

SWEAC = GotoPageTab.

SWECd=Execut eLogi n&SVEUser Name=j oe&SVWEPasswor d=passwd&SWEAux Cnd=S
WECTd=CGot oPageTab&SWEScr een=Account s+Scr een&SWVERel oadFr anes=1.

104 Siebel Portal Framework Guide MidMarket Edition

Version 7.5

Delivering Content to External Web Applications

SWE Methods

SWE API

The InvokeMethod command allows you to invoke methods on a applet, business
component, business service, or application. Table 12 lists SWE methods commonly
used with the InvokeMethod SWE command.

Table 12. SWE Methods

Supported Values Description

CollapseTreeltem = Used in a tree control to
collapse an expanded item
on the tree.

CopyRecord Performs initialization,
then calls CopyRecord on
the business component.

CreateRecord Performs initialization,
then calls NewRecord on
the business component.

DeleteQuery Deletes a named query.

DeleteRecord Deletes a record.

Drilldown Drills down on the field as
specified in the argument
SWEField.

Version 7.5

Required Args
(with Description)

SWETreeltem: Specify the
path of the item relative to
root. The path is a string of
the form n.n.n.n...where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name

of the view. SWEApplet:
Name of the applet.

None

None

SweNamedQueries: Specify
the name of the named
query to be deleted.

None

SWEField: Specify the
name of the applet field that
you want to drilldown on.
The drilldown information
is specified in the
repository.

Optional Args
(with Description)

None

None

None

None

None

None

Siebel Portal Framework Guide MidMarket Edition

105

‘ Delivering Content to External Web Applications

SWE API

Table 12. SWE Methods

Supported Values

EditRecord

ExecuteQuery

ExpandTreeltem

GotoFirstSet

GotoLastSet

GotoNextSet

GotoPreviousSet

Description

Edits a record.

Executes a query. The
query spec of the fields is
specified in the list of
arguments.

Used in a tree control to

expand an item on the tree.

Goes to the first set of
records. The number of
rows in a set is specified in
the repository.

Goes to the last set of
records.

Goes to the next set of
records.

Goes to the previous set of
records.

Required Args
(with Description)

None

None

SWETreeltem: Specify the
path of the item relative to
root. The path is a string of
the form n.n.n.n...where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name

of the view. SWEApplet:
Name of the applet.

None

None

None

None

106 Siebel Portal Framework Guide MidMarket Edition

Optional Args
(with Description)

SWESeq: Specify the
sequence number of the
Edit template to show.

You can have many Edit
templates for an applet in
Siebel Tools, each identified
by the sequence number.

List of arguments with
name and value, where the
name specifies the field
name and the value
specifies the field query
spec. Will set field query
spec before executing the

query.

None

None

None

None

None

Version 7.5

Delivering Content to External Web Applications |

Table 12. SWE Methods

SWE API

Supported Values

GotoView

Indent

MoveDown

MoveUp

Version 7.5

Required Args
Description (with Description)

Goes to a Siebel view.

If the SWEPostnApplet and
SWEPostnRowld
arguments are specified,
will execute a search for the
specified rowld in the
specified applet.

If SWEQMApplet and
SWEQMMethod arguments
are specified, will invoke
the method after going to
the view.

For a hierarchical applet, None
moves the current record

down the hierarchy by one

level.

For a hierarchical applet, None
moves the current record

down the hierarchy within

the same level.

For a hierarchical applet, None
moves the current record

up the hierarchy within the

same level.

SWETargetView - name of
the view.

Optional Args
(with Description)

SWEKeepContext - if
TRUE, keeps the current
business object if going to
a view that uses the same
business object.

SWEPostnApplet - name
of the applet that the search
should be executed on.

SWEPostnRowld - rowld
to search for.

SWEQMApplet - name of
the QueueMethod applet.
This is the applet where the
method (as specified in
SWEQMMethod) should be
invoked after going to the
view.

SWEQMMethod - name of
the QueueMethod method.
The method to be invoked.
You can invoke only one
method.

SWEQMArgs - arguments
of the QueueMethod
method.

None

None

None

Siebel Portal Framework Guide MidMarket Edition 107

‘ Delivering Content to External Web Applications

SWE API

Table 12. SWE Methods

Supported Values

NewQuery

NewRecord

NextTreeltem

Outdent

PickNone

PickRecord

PositionOnRow

Description
Begins a new query.

If the applet has an
association applet, shows
the association popup
applet. Otherwise, creates a
new record.

Used in a tree control to
scroll the tree to the next set
of record.

For a hierarchical applet,
moves the current record
down the hierarchy by one
level.

Makes sure the parent
applet field has nothing

picked from the pick applet.

Picks the current row in a
pick applet.

Positions the record as
specified in the arguments
SWERowlds and
SWERowld. If no
arguments, does nothing.

Required Args
(with Description)

None

None

SWETreeltem: Specifies the
path of the item relative to
root. The path is a string of
the form n.n.n.n...where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name of
the view. SWEApplet:
Name of the applet.

None

None

None

None

108 Siebel Portal Framework Guide MidMarket Edition

Optional Args
(with Description)

None

None

None

None

None

None

SWERowilds: a string
specifying the row Id of
the parent buscomps.

SWERowld: the row Id of
the record to position to.

Version 7.5

Delivering Content to External Web Applications

Table 12. SWE Methods

SWE API

Supported Values

PostChanges

PreviousTreeltem

RefineQuery

SaveQueryAs

Version 7.5

Description

Sets the field values as
specified in the list of
arguments to the record
being created or edited.

Used in a tree control to
scroll the tree to the
previous set of records.

Keeps the current field
query spec and queries
again.

Saves the current query as a
named query. The name is
specified in the argument
_SweNamedQueries.

Siebel Portal Framework Guide MidMarket Edition

Required Args
(with Description)

None

SWETreeltem: Specify the
path of the item relative to
root. The path is a string of
the form n.n.n.n...where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name of
the view. SWEApplet:
Name of the applet.

