

Developing Connectors

V4.2
Document ID: TMGN-07-4.2-01

Date Published: 3.5.04

 1997−2004 edocs Inc. All rights reserved.

edocs, Inc., One Apple Hill Dr., Natick, MA 01760

The information contained in this document is the confidential and proprietary information of
edocs, Inc. and is subject to change without notice.

This material is protected by U.S. and international copyright laws. edocs and eaPost are
registered in the U.S. Patent and Trademark Office.

No part of this publication may be reproduced or transmitted in any form or by any means
without the prior written permission of edocs, Inc.

eaSuite, eaDirect, eaPay, eaCare, eaAssist, eaMarket, and eaXchange are trademarks of edocs,
Inc.

All other trademark, company, and product names used herein are trademarks of their respective
companies.

Printed in the USA.

Preface

In This Section

Using this Manual.. iv
Finding the Information You Need .. xi
If You Need Help... xv

 iv

Using this Manual
Welcome to Developing Connectors.

This manual helps you understand the integration architecture and how your solution
can work with today�s market-leading OSS software.

 Preface v

Before You Get Started
You should be familiar with the following:

! Your application architecture
! Programming in Java
! Designing or working with databases
! eXtended Markup Language (XML)
! Your OSS

vi Developing Connectors

Who Should Read this Manual
This manual is for developers and project managers who are responsible for
configuring and developing connectors which allow you solution to exchange data with
OSS.

However, there are other topics covered in this manual that may interest other
members of the project development team.

! Administrators
You will find information about running and managing connectors in this manual.
You will also find detailed information about how the solution exchanges
information with backend systems. This will help you not only understand the
application architecture, but help you quickly pinpoint problems that may occur
when communication between your solution and the OSS breaks down.

! Developers
You will find everything you need to know in order to build, generate and run
connectors. This manual contains instructions on how to use the Integration Logic
Studio you use to build connectors quickly and easily. It also shows you how to
generate the runtime files then launch the connector. If your solution requires
customized data structures, you also can read about using the Message Schema
Reference. This part of the connector describes the structure of messages which
carry the data exchanged between your solution and the back end.

! Project Architect
You can use the information in this manual to learn about connectors and how they
exchange information with the backend. You will find information about the way the
connector works and how you can use them to integrate data from the backend.
There is also a section covering integration scenarios.

! Project Manager
You will find information about connectors and the different tools used to create and
run them. You will find information about how your solution uses connectors and
how they exchange messages. You may also find the section about the Message
Schema Reference of interest as this section deals with the structure and
customization of the messages used to exchange data with the backend.

 Preface vii

How this Manual is Organized
This manual contains the following chapters:

! Overview of Integrating Account Applications
This chapter covers the fundamentals of integrating an TSM solution.

It contains information about:

! Essential concepts

! Components

! Integration strategies

! Installing the SmartLink (ISF)
This chapter covers installing the SmartLink (ISF).

It contains information about installing:

! SmartLink (ISF) components

! Integration Logic Studio

! Before You Start

This chapter covers what you need to know before you start building connectors.

It contains information about:

! Basic concepts of the SmartLink (ISF)

! Connector components

! Connector files

! Selecting the connector to build

! Designing Your Connector

This chapter covers how to design your connector.

It contains information about:

! The basics of each connector type

! How to create a connector from one of the templates.

viii Developing Connectors

! Building Your Connector

This chapter covers using the Integration Logic Studio (ILS).

It contains information about using the ILS to create and configure the components
of a connector:

! Integration processes

! Processors

! Scripts

! Macros

! Extensions

! Parameters

! Working With Connector Extensions

This chapter covers working with connector extensions in the ILS.

It contains information about:

! Creating custom components

! Using custom components

! Working With the SmartLink (ISF) Message Cache
This chapter covers working with the Message Cache.

It contains information about:

! Saving messages in the cache

! Extracting messages from the cache

! Working With the Message Schema Reference

This chapter covers working with the Message Schema Reference.

It contains information about:

! Adding messages

! Customizing messages

! Working with the Schema Reference tool

! Generating the Message Schema Reference files

 Preface ix

! Generating Your Connector
This chapter covers generating the runtime files of your connector.

It contains information about:

! Using the ILS to generate the runtime files

! Using the command line tool to generate runtime files

! Running Your Connector

This chapter covers running the connector.

It contains information about:

! Specifying processing priorities

! Starting and stopping connectors

! Administrating connectors

! SmartLink (ISF) Tool Reference
This appendix is a tool reference guide. It covers the location, configuration and use
of the administration tools.

The administration tools covered include:

! Synchronizer connector tools

! OSS connector tools

! Approval Sequencer tools

! Core Messages

This appendix lists available core messages.
! Core Business Objects

This appendix lists the Business Objects which support additional parameters.

x Developing Connectors

What Typographical Changes and Symbols Mean
This manual uses the following conventions:

TYPEFACE MEANING EXAMPLE

Italics Manuals, topics or other
important items

Refer to Developing
Connectors.

Small Capitals Software and Component
names

Your application uses a
database called the CID.

Fixed Width File names, commands,
paths, and on screen
commands

Go to //home/my file

 Preface xi

Obtaining edocs Software and Documentation
You can download edocs software and documentation directly from Customer Central
at https://support.edocs.com. After you log in, click on the Downloads button on the left.
When the next page appears, you will see a table displaying all of the available
downloads. To search for specific items, select the Version and/or Category and click
the Search Downloads button. If you download software, an email from edocs
Technical Support will automatically be sent to you (the registered owner) with your
license key information.

If you received an edocs product installation CD, load it on your system and navigate
from its root directory to the folder where the software installer resides for your
operating system. You can run the installer from that location, or you can copy it to
your file system and run it from there. The product documentation included with your
CD is in the Documentation folder located in the root directory. The license key
information for the products on the CD is included with the package materials shipped
with the CD.

xii Developing Connectors

Finding the Information You Need
The product suite comes with comprehensive documentation set that covers all
aspects of building solutions based on the edocs Telco Service & Analytics Manager.
You should always read the release bulletin for late-breaking information.

Getting Started

If you are new to the edocs Telco Solutions, you should start by reading Introducing
Telco Service & Analytics Manager Applications. This manual contains an overview of
the various components along with the applications and their features. It introduces
various concepts and components you must be familiar with before moving on to more
specific documentation. Once you have finished, you can read the manual which
covers different aspects of working with the application. At the beginning of each
manual, you will find an introductory chapter which covers concepts and tasks.

Designing Your Solution

While reading Introducing Telco Service & Analytics Manager Applications, you should
think about how the different components can address your solution's needs.

You can refer to Developing Telco Service Manager (TSM) for information about
extending the object model, application security, and other design issues. The CID
Reference Guide also gives you the information about how the information in your
solution is managed and stored.

You can refer to Developing Telco Analytics Manager (TAM) for information about
customizing the database, synchronizing data with TSM, loading data from external
invoice files, and other design issues. The CBU Reference Guide also gives you the
information about how the information in your solution is managed and stored. You
should also read the section on integrating TAM with TSM in Developing Telco
Analytics Manager (TAM).

You can also read the introduction of Developing Connectors for information about
integrating your solution.

Installing Telco Service & Analytics Manager Applications

You should start by reading the Release Bulletin. For detailed installation and
configuring information, refer to Installing Telco Service & Analytics Manager
Applications. This manual covers installing applications on one or more computers. It
also contains the information you need to configure the different components you
install.

You might also refer to Developing Telco Service & Analytics Manager Applications
and Developing Connectors as these manuals contain information on customizing
applications and working with other software.

 Preface xiii

If you are upgrading, be sure to read Migrating Telco Service & Analytics Manager
Applications.

Building Your Solution

If you are designing and programming your solution, you have several different sources
of information. If you are programming the user interface of the solution, you should
read Developing User Interfaces. You also refer to the BLM Specification and JSPF
specification for detailed information about programming the user interface. For
configuring the various components, you refer to Installing Telco Service & Analytics
Manager Applications and sections in other documents which deal with the component
to configure.

If you are designing and programming TAM, you have several different sources of
information. If you are programming the user interface of the solution, you should read
Developing Reports. You also refer to the QRA API Specification and the QRA
Configuration File Reference Documentation for detailed information about the different
components you can use to build reports. For configuring the various components, you
refer to Installing Telco Service & Analytics Manager Applications and sections in other
documents which deal with the component to configure.

If you are working with the business logic of your solution, you should read Developing
Telco Service Manager (TSM). You can also refer to the BLM Reference Guide for
more information about the design and structure of the BLM object model. For
information about how this information is stored, you should refer to the CID Reference
Guide along with the CID Reference documentation for your database. In order to
develop your application, you most likely will need to install and run the Loopback
Connector. This component mimics back-end applications for development purposes.
For information about installing and running this component, refer to Using the
Loopback Connector.

If you are working on the data warehouse side of TAM, you should read Developing
Telco Analytics Manager (TAM). For more information about the design and structure
of the CBU, you should refer to the CBU Reference Guide along with the CBU
Reference documentation for your database. You should also read Developing Telco
Analytics Manager (TAM) for information about synchronizing data between the TAM
and Telco Service Manager (TSM). In this manual, you will also find information about
loading data in both the CBU and the CID.

For more information about integrating your application, you should read Building
Connectors to learn how Telco Service & Analytics Manager applications work with
different software.

xiv Developing Connectors

Integrating Your Solution

If you are involved in configuring your solution to work with Operation Support Software
(OSS), you should read Building Connectors. This manual helps you understand the
integration architecture and shows you how to build connectors to connect to today�s
market-leading OSS software. You can also read Using the Loopback Connector for
information about a connector built for development purposes. Other manuals you can
refer to for information about configuring your application include Introducing Telco
Service & Analytics Manager Applications, Developing Telco Analytics Manager (TAM),
and Developing Telco Service Manager (TSM).

Managing Telco Service & Analytics Manager Applications

If you are responsible for managing Telco Service & Analytics Manager applications,
you should read the Installing Telco Service & Analytics Manager Applications for
information about configuring various components and information about working with
different application servers. Administrating Telco Service & Analytics Manager
Applications covers what you need to know about managing your solution at runtime.
For information about OSS systems, you should read Building Connectors.

 Preface xv

If You Need Help
Technical support is available to customers who have valid maintenance and support
contracts with edocs. Technical support engineers can help you install, configure, and
maintain your edocs application.

edocs provides global Technical Support services from the following Support Centers:

US Support Center

Natick, MA
Mon-Fri 8:30am � 8:00pm US EST
Telephone: 508-652-8400

Europe Support Center

London, United Kingdom
Mon-Fri 9:00am � 5:00 GMT
Telephone: +44 20 8956 2673

Asia Pac Rim Support Center

Melbourne, Australia
Mon-Fri 9:00am � 5:00pm AU
Telephone: +61 3 9909 7301

Customer Central

https://support.edocs.com

Email Support

mailto:support@edocs.com

When you report a problem, please be prepared to provide us the following
information:

! What is your name and role in your organization?
! What is your company�s name?
! What is your phone number and best times to call you?
! What is your e-mail address?
! In which edocs product did a problem occur?
! What is your Operating System version?
! What were you doing when the problem occurred?
! How did the system respond to the error?
! If the system generated a screen message, please send us that screen message.

xvi Developing Connectors

! If the system wrote information to a log file, please send us that log file.

If the system crashed or hung, please tell us.

Contents

Preface iii

Overview of Integrating Account Applications 22
About the SmartLink (ISF) 23

Overview of the SmartLink (ISF) Application Integration Services 24
Overview of the SmartLink (ISF) Connectors 25
Overview of the Message Schema Reference Repository 26
Overview of the SmartLink (ISF) Tools 26

About Integration Architectures 27
Connecting to OSS Applications Systems Through an EAI Product 28
Connecting to OSS Applications Systems Through an OSS Connector 29
Connecting to OSS Applications Directly Through a MOM 30

Installing the SmartLink (ISF) 31
Installing the SmartLink (ISF) 32

Before You Start 35
About Developing Connectors 36
About the Principle Components of Connectors 37
Integration Processes 38
Macros 40

Scripts 40
Connector Program Files 41
Selecting the Template 43

Designing Your Connector 45
Overview of Designing Connectors 46
About the Synchronizer Template 47
About the OSS Connector Template 48
Overview of Modifying Existing Integration Processes 49
Overview of Creating Integration Processes 50

Building Your Connector 51
Working with Connectors 52
About Connectors 53
Working with Integration Processes 55
Working with Processors 57

About Processors 57
Working with Processors 64

Configuring Processors 66
Connecting Processors 91

xviii Developing Connectors

Working with Scripts 94
Programming Scripts 95

Working with Macros 102
Types of Macros 102
Specifying the Macro file 104
Programming Macros 105
Samples 110

Working with Extensions 113
Working with Parameters 115

Working With Connector Extensions 119
About Extensions 120
Defining Custom Processors 121
Validating Custom Processors 122
Using Custom Processors 123
Generating Custom Processors 124
Samples 125

Sample Custom Outbound Queue 125
Sample Custom Inbound Queue 126

Working with the SmartLink (ISF) Message Cache 129
About the SmartLink (ISF) Message Cache 130
About the Saved SmartLink (ISF) Message Structure 131
About the SmartLink (ISF) Message Cache Script APIs 132
About the SmartLink (ISF) Message Cache Processors 133
Working With the SmartLink (ISF) Message Cache 134

Overview of Working with the SmartLink (ISF) Message Cache 134
Example of Integrating the SmartLink (ISF) Message Cache 134
Creating the SmartLink (ISF) Message Cache 135
Adding the SmartLink (ISF) Message Cache Processors 136

Connecting to the SmartLink (ISF) Message Cache 139
Saving Messages 141
Extracting Messages 144
Using the SmartLink (ISF) Message Cache to Build a Business Event Queue 145

New Topic 145
Creating an OSS Business Event Queue 146

Working With the Message Schema Reference 147
About the Message Structure Files 148
About Working with the Message Schema Reference 149
Overview of the Business Message Structure 150

About the Control Area 151
About the Business Data Area 152

Adding New Messages 153
To add a new message (Continued) 155

Overriding Default Outbound Message Mapping 161
Customizing Message Fields 163

To add a new message field 164

Working with Synchronizer Outbound Message Fields 169
Customizing Synchronizer Inbound Messages 170
Customizing Standard Message Structures 171
Generating the Message Schema Reference Files 173

To generate message documentation files 173
To generate message mapping definition files for Synchronizer connectors 173
To generate message mapping definition files for OSS Connectors 174

Generating Your Connector 175
About Generating Your Connector 176

Running Your Connector 179
About Running the Connector 180
Specifying Processing Priority 181
Starting and Stopping the Synchronizer Connector 183

About Synchronizer Run Modes 183
Starting and Stopping the OSS Connector 184
Administrating the Connector 185

About Administrating Connectors 185

SmartLink (ISF) Tool Reference 189
About the SmartLink (ISF) Administration Tools 190
Synchronizer Connector Administration Tools 191

agentstart Syntax 191
agentadm Syntax 192

OSS Connector Administration Tools 195
ossstart Syntax 195
ossadm Syntax 195

SmartLink (ISF) Administration Tool 196
isfadm Syntax 196

Message Schema Reference Tool 197
schemarefTool Syntax 199

Connector Generator Tool 201
ilccGenerator Syntax 201

Core Messages 203

Core Business Objects 207
About Core Business Objects 208
About Parameters and Messages 209

Outbound Messages 209
Inbound Messages 209

xx Developing Connectors

Element Reference 211
Integration Processes 212
Processors 214
Message Queues 215

Inbound Batch Queue 216
Inbound Email Queue 217
Inbound File System Queue 217
Inbound JMS Queue 218
Inbound JMS Topic Queue 219
Inbound Memory Queue 220
Inbound Socket Queue 220
Outbound Email Queue 221
Outbound File System Queue 221
Outbound JMS Queue 222
Outbound JMS Topic Queue 222
Outbound Memory Queue 223
Outbound Socket Queue 223
Message Cache Polling Processor 223
Database Polling Processor 224

Request Queue 226
Request Queue Agent 227

Utilities 229
Encoding Converter 229
DOM Builder 229
DOM Serializer 229
XML Validator 230
Message Counter 230
Pause 231

Custom Processors 232
Routers 233

Script Engine 233
Message Type Filter 233
Message Broadcaster 234
MultiQueue Message Filter 234
MultiQueue Message Broadcaster 235
MultiQueue Message Tracker 235
Error Handler 236
Exception Converter 236
Retry Handler 236
CID Update Error Handler 236
BLM/XML Transmapper 237
Java/XML Transmapper 238
XML Parser 239
XSL Transmapper 240
CID Objects Builder 241

Macros 242
Scripts 243
Extensions 244
Parameters 245

Index 247

C H A P T E R 1

Overview of Integrating Account
Applications

In This Section

About the SmartLink (ISF)... 23
About Integration Architectures... 27

 23

About the SmartLink (ISF)
The SmartLink (ISF) enables the TSM to communicate, or integrate with the core CSP
technology infrastructure, for example billing platforms, Customer Relationship
Management (CRM) software, and other business and operational support systems
(BSS/OSS). This in turn allows the CID to maintain a synchronized cache of semi-static
customer and service data, as well as passing requests and responses between the
various systems.

The SmartLink (ISF) can be considered to comprise:

! Connectors that move data between TSM and the transport layer. These
connectors are called Synchronizers.

! Connectors that move data between BSS/OSS applications and the transport layer.
These connectors are called BSS/OSS Connectors.

! A repository of message definitions to build and process messages for all common
transactions. This is the Message Schema Reference Repository.

! Associated tools to design and configure Connectors along with administration
tools to run and manage them.

24 Developing Connectors

Overview of the SmartLink (ISF) Application Integration
Services

When integrating TSM, you need a set of fundamental integration services to exchange
information between the application and the BSS/OSS. The SmartLink (ISF) provides
the application integration services needed for the TSM to communicate with any
BSS/OSS system. These services include:

! Message structure transformation
This involves transforming message structures from one structure to another or one
format to another.

! Message data mapping
This involves filling a message structure with data extracted by core or external
APIs.

! Message routing
This involves dispatching messages to different destinations.

! Middleware interaction
This involves sending and receiving messages using middleware.

! Error handling
This involves catching and managing exceptions and errors.

! Call sequencing
This involves core or external API call sequencing.

Depending on the service, the SmartLink (ISF) may have either a dedicated
component or a core component which helps perform the service.

 Overview of Integrating Account Applications 25

Overview of the SmartLink (ISF) Connectors
The SmartLink (ISF) is not only a set of application integration services, but is a
framework in which the providers of the services work together.

In order to integrate an application, these service providers, or SmartLink (ISF)
components, are arranged into dataflows. This means that they are connected together
and organized into a step-by-step sequence. A connector is part of the SmartLink
(ISF) that is responsible for moving data between applications and transport layers.

There are two types of connectors:

! Synchronizers
They are responsible for data exchanged between your TSM and the transport
layer

! OSS Connectors
They are responsible for data exchanged between the BSS/OSS applications and
the transport layer

For example, the Synchronizer connector is responsible for moving data between the
TSM and the transport layer. This connector uses different connector components to
carry out the following tasks:

! Send data to the middleware
1. Extract the requests from the request queue located in the CID

2. Use these requests to generate XML messages

3. Send this XML message to the middleware backbone
! Receive data from the middleware

4. Receive the XML message from the middleware

5. Use these messages to create CID objects

26 Developing Connectors

6. Update the CID by running scripts which use the CID objects

Overview of the Message Schema Reference
Repository

The Message Schema Reference repository is a repository of message definition XML
files. Each message handled by a connector has a specific definition file to manage
the exchange of information.

These messages fall into one of the following categories:

! REQ Messages
The connector creates these messages using the requests in the CID and sends
them to the middleware.

! DO Messages
The connector receives these messages from the middleware and uses them to
update the CID.

! System
These definition files are for other types of messages which do not fall into one of
the categories above.

Each of these messages has a corresponding definition file to specify the structure of
the message and its mapping definitions.

Overview of the SmartLink (ISF) Tools
The SmartLink (ISF) comes with a set of tools to help you create and manage your
connectors. The tools include:

! The Integration Logic Studio
This tool is for designing connectors. Its easy-to-use interface makes it easy to
design and configure your connector.

! The Connector Administration tools
These tools are for running and managing the connectors.

 27

About Integration Architectures
Because of the many different technological infrastructures deployed, the SmartLink
(ISF) is based on a flexible architecture, offering support for the multiple environments.
Example integration scenarios include:

! Enterprise Application Integration (EAI)
! Message Oriented Middleware (MOMs) (Java Message Service)
! Direct connection to legacy APIs

The following are possible integration architectures:

! Connecting to OSS Applications Systems Through an EAI Product
! Connecting to OSS Applications Systems Through an OSS Connector
! Connecting to OSS Applications Directly Through a MOM

28 Developing Connectors

Connecting to OSS Applications Systems Through an
EAI Product

TSM/TAM

Synchronizer

CID

OSS Application

OSS Application

OSS Application

OSS Application

Telco Service & Analytics
Manager Side

OSS Side

EAI
Product

ARCHITECTURE WITH AN EAI PRODUCT

When to use • EAI product already used by the OSS system

• TSM model can be imported into EAI product repository

• TSM and OSS applications integrated through the EAI product

• Benefits • Leverage EAI power (make use of workflow, transaction and process management
features...)

• Scalable

• Recommended solution

 Overview of Integrating Account Applications 29

Connecting to OSS Applications Systems Through an
OSS Connector

TSM/TAM

Synchronizer

CID

Telco Service & Analytics
Manager Side OSS Side

B
A
C
K
B
O
N
E

OSS
Connector

OSS
Connector

OSS
Application

OSS
Application

OSS
Application

OSS
Application

ARCHITECTURE WITH A CONNECTOR ON THE OSS SIDE

WHEN TO
USE

• No EAI product already being used by the OSS system

• OSS applications provide exposed Java APIs

• Middleware backbone available

• Benefits • Scalable

• Ready to go solution not requiring any EAI product

30 Developing Connectors

Connecting to OSS Applications Directly Through a
MOM

TSM/TAM

Synchronizer

CID

OSS Application

OSS Application

OSS Application

OSS Application

Telco Service & Analytics
Manager Side

OSS Side

B
A
C
K
B
O
N
E

ARCHITECTURE WITHOUT THE CONNECTOR ON THE OSS SIDE

When to use The OSS systems already know how to interact with the middleware backbone

 Benefits Integration with existing middleware backbones

C H A P T E R 2

Installing the SmartLink (ISF)

In This Section

Installing the SmartLink (ISF).. 32
Uninstalling.. 33

 32

Installing the SmartLink (ISF)

To install the SmartLink (ISF) components

1 Run the installer application for your platform that you downloaded from edocs
Customer Central or that is on the Telco Service & Analytics Manager CD-ROM.
The Installer appears.

! AIX: tsm_aix.bin

! HPUX: tsm_hpux.bin

! Solaris: tsm_solaris.bin

! Windows: tsm_windows.exe

2 Click Next. The License Agreement window appears.

3 Read and accept the license agreement then click Next. The Location window
appears.

4 Enter the Telco Service & Analytics Manager home directory then click Next. The
Installation Type window appears.

5 Select Custom Installation. The Product Components window appears.

6 Select the following components and all of their subcomponents:

! Synchronization Framework

! ISF Message Reference

! OSS/BSS Connectors

7 Click Next.

8 Follow the on screen instructions. When finished, the installer displays a message.

To install development tools

1 Run the installer composer_windows.exe that you downloaded from edocs
Customer Central or that is on the Telco Service & Analytics Manager CD-ROM
(the tools only run on Windows). The Configuration and Deployment Toolkit
Installer appears.

2 Click Next. The License Agreement window appears.

3 Read and accept the license agreement then click Next. The Location window
appears.

4 Enter the home directory then click Next. The Installation Type window appears.

5 The Installation Type window appears.

6 Choose one of the following:

! All Tools
! Integration Logic Studio

 Installing the SmartLink (ISF) 33

! Presentation Logic Studio
7 Choose Next. The Choose Shortcut window appears.

