
Developing Analytical
Applications with Telco

Analytics Manager

V4.0
Document ID: TAGN-06-4.0-01

Date Published: 9.10.03

 1997−2003 edocs Inc. All rights reserved.

edocs, Inc., One Apple Hill Drive, Suite 301, Natick, MA 01760

The information contained in this document is the confidential and proprietary information of edocs, Inc. and is subject to
change without notice.

This material is protected by U.S. and international copyright laws. edocs and eaPost are registered in the U.S. Patent
and Trademark Office.

No part of this publication may be reproduced or transmitted in any form or by any means without the prior written
permission of edocs, Inc.

eaSuite, eaDirect, eaPay, eaAssist, eaMarket, and eaXchange are trademarks of edocs, Inc.

Sun, Sun Microsystems, Solaris, Sun-Netscape Alliance, iPlanet, Java and JavaScript are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

Netscape, Netscape Enterprise Server, Netscape Navigator, Netscape® Application Server and the Netscape N and
Ship's Wheel logos are registered trademarks of Netscape Communications Corporation in the United States and other
countries.

Microsoft, Windows, WindowsNT, Windows 2000, SQL Server and Microsoft Internet Information Server are registered
trademarks of Microsoft Corporation in the United States and other countries.

Oracle, Oracle8, Oracle8i are registered trademarks of Oracle Corporation in the United States and other countries.

Adobe, Acrobat, and the Acrobat logo are trademarks of Adobe Systems Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Contains IBM Runtime Environment for AIX(R), Java(TM) 2 Technology Edition Runtime Modules (c) Copyright IBM
Corporation 1999, 2000 All Rights Reserved.

This software contains Log4j Copyright (c) 1999 The Apache Software Foundation All Rights Reserved.

This software contains Jakarta-ORO regular expressions processing Copyright (c) 2000 The Apache Software
Foundation All Rights Reserved.

This software contains Sun Multi-Schema XML Validator Copyright (c) 2001 Sun Microsystems All Rights Reserved.

All other product names and registered trademarks are the property of their respective holders. Any trademark name
appearing in this guide is used for editorial purposes only, and to the benefit of the trademark owner, with no intention of
infringing upon the trademark.

Federal Acquisitions: Commercial Software - Government users subject to standard license terms and conditions.

Preface

In This Section

Using this Manual ... iv
Finding the Information You Need .. vii
If You Need Help ... ix

iv Developing Analytical Applications

Using this Manual
Welcome to Developing Analytical Applications.

This manual covers building Analytical Applications with Telco Analytics Manager.

Before You Get Started
You should be familiar with the following:

! Your application architecture
! The CBU
! Designing or working with databases and data warehouses
! SQL

Who Should Read this Manual
This manual is for developers and project managers who are responsible for developing
Analytical applications.

However, there are other topics covered in this manual that may interest other
members of the project development team.

! Administrators
You will find information about the different components that are involved in loading
the CBU. You will also find information about how the analytic application works with
the CID and Account Management applications. There is also information about
customization you need to be aware of when dealing with deployed applications.

! Developers
This manual is for developing Analytical applications. You learn how to customize
the CBU. Building and using organization views is also covered in this manual. You
also learn how to customize and integrate your Telco Analytics Manager with
Account Management applications.

! Project Architect
You can use the information in this manual to learn about how the CBU is
customized and how you can modify the CBU and its components in order to meet
the needs of your Telco Analytics Manager and Telco Service Manager. You might
also find the information about organization views of interest.

! Project Manager
You will find information about CBU customization. But what should interest you the
most is the sections dealing with loading the CBU and working with organization
views. You should also read the information about integrating TSM.

 Preface v

How this Manual is Organized
This manual contains the following chapters:

! Overview of Developing Analytical Applications
This chapter covers the basics of the developing Analytical applications.

It contains an overview of:

! Customizing the Database

! Synchronizing Data

! Working with Organization Views

! Loading Customer Dimensions

! Building Simple Reports

! Customizing the Database
This chapter covers customizing the CBU.

It contains information about:

! Adding Dimensions

! Adding new Attributes

! Customizing the Synchronization of Customer Data

This chapter covers developing the way the customer data is loading into the CBU.

It contains information about:

! Customizing the Notification Logic

! Customizing the CID to CBU mapping

! Working with Organization Views
This chapter covers working with organization views.

It contains information about:

! Creating Organization Views

! Modifying Organization Views

! Downloading and Uploading Organization Views

! Using the CustDim Loader
 This chapter covers using the CustDim Loader to load customer dimension data.

vi Developing Analytical Applications

It contains information about:

! The CustDim Loader and its components

! Working with invoice files used to load the CBU

! Customizing invoice mapping

! Creating Report Queries in SQL
This chapter covers using SQL to query the CBU.

It contains information about:

! Writing simple reports

! Writing advanced reports

! Deploying with Account Management Features

This chapter covers deploying Telco Analytics Manager along with an Account
Management application.

It contains information about:

! How to integrate the Telco Analytics Manager with Account Management
applications

What Typographical Changes and Symbols Mean
This manual uses the following conventions:

TYPEFACE MEANING EXAMPLE

Italics Manuals, topics or other
important items

Refer to Developing
Connectors.

Small Capitals Software and Component
names

Your application uses a
database called the CID.

Fixed Width File names, commands,
paths, and on screen
commands

Go to //home/my file

 Preface vii

Finding the Information You Need
edocs Telco Solutions comes with comprehensive documentation that covers all
aspects of building TAM solutions. You should always read the release bulletin for late-
breaking information.

Getting Started

If you are new to edocs Telco Solutions, you should start by reading Introducing Telco
Analytics Manager. This manual contains an overview of the various components along
with a list of the available features. It introduces various concepts and components you
must be familiar with before moving on to more specific documentation. Once you have
finished, you can read the manual that covers different aspects of working with the
application. At the beginning of each manual, you will find an introductory chapter that
covers concepts and tasks.

Designing Your Solution

While reading Introducing Telco Analytics Manager, you can begin to envision how the
different components can address your solution's needs.

You can refer to Developing Analytical Applications for information about customizing
the database, synchronizing data with Telco Service Manager (TSM), loading data from
external invoice files, and other design issues. The CBU Reference Guide also gives
you the information about how the information in your solution is managed and stored.
You should also read the section on integrating Telco Analytics Manager with Telco
Service Manager in Developing Analytical Applications.

Installing Your Analytical Application

You should start by reading the Release Bulletin. For detailed installation and
configuring information, refer to Installing Telco Analytics Manager. This manual covers
installing Telco Analytics Manager on one or more computers. It also contains the
information you need to configure the different components you install.

Building Analytical Solutions

If you are designing and programming analytical applications, you have several different
sources of information. If you are programming the user interface of the solution, you
should read Building Reports. You can also refer to the QRA API Specification and the
QRA Configuration File Reference Documentation for detailed information about the
different components you can use to build reports which serve as the user interface. For
configuring the various components, refer to Installing Telco Analytics Manager and
sections in other documents that specifically deal with the component to be configured.

viii Developing Analytical Applications

If you are working on the data warehouse side of TAM and are interested in how the
information will be loaded into the data warehouse, you should read Developing
Analytical Applications. For more information about the design and structure of the
CBU, you should refer to the CBU Reference Guide along with the CBU Reference
documentation for your database.

Integrating TAM and TSM

If you are involved in configuring your solution to work with Telco Service Manager, you
should read Introducing Telco Analytics Manager for an overview of the components
and how they interact. You should then read Developing Analytical Applications for
information about synchronizing data between the Telco Analytics Manager and Telco
Service Manager. In this manual, you will also find information about loading data in
both the CBU and the Telco Service Manager.

Managing Telco Analytics Manager

If you are responsible for managing Telco Analytics Manager, you should read the
Installing Telco Analytics Manager for information about configuring various
components. Administrating Telco Analytics Manager covers what you need to know
about managing your solution at runtime.

 Preface ix

If You Need Help
Technical support is available to customers who have valid maintenance and support
contracts with edocs. Technical support engineers can help you install, configure, and
maintain your edocs application.

To reach the U.S. Service Center, located in Natick, MA (Monday through Friday
8:00am to 8:00pm EST):

! Telephone: 508.652.8400
! Toll Free: 877.336.3362
! E-support: support.edocs.com (This requires a one-time online registration)
! E-mail: support@edocs.com

When you report a problem, please be prepared to provide us the following information:

! What is your name and role in your organization?
! What is your company�s name?
! What is your phone number and best times to call you?
! What is your e-mail address?
! In which edocs product did a problem occur?
! What is your Operating System version?
! What were you doing when the problem occurred?
! How did the system respond to the error?
! If the system generated a screen message, please send us that screen message.
! If the system wrote information to a log file, please send us that log file.

If the system crashed or hung, please tell us.

mailto:support@edocs.com

 xi

Contents

Preface iii

Overview of Developing Analytical Applications 15
About Developing Applications 16
Customizing the Database 17
Synchronizing Data 18
Working with Organization Views 19
Loading Customer Dimension Data 20
Building Reports 21

Customizing the Database 23
Adding New Reference Dimensions 24
Localizing Reference Dimension Table Names 25
Managing Charge Type Hierarchies 26
Categorizing Values in Reference Dimension Tables 28
Adding New Degenerated Dimensions to FACT Tables 29
Implementing Hierarchy Between Reference Dimension Table Values 30
Adding New Attributes to FACT Tables 31
Adding New Attributes to Reference Dimension Tables 32
Adding New Attributes to Customer Dimension Tables 33
Optimizing 34
Unsupported Customization 35

Customizing the Synchronization of Customer Data 37
Filtering Customers to Synchronize 38

About Customizing Notifications 38
Customizing Notification Logic 38

Customizing the BLM to CBU Mapping 42
Default Mapping 43
Modifying the Default Mapping 44
Specifying the Mapping of a Custom Attribute 45
Example of Mapping Declarations 46

xii Developing Analytical Applications

Working with the Report Manager 47
About the Report Manager 48
Saving Reports 49
Listing Reports 50
Renaming Reports 51
Deleting Reports 52

Working with Organization Views 53
About Working with Organization Views 55
Creating Organization Views 56
Changing Organization View Owners 57
Deleting Organization Views 58
Managing Levels 59

Adding Levels 59
Moving Levels 60
Removing Levels 60
Assigning Contracts 60
Removing Contracts 61

Downloading and Uploading Organization Views 63
About the Organization View XML File 63
Overview of Using Organization View XML Files 65
Downloading Organization Views 65
Uploading Organization Views 68

Using the CustDim Loader 75
About the CustDim Loader 76
Overview of the CustDim Loader Components 78

Invoice Flow Splitter 79
Invoice Transformer 81
CID Loader 83
CBU Loader 85
Counters 87

Working with Invoice Files 88
About Working with Invoice Files 88
Processing Invoice Files in Non XML Format 89
Processing Invoice Files in Non Well Formatted XML 90
Processing Compressed Invoice Files 91
Processing Invoice Files with Shared Information 91
Pruning Invoice Files 92

Customizing Invoice Mapping 96
Setting Input Date/Numeric Format 96
Setting the Object ID 97
Setting Reference Object Codes 98
Setting Miscellaneous Object Attributes 99
Setting Custom Object Attributes 100
Managing Billing Accounts as Actors 103
Managing statistics 104
Customizing CBU Name Attribute Mapping 104

 Preface xiii

Creating Report Queries in SQL 107
About Building Reports 108
Writing Simple Report Queries 109

Simple Query 109
Simple Query Including Security 110

Writing Advanced Report Queries 112
Advanced Query 112

Deploying with Account Management Features 115
About Deploying with Telco Service Manager 117
To have coherent legacy IDs 118

Index 119

C H A P T E R 1

Overview of Developing
Analytical Applications

In This Section

About Developing Applications ... 16
Customizing the Database.. 17
Synchronizing Data... 18
Working with Organization Views ... 19
Loading Customer Dimension Data.. 20
Building Reports ... 21

16 Developing Analytical Applications

About Developing Applications
You use Telco Analytics Manager to build your solution for your customer's needs in
viewing and analyzing accounts with communication service providers.

Developing Analytical Applications involves:

! Customizing the database
! Synchronizing data
! Working with Organization Views
! Building Reports

 Overview of Developing Analytical Applications 17

Customizing the Database
The CBU contains customers billing and usage information.

Users can analyze their invoices using:

! Reference dimensions such as date/time, tariff, and service
! Customer-specific information such as organization views, contracts, and billing

accounts

In order for your solution to meet your user's needs, you may need to customize the
structure of the CBU.

Customizing the database involves:

! Adding new reference dimensions
! Localizing
! Managing charge type heirarchies
! Adding new attributes to tables

18 Developing Analytical Applications

Synchronizing Data
Depending on how your Telco Analytics Manager is integrated and the deployed
features, the CBU must be regularly synchronized with the CID to ensure that the data
is coherent.

This synchronization is achieved in a very similar manner to the synchronization with
back-office systems � using an asynchronous request process called the CID2CBU
loader. Notifications are created whenever a change is made to the CID that must be
synchronized with the CBU.

