

Developing Telco Service
Manager (TSM)

V4.2
Document ID: TMGN-10-4.2-01

Date Published: 3.5.04

 1997−2004 edocs Inc. All rights reserved.

edocs, Inc., One Apple Hill Dr., Natick, MA 01760

The information contained in this document is the confidential and proprietary information of
edocs, Inc. and is subject to change without notice.

This material is protected by U.S. and international copyright laws. edocs and eaPost are
registered in the U.S. Patent and Trademark Office.

No part of this publication may be reproduced or transmitted in any form or by any means
without the prior written permission of edocs, Inc.

eaSuite, eaDirect, eaPay, eaCare, eaAssist, eaMarket, and eaXchange are trademarks of edocs,
Inc.

All other trademark, company, and product names used herein are trademarks of their respective
companies.

Printed in the USA.

Preface

In This Section

Using this Manual.. iv
Finding the Information You Need .. xiii
If You Need Help... xvii

iv Developing Telco Service Manager (TSM)

Using this Manual
Welcome to Developing Telco Service Manager (TSM).

This manual covers building TSM with edocs Telco Service & Analytics Manager.

 Preface v

Before You Get Started
You should be familiar with the following:

! Your application architecture
! Programming Java and Java Server pages
! Designing or working with databases
! eXtended Markup Language (XML)

vi Developing Telco Service Manager (TSM)

Who Should Read this Manual
This manual is for developers and project managers who are responsible for
developing the user interface.

However, there are other topics covered in this manual that may interest other
members of the project development team.

! Administrators
You will find information about the different components that make up the user
interface. You can learn the location of the different files which make up the user
interface.

! Developers
This manual is for building user interfaces for your solution. You learn how write
JSPs that use the Presentation Manager JavaServer Page framework. You also
learn how to group and program sets of JSPs. These sets, called channels, allow
users to access the same solution by using different devices and protocols.

You also learn how to use the framework to create new workflows, customize
menus, and manage personalization information to create interactive and
customizable user interfaces.

! Project Architect
You can use the information in this manual to learn about channels and how they
work. You can learn about the components and the flexibility of your solution when
it is based on channels built on a common framework.

! Project Manager
You will find information about channels and the Presentation Manager JavaServer
Page framework important when developing user interfaces. You may also be
interested in reading about menus and workflows as the their characteristics may
influence how you go about developing the user interfaces of your solution.

 Preface vii

How This Manual is Organized
This manual contains the following chapters:

! Overview of Developing Telco Service Manager (TSM)
This chapter covers the basics of building your solution using TSM.

It contains an introduction and overview of the following:

! Configuring various components

! Building a user interface

! Deploying

! Working with the CID

! Extending the BLM Object Model
This chapter covers extending the definition of BLM objects.

It contains information about:

! Preparing your environment

! Specifying the attribute

! Extending the object definition

! Working with the attribute

! Working with Search Features
This chapter covers using the search feature in your solution.

 It contains information about:

! Using the search feature

! Working with search filters

! Creating new search filters

! Writing search JSPs

! Changing the BLM Business Logic
This chapter covers changing the default business logic defined in the Business
Logic Manager (BLM.)

It contains information about:

! Writing a new logic class

! Compiling the new class

viii Developing Telco Service Manager (TSM)

! Integrating the new class

! Managing Security
This chapter covers using the security features.

It contains information about:

! Configuring user authentication

! Using the trust mode

! Managing the access to BLM objects

! Using explicit security

! Accessing External Data Sources
This chapter covers using data sources other than the CID.

It contains information about:

! Configuring the components

! Specifying the data binding

! Programming access to the external data

! Localizing Your Application
This chapter covers localizing your application.

It contains information about:

! Specifying the character set

! Specifying the available languages

! Specifying language-specific formats

! Localizing CID entries

! Localizing BLM error messages

! Localizing JSPs

! Managing Reference Data

This chapter covers managing Reference Data found in the CID.

It contains information about:

! The reference data

! Returning the reference data

! Reloading reference data

 Preface ix

! Managing Changes to BLM Objects
This chapter covers how to manage changes to objects.

It contains information about:

! Different ways of managing changes

! Using the ActionManager to manage changes

! Managing changes in synchronous mode

! Working with Shopping Carts
This chapter covers using shopping carts in your solution.

It contains information about:

! Creating simple shopping carts

! Managing complex shopping carts

! Modifying items in a shopping cart

! Displaying contents

! Submitting the contents

! Saving and restoring the content

! Working with shopping cart templates

! Using Bulk Ordering
 This chapter covers using bulk ordering.

It contains information about:

! Modifying services of contracts

! Removing services from contracts

! Changing rateplans

! Working with Approvals
This chapter covers using the approval feature to create an approval process for
user requests.

It contains information about:

! Approval processes

! Writing the approval class

! Integrating the approval class

x Developing Telco Service Manager (TSM)

! Managing Errors
This chapter covers managing BLM errors.

It contains information about:

! The different BLM exceptions

! Customizing the messages

! Logging Events
This chapter covers using the system logger.

It contains information about:

! Using the logger

! The Logger API

! Customizing the logger

! Working with User Events
This chapter covers using user events.

It contains information about:

! Activating user events

! Creating custom user events

! Inserting events in JSPs

! Working with Portals
This chapter covers using Portals.

It contains information about:

! Declaring entry points

! Formatting URLs

! Sessions

! Stylesheets and tags

! Deploying Telco Service Manager (TSM)
This chapter covers deploying TSM.

It contains information about:

! Configuring the environment

 Preface xi

! Creating and deploying the WAR file

! Configuring deployed applications

xii Developing Telco Service Manager (TSM)

What Typographical Changes and Symbols Mean
This manual uses the following conventions:

TYPEFACE MEANING EXAMPLE

Italics Manuals, topics or other
important items

Refer to Developing
Connectors.

Small Capitals Software and Component
names

Your application uses a
database called the CID.

Fixed Width File names, commands,
paths, and on screen
commands

Go to //home/my file

 Preface xiii

Obtaining edocs Software and Documentation
You can download edocs software and documentation directly from Customer Central
at https://support.edocs.com. After you log in, click on the Downloads button on the left.
When the next page appears, you will see a table displaying all of the available
downloads. To search for specific items, select the Version and/or Category and click
the Search Downloads button. If you download software, an email from edocs
Technical Support will automatically be sent to you (the registered owner) with your
license key information.

If you received an edocs product installation CD, load it on your system and navigate
from its root directory to the folder where the software installer resides for your
operating system. You can run the installer from that location, or you can copy it to
your file system and run it from there. The product documentation included with your
CD is in the Documentation folder located in the root directory. The license key
information for the products on the CD is included with the package materials shipped
with the CD.

xiv Developing Telco Service Manager (TSM)

Finding the Information You Need
The product suite comes with comprehensive documentation set that covers all
aspects of building solutions based on the edocs Telco Service & Analytics Manager.
You should always read the release bulletin for late-breaking information.

Getting Started

If you are new to the edocs Telco Solutions, you should start by reading Introducing
Telco Service & Analytics Manager Applications. This manual contains an overview of
the various components along with the applications and their features. It introduces
various concepts and components you must be familiar with before moving on to more
specific documentation. Once you have finished, you can read the manual which
covers different aspects of working with the application. At the beginning of each
manual, you will find an introductory chapter which covers concepts and tasks.

Designing Your Solution

While reading Introducing Telco Service & Analytics Manager Applications, you should
think about how the different components can address your solution's needs.

You can refer to Developing Telco Service Manager (TSM) for information about
extending the object model, application security, and other design issues. The CID
Reference Guide also gives you the information about how the information in your
solution is managed and stored.

You can refer to Developing Telco Analytics Manager (TAM) for information about
customizing the database, synchronizing data with TSM, loading data from external
invoice files, and other design issues. The CBU Reference Guide also gives you the
information about how the information in your solution is managed and stored. You
should also read the section on integrating TAM with TSM in Developing Telco
Analytics Manager (TAM).

You can also read the introduction of Developing Connectors for information about
integrating your solution.

Installing Telco Service & Analytics Manager Applications

You should start by reading the Release Bulletin. For detailed installation and
configuring information, refer to Installing Telco Service & Analytics Manager
Applications. This manual covers installing applications on one or more computers. It
also contains the information you need to configure the different components you
install.

You might also refer to Developing Telco Service & Analytics Manager Applications
and Developing Connectors as these manuals contain information on customizing
applications and working with other software.

 Preface xv

If you are upgrading, be sure to read Migrating Telco Service & Analytics Manager
Applications.

Building Your Solution

If you are designing and programming your solution, you have several different sources
of information. If you are programming the user interface of the solution, you should
read Developing User Interfaces. You also refer to the BLM Specification and JSPF
specification for detailed information about programming the user interface. For
configuring the various components, you refer to Installing Telco Service & Analytics
Manager Applications and sections in other documents which deal with the component
to configure.

If you are designing and programming TAM, you have several different sources of
information. If you are programming the user interface of the solution, you should read
Developing Reports. You also refer to the QRA API Specification and the QRA
Configuration File Reference Documentation for detailed information about the different
components you can use to build reports. For configuring the various components, you
refer to Installing Telco Service & Analytics Manager Applications and sections in other
documents which deal with the component to configure.

If you are working with the business logic of your solution, you should read Developing
Telco Service Manager (TSM). You can also refer to the BLM Reference Guide for
more information about the design and structure of the BLM object model. For
information about how this information is stored, you should refer to the CID Reference
Guide along with the CID Reference documentation for your database. In order to
develop your application, you most likely will need to install and run the Loopback
Connector. This component mimics back-end applications for development purposes.
For information about installing and running this component, refer to Using the
Loopback Connector.

If you are working on the data warehouse side of TAM, you should read Developing
Telco Analytics Manager (TAM). For more information about the design and structure
of the CBU, you should refer to the CBU Reference Guide along with the CBU
Reference documentation for your database. You should also read Developing Telco
Analytics Manager (TAM) for information about synchronizing data between the TAM
and Telco Service Manager (TSM). In this manual, you will also find information about
loading data in both the CBU and the CID.

For more information about integrating your application, you should read Building
Connectors to learn how Telco Service & Analytics Manager applications work with
different software.

xvi Developing Telco Service Manager (TSM)

Integrating Your Solution

If you are involved in configuring your solution to work with Operation Support Software
(OSS), you should read Building Connectors. This manual helps you understand the
integration architecture and shows you how to build connectors to connect to today�s
market-leading OSS software. You can also read Using the Loopback Connector for
information about a connector built for development purposes. Other manuals you can
refer to for information about configuring your application include Introducing Telco
Service & Analytics Manager Applications, Developing Telco Analytics Manager (TAM),
and Developing Telco Service Manager (TSM).

Managing Telco Service & Analytics Manager Applications

If you are responsible for managing Telco Service & Analytics Manager applications,
you should read the Installing Telco Service & Analytics Manager Applications for
information about configuring various components and information about working with
different application servers. Administrating Telco Service & Analytics Manager
Applications covers what you need to know about managing your solution at runtime.
For information about OSS systems, you should read Building Connectors.

 Preface xvii

If You Need Help
Technical support is available to customers who have valid maintenance and support
contracts with edocs. Technical support engineers can help you install, configure, and
maintain your edocs application.

edocs provides global Technical Support services from the following Support Centers:

US Support Center

Natick, MA
Mon-Fri 8:30am � 8:00pm US EST
Telephone: 508-652-8400

Europe Support Center

London, United Kingdom
Mon-Fri 9:00am � 5:00 GMT
Telephone: +44 20 8956 2673

Asia Pac Rim Support Center

Melbourne, Australia
Mon-Fri 9:00am � 5:00pm AU
Telephone: +61 3 9909 7301

Customer Central

https://support.edocs.com

Email Support

mailto:support@edocs.com

When you report a problem, please be prepared to provide us the following
information:

! What is your name and role in your organization?
! What is your company�s name?
! What is your phone number and best times to call you?
! What is your e-mail address?
! In which edocs product did a problem occur?
! What is your Operating System version?
! What were you doing when the problem occurred?
! How did the system respond to the error?
! If the system generated a screen message, please send us that screen message.

xviii Developing Telco Service Manager (TSM)

! If the system wrote information to a log file, please send us that log file.

If the system crashed or hung, please tell us.

Contents

Preface iii

Overview of Developing Telco Service Manager (TSM) 25
About Developing Applications 26
Configuring the BLM 27
Building a User Interface 28
Developing Connectors 29
Deploying Your Solution 30
Using the Demo Application 31

Extending the BLM Object Model 33
About Working with the CID 34
About Extending the BLM Object Model 35
Before You Start 36

Determining if the Object is Extensible 36
Adding Tables for Attribute Values 37
Declaring the Attributes in the DAL 38
Accessing Attribute Values 40
Modifying Attribute Values 41

Specifying the Attribute in the CID 44
Extending the Object Definition 46
Extending the Object Definition in the SmartLink (ISF) 48
Working With New Attributes 49

Returning the Object Description 49
Returning Values 49
Setting Values of Attributes 50
Setting Values of Objects Being Created or Modified 51

Working with Search Features 53
About Using the Search Feature 54

About the BLM Methods 54
About Search Filters 56

About Filter Criteria 57
Available Filters and Criteria 58

Configuring Search Filters 83
Customizing Filters 83
Customizing Criteria 84

xx Developing Telco Service Manager (TSM)

Creating Search Filters 87
About Search Filters 88
About Filter Criteria 89
Overview of Creating Search Filters 91
Optimizing Oracle Databases For Searches 92
Declaring the New Filter in the CID 94
Declaring the New Search Method in the DAL 98
Writing the New Query 105
Writing a Search JSP 109

Getting the Filter 110
Getting Dynamic and Hidden Criteria 112
Displaying the Search Criteria 117
Executing the Search 119
Displaying the Results 122

Changing the BLM Business Logic 125
About Business Logic 126
Changing Business Logic 127

Managing Security 131
About Security 132
Understanding the CID Schema Security 133
Configuring Authentication 134
Using Trust Modes 135
Managing Access to BLM Objects 136
Using Explicit Security 137

About Explicit Security 137
Getting Managers of a Contract 137
Specifying a Manager 138
Removing a Manager 138

Accessing External Data Sources 141
About Accessing External Data Sources 142
Configuring a New DAL Instance 143
Creating the Configuration File 144
Specifying the Binding Properties 146
Programming the Data Access 147

Localizing Your Application 151
About Localizing an Application 152
Limitations of Localizing Applications 153
Specifying the Character Set 154
Specifying Application Languages 156
Specifying Language-specific Formats 157
Localizing Database Entries 160
Localizing BLM Error Messages 161
Localizing JSPs 164
About Localizing Applications 166
Working with Languages 168

Working with Strings 169
Localizing Strings 171

Managing Reference Data 173
About Reference Data 174
Returning All Reference Data 175
Returning Only Certain Types of Reference Data 176
Reloading Reference Data 177

How the Internal BLM Cache Works 177
Updating Reference Objects in the Cache 178

Programming your Application for Reference Data Reloads 179
Example of JSPs Using the Reference Data Reload Feature 181

Managing Changes to BLM Objects 183
About Changes to BLM Objects 184
Managing Basic Changes to Objects 185
Managing Changes with the ActionManager 186
Managing Changes in Synchronous Mode 187

Working with Shopping Carts 189
About Shopping Carts 190
About the BLM Interfaces 191
Before Developing Shopping Carts 192

Action Manager Hierarchies 192
Action Manager Types 192
About the Presentation Layer 193

Creating a Simple Shopping Cart 194
Declaring and Retrieving the Shopping Cart 194
Listing Services in the Shopping Cart 195
Adding Services to the Shopping Cart 195
Submitting the Shopping Cart 195

xxii Developing Telco Service Manager (TSM)

Managing Complex Shopping Cart Contents 197
Creating a Complex Shopping Cart for Contracts 197

Adding a Contract 201
Adding a Service to the Contract 202
Creating Customers in the Shopping Cart 204
Modifying a Shopping Cart Item 208

Editing the Object 208
Modifying Additional Information 210

Modifying the Quantity 211
Modifying Service Parameters 211
Removing a Shopping Cart Item 212

Displaying the Contents of a Shopping Cart 214
Browsing the shopping cart 214
Displaying All Items 216
Working with core services 217
Retrieving the detail of an entry 217

Saving Shopping Carts 218
About Saving Shopping Carts 218
Saving a Shopping Cart 219
Create a Shopping Cart from a Saved Copy 220

Using Shopping Cart Templates 221
About Persistent Action Managers 221

About Shopping Cart Templates 222
Saving a Shopping Cart as a Template 222
Getting the List of Available Templates 223
Using Shopping Cart Templates 223
Deleting Shopping Cart Templates 224

Using Bulk Ordering 225
About Bulk Ordering 226
Adding a Service to Contracts 227
Modifying a Service of Contracts 228
Removing a Service from Contracts 229
Changing the Rate Plan of Contracts 230

Working with Approvals 231
About Approving Orders 232

Creating Approval Processes 233
Submitting Requests for Approval 236
Displaying Requests for Approval 236
Approving or Denying Requests 237

About Approval Processes Logic 239
Creating a New Approval Process Class 240
Deploying the Approval Class 245
Running the Approval Sequencer 246

Managing Errors 247
About the BLM Exceptions 248

BlmLogicException 248
BlmSecurityException 248

BlmBadValueException 248
PersistenceException 248

Customizing Error Messages 249

Logging Events 251
About Logging Events 252

Before You Get Started 252
Logger Events 253
Event Types 254
Severity Levels 255
Event Modules 256

Filtering Logs 256
About the Logger API 257

Available Events 257
Custom Event Codes 258
Logger API Object Model 259

Creating the Custom Event Code File 260
Creating the properties File 260
Example of the Custom Event Code File 261
Deploying the Custom Event Code File 261

Programming Custom Event Logs 262
Loading the Custom Event Code 262
Initalizing the Logger 263
Checking Severity Settings 264
Logging Standard Messages 266
Logging Debug Messages 268
Logging Messages During Development 270

Working with User Events 273
About User Events 274
About Creating Custom User Events 275

Working with Portals 281
About Portals and Telco Service & Analytics Manager Applications 282
Overview of Integrating Telco Service & Analytics Manager 284
Setting Entry Points 285
Encoding URLs 286
Managing Sessions 287
Managing Stylesheets 288
Managing Forbidden Tags 289

Deploying Telco Service Manager (TSM) 291
About Deploying 292
For WebSphere 4.x 293

Configuring Your Environment 293
Creating and Deploying a WAR File 294
Configuring Deployed Channels 297
Accessing a Deployed Channel 298

For WebLogic 6.x and 7.x 299
Configuring Your Environment 299

xxiv Developing Telco Service Manager (TSM)

Creating and Deploying a WAR File 300
Accessing a Deployed Channel 303

For Oracle 9i Application Server 304
Configuring Your Environment 304
Creating and Deploying a WAR File 305
Configuring Deployed Channels 309
Accessing a Deployed Channel 311

Index 313

C H A P T E R 1

Overview of Developing Telco
Service Manager (TSM)

In This Section

About Developing Applications ... 26
Configuring the BLM ... 27
Building a User Interface... 28
Developing Connectors... 29
Deploying Your Solution.. 30
Using the Demo Application.. 31

 26

About Developing Applications
You use TSM to build your solution for your customer's needs in managing their
relationship with communication service providers. The TSM comes with everything
you need to build your solution straight out of the box. We have included all the tools
and application frameworks you need to go online.

By their very nature, these applications are based on Internet standards and
architectures. To manage the TSM and to ensure seamless integration, application
servers manage basic application functions. The TSM is built using standard
technologies, such as the powerful Java Server Page technology used to build user
interfaces.

Before you start developing your solution, you should determine the scope along with
the information you want to manage. You also need to determine the different kinds of
users who use the application.

Developing TSM involves:

! Configuring the BLM
! Building the User Interface
! Developing Connectors
! Deploying your solution

Instead of building your application from scratch, you can also build an application
using the MyWeb application as a template.

 Overview of Developing Telco Service Manager (TSM) 27

Configuring the BLM
A key part of the CSS Engine, the Business Logic Manager (BLM) enables
Communications Service Providers to rapidly implement an e-business solution tailored
precisely to their operational requirements and business processes.

The BLM contains a set of Java packages that correspond to business objects you can
manage in your application. The BLM also comes with a set of APIs you use in your
JSPs to access and manipulate these objects.

To help you manage BLM objects, you configure:

! Access to BLM objects
! Authentication
! Display of rate plans
! Error handling

For detailed information about working with the BLM Engine, refer to the BLM
Reference Guide and the BLM API Reference Documentation.

28 Developing Telco Service Manager (TSM)

Building a User Interface
Developing any application from scratch is a long, tedious process that requires
planning and lengthy development cycles. We have decided to help you reduce the
time it takes to get your solution up and running.

The JSPF Framework is a set of JSP pages and Java classes that contain code you
can use quickly and easily build TSM using the BLM. This framework presents a
uniform and standardized way of writing and using JSPs. You can speed up your
development of JSPs by using the framework to handle basic tasks and concentrate on
coding the TSM's presentation layer.

Once you create these JSPs, you use the Presentation Logic Studio (PLS) to build the
User Interface and page flows.

The Personalization Manager comes with the channels you can use as application
templates:

! MyWeb - This template covers most of the essential features for users using the
Internet.

You can also use these channels to help you write your own application. These fully
documented sets of JSPs with reference page flows cover the basic features of any
TSM solution.

You use the Presentation Logic Studio (PLS) to:

! Configuring name of your channel and location of its files
! Listing the JSP Pages that make up your channel
! Configuring security
! Localizing strings
! Specifying menu items
! Building Workflows

For detailed information about working with the Personalization Manager, JSPF and
the PLS, refer to Developing User Interfaces.

 Overview of Developing Telco Service Manager (TSM) 29

Developing Connectors
The SmartLink (ISF) enables the TSM to communicate, or integrate with the core CSP
technology infrastructure, for example billing platforms, Customer Relationship
Management (CRM) software, and other business and operational support systems
(BSS/OSS). This in turn allows the CID to maintain a synchronized cache of semi-static
customer and service data, as well as passing requests and responses between the
various systems.

The SmartLink (ISF) can be considered to comprise:

! Connectors that move data between TSM and the transport layer. These
connectors are called Synchronizers.

! Connectors that move data between BSS/OSS applications and the transport layer.
These connectors are called BSS/OSS Connectors.

For more information, refer to Developing Connectors.

30 Developing Telco Service Manager (TSM)

Deploying Your Solution
After developing your TSM solution, you deploy the channels as a Web application.
When you deploy your channel, you are telling the application server where to find your
JSPs and components.

As each application server handles JSPs and other files differently, deploying your
channel depends on the version and the editor of your application server. Deploying
channels can be as easy as configuring your application server to look for the JSPs in
a directory. Other application servers recommend that you deploy web applications as
a J2EE Web Application aRchive (WAR) file.

For detailed information about configuring and deploying web applications, refer to your
application server's documentation.