8 Choose the location of the shortcuts then click Next. The Pre-Installation Summary
window appears.

9 Review the summary then do one of the following:

! If the summary is correct, click Install to begin installation

! If the summary is not correct of if you want to change a setting, click Previous.

When finished, the installer displays a message.

C H A P T E R 3

Before You Start

In This Section

About Developing Connectors .. 36
About the Principle Components of Connectors 37
Connector Program Files .. 41
Selecting the Template ... 43

 36

About Developing Connectors
Before you begin, you need to be familiar with the various components which make up
a connector. You also need to understand the default directory structure and the
names of different connector program files.

Once you are familiar with connectors and their components, the first step is to choose
the type of connector you need to develop for your TSM.

The SmartLink (ISF) comes with the following connectors you use as templates:

! Synchronizer
! OSS Connector

These connectors contain all of the components you need to start designing your own
connector.

When using these connectors as templates, developing connectors involves:

! Selecting the template to use
! Copying the template in a new connector configuration directory
! Designing the connector
! Generate the connector runtime files
! Customizing message structure and mapping

 Before You Start 37

About the Principle Components of
Connectors

In general, connectors have the following components:

! Integration Processes
An Integration Process is the dataflow for requests or messages between a system
and the transport layer, or between the transport layer and one or more systems.

An integration process has one or more processors, associated scripts and macros.

They are represented by the following icon:

! Macros

A Macro is a definition of external APIs to be used as commands.

They are represented by the following icon:

! Extensions

An extension is a custom element you use to build Integration Processes.

They are represented by the following icon:

! Parameters

A parameter is a connector-wide variable you use when setting element properties.

They are represented by the following icon:

 38

Integration Processes
An Integration Process is the dataflow for requests or messages between a system
and the transport layer, or between the transport layer and one or more systems. Each
connector includes one or more Integration Processes.

These processes consist of a number of processors connected together in a sequence
to handle messages.

An integration process has the following:

! One or more Processors
! One or more Scripts
! One or more Macros

They are represented by the following icon:

The components of the integration process carry out the following basic tasks:

1 Extract Data

 Before You Start 39

This task is extracting the data the integration process works on. This is a
mandatory task and is carried out by a unique processor.

2 Process Data

This task is processing the extracted data. This is also mandatory and has several
different components which handle data, forwards data to another processor,
generates messages, handles errors, routes messages and so on.

3 Sending Data

This optional tasks is at the end of the processing and involves sending the data
out of the connector.

 40

Macros
A Macro element defines the custom APIs that can be called in scripts.

When using Macros to create your own API, you can:

! Wrap external Java code to custom script APIs
! Instantiate external Java classes

For instance, your connector may have to establish a connection with a back end
system when the connector starts up and then reuse this connection for all Integration
Processes. In this case, you can use a Macro to instantiate the connection then reuse
it whenever necessary in any of your Integration Processes.

A macro can be one of the following:

! Connector Macro
These macros can be used by all of the processors. They are located under
<connector_home>/Macros.

! Integration Process
These macros can only be used by the elements of the Integration Process. They
are located under <connector_home>/<integration_process>/Macros.

Scripts
This element points to an XML file. This XML file is a Script.

A Script is a sequence of commands or operations, which are executed by a Script
Engine Processor. Each command actually calls an API, either defined within the
SmartLink (ISF) or registered as an external Macro.

A number of core Script features include a Switch command which allows the script to
branch conditionally on the results of any variable, providing �If-Then-Else� functionality
within the script. Scripts can also execute sub-script components

They are represented by the following icon:

Because of the power and flexibility of Scripts, they are used for a number of functions:

! Updating data in the CID
! Routing messages within an Integration Process
! Calling external APIs for data processing

 Before You Start 41

Connector Program Files
A connector and its components are built and configured using the following files.

! Connector Design File
This file is the design file used by the ILS tool to build and configure your connector.
The name of this file is the name of the connector and its extension is ilcd.

This file is automatically generated file. Do not manually edit this file.
! Connector Runtime Files

These files are generated by the ILS tool and have the same name as the
connector design file.

! Connector Configuration File

This file is a runtime connector file containing the private and internal
configuration settings. The extension is ilcc.

This file is automatically generated file. Do not manually edit this file.

! Connector Parameters File

This file is a runtime connector file. It contains the runtime parameters of your
connector. The extension is ilcr.

You can edit this file to customize your configuration after deployment.

42 Developing Connectors

! Macro Files
These files are the macro files.

! Script Files
These files are the script files.

! Message Schema Files
These XML files contain the structure and mapping of messages. Each type of
message has a corresponding message schema file.

! Configuration Files
These files are for configuring various parts of the connector. These files configure
the database connection, system logger settings, and so on.

By default, they are installed in:

! <connector_home>/config/connectors/connectortemplate for the
OSS connector

! <connector_home>/config/synchronizers/synchronizer for the
Synchronizer
where <connector_home> is the location where the connectors are installed.

The default connector directories:

DIRECTORY CONTENTS

<connector_name> Contains the following files:
• Connector design file

• Connector runtime files

 /macro Contains the connector macro files

 /nmycfg/util Contains the configuration files

 /schema_map Contains the mapping files for messages

 /script Contains the connector script files

 43

Selecting the Template
Selecting the template you want to use to create your connector depends on the role it
plays in integration your TSM. There are two connector templates you can choose
from. These templates correspond to the two basic types of connectors.

Once you have decided which type of connector you want to build, you do the
following:

1 Create a copy of the installed template files.You copy the entire contents of the
folder which contains the template.

2 Rename the directory and files

Once you have created a copy of the template, you are ready to begin working with the
ILS tool to design and generate your connector.

To create a copy of a template

! For a Synchronizer connector, create a copy of the entire contents of
<connector_home>/config/synchronizers/synchronizer

! For an OSS connector, create a copy of the entire contents of
<connector_home>/config/connectors/connectortemplate

where <connector_home> is the location where the connectors are installed.

To rename the template

To change the name of your template, you rename:

! The directory containing the template.
! The ilcd connector design file.
! The connector name

You can change the connector name when you open it using the ILS.

The directory and configuration file must have the same name. If they do not, the
connector will not run.

For instance, if you are creating a Synchronizer connector called MySynch, you copy
the contents of the <isf_home>/config/synchronizers/synchronizer in
<isf_home>/config/synchronizers/MySynch. You then rename the
synchronizer.ilcd file to MySynch.ilcd.

C H A P T E R 4

Designing Your Connector

In This Section

Overview of Designing Connectors... 46
About the Synchronizer Template... 47
About the OSS Connector Template....................................... 48
Overview of Modifying Existing Integration Processes............ 49
Overview of Creating Integration Processes........................... 50

46 Developing Connectors

Overview of Designing Connectors
Designing your connector using the templates involves:

! Modifying existing integration processes
! Adjusting the configuration of existing processors to suit your specific needs

! Adding specific message content or type processing

! Adding processors in order to perform specific processing on messages

! Adding message routing features
! Creating new integration processes
! Creating new message queues

! Creating new message processing

You use the Integration Logic Studio (ILS) to modify and create integration processes.

 Designing Your Connector 47

About the Synchronizer Template
This connector is a pre-configured, ready-to-run connector. This connector does the
following:

! Extracts the requests from the CID.
For each extracted request:

! Generates the corresponding XML message

! Sends the XML message over the middleware backbone

The CID_Requests_Generation Integration Process manages these actions.
! Manages incoming messages from the back end (systems or other connectors)
! Extracts the incoming XML message from the middleware backbone

! Parses the message

! Creates the corresponding CID business objects

! Updates the CID using the CID business objects

The CID_Update Integration Process manages these actions.

48 Developing Connectors

About the OSS Connector Template
This connector template is a pre-configured OSS connector. This connector does the
following:

! Manages the incoming messages from an TSM connector (Synchronizer)
! Extracts the incoming message from the middleware backbone
! Parses the XML message
! Calls the Script APIs to update your back end system with the information in the

message
! Using the reply of the back end system, builds the corresponding reply message

- Generates the corresponding XML message

- Sends the message over the middleware backbone

The Inbound_Message_Handling Integration Process handles the core actions of
this connector.

This connector must be generated by the Integration Logic Studio before you can run
it. This template handles messages but does not process the data they contain.

 Designing Your Connector 49

Overview of Modifying Existing
Integration Processes

The integration of your TSM may require you to modify the default configuration and
behavior of existing integration processes.

You can modify:

! Message queue parameters
! Request Extraction parameters
! Transmapper Message type lists
! Retry parameters

If your messages have custom fields or when you use custom message types, you
may have to modify the following:

! Transmapper Message type lists
! Message mapping and structure definition files
! Scripts which process a specific message type

If you need to perform specific processing on messages, you may have to modify the
following:

! Message Queues
! Retry and error handling components

If you need to add message routing features, you may need to modify the following:

! Message envelope based routing through message broadcasters and message
type filters

! Message content based routing through scripts

50 Developing Connectors

Overview of Creating Integration
Processes

If the template does not meet all of your needs or if your TSM requires more specific
handling of messages, you create integration processes in your connector .

Creating integration processes involves:

1 Creating a new integration process and entering its name

2 Create a single processor in charge of extracting your data, either through a
message inbound queue or an request queue agent or any extension you may
have created.

3 Add as many processors you need in order to perform the necessary processing on
your data and connect them to create your data flow.

If necessary, add one or several processors in charge of sending your data to a
middleware using a message outbound queue or any extension you may have created.

C H A P T E R 5

Building Your Connector

In This Section

Working with Connectors .. 52
Working with Integration Processes.. 55
Working with Processors... 57
Working with Scripts.. 94
Working with Macros... 102
Working with Extensions ... 113
Working with Parameters .. 115

 52

Working with Connectors

 53

About Connectors
A connector is part of the SmartLink (ISF) that is responsible for moving data between
applications and transport layers.

There are two types of connectors:

! Synchronizers
They are responsible for data exchanged between your TSM and the transport
layer

! BSS/OSS Connectors
! They are responsible for data exchanged between the BSS/OSS applications and

the transport layer

Each connector includes the following components:

! Integration Processes
An Integration Process is the dataflow for requests or messages between a system
and the transport layer, or between the transport layer and one or more systems.

One or more Integration Processes may be declared as being entry points of
messages.

! Macros
A Macro is a script to define external APIs to be defined and used as commands.

! Extensions
An extension is a custom element you use to build Integration Processes.

! Parameters
A parameter is a connector-wide variable you use when setting element properties.

To create connectors

1 Choose File > New. The Select a connector template dialog box appears

2 Browse and select the directory containing the connector to use as a template. The
Select your connector configuration home directory dialog box opens.

3 Browse and select the parent directory of your connector home directory and files
then choose Select. The Create new Connector dialog box appears.

4 Enter the name of your connector. This name is used for:

! The directory containing the connector files

! The name of the connector design file

5 Select OK. The Integration Logic Studio creates the connector and its
corresponding files in the specified directory. When finished, the connector appears
in the Connector explorer and a message appears in the message pane.

54 Developing Connectors

To open connectors

6 Choose File > Open. The Open Connector dialog box opens.

7 Select the connector file to open.

8 Choose Open. The connector opens in the Connector Explorer.

To validate connectors

Choose Connector > Check connector. The ILS validates the connector.

After verification, the ILS displays the result in the message pane. If your connector is
invalid or if a problem occurs during verification, the ILS displays messages to help you
resolve the problem.

To close connectors

1 Choose File > Close. The connector closes. If any changes have not been saved,
you are prompted to save or discard the changes.

To save connectors

1 Do one of the following:

! Choose File > Save to save the connector.

! Choose File > Save As to save the connector with a different name.

To generate documentation

1 Choose Connector > Generate documentation. The Export Documentation dialog
box opens.

2 Select the location and enter the name of the HTML file to generate.

3 Choose Save. The ILS generates the contents of the connector in an easy-to-read
HTML file. When finished, the ILS displays a message in the message pane.

 55

Working with Integration Processes
A connector includes one or more Integration Processes.

An Integration Process is the dataflow for requests or messages between a system
and the transport layer, or between the transport layer and one or more systems.

Each Integration Process consists of a number of Processors connected together in a
specific sequence. An Integration Process may also be declared as being an entry
point of messages in the connector.

Working with Integration Processes involves:

! Creating Integration Processes
! Copying Integration Processes
! Opening Integration Processes
! Renaming Integration Processes
! Deleting Integration Processes

To create Integration Processes

1 Open the connector.

2 In the Connector Explorer, expand Integration Processes.

3 Right click Integration Processes then choose New. The Create New Integration
Process dialog box appears.

4 Enter the name of the integration process then choose OK. The new Integration
Process appears.

To open Integration Processes

1 Open the connector.

2 In the Connector Explorer, expand Integration Processes.

3 Double-click the Integration Process. The Integration Process appears in the
Workspace.

To close Integration Processes

1 On the Workspace, select the tab of the Integration Process to close. The
Integration Process appears in the Workspace.

2 Right click the tab then choose Close. The Integration Process disappears from the
Workspace.

56 Developing Connectors

To refresh the contents of an Integration Process

1 On the Workspace, select the tab of the Integration Process to refresh. The
Integration Process appears in the Workspace.

2 Right click the tab then choose Reload. The Integration Process view in the
Workspace refreshes and displays all of the components which currently make up
the process.

To copy an Integration Process

1 Open the connector.

2 In the Connector Explorer, expand Integration Processes.

3 Select the Integration Process to duplicate.

4 Right click the Integration Process then choose Copy.

5 Right click the location under Integration Processes where you want to place the
process then choose Paste. The Create New Integration Process dialog box
appears.

6 Enter the name of the integration process then choose OK. The copy of the
Integration Process appears with the name you entered.

To rename Integration Processes

1 Open the connector.

2 In the Connector Explorer, expand Integration Processes.

3 Select the Integration Process to rename.

4 Slowly double-click the name. The name changes to a text field.

5 Enter the new name of the Integration Process.

To delete an Integration Process

1 In the Connector Browser, find the Integration Process to remove.

2 Right-click the Integration Process then select Delete. A confirmation dialog box
appears.

3 Choose one of the following:

! Yes to permanently remove the element from your configuration

! No to cancel

 57

Working with Processors

About Processors
An Integration Process is the dataflow for requests or messages between a system
and the transport layer, or between the transport layer and one or more systems.

Each Integration Process consists of a number of Processors connected together in a
specific sequence as shown in this diagram:

There are several different types of processors you can use to build your Integration
Process. They include:

! Request Queue Processors
These processors handle the extraction of requests from the CID.

! Transmapper Processors
These processors handle transforming Java objects used for interaction with
systems (your TSM and BSS/OSS) and XML strings (used for message transport)

! Utilities and Error Processors
These processors are a collection of processors to assist with common integration
workflow issues, such as error handling, retries, wait states, and so on.

! Routing Processors
These processors handle complex dataflows where data does not simply flow from
one processor to the next.

58 Developing Connectors

About Request Queue Processors

The processors in this category are for managing messages extracted from the request
queue. The request queue is the table in the CID which holds the requests of the TSM.

The available Request Queue Processors include:

! Request Queue Agent
 Request Queue Agents periodically collect requests from the CID. As this
processor reads information in the CID, it is used in Synchronizer connectors. The
frequency at which requests are collected can be configured anywhere from every
second (for service subscriptions, handset theft etc) to a matter of hours (address
changes etc). The Agent Processor can be configured to retrieve only specific types
of request. This effectively determines which Integration Process, or even which
Synchronizer, handles which requests.

There can only be one Agent Processor per connector. However, the Agent
Processor can be configured to generate multiple threads to increase throughput,
and a number of other parameters can be defined to improve the overall messaging
performance between your TSM and the BSS/OSS platforms.

These parameters include:

! Number of requests processed per cycle

! Weighting of request types processed per cycle

! Reduced repeat cycle time for high priority events

 Building Your Connector 59

About Transmapper Processors

The processors in this category are used to transform Java objects (used for
interaction with systems � TSM and BSS/OSS) and XML strings (used for message
transport).

For example, the connector receives a message in the form of a BLM object. This
message needs to be transformed into an XML format the connector can work with.
The BLM/XML Transmapper handles converting a BLM object into XML.

Transmappers may also have associated files that specify the structure of the output
message. They may also have files that manage the mapping of the input and output
messages. The BLM/XML Transmapper has both of these files to define the structure
of the XML and the mapping of BLM objects to XML elements.

! BLM/XML Transmapper
The BLM/XML Transmapper Processor transforms a Request object into an XML
string. This Processor will normally follow immediately after the Request Queue
Agent Processor, transforming the minimal information held in the Request object
into a complete XML message providing all data required by the target system(s).
The specification for this information both in terms of the XML schema and the CSS
Engine APIs required to extract the data from the CID, are defined in the Message
Schema Reference.

! Java/XML Transmapper
The Java/XML Transmapper Processor is the more generic form of the BLM/XML
Transmapper. The Java/XML Transmapper Processor transforms any Java object
into an XML string. This processor will often be used within a BSS/OSS Connector
to transform BSS/OSS objects into an XML message for delivery to the TSM.

! CID Objects Builder
The CID Objects Builder Processor transforms a Java hash table into Data Access
Layer (DAL) objects, for use in updating the CID. Note that the Processor does not
actually update the CID. Updating the CID is performed by the Script Engine.

! XML Parser
The XML Parser Processor transforms an XML string into a Java hash table.

! XSL Transmapper
The XSL Transmapper Processor applies XSL stylesheets to the XML. This
processor is often used to reformat or parse information from XML files before
processing.

60 Developing Connectors

About Router Processors

The processors in this category are for broadcasting messages and managing
message flows. Routing Processors are used to create more complex dataflows, where
data does not simply flow from one processor to the next.

In general, Messages are broadcast to the queues and the queue has an associated
filter to determine whether or not the queue accepts the message. There are
processors in this category to manage the broadcasting and filtering of messages for a
single queue or multiple queue configurations.

! Message Boradcaster

! Multiqueue Message Broadcaster

! Message Type Filter

! Multiqueue Message Filter
The Message Broadcaster Processor and Message Type Filter Processors work
together to enable simple branching of dataflows. The Broadcaster Processor
broadcasts all messages to a number of Message Type Filter Processors. Each
Filter Processor is configured to accept specific message types only, so that, for
example, trouble ticket messages are delivered to one outbound queue, while new
service requests are delivered to another. The SmartLink (ISF) can therefore
support simultaneous message delivery to multiple BSS/OSS components. The
initial request can be converted to a single message, which is delivered to multiple
components � or additionally transmapped into multiple messages for the different
components.

! Script Engine
The Script Engine Processor can create very complex sequence of APIs, by
running a pre-defined script to determine where each message and/or message
type should be routed. As each script consists of a series of customizable
command functions or operations, a script can for example, look up the end-user
affected by a message, evaluate their rank within the organization (using an
external system), and route messages for higher-ranking users towards a fast-track
back-office process. Another example might involve calling an external credit-
scoring API to help determine the different systems required to provision a new
service.

Scripts and script engines have another very specific use. A script is executed to
update the CID when a message is received by your TSM. Using the objects
created by the CID Objects Builder Processor, the Script Engine calls core APIs
(identified by the script) to write the new data into the CID.

 Building Your Connector 61

About Message Queue Processors

The processors in this category are for message queues. A message queue is a
temporary storage location where messages are held.

The types of queues are:

! Inbound
These queues are for messages that the connector receives for processing.

! Outbound
These queues are for messages that the connector has processed.

! Persistence
These queues are for messages that have been saved in a database.

The processors include:

! Batch

 Inbound Batch Queue
! Email

 Inbound Email Queue

 Outbound Email Queue
! File

 Inbound File Queue

 Outbound File Queue
! JMS

Inbound JMS Queue

 Outbound JMS Queue
! JMS Topic Queue

 Inbound JMS Topic Queue

 Outbound JMS Topic Queue
! Memory

 Inbound Memory Queue

 Outbound Memory Queue
! Socket

 Inbound Socket Queue

 Outbound Socket Queue

62 Developing Connectors

! Persistence

 Message Cache Polling Processor

 Database Polling Processor

About Error Processors

The processors in this category are for handling errors. When processing messages,
errors may occur and your connector needs to be able to manage them.

For instance, if an error occurs when processing a message, you can configure your
connector to retry the message. You can also specify the conversion of an error into
another in order to customize your error handling or trigger other events.

! Retry Handler
This processor manages the resending of messages. If an error occurs when
processing a message or if a connection is lost, this processor tries to send the
message to a specified processor again a specified number of times before logging
an error.

! Message Retry Counter
This processor manages the resending of messages. If an error occurs when
processing a message or if a connection is lost, this processor tries to send the
message again a specified number of times before logging an error.

! Error Handler

This process handles errors.

! Exception Converter
This processor converts Java exception errors.

! CID Update Error Converter
This processor converts error messages when an error occurs when updating the
CID and updates the CID accordingly (in the reason field of the request queue
table)

 Building Your Connector 63

About Utility Processors

A set of processor types which are provided to assist with common integration
workflow issues.

! Pause
This processor is simply a pause in the processing of messages. It receives a
message and waits the specified amount of time before sending it to the next
processor.

! Encoding Converter
This processor handles assigning character encoding for messages and XML files.
By default, the messages and XML files are in UTF-8. This processor can reassign
character encoding in order to use the required encoding for BSS/OSS systems.

! Macro Runner
This processor handles running macros. It launches the specified macro at this
point in the integration process.

! DOM Builder (XML/DOM)
This processor converts a XML file into a DOM document.

! DOM Serializer (DOM/XML)
This processor converts a DOM document into an XML file.

! XML Validator
This processor handles validating XML messages. This Validator uses XML
schemas.

! Message Counter
This processor acts as a counter in a connector. It counts the messages and sets
some variables used when building Integration Processes.

 64

Working with Processors
When working with the different processors, some of the actions you have to carry out
are the same for all processors.

Common actions include:

! Creating Processors
! Editing Processor properties
! Renaming Processors
! Deleting Processors

To create Processors

1 Open the Integration Process.

2 Right-click Processors then select Create New Processor. The Choose a Processor
Type dialog box appears.

3 Expand the node of the Processor Type to create.

4 Select the Processor to create.

5 Enter the name of the Processor.

6 Select Confirm. The new processor appears in the Connector Explorer and the
Integration Process displayed in the Workspace.

To edit Processor properties

1 Open the Integration Process.

1 Expand the Processors node.

2 Select the Processor to modify.

If the processor has any properties you can set, the properties appear in the
Properties pane.

Depending on the processor, you may also be able to add or remove properties. If
you can add and remove properties, the Optional tab is active.

To add and remove properties

1 Open the Integration Process.

2 Expand the Processors node.

 Building Your Connector 65

3 Select the Processor to modify. The properties appear in the Properties pane. If the
processor allows you to add or remove properties, the Optional tab is available.

4 Select the Optional tab.

5 Do one of the following:

! Choose Add to add a new property. Depending on the Processor, a dialog box
may appear or a new row created in the Properties pane.

! Select the property then choose Remove to delete the custom property.

To rename Processors

1 Open the Integration Process in the Workspace.

2 Select the Processor to rename.

3 Select the name of the Processor. The name changes to a text field.

4 Enter the new name of the processor.

To delete processors

1 Open the Integration Process in the Workspace.

2 Find the Processor you want to delete.

3 Press Del. A conformation dialog box appears.

4 Do one of the following:

! Choose OK to confirm your changes. The Processor disappears from the
Workspace and a message appears in the message pane.