None

Optional Args
(with Description)

List of arguments with
name and value where the
name specifies the field
name and the value
specifies the field value.
Will set these field values
before committing the
record.

None

None

SweNamedQueries: Specify = None

the name to save the query
as.

109

‘ Delivering Content to External Web Applications

SWE API

Table 12. SWE Methods

Supported Values

SelectTreeltem

SortAscending

SortDescending

ToggleTo

UndoRecord

WriteRecord

Description

Used in a tree control to
select an item of the tree.

Sorts the field as specified
in the argument SWEField
in ascending order.

Sorts the field as specified
in the argument SWEField
in descending order.

Toggles to a different
toggle applet.

Undoes a record that is
being created or edited.

Commits a record that is
being created or edited.

Required Args
(with Description)

SWETreeltem: Specifies the
path of the item relative to
root. The path is a string of
the form n.n.n.n...where n
is an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name

of the view. SWEApplet:
Name of the applet.

SWEField: Specifies the
name of the applet field that
you want to sort in
ascending order.

SWEField: Specifies the
name of the applet field that
you want to sort in
descending order.

SWESeq: Sequence number
of the togglet applet to
toggle to.

None

None

Optional Args
(with Description)

None

None

None

None

None

List of arguments with
name and value where the
name specifies the field
name and the value
specifies the field value.
Will set these field values
before commiting the
record.

110 Siebel Portal Framework Guide MidMarket Edition

Version 7.5

Delivering Content to External Web Applications |

SWE Arguments

Table 13 lists some commonly used SWE arguments.

Table 13. SWE Arguments

SWE API

Short
URL Argument Format
SWECount C
SWEDataOnly
SWEExclude
SWEField F

Version 7.5

Description

Dynamically
generates an index
number for each
hyperlink for the
purpose of
bookmarking each
request.

Discards all UI
content (including
anchors) if set to
TRUE.

Uses the comma-
separated Ul
element names
specified as the
value of the
parameter to
exclude UI elements
from appearing in
the output
document.

Specifies the name
of the applet field.

Siebel Portal Framework Guide MidMarket Edition

Usage

SWEC=n, where n is a
positive integer number.
< ARG
NAME=“SWEC”>n</
ARG >

SWEDataOnly = {TRUE |

FALSE} < ARG

NAME = “SWEDataOnly”
> TRUE|FALSE < /ARG >

SWEExclude = “list of
names”. Names can be
MENU, SCREENBAR,
TOOLBAR, THREADBAR,
PAGEITEM,

VIEWBAR. < ARG

NAME = “SWEExcludet” >
list of names < /ARG >

SWEField = < field

name > < ARG

NAME = “SWEField” > fiel
d name < /ARG >

Examples

SWEC=1, or <ARG
NAME =“SWEC” > 1<
/ARG >

SWEDataOnly = TRUE
<ARG

NAME = “SWEDataOnl
y”>TRUE < /ARG >

SWEExclude = "MENU,
SCREENBAR” < ARG
NAME = “SWEExclude
7>
MENU,SCREENBAR

< /ARG >

SWEField = Revenue <
ARG

NAME = “SWEField” >
Revenue < /ARG >

111

‘ Delivering Content to External Web Applications

SWE API

Table 13. SWE Arguments

URL Argument

SWEFullRefresh

SWEGetApplet

SWEGetPDQ

SWEKeepContext

Short

Format Description

Kx

Forces a full refresh
of the Siebel Web
Client. Used by the
High Interactivity
client to send a SWE
command to load
the High
Interactivity client
completely.
Typically used for
session interleaving
from a non-Siebel
session to the Siebel
High Interactivity
client application.

This parameter is
used to filter the
outbound XML
document so only
the applet named as
the value of the
parameter will be
allowed in the
output. All other
document content
will be discarded.

Discards all XML
content and returns
only PDQ list when
set to TRUE.

Keeps the current
business object if
going to a view that
uses the same
business object, if
set to TRUE.

Usage

SWEFullRefresh = {TRUE |
FALSE} < ARG

NAME = “SWEFullRefresh
” > TRUE|FALSE < /ARG >

SWEGetApplet = < name
of the applet > < ARG
NAME = “SWEGetApplet”
> name of the applet </
ARG >

SWEGetPDQ = {TRUE |
FALSE} < ARG

NAME = “SWEGetPDQ” >
TRUE|FALSE < /ARG >

SWEKeepContext = {TRUE
| FALSE} < ARG

NAME = “SWEKeepContex
t” > TRUE|FALSE </

ARG >

112 Siebel Portal Framework Guide MidMarket Edition

Examples

SWEFullRefresh = TRU
E<ARG

NAME = "SWEFullRefr
esh” > TRUE < /ARG >

SWEGetApplet = Accou
nt + List + Applet < AR
G

NAME = “SWEGetAppl
et” > Account List
Applet < /ARG >

SWEKeepContext =TR
UE < ARG

NAME = “SWEKeepCo
ntext” > TRUE </

ARG >

Version 7.5

Delivering Content to External Web Applications

Table 13. SWE Arguments

SWE API

URL Argument

SWENeedContext

SWENoAnchor

SWEReloadFrames

SWEReqRowId

SWERows

SWERowId

Version 7.5

Short
Format

Nct

RF

Rqr

Rs

Description

Skips restoring the
state of the view,
applet, busobj, and
buscomp when
going back to a
previously viewed
page, if set to
FALSE.

Default is TRUE for
a view or applet and
FALSE for a Web

page.

Discards all anchors
if set to TRUE.

Forces the reloading
of all HTML frames
when set to TRUE.

Needs to position to
the row specified in
the argument
SWERow], if set to
TRUE.

Specifies the
number of rows to
be used as an
attribute of an
HTML frameset.

The rowld of the
record to position
to.

