
Developing User Interfaces
with Telco Service Manager

V4.0
Document ID: TSGN-09-4.0-01

Date Published: 9.10.03

 1997−2003 edocs Inc. All rights reserved.

edocs, Inc., One Apple Hill Drive, Suite 301, Natick, MA 01760

The information contained in this document is the confidential and proprietary information of edocs, Inc. and is subject to
change without notice.

This material is protected by U.S. and international copyright laws. edocs and eaPost are registered in the U.S. Patent
and Trademark Office.

No part of this publication may be reproduced or transmitted in any form or by any means without the prior written
permission of edocs, Inc.

eaSuite, eaDirect, eaPay, eaAssist, eaMarket, and eaXchange are trademarks of edocs, Inc.

Sun, Sun Microsystems, Solaris, Sun-Netscape Alliance, iPlanet, Java and JavaScript are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

Netscape, Netscape Enterprise Server, Netscape Navigator, Netscape® Application Server and the Netscape N and
Ship's Wheel logos are registered trademarks of Netscape Communications Corporation in the United States and other
countries.

Microsoft, Windows, WindowsNT, Windows 2000, SQL Server and Microsoft Internet Information Server are registered
trademarks of Microsoft Corporation in the United States and other countries.

Oracle, Oracle8, Oracle8i are registered trademarks of Oracle Corporation in the United States and other countries.

Adobe, Acrobat, and the Acrobat logo are trademarks of Adobe Systems Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Contains IBM Runtime Environment for AIX(R), Java(TM) 2 Technology Edition Runtime Modules (c) Copyright IBM
Corporation 1999, 2000 All Rights Reserved.

This software contains Log4j Copyright (c) 1999 The Apache Software Foundation All Rights Reserved.

This software contains Jakarta-ORO regular expressions processing Copyright (c) 2000 The Apache Software
Foundation All Rights Reserved.

This software contains Sun Multi-Schema XML Validator Copyright (c) 2001 Sun Microsystems All Rights Reserved.

All other product names and registered trademarks are the property of their respective holders. Any trademark name
appearing in this guide is used for editorial purposes only, and to the benefit of the trademark owner, with no intention of
infringing upon the trademark.

Federal Acquisitions: Commercial Software - Government users subject to standard license terms and conditions.

Preface

In This Section

Using this Manual ... iv
Finding the Information You Need ... vii
If You Need Help ... ix

iv Developing User Interfaces

Using this Manual
Welcome to Building User Interfaces.

This manual covers building user interfaces of account management applications built
using TSM.

Before You Get Started
You should be familiar with the following:

! Your application architecture
! Programming Java and Java Server pages
! Designing or working with databases
! eXtended Markup Language (XML)

Who Should Read this Manual
This manual is for developers and project managers who are responsible for developing
the user interface.

However, there are other topics covered in this manual that may interest other
members of the project development team.

! Administrators
You will find information about the different components that make up the user
interface. You can learn the location of the different files that make up the user
interface.

! Developers
This manual is for building user interfaces for your solution. You learn how write
JSPs that use the Presentation Manager JavaServer Page framework. You also
learn how to group and program sets of JSPs. These sets, called channels, allow
users to access the same solution by using different devices and protocols.

You also learn how to use the framework to create new workflows, customize
menus, and manage personalization information to create interactive and
customizable user interfaces.

! Project Architect
You can use the information in this manual to learn about channels and how they
work. You can lean about the components and the flexibility of you solution when it
is based on channels built on a common framework.

 Preface v

! Project Manager
You will find information about channels and the Presentation Manager JavaServer
Page framework important when developing user interfaces. You may also be
interest in reading about personalization data, menus and workflows as the their
characteristics may influence how you go about developing the user interfaces of
your solution.

How this Manual is Organized
This manual contains the following chapters:

! Overview of Developing User Interfaces
This chapter covers the basics of building User Interfaces for Account Management
solutions.

It contains information about:

! User interfaces and Account Management solutions

! Developing user interfaces

! Understanding the JSPF
This chapter covers the JavaServer Page Framework (JSPF).

It contains information about:

! The JSPF and its components

! Properties and configuration files

! JSPF classes

! Framework JSPs

! Working with Personalization Manager Channels

This chapter covers the Personalization Manager.

It contains information about:

! How the Personalization Manager is organized

! Personalization Manager Channels

! Customizing the channels

vi Developing User Interfaces

What Typographical Changes and Symbols Mean
This manual uses the following conventions:

TYPEFACE MEANING EXAMPLE

Italics Manuals, topics or other
important items

Refer to Developing
Connectors.

Small Capitals Software and Component
names

Your application uses a
database called the CID.

Fixed Width File names, commands,
paths, and on screen
commands

Go to //home/my file

 Preface vii

Finding the Information You Need
The product suite comes with comprehensive documentation set that covers all aspects
of building Account Management solutions. You should always read the release bulletin
for late-breaking information.

Getting Started

If you are new to the edocs Telco Solutions, you should start by reading Introducing
Telco Service Manager. This manual contains an overview of the various components
along with a list of the available features. It introduces various concepts and
components you must be familiar with before moving on to more specific
documentation. Once you have finished, you can read the manual which covers
different aspects of working with the application. At the beginning of each manual, you
will find an introductory chapter which covers concepts and tasks.

Designing Your Solution

While reading Introducing Telco Service Manager, you should think about how the
different components can address your Account Management Solution's needs.

You can refer to Developing Telco Service Manager for information about extending the
object model, application security, and other design issues. The CID Reference Guide
also gives you the information about how the information in your solution is managed
and stored.

Installing Your Telco Service Manager

You should start by reading the Release Bulletin. For detailed installation and
configuring information, refer to Installing Telco Service Manager. This manual covers
installing TSM on one or more computers. It also contains the information you need to
configure the different components you install. You might also refer to Developing Telco
Service Manager and Developing Connectors for Telco Service Manager as these
manuals contain information on customizing applications and working with other
software.

Building Account Management Solutions

If you are designing and programming Telco Service Manager, you have several
different sources of information. If you are programming the user interface of the
solution, you should read Developing User Interfaces for Telco Service Manager. You
also refer to the BLM Specification for detailed information about programming the user
interface. For configuring the various components, you refer to Installing Telco Service
Managerand sections in other documents that deal with the component to configure.

viii Developing User Interfaces

If you are working with the business logic of your solution, you should read Developing
Telco Service Manager. You can also refer to the BLM Reference Guide for more
information about the design and structure of the BLM object model. For information
about how this information is stored, you should refer to the CID Reference Guide along
with the CID Reference documentation for your database. In order to develop your
application, you most likely will need to install and run the Loopback Connector. This
component mimics back-end applications for development purposes. For information
about installing and running this component, refer to Using the Loopback Connector
with Telco Service Manager.

Integrating Account Management Solutions

If you are involved in configuring your solution to work with Operation Support Software
(OSS), you should read Developing Connectors with Telco Service Manager. This
manual helps you understand the integration architecture and shows you how to build
connectors to connect to today�s market-leading OSS software. You can also read
Using the Loopback Connector with Telco Service Manager for information about a
connector built for development purposes. Other manuals you can refer to for
information about configuring your application include Introducing Telco Service
Manager and Developing Telco Service Manager.

Managing Telco Service Manager (TSM)

If you are responsible for managing TSM, you should read the Installing Telco Service
Manager for information about configuring various components and information about
working with different application servers. Administrating Telco Service Manager covers
what you need to know about managing your solution at runtime. For information about
OSS systems, you should read Developing Connectors with Telco Service Manager.

 Preface ix

If You Need Help
Technical support is available to customers who have valid maintenance and support
contracts with edocs. Technical support engineers can help you install, configure, and
maintain your edocs application.

To reach the U.S. Service Center, located in Natick, MA (Monday through Friday
8:00am to 8:00pm EST):

! Telephone: 508.652.8400
! Toll Free: 877.336.3362
! E-support: support.edocs.com (This requires a one-time online registration)
! E-mail: support@edocs.com

When you report a problem, please be prepared to provide us the following information:

! What is your name and role in your organization?
! What is your company�s name?
! What is your phone number and best times to call you?
! What is your e-mail address?
! In which edocs product did a problem occur?
! What is your Operating System version?
! What were you doing when the problem occurred?
! How did the system respond to the error?
! If the system generated a screen message, please send us that screen message.
! If the system wrote information to a log file, please send us that log file.

If the system crashed or hung, please tell us.

mailto:support@edocs.com

 xi

Contents

Preface iii

Overview of Developing User Interfaces 13
About User Interfaces and the Personalization Manager 14
About the Personalization Manager Channels 15

MyWeb Channel 15
MyWAP Channel 20
MyIVR Channel 21

About Developing User Interfaces 23

Understanding the JSPF 25
Overview of the JSPF 26

Features of the JSPF 26
JSPF Components 27

About the JSPF Properties file 28
About the JSPF Configuration File 30

Application Properties Settings 30
JSP Declarations and Properties 33
Application Menu Settings 36
Specifying Workflows 41
Application Properties Settings 45

About the JSPF Classes 48
About the Framework JSPs 49

Application Framework JSPs 50
Graphical Chart 52
Form Handlers 54
Logic Handlers 56

Working with Personalization Manager Channels 57
About Working with Channels 58
About the Sample Data 59

Contents of the Sample Data 59
Creating the CID Database 61

About the Contents of a Channel 63
Channel JSPs 63
Channel Menus 64
Channel Functional Steps 65

Adding a New Channel 66
Declaring the Channel Media 66
Example of Creating Support of a New Channel 66

Adding New Personalization Data 68
Adding Parameters to the CID 69
Associating a Parameter with a Parameter Group 71

xii Developing User Interfaces

Example of Adding A New Parameter 72
Modifying Menus 76

Example of Modifying Menus 78
Creating a Workflow 80

Understanding Workflows 80
Using Functional Steps 81
Using Display Pages 83
Using Form Handlers 87
Using Logic Handlers 89
Passing Data From One Page to Another 93
Sample Documented Workflow 95

Working with New JSPF JSPs 100
Writing a JSP 100
Modifying the JSPs 101
Examples of a JSPF JSP 102

Reloading JSPF Configuration Information 104

Index 105

C H A P T E R 1

Overview of Developing User
Interfaces

In This Section

About User Interfaces and the Personalization Manager 14
About the Personalization Manager Channels 15
About Developing User Interfaces .. 23

14 Developing User Interfaces

About User Interfaces and the
Personalization Manager

The Personalization Manager is the component that handles the user interface of TSM.
This is the entry point for users of your application and is considered as the
presentation layer of the application.

Because users access information with different devices, the Personalization Manager
is built around channels. In general, a channel corresponds to one of the different types
of devices users can use to access the application.

For each channel, the Personalization Manager has a corresponding set of JSPs. This
way the Personalization Manager can tailor information and features for each type of
device because they each have their own technical and practical constraints. For
instance, the amount of information displayed by mobile Internet devices is different
from what users see on the Web. Not only that, but the Internet is based on HTML
whereas the mobile Internet devices use another language called WML. These sets of
JSPs are referred to as application channels or channels for short.

No matter which channel you use for the user interface of your application, there are
several basic application functions and features that are standard to all applications.
The Personalization Manager comes with a JSP framework called the JSPF. This
framework handles these basic functions and creates the foundation of any
Personalization Manager-based Account Manager Application.

 Overview of Developing User Interfaces 15

About the Personalization Manager
Channels

TSM comes with the following channels:

! MyWeb
This set of JSPs builds the user interface for users using the Internet.

! MyWAP
This set of JSPs builds the user interface for users using their WAP-enabled mobile
hand-held devices.

! MyIVR
This set of JSPs builds the user interface for users using voiceXML voice-
recognition technology.

All of these channels use the JSPF for common application features.

In order for you channels to run correctly, you need to have information in the CID that
the application can access and manage. The CID comes with sample data that you use
while working with channels. The sample data are different from the reference data.
Sample data cover users, their contracts, commercial offers, rate plans and so on.

For more information about the sample data, refer to About the Sample Data in this
manual.

MyWeb Channel

Contents of the Channel

This channel includes:

! MyWeb.xml configuration file
!
! Channel JSPs
! Set of web site graphics and files

16 Developing User Interfaces

Location of the Channel

By default, the channel files are in the following directories:

! Files:
<home_dir>/channels/WEB-INF/classes/nmycfg/jfn for the MyWeb.xml
file

<home_dir>/channels/common/fwk for the JSPF files

<home_dir>/channels/common/form_handler for the form handler JSPs

! jfnApplication.properties configuration file
 <home_dir>/channels/WEB-INF/classes/nmycfg/jfn

! Channel JSPs and Configuration File
<home_dir>/channels/MyWeb for the Web channel JSPs

<home_dir>/channels/MyWeb/Include for the different web site graphics and
files

MyWeb Channel Features

This channel includes the following features:

Managing Users

! Logging in

! Logging out

! Creating logins

! Changing passwords

! Changing languages

Acquiring and Activating Customer Accounts

! Creating contracts

! Migrating contracts

! Creating new organizations

! Adding levels to organizations

! Adding billing information to organizations

! Adding members to organizations

! Creating Personalization Data

Enabling Self-service Account Management

! Modifying payment information

 Overview of Developing User Interfaces 17

! Adding legal contacts

! Adding billing contacts

! Modify billing contacts

! Modify legal contacts

! Modifying contracts

! Searching for organizations

! Searching organization hierarchies

! Browsing organization hierarchies

! Changing rate plans

! Listing services

! Adding services

! Changing parameters of a services

! Replacing services

! Removing services

! Listing rate plans

! Grouping contract modifications

! Ordering with a shopping cart

! Ordering documentation

! Viewing usage information

! Listing prepaid packages

! Recharging prepaid contracts

! Approving orders

! Managing contracts

Reporting and Resolving Problems

! Creating trouble tickets

! Searching for trouble tickets

! Viewing trouble ticket details

! Modifying trouble tickets

! Declaring of loss or theft

Viewing Account Information Online

! Searching for invoices

! Viewing invoice details

! Searching payments

18 Developing User Interfaces

! Viewing payments

! Creating organization views

! Modifying organization views

System Features

! Displaying requests

! Auditing

! Generating user events

! Listing user events

Graphical Charts

The MyWeb channel comes with the following basic graphical charts:

! Guest
! Normal
! Simple

Guest Graphical Chart

When a user is a guest and signing up for an account, the application uses the Guest
graphical chart.