 31

Using the Demo Application
You can start building your application quickly and easily by using the MyWeb demo
application.

To use this application as a template, do the following:

1 Create a copy of MyWeb by duplicating the MyWeb directory structure.

2 Do one of the following:

! Use the Presentation Logic Studio to edit the project MyWeb.plad JSPF
Configuration File

! Start from a new minimum configuration by selecting File > New Application and
save your PLAD in the new directory containing the duplicated MyWeb
resources

3 Specify the new plad file in the jfnApplication.properties Configuration file.

For more information about:

- Using the Presentation Logic Studio, refer to Building User Interfaces

- Modifying the jfnApplication.properties Configuration file, refer to Building
User Interfaces

C H A P T E R 2

Extending the BLM Object Model

In This Section

About Working with the CID .. 34
About Extending the BLM Object Model 35
Before You Start.. 36
Specifying the Attribute in the CID .. 44
Extending the Object Definition... 46
Extending the Object Definition in the SmartLink (ISF) 48
Working With New Attributes .. 49

 34

About Working with the CID
When building and customizing your TSM, you may have to change or add information
in the CID. Most of the time, you work with product catalog and other reference data.

When working with the CID, please keep in mind that there are reserved ranges for
object IDs. In general, your object IDs must be greater than 1000, but the reserved
ranges vary from table to table.

Before adding any custom object to the CID and assigning it an ID, you should refer to
the Customizing the CID section in the CID Reference Guide for more information
about reserved ranges.

 Extending the BLM Object Model 35

About Extending the BLM Object
Model

The comprehensive BLM object model covers the fundamental features of customer
self-service applications. Because it is, the object model may not fully cover the
requirements of your solution and certainly not the evolving requirements for future
enhancements.

However, you can customize the object model to meet your requirements for today and
tomorrow.

You can extend the object model by adding attributes to the objects by using additional
information. Additional information, or add_info, is an additional attribute of a core
object.

Extending the BLM object model involves:

1 Before you start, you:

! Determine if the object can be extended.

! Determine if the CID has the required tables to store attribute values.

2 Specifying the attribute type in the CID. The attribute can be a string, boolean, date,
and so on. You add the parameter descriptor in the CID.

3 Associate the attribute with the object description.

4 Extending the object definition in the SmartLink (ISF) Messages Schema
Reference.

5 Programming access to the new attribute

36 Developing Telco Service Manager (TSM)

Before You Start
1 Determining if the object can be extended. This involves verifying that the object

can use additional information as object attributes.

2 Determining if the CID has the required tables to store attribute values. Most of the
core BLM objects already have these tables.

However, if the CID does not have the required tables, you must:

! Create the tables

! Configure the DAL to access and modify the information in these tables

Determining if the Object is Extensible
BLM objects which can be extended using additional information implement or inherit
the BLM AdditionalInfoMgrIF interface.

The RatePlanServiceIF object is not extendable. The
getAdditionalParameters() method returns additional attribute values of the
related ServiceIF object.

To determine if the BLM object is extensible

1 Open the BLM API HTML documentation.

2 Click the com.netonomy.blm.interfaces.util link. The reference of this
package opens.

3 In the Interface Summary list, click the AdditionalInfoMgrIF link. The
reference of this interface opens.

4 Check the list of objects implementing or inheriting this interface under All Known
Subinterfaces. If the object is listed, you can use additional information to extend
the object.

 Extending the BLM Object Model 37

Adding Tables for Attribute Values
Depending on the object you want to extend by using additional information, you may
have to add tables to the CID to store the value of your object attributes. By default,
most of the core objects already have the tables you need to store additional
information.

The CID uses the following tables to store additional information.

! <OBJECT_NAME>_ADD_INFO
! <OBJECT_NAME>_ADD_INFO_VALUE
! <OBJECT_NAME>_ADD_INFO_LIST

Before you start, you need to verify if the object already has the tables in the CID. For
more information, refer to the CID Reference Guide and the CID Reference
Documentation for your database. If the object does not have these tables, you need to
add the tables and configure the DAL.

Adding tables for attribute values involves:

! Verifying if the tables exist
! Creating the tables in the CID
! Configuring the access to these tables in the DAL

To create the tables in the CID

1 Create the following tables in the CID:

! <OBJECT_NAME>_ADD_INFO

! <OBJECT_NAME>_ADD_INFO_VALUE

! <OBJECT_NAME>_ADD_INFO_LIST

 where <OBJECT_NAME> is the core object name

We suggest using the SQL already in crebas.sql as an example of how to add
these tables. In this file , find the section where CONTRACT_ADD_INFO is created.
This file is located in <home_dir>/data/cid/<db_name>/creation.

2 Do one of the following:

! For Oracle, create the SEQ_<OBJECT_NAME>_AI_VALUE sequence.

! For DB2, create the SEQ_<OBJECT_NAME>_AI_VALUE sequence. Be sure to
use sequence objects.

For more information about the sequence objects, refer to the DB2 release
notes.

! For SQL Server, do the following:

38 Developing Telco Service Manager (TSM)

1. Create a stored procedure.

2. Insert the name of the stored procedure in the KEYSTORAGE table.

Refer to the cre_sequences.sql file for more information about creating sequences
for your database. This file is located in
<home_dir>/data/cid/<db_name>/creation.

When you create the tables in the CID, you can define additional database structures
for performance and integrity reasons. For example, you can create indexes and
constraints.

Declaring the Attributes in the DAL
Declaring the attributes in the DAL involves:

! Declaring the new parameters in the DAL core_containers.xml file
In this file, you enter the different elements used to find the appropriate data access
methods to use.

! Declaring the object IDs in the DAL core_containers.xml and
objectID_aliases.xml file
In these files, you declare the internal ID of the object so your TSM can instantiate
the object.

To declare the additional attributes in the DAL

1 Go to <home_dir>/classes/nmycfg/dal.

2 Open core_containers.xml.

3 Find the <object_name> element that defines the object to modify.

4 Under the <references> element, add an <addInfos> element. The following
attributes you enter in this element also must be declared in the
core_containers.xml file:

! internal_function the name of the element specifying the data access
method

! type the declaration of the additional attributes

Example:
<references>

 <addInfos internal_function="getAddInfos" null="true"
type="DalContainer[]/objects.<OBJECT_NAME>ADDINFO" internal_name=""/>

 ...

</references>

 Extending the BLM Object Model 39

1 Under the <internal_functions> element, add a <getAddinfos> element.
This element is specified in the internal_function attribute of the
<addInfos> element. This element has the query attribute which specifies the
name of the SQL query in the core_queries.xml file.

Example:
<getAddInfos query="<OBJECT_NAME>.getAddInfos(this/object_ID)">

 <parameters/>

</getAddInfos>

1 6. Under the <objects> element, add the following child elements:

! <object_name>ADDINFO element. This element is specified in the type
attribute of the <addInfos> element.

! <object_name>ADDINFOVALUE element

To create these elements and their content, you should use elements in
core_containers.xml as a template. For your object copy the XML written for
the <CONTRACTADDINFO> and <CONTRACTADDINFO> elements. You can then
replace CONTRACT with the name of your object. You can then customize the
content as required.

To declare the objectIDs of additional attributes in the DAL

1 Go to <home_dir>/classes/nmycfg/dal.

2 Open core_containers.xml.

3 Go to objects\ROOT\accessors.

4 Under the <data_accessors> element, add the following element:
<object_nameAddInfoValue internal_name="" type="DalContainer/objects.OBJECT_NAMEADDINFOVALUE" null="true"
internal_function="getObject_nameAddInfoValue"/>

1 Under the <internal_functions> element, add the following element:
<getObject_nameAddInfoValue query="object_nameaddinfovalue.get(parameter/id)">

 <parameters>

 <id internal_name="value_id" type="ObjectId/OBJECT_NAMEADDINFOVALUE" null="false" internal_function=""/>

 </parameters>

</getObject_nameAddInfoValue>

1 Save your changes and close the file.

2 Open objectID_aliases.xml.

3 Under the <XML_CONFIGURATOR> element, add the following element:
<OBJECT_NAMEADDINFOVALUE type="LONG" dal_name="objects.OBJECT_NAMEADDINFOVALUE"
name="object_nameAddInfoValue"/>

40 Developing Telco Service Manager (TSM)

1 Save your changes.

Accessing Attribute Values
When declaring new parameters, you created the <getAddinfos> element as a child
element of <internal_functions>. This query attribute of this element specified
the name of the element containing the SQL query to use for this data access method.

You enter the elements and SQL in the DAL core_queries.xml file.

Accessing the attribute values involves:

! Entering the SQL of the declared get access method

To code the access to new attributes

1 Open the DAL core_queries.xml file corresponding to your database.

2 Find the <object_name> element that defines the queries for the object.

3 Under the <object_name>, create a <getAddInfos> child element which will
contain the SQL to manage the additional information.

4 In the <getAddInfos> element, enter the SQL to access the attributes.

5 Under the <object_name>, create a <objectnameaddinfovalue> element
then create the following child elements:

! <get>

! <getSubValues>

6 Enter the SQL in these elements.

We suggest using the SQL already in the core_queries.xml file as a template
for your SQL. For your object copy the SQL written for the CONTRACT
<getAddInfos>,<get> and <getSubValues> elements. You can then replace
CONTRACT with the name of your object. You can then customize the SQL if
required.

7 Save your changes.

 Extending the BLM Object Model 41

Modifying Attribute Values
Configuring the modification of attribute values involves:

! Declaring the data access methods to modify the attribute values
! Entering the SQL of these methods

To configure the DAL to modify attributes

1 Go to <home_dir>/classes/nmycfg/dal.

2 Open core_container.xml.

3 Find the tag <object_name> that defines the object to modify.

4 Add the <updateAddInfos> element.

To create this element and its contents, you should use the element in
core_containers.xml as a template. For your object, copy the XML written for
the <CONTRACT> <updateAddInfos> element. You can then customize the
content as required.

5 Find the <object_nameADDINFO> tag that defines the additional information to
modify.

6 Add the following method accessors:
<data_accessors>

 <oldValue internal_name="" type="DalContainer/objects.OBJECT_NAMEADDINFO" null="true"
internal_function="getOld"/>

</data_accessors>

<method_accessors>

 <insert internal_name="" type="" internal_function="insert_cascade"/>

 <delete internal_name="" type="" internal_function="delete_cascade"/>

 <update internal_name="" type="" internal_function="update_cascade"/>

</method_accessors>

1 Add the internal functions.

To add the internal functions, you should use the element in
core_containers.xml as a template. For your object, copy the XML written for
the <CONTRACTADDINFO> element. You can then customize the content as
required.

2 Find the <object_nameADDINFOVALUE> tag that defines the additional
information value to modify

3 Add the following method accessors:

42 Developing Telco Service Manager (TSM)

<data_accessors>

 <newInternalID internal_name="seq_paramvalue" type="ObjectId/OBJECT_NAMEADDINFOVALUE"
null="true" internal_function="newInternalID"/>

</data_accessors>

<method_accessors>

 <insert internal_name="" type="" internal_function="insert_cascade"/>

 <insert_link internal_name="" type="" internal_function="insert_link"/>

 <delete internal_name="" type="" internal_function="delete_cascade"/>

 <delete_link internal_name="" type="" internal_function="delete_link"/>

</method_accessors>

1 Add the following internal functions:

2 To add the internal functions, you should use the element in
core_containers.xml as a template. For your object, copy the XML written for
the <CONTRACTADDINFOVALUE> element. You can then customize the content as
required.

3 Save your changes.

To code the modification of the attributes

1 Open the DAL core_queries.xml file corresponding to your database.

2 Find the <object_name> element that defines the queries for the object.

3 Under the <object_name>, create an <object_nameaddinfo> element then
create the following child elements:

! <getOld>

! <insert>

! <delete>

4 Enter the SQL in these elements.

5 Under the <object_nameaddinfovalue> element, create the following child
elements:

! <insert_link>

! <delete_link>

! <insert>

! <delete>

! <newInternal>

6 Enter the SQL in these elements.

We suggest using the SQL already in the core_queries.xml file as a template
for your SQL. For your object copy the SQL written for the corresponding
CONTRACT elements. You can then replace CONTRACT with the name of your
object. You can then customize the SQL if required.

 Extending the BLM Object Model 43

7 Save your changes.

44 Developing Telco Service Manager (TSM)

Specifying the Attribute in the CID
You need to specify the attribute in the CID. The PARAMETER table contains the
attribute definition.

Specifying the attribute in the CID involves:

! Determining the type of parameter to use for the attribute.
! Add the attribute definition in the PARAMETER table.

For more information about the PARAMETER table, refer to the CID Reference Guide
and the CID HTML reference documentation for your RDBMS.

To add an attribute to the CID

1 Refer to the CID Reference Guide to determine the type of parameter for your
attribute.

2 In the PARAMETER table, add a record describing the new attribute. Use the syntax
as shown in this example:
insert into PARAMETER (PARAM_ID, PARAM_LEGACY_ID,
PARAM_CODE, PARAM_TYPE, PARAM_NAME, STRING_ID,
PARAM_DESCRIPTION, PARAM_DESC_STRING_ID,
PARAM_SHORT_DESCRIPTION, PARAM_SHORT_DESC_STRING_ID,
PARAM_MIN_ITEMS, PARAM_MAX_ITEMS, PARAM_MIN, PARAM_MAX,
PARAM_PATTERN) values (PARAM_ID value, PARAM_LEGACY_ID
value, PARAM_CODE value...);

! PARAM_ID: Internal ID of the parameter

! PARAM_LEGACY_ID: Legacy ID of the parameter

! PARAM_CODE: Code to manipulate the parameter

! PARAM_NAME: Display name of the parameter

! STRING_ID: String ID of the display name

! PARAM_DESCRIPTION: Description of the parameter

! PARAM_DESC_STRING_ID: String ID of the description name

! PARAM_SHORT_DESCRIPTION: Short description of the parameter

! PARAM_SHORT_DESC_STRING_ID:String ID of the short name

! PARAM_MIN_ITEMS: Minimum number of items in case of a list

! PARAM_MAX_ITEMS: Maximum number of items in case of a list

! PARAM_MIN: Minimum value allowed for the parameter

 Extending the BLM Object Model 45

! PARAM_MAX: Maximum value allowed for the parameter

! PARAM_PATTERN: The regular expression associated with the parameter

46 Developing Telco Service Manager (TSM)

Extending the Object Definition
Once you have entered the attribute as a parameter in the CID, you need to extend the
object definition of objects created using the BLM API.

The following objects can be created using the BLM API:

! Organization
! Level
! Member
! Contract
! BillingAccount

For these objects, extending the object definition involves:

! Defining extra parameters for requests creating the object (create requests)
! Defining the same extra parameters for requests modifying the object (modify

requests)

After extending the object definitions, you can get the extended object definition
dynamically. You can then display a page to enter all possible additional attributes of
the object.

To define extra parameters in create requests

Use the optParams attribute of methods creating the object. You pass an array
containing the parameter names and the corresponding values.

For example, the method for creating a contract:

LevelIF.createContract(... optParams,...)

For more information, refer to Additional Parameters for a Request in the CID
Reference Guide.

 Extending the BLM Object Model 47

To define extra parameters in modify requests

Use the optParams attribute of methods modifying the object. You pass an array
containing the parameter names and the corresponding values.

For example, the method for modifying a contract:

ContractF.modifyContract(... optParams,...)

For more information, refer to Additional Parameters for a Request in the CID
Reference Guide.

48 Developing Telco Service Manager (TSM)

Extending the Object Definition in
the SmartLink (ISF)

When extending objects with new attributes, you also need to add this information to
messages used by the SmartLink (ISF) to communicate with OSS.

By default, the SmartLink (ISF) message schema supports the extension of all
extendable objects. If you have added additional attributes to core BLM objects, the
structure of these additional parameters is already defined. You do not have to define
the structure, either for outbound messages or for inbound messages.

The additional attributes are located under the <CUSTOM> element of the message
definition.

For more information about the SmartLink (ISF) Message Schema, refer to the
Working With the Message Schema Reference section in Developing Connectors.

 Extending the BLM Object Model 49

Working With New Attributes
After you extend the BLM object by configuring and entering additional information, you
can now use a set of methods to work with the new object attributes in your TSM.

Using the methods, you can:

! Return the object description
! Return the values of the attributes
! Set the value of the attributes using SQL or SmartLink (ISF) inbound messages
! Set the value of attributes of objects being created

Returning the Object Description

To return the extended object definition

Use the ObjectRefMgr.getOptionalParameterDescriptors()method and
pass the ID of the action for creating the object (example: ID of create contract action)
as the action_id parameter.

This method returns an array of ParameterIF corresponding to the extended object
definition.

You can only use this method on objects which can be created using the BLM API. For
more information about these objects, refer to Extending the Object Definition in this
chapter.

Returning Values
You can return the attribute values of an object by using two different methods. For a
specific object, you can return:

! All of the set attributes values
! The value of a specific set attribute
! All of the attributes and their corresponding values

50 Developing Telco Service Manager (TSM)

To return all set additional attribute values

Use the <objectname>.getAdditionalParameters()method.

This method returns an array of ParameterIF corresponding to the additional
parameters. Unset additional attributes are not returned by this method.

To return the value of a specific additional attribute

Use the <objectname>.getAdditionalParameters()method to return an array
of corresponding to all of the set parameters of the object.

You can then find the parameter and its corresponding value in the array. If the
attribute is not found, the value is not set.

To return all additional attributes and their values
1 Use the <objectname>.getAdditionalParameters()method to return an

array of ParameterIF corresponding to the set additional parameters.

2 Use the ObjectRefMgr.getOptionalParameterDescriptors() method to
return an array of ParameterIF corresponding to the additional parameters.

3 Merge both ParameterIF arrays to obtain the complete list of additional attributes
and their values.

For more information about using the getOptionalParameterDescriptors
method, refer to Returning the Extended Object Description in this chapter.

Setting Values of Attributes
You can set the values of attributes by using:

! The inbound SmartLink (ISF) message
! The appropriate BLM APIs

 Extending the BLM Object Model 51

To set additional attributes using inbound SmartLink (ISF)
messages

! Additional attributes values of customer data objects (Organization, Level, Member,
Contract, Billing Account) are set in the <CUSTOM> section below the section for
the customer data object being created or modified.
Note about treatment of additional attributes in an inbound message: when setting
the values related to additional attributes of an object being modified in the CID,
only those defined in the message are changed. Other additional attributes linked to
the object in the CID, but not found in the message, are not changed.

! The doSetAddInfo message contains modifications to the additional attributes of
some of the extendable objects (to get the list, refer to section <setaddinfos> in the
DoSetAddInfo message, in the SmartLink (ISF) schema reference).
Although you can use this message to set additional attributes values of customer
data objects, it is recommended to use the standard messages for
creating/modifying them (DoAddContract, DoModifyContract�)

This message is particularly useful if you need to modify additional attributes values
of �Business Reference� objects (Service�), based on specific events at the back-
end side.

Ex: you can update the remaining numbers of handsets (additional attribute of
�handset� service) from the DoAddService message.

! If you need the previous feature, but in the same transaction as the treatment of a
standard inbound message:
The inbound messages come with a special section (<setaddinfos> section) that
deals with the additional attributes of some of the extendable objects (to get the list,
refer to section <setaddinfos> in any DO message, in the SmartLink (ISF) schema
reference). This dedicated section manages updating additional attributes of the
object.

The additional attributes in this section must not be related to the other objects
being modified. This feature allows you to update additional attributes of unrelated
objects when your application requires an update in a single transaction.

Setting Values of Objects Being Created or Modified
You can set the additional attribute values of objects being created.

Depending on how you are creating the object, you use:

! Standard methods
! ActionItemIF methods

These methods are for setting attributes of objects in shopping carts.

52 Developing Telco Service Manager (TSM)

To set additional information of an object being created

1 Get the additional attributes of the object. These additional attributes are stored in a
ParameterIF[] array.

Refer to To get the extended object definition.

2 Set the values for each additional attribute in this array.

Refer to the BLM Reference Documentation for information about setting the values
of ValueChoiceIF, ValueCompositeIF, ValueDynamicIF, ValueListIF,
ValueSimpleIF.

3 Pass this array as the optParams parameter of the method creating the object.

For example, the method for creating a contract:
LevelIF.createContract(... optParams,...)

To set additional information of an object being modified

1 Get the additional attributes of the object. These additional attributes are stored in a
ParameterIF[] array.

Refer to To get the extended object definition.

2 Set the values for each additional attribute in this array.

Refer to the BLM Reference Documentation for information about setting the values
of ValueChoiceIF, ValueCompositeIF, ValueDynamicIF, ValueListIF,
ValueSimpleIF.

3 Pass this array as the optParams parameter of the method modifying the object.

For example, the method for modifying a contract:
ContractF.modifyContract(... optParams,...)

To set additional information in a shopping cart

1 Use the ActionItemIF.getOptParameters() method to get the values of the
additional attributes. These additional attributes are stored in a ParameterIF[]
array.

2 Set the values for each additional attribute in this array.

Refer to the BLM Reference Documentation for information about setting the values
of ValueChoiceIF, ValueCompositeIF, ValueDynamicIF, ValueListIF,
ValueSimpleIF.

! Set the optional parameters by passing this array as the optParams parameter of
the ActionItemIF.setOptParameters(ParameterIF[] optParams)
method.

C H A P T E R 3

Working with Search Features

In This Section

About Using the Search Feature... 54
Configuring Search Filters... 83
Creating Search Filters ... 87
Writing a Search JSP .. 109

54 Developing Telco Service Manager (TSM)

About Using the Search Feature
You can use the powerful search feature to find the information you are looking for
easily and quickly.

This feature uses a set of specific APIs to program the search and display of results.
There is also a large set of predefined search filters that let you specify the criteria to
use and their default values.

This section covers the technical details of the search feature and the different APIs
and filters you use to build search pages for your application. The example covers a
simple JSP search page with features such as dynamic and hidden criteria and limiting
the number of results returned. This document also covers modifying search filters.

About the BLM Methods
When creating searches, you use the following types of methods:

! findBy<attributes> You use this type of API for simple searches when you
know the attribute to use as a filter or when search filters are too complicated to
implement. For example, you can use the findRatePlansByCode method to
quickly return a list of rate plans having a specific code pattern. You cannot
customize the behavior of this type of search.

! find<object>ByFilter You use these methods to create multiple criteria
searches for specific objects. For example, you can use the
findRatePlansByFilter(filter) method to use the RatePlanFilter with
the following search criteria:
! Contract Level type

! Contract Type

! Rate plans for contracts only

! Line Type

! Offer Type

! Organization Type

! Scoring Value

 Working with Search Features 55

You cannot customize the behavior of this type of search.
! <object>.search You use this method to create powerful search features. For

example, if you need to search members in an organization or use additional
information as search criteria. To customize these searches, you create new search
filters.

These methods return arrays of objects found matching the given search criteria. You
can also use the search feature to limit the number of objects returned. This means
that once the search returns the specified number of objects, you can warn users that
the limit has been reached and that they should refine their search.