Siebel Portal Framework Guide MidMarket Edition

Usage

SWENeedContext = {TRUE
| FALSE} < ARG

NAME = “SWENeedConte
xt” > TRUE|FALSE < /

ARG >

SWENOAnchor = { TRUE |
FALSE } < ARG

NAME = “SWENoAnchor”
> TRUE|FALSE < /ARG >

SWERF = { TRUE|FALSE},
or <ARG

NAME = “SWERF” > TRUE
| FALSE < /ARG >

SWEReqRowld = { TRUE |
FALSE } < ARG

NAME = “SWEReqRowlId”
> TRUE|FALSE < /ARG >

SWERs =n, where n is a
positive integer number.
Or <ARG
NAME=“SWERs” >n </
ARG >

SWERowld = <rowid > <
ARG

NAME = “SWERowId” >
rowid < /ARG >

Examples

SWENeedContext = TR
UE < ARG

NAME = “SWENeedCo
ntext” > TRUE </

ARG >

SWENoAnchor =TRUE
< ARG

NAME = “SWENoAnch
or” > TRUE < /ARG >

SWERF =TRUE, or

< ARG
NAME =“SWERF” >T
RUE < /ARG >

SWEReqRowId = TRUE
< ARG

NAME = “SWEReqRowlI
d” > TRUE < /ARG >

SWERs=1, or <ARG
NAME =“SWERs” > 1
< /ARG >

SWERowId = 12-
XI46FG < ARG

NAME = “SWERowId”
> 12-XI46FG < /ARG >

113

‘ Delivering Content to External Web Applications

SWE API

Table 13. SWE Arguments

URL Argument

SWERowlIds

SWESetMarkup

SWESetNoTempl

SWESetRowCnt

SWEXsIStyleSheet

Short

Format Description

Rs

A string specifying
the rowld of the
parent buscomps.

Temporarily sets the
markup language to
use in the output
document.

Disables the use of
templates during
the generation of
the outbound
document.

Temporarily sets the
workset size or row
number of list

applets in the view.

Specifies the name
of the XSLT
stylesheet to use to
perform the XSLT
on the XML output
document.

Usage

SWERowlIds = < string of
rowids > < ARG

NAME = “SWERowlId” >
string of rowids < /ARG >

SWESetMarkup = < name
of the markup

language > < ARG

NAME = “SWESetMarkup”
> markup language </
ARG >

SWESetNoTempl = { TRUE
| FALSE} < ARG

NAME = “SWESetNoTempl
” > TRUE|FALSE < /ARG >

SWESetRowCnt = < numb
er of list rows > < ARG
NAME = “SWESetRowCnt”
>number of list rows < /
ARG >

SWEXslIStyleSheet = < styl
esheet name > . The
stylesheet needs to be in
the application’s webtempl
directory. < ARG

NAME = “SWEXslStyleShe
et” > name of the XSLT
stylesheet < /ARG >

Examples

SWERowIds = SWERow
1d0%3d12-

61W25L < ARG

NAME = “SWERowId”
> SWERowId = 12-
61W25L < /ARG >

SWESetMarkup = HTM
L< ARG

NAME = “SWESetMark
up” >HTML < /ARG >

SWESetNoTempl = TRU
E<ARG

NAME = “SWESetNoTe
mpl” > TRUE < /ARG >

SWESetRowCnt =50 <
ARG

NAME = “SWESetRowC
nt” > number of list
rows < /ARG >

SWEXsIStyleSheet = ui.
xsl < ARG

NAME = “SWEXslStyle
Sheet” > ui.xsl < /

ARG >

114 Siebel Portal Framework Guide MidMarket Edition

Version 7.5

Delivering Content to External Web Applications

Document Type Definition

Document Type Definition

This section lists Document Type Definitions (DTD) for the inbound and outbound
documents used with the XML Web Interface.

Inbound DTD

<l-- Copyright (c) 2001 Siebel Systens, Inc. -->

Version 7.5

<! ELEMENT EXEC
<I ATTLI ST EXEC

ATTR
PATH

TARGET

>
<! ELEMENT
<! ATTLI ST

NAVE
VALUE
>
<! ELEMENT
<! ATTLI ST
NAVE
>
<! ELEMENT
<! ATTLI ST

NAVE

CvD
CVD

ARG

I NFO
I NFO

CDATA
CDATA
CDATA

CDATA

CDATA

CDATA

CDATA

(CVD, | NFO¥) >

#| MPLI ED
#| MPLI ED
#| MPLI ED
(ARGH) >
#REQUI RED
#REQUI RED
(#PCDATA) >
#REQUI RED

(#PCDATA) >

#REQUI RED

Siebel Portal Framework Guide MidMarket Edition 115

‘ Delivering Content to External Web Applications

Document Type Definition

Outbound DTD

<! -- Copyright (c) 2001 Siebel

<! ELEMENT APPLI CATI ON

| APPLET |

FORM | PDQ_BAR)*),

<! ATTLI ST APPLI CATI ON

NAVE

<! ELEMENT
<l ATTLI ST

MARKUP
TYPE

>

<! ELEMENT

<! ELEMENT
<! ATTLI ST

NAVE

>

<! ELEMENT
<l ATTLI ST

NAVE
ENABLED
TYPE

>

<! ELEMENT
<l ATTLI ST

116 Siebel Portal Framework Guide MidMarket Edition

CDATA

USER_AGENT
USER_AGENT

CDATA
CDATA

NAVI GATI ON_ELEMENTS

MENU
MENU

CDATA

MENU_I TEM
MENU_I TEM

CDATA
(TRUE |
CDATA

FALSE)

ANCHOR
ANCHOR

Syst ens,

Inc.