An example of the Guest graphical chart:

 Overview of Developing User Interfaces 19

Normal Graphical Chart

When a user has an account and logs in, MyWeb uses the Normal graphical chart.

An example of the Normal graphical chart:

20 Developing User Interfaces

Simple Graphical Chart

When specified, MyWeb can use a Simple graphical chart.

An example of the simple graphical chart:

MyWAP Channel

Contents of the Channel

This web channel includes:

! MyMobile.xml configuration file
The IVR and WAP channels use this file.

!
! Channel JSPs

 Overview of Developing User Interfaces 21

Location of the Channel

By default, the channel files are in the following directories:

! Files:
<home_dir>/channels/WEB-INF/classes/nmycfg/jfn for the
MyMobile.xml file

<home_dir>/channels/common/fwk for the JSPF files

<home_dir>/channels/common/form_handler for the form handler JSPs

! jfnApplication.properties configuration file
<home_dir>/channels/WEB-INF/classes/nmycfg/jfn

! Channel JSPs and Configuration File
<home_dir>/channels/MyWap for the WAP channel JSPs

MyWAP Channel Features

WAP Channel Features

This channel includes the following features:

! Logging in
! Logging out
! Viewing contract details
! Adding service
! Changing parameters of a service
! Changing rate plans
! Viewing usage information
! Recharging prepaid contracts
! Viewing pending requests

MyIVR Channel

Contents of the Channel

This channel includes:

! MyMobile.xml configuration file
The IVR and WAP channels use this file.

!
! Channel JSPs

22 Developing User Interfaces

Location of the Channel

By default, the channel files are in the following directories:

! Files:
<home_dir>/channels/WEB-INF/classes/nmycfg/jfn for the
MyMobile.xml file

<home_dir>/channels/common/fwk for the JSPF files

<home_dir>/channels/common/form_handler for the form handler JSPs

! jfnApplication.properties configuration file
<home_dir>/channels/WEB-INF/classes/nmycfg/jfn

! Channel JSPs and Configuration File
<home_dir>/channels/MyIvr for the IVR channel JSPs

MyIVR Channel Features

This channel includes the following features:

! Logging in
! Logging out
! Getting contract details
! Adding service
! Changing parameters of a service
! Changing rate plans
! Viewing usage information
! Recharging prepaid contracts
! Viewing pending requests

 Overview of Developing User Interfaces 23

About Developing User Interfaces
Before you start developing your user interface, you need to be become familiar with
the JSPF. The JSPF uses JSPs to build an application framework that provides
seamless integration of the application JSPs and the CSS Engine. The JSPF provides a
number of key features:

! Easy customization of workflow, language, available features, and so on.
! Session management, form-handling and exception handling
! Separation of application code and user presentation, enabling parallel out sourcing

of the operational and image aspects of site design

By using the JSPF as the foundation of your applications, you can separate the
presentation logic from basic application tasks. The JSPF also reduces development
time because you do not have to rewrite all of these basic tasks for the Personalization
Manager JSPs.

Developing user interfaces involves:

! Becoming familiar with the JSPF
! Working with the Channels:
! Adding a new channel

! Creating new personalization data

! Modifying menus

! Creating workflows

! Writing a new JSP

C H A P T E R 2

Understanding the JSPF

In This Section

Overview of the .. 26
About the JSPF Properties file.. 28
About the Configuration File .. 30
About the JSPF Classes... 48
About the Framework JSPs .. 49

26 Developing User Interfaces

Overview of the JSPF
One of the obvious drawbacks to developing JSPs is the mix of Java code and HTML.
Not only does this represent a problem when trying to read and code JSPs, it also has
an impact on performance and maintenance. Large-scale, robust applications can have
a very large number of JSPs and this can lead to a lot of duplicated code. Each page
has to carry out user authentication, error checking, and so on. When users connect to
TSM, any JSP must carry out a number of tasks before it can begin working with the
BLM. For example, users must be authenticated, their roles and scopes must be
checked, and so on.

The Java Server Page Framework (JSPF) is a set of JSP pages and Java classes and
configuration files that contain the code that is required by the sets of JSPs in the
Personalization Manager. You can speed up your development of JSPs by using the
framework to handle basic tasks and concentrate on coding the access to the BLM. The
JSPF can be considered the foundation of your channels.

Features of the JSPF
This open and customizable JSPF contains all the code you need to quickly and easily
do the following:

FUNCTION DESCRIPTION

Authentication Checks at the start of the JSP if the user has been authenticated according
to the JSPF configuration file.

Form handling Calls the function that processes the form associated with the JSP, and
validates the information entered against the 'regular expressions', as
defined in the JSPF configuration file.

Logic handling Calls to the BLM for processing are isolated in special JSP. By using these
JSP, you can easily separate the logic processing and the presentation
logic of your application.

Localization Displays a character string in a given language.

Exception handling When an error occurs, intercepts the error and displays a message using
the JSP defined in the JSPF configuration file.

Role verification Checks that the role of the user matches the role of the JSP (ex:
CUSTADMIN or SUBSCRIBER).

Menus For a given JSP, displays and manages the menu items.

Basic workflow
management

Calls functional steps, this workflow management tool helps make the
framework modular and customizable. As the user navigates through the
pages, this function keeps track of the information stored as a variable and
passes information between JSPs that determine the displayed contents..

 Understanding the JSPF 27

JSPF Components
The JSPF contains a set of JSPs and other files needed to configure and use the JSPF.

The JSPF components include:

! Configuration files:
! jfnApplication.properties configuration file.

This file sets the application media and location of the JSPF configuration file.

! JSPF configuration file.

This XML file manages the JSPF JSPs in the application.
! JSPF JSPs
! Application Framework JSPs.

These files are the foundation of the JSPF. They are located in:

! <home_dir>/channels/common/fwk.

! form handler JSPs

These files contain the code that read the data to be displayed.

! logic handler JSPs

These files contain generic methods that channel JSPs use to interact with the
BLM.

! JSPF Classes
 The JSPF uses these classes to read the configuration files, program the
features of the framework, and manage other application tasks.

By default, the JSPF components are installed in the following directories:

! <home_dir>/channels/WEB-INF/classes/nmycfg/jfn contains the JSPF
application configuration files

! <home_dir>channels/common/ contains the shared JSPF JSPs
! <home_dir>/channels/WEB-INF/lib/nmyjfn.jar archive contains the JSPF

classes.

The JSPF JSPs are JSP 1.0. Your JSPs must be based on the Java Server Pages
Specification 1.0 or higher

28 Developing User Interfaces

About the JSPF Properties file
The JSPF uses the jfnApplication.properties configuration file to set the
location of the JSPF configuration file and which channel to use for the application. This
file is located in <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

This file has the following sections:

! Character encoding settings
! Default channel settings
! Additional channel settings

For each channel, this file specifies:

! The location of the JSPF configuration file

! The associated URL path.

When this path is found in the URL requested by the browser, this media is
selected.

The location of the JSPF configuration file has the syntax:

media.<channel_name>=<JSPF configuration file path>

This setting can be one of the following:

! Absolute path by entering the full path of the JSPF configuration file
! Classpath by using the following format:

media.<channel_name>=res:<classpath>

The associated URL path of the channel has the syntax:

media.<channel_name>.path1=<URL path of the application>

 Understanding the JSPF 29

EXAMPLE OF JSPFAPPLICATION.PROPERTIES
List of media installed on this application server
default => JSP pages. It will be the default to be used when the user-agent is not recognized

wap => Wap Media jsp files
ivr => VoiceXML jsp files

media.default=<home_dir>/channels/WEB-INF/classes/nmycfg/jfn/MyWeb.xml
media.default.path1=/MyWeb

media.ivr=<home_dir>/channels/WEB-INF/classes/nmycfg/jfn/MyMobile.xml
media.ivr.path1=/MyIvr

media.wap=<home_dir>/channels/WEB-INF/classes/nmycfg/jfn/MyMobile.xml
media.wap.path1=/MyWap

30 Developing User Interfaces

About the JSPF Configuration File
TSMs that use the JSPF have a JSPF configuration file. This XML file contains
application properties and various JSPF settings. By default, the channels use the
MyWeb.xml JSPF configuration file. This file is located in
<home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

Each channel media may have its own JSPF configuration file. You specify the location
and name of the JSPF configuration file in the jfnApplication.properties
configuration file. This file is located in <home_dir>/channels/WEB-
INF/classes/nmycfg/jfn.

The JSPF uses the configuration file to set the following:

! Application properties
! JSP Pages and the following properties:
! Security rules

! Localization strings

! Forms and input constraints
! Menu items
! Workflow information

For detailed information about the JSPF configuration file, refer to the JSPF
Configuration File Reference Documentation.

Application Properties Settings
The <config> section of the JSPF configuration file contains information on the
following:

! Application settings
! JSPF settings
! Search result settings
! Layout information of complex parameters

APPLICATION SETTINGS
APP_SKIN_URL Location of graphics, style sheets, and other interface elements

APP_TITLE_NAME Name of the application

APP_LANG_CODE Default application language

 Understanding the JSPF 31

JSPF SETTINGS
FILE_CONFIGURATION Name of the JSPF configuration file.

FILE_LOGIN Name of the JSP to which the user is redirected if an authentication check
fails

FILE_LOGOUT Name of the JSP to which the user is redirected after logout.

FILE_MESSAGE Name of the file to display messages when:

• the role checking fails

• a session expires

FILE_LOGIC_ERROR Name of the file to display BLM business logic messages

FILE_INTERNAL_ERROR Name of the file to display BLM internal error messages

JSP_BIND_HTTPSESSION True or False

Saves the contents of the shopping cart when the session times out and log
an event.

GETURL_CALL_ENCODE_URL True or False

Encodes the URL when the application server is in URL rewriting mode to
manage sessions without cookies. Used when calling the URL using
JSPFjspHelper.getURL.

URL_ROOT The URL root for generated URLs.

Some app servers (for example IAS 6.0) use /NASApp/MyWeb in URLs but
pass only /MyWeb to the java code

In this case, you must enter "NASApp" in the property below. The entry will
be added to the URL generated in redirect calls.

SEARCH SETTINGS

MAX_ELEMENTS_SEARCH_INVOICE Maximum number of elements returned by the database when
a search invoice is executed

MAX_ELEMENTS_SEARCH_PAYMENT Maximum number of elements returned by the database when
a search payment is executed

MAX_ELEMENTS_SEARCH_TICKET Maximum number of elements returned by the database when
a search ticket is executed

MAX_ELEMENTS_SEARCH_REQUEST Maximum number of elements returned by the database when
a search request is executed

LAYOUT SETTINGS
PARAM_ITEM Switch between list of multiple choices and multi-value choice

PARAM_LINES_IN_LIST Number of items to display in a multi-value list

PARAM_LINES_IN_TEXTAREA Number of lines in a text area

 PARAM_CHARS Number of chars to switch between textfield and textarea

PARAM_LIST_ITEMS Max Number of items to be displayed horizontally, if superior display them
vertically (for a list of items)

32 Developing User Interfaces

LAYOUT SETTINGS
PARAM_COMPOSITE_ITEMS Max Numbers of items to be displayed horizontally, if superior display them

vertically (for a composite item)

PARAM_SIZE_STRING Size of the field for an input text string

PARAM_SIZE_INTEGER Size of the field for an input text of integer

 PARAM_SIZE_DATE Size of the field for an input text of date

PARAM_SIZE_TIME Size of the field for an input text of time

PARAM_SIZE_DATETIME Size of the field for an input text of datetime

PARAM_SIZE_FLOAT Size of the field for an input text of decimal

 EXAMPLE OF APPLICATION SETTINGS
Application
settings

<config>

 <property name="APP_SKIN_URL">/MyWeb/include/</property>

 <property name="APP_LANG_CODE">en</property>

JSPF
settings

 <property name="FILE_CONFIGURATION">MyWeb.xml</property>

 <property name="FILE_LOGIN">login.jsp</property>

 <property name="FILE_MESSAGE">message.jsp</property>

 <property name="FILE_LOGIC_ERROR">logic_error.jsp</property>

 <property name="FILE_INTERNAL_ERROR">internal_error.jsp</property>

 <property name="JSP_BIND_HTTPSESSION">true</property>

 property name="GETURL_CALL_ENCODE_URL">false</property>

Search
Settings

 <property name="MAX_ELEMENTS_SEARCH_INVOICE">7</property>

 <property name="MAX_ELEMENTS_SEARCH_PAYMENT">7</property>

 <property name="MAX_ELEMENTS_SEARCH_TICKET">7</property>

 <property name="MAX_ELEMENTS_SEARCH_REQUEST">50</property>

Layout
settings

 <property name="PARAM_ITEM">10</property>

 <property name="PARAM_LINES_IN_LIST">10</property>

 <property name="PARAM_LINES_IN_TEXTAREA">10</property>

 <property name="PARAM_CHARS">64</property>

 <property name="PARAM_LIST_ITEMS">4</property>

 <property name="PARAM_COMPOSITE_ITEMS">4</property>

 <property name="PARAM_SIZE_STRING">20</property>

 <property name="PARAM_SIZE_INTEGER">10</property>

 <property name="PARAM_SIZE_DATE">10</property>

 <property name="PARAM_SIZE_TIME">8</property>

 <property name="PARAM_SIZE_DATETIME">20</property>

 <property name="PARAM_SIZE_FLOAT">14</property>

</config>

 Understanding the JSPF 33

JSP Declarations and Properties
Each JSP of an application must have an entry in the JSPF configuration file. This entry
contains information about the following:

! Name of the JSP, Authentication, and access rules
! Forms and input constraints
! String localization

JSP Information and Access Rules

The <jsp> element contains information on the JSP and access rules. The syntax is:

<jsp name="name.jsp" authenticate="true/false"
roles="ROLE1;ROLE2">

It contains:

! One or more <form> elements
! One or more <string> elements

<JSP> ELEMENT ATTRIBUTES

ATTRIBUTES DESCRIPTION

name The name of the JSP (used to locate the configuration of
a JSP within the configuration file)

authenticate True if the user must be authenticated to access this
JSP, otherwise False.

role The code of the user roles allowed to access this JSP. A
sequence of ";" separated names of the roles allowed to
enter the JSP (such as "CUSTADMIN;SUBSCRIBER").
String, optional.