 56

About Search Filters
There is a set of predefined search filters you can use to search and find specific
objects. These filters allow you to dynamically determine the criteria of a search. Filters
also help ease the development of search pages or other search features found in the
presentation layer.

You can specify default filters for the following objects:

! Organization
! Level
! Member
! Contract
! Billing Account
! User Event
! Persistent Action Manager
! Request
! Service
! Job

Filters are located in the SEARCH_FILTER table in the CID. Filters have the following
settings:

! Maximum number of objects to return
! IS_DEFAULT to specify if the filter is the default for the object type
! START_DATE of the filter
! END_DATE of the filter
! One or more filter criteria

 Working with Search Features 57

About Filter Criteria
A filter is made up of one or more filter criteria. These criteria are parameters. This
means you can manage search criteria the same way you manage other parameters.

The following basic types of criteria:

! Normal criteria associated with simple parameters(integer, string, and so on) or
choice parameters

! Dynamic criteria associated with dynamic parameters.

Search criteria can be displayed for user input or hidden. Hidden criteria are not
displayed but are required for the search. For example, your JSP may enter the user's
level when searching for contracts by level. Users are not required to enter their own
level, but the level is required by the filter.

Filter criteria are located in the SEARCH_CRITERIA table.

Filter criteria have the following settings you can modify:

! IS_ACTIVE to specify if the criteria is active
! IS_MANDATORY to specify if the criteria is mandatory
! DEFAULT_VALUE to specify the default value
! DISPLAY_ORDER to specify the display order

58 Developing Telco Service Manager (TSM)

Available Filters and Criteria

Filter Criteria
CODE TYPE NAME DESCRIPTION PARAMETER

VALUE MIN-MAX

CORE_C_REFNUMBER String Reference
number

Customer reference
number

0-100

CORE_C_LCONTACTFNAME String First name Legal contact first name 0-40

CORE_C_LCONTACTLNAME String Last name Legal contact last name 0-40

CORE_C_LCOMPANYNAME String Company name Legal contact company
name

0-50

CORE_C_LSTREETNUMBER String Street number Legal contact street
number

0-10

CORE_C_LSTREETADDRESS String Street Address Legal contact street
address

0-70

CORE_C_LZIP_CODE String Zip code Legal contact Zip Code 0-15

CORE_C_LCITY String City Legal contact city name 0-40

CORE_C_LSTATE String State Legal contact state
name

0-25

CORE_C_SCOREVALUEMIN Integer Scoring value
min

Scoring value Min 0-

CORE_C_SCOREVALUEMAX Integer Scoring value
max

Scoring value Max 0-

 CORE_C_LINENUMBER String Line number Contract line number 0-50

CORE_C_ORGTYPE Dynamic Organization
type

Organization type 0-

CORE_C_ORGID Dynamic Organization Organization id 0-1

CORE_C_CONTRACTTYPE Dynamic Contract type Contract type id 0-

 Working with Search Features 59

CORE_C_CONTRACTRP Dynamic Contract rate
plans

Contract rate plans 0-10

CORE_C_CONTRACTSRV Dynamic Contract
services

Contract services 0-10

CORE_C_CONTRACTSTATUS Dynamic Contract
statuses

Contract statuses 0-

CORE_C_SEARCHINSUBLEVELS Boolean All levels below Search in all sub levels
below the current one

--

CORE_C_LOGIN String Login Login 0-50

CORE_C_ROLES Dynamic Roles Roles 0-

CORE_C_PAYMENTMETH Dynamic Payment
method

Payment method

CORE_C_LLEVELNAME String Level name Legal level name 0-50

CORE_C_PAMGENERERATEDBY Dynamic Generated by User who created the
persistent action
manager

0-1

CORE_C_PAMCATEGORY Dynamic Persistent
Action Manager
Category

Persistent Action
Manager Category

0-

CORE_C_CONTRACTSID Dynamic Contracts list List of contract ids 0-

CORE_C_UEVTTYPECATEGORY Dynamic User event type
category

List of user event type
category codes

0-

CORE_C_UEVTDATEMIN Date User event date
min

User event min date 0-1

CORE_C_UEVTDATEMAX Date User event date
max

User event max date 0-1

CORE_C_UEVTCREATEDOBJECTID Dynamic User event
created Object

User events created
object ID

0-1

CORE_C_UEVTCREATEDOBJECTTYPEID Dynamic User event
created Object
type

User events created
object type ID

0-1

CORE_C_UEVTIMPACTEDOBJECTID Dynamic User event
impacted object

User event impacted
object ID

0-1

CORE_C_UEVTIMPACTEDOBJECTTYPEID Dynamic User event
impacted object
type

User event impacted
object type ID

0-1

CORE_C_UEVTCREATEDOBJECTTYPEIDTOFILTER Dynamic User event
created object
type id to filter

User event created
object type id to filter

0-

60 Developing Telco Service Manager (TSM)

CORE_C_APPROVALMEMBERID Dynamic Member
approver

Approval member
approver

CORE_C_APPROVALREFERENCE String Approval
reference

Approval reference 0-255

CORE_C_INVOICENUMBER String Invoice Name Invoice name 0-100

CORE_C_BILLPERIODIDS Dynamic Bill period list List of bill period IDs 0-

 CORE_C_CONTRACTID Dynamic Contract Contract ID 0-1

CORE_C_INVOICEID Dynamic Invoice Invoice ID 0-1

CORE_C_ORGVIEWNODEID Dynamic Organizationvie
w ID

Organization view 0-1

CORE_C_SEARCHINSUBORGVIEWLEVELS Boolean All levels below Search in all sub
organization view levels
below the current one

CORE_C_MEMBERID Dynamic Member ID Member 0-1

CORE_C_REQUESTDATEMIN Date Request date
min

Minimum request
creation date

CORE_C_REQUESTDATEMAX Date Request date
max

Maximum request
creation date

CORE_C_REQUESTSTATUS Dynamic Request
statuses

Request statuses 0-

CORE_C_JOBTYPE String Job type Job type code 0-255

CORE_C_JOBSERVICECODE String Job service
code

Job service code 0-255

CORE_C_JOBCREATORID Dynamic Job creator User id of the job creator 0-1

CORE_C_JOBSTATUS Dynamic Job status Job status 0-5

CORE_C_JOBSTATUSCODE Integer Job status code Job status code

CORE_C_JOBCREATIONDATEMIN Date Job creation
date min

Minimum job creation
date

 Working with Search Features 61

CORE_C_JOBCREATIONDATEMAX Date Job creation
date max

Maximum job creation
date

CORE_C_JOBISREAD Boolean Is job read Is job read

CORE_C_JOBISDELETED Boolean is job deleted Is job deleted

CORE_C_JOBNAME String Job name Job name 1-255

CORE_C_JOBSTATUSCHANGEDATEMIN Date-time Job status
change date
min

Minimum Job status
change date

CORE_C_JOBSTATUSCHANGEDATEMAX date-time Job status
change date
max

Maximum Job status
change date

Bill Period Filters

All Bill Periods of Organization Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTERORG_BILLPERIOD Bill Periods Search bill
periods
associated with
invoices below
an organization
or level

1 50 -Bill Cycle ID

-Start Date

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_SEARCHINSUBLEVELS 1 1 -1 Equal TRUE

62 Developing Telco Service Manager (TSM)

Billing Account Filters

All Billing Accounts By Payment Method Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_ BACCOUNTBYPAYMETH Billing
accounts by
payment
method

Search billing
account by their
payment method
in all
organizations

0 20

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGTYPE 1 0 1 In None

CORE_C_PAYMENTMETH 1 0 2 In None

Billing Accounts By Payment Method in Organization Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_ BACCOUNTBYPAYMETH Billing
accounts by
payment
method

Search billing
account by their
payment method
in all
organizations

0 20

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 0 1 In None

CORE_C_PAYMENTMETH 1 0 2 In None

CORE_C_SEARCHINSUBLEVELS 1 1 -1 Equal TRUE

 Working with Search Features 63

Bulk Ordering Filters

Modifiable Contracted Services by Contracts Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_SERVICEMODIFIABLE Modifiable
contracted
services by
contracts

Search
modifiable
services
contracted in a
list of contracts

0 30

 Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_CONTRACTSID 1 1 1 In None

Modifiable Contracted Services by Organization Contracts Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_SERVICEMODIFIABLE Modifiable
contracted
services by
organization
contracts

Search
modifiable
services
contracted in a
contracts below
an organization
or level

0 30

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_SEARCHINSUBLEVELS 1 1 -1 Equal None

64 Developing Telco Service Manager (TSM)

Removable Contracted Services by Contracts Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_SERVICEREMOVABLE Removable
contracted
services by
contracts

Search
removable
services
contracted in a
list of contracts

0 30

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_CONTRACTSID 1 1 -1 In None

Removable Contracted Cervices by Organization Contracts Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_SERVICEREMOVABLE Removable
contracted
services by
organization
contracts

Search
removable
services
contracted in a
contracts below
an organization
or level

0 30

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_SEARCHINSUBLEVELS 1 0 2 Equal None

 Working with Search Features 65

Contract Filters

Contract By Line Number Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_CONTRACTBYLINENUMBER Contract by
line number Search

contracts by
their line number
in all
organizations

0 1

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_LINENUMBER 1 1 1 Equal None

CORE_C_SEARCHINSUBLEVELS 1 1 -1 Equal None

Contract By Line Number in Organization Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_CONTRACTBYLINENUMBER Contract by
line number
in
Organization
filter

Search
contracts by
their line number
in a specific
company or
level

0 1

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_LINENUMBER 1 1 1 Equal None

 CORE_C_SEARCHINSUBLEVELS 1 1 -1 Equal TRUE

66 Developing Telco Service Manager (TSM)

Managed Contracts Advanced Search Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_MANAGEDBY_CONTRACTADVANCEDSEARCH Managed
Contracts
advanced
search

Search
contracts
managed by a
specific user by
contract type,
status, rate
plans, services

0 20 - Line Number

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_MEMBERID 1 1 -1 Equal None

CORE_C_CONTRACTTYPE 1 0 1 in None

CORE_C_CONTRACTRP 1 0 2 in None

CORE_C_CONTRACTSRV 1 0 3 in None

CORE_C_CONTRACTSTATUS 1 0 4 in None

Contracts Advanced Search Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_CONTRACTADVANCEDSEARCH Contract
advanced
search

Search
contracts by
contract type,
rate plans,
services in a
specific
company or
level

0 20 -Level
- Line Number

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_CONTRACTTYPE 1 0 1 in None

CORE_C_CONTRACTRP 1 0 2 in None

CORE_C_CONTRACTSP 1 0 3 in None

CORE_C_CONTRACTSTATUS 1 0 4 in None

CORE_C_SEARCHINSLEVELS 1 1 5 Equal TRUE

 Working with Search Features 67

Billing Accounts by Payment Method in Organization Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORGVIEW_CONTRACTBYLINENUMBER Contracts in
organization
view by line
number

Search
contracts in a
specific
organization
view by
contracts line
number

0 1 - Line Number

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGVIEWNODEID 1 1 -1 Equal None

CORE_C_LINENUMBER 1 1 1 Equal None

CORE_C_SEARCHINSUBORGVIEWLEVELS 1 1 2 Equal TRUE

Contracts in Organization View Advanced Search Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORGVIEW_CONTRACTADVANCEDSEARCH Contracts in
organization
view
advanced
search

Search
contracts in a
specific
organization
view by contract
type, status, rate
plans, services

0 20 - Line Number

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGVIEWNODEID 1 1 -1 Equal None

CORE_C_CONTRACTTYPE 1 0 1 in None

CORE_C_CONTRACTRP 1 0 2 in None

CORE_C_CONTRACTSRV 1 0 3 in None

CORE_C_CONTRACTSTATUS 1 0 4 in None

CORE_C_SEARCHINSUBORGVIEWLEVELS 1 1 5 Equal TRUE

68 Developing Telco Service Manager (TSM)

Managed Contracts By Line Number Search Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_MANAGEDBY_CONTRACTBYLINENUMBER Managed
Contracts by
line number

Search
contracts
managed by a
specific user by
contract line
number

0 1 - Line Number

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_MEMBERID 1 1 -1 Equal None

CORE_C_LINENUMBER 1 1 1 Equal None

Invoice Filters

Invoice By Number Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INVOICEBYNUMBER Invoice by
number Search invoice

by its number 0 1

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_INVOICENUMBER 1 1 1 Equal None

 Working with Search Features 69

Invoice By Bill Period Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_INVOICEBYBILLPERIOD Invoice by bill
period Search invoices

by bill period in
a specific
organization or
level

0 20 -MainInvoice
creation date
desc

-Billing account
ID

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

 CORE_C_ORGID 1 1 -1 Equal None

CORE_C_SEARCHINSUBLEVELS 1 1 -1 Equal TRUE

CORE_C_BILLPERIODIDS 1 0 1 in None

70 Developing Telco Service Manager (TSM)

Job Filters

Report By User Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTERORG_MYREPORTJOBSEARCH My Report
Jobs general
search

Search report
jobs created by
the current user
using the main
attributes of the
job

N 50 Descending by
creation date

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_JOBTYPE 1 1 -1 Equal REPORT_PROCESSOR

CORE_C_ORGID 1 1 -1 Equal

CORE_C_CREATORID 1 1 -1 Equal

CORE_C_JOBSTATUS 1 0 1 In

CORE_C_JOBNAME 1 0 2 Like

CORE_C_JOBCREATIONDATEMIN 1 0 3 >

CORE_C_JOBCREATIONDATEMAX 1 0 4 <=

CORE_C_JOBISREAD 1 0 5 Equal

CORE_C_JOBISDELETED 1 1 -1 Equal False

 Working with Search Features 71

Report Result By User Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTERORG_MYREPORTRESULTSEARCH My Report
Jobs general
search

Search the
result of report
jobs created by
the current user
using the main
attributes of the
job

N 50 Descending by
last status
change date

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_JOBTYPE 1 1 -1 Equal REPORT_PROCESSOR

CORE_C_ORGID 1 1 -1 Equal

CORE_C_CREATORID 1 1 -1 Equal

CORE_C_JOBSTATUSCODE 1 0 -1 Equal DONE

CORE_C_JOBNAME 1 0 1 Like

CORE_C_JOBCREATIONDATEMIN 1 0 2 >

CORE_C_JOBCREATIONDATEMAX 1 0 3 <=

CORE_C_LASTSTAUSCHANGEDDATEJOBCREATIONDAT
EMIN

1 0 4 >

CORE_C_LASTSTAUSCHANGEDDATEJOBCREATIONDAT
EMAX

1 0 5 <=

CORE_C_JOBISREAD 1 0 6 Equal

CORE_C_JOBISDELETED 1 1 -1 Equal False

72 Developing Telco Service Manager (TSM)

Unread Report Results by User Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTERORG_MYREPORTRESULTNOTREAD My Report
Jobs general
search

Search report
results of the
current user
which have not
been read using
the main
attributes of the
job

N 100

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_JOBTYPE 1 1 -1 Equal REPORT_PROCESSOR

CORE_C_ORGID 1 1 -1 Equal

CORE_C_CREATORID 1 1 -1 Equal

CORE_C_JOBSTATUSCODE 1 1 -1 Equal DONE

CORE_C_JOBISREAD 1 0 -1 Equal False

CORE_C_JOBISDELETED 1 1 -1 Equal False

 Working with Search Features 73

Level Filters

Level By Contact Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_ LEVELBYCONTACT Level by
contact Search levels by

their legal
contact in a
specified
organization or
level

0 20 - Level
- Name

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_REFNUMBER 1 1 1 Like None

CORE_C_ISRECURSIVE (Case insensitive) 1 1 -1 Equal TRUE

Level By Reference Number

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_ LEVELBYREFNUMBER Level by
reference
number

Search levels by
their legal
contact in a
specified
organization or
level

0 20 - Level
- Name

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_REFNUMNUMBER 1 1 -1 Equal None

CORE_C_SEARCHINSLEVELS (Case insensitive) 1 1 1 Equal TRUE

74 Developing Telco Service Manager (TSM)

Member Filters

Members By Contact Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_MEMBERBYCONTRACT 0 20 - Last Name
- First Name Members by

contact Search
members by
their legal
contact in all
organizations

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGTYPED 1 0 1 In None

CORE_C_LCONTACTLNAME (case insensitive) 1 1 2 Like None

CORE_C_LCONTACTFNAME (case insensitive) 1 0 3 Like None

Members By Login Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_MEMBERBYLOGIN Member by
login Search

members by
their login in all
organizations

0 1

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_LOGIN (case insensitive) 1 1 1 Equal None

 Working with Search Features 75

Member By Contact in Organization Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_ MEMBERBYCONTACT Member by
contact Search

members by
their legal
contact in a
specified
organization or
level

0 20 - Level
- Last Name
- First Name

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_LCONTACTLNAME (case insensitive) 1 1 1 Like None

CORE_C_LCONTACTFNAME (case insensitive) 1 0 2 Like TRUE

CORE_C_SEARCHINSUBLEVELS 1 0 -1 Equal TRUE

Member by Login in Organization Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_ MEMBERBYLOGIN Member by
login Search

members by
their login in a
specified
organization or
level

0 20 - Login

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_LOGIN 1 1 1 Equal None

CORE_C_SEARCHINSLEVELS 1 1 -1 Equal TRUE

76 Developing Telco Service Manager (TSM)

Member by Role in Organization Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_INTORG_ MEMBERBYROLES Member by
roles Search

members by
their roles in a
specified
organization or
level

0 20 - Level
- Last Name
- First Name

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGID 1 1 -1 Equal None

CORE_C_ROLES 1 1 1 in None

CORE_C_SEARCHINSLEVELS 1 1 2 Equal TRUE

Organization Filters

Organization By Reference Number Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_ORGBYREFNUMBER Organization
by reference
number

Search
organizations by
their reference
number

0 1

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_REFNUMBER (Case insensitive) 1 1 1 Equal None

 Working with Search Features 77

Company By Contact Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_BUORGBYCONTACT Company by
contact Search

companies by
their legal
contact
attributes

0 20 - Company
name

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_ORGTYPE 1 1 -1 In None

CORE_C_LCOMPANYNAME (cace insensitive) 1 1 1 Like None

CORE_C_LSTREETNUMBER (cace insensitive) 0 0 2 Equal None

CORE_C_LSTREETADDRESS (cace insensitive) 0 0 3 Like None

CORE_C_LZIPCODE (cace insensitive) 0 0 4 Like None

CORE_C_LCITY (cace insensitive) 0 0 5 Like None

CORE_C_LSTATE (cace insensitive) 0 0 6 Like None

CORE_C_SCOREVALUEMIN 0 0 7 > None

CORE_C_SCOREVALUEMAX 0 0 8 < None

78 Developing Telco Service Manager (TSM)

Consumer By Contact Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_RESORGBYCONTACT Consumer by
contact Search

consumers by
their legal
contact
attributes

0 20 - Last Name

- First
Name

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_LCONTACTLNAME (cace insensitive) 1 1 -1 Like None

CORE_C_LCONTACTFNAME (cace insensitive) 1 0 2 Like None

CORE_C_LSTREETNUMBER (cace insensitive) 0 0 3 Equal None

CORE_C_LSTREETADDRESS (cace insensitive) 0 0 4 Like None

CORE_C_LZIPCODE (cace insensitive) 0 0 5 Like None

CORE_C_LCITY (cace insensitive) 0 0 6 Like None

CORE_C_LSTATE (cace insensitive) 0 0 7 Like None

CORE_C_SCOREVALUEMIN 0 0 8 > None

CORE_C_SCOREVALUEMAX 0 0 9 < None

Customer By Line Number Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_ORGBYLINENUMBER Customer by
line number Search

customer by
their contract
line number

0 1

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_LINENUMBER 1 1 1 Equal None

CORE_C_SEARCHINSUBLEVELS 1 1 -1 Equal True

 Working with Search Features 79

Order Validation Filters

Requests By Approval Member Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_REQUESTBYAPPROVALMEMBER Request by
approval
member

Search request
having an
approval
process to
approve for a
specific member

0 1-10 -Request
date (oldest date
first)

 Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_APPROVALMEMBERID 1 1 -1 Equal None

Requests By Approval Reference Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_REQUESTBYAPPROVALREFERENCE Request by
approval
reference

Search request
having an
approval
process to
approve for a
specific
reference

0 1-10 - Request
date (oldest date
first)

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_APPROVALREFERENCE 1 1 -1 Equal None

80 Developing Telco Service Manager (TSM)

Persistent Action Manager Filters

Persistent Action Manager By Category Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_PAMBYCATEGORY Action
manager by
category

Search action
manager by
category

1 1 - Name

- Date

 Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_PAMGENERERATEDBY 1 1 -1 Equal None

 CORE_C_PAMCATEGORY 1 1 -1 In

Request Filters

Requests Impacting Managed Contracts Search

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_REQUESTSIMPACTINGMANAGEDCONTRACTS

Requests
impacting
managed
contracts
search

Search requests
impacting
explicitly
managed
contracts

0 1-10 - Request
creation date
(asc)

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_MEMBERID 1 1 -1 Equal None

CORE_C_REQUESTDATEMIN 1 1 -1 >= None

CORE_C_REQUESTDATEMAX 1 0 2 <= None

CORE_C_REQUESTSTATUS 1 0 3 In None

 Working with Search Features 81

Subinvoice Filters

Subinvoice By Contract Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_SUBINVOICE_BYCONTRACT Subinvoice
by contract Search sub-

invoices related
to a specific
contract

0 20 - Main Invoice

- Creation Date

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_CONTRACTID 1 1 -1 Equal None

CORE_C_INVOICEID 1 0 -1 Equal None

82 Developing Telco Service Manager (TSM)

User Event Filters

User Events By Object Filter

Filter Properties
FILTER CODE NAME DESCRIPTION DEFAULT ROW ORDER

CORE_UEVTSBYIMPACTEDORCREATEDOBJECT User events
by impacted
or created
object

Search user
events
impacting or
creating an
object of a
business
organization

0 50 - Creation Date

Filter Criteria
PARAMETER CODE A M O OPERATOR DEFAULT VALUE

CORE_C_UEVTIMPACTEDOBJECTTYPEID 1 0 -1 Equal None

CORE_C_UEVTIMPACTEDOBJECTID 1 0 -1 Equal None

CORE_C_UEVTCREATEDOBJECTTYPEID 1 0 -1 Equal None

CORE_C_UEVTCREATEDOBJECTID 1 0 -1 Equal None

CORE_C_UEVTTYPECATEGORY 1 0 -1 In None

CORE_C_UEVTDATEMIN 1 0 1 < None

CORE_C_UEVTDATEMAX 0 0 2 > None

CORE_C_UEVTCREATEDOBJECTTYPEIDTOFILTER 1 0 -1 Not In

CORE_C_UEVTCREATEDOBJECTTYPEIDTOFILTER can be used to search all user
events impacting a level without the ones creating a contract, a member or a sublevel

 Working with Search Features 83

Configuring Search Filters
You can configure the properties of search filters.