(ERROR*, (USER_AGENT?, NAVI GATI ON_ELEMENTS*, (SCREEN
ERRORY) >

#REQUI RED

EMPTY>

#REQUI RED
#1 MPLI ED

(MENU*,
TOOL_BAR*,
SCREEN_BAR*,
THREAD_BAR* ,
VI EW BAR*,

PAGE | TEMF) >

(MENU_I TEM | ERROR)* >

#REQUI RED

(#PCDATA | ANCHOR | MENU_ITEM | ERROR)* >

#l MPLI ED
#l MPLI ED
#l MPLI ED

((CVD, INFO*) | ERROR*) >

Version 7.5

Delivering Content to External Web Applications |

Document Type Definition

ATTR CDATA #1 MPLI ED
PATH CDATA | MPLI ED
TARGET CDATA #| MPLI ED
>
<! ELEVMENT CMD (ARGH) >
<IATTLIST COWD
NAVE CDATA #REQUI RED
VALUE CDATA #REQUI RED
>
<! ELEMENT ARG (#PCDATA) >
<IATTLIST ARG
NAVE CDATA #REQUI RED
>
<! ELEMENT | NFO (#PCDATA) >
<IATTLIST | NFO
NAVE CDATA #REQUI RED
>
<! ELEMENT TOOL_BAR (TOOL_I TEM | ERROR)* >
<I ATTLIST TOOL BAR
NAVE CDATA #REQUI RED
PATH CDATA #| MPLI ED
>
<! ELEMENT TOOL_I TEM (#PCDATA | ANCHOR | ERROR)* >
<I ATTLIST TOOL_I TEM
NAVE CDATA #REQUI RED
TYPE CDATA #REQUI RED
ATTR CDATA #1 MPLI ED
MAX_LENGTH CDATA #1 MPLI ED
>
<! ELEMENT SCREEN BAR (SCREEN TAB | VIEWBAR | ERROR)* >
<! ELEMENT SCREEN TAB (#PCDATA | VIEWBAR | ANCHOR | ERROR)* >
<! ATTLI ST SCREEN TAB
NAVE CDATA #REQUI RED
ACTI VE (TRUE | FALSE) " FALSE"
CAPTI ON CDATA #| MPLI ED

Version 7.5

Siebel Portal Framework Guide MidMarket Edition

117

‘ Delivering Content to External Web Applications

Document Type Definition

>

<! ELEMENT THREAD_BAR (THREAD | ERROR)* >
<! ELEMENT THREAD (#PCDATA | ANCHOR | ERROR)* >
<IATTLI ST THREAD
TITLE CDATA #REQUI RED
>
<l ELEMENT VI EW BAR (VIEWTAB | ERROR)* >
<IATTLIST VI EW BAR
MODE CDATA #| MPLI ED
SCREEN CDATA #| MPLI ED
TYPE CDATA #| MPLI ED
>
<! ELEMENT VI EW TAB (#PCDATA | ANCHOR | ERROR)* >
<IATTLIST VI EWTAB
NAMVE CDATA #REQUI RED
SELECTED (TRUE | FALSE) " EALSE"
TITLE CDATA #| MPLI ED
>
<! ELEMENT PAGE | TEM (#PCDATA | ANCHOR | ERROR)* >
<IATTLI ST PAGE | TEM
NAMVE CDATA #REQUI RED
ATTR CDATA #| MPLI ED
CAPTI ON CDATA #| MPLI ED
TYPE CDATA #REQUI RED
>
<! ELEMENT SCREEN (VIEW| ERRCR') >
<IATTLI ST SCREEN
NAMVE CDATA #REQUI RED
ACTI VE (TRUE | FALSE) " FALSE"
CAPTI ON CDATA #| MPLI ED
>
<! ELEMENT VI EW (SUB_VIEWBAR | PDQ BAR | APPLET | IMG| FORM| ERROR)* >
<UATTLIST VI EW
NAMVE CDATA #REQUI RED
ACTI VE (TRUE | FALSE) " FALSE"
CATEGORY CDATA #| MPLI ED
TITLE CDATA #| MPLI ED
>
<! ELEMENT APPLET (FORM | CONTROL | CALENDAR | TREE | (LIST |

(RS_HEADER, RS DATA)) | SORT FIELD | APPLET TOGGLE | ERROR)* >

118 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications |

Version 7.5

<! ATTLI ST APPLET
NAVE CDATA #REQUI RED
ACTI VE CDATA #1 MPLI ED
CLASS CDATA #1 MPLI ED
ID CDATA #1 MPLI ED
MCDE CDATA #1 MPLI ED
NO_DELETE (TRUE | FALSE) " FALSE"
NO_EXEC QUERY (TRUE | FALSE) " FALSE"
NO_| NSERT (TRUE | FALSE) " FALSE"
NO_MERGE (TRUE | FALSE) " FALSE"
NO_UPDATE (TRUE | FALSE) " FALSE"
ROW COUNTER CDATA #1 MPLI ED
TITLE CDATA #1 MPLI ED
>
<! ELEMENT FORM ((CONTROL | CALENDAR | TREE | (LIST |
RS DATA)) | SORT FIELD | APPLET TOGGLE | PDQ BAR | SUB VI EWBAR)* |
<I ATTLIST FORM
NAVE CDATA #| MPLI ED
ACTI ON CDATA #| MPLI ED
ATTR CDATA #| MPLI ED
METHOD CDATA #| MPLI ED
TARGET CDATA #| MPLI ED
>
<! ELEMENT CONTROL (#PCDATA | IMG | ANCHOR | PICK LI ST |
<! ATTLI ST CONTROL
NAVE CDATA #REQUI RED
ATTR CDATA #| MPLI ED
CALCULATED (TRUE | FALSE) " FALSE"
CAPTI ON CDATA #| MPLI ED
DATATYPE CDATA #| MPLI ED
ENABLED (TRUE | FALSE) " FALSE"
FI ELD CDATA #| MPLI ED
FORMAT CDATA #| MPLI ED
HI DDEN (TRUE | FALSE) " FALSE"
HTML_TYPE CDATA #| MPLI ED
ID CDATA #| MPLI ED
MAX_LENGTH CDATA #| MPLI ED
NUVBER BASED (TRUE | FALSE) "FALSE"
READ ONLY (TRUE | FALSE) " FALSE"
REQU RED (TRUE | FALSE) " FALSE"
REQUI RED_| NDI CATOR CDATA #| MPLI ED
SCALE CDATA #| MPLI ED
TEXT_ALIGN CDATA #| MPLI ED
TEXT BASED (TRUE | FALSE) " FALSE"
TYPE CDATA #| MPLI ED
VARI ABLE CDATA #| MPLI ED