Do not leave any spaces between the role names and
the seperator.

34 Developing User Interfaces

Form Information and Input Constraints

The <form> element contains information on the forms of the JSP and access rules.
The syntax is:

<form name="form_name">

It contains one or more <input> elements.

The declaration of forms in the JSPF configuration file is optional. For instance, if your
presentation logic controls the format of the user input, you do not need to declare it
again in this file.

<FORM> ELEMENT

ATTRIBUTES DESCRIPTION

name The name of the form. This name is used when calling
the checkForm function of the JSPF API

The <input> element contains the regular expression that the application uses to
check the information submitted by the form.

 <INPUT> ELEMENT

ATTRIBUTES DESCRIPTION

name The name of the entry field. Must correspond to the
value of the attribute name of an element <input>,
<select>, or <textarea> in the HTML form.

regexp The regular expression. The user input must match the
regular expression in order to be valid.

String Localization

The <string> element contains the strings the application uses. Each string in the
JSP to localize has an entry in the JSPF configuration file. For each string, one or more
value elements contain the localization of the string. The syntax is:

<string name="string_to_localize">

 <value name="language_code">String to use</value>

 Understanding the JSPF 35

</string>

The value name corresponds the one of the application language codes entered in the
CID.

You declare the default language in the JSPF configuration file.

<STRING> ELEMENT

ATTRIBUTES DESCRIPTION
name The name of the character string

<VALUE> ELEMENT

ATTRIBUTES DESCRIPTION
name The language code of the string. This code corresponds

to the APP_LANG_CODE property declared in the JSPF
configuration file and the code entered in the CID.

Example of a JSP Declaration

This example shows the entry of a login JSP in the JSPF configuration file. This JSP
has the following characteristics:

! User does not need to be authenticated to access this page and no roles are
required

! The JSP contains the login form
! The entry fields have entry constraints
! Three strings in English and French

EXAMPLE OF A JSP DECLARATION
JSP information and Access
Rules

<jsp name="login.jsp" authenticate="false">

Form and input constraints <form name="login">

 <input name="login" regexp=".*"/>

 <input name="password" regexp=".*"/>

</form>

36 Developing User Interfaces

EXAMPLE OF A JSP DECLARATION
String localization <string name="login_user_name_field">

 <value name="en">User name</value>

 <value name="fr">Identifiant</value>

 </string>

 <string name="login_password_field">

 <value name="en">Password</value>

 <value name="fr">Mot de passe</value>

 </string>

 <string name="login">

 <value name="en">Login</value>

 <value name="fr">Valider</value>

 </string>

</jsp>

Application Menu Settings
The <menu> section of the JSPF configuration file contains information on the following:

! Menu names and use
! Menu item localization
! Menu structure

The menus used by the application also depend on the workflow of your application.
The functional step feature of the JSPF manages workflow between pages.

In menus, the functional step specified the functional step entry in the JSPF
configuration file. This functional step entry contains the target URL of the menu item
when activated.

 Understanding the JSPF 37

Menu Declaration

The <menu> element contains information about the users who have access to the
menu along with workflow information. The syntax is:

<menu name="menu_name" funct="functionalstep" orgtypes=""
roles="">

It contains one or more <string> elements

<MENU> ELEMENT

ATTRIBUTES DESCRIPTION
name The name of the Menu element

funct The functional step associated with the link

orgtypes The type of organization that can see the menu

roles Allowed user roles that can see the menu

Menu String Localization

The <string> element contains the strings the application uses. Each string in the
menu to localize has an entry in the configuration file. For each string, one or more
value elements contain the localization of the string. The syntax is:

<string name="label">

 <value name="language_code">String to use</value>

</string>

It contains one or more <value> elements

<STRING> ELEMENT

ATTRIBUTES DESCRIPTION
name The string name must be "label" for menu items

<VALUE> ELEMENT

ATTRIBUTES DESCRIPTION
name The language code of the string. This code corresponds

to one of the language codes entered in the CID.

38 Developing User Interfaces

Menu Structure

Menus in applications have different levels. For example, you might have three menus
with several sub menus in each menu. And all of these sub menus contain menu items
users can activate.

To create this kind of structure for your menus, you use the XML tree structure of the
JSPF configuration file. You create a menu entry that is the top level entry and then
create XML menu nodes to create the physical structure of your menu.

In TSM, the context of the workflow along with the logged user's role and organization
type determine which menus are displayed. In the , the framework_start.jsp is
responsible for determining which menus to display.

 Understanding the JSPF 39

Example of a Menu Declaration

This example shows the entry of a menu that looks like this:

 My Account
 My Contracts
 Sign up for a New Contract
 My Bills
 View my Bill

MENU EXAMPLE

40 Developing User Interfaces

MENU EXAMPLE
<menu name="menu_example" funct="" orgtypes="" roles="">

 <string name="label">

 <value name="en">Menu Example</value>

 <value name="fr">Exemple</value>

 </string>

 <menu name="account_example" funct="" orgtypes="" roles="">

 <string name="label">

 <value name="en">My Account</value>

 <value name="fr">Mon compte</value>

 </string>

 <menu name="VIEW_CONTRACT" funct="" orgtypes="" roles="">

 <string name="label">

 <value name="en">My Contracts</value>

 <value name="fr">Mes contracts</value>

 </string>

 </menu>

 <menu name="ADD" funct="" orgtypes="" roles="">

 <string name="label">

 <value name="en">Sign up for a New Contract</value>

 <value name="fr">Souscrire un nouveau contrat</value>

 </string>

 </menu>

 </menu>

 <menu name="bill_example" funct="" orgtypes="" roles="">

 <string name="label">

 <value name="en">My Bills</value>

 <value name="fr">Mes factures</value>

 </string>

 <menu name="VIEW_BILL" funct="" orgtypes="" roles="">

 <string name="label">

 <value name="en">View My Bill</value>

 <value name="fr">Voir ma facture</value>

 </string>

 </menu>

 </menu>

 </menu>

 Understanding the JSPF 41

Specifying Workflows
Each JSP of an application has links to other JSPs. A group of links that carry out a
specific task is referred to as a workflow. The JSPF functional step feature helps you
create and manage workflow between your pages and manages not only the link from
one JSP to another, but also lets you determine different workflows for different users.

Instead of hard-coding the target of your links, you link to a functional step. This
functional step contains all the information the JSP page needs in order to continue the
workflow. Not only does it contain the link,it can contain information on the associated
form or logic handler. A logic handler is a stand-alone JSP that uses the BLM to modify
information. A form handler is JSP included in a display page to retrieve data for
display. Functional steps can also redirect users to other pages depending on how you
program the JSP. You can even use the functional steps to override the localization
strings in the target JSP.

By using this feature, you can create standard pages that carry out basic functions. You
use the functional steps to customize the page. For instance, you can create a standard
JSP that searches for contracts in the CID and use information in the functional steps to
determine what the JSP can do in a specific workflow.

The <functionalstep> section of the JSPF configuration file contains information on
the following:

! Name of the workflow
! The target URL
! The form or logic handler to use
! Functional step redirects if required
! Localization for the functional step

Declaring the Functional Step

The <functionalstep> element contains information on the name, target, and
forms. The syntax is:

<functionalstep name="functionalstep_name" url="name.jsp"
form="form_handler">

It contains:

42 Developing User Interfaces

! One or more <redirect> elements
! One or more <string> elements

The name of the functional step is the name you use in creating menus or links in your
application.

<FUNCTIONALSTEP> ELEMENT
Attributes Description

name The name of the functional step element

url The URL of the target JSP

form or logic The name of the form handler or logic handler called
before the JSP.

Declaring the Functional Step Redirects

The <redirect> element contains the name of the link as it is coded in the JSP. It
contains information on the name in the JSP and the functional step containing the
target JSP. The syntax is:

<redirect originalname="link_name" funct="functional_step"/>

<REDIRECT> ELEMENT

ATTRIBUTES DESCRIPTION

originalname The name of the link as coded in the JSP

funct The name of the functional step to call

 Understanding the JSPF 43

Declaring Functional Step String Localization

The <string> element in functional steps overrides the string localizations declared in
the target JSP entry in the JSPF configuration file. For each string, one or more value
elements contain the localization of the string. The syntax is:

<string name="label">

 <value name="language_code">String to use</value>

</string>

It contains one or more <value> elements.

<STRING> ELEMENT

ATTRIBUTES DESCRIPTION

name The string name must be "label" for menu items

<VALUE> ELEMENT

ATTRIBUTES DESCRIPTION

name The language code of the string. This
code corresponds to one of the codes
entered in the CID.

Example of a Functional Step

This example shows a functional step in the JSPF configuration file. This functional step
has the following characteristics:

! Functional step is for customer users adding a service
! Uses the generic service_modify.jsp
! The JSP contains two links MODIFY_SERVICE and CANCEL
! Overrides the default localization of the form button string

EXAMPLE OF A FUNCTIONAL STEP DECLARATION

Functional step
name and attributes

<functionalstep name="CUSTOMER.CONTRACT.ADD.SERVICE" url="service_modify.jsp"
form="getServiceForParameters">

44 Developing User Interfaces

EXAMPLE OF A FUNCTIONAL STEP DECLARATION
Redirects <redirect originalname="MODIFY_SERVICE"

funct="I_SUBSCRIBER.CONTRACT.ADD.SERVICE_QUANTITY"/>

<redirect originalname="CANCEL" funct="CUSTOMER.CONTRACT.HOME"/>

String localization
overrides

<string name="service_modify_button">

 <value name="en">Add This Service</value>

 <value name="fr">Ajouter ce service</value>

 </string>

</functionalstep>

Workflows for Guest Users

Guest users have special workflows in order to limit their access to different features.
Guest users have the following roles:

! GUEST_FIRSTLOGIN
These guests are users who begin the sign up process and have minimum access
to the objects they need to create a login.

! GUEST_NEWCUSTOMER
These guests are users who can create a new organization and associated login,
contracts, levels, and so on. They do not have access to any other existing objects.

In order to restrict their access to features, the workflows have specific functional steps
for these roles. The name of the functional steps begin with the guest login name.

For example, guest_newcustomer.NEW.SERVICE is the functional step for the user
having the GUEST_NEWCUSTOMER role.

If a user having a guest role tries to access any other functional steps, an authorization
error occurs.

 Understanding the JSPF 45

Application Properties Settings
The <config> section of the JSPF configuration file contains information on the
following:

! Application settings
! settings
! Search result settings
! Layout information of complex parameters

APPLICATION SETTINGS
APP_SKIN_URL Location of graphics, style sheets, and other interface elements

APP_TITLE_NAME Name of the application

APP_LANG_CODE Default application language

 SETTINGS
FILE_CONFIGURATION Name of the JSPF configuration file.

FILE_LOGIN Name of the JSP to which the user is redirected if an authentication check
fails

FILE_LOGOUT Name of the JSP to which the user is redirected after logout.

FILE_MESSAGE Name of the file to display messages when:

• the role checking fails

• a session expires

FILE_LOGIC_ERROR Name of the file to display BLM business logic messages

FILE_INTERNAL_ERROR Name of the file to display BLM internal error messages

JSP_BIND_HTTPSESSION True or False

Saves the contents of the shopping cart when the session times out and log
an event.

GETURL_CALL_ENCODE_URL True or False

Encodes the URL when the application server is in URL rewriting mode to
manage sessions without cookies. Used when calling the URL using
jspHelper.getURL.

URL_ROOT The URL root for generated URLs.

Some app servers (for example IAS 6.0) use /NASApp/MyWeb in URLs but
pass only /MyWeb to the java code

In this case, you must enter "NASApp" in the property below. The entry will
be added to the URL generated in redirect calls.

46 Developing User Interfaces

SEARCH SETTINGS
MAX_ELEMENTS_SEARCH_INVOICE Maximum number of elements returned by the database when

a search invoice is executed

MAX_ELEMENTS_SEARCH_PAYMENT Maximum number of elements returned by the database when
a search payment is executed

MAX_ELEMENTS_SEARCH_TICKET Maximum number of elements returned by the database when
a search ticket is executed

MAX_ELEMENTS_SEARCH_REQUEST Maximum number of elements returned by the database when
a search request is executed

LAYOUT SETTINGS
PARAM_ITEM Switch between list of multiple choices and multi-value choice

PARAM_LINES_IN_LIST Number of items to display in a multi-value list

PARAM_LINES_IN_TEXTAREA Number of lines in a text area

 PARAM_CHARS Number of chars to switch between textfield and textarea

PARAM_LIST_ITEMS Max Number of items to be displayed horizontally, if superior display them
vertically (for a list of items)

PARAM_COMPOSITE_ITEMS Max Numbers of items to be displayed horizontally, if superior display them
vertically (for a composite item)

PARAM_SIZE_STRING Size of the field for an input text string

PARAM_SIZE_INTEGER Size of the field for an input text of integer

 PARAM_SIZE_DATE Size of the field for an input text of date

PARAM_SIZE_TIME Size of the field for an input text of time

PARAM_SIZE_DATETIME Size of the field for an input text of datetime

PARAM_SIZE_FLOAT Size of the field for an input text of decimal

 EXAMPLE OF APPLICATION SETTINGS

Application
settings

<config>

 <property name="APP_SKIN_URL">/MyWeb/include/</property>

 <property name="APP_LANG_CODE">en</property>

 settings <property name="FILE_CONFIGURATION">MyWeb.xml</property>

 <property name="FILE_LOGIN">login.jsp</property>

 <property name="FILE_MESSAGE">message.jsp</property>

 <property name="FILE_LOGIC_ERROR">logic_error.jsp</property>

 <property name="FILE_INTERNAL_ERROR">internal_error.jsp</property>

 <property name="JSP_BIND_HTTPSESSION">true</property>

 property name="GETURL_CALL_ENCODE_URL">false</property>

Search
Settings

 <property name="MAX_ELEMENTS_SEARCH_INVOICE">7</property>

 <property name="MAX_ELEMENTS_SEARCH_PAYMENT">7</property>

 <property name="MAX_ELEMENTS_SEARCH_TICKET">7</property>

 <property name="MAX_ELEMENTS_SEARCH_REQUEST">50</property>

 Understanding the JSPF 47

 EXAMPLE OF APPLICATION SETTINGS
Layout
settings

 <property name="PARAM_ITEM">10</property>

 <property name="PARAM_LINES_IN_LIST">10</property>

 <property name="PARAM_LINES_IN_TEXTAREA">10</property>

 <property name="PARAM_CHARS">64</property>

 <property name="PARAM_LIST_ITEMS">4</property>

 <property name="PARAM_COMPOSITE_ITEMS">4</property>

 <property name="PARAM_SIZE_STRING">20</property>

 <property name="PARAM_SIZE_INTEGER">10</property>

 <property name="PARAM_SIZE_DATE">10</property>

 <property name="PARAM_SIZE_TIME">8</property>

 <property name="PARAM_SIZE_DATETIME">20</property>

 <property name="PARAM_SIZE_FLOAT">14</property>

</config>

48 Developing User Interfaces

About the JSPF Classes
To help you program and build applications based on the JSPF, you use the extensive
set of Java classes. These classes help you manage any JSPF-based TSM.