Customizing the synchronization of data involves:

! Customizing the notification logic
! Customizing the CID2CBU object mapping

 Overview of Developing Analytical Applications 19

Working with Organization Views
You can use organization views to create your own hierarchies. Not being dependent
on the organization of information, organization views let you organize organizations
and associated contracts the way you want them to be, not as dictated by your OSS.

Working with Organization Views involves:

! Creating organization views
! Modifying organization views
! Managing organization views

20 Developing Analytical Applications

Loading Customer Dimension Data
When the only available customer data are in invoices, both the CID and the CBU must
be populated with them.

This loading That loading is achieved by a batch processing of invoice files built on
standard ISF components. The tool you use to do this is the CustDim Loader. Loading
customer dime dimension data involves:

! Configuring the CustDim loader to process your invoice files
! Configuring the CustDim loader mapping to update the CID and CBU

 Overview of Developing Analytical Applications 21

Building Reports
The CBU is an open database. You can use any reporting tool you like to access
information in the CBU for your users, even simple SQL queries.

Building reports involves:

! Writing simple SQL to query the CBU
! Writing advanced SQL to query the CBU

You also use the Query, Reporting, and Analysis Engine (QRA) to build reports. For
more information about the QRA, refer to Developing Reports.

C H A P T E R 2

Customizing the Database

In This Section

Adding New Reference Dimensions ... 24
Localizing Reference Dimension Table Names...................................... 25
Managing Charge Type Hierarchies ... 26
Categorizing Values in Reference Dimension Tables 28
Adding New Degenerated Dimensions to FACT Tables......................... 29
Implementing Hierarchy Between Reference Dimension Table Values 30
Adding New Attributes to FACT Tables .. 31
Adding New Attributes to Reference Dimension Tables......................... 32
Adding New Attributes to Customer Dimension Tables.......................... 33
Optimizing .. 34
Unsupported Customization ... 35

24 Developing Analytical Applications

Adding New Reference Dimensions
You may need to add new reference axes of analysis on a fact table. This means
adding a new reference dimension table. To add a new reference dimension table, you
must respect the same pattern as the existing core tables.

1 Create the new dimension table with default dimension table attributes.

Use a name like CUSTOMDIM_DIM for your new dimension table. The NMY prefix is
reserved for core CBU tables.

2 Create required indexes and constraints of the reference dimension table.

3 Alter the FACT table to create a foreign key on the new dimension reference table

The CBU demo kit provides a sample of how to add a reference dimension table.

 Customizing the Database 25

Localizing Reference Dimension
Table Names

To localize the names of a reference dimension table and description

1 Create a new table in the data reference dimension tablespace
(NMY_CBU_REF_DATA) containing the following:

! A foreign key pointing to the dimension table to localize

! A language code

! The localized name

2 Create the following in the index reference dimension tablespace
(NMY_CBU_REF_INDX):

! Constraints:

A primary key based on the foreign key and the language code

! Index:

One index based on the language code and the localized name

26 Developing Analytical Applications

Managing Charge Type Hierarchies
By default, the CBU does not manage charge types hierarchy.

If required, you can implement one of the following solutions depending on your needs:

! Static hierarchy
A new dimension table is added to categorize the charge type.

If more hierarchy levels are required, Integrator can either categorized the new
dimension table or add new degenerated dimension on it.

Advantages of this solution:

! Easier reporting

! Clear separation between charge type and category

Disadvantages of this solution:

! Hierarchy depth is constant and known

! Category is required even for a flat charge type

! Difficulty to provide reports with charge types of a different depth

(all charge types should be designed with the same depth, even if it requires to
implement fake category)

! Does not allow charge values at different level of the same charge type
category.

For more information on a categorized charge type dimension table, refer to
Categorizing Values in Reference Dimension Tables in this manual.

! Dynamic hierarchy
Dynamic Hierarchy is implemented between charge types

Advantages of this solution:

! Allow reports on non constant hierarchy

! Allow charge values at different levels of the same charge type hierarchy

Disadvantages of this solution:

! Reporting with Master/Detail is far more complex.

! Query engine are difficult to use.

! It is not possible to enforce pure category node without data. Types and
categories are mixed in the same table.

When using this design, we strongly recommend storing only addable values at
different levels of the same charge type hierarchy.

It is possible to store intermediate sums but you cannot mix both modes.

 Customizing the Database 27

For more information about implementing hierarchies between charge types, refer to
Implementing Hierarchy Between Reference Dimension Table Values in this
manual

28 Developing Analytical Applications

Categorizing Values in Reference
Dimension Tables

You can to implement reference dimension hierarchy tables to categorize them
(snowflake pattern).

To categorize a reference dimension table:

1 Create a new reference dimension table to store categories

2 Alter the initial dimension reference table to create a new foreign key pointing to the
dimension table storing categories.

The CBU demo kit provides a sample of how to categorize a reference dimension table.

 Customizing the Database 29

Adding New Degenerated
Dimensions to FACT Tables

You can add a new axis of analysis on a fact table with unpredictable values that keep
you from creating a new reference dimension table or merge this axis with an existing
dimension (like destination number).

To add a new degenerated dimension:

1 Alter the fact table to create a new column to store the value of the new axis

2 Create an index on this column to analyze it

The index must be created on the NMY_CBU_USAGE_INDX or NMY_CBU_INVC_INDX
tablespace depending on the fact table.

30 Developing Analytical Applications

Implementing Hierarchy Between
Reference Dimension Table Values

You can build a hierarchy between values of a reference dimension table.

To implement the hierarchy, you must:

1 Create a new hierarchy link table to store hierarchy links.

The CBU demo kit provides a sample of how to implement a hierarchy between
reference dimension table values.

 Customizing the Database 31

Adding New Attributes to FACT
Tables

You can add a new attribute on a fact table for display or calculation purpose (for
example volume2).

To add a new attribute on a fact table, alter the table and create the new column

32 Developing Analytical Applications

Adding New Attributes to Reference
Dimension Tables

You can add a new attribute on reference dimension table to store more detail
information in it (for example, short description).

To add a new attribute to a reference dimension table, alter the table and create the
new column.

 Customizing the Database 33

Adding New Attributes to Customer
Dimension Tables

You can add new attributes to actor, contract or billing account objects.

Supported types are:

! String
! Numeric
! Date

To add a new attribute to a customer dimension table, you must:

1 Alter the customer dimension table to add the new column

2 Customize the CID2CBU loader mapping policy to synchronize the attribute.

For more information about customizing the CID2CBU mapping, refer to Customizing
the BLM to CBU Mapping in this manual.

34 Developing Analytical Applications

Optimizing
If controls are implemented in your loading process, you can disable primary keys,
alternate keys and foreign keys on fact tables.

If you do not use a reference dimension table, you can also disable the index related to
this dimension on the fact table column.

 Customizing the Database 35

Unsupported Customization
ACTION COMMENT
Adding customer dimension table Access to fact tables must always be done via contracts

or billing accounts

Removing tables All core tables provided in CBU must be kept even if not
used

 Removing or modifying core columns on any table

Disabling constraints or indexes on customer
dimension tables

Removing core constraints or indexes on any table You can disable a constraint or an index in fact table but
never remove it

C H A P T E R 3

Customizing the Synchronization
of Customer Data

In This Section

Filtering Customers to Synchronize.. 38
Customizing the BLM to CBU Mapping 42

38 Developing Analytical Applications

Filtering Customers to Synchronize

About Customizing Notifications
Customizing notifications involves:

! Writing and deploying a new notification logic class
! Modifying the mapping between the CID and CBU

Customizing Notification Logic
You can customize this logic to meet your application's needs.

These notifications are used to synchronize data in the CBU. For instance, your CBU
may only need information about a certain type of customer organization or a customer
organization that has a specific type of contract. You want your notification logic to
generate notifications only for changes to these types of organizations.

The core notification logic is in the following BLM external class:

com.netonomy.blm.external.NotificationLogic

Implementing your own notification logic involves:

! Writing a new class to implement your notification logic
! Deploying the class and declaring it in the BLM

Creating a New Notification Class

Writing a new class implementing your own notification logic involves:

! Defining a new package for your custom class
! Creating the new class extending the core class
! Writing your notification logic in the isNotified method to evaluate if notification

is generated depending on organization attributes (including additional information)
! Compiling your class

Once you have written and compiled your class, you deploy it and declare it in the BLM

 Customizing the Synchronization of Customer Data 39

When creating your java class, we suggest declaring a Java Package to implement
your class.

For example, com.<yourclasspackage>.netonomy.blm.external where
<yourclasspackage> is the name of your company or the name of your customer.

To create a new class extending the core class

Here is an example of your new class:
package com.<yourclasspackage>.netonomy.blm.external;

import com.netonomy.blm.api.Organization.OrganizationF;

import com.netonomy.blm.external.NotificationLogic;

import com.netonomy.blm.interfaces.organization.OrganizationTypeCategoryIF;

import com.netonomy.blm.interfaces.organization.OrganizationTypeIF;

public class CustomNotificationLogic extends NotificationLogic

{

}

40 Developing Analytical Applications

To code your notification logic

The notification logic is implemented in the isNotified method.

The isNotified method has the following parameter:

! organization: organization to test

The isNotified method returns a boolean specifying if the organization generates a
notification.

The notification logic class is instantiated only once for the process and the different
threads access the same instance. Your code must be thread safe.

Here is an example of the isNotified method in your class with the core notification
logic code:
package com.<yourclasspackage>.netonomy.blm.external;

import com.netonomy.blm.api.Organization.OrganizationF;

import com.netonomy.blm.external.NotificationLogic;

import com.netonomy.blm.interfaces.organization.OrganizationTypeCategoryIF;

import com.netonomy.blm.interfaces.organization.OrganizationTypeIF;

public class public class CustomNotificationLogic extends NotificationLogic

{

 public boolean isNotified(OrganizationF org)

 {

 // Replace the following code by your own

 OrganizationTypeIF type = org.getType(); // mandatory -> should not be null

 OrganizationTypeCategoryIF cat = type.getCategory();

 if (cat!=null)

 {

 String cat_code = org.getType().getCategory().getCode();

 if (cat_code!=null)

 {

 if (cat_code.equals("FLAT_CUSTOMER") || cat_code.equals("LARGE_CUSTOMER"))

 {

 return true;

 }

 }

 }

 return false;

 }

}

 Customizing the Synchronization of Customer Data 41

To compile your class

To compile your class, you need to make sure the following jar files are in your
classpath:

! lib/nmycore.jar
! lib/nmyutil.jar

Integrating the Notification Class

To deploy your class

1 Create sub folders consistent with your package name. For example create a folder
called classes/com/<yourclasspackage>/netonomy/blm/external.

2 Copy your compiled class to this folder.

To declare your class

1 Go to <home_dir>/classes/nmycfg/blm.

2 Open the external_custom.xml customization file.

3 Find the class element with default attribute equal to
com.netonomy.blm.external.NotificationLogic.

4 Enter the name of your custom class as the value of the custom attribute.

Example:
<class default=" com.netonomy.blm.external.NotificationLogic" custom="
com.<yourclasspackage>.netonomy.blm.external.CustomNotificationLogic"/>

5 Save your changes.

42 Developing Analytical Applications

Customizing the BLM to CBU
Mapping

The CID2CBU loader synchronizes CBU customer dimensions with the CID tables. The
loader sets CBU dimensions with BLM object attributes.

The mapping policy is declared in the CID2CBU mapping.xml configuration file This
file is located in <home_dir>/config/cid2cbu.

This file specifies for every objects:

! The complete name of the class implementing the mapping interface
! For every custom columns, the name of its mapping method in the class.

The file syntax is as follows:
<mapping>

 <object name=�object Name� table=�CBU Table name storing the object� impl = �mapping class name�>

 <attr column=�CBU Table custom column name� acc= �custom mapping method name�/>

 </object>

</mapping>

You can customize the mapping of the contents of the CBU and CID to:

! Modify the default mapping of CBU dimensions core attributes.
! Specify the mapping of CBU dimensions custom attributes

 Customizing the Synchronization of Customer Data 43

Default Mapping
For every object mapped in the CBU, an external class implements a standardized
interface to specify the default mapping of core attributes (Name and UIDN for most
objects, LOGIN for the user object, PATH for orgview objects)

The following class diagram presents an example of the interface and of the default
implementation of contract mapping.

Refer to the CID2CBU Object Mapping Reference Documentation for the detailed
description of all interfaces and default implementation classes (including default
mapping specification).

44 Developing Analytical Applications

Modifying the Default Mapping
You may have to modify the default mapping of a core attribute. For instance, you may
need to modify the source of information or to modify the format in the CBU.

For example, the CBU Contract Name is set to the exact contract line number in the
CID by default. For readability, you may want to add blanks between the numbers.

Modifying default mapping of a core attribute involves:

1 Writing a new mapping class to extend the existing class and implement the related
interface

2 Overwriting in this class the mapping method of the attribute

3 Declaring your class in CID2CBU mapping.xml configuration file

4 Deploying the class

 Customizing the Synchronization of Customer Data 45

Specifying the Mapping of a Custom Attribute
Your solution may require the declaration of new columns in customer dimension
tables.