For each filter, you can:

! Declare the filter as the default filter
! Specify the maximum number of items returned
! Specify the following criteria parameter properties for each filter:
! Active

! Mandatory

! Display order

! Default value

For each Criteria Parameter, you can specify:

! The Min Max value of the parameter

Customizing Filters

To declare the filter as default

1 Use your database tool to connect to the CID.

2 In the SEARCH_FILTER table, find the search filter you want to modify.

3 In the IS_DEFAULT column, enter 1 to declare the filter as the default.

4 Set the other values in the IS_DEFAULT column to 0. This is only for filters on the
same type of object.

5 Save your changes.

To set the number of items returned

1 Use your database tool to connect to the CID.

2 In the SEARCH_FILTER table, find the search filter you want to modify.

3 In the ROW_COUNT column, enter the maximum number of items to return.

4 Save your changes.

To activate a filter criteria parameter

1 Use your database tool to connect to the CID.

2 In the SEARCH_CRITERIA table, find the criteria parameter you want to modify.

84 Developing Telco Service Manager (TSM)

3 In the IS_ACTIVE column, enter the one of the following:

! 1 to activate the criteria parameter

! 0 to deactivate the criteria parameter

4 Save your changes.

To declare the criteria as mandatory

1 Use your database tool to connect to the CID.

2 In the SEARCH_CRITERIA table, find the criteria parameter you want to modify.

3 In the IS_MANDATORY column, enter the one of the following:

! 1 to make the criteria parameter mandatory

! 0 to make the criteria parameter optional

4 Save your changes.

To set the display order of the filter criteria

1 Use your database tool to connect to the CID.

2 In the SEARCH_CRITERIA table, find the criteria of the filter.

3 For each criteria, do the following:

! Enter the numbers corresponding to the order the criteria are displayed

! Enter -1 to specify the criteria as a hidden system parameter

4 Save your changes.

To set the default value of the filter criteria

1 Use your database tool to connect to the CID.

2 In the SEARCH_CRITERIA table, find the criterion of the filter.

3 In the DEFAULT_ID_VALUE column, enter the ID of the default object value.

4 Save your changes.

Customizing Criteria
Filter Criteria are parameters. Like all parameters, filter criteria have different settings
you can change. For search criteria, you can change the minimum and maximum value
of the criteria parameter.

The Search Criteria parameters are in the FILTER_CRITERIA table.

 Working with Search Features 85

To customize a criterion

1 Use your database tool to connect to the CID.

2 In the PARAMETER table, find the criteria parameter you want to modify.

3 In the PARAM_MIN column, enter the minimum number of values.

4 In the PARAM_MAX column, enter the maximum number of values

5 Save your changes.

C H A P T E R 4

Creating Search Filters

In This Section

About Search Filters.. 88
About Filter Criteria ... 89
Overview of Creating Search Filters.. 91
Optimizing Oracle Databases For Searches 92
Declaring the New Filter in the CID... 94
Declaring the New Search Method in the DAL........................ 98
Writing the New Query .. 105

 88

About Search Filters
There is a set of predefined search filters you can use to search and find specific
objects. These filters allow you to dynamically determine the criteria of a search. Filters
also help ease the development of search pages or other search features found in the
presentation layer.

Filters are located in the SEARCH_FILTER table in the CID.

Filters have the following settings you can modify:

! Maximum number of objects to return
! IS_DEFAULT to specify if the filter is the default for the object type
! START_DATE of the filter
! END_DATE of the filter
! One or more filter criteria

 89

About Filter Criteria
A filter criterion is a parameter with the following characteristics:

! IS_ACTIVE Flag: specifies if the criteria must be used (allows customization
without modifying the query)

! IS_MANDATORY flag: specifies if the criteria must be filled
! DISPLAY_ORDER: specifies the order to display criteria
! DEFAULT_VALUE: specifies the default value of the criteria
! DAL_PARAMETER_NAME: specifies the DAL parameter for mapping.

You must first declare you criteria as parameter.

For more information about declaring new parameters, refer to the CID Reference
Guide.

Dynamic Criteria

If you want to use a criterion for which the value is depending on a reference table or
on the user context, you must declare a dynamic parameter and set its value
specifically in the JSP (example: contract statuses if you want to perform a search by
contract status)

You can also use the core criteria if they match your requirements. The names of the
parameters used as criteria in core filters begin with CORE_C.

Special Criteria

You can also use special criteria in your filters. These special criteria are for filters of
objects that can be part of a hierarchy. For instance, you can use the organization id as
a filter criterion for a level. You then use another criteria to specify if search also
applies to the sublevels of the level. Because of this, these special criteria come in
pairs and are used together.

The organization id criteria pair:

! CORE_C_ORGID: Use this dynamic criterion to search below a specific organization
or level. In the JSP, you set the value of this criterion using the organization id or
the level id.

! CORE_C_SEARCHINSUBLEVELS: Use this criterion to specify if the search must be
done only inside or in all sub levels of the organization (or level) specified in the
CORE_C_ORGID criteria.

The organization view criteria pair:

90 Developing Telco Service Manager (TSM)

! CORE_C_ORGVIEWNODEID: Use this dynamic criteria to search below a specific
organization view node. In the JSP, you set the value of this criterion using the
organization view node id.

! CORE_C_SEARCHINSUBORGVIEWLEVELS: Use this criterion to specify if the search
must be done only inside or in all sub organization view levels of the organization
view node specified in the CORE_C_ORGVIEWNODEID criteria.

When working with these special criteria, you must use them together. For instance,
when creating a filter for organization ids, you use the CORE_C_ORGID and
CORE_C_SEARCHINSUBLEVELS criteria together.

 91

Overview of Creating Search Filters
Creating a search filter involves:

! Optimizing your database for searches
! Declaring the new filter in the CID
! Declaring the new DAL search method
! Writing and declaring the new query to perform the search

The examples show you how to create a search function to find contracts by their SIM
card number.

For Oracle, make sure your database is configured to use function based indexes. This
helps optimize the response time of your searches. For more information, refer to
Installing Telco Service & Analytics Manager Applications.

 92

Optimizing Oracle Databases For
Searches

Using the search feature with filter criteria may have a serious impact on your
application performance.

The CID database model comes with indexes on some database columns, but not on
all of them. Because indexes consume a lot of system resources, only data that is
accessed by the application is indexed. When creating search filters and searching
information in the CID, this lack of some indexes may cause unsatisfactory response
times.

In order to improve response time, we strongly recommend defining indexes on the
database column your filter criteria is based on.

With Oracle databases, you may have a problem creating indexes on columns that
contain string values.

In the CID database model, string values are handled as VARCHAR2(4000), but
Oracle databases do not support creating indexes on VARCHAR2(4000) data. The
maximum size the Oracle database indexes support (around 3000) is smaller that the
maximum size for VARCHAR2. The exact maximum supported size for indexing
depends on your Oracle instance and system.

For more information about Oracle and indexing, refer to your Oracle documentation.

To create indexes for searches

1 Make sure the column to index does not contain any data.

This change must be done while designing your application and before you load
any application or customer data.

2 Define the maximum length of your string data.

3 Connect to the CID database model as the database schema owner.

4 Use the ALTER TABLE SQL statement to modify the column definition. Use the
syntax:

 Working with Search Features 93

ALTER TABLE <table> MODIFY <column> VARCHAR2(2000);

Example:

For the CONTRACT_ADD_INFO_VALUE table, the syntax is:

ALTER TABLE CONTRACT_ADD_INFO_VALUE MODIFY VALUE_STRING
VARCHAR2(1000);

 94

Declaring the New Filter in the CID
Declaring the new filter in the CID involves:

! Inserting the filter information in the SEARCH_FILTER table
! Declaring the associated search criteria in the SEARCH_CRITERIA table

To declare the filter object

1 Use your database tool to connect to the CID.

2 In the SEARCH_FILTER table, add a record corresponding to your new filter.

 Working with Search Features 95

COLUMN NAME CONTENT NOTES

SEARCH_FILTER_ID ID of the new filter Must be equal to or greater than
1000. IDs smaller than this are
reserved.

SEARCH_FILTER_CODE Code of the filter you use when
programming JSPs.

Every default system filter begins
with CORE_. Do not use this
reserved prefix.

OBJECT_TYPE_ID Object type of the searched object One of the allowed object types.

NAME Name of the filter displayed in JSP

STRING_ID ID of the localization string to
localize the filter name

DESCRIPTION Description of the filter

DESCRIPTION_STRING_ID ID of the localization string to
localize the filter description

DAL_FUNCTION_NAME Name of the DAL accessor that will
call the query to perform the search.

IS_DEFAULT Boolean to specify if this filter will be
used as default to search this type
of object

ROW_COUNT Default maximum number of records
returned by this filter (you can
override this value in your JSPs)

START_DATE Start date of the filter

END_DATE End date of the filter

List of object types:

OBJECT TYPE ID OBJECT TYPE NAME

1 Level

3 Member

4 Contract

5 Contact

6 Invoice

7 Prepaid package

8 Billing account

96 Developing Telco Service Manager (TSM)

9 Trouble ticket

10 User

11 Persistent action manager

12 User event

13 Service

14 Request

15 Bill period

16 Contract subinvoice

17 Organization view

18 Organization view level

Example of Declaring New Filter

This example shows declaring the filter for searching contracts by SIM card number:

INSERT INTO SEARCH_FILTER

(SEARCH_FILTER_ID, SEARCH_FILTER_CODE, OBJECT_TYPE_ID, NAME, STRING_ID, DESCRIPTION, DESCRIPTION_STRING_ID,
DAL_FUNCTION_NAME, IS_DEFAULT, ROW_COUNT, START_DATE, END_DATE)

VALUES

(1000, 'CONTRACTBYSIMCARDNUMBER', 4, 'Contract by SIM card number', NULL, 'Search contract by its SIM card
number', NULL, 'contractByFilterBYSIMCARDNUMBER', 0, 1, NULL, NULL);

To declare filter criteria

1 Use your database tool to connect to the CID.

2 For each criteria of the filter, add a record to the SEARCH_CRITERIA table.

 Working with Search Features 97

COLUMN NAME VALUE

SEARCH_FILTER_ID Id of the new filter.

PARAM_ID Id of the parameter used as criteria

DAL_PARAMETER_NAME Name of the parameter used by the DAL to send the criteria value to the
query.

IS_ACTIVE Boolean to specify if the criteria is active in the filter

IS_MANDATORY Boolean to specify if the criteria is mandatory for this filter

DEFAULT_VALUE_ID Default value of the criteria

DISPLAY_ORDER Order to display the parameter. �1 if the parameter must not be set by the
user.

Example of Declaring Filter Criteria

This example shows the declaration of filter criteria for searching contracts by SIM card
number:

Declare CORE_C_ORGID
criteria

INSERT INTO SEARCH_CRITERIA (SEARCH_FILTER_ID, PARAM_ID,
DAL_PARAMETER_NAME, IS_ACTIVE, IS_MANDATORY, DEFAULT_VALUE_ID,
DISPLAY_ORDER) VALUES (1000, 158, null, 1, 1, NULL, -1);

Declare CORE_C_
SEARCHINSUBLEVELS
criteria

INSERT INTO SEARCH_CRITERIA (SEARCH_FILTER_ID, PARAM_ID,
DAL_PARAMETER_NAME, IS_ACTIVE, IS_MANDATORY, DEFAULT_VALUE_ID,
DISPLAY_ORDER) VALUES (1000, 163, Null, 1, 1, 1, 2);

Declare simCardNumber
criteria

INSERT INTO SEARCH_CRITERIA (SEARCH_FILTER_ID, PARAM_ID,
DAL_PARAMETER_NAME, IS_ACTIVE, IS_MANDATORY, DEFAULT_VALUE_ID,
DISPLAY_ORDER) VALUES (1000, 1006, 'simCardNumber', 1, 1, NULL, 1);

 98

Declaring the New Search Method in
the DAL

Declare the new search method in the DAL involves:

! Declaring a new DAL internal function to call the query
! Declaring a new DAL accessor to access the new DAL internal function

To declare the new DAL internal function

1 Go to <home_dir>/classes/nmycfg/dal.

2 Open core_containers.xml.

3 Find the ROOT element (<ROOT name="root" internal_name="root"
type="DalContainer::DalObject">)

4 Under the <internal_functions> element, add the following element. Use the
syntax:

 Working with Search Features 99

<Internal function name

query="SearchObjectName.queryName(

parameter/DAL Parameter name 1,

parameter/DAL Parameter name 2,

parameter/HIERARCHY_LEVELS,

parameter/SCOPEMEMBER_MEMBERID,

parameter/SCOPEEXPLICIT_MEMBERID,

parameter/SCOPEHIERARCHY_LEVELS,

parameter/SCOPEEXTERNALORG_ORGANIZATIONID,

parameter/SCOPEEXTERNALORG_ORGTYPES,

parameter/SCOPEORGANIZATIONMANAGED_ORGANIZATIONID,

parameter/SCOPEORGANIZATIONMANAGED_ORGTYPES,

parameter/SCOPELEVELMANAGED_LEVELID,

parameter/SCOPELEVELMANAGED_ORGTYPES,

parameter/SCOPEMEMBERMANAGED_MEMBERID,

parameter/SCOPEMEMBERMANAGED_ORGTYPES,

parameter/ROWCOUNT)">

 <parameters>

< DAL Parameter name 1 internal_name="" type="Parameter type" null="true" internal_function=""/>

< DAL Parameter name 2 internal_name="" type="Parameter type" null="true" internal_function=""/>

<HIERARCHY_LEVELS internal_name="" type="ObjectId[]/ORGANIZATION" null="true" internal_function=""/>

<SCOPEMEMBER_MEMBERID internal_name="" type="ObjectId/MEMBER" null="true" internal_function=""/>

<SCOPEEXPLICIT_MEMBERID internal_name="" type="ObjectId/MEMBER" null="true" internal_function=""/>

<SCOPEHIERARCHY_LEVELS internal_name="" type="ObjectId[]/ORGANIZATION" null="true" internal_function=""/>

<SCOPEEXTERNALORG_ORGANIZATIONID internal_name="" type="ObjectId/ORGANIZATION" null="true"
internal_function=""/>

<SCOPEEXTERNALORG_ORGTYPES internal_name="" type="ObjectId[]/ORGANIZATIONTYPE" null="true"
internal_function=""/>

<SCOPEORGANIZATIONMANAGED_ORGANIZATIONID internal_name="" type="ObjectId/ORGANIZATION" null="true"
internal_function=""/>

<SCOPEORGANIZATIONMANAGED_ORGTYPES internal_name="" type="ObjectId[]/ORGANIZATIONTYPE" null="true"
internal_function=""/>

<SCOPELEVELMANAGED_LEVELID internal_name="" type="ObjectId/ORGANIZATION" null="true"
internal_function=""/>

<SCOPELEVELMANAGED_ORGTYPES internal_name="" type="ObjectId[]/ORGANIZATIONTYPE" null="true"
internal_function=""/>

<SCOPEMEMBERMANAGED_MEMBERID internal_name="" type="ObjectId/MEMBER" null="true" internal_function=""/>

<SCOPEMEMBERMANAGED_ORGTYPES internal_name="" type="ObjectId[]/ORGANIZATIONTYPE" null="true"
internal_function=""/>

<ROWCOUNT internal_name="" type="Long" null="true" internal_function=""/>

 </parameters>

</ Internal function name >

1 Save your changes.

100 Developing Telco Service Manager (TSM)

ELEMENT NOTES

Internal function name Name of the internal function, use a name consistent with the
goal of the function

SearchObjectName.queryName • The search object name must be the name of the object
that you want to search as declared in the DAL core
containers. Supported objects for the search are:

- billingaccount
- contract
- contract subinvoice
- invoice
- member
- organization (also used when searching levels)
- persistentactionmgr
- request
- service
- userevent

• The query name is the name of the query that will be
executed to perform the search

parameter/DAL Parameter name Name of the DAL parameter associated with every filter
criteria and declared in the parameters section. This name
must be the same as the one declared in the associated filter
criteria.

parameter/HIERARCHY_LEVELS Reserved parameter. Mandatory if you use the
CORE_C_ORGID and CORE_C_
SEARCHINSUBLEVELS criteria in your filter.

parameter/SCOPEMEMBER_MEMBERID to
parameter/SCOPEMEMBERMANAGED_ORGT
YPES

Reserved system parameters. Mandatory if you want to
apply security on your search.

To declare these parameters, you can copy the parameters
declared for the search function of the same object type.

DAL Parameter name 1 Name of the DAL parameter associated with every filter
criteria. This name must be the same as the one declared in
the associated filter criteria.

Parameter type Type of the parameter. It must be consistent with the criteria
parameter type declared in the CID. Refer to the DAL
Parameter Type Table.

The table below shows the list of supported types and the compatibility with CID
parameter types

DAL PARAMETER TYPE CID PARAMETER TYPE

String String

 Working with Search Features 101

ObjectId/ObjectName Dynamic

Long Integer

Date Date, Time and Timestamp

Float Decimal

ObjectId/CHOICEITEM Choice

 Note: if you want to use a list instead of a simple value, add brackets to the parameter
type (example Long[], ObjectId[]/ObjectName). The associated criteria parameter must
also be declared as a list. For more information, refer to PARAMETER - About this
Package in the CID Reference Guide).

102 Developing Telco Service Manager (TSM)

Example of declaring a DAL internal function

This example shows the declaration of the DAL internal function for searching
contracts by SIM card number:

<getContractByFilterBYSIMCARDNUMBER query="contract.getByFilterBYSIMCARDNUMBER(

parameter/simCardNumber,
parameter/HIERARCHY_LEVELS,
parameter/SCOPEMEMBER_MEMBERID,
parameter/SCOPEEXPLICIT_MEMBERID,
parameter/SCOPEHIERARCHY_LEVELS,
parameter/SCOPEEXTERNALORG_ORGANIZATIONID,
parameter/SCOPEEXTERNALORG_ORGTYPES,
parameter/SCOPEORGANIZATIONMANAGED_ORGANIZATIONID,
parameter/SCOPEORGANIZATIONMANAGED_ORGTYPES,
parameter/SCOPELEVELMANAGED_LEVELID,
parameter/SCOPELEVELMANAGED_ORGTYPES,
parameter/SCOPEMEMBERMANAGED_MEMBERID,
parameter/SCOPEMEMBERMANAGED_ORGTYPES,
parameter/ROWCOUNT)">
<parameters>

 <simCardNumber internal_name="" type="String" null="true" internal_function=""/>

 <HIERARCHY_LEVELS internal_name="" type="ObjectId[]/ORGANIZATION" null="true" internal_function=""/>

 <SCOPEMEMBER_MEMBERID internal_name="" type="ObjectId/MEMBER" null="true" internal_function=""/>

 <SCOPEEXPLICIT_MEMBERID internal_name="" type="ObjectId/MEMBER" null="true" internal_function=""/>

 <SCOPEHIERARCHY_LEVELS internal_name="" type="ObjectId[]/ORGANIZATION" null="true"
internal_function=""/>

 <SCOPEEXTERNALORG_ORGANIZATIONID internal_name="" type="ObjectId/ORGANIZATION" null="true"
internal_function=""/>

 <SCOPEEXTERNALORG_ORGTYPES internal_name="" type="ObjectId[]/ORGANIZATIONTYPE" null="true"
internal_function=""/>

 <SCOPEORGANIZATIONMANAGED_ORGANIZATIONID internal_name="" type="ObjectId/ORGANIZATION" null="true"
internal_function=""/>

 <SCOPEORGANIZATIONMANAGED_ORGTYPES internal_name="" type="ObjectId[]/ORGANIZATIONTYPE" null="true"
internal_function=""/>

 <SCOPELEVELMANAGED_LEVELID internal_name="" type="ObjectId/ORGANIZATION" null="true"
internal_function=""/>

 <SCOPELEVELMANAGED_ORGTYPES internal_name="" type="ObjectId[]/ORGANIZATIONTYPE" null="true"
internal_function=""/>

 <SCOPEMEMBERMANAGED_MEMBERID internal_name="" type="ObjectId/MEMBER" null="true"
internal_function=""/>

 <SCOPEMEMBERMANAGED_ORGTYPES internal_name="" type="ObjectId[]/ORGANIZATIONTYPE" null="true"
internal_function=""/>

 <ROWCOUNT internal_name="" type="Long" null="true" internal_function=""/>

 </parameters>

</getContractByFilterBYSIMCARDNUMBER>

 Working with Search Features 103

To declare the new DAL accessor

1 Go to <home_dir>/classes/nmycfg/dal

2 Open core_containers.xml.

3 Find the ROOT object (<ROOT name="root" internal_name="root"
type="DalContainer::DalObject">)

4 Under the <data_accessors> element, add the following element. Use the
syntax:
<DAL accessor name internal_name=""

type="DalContainer[]/objects.Searched Object"

null="true"

internal_function="DAL Internal function"/>

ELEMENT NOTES

DAL accessor name Name of the accessor. Use a name consistent with the
goal of the search. The name must be the same as the
one declared in the associated filter.

objects.Searched Object Supported objects:
• billingaccount

• contract

• contract subinvoice

• invoice

• member

• organization (also used when searching levels)

• persistentactionmgr

• request

• service

• userevent

DAL Internal function Name of the associated internal function declared above

104 Developing Telco Service Manager (TSM)

Example of Declaring a New DAL Accessor

This example shows the declaration of the DAL accessor for searching contracts by
SIM card number:

<contractByFilterBYSIMCARDNUMBER internal_name=""

 type="DalContainer[]/objects.CONTRACT"

null="true"

internal_function="getContractByFilterBYSIMCARDNUMBER"/>

 105

Writing the New Query
Writing the new search query involves:

! Writing the query using the DAL syntax
! Declaring the query

106 Developing Telco Service Manager (TSM)

About DAL Query Syntax

The DAL queries are preprocessed before being executed by a standard SQL engine.
The syntax of the DAL queries is very similar to standard SQL with specific behavior for
criteria evaluation and security management.

The structure of a search query is:

! SELECT
List of table columns storing searched object data (Standard SQL). The simplest
way to write this section is to copy the one provided by core search queries for the
same object

! FROM

 List of tables involved in the search (Standard SQL)

! WHERE

 Criteria Evaluation

Security Management

(ROWNUM <= NVL(?, 1000))

About Criteria Evaluation

This section is written in SQL. Every criteria value is replaced by a �?�.

At run time, the '?' is replaced with parameter values in the same order as they are
declared in the DAL internal function call to the query.

Syntax Rules:

! IGNORE IF NULL:
When a criterion is optional, it must be always considered as TRUE if its value is
NULL. In this case, you must use the following syntax:
TABLE.COLUMN_NAME [SQL logical operator ? OR IGNORE IF NULL].
At run time, if the parameter value is NULL, the condition will always be True.