The com.netonomy.jfn package manages the JSPF configuration file and your
application.

This package is in the <home_dir>/channels/WEB-INF/lib/nmyjfn.jar
archive.

For more information about the classes and the methods in this package, refer to the
JSPF API Reference Documentation.

 Understanding the JSPF 49

About the Framework JSPs
The Personalization Manager channels use a set of framework files to create its JSP
pages. These framework files are divided into the following categories:

! Framework They manage the layout and look and feel of the application. Be
default, the following graphical charts are provided:
! guest for the guest graphical chart

! rich for the rich graphical chart

! simple for the simple graphical chart
! Form handler They manage the extraction of information for display
! Logic handler They manage the business logic and interaction between the

application and the CSS Engine. They also handle workflows depending on the
results of processing business logic.

The Personalization Manager has its JSP files in the directories corresponding to the
different channels. By default, the are installed in the following directories:

! Framework JSPs are in <home_dir>/channels/common/fwk and the graphical
chart subdirectories

! Form handler JSPs are in <home_dir>/channels/common/form_handler
! Logic handler JSPs are in <home_dir>/channels/<channel_name>

50 Developing User Interfaces

Application Framework JSPs
These JSPs contain the code to carry out most of the basic functions of the framework
so you can concentrate on programming the access to information in the CID. The
Personalization Manager JSPs that make up the channels (MyWeb, MyWAP and
MyIVR) also use the framework files.

The Personalization Manager Channel JSPs are installed in the following directories:

! <home_dir>/channels/myweb for the Web channel
! <home_dir>/channels/mywap for the WAP channel
! <home_dir>/channels/myivr for the IVR channel

This is a diagram of the different JSPs and how they relate to a MyWeb page.

 Understanding the JSPF 51

framework_start.jsp and framework_end.jsp

This JSP is the first part of the main framework code for JSPs.

You must declare a string strJSP variable before you include this code in your own
JSP, and use this variable to store the JSP file name (the value of the name attribute of
the <jsp> element in the configuration file).

You must include framework_end.jsp at the end of your JSP. Refer to login.jsp
as an example.

This JSP carries out the following functions:

! Declares the variables for the JSP
! Gets the session object
! Gets the JSP configuration
! Checks if the session is new. If yes, redirects the user to the login page if they do

not come from this page
! Retrieves the BLM session and adds it to the session manager
! Checks authentication and redirects user to the login page if it fails
! Checks role and redirects to a message if this fails
! Creates a repository object for errors
! Creates a repository object for results
! Calls the form or logic handler declared in the functional step
! Finds the name of the menu to display

framework_head.jsp and framework_tail.jsp

These JSPs start and end the static HTML code of the application page.

The root framework_start JSP contains the test of the graphical chart to use and
the include statement of the corresponding framework_start.

These files are located in subdirectories corresponding to the graphical chart.

The framework_head contains simple html tags. You can add a banner ad rotator
here.

The framework_tail contains the closing tags of the html.

52 Developing User Interfaces

event zone

This is your JSP that contains the display of information or the application�s context.
The heart of the system, you can easily write JSP to interact with the framework files
and the BLM to build TSMs. These JSPs are referred to as display pages.

Graphical Chart
The following images are examples of the different default graphical charts used in the
MyWeb TSM.

! Guest Graphical chart
This is the default for guest users.

 Understanding the JSPF 53

! Simple Graphical Chart
This is the default for Business Subscriber, residential subscriber and supplier
users.

! Rich Graphical Chart
This is the default for Business Contract administrator, Business Customer
Administrators, Telco users and dealer users.

54 Developing User Interfaces

Form Handlers
A form handler is a JSP dedicated for preprocessing information to be sent to a JSP for
display.

A form handler is simply a method declared in the JSP. The name begins with
formHandler_.

The form handler contains a set of preprogrammed functions you use to:

! Speed up development
This code can be used by all the JSPs that make up your application. And as it is
shared code, you can easily modify the behavior of your application without having
to change several JSP.

! Isolate display logic from display processing
This code handle extracting information from the CID and preprocessing it. You then
send the results to the display page.

 Understanding the JSPF 55

For example, the form_handler/getContract.jsp includes the following form
handlers:

! formHandler_bulkAddContractsToManagerReport
! formHandler_bulkRemoveContractsFromManagerReport
! formHandler_getContract
! formHandler_getContractAndServices
! formHandler_getContracts
! formHandler_getContractsToRemoveFromManager
! formHandler_getContractsToRemoveFromOrgView
! formHandler_getNewContract
! formHandler_prepareUnassignContractConfirmation

These formhandlers are executed by the just before the page start to display.

You can create your own form handlers.

56 Developing User Interfaces

Logic Handlers
 logic handler is a JSP dedicated to workflow and business rules processing. A logic
handler processes and calls the next logic handler to execute or redirect to a page.

When a logic handler calls a page, you can also call a form handler.

 logic handlers are functions grouped in a file which act as a library located in the
channel directory. The logic handler JSP names begin with logic_ to make them easy
to identify and program. The same applies to the methods found inside the JSPs.

For example, in logic_member.jsp you will find the following methods:

! logic_childCreateMemberForNext
! logic_searchMembers

These logic handlers are executed by the JSPF at the beginning of the page before
display. These pages do not display anything, they handle the logic. Once they finish
processing, they call a page via a JSP server redirect or can call another process if
needed.

You can create your own logic handlers.

C H A P T E R 3

Working with Personalization
Manager Channels

In This Section

About Working with Channels... 58
About the Sample Data... 59
About the Contents of a Channel.. 63
Adding a New Channel ... 66
Adding New Personalization Data .. 68
Modifying Menus... 76
Creating a Workflow ... 80
Working with New JSPs... 100
Reloading Configuration Information 104

58 Developing User Interfaces

About Working with Channels
The default channels are working applications that cover most of the functions of TSM.

Instead of building your application from scratch, you can use TSM channels as an
application template. You do not have to re-code your application, you can just adapt
one of the channels to meet your needs.

Working with Personalization Manager Channels involves:

! Adding a new channel
! Creating new personalization data
! Modifying menus
! Creating workflows
! Writing a new JSP

When developing, you can use the JSPF configuration file dynamically without having
to restart your Application server.

This section is based on examples to help you understand how channels work.

Remember, you must install the sample data to use the channels that come with the
Presentation Manager.

 Working with Personalization Manager Channels 59

About the Sample Data
In order for you channels to run correctly, you need to have information in the CID that
the application can access and manage. The CID comes with sample data that you use
while working with channels. Sample data include reference data (countries, and so
on), a product catalog, customer/dealer/customer service representatives (CSR) data
and user data.

The comprehensive sample data help you build and test your application quickly and
easily as you do not need to create test data.

When installing the CID for development or demonstrations, you can use the
cidAdminTool to:

! Install the CID with system data only
When you install the CID with system data only, you can then populate it with your
own sample data.

! Install the CID with system and sample data
When installing the CID with both types of data, the CID is ready to be used for
development or demonstrations.

Contents of the Sample Data

Reference Data

Along with the system data, the sample data includes reference data. In the CID, the
reference data includes lists of languages, countries, and other general data.

Product Catalog Data

Corresponding to a Communication Service Providers catalog, the sample data
includes service data that includes services, commercial offers, rate plans and other
data.

60 Developing User Interfaces

User and Associated Customer/Dealer/CSR Information

The sample data includes a set of users and user types. This set of data includes the
following logins:

The password is the same as the login.

When logging in, you must enter the login and password in lowercase.

LOGIN ACT NOTES CHANNELS

joe Consumer
administrator

Has 1 contract WEB

WAP

tammy Consumer
administrator

Has more than 1 contract WEB

WAP

0660100032 Consumer
administrator

Prepaid subscriber WEB

WAP

IVR

0660100034 Consumer
administrator WEB

WAP

IVR

admadm Business
administrator

Administrator of Acme
corporation

WEB

adm1, adm2,
michel

Business
administrator

Administrators of sub-levels
of Acme corporation

WEB

contractadm Contract administrator Manages a set of Acme
corporation contracts

WEB

bigboss Business user User at the top level of
Acme corporation

Has more than 1 contract

WEB

véro, jean, paul,
victor

Business user User at a sub-level of Acme
corporation

WEB

jack Business
administrator

Administrator of Jack and
Co

WEB

jim Business user User at the top level of Jack
and Co

WEB

tph Dealer user User at the top level of
dealer organization

WEB

herve Dealer user User at a sub-level of dealer
organization

WEB

eur Telco user WEB

will Supplier user WEB

 Working with Personalization Manager Channels 61

LOGIN ACT NOTES CHANNELS
acctmgr Telco business

account manager
Initially in charge of Acme
corporation (list of managed
business customers can be
changed by senior_acctmgr)

WEB

 acctmgr2 Telco business
account manager

Initially in charge of Jack
and Co (list of managed
customers can be changed
by senior_acctmgr)

WEB

senior_acctmgr Telco business senior
account manager

Manages all business
accounts

WEB

Creating the CID Database
To create the CID and populate it with sample data for the Personalization Manager
channels, you use the cidAdmin tool.

When working with the demo CID Database, server components can only interact with
the database using the <CID_ADMIN> account.

To create the CID with system and sample data

1 Go to <home_dir>/bin.

2 Run the CID Administration tool. Use the syntax:
cidAdminTool create_demo_cid_test <CID> <CID_ADMIN login>
<CID_ADMIN password>

where <CID>:

! Oracle: <instance alias>

! DB2: <database alias>

! SQL Server: <database host> [:<port>] If no port is specified, the tool
uses the default SQL server port

When finished, the CID Administration tool displays a message.

To remove the CID

1 Go to <home_dir>/bin.

2 2. Run the CID Administration tool. Use the syntax:

62 Developing User Interfaces

cidAdminTool drop_demo_cid_structure <CID> <CID_ADMIN login>
<CID_ADMIN password>

where <CID>:

! Oracle: <instance alias>

! DB2: <database alias>

! SQL Server: <database host> [:<port>] If no port is specified, the tool
uses the default SQL server port

When finished, the CID Administration tool displays a message.

 Working with Personalization Manager Channels 63

About the Contents of a Channel
The components of a channel include:

! JSPF files
! Set of channel JSPs

By default, the components are in the following directories:

! JSPF files:
<home_dir>/channels/common/fwk for the files

<home_dir>/channels/common/form_handler for the form handler JSPs

! jfnApplication.properties configuration file
<home_dir>/channels/WEB-INF/classes/nmycfg/jfn

! Channel JSPs
<home_dir>/channels/MyWeb for the Web channel

<home_dir>/channels/MyWap for the WAP channel

<home_dir>/channels/MyIvr for the IVR channel

Channel JSPs
Each individual JSP has a name that describes the feature it handles. For example, the
password_modify.jsp is the page for changing user�s passwords. And the
password_modify_done.jsp displays a message after the user�s password has
been changed.

Each channel contains a set of different types of JSPs. The types of JSPs that make up
a channel are:

! Display These JSPs contain the presentation logic of your application and are
clearly named.

! Handler These JSPs contain sets of methods that interact directly with the BLM
allowing you to separate your application Logic from the display logic. The types
include:
! Form Handler JSPs

These JSPs preprocess information for display.

! Logic Handler JSP

These JSPs contain execuatble code used for creating or modifying
information.The name of these files begin with logic_. For instance,
logic_service contains a set of methods your display JSPs can use to
manage contract services.

64 Developing User Interfaces

Channel Menus
In the channel applications, JSPF menus change according to the role of the user that
logs into the system. For instance, residential users and business users may have
different menus because their needs are different. Certain features that are required for
a specific set of users might not be needed by another set of users.

USER ROLE FRAMEWORK MENU

Individual Subscriber I_SUBSCRIBER

Business Subscriber B_SUBSCRIBER

Business Administrator for Levels B_CUSTADMIN_L

Business Administrator for Members B_CUSTADMIN_M

Dealer DEALER

Supplier SUPPLIER

Business Contract Administrator B_CONTADMIN_M

Telco DEALER

Telco Account Manager DEALER

Telco Senior Account Manager DEALER

Menus are selected in the framework_start.jsp

MyWeb Channel Menus

The following menus are available in the MyWeb channel:

! I_SUBSCRIBER
! B_SUBSCRIBER
! B_CUSTADMIN_L
! B_CUSTADMIN_M
! DEALER
! SUPPLIER
! B_CONTADMIN_M

 Working with Personalization Manager Channels 65

MyWAP Channel Menus

The following menus are available in the MyWAP channel:

! I_SUBSCRIBER
! B_SUBSCRIBER

MyIVR Channel Menus

The following menus are available in the MyIVR channel:

! I_SUBSCRIBER
! B_SUBSCRIBER

Channel Functional Steps
The functional steps of the channel applications depend on the user that logs into the
application.

The functional Step workflows include workflows for:

! GLOBAL
! GUEST_FIRSTLOGIN
! GUEST_NEWCUSTOMER
! I_SUBSCRIBER
! B_SUBSCRIBER
! B_CUSTADMIN_L
! B_CUSTADMIN_M
! DEALER
! SUPPLIER

66 Developing User Interfaces

Adding a New Channel
One of the ways you can modify the channels is to use the existing channels to create
a new channel. A channel is associated with the channel media. The TSM has a Web,
WAP and IVR channel. However, your solution may require other support for other
media.