Specifying the mapping of this new attribute involves:

! Writing a new mapping class to extend the existing class and implement the related
interface

! Implementing the new method to map the custom attribute
! Declaring your class and your custom attribute mapping in the CID2CBU

mapping.xml configuration file
! Deploying the class

The following sample code specifies mapping of a new RATEPLAN column of the
NMY_CONTRACT table with the current contract rate plan in the CID.
package com.<yourclasspackage>.netonomy.cbu.cid2cbu.external;

import com.netonomy.blm.api.Contract.ContractF;

import com.netonomy.blm.interfaces.rateplan.RatePlanIF;

import com.netonomy.cbu.cid2cbu.external.ContractMapper;

public class CustomContractMapper extends ContractMapper

{

 // The return parameter type must be consistent with the column type in CBU

 public String getRatePlanCode() {

return contract.getMyRatePlan().getCode();

 }

}

46 Developing Analytical Applications

When creating your java class, we suggest declaring a Java Package to implement
your class.For example,
com.<yourclasspackage>.netonomy.cbu.cid2cbu.external where
<yourclasspackage> is the name of your company or the name of your customer.

To compile your class, you make sure the following jar files are in your classpath:

 - lib/nmycore.jar

 - lib/nmyutil.jar

 - lib/nmycid2cbu.jar

To deploy your class, you must create a sub folder consistent with your package name
(example:
classes/com/<yourclasspackage>/netonomy/cbu/cid2cbu/external) and
copy your compiled class to this folder.

If you need to totally modify the default mapping of an object, you can directly write a
new class implementing the interface instead of extending the core implementation

Example of Mapping Declarations
The following mapping.xml sample configuration file shows the declaration of both the
previous class and the custom attribute.
<mapping>

 <object name=�contract� table=�NMY_CONTRACT_DIM� impl =
�com.<yourclasspackage>.netonomy.cbu.cid2cbu.external.CustomContractMapper�>

 <attr column=�CONTRACT_RATEPLAN� acc= �getRateplanCode�/>

</object>

��.

</mapping>

C H A P T E R 4

Working with the Report Manager

In This Section

About the Report Manager ... 48
Saving Reports ... 49
Listing Reports.. 50
Renaming Reports.. 51
Deleting Reports ... 52

48 Developing Analytical Applications

About the Report Manager
You use the Report Manager to allow your users to save their reports. Not only can they
save reports, users can see a list of saved reports, rename them and delete them when
they are no longer needed.

The Report Manager is based on the Web File System (WFS) component. This
component allows you to use the application server to save and manage report files.

Working with the Report Manager involves:

! Saving Reports
! Listing Saved Reports
! Renaming Reports
! Deleting Reports

For information about configuring and administrating the Report Manager, refer to
Administrating Telco Analytics Manager.

 Working with the Report Manager 49

Saving Reports
Saving a report involves:

1 Getting the report manager to use

2 Getting the report to save

3 Creating the file

4 Validating the file

5 Getting any errors that occurred for further processing

The logic_saveReport code in the logic_report.jsp shows how to save a
report:

Getting the
report manager

 {

 PermanentFileManager fileMgr = getCurrentPermanentFileManager (session, request,
jspHelper);

 String reportName = (String)request.getParameter("report_name");

Get the report to
save

 Report toSave = getCurrentReport (session, request, jspHelper,
getCurrentCacheFileManager (session, request, jspHelper));

 jspHelper.doNotSend ("report_name");

Create the file,
get the data,
then close the
file

 FileDescriptorIF saveTo = fileMgr.createFile(reportName);

 BufferedOutputStream toWrite = new BufferedOutputStream (saveTo.getOutputStream());

 try

 {

 toSave.save (toWrite);

 } finally

 {

 toWrite.close();

 }

Validate the
content

 fileMgr.commitFile(saveTo);,

Get the errors request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage ("ON_OK")).forward(request,
response);

 } catch (FileManagerException except)

 {

 request.setAttribute("Exception",except);

 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage
("ON_EXCEPTION")).forward(request, response);

 }

}

50 Developing Analytical Applications

Listing Reports
Listing the saved reports involves:

1 Getting the report manager to use

2 Getting the list of reports

3 Getting any errors that occurred for further processing

The logic_getSavedReports code in the logic_report.jsp shows how to
delete a report:

Getting the
report manager

 {

 PermanentFileManager fileMgr = getCurrentPermanentFileManager (session, request,
jspHelper);

Get the reports
to display

 String[] names = fileMgr.listFileNames();

Get the errors if(names!=null)

 request.setAttribute("report_list", names);

 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage ("ON_OK")).forward(request,
response);

 } catch (FileManagerException except)

 {

 request.setAttribute("Exception",except);

 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage
("ON_EXCEPTION")).forward(request, response);

 }

 Working with the Report Manager 51

Renaming Reports
Renaming a saved report involves:

1 Getting the report manager to use

2 Getting the old and new names

3 Saving the report with the new name

4 Getting any errors that occurred for further processing

The logic_renameReport code in the logic_report.jsp shows how to delete a
report:

Getting the
report manager

 {

 PermanentFileManager fileMgr = getCurrentPermanentFileManager (session, request,
jspHelper);

Get the old and
new name

 String reportName = (String)request.getParameter("report_name");

 String oldReportName = (String)request.getParameter("old_report_name");

 jspHelper.doNotSend ("report_name");

 jspHelper.doNotSend ("old_report_name");

Rename the
report

 fileMgr.renameFile (oldReportName, reportName);

Get the errors request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage ("ON_OK")).forward(request,
response);

 } catch (FileManagerException except)

 {

 request.setAttribute("Exception",except);

 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage
("ON_EXCEPTION")).forward(request, response);

 }

52 Developing Analytical Applications

Deleting Reports
Deleting a saved report involves:

1 Getting the report manager to use

2 Getting the report to remove

3 Removing the report

4 Getting any errors that occurred for further processing

The logic_removeReport code in the logic_report.jsp shows how to delete a
report:

Getting the
report manager

 {

 PermanentFileManager fileMgr = getCurrentPermanentFileManager (session, request,
jspHelper);

 String reportName = request.getParameter ("report_name");

 jspHelper.doNotSend ("report_name");

Get the report to
remove

 String reportName = request.getParameter ("report_name");

 jspHelper.doNotSend ("report_name");

Remove the
report

 if (fileMgr.removeFile(reportName))

Get the errors {

 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage
("ON_OK")).forward(request, response);

 }

 else

 {

 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage
("ON_ERROR")).forward(request, response);

 }

 } catch (FileManagerException except)

 {

 request.setAttribute("Exception",except);

 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage
("ON_EXCEPTION")).forward(request, response);

 }

 Working with Organization Views 53

C H A P T E R 5

Working with Organization Views

You can use organization views to create your own hierarchies. This gives you the
freedom to organize your information as you see fit, not as it is stored in your system.

For instance, your OSS may store information based on profit centers or departments.
When your data is stored like this, you may have a hard time managing information
based upon employee location, such as an office or city. Let's say your OSS systems
keep track of your contracts and users based on departments (sales, presales,
accounting, product development, and so on). You may find it difficult to manage this
type of information when you want to visualize and manage users and costs based on
branch office locations, where employees from several different departments work
together.

You can use organization views to create your own hierarchies. Not being dependent
on the organization of information, organization views let you organize organizations
and associated contracts the way you want them to be, not as dictated by your OSS.

An organization view has the following components:

! A unique user reference
! A name
! Levels and sublevels
! Contracts

Working with Organization Views involves:

! Creating organization views
! Changing owners
! Deleting organization views
! Adding levels
! Moving levels
! Removing levels
! Assigning contracts to levels
! Removing contracts from levels
! Downloading organization views
! Uploading organization views

54 Developing Analytical Applications

The MyWeb channel JSPs use the organization view feature. This channel uses
organization views called cost structures. This is an organization view created
specifically to group users and contracts for cost analysis, no matter how the OSS
organizes the data. All of the examples in this section show you how to use the
organization view to create cost structure views.

 Working with Organization Views 55

About Working with Organization
Views

You can use organization views to create your own hierarchies. This gives you the
freedom to organize your information as you see fit, not as it is stored in your system.

For instance, your OSS may store information based on profit centers or departments.
When your data is stored like this, you may have a hard time managing information
based upon employee location, such as an office or city. Let's say your OSS systems
keep track of your contracts and users based on departments (sales, presales,
accounting, product development, and so on). You may find it difficult to manage this
type of information when you want to visualize and manage users and costs based on
branch office locations, where employees from several different departments work
together.

An organization view has the following components:

! A unique user reference
! A name
! Levels and sublevels
! Contracts

Working with Organization Views involves:

! Creating organization views
! Changing owners
! Deleting organization views
! Adding levels
! Moving levels
! Removing levels
! Assigning contracts to levels
! Removing contracts from levels
! Downloading organization views
! Uploading organization views

The MyWeb channel JSPs use the organization view feature. This channel uses
organization views called cost structures. This is an organization view created
specifically to group users and contracts for cost analysis, no matter how the OSS
organizes the data. All of the examples in this section show you how to use the
organization view to create cost structure views.

56 Developing Analytical Applications

Creating Organization Views
Creating organization views involves:

1 Getting the name and user reference from the user.

2 Getting the additional parameters.

3 Creating the organization view.

The sample JSP code shows how to create a cost structure organization view:

Get the name and
user reference

 String orgViewName = request.getParameter("name");

 String orgViewUserReference = request.getParameter("refnumber");

Fill the additional
parameters and
catch any errors

 ParameterIF[] values = new ParameterIF[0];

 ParameterIF[] parameters = ObjectRefMgr.getOptionalParameterDescriptors
(((ObjectId)DescriptorOidIF.ACTION_DO_ADD_ORGVIEW), values);

 try

 {

 fillParametersWithRequest (parameters, request);

 }

 catch (BadValueException ex)

 {

 response.sendRedirect(jspHelper.encodeURLFunct ("GLOBAL.PARAMETER_ERROR", null,
true));

 jspHelper.exitJSP();

 }

Create the cost
structure

 SessionF blmSession = jspHelper.getBlmSession();

 UserF user = blmSession.getUserF();

 LevelF level = user.getLevel();

 level.doAddOrgView(orgViewUserReference, orgViewName, parameters);

 Working with Organization Views 57

Changing Organization View Owners
Creating organization views involves:

1 Getting the user and owned organization views.

2 Getting the new owner.

3 Changing the ownership of the organization view.

The sample JSP code shows how to change the ownership of an organization view:

Get the user, the
user's organization
views, and the
other users of the
current user's
organization level.

 //get the user of the session

UserF user = blmSession.getUserF();

//get the orgviews of the user

OrgViewIF[] orgView = user.getOrgViews();

//get the members at level of user

UserF[] users = user.getLevel().getUsers();

Create a new
owner of the
organization view

//get the ObjectId of new user

ObjectId object = ObjectId.instantiate(member);

//create a new user

UserF newOwner = new UserF(blmSession,object);

Change the
ownership of the
organization view to
the new user

//change owner of orgView

orgView[0].doChangeOwner(newOwner);

58 Developing Analytical Applications

Deleting Organization Views
Deleting organization views involves:

1 Getting the organization view to delete.

2 Testing the organization view to see if it can be deleted.

3 Deleting the organization view.

The sample JSP code shows how to delete the current organization view:

Get the current
organization view

 OrgViewIF orgView = getCurrentOrgView(request, response, jspHelper);

Test to see if the
organization view
can be removed

if (orgView.isRemovable())

Delete the
organization view

 orgView.doRemove();

 Working with Organization Views 59

Managing Levels
Working with organization views levels involves:

! Adding levels
! Moving levels
! Removing levels
! Assigning contracts to levels
! Removing contracts from levels

Adding Levels
Adding a level to an organization view involves:

1 Getting the name.

2 Getting the parent level.

3 Getting the additional parameters of the level to add.

4 Creating the level in the organization view.

The sample JSP code shows how to add a level to a cost structure organization view:

Get the name String orgViewName = request.getParameter("name");

Get the parent level OrgViewIF orgView;

ObjectId orgViewId = ObjectId.instantiate (request.getParameter ("orgviewId"));

orgView = (OrgViewIF)ObjectMgr.getOrgViewNode (orgViewId);

Fill the additional
parameters and
catch any errors

 // Get optional parameters list

 ParameterIF[] values = new ParameterIF[0];

 ParameterIF[] parameters = ObjectRefMgr.getOptionalParameterDescriptors
(((ObjectId)DescriptorOidIF.ACTION_DO_ADD_ORGVIEWLEVEL), values);

 try

 {

 fillParametersWithRequest (parameters, request);

 }

 catch (BadValueException ex)

 {

 response.sendRedirect(jspHelper.encodeURLFunct ("GLOBAL.PARAMETER_ERROR", null,
true));

 jspHelper.exitJSP();

 }

Create the level OrgViewLevelIF newLevel = orgViewNode.doAddOrgViewLevel(orgViewName, parameters);

60 Developing Analytical Applications

Moving Levels
Moving a level in the same organization view involves:

1 Getting the level to move

2 Getting the new parent level

3 Moving the level

The sample JSP code shows how to move a level in a cost structure organization view:

Get the level to
move

OrgViewNodeIF orgViewLevel;

ObjectId orgViewNodeId = ObjectId.instantiate (request.getParameter ("orgviewNodeId"));

orgViewLevel = ObjectMgr.getOrgViewNode (orgViewNodeId);