 Working with Search Features 107

! IGNOREALL IF NULL:
In some cases, you may want to exclude part of the evaluation section from being
taken in account during runtime if a parameter value is null. In this case, you must
use the following syntax:
[Beginning of the section to take in account only if the parameter value is not
null�. TABLE.COLUMN_NAME [SQL logical operator ? OR IGNOREALL IF
NULL]�End of the section to take in account only if the parameter value is not null]
At run time, if the parameter value is NULL, all SQL statements between the two
brackets are ignored.

About Security Management

This section is used to apply security and only select objects that the user is authorized
to view.

You must write this section only if the searched object is protected. Use the syntax:
/******* SECURITY SCOPES MANAGEMENT ********/

(

 [C.CONTRACT_ID [IN CONTRACTSMANAGEDBY ?] /* EXPLICITSCOPE */ OR]

 [C.MEMBER_ID [=? OR IGNOREALL IF NULL] /* MEMBERSCOPE */ OR]

 [C.ORGANIZATION_ID [IN (?) OR IGNOREALL IF NULL] /* HIERARCHY SCOPES */ OR]

 (C.ORGANIZATION_ID [IN INTERORG SCOPES ?,?,?,?,?,?,?,?])

)

The simplest way to write a section on security is to copy the security section declared
in core search queries for the same object.

To declare a new query

1 Go to <home_dir>/classes/nmycfg/dal.

2 Open core_queries.xml.

3 Find the object you want to search

4 Insert the new query. Use the syntax:
 <Query name>

Query

</Query name>

Where Query name is the one you previously declared in the DAL internal function.

108 Developing Telco Service Manager (TSM)

Example of a DAL Query

This example shows the DAL query for searching contracts by SIM card number:
SELECT

C.CONTRACT_ID,

C.ORGANIZATION_ID,

C.RATEPLAN_ID,

C.CONTRACT_TYPE_ID,

C.BILLING_ACCOUNT_ID,

C.MEMBER_ID,

C.CONTRACT_PARENT_ID,

C.CONTRACT_LEVEL_TYPE,

C.CONTRACT_STATUS_ID,

C.CONTRACT_STATUS_DATE,

C.LINE_ID,

L.LINE_NUMBER,

L.LISTED,

L.LINE_TYPE_ID

FROM

CONTRACT C,LINE L

WHERE

C.LINE_ID = L.LINE_ID(+) AND

/******* CRITERIA *******/

[C.CONTRACT_ID IN

 (SELECT CAI.CONTRACT_ID

 FROM CONTRACT_ADD_INFO CAI, CONTRACT_ADD_INFO_VALUE CAIV

 WHERE

 CAI.PARAM_ID=1006 AND

 CAI.VALUE_ID=CAIV.VALUE_ID AND

 CAIV.VALUE_STRING [=? OR IGNOREALL IF NULL] /* SIMCARD NUMBER */

)

AND]

(C.ORGANIZATION_ID [IN (?) OR IGNORE IF NULL] /* HIERARCHY */) AND

/******* SECURITY SCOPES MANAGEMENT ********/

(

 [C.CONTRACT_ID [IN CONTRACTSMANAGEDBY ?] /* EXPLICITSCOPE */ OR]

 [C.MEMBER_ID [=? OR IGNOREALL IF NULL] /* MEMBERSCOPE */ OR]

 [C.ORGANIZATION_ID [IN (?) OR IGNOREALL IF NULL] /* HIERARCHY SCOPES */ OR]

 (C.ORGANIZATION_ID [IN INTERORG SCOPES ?,?,?,?,?,?,?,?])

) AND

/**********************************/

(ROWNUM <= NVL(?, 1000))

)

 Working with Search Features 109

Writing a Search JSP
To help you understand how to create a search, you can use the example of a simple
search workflow for contracts. This example shows you how to write a search that uses
search filters to determine which criteria to display.

In your application, you can use this example to create several search features easily
by using the search filters and sample code to automatically display criteria based on
the search filter instead of being programmed in the presentation logic of each JSP.

Writing a search JSP involves:

1 Getting the filter

2 Getting dynamic and internal criteria

3 Display the search criteria

4 Getting the values of the search criteria the user submits

5 Executing the search

6 Displaying the results

110 Developing Telco Service Manager (TSM)

Getting the Filter
BLM search methods use search filters. Search filters are sets of search criteria
located in the CID. These filters help narrow the search and determine default criteria
and required criteria.

You use the methods in the ObjectRefMgr to search and retrieve filters.The BLM
FilterIF interface contains methods to manage search filters.

This sample code shows how to:

! Return the specified filter
! Test the filter to make sure it is a valid filter
! Send all of the criteria to the display page because there are no dynamic or hidden

criteria

Return
the filter

<%@ page import = "com.netonomy.blm.interfaces.search.*" %>
<%!
 SIMPLE SEARCH
 String []listOfFilters = new String[]{"CORE_CONTRACTBYLINENUMBER"};

 //

 // Get all the filters described in the array above.
 FilterIF [] filters = new FilterIF[listOfFilters.length];
 //Sets the filter in a an array that will contains, for each filter:
 // filter at [0], ids and values to display at [1] and [2].
 // This array will be sent to the displaying page

 Object [][] dynamicFilters = new Object[filters.length][5];

Test the
filter

 Date curDate = new Date ();
 for (int i=0;i<listOfFilters.length;i++)
 {
 filters[i] = ObjectRefMgr.getFilterByCode (listOfFilters[i]);
 // Test if the filter is still valid
 if (((filters[i].getStartDate()!=null)&&(curDate.compareTo (filters[i].getStartDate ())<0)) ||
 (((filters[i].getEndDate()!=null) && curDate.compareTo (filters[i].getEndDate ())>0)))
 {
 dynamicFilters[i]=null;
 }
 else
 {
 dynamicFilters[i] = new Object[5];
 dynamicFilters[i][0] = filters[i];
 dynamicFilters[i][1] = null; // dynamic parameters values will be filled below
 dynamicFilters[i][2] = null;
 dynamicFilters[i][3] = null;
 dynamicFilters[i][4] = null;
 }
 }

Send
the
criteria
to the
display
page

 ///

 // No dynamic data to get

 ///

 // No dynamic default values to get

 ///

 // Sends all criteria and values to the display page.

 request.setAttribute ("criteria", dynamicFilters);
}
%>

Some searches may have required dynamic or hidden criteria that you need to get
values for before sending information to the display page.

 Working with Search Features 111

112 Developing Telco Service Manager (TSM)

Getting Dynamic and Hidden Criteria
When writing searches, you may be required to use criteria that can change and other
criteria that you need to program the search, but that the user should not see. You can
use the following:

! Dynamic Criteria These criteria are values criteria that may change from one
search to another. An example of this kind of search criteria is a contract service.
Contract services may be limited to only a specific type of contract, it may expire,
and it may be incompatible with the rate plan of the contract. If the search filter
contains this kind of criteria, you must write the code to obtain the possible values
for these criteria for display.

! Hidden Criteria These criteria are hidden criteria that you may need to use but that
the user should not see. Like dynamic criteria, you must write the code to obtain
values for these criteria.

This sample code shows how to:

! Return the specified filter
! Test the filter to make sure it is a valid filter
! Get the values of dynamic criteria to display
! Get the values of hidden criteria
! Send all of the criteria to the display page

Return the
specified
filter

<%@ page import = "com.netonomy.blm.interfaces.search.*" %>

<%!

 String []listOfFilters = new String[]{"CORE_INTORG_CONTRACTBYLINENUMBER",
 "CORE_INTORG_CONTRACTADVANCEDSEARCH"};
 //

 // Get all the filters described in the array above.

 FilterIF [] filters = new FilterIF[listOfFilters.length];

 //Sets the filter in a an array that will contains, for each filter:
 // filter at [0], ids, values and their coded types to display at [1], [2]
 //and [3], hidden field coded type at [4].
 // This array will be sent to the displaying page
 Object [][] dynamicFilters = new Object[filters.length][5];

Test the
filters

 Date curDate = new Date ();
 for (int i=0;i<listOfFilters.length;i++)
 {
 filters[i] = ObjectRefMgr.getFilterByCode (listOfFilters[i]);
 // Test if the filter is still valid
 if (((filters[i].getStartDate()!=null) && (curDate.compareTo (filters[i].getStartDate
())<0)) ||
 (((filters[i].getEndDate()!=null) && curDate.compareTo (filters[i].getEndDate ())>0)))
 {
 dynamicFilters[i]=null;
 }
 else
 {
 dynamicFilters[i] = new Object[5];
 dynamicFilters[i][0] = filters[i];
 dynamicFilters[i][1] = null; // dynamic parameters values will be filled below
 dynamicFilters[i][2] = null;
 dynamicFilters[i][3] = null;
 dynamicFilters[i][4] = null;
 }
 }

 Working with Search Features 113

Browse
filters and
criteria

 ///

 // Get the data for all dynamic values

 // We must tell the type of the dynamic parameters so that it can be correctly encoded

 // and retrieved by fillParameterWithRequest function. Codes are inserted in the types array

 // Codes are : ID for objectIds, STR for strings, DATE for dates, BOOL for booleans, INT for
integers, FLOAT for double

 ///

 // and

 ///

 // Get the dynamic default values

 // We must tell the type of the dynamic parameters so that it can be correctly encoded

 // and retrieved by fillParameterWithRequest function.

 // Codes are : ID for objectIds, STR for strings, DATE for dates, BOOL for booleans, INT for
integers, FLOAT for double

 // Values of dynamic or hidden data are kept in this cache if another filter needs it.

 HashMap cache = new HashMap ();

 String[] ids;

 String[] displays;

 String type;

 Object hiddenValue;

 Object [][] cachedValue;

 String criteriaCode;

 ParameterDescriptorIF descriptor;

 FilterIF filter;

 ParameterIF[] allParameters;

 // Temp arrays that will eventually be copied to dynamicFilters.

 ArrayList idsArray = new ArrayList();

 ArrayList displaysArray = new ArrayList();

 ArrayList typesArray = new ArrayList();

 ArrayList hiddenTypesArray = new ArrayList();

 // Loop through all criteria of all filters.

 for (int j=0;j<dynamicFilters.length;j++)

 {

 filter = (FilterIF)dynamicFilters[j][0];

 allParameters = filter.getCriteria (FilterIF.ALL);

 idsArray.clear ();

 displaysArray.clear ();

 typesArray.clear ();

 hiddenTypesArray.clear ();

 for (int iParam=0;iParam<allParameters.length;iParam++)

 {

 descriptor = allParameters[iParam].getParameterDescriptor ();

 criteriaCode = descriptor.getCode();

 cachedValue = (Object[][])cache.get (criteriaCode);

 // If it's in the cache, just fills in the value to the main structure

 if (cachedValue == null)

114 Developing Telco Service Manager (TSM)

 {

 // Reset the values that will be filled by the custom code

 ids = null;

 displays = null;

 type = null;

 hiddenValue = null;

Get the
values of
dynamic
criteria

 ///

 // You can customize here

 if (criteriaCode.equals ("CORE_C_CONTRACTTYPE"))

 {

 // It's a dynamic filter. We fill ids, displays, type

 OrganizationTypeIF orgType = org.getType ();

 ContractTypeIF contractTypes[] = orgType.getCompatibleContractTypes ();

 ids = new String[contractTypes.length];

 displays = new String [contractTypes.length];

 for (int i=0;i<contractTypes.length;i++)

 {

 ids[i] = contractTypes[i].getIdentifier().toString();

 displays[i] = contractTypes[i].getName ();

 }

 type = "ID";

 }

Get the
values of
hidden
criteria

 else if (criteriaCode.equals ("CORE_C_ORGID"))

 {

 // It's a hidden criteria. We fill hiddenValue, type

 hiddenValue = curLevelId;

 type="ID";

 }

 Working with Search Features 115

End browse
of filter and
criteria

 if (ids != null)

 {

 // Adds the dynamic criteria values to the cache.

 cache.put (criteriaCode, new String[][]{ids, displays, new String[]{type}});

 }

 else if (type != null)

 {

 // Adds the hidden criteria values to the cache.

 cache.put (criteriaCode, new Object[][]{new Object[]{hiddenValue}, new
Object[]{type}});

 }

 }

 // Maybe the value has been filled by the former code, so we try again to get it

 cachedValue = (Object[][])cache.get (criteriaCode);

 // If it's in the cache, just fills in the value to the main structure

 if (cachedValue != null)

 {

 // Is it a hidden or a dynamicvalue ?

 if (cachedValue.length==3) // It"s a dynamic

 {

 idsArray.add (cachedValue[0]);

 displaysArray.add (cachedValue[1]);

 typesArray.add (cachedValue[2][0]);

 }

 else

 {

 switch (descriptor.getType())

 {

 case ParameterDescriptorIF.DYNAMIC:

 // set the value of the hidden criteria with the value stored in the hashtable

 ((ValueDynamicIF)allParameters[iParam]).setDynamicValue(cachedValue[0][0]);

 break;

 default:

 ((ValueSimpleIF)allParameters[iParam]).setValue(cachedValue[0][0].toString());

 break;

 }

 hiddenTypesArray.add (cachedValue[1][0]);

 }

 }

 }

 // Now that all parameters of a filter has been seen, we will aggregate all values on
it's dynamicFilters array

 if (idsArray.size()>0)

 {

 dynamicFilters[j][1] = idsArray.toArray(new String [idsArray.size()][]);

 dynamicFilters[j][2]= displaysArray.toArray(new String[displaysArray.size()][]);

 dynamicFilters[j][3]= typesArray.toArray(new String[typesArray.size()]);

116 Developing Telco Service Manager (TSM)

 }

 if (hiddenTypesArray.size()>0)

 {

 dynamicFilters[j][4]= hiddenTypesArray.toArray(new String[hiddenTypesArray.size()]);

 }

 }

Send the
criteria to
the display
page

 // Sends all criteria and values to the display page.
 request.setAttribute ("criteria", dynamicFilters);
}
%>

Now that the values of the different criteria have been set, send the results to a JSP for
display.

 Working with Search Features 117

Displaying the Search Criteria
Once you have retrieved the filter and set values for dynamic and hidden criteria, you
display the search criteria in a search page.

The Telco Service & Analytics Manager Web channel comes with a search page for
each of the main objects in the BLM. The search pages are located in
<home_dir>/channels/MyWeb. The search pages are named
<object>_search.jsp. In these JSPs, the code creates an HTML form and form
button for each filter. In this form, the JSP creates a form element for each criteria in
the filter. If your search uses more than one filter, your search page also has more than
one search form.

These search pages are also used to display the results of your search. The upper
section of the page displays the search forms for each filter you use. The lower section
displays the results of the search and an associated message.

This sample code shows how to:

! Get the criteria sent from the preceding JSP
! Create the search form
! Display the criteria sent from the preceding JSP
! Display the default values of the criteria (if the first time the form is displayed)
! Display an image next to mandatory criteria

118 Developing Telco Service Manager (TSM)

Get the criteria <%@ include file="components/parameter_modify.jsp" %>
 if (request.getAttribute ("criteria")!=null)
 {
 Object [][]dynFilters = (Object[][])request.getAttribute ("criteria");
 FilterIF curFilter;
 String [][] allIds;
 String [][] allDisplays;
 String [] types;
 String [] hiddenTypes;
 boolean oneParamMandatory=false;
 // Display parameters of all filters
 for (int i=0;i<dynFilters.length;i++)
 {
 curFilter = (FilterIF)dynFilters[i][0];
 allIds = (String[][])dynFilters[i][1];
 allDisplays = (String[][])dynFilters[i][2];
 types = (String[])dynFilters[i][3];
 hiddenTypes = (String[])dynFilters[i][4];
 if (curFilter != null)
 {
 %>

 <%
 // Now display search criteria using code in components/parameter_modify.jsp
 if (curFilter.getIdentifier().toString().equals (request.getParameter("filter")))
 {
 //if displaying the values along with the results, display the values as entered by
the user
 oneParamMandatory |= displayEditableParameters (curFilter.getCriteria
(FilterIF.VISIBLE), allIds, allDisplays, types, request, jspHelper, out,
curFilter.getIdentifier().toString(), true);
 }
 else
 {
 //if displaying the search form the first time, display default values
 oneParamMandatory |= displayEditableParameters (curFilter.getCriteria
(FilterIF.VISIBLE), allIds, allDisplays, types, request, jspHelper, out,
curFilter.getIdentifier().toString(), false);
 }
 // Enter the hidden system criteria
 displayHiddenParameters (curFilter.getCriteria (FilterIF.HIDDEN), hiddenTypes,
jspHelper, out, curFilter.getIdentifier().toString());
 %>
 </td></tr>
 <tr>
 // Form button with localized text
 <td align="center"><input type="submit" value="<%=jspHelper.localize
("search_button","default_text")%>"><input type="reset" value="<%=jspHelper.localize
("button_reset","default text")%>"></td>
 </tr>
 <tr height="1">
 <td height="1" class="linebottom" width="30%"><img height="2" width="2"
src="<%=jspHelper.getJFNAppSkinUrl()%>gif/varSpacerTransp1.gif"><img height="1" width="1"
src="<%=jspHelper.getJFNAppSkinUrl()%>gif/varSpacerTransp1.gif"></td>
 </tr>
 </form>
<%
 }
 }
 if (oneParamMandatory)
 {
 // For each mandatory search criteria, display a visual symbol (dot, gif, or whatever)
 %>
 <tr><td>
 <table cellspacing="0" cellpadding="2" border="0">
 <tr>
 <td>
 <img height="6" width="12" src="<%=jspHelper.getJFNAppSkinUrl()%>gif/dot3.gif"
align="absmiddle"> :
 <%
 String text = jspHelper.localize("mandatory_field","default_text");
 out.println(text);
 %>
 </td>
 </tr>
 </table>
 </td></tr>
 <%
 }
 }
%>

Create the
search form

// Create the HTML for for the search criteria
 <form action="<%=jspHelper.getUrl("CONTRACT_SEARCH")%>" method="post">
 <tr><td>
 <%=jspHelper.generateAllParametersAsHiddenFields ()%>
 <input type="hidden" name="filter" value="<%=curFilter.getIdentifier().toString()%>">
 <%

 Working with Search Features 119

Display the
criteria

 // Now display search criteria using code in components/parameter_modify.jsp
 if (curFilter.getIdentifier().toString().equals (request.getParameter("filter")))
 {
 //if displaying the values along with the results, display the values as entered by
the user
 oneParamMandatory |= displayEditableParameters (curFilter.getCriteria
(FilterIF.VISIBLE), allIds, allDisplays, types, request, jspHelper, out,
curFilter.getIdentifier().toString(), true);
 }
 else
 {
 //if displaying the search form the first time, display default values
 oneParamMandatory |= displayEditableParameters (curFilter.getCriteria
(FilterIF.VISIBLE), allIds, allDisplays, types, request, jspHelper, out,
curFilter.getIdentifier().toString(), false);
 }
 // Enter the hidden system criteria
 displayHiddenParameters (curFilter.getCriteria (FilterIF.HIDDEN), hiddenTypes,
jspHelper, out, curFilter.getIdentifier().toString());
 %>
 </td></tr>
 <tr>
 // Form button with localized text
 <td align="center"><input type="submit" value="<%=jspHelper.localize
("search_button","default_text")%>"><input type="reset" value="<%=jspHelper.localize
("button_reset","default text")%>"></td>
 </tr>
 <tr height="1">
 <td height="1" class="linebottom" width="30%"><img height="2" width="2"
src="<%=jspHelper.getJFNAppSkinUrl()%>gif/varSpacerTransp1.gif"><img height="1" width="1"
src="<%=jspHelper.getJFNAppSkinUrl()%>gif/varSpacerTransp1.gif"></td>
 </tr>
 </form>

Display an
image next to
mandatory
criteria

<%
 }
 }
 if (oneParamMandatory)
 {
 // For each mandatory search criteria, display a visual symbol (dot, gif, or whatever)
 %>
 <tr><td>
 <table cellspacing="0" cellpadding="2" border="0">
 <tr>
 <td>
 <img height="6" width="12" src="<%=jspHelper.getJFNAppSkinUrl()%>gif/dot3.gif"
align="absmiddle"> :
 <%
 String text = jspHelper.localize("mandatory_field","default_text");
 out.println(text);
 %>
 </td>
 </tr>
 </table>
 </td></tr>
 <%
 }
 }

Executing the Search
After the user enters the search criteria and clicks Submit, the JSP:

1 Creates a request containing the name of the filter and the list of search criteria
with their corresponding values.

2 Calls the associated logic handler to search for matching objects.

120 Developing Telco Service Manager (TSM)

The logic handler contains code that manages the business logic of the channel.
Having the logic code in separate JSPs helps separate the business logic from the
presentation logic. Like the search pages, the MyWeb channel comes with a logic page
for each of the main objects in the BLM. The pages are located in
<home_dir>/channels/MyWeb and are named logic_<object>.jsp.

This sample code shows how to:

! Get the name of the filter from the request
! Get the filter from the CID
! Fill the filter using the criteria values from the request
! Search the corresponding objects
! Call the page to display the results

Get and prepare
filter

<%!include file= "../common/form_handler/setParameters.jsp"%>

<%!
/**
 * Logic handler for finding contracts
 *
 * @param session The current HTTP session
 * @param httpRequest The current HTTP request
 * @param httpResponse The current HTTP response
 * @param jfnJsp The JSP configuration
 * @param results Hashtable of returned objects
 * @param errors Hashtable of error objects
 */

public void logic_searchContract (HttpSession session,
 HttpServletRequest request,
 HttpServletResponse response,
 JFNJspHelper jspHelper,
 Hashtable errors
) throws Throwable
{

 SessionF blmSession;
 ContractF[] contracts;
 FilterIF filter;
 //'*** Get the BLM session ***
 blmSession = jspHelper.getBlmSession ();
 // Get the filter from the request
 filter = ObjectRefMgr.getFilter (ObjectId.instantiate (request.getParameter("filter")));
 int maxCount = filter.getRowCount(); // The max # of items declared in the database.
 // Get one more than the max number of returned items declared for the filter
 filter.setRowCount (maxCount+1);
 jspHelper.doNotSendBeginningWith("p-");
 jspHelper.doNotSend("filter");

Fill with criteria try
 {
 // Fill the criteria values of the filter with the values from the request
 fillParametersWithRequest (filter.getCriteria (FilterIF.ALL), request, jspHelper,
request.getParameter ("filter"));
 }
 // If an error occurs, throw exception
 catch (BadValueException ex)
 {
 String strValue = jspHelper.tryToGetParameterValue(ex.getBadValue ());
 ParameterDescriptorIF descriptor = ex.getBadValue().getParameterDescriptor();
 Hashtable cgiparams = new Hashtable();
 cgiparams.put("param_value", strValue);
 cgiparams.put("param_desc", descriptor.getIdentifier().toString());
 cgiparams.put("param_code", String.valueOf(ex.getType()));
 response.sendRedirect(jspHelper.encodeURLFunct ("GLOBAL.PARAMETER_ERROR",
cgiparams, true));
 jspHelper.exitJSP();
 }

Execute search // Search for contracts
 contracts = ContractF.search(filter);

 Working with Search Features 121

Send contracts
found to next
page and inform
newt page if
more than the
maximum
number of items
was returned

 // We asked for max+1, did we get all of them?
 if (contracts!=null)
 {
 if (contracts.length>=maxCount+1)
 {
 // Limit of the filter
 // if more objects are returned, set the more attribute to display message
 ContractF[] ret = new ContractF[maxCount];
 System.arraycopy(contracts, 0, ret, 0, maxCount);
 request.setAttribute ("contracts", ret);
 request.setAttribute ("more", String.valueOf(maxCount));
 }
 else
 {
 request.setAttribute("contracts", contracts);
 }
 }
 request.setAttribute ("display", Boolean.TRUE);
 request.getRequestDispatcher(jspHelper.getUrlAndMoveToPage ("ON_OK")).forward(request,
response);
}
%>

122 Developing Telco Service Manager (TSM)

Displaying the Results
After you carry out the search, the logic handler sends the result to the display JSP.