Adding a new media involves:

! Declaring the media in the jfnapplication.properties configuration file
! Create your TSM application

This section includes an example of creating a new channel for a Palm hand held
personal digital assistant.

Declaring the Channel Media
1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

2 Open jfnApplication.properties.

3 Declare the new media. Use the syntax:

media.<media_name>=full path of the media the JSPF Configuration File or
the res:/ resource path

media.<media_name>.path1= string of the media to use that should appear
in the request URL. This allows the to find the right JSPF configuration file to use
for this media's client.

Example:
 media.wap.path1= /MyWap

http://host/MyWap/login.jsp is a Wap site URL.

4 Save your changes.

Example of Creating Support of a New Channel
1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

2 Open jfnApplication.properties.

3 Add the following:
media.palm=res:nmycfg/jfn/MyPalm.xml
media.palm.path1=/MyPalm

4 Copy the /channels/MyWeb folder and its contents and rename it MyPalm.

 Working with Personalization Manager Channels 67

5 Edit <home_dir>/nmycfg/jfn/MyPalm.xml and change the following:

<property name="APP_SKIN_URL">/palm/include/</property>

6 Add your specific workflows.

68 Developing User Interfaces

Adding New Personalization Data
The CID is designed to easily add and extend the information it stores. To do this, you
use parameters. One of the uses of these parameters is to create new personalization
data.

You may want your application to use the new parameters in your application JSPs. For
instance, you may want to add new contract options or allow users to change and save
their preferred interface settings.

For information that commonly needs parameters, the CID is preconfigured to handle
parameters. For example, the CID is ready for service, payment, and request search
parameters.

For more information about the CID, refer to the CID Reference Guide.

Adding a new parameter to your JSP involves:

! Creating the parameter
! Associating the new parameter with a personalization data parameter group

This section includes an example of adding a parameter that allows users to set their
preferred user interface menus.

 Working with Personalization Manager Channels 69

Adding Parameters to the CID
When you add a parameter, insert the information in the CID.

Adding a new parameter to the CID involves:

! Inserting the parameter in the PARAMETER table.
! Setting the possible values of the parameter
! Defining the association between the values and the parameter
! Set the default values

When the parameter is in the CID, you program your application to use the parameter.

To insert a parameter

1 Use your database tool to connect to the CID.

2 In the PARAMETER table, add a record and enter the required information. Use the
syntax:
insert into PARAMETER (PARAM_ID, PARAM_LEGACY_ID, PARAM_CODE,
PARAM_TYPE, PARAM_NAME, STRING_ID, PARAM_DESCRIPTION,
PARAM_DESC_STRING_ID, PARAM_SHORT_DESCRIPTION,
PARAM_SHORT_DESC_STRING_ID, PARAM_MIN_ITEMS, PARAM_MAX_ITEMS,
PARAM_MIN, PARAM_MAX, PARAM_PATTERN) values (PARAM_ID value,
PARAM_LEGACY_ID value...);

3 If required, localize the parameter name and descriptions. Use the syntax:
insert into UNIVERSAL_STRING (STRING_ID, LANG_ID, STRING_NAME
) values (STRING_ID value, LANG_ID value, STRING_NAME value
);

4 Save your changes.

To set the values of the parameter

1 Use your database tool to connect to the CID.

2 In the CHOICE_ITEM table, add a record and enter the required information. Use
the syntax:

70 Developing User Interfaces

insert into CHOICE_ITEM (CHOICE_ITEM_ID, STRING_ID,
CHOICE_TYPE, DISPLAY_VALUE, LEGACY_VALUE, CHOICE_PARAM_ID,
START_DATE, END_DATE) values (CHOICE_ITEM_ID value,
STRING_ID value,...);

3 If required, localize the value name and descriptions. Use the syntax:
insert into CHOICE_ITEM (CHOICE_ITEM_ID, STRING_ID,
CHOICE_TYPE, DISPLAY_VALUE, LEGACY_VALUE, CHOICE_PARAM_ID,
START_DATE, END_DATE) values (CHOICE_ITEM_ID value,
STRING_ID value,...);

4 Save your changes.

To define the association between values and the parameter

1 Use your database tool to connect to the CID.

2 In the PARAMETER_CHOICE_ITEM_LINK table, add a record specifying the
relationship between the parameter and its possible values. Use the syntax:
insert into PARAMETER_CHOICE_ITEM_LINK (CHOICE_ITEM_ID,
PARAM_ID, DISPLAY_ORDER) values (CHOICE_ITEM_ID value,
PARAM_ID value, DISPLAY_ORDER value);

3 Save your changes.

To set the default values

1 Use your database tool to connect to the CID.

2 In the DEFAULT_VALUE table, add a record specifying the default values of the
parameter. Use the syntax:

! insert into DEFAULT_VALUE (DEFAULT_VALUE_ID, VALUE_TYPE,
VALUE_STRING, VALUE_FLOAT, VALUE_INTEGER, VALUE_BOOLEAN,
VALUE_DATETIME, CHOICE_ITEM_ID, PARAM_ID) values (
DEFAULT_VALUE_ID value, VALUE_TYPE value,...);

3 If required, enter the following:

! USER_TYPE_EVENT_NAME

! STRING_ID

! USER_TYPE_EVENT_DESCRIPTION

! USER_TYPE_EVENT_DESCRIPTION_STRING_ID

4 In the ACTIVATION_FLAG column, enter 1.

5 Save your changes.

6 Restart your application server.

To localize the parameter and its values

1 Use your database tool to connect to the CID.

 Working with Personalization Manager Channels 71

2 For each language, enter a record in the UNIVERSAL_STRING table for:

! Parameter name

! Parameter description

! Parameter short description

! Value

Use the syntax:
insert into UNIVERSAL_STRING (STRING_ID, LANG_ID, STRING_NAME
) values (STRING_ID value, LANG_ID value, STRING_NAME value
);

3 Save your changes.

Associating a Parameter with a Parameter Group
Once you enter a parameter in the CID, you associate it with a parameter group. A
parameter group is a set of parameters that have something in common or that go
together for programming reasons.

To associate the parameter
1 Use your database tool to connect to the CID.

2 In the PDATA_GROUP_PARAM_LINK table, add a record associating the new
parameter with a personalization data group. Use the syntax:
insert into PDATA_GROUP_PARAM_LINK (PDATA_GROUP_ID, PARAM_ID,
DEFAULT_VALUE_ID, MANDATORY_FLAG, DISPLAY_ORDER) values (
PDATA_GROUP_ID value, PARAM_ID value, DEFAULT_VALUE_ID value,
MANDATORY_FLAG value, DISPLAY_ORDER value);

3 Save your changes.

72 Developing User Interfaces

Example of Adding A New Parameter
This example covers how you can add a new option for a user. This new option is for
user to set their preferences of menu styles. They can choose from:

! Rich
! Simple

The MyWeb channel displays the choice on the User Information/Options page. This
new option will be in French and English.

Adding the new option involves:

! Adding the parameter to the CID. You add the parameter and its values in the CID.
Then you associate this parameter with the user display options and specify that it is
the second setting and that it is a default setting.

! Program the channel to use the parameter. You modify the logic_init logic
handler and the framework_start JSPs to get the default value when initializing
the application. Then you code the logic_perso_data logic handler to display the
new parameter.

Adding a Parameter
1 Use your database tool to connect to the CID.

2 Declare the new parameter. The parameter has the following characteristics:

! Name: Style

! Type: Choice

! Values: Rich, Light

Example:
insert into PARAMETER (PARAM_ID, PARAM_LEGACY_ID, PARAM_CODE, PARAM_TYPE, PARAM_NAME, STRING_ID,
PARAM_DESCRIPTION, PARAM_DESC_STRING_ID, PARAM_SHORT_DESCRIPTION, PARAM_SHORT_DESC_STRING_ID,
PARAM_MIN_ITEMS, PARAM_MAX_ITEMS, PARAM_MIN, PARAM_MAX, PARAM_PATTERN) values (101050, 'LEG_STYLE',
'STYLE�, 'C', 'Preferred style', 1028050, 'Graphical chart style', 1028350, 'Style', 1028650, 1, 1, '1',
'1', NULL);

3 Localize the parameter name, description and short description.

Example:
insert into UNIVERSAL_STRING (STRING_ID, LANG_ID, STRING_NAME) values (1028050, 25, 'Preferred style');
insert into UNIVERSAL_STRING (STRING_ID, LANG_ID, STRING_NAME) values (1028350, 25, 'Graphical chart
style');
insert into UNIVERSAL_STRING (STRING_ID, LANG_ID, STRING_NAME) values (1028650, 25, 'Style');

4 For each choice, enter the value of the parameter: Rich and Light.

Example:
insert into CHOICE_ITEM (CHOICE_ITEM_ID, STRING_ID, CHOICE_TYPE, DISPLAY_VALUE, LEGACY_VALUE,
CHOICE_PARAM_ID, START_DATE, END_DATE) values (101026, 1029026, 'C', 'Rich', '', NULL, NULL, NULL);
insert into CHOICE_ITEM (CHOICE_ITEM_ID, STRING_ID, CHOICE_TYPE, DISPLAY_VALUE, LEGACY_VALUE,
CHOICE_PARAM_ID, START_DATE, END_DATE) values (101027, 1029027, 'C', 'Light', 'txt=1�, NULL, NULL,
NULL);

 Working with Personalization Manager Channels 73

5 Localize the values.

Example:
insert into UNIVERSAL_STRING (STRING_ID, LANG_ID, STRING_NAME) values (1029026, 25, 'Rich');
insert into UNIVERSAL_STRING (STRING_ID, LANG_ID, STRING_NAME) values (1029027, 25, 'Simple');
insert into UNIVERSAL_STRING (STRING_ID, LANG_ID, STRING_NAME) values (1029026, 34, 'Riche');
insert into UNIVERSAL_STRING (STRING_ID, LANG_ID, STRING_NAME) values (1029027, 34, 'Simple');

6 Define 2 parameter choices attached to the parameter.

Example:
insert into PARAMETER_CHOICE_ITEM_LINK (CHOICE_ITEM_ID, PARAM_ID, DISPLAY_ORDER) values (101026,
101050, 0);
insert into PARAMETER_CHOICE_ITEM_LINK (CHOICE_ITEM_ID, PARAM_ID, DISPLAY_ORDER) values (101027,
101050, 1);

7 Set the default value to Rich.

Example:
insert into DEFAULT_VALUE (DEFAULT_VALUE_ID, VALUE_TYPE, VALUE_STRING, VALUE_FLOAT, VALUE_INTEGER,
VALUE_BOOLEAN, VALUE_DATETIME, CHOICE_ITEM_ID, PARAM_ID) values (10300, 'S', Null, Null, Null, Null, Null,
101027, Null);

8 Attach the new parameter to the same parameter group (1) as the �Skin� parameter.
You also put it as the second element. This parameter is mandatory.

Example:
insert into PDATA_GROUP_PARAM_LINK (PDATA_GROUP_ID, PARAM_ID, DEFAULT_VALUE_ID, MANDATORY_FLAG,
DISPLAY_ORDER) values (1, 101050, 10300, 1, 2);

9 Save your changes.

10 Restart your application and go to the page. Your new parameter should be
displayed.

Modifying the JSP

Your application should take into account the default menu style when the user logs in.
You need to code the processing that tests for the default style.

1 Edit logic_init.jsp and find the SKIN statement
(pdif.getCode().equals("SKIN")).

2 Add the following after the statement:

74 Developing User Interfaces

else if (pdif.getCode().equals("STYLE"))

{

 test = false;

 for (int j=0;j<chItem.length;j++)

 {

 if (chItem[j].isFilled())

 {

 test = true;

 item = chItem[j].getChoiceItem();

 String strValue = item.getLegacyValue();

 if (strValue != null && strValue.equals("txt=1"))

 {

 session.putValue("txt","1"); //'set session value if not already set

 }

 break;

 }

 }

 if (test == false)

 {

 session.removeValue("txt");

 }

} //end else if

3 Save your changes.

4 Edit framework_start.jsp and add the following before the statement if(
tmptxt != null && tmptxt.equals("1")) :
if(tmptxt == null)

{

 tmptxt = (String)session.getValue("txt");

}

5 To take changes into account when the user changes the setting, add the following
to logic_perso_data.jsp just after the if statement if
(pdif.getCode().equals("SKIN")):

 Working with Personalization Manager Channels 75

else if (pdif.getCode().equals("STYLE"))

{

 test = false;

 for (int j=0;j<chItem.length;j++)

 {

 if (chItem[j].isFilled())

 {

 test = true;

 item = chItem[j].getChoiceItem();

 String strValue = item.getLegacyValue();

 if (strValue != null && strValue.equals("txt=1"))

 {

 session.putValue("txt","1"); //'set session value if not already set

 }

 break;

 }

 }

 if (test == false)

 {

 session.removeValue("txt");

 }

} //end else if

6 Save your changes.

76 Developing User Interfaces

Modifying Menus
The MyWeb channel comes with a set of menus that you can configure.

The menu and its structure are located in the JSPF configuration file. This file contains
information on the:

! Item text The text displayed in the menu.
! Item action The action performed when a user clicks or otherwise activates a menu

option.
! Structure The different menu layers are configured using the natural hierarchy of

the JSPF configuration file's XML format.
! Authorized users Because it is declared in the JSPF configuration file, you can use

the security rules to create different menus for different roles all in the same
application.

You can:

! Add a menu item
! Modify a menu item
! Remove a menu item

This section includes an example of modifying the Search menu.

To add a menu item

1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

2 Edit MyWeb.xml.

3 Find the menu to modify.

4 Enter the menu item using the following syntax:
<menu name="MENU_NAME" funct="FUNCTIONAL.STEP" orgtypes="org_types" roles="authorized_roles">

 <string name="label">

 <value name="language_code">MenuItemText</value>

 <value name="language_code">MenuItemText</value>

 ...