Get the destination
parent level

ObjectId parentId = ObjectId.instantiate(request.getParameter("orgviewnodeparentId"));

OrgViewNodeIF orgViewNodeParent = ObjectMgr.getOrgViewNode(parentId);

Call the BLM API to
move the level

orgViewLevel.doChangeParent(orgViewNodeParent);

Removing Levels
Removing a level from an organization view involves:

1 Getting the level to remove

2 Calling the function to remove the level

The sample JSP code shows how to remove a level from a cost structure organization
view:

Get the level OrgViewNodeIF orgViewLevel;

ObjectId orgViewNodeId = ObjectId.instantiate (request.getParameter ("orgviewNodeId"));

orgViewLevel = ObjectMgr.getOrgViewNode (orgViewNodeId);

Call the remove
function

orgViewLevel.doRemove();

Assigning Contracts
Assigning contracts to an organization level involves:

1 Getting the level

 Working with Organization Views 61

2 Getting the contracts to assign

3 Assigning each contract

The sample JSP code shows how to assign a contract to a level of a cost structure
organization view:

Get the level OrgViewNodeIF orgViewLevel;

ObjectId orgViewNodeId = ObjectId.instantiate (request.getParameter ("orgviewNodeId"));

orgViewLevel = ObjectMgr.getOrgViewNode (orgViewNodeId);

Get the contracts to
assign

ObjectId []contractIds = ObjectId.instantiate (request.getParameterValues
("contractId"));

 for (int i=0;i<contractIds.length;i++)

 {

 curContract = new ContractF (blmSession, contractIds[i]);

Assign each
contract and catch
any errors

 try
 {

 orgViewLevel.doAddContract (curContract);

 }

 catch (Exception e)

 {

 response.sendRedirect(jspHelper.encodeURLFunct ("GLOBAL.LOGIC_ERROR", null,
true));

 jspHelper.exitJSP();

 }

 }

Removing Contracts
Removing contracts from an organization view involves:

1 Getting the level

2 Getting the contracts to remove

3 For each contract, call the doRemove function

The sample JSP code shows how to remove a contract from a level of a cost structure
organization view:

Gets the level OrgViewNodeIF orgViewLevel;

ObjectId orgViewNodeId = ObjectId.instantiate (request.getParameter ("orgviewNodeId"));

orgViewLevel = ObjectMgr.getOrgViewNode (orgViewNodeId);

62 Developing Analytical Applications

Gets the contracts
to remove

ObjectId []contractIds = ObjectId.instantiate (request.getParameterValues
("contractId"));

 for (int i=0;i<contractIds.length;i++)

 {

 curContract = new ContractF (blmSession, contractIds[i]);

Remove each
contract from the
level and catch any
errors

 try

 {

 orgViewLevel.doRemoveContract (curContract);

 }

 catch (Exception e)

 {

 response.sendRedirect(jspHelper.encodeURLFunct ("GLOBAL.LOGIC_ERROR", null,
true));

 jspHelper.exitJSP();

 }

 }

 Working with Organization Views 63

Downloading and Uploading
Organization Views

Telco Analytics Manager also lets you download and upload organization views.

The organization views are stored in XML files that you can easily save and edit. Once
you are finished making your changes, you upload them into Telco Analytics Manager.
Once finished uploading, you can begin using them right away.

You can modify this structure to suit your needs. Your JSPs can use the different BLM
APIs to create complex organization views for your application.

About the Organization View XML File
By default, the organization view XML file contains the following elements:

! Organization view
! Reference
! Levels
! Contracts

The <organization_view> tag contains information on the organization view. The
syntax is:

<organization_view name="name">

 <ORGANIZATION_VIEW> ELEMENT

Attributes:

"name"

The name of the organization view.

Contents One <reference> element

One or more <level> elements

64 Developing Analytical Applications

The <reference> tag contains the unique user-determined name for the organization
view. The syntax is:

<reference>

<REFERENCE> ELEMENT

Attributes:

none

The <level> tag contains the name of the organization view level. The syntax is:

<level name="name">

<LEVEL> ELEMENT
Attributes:

"name"

The name of the level.

Contents One or more <level> elements

One or more <contract> elements

The <contract> tag contains information on the organization view. The syntax is:

<contract>

<CONTRACT> ELEMENT

Attributes:

none

Contents The contract number

 Working with Organization Views 65

An example of the organization view XML file for cost structures:
<?xml version="1.0" encoding="ISO-8859-1"?>

<cost_structure name="Project One">

 <reference>View by sector</reference>

 <level name="Sector 1">

 <contract>0660100026</contract>

 <contract>0660100027</contract>

 <level name="Sector 1.1">

 <contract>0660100101</contract>

 </level>

 </level>

 <level name="Sector 2">

 <contract>0660100028</contract>

 <contract>0660100102</contract>

 </level>

</cost_structure>

Overview of Using Organization View XML Files
One of the features of organization views is to easily download an existing organization
view in XML.

Working with organization view XML files involves:

1 Downloading an organization file in XML

2 Editing the file

3 Uploading the XML into Telco Analytics Manager

Downloading Organization Views
Downloading a cost structure organization view involves:

1 Getting the cost structure to download

2 Writing the HTTP header for the browser to open the Save As� dialog box

3 Writing the XML header

4 Writing basic cost structure information

5 Browsing the cost structure hierarchy

6 For each level, writing the contract in XML format

66 Developing Analytical Applications

The XML file is generated directly in the JSP (just like HTML pages), but unlike HTML,
line breaks have a significant meaning in XML, especially at the beginning.

If XML editors do not recognize your generated file, make sure that the JSP does not
have �\n� between Java code delimiters (�<%�, �%>�)

Get the cost
structure

<%

SessionF blmSession = jspHelper.getBlmSession();

UserF user = blmSession.getUserF();

OrgViewIF[] orgviews = user.getOrgViews();

 // Gets the first cost structure of the list

OrgViewIF orgView = orgviews[0];

Write the HTTP
header

response.addHeader ("Content-Disposition", "attachment;
filename=cost_structure_"+orgView.getUserReference()+".xml");

Write the XML
header

 // Notice the header is directly after %>, no new line.

%><?xml version="1.0" encoding="<%=jspHelper.getEncoding()%>"?>

Write the name and
reference of the
cost structure in
XML

<cost_structure name="<%=orgView.getName()%>">

 <reference><%=orgView.getUserReference ()%></reference>

Recursively write
contract and
sublevels

<%displayContracts (out, " ");%>

<%displaySubLevels (out, " ");%>

Close the XML tag </cost_structure>

As we must recurse through the cost structure hierarchy, the main code must be written
in callable functions. The following functions are used and declared in this sample:

! displayContracts
! displaySubLevels

displayContracts Function
Write down the
contract of the cost
structure level

<%!

protected void displayContracts (javax.servlet.jsp.JspWriter out, OrgViewNodeIF
orgView, String pad) throws IOException

{

 Working with Organization Views 67

Get the contracts of
the level

ContractF[] contracts = orgView.getContracts ();

For each contract, if (contracts!=null)

 {

 StringBuffer buff=new StringBuffer();

 for (int i=0;i<contracts.length;i++)

 {

Write the phone
number between
the contract tags

 buff.setLength(0);

 buff.append(pad).append("<contract>");

 buff.append(contracts[i].getPhoneNumber());

 buff.append ("</contract>");

 out.println(buff.toString());

 }

 }

End function }

displaySubLevels Function
Browse each level
of the cost structure

protected void displaySubLevels (javax.servlet.jsp.JspWriter out, OrgViewNodeIF
orgView, String pad) throws IOException

{

Get the sublevels of
the level

OrgViewLevelIF[] subLevels = orgView.getChildren ();

if (subLevels!=null)

 {

For each sublevel, // increase oas if 2 spaces so that sub-levels will be written shifted to the right in
the file.

 String newPad = pad+" ";

 StringBuffer buff=new StringBuffer();

 for (int i=0;i<subLevels.length;i++)

 {

 buff.setLength(0);

Write the sub-level
name tag.

 buff.append (pad).append("<level name=\"");

 buff.append (subLevels[i].getName()).append("\" >");

 out.println(buff.toString());

Write the sublevel
contracts

 displayContracts (out, subLevels[i], newPad);

68 Developing Analytical Applications

Then the sublevel
sublevels

 displaySubLevels (out, subLevels[i], newPad);

Close the level tag buff.setLength(0);

 buff.append (pad).append("</level>");

 out.println(buff.toString());

 }

 }

End function }

Uploading Organization Views
Uploading creates new organization views. If you modify an existing organization view
then upload it, the new organization view replaces the existing one.

There is no history of organization views kept in the CID.

Uploading an organization view involves:

1 Writing an HTML form to upload the XML file

2 Writing a logic_handler JSP to do one of the following:

! Uploads the cost structure

! Updates an existing organization view

Writing the HTML Form

This form will be recognized by the browser and will allow the customer to choose and
upload its file to the server.

The sample JSP code shows how to write the form.

Declare the form tag <!�Notice the mandatory enctype=��� attribute

<form name="upload_org_view" action="<%=jspHelper.encodeURLFunct("UPLOAD", null,
false, true)%>" enctype="multipart/form-data" method="post">

<table>

Put the �File� button <tr>

 <td class="listAText">

 <input type="file" name="filename" >

 </td>

</tr>

 Working with Organization Views 69

Put the submit button <tr>

 <td class="listAText">

 <input type="submit" value="<%=jspHelper.localize ("submit_txt")%>">

 </td>

</tr>

Close the form </table>

</form>

Uploading a New Organization View

The file sent by the user must be correctly decoded and inserted into a new cost
structure.

Uploading a new cost structure involves:

! Retrieving the request data
! Finding the beginning of the file in the request
! Parsing the XML using the standard Java XML parser
! Determining if it is update or new organization view
! Creating a transaction
! Creating the cost structure
! Browsing the XML and for each level:
! Creating the sublevels

! Checking that the defined contracts exist in the organization

! Attaching them to the level
! Persisting the new cost structure.
! Submitting or rollbacking the transaction when an error occurs.

Load the request
content into the buffer

 SessionF blmSession = jspHelper.getBlmSession();

 UserF logged =blmSession.getUserF();

 OrganizationF org = logged.getLevel().getHierarchyRoot().getOrganization();

 StringWriter buffer = new StringWriter ();

 BufferedReader reader = new BufferedReader (request.getReader());

 String readString=new String();

 while (readString!=null)

 {

 readString = reader.readLine ();

 if (readString!=null)

 buffer.write (readString);

 }

70 Developing Analytical Applications

Search the XML file in
the request

 // We now search the beginning of the xml in the string

 String req = buffer.toString ();

 int startXml = req.indexOf("<?xml");

 int endXml = req.lastIndexOf(">");

 if ((startXml!= -1) && (endXml!=-1))

 {

 req = req.substring(startXml, endXml+1);

 }

Parse the xml DocumentBuilder parser =
DocumentBuilderFactory.newInstance().newDocumentBuilder ();

 Document xml;

 xml = parser.parse (new InputSource (new StringReader (req)));

Make sure the user
reference is unique

 String userRef;

 Element elem = xml.getDocumentElement ();

 // Gets the first child tag named reference

 NodeList list = elem.getElementsByTagName (�reference�);

 userRef = list.item(0).getFirstChild().getNodeValue();

 // Check if the user reference already exists

 if (org.getOrgViewByReference(userRef)!=null)

 {

 // Yes it exists already => error

 Hashtable urlParameters = new Hashtable ();

 urlParameters.put ("ex_msg", jspHelper.localize ("known_user_reference", new
Object[]{userRef}));

 response.sendRedirect (jspHelper.encodeURLFunct ("GLOBAL.LOGIC_ERROR",
urlParameters, true));

 return;

 }

Begin the transaction UserTransaction transaction= blmSession.getUserTransaction();

 transaction.begin();

 try // For transaction support

 {

Creates the cost
structure

 // Get the name of the cost structure

 String name;

 Element elem = xml.getDocumentElement ();

 name = elem.getAttribute (�name�);

 OrgViewIF orgView=null;

 // Creates the organization_view

 orgView = logged.getLevel ().doAddOrgView (userRef, name, null);

 Working with Organization Views 71

Fills the cost structure
with the xml data.
(Function shown below)

 Boolean filled = fillLevel (org, orgView, xml.getDocumentElement());

 if (filled==false)

 {

 // Some mistakes where made with the xml

 // Or some defined contracts do not exist in the organization

 // We rollback the whole transaction

 transaction.rollback();

 transaction=null;

 response.sendRedirect (jspHelper.encodeURLFunct ("GLOBAL.INTERNAL_ERROR",
null, true));

 return;

 }

Commit the transaction
when no errors occured

 else

 {

 transaction.commit();

 transaction=null;

 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage
("ON_OK")).forward(request, response);

 }

Or rollback it should any
exception occurs

 } finally

 {

 if (transaction!=null)

 transaction.rollback();

 }

As we need to recurse through the XML in order to create levels and sublevels, the java
code has been put in the following function:

Function that creates a
new level and
associates contracts to it

<%!

protected boolean fillLevel (OrganizationIF org, OrgViewNodeIF level, Element
xml, String contractTxt, String levelTxt, String nameTxt)

{

72 Developing Analytical Applications

Find all sub-levels and
contracts of the current
level.