! Choose Cancel

66 Developing Connectors

Configuring Processors

Configuring Request Queue Processors

Configuring Request Queue Processors involves:

! Specifying the properties of the processor
! Specifying the request types to manage
! Specifying the sequences
! Specifying the filters

Specifying the Request Queue Agent Properties

To specify the Request Queue Agent properties

5 Open the Integration Process.

6 Expand the Processors node.

7 Select the Request Queue Agent processor to modify. The properties appear in the
Properties pane.

8 Enter the following properties in the Properties pane:

 PROPERTY DESCRIPTION

 Number of Threads Number of threads to allocate

 Napping Time The period of time between polling (in milliseconds)

 Looping Time The period of time between each internal queue
filling (in milliseconds)

 Extract Synchronous requests only Boolean to specify if the Request Queue agent
extracts only Synchronous requests

 Execute once Boolean to specify if the Request Queue agent runs
once. If true, the Request Queue agent extracts and
processes the specified number of requests then
shuts down.

 No. of Requests to Extract The number of requests to extract from the request
queue

 Internal Queue Size The number of requests in the internal queue of
extracted requests

 Building Your Connector 67

 Reconnection Delay The time in milliseconds to wait between attempts to
reconnect to the database

 Reconnection Retries The number of times the agent must try to reconnect
to the database

 BLM User Name The user name used to authenticate the connector
with the BLM

 BLM User Password The associated password

Specifying the request types to manage

To specify request types

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the Request Queue Agent processor to modify.

4 Right-click Request Types then select Create New Request Type. The Create New
Request Type dialog box appears.

5 Enter the name of the Request Type then select OK. The Request Type appears in
the Connector Explorer.

6 Select the new Request Type then enter the following properties in the Properties
pane:

 PROPERTY DESCRIPTION

 Enabled Boolean to specify if the message type is enabled or
disabled.

 Execution Mode The execution mode for the request type.

Can be one of the following:

- Asynchronous

- Synchronous

- Asynchronous MultiQueue

 BLM Request Type The Request Type code as declared in the CID.

 Message Type The associated REQ message.

68 Developing Connectors

To specify the status code of the Request Type

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the Request Queue Agent processor to modify.

4 Expand the Request Type to modify. The Status Code node appears.

5 Select the Status Code node. The properties of this element appear in the
Properties pane.

6 Select the status values of the following properties:

PROPERTY DESCRIPTION

Success Status The message has been sent successfully

Failure Status The message could not be sent

Transport Retry Status the send operation is being retried

Transport Failure Status The send operation for this message has failed

Waiting for ACK Status Waiting for an Acknowledge message for the request

Acknowledged Status An Acknowledge message has been received for the request

Specifying the Sequences

To activate sequences

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the Request Queue Agent processor to modify.

4 Select Sequence. The properties appear in the Properties pane.

5 In the Properties pane, select the value of the property:

 Building Your Connector 69

PROPERTY DESCRIPTION

Enabled Specifies if sequences are enabled.

Possible values:

- true

- false

To specify sequences

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the Request Queue Agent processor to modify.

4 Select Sequence. The properties of this element appear in the Properties pane.

5 In the Properties pane, select Add. The Request row appears.

6 In the new row, enter the name of the Request.

7 Repeat as required.

Specifying Filters

To specify filters

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the Request Queue Agent processor to modify.

4 Right-click the Filters then select Create New Filter. A list of possible filters
appears.

5 Select one of the following filters:

70 Developing Connectors

FILTER DESCRIPTION

BLM Request Type The type of the request

Request Status Code The status code of the request

Request Generator The Login ID of the user who generated the request

Impacted Object The object impacted by the request

Impacted Object Type The object type of the object impacted by the request

Request Creation Date The creation date of the request

Organization ID The Organization ID of the level
impacted by the request

Starting Date The start date of the request

Ending Date The end date of the request

Order By Date The date to use for sorting

The new Filter appears in the Connector Explorer.

6 Select the new Filter then enter the following properties in the Properties pane:

PROPERTY DESCRIPTION

Enabled Specifies if the filter is active or inactive.

Possible values:

- true

- false

7 If required, add a custom property.

In the Properties pane, do the following:

7. Click Add. A new property called Request appears.

8. Enter the value of this new property.

To activate filters

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the Request Queue Agent processor to modify.

4 Select Filter. The properties appear in the Properties pane.

5 In the Properties pane, select the value of the property:

 Building Your Connector 71

PROPERTY DESCRIPTION

Enabled Specifies if filters are enabled.

Possible values:

- true

- false

To set the values of the filter

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the Request Queue Agent processor to modify.

4 Select Filter. The properties appear in the Properties pane.

5 In the Properties pane, select Add. The Value row appears.

6 In the new row, enter the value of the filter.

7 Repeat as required.

Configuring Transmapper Processors

Configuring Transmapper Processors involves:

! Specifying the request types to manage
! Specifying the message types to manage
! Specifying the location of the configuration files

Configuring BLM XML Transmappers

Configuring BLM/XML Transmappers involves:

! Specifying the request types
! Specifying the configuration files for each request type

To specify request types

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the BLM/XML Transmapper to modify.

4 Right-click Request Types then select Create New Request Type. The Create New
Request Type dialog box appears.

72 Developing Connectors

5 Enter the name of the Request Type then select OK. The Request Type appears in
the Connector Explorer.

6 Select the new Request Type then enter the following properties in the Properties
pane:

 PROPERTY DESCRIPTION

 Structure definition file path Full path of the XML file containing the definition of the
message structure

 Mapping definition file path Full path of the XML file containing the definition of the
mapping of BLM content to XML.

Configuring CID Object Builder Transmappers

Configuring CID Object Builder Transmappers involves:

! Specifying the path of the schema definition files
! Specifying the message types

To specify message types

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the CID Object Builder transmapper to modify. The properties appear in the
Properties pane.

4 In the Properties pane, select Add. A Message type row appears.

5 In the new row, select the message type.

6 Repeat steps 4 and 5 as necessary.

To specify the location of schema definition files

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the CID Object Builder transmapper to modify. The properties appear in the
Properties pane.

4 In the Properties pane, select Schema def path.

5 Enter the location of the Schema definition files to use.

 Building Your Connector 73

Configuring XML Parser Transmappers

Configuring XML Parser Transmappers involves:

! Specifying the Message Types
! Specifying the configuration files for each Message Type

To specify request types

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the XML Parser to modify.

4 Right-click Request Types then select Create New Request Type. The Create New
Request Type dialog box appears.

5 Enter the name of the Request Type then select OK. The Request Type appears in
the Connector Explorer.

6 Select the new Request Type then enter the following properties in the Properties
pane:

 PROPERTY DESCRIPTION

 Structure definition file path Full path of the XML file containing the definition of the
message structure

To add Request Type Properties

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the XML Parser processor to modify.

4 Select the Request Type to modify. The properties of this element appear in the
Properties pane.

5 In the Properties pane, select Add. The Mapping definition file path row appears.

6 In the new row, enter the full path of the XML file containing the definition of the
mapping of Java to XML.

Configuring Java/XML Transmappers

Configuring Java/XML Transmappers involves:

! Specifying the request types
! Specifying the configuration files for each request type

74 Developing Connectors

To specify request types

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the Java/XML Transmapper to modify.

4 Right-click Request Types then select Create New Request Type. The Create New
Request Type dialog box appears.

5 Enter the name of the Request Type then select OK. The Request Type appears in
the Connector Explorer.

6 Select the new Request Type then enter the following properties in the Properties
pane:

 PROPERTY DESCRIPTION

 Structure definition file path Full path of the XML file containing the definition of the
message structure

 Mapping definition file path Full path of the XML file containing the definition of the
mapping of BLM content to XML.

Configuring XSL Transmappers

Configuring XSL Transmappers involves:

! Specifying the XSL file to use
! Specifying the message to create

To configure the XSL Transmapper

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the XSL Transmapper to modify.

4 In the Properties pane, enter the following:

 Building Your Connector 75

PROPERTY DESCRIPTION

Buffered Output Specifies if the output is buffered.

Possible values:

- true

- false

Output Mode Specifies if the resulting transformations are sent as a
single message or each transformation has its own
message.

Possible values:

- single

- multiple

Output Format Specifies the format of the output.

Possible values:

- string

- DOM

To specify

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the XSL Transmapper to modify.

4 Right-click Transformations then select Create New Transformations. The Create
new Transformation dialog box appears.

5 Enter the name of the transformation then select OK. The Transformation appears
in the Connector Explorer.

6 Select the new Transformation then enter the following properties in the Properties
pane:

 PROPERTY DESCRIPTION

 Stylesheet Full path of the XSL stylesheet containing the styles to
apply.

 Output Message Type The output message type.

76 Developing Connectors

Configuring Router Processors

Configuring Transmapper Processors involves:

! Specifying the scripts of the Script Processor
! Specifying the message filters
! Specifying the location of the configuration files

Configuring Script Engines

Configuring Script Engine Processors involves:

! Specifying the scripts

To specify the scripts

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Script Engine to modify.

4 In the Properties pane, select Add. A new Script row appears.

5 Select the script from the drop-down list.

6 Repeat as necessary.

Configuring Message Broadcasters

Configuring Message Broadcasters involves:

! Specifying if the message is duplicated

To specify duplicate flows

1 Open the Integration Process.

1 Expand the Processors node.

2 Select the Message Broadcaster to modify.

3 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Duplicate Flows Boolean. When set to true, the Message Broadcaster
duplicates the message before sending it.

Configuring Message Type Filters

Configuring Message Type Filters involves:

! Specifying the filters

 Building Your Connector 77

To specify the filters

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Message Type Filter to modify.

4 In the Properties pane, select Add. A new Filter name row appears.

5 Enter the Message type name.

6 Repeat as necessary.

Configuring MultiQueue Message Filters

Configuring MultiQueue Message Type Filters involves:

! Specifying the filters
! Specifying the filter properties

To specify the filters

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the MultiQueue Message Type Filter to modify.

4 In the Properties pane, select Add. A new Filter name row appears.

5 Enter the Message type name.

6 Repeat as necessary.

To specify the filter properties

1 Open the Integration Process.

2 Expand the Processors node.

3 Expand the MultiQueue Message Type Filter to modify.

4 Select the filter to modify. The properties of this element appear in the Properties
pane.

5 In the Properties pane, enter the following properties:

PROPERTY VALUE

acknowledge Specifies if the filter needs to send an
ACK message

78 Developing Connectors

Configuring MultiQueue Message Broadcasters

Configuring MultiQueue Message Broadcasters involves:

! Specifying the Database Driver
! Specifying the Database URL
! Specifying the Database User Name
! Specifying the Database Password

To specify the database properties

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the MultiQueue Message Broadcasters to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Database Driver The name of the database driver to use

Database URL The location of the CID database

Database User Name The user name to connect to the database

Database Password The associated password

Configuring Inbound Message Queue Processors

To configure Inbound Batch Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Inbound Batch Queue Processor to modify.

4 In the Properties pane, enter the following:

 Building Your Connector 79

PROPERTY DESCRIPTION

Directory Name Full path of the directory to scan for the files

Prefix Prefix of file list names

Message Type Message type to create

Msg Count Variable Variable to use with the Message Counter Processor

Napping Time Time between polling (in milliseconds)

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

To specify the list of files to process

1 Create a new XML file with the same structure as this sample:
<batch_list>

 <directory_lists>

 <directory>c:/invoices/0101/</directory>

 <files>

 <file>invoices_1.xml</file>

 <file>invoices_1.xml</file>

 </files>

 </directory_lists>

</batch_list>

2 In the <directory> element, specify the full path of the directory holding your
legacy invoice files.

3 For each invoice file to process, under <files> specify the name of you invoice
file using the syntax:
<file>invoices_filename.xml</file>

This path must be relative to the path specified in the <directory> element.

4 For each invoice file specified in your batch list, you can specify additional
parameters:

! These parameters will be attached to each SmartLink (ISF) message
corresponding to an invoice file.

! These parameters can be queried using the Message.getUserValue Script
API.

80 Developing Connectors

Additionally, a parameter named filename is automatically inserted with the value
set to the full file path.

To specify additional parameters, use the syntax as shown in this example.

The following example of an invoice list contains two parameters:
<batch_list>

 <parameters>

 <param1>value1</param1>

 <param1>value1</param1>

 </parameters>

 <directory_lists>

 <directory>c:/invoices/0101/</directory>

 <files>

 <file>invoices_1.xml</file>

 <file>invoices_1.xml</file>

 </files>

 </directory_lists>

</batch_list>

To configure Inbound Email Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Inbound Email Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Host name Hostname of the POP server and the domain (example:
myhost. mydomain.com)

User Name POP account name

User Password POP account password

Napping time Time between polling (in milliseconds)

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

To configure Inbound File System Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

 Building Your Connector 81

3 Select the Inbound File System Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Directory name Path of the file system queue

Queue Size Max number of messages

Napping time Time between polling (in milliseconds)

Number of Threads Number of threads to allocate

Java Priority JVM priority of the threads

To configure Inbound JMS Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Inbound JMS Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

JMS Queue Name Queue name obtained by JNDI

Connection Factory JMS connection factory obtained through JNDI

Transactional Flag Boolean. If set to true, creates a transaction for each
message

Initial context factory JMS initial connection factory

Provider URL URL of the initial context factory provider

Napping Time Time between polling (in milliseconds)

Number of Threads Number of threads to allocate

Java Priority JVM priority of the threads

To configure Inbound JMS Topic Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Inbound JMS Topic Queue Processor to modify.

4 In the Properties pane, enter the following:

82 Developing Connectors

PROPERTY DESCRIPTION

Connection Factory JMS connection factory obtained through JNDI

Transactional Flag Boolean. If set to true, creates a transaction for each
message

Initial context factory Boolean. If set to true, creates a transaction for each
message

Provider URL JMS initial connection factory

Napping time Time between polling (in milliseconds)

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

5 Expand the JMS Topic Queue Processor.

6 Select the Topics node.

7 In the Properties pane, select Add. A new Topic Name row appears.

8 Enter the name of the topic.

9 Repeat as necessary.

To configure Inbound Memory Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Inbound Memory Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Queue name Name of the queue

Number of Threads Number of threads to allocate

Java Priority JVM priority of the threads

To configure Inbound Socket Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Inbound Socket Queue Processor to modify.

4 In the Properties pane, enter the following:

 Building Your Connector 83

PROPERTY DESCRIPTION

Host Name Host name

Port Number The TCP/IP socket to connect to

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

Configuring Outbound Message Queue Processors

To configure Outbound Email Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Outbound Email Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Host name Hostname of the POP server and the domain (example:
myhost. mydomain.com)

User Name POP account name

User Password POP account password

Recipient Email address of the recipient (example:
user@mydomain.com)

Xmailer Xmailer

To configure Outbound File System Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Outbound File System Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Directory Name Path of the file system queue

84 Developing Connectors

To configure Outbound JMS Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Outbound JMS Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

JMS Queue Name Queue name obtained by JNDI

Connection Factory JMS connection factory obtained through JNDI

Transactional Flag Boolean. If set to true, creates a transaction for each
message

Initial context factory Boolean. If set to true, creates a transaction for each
message

Provider URL JMS initial connection factory

To configure Outbound JMS Topic Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Outbound JMS Topic Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Connection Factory JMS connection factory obtained through JNDI

Transactional Flag Boolean. If set to true, creates a transaction for each
message

Initial context factory Boolean. If set to true, creates a transaction for each
message

Provider URL JMS initial connection factory

5 Expand the JMS Topic Queue Processor.

6 Select the Topics node.

7 In the Properties pane, select Add. A new Topic Name row appears.

8 Enter the name of the topic.

9 Repeat as necessary.

 Building Your Connector 85

To configure Outbound Memory Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Outbound Memory Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Queue Name Name of the queue

Time Out Maximum delay for placing messages in this queue
when the Queue Size threshold has been reached
(milliseconds)

-1 for infinite timeout

Queue Size Maximum number of messages

To configure Outbound Socket Queue Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Outbound Socket Queue Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Host Name Host name

Port Number The TCP/IP socket to connect to

Configuring Persistence Message Queue Processors

To configure Message Cache Polling Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Message Cache Polling Processor to modify.

4 In the Properties pane, enter the following:

86 Developing Connectors

PROPERTY DESCRIPTION

DB User Name Name to connect to the database

DB User Password Corresponding password

DB Connection String Connection string

DB Driver Database driver

Cache Name Name of the message cache

Number of threads Number of threads to allocate

Napping time Time between polling (in milliseconds)

Max No. Of Messages Maximum number of messages to extract each time

Custom Extraction SQL Path to the file containing custom SQL script

User exits class Class containing user exit code to execute

Unread Messages Only Boolean. If set to true, extract only unread messages

Save Error Description Boolean. If set to true, save the description of any error

To configure Database Polling Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Database Polling Processor to modify.

4 In the Properties pane, enter the following:

 Building Your Connector 87

PROPERTY DESCRIPTION

DB User Name Name to connect to the database

DB User Password Corresponding password

DB Connection String Connection string

Number of threads Number of threads to allocate

Napping time Time between polling (in milliseconds)

Flag Read Line Boolean. If set to true, flags the row as being read

Delete Row On Success Boolean. If set to true, deletes the row when the
extraction occurs without errors

Save Error Description Boolean. If set to true, saves the description of any error.

User exits class Class containing user exit code to execute

Identifier Column Name Name of the column containing the ID name

Identifier Column Type Type of the column containing the ID

Selection Query File name of the code used to select messages

Lock Query File name of the code used to lock messages

Message Factory Class Class containing the message factory

Confirm Update SQL file called after successfully processing the
message

Confirm Error SQL file called after processing of a message fails

Confirm Error With Msg SQL file called after processing of a message fails and
the error description field of the message must be
updated

Configuring Error Processors

To configure Retry Handler Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Retry Handler Processor to modify.

4 In the Properties pane, enter the following:

88 Developing Connectors

PROPERTY DESCRIPTION

Number of Repeats The number of attempts to send the message

Delay between Repeats The time between attempts (in milliseconds)

To configure Message Retry Counter Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Message Retry Counter Processors to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Number of Retries The number of attempts to send the message

Delay The time between attempts (in milliseconds)

To configure Error Handler Processors

You do not need to configure this Processor.

To configure Exception Converter Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Exception Converter Processor to modify.

4 In the Properties pane, select Add. The Add property dialog box opens.

5 Enter the name of the source exception and the target exception.

6 Select OK. The new property appears in the Properties pane.

To configure CID Update Error Handler Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the CID Update Error Processor to modify.

4 In the Properties pane, enter the following:

 Building Your Connector 89

PROPERTY DESCRIPTION

Error string The error message used tu update the reason column of
the REQUEST table in the CID

Configuring Utility Processors

To configure the Pause Processor

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Pause Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Delay The time to wait between two actions (in milliseconds)

To configure the Encoding Converter Processor

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Encoding Converter Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Middleware Encoding The name of the character set to use for the messages

XML Encoding The name of the character set to use for the XML files

To configure the Macro Runner Processor

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Macro Runner Processor to modify.

4 In the Properties pane, enter the following:

90 Developing Connectors

PROPERTY DESCRIPTION

Macro Namespace The name of the macro to run when a message reaches
this processor

To configure the XML Validator

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the XML Validator Processor to modify.

4 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Validation Flag Specifies if the processor is to validate the XML.

Possible values:

- true

- false

Schema File Full path of the XSD file to use for validation.

Schema Format The format of the schema

Possible values:

- W3C XML Schema
("http://www.w3.org/2001/XMLSchema")

- Relax NG ("http://relaxng.org/ns/structure/0.9")

- Relax Core ("http://www.xml.gr.jp/xmlns/relaxCore")

- Relax Namespace
("http://www.xml.gr.jp/xmlns/relaxNamespace")

- Trex ("http://www.thaiopensource.com/trex")

To configure the Message Counter Processor

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Message Counter Processor to modify.

4 In the Properties pane, enter the following:

 Building Your Connector 91

PROPERTY DESCRIPTION

Msg Count Variable The name of the variable to use to track the total number
of messages that pass through the counter

Success Count Variable The name of the variable to use to track the number of
messages that are successfully passed on to the next
processor

Exception Count Variable The name of the variable to use to track the number of
messages that cause exceptions and are not passed on
to the next processor

Connecting Processors
The Integration Process is the dataflow for messages and requests. The dataflow
consists of a set of processors and the connections between them. Each processor
has an input connection and an output connection which trace the path of data through
the Integration Process.

In the Workspace, the connections are represented by arrows connecting the
processors.

92 Developing Connectors

 Depending on the connector, the following types of connections can be made:

! Send Connection
This connection is the standard connection between processors.

In the Workspace, this connection is represented by a blue arrow.
! Error Connection

This connection provides the processor with the initial message content that
generated the error. This is the flow of data when an error occurs.

In the Workspace, this connection is represented by a yellow arrow.
! Exception Connection

This connection is a connection between a processor and a processor which
handles exceptions. This is the flow of data when an exception occurs. A processor
with an exception connection can catch exceptions for other processors further on
in the data flow.

In the Workspace, this connection is represented by a red arrow.

 Working with connections involves:

! Creating connections
! Deleting connections

To connect Processors

1 Open the Integration Process in the Workspace.

2 Find the Processor you want to connect.

3 Click the Processor then drag the pointer to the destination Processor. Depending
on the type of destination Processor, the following may occur:

! An arrow appears connecting the two Processors.

! If more than one type of connection can be made, a menu appears asking you
to select the type of connection.

! A dialog box appears informing you that you cannot connect the Processors.
This occurs when:

- The Processor is already connected

- The Processors are not compatible

To disconnect Processors

1 Open the Integration Process in the Workspace.

2 Find the Processor you want to disconnect.

 Building Your Connector 93

3 Select the arrow connecting the Processor to other another Processor then press
Del. A conformation dialog box appears.

4 Do one of the following:

! Choose OK to confirm your changes. The arrow disappears and a message
appears in the message pane.

! Choose Cancel

 94

Working with Scripts
A Script is a sequence of commands executed by a Script Engine Processor. Because
of the power and flexibility of Scripts, they are used for a number of functions:

! Scripts update data in CID
! Scripts control message-routing decisions within an Integration Process
! Scripts call external APIs for data processing
!

Working with scripts involves:

! Creating the Script in the Integration Process
! Building the sequence
! Declaring the Script in a Script Engine Process

Working with Scripts

1 Open the Integration Process.

2 Right-click Scripts then select Create New Script. The Create new Script dialog box
appears.

3 Enter the name of the script.

4 Choose OK. The new script appears.

Before you start working with this script, you must create or specify the script file.

To specify a script XML file

After creating your Script, you need specify the associated script file. A script file is an
XML file containing the code of your script.

By default, the script files are located in <connector_home>/scripts.

1 Open the Integration Process.

2 Expand the Scripts node.

3 Right-click the script then choose Open. The file selection dialog box opens.

4 Browse to the directory for scripts.

5 Do one of the following:

! Enter the full name of the file (<file_name>.xml) to create a new script file

! Select the script file to associate with the script

6 Choose Save. The script opens in the Workspace.

 Building Your Connector 95

To open a script

1 Open the Integration Process.

2 Expand the Scripts node.

3 Double-click the Script to open. The script opens in the Workspace.

To close a script

1 On the Workspace, select the tab of the Script to close. The Script appears in the
Workspace.

2 Right click the tab then choose Close. The Script disappears from the Workspace.

To delete a script

1 Open the Integration Process.

2 Expand the Script node.

3 In the Connector Browser, find the Script to remove.

4 Right-click the Script then select Delete. A confirmation dialog box appears.

5 Choose one of the following:

! Yes to permanently remove the element from your configuration

! No to cancel

Programming Scripts
You use the Script Editor to create the sequence. This editor displays the sequence of
steps in your script as a simple and easy-to-understand flow chart. This not only helps
you understand how the script works, it also makes editing and modifying scripts easy.

Programming a script involves:

! Working with Steps
! Creating Steps

! Editing Steps

! Deleting Steps
! Connecting the steps to create the sequence

96 Developing Connectors

Working with Steps

The commands in a script call APIs either defined within the SmartLink (ISF) or
registered as an external macro.

The sequence of commands are created using the following:

!
This step starts the sequence. Your Script must begin with an Init Step

!
The Invoke Step calls the API or external macro.

!
 The Switch Step determines the next step depending on the result of a test.