 </string>

5 Save your changes.

To modify a menu item

1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

 Working with Personalization Manager Channels 77

2 Open MyWeb.xml.

3 Find the menu to modify.

4 Find the menu item to modify. You can change the following menu item attributes:

! funct the destination Functional Step when the menu item is activated

! orgtypes the organization types that use this menu

! roles the roles allowed to use this menu

! label the text to display

5 You can add, remove and modify the <value> elements. Use the syntax:
 <value name="language_code">MenuItemText</value>

6 Save your changes.

To remove a menu item

1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

2 Open MyWeb.xml.

3 Find the menu to modify.

4 Find the menu item to remove.

5 Delete the menu item and all of its value elements. The example below shows the
elements to remove to delete a menu item.

Menu name and
static label

<menu name="CONTRACT" funct="I_SUBSCRIBER.CONTRACT.LIST" orgtypes="" roles="">

 <string name="label">

 <value name="en">Contracts</value>

 <value name="fr">Contrats</value>

 </string>

</menu>

Entire menu item
you can select to
remove

 <menu name="VIEW" funct="I_SUBSCRIBER.CONTRACT.LIST" orgtypes="" roles="">

 <string name="label">

 <value name="en">Manage contracts</value>

 <value name="fr">Gérer les contrats</value>

 </string>

 </menu>

Another menu item <menu name="ADD" funct="I_SUBSCRIBER.CONTRACT.ADD" orgtypes="" roles="">

 <string name="label">

 <value name="en">Sign up for a new contract</value>

 <value name="fr">Souscrire un nouveau contrat</value>

 </string>

 </menu>

</menu>

6 Save your changes.

78 Developing User Interfaces

To modify the menu structure

1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

2 Open MyWeb.xml.

3 Find the menu to modify.

4 Find the menu item to modify.

5 Do one of the following:

! To move the item up one level, move the entire menu item and its elements up
one node.

! To move the item down one level, move the menu item and its elements down
one node.

6 Save your changes.

Example of Modifying Menus
This sample explains how to modify the search menu for a dealer. The example shows
how to add a menu, rename items, and reorganize the menu structure.

Adding a New Customer Menu
1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

2 Open MyWeb.xml.

3 Find the DEALER menu.

4 Before the CUSTOMER menu item, enter the following:
<menu name="NEWCUST" funct="DEALER.CUSTOMER.NEW" orgtypes="" roles="">

<string name="label">

 <value name="en">New Customer</value>

 <value name="fr">Nouveau Client</value>

 </string>

</menu>

5 Save your changes.

Removing the New Customer menu item
1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

2 Edit MyWeb.xml.

3 Find the DEALER menu.

 Working with Personalization Manager Channels 79

4 Remove the NEWCUST menu item:
<menu name="NEWCUST" funct="DEALER.CUSTOMER.NEW" orgtypes="" roles="">

 <string name="label">

 <value name="en">New customer</value>

 <value name="fr">Nouveau client</value>

 </string>

</menu>

Save your changes.

Renaming the Customer menu
1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

2 Edit MyWeb.xml.

3 Find the DEALER menu.

4 In the CUSTOMER menu, change the two <value> items to the following:
<value name="en">Search Customer</value>

<value name="fr">Chercher un Client</value>

5 Save your changes.

80 Developing User Interfaces

Creating a Workflow

Understanding Workflows
A workflow is a series of functional steps. A workflow usually begins with a menu and
ends with a done or confirmation page.

For example, one of the MyWeb workflows is:

1 View legal contact page

2 Modify legal contact page

3 Confirm modification page

4 Modification done page

A workflow can have several paths, depending on several factors (user's role, options
selected during the page flow, and so on.) Most of the time however, they all lead to the
same end page.

You use the following components to make a workflow:

! Functional Step
! Display Page
! Form Handler
! Logic Handler

 Working with Personalization Manager Channels 81

Using Functional Steps
A Functional Step is a step in a workflow. A functional step tells your application where
to go when certain conditions are met. To do this, the functional step calls a JSP.

The JSP can be a:

! Logic handler
! Display page

When calling the JSP, you can specify which to run first:

! A Form handler method called prior to executing the JSP display page
! A Logic handler method located in the JSP Logic handler

The name of a functional step is referred to as an ALIAS. This is because the functional
step does not contain a URL directly linking the functional step to a JSP. The functional
step alias is an element in the JSPF configuration file. This element contains
information such as the JSP to call, access rules, localization and so on.

Defining the Functional Steps

You must define the next possible steps of a functional step.

When you declare the next possible functional step, you define the alias using the
<redirect> tag.

Example of a Functional Step:
 <functionalstep name="I_SUBSCRIBER.CONTRACT.VIEW" url="contract_view.jsp" form="getContractAndServices">

 <redirect originalname="CHANGE_LINE_NUMBER" funct="DEALER.CONTRACT.CHANGE_LINE_NUMBER"/>

 <redirect originalname="UNASSIGN_CONTRACT" funct="B_CUSTADMIN_M.CONTRACT.UNASSIGN"/>

 <redirect originalname="SAVE_AS_TEMPLATE" funct="B_CUSTADMIN_M.CONTRACT.SAVE_TEMPLATE"/>

 <redirect originalname="CHANGE_CONTRACT_STATUS" funct="DEALER.CONTRACT.CHANGE_CONTRACT_STATUS"/>

 <redirect originalname="SERVICE_ADD" funct="I_SUBSCRIBER.CONTRACT.SERVICE.ADD"/>

 <redirect originalname="VIEW_SUBINVOICE" funct="I_SUBSCRIBER.CONTRACT_SUBINVOICE_SEARCH.LIST"/>

 <redirect originalname="BALANCE_VIEW" funct="I_SUBSCRIBER.CONTRACT.CREDIT_BALANCE.LIST_FIND"/>

 <redirect originalname="SERVICE_DETAIL" funct="I_SUBSCRIBER.CONTRACT.SERVICE.DETAIL"/>

 ...

</functionalstep>

82 Developing User Interfaces

Using a Functional Step in a Menu

You declare the functional step using the funct attribute of the menu element in the
JSPF configuration file.

For example, to specify the functional step called by the CONTRACT_VIEW menu item,
enter the following funct attribute:
 <menu name="CONTRACT.VIEW" funct="I_SUBSCRIBER.CONTRACT.VIEW" orgtypes="" roles="">

When the user clicks the CONTRACT_VIEW menu item, the calls the functional step
I_SUBSCRIBER.CONTRACT.VIEW.

Overriding the String Tags

When a display page is used in several workflows, you can change the title of the page
for the specific context. You use the string element to change the title within the
functional step.

For example, you use a display page to display the available rate plans for an existing
contract and to display rate plans when signing up for a new contract. The declarations
in the JSPF configuration file:
// The default title in the Display JSP

<jsp name="rateplan_change.jsp" authenticate="true" roles="GUEST;SUBSCRIBER">

 <string name="title">

 <value name="en">Change rate plan</value>

 <value name="fr">Changer le forfait du contrat</value>

 </string>

</jsp>

...

// Overriding the default name when calling the JSP from a functional step

<functionalstep name="GUEST.CUSTOMER.NEW.RATEPLAN_SELECT" url="rateplan_change.jsp�
form="getRateplanTypeFromContractType">

 <string name="title">

 <value name="en">New Customer Account - Rate plan</value>

 <value name="fr">Nouveau compte - Forfait</value>

 </string>

</functionalstep>

 Working with Personalization Manager Channels 83

Using Display Pages
A display page only displays information or forms to get user input.

Display pages can generate HTML pages (MyWeb), WML pages (MyWap), VoiceXML
pages (MyIvr), and so on.

You can also use a display page as a template to display the same object in different
contexts.

For example, you can have a display page listing members. It can be used in the
following pages:

! List members of a level
! Search members in an organization
! here the common part is the

Declaring the Display Page

You have to declare the display page in the JSPF configuration file.

You declare:

! Name of the JSP, Authentication, and access rules
! Forms and input constraints
! String localization

For example:
<jsp name="login.jsp" authenticate="false� roles=��>

 <form name="login">

 <input name="login" regexp=".*"/>

 <input name="password" regexp=".*"/>

 </form>

 <string name="title">

 <value name="en">Log in to Your Account</value>

 <value name="fr">Accédez à votre compte</value>

 </string>

 <string name="login_disabled">

 <value name="en">Your login has been disabled</value>

 <value name="fr">Votre login a été inactivé</value>

 </string>

</jsp>

84 Developing User Interfaces

Writing a Display Page

You create the JSP file in the directory of your channel. For example,
<home_dir>/channels/MyWeb for the MyWeb channel.

Your JSP must include the following:

! Declare JSPF variables
! Include the JSPF files
! Include the form handlers that manage the processing of data

Example of a display page:
<%-- declare JSP display page name --%>

<%! String strJSP = "JSPdisplaypagefilename";%>

<%-- include the framework jsp pages--%>

<%@ include file="../common/fwk/framework_start.jsp" %>

<%@ include file="../common/fwk/framework_head.jsp" %>

<%-- include file logic_helper.jsp if a form handler needs to use helper methods %>

<%@ include file="../common/logic_helper.jsp" %>

<%-- include all form handier pages needed %>

<%@ include file="../common/form_handler/getInfos.jsp" %>

<%-- write the HTML and java code to display information--%>

<%@ include file="../common/fwk/framework_tail.jsp" %>

<%@ include file="../common/fwk/framework_end.jsp" %>

Defining Display Page Access Rules

You can require to be authenticated to access a display page. You use the following to
restrict the access to a display page:

! authenticate attribute to determine if the user needs to be authenticated.
! roles attribute to set the authorized roles.

For example:
<jsp name="invoice_view.jsp" authenticate="true" roles="SUBSCRIBER;CUSTADMIN"/>

 Working with Personalization Manager Channels 85

Setting the Strings

The strings used by a display page are in the JSPF configuration file.

In the , the framework manages the title of your pages. The title is handled by
framework_head.jsp. You do not need to generate the HTML code for the title in
each display page.

When defining a display page, you define all of the labels and their localization the page
uses to display information:

For example,
<jsp name="rateplan_change.jsp" authenticate="true" roles="GUEST;SUBSCRIBER">

 <string name="title">

 <value name="en">Change rate plan</value>

 <value name="fr">Changer le forfait du contrat</value>

 </string>

 �

</jsp>

For more information about localizing and displaying strings in your application, refer to
Localizing Your Application in Developing Telco Service Manager.

Specifying Input Constraints

You can define a rule to specify the accepted values of each form field the user
submits. You use a regular expression to validate the input.

For example:
<jsp name=�logic_login.jsp" authenticate="false� roles=��>

 <form name="login">

 <input name="login" regexp=".*"/>

 <input name="password" regexp=".*"/>

 </form>

86 Developing User Interfaces

You must also call
jspHelper.getJSPConfiguration().checkForm(login,request) in your
form or logic handler to validate the input. For more information about this method, refer
to the JSPF Form and Logic Handler Reference.

For more information on regular expressions, refer to the Jakarta-ORO Java class
reference found at http://jakarta.apache.org/.

Calling Functional Steps in a JSP

You declare the next functional step in your display page. You can call:

! A logic handler method
! A display page with a form handler method
! A display page

Use several methods to generate an URL the JSPF can use. You use the functional
step's ALIASNAME to tell the JSPF which JSP is the next step of the workflow.

! To only generate an URL, you use:
jspHelper.getUrl("ALIASNAME")

For example, in a <form> tag in a display page.
! To generate an URL + the system parameters, you use:

jspHelper.encodeURLFunct(�ALIASNAME",null,false)

! To generate an URL + the system parameters + new parameters, you use:
Hashtable hashTableOfParameters; // fill the hashtable with
your parameters

jspHelper.encodeURLFunct(�ALIASNAME",hashTableOfParameters,fal
se)

You then test if a functional step is allowed for the current functional step:

jspHelper.isFunctionalStepValid ("ALIASNAME")

 Working with Personalization Manager Channels 87

Using Form Handlers
A JSP form handler is a JSP where is defined at least one form handler method. Others
methods could be present within the JSP form handler for local treatment needed by
the form handler method. You must use a form handler method to retrieve data to
prepare objects for JSP display page. A form handler method is always called by the
framework just before your code displaying the data.

A form handler must always be located in a JSP form handler and must be included in
the display page that uses it.

No security access definition on JSP form handlers and all the channel form handlers
are shared by all the channels.

The form handlers are located in
<install_dir>/channels/common/form_handler.

Declaring a Form Handler

A form handler is a JSP that contains one or more form handler methods.

Writing a Form Handler

To write your own form handler, you:

! Write the new JSP Form handler
! Import the required packages or classes

For example:
<%-- import all the needed java classes --%>

<%@ page import =
"com.netonomy.jfn.*,java.lang.reflect.*,java.util.*,java.net.*,com.netonomy.util.ComplexId,com.netonomy�"%>

<%-- declare each form handler method after this comment line--%>

No security access definitions are in JSP form handlers. Do not forget to include the
JSP form handler in the display page in order to call the form handler method.

88 Developing User Interfaces

Writing Form Handler Methods

You can write your own methods inside an existing JSP form handler or a new JSP
form handler. When writing your own form handler method, you must:

User the JSPF naming convention formHandler_<yourmethodname>

Use the standard parameters:

! HttpSession
! HttpServletRequest
! HttpServletResponse
! JFNJSPHelper
! Hashtable for results of the method
! Hastable for any errors that occur while processing the method

For example:
public void formHandler_Formhandlername (
 HttpSession session,
 HttpServletRequest request,
 HttpServletResponse response,
 JFNJspHelper jspHelper,
 Hashtable results,
 Hashtable errors) throws Throwable

{

//your processing code here

}

To prepare data for a JSP display page, you can:

! Fill the request attributes
! Set session parameters

Calling a Form Handler Method

You can call a form handler and a form handler method in a functional step. You use
the url attribute to specify the form handler and the form attribute to call the method.