Document Type Definition

(RS_HEADER,

ERROR*)

Siebel Portal Framework Guide MidMarket Edition

>

ERROR) * >

119

‘ Delivering Content to External Web Applications

Document Type Definition

<! ELEMENT Pl CK_LI ST (OPTION | ERROR)* >
<UATTLIST Pl CK_LI ST
NAMVE CDATA #| MPLI ED
ATTR CDATA #| MPLI ED
VALUE CDATA #| MPLI ED
>
<! ELEMENT OPTI ON (#PCDATA | ERROR)* >
<IATTLIST OPTI ON
CAPTI ON CDATA #| MPLI ED
SELECTED (TRUE | FALSE) " FALSE"
>
<! ELEMENT LI ST ((RS_HEADER, RS_DATA) | ALERT | ERRORt) >
<! ELEMENT RS HEADER (METHOD | COLUMN | ERROR)* >
<! ELEMENT RS DATA (RON| ERROR)* >
<! ELEMENT NMETHOD (#PCDATA | ANCHOR)* >

<I ATTLI ST METHCD

NANVE CDATA #REQUI RED
CAPTI ON CDATA #| MPLI ED
FI ELD CDATA #| MPLI ED
>
<l ELEMENT COLUWN (METHOD | ERROR) * >

<I ATTLI ST COLUWN

NAMVE CDATA #REQUI RED
CALCULATED (TRUE | FALSE) " FALSE"
DI SPLAY_NAME CDATA #| MPLI ED
DATATYPE CDATA #| MPLI ED
FI ELD CDATA #| MPLI ED
FORMAT CDATA #| MPLI ED
HI DDEN (TRUE | FALSE) " FALSE"
HTM__TYPE CDATA #| MPLI ED
ID CDATA #| MPLI ED
LI ST_EDI TABLE CDATA #| MPLI ED
NUVBER_BASED (TRUE | FALSE) " FALSE"
READ_ONLY (TRUE | FALSE) " FALSE"
REQUI RED (TRUE | FALSE) " FALSE"
SCALE CDATA # MPLI ED
TEXT_ALI GN CDATA #| MPLI ED
TEXT_BASED (TRUE | FALSE) " FALSE"
TEXT_LENGTH CDATA # MPLI ED
TOTAL_REQUI RED (TRUE | FALSE) " FALSE"
TYPE CDATA #| MPLI ED

120 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Delivering Content to External Web Applications

Version 7.5

Document Type Definition

>
<l ELEMENT ROW (#PCDATA | FIELD | ERROR)* >

<! ATTLI ST ROW

ROW D CDATA #REQUI RED
SELECTED (TRUE | FALSE) " FALSE"

>

<! ELEMENT FI ELD (#PCDATA | PICK_LIST | ANCHOR | ERROR)* >

<IATTLI ST FIELD

NAME CDATA #REQUI RED

VAR ABLE CDATA #| MPLI ED

>

<! ELEMENT TREE (ITEM| ERROR* >

<I ATTLI ST TREE
NAMVE CDATA #REQUI RED

>

<! ELEMENT | TEM (#PCDATA | ACTION | ITEM| ERROR)* >

<IATTLI ST |ITEM

ATTR CDATA #| MPLI ED
CAPTI ON CDATA #| MPLI ED
PATH CDATA #REQUI RED
SELECTED (TRUE | FALSE) " FALSE"
TYPE CDATA #| MPLI ED
>
<! ELEMENT ACTI ON (#PCDATA | ANCHOR)* >
<UATTLIST ACTI ON
ATTR CDATA #| MPLI ED
TYPE CDATA #REQUI RED
>
<! ELEMENT CALENDAR EMPTY>
<IATTLI ST CALENDAR
TITLE CDATA #| MPLI ED
>
<! ELEMENT SORT_FI ELD (PICK_LIST | ERROR)* >
<I ATTLI ST SORT_FI ELD
NANVE CDATA #REQUI RED
SEQUENCE CDATA #| MPLI ED
>
<! ELEMENT APPLET_TOGGLE (TOGGLE_| TEM | ERROR)* >

<I ATTLI ST APPLET_TOGG.E

Siebel Portal Framework Guide MidMarket Edition 121

‘ Delivering Content to External Web Applications

Document Type Definition

TYPE CDATA
>

<! ELEMENT TOGGLE_| TEM
<I ATTLI ST TOGG.E_I TEM

APPLET_NAME CDATA
TITLE CDATA
SELECTED (TRUE | FALSE)

>

<! ELEMENT SUB_VI EW BAR
<! ELEMENT PDQ_BAR

<! ELEMENT PDQ
<I ATTLI ST PDQ

NANVE CDATA
SELECTED (TRUE | FALSE)
>

< ELEMENT | MG
<IATTLI ST | MG
ALT CDATA
SRC CDATA

>

<! ELEMENT ERROR

<! ELEMENT ALERT

#1 MPLI ED

(#PCDATA | ANCHOR | ERROR)* >

#REQUI RED
#| MPLI ED

" FALSE"

(VIEWTAB | ERROR)* >

(PDQ | ERROR)* >

(#PCDATA | ANCHOR | ERROR)* >

#REQUI RED
" FALSE"

(#PCDATA) >

#| MPLI ED
#| MPLI ED

(#PCDATA | ERROR) *

(#PCDATA) >

122 Siebel Portal Framework Guide MidMarket Edition

>

Version 7.5

Delivering Content to External Web Applications

Manipulating Siebel XML with XSL Stylesheets and XSLT

Manipulating Siebel XML with XSL Stylesheets and XSLT

SWE can perform embedded XSL transformation on outbound XML documents. In
this way, you can generate outbound documents in the desired markup language or
format directly from SWE, without requiring a middle-tier server to perform the
transformation. To do so, application developers must provide the XSL stylesheets
used for the transformation and specify the names of the stylesheets to SWE.