!
The Call Step forwards the processing to another Integration Process or Processor

Working with Steps involves:

! Creating steps
! Setting step properties
! Editing steps
! Deleting steps

When you are finished, you connect the steps.

To create steps

1 Open the Script in the Workspace.

2 Right-click the Workspace and choose Create New. A list of steps to create
appears.

3 Select the type of step to create. The Create New Step dialog box opens.

4 Enter the name of the step.

5 Select OK. The new step appears on the Workspace.

To configure Invoke steps

1 Open the Script.

2 Select the Invoke step to modify.

 Building Your Connector 97

3 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Method The macro expression to call

Variable The name of the variable to store the result in

Log Optional text message for the logger

To configure Init steps

1 Open the Script.

2 Select the Init step to modify.

3 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Message Type The type of the message to process with this script.

To process all message types, leave blank.

Variable The name of the variable to store the received message
in

Dispatcher Mandatory property. Must be set to
DISPATCHER.

Log Optional text message for the logger

To configure Call steps

1 Open the Script.

2 Select the Call step to modify.

3 In the Properties pane, enter the following:

98 Developing Connectors

PROPERTY DESCRIPTION

Processor The name of the processor to call

Message Type The type of message to send to the specified processor

Variable The name of the variable containing the message to
send

Reply The name of the variable containing the message to
correlate

Result The name of the variable that contains the message
returned by the specified processor

Log Optional text message for the logger

To configure Switch steps

1 Open the Script.

2 Select the Switch step to modify.

3 In the Properties pane, enter the following:

PROPERTY DESCRIPTION

Condition Macro expression to evaluate. This value is transmitted
by the transition connection.

Log Optional text message for the logger

To delete steps

1 Open the Script in the Workspace.

2 Find the Step you want to delete.

3 Press Del. A conformation dialog box appears.

4 Do one of the following:

! Choose OK to confirm your changes. The step disappears from the Workspace
and a message appears in the message pane.

! Choose Cancel

 Building Your Connector 99

Connecting Steps

The script is a sequence of calls.

In the Workspace, the connections are represented by arrows connecting the
processors.

100 Developing Connectors

 The following types of connections can be made:

! Transition Connection
This connection is the standard connection between steps.

In the Workspace, this connection is represented by a blue arrow.
! Switch Connection

This connection is a standard connection with the value associated with Switch
step.

Using a Switch step in your script is to create a point in the processing where the
sequence may branch. The Switch step has a Condition which corresponds to the
test carried out by the step. The result of this test determines the subsequent step.
This result is entered as a property of the connection between the Switch step and
the subsequent step.

In the Workspace, this connection is represented by a blue arrow with the value of
the decision property displayed next to the arrow.

! Exception Connection
This connection is a connection between a step and a step which handles
exceptions.

In the Workspace, this connection is represented by a red arrow.

 Working with connections involves:

! Creating connections
! Deleting connections

To connect steps

1 Open the script in the Workspace.

2 Find the step you want to connect.

3 Click the step then drag the pointer to the destination step. A menu appears asking
you to select the type of connection.

4 Select the type of connection. The arrow representing the connection appears.

To create a switch connection

1 Open the script in the Workspace.

2 Find the Switch step you want to connect.

 Building Your Connector 101

3 Click the Switch step then drag the pointer to the destination step. A menu appears
asking you to select the type of connection.

4 Select Transition as the type of connection. The arrow representing the connection
appears.

5 Select the arrow. The properties appear in the Properties pane.

6 In the Properties pane, select Add. A Decision row appears.

7 In the new row, enter the value of the Decision property. This is the value returned
by the Condition property of the Switch step.

To disconnect steps

1 Open the script in the Workspace.

2 Find the steps you want to disconnect.

3 Select the arrow connecting the steps then press Del. A conformation dialog box
appears.

4 Do one of the following:

! Choose OK to confirm your changes. The arrow disappears and a message
appears in the message pane.

! Choose Cancel

 102

Working with Macros
Macro statements are logically grouped and stored in a text file. They are loaded and
interpreted during connector configuration loading. The Method declaration statements
of a macro define custom APIs that can be invoked in scripts.

! Wrap external Java code to custom script APIs
! Instantiate external Java classes

When using Macros to create your own APIs, you can, for instance:

! Perform operations (add, multiply�) on macro variables
! Invoke external java code on macro variables

Macro statements are case sensitive.

Types of Macros
You can create macros which are limited to a specific Integration Process. You can
also create create macros which can be used by the all of the processors in your
connector.

A macro can be one of the following:

! Connector macro
These macros can be used by all of the processors in a connector. They are
located under <connector_home>/Macros.<connector >/Macros.

! Integration Process macro
These macros can only be used by elements of the Integration Process. They are
located under
<connector_home>/<integration_process>/Macros.<connector
>/<integration_process>/Macros.

Creating and programming both types of macros are the same.

When running the connector, the Macros are loaded in the following order:

1 Connector Macros

2 Integration Process Macros

 Building Your Connector 103

To create Macros

1 Do one of the following depending on the type of Macro:

! Open the connector.

! Open the Integration Process.

2 Right-click Macros then select Create New Macro. The Create new Macro dialog
box appears.

3 Enter the name of the Macro.

4 Choose OK. The new Macro appears.

To open Macros

1 Do one of the following depending on the type of Macro:

! Open the connector.

! Open the Integration Process.

2 Expand the Macros node.

3 Double-click the Macro to open. The Macro opens in the Workspace.

To close a Macro

1 On the Workspace, select the tab of the Macro to close. The Macro appears in the
Workspace.

2 Right click the tab then choose Close. The Macro disappears from the Workspace.

To delete a Macro

1 Do one of the following depending on the type of Macro:

! Open the connector.

! Open the Integration Process.

2 Expand the Macros node.

3 In the Connector Browser, find the Macro to remove.

4 Right-click the Macro then select Delete. A confirmation dialog box appears.

5 Choose one of the following:

! Yes to permanently remove the element from your configuration

! No to cancel

This action only removes the macro from your Connector or Integration Process. It
does not delete the macro source file.

104 Developing Connectors

Specifying the Macro file
After creating your Macro, you need specify the associated macro source file. If the file
does not exist, you can create a new macro file using the ILS.

Specifying the macro involves:

! If the file does not exist, creating the macro source file
! If the file exists, declaring the macro source file

To create and specify a macro file

1 Do one of the following depending on the type of Macro:

! Open the connector.

! Open the Integration Process.

2 Expand the Macros node.

3 Double-click the Macro. The file selection dialog box opens.

4 Browse to the directory to create the macro file in.

5 Enter the full name of the file (<file_name>.properties) then choose Save.

6 The macro file is created and opens in the Workspace.

To specify the Macro

1 Do one of the following depending on the type of Macro:

! Open the connector.

! Open the Integration Process

2 Expand the Macros node.

3 Select the Macro to modify.

4 In the Properties pane, enter the path and file name of the Macro file.

 Building Your Connector 105

Programming Macros
When you program a Macro, you create the Macro source file.

Programming a Macro involves:

! Creating a source file corresponding to the name entered in the path of your Macro
element.

! Editing the Macro

If the right part of an expression contains brackets �xxx()�, then it will be evaluated
ONLY when referenced by another expression. Otherwise as soon as the expression is
parsed it will be evaluated.

Variables

In order to declare a variable and initialize it, you use the following statement:

Variable_name=initialization_value

The initialization value can be provided by virtually any expression that returns a value.
Therefore you can use simple standard java object types, such as:

! String
Var1=�MyString�

! Character
Var1=�a�

! Integer
Var1=10

! Boolean
Var1=true

You can also use more complex java objects. For instance, you can use:

! Java Vector
Var1={1,2,MyString}

! Java Class Array
Var1=java.lang.String[](�aa�,�bb�,�cc�)

! Java Hash table
MyHash=[�key1�=>�value 1�,�key2�=>�value 2�]

106 Developing Connectors

Operators

The following operators are defined:

! Arithmetic (�+�,�-�,�*�,�/�)
! String (�+�)
! Boolean (�&�, �||�)
! Order relation (�<�,�>�,�<=�,�>=�,�==�,�!=�)

 Building Your Connector 107

Static Method Aliases

You can create an alias pointing to a java static method.

To declare a user function alias, use the call statement.

The function syntax is:

FunctionAliasName(Parameters list)=call(String classname,String
MethodSignature)(Parameters list)

The method signature can be defined using one of the following ways:

! You specify the method name and the list of your function parameters
Alias(P1,P2,�)=call(classname,MethodName)(P1,P2,�)

! You specify the method name, the list of class method parameters and the list of
your function parameters. For each method parameter, you must specify only the
java type.
Alias(P1,P2,�)=call(classname,MethodNameWithParametersType)(P
,1P2,�)

! You specify the method name
Alias=call(classname,MethodName)

! You specify the method name, the list of method parameters. For each method
parameter, you must specify only the java type.
Alias=call(classname,MethodNameWithParametersType)

Specifying the list of the class method parameters is required only when a method has
several signatures.

If you specify the list of your function parameters, the referenced custom class is
instantiated only when you call the function.

If you do not specify the list of your function parameters, the referenced custom class is
instantiated when the macro is loaded. This also implies that it inherits the scope of the
macro (connector or limited to the Integration Process.

Class constructors with parameters are not supported with the �call� statement

Your method must be declared as static.

108 Developing Connectors

Non-static Method Aliases

You can create an alias pointing to non-static methods of a class.

To declare a non static user function alias, you do the following:

1 Instantiate the class. If required, you can you can specify the parameters that will
be passed to your class constructor.

To instantiate a class, use the instantiate statement as follows:

ClassAliasName=instantiate(String classname)(Constructor
Parameters)

This statement looks for the class constructor and, if found, calls it.

2 Invoke the method of the class. You specify the parameters that are passed to your
method.

In order to define an alias to the method of your class, use the following statement:

FunctionAlias(P1,P2,�)=ClassAlias->MethodName(P1,P2,�)

Method names are case sensitive.

You may need to instantiate your call each time the method is called. In order to do
this, use the following statements:

ClassAlias()=instantiate(String classname)(Constructor
Parameters)

FunctionAlias(P1,P2,�)=ClassAlias()->MethodName(P1,P2,�)

Class Fields

You can extract class field value.

To extract a class field value, use the getField statement:

thevalue=getField(String classname,String fieldname)

 Building Your Connector 109

Functions

In order to perform a specific task on one or several objects, you can define a function.

To define a function, you specify the following:

! function name
! arguments
! the function

The syntax is as follows:

functionname(list of parameters)=<any macro expression>

The function definition itself can consist of any macro statement or method alias.

Namespaces

Use the following statement to declare a namespace:

NameSpace_Name {

Other macro statements�

}

Use the following syntax to access a previously defined element inside an existing
namespace:

Namespace_Name.OtherElement

110 Developing Connectors

Samples

Defining Simple Functions

This sample describes the macro statement involved when you need to define a simple
function that returns the sum of two numbers.

The Macro statement:

sum(N1,N2)=N1+N2

In an Invoke script step, you use the sum(x,y) macro statement to invoke your
function.

Wrapping Static Methods

This sample describes the macro statements involved when you need to call a static
method from external java code in a script or in a macro.

This example assumes:

! Your java class (MyClass.class) is referenced in your classpath
! Your java class has only one constructor without any parameters
! Your java class contains only one method with the following signature

MyMethod(String aString, Object anObject)

The macro statement:

mymethod(P1,P2)=call(�MyClass�,�MyMethod�)(P1,P2)

In an Invoke script step, you use the mymethod(x,y) macro statement to invoke your
custom class.

 Building Your Connector 111

Wrapping Polymorphic Static Methods

This sample describes the macro statements involved when you need to call a
polymorphic method from external java code in a script or in a macro.

This example assumes:

! Your java class (MyClass.class) is referenced in your classpath
! Your java class has only one constructor without any parameter
! Your java class contains one method with the following signature

MyMethod(String aString, Object anObject)

The Macro statement:

mymethod(P1,P2)=call(�MyClass�,�MyMethod(java.lang.String,java.l
ang.Object)�)(P1,P2)

In an Invoke script step, you use the mymethod(x,y) macro statement to invoke your
custom class.

Instantiating Custom Classes

With Constructor Parameters

This sample describes the macro statements involved when you need to instantiate
external java classes with constructor parameters.

This example assumes:

! Your java class (MyClass.class) is referenced in your classpath
! Your java class has only one static constructor with one parameter

The Macro statement:

myclass=instantiate(�MyClass�)(parametervalue)

In an Invoke script step, you use the myclass macro statement to instantiate your
custom class.

112 Developing Connectors

With Dynamic Constructor Parameters

This sample describes the macro statements involved when you need to instantiate
external java classes with dynamic constructor parameters.

This example assumes:

! Your java class (MyClass.class) is referenced in your classpath
! Your java class has only one static constructor with two parameters

The Macro statement:

myclass(P2)=instantiate(�MyClass�)(P1,P2)

When called, the myclass macro statement will call your class MyClass constructor
with two parameters:

! The first parameter P1 is set by the myclass(xxx) statement
! The second parameter P2 is set by the macro definition statement itself

 113

Working with Extensions
When building your connector, your environment may require different types of
processors that are not available by default. With the ILS, you can create your own
processors or inbound and outbound queues that can be reused in all of the Integration
Processes of the connector.

These custom processors are referred to as extensions.

Working with extensions involves:

! Creating the extension
! Configuring the extension
! Adding the extension to your Integration Process

To create extensions

1 Open the connector.

2 Expand the Extensions node. The Inbound Queue and Outbound Queue nodes
appear.

3 Right-click the node corresponding to the type of extension you want to create then
select Create New Extension. The New extension dialog box appears.

4 Enter the name of the extension.

5 Choose OK. The new extension appears.

To configure extensions

1 Open the connector.

2 Expand the Extensions node. The Inbound Queue and Outbound Queue nodes
appear.

3 Expand the node corresponding to the type of extensions to modify.

4 Select the extension to modify. The properties appear in the Properties pane.

5 Choose Add to add a new property. A new Parameter name row created in the
Properties pane.

6 Enter the value of the Parameter pane.

7 Repeat as required.

To add extensions to Integration Processes

1 Open the Integration Process.

2 Right-click Processors then select Create New Processor. The Choose a Processor
Type dialog box appears.

114 Developing Connectors

3 Expand the Extensions node.

4 Select the extension to add.

5 Enter the name of the extension.

6 Select Confirm. The new extension appears in the Connector Explorer and the
Integration Process displayed in the Workspace.

To delete extensions

1 Open the connector.

2 Expand the Extensions node.

3 Find the extension to remove.

4 Right-click the extension then select Delete. A confirmation dialog box appears.

5 Choose one of the following:

! Yes to permanently remove the element from your configuration

! No to cancel

 115

Working with Parameters
When working with any connector, even if it is a simple connector with a
straightforward workflow, you may find yourself dealing with many different elements
and properties. The ILS uses parameters to help organize and simplify setting and
changing the value of properties. A parameter is simply a property variable that you
can use when setting variables.

For instance, you may have to enter the same property over and over again when
configuring your connector. For example, for each message type you have to specify
the location of the message structure definition file. If all of your message structure
definition files are located in the same directory, you have to enter the same path for
each message type. You can replace c:/myconnector/shared/messagedef with
the SCHEMA_PATH parameter.

If you change the directory, you do not have to open and change the path of each
message type. You change the value of the SCHEMA_PATH parameter.

This also helps makes changing directories or other common properties easier.

Parameters can be used to replace values such as:

! Paths:
path/subpath1/

./path

../../path
! Strings:

dest@company.com

BlueConnectorBeta

! Boolean values
! Numeric values

For Request Queue Agent Filters, your parameter can have several values. You
configure your parameter to have several values and only the declare the parameter in
the Request Queue Agent Filter.

Parameter names have the following restrictions:

! No spaces (underscores are allowed)
! Only letters (no numbers or symbols can be used)
! Upper case only

Example of a valid parameter names:

116 Developing Connectors

! HOME_PATH
! EMAIL
! CONNECTOR_NAME

Working with parameters involves:

! Creating a parameter
! Setting the values
! Using the parameter in property values

To create a parameter

1 Open the connector.

2 Right-click the Parameters node then select Create New Parameter. The New
parameter dialog box appears.

3 Enter the name of the parameter.

4 Choose OK. The new parameter appears.

To configure parameters

1 Open the connector.

2 Expand the Parameters node.

3 Select the parameter to modify. The properties appear in the Properties pane.

4 Enter the following parameters:

 Building Your Connector 117

PARAMETER DESCRIPTION

Description Description of the parameter

Parameter description Description of the value of the parameter

Type The type of parameter.

Possible values:
- String

- Boolean

- Numeric

Multiplicity Specifies if the parameter has one or more value.

Possible values:
• Simple

• Multiple

Value The value of the parameter.

5 If the parameter is a multiple value parameter:

! Select Add and enter a new value.

! Repeat as required.

Multiple value parameters are for Request Queue Agent Processor Filters only.

To use parameters in property values

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Processor to modify. If the processor has any properties you can set, the
properties appear in the Properties pane.

4 Enter the name of the parameter as the value of a property. Use the syntax:
$parameter_name$

Example:

! Parameter name: SCHEMA_PATH

! Parameter value: c:/myconnector/shared/messagedef

The value of the DOADDCONTACT message type structure definition file path is:

$SCHEMA_PATH$/doaddcontact.xml

To use multiple value parameters

1 Open the Integration Process.

2 Expand the Processors node.

118 Developing Connectors

3 Expand the Request Queue Agent Processor node.

4 Expand the Filters and Filter nodes.

5 Select the Filter to modify. The properties appear in the Properties pane.

6 Enter the parameter name as the value of the property. Use the syntax:
$parameter_name$

C H A P T E R 6

Working With Connector
Extensions

In This Section

About Extensions .. 120
Defining Custom Processors... 121
Validating Custom Processors .. 122
Using Custom Processors... 123
Generating Custom Processors .. 124
Samples .. 125

 120

About Extensions
When you are using a custom middleware backbone, or when you need to interact with
a custom system, you can use ILS extensions. ILS extensions are custom processors
which can be used in different connectors.

For instance, you might need to send messages to an unsupported custom middleware
application. Or you might also need to extract data from a back end system in order to
send a notification to your TSM connector.

The different custom processors you can create are:

! Inbound Queues
! Outbound Queues

An extension is the logical representation of the custom java code that will be called by
the SmartLink (ISF). The properties of your custom processor type are directly used to
configure the java instance constructors at run time. Each parameter is directly bound
to a parameter of the constructor of your java class.

 121

Defining Custom Processors
Defining your custom processor type allows you to create in integration processes new
processors based on your type.

To create a new custom processor:

1 Open the connector.

2 Expand the Extensions node. The Inbound Queue and Outbound Queue nodes
appear.

3 Right-click the node corresponding to the type of extension you want to create then
select New > Extension. The New extension dialog box appears.

4 Enter the name of the extension.

5 Choose OK. The new extension appears.

6 If needed, create as many as necessary properties for your processor type. Each
property corresponds to a parameter of the java class constructor of your custom
processor type java code

 122

Validating Custom Processors
In order to validate a connector using your custom processor type, you have to
configure the ILS validation engine to take your custom processor into account.

To configure the validation of a custom processor, do the following:

1 Open the <connector_home>/config/custom/custom_processors.xsd
file.

2 Add the required schema declarations for your processor type

3 Save your changes.

4 Open the
<connector_home>/config/custom/custom_processors_categories.x
ml file.

5 Add the required declarations for your processor type

6 Save your changes.

The ILS validation engine is now able to validate a connector using your custom
processor.

 123

Using Custom Processors
1 Open the Integration Process.

2 Right-click Processors then select New > Processor. The Choose a Processor
Type dialog box appears.

3 Expand the Custom Processors node.

4 Select the the type of Processor to create.

5 Enter the name of the Processor.

6 Select Confirm. The new processor appears in the Connector Explorer and the
Integration Process displayed in the Workspace.

7 Specify its properties in the Properties pane.

 124

Generating Custom Processors
To generate a connector using your custom processor type, you have to configure the
connector generation tool for your processor type.

To configure the connector generation tool:

1 Open the <connector_home>/config/custom/custom_processors.cgf
file.

2 Add the required declarations for your processor type.

3 Use the syntax:
<processor_type>

 <plugin
name="Your_custom_processor_type">your.class.name</plugin>

</processor_type>

4 Save your changes.

For example, for an OutboundQueue, you add the following:
<root>

 <OutboundQueues>

 <plugin name="Your_custom_processor_type">your.class.name</plugin>

 </OutboundQueues>

</root>

5 If required, you may need to add your class to the CLASSPATH in the environment
settings found in <connector_home>/bin/env.

 125

Samples

Sample Custom Outbound Queue
This sample is the contents of the custom_processors.cgf file and a sample java
class that handles the generation of a custom OutboundQueue processor type with two
parameters (Parameter1 and Parameter2.)

Sample custom_processors.cgf File

<root>

 <OutboundQueues>

<plugin name="MyQueueOutDriver">myqueuedriver_out</plugin>

 </OutboundQueues>

</root>

Following is a sample custom_processors.cgf file and a sample java class that handles
the generation of a custom processor type (with Category OutboundQueue) with two
parameters, Parameter 1 and Parameter2.

Sample java class
import com.netonomy.cgf.api.plugin.PluginIF;

import com.netonomy.cgf.api.plugin.PluginQueue;

import com.netonomy.cgf.isf.Processor;

import org.dom4j.Element;

import com.netonomy.cgf.isf.Verbose;

import com.netonomy.cgf.api.plugin.ElementUtil;

import java.util.HashMap;

public class myqueuedriver_out extends PluginQueue {

public String[] onDriver(Element processor, String connName, String integrationProcessName, String
proccessorName, String processorType) throws Exception {

String[] props = new String[] {

"PARAMETER1=" + ElementUtil.getPropertyValue(connName, processor, "PARAMETER1",ElementUtil.STRING_TYPE, null,
".",true),

"PARAMETER2=" + ElementUtil.getPropertyValue(connName, processor, "PARAMETER2",ElementUtil.STRING_TYPE, null,
".",true)};

String[] drivers = new String[] {"myqueuedriver_out=instantiate(\"com.myclasses.myqueuedriverout\")", "DRIVER=
myqueuedriver_out (properties. PARAMETER1, properties. PARAMETER2,0)"};

return ElementUtil.generateConfiguration(props,drivers);

 }

}

126 Developing Connectors

Sample Custom Inbound Queue
This sample is the contents of the custom_processors.cgf file and a sample java
class that handles the generation of a custom InboundQueue processor with two
parameters (Parameter 1 and Parameter2.)

Sample custom_processors.cgf File

<root>

 <InboundQueues>

 <plugin name="MyQueueInDriver">myqueuedriver_in</plugin>

 </InboundQueues>

</root>

 Working With Connector Extensions 127

Sample java class
import org.dom4j.Element;

import java.util.Iterator;

import org.dom4j.Attribute;

import java.util.HashMap;

import com.netonomy.cgf.api.plugin.ElementUtil;

import com.netonomy.cgf.api.plugin.PluginAgent;

import java.util.Vector;

import com.netonomy.cgf.isf.Constants;

public class myqueuedriver_in extends PluginAgent {

public String[] onDriver(Element processor, String connName, String integrationProcessName, String
proccessorName, String processorType) throws Exception {

String[] props = new String[] {

 "PARAMETER1=" + ElementUtil.getPropertyValue(connName, processor,
"PARAMETER1",ElementUtil.STRING_TYPE, null, "0",true),

" PARAMETER2=" + ElementUtil.getPropertyValue(connName, processor, "PARAMETER2",ElementUtil.INT_TYPE, null,
"0",true)};

String[] drivers = new String[] {

 ElementUtil.getTransitionValue(processor, connName, integrationProcessName, "send",true),

 ElementUtil.getTransitionValue(processor, connName, integrationProcessName,
"exception",false),

 ElementUtil.getTransitionValue(processor, connName, integrationProcessName, "error",false),

 "myqueuedriver_in=instantiate(\"com.myclasses.myqueuedriverin\")",

 "DRIVER=fileQ(properties.PARAMETER1,properties. PARAMETER2)",

 "AGENT=Create_QueueAgent(properties.NBTHREADS,DRIVER,EXCEPTION,ERROR,properties.PRIORITY)"

 };

 return ElementUtil.generateConfiguration(props,drivers);

}

public String[] onStart(Element elementProcessor, String connName, String integrationProcessName, String
proccessorName, String processorType) throws Exception {

// Nothing to generate

Vector v = new Vector();

// daemon

v.add("STARTWITH=null");

String[] props = new String[v.size()];

for(int i=0;i <v.size();i++){

 props[i] = Constants.TAB1 + (String)v.get(i);

}

return props;

}

}

128 Developing Connectors

C H A P T E R 7

Working with the SmartLink (ISF)
Message Cache

In This Section

About the SmartLink (ISF) Message Cache............................ 130
About the Saved SmartLink (ISF) Message Structure 131
About the SmartLink (ISF) Message Cache Script APIs 132
About the SmartLink (ISF) Message Cache Processors......... 133
Working With the SmartLink (ISF) Message Cache................ 134
Using the Message Cache to Build a Business Event Queue. 145

 130

About the SmartLink (ISF) Message
Cache

You use the message cache to store SmartLink (ISF) messages while awaiting the
reply from the OSS.