The MyWeb channel uses the search pages to display the results of your search. The
upper section of the page displays the search forms for each filter you use. The lower
section displays the results of the search and a message.

This sample code shows how to:

! Get the result from the form handler
! Display the result message
! Display the list of contracts found

Get the
result from
the form
handler

<%
 ///
 // Display the result.
if (results.get ("display")!=null)
{ //' if custadmin with form or subscriber then display search
ContractF[] contracts = (ContractF[])request.getAttribute ("contracts");
%>
 <tr><td>
<% if (jspHelper.isFunctionalStepValid ("CONTRACT_SEARCH"))
 {
%>
 // result section heading

<div class="datatitle"><%=jspHelper.localize
("search_result_heading","default_text")%></div>

<%
 }
%>

Display the
result
message

// result message

<div class="errorTitleText">
<%
 if ((contracts==null) || (contracts.length==0))
 {%>
 <%=jspHelper.localize ("no_contract_found_message","default_text")%>
<%
 }
 else if (request.getAttribute ("more")!=null)
 {%>
 <%=jspHelper.localize ("more_contracts_found_message",new
Object[]{request.getAttribute ("more")})%>
<%
 }
 else if ((contracts != null) && (contracts.length>0))
 {%>
 <%=jspHelper.localize ("contracts_found_message",new Object[]{new
Integer(contracts.length)})%>
<%
 }
%>

 Working with Search Features 123

Display the
list of
contracts
found

 </div></td></tr>
 <% // The list of contracts found
 if ((contracts!=null) && (contracts.length>0))
 {
%>
<tr><td>
<table cellspacing="0" cellpadding="2" border="0" width="70%">
 <tr class="inverseHeaderText">
 <td><%=jspHelper.localize ("lineNumber","default text")%></td>
 <td><%=jspHelper.localize ("lineType","default text")%></td>
 <td><%=jspHelper.localize ("status","default text")%></td>
 </tr>
 <%
 for (int i=0; i<contracts.length; i++)
 {
 ContractF contract = contracts[i];µ
 <tr>
 <td><%=contract.getPhoneNumber()%></td>
 <td><%=contract.getLineType().getName()%></td>
 <td><%=contract.getStatus().getName()%></td>
 </tr>
 <%
 }
 %>
</table>
</td></tr>
<%
 }
 }
%>
</table>

C H A P T E R 5

Changing the BLM Business
Logic

In This Section

About Business Logic.. 126
Changing Business Logic.. 127

 126

About Business Logic
In the BLM, the business logic you can modify is implemented in BLM external classes.
You can extend the business logic to meet your needs or even replace it if you must
apply complex rules and processing to your BLM.

The external classes are declared in the BLM external_custom.xml customization
file and located in the com.netonomy.blm.external package. This file is located in
<home_dir>/classes/nmycfg/blm.

The set of default BLM external classes include:

! Check Classes
These classes check the validity of an action. For example, the
CheckAddBillingAccount class contains the code that validates the
AddBillingAccount action.

! List Classes
These classes return lists of objects that are allowed for a specific action. For
example, the ListAddableServices class returns a list of services that can be
added to the specified contract.

! Business Logic Classes
These classes implement specific business logic for specific features. For example,
the EvaluateApprovalProcess class contains the business logic for approval
processes.

 127

Changing Business Logic
Changing the business logic involves:

! Creating a custom class extending the default BLM external class
! Overriding the method processing the business logic
! Compiling the custom class
! Deploy the custom class
! Declare the custom class in the external_custom.xml customization file

For more information about the BLM external classes and their methods, refer to the
BLM API Reference Documentation under the com.netonomy.blm.external
package.

To create a custom class extending a BLM class

When creating your Java class, we suggest declaring a Java package to implement
your class.

For example, com.<yourclasspackage>.netonomy.blm.external where
<yourclasspackage> is the name of your company or the name of your customer.

Example of extending a default BLM external class:
package com.<yourclasspackage>.netonomy.blm.external;

import com.netonomy.blm.external.<DefaultClassName>;

public class <CustomClassName> extends <DefaultClassName>

{ }

To override the method processing the business logic

1 Refer to the BLM API Reference Documentation to find the signature of the method
to override. The BLM external classes are under com.netonomy.blm.external.

2 In your class, enter the signature then write your own business logic.

128 Developing Telco Service Manager (TSM)

Example:
package com.<yourclasspackage>.netonomy.blm.external;

import com.netonomy.blm.external.<DefaultClassName>;

public class <CustomClassName> extends <DefaultClassName>

{

public <ReturnedParameter> <methodName>(<Parameters list>) {

// enter your code here

return <ReturnedValue>;

}

}

If you want to extend the default business logic instead of replacing it, use the standard
Java inheritance mechanism by calling the core method (super.methodName)

To compile your custom class

When compiling your class, you need to make sure the following jar files are in the
CLASSPATH:

! <home_dir>/lib/nmycore.jar
! <home_dir>/lib/nmyutil.jar

To deploy your custom class

1 Create sub folders consistent with your package name. For example, create a
folder called
classes/com/<yourclasspackage>/netonomy/blm/external.

2 Copy your compiled class to this folder.

To declare your custom class

1 Go to <home_dir>/classes/nmycfg/blm.

2 Open the external_custom.xml customization file.

3 Find the class element with default attribute equal to the default BLM external
class name to override.

4 Enter the name of your custom class as the value of the custom attribute.

 Changing the BLM Business Logic 129

Example:
<class default="com.netonomy.blm.external.<DefaultClassName>" custom="
com.<yourclasspackage>.netonomy.blm.external.<CustomClassName>"/>

1 Save your changes.

C H A P T E R 6

Managing Security

In This Section

About Security... 132
Understanding the CID Schema Security 133
Configuring Authentication .. 134
Using Trust Modes .. 135
Managing Access to BLM Objects .. 136
Using Explicit Security... 137

 132

About Security
Security of the TSM can be divided into the following categories:

! TSM security
This category is the basic system security settings and its different components.

! Host Environment security
This category involves security settings for the host environment (application
server, OSS, database and other components.)

For security concerning these components, refer to your product documentation.

Managing security involves:

! Understanding CID Users
! Configuring authentication
! Configuring trust modes
! Securing BLM Objects
! Using explicit security

You declare the security of the Presentation Layer with the PLS. For detailed
information about working with the PLS, refer to Developing User Interfaces.

 133

Understanding the CID Schema
Security

The CID database has two different users. The two users are:

! CID_ADMIN
! CID_USER

The CID_ADMIN user is the owner of the CID schema. This administration user can
create, modify and administer the CID. The CID_ADMIN also grants permission to the
CID_USER_ROLE.

The CID_USER user is the application user. Applicative processes 9application server,
Synchronizer, Approval Sequencer, and so on) use the CID_USER to connect to and
manage information in the CID.

 134

Configuring Authentication
You can use either the CID or LDAP authentication method to grant users access to
your application. By default, the CID is used for authentication.

For more information about configuring authentication, refer to the BLM Reference
Guide.

 135

Using Trust Modes
The BLM manages the authentication of users. This means that the BLM checks to see
if the user account exists and if the password is valid. If your TSM is part of a large
Internet site or if users are using handsets, they may already be authenticated and you
do not want them to have to reenter logon information. In this case, the BLM uses the
trust mode to authenticate users.

For more information about trust modes, refer to the BLM Reference Guide.

 136

Managing Access to BLM Objects
When developing applications that have several users and organizations, your TSM
has to be able to limit access to certain features. For example, your TSM may want to
allow some users to change their billing address or rate plans. At the same time, you
may also want some users to be able to view such information but not be allowed to
change it.

You can easily manage the access to the BLM and the CID. By using the built-in
security, you can assign access rights for any user of the application.

For more information about managing access to BLM objects, refer to the BLM
Reference Guide.

 137

Using Explicit Security

About Explicit Security
The access rights to objects are defined by roles and scopes. This security can be
enhanced by using the explicit security feature.

You can use this feature to specify that a user in an organization has the rights to
manage:

! Other users of the same organization
! Organization contracts

By using this type of security, your applications can have managers. For instance, you
can manage users who are contract managers. Theses users have access to different
sets of contracts and can manage them as if the contracts belonged to them. And you
can also have a manager who assigns the contracts to different contract managers.
Using explicit security allows you to enhance the features of your applications and
improve security at the same time.

Explicit security has the following limits:

! A manager and the managed users and contracts must belong to the same
organization

! The rights of a manager may be different than the rights of an owner

Using Explicit security involves:

! Listing the managers of a contract or user.
! Adding a user to the list of managers of a user or contract
! Removing a user from the list of managers of a user or contract

The examples show you how to use explicit security to have an organization member
manage a contract.

Getting Managers of a Contract
Getting all of the managers of a contract involves:

1 Getting the contract

2 Getting the managers of the contract

138 Developing Telco Service Manager (TSM)

Get the contract SessionF blmSession = jspHelper.getBlmSession();

ObjectId contractId = ObjectId.instantiate(request.getParameter ("contractId"));

ContractF contract = new ContractF (blmSession,contractId);

Get the managers UserF[] users = ((ContractF)contract).getManagers();

Specifying a Manager
Adding a manager to a contract manager list involves:

1 Getting the contract

2 Getting the manager

3 Adding the contract to the manager list

Get the contract SessionF blmSession = jspHelper.getBlmSession();

ObjectId contractId = ObjectId.instantiate(request.getParameter ("contractId"));

ContractF contract = new ContractF (blmSession,contractId);

Get the manager UserF manager = blmSession.getUserF();

Add the contract manager.doChangeManagedContracts(ChangeMode.ADD, new Contract[]{contract});

Removing a Manager
Removing a manager from a contract manager list involves:

1 Getting the contract

2 Getting the manager

3 Removing the contract from the manager�s list

 Managing Security 139

Get the contract SessionF blmSession = jspHelper.getBlmSession();

ObjectId contractId = ObjectId.instantiate(request.getParameter ("contractId"));

ContractF contract = new ContractF (blmSession,contractId);

Get the manager UserF manager = blmSession.getUserF();

Remove the
contract

manager.doChangeManagedContracts(ChangeMode.REMOVE, new Contract[]{contract});

C H A P T E R 7

Accessing External Data Sources

In This Section

About Accessing External Data Sources 142
Configuring a New DAL Instance .. 143
Creating the Configuration File ... 144
Specifying the Binding Properties ... 146
Programming the Data Access ... 147

 142

About Accessing External Data
Sources

The DAL is responsible for managing the access to data to and from the CID and
external sources. Most likely your TSM uses various sources of data on different
computers and maybe even using different databases.

For several reasons, you might want your application to use data from an external data
source thus bypassing the CID. Designed with this in mind, you can use the DAL to
access SQL-compatible databases or external Java methods.

Accessing external data sources using the DAL involves:

! Declaring a new DAL instance
! Creating configuration files for the new instance
! Specifying the binding properties
! Programming the data access
! If using SQL to access the data, fill in the queries file

! If using Java, implement the external function
! Redirect the DAL to the new instance

 143

Configuring a New DAL Instance
When redirecting the data source to manage external data, you must declare an
instance of the DAL.

You declare DAL instances in the instances.properties customization file. This
file is located in <home_dir>/classes/nmycfg/dal/instances.

Once you have done this, you create a properties file and enter information such as the
database driver to use and its unique instance ID.

To declare a new DAL Instance

1 Go to <home_dir>/classes/nmycfg/dal/instances.

2 Open instances.properties.

3 Enter a new instance. Use the syntax:

instance_name=path of the instance properties file.

Example:
other=nmycfg.dal.instances.instance_other

jsource=nmycfg.dal.instances.instance_jsource

1 Save your changes.

 144

Creating the Configuration File
You create a configuration file for the new DAL instance. This configuration file
contains general information about the instance.

To create a DAL instance properties file

1 Go to <home_dir>/classes/nmycfg/dal/instances.

2 Create a text file with the name of the instance declared in the
instances.properties configuration file.

Example: instance_other.properties

3 Open the .properties file and enter the following mandatory settings:

SETTINGS DESCRIPTION

instance_id Internal id used for this instance

Must be different than the default id of 0.

dal_driver Driver used for this instance:

Driver for J2EE application servers:

com.netonomy.dal.drivers.impl.sql.jndi.JNDIDatasourceInstance

Driver for standalone connection pooling:

com.netonomy.dal.drivers.impl.sql.jdbc2x.PooledInstance

Driver for standalone generic JDBC:

com.netonomy.dal.drivers.impl.sql.basic.BasicInstance

Driver to map queries to java code:

com.netonomy.dal.drivers.impl.generic.object.ObjectInstance

description Description of the instance

queries_file DAL configuration file for queries used with this instance

4 Enter the following internal settings and their values:

source_name=N/A

login=N/A

max_string_size=1900

native_driver=N/A

password=N/A

debug_driver=N/A

5 Save your changes.

 Accessing External Data Sources 145

Example of a DAL instance properties file:
#Internal id used for this instance

instance_id=2

#Driver used for this instance

dal_driver=com.netonomy.dal.drivers.impl.generic.object.ObjectInstance

description=custom java database description

#path to the DAL configuration file for queries used with this instance

queries_file=nmycfg.dal.instances.core_queries_other

INTERNAL SETTINGS DO NOT MODIFY

source_name=N/A

login=N/A

max_string_size=1900

native_driver=N/A

password=N/A

debug_driver=N/A

 146

Specifying the Binding Properties
You specify the binding properties in the functions_routing.properties
configuration file. This file is located in
<home_dir>/classes/nmycfg/dal/instances.

To specify the binding properties

1 Go to <home_dir>/classes/nmycfg/dal.

2 Open functions_routing.properties.

3 For each object.request, enter the binding properties.

Example:
contract.getContractedServices=jsource

4 Save your changes.

 147

Programming the Data Access
You have to program the access to the data. To access the data, you create a DAL
queries XML file. This XML file contains:

! The SQL statements if using the JDBC driver to execute SQL queries
! The external Java method if using an object driver to call a method

To create a DAL queries XML file

1 Go to <home_dir>/classes/nmycfg/dal/instances.

2 Create an XML file with the name corresponding to the file specified in the
queries_file setting in the DAL instance_other.properties configuration
file.

 Example: core_queries_other.xml

3 Open the SQL queries file. Add your queries to this file. Use the syntax:
<object_name>

 <query_name>SQL statement or external java
method</query_name>

</object_name>

4 Save your changes.

To implement an external Java method

1 In your Java file, import the following:
import com.netonomy.dal.api.DalObjectFactory;

import com.netonomy.dal.api.DalObjectIF;

import com.netonomy.dal.util.DalException;

import com.netonomy.util.ObjectId;

import com.netonomy.util.StringId;

import com.netonomy.util.LongId;

import java.util.ArrayList;

2 Code the access to the object.

148 Developing Telco Service Manager (TSM)

Example of a test class:

 Accessing External Data Sources 149

package com.netonomy.dal.api.test;

import com.netonomy.dal.api.DalObjectFactory;

import com.netonomy.dal.api.DalObjectIF;

import com.netonomy.dal.util.DalException;

import com.netonomy.util.ObjectId;

import com.netonomy.util.StringId;

import com.netonomy.util.LongId;

import java.sql.*;

import java.util.ArrayList;

public class route

{

public static Object routecs(Object[] params) throws DalException

 {

 String driver_jsource = "oracle.jdbc.driver.OracleDriver";

 String url_jsource = "jdbc:oracle:oci8:@cid";

 String login_jsource = "cid_admin";

 String password_jsource = "cidadmin";

 Statement stmt = null;

 ResultSet rs = null;

 Connection con = null;

 ObjectId contract_id = null;

 System.out.println("###### JFK1 ########");

 if (params.length > 0)

 {

 contract_id = (ObjectId)params[0];

 }

 System.out.println("###### JFK2 ########");

 String query = "SELECT CONTRACT_ID,SERVICE_ID,SUBSCRIPTION_DATE FROM "

 + "CONTRACTED_SERVICES WHERE CONTRACT_ID="

 + ObjectId.convertToLong(contract_id);

 System.out.println("###### query :" + query + "########");

 ArrayList list = new ArrayList();// Declare an array list to return ContractedServices

 try

 {

 // select JDBC driver

 Class.forName(driver_jsource);

 // open JDBC connection

 con = DriverManager.getConnection(url_jsource, login_jsource, password_jsource);

 stmt = con.createStatement();

 rs = stmt.executeQuery(query);

 while (rs.next())

 {

 //Create a DalObjectIF to store a contracted service

 DalObjectIF dalobject = DalObjectFactory.createDalObjectIF("objects.CONTRACTEDSERVICE");

 //Fill the DalObjectIF with the attribute values of the contracted services

 dalobject.setItem("contractID", new Long(rs.getLong("CONTRACT_ID")));

 dalobject.setItem("serviceID", new LongId(rs.getLong("SERVICE_ID")));

 dalobject.setItem("subscriptionDate", rs.getDate("SUBSCRIPTION_DATE"));

 list.add(dalobject);

150 Developing Telco Service Manager (TSM)

 }

 // close result set

 rs.close();

 // close statement

 stmt.close();

 // close connection

 con.close();

 }

 // handle JDBC SQL exceptions

 catch (SQLException ex)

 {

 System.out.println("\n*** route.routecs : SQLException caught ***\n");

 while (ex != null)

 {

 //error message

 }

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 }

 //Create an array of DalObjectIF to return the result of the method

 DalObjectIF[] ret = new DalObjectIF[list.size()];

 list.toArray(ret);

 return ret;

 }

}

1 Save your changes.

For more information about the DalObjectIF API, refer to the BLM HTML Reference
Documentation.

You can modify the parameters of the DalInternalFunction in the DAL
core_containers.xml file using the syntax in this manual. By modifying these
parameters, you can use your system�s legacy ID instead of the internal ID.

C H A P T E R 8

Localizing Your Application

In This Section

About Localizing an Application .. 152
Limitations of Localizing Applications...................................... 153
Specifying the Character Set .. 154
Specifying Application Languages .. 156
Specifying Language-specific Formats 157
Localizing Database Entries.. 160
Localizing BLM Error Messages ... 161
Localizing JSPs... 164

 152

About Localizing an Application
In order to adapt your channel to your users, you need to make sure the application
uses a language that your users can understand. You may also need to have an
application that requires more than one language.

Localizing an application involves:

! Specifying the character set to use
! Specifying the application languages
! Specify the language-specific formats
! Localizing the database entries
! Localizing the BLM error messages
! Localizing the JSPs

When localizing an application, sometimes it is not clear where to go when an element
has not been properly localized. If you have problems with dynamic data, you should
check the localization of your database entries. If your error messages are not
localized, you should check the JSPF Framework configuration file and the BLM error
message file. All user interface elements including menus are localized in the JSPF
Framework configuration file.

 153

Limitations of Localizing
Applications

You can create completely localized applications for users. However, there are some
limitations on what you can localize.

The following are not localized:

! System or host names
! Shell and environment variables
! Administration tools and their syntaxes
! Log messages
! Some user interface components such as keyboard shortcuts

Most of these limitations are imposed by Information Technology systems in use today.
As these limitations are mostly limited to TSM and database administration, only
technical staff see this part of the product.

Along with this part of the application, when you localize your application, you must:

! Ensure that the character encoding supports ASCII along with all of the other
characters your application uses

! Ensure that all of the software you use is fully compliant with the character set you
use

! Use only one character set in the entire CID
! Use only one encoding for the entire set of JSPs (JSPF framework and

presentation)
! XML file encoding must be 8-bit safe (recommended default is UTF-8)

 154

Specifying the Character Set
Before localizing the interface of your application, you need to make sure your
application can handle the appropriate character set.

The default character encoding is ISO-8859-1. This standard covers Latin character
based languages widely used in Western Europe, Africa, and the Americas. But if you
have to localize your application in a language that is not based on Latin characters,
you need to use a Double-Byte Character Set (DBCS). One of the most common
examples of this kind of problem is an application that has a Chinese or Japanese and
English interface.

If you use a DBCS, your entire system has to be compatible with this kind of character
encoding.

Specifying the character set involves:

! Verifying the compatibility of your system. For more information, refer to the release
notes on the CD-ROM.

! Declaring the character encoding for the JSPF Framework

Once you declare the DBCS to use in these components, you can localize the rest of
your application using the instruction in this section.

The Synchronizer and loopback connector are already configured to use the UTF-8
DBCS. If you need to use another DBCS, refer to Developing Connectors for more
information about using other character sets.

Be sure to check the limitations and other constraints when using DBCS. For example,
HTML allows passwords in UTF-8, but automatically disables passwords being entered
using a DBCS.

To declare the character encoding for the JSPF Framework

1 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

2 Open jfnApplication.properties.

3 Change the media.encoding setting to your DBCS. Use the syntax:

 Localizing Your Application 155

media.encoding=your_dbcs_name

media.encoding is the encoding standard to be used when exchanging
information with your TSM.

When working with HTTP and Java, the standard encoding for exchanging
information is UTF8. Application servers written in Java assume that all information
sent by browsers is encoded in UTF8. Not all browsers send information in UTF8.
This setting informs Java to process all messages as if they are encoded in the
specified character set.

4 Go to <home_dir>/channels/common/fwk.

5 Open framework_start.jsp.

6 Clear the comments in front of the following line of code:
// request = new i18nRequest ("your_dbcs_name",request);

7 Replace your_dbcs_name with the name of your DBCS.

This value of your_dbcs_name must be the same as the encoding you declare in
jfnApplication.properties.

8 Save your changes.

 156

Specifying Application Languages
Each application has a specific set of available languages. You have to declare the
application languages in the CID. In the CID, all of the tables that can be localized have
a STRING_ID column. This column contains the ID of the string that is translated. If
this column is empty, by default the application returns the string in the NAME column.

This STRING_ID corresponds to entries in the UNIVERSAL_STRING table. The
UNIVERSAL_STRING table has the following columns:

! STRING_ID containing the STRING_ID in the table with information to translate
! LANG_ID containing the ID of the language
! STRING_NAME contains the localization of the string

For each string to translate, you insert a row for each language.