Defining SWTs Stylesheet Tags

There are two ways in which you can request SWE to transform the outbound XML
document into the desired format using XSLT. You can either pass in a query
parameter SWEXsIStyleSheet = name-of-the-stylesheet, or you can specify the
stylesheets to use in the Siebel templates by means of the < swe:xsl-stylesheet >
tag (see “XML-Specific Template Tag”).

XML-Specific Template Tag

Version 7.5

The XML-specific template tag looks like this:
< swe:xsl-stylesheet >

Purpose:

Specifies the name of the XSLT stylesheet to perform the XSLT on the XML output
document. The stylesheet must reside in the application’s webtempl directory.
There is only one <swe:xsl-stylesheet > tag for each view. If more than one

< swe:xslstylesheet > tag is specified in the view, the last tag found gets used.

Attributes:

name. Specifies the name of the stylesheet.

mode. You can set the mode to either process or embed. When set to process, SWE
performs XSLT processing on the XML output and sends the transformed document
as the response back to the client. When set to embed, SWE inserts an XML
processing instruction in the beginning of the XML document for external XSLT

processing.

Example
<swe: xsl -styl esheet name= "tabl e.xsl” node= “process”/>

Siebel Portal Framework Guide MidMarket Edition 123

‘ Delivering Content to External Web Applications

Manipulating Siebel XML with XSL Stylesheets and XSLT

124 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service 4

Version 7.5

HTTP provides several means to allow Web Servers to obtain information from the
browser. The most familiar example is when a user enters data into a form on a Web
page and the data is sent to the Web Server, which can access the value of each form
field. This example illustrates sending form field parameters to the Web Server with
a POST method. In general, a browser can send cookies, headers, query string
parameters, and form field parameters to the Web Server. Web Servers can also
respond to the browser with cookies and custom headers. The Web Engine HTTP
TXN Business Service (BS) allows Siebel eBusiness Applications to retrieve or set
cookies, headers, and query string and form field parameters.

The Web Engine HTTP TXN Business Service can be invoked by scripts or by
workflow. The inbound HTTP request to the Siebel Web Engine (SWE) is parsed and
the BS returns property sets containing cookies, headers, or parameters. In addition,
server variables, which are not a part of the HTTP request header, can also be
retrieved. The BS can also set a custom cookie or header in the HTTP response
header generated by the SWE. The BS gives complete control over the request
header received and response header sent by the SWE.

Siebel Portal Framework Guide MidMarket Edition 125

‘ Web Engine HTTP TXN Business Service

Scenario

Scenario

A customer has a portal Web application that automatically links the user to Siebel
Call Center with Siebel Web Single Sign On. The customer also wants to pass a
custom header to the Siebel application during the single-sign-on process. The
custom headers provide credentials to log into another application that is embedded
in the Siebel application. Additionally, the portal Web application uses cookies to
store a user profile that needs to be synchronized with the Siebel profile.

This example explains how to pass custom cookies, headers, and query string
parameters to Siebel applications during login.

An external Web application such as ASP or JSP sets the header, cookie, or query
string parameter and either sends the request to the Siebel application or redirects
the browser to the Siebel application.

The following sample ASP code will log in a Siebel User and call the HTTP TXN
Business Service to retrieve HTTP variables:

<% @ anguage=VBScri pt %

<% Response. buffer =true

"Set nmy URL paraneter

"The following URL will log a Siebel User into Siebel and call
the HTTP TxN Business Service to retrieve HITP vari abl es.

strURL = "http://bng/callcenter/
start. swe?SWECd=Execut eLogi n&SWEUser Nane=SADM N&SWEPasswor d=SADM
N&my Par m=Vani | | a"

Set Http = Server.CreateCbject ("WnHttp. WnHtt pRequest.5")

Htp. OQpen "GET", strURL, False

"Set nmy Cookie

Htt p. Set Request Header " Cooki e", "nyCooki e=Chocol ate"

126 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service

Scenario
' Set ny Header
Htt p. Set Request Header "myHeader", "Strawberry"
Http. Send
Response. Wite ("Request Sent... Check your Siebel Business

Service output")

Set Htp = Nothing

%>

When the Siebel Web Engine receives the ExecuteLogin request, it triggers a user-
defined runtime event to call a Business Service. Refer to Personalization
Administration Guide, MidMarket Edition for information on creating a runtime
event and associating an action to the event. In this example, the action will call the
HTTP TXN Business Service and invoke the getHTTPVars method.

The HTTP TXN Business Service is actually a wrapper function that calls the Web
Engine HTTP TXN BS to retrieve HTTP and Server variables. The sample code
below shows how to retrieve cookies, headers, and query string parameters and
print them out to a text file. In an actual implementation, you may want to save the
HTTP variables as profile attributes and use them in other scripts in the application.