Put them in distinct
arrays

 // First adds the contract to the current level

 NodeList nodelist = xml.getChildNodes ();

 ArrayList listPhones = new ArrayList ();

 ArrayList subLevels = new ArrayList ();

 // Fills the list of phones and sublevels

 if ((nodelist!=null) && (nodelist.getLength()>0))

 {

 String phoneValue;

 for (int i=0;i<nodelist.getLength();i++)

 {

 if (nodelist.item (i) instanceof Element)

 {

 if (�contract�.equals(nodelist.item(i).getNodeName()))

 {

 // The child element is a contract declaration

 phoneValue=((Element)nodelist.item(i)).getFirstChild ().getNodeValue();

 listPhones.add (phoneValue);

 }

 else if (�level�.equals(nodelist.item(i).getNodeName()))

 {

 // It�s a level declaration

 subLevels.add (nodelist.item(i));

 }

 }

 }

 }

Prepare the check for
contract existence by
doing a generic search

 if (listPhones.size()>0)

 {

 //Search in the organization

 FilterIF filter =
ObjectRefMgr.getFilterByCode("CORE_INTORG_CONTRACTBYLINENUMBERS");

 ParameterIF []criteria = filter.getCriteria(FilterIF.ALL);

 ParameterIF nodeId =
ParameterHelper.getParameterByCode(criteria,"CORE_C_ORGID");

 ((ValueDynamicIF)nodeId).setDynamicValue(org.getIdentifier());

 ParameterIF subLevelsParam =
ParameterHelper.getParameterByCode(criteria,"CORE_C_SEARCHINSUBLEVELS");

 ((ValueSimpleIF)subLevelsParam).setBooleanValue(new Boolean(true));

 ParameterIF line =
ParameterHelper.getParameterByCode(criteria,"CORE_C_LINENUMBERS");

 Working with Organization Views 73

Check the user
reference unicity

 String userRef;

 Element elem = xml.getDocumentElement ();

 // Gets the first child tag named reference

 NodeList list = elem.getElementsByTagName (�reference�);

 userRef = list.item(0).getFirstChild().getNodeValue();

 // Check if the user reference already exists

 if (org.getOrgViewByReference(userRef)!=null)

 {

 // Yes it exists already => error

 Hashtable urlParameters = new Hashtable ();

 urlParameters.put ("ex_msg", jspHelper.localize ("known_user_reference", new
Object[]{userRef}));

 response.sendRedirect (jspHelper.encodeURLFunct ("GLOBAL.LOGIC_ERROR",
urlParameters, true));

 return;

 }

Fills the list of contracts
in the request criteria,
then perform the search

 // Fill the parameters with the node value

 ValueListIF list = (ValueListIF)line;

 ParameterIF param;

 for (int i=0;i<listPhones.size();i++)

 {

 param = list.createParameterValue();

 param.setValue((String)listPhones.get(i));

 list.add (param);

 }

 list.setFilled(true);

 ContractF[] contracts = ContractF.search (filter);

Return an error if a
contract is defined in the
xml file but does not
exist in the organization

 // Check all the contracts are in the organization

 if (contracts.length!=listPhones.size())

 {

 // Size mismatch => Error

 return false;

 }

Adds the contracts to
the level otherwise

 // All the contracts are defined in the org.

 for (int i=0;i<contracts.length;i++)

 {

 level.doAddContract (contracts[i]);

 }

 }

Now browse all sub-
levels�

 // Now recurse to all sub-levels

 if ((subLevels!=null) && (subLevels.size()>0))

 {

 OrgViewLevelIF subLevel;

 Boolean ret;

 Element xmlLevel;

 String name;

 for (int i=0;i<subLevels.size();i++)

 {

74 Developing Analytical Applications

And create them xmlLevel = (Element)subLevels.get(i);

 // Add the sublevel to the level

 name = xmlLevel.getAttribute (nameTxt);

 subLevel = level.doAddOrgViewLevel (name, null);

Create their sub-levels
and associates their
contracts

 // Then fills it

 ret = fillLevel (org, subLevel, xmlLevel, contractTxt, levelTxt, nameTxt);

 if ((ret== false)

 return ret;

 }

 }

Return TRUE to the
caller

return true;

}

%>

Uploading a Modified Organization View

The steps are the same as creating a new cost structure except for the following:

! In Step 4, you load the cost structure and check the references
! As the cost structure already exists, you do not need to carry out Step 6

The sample JSP code shows how to perform the modified Step 4:

Loads the cost structure
to update

OrgViewIF orgView;

ObjectId orgViewId = ObjectId.instantiate (request.getParameter ("orgviewId"));

orgView = (OrgViewIF)ObjectMgr.getOrgViewNode (orgViewId);

Check the two
references match

 // Test if the user reference already exists

if (!userRef.equals(orgView.getUserReference()))

 {

 // It�s not the right cost structure

 Hashtable urlParameters = new Hashtable ();

 urlParameters.put ("ex_msg", jspHelper.localize ("wrong_user_reference", new
Object[]{userRef, orgView.getUserReference()}));

 response.sendRedirect (jspHelper.encodeURLFunct ("GLOBAL.LOGIC_ERROR",
urlParameters, true));

 return;

 }

C H A P T E R 6

Using the CustDim Loader

In This Section

About the CustDim Loader ... 76
Overview of the CustDim Loader Components 78
Working with Invoice Files .. 88
Customizing Invoice Mapping... 96

76 Developing Analytical Applications

About the CustDim Loader
The CustDim Loader is a set of components you use to quickly build an efficient
process to load customer data.

The main process of this loader is the following:

1 Extract customer and contract information from invoice files

2 Load the information into the CBU dimension tables

3 Load the information into the CID customer tables

The information the CustDim Loader loads includes:

! The customer (and hierarchy information if specified in invoice files)
! The customer�s billing accounts
! The customer�s contracts

 The diagram below shows the main components of the CustDim loader and how the
CustDim Loader works.

 Using the CustDim Loader 77

By default, all of these steps are included in the default implementation of the CustDim
Loader.

The only requirement when using the CustDim loader is that information in an invoice
must be stored in a unique file. Of course, many invoices can be stored in only one file
and many files with many invoices can be sent to the process.

The first component is the Invoice Splitter. This component splits invoice input files in
unitary invoices that can be treated independently. The splitter can also strip
unessential information from these files to create smaller files to increase the
performance of subsequent processing. By default, the splitter supports invoice files in
XML. You can customize the splitter to handle other formats.

The Invoice Transformer is in charge of mapping information of an invoice in a legacy
format to a standard XML event.

The CBU loader and the CID loader process this event to update the CBU customer
dimensions and CID Customer tables at the same time.

For more information about the format of the standard event, refer to the CustDim
Loader Schema Reference Documentation.

78 Developing Analytical Applications

Overview of the CustDim Loader
Components

The CustDim Loader uses the standard TSM ISF integration framework. The CustDim
Loader is an Integration Logic Connector and is configured and customized using the
Integration Logic Studio.

The CustDim Loader has several integration processes, each of these corresponding to
a particular step in the processing of invoices. Each integration process is linked with
the next one using asynchronous communication for optimum processing speed.

The sequence of processing allows the CustDim Loader to be extremely configurable,
efficient and scalable which are key factors for high volume customer data loading.

The components of the CustDim Loader are:

! Invoice Flow Splitter
! Invoice Transformer
! CID Loader
! CBU Loader
! Counters

For information about the ISF and using the Integration Logic Studio, refer to
Developing Connectors.

 Using the CustDim Loader 79

Invoice Flow Splitter
The Invoice Flow Splitter component is a Macro Runner processor.

This component:

! Reads the legacy invoice flow
! Selects and extracts the required invoice data
! Sends the invoice data to the next processing step

This diagram shows the steps of the integration process:

80 Developing Analytical Applications

Process

Reading the invoice flow involves:

! Getting the list of invoice files to process
! Extracting the invoice files from a compressed archive
! Extracting the invoice data from a compressed invoice file
! Reading the invoice data from an invoice file
! In case of error, saving the invoice file for recovery

Selecting and extracting the required invoice data may consist of one or more of the
following actions:

! Parsing the raw invoice data
! Filtering raw invoice data blocks
! Repeating raw invoice data blocks
! Building one or several XML legacy invoice message(s)
! Validating the generated invoice message with an XML Schema file
! In case of error, saving the invoice file for recovery

Sending the invoice data to the next processing step may consist of one or more of the
following actions:

! Sending the legacy invoice message to the next integration process
! In case of error, saving the generated legacy invoice message for recovery in the

transformation integration process

Components
! Inbound batch queue

This component provides the following features:

! Extract list of files to process from a batch list file

! For each entry in this batch list, create an ISF message holding the file entry
java stream

! If the entry is a compressed archive, browse the archive and, for each archive
entry, create an ISF message holding the compressed file java stream

! Splitter
This component provides the following features:

! Parse the invoice file holding the invoice XML data

! Select invoice XML data tags that must be ignored/repeated

 Using the CustDim Loader 81

! Build one or several invoice XML messages
! Outbound Memory queue

This component provides the following features:

! Allows two integration processes of the same connector to exchange
asynchronously ISF messages through a shared memory space

Invoice Transformer
The Invoice Transformer component is an Integration Process.

This component:

! Transforms the unitary invoice into a standard ISF invoice message
! Sends this message to the next processing step

This diagram shows the steps of the integration process:

82 Developing Analytical Applications

Process

Transforming the unitary invoice may consist of one or more of the following actions:

! Mapping the legacy invoice XML message into a TSM invoice message using XSL
technology

! Validating the TSM invoice message with an XML Schema file
! In case of error, saving the legacy invoice message for recovery

Sending TSM invoice message to the next processing step may consist of one or more
of the following actions:

! Sending the TSM invoice message to the next integration process
! In case of error, saving the generated TSM invoice message for recovery in the CID

and CBU Update integration processes

Components

The new processor types that might be used in this component include:

! XSL Transmapper
This component provides the following features:

! Apply XSL transformations on an XML Document (DOM or string format)

! If several transformations are configured, this component creates an ISF
message for each transformation and can buffer the output if required.

! For each transformation, the resulting XML document can be validated using a
XML Schema Definition file.

! Inbound and Outbound Memory queues
These components provide the following features:

! Allow two integration processes of the same connector to exchange
asynchronously ISF messages through a shared memory space

 Using the CustDim Loader 83

CID Loader
The CID Loader Integration Process is a Script.

This component:

! Reads the TSM invoice message
! Updates the CID

!

84 Developing Analytical Applications

Process

Reading the TSM invoice message may consist of one or more in one of the following
actions:

! Parsing the TSM invoice XML message
! Validating the TSM invoice XML message with an XML Schema file
! In case of error, saving the TSM invoice message for recovery

Updating the CID database may consist of one or more of the following actions:

! Update the CID using TSM APIs
! Increment statistical counters used to generate the statistical event (No. of contracts

inserted, no. of organization inserted, etc�)
! In case of error, saving the TSM invoice message for recovery

As the CID Update component is implemented as a script, configuring the CID Update
script may consist of one or more of the following actions:

! Customizing the script itself (Add/Remove script steps and transitions)
! Customizing the connector macros statements used by this script (Enable/Disable

statistical counters)

Components

List of new processor types that might be used:

! XML Parser
This component provides the following features:

! Parse a XML Document in a string format and generates the corresponding
DOM object

! XML Serializer
! This component provides the following features:
! Serialize a XML Document in a DOM format and generates the corresponding

string
! Inbound Memory queue

This component provides the following features:

! Allows two integration processes of the same connector to exchange ISF
messages asynchronously through a shared memory space

 Using the CustDim Loader 85

CBU Loader
The CBU Loader Integration Process is a Script.

This component:

! Reads the TSM invoice message
! Updates the CBU

86 Developing Analytical Applications

Process

Reading the TSM invoice message may consist of one or more of the following actions:

! Parsing the TSM invoice XML message
! Validating the TSM invoice XML message with an XML Schema file
! In case of error, saving the TSM invoice message for recovery

Updating the CBU database may consist of one or more of the following actions:

! Update the CBU using TSM APIs
! Increment statistical counters used to generate the statistical event (No. of contracts

inserted, no. of organization inserted, etc�)
! In case of error, saving the TSM invoice message for recovery

As the CBU Update component is implemented as a script, configuring the CBU Update
script may consist of one or more of the following actions:

! Customizing the script itself
! Customizing the connector macros statements used by this script

(Enabling/Disabling statistical counters)

Components

List of new processor types that might be used:

! XML Parser. This component provides the following features:
Parse a XML Document in a string format and generates the corresponding DOM
object

! XML Serializer. This component provides the following features:
Serialize a XML Document in a DOM format and generates the corresponding
string

! Inbound Memory queue. This component provides the following features:
Allows two integration processes of the same connector to exchange
asynchronously ISF messages through a shared memory space

 Using the CustDim Loader 87

Counters
For each invoice flow coming from the backend and for each extracted unitary invoice
extracted from this flow, the CustDim Loader generates statistical events periodically
thus providing regular information on process status.

The Customer Dimension Loader connector is configured to generate statistical events,
containing statistical counters values.