To specify application languages

1 In the AVL_APP_LANG table, add a record describing the available language. Use
the syntax:
insert into AVL_APP_LANG (APP_ID, LANG_ID) values (APP_ID
value, LANG_ID value);

! APP_ID corresponds to the application ID in the APP table

! LANG_ID corresponds to the Language ID in the LANGUAGE table

2 Save your changes

EXAMPLE OF SPECIFYING APPLICATION LANGUAGES

Default
languages
available for
MyWeb
channel in the
CID

/*For English LANG_ID is 25 */

insert into AVL_APP_LANG (APP_ID, LANG_ID) values (1, 25);

/*For French LANG_ID is 34 */

insert into AVL_APP_LANG (APP_ID, LANG_ID) values (1, 34);

To specify the default language

1 Declare the default language as an available application language in the
AVL_APP_LANG table.

2 Declare the language as the default language in the LANGUAGE table. Set the
value of LANG_DEFAULT to 1.

3 Declare the default language of the presentation layer application using the PLS.

 157

Specifying Language-specific
Formats

The different languages of your application might require different formats to display
information. For example, in North America, dates are usually displayed in a
month/day/year format. And in Europe, dates are displayed in a day/month/year format.

You can customize these formats for each language. You use the
jsp_parameters.xml file to specify the different formats to use in your application.
This file is located in <home_dir>/classes/nmycfg/util/formatter.

Customizing the formats involves specifying the following:

! Time format

! Date format

! Timestamp format

! Number formats (decimals and separators)

Java uses this XML file to set these formats. The information in this XML file must use
the Java standards for format and locale.

For more information, refer to:

! java.util.Locale for the contents of language and country

! java.text.SimpleDateFormat for the syntax of date formats

! java.text.DecimalFormat for the syntax of decimal formats

To specify language specific formats

1 Go to <home_dir>/classes/nmycfg/util/formatter.

2 Open jsp_parameters.xml.

3 Under <FORMATS>, add the <LANGUAGE.LANG_CODE> element. Use the syntax:

158 Developing Telco Service Manager (TSM)

 <LANGUAGE.LANG_CODE>

 <language>java_locale_language_code</language>

 <country>java_locale_country_code</country>

 <time_format>time_format</time_format>

 <date_format>time_format</date_format>

<timestamp_format>timestamp_format</timestamp_format>

 <int_format>int_format</int_format>

 <float_format>float_format</float_format>

 </LANGUAGE.LANG_CODE>

The LANGUAGE.LANG_CODE must be one of the languages declared as an
application language in the AVL_APP_LANG table.

4 Under the root element, enter the default language to use. Use the format:
 <DEFAULT>LANGUAGE.LANG_CODE</DEFAULT>

The default language must correspond to a language declared in this file.

5 Save your changes.

EXAMPLE OF A JSP_PARAMETERS.XML FILE

PROPER
TIES
FOR
ENGLISH
(UK)
FORMAT
S

<XML_CONFIGURATOR __IS_HASH__="true">

 <formats>

 <en>

 <language>en</language>

 <country>UK</country>

 <time_format>HH:mm:ss</time_format>

 <date_format>MM/dd/yyyy</date_format>

 <timestamp_format>MM/dd/yyyy HH:mm:ss</timestamp_format>

 <int_format>#,###,###,###</int_format>

 <float_format>#,###,###,###.##</float_format>

 </en>

Properties
for French
(France)
formats

<fr>

 <language>fr</language>

 <country>FR</country>

 <date_format>dd/MM/yyyy</date_format>

 <time_format>HH:mm:ss</time_format>

 <timestamp_format>dd/MM/yyyy HH:mm:ss</timestamp_format>

 <int_format>#,###,###,###</int_format>

 <float_format>#,###,###,###.##</float_format>

 </fr>

Default
format to
use

 <default>en</default>

</XML_CONFIGURATOR>

 Localizing Your Application 159

 160

Localizing Database Entries
 In the CID, all of the tables that can be localized have a STRING_ID column. This
column contains the ID of the string to translate. If this column is empty, by default the
application returns the string in the NAME column.

This STRING_ID corresponds to entries in the UNIVERSAL_STRING table. The
UNIVERSAL_STRING table has the following columns:

! STRING_ID containing the STRING_ID in the table with information to translate
! LANG_ID containing the ID of the language
! STRING_NAME contains the localization of the string

For each string to translate, you add a record for each language.

Some of your database entries may have more than one string to localize. For
instance, you have to provide the localization of a service name as well as its
description. In this case, the columns of additional strings to localize end in
STRING_ID.

To localize the database entries

1 In the table containing strings to translate, enter a unique STRING_ID in each
record to localize.

2 In the UNIVERSAL_STRING table, add a record containing the following for each
language:

! STRING_ID of the record to localize

! LANG_ID of the language

! STRING_NAME the localized string

3 Save your changes

EXAMPLE OF CID LOCALIZATION OF A DOCUMENT

CREATE A NEW
DOCUMENT
CALLED
MYDOCUMENT

insert into DOC (DOC_ID, DOC_LEGACY_ID, DOC_NAME, STRING_ID, DOC_DESCRIPTION,
DOC_DESC_STRING_ID, DOC_CATEGORY_ID, DOC_START_DATE, DOC_END_DATE) values (5,
'LEG_5', 'MyDocument', 47005, 'A document describing something', 47305, 1, Null,
Null);

Localize DOC_NAME and
DOC_DESCRIPTION in
French

 insert into UNIVERSAL_STRING(STRING_ID, LANG_ID, STRING_NAME) values(47005, 34,
'MonDocument�);

insert into UNIVERSAL_STRING(STRING_ID, LANG_ID, STRING_NAME) values(47305, 34,
'Un document decrivant quelquechose�);

 161

Localizing BLM Error Messages
The BLM has a set of files that the BLM uses to localize internal BLM messages. The
internal BLM messages include business logic and security messages.

You use the following files for the BLM error messages:

! <home_dir>/classes/nmycfg/util/translator.properties contains
the location of the error settings for each language

! <home_dir>/classes/nmycfg/errors/<language_filename> contains
the location of the localized error message file

! <home_dir>/classes/nmycfg/errors/<localization_file> contains
the error messages

Localizing the BLM error messages involves:

! Declaring the language and location of the error settings

! Creating the error settings

! Creating the localization file containing the localized messages

To localize BLM error messages

1 Go to <home_dir>/classes/nmycfg/util.

2 Open translator.properties.

3 Enter the message file to use. Use the format:
<language_code>=nmycfg.errors.<language_filename>

! language_code is the two letter language code of one of the available
application languages

! language_filename is the name of the .properties configuration filename
containing the location of the localization file.

The language_code must be one of the languages declared as an application
language in the AVL_APP_LANG table.

4 Go to <home_dir>/classes/nmycfg/errors.

5 Open <language_filename> and enter the following:

162 Developing Telco Service Manager (TSM)

__INCLUDES_EXTERNAL_BUNDLES__=1

__BUNDLE_1_add_method=ADD

__BUNDLE_1_extension=EXTENSION_DEFAULT

__BUNDLE_1_format=TYPE_PROPS_NORMAL

__BUNDLE_1_file=nmycfg.errors.<localization_file>

! localization_file is the .properties configuration file containing the
localized error messages.

Enter only the name of the file. The BLM automatically appends the .properties
extension to this name.

6 Open <localization_file>.properties and enter the message. Use the
format:
ERROR_NUMBER=Message

When adding a new language, you can copy and rename
core_english.properties. You can then localize the message in the
corresponding language.

7 Save your changes.

EXAMPLE OF BLM MESSAGE LOCALIZATION

CONTENTS OF

TRANSLATOR.PROPERTIES

Default=en

en=nmycfg.errors.english

fr=nmycfg.errors.french

Contents of

errors.english.properties

 __INCLUDES_EXTERNAL_BUNDLES__=1

__BUNDLE_1_add_method=ADD

__BUNDLE_1_extension=EXTENSION_DEFAULT

__BUNDLE_1_format=TYPE_PROPS_NORMAL

__BUNDLE_1_file=nmycfg.errors.core_english

Contents of

errors.french.properties

 __INCLUDES_EXTERNAL_BUNDLES__=1

__BUNDLE_1_add_method=ADD

__BUNDLE_1_extension=EXTENSION_DEFAULT

__BUNDLE_1_format=TYPE_PROPS_NORMAL

__BUNDLE_1_file=nmycfg.errors.core_french

Contents of

errors.core_english.
properties

 # --

BLM English Business Logic Messages.

--

0={0} Access Denied

1=Access Denied. The session is not valid nor authenticated.

2={0} Access Denied

 Localizing Your Application 163

 Contents of

errors.core_french.
properties

--

Messages de logique applicative en français.

--

0={0} accès refusé!

1=Session invalide ou non authentifiée, accès refusé!

2={0} accès refusé!

 164

Localizing JSPs
You use the following to localize framework JSPs:

! The JSPF Framework configuration file
! The BLM API

The JSPF Framework configuration file is an XML file containing application properties
and various JSPF settings. By default, the channels use the MyWeb.xml JSPF
Framework configuration file. This file is located in <home_dir>/channels/WEB-
INF/classes/nmycfg/jfn.

You declare the default language in this file. The <property
name="APP_LANG_CODE"> element specifies the code of the default language.

The JSPF Framework configuration file also contains the strings to use for each
language. The <string> element contains the strings the application uses. Each
string in the JSP to localize has an entry in the JSPF Framework configuration file. For
each string, one or more value elements contain the localization of the string. The
syntax is:

<string name="string_name">

 <value name="language_code1">String1</value>

 <value name="language_code2">String2</value>

 </string>

The name attribute corresponds the one of the application language codes entered in
the CID.

Localizing strings in JSPs involves:

! Specifying your character set (if required)

! Localizing simple strings in the JSP

! Localizing strings using Java�s java.text.MessageFormat

 Localizing Your Application 165

If your text is easy to translate and you do not need to change the order of information
contained in the string, you can use the simple localize function.

But if your localization requires information in your JSP to be displayed in a different
order, or if you need to introduce some dynamic information into your strings, you can
use java.text.MessageFormat to help you do this. For example, your JSP
displays a confirmation page and you want to display a message asking users to
confirm their choice. Localizing this kind of question might require you to display
information in a different order.

Functional steps can also override the localization in the JSPF Framework
configuration file.

 166

About Localizing Applications
The strings you declare in the PLS are strings which are used by various elements of
the presentation layer application. These elements include menus, steps, and page
flows.

The PLS lets you centralize the presentation logic strings in a single location. The tool
also allows you to configure strings for specific components or override the global
strings when certain conditions are met.

By default, the Strings you enter in the PLS are the strings corresponding to the default
language declared in the CID. If your application has more than one available
language, the PLS generates lists of strings for each declared language and
automatically configures the application to use these lists to determine the value of the
strings.

Localizing Applications involves:

! Declaring strings
! Declaring languages
! Localizing strings

To specify the encoding in the JSPF configuration file

1 Open the JSPF Framework configuration file.

2 In the XML declaration, enter your encoding. Use the syntax:
<?xml version="1.0" encoding="your_dbcs_name"?>

Note: XML file encoding must be 8-bit safe (recommended default is UTF-8)

3 Save your changes.

To localize simple strings in JSPs

1 Open the JSP you want to localize.

2 For each string, use the JSPF localize function. Use the syntax:
<%=jspHelper.localize("string_name", "default_string")%>

! string_name is the name of the string in the JSPF Framework configuration
file.

! default_string is the string to display if the string_name is not found in
the JSPF Framework configuration file.

3 Open the JSPF Framework configuration file and locate the entry of the JSP.

4 Under the <jsp> tag, enter the strings to display. Use the format:

<string name="string_name">

 Localizing Your Application 167

 <value name="language_code1">String1</value>

 <value name="language_code2">String2</value>

</string>

5 Save your changes

EXAMPLE OF SIMPLE JSP LOCALIZATION

IN THE
LOGIN.JSP

<td><%=jspHelper.localize("login_user_name_field","default_text")%></td>

In the MyWeb.xml
JFN Framework
configuration file

<jsp name="login.jsp" authenticate="false">

 <string name="login_user_name_field">

 <value name="en">User name:</value>

 <value name="fr">Identifiant :</value>

 </string>

 ...

</jsp>

 168

Working with Languages
The Languages declared in the PLS correspond to the application languages declared
in the CID.

These languages are for reference only and must correspond to the languages
configured and declared in the CID.

When you localize your application, the PLS uses these languages to create the files
required to localize the strings.

Working with languages involves:

! Creating languages
! Removing languages

To add Languages

1 Open the application.

2 In the Explorer, expand the application to display the components.

3 Right click Languages then select Create New. The Create New dialog box
appears.

4 Enter the code of the Language then choose OK. The language appears in the
explorer.

5 Select the new Language. The properties appear in the properties pane.

6 Enter the following properties:

! Name

The name of the language.

! Description

A description of the language.

7 Save your changes.

To remove Languages

1 Open the application.

2 In the Explorer, expand the application to display the components.

3 Expand Languages. The language appears.

4 Right-click the language to delete then choose Delete. A confirmation dialog box
appears.

5 Do one of the following:

 Localizing Your Application 169

! Select Yes to delete the element

! Select No to cancel and return to the Explorer

Working with Strings
You can create global strings which remain the same throughout the application. You
can also create strings associated with the following elements:

! Page Flows
! Functional Steps
! Menus
! JSPs

You can also override the global strings in these elements.

Working with strings involves:

! Creating Strings
! Removing Strings
! Overriding Strings

To create Strings

1 Open the application.

2 In the Explorer, do one of the following:

! To declare a global string, right click Strings then select Create New. The
Create New dialog box appears.

! To declare a String for an element, find the element then right click Strings then
select Create New. The Create New dialog box appears.

3 Enter the code of the string then choose OK. The string appears in the explorer.

4 Select the new string. The properties appear in the properties pane.

5 Enter the following properties:

! Value

The value of the string.

6 Save your changes.

To override Strings

1 Open the application.

2 Find the element where you need to override the global String.

3 Right click Strings then select Create New. The Create New dialog box appears.

170 Developing Telco Service Manager (TSM)

4 Enter the name of the global String to override then choose OK. The property
appears in the explorer.

5 Select the new String. The properties appear in the properties pane.

6 Enter the following properties:

! Value

The value of the String to be used with this element instead of the global setting.

7 Save your changes.

To delete Strings

1 Open the application.

2 In the Explorer, locate the String to delete.

3 Right-click the string to delete then choose Delete. A confirmation dialog box
appears.

4 Do one of the following:

! Select Yes to delete the string

! Select No to cancel and return to the Explorer

 171

Localizing Strings
The PLS makes localizing the strings in your application very easy.

If your application has more than one available language, the PLS generates lists of
strings for each declared language and automatically configures the application to use
these lists to determine the value of the strings.

The files are located in <home_dir>\channels\<application_name>\WEB-
INF\classes\nmycfg\jfn\strings

The PLS generates the following files:

! <application_name>_<language>.properties file for the global strings
! /jsp/<element_name>_<language>.properties file for each JSP having

declared strings
! /pageFlows/<element_name>_<language>.properties file for each page

flow having declared strings
! a .diff file for each file that has changed since the last generation. This file

contains the differences made to the strings since the previous generation for the
default language.

The value of the strings in the .properties files have the format:

<element_name>.<component_name>.<string_name>=<value>

An example of the string declaration:

APP.STR.subscription_fee_text=Signup Fee

APP.STR.card_number_label=Card number:

APP.MENU.INFO.Name=User Information

To generate the String files

1 Choose Application > Generate String Bundles. When finished a message appears
in the message pane.

The files are located in <home_dir>\channels\<application_name>\WEB-
INF\classes\nmycfg\jfn\strings

172 Developing Telco Service Manager (TSM)

To localize the strings

1 Go to <home_dir>\channels\<application_name>\WEB-
INF\classes\nmycfg\jfn\strings

2 If present, open and read the diff file listing the changes since the last generation.

3 Open the file corresponding to the element and language to localize.

4 Change the value of the string.

5 Save your changes.

In This Section

Returning All Reference Data ... 175
Returning Only Certain Types of Reference Data................... 176
Reloading Reference Data.. 177

C H A P T E R 9

Managing Reference Data

About Reference Data... 174

 174

About Reference Data
The CID contains a large set of reference data for TSM. Reference data includes
things like country names, currencies, User Roles, and so on. The BLM comes with the
objectRefMgr that is a functional interface to easily access this kind of information.

You can use the objectRefMgr to access objects without having mandatory
prerequisites. By using this interface, you can access reference information available to
all objects in the BLM. You can use the objectRefMgr to return lists of reference
information or specific items of a list.

For more information about the objectRefMgr, refer to the BLM API Reference
Documentation.

 Managing Reference Data 175

Returning All Reference Data
This class has a set of methods to return the entire list of reference objects such as
rate plans, payment methods and so on. These methods have the following syntax:

Some of the methods include:

! getAllRateplans()
! getAllPaymentMethods()

getAll<Object_Name>()

176 Developing Telco Service Manager (TSM)

Returning Only Certain Types of
Reference Data

For several reasons, you may not want to return the entire list of reference data for a
specified object. You may just want to use the objects that match specific criteria or
have a certain code.

This class also has a set of methods to filter the results using your criteria. These
methods have the following syntax:

! get<Object_Name>ByFilter(filter) to return objects matching
the specified criteria

! get<Object_Name>ByCode(code) to return objects matching the
specified code

 Managing Reference Data 177

Reloading Reference Data
In general, your reference data should not change frequently. But on occasion, you
may need to change this data. You can use the reference data reload feature to
program your application to reload reference data without having to take your
application off line.

You cannot use this feature to remove reference data and it cannot be used to add
new types of reference data. This feature is for reloading modified and new reference
information only. If you modify the data structure or remove reference information, you
must stop and restart your application server.

How the Internal BLM Cache Works
The BLM cache is a global cache for all user sessions. All of the cached BLM objects
are one of following types:

! GLOBAL The object is cached the entire life of the BLM host process.
! RELOADABLE The object is cached and can be updated using the reference data

reload feature.
! HTTP_REQUEST The object is cached and updated for each HTTP request.

The policy.properties configuration file contains the list of objects and their
assigned type. This file is located in <home_dir>/classes/nmycfg/blm/util.

The VERSIONS table contains information about the reference data. This table contains
the version of the reference data and its associated timestamp.

 178

Updating Reference Objects in the
Cache

By using the session management features, the BLM can check the CID to see if the
reference data has been modified.

You use the session.Add() to attach the session to a thread that performs the
HTTP requests. Every time you call the session.Add() method, the BLM
automatically checks the VERSIONS table to see if the timestamp has changed. If the
reference data has changed, the BLM updates all of the RELOADABLE objects in the
cache and starts the session.

Updating reference objects in the cache involves:

! Specifying the caching policy
! Creating batch files to reload the reference data

To specify the caching policy of BLM objects

1 Go to <home_dir>/classes/nmycfg/blm/util.

2 Open policy.properties.

3 Find the BLM object to modify.

4 Do one of the following:

! To cache object the entire life of the BLM host process, change the setting to
GLOBAL

! To update the object using the reference data reload feature, change the setting
to RELOADABLE.

! To update the object for each HTTP request, change the setting to
HTTP_REQUEST

5 Save your changes.

6 Restart your application server.

Do not change the Reference Data declared in this file. This data and its caching
policies are for internal use only and must not be modified.
To activate the reference data reload feature, you must change ALL of the GLOBAL
objects to RELOADABLE. You cannot mix GLOBAL and RELOADABLE cache settings.

To create a batch file to reload reference data

1 Create a batch file to extract and load information into the CID.

 Managing Reference Data 179

2 At the end of the transaction, do the following in the VERSIONS table:

When ITEM_CODE='REFERENCE_DATA', do the following:

! Replace ITEM_VERSION with the version of your reference data

! Replace ITEM_TIMESTAMP with the current date

Do not insert or change the information in the STRUCTURE data. This data is for internal
use only and must not be modified.

Programming your Application for Reference Data
Reloads

When programming your application to use the reload feature, you must keep in mind
that it is the application logic that:

! Checks the timestamp
! Manages the workflow changes

As you know which reference data may change, you can program your application to
take changes into account. Your application JSP should do the following:

1 Open and validate the session.

2 Use the ObjectRefMgr.getReferenceDataTimestamp() to return the time
stamp of the current reference data.

3 Store the timestamp in the HTTP session.

4 When the thread handles an HTTP request within the current session, retrieve the
timestamp and compare it with the stored timestamp.

! If the timestamps differ, the reference data has changed and the BLM cache
has been updated. You can change the workflow (display a message, reset the
workflow, and so on).

! If the timestamps are identical, the application continues normally.

180 Developing Telco Service Manager (TSM)

Concurrent user sessions may cause some problems and you should design your
application to take the following sequence of events:

In this sequence of events, the HTTP Query2 causes the BLM cache to be updated
because the reference data changed. In this case, the HTTP Query 1 cannot be
notified and the BLM cache might not contain data needed by the query. This is
especially important if your data reload contains modified reference information. This
situation does not cause problems when you reload only new reference information,
because the threads do not need to know about new information.

In order to avoid this situation, you can:

! Use this feature only to load modified or new information in existing reference
tables

! Block access to the impacted service during reloads (redirect to another JSP,
display a message)

! Limit the frequency of reloads
! Reload your data during off-peak hours

 For more information about the reload feature, refer to Administrating Telco Service &
Analytics Manager Applications.

 Managing Reference Data 181

Example of JSPs Using the Reference Data Reload
Feature

The following code is an example of the JSPF JSPs of the MyWeb channel.

Each time the application calls blmSession.add, the code extracts the timestamp
and compares them. If they are different, the JSP displays a message. You can also
customize it to call another JSP, change the workflow, end the session, or whatever
your application requires.

Using the reference data reload sample involves:

! Changing the properties of BLM objects
! Entering the code in the JSPF Framework
! Entering the message strings in the JSPF Framework configuration file
! Running your application

To customize the application to reload reference data

1 Go to <home_dir>/classes/nmycfg/blm/util.

2 Open policy.properties.

3 Change all of the reference data objects to RELOADABLE and save your changes.
The objects in the BLM cache can now be reloaded.

4 Go to <home_dir>/channels/common/fwk.

5 Open framework_start.jsp.

6 Go to the blmSession.add () function.

7 Under the blmSession.add () function, enter the following:
 // We get the CID Ref Data Timestamp and the last saved Reference Data Time
 Date current = ObjectRefMgr.getReferenceDataTimestamp ();

 Date oldDate = (Date)session.getValue ("REF_DATA_TIME");

 if (!current.equals (oldDate))
 {
 // The date has changed, save the new one
 session.putValue ("REF_DATA_TIME", current);
 // If we have already saved an old date
 if (oldDate != null)
 {
// The date of the data reference has changed. So we display an error
 Hashtable parameters = new Hashtable ();
 parameters.put ("title",jspHelper.localize("jfn_warning","Warning"));

 parameters.put ("section",jspHelper.localize("jfn_data_ref","Refence Data"));

 parameters.put ("message",jspHelper.localize("jfn_data_ref_reload","Reference data change"));

 response.sendRedirect (jspHelper.encodeURLFunct("GLOBAL.MESSAGE", parameters, true));
 exitJSP ();
 }
 }

182 Developing Telco Service Manager (TSM)

This code tells the JSPF framework to compare reference data timestamps. If the
timestamps are different, the JSPF displays a message.