The message cache allows you to:

! Temporary store of integration messages and related data in order to share them
among threads and processes

! Cumulatively and concurrently update stored messages for easier reconciliation

When working with messages, the connector receives a message then calls a back
end API to request additional information. This API call is performed in a non blocking
manner, which means the connector does not wait for the reply. Depending on your
integration architecture, you may need to store the message while awaiting the reply
from the backend system. As soon as the connector receives this reply from the back
end, it restores the persisted message, does the required task (reconcile, update, and
so on). When finished, the connector either persist the message again for another
request/reply or sends the updated message then removes the persisted message.

The SmartLink (ISF) message cache has the following components:

! Message Cache database
! Message Cache database administration tool
! Message cache APIs
! Message cache processors

 131

About the Saved SmartLink (ISF)
Message Structure

An SmartLink (ISF) message saved in the SmartLink (ISF) message cache has the
following:

! Message envelope
! Message body (optional)
! Message parameters (optional and multiple)

The messages have the following characteristics:

! There are no restrictions of the size of the message body. This means you can
save entire XML strings in the message body.

! The message envelope fields can be used and set according to your needs.
! The message parameters can be used to store elementary data. Any number of

parameters can be attached to a message and hierarchic as well as flat arrays can
be used.

! A Message can contain any number of sub messages to create a message tree.

 132

About the SmartLink (ISF) Message
Cache Script APIs

You use the SmartLink (ISF) Message Cache Script APIs to do the following:

! Extract messages
The extraction criteria include:

! Identifiers: Internal id, external id, correlation id

! Message Envelope: Any field of the envelope (type, status, priority, and so on)

! Custom extraction using custom SQL
! Update messages

Messages can be updated using standard identifiers and any message field can be
updated using its corresponding API

! Deleting messages
Messages can be deleted using standard identifiers.

! Connecting to the SmartLink (ISF) Message Cache:
! Opening a connection

! Closing a connection
! Managing Message Cache transactions:
! Creating

! Deleting

! Commits

! Rollbacks

! And so on
! Managing SQL Statements
! Executing SQL

! Parsing results

! And so on

For more information about:

- the SmartLink (ISF) Message Cache Script APIs, refer to the SmartLink (ISF) Script
API online documentation

- Using scripts in the ILS, refer to Working With Scripts.

 133

About the SmartLink (ISF) Message
Cache Processors

You use the following processors in the ILS to build integration processes using the
SmartLink (ISF) Message queue:

! Message Cache Poller
This processor extracts messages from the SmartLink (ISF) message cache.

! Database Poller
This processor extracts data from any database table.

 134

Working With the SmartLink (ISF)
Message Cache

Overview of Working with the SmartLink (ISF) Message
Cache

Working with the SmartLink (ISF) message cache involves:

1 Creating the SmartLink (ISF) message cache database.

2 Depending on your connector, inserting one of the following processors:

! Message Cache Polling Processor

! Database Polling Processor

3 Using the Message Cache Script APIs to do the following:

! Connect to a message cache

! Save messages

! Extract messages

Example of Integrating the SmartLink (ISF) Message
Cache

When Synchronizer interacts sequentially and asynchronously with several back ends,
an OSS may need to receive messages enriched by one or several previous OSS
data. Hence a connector (Synchronizer or OSS Connector) should be able to send
messages enriched with custom data collected in past received messages.

For asynchronous exchanges of information between connectors and applications, you
may need to save and restore message data between exchanges.

For instance, your application integration might require the following:

1 Connector calls an API on OSS 1 but does not wait for the reply

2 Connector saves current message context for later use in message cache

3 Later connector receives the reply from OSS1 at some point in the future

4 Connector restores the message context from message cache

 Working with the SmartLink (ISF) Message Cache 135

5 Connector calls the OSS 2 API and provides the message context and OSS1 reply

Creating the SmartLink (ISF) Message Cache
Creating the SmartLink (ISF) message cache involves:

! Creating the structure with the messagecacheAdminTool

To create the structure

1 Go to <home_dir>/bin.

2 Run the SmartLink (ISF) Message Cache administration tool. Use the syntax:
messagecacheAdminTool create_messagecache_structure
<InstanceName> <ADMIN login> <ADMIN password> [-
cachename:name | -sqlfilename:sql filename] [-quiet]

where <db_instance>:

! Oracle: <instance alias>

136 Developing Connectors

! DB2: <database alias>

! SQL Server: <database host> [:<port>] If no port is specified, the tool
uses the default SQL server port

When running this tool, you specify at least one of the following:

-cachename the name of the cache

-sqlfilename the name of the file containing custom SQL script

When finished, the administration tool displays a confirmation message.

Adding the SmartLink (ISF) Message Cache Processors
Adding the SmartLink (ISF) Message Queue processors to your Integration Process
involves:

! Creating processors
! Configuring Message Cache Polling processors
! Configuring Database Polling processors

To create Processors

1 Open the Integration Process.

2 Right-click Processors then select Create New Processor. The Choose a Processor
Type dialog box appears.

3 Expand the node of the Processor Type to create.

4 Select the Processor to create.

5 Enter the name of the Processor.

6 Select Confirm. The new processor appears in the Connector Explorer and the
Integration Process displayed in the Workspace.

To configure Message Cache Polling Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Message Cache Polling Processor to modify.

4 In the Properties pane, enter the following:

 Working with the SmartLink (ISF) Message Cache 137

PROPERTY DESCRIPTION

DB User Name Name to connect to the database

DB User Password Corresponding password

DB Connection String Connection string

DB Driver Database driver

Cache Name Name of the message cache

Number of threads Number of threads to allocate

Napping time Time between polling (in milliseconds)

Max No. Of Messages Maximum number of messages to extract each time

Custom Extraction SQL Path to the file containing custom SQL script

User exits class Class containing user exit code to execute

Unread Messages Only Boolean. If set to true, extract only unread messages

Save Error Description Boolean. If set to true, save the description of any error

To configure Database Polling Processors

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Database Polling Processor to modify.

4 In the Properties pane, enter the following:

138 Developing Connectors

PROPERTY DESCRIPTION

DB User Name Name to connect to the database

DB User Password Corresponding password

DB Connection String Connection string

Number of threads Number of threads to allocate

Napping time Time between polling (in milliseconds)

Flag Read Line Boolean. If set to true, flags the row as being read

Delete Row On Success Boolean. If set to true, deletes the row when the
extraction occurs without errors

Save Error Description Boolean. If set to true, saves the description of any error.

User exits class Class containing user exit code to execute

Identifier Column Name Name of the column containing the ID name

Identifier Column Type Type of the column containing the ID

Selection Query File name of the code used to select messages

Lock Query File name of the code used to lock messages

Message Factory Class Class containing the message factory

Confirm Update SQL file called after successfully processing the
message

Confirm Error SQL file called after processing of a message fails

Confirm Error With Msg SQL file called after processing of a message fails and
the error description field of the message must be
updated

 139

Connecting to the SmartLink (ISF)
Message Cache

Connecting to the SmartLink (ISF) message cache involves:

! Creating a Script Dispatcher processor
! Inserting the Script Dispatcher in the Integration Process containing the SmartLink

(ISF) Message Cache Processors
! Programming the connection script in the Script Dispatcher

To create Processors

1 Open the Integration Process.

2 Right-click Processors then select Create New Processor. The Choose a Processor
Type dialog box appears.

3 Expand the node of the Processor Type to create.

4 Select the Processor to create.

5 Enter the name of the Processor.

6 Select Confirm. The new processor appears in the Connector Explorer and the
Integration Process displayed in the Workspace.

To connect Processors

1 Open the Integration Process in the Workspace.

2 Find the Processor you want to connect.

3 Click the Processor then drag the pointer to the destination Processor. Depending
on the type of destination Processor, the following may occur:

! An arrow appears connecting the two Processors.

! If more than one type of connection can be made, a menu appears asking you
to select the type of connection.

! A dialog box appears informing you that you cannot connect the Processors.
This occurs when:

- The Processor is already connected

- The Processors are not compatible

Working with Scripts

1 Open the Integration Process.

140 Developing Connectors

2 Right-click Scripts then select Create New Script. The Create new Script dialog box
appears.

3 Enter the name of the script.

4 Choose OK. The new script appears.

Before you start working with this script, you must create or specify the script file.

To program the connection script

1 Open the script.

2 Use the messagecache Script APIs to program you connection.

3 Save the script.

For more information about:

- programming scripts, refer to Programming Scripts in this manual

- messagecache Script APIs, refer to the SmartLink (ISF) Script API HTML
documentation

To specify the scripts

1 Open the Integration Process.

2 Expand the Processors node.

3 Select the Script Engine to modify.

4 In the Properties pane, select Add. A new Script row appears.

5 Select the script from the drop-down list.

6 Repeat as necessary.

 141

Saving Messages
Saving messages to the SmartLink (ISF) Message Cache involves:

! Connecting to a message cache
! Saving a message
! Extracting a message
! Updating a message

You use the Script APIs to preform these actions.

Example of Saving Messages

The following is an example of implementing the SmartLink (ISF) Message Cache in a
simple Integration Process.

If your connector needs to interact asynchronously with an OSS, you can do the
following:

1 Parse the inbound message

You can use either Xml2hash transmappers or DOM builder processors.

2 Save inbound message in message cache

You use the Script Dispatcher and program a script using the SmartLink (ISF)
Message Cache Script APIs.

3 Call OSS system API using inbound message data

You use the Script Dispatcher and program a script.

4 Update the message with the identifier returned by API

142 Developing Connectors

You use the Script Dispatcher and program a script using the SmartLink (ISF)
Message Cache Script APIs.

This integration process which saves and updates the message context before calling
a OSS API looks like this:

The Call_OSS_API Script Dispatcher processor contains the script which saves the
message. The script looks like this:

 Working with the SmartLink (ISF) Message Cache 143

After calling the OSS API, your Integration Process may need to update the message
context with a Reply ID (External Identifier) provided by the OSS. You may need this ID
for message. The script looks like this :

 144

Extracting Messages
Saving messages to the SmartLink (ISF) Message Cache involves:

! Connecting to a message cache
! Extracting a message
! Updating a message

You use the Script APIs to preform these actions.

Example of Extracting Messages

The following is an example of implementing the SmartLink (ISF) Message Cache in a
simple Integration Process.

If your connector needs to extract messages from the SmartLink (ISF) Message
Queue, you can do the following:

1 Connect to a message cache

You can use the Message Cache Poller processor to connect to the cache and
extract the messages in the cache inserted by other applications.

2 Build the message

You can use the Script Engine processor to rebuild the message using the
information extracted from the cache. The content of the message output is
expected to be a DOM object.

3 Convert the message to XML

You use the DOM2XML processor to convert the DOM message to XML.

4 Send the message

You then send the message to its destination message queue.

An integration process which extracts and sends the message to an outbound JMS
Series Queue looks like this:

 145

Using the SmartLink (ISF) Message
Cache to Build a Business Event
Queue

You can use the SmartLink (ISF) Message Cache to create an OSS Business Event
Queue. An OSS Business Event Queue is a queue you use to collect and store OSS
business events.

Your connector can be configured to poll this Business Event Queue at periodic
intervals. When any new events are found, your connector can extract them and then
trigger specific events. For instance, a business event may trigger sending a
notification message to the Synchronizer as shown in this diagram:

New Topic
OSS Business Event Queues must contain the minimum amount of data ot correctly
identify the business event. For instance, a simple business event contains:

! Business Event Identifier (mandatory)
! Business Event Type
! Business Event Data

The OSS are responsible for entering the business events in the queue.

146 Developing Connectors

Creating an OSS Business Event Queue
If your connector needs to poll the Business Event Queue, you can do the following:

1 Poll the Business Event Queue

You use a Message Cache Poller processor which is responsible for polling and
extracting business events from the cache.

2 Build the message

You can use the Script Engine processor to rebuild the DO message using the
information extracted from the cache. The content of the message output is
expected to be a DOM object.

3 Convert the message to XML

You use the DOM2XML processor to convert the DOM message to XML.

4 Send the message

You use the OutboundJMSQueue processor to send the message to the
Synchronizer.

This integration process which polls the Business Event Queue and updates your
application accordingly looks like this:

C H A P T E R 8

Working With the Message
Schema Reference

In This Section

About the Message Structure Files ... 148
About Working with the Message Schema Reference............ 149
Overview of the Business Message Structure 150
Adding New Messages ... 153
Overriding Default Outbound Message Mapping 161
Customizing Message Fields .. 163
Working with Synchronizer Outbound Message Fields........... 169
Customizing Synchronizer Inbound Messages 170
Customizing Standard Message Structures............................ 171
Generating the Message Schema Reference Files 173

148 Developing Connectors

About the Message Structure Files
The Message Schema Reference is a set of XML schema files.

Each message has a XML schema file which specifies:

! The structure of the message
! The mapping of information in the message

By default, these files are located in
<connector_home>/data/schemaref/biz/events

 where <connector_home> is the location where the connectors are installed.

These schema files are used to generate the structure XML file and the mapping XML
file. These files are used by the connector to read and build messages.

These files adhere to the W3C XML Schema specification. For more information about
this specification, refer to the W3C web site at
http://www.w3.org/TR/xmlschema-0/

For the list of messages, refer to Core Messages in this manual.

 Working With the Message Schema Reference 149

About Working with the Message
Schema Reference

Your application may not require you to modify the structure of format of messages. If
you need to, you can customize the structure of messages.

When customizing the Message Schema reference, you do the following:

1 Create .xsd schema files

2 Generate the corresponding XML files using the schemaRefTool

Customizing messages involves:

! Adding New Messages
! Customizing Messages
! Customizing Message Fields
! Customizing Message Structure
! Generating the Message Schema Reference Files

150 Developing Connectors

Overview of the Business Message
Structure

The Message Schema Reference contains the Message Schema structure and
mapping definitions. These messages contain technical data and business data
organized into different sections:

Message

Control Area

Business
Data

Business
Message

 Working With the Message Schema Reference 151

About the Control Area
The control area is used to define general message information. This section of the
message contains the following:

! The Business Service Request (BSR) qualifies the action that the Sender
application wants the Receiver application to perform

! The Sender identifies characteristics and control identifiers that relate to the
application which creates the Business message

! The Date Time (creation) segment is used to store the date time information of the
message.

Message

Control Area

Business Data Area

Business Service Request

Sender

Date Time

152 Developing Connectors

About the Business Data Area
The Business Data area contains the data dedicated to the Business message. It also
contains the optional customized data the System Integrator adds to adapt it to his
specific requirements:

Message

Control Area

Data Area

User Area

Business Data (Message Specific)

You can extend every core Business Object to add the fields required for any specified
implementation, or other business logic object.

 153

Adding New Messages
You can add new messages to the standard messages in order to conform to the
integration needs of a project.

This can be useful if you need to send fully customized messages to specific back-end
systems that cannot process standard messages.

When you exchange messages with OSS Connectors or back end systems, you
exchange data with them. These data must be exchanged in a structured manner. The
XML format is used to format these data. This means you must define the structure of
the XML message in which your are going to put (or get) data.

To create new messages, you can:

! Create a fully customized message in which you define any field you may need with
the structure corresponding to you needs.

! Create a message using the standard message structure.

In this case, you use the standard sections (cntrol area, datarea and userarea). Then
you customize the content of the datarea and userarea sections to suit your needs.

154 Developing Connectors

To add a new message

Define the structure of the new
message

How to add a new message

Create a new XSD file

Define the message structure

Use one of the XSD templates
provided

Add the nodes and leaves that
suit your needs

For each field, confgure the
accessor to be used

Use the 'accessor="xxx" ' XML
attribute

Configure Synchronizer
Outbound message mapping

Use the schemareftool in
order to generate the

message structure definition
file

schemareftool gen_msg_ref
custom_message.xsd
custom_message.xml

Use the schema ref tool to
generate message definition

files

schemareftool gen_sync_map
custom_message.xsd
custom_message_map.xml

Update Inbound
Transmapper configuration

Add a transmapper for the new
inbound message in your
integration process

Configure Synchronizer
Inbound message mapping

Update Outbound
Transmapper configuration

Add a transmapper for the new
outbound message in your
integration process

If custom mappings are
needed, define the custom

required accessors

Define the Java APIs wrapped to
the custom accessors

 Working With the Message Schema Reference 155

Continued on next page.

To add a new message (Continued)

For each field with a
custom mapping, define

the custom accessor

Define the Java API wrapped to
this custom accessor

Configure Connector
Outbound message mapping

Invoke the schema ref
tool to generate message

definition files

schemareftool gen_oss_map
custom_message.xsd
custom_message_map.xml

Update Inbound
Transmapper
configuration

Add a transmapper for the new
inbound message in your
integration process

Configure Connector
Inbound message mapping

Update Outbound
Transmapper
configuration

Add a transmapper for the new
outbound message in your
integration process

For each field with a
custom mapping, set the

override configuration

Configure the mapping override
in the connector override XML file

Define the Structure of the New Message

Define the structure of the new
message Create a new XSD file

Define the message structure

Use one of the XSD templates
provided

Add the nodes and leaves that
suit your needs

Use the schemaref tool to
generate the message
structure definition file

schemareftool gen_msg_ref
custom_message.xsd
custom_message.xml

156 Developing Connectors

To define the structure of the new message:

1 Create a new XSD file located in the custom events directory
(<home_dir>/data/schemaref/biz/custom).

! If you want to create a new, fully customized message, use the
NewMessage_Template.xsd template.

! If you do not want to create a new message, use the
NewMessageStd_Template.xsd template.

Both templates are provided in Documentation/samples/Schemaref
templates.

2 In the XSD file, define your message structure: add the XML nodes and leaves that
suit your needs.

You must name the root tag of the message "request"

You must name the first child tag of this root tag as the message type (for example
REQADDSERVICE).

3 Once you have defined your message, generate the message structure definition
files that will be used by the Synchronizer or Connector Template. Use the
"gen_msg_ref" command of the schemareftool. You must provide the schemaref
tool with the following parameters:

! custom message definition (full path to your XSD file)

! destination message structure definition file (XML file). This file should be
located in <home_dir>/share/schemaref

Example:
CUST_EVENTS=/<home_dir>/data/schemaref/biz/custom

SHARE_REF=/<home_dir>/share/schemaref

/<home_dir>/bin/schemareftool gen_msg_ref
$CUST_EVENTS/reqaddservice_custom.xsd
$SHARE_REF/reqaddservice.xml

 Working With the Message Schema Reference 157

Configure Synchronizer Outbound Message Mapping

For each field, confgure the
accessor to be used

Use the 'accessor="xxx" ' XML
attribute

Configure Synchronizer
Outbound message mapping

Use the schema ref tool to
generate message definition

files

schemareftool gen_sync_map
custom_message.xsd
custom_message_map.xml

Update Outbound
Transmapper configuration

Add a transmapper for the new
outbound message in your
integration process

If custom mappings are
needed, define the custom

accessors required

Define the Java APIs wrapped to
the custom accessors

1 If you need to use custom java APIs to fill the content of your fields, you must
define custom accessors. For each custom accessor used, you must declare the
custom java API that will be wrapped to it in the Macro file
accessors_custom.properties configuration file.

2 Once you have defined the accessors (either as custom or core), you must use the
'accessor' XML attribute to configure which accessor must be called for each field.
You must create this accessor configuration in a dedicated sub-section called
"appinfo" within an "annotation" section of the field you are defining:

! You must use the following template:
<xs:annotation>

 <xs:appinfo>

 <isf:mapping accessor="your_accessor_name"/>

 </xs:appinfo>

</xs:annotation>

For each outbound message field, you can choose one of the following options:

! generate the field

! do not generate the field

! generate the field but with no content (empty field). This option is only applicable
for leaves.

The default action is to generate the field. If you do not define any specific
configuration, your new fields will be automatically present in your outbound
message. For more information, refer to To activate How to activate/deactivate
a field."

158 Developing Connectors

3 Once you have defined the field mapping configuration, you must generate the
message mapping definition files for the Synchronizer. Use the "gen_sync_map"
command of the schemareftool. You must provide the schemaref tool with the
following parameters:

! (mandatory) custom message definition (full path to your XSD file)

! (mandatory) destination message mapping definition file (XML file). This file
should be located (or created) in
<home_dir>/config/synchronizer/transmapper/accessor

! (optional) message field activation configuration file (XML file). This file should
be located (or created) in
<home_dir>/data/schemaref/biz/events/activation

Example:
CUST_EVENTS=/<home_dir>/data/schemaref/biz/custom

SYNC_MAP=/<home_dir>/config/synchronizer/transmapper/access
or

/<home_dir>/bin/schemareftool gen_sync_map
$CUST_EVENTS/reqaddservice_custom.xsd
$SYNC_MAP/reqaddservice_map.xml

Configure Synchronizer Inbound Message Mapping

Update Inbound
Transmapper configuration

Add a transmapper for the new
inbound message in your
integration process

Configure Synchronizer
Inbound message mapping

Every field of an inbound message is automatically mapped by the Synchronizer
inbound transmapper default configuration. You do not have to configure any specific
message field mapping. The default behavior is to map leaves to java strings and
nodes to hashtables.

 Working With the Message Schema Reference 159

Configure Connector Outbound Message Mapping

For each field with a custom
mapping, define the custom

accessor

Define the Java API wrapped to this
custom accessor

Configure Connector Outbound
message mapping

Invoke the schema ref tool to
generate message definition

files

schemareftool gen_oss_map
custom_message.xsd
custom_message_map.xml

Update Outbound
Transmapper configuration

Add a transmapper for the new
outbound message in your
integration process

For each field with a custom
mapping, set the override

configuration

Configure the mapping override in
the connector override XML file

1 If you need to use custom java APIs to fill the content of your fields, you must
define custom accessors. For each custom accessor used, you must declare the
custom java API that will be wrapped to it in the Macro file
accessors_custom.properties configuration file.

2 The Connector outbound mapping configuration for a specific message is
automatically generated based on that message's structure definition file. If you
want to customize a message field mapping, you must override the default mapping
configuration of this field.

You can override every message field mapping configuration by specifying the field
name (and path) and the new accessor to be used in the XML override
configuration file of your connector. For more information, refer to To override a
connector default mapping configuration.

3 Once you have configured the field mapping override, you must generate the
message mapping definition files for your connector. Use the gen_oss_map
command of the schemareftool. You must provide the schemaref tool with the
following parameters:

! (mandatory) custom message definition (full path to your XSD file)

! (mandatory) destination message mapping definition file (XML file). This file
should be located in
<home_dir>/config/yourconnector/transmapper/accessor

! (optional) core mapping override configuration file (XML file).