The following default counters are available:

! Total number of entries in lists already or currently processed
! Total number of input files sent to splitter
! Total number of input files successfully split
! Total number of cut out invoices
! Total number of successfully transformed invoices
! Total number of successfully invoices inserted in CID
! Total number of successfully invoices inserted in CBU
! Total number of organizations inserted in CBU
! Total number of Levels inserted in CBU
! Total number of members inserted in CBU
! Total number of billing accounts inserted in CBU
! Total number of contracts inserted in CBU
! Total number of organizations inserted in CID
! Total number of Levels inserted in CID
! Total number of members inserted in CID
! Total number of billing accounts inserted in CID
! Total number of contracts inserted in CID

Each counter can be enabled or disabled, logged as part of an existing statistical group
or as part of a new custom group

You can also add your own counters.

88 Developing Analytical Applications

Working with Invoice Files

About Working with Invoice Files

To specify the list of invoice files to process

1 Create a new XML file with the same structure as this sample:
<batch_list>

 <directory_lists>

 <directory>c:/invoices/0101/</directory>

 <files>

 <file>invoices_1.xml</file>

 <file>invoices_1.xml</file>

 </files>

 </directory_lists>

</batch_list>

2 In the <directory> element, specify the full path of the directory holding your
legacy invoice files.

3 For each invoice file to process, under <files> specify the name of you invoice file
using the syntax:
<file>invoices_filename.xml</file>

This path must be relative to the path specified in the <directory> element.

 Using the CustDim Loader 89

4 For each invoice file specified in your batch list, you can specify additional
parameters:

! These parameters will be attached to each ISF message corresponding to an
invoice file.

! These parameters can be queried using the Message.getUserValue Script
API.

Additionally, a parameter named filename is automatically inserted with the value
set to the full file path.

To specify additional parameters, use the syntax as shown in this example.

The following example of an invoice list contains two parameters:
<batch_list>

 <parameters>

 <param1>value1</param1>

 <param1>value1</param1>

 </parameters>

 <directory_lists>

 <directory>c:/invoices/0101/</directory>

 <files>

 <file>invoices_1.xml</file>

 <file>invoices_1.xml</file>

 </files>

 </directory_lists>

</batch_list>

Processing Invoice Files in Non XML Format
If your invoice flow coming from the back end systems is not in XML, you need to
customize the splitter component. this component is in charge of parsing the legacy
invoice flow, filtering, and generating the unitary invoice.

You have to customize the parts of the splitter component that reads and parses the
raw invoice data.

To process invoice files in non XML format

1 Write your own invoice parser in Java. Your java class must implement the
org.xml.sax.XMLReader interface.

2 Open the Invoice Flow Splitting Integration Process.

90 Developing Analytical Applications

3 Open the macro file that contains the macro namespace configured in your Macro
Runner processor.

4 Locate the namespace and reference your custom parsing class instead of the
standard parsing class.

Processing Invoice Files in Non Well Formatted XML
The invoice flow coming from the back end systems may be in XML but with a non
hierarchical structure (flat XML). For instance, the legacy invoice flow may contain
customer information followed by accounts and contracts instead of customer
information, accounts, and contracts grouped under a common tag.

In this case, you may have to customize the splitter component which parses the legacy
invoice flow, filters the information and generates the unitary invoice. You have to
customize the filtering and splitting logic of the splitter component.

To process invoice files in non well formatted XML

1 Write your own invoice splitting logic in Java. Your java class must implement the
SplitterLogicIF interface which extends the org.xml.sax.ContentHandler
interface.

2 Open the Invoice Flow Splitting Integration Process.

3 Open the macro file that contains the macro namespace configured in your Macro
Runner processor

4 Locate the namespace and reference your custom splitting logic class instead of the
standard splitting logic class.

 Using the CustDim Loader 91

Processing Compressed Invoice Files
The inbound batch queue is designed to support the following:

! The batch list contains a list of one or more uncompressed legacy invoice files
! The batch list contains a list of one or more compressed legacy invoice files
! The batch list contains a list of one compressed file containing one or more nested

compressed legacy invoice files

If you are using compressed invoice files which are not covered by the types of
compression outlined above, you need to configure your CustDim Loader to process
them. If you do not want to customize your CustDim Loader, you need to make sure
your compressed invoice files correspond to one of the supported configurations.

Processing Invoice Files with Shared Information
If your legacy invoice files contain information common to several invoices, then you
may have to repeat this information for each unitary generated invoice.

In this case, you may have to configure the splitter component which parses the legacy
invoice flow, filters and generates the unitary invoice. You may have to configure the
invoice tag to repeat.

To process invoice files with shared information

1 Open the Invoice Flow Splitting Integration Process.

2 Open the macro file that contains the macro namespace configured in your Macro
Runner processor.

3 Locate the namespace and the copyTag macro variable

4 Set the value of this variable to the invoice tag to repeat

92 Developing Analytical Applications

Pruning Invoice Files
If your legacy invoice files contain information that is not used to update the CID or CBU
databases, then you can configure the splitter component to remove this information
from the invoice flow. This information will not appear in the unitary invoice XML
message.

You have to configure the splitter component to filter a specific element (open tag and
corresponding end tag) from your raw legacy invoice data.

Either you prune the invoice just after parsing or when when generating the unitary
invoice.

By pruning unnecessary data from your unitary invoice, you increase the performance
of the CustDim loader by simply reducing the amount and size of information being
handled to update the CID and CBU.

To prune invoice data after parsing

1 Open the Invoice Flow Splitting Integration Process.

2 Open the macro file that contains the macro namespace configured in your Macro
Runner processor.

3 Locate the namespace and the splitterFilter macro variables.

4 Set the value of this variable to the name of the XML elements to remove. Use the
syntax:
parserFilters={"XML_element_name1","XML_element_name2",...}

Make sure there is no space between element names.

5 Save your changes.

 Using the CustDim Loader 93

Example of pruning after parsing

In this example, you need to keep everything except the <tag2.1> element:

<tag1.1>

 <tag2.1>�</tag2.1>

 <tag2.2>�<tag2.2>

</tag1.1>

<tag1.2>�</tag1.2>

In your parser, set the parser Filter value to tag2.2

In this example, you need to keep everything except the <tag2.1> element and the
<tag2.3> element:

<tag1.1>

 <tag2.1>�</tag2.1>

 <tag2.2>�<tag2.2>

 <tag2.3>�<tag2.3>

</tag1.1>

<tag1.2>�</tag1.2>

In your parser, set the parser Filter value to tag2.2 and tag2.3.

To prune invoice data when generating the message

1 Open the Invoice Flow Splitting Integration Process.

2 Open the macro file that contains the macro namespace configured in your Macro
Runner processor.

94 Developing Analytical Applications

3 Locate the namespace and the splitterFilter macro variables.

4 Set the value of this variable to the name of the element to remove.

5 Repeat as necessary for each element to remove.

 Using the CustDim Loader 95

Example of pruning when generating an invoice message

In this example, you need to generate two unitary invoice messages:

! One message with everything except tag2.1
! One message with everything except tag2.2

<tag1.1>

 <tag2.1>�</tag2.1>

 <tag2.2>�<tag2.2>

</tag1.1>

<tag1.2>�</tag1.2>

You configure two splitter Filters, the first with the value set to tag2.1, and the second
with value set to tag2.2.

In this example, you need to generate two unitary invoice messages:

! One message with everything except tag2.1 and tag2.2
! One message with everything except tag2.3

<tag1.1>

 <tag2.1>�</tag2.1>

 <tag2.2>�<tag2.2>

 <tag2.3>�<tag2.3>

</tag1.1>

<tag1.2>�</tag1.2>

You configure two splitter Filters, the first with the value set to tag2.1 and tag2.2,
and the second with value set to tag2.3.

96 Developing Analytical Applications

Customizing Invoice Mapping

Setting Input Date/Numeric Format
The unitary invoice message may contain date and numeric data in a specific format.

The CID and CBU loader must be able to parse and recognize this specific format so it
can update the CID or CBU databases.

When your invoice data is using a specific format, you can specify the date and numeric
format patterns in your connector macro file.

To specify the format, do the following:

1 Open your CustDim Loader Connector macro file.

2 Locate the Date and Numeric format macro expression.

3 Replace the default date and numeric patterns.

 Using the CustDim Loader 97

Setting the Object ID
In the AddInvoice event, every object can be identified by:

! A BizKey
! An UIDN

The CustDim Loader Invoice transformer maps these attributes to the values of the
legacy invoice.

The BizKey is mandatory as it used to identify the object both in the CBU (BizKey
column of the object) and in the CID (Object legacy ID).

The UIDN is not mandatory but should be set (at least for contracts and billing
accounts) as it is used to reconcile loaded facts with dimension tables (contract and
billing account).

The UIDN is a reference that is shared by the customer and the operator. If there is no
specific value in the invoice files for this attribute, you can set it to the same value as
the BizKey. The UIDN will be set in the UIDN column of the object in the CBU. By
default, this attribute is only set in the CID for customer and level objects (reference
attribute).

For more information, refer to the CustDim Loader Schema Reference Documentation.

Example:

The contract invoice legacy format specifies two attributes for every contract:

! The Contract reference number
! The Contract line number

A possible mapping is:

! Contract reference number mapped to the BizKey attribute (should never change)
! Contract reference number mapped to the UIDN attribute (you could also store the

line number but advantage of reference number is stability)

By default, the line number is mapped to the NAME attribute.

Your choice must be consistent with the CID2CBU mapping policy. In the previous
example, if you decide to map the Contract UIDN with the reference number, you must
modify the CID2CBU mapping policy to set the UIDN value with the CID contract legacy
value instead of the line number (default implementation).

98 Developing Analytical Applications

For more information about customizing the CID2CBU loader, refer to Customizing the
BLM to CBU Mapping in this manual.

Setting Reference Object Codes
Some objects have attributes that are related to reference objects in the CID. Some of
the attributes are mandatory (org type for organization), others are optional (Rate plan
for contract).

To specify the link with a CID reference object, you must set its code or its BIZ key
(legacy id) attribute in the add invoice event.

Some reference objects in the CID have no code attribute. In this case, you must set
the code or the BIZ key attribute with the BIZ key value (code attribute will be treated as
BIZ key)

The method to set this value depends on the information specified in the legacy invoice.

! Setting the code value when not specified in the legacy invoice
If the code attribute is mandatory, you must decide at design time the value of the
code consistent with the associated reference object in the CID. Then you have to
configure the Invoice Transformer to set this value as a constant.

Example:

The organization type is mandatory but not specified in the legacy invoice. You
could decide that all organization are business and configure the transformer to set
the value BUSINESS as a constant in the organization attribute typecode.

In order to configure the Invoice Transformer to perform this processing, you can
directly set the content of your field in your XSL style sheet by using element,
attribute or value-of XSL statements.

! Setting the code value when specified in the legacy invoice and consistent with the

CID
If the object reference code value is specified in the legacy invoice, you can use the
same code in the CID. In this case, you have just to configure a simple mapping in
the Invoice Transformer.

If you choice this solution, you will be dependent for reference objects code value of
the legacy invoice format. When deploying self care features, you may have to
review all reference object codes.

In order to configure the invoice transformer to perform this processing, you can
create a dedicated XSL template and then copy it in the destination element using
select, copy or copy-of XSL statements.

 Using the CustDim Loader 99

! Setting the code value when specified in the legacy invoice and consistent with the

CID
If the object reference code value is specified in the legacy invoice but with a
different codification than the one you want to use in the CID, you have to configure
a look up mechanism in the transformer to replace the legacy code value by the CID
reference object code attribute.

In order to configure the Invoice Transformer to perform this processing, you have to
configure a lookup mechanism in your XSL transformation.

To specify your lookup table, you can do one of the following:

! Store your lookup table in a separate file (for instance lookuptable.xml)
referenced by the XSL transformation file (using an XSL statement like
select(Document(�lookuptable.xml�)/tabledata))

! Use XML Namespaces and embed the lookup table in the XSL transformation
file (using an XSL statement like �select(Document(��)/tabledata)�)

To implement the lookup operation, you may:

! Use an XSL variable to store your lookup table (either external or embedded)

! Use a XSL key to index your lookup table

! Use a XSL template to perform the object reference code translation

Refer to your favorite XSL reference for more information about working with XSL.

For more information about the structure of the XML event, refer to the CustDim Loader
Schema Reference Documentation.

Setting Miscellaneous Object Attributes
! Setting Organization, level and member contact information in the CID

In the CID, the following types of contacts can be used to characterize these
objects:

! legal

! billing

If this information is specified in the legacy invoice, you can set them in the legal
contact and billing contact attributes of the related object in the add invoice event.

Example:

Tto set the organization company name in the CID, you must configure the Invoice
Transformer to map the information in the legal contact company name of the
organization in the add invoice event.

100 Developing Analytical Applications

! Setting IsPaymentResponsible flag
In the CID, you can specify if an organization, a level or a member is responsible for
payment. If you do not want to specify this information or cannot obtain it from the
invoice files, the CID loader automatically sets this value to 0 (No).

! Setting contract level type in the CID:
 In the CID, you can specify if a contract is global (use to declare global tariffs) or
elementary (normal contract). If you do not want to specify this information or cannot
obtain it from the invoice files, the CID loader automatically sets it to �I� (normal
contract).