Sample HTTP TXN BS Code

Version 7.5

Function Servi ce_Prel nvokeMet hod (Met hodName As String, Inputs As
PropertySet, Qutputs As PropertySet) As I|nteger

I f MethodNane = "get HTTPVars" Then
DimFS As Obj ect
DimoFile As (bject
Di m oBS As Service

DimIn As PropertySet

Siebel Portal Framework Guide MidMarket Edition 127

‘ Web Engine HTTP TXN Business Service

Scenario

Dim Qut As PropertySet

Dim oChild As PropertySet

Set fs = Create(vject("Scripting. FileSystemhject")
If fs.FileExists("c:\testfile.txt") Then
Set oFile = fs. QpenTextFile("c:\testfile.txt", 8,0)
El se
Set oFile = fs.CreateTextFile("c:\testfile.txt", True)

End If

Set oBS = theApplication. Get Service("Wb Engi ne HTTP TXN')
Set In = theApplication. NewPropertySet ()

Set Qut = theApplication. NewPropertySet()

oFile.WitelLine("----Headers----")

0oBS. | nvokeMet hod " Get Al | Request Headers", 1n, Qut

strNanme = Qut. GetFirstProperty()

While strName <> ""
oFile.WiteLine(strName & " : " & Qut. GetProperty(strNanme))
strNane = Qut. Get Next Property()

Wend

I n. Reset

Qut . Reset

128 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service |

Scenario

oFile.WitelLine("----URL Parans----")

0oBS. | nvokeMet hod " Get Al | Request Par aneters”, In, Qut

strNane = Qut. GetFirstProperty()

Whil e strName <> ""
oFile.WiteLine(strNane & " : " & Qut.GetProperty(strNane))
strNane = Qut. Get Next Property()

Wend

I n. Reset

Qut . Reset

oFile. WiteLine("----Cookies----")
oBS. | nvokeMet hod " Get Al | Request Cooki es”, In, Qut
For nChild = 0 To Qut.GetChildCount() - 1
Set oChild = Qut.GetChild(nChild)
strNane = oChil d. GetFirstProperty()
oFile.WiteLine("TYPE : " & oChild. GetType())
oFile.WiteLine("VALUE : " & oChild. GetVal ue())
While strName <> ""

oFile.WiteLine(strName &" : " & oChil d. Get Property(strNane)

strNanme = oChil d. Get Next Property()
Wend
Next nChil d

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 129

‘ Web Engine HTTP TXN Business Service

Scenario

oFile. d ose

Set oChild = Not hi ng

Set oFile = Nothing

Set fs = Nothing

Servi ce_Prel nvokeMet hod = Cancel Operation

TheAppl i cation. Got oVi ew "Hone Page View (WCC)", Nothing

El se

Servi ce_Prel nvokeMet hod = Conti nueQperation

End If

End Function

130 Siebel Portal Framework Guide MidMarket Edition Version 7.5

Web Engine HTTP TXN Business Service |

Scenario

Sample Output by HTTP TxN BS

----Headers----

COXI E : nyCooki e=Chocol ate
HOST : bng

CONTENT- LENGTH : O

CONNECTI ON : Keep-Alive

USER- AGENT : Mbzilla/4.0 (conpatible; Wn32;
W nHt t p. WnHt t pRequest . 5)

MYHEADER : Strawberry
ACCEPT : */*

----URL Parans----
SWEUser Name : SADM N
myParm: Vanilla
SWECTd : Executelogin
SWEPassword : SADM N
----Cooki es- - - -

TYPE : nyCookie
VALUE : Chocol ate
Domai n :

Path :

Max- Age : -1

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 131

‘ Web Engine HTTP TXN Business Service

Web Engine HTTP TXN Business Service API

Web Engine HTTP TXN Business Service API

Table 14 lists the methods exposed by the Web Engine HTTP TXN Business Service.

Table 14. Web Engine HTTP TXN Business Service API

Method

GetAllRequestCookies

GetAllRequestHeaders

GetAllResponseCookies

GetAllResponseHeaders

GetAllServerVariables

GetClientCertificate

Description

Retrieves all request
cookies.

Retrieves all request
parameters.

Retrieves all response
cookies.

Retrieves all response
headers.

Retrieves all server
variables.

Retrieves the client
certificate info.

132 Siebel Portal Framework Guide MidMarket Edition

Parameters

InputArguments: Ignored.
OutputArguments: Property
Set hierarchy. Each cookie is
a child Property Set with the
TYPE property set to the
cookie name.

InputArguments: Ignored.
OutputArguments: Property
Set containing the HTTP
Parameter name-value pairs.

InputArguments: Ignored.
OutputArguments: Property
Set hierarchy. Each cookie is
a child Property Set with the
TYPE property set to the
cookie name.

InputArguments: Ignored.
OutputArguments: Property
Set containing the HTTP
Header name-value pairs.

InputArguments: Ignored.
OutputArguments: Property
Set containing the Server
Variable name-value pairs.

InputArguments: Ignored.
OutputArguments: Property
Set containing certificate
name-value pairs. Currently
only returns Common Name
(CN) property of the
certificate.

Version 7.5

Web Engine HTTP TXN Business Service |

Web Engine HTTP TXN Business Service API

Table 14. Web Engine HTTP TXN Business Service API

Method Description Parameters
GetRequestCookies Retrieves the request InputArguments: Property
cookies named in Set containing the cookie
InputArguments. names to retrieve.
OutputArguments: Property
Set hierarchy. Each cookie is
a child Property Set with the
TYPE property set to the
cookie name.
GetRequestHeaders Retrieves the request InputArguments: Property
headers named in Set containing the header
InputArguments. names to retrieve.
OutputArguments: Property
Set containing the HTTP
Header name-value pairs.
GetRequestInfo Retrieves the request InputArguments: Ignored
Web Session, Headers, @ OutputArguments: Property
Cookies, Parameters Set hierarchy. Each section is
and Client Certificate a child Property Set with the
information in one call. TYPE property set to
'Headers', 'Cookies’,
'Parameters' or
'ClientCertificate'. The Web
Session information is simply
stored as properties of
OutputArguments.
GetRequestParameters Retrieves the request InputArguments: Property
parameters named in Set containing the parameter
InputArguments. names to retrieve.
OutputArguments: Property
Set containing the HTTP
Parameter name-value pairs.
GetResponseCookies Retrieves the response = InputArguments: Property

Version 7.5

cookies named in
InputArguments.