! (mandatory if core override files specified and xsd file not in custom directory)
core mapping directory (<home_dir>/data/connectors/)

160 Developing Connectors

Example:
CUST_EVENTS=/<home_dir>/data/schemaref/BIZ/custom

OVERRIDE_DIR=/<home_dir>/data/connectors

LPBK_MAP=/<home_dir>/config/loopback/transmapper/accessor

/<home_dir>/bin/schemareftool gen_oss_map
$CUST_EVENTS/reqaddservice_custom.xsd
$LPBK_MAP$/reqaddservice_map.xml �core_override
connectortemplate.xml -core_override_dir $OVERRIDE_DIR

Configure Connector Inbound Message Mapping

Update Inbound
Transmapper configuration

Add a transmapper for the new
inbound message in your
integration process

Configure Connector Inbound
message mapping

Every field of an inbound message is automatically mapped by your Connector
inbound transmapper default configuration. You do not have to configure any specific
message field mapping. The default behavior is to map leaves to java strings and
nodes to hashtables.

 161

Overriding Default Outbound
Message Mapping

The Connector outbound mapping configuration for a specific message is automatically
generated based on that message's structure definition file. As a consequence, if you
want to customize a message field mapping, you must override the default mapping
configuration of this field.

You can override a message field mapping configuration by specifying the field name
(and path) and the new accessor to be used in the XML override configuration file of
your connector.

To override default outbound message mapping

1 Create an XML file using the template provided in
Documentation/Samples/Schemaref
templates/OverrideConfig_Template.xml

2 For each field for which you want to change the mapping configuration, you must
create one new element which specifies which accessor to use. The elements must
be grouped by message type and then by element type.The following XML code
gives you a sample configuration:
<configuration>

 <outbound_mapping_override use_custom_accessors="true">

 <event_type name="doaddservice">

 <element_type name="CNTROLAREA">

 <element_type name="SENDER">

 <element name="authid" accessor="CONSTANT:YOUR_AUTHID_ACCESSOR"/>

 </element_type>

 </element_type>

 </event_type>

 </outbound_mapping_override>

</configuration>

3 In order to apply your changes, you must use the schemarefTool with the
gen_oss_map command to generate your Connector outbound message mapping
configuration. Specify the XML file you created in step one as the last parameter (-
custom_override) of the gen_oss_map command.

162 Developing Connectors

Note: If you do not use the core_override, your custom override has to define
the default mapping for node and leaf elements:
<outbound_mapping_override
custom_node_accessor="getopt($ELEMENTNAME)"
custom_leaf_accessor="getopt($ELEMENTNAME)"
use_custom_accessors="true">)

 163

Customizing Message Fields
Customizing core messages involves:

! Adding or extending message fields
! Activating or deactivating message fields

Restrictions on customizing core messages:

! Synchronizer restrictions
! New fields must be appended to existing fields

! Field order cannot be changed
! Connector restrictions
! Message structure definitions can only be extended. They cannot be updated.

! Message mapping definitions can be customized (overload mechanism).

The available core messages are listed in Core Messages.

You might add a message field if you need to send additional data to the back-end
systems contained in specific tags. You can also carry out specific processing tasks
(such as message routing etc.) by using user-defined fields in the Synchronizer's
inbound messages.

You can customize message content in two different ways.

! You can add any desired field to the custom section of standard fields.

You can also add any desired field in the Userarea of each message

164 Developing Connectors

To add a new message field

Define the structure of the new field

How to add a new field to a message

Open or create the custom
XSD file

Define the field structure

Use the XSD template provided

Add the nodes and leaves that
suit your needs

Use the schemaref tool to
generate the message
structure definition file

schemareftool gen_msg_ref
custom_message.xsd
custom_message.xml

Configure Synchronizer Outbound
message mapping

Confgure the accessor to be
used to for this new field

Use the 'accessor="xxx" ' XML
attribute

Use the schema ref tool to
generate message definition

files

schemareftool gen_sync_map
custom_message.xsd
custom_message_map.xmlConfigure Synchronizer Inbound

message mapping

Configure Connector Outbound
message mapping

If a custom mapping is
needed, define the custom

accessor

Define the Java API wrapped
to this custom accessor

If a custom mapping is
needed, define the custom

accessor

Define the Java API wrapped to
this custom accessor

If a custom mapping is
needed, set the override

configuration

Configure the mapping override
in the connector override XML
file

Use the schema ref tool to
generate message definition

files

schemareftool gen_oss_map
custom_message.xsd
custom_message_map.xml

Configure Connector Inbound
message mapping

 Working With the Message Schema Reference 165

Define the Structure of the New Field

Define the structure of the new field Open or create the custom
XSD file

Define the field structure

Use the XSD template provided

Add the nodes and leaves that
suit your needs

Use the schemaref tool to
generate the message
structure definition file

schemareftool gen_msg_ref
custom_message.xsd
custom_message.xml

To define the structure of the new field:

1 If you have not yet customized any fields in your message, you must create a new
XSD file create it in the custom events directory
(<home_dir>/data/schemaref/biz/custom). Use the
CustomMessage_Template.xsd template provided in
Documentation/samples/Schemaref templates. To customize a core
message you must update the reference (<xs:redefine
schemaLocation="../events/reqaddservice.xsd") to the core message
you want to extend.

2 Once you have created your custom XSD file, open it and define your field
structure: add the XML nodes and leaves that suit your needs.

3 Once you have defined your field, you must generate the message structure
definition files that will be used by the Synchronizer or Connector Template. Use
the gen_msg_ref command of the schemareftool. You must provide the
schemaref tool with the following parameters:

! (mandatory) custom message definition (full path to your custom XSD file)

! (mandatory) destination message structure definition file (XML file). Create it in
<home_dir>/share/schemaref

Example:
CUST_EVENTS=/<home_dir>/data/schemaref/biz/custom

SHARE_REF=/<home_dir>/share/schemadef

/<home_dir>/bin/schemareftool gen_msg_ref
$CUST_EVENTS/reqaddservice_custom.xsd
$SHARE_REF/reqaddservice.xml

166 Developing Connectors

Configure Synchronizer Outbound Message Mapping

Configure Synchronizer Outbound
message mapping

Confgure the accessor to be
used to for this new field

Use the 'accessor="xxx" ' XML
attribute

Use the schema ref tool to
generate message definition

files

schemareftool gen_sync_map
custom_message.xsd
custom_message_map.xml

If a custom mapping is
needed, define the custom

accessor

Define the Java API wrapped to
this custom accessor

1 If you need to use custom java APIs to fill the content of your fields, you must
define custom accessors. For each custom accessor used, you must declare the
custom java API that will be wrapped to it in the Macro file
accessors_custom.properties configuration file.

2 Once you have defined the accessors (either as custom or core), you must
configure which accessor must be called for your new fields using the 'accessor'
XML attribute. You must create this accessor configuration in a dedicated sub-
section called "appinfo" within an "annotation" section of the field you are defining.

You must use the following template:
<xs:annotation>

 <xs:appinfo>

 <isf:mapping accessor="your_accessor_name"/>

 </xs:appinfo>

</xs:annotation>

For each outbound message field, you can choose one of the following options:

! generate the field

! do not generate the field

! generate the field but with no content (empty field). This option is only applicable
for leaves.

The default action is to generate the field. If you do not define any specific
configuration, your new fields will be automatically present in your outbound
message. For more information, refer to "How to activate/deactivate a field."

3 Once you have defined the filed mapping configuration, you must generate the
message mapping definition files for the Synchronizer. Use the "gen_sync_map"
command of the schemareftool. You must provide the schemaref tool with the
following parameters:

! (mandatory) custom message definition (full path to your XSD file)

 Working With the Message Schema Reference 167

! (mandatory) destination message mapping definition file (XML file). This file
should be located (or created) in
<home_dir>/config/synchronizer/schema_map/accessor

! (mandatory if custom message is not located in the custom folder) location of
the core messages (<home_dir>/data/schemaref/biz/events)

! (optional) message fields activation configuration file (XML file). This file should
be located (or created) in
<home_dir>/data/schemaref/biz/events/activation

Example:
CUST_EVENTS=/<home_dir>/data/schemaref/biz/custom

SYNC_MAP=/<home_dir>/config/synchronizer/schema_map/acces sor

/<home_dir>/bin/schemareftool gen_sync_map
$CUST_EVENTS/reqaddservice_custom.xsd
$SYNC_MAP/reqaddservice_map.xml �schemaref_dir
<home_dir>/data/schemaref/biz/events

Configure Synchronizer Inbound Message Mapping

Configure Synchronizer Inbound
message mapping

Every field of an inbound message is automatically mapped by the Synchronizer
inbound transmapper default configuration. You do not have to perform any specific
message field mapping configuration. The default behavior is to map leaves to java
strings and nodes to hashtables.

Configure Connector Outbound Message Mapping

Configure Connector Outbound
message mapping

If a custom mapping is
needed, define the custom

accessor

Define the Java API wrapped
to this custom accessor

If a custom mapping is
needed, set the override

configuration

Configure the mapping
override in the connector
override XML file

Use the schema ref tool to
generate message definition

files

schemareftool gen_oss_map
custom_message.xsd
custom_message_map.xml

168 Developing Connectors

1 If you need to use custom java APIs to fill the content of your fields, you must
define custom accessors. For each custom accessor used, you must declare the
custom java API that will be wrapped to it in the Macro file
accessors_custom.properties configuration file.

2 The Connector outbound mapping configuration for a specific message is
automatically generated based on that message's structure definition file. If you
want to customize a message field mapping, you must override the default mapping
configuration of this field.

You can override every message field mapping configuration by specifying the field
name (and path) and the new accessor to be used in the XML override
configuration file of your connector. For more information, refer to To override a
connector default mapping configuration

3 Once you have configured the field mapping override, you must generate the
message mapping definition files for your connector. Use the gen_oss_map
command of the schemareftool. You must provide the schemaref tool with the
following parameters:

! (mandatory) custom message definition (full path to your XSD file)

! (mandatory) destination message mapping definition file (XML file). This file
should be located in
<home_dir>/config/yourconnector/schema_map/accessor

! (optional and multiple) mapping override configuration files (XML file). These
files should be located in <home_dir>/data/connectors/

Example:
CUST_EVENTS=/<home_dir>/data/schemaref/biz/custom

LPBK_MAP=/<home_dir>/config/loopback/schema_map/accessor

/<home_dir>/bin/schemareftool gen_oss_map
$CUST_EVENTS/reqaddservice_custom.xsd
$LPBK_MAP/reqaddservice_map.xml

Configure Connector Inbound Message Mapping

Configure Connector Inbound
message mapping

Every field of an inbound message will be automatically mapped by your Connector
inbound transmapper default configuration. You do not have to configure any specific
message field mapping. The default behavior is to map leaves to java strings and
nodes to hashtables.

 169

Working with Synchronizer
Outbound Message Fields

You can activate or deactivate every field of the standard messages generated by the
Synchronizer in order to suit your back end systems requirements.

When the standard messages do not contain enough information to suit your needs, or,
on the contrary you want to reduce message contents, you might need to activate or
deactivate certain message fields.

For each field of a message sent by the Synchronizer you can choose one of the
following options:

! Activate the message field: The field will be mapped with its configured accessor
and may be present in the Synchronizer outbound message depending on the
accessor context.

! Deactivate the message field: In this case you have two options:
! do not to generate the message field

! generate an empty XML field (<yourfieldname/>).

To deactivate or activate a field

1 Go to data/schemaref/biz/events/activation.

2 Open the XML file corresponding to your message.

3 Locate the field you want to deactivate in the XML file.

4 If you want to deactivate a message field, that is to say to generate an empty XML
field, add the following attribute:
<yourfieldname tag="empty"/>

5 If you want to to deactivate a message field but not to generate the XML field, add
the following XML attribute:
<yourfieldname tag="null"/>

To Activate a field:

If you want to activate a field, you have two options. Either:

! Do not specify any �tag� attribute, or

! Do not add your field in the activation file

6 In order to apply your changes, you must use the schemarefTool with the
gen_sync_map command to generate your Synchronizer outbound message
mapping configuration. Specify the XML file you created in step one as the last
parameter (-activation_file) of the gen_sync_map command.

 170

Customizing Synchronizer Inbound
Messages

You can customize a Synchronizer inbound message by adding fields (leaves or
nodes). These new fields are automatically mapped as strings in the message hash
table.

If you have defined additional sections (for example in the userarea) in the
Synchronizer inbound messages, you might need to check some fields� values within
these sections in order to perform specific message routing.

You can retrieve and use your custom fields' values through the workflow APIs, for
example: "Message.getElement".

To use additional fields in Synchronizer inbound messages

1 Create a new script engine.

2 Insert the component in the inbound XML parser after the first Transmapper.

3 Create a new Script.

4 In the Script, use the API Message.getElement() to retrieve your value

5 Use the value retrieved to (for example):

! route the message to another SmartLink (ISF) component

! call an external API

 Working With the Message Schema Reference 171

Customizing Standard Message
Structures

The Synchronizer uses messages to exchange data. These messages use the XML
format, from the XML W3C specification, and consist of nodes and leaves. If
necessary, you can add leaves or nodes to a message and add their respective
mappings in order to fill them.

The nodes and leaves from the standard Telco Service & Analytics Manager messages
are organized as follows:

! Root element (<request>)

! Control area (<cntrolarea>)

- Business Service Request area (<BSR>)

- Sender area (<sender>)

- Date and time area (<datetime>)

! Data area

! User Area

172 Developing Connectors

Only the Data area and the User area can be customized as follows:

For the Data area, only XML nodes that contain a dedicated �custom� tag can be
modified. Within these �custom� tags, you can add any node or leaf you may need.

The additional parameter description is also put in this dedicated section.

For the User area, you can add any node or leaf you may need, this area is dedicated
to your requirements.

You may need to add specific nodes or leaves in the User area. For example when you
have to provide back-end systems with specific routing information, such as a specific
system identifier.

If you have added additional parameters to standard Telco Service & Analytics
Manager objects, the structure of these additional parameters is already defined. You
do not have to define the structure, either for outbound messages or for inbound
messages.

To add a custom field

1 Open the message structure description in the message schema reference

2 Add your nodes or leaves in the custom sections of objects as necessary:

! in the data area

! in the user area

You can use the standard include mechanisms of the W3C XML Schema.

3 Save your description in a new file

We recommend you do not to replace the standard message definition

4 Run the convert tool by specifying your previously created file as the input file for
the tool

 Working With the Message Schema Reference 173

Generating the Message Schema
Reference Files

You use the schemarefTool to generate the XML message definition files from the
Message Schema reference.

You use this tool to generate the following from the Message Schema Reference:

! Message structure definition files
! Message documentation files
! Message mapping definition files for Synchronizer connectors
! Message mapping definition files for OSS Connectors

To generate message structure definition files

1 Go to <ils_dir>/bin.

2 Run the schemarefTool tool. Use the syntax:

schemarefTool gen_msg_ref <xsd_source_file>
<xsd_destination_file> [-quiet]

where:

<xsd_source_file> is the XML schema file

<xsd_destination_file> is the destination XML structure definition file

To generate message documentation files
1 Go to <ils_dir>/bin.

2 Run the schemarefTool tool. Use the syntax:

schemarefTool gen_msg_doc <xsd_src_file> <xsd_dest_struct> [-
activation_file <file>] [-quiet]

where:

<src_file> is the XML schema file

<dest_struct> is the destination XML structure definition file (without includes)

-activation_file<file> is the file containing activation configuration

To generate message mapping definition files for
Synchronizer connectors

1 Go to <ils_dir>/bin.

174 Developing Connectors

2 Run the schemarefTool tool. Use the syntax:

schemarefTool gen_sync_map <xsd_src_file> <mapping_dest_file>
[-schemaref_dir<dir>] [-activation_file <file>] [-quiet]

where:

<xsd_src_file> is the XML schema file

<mapping_dest_file> is the destination XML mapping definition file

-schemaref_dir<dir> is the directory containing core message definitions

-activation_file<file> is the file containing activation configuration

To generate message mapping definition files for OSS
Connectors

1 Go to <ils_dir>/bin.

2 Run the schemarefTool tool. Use the syntax:

schemarefTool gen_oss_map <xsd_source_file>
<mapping_destination_file> [-core_override <file>] [-
core_override_dir <dir>] [-custom_override <file<,file>>]
[-quiet]

where:

<xsd_source_file> is the XML schema file

�core_override<file> is the xml file defining default mapping

�core_override_dir<dir> is the directory where the core_override files are
located

�custom_override <file<,file>> is a comma separated list of custom
mappings

C H A P T E R 9

Generating Your Connector

In This Section

About Generating Your Connector.. 176
To generate connectors .. 177
To generate connectors using the Connector Generator 178

176 Developing Connectors

About Generating Your Connector
The ILS uses the Integration Logic Connector Design file (<connector_name>.ilcd)
to store the design and configuration of your connector. This file is for configuring and
designing connectors. In order to run your connector, you need to generate the runtime
files.

The generated connector runtime files are:

! Integration Logic Connector Configuration file (<connector_name>.ilcc)
This file is an internal configuration file used by the connector. It contains the
configuration of your connector.

This file is automatically generated and should not be edited. Use the ILS to change
your configuration.

 Generating Your Connector 177

! Integration Logic Connector run time configuration file template
(<connector_name>.ilcr.template)
This run time configuration file contains the parameters defined for your connector.
You edit this file manually and change its name.

The Generation process is as follows:

Generation
(ILS or Connector Generator)

Run the connector

Connector Parameters
Template file
ilcr.template

ilcd Connector Design
file

Manually edit
parameters
(if required)

Rename the
file to ilcr

Connector Configuration file
ilcc

To generate the runtime files, you can:

! Use the ILS
! Use the Connector Generator command line tool

To generate connectors

1 Choose Connector > Generate. The Generate Connector Configuration dialog box
appears.

2 If you want the ILS to validate the connector before generation, select Perform
Validation before Generation.

178 Developing Connectors

3 In Output directory, enter the location of the generated connector files.

4 Choose Generate. The ILS generates the following connector runtime files:

! <connector_name>.ilcc

! <connector_name>.ilcr.template

5 When finished, the ILS displays a message in the message pane.

6 If you need to change the runtime parameters before running your connector, open
<connector_name>.ilcr.template and edit the parameters.

7 Change the file name to <connector_name>.ilcr.

To generate connectors using the Connector Generator

1 Go to <ils_dir>/bin.

2 Run the ilccGenerator tool. Use the syntax:

ilccGenerator <connector_name>

where <connector_name> is the full path of the Integration Logic Connector
Design .ilcd file

The tool generates the the following runtime files in the same directory as the
Integration Logic Connector Design .ilcd file.

! <connector_name>.ilcc

! <connector_name>.ilcr.template

3 If you need to change the runtime parameters before running your connector, open
<connector_name>.ilcr.template and edit the parameters.

4 Change the file name to <connector_name>.ilcr.

C H A P T E R 1 0

Running Your Connector

In This Section

About Running the Connector... 180
Specifying Processing Priority... 181
Starting and Stopping the Synchronizer Connector 183
Starting and Stopping the OSS Connector 184
Administrating the Connector.. 185

 180

About Running the Connector
Running your Connector involves:

! Specifying the processing priority of messages
! Starting and stopping the Synchronizer connector
! Starting and stopping the OSS connector
! Administrating connectors

 181

Specifying Processing Priority
You can assign the priority of messages the Connector handles.

The role of the user generating the request in the CID can be configured to determine
the priority of processing by the Connector. For instance, your connector can be
configured to process requests created by Dealers before handling requests made by
guest users.

For more information about users and roles, refer to Managing Access to BLM Objects
in the BLM Reference Guide.

To assign a priority to a role

In the ACTION_PRIORITY table, add a new record then enter the following mandatory
information:

! ACTION_CODE This number is the action. This code comes from the ACTION table.
! ROLE_ID The number of the role to assign the priority.
! PRIORITY_ID The number of the priority to assign. This ID comes from the

PRIORITIES table.

To configure the priority

In the PRIORITIES table, change the values in the PRIORITY_DISTRIB column. The
value in this column corresponds to a percentage of messages processed.

The default priorities:

NAME PRIORITY_ID PRIORITY_DISTRIB

High 1 50

Medium 2 30

Low 3 20

The total of the values in this PRIORITY_DISTRIB column must add up to 100.

182 Developing Connectors

Example of Setting Priorities

For example, the request queue has the following number of requests (with its
corresponding PRIORITY_ID):

! 55 Create Organization requests (PRIORITY_ID = 1)
! 33 Create Contract requests (PRIORITY_ID = 2)
! 22 Add Service requests (PRIORITY_ID = 3)

If you use the default settings, the Connector processes the requests in the following
order:

5 50 Create Organization requests

6 30 Create Contract requests

7 20 Add Service requests

8 5 Create Organization requests

9 3 Create Contract requests
2 Add Service requests

 Running Your Connector 183

Starting and Stopping the
Synchronizer Connector

You use a set of administration tools to start and stop the Synchronizer connector. The
administration tools are:

! agentstart
! agentadm

These administration tools are located in <home_dir>/bin.

About Synchronizer Run Modes
The Synchronizer connector works in one of the following modes:

MODE DESCRIPTION

NORMAL THE DEFAULT MODE IN WHICH THE SYNCHRONIZER SCANS THE CID AT A
REGULAR, FIXED TIME INTERVALS AND EXTRACTS THE REQUESTS

PAUSED THE SYNCHRONIZER CONNECTOR STOPS SCANNING THE CID FOR
REQUESTS, AND WAITS FOR A RESTART COMMAND BEFORE IT RESUMES

 RECOVER THE SYNCHRONIZER CONNECTOR MAKES A FINAL ATTEMPT TO SEND
REQUESTS (WITH THE STATUS �TRANSPORTFAILED�) THAT HAVE NOT
BEEN SENT DUE TO A TRANSPORT PROBLEM. WHEN FINISHED, IT GOES
BACK TO THE NORMAL MODE.

To start the Synchronizer connector

1 Go to <home_dir>/bin.

2 Run agentstart. Use the syntax:

agentstart <connector_name>

The connector is loaded and it starts the processes it needs.

To stop the Synchronizer connector

1 Go to <home_dir>/bin.

2 Run agentadm. Use the syntax:

agentadm <host> <port> shutdown

When finished, it displays a message.

184 Developing Connectors

Starting and Stopping the OSS
Connector

You use a set of administration tools to start and stop the OSS connector. The
administration tools are:

! ossstart
! ossadm

These administration tools are located in <home_dir>/bin.

To start the OSS connector

1 Go to <home_dir>/bin.

2 Run ossstart. Use the syntax:

ossstart <connector_name>

The connector is loaded and it starts the processes it needs.

To stop the OSS connector

1 Go to <home_dir>/bin.

2 Run ossadm. Use the syntax:

ossadm <host> <port> <connector> shutdown

When finished, it displays a message.

 Running Your Connector 185

Administrating the Connector
You can stop, start and manage the connector interactively.

You use a set of administration tools to start, stop and manage the Synchronizer and
OSS Connector.

About Administrating Connectors
To administer the connectors, you have a complete set of commands you can use to
start, stop, or change the settings of the connector while it runs.

Whenever you send a command, the connector responds confirming the execution of
your command. For example, you may see:

AGENTADM LOCALHOST 3000 STOP

-200AGENT PAUSED

AGENTADM LOCALHOST 3000 START

-200AGENT RESUMING TO NORMAL MODE

AGENTADM LOCALHOST 3000 POSE

-220UNKNOWN COMMAND POSE

To manage the Synchronizer connector

1 Log into the computer

2 Do one of the following:

! If the connector is running, run agentadm

! If the connector is not running, run agentstart <synchronizer_name>,
then agentadm

3 Use one of the commands below to manage the Synchronizer connector:

186 Developing Connectors

COMMAND DESCRIPTION PARAMETERS RETURN VALUES

start Resumes the execution
of the connector.