! Setting contract Status change date:
Every time the contract status changes, you can specify the date in the CID. If you
do not want to specify this information or if you cannot obtain it from the invoice files,
the CID loader automatically sets it to the current date if status has changed.

For more information, refer to the CustDim Loader Schema Reference Documentation.

Setting Custom Object Attributes
Each object comes with a set of core attributes. However, depending on your
requirements, you may need to add custom attributes. You do this by declaring
additional parameters in the CID and adding new columns in the CBU customer
dimension tables.

The CustDim Loader supports the addition of the following attribute types:

! String
! Numeric (Numeric or Integer)
! Date

You can set custom attributes in the CID, in the CBU, or in both.

Setting custom object attributes involves:

1 In the Invoice Transformer, under the CUSTOM element of the object, enter:

! An element identifying the custom attribute

! The corresponding attribute value

 Using the CustDim Loader 101

For more information about:

 - the Invoice Transformer, refer to the Overview of the CustDim Loader
Components in this manual.

 - using the ILS to edit your Invoice Transformer Integration Process, refer to
Developing Connectors.

2 To set the custom attribute in the CBU:

! Add a new column in the table related to the object

! Configure the CBU loader to load this attribute in the created column

3 To set the custom attribute in the CID:

! Declare the parameter in the CID.

For more information about declaring parameters in the CID, refer to Developing
Telco Service Manager

! Configure the CID loader to load this attribute as object additional information in
the CID

For customer and level objects, if you want to add a custom attribute in the CBU and if
you also activate notification for organization view management, you must also add it in
the CID. If not, the value will be erased when an Update organization event is
processed by the CID2CBU loader.

If you have loaded a custom attribute both in the CID and in the CBU and if you also
activate notification for organization view management, you must customize the
CID2CBU loader to synchronize the attribute in case of an update org notification.

To configure the CBU loader to load custom attributes

1 Open you CustDim Loader macro file.

2 Find the CBU loader parameters section

3 For the object having the custom attributes, enter the following:

! The name of the custom table column

! The Xpath to find the value of the attribute in the event XML file

! The attribute type

To get the list and syntax of supported attribute types, look under the
Additional Type Parameters section of the same file

Use the syntax:

102 Developing Analytical Applications

<ObjectName>= {{�Column name�,�./CUSTOM/<attribute
code>,CustDimLoader.Type.<attribute type>}, {�},�}

Example

To declare the custom attribute CUSTOM1 of type string in column COLUMN1 of the
Billing Account dimension table:

billingaccount = {{�COLUMN1�,�./CUSTOM/CUSTOM1�,
CustDimLoader.Type.STRING}}

To configure the CID loader to load custom attributes

1 Open you CustDim Loader macro file.

2 Find the CID loader parameters section

3 For the object having the custom attributes, enter the following:

! The name of the custom table column

! The Xpath to find the value of the attribute in the event XML file

Use the syntax:
<ObjectName>= {{�Column name�,�./CUSTOM/<attribute code>},
{�},�}

Example

To declare the custom attribute CUSTOM1 of type string in additional parameter PARAM1
of the Billing Account object:

billingaccount = {{�PARAM1�,�./CUSTOM/CUSTOM1�}}

 Using the CustDim Loader 103

Managing Billing Accounts as Actors
If you want to declare users at the billing account level (for security reasons), you must
have a level (in the CID, an actor of type �L� in the CBU) dedicated to this billing
account. This can be not the exact customer model in the legacy invoice. In this case
you have to configure the transformer to create a level between the legacy billing
account parent level and the billing account.

You must set the Bizkey (and potentially the UIDN, name and legal contact company
name) of this level with values set for the billing account.

To avoid merging these values with the ones of real levels, you could decide of a
convention like: take the billing account Biz key, add �B/� at the beginning and set the
value in the Level Biz key.

Example:

The legacy customer model supports multiple billing accounts below a customer. You
want to manage security at billing account level. You must configure the transformer to
create a �fake� level below the customer and attach the billing account to it.

In order to configure the invoice transformer to perform this processing, you can define
a dedicated XSL template called by the customer XSL template that will create the
�fake� level and insert it below the customer.

Refer to your favorite XSL reference for more information on how to work with
templates.

104 Developing Analytical Applications

Managing statistics
The statistics generated by the CustDim Loader connector can be customized in
different ways:

! You can group counters values in one or several statistical events
! You can configure new counters
! You can remove existing counters
! You can define how statistical counters are logged into statistical events

In order to customize statistics, you have several options:

! You can enable or disable the specific counters of the CID and CBU loader
processes

! You can insert or remove a counter processor at any place of your integration
process.

! You can modify the content of the generated statistical events

For more information about:

 - Working with counter processors, refer to Developing Connectors

 - Working with statistics, refer to Administrating Telco Analytics Manager

Customizing CBU Name Attribute Mapping
For every object, you can set the NAME element of the add invoice event during the
transforming phase. In this case, the CBU loader use it to set the value of the NAME
column of the record.

If the NAME element is not, the CBU loader automatically applies the the following
policy depending on the object type:

! Level
Company name of the legal contact if filled in the input event

�First name� �blank� �last name� of the legal contact otherwise (residential
organization)

! Member
�First name� �blank� �last name� of the legal contact (if filled in the input event)

 Using the CustDim Loader 105

Contract

Line number

Billing account

BizKey

The default policy is applied only if the NAME element is not specified. If you set the
value to null in the event (<NAME></NAME>), The NAME column value will be set to
NULL.

C H A P T E R 7

Creating Report Queries in SQL

In This Section

About Building Reports ... 108
Writing Simple Report Queries ... 109
Writing Advanced Report Queries .. 112

108 Developing Analytical Applications

About Building Reports
The purpose of the CBU is to allow users to analyze their usage and bill details. In order
to enable your application to do this, you can create reports with a reporting tool or even
simple SQL. The basis of these reports is extract information from the CBU fact tables
using the various dimensions as a selection criteria. To insure user confidentiality,
reports must also implement security and prompt the user (User table).

For efficient queries and to ensure reasonable response times, reports should filter
dimension tables on:

! Surrogate key
! Label
! Attributes of type

As you can use different reporting tools, the examples in this section shows the SQL
query that can be used to obtain reports.

Writing reports involves:

! Writing a simple report query
! Applying the security to your query
! Writing advanced queries

Do not use the T_NAME logical type as filter criteria.

Your final reports must not display surrogate or business keys. These keys are for
development or integration purposes only.

 Creating Report Queries in SQL 109

Writing Simple Report Queries
This example report lists the invoice details.

The details in the report are billed usage detail records of an invoice.

In this example, the report extracts information to display the following information for
every selected billed usage detail record:

! Contract name (MSISDN if mobile contract)
! Date of the record
! Destination number
! Length of the call
! Type of tariff
! Usage fee

The first example does not implement security. If you use the first example as is, there
are no restrictions on what the user can access. All users of the CBU can extract and
view information for all of the customers in the CBU. To secure access to a fact table,
you must always implement security in your reports. The second sample shows you
how to implement security for the first report.

Simple Query
SQL STATEMENTS COMMENTS
SELECT

 contract.CONTRACT_NAME,

 budr.BUDR_START,

 budr.DEST_NUMBER,

 budr.BUDR_VOLUME,

 tariff.UDR_TARIFF_NAME,

 budr.BUDR_FEE

Select the following:

Contract name (MSISDN if mobile contract)

Date of the record

Destination number

Record volume (length of the call)

Type of tariff using the name of the tariff table dimension

Usage fee

110 Developing Analytical Applications

SQL STATEMENTS COMMENTS
 FROM

 NMY_BILL_PERIOD_DIM bp,

 NMY_CONTRACT_DIM contract,

 NMY_BILL_ACCT_DIM ba,

 NMY_UDR_TARIFF_DIM tariff,

 NMY_BUDR_FACT budr

This report uses the following tables:

NMY_BILL_PERIOD_DIM to select a bill period

NMY_CONTRACT_DIM to get the name of the contract

NMY_BILL_ACCT_DIM to select the billing account

NMY_UDR_TARIFF_DIM to get the tariff type

NMY_BUDR_FACT fact table storing the billed usage
detail records

WHERE

 (bp.BILL_PERIOD_KEY=budr.BILL_PERIOD_KEY)

 AND(budr.BILL_ACCT_KEY=ba.BILL_ACCT_KEY)

Join to select only billed usage detail records related to the
selected billing account and bill period

 AND(contract.CONTRACT_KEY=budr.CONTRACT_KEY) Join to get the contract name related to each usage record

 AND(budr.UDR_TARIFF_KEY=tariff.UDR_TARIFF_KEY) Join to get the tariff type related to each usage

 AND(bp.BILL_PERIOD_NAME = '&2')

 AND(ba.BILL_ACCT_UIDN = '&3')

Prompt to enter the billing account and the bill period

ORDER BY

 1 ASC,

 2 ASC

Order the usage by date then by contract.

Simple Query Including Security
SQL STATEMENTS COMMENTS
SELECT

 contract.CONTRACT_NAME,

 budr.BUDR_START,

 budr.DEST_NUMBER,

 budr.BUDR_VOLUME,

 tariff.UDR_TARIFF_NAME,

 budr.BUDR_FEE

Select the following:

• Contract name.(MSISDN if mobile contract)

• Date of the record

• Destination number

• Record volume (length of the call)

• Type of tariff using the name of the tariff table
dimension

• Usage fee of the usage
FROM

 NMY_USER_DIM usr,

 NMY_FUNCT_SCOPE_LNK fs_lnk,

 NMY_ACTOR_LNK a_lnk,

 NMY_CONTRACT_ACL acl,

To implement security you need usage of the following
tables:

NMY_USER_DIM to select a specific user of the system

NMY_FUNCT_SCOPE_LNK to select the scope of the
user for this report

NMY_ACTOR_LNK to select actors in the scope of the
user for this report

NMY_CONTRACT_ACL to secure access to the usage
fact table to only records related to authorized contracts.

Note that the ACL table used depends on the fact table
you want to access. Use the NMY_BILL_ACCT_ACL
table if your report is about main invoice fact table

 Creating Report Queries in SQL 111

SQL STATEMENTS COMMENTS
 NMY_BILL_PERIOD_DIM bp,

 NMY_CONTRACT_DIM contract,

 NMY_BILL_ACCT_DIM ba,

 NMY_UDR_TARIFF_DIM tariff,

 NMY_BUDR_FACT budr

• NMY_BILL_PERIOD_DIM to select a bill
period

• NMY_CONTRACT_DIM to get the name of
the contract

• NMY_BILL_ACCT_DIM to select the billing
account

• NMY_UDR_TARIFF_DIM to get the tariff type

• NMY_BUDR_FACT fact table storing the
billed usage detail records

WHERE

 (bp.BILL_PERIOD_KEY=budr.BILL_PERIOD_KEY)

 AND(budr.BILL_ACCT_KEY=ba.BILL_ACCT_KEY)

 AND(contract.CONTRACT_KEY=budr.CONTRACT_KEY)

 AND(budr.UDR_TARIFF_KEY=tariff.UDR_TARIFF_KEY)

Join to select only billed usage detail records related to
the selected billing account and bill period

Join to get the contract name related to each usage
record

Join to get the tariff type related to each usage

 AND(fs_lnk.USER_KEY = usr.USER_KEY) Join to get the scope of the selected user

 AND(fs_lnk.ACTOR_KEY = a_lnk.PARENT_ACTOR_KEY)

 AND(a_lnk.CHILD_ACTOR_KEY = acl.ACTOR_KEY)

Join to get all actors visible for the user scope

 AND(acl.CONTRACT_KEY = contract.CONTRACT_KEY) Join to get only authorized contracts

 AND(fs_lnk.FUNCT_CODE = 'USAGE') Filter the scope to the functional code consistent with the
purpose of the report

 AND(usr.USER_LOGIN = '&1') Prompt to enter the user login

 AND(bp.BILL_PERIOD_NAME = '&2')

 AND(ba.BILL_ACCT_UIDN = '&3')

Prompt to enter the billing account and the bill period

ORDER BY

 1 ASC,

 2 ASC

Order the usage by date then by contract.

In these reports, users with authorized roles can select contracts both belonging to their
level and owned by them.

112 Developing Analytical Applications

Writing Advanced Report Queries
The following reports sums the fees, the number of billed usage detailed records and
the number of related contracts associated with a specific cost center or to one of its
children for a specific time period.