Set containing the cookie
names to retrieve.
OutputArguments: Property
Set hierarchy. Each cookie is
a child Property Set with the
TYPE property set to the
cookie name.

Siebel Portal Framework Guide MidMarket Edition 133

‘ Web Engine HTTP TXN Business Service

Web Engine HTTP TXN Business Service API

Table 14. Web Engine HTTP TXN Business Service API

Method

GetResponseHeaders

GetResponselnfo

GetServerVariables

GetWebSessionInfo

Description

Retrieves the response
headers named in
InputArguments.

Retrieves the response
Headers and Cookies in
one call.

Retrieves the server
variables named in
InputArguments.

Retrieves the client’s
Web session
information.

134 Siebel Portal Framework Guide MidMarket Edition

Parameters

InputArguments: Property
Set containing the header
names to retrieve.
OutputArguments: Property
Set containing the HTTP
Header name-value pairs.

InputArguments: Ignored.
OutputArguments: Property
Set hierarchy. Each section is
a child Property Set with the
TYPE property set to
'Headers' or 'Cookies'.
Content Type and Status are
simply stored as properties of
OutputArguments.

InputArguments: Property
Set containing the server
variable names to retrieve.
OutputArguments: Property
Set containing the Server
Variable name-value pairs.

InputArguments: Ignored.
OutputArguments: Property
Set containing the Web
session name-value pairs—
SessionName;

Cookie Name;

Sessionld;

Web Session ID;
SessionFrom (Value is "URL'
or 'COOKIE").

Version 7.5

Web Engine HTTP TXN Business Service

Web Engine HTTP TXN Business Service API

Table 14. Web Engine HTTP TXN Business Service API

Method Description Parameters

SetResponseCookies Sets the response InputArguments: Property
cookies to the valuesin = Set hierarchy. Each cookie is
InputArguments. a child Property Set with the

TYPE property set to the
cookie name. The
PERSISTENT property
determines whether the
cookie will persist between
sessions. If the value is Y, the
cookie persists between
browser sessions. Otherwise,
the cookie exists on a per
session basis.

OutputArguments: Ignored.

SetResponseHeaders Sets the response InputArguments: Property
headers to the valuesin = Set containing the HTTP
InputArguments. Header name-value pairs.
OutputArguments: Ignored.
SetResponselnfo Sets the response InputArguments: Property
Headers and Cookiesin | Set hierarchy. Each section is
one call. a child Property Set with the

TYPE property set to
'Headers' or 'Cookies'.
Content Type and Status are
simply stored as properties of
InputArguments.
OutputArguments: Ignored.

Version 7.5 Siebel Portal Framework Guide MidMarket Edition 135

‘ Web Engine HTTP TXN Business Service

Web Engine HTTP TXN Business Service API

136 Siebel Portal Framework Guide MidMarket Edition Version 7.5

	Contents
	Introduction
	Revision History
	What’s New for 7.5

	About Siebel Portal Framework
	Portal Framework Overview
	Portal Framework Architecture
	Enterprise Application Integration
	Portal Agents
	XML Web Interface

	Integrating External Content
	Understanding Portal Agents
	Portal Agents and Authentication Strategies
	About Disposition Types
	Inline
	IFrame
	Web Control
	Form Redirect
	Server Redirect
	Portal Agent Restrictions
	Disposition Types Summary

	Task Overview for Creating Portal Agents
	Determining the Login Requirements
	Portal Agent Configuration
	Configuring Business Components to Handle External Data
	Displaying External Content Within an Applet
	Displaying External Content Outside of an Applet

	Portal Agent Administration
	Defining the External Host
	Defining Web Applications
	Defining Symbolic URLs
	Defining Symbolic URL Arguments
	Defining Content Fixup

	Defining End User Login Credentials
	Example Portal Agent
	Review the Login Form
	Define the External Host
	Define the Symbolic URL
	Define Symbolic URL Arguments
	Define User Login Credentials
	Test

	Reviewing the SWE Log File
	Portal Agent Command Reference
	EncodeURL
	IFrame
	NoCache
	NoFormFixup
	PreLoadURL
	PostRequest
	UserLoginId
	UserLoginPassword
	UseSiebelLoginId
	UseSiebelPassword
	WebControl

	Delivering Content to External Web Applications
	Overview of the XML Web Interface
	Accessing Siebel XML
	Siebel OM and Web Server Configuration and Markup Determination
	Connecting to the XML Web Interface
	Submitting HTTP Requests Through the Web Server
	Query String
	XML Command Block

	Submitting Requests Using the Web Engine Interface
	Query String
	XML Command Block

	XML Request Structure
	Query String
	XML Command Block
	EXE Tag
	Description
	Attributes
	Example

	CMD Tag
	Description
	Attributes
	Example

	ARG Tag
	Description
	Attributes
	Example
	Required Arguments
	Common Name-Value Pairs

	XML Response Structure
	Errors
	XML Response
	HTML Response

	Common Operations
	Logging In
	Logging Off
	Navigating to a Screen
	Navigating Within a Screen
	Querying Items
	NewQuery
	ExecuteQuery

	Adding Records
	NewRecord
	WriteRecord

	Modifying Records
	NewQuery
	ExecuteQuery
	EditRecord
	WriteRecord

	Deleting Records
	NewQuery
	ExecuteQuery
	DeleteRecord

	Picking Records
	GotoPageTab
	EditField
	PickRecord
	WriteRecord

	SWE API
	SWE Commands
	SWE Methods
	SWE Arguments

	Document Type Definition
	Inbound DTD
	Outbound DTD

	Manipulating Siebel XML with XSL Stylesheets�and�XSLT
	Defining SWTs Stylesheet Tags
	XML-Specific Template Tag
	Example

	Web Engine HTTP TXN Business Service
	Scenario
	Sample HTTP TXN BS Code
	Sample Output by HTTP TxN BS

	Web Engine HTTP TXN Business Service API