Use this command to
restart the connector
after a stop command.

none -200 AGENT START

stop Stops the connector.

The connector no longer
processes inbound and
outbound messages

none -120 AGENT STOP

 shutdown Terminates the
connector

none -100 AGENT SHUTDOWN

setparameter Changes the settings of
the remotely.

Use the following
syntax:

setparameter
<parameter>=<value>

AGENTNAPPING
AGENTLOOPING
ONE_EXECUTION

NBRROW

QFILL

MAXNUMBERRETRY
RETRYDELAY

-510 AGENT SET<parameter
name>=<parameter value>

getparameter Restarts the current
value of the parameter

AGENTNAPPING
AGENTLOOPING
ONE_EXECUTION

NBRROW QFILL
MAXNUMBERRETRY
RETRYDELAY

Any parameter defined
in the properties files

-610 AGENT GET<parameter
name>=<parameter value>

getmode Displays the current
running mode

none -210 AGENT NORMAL

-220 AGENT REDUCE

-230 AGENT PAUSE

getstatus Displays the current
state

none -130 AGENT NORMAL

-140 AGENT REDUCE

-150 AGENT PAUSE

 Running Your Connector 187

force Forces the connector to
run in the specified
mode

NORMAL

REDUCE

 RECOVER

-410 AGENT SET
MODE=NORMAL

-410 AGENT SET
MODE=REDUCE

-410 AGENT SET
MODE=RECOVER"

 For MODE=RECOVER, an
additional parameter must be
provided: FILTER
<FilterName>

info Displays information
about the connector

none [AGENTNAME:xxx,NBTHREA
DS:xxx
,FILL:xxx,NBROW:xxx,NAPPI
NG:
xxx,LOOPING:xxx,VERSION:
xxx, BUILD:xxx,OS:xxx]"

kill Forces shutdown none none

list Returns all the profiling
information

none none

purge Purges the profiling
information

none none

stat Returns the profiling
information of the last
profiling element

none none

version Returns the version of
the connector

none none

To manage the OSS connector

1 Log into the computer

2 Do one of the following:

! If the connector is running, run ossadm

! If the connector is not running, run ossstart <synchronizer_name>, then
ossadm

3 Use one of the commands below to manage the OSS connector:

188 Developing Connectors

COMMAND DESCRIPTION PARAMETERS RETURN VALUES

START Resumes the execution
of the connector.

Use this command to
restart the connector
after a stop command.

none -200 AGENT START

stop Stops the connector.

The connector no longer
processes inbound and
outbound messages

none -120 AGENT STOP

shutdown Terminates the
connector.

none -100 AGENT SHUTDOWN

kill Forces shutdown. none none

A P P E N D I X A

SmartLink (ISF) Tool Reference

In This Section

About the SmartLink (ISF) Administration Tools 190
Synchronizer Connector Administration Tools 191
OSS Connector Administration Tools 195
SmartLink (ISF) Administration Tool 196
Message Schema Reference Tool.. 197
Connector Generator Tool .. 201

 190

About the SmartLink (ISF)
Administration Tools

A complete set of administration tools helps you manage the different components of
your TSM.

The name of the files depends on your operating system. For Windows, the tools have
a .cmd extension and for UNIX a .sh extension. The behavior of these tools is
identical and they have the same command line options.

These administration tools are located in <home_dir>/bin.

Make sure that any required files are in the CLASSPATH and LIB_PATH specified in the
pre.env environment setting file. This file is located in <home_dir>/bin/env.

 191

Synchronizer Connector
Administration Tools

You use the following administration tools to administrate the Synchronizer Connector:

! agentstart
! agentadm

These tools are located in <home_dir>/bin.

agentstart Syntax
agentstart <connector_name>

PARAMETERS DESCRIPTION

<connector_name> Name of the synchronizer connector to start

192 Developing Connectors

agentadm Syntax
agentadm help | <host> <port> <command> [<parameters>]

PARAMETERS DESCRIPTION

help Displays help for the tool

<host> Specifies the agent host

<port> Specifies the agent administration port

<command> Administration command

COMMAND DESCRIPTION PARAMETERS RETURN VALUES

start Resumes the execution
of the connector.

Use this command to
restart the connector
after a stop command.

none -200 AGENT START

stop Stops the connector.

The connector no
longer processes
inbound and outbound
messages

none -120 AGENT STOP

shutdown Terminates the
connector

none -100 AGENT SHUTDOWN

setparameter Changes the settings of
the connector remotely.

Use the following
syntax:

setparameter
<parameter>=<value>

AGENTNAPPING
AGENTLOOPING
ONE_EXECUTION

NBRROW

QFILL

MAXNUMBERRETRY
RETRYDELAY

-510 AGENT
SET<parameter
name>=<parameter value>

 SmartLink (ISF) Tool Reference 193

getparameter Restarts the current
value of the parameter

AGENTNAPPING
AGENTLOOPING
ONE_EXECUTION

NBRROW QFILL
MAXNUMBERRETRY

RETRYDELAY

Any parameter defined in
the properties files

-610 AGENT
GET<parameter
name>=<parameter value>

getmode Displays the current
running mode

none -210 AGENT NORMAL

-220 AGENT REDUCE

-230 AGENT PAUSE

getstatus Displays the current
status

none 130 AGENT NORMAL

-140 AGENT REDUCE

-150 AGENT PAUSE

force Forces the connector to
run in the specified
mode

NORMAL

REDUCE

RECOVER

-410 AGENT SET
MODE=NORMAL

-410 AGENT SET
MODE=REDUCE

-410 AGENT SET
MODE=RECOVER

For MODE=RECOVER, an
additional parameter must
be provided: FILTER
<FilterName>

info Displays information
about the connector

none [AGENTNAME:xxx,NBTHRE
ADS:xxx,FILL:xxx,NBROW:x
xx,NAPPING:xxx,LOOPING:
xxx,VERSION:xxx,BUILD:xx
x,OS:xxx]

kill Forces shutdown none none

list Returns all the profiling
information

none none

purge Purges the profiling
information

none none

194 Developing Connectors

stat Returns the profiling
information of the last
profiling element

none For each message type,
displays the following
information:
- name of message type
- min processing time
- max processing time
- total processing time
- mean processing time
- deviation processing time
- nb number of messages
- probability the percentage
of successful messages
processed
- first timestamp of the first
message processed
- last timestamp of the last
message processed
- throughput number of
messages processed per
minute

version Returns the version of
the connector

none none

 SmartLink (ISF) Tool Reference 195

OSS Connector Administration
Tools

The tools you use to administrate the OSS connector are:

! ossstart
! ossadm

ossstart Syntax
ossstart help | <connector_name>

PARAMETERS DESCRIPTION

<CONNECTOR_NAME> NAME OF THE OSS CONNECTOR TO
START

ossadm Syntax
ossadm help | <host> <port> <command>

PARAMETERS DESCRIPTION

HELP DISPLAYS HELP FOR THE TOOL

<HOST> Specifies the connector host

<port> Specifies the connector port

<command> Administration command

COMMAND DESCRIPTION PARAMETERS RETURN VALUES

SHUTDOWN TERMINATES THE
CONNECTOR

NONE NONE

 KILL FORCES
SHUTDOWN

NONE NONE

196 Developing Connectors

SmartLink (ISF) Administration Tool
You use the isfadm tool to manage the SmartLink (ISF).

isfadm Syntax
isfadm help | <host> <port> <objecttype> <object> <command>

PARAMETERS DESCRIPTION

HELP DISPLAYS HELP FOR THE TOOL

<HOST> SPECIFIES THE HOST TO USE.

<PORT> SPECIFIES THE ADMINISTRATION PORT
TO USE

<OBJECTYPE> The SmartLink (ISF) component to manage:
• connector

• queue

• var

• <object> • The object of the command.

• <command> • Administration command

COMMAND DESCRIPTION PARAMETERS RETURN VALUES

START RESUMES THE
EXECUTION OF THE
COMPONENT.

NONE

STOP STOPS THE COMPONENT. NONE

GETSTATUS DISPLAYS THE CURRENT
STATUS

NONE

 197

Message Schema Reference Tool
This tool handles the Message Schema Reference. This tool handles the following
commands:

! Gen_msg_ref: Generates the message structure definition files
! Gen_msg_doc: Generates the message documentation files
! Gen_synch_map: Generates the message mapping definition files for the

Synchronizer
! Gen_oss_map: Generates the message mapping definition files for the

Connectors

You use the converting tool to:

! Transform message structure and/or mapping definitions from the W3C format into
the XDR format.

! Apply the accessors� activation configuration (specified by the user).

If no configuration is available, all the accessors are generated.

Repository W3C
Schema

Message Structure
Repository
XDR Format

Repository W3C Schema

Converting Tool

Accessors Activation
Configuration

ISF

198 Developing Connectors

 SmartLink (ISF) Tool Reference 199

schemarefTool Syntax
schemarefTool help | <command> [<parameters>] <help>

PARAMETERS DESCRIPTION

help Displays help for the tool

<command> Message Schema Reference Tool command

<parameters> Specifies the parameters for the command

<command> help Displays help for the command

COMMAND DESCRIPTION PARAMETERS

gen_msg_ref generates the message structure
definition files

<xsd_source_file>: Source file
containing the XML Schema
definition of the message

<xsd_destination_file>: Destination
file in which the structure definition
in old XML format will be saved

-acitivation_file<file> (Optional) File
containing the activation
configuration for the file being
processed

<-quiet>: This optional parameter
can be added to activate/deactivate
detailed logs during the execution of
the tool.

gen_msg_doc Generates the message
documentation files

<xsd_source_file>: Source file
containing the XML Schema
definition of the message

<xsd_destination_file>:Destination
file (full path) in which the flat
(without any include) structure
definition in XSD format will be
saved

<activation>: (Optional) File
containing the activation
configuration for the file being
processed

<-quiet>: This optional parameter
can be added to activate/deactivate
detailed logs during the execution of
the tool.

200 Developing Connectors

gen_sync_map Generates the message mapping
definition files for the Synchronizer

<xsd_source_file>: Source file
containing the XML Schema
definition of the message

<mapping_destination_file>:
Destination file in which the
mapping generation in the old XML
format will be saved

-schemaref_dir<dir> (Optional)
Directory containing the core
message definitions

-activation<file>: (Optional) File
containing the activation
configuration for the file being
processed

<-quiet>: (Optional) Parameter that
can be added to activate/deactivate
detailed logs during the execution of
the tool.

 gen_oss_map Generates the message mapping
definition files for the Connectors

<xsd_source_file>: Source file
containing the XML Schema
definition of the message

<mapping_destination_file>:
Destination file in which the
mapping generation in the old XML
format will be saved

-core_override<file> (Optional) File
containing the xml file defining the
default mapping

-core_override_dir<dir> (Optional)
Directory containing the
core_override files are located

-custom_override<file<,file>:
(Optional and multiple) File
containing the mapping override
configuration for this message.
Several files can be specified and
must be separated with a comma.
Each file will be applied in the same
order as it is specified. When you
use multiple files on Windows
platforms, the entire list of files must
be enclosed in inverted commas
("file1,file2...")

<-quiet>: This optional parameter
can be added to activate/deactivate
detailed logs during the execution of
the tool.

 201

Connector Generator Tool
This tool generates the following connector runtime files from the Integration Logic
Connector Design (<connector_name>.ilcd) file:

! Integration Logic Connector Configuration file (<connector_name>.ilcc)
! Integration Logic Connector Run time configuration file

(<connector_name>.ilcr)

ilccGenerator Syntax
ilccGenerator -help | [-check] [-verbose] [-dir <output
directory>] <ILCD file>

PARAMETERS DESCRIPTION

help Displays help for the tool

check Checks the validity of the ilcd file before generating

verbose Displays all generation messages

dir <output directory> Specifies the destination directory if other than the
location of the ilcd file

<connector_name> The ilcd file to use to generate the connector runtime
files

A P P E N D I X B

Core Messages

The following table lists available core messages:

MESSAGE NAME VERB NOUN

ack.xml Acknowledge request

doaddbillingaccount.xml doadd billingaccount

doaddcontact.xml doadd contact

doaddcontract.xml doadd contract

doaddlevel.xml doadd level

doaddlogin.xml doadd login

doaddmember.xml doadd member

doaddorg.xml doadd org

doaddservice.xml doadd service

doaddtroubleticket.xml doadd troubleticket

doassociatededicatedoffer.xml doassociate offer

dodeclarepaymentresp.xml dodeclare paymentresp

dodissociatededicatedoffer.xml dodissociate offer

domigratecontract.xml domigrate contract

domodifyaddress.xml domodify address

domodifybillingaccount.xml domodify billingaccount

domodifycontact.xml domodify contact

domodifycontract.xml domodify contract

domodifycontractline.xml domodify contractline

domodifycontractowner.xml domodify contractowner

domodifycontractstatus.xml domodify contractstatus

domodifylanguage.xml domodify language

204 Developing Connectors

domodifylevel.xml domodify level

domodifymember.xml domodify member

domodifyorg.xml domodify org

domodifypaymentinfo.xml domodify paymentinfo

domodifyrateplan.xml domodify rateplan

domodifyservice.xml domodify service

domodifytroubleticket.xml domodify troubleticket

doossapproval.xml doossapproval approval

doremoveservice.xml doremove service

doreplaceservice.xml doreplace service

dosetaddinfo.xml doset addinfo

dosetpersonalinfo.xml doset persoinfo

notifychange.xml notify change

 reqaddbillingaccount.xml reqadd bilaccount

reqaddbillingcontact.xml reqadd bilcontact

reqaddcontract.xml reqadd contract

reqaddlegalcontact.xml reqadd legalcontac

reqaddlevel.xml reqadd level

reqaddlogin.xml reqadd login

reqaddmember.xml reqadd member

reqaddorg.xml reqadd org

reqaddorgcontact.xml reqadd orgcontact

reqaddservice.xml reqadd service

reqaddtroubleticket.xml reqadd trblticket

reqassociatededicatedoffer.xml reqassociate dedicatedoffer

reqdeclarepaymentresp.xml reqdeclare paymentres

reqdissociatededicatedoffer.xml reqdissociate dedicatedoffer

reqlostdeclaration.xml reqdeclare lostthieft

 Core Messages 205

reqmigratecontract.xml reqmigrate contract

reqmodifybillingaccount.xml reqmodify billingaccount

reqmodifybillingaddress.xml reqmodify biladdress

reqmodifybillingcontact.xml reqmodify bilcontact

reqmodifycontract.xml reqmodify contract

reqmodifycontractline.xml reqmodify contractline

reqmodifycontractowner.xml reqmodify contractowner

reqmodifycontractstatus.xml reqmodify contractstatus

reqmodifylanguage.xml reqmodify language

reqmodifylegalcontact.xml reqmodify legalcontact

reqmodifylevel.xml reqmodify level

reqmodifymember.xml reqmodify member

reqmodifyorg.xml reqmodify org

reqmodifyorgaddress.xml reqmodify orgaddress

reqmodifyorgcontact.xml reqmodify orgcontact

reqmodifypaymentinfo.xml reqmodify paymentinfo

reqmodifyrateplan.xml reqmodify rateplan

reqmodifyservice.xml reqmodify service

reqmodifytroubleticket.xml reqmodify trblticket

reqorder.xml reqorder composite

reqorderdoc.xml reqorder doc

reqrechargeprepaid.xml reqrecharge prepaid

reqremoveservice.xml reqremove service

reqreplaceservice.xml reqreplace service

reqsetpersonalinfo.xml reqset persoinfo

system.xml system system

A P P E N D I X C

Core Business Objects

In This Section

About Core Business Objects ... 208
About Parameters and Messages... 209

 208

About Core Business Objects
This list presents the core Business objects. It is a list of the Business Objects which
support additional parameters:

! BillingAccount
! Organization
! Organization category type
! Language
! Role
! Level
! Member
! Service
! Contract
! Rate plan
! Line
! Line Type
! Country
! Title
! Sex
! Contact
! Trouble ticket
! Trouble Ticket category
! Document
! Invoice
! Prepaid package
! Commercial Offer

 209

About Parameters and Messages
The SmartLink (ISF) is configured to manage the additional parameters of every object that
can have additional information.

Outbound Messages
If the object is on the list of supported objects, the SmartLink (ISF) is ready to handle
additional parameters. If the object can support additional parameters, but has this
feature inactivated, refer to Working With the Message Schema Reference.

Inbound Messages
The inbound messages come with a special section that deals with the additional
information of all supported objects. In a message, this dedicated section manages
updating all additional information.

The additional information in this section does not necessarily need to be related to the
other objects being modified. This feature allows you to update additional information
of unrelated objects when your application requires an update in a single transaction.

The doSetAddInfo message contains modifications to the additional parameters of
each object that supports additional information. This message has a field for each
object that supports additional information and is used to update additional information
only.

A P P E N D I X D

Element Reference

In This Section

Processors .. 214
Message Queues .. 215
Request Queue ... 226
Utilities... 229
Custom Processors... 232
Routers.. 233
Extensions... 244
Parameters.. 245

 212

Integration Processes
An Integration Process is the dataflow for requests or messages between a system
and the transport layer, or between the transport layer and one or more systems. Each
connector includes one or more Integration Processes.

These processes consist of a number of processors connected together in a sequence
to handle messages.

An integration process has the following:

! One or more Processors
! One or more Scripts
! One or more Macros

They are represented by the following icon:

The components of the integration process carry out the following basic tasks:

1 Extract Data

 Element Reference 213

This task is extracting the data the integration process works on. This is a
mandatory task and is carried out by a unique processor.

2 Process Data

This task is processing the extracted data. This is also mandatory and has several
different components which handle data, forwards data to another processor,
generates messages, handles errors, routes messages and so on.

3 Sending Data

This optional tasks is at the end of the processing and involves sending the data
out of the connector.

 214

Processors
A Processor is an element that handles or transforms a message.

The basic principle of a processor is:

! Receive a message
! Carry out tasks

Tasks include:

! Processing the content of the message
! Activating scripts or macros
! Routing the message

You link processors together to create the message flow of your connector. Depending
on the processor, possible links include:

! Send connections
! Error connections
! Exception connections

This diagram illustrates how processors create an Integration Process workflow:

 215

Message Queues
The processors in this category are for message queues. A message queue is a
temporary storage location where messages are held.

The types of queues are:

! Inbound
These queues are for messages that the connector receives for processing.

! Outbound
These queues are for messages that the connector has processed and are ready to
be sent.

! Persistence
These queues are for messages that have been saved in a database/

Queues also have an associated transport protocol. The available transport protocols
include:

! Email
! File
! Socket
! JMS

216 Developing Connectors

Inbound Batch Queue
This message queue is a queue that receives inbound messages.

The messages handled in this queue are files containing file lists. Each message has a
single list of files. Each file on the list is either a file or archive. For each listed file or
archive, this queue does the following:

! For files, it creates a message containing the reference to the file
! For archives, it opens the archive. For each file in the archive, it creates a message

containing the reference to the file

The inbound batch queue can handle gzip and zip file compression formats only.

This element has the following properties:

PROPERTY DESCRIPTION

Directory Name Full path of the directory to scan for the files

Prefix Prefix of file list names

Message Type Message type to create

Msg Count Variable Variable to use with the Message Counter Processor

Napping Time Time between polling (in milliseconds)

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

 Element Reference 217

Inbound Email Queue
This message queue is a queue that receives inbound messages.

The inbound messages in this queue are transmitted using emails. The messages
come from a mail server using the POP3 protocol.

This element has the following properties:

PROPERTY DESCRIPTION

Host name Hostname of the POP server and the domain (example:
myhost. mydomain.com)

User Name POP account name

User Password POP account password

Napping time Time between polling (in milliseconds)

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

Inbound File System Queue
This message queue is a queue for inbound messages.

The inbound messages in this queue are transmitted using the file system.

This element has the following properties:

PROPERTY DESCRIPTION

Directory Path of the file system queue

Napping time Time between polling (in milliseconds)

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

218 Developing Connectors

Inbound JMS Queue
This message queue is a queue that receives inbound messages.

The inbound messages in this queue are transmitted using JMS point-to-point queues.

This element has the following properties:

PROPERTY DESCRIPTION

JMS Queue Name Queue name obtained by JNDI

Connection Factory JMS connection factory obtained through JNDI

Transactional Flag Boolean. If set to true, creates a transaction for each
message

Napping time Time between polling (in milliseconds)

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

 Element Reference 219

Inbound JMS Topic Queue
This message queue is a queue that receives inbound messages.

The inbound messages in this queue are transmitted using JMS publish/subscribe
queues.

This element has the following properties:

PROPERTY DESCRIPTION

Connection Factory JMS connection factory obtained through JNDI

Transactional Flag Boolean. If set to true, creates a transaction for each
message

Time between polling (in milliseconds)

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

Napping time

This element one or more JMS Topic Names.

Each JMS Topic Name has the following properties:

PROPERTY DESCRIPTION

Topic name

220 Developing Connectors

Inbound Memory Queue
This message queue is a queue for inbound messages.

The inbound messages in this queue are transmitted using allocated system memory.

This element has the following properties:

PROPERTY DESCRIPTION

Queue Name Name of the memory queue

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

Inbound Socket Queue
This message queue is a queue that receives inbound messages.

The inbound messages in this queue are transmitted using TCP/IP sockets.

This element has the following properties:

PROPERTY DESCRIPTION

Host Name Host name

Port Number The TCP/IP socket to connect to

Number of threads Number of threads to allocate

Java priority JVM priority of the threads

 Element Reference 221

Outbound Email Queue
This message queue is a queue for outbound messages.

The outbound messages in this queue are transmitted using emails. The messages are
sent to a mail server using the SMTP protocol.

This element has the following properties:

PROPERTY DESCRIPTION

Host name Hostname of the POP server and the domain (example:
myhost. mydomain.com)

User Name POP account name

User Password POP account password

Recipient Email address of the recipient (example:
user@mydomain.com)

Xmailer Xmailer

Outbound File System Queue
This message queue is a queue for outbound messages.

The outbound messages in this queue are transmitted using the file system.

This element has the following properties:

PROPERTY DESCRIPTION

Directory name Path of the file system queue

222 Developing Connectors

Outbound JMS Queue
This message queue is a queue for outbound messages.

The outbound messages in this queue are transmitted using JMS point-to-point
queues.

This element has the following properties:

PROPERTY DESCRIPTION

JMS Queue Name Queue name obtained by JNDI

Connection Factory JMS connection factory obtained through JNDI

Transactional Flag Boolean. If set to true, creates a transaction for each
message

Outbound JMS Topic Queue
This message queue is a queue for outbound messages.

The outbound messages in this queue are transmitted using JMS publish/subscribe
queues.

This element has the following properties:

PROPERTY DESCRIPTION

JMS Connection factory JMS connection factory obtained through JNDI

Transaction flag Boolean. If set to true, creates a transaction for each
message

This element one or more JMS Topic Names.

Each JMS Topic Name has the following properties:

PROPERTY DESCRIPTION

Topic name

 Element Reference 223

Outbound Memory Queue
This message queue is a queue for outbound messages.

The inbound messages in this queue are transmitted using allocated system memory.

This element has the following properties:

PROPERTY DESCRIPTION

Queue Name Name of the memory queue

Time Out Maximum delay for a put operation (in milliseconds)

Queue Size The maximum number of messages that the queue can
hold.

Outbound Socket Queue
This message queue is a queue for outbound messages.

The outbound messages in this queue are transmitted using TCP/IP sockets.

This element has the following properties:

PROPERTY DESCRIPTION

Host Name Host name

Port Number The TCP/IP socket to connect to

Message Cache Polling Processor
This message queue is a queue for messages which have been saved in the SmartLink
(ISF) Message Cache.