For example:
<functionalstep name="GUEST.CUSTOMER.NEW.RATEPLAN_SELECT" url="rateplan_change.jsp�
form="getRateplanTypeFromContractType">

 <redirect originalname="CHANGE_RATEPLAN" funct="GUEST.CUSTOMER.NEW.CREATE_MEMBER"/>

 <redirect originalname="NEXT_STEP" funct="GUEST.CUSTOMER.NEW.CREATE_MEMBER"/>

 <string name="title">

 <value name="en">New Customer Account - Rate plan</value>

 <value name="fr">Nouveau compte - Forfait</value>

 </string>

</functionalstep>

 Working with Personalization Manager Channels 89

When calling form handler methods using functional steps, you need to make sure the
method is located in the form handler. In the example, the form handler method
getRateplanTypeFromContractType is declared in the rateplan_change.jsp
display page.

<%@ include file="../common/form_handler/getRateplan.jsp" %>

Using Logic Handlers
You must use a logic handler method when you need to carry out processing, redirect
the user depending on the result of processing or both.

When working with logic handlers, keep in mind:

! A logic handler method is similar to a servlet
! A logic handler method does not generate GUI elements
! A logic handler method is located in a logic handler JSP

Declaring a Logic Handler

A logic handler is a JSP with one or more logic handler methods.

You can require to be authenticated to access a display page or logic handler. You use
the following to restrict the access to a display page:

! authenticate attribute to determine if the user needs to be authenticated.
! roles attribute to set the authorized roles.

For example:
<jsp name="logic_dispatcher.jsp" authenticate="true" roles="SUBSCRIBER;CUSTADMIN"/>

Writing a Logic Handler

To write your own logic handler, you:

! Write the new JSP Logic handler
! Import the required packages and classes
! Include the required JSPF files
! framework_start.jsp

! framework_end.jsp

90 Developing User Interfaces

For example:
<%-- import all the needed java classes --%>

<%@ page import =
"com.netonomy.jfn.*,java.lang.reflect.*,java.util.*,java.net.*,com.netonomy.util.ComplexId,com�." %>

<%-- declare JSP logic handler name --%>

<%! String strJSP = "JSPlogichandlerfilename";%>

<%-- include file logic_helper.jsp if you need to use helper method when writing a logic handler --%>

<%@ include file="../common/logic_helper.jsp" %>

<%-- declare each logic handler method after this comment line--%>

<%-- include these 2 files in order to use the JSP exception mechanism in case of java exception --%>

<%@ include file="../common/fwk/framework_start.jsp" %>

<%@ include file="../common/fwk/framework_end.jsp" %>

From a logic handler you can call:

! A logic handler method
! A JSP Display page with a form handler method
! A JSP Display page

Writing Logic Handler Methods

You can write your own methods inside an existing logic handler or a new logic handler.
When writing your own logic handler method, you must:

! Use the JSPF naming convention logicHandler_<yourmethodname>
! Use the standard parameters:
! HttpSession

! HttpServletRequest

! HttpServletResponse

! JFNJSPHelper

! Hastable for any errors that occur while processing the method

For example:
public void logic_Logichandlername (
 HttpSession session,
 HttpServletRequest request,
 HttpServletResponse response,
 JFNJspHelper jspHelper,
 Hashtable errors) throws Throwable

{

}

 Working with Personalization Manager Channels 91

Calling a Logic Handler Method

You can call a logic handler and a logic handler method in a functional step. You use
the url attribute to specify the logic handler and the logic attribute to call the method.

For example:
<functionalstep name="GUEST.CUSTOMER.NEW.DO_LEGAL_CONTACT" url="logic_contact.jsp" logic="setLegalContact">

 <redirect originalname="ON_OK" funct="GUEST.CUSTOMER.NEW.BILLING_CONTACT_CHANGE"/>

</functionalstep>

When calling logic handler methods using functional steps, you need to make sure the
method is located in the logic handler. In the example, the logic handler method
setLegalContact is declared in the JSP logic handler logic_contact.jsp.

92 Developing User Interfaces

Calling the Next Functional Step

To call the next functional step you want to go use the corresponding alias:

request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage
(�ALIASNAME")).forward(request, response);

Test if a functional step is allowed for the current functional step:

jspHelper.isFunctionalStepValid ("ALIASNAME")

For example:
public void logic_setRoles (HttpSession session,

 HttpServletRequest request,

 HttpServletResponse response,

 JFNJspHelper jspHelper,

 Hashtable errors

) throws Throwable

{

UserF member = jspHelper.getUser ();

jspHelper.doNotSend ("roles");

//' Gets all the roles selected

ObjectId[] ids = ObjectId.instantiate (request.getParameterValues("roles"));

if (ids==null)

{

 Hashtable FW_urlParameters = new Hashtable ();

 FW_urlParameters.put ("title", jspHelper.localize("form_entry_error_title","default"));

 FW_urlParameters.put ("section", jspHelper.localize("form_entry_error_section","default"));

 FW_urlParameters.put ("message", jspHelper.localize("select_a_role","default"));

 response.sendRedirect (jspHelper.encodeURLFunct ("GLOBAL.MESSAGE", FW_urlParameters, true));

 jspHelper.exitJSP();

 }

RoleIF[] roles = new RoleIF[ids.length];

for (int i=0;i<ids.length;i++)

{

 roles[i]=ObjectRefMgr.getRole (ids[i]);

}

member.doModifyLogin (null, roles);

request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage ("ON_OK")).forward(request, response);

}

 Working with Personalization Manager Channels 93

After calling the next functional step, your logic handler should not execute any other
code.

You can redirect a specific functional step inside your function by using
request.getRequestDispatcher. If you do, make sure to include a return
(return;).

Passing Data From One Page to Another

Preparing Data in a Form or Logic Handler

You can use the request.setAttribute ("NAME", VALUE) function to pass data
between pages in the same client request.

The data passed using this method exist only during the life span of the current request
and is destroyed afterwards.

Use request.getAttribute ("NAME") to retrieve the data in the next page.

For example, in the logic/form handler, you enter:

ContractF []contracts = ContractF.findContract(Filter);

Request.setAttribute ("contracts_to_display",contracts);

In the next page:

displayContracts = (ContractF[]) request.getAttribute
("contracts_to_display");

94 Developing User Interfaces

Preventing Propagation of an HTTP Parameter

The JSPF automatically propagates HTTP parameters between pages.

If you do not want to automatically propagate an HTTP parameter, use the method:

jspHelper.doNotSend (String paramName)

An example:
...

 //' Create a new BLM session

 blmSession = new SessionF ();

 //' Add the BLM session to the session manager

 blmSession.add();

 //' Authenticate the user

 blnAuthenticate = blmSession.authenticate(request.getParameter("login"),

 request.getParameter("password"));

 jspHelper.doNotSend ("login");

 jspHelper.doNotSend ("password");

...

Propagate HTTP Parameter from a Display Page

To propagate HTTP parameters to the next functional step, you can use the:

! FORM (HTTP method POST) element when using HTML forms
! A (HTTP method GET) element when using HTML links

Example of using HTML forms:
<form action="<%=jspHelper.getUrl("MODIFY_CONTACT")%>" method=�post">

 <%=jspHelper.generateAllParametersAsHiddenFields ()%>

 <input type="submit" value="<%=jspHelper.localize
("contact_change_confirm_button","default_text")%>">

 �

</form>

 Working with Personalization Manager Channels 95

In this example, generateAllParametersAsHiddenFields() generates <input
type="hidden" �> for each parameter including system parameters.

Example of using HTML links
<a href="<%=jspHelper.encodeURLFunct(�MODIFY_CONTACT ", hashTableOfParameters, false) %>">

<%=jspHelper.localize (" MODIFY_CONTACT ")%>

In this example, encodeURLFunct("MODIFY_CONTACT",
hashTableOfParameters,false) generates the URL followed by the system
parameters and the added parameters hashTableOfParameters.

Propagate a New Parameter

In a workflow, if you want a logic handler to make parameters available for
generateAllNonSystemHiddenFields() or
generateAllParametersAsHiddenFields() methods, use:

jspHelper.doSend (String paramName, String value)

Sample Documented Workflow
Here is the workflow to allow a residential subscriber to view and modify the legal
contact:

1 Call the page flow from a menu item

2 Display the actual values

3 Prompt the user to modify the actual values and enter new values

4 Ask to confirm the value changed by the user

5 Display the submission report

96 Developing User Interfaces

Diagram of the Documented Workflow

T

T

Account
Legal Contact
Billing Contact

I_SUBSCRIBER.INFO.LEGAL_CONTACT

getOrgLegalContact

contact_view.jsp

MODIFY_CONTACT

getOrgLegalContact

contact_change.jsp

I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE

MODIFY_CONTACT
I_SUBSCRIBER.INFO.LEGAL_CONTACT_CONFIRM

getOrgLegalContact

contact_change_confirm.jsp

I_SUBSCRIBER.INFO.LEGAL_CONTACT_DONE

logic_contact.jsp

setOrgLegalContact

MODIFY_CONTACT

I_SUBSCRIBER.INFO.LEGAL_CONTACT_DONE

action_done.jsp

ON_OK

FS1

FS2

FS3

FS4

FS5

Define Functional Step for LEGAL_CONTACT Menu Item

To specify which functional step is called by the LEGAL_CONTACT menu item, set the
funct attribute to I_SUBSCRIBER.INFO.LEGAL_CONTACT:

 <menu name="LEGAL_CONTACT"
funct="I_SUBSCRIBER.INFO.LEGAL_CONTACT" orgtypes="" roles="">

When the user clicks on the menu item, the framework calls the
I_SUBSCRIBER.INFO.LEGAL_CONTACT functional step.

 Working with Personalization Manager Channels 97

Functional Step FS1

Define the I_SUBSCRIBER.INFO.LEGAL_CONTACT functional step:
<functionalstep name="I_SUBSCRIBER.INFO.LEGAL_CONTACT�

 url="contact_view.jsp" form="getOrgLegalContact">

 <redirect originalname="MODIFY_CONTACT" funct="I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE"/>

 <string name="title">

 <value name="en">Legal contact</value>

 <value name="fr">Contact légal</value>

 </string>

</functionalstep>

In the contact_view.jsp page, call the MODIFY_CONTACT alias only if the
corresponding functional step I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE is
allowed for the user role:
if (jspHelper.isFunctionalStepValid ("MODIFY_CONTACT")) {

 %>

 <a href="<%=jspHelper.encodeURLFunct("MODIFY_CONTACT",null,false)%>">

 <%=jspHelper.localize ("contact_view_modify_button","default_text")%>

 <%

}

Functional Step FS2

Define the I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE functional step:
<functionalstep name="I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE" url="contact_change.jsp"
form="getOrgLegalContact">

 <redirect originalname="MODIFY_CONTACT" funct="I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE_CONFIRM"/>

 <string name="title">

 <value name="en">Change legal contact</value>

 <value name="fr">Changement de contact légal</value>

 </string>

</functionalstep>

In the contact_change.jsp page, set the action attribute of the form to
MODIFY_CONTACT:
<form name="Contact" action="<%=jspHelper.encodeURLFunct("MODIFY_CONTACT",null,false)%>" method="post">

98 Developing User Interfaces

Functional Step FS3

Define the I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE_CONFIRM functional
step:
<functionalstep name="I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE_CONFIRM" url="contact_change_confirm.jsp"
form="getOrgLegalContact">

 <redirect originalname="MODIFY_CONTACT" funct="I_SUBSCRIBER.INFO.LOGIC_LEGAL_CONTACT_CHANGE_DONE"/>

 <string name="title">

 <value name="en">Please confirm service address information change</value>

 <value name="fr">Confirmez le changement de contact légal</value>

 </string>

</functionalstep>

In the contact_change_confirm.jsp page, set the action attribute of the form to
MODIFY_CONTACT and keep all the parameters of the previous page hidden in the
form:
<form action="<%=jspHelper.getUrl("MODIFY_CONTACT")%>" method="post">

 <%=jspHelper.generateAllParametersAsHiddenFields ()%>

 <input type="submit" value="<%=jspHelper.localize
("contact_change_confirm_button","default_text")%>">

 �

</form>

Functional Step FS4

Define the I_SUBSCRIBER.INFO.LOGIC_LEGAL_CONTACT_CHANGE_DONE functional
step:
 <functionalstep name="I_SUBSCRIBER.INFO.LOGIC_LEGAL_CONTACT_CHANGE_DONE" url="logic_contact.jsp"
logic="setOrgLegalContact">

 </functionalstep>

 <redirect originalname="ON_OK" funct="I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE_DONE"/>

 Working with Personalization Manager Channels 99

In the setOrgLegalContact logic handler method of the logic_contact.jsplogic
handler, do not automatically send the parameters to next functional step. So on the
next call to jspHelper.generateAllParametersAsHiddenFields(), the
parameters will not be generated as hidden.
jspHelper.doNotSend ("company_name"); jspHelper.doNotSend ("first_name"); jspHelper.doNotSend ("last_name");

jspHelper.doNotSend ("sex"); jspHelper.doNotSend ("title");

jspHelper.doNotSend ("home_number"); jspHelper.doNotSend ("home_street");

jspHelper.doNotSend ("home_zip"); jspHelper.doNotSend ("home_city");

jspHelper.doNotSend ("home_state"); jspHelper.doNotSend ("home_country");

jspHelper.doNotSend ("home_phone"); jspHelper.doNotSend ("fax"); jspHelper.doNotSend ("email");

//Call the next functional step using its alias ON_OK

 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage ("ON_OK")).forward(request, response);

Functional Step FS5

Define the functional step:
<functionalstep name="I_SUBSCRIBER.INFO.LEGAL_CONTACT_CHANGE_DONE" url="action_done.jsp">

 <string name="title">

 <value name="en">Submission of change legal address</value>

 <value name="fr">Soumisison du changement d'adresse légale</value>

 </string>

 <string name="action_done_heading">

 <value name="en">Your legal address </value>

 <value name="fr">Votre adresse légale </value>

 </string>

</functionalstep>

There is no next page in the workflow, even if the done page allows the user to go to
another page as referenced in the configuration file. The display page displays a button
which redirects the user to the home page.

100 Developing User Interfaces

Working with New JSPF JSPs

Writing a JSP
Every JSP file you want to use in the Personalization Manager channels must include
certain elements and follow certain rules.

The rules of using the JSPF in your JSPs:

1 Declare variables

2 Include the files

3 Include the form handlers that manage the processing of form data

4 Use JSPF implicit objects

5 Manage JSP workflow and menus

Declaring JSPF variables

When you code a JSP to use the JSPF, you must declare the following variables:

! String strJSP = �pagename.jsp�
! Menu variables:
! String selectedTopbar = null

! String selectedMenu = null

! String selectedSubmenu = ""

If you do not use the functional step feature, set these menu variables to the menu
names.