In this example, the report extracts information to display the following information:

! Cost center name
! Cost center full path name in the cost center hierarchy
! Number of contracts for each cost center
! Number of usage records for each cost center
! Sum of usage records fee for each cost center

Advanced Query
 SQL STATEMENTS COMMENTS
SELECT

 cc_lnk.RANK_FROM_PARENT rank,

 child.COST_CENTER_PATH path,

 child.COST_CENTER_NAME name,

 count(distinct contract.CONTRACT_UIDN),

 count(budr.BUDR_FEE) count,

 sum(budr.BUDR_FEE) fee,

Select the following

• cost center rank from is parent for ordering

• complete cost center path in cost center
hierarchy

• cost center name

• count of number of contracts for each cost
center

• count of number of usage records for each
cost center

• sum usage records fee for each cost center
FROM

 NMY_USER_DIM usr,

 NMY_FUNCT_SCOPE_LNK fs_lnk,

 NMY_ACTOR_LNK a_lnk,

 NMY_ACTOR_DIM actor,

 NMY_CONTRACT_ACL acl,

Implement security as in the preceeding example

Note that in this example we also get the actor dim to
select only contracts that belong to a level and not the
ones owned by the user

 NMY_COST_CENTER_DIM child,

 NMY_COST_CENTER_LNK cc_lnk,

 NMY_CONTRACT_DIM contract,

 NMY_CC_CONTRACT_LNK ccc,

To use cost centers in your reports, you must use the
cost center dimension table and the link tables
between cost center and:

Cost center hierarchy: NMY_COST_CENTER_LNK

Contracts: NMY_CC_CONTRACT_LNK

 NMY_DATE_DIM d, You need to use this table to filter usage records BY
time period

 NMY_BUDR_FACT budr Fact table storing the billed usage detail records

 Creating Report Queries in SQL 113

 SQL STATEMENTS COMMENTS
WHERE

 (usr.USER_LOGIN = '&login')

 AND (fs_lnk.USER_KEY = usr.USER_KEY)

 AND (fs_lnk.FUNCT_CODE = 'USAGE')

 AND (fs_lnk.ACTOR_KEY = a_lnk.PARENT_ACTOR_KEY)

 AND (actor.ACTOR_KEY = fs_lnk.ACTOR_KEY)

 AND (actor.ACTOR_TYPE = 'L')

 AND (a_lnk.CHILD_ACTOR_KEY = acl.ACTOR_KEY)

 AND (acl.CONTRACT_KEY = contract.CONTRACT_KEY)

Join to apply security and get only visible contracts for
the user level as in previous example.

Note the restriction on the actor type to select only the
user's level.

 AND (cc_lnk.PARENT_CC_KEY = '&cck') Select the root cost center to analyze

 AND (cc_lnk.CHILD_CC_KEY = child.COST_CENTER_KEY) Select the whole cost center hierarchy

 AND (ccc.COST_CENTER_KEY = cc_lnk.CHILD_CC_KEY)

 AND (ccc.CONTRACT_KEY = contract.CONTRACT_KEY)

Get all contracts belonging to the cost center hierarchy

 AND (contract.CONTRACT_KEY = budr.CONTRACT_KEY)

 AND (budr.START_DATE_KEY = d.DATE_KEY)

 AND (d.DAY_DATE BETWEEN &first AND &last)

Select related usage records and restrict them by their
date

GROUP BY

 RANK_FROM_PARENT,

 COST_CENTER_PATH,

 COST_CENTER_NAME

ORDER BY

 RANK_FROM_PARENT;

Group the result by cost center of the cost centers
hierarchy and order them by their rank from parents

C H A P T E R 8

Deploying with Account
Management Features

If you deploy self-care features, you should develop a connector with a backend system
to get customer information in �real� time.

Main issue concerns the validity of the customer dimensions Legacy id (BizKey in the
CBU).

There are few chances that legacy ids based on the invoice files will be the same that
the ones used to communicate with the backend system if this one is different that the
one producing invoices.

In this case you should have to develop a migration process to make all legacy id and
Biz key consistent with the new integrated backend system.

For the following objects, you must identify if the current legacy id can be used to
communicate with the backend system:

! Organization (and level)
! Member
! Contract
! Billing account

! If you need to modify the legacy id you must:
! Extract from backend systems a conversion matrix between current legacy id and

new Backend legacy Id
! Develop a batch to replace in the CID the old legacy id by the new one.
! Remove from the CBU all actors and ACL
! Reset to Null the Biz key value of all contracts and billing accounts
! Force Notification of all organizations

116 Developing Analytical Applications

! Notify them: the Cid2Cbu loader will automatically resynchronize all customer
dimensions with the correct BizKey

Note: Billing account specificity: A billing account has no UIDN in the CID. By default
the Cid2Cbu loader set the billing account UIDN in the CBU with the billing account
legacy id.

If the new legacy id is different from the UIDN already set in the billing account, you
must:

! Declare an additional parameter in the CID to store the old billing account legacy id
! Customize the Cid2Cbu loader to synchronize the Billing account UIDN with this

parameter.

Note: Contract specificity: A contract has no UIDN in the CID. By default the Cid2Cbu
loader set the contract UIDN in the CBU with the contract line number.

If you have decide to map the contract UIDN in CBU with the BizKey (legacy id in the
CID) and not with the line number and if the new legacy id doesn�t match with the old
one, you must:

! Declare an additional parameter in the CID to store the old contract legacy id
! Customize the Cid2Cbu loader to synchronize the contract UIDN with this

parameter.

Note: Reference objects migration: You must check validity of the legacy id of every
already declared reference objects and replace them if necessary to be able to
communicate with the backend system.

 Deploying with Account Management Features 117

About Deploying with Telco Service
Manager

If your solution deploys Account Management features along with Telco Analytics
Manager, you should develop a connector with a backend system to get customer
information in real time.

When your Telco Analytics Manager and Telco Service Manager work together, one
main concern is the validity of the customer dimension Legacy ID (BizKey in the CBU).

This is because the legacy IDs based on the invoice files are most likely not the same
as the ones used to communicate with the backend systems. This is especially true
when this system is different than the one producing invoices. In this case, you should
develop a migration process to make all legacy IDs and Biz keys consistent with the
newly integrated backend system.

For the following objects, you must specify if the current legacy ID can be used to
communicate with the backend system:

! Organization (and level)
! Member
! Contract
! Billing account

118 Developing Analytical Applications

To have coherent legacy IDs
1 Create a conversion matrix between current legacy ID and new Backend legacy Id

2 Develop a batch to replace the old legacy ID with the new one in the CID.

3 Remove all actors and ACL from the CBU

4 Reset the Biz key value of all contracts and billing accounts to Null

5 Force Notification of all organizations

6 Notify them: the CID2CBU loader will automatically resynchronize all customer
dimensions with the correct BizKey

For Billing accounts

They have no UIDN in the CID. By default the CID2CBU loader sets the billing account
UIDN to the billing account legacy ID in the CBU.

If the new legacy ID is different than the UIDN already set for the billing account, you
must:

1 Declare an additional parameter in the CID to store the old billing account legacy ID

2 Customize the CID2CBU loader to synchronize the Billing account UIDN with this
parameter.

For Contracts

They have no UIDN in the CID. By default the CID2CBU loader sets the contract UIDN
with the contract line number in the CBU.

If you have decIDe to map the contract UIDN in CBU with the BizKey (legacy ID in the
CID) and not with the line number and if the new legacy ID does not match with the old
one, you must:

! Declare an additional parameter in the CID to store the old contract legacy ID
! Customize the CID2CBU loader to synchronize the contract UIDN with this

parameter.

When migrating Reference objects, you must check valIDity of the legacy ID of every
declared reference objects and replace them if necessary.

 119

Index

A
Account Management Applications

connecting to Analytical Applications �
117

Analytical Applications
and Account Management Applications �

117
developing � 16

C
CBU (Communications Billing and Usage)

Database
CustDim Loader � 20
customer dimensions � 33
customizing � 17, 23, 35
data mapping � 42, 43
fact tables � 29, 31, 34
mapping between CBU and CID � 42,

43, 44, 45, 46
optimizing � 34
optimizing loading � 34
reference dimensions � 24, 25, 26, 28, 30
synchronizing � 18, 37

CBU Reports
about � 21, 108
advanced SQL queries � 112
example of advanced SQL queries � 112
example of simple SQL queries � 109,

110
security � 110
simple SQL queries � 21, 109

CID (Customer Interaction Datastore)
CBU mapping � 42
CustDim Loader � 20, 76, 83, 100

CID2CBU Loader
about � 18
customizing � 42

CustDim Loader

about � 20, 76
CBU Loader � 85
CID Loader � 83
components � 78
counters � 87
Invoice Flow Splitter � 79
Invoice Transformer � 81
working with invoice files � 88

Custom Classes
about � 38
compiling � 41
creating � 38
declaring � 41
defining package � 39
deploying � 41
developing � 39
extending core class � 39

Customization Files
mapping.xml � 42, 43

Customizing
CBU � 23, 42
fact tables � 29, 31
mapping between CID and CBU � 42
notifications � 38, 42
reference dimensions � 24, 25, 28, 32

D
Data Mapping

about � 42
default mapping � 43

E
external_custom.xml Customization File

about � 41
location � 41
using � 41

H
Help

technical support � ix

I
Invoice Files

120 Developing Analytical Applications

about � 88
billing accounts � 103
customizing mapping � 96, 97, 98, 99,

100, 103, 104
formats � 96
mapping � 96
name attribute mapping � 104
object attributes � 99, 100
object IDs � 97
processing compressed files � 91
processing files with shared information

� 91
processing non well formatted files � 90
processing Non XML files � 89
pruning � 92
reference object codes � 98
specifying list of � 88
statistics � 104

M
mapping.xml Configuration File

about � 42
location � 42
using � 44, 45, 46

N
Notification Logic Class

about � 38
coding � 40
compiling � 41
creating new class � 39
declaring � 41
deploying � 41
extending core logic � 39, 40
location � 38

Notifications
customizing � 38
data mapping � 43

O
Organization Views

about � 19, 53, 55
changing owners � 57
components � 53
creating � 56
deleting � 58
downloading � 65
managing contracts in � 60, 61
managing levels � 59, 60
uploading � 65, 68, 69, 74
XML file format � 63

Q
Query Reporting and Analysis (QRA)

Toolkit
deleting reports � 52
listing reports � 50
renaming reports � 51
saving reports � 49
using the Report Manager � 47, 48

	Preface
	Using this Manual
	Before You Get Started
	Who Should Read this Manual
	How this Manual is Organized
	What Typographical Changes and Symbols Mean
	Finding the Information You Need
	If You Need Help
	Overview of Developing Analytical Applications
	About Developing Applications
	Customizing the Database
	Synchronizing Data
	Working with Organization Views
	Loading Customer Dimension Data
	Building Reports

	Customizing the Database
	Adding New Reference Dimensions
	Localizing Reference Dimension Table Names
	Managing Charge Type Hierarchies
	Categorizing Values in Reference Dimension Tables
	Adding New Degenerated Dimensions to FACT Tables
	Implementing Hierarchy Between Reference Dimension Table Values
	Adding New Attributes to FACT Tables
	Adding New Attributes to Reference Dimension Tables
	Adding New Attributes to Customer Dimension Tables
	Optimizing
	Unsupported Customization

	Customizing the Synchronization of Customer Data
	Filtering Customers to Synchronize
	About Customizing Notifications
	Customizing Notification Logic
	Creating a New Notification Class
	To create a new class extending the core class
	To code your notification logic
	To compile your class

	Integrating the Notification Class
	To deploy your class
	To declare your class

	Customizing the BLM to CBU Mapping
	Default Mapping
	Modifying the Default Mapping
	Specifying the Mapping of a Custom Attribute
	Example of Mapping Declarations

	Working with the Report Manager
	About the Report Manager
	Saving Reports
	Listing Reports
	Renaming Reports
	Deleting Reports

	Working with Organization Views
	About Working with Organization Views
	Creating Organization Views
	Changing Organization View Owners
	Deleting Organization Views
	Managing Levels
	Adding Levels
	Moving Levels
	Removing Levels
	Assigning Contracts
	Removing Contracts

	Downloading and Uploading Organization Views
	About the Organization View XML File
	Overview of Using Organization View XML Files
	Downloading Organization Views
	displayContracts Function
	displaySubLevels Function

	Uploading Organization Views
	Writing the HTML Form
	Uploading a New Organization View
	Uploading a Modified Organization View

	Using the CustDim Loader
	About the CustDim Loader
	Overview of the CustDim Loader Components
	Invoice Flow Splitter
	Process
	Components

	Invoice Transformer
	Process
	Components

	CID Loader
	Process
	Components

	CBU Loader
	Process
	Components

	Counters

	Working with Invoice Files
	About Working with Invoice Files
	
	To specify the list of invoice files to process

	Processing Invoice Files in Non XML Format
	
	To process invoice files in non XML format

	Processing Invoice Files in Non Well Formatted XML
	
	To process invoice files in non well formatted XML

	Processing Compressed Invoice Files
	Processing Invoice Files with Shared Information
	
	To process invoice files with shared information

	Pruning Invoice Files
	
	To prune invoice data after parsing

	Example of pruning after parsing
	To prune invoice data when generating the message

	Example of pruning when generating an invoice message

	Customizing Invoice Mapping
	Setting Input Date/Numeric Format
	Setting the Object ID
	Setting Reference Object Codes
	Setting Miscellaneous Object Attributes
	Setting Custom Object Attributes
	
	To configure the CBU loader to load custom attributes
	To configure the CID loader to load custom attributes

	Managing Billing Accounts as Actors
	Managing statistics
	Customizing CBU Name Attribute Mapping

	Creating Report Queries in SQL
	About Building Reports
	Writing Simple Report Queries
	Simple Query
	Simple Query Including Security

	Writing Advanced Report Queries
	Advanced Query

	Deploying with Account Management Features
	About Deploying with Telco Service Manager
	To have coherent legacy IDs

	Index