This processor does the following:

4 Extracts data from the configured message cache at a specified interval

5 Creates a new message whose body will contain extracted data

6 Send this message to the next connected processor in the integration process

224 Developing Connectors

This element has the following properties:

PROPERTY DESCRIPTION

DB User Name Name to connect to the database

DB User Password Corresponding password

DB Connection String Connection string

DB Driver Database driver

Cache Name Name of the message cache

Number of threads Number of threads to allocate

Napping time Time between polling (in milliseconds)

Max No. Of Messages Maximum number of messages to extract each time

Custom Extraction SQL Path to the file containing custom SQL script

User exits class Class containing user exit code to execute

Unread Messages Only Boolean. If set to true, extract only unread messages

Save Error Description Boolean. If set to true, saves the description of any error.

Database Polling Processor
This message queue is a queue for messages which have been saved in the SmartLink
(ISF) Message Cache.

This processor does the following:

7 Extracts at a periodic interval data using specified SQL statement

8 Creates a new message whose body will contain:

! Either extracted data

! Or the result of a user provided message factory. This factory will take as input
parameter the extracted data and will output a standard message with type,
body and envelop.

9 Send this message to the next connected processor in the integration process

 Element Reference 225

This element has the following properties:

PROPERTY DESCRIPTION

DB User Name Name to connect to the database

DB User Password Corresponding password

DB Connection String Connection string

Number of threads Number of threads to allocate

Napping time Time between polling (in milliseconds)

Flag Read Line Boolean. If set to true, flags the row as being read

Delete Row On Success Boolean. If set to true, deletes the row when the
extraction occurs without errors

Save Error Description Boolean. If set to true, saves the description of any error.

User exits class Class containing user exit code to execute

Identifier Column Name Name of the column containing the ID name

Identifier Column Type Type of the column containing the ID

Selection Query File name of the code used to select messages

Lock Query File name of the code used to lock messages

Message Factory Class Class containing the message factory

Confirm Update

Confirm Error

Confirm Error With Msg

 226

Request Queue
The processors in this category are for managing messages extracted from the request
queue.

The request queue is the table in the CID which holds the requests of the TSM. The
Request Queue Agent polls this table and extracts messages from this table for
processing.

 Element Reference 227

Request Queue Agent
This Request Queue Agent element is the agent that manages the extraction of data
from the CID.

This element has the following properties:

PROPERTY DESCRIPTION

Type Type of element

DO NOT MODIFY

Number of Threads Number of threads to allocate

Napping Time Time between polling (in milliseconds)

Looping Time Time between repeats (in milliseconds)

Synchronous Only Extract Synchronous Requests Only (boolean)

Execute Once Oneshot Request Queue Agent (boolean)

No. of Requests Number of requests extracted

Internal Queue Size Size of the internal queue

Reconnection Delay Time to wait before trying to reconnect to the CID

Reconnection Retries Number of times to try to reconnect to the CID

BLM User Name User name to use to connect ot the BLM

BLM Password Associated password

This element contains:

! One or more Request Types
The Request Types correspond to the request types the Request Queue Agent
processes.

The Request Types elements have the following properties:

PROPERTY DESCRIPTION

Enabled Boolean

Execution Type

BLM Request Type

Message Type

228 Developing Connectors

Each request type can have one Status Codes element.

The Status Codes element has following properties:

PROPERTY DESCRIPTION

Success Status Boolean

Failure Status

Transport Retry Status

Transport Failure Status

Waiting for ACK Status

Acknowledged Status

! One Sequence
The Sequence is ...

The Sequence element has the following properties:

PROPERTY DESCRIPTION

Enabled Boolean

 229

Utilities
The processors in this category are utilities for message processing and flow.

Encoding Converter
The Encoding Converter element specifies the encoding of messages.

This element has the following properties:

PROPERTY DESCRIPTION

Middleware Encoding The name of the character set to use for the messages

XML Encoding The name of the character set to use for the XML files

DOM Builder
The DOM Builder converts a XML document into DOM document.

This element has no properties.

DOM Serializer
The DOM Serializer converts a DOM document into an XML document.

This element has no properties.

230 Developing Connectors

XML Validator
The XML Validator element validates the XML document using a specified schema.

This element has the following properties:

PROPERTY DESCRIPTION

Validation Flag Boolean. If set to true, validates the XML document using the
specified format and file

Schema Format Schema formats available via the CLASSPATH to use for
validation.

To add a format, enter the Validator to the CLASSPATH.

Schema File Full path of the Schema file to use.

Message Counter
The Message Counter processor count messages.

This element has variables which must be defined in your Connector macro files.

This element has the following properties:

 PROPERTY DESCRIPTION

Msg Count Variable The name of the variable to use for counting messages.

Success Count Variable The name of the variable to hold the value of successful
transmissions

Exception Count Variable The name of the variable to hold the value of unsuccessful
transmissions

 Element Reference 231

Pause
The Pause element specifies the delay between two actions.

This element has the following properties:

PROPERTY DESCRIPTION

Delay The time to wait between two actions (in milliseconds)

 232

Custom Processors
The processors in this category are the processors you have created for your
connector. They are listed here to ease reuse of your custom processors.

 233

Routers
The processors in this category are for broadcasting messages and managing
message flows.

In general, Messages are broadcast to the queues and the queue has an associated
filter to determine whether or not the queue accepts the message. There are
processors in this category to manage the broadcasting and filtering of messages for a
single queue or multiple queue configurations.

Script Engine
A script engine is in charge of running scripts which manage the routing of data.

This element has no properties.

This element contains:

! One or more Script name elements
PROPERTY DESCRIPTION

Script name Name of the script

Message Type Filter
The message type filter is a list of message types that are used to filter broadcast
messages.

This element has no properties.

This element contains:

! One or more Message Type elements
The Message Type correspond to the message types this filter passes on to the
queue. All other messages are ignored.

The Message Type elements have the following properties:

PROPERTY DESCRIPTION

Message Type Name of the message type

234 Developing Connectors

Message Broadcaster
The message broadcaster sends messages to the queue.

The queue has a message filter which lists the messages that are placed in the queue.
All other messages are ignored.

This element has the following properties:

PROPERTY DESCRIPTION

Duplicate Flows Boolean. When set to true, the Message Broadcaster
duplicates the message before sending it.

MultiQueue Message Filter
A message type filter for multi queue configurations.

This element has no properties.

This element contains:

! One or more Message Type elements
The Message Type correspond to the message types this filter passes on to the
queue. All other messages are ignored.

The Message Type elements have the following properties:

PROPERTY DESCRIPTION

Message Type Name of the message type

 Element Reference 235

MultiQueue Message Broadcaster
This message broadcaster is for multiqueue configurations.

The broadcaster sends messages to all of the queues. The queues have message
filters which list the messages that are placed in the queue.

This element has the following properties:

PROPERTY DESCRIPTION

Database Driver The name of the database driver to use

Database URL The location of the CID database

Database User Name The user name to connect to the database

Database Password The associated password

MultiQueue Message Tracker
This message tracker is for multiqueue configurations.

The message tracker manages the dispatching of messages to different queues.

This element has the following properties:

PROPERTY DESCRIPTION

Database Driver The name of the database driver to use

Database URL The location of the CID database

Database User Name The user name to connect to the database

Database Password The associated password

The processors in this category are for handling errors. When processing messages,
errors may occur and your connector needs to be able to manage them.

For instance, if an error occurs when processing a message, you can configure your
connector to retry the message. You can also specify the conversion of an error into
another in order to customize your error handling or trigger other events.

236 Developing Connectors

Error Handler
An Error Handler is in charge of handling exceptions.

This element has no properties.

Exception Converter
The exception converter converts exceptions from one exception to another.

This element has no properties.

Retry Handler
A Retry Handler is in charge of handling retries when an error occurs.

This element has the following properties:

PROPERTY DESCRIPTION

Number of Repeats The number of attempts to send the message

Delay between Repeats The time between attempts (in milliseconds)

CID Update Error Handler
A CID Update Error Handler handles errors which occur when processing requests that
update the CID.

This element has the following properties:

PROPERTY DESCRIPTION

Error string The error message

 237

The processors in this category are involved in changing the formats of messages. A
Transmapper is a processor element that handles the transformation of a message
from one format to another format.

For example, the connector receives a message in the form of a BLM object. This
message needs to be transformed into an XML format the connector can work with.
The BLM/XML Transmapper handles converting a BLM object into XML.

Transmappers may also have associated files that specify the structure of the output
message. They may also have files that manage the mapping of the input and output
messages. The BLM/XML Transmapper has both of these files to define the structure
of the XML and the mapping of BLM objects to XML elements.

BLM/XML Transmapper
The BLM/XML Transmapper Processor transforms a Request object into an XML
string.

This Processor will normally follow immediately after the Request Queue Agent
Processor, transforming the minimal information held in the Request object into a
complete XML message providing all data required by the target system(s). The
specification for this information both in terms of the XML schema and the BLM APIs
required to extract the data from the CID are defined in the Message Schema
Reference.

This element has the following properties:

PROPERTY DESCRIPTION

Type Type of element
DO NOT MODIFY

This transmapper contains:

! One or more Request Types
The Request Types correspond to the message types this Transmapper processes.

The Request Types elements have the following properties:

 PROPERTY DESCRIPTION

 Structure definition file path Full path of the XML file containing the definition of the
message structure

 Mapping definition file path Full path of the XML file containing the definition of the
mapping of BLM content to XML.

238 Developing Connectors

Java/XML Transmapper
This transmapper transforms messages from a Java object format into an XML format.

The Java/XML Transmapper Processor is the more generic form of the BLM/XML
Transmapper. The Java/XML Transmapper Processor transforms any Java object into
an XML string. This processor will often be used within a BSS/OSS Connector to
transform BSS/OSS objects into an XML message for delivery.

This element has the following properties:

PROPERTY DESCRIPTION

Buffered Output

Output Mode

Output Format

This transmapper contains:

! One or more Request Types
The Request Types correspond to the message types this Transmapper processes.

The Request Types elements have the following properties:

 PROPERTY DESCRIPTION

 Structure definition file path Full path of the XML file containing the definition of the
message structure

 Mapping definition file path Full path of the XML file containing the definition of the
mapping of BLM content to XML.

 Element Reference 239

XML Parser
This transmapper transforms messages from an XML format into a recursive hash
table format.

This processor is typically used immediately prior to the CID Objects Builder processor,
transforming the inbound XML message into a Java hash table as the correct input
format for the CID Objects Builder.

This element has the following properties:

PROPERTY DESCRIPTION

Type Type of element
DO NOT MODIFY

This transmapper contains:

! One or more Request Types
The Request Types correspond to the message types this Transmapper processes.

The Request Types elements have the following properties:

 DESCRIPTION

Structure definition file path Full path of the XML file containing the definition of the
message structure

PROPERTY

240 Developing Connectors

XSL Transmapper
This transmapper applies the specified XSL to the message.

This element has the following properties:

PROPERTY DESCRIPTION

Type Type of element
DO NOT MODIFY

Buffered Output Boolean. If set to true, the output is buffered. The
transmapper applies all of the XSLs to the message
then sends the results. If false, after each
transformation, the transmapper sends the result.

- DOM Format

Output Mode The output mode for the transmapped
message:

- single create a single message

- multiple create multiple messages

Output Format The format of the output:

- String Format

This transmapper contains:

! One or more Transformations
The Transformations correspond to a type of transformation to carry out.

The Transformations elements have the following properties:

 PROPERTY DESCRIPTION

 Stylesheet Full path of the XSL file containing the style definitions

 Output Message Type The message type (For instance,
REQADDSERVICE)

 Element Reference 241

CID Objects Builder
This transmapper transforms messages from recursive hash table format into Data
Access Layer (DAL) objects.

The DAL object are for updating the CID. This processor itself does not update the
CID. You use the Script Engine to update the CID.

This element has the following properties:

PROPERTY DESCRIPTION

Type Type of element
DO NOT MODIFY

This transmapper contains:

! One or more Request Types
The Request Types correspond to the message types this Transmapper processes.

The Request Types elements have the following properties:

PROPERTY

Structure definition file path Path to the file containing the message structure for this
request type

DESCRIPTION

 242

Macros
A Macro element defines the custom APIs that can be called in scripts.

When using Macros to create your own API, you can:

! Wrap external Java code to custom script APIs
! Instantiate external Java classes

For instance, your connector may have to establish a connection with a back end
system when the connector starts up and then reuse this connection for all Integration
Processes. In this case, you can use a Macro to instantiate the connection then reuse
it whenever necessary in any of your Integration Processes.

A macro can be one of the following:

! Connector Macro
These macros can be used by all of the processors. They are located under
<connector_home>/Macros.

! Integration Process
These macros can only be used by the elements of the Integration Process. They
are located under <connector_home>/<integration_process>/Macros.

 Element Reference 243

Scripts
This element points to an XML file. This XML file is a Script.

A Script is a sequence of commands or operations, which are executed by a Script
Engine Processor. Each command actually calls an API, either defined within the
SmartLink (ISF) or registered as an external Macro.

A number of core Script features include a Switch command which allows the script to
branch conditionally on the results of any variable, providing �If-Then-Else� functionality
within the script. Scripts can also execute sub-script components

They are represented by the following icon:

Because of the power and flexibility of Scripts, they are used for a number of functions:

! Updating data in the CID
! Routing messages within an Integration Process
! Calling external APIs for data processing

 244

Extensions
An Extension is an element that customizes the queues.

The extension represents a new queue along with a set of custom parameters. When
you add this custom queue to your processor, you enter the values of the custom
parameters.

This element has no default properties. You add your parameters to this element.

This element has:

! One or more Parameters
The Properties correspond to your custom parameters for the queue.

PROPERTY DESCRIPTION

parameter name name of the parameter

 245

Parameters
A Parameter element is a variable you can use when setting the properties of the
elements in your connector.

For instance, when developing your connector, you may use a local path for
developing and testing. However, when you generate your configuration for
deployment, you need to have different paths. If you do not use Parameter elements,
you have to manually change the path in all of the elements of your connector.

Parameters can be used to replace values such as:

! Paths:
path/subpath1/

./path

../../path
! Strings:

dest@company.com

BlueConnectorBeta

! Booleans
! Numeric values

Parameter names have the following restrictions:

! No spaces (underscores are allowed)
! Only letters (no numbers or symbols can be used)
! Upper case only

Example of a valid parameter names:

! HOME_PATH
! EMAIL
! CONNECTOR_NAME

This element has no properties.

This element contains:

! One or more Parameter elements
The parameter element specifies the properties of the parameter.

The element has the following properties:

246 Developing Connectors

PROPERTY DESCRIPTION

parameterdescription Description of the parameter

valuedescription Description of the value

typedescription Choose one of the following:

multiplicitydescription Choose one of the following:

Value Value of the parameter

When multiple, parameters can have more than one
value property

• string

• boolean

• numeric

• simple

• multiple

 247

syntax � 191

CID Objects Builder

D

about � 235
CID Update Error Handler � 236

Index

A
Additional Parameters

list of objects � 207
Administration tools

agentadm � 183, 192
agentstart � 183, 191
ossadmin � 184
ossstart � 184

agentadm Administration Tool
syntax � 192
using � 183

agentstart Administration Tool

using � 183

B
BLM/XML Transmapper

properties � 237

C

properties � 241
CID Update Error Handler

about � 236
properties � 236

Connecting
connecting � 139

Connector Configuration File (ilcc)
generating � 176

Connector Design File (ilcd)
generating � 176

Connector Parameters File (ilcr)
generating � 176

Connectors
administrating � 185
and Integration Processes � 212
and Macros � 242
and Scripts � 243
generating � 176
running � 183
running OSS Connector � 184

DOM Builder
about � 229
configuring � 229
properties � 229

DOM Serializer
about � 229
configuring � 229
properties � 229

E
Encoding Converter

about � 229
properties � 229

Errors

Error Handler � 236
Exception Converter � 236
Retry Handler � 236

Exception Converter
about � 236
properties � 236

Extensions
sample inbound queue � 126
sample outbound queue � 125

I
Inbound Batch Queue

about � 216
properties � 216

Inbound Email Queue
about � 217
properties � 217

Inbound File System Queue
about � 217
properties � 217

Inbound JMS Queue
about � 218
properties � 218

Inbound JMS Topic Queue

248 Developing Connectors

about � 219
properties � 219

Inbound Memory Queue
about � 220
properties � 220

Inbound Socket Queue
about � 220
properties � 220

Integration Processes
about � 212
connecting � 139

ISF Administration Tools
about � 190
agentadm administration tool � 192
agentstart administration tool � 191
isfadmin administration tool � 196
location � 190
ossadm administration tool � 195
ossstart administration tool � 195

ISF Message Cache
about � 130
creating � 135

ISF Message Schema Reference
about � 150
schemarefTool � 197, 199

ISF Messages
about � 150, 151, 152
activating fields � 169
adding fields � 163, 164, 165, 166, 167,

168, 170, 171, 172
business data area � 152
control area � 151
creating new messages � 153, 154, 155,

157, 158, 159, 160
list of � 203
overriding default mapping � 161
schemarefTool � 173

J
Java/XML Transmapper

about � 238
properties � 238

M
Message Broadcaster

about � 234
properties � 234

Message Queues
about � 215
Inbound Batch Queue � 216

Inbound Email Queue � 217
Inbound File System Queue � 217
Inbound JMS Queue � 218
Inbound JMS Topic Queue � 219
Inbound Socket Queue � 220
Outbound Email Queue � 221
Outbound File System Queue � 221
Outbound JMS Queue � 222
Outbound Socket Queue � 223

Message Schema Reference
about � 148

Message Type Filter
properties � 233

messagecacheAdminTool Administration
Tool
using � 135

Multi Queue Message Tracker
properties � 235

MultiQueue Message Broadcaster
properties � 235

MultiQueue Message Filter
properties � 234

O
OSS Connectors

administrating � 187
running � 184
stopping � 184

ossadmin Administration Tool
using � 184

ossstart Administration Tool
using � 184

Outbound Email Queue
properties � 221

Outbound File System Queue
properties � 221

Outbound JMS Topic Queue
about � 222
properties � 222

Outbound Socket Queue
about � 223
properties � 223

P
Parameters

about � 245
Pause

about � 231
properties � 231

Processors

 Index 249

creating � 136

R
Retry Handler

about � 236
properties � 236

Roles

Message Broadcaster � 234

MultiQueue Message Filter � 234

configuring � 181
Routers

Message Type Filter � 233
MultiQueue Message Broadcaster � 235

MultiQueue Message Tracker � 235
Script Engine � 233

S
schemarefTool Administration Tool

about � 173, 197
syntax � 199
using � 173, 174

Script Engine
about � 233
properties � 233
specifying scripts � 140

Scripts
creating � 139

Starting
OSS Connector � 184
Synchronizer Connector � 183

Stopping
OSS Connector � 184
Synchronizer Connector � 183

Synchronizer Connectors
administrating � 185
configuring � 185
managing � 185
modes � 183
running � 183
starting � 183
stopping � 183, 192

U
Utility Processors

DOM Builder � 229
DOM Serializer � 229
Encoding Converter � 229
Message Counter � 230
Pause � 231
XML Validator � 230

X
XML Parser

about � 239
properties � 239

XML Validator
about � 230
properties � 230

XSL Transmapper
about � 240
properties � 240

	Preface
	Overview of Integrating Account Applications
	About the SmartLink (ISF)
	Overview of the SmartLink (ISF) Application Integration Services
	Overview of the SmartLink (ISF) Connectors
	Overview of the Message Schema Reference Repository
	Overview of the SmartLink (ISF) Tools

	About Integration Architectures
	Connecting to OSS Applications Systems Through an EAI Product
	Connecting to OSS Applications Systems Through an OSS Connector
	Connecting to OSS Applications Directly Through a MOM

	Installing the SmartLink (ISF)
	Installing the SmartLink (ISF)

	Before You Start
	About Developing Connectors
	About the Principle Components of Connectors
	Integration Processes
	Macros
	Scripts

	Connector Program Files
	Selecting the Template

	Designing Your Connector
	Overview of Designing Connectors
	About the Synchronizer Template
	About the OSS Connector Template
	Overview of Modifying Existing Integration Processes
	Overview of Creating Integration Processes

	Building Your Connector
	Working with Connectors
	About Connectors
	Working with Integration Processes
	Working with Processors
	About Processors

	Working with Processors
	Configuring Processors
	Connecting Processors

	Working with Scripts
	Programming Scripts

	Working with Macros
	Types of Macros
	Specifying the Macro file
	Programming Macros
	Samples

	Working with Extensions
	Working with Parameters

	Working With Connector Extensions
	About Extensions
	Defining Custom Processors
	Validating Custom Processors
	Using Custom Processors
	Generating Custom Processors
	Samples
	Sample Custom Outbound Queue
	Sample Custom Inbound Queue

	Working with the SmartLink (ISF) Message Cache
	About the SmartLink (ISF) Message Cache
	About the Saved SmartLink (ISF) Message Structure
	About the SmartLink (ISF) Message Cache Script APIs
	About the SmartLink (ISF) Message Cache Processors
	Working With the SmartLink (ISF) Message Cache
	Overview of Working with the SmartLink (ISF) Message Cache
	Example of Integrating the SmartLink (ISF) Message Cache
	Creating the SmartLink (ISF) Message Cache
	Adding the SmartLink (ISF) Message Cache Processors

	Connecting to the SmartLink (ISF) Message Cache
	Saving Messages
	Extracting Messages
	Using the SmartLink (ISF) Message Cache to Build a Business Event Queue
	New Topic
	Creating an OSS Business Event Queue

	Working With the Message Schema Reference
	About the Message Structure Files
	About Working with the Message Schema Reference
	Overview of the Business Message Structure
	About the Control Area
	About the Business Data Area

	Adding New Messages
	To add a new message (Continued)

	Overriding Default Outbound Message Mapping
	Customizing Message Fields
	To add a new message field

	Working with Synchronizer Outbound Message Fields
	Customizing Synchronizer Inbound Messages
	Customizing Standard Message Structures
	Generating the Message Schema Reference Files
	To generate message documentation files
	To generate message mapping definition files for Synchronizer connectors
	To generate message mapping definition files for OSS Connectors

	Generating Your Connector
	About Generating Your Connector

	Running Your Connector
	About Running the Connector
	Specifying Processing Priority
	Starting and Stopping the Synchronizer Connector
	About Synchronizer Run Modes

	Starting and Stopping the OSS Connector
	Administrating the Connector
	About Administrating Connectors

	SmartLink (ISF) Tool Reference
	About the SmartLink (ISF) Administration Tools
	Synchronizer Connector Administration Tools
	agentstart Syntax
	agentadm Syntax

	OSS Connector Administration Tools
	ossstart Syntax
	ossadm Syntax

	SmartLink (ISF) Administration Tool
	isfadm Syntax

	Message Schema Reference Tool
	schemarefTool Syntax

	Connector Generator Tool
	ilccGenerator Syntax

	Core Messages
	Core Business Objects
	About Core Business Objects
	About Parameters and Messages
	Outbound Messages
	Inbound Messages

	Element Reference
	Integration Processes
	Processors
	Message Queues
	Inbound Batch Queue
	Inbound Email Queue
	Inbound File System Queue
	Inbound JMS Queue
	Inbound JMS Topic Queue
	Inbound Memory Queue
	Inbound Socket Queue
	Outbound Email Queue
	Outbound File System Queue
	Outbound JMS Queue
	Outbound JMS Topic Queue
	Outbound Memory Queue
	Outbound Socket Queue
	Message Cache Polling Processor
	Database Polling Processor

	Request Queue
	Request Queue Agent

	Utilities
	Encoding Converter
	DOM Builder
	DOM Serializer
	XML Validator
	Message Counter
	Pause

	Custom Processors
	Routers
	Script Engine
	Message Type Filter
	Message Broadcaster
	MultiQueue Message Filter
	MultiQueue Message Broadcaster
	MultiQueue Message Tracker
	Error Handler
	Exception Converter
	Retry Handler
	CID Update Error Handler
	BLM/XML Transmapper
	Java/XML Transmapper
	XML Parser
	XSL Transmapper
	CID Objects Builder

	Macros
	Scripts
	Extensions
	Parameters

	Index