Including the JSPF JSPs

Include the following framework files:

! In the JSP Header:
<%@ include file="../common/fwk/framework_start.jsp" %>

<%@ include file="../common/fwk/framework_head.jsp" %>

! In the JSP Footer:
<%@ include file="../common/fwk/framework_tail.jsp" %>

<%@ include file="../common/fwk/framework_end.jsp" %>

 101

Managing form internal JSPF objects

Managing form internal JSPF objects

Every form managed by a JSP can provide a form handler that is automatically called
by the framework engine.

In the JSP Header, include the form handlers:

! <%@ include file="../common/form_handler/setContact.jsp" %>

Managing internal JSPF objects

Managing internal JSPF objects

Include the formhandlers you want to use to manage the data and context of the page
along with the following objects:

! session - the HTTP session
! blmSession - the BLM session
! currentJsp - the current JSP
! jspHelper - class that contains JSPF methods
! errors - the errors repository
! results - the results repository

Modifying the JSPs
According to your needs, you may need to customize the JSPs. Customizing the JSPs
involves:

! Adding a JSP
! Removing a JSP

Adding a JSP to a channel application

Adding a JSP to a TSM application involves:

! Writing a JSP for the JSPF
! Adding the JSP to the JSPF configuration file
! Adding the JSP to the form_handlers
! Adding the JSP to menus
! Adding the JSP to the functional step

102 Developing User Interfaces

Removing a JSP

Removing a JSP involves:

! Removing the JSP for the JSPF
! Removing the JSP from the JSPF configuration file
! Removing the JSP from the form_handlers
! Removing the JSP from menus
! Removing the JSP from the functional step

Examples of a JSPF JSP
The following JSPs are examples of JSPs that use the JSPF for form handling, variable
declaration, authentication, etc.

This JSP is a commented template of a JSP, and contains the basic JSP code for
forms.

TEMPLATE FOR FRAMEWORK.JSP

Declaration of variables and
inclusion of framework files.

<%!

// JSPF Page Constants

String strJSP = "contact_change.jsp";

// JSPF Menu Constants

// To use the FunctionalStep feature, set these constants to null

String selectedTopbar = null;

String selectedMenu = null;

String selectedSubmenu = "";

%>

<%-- JSPF Includes

 These JSPs contain the HTML used to build the JSPF --%>

<%@ include file="fwk/framework_start.jsp" %>

<%@ include file="fwk/framework_head.jsp" %>

Form Handler includes <%-- JSPF Form Handler Includes

 These JSPs contain the form handlers and Java code that interacts with the BLM -
-%>

<%@ include file="form_handler/getContact.jsp" %>

<%@ include file="form_handler/createCustomer.jsp" %>

<%@ include file="form_handler/setContact.jsp" %>

<%@ include file="form_handler/addMember.jsp" %>

Beginning of HTML code <%-- Application Workspace Code START --%>

<html>

<head>

 <title></title>

 <link rel="stylesheet" href="<%= PATH_WWW %>styles.css" type="text/css">

</head>

 Working with Personalization Manager Channels 103

TEMPLATE FOR FRAMEWORK.JSP
Body of HTML code <body>

Your HTML code goes here. You can look into the objErrors and objResults for
information

reported by a form handler. Starting from here, you should avoid any processing and

just read variables. Do not forget to localize your texts by using objXMLjsp.localize
().

For example, if the configuration for this JSP contains:

<string name="Z">

 <value name="en">Cake</value>

 <value name="fr">Gâteau</value>

</string>

You would use:

<%= objHelper.localize ("Z", "Default String for Z") %>

Declaring forms Your forms must be declared as follows:

<form action="<%=objHelper.encodeURLFunct("MODIFY_CONTACT",null,false)%>"
method="post">

<div class="listAText"><%=localize(request,"contact_change_message","default_t
ext")%></div>

You may call a form from an hyperlink. Use a java script function to avoid the GET
method. The java script

function may set the value of some of the input elements before submitting it :

link to a form

</body>

</html>

Setting the value of form
inputs

<%

<td class="mandatoryItemText"><%=localize(request,"company_name_field","defau
lt_text")%>: </td>

 <td class="listAText"><input type="text" name="company_name" value="<%=
objHelper.nonNullString(objContact.getCompanyName()) %>"></td>}

%>

End of HTML code <%-- Application Workspace Code END --%>

Inclusion of
framework_end.jsp

<%@ include file="fwk/framework_tail.jsp" %>

<%@ include file="fwk/framework_end.jsp" %>

<%-- end-of-page --%>

104 Developing User Interfaces

Reloading JSPF Configuration
Information

When the application server starts, the JSPF configuration file is loaded into memory.
Once this file is loaded, changes made to this file are not taken into account. This
presents a problem because when you develop a TSM application, you often have to
modify the contents of this file.

In order to keep you from having to stop and restart your application server every time
you modify this file, you can use a special JSP. The framework_appreset.jsp JSP
reloads the JSPF configuration file. This file is located in
<home_dir>/channels/common/fwk.

This JSP is for development purposes only and should not be used in production
environments.

To reload the JSPF configuration file

Run the framework_appreset.jsp. When called, this JSP reloads the JSPF
configuration file.

The full path of the JSPF configuration file must be declared in the
jfnApplication.properties. If you use res:/ for paths, this JSP does not work.

 105

Index

A
Authentication

in JSP declaration � 33

C
Channels

about � 15
adding � 66
contents � 63, 64, 65
customizing � 58, 68
IVR Channel � 21, 22
JSPs � 63
menus � 64, 65
WAP channel � 20, 21
Web channel � 15, 16, 18
workflows � 65

CID (Customer Interaction Datastore)
adding sample data � 61
removing sample data � 61

cidAdminTool Administration Tool
create_demo_cid_test command � 61
drop_demo_cid_structure command � 61

D
Display Pages

about � 52, 83
and the JSPF � 50, 52, 83
declaring � 83
defining access to � 84
Display Pages - using � 83, 84
functional steps � 86
strings � 82, 85

F
Form Handler JSPs

about � 54, 87
calling methods � 88
declaring � 87
location � 87
passing data � 93, 94, 95
writing � 87, 88

framework_head.jsp Framework JSP

about � 50
location � 50
using � 51

framework_menuend.jsp Framework JSP
about � 50
location � 50

framework_menustart.jsp Framework JSP
about � 50
location � 50

framework_start.jsp Framework JSP
about � 50
location � 50
using � 51

framework_tail.jsp Framework JSP
about � 50
location � 50

Functional Steps
about � 41, 80
declaring in the JSPF � 41, 42, 43
example � 43, 95, 96, 97, 98, 99
in menus � 82
redirects � 42, 81, 86, 92
strings � 43, 82
using � 81

H
Help

technical support � ix

J
JSPF

106 Developing User Interfaces

about � 26
channels � 14, 15
components � 27
display pages � 52, 83
features � 26
form handler JSPs � 54, 87, 88
Framework JSPs � 49, 50, 51, 52
JSP programming � 33, 34, 35, 101
location � 27
logic handler JSPs � 56, 89, 90, 91, 92
mandatory includes � 100
reloading configuration file � 104
removing JSPs � 102
sample JSP � 102
variables � 100

JSPF Configuration File
about � 30
contents � 30, 33, 36, 41
form settings � 34
functional steps � 41, 42, 43
JSP page declarations � 33, 34, 35, 83,

87, 89
menus � 36, 37, 38, 39
reloading � 104
string settings � 34, 37, 43

jfnApplication.properties Configuration File
about � 27, 28
and channels � 16, 21, 22, 30, 63, 66
location � 28
using � 28, 66

JSPF Classes
about � 48
jar file � 48

JSP
adding to JSPF � 100, 101
and the JSPF � 33, 34, 35
channels � 63
declaring in JSPF configuration file � 33,

34, 35, 100
example � 102
form settings � 34
framework JSPs � 50, 51, 102
JSPF variables � 100
JSP - mandatory includes � 100, 101
removing from JSPF � 102

L
Languages

localizing � 34
Logic Handler JSPs

about � 56, 89
calling functional steps from � 92
declaring � 89
location � 89
passing data � 93, 94, 95
writing � 89, 90, 91

M
Media

adding � 66
and channels � 66

Menus
about � 36, 64
contents � 36, 64
customizing � 76, 77, 78, 79
declaring � 37, 39
IVR channel � 65
strings � 37
structure � 38, 76, 77, 78
WAP channel � 65
Web channel � 64

MyIVR Channel
about � 21
contents � 21
customizing � 58
features � 22
location � 22
menus � 65

MyWAP Channel
about � 20
contents � 20
customizing � 58
features � 21
location � 21
menus � 65

MyWeb Channel
about � 15
contents � 15
customizing � 58
display options � 18, 19, 20
features � 16
location � 16
menus � 64

MyWeb.xml Configuration File
about � 30
location � 30
using � 30, 33, 36, 41

P
Parameters

 Index 107

about � 68
adding � 69
examples � 72
groups � 71
in the CID � 68
localizing � 70
values � 69, 70

Personalization Data
adding to channel � 68, 69
association between values and

parameter � 70
default values � 69, 70
example � 72, 73
in the CID � 69, 70
localizing � 70
parameter groups � 71

Personalization Manager
about � 14
channels � 15
components � 14
sample data � 59, 61

R
Roles

in JSP declaration � 33

S
Sample Data

about � 59, 61
contents � 59, 60
inserting into CID � 61
reference � 59
removing from CID � 61
Sample Data - services � 59
users � 60

W
Workflows

about � 41
and Functional Steps � 41
declaring in the JSPF � 41, 42, 43
example � 43, 95, 96, 97, 98, 99
redirects � 42, 81, 86, 92
strings � 43, 82

	Preface
	Using this Manual
	Before You Get Started
	Who Should Read this Manual
	How this Manual is Organized
	What Typographical Changes and Symbols Mean
	Finding the Information You Need
	If You Need Help
	Overview of Developing User Interfaces
	About User Interfaces and the Personalization Manager
	About the Personalization Manager Channels
	MyWeb Channel
	Contents of the Channel
	Location of the Channel
	MyWeb Channel Features
	Graphical Charts
	Guest Graphical Chart
	Normal Graphical Chart
	Simple Graphical Chart

	MyWAP Channel
	Contents of the Channel
	Location of the Channel
	MyWAP Channel Features

	MyIVR Channel
	Contents of the Channel
	Location of the Channel
	MyIVR Channel Features

	About Developing User Interfaces

	Understanding the JSPF
	Overview of the JSPF
	Features of the JSPF
	JSPF Components

	About the JSPF Properties file
	About the JSPF Configuration File
	Application Properties Settings
	JSP Declarations and Properties
	JSP Information and Access Rules
	Form Information and Input Constraints
	String Localization
	Example of a JSP Declaration

	Application Menu Settings
	Menu Declaration
	Menu String Localization
	Menu Structure
	Example of a Menu Declaration

	Specifying Workflows
	Declaring the Functional Step
	Declaring the Functional Step Redirects
	Declaring Functional Step String Localization
	Example of a Functional Step
	Workflows for Guest Users

	Application Properties Settings

	About the JSPF Classes
	About the Framework JSPs
	Application Framework JSPs
	framework_start.jsp and framework_end.jsp
	framework_head.jsp and framework_tail.jsp
	event zone

	Graphical Chart
	Form Handlers
	Logic Handlers

	Working with Personalization Manager Channels
	About Working with Channels
	About the Sample Data
	Contents of the Sample Data
	Reference Data
	Product Catalog Data
	User and Associated Customer/Dealer/CSR Information

	Creating the CID Database
	
	To create the CID with system and sample data
	To remove the CID

	About the Contents of a Channel
	Channel JSPs
	Channel Menus
	MyWeb Channel Menus
	MyWAP Channel Menus
	MyIVR Channel Menus

	Channel Functional Steps

	Adding a New Channel
	Declaring the Channel Media
	Example of Creating Support of a New Channel

	Adding New Personalization Data
	Adding Parameters to the CID
	
	To insert a parameter
	To set the values of the parameter
	To define the association between values and the parameter
	To set the default values
	To localize the parameter and its values

	Associating a Parameter with a Parameter Group
	To associate the parameter

	Example of Adding A New Parameter
	Adding a Parameter
	Modifying the JSP

	Modifying Menus
	
	
	To add a menu item
	To modify a menu item
	To remove a menu item
	To modify the menu structure

	Example of Modifying Menus
	Adding a New Customer Menu
	Removing the New Customer menu item
	Renaming the Customer menu

	Creating a Workflow
	Understanding Workflows
	Using Functional Steps
	Defining the Functional Steps
	Using a Functional Step in a Menu
	Overriding the String Tags

	Using Display Pages
	Declaring the Display Page
	Writing a Display Page
	Defining Display Page Access Rules
	Setting the Strings
	Specifying Input Constraints
	Calling Functional Steps in a JSP

	Using Form Handlers
	Declaring a Form Handler
	Writing a Form Handler
	Writing Form Handler Methods
	Calling a Form Handler Method

	Using Logic Handlers
	Declaring a Logic Handler
	Writing a Logic Handler
	Writing Logic Handler Methods
	Calling a Logic Handler Method
	Calling the Next Functional Step

	Passing Data From One Page to Another
	Preparing Data in a Form or Logic Handler
	Preventing Propagation of an HTTP Parameter
	Propagate HTTP Parameter from a Display Page
	Propagate a New Parameter

	Sample Documented Workflow
	Diagram of the Documented Workflow
	Define Functional Step for LEGAL_CONTACT Menu Item
	Functional Step FS1
	Functional Step FS2
	Functional Step FS3
	Functional Step FS4
	Functional Step FS5

	Working with New JSPF JSPs
	Writing a JSP
	Declaring JSPF variables
	Including the JSPF JSPs
	Managing form internal JSPF objects
	Managing internal JSPF objects

	Modifying the JSPs
	Adding a JSP to a channel application
	Removing a JSP

	Examples of a JSPF JSP

	Reloading JSPF Configuration Information
	
	
	To reload the JSPF configuration file

	Index