1 Save your changes.

2 Go to <home_dir>/channels/WEB-INF/classes/nmycfg/jfn.

3 Open MyWeb.xml.

4 Create a framework_start.jsp strings section, then add the following:
<!-- Strings for framework_start.jsp -->

<!-- message strings -->

<!-- text strings -->

<string name="jfn_data_ref">

 <value name="en">Configuration Error</value>

 <value name="fr">Erreur de configuration</value>

</string>

<string name="jfn_data_ref_reload">

 <value name="en">The reference data has been changed.</value>

 <value name="fr">Les données de référence ont été changées.</value>

</string>

1 Save your changes.

MyWeb can now reload reference data and display a message telling users when it
happens.

To run the Reference Data Reload sample

1 Start your application server and open the MyWeb index.jsp. The login page
appears.

2 Log in using the following:

! UserName: tammy

! Password: tammy

The home page appears.

3 Click change your rateplan. The Manage Contracts page appears.

4 Open your database administration tool and change the reference data timestamp.

5 Commit your changes. You have changed the reference data timestamp. The next
time the application calls session.Add, the BLM updates its cache.

6 Go back to MyWeb and click View and Modify Contracts. MyWeb does the
following:

! Compares the timestamps and finds them different

! Empties the internal BLM cache

! Displays a message

C H A P T E R 1 0

Managing Changes to BLM
Objects

In This Section

About Changes to BLM Objects.. 184
Managing Basic Changes to Objects 185
Managing Changes with the ActionManager 186
Managing Changes in Synchronous Mode 187

 184

About Changes to BLM Objects
When users use TSM, they can modify BLM Objects. With simple modifications, you
can manage these changes directly with the BLM. For more complex modifications,
you use the ActionManager to manage how your application manages these changes.

You use the ActionManager if your application requires:

! Users creating complex requests such as composite requests.
! Users need to be able to change or remove requests before submitting them.
! User requests must be submitted in synchronous mode.

 185

Managing Basic Changes to Objects
This example is a simple add service request. This sample sends the modification to
the BLM which then inserts the request in the CID

 MANAGING SIMPLE CHANGES TO OBJECTS
UserF user = session.getUserF();

ContractF contract = user.getContracts()[0];

ListAddableServiceHelper lash = null;

AddableServiceIF svc = null;

ParameterIF[] params = null;

RequestIF rqst;

/*

* Sample to directly insert an add service request into CID

*/

lash = contract.getSubscriptableServices(null);

svc = lash.get(0);

params = svc.getDefaultParameters();

// Add Service request is directly inserted into CID

rqst = contract.addService(null, svc, params, null);

 186

Managing Changes with the
ActionManager

This example shows how to use the ActionManager to create a holder for requests.
The ActionMgr holds the requests until told to send the requests to the BLM for
insertion in the CID.

You use this feature to create shopping carts because the requests are held in the
action manager itself. As they are not sent to the BLM, users can modify all kinds of
information. Once they are finished, they validate the changes and the action manager
sends the information to the BLM for processing.

MANAGING CHANGES TO OBJECTS WITH AN ACTION MANAGER
UserF user = session.getUserF();

ContractF contract = user.getContracts()[0];

ListAddableServiceHelper lash = null;

AddableServiceIF svc = null;

ParameterIF[] params = null;

RequestIF rqst;

/*

* Sample to create a shopping cart with an add service request in it

*/

ActionMgrIF order = BlmFacade.createOrder(null);

lash = contract.getSubscriptableServices(order);

svc = lash.get(0);

params = svc.getDefaultParameters();

// Add Service request is stored in product cart, but not inserted in CID

rqst = contract.addService(order, svc, params, null);

// Product cart request is inserted into CID

// (-> add service rqst is now inserted as well)

RequestIF rqst_order = order.submit(RequestIF.SUBMIT_MODE_NORMAL);

For more information, refer to Working with Shopping Carts in this manual.

 187

Managing Changes in Synchronous
Mode

This example shows how to send changes to the BLM for processing in synchronous
mode. This example sends changes directly to the BLM which then inserts the request
directly in the CID.

MANAGING CHANGES TO OBJECTS IN SYNCHRONOUS MODE
UserF user = session.getUserF();

ContractF contract = user.getContracts()[0];

ListAddableServiceHelper lash = null;

AddableServiceIF svc = null;

ParameterIF[] params = null;

RequestIF rqst;

/*

* Sample to insert an add service request in CID with "synchronous" mode

*/

ActionMgrIF actionmgr = BlmFacade.createActionManager();

lash = contract.getSubscriptableServices(actionmgr);

svc = lash.get(0);

params = svc.getDefaultParameters();

// Add Service is stored in action manager, but not inserted in CID

rqst = contract.addService(actionmgr, svc, params, null);

// Add service request is inserted into CID with "synchronous" mode

actionmgr.submit(RequestIF.SUBMIT_MODE_SYNCHRONOUS_NORMAL_ON_ERROR);

C H A P T E R 1 1

Working with Shopping Carts

In This Section

About Shopping Carts ... 190
About the BLM Interfaces.. 191
Before Developing Shopping Carts... 192
Creating a Simple Shopping Cart.. 194
Managing Complex Shopping Cart Contents.......................... 197
Modifying a Shopping Cart Item.. 208
Displaying the Contents of a Shopping Cart 214
Saving Shopping Carts ... 218
Using Shopping Cart Templates ... 221

190 Developing Telco Service Manager (TSM)

About Shopping Carts
You can use the shopping cart feature to greatly enhance your TSM. This feature is
available in the MyWeb channel and involves both the Presentation and Business
Logic layers.

This feature is the key to building an application where end-users are able to group,
check and modify their orders before submitting them in a single click.

This chapter covers the technical details of the shopping cart and the entities you
handle while developing shopping carts for your application. It covers shopping carts
from a simple implementation that handles a single order to a fully-featured shopping
cart where complex objects are handled. You also see how to save the contents of
shopping carts and use the saved shopping cart contents.

 Working with Shopping Carts 191

About the BLM Interfaces
When creating a shopping cart, you use the following BLM API interfaces:

! ActionItem (ActionItemIF)
! ActionManager (ActionMgrIF)

These two interfaces are used to manage the persistence of modifications made to
BLM objects. This means that the shopping cart feature is technically the use of Action
Managers.

The principle of a shopping cart is to associate an Action Manager or an Action Item to
BLM objects. Once you do this, you can manage the changes made to these objects
and decide when to submit the associated requests.

The Action Manager interface inherits the Action Item interface. That means Action
Manager and Action Item interfaces are used for similar actions.

The Action Manager interface offers the capability of creating children items. This
capability is very helpful when you have to group actions together as a major one.

192 Developing Telco Service Manager (TSM)

Before Developing Shopping Carts
Before you start developing your shopping carts, you should read this section. This
section covers important information you need to keep in mind while developing your
shopping cart. It also gives an overview of the samples and methodology covered in
the examples.

Action Manager Hierarchies
Action Managers support hierarchies.

You can use this feature to:

! Handle several order type actions
! Handle actions on objects that depend on each other

Action Manager Types
The BLM handles two kinds of Action Managers:

! Action Managers for Orders
With this kind of action manager, you can handle several actions within the same
action manager. You can use this action manager for almost any action except
creating an organization, because the BLM comes with a special type of action
manager for creating single objects such as organizations. For example, you can
handle the creation of:

! Several new contracts

! Several new members

! Several new services

You use the BlmFacade.createOrder() method to handle this kind of
shopping cart.

! Action Managers for Creating Single Objects
With this kind of action manager, you can handle the creation of a new complex
object:

! New organization

! New member

! New contract

You use the BlmFacade.createActionManager() method to handle this kind
of shopping cart.

 Working with Shopping Carts 193

About the Presentation Layer
The MyWeb channel has a presentation layer that:

! Handles only one shopping cart in a given HTTP session.
Because there are two distinct kinds of shopping carts, not all of the actions can be
mixed and be handled as persistent in shopping carts within the same HTTP
session.

! Provides helpers in the JSPF to handle the shopping cart objects.
By using these helpers, you do not have to interact with the BLM facade.

194 Developing Telco Service Manager (TSM)

Creating a Simple Shopping Cart
To help you understand how to handle the basic workflow of a shopping cart, you can
use the example of a simple shopping cart. The examples in this section show you how
to manage Add Service workflows. In your application, instead of directly submitting an
AddService action, you put it into a shopping cart and when you submit the shopping
cart, the AddService action is processed and all of the required requests are
generated.

Creating a simple shopping cart involves:

1 Declaring and retrieving the shopping cart

2 Listing the services the user can add

3 Adding the selected services to the shopping cart

4 Submitting the shopping cart

Declaring and Retrieving the Shopping Cart
The shopping cart is stored in the HTTP session. In each form handler page you use
to manage your shopping cart, retrieve the reference of the shopping cart object.

The JSPF JFNJspHelper class contains a method that helps you Declare and
retrieve a Shopping Cart. The getCurrentShoppingCart() method returns a
shopping cart object handle for the current user session:

! If the shopping cart object has already been created, the method returns the object
reference.

! If the shopping cart object does not exist, the method creates the object and returns
its object reference.

This sample code shows how to retrieve the shopping cart object reference:
 ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart();

The shoppingCart variable now contains the shopping cart for the current user.

 Working with Shopping Carts 195

Listing Services in the Shopping Cart
When you list the services, you need to make sure you do not list services that have
already been added into the current shopping cart.

The getAddableServices() method has a filtering feature to do this. You call the
method and pass the current shopping cart object reference as an input parameter:
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart();

AddableServiceIF[] addableServices;

addableServices = contract.getAddableServices (shoppingCart, null, �);

Adding Services to the Shopping Cart
To add a service to your shopping cart, you put an add service action into the shopping
cart. You call the addService() method and pass the current shopping cart object as
the first input parameter.

This sample code puts an add service action into the shopping cart. This code
assumes that you have already retrieved the reference of the Contract object that the
service will be added to.

In this example, the first argument is the shopping cart that was just returned. The
other parameters come from the form in the JSP.

The add service action is now handled by the shopping cart
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart();

contract.addService (shoppingCart, ratePlanService, parameters, quantity, �);

Submitting the Shopping Cart
When finished, your workflow may have a summary page with a Submit button. This
button submits the contents of the shopping cart.

This sample code submits the contents of the shopping cart and removed the shopping
cart object handler from the user session. This code is located in the logic_handler
page of the workflow.
shoppingCart = jspHelper.getCurrentShoppingCart();

shoppingCart.submit(RequestIF.SUBMIT_MODE_NORMAL);

jspHelper.destroyCurrentShoppingCart();

196 Developing Telco Service Manager (TSM)

The submit() method throws an exception if a problem occurs when submitting the
contents of the cart.

Once the contents of the cart has been submitted, you should use the
destroyCurrentShoppingCart() method to destroy the shopping cart. This
method removes the shopping cart object reference from the HTTP session.

 197

Managing Complex Shopping Cart
Contents

Your application may require shopping carts that are more complex than the simple
shopping cart. For example, your application may let users change services that are in
a shopping cart.

These examples show you how to handle several levels of actions inside your
shopping cart, taking advantage of the hierarchy of Action Manager objects. You can
also see how to retrieve an object from the shopping cart, complete it, and then update
it in the shopping cart.

The following examples show you how to create:

! A shopping cart that allows existing users to add contracts and services to these
contracts

! A shopping cart that allows first-time users to sign up and add contracts and
services to the contracts

Creating a Complex Shopping Cart for Contracts
To help you understand how to handle users adding contracts then adding services to
this contract, you can use the example of a complex shopping cart.

Creating an Add Contract / Add Service shopping cart involves:

1 Declaring and retrieving the shopping cart

2 Creating a child action manager

3 Adding the contract to the shopping cart

4 Adding a service using the child action manager

5 Submitting the shopping cart

198 Developing Telco Service Manager (TSM)

Declaring and Retrieving the Shopping Cart

The shopping cart is stored in the HTTP session. In each form handler page you use
to manage your shopping cart, retrieve the reference of the shopping cart object.

The JSPF JFNJspHelper class contains a method that helps you Declare and
retrieve a Shopping Cart. The getCurrentShoppingCart() method returns a
shopping cart object handle for the current user session:

! If the shopping cart object has already been created, the method returns the object
reference.

! If the shopping cart object does not exist, the method creates the object and returns
its object reference.

This sample code shows how to retrieve the shopping cart object reference:
 ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart();

The shoppingCart variable now contains the shopping cart for the current user.

 Working with Shopping Carts 199

Creating a Child Action Manager

You use Child Action Managers to manage Action Manager hierarchies.

You use them to manage actions and sub actions to objects in the shopping cart.

In the case of managing complex shopping carts, we create new contract, add a
service to this new contract and submit all the requests. In this case, the Add Service
action is considered as a sub action of the Create Contract action.

When doing this, the Create Contract action should be handled through a child Action
Manager to ensure that a hierarchy of Action Manager objects is created.

This table contains a list of Action/Subactions you may have to process and which
require a hierarchy of Action Manager objects to be handled:

ACTION SUBACTIONS

Add Organization • Add Member

• Add Contract

• Migrate contract

• Add legal contact

• Add billing contact

• Add billing account

• Declare payment responsible

• Add level

• Add manager

Add Member • Add contract

• Migrate contract

• Add legal contact

• Add billing contact

• Add billing account

• Declare payment responsible

• Set language

• Set persnalization data

• Add login

Add Contract Add service

Migrate Contract Add service

Add level • Add legal contact

• Add billing contact

• Add billing account

• Declare payment responsible

• Add member

• Add contract

• Migrate contract

200 Developing Telco Service Manager (TSM)

This sample code shows you how to create a child Action Manager in the current
shopping cart:
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart();

ActionMgrIF actionMgrChild;

actionMgrChild = shoppingCart.createChild();

 201

Adding a Contract
Once the child Action Manager is available, you post the Create Contract action to the
shopping cart using this child Action Manager object.

This sample code shows you how to post the Create Contract action:
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart();

ActionMgrIF actionMgrChild;

ActionMgrChild = shoppingCart.createChild();

ContractIF contract;

contract = organization.createContract (actionMgrChild, null, ratePlan, contractType,�);

The Create Contract action is linked to the actionMgrChild object. As the
actionMgrChild object is one of the shopping cart Action Manager child objects, the
Create Contract action is handled by the shopping cart.

You now need to retrieve the Contract object that is created by the Create Contract
action.

 202

Adding a Service to the Contract
Once you have created the contract in the shopping cart, you can get a reference to
this object, handle it, and perform actions such as Add Service.

To add a service to a contract in a shopping cart involves

1 Getting the Action Manager object related to the newly created contract (this is
actually the Action Manager child <actionMgrChild> object).

2 Retrieving handle to the contract object.

3 Adding a service to this contract by using the addService() method.

The sample code below assumes that:

 You implement the Add Service action in a logic handler and the Create Contract
action in another.

You pass the Id of the Action Manager that handled the contract creation to the second
form handler through the HTTP request.

You get Action Manager ID by using the ActionManagerIF.getIdentifier()
method.

The sample code shows you how to retrieve the action manager object reference
through the HTTP request parameters.

For this example, this code retrieves the Action Manager child object used for the
Create Contract action.
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart();

ActionItemIF item;

ActionMgrIF actionMgrChild;

item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("action_id")),true);

actionMgrChild = (ActionMgrIF) item;

Once you retrieve the Action Manager child object, you can retrieve the Contract object
it handles.

The sample code shows you how to retrieve the Contract object:
ContractIF contract;

contract = (ContractIF)actionMgrChild.getObject();

 Working with Shopping Carts 203

The getObject method always returns the created object.

Now you can add the service to the contract.

Adding a service to the contract is the same standard way described above, but in this
workflow you work with the child Action Manager and not the shopping cart object.
contract.addService (actionMgrChild, ratePlanService, parameters, quantity, �);

The multi-form_handler workflow we have described is based on the capability to pass
action manager Ids through HTTP requests and knowing the parameters coming from
the form handler that handles the Add Service action.

The getObject Java call casts the results to a ContractIF type to ensure you
retrieve the object from the Action Manager as a Contract.

When implementing the second form handler, the action manager you get from the
HTTP request handles a contract object.

Submitting the Shopping Cart

When finished, your workflow may have a summary page with a Submit button. This
button submits the contents of the shopping cart.

This sample code submits the contents of the shopping cart and removed the shopping
cart object handler from the user session. This code is located in the logic_handler
page of the workflow.
shoppingCart = jspHelper.getCurrentShoppingCart();

shoppingCart.submit(RequestIF.SUBMIT_MODE_NORMAL);

jspHelper.destroyCurrentShoppingCart();

The submit() method throws an exception if a problem occurs when submitting the
contents of the cart.

Once the contents of the cart has been submitted, you should use the
destroyCurrentShoppingCart() method to destroy the shopping cart. This
method removes the shopping cart object reference from the HTTP session.

 204

Creating Customers in the
Shopping Cart

To help you understand how to handle creating a new customer and then adding a new
contract, you can use this example of a complex shopping cart.

Creating an Add Customer shopping cart involves:

1 Specifying the correct action manager

2 Adding a customer

3 Adding a contract

4 Submitting the shopping cart

Specifying the Action Manager

There are two kinds of Action Managers:

! Action Managers for Order requests
! Action Managers for Create Organization requests

When creating customers, you have to explicitly create an ActionManager object from
the BLM facade. When you do this, you get an Action Manager that supports Create
Organization actions.

The sample code shows you how to return a Create Organization action manager:
ActionMgrIF shoppingCart = null;

shoppingCart = BlmFacade.createActionManager();

jspHelper.setCurrentShoppingCart(shoppingCart);

 Working with Shopping Carts 205

Adding a Customer

You handle the Add Member action the same way you did with the Create Contract
action when managing complex shopping cart contents.

Adding a member involves a hierarchy of actions and then processing the workflow
using child Action Manager objects.

After creating an organization in the shopping cart, the sample code sample shows you
how to retrieve the shopping cart object and post the Add Member action:
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart();

ActionMgrIF actionMgrChild;

actionMgrChild = shoppingCart.createChild();

OrganizationIF customer;

customer = (OrganizationIF)shoppingCart.getObject();

MemberIF member;

member = customer.addMember (actionMgrChild,�);

Adding a Contract

You can add a contract to the member you just created.

Because the Contract is to be linked to this member, you have to create the contract
using a new Action Manager child object.

This Action Manager object should be a child of the Action Manager object that
handles the Add Member action.

To do this, you:

1 Retrieve the Action Manager child object that handles the AddMember action.

2 Create a new ActionManager child object, as a sub-action manager for the just
retrieved action manager object.

3 Add the Contract through this new Action Manager child object.

206 Developing Telco Service Manager (TSM)

We assume you want to add a contract using a different form handler than the one
used to create the member. We also assume that you pass the action manager�s id to
this page with the request (returned by calling
�actionMgrChild.getIdentifier()�).

The sample code sample assumes that:

! You implement the Add Contract action using another logic handler than the one
which handled the Add Member action.

! You pass the Id of the Action Manager that handled the Add member creation to
the second form handler by using the HTTP request.

The sample code shows you how to retrieve the action manager object reference in the
HTTP request parameters.

This code retrieves the Action Manager child object you used for the Add Member
action.
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart();

ActionItemIF item;

ActionMgrIF actionMgrMember;

item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("action_id")),true);

actionMgrMember = (ActionMgrIF) item;

After retrieving the Action Manager object reference, create a child Action Manager
object:
ActionMgrIF actionMgrContract;

actionMgrContract = actionMgrMember.createChild();

Now you can add the contract using this new Action Manager child object

Because of the business model, a contract is not directly linked to a member but to an
organization.

Consequently, you add the Contract to the organization of the newly created member.

! Both member and contract objects you create through the shopping cart (and child
action managers) are linked to the current Organization objects.

! The Action Manager child objects hierarchy structure handles the association
between the contract and the member that uses it.
OrganizationIF customer;

customer = (OrganizationIF)shoppingCart.getObject();

ContractIF contract;

contract = customer.createContract (actionMgrContract, null, ratePlan, contractType,�);

 Working with Shopping Carts 207

You can now submit the shopping cart. This submits all of the actions handled by the
hierarchy of Action Manager objects hierarchy.

Submitting the Shopping Cart

When finished, your workflow may have a summary page with a Submit button. This
button submits the contents of the shopping cart.

This sample code submits the contents of the shopping cart and removed the shopping
cart object handler from the user session. This code is located in the logic_handler
page of the workflow.
shoppingCart = jspHelper.getCurrentShoppingCart();

shoppingCart.submit(RequestIF.SUBMIT_MODE_NORMAL);

jspHelper.destroyCurrentShoppingCart();

The submit() method throws an exception if a problem occurs when submitting the
contents of the cart.

Once the contents of the cart has been submitted, you should use the
destroyCurrentShoppingCart() method to destroy the shopping cart. This
method removes the shopping cart object reference from the HTTP session.

 208

Modifying a Shopping Cart Item
Your application may let users modify the contents of the different items in the
shopping cart.

This section helps you understand how to implement a workflow to modify an object in
a shopping cart.

Modifying an item in the shopping cart involves:

1 Creating a link to a modify page

2 Modifying the entry using one of the following methods:

! Editing the object

! Modifying an object�s additional information

! Modifying the quantity ordered

! Modifying parameters of an object (only supported for service parameters)

Editing the Object
When editing an item in a shopping cart, you:

1 Create the link to a detail page

2 Get the object from the shopping cart

3 Modify it

4 Send it back

In general, you modify shopping cart items in a separate page. You must pass the
entry id to the modify page by using the HTTP request. The sample code shows how to
modify the add legal contact entry.
ActionItemIF addMemberEntry;

Hashtable parameters = new Hashtable ();

parameters.put (�action_id�, entry.getIdentifier().toString());

<a href=�<%=jspHelper.encodeURLFunct("MODIFY_PAGE_STEP",parameters, false)%>�>Modify entry

 Working with Shopping Carts 209

This code illustrates the complete sequence required to modify the legal contact:
ContactIF legalContact;

// write the code to fill the legalContact with the request parameters.

ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart ();

ActionItemIF item;

ActionMgrIF actionMgr;

item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("action_id")),true);

actionMgr = (ActionMgrIF) item;

MemberIF member;

member = (MemberIF)actionMgr.getObject();

member.modifyLegalContact (actionMgr, legalContact, null);

You can use the same logic handler to modify or create the entry:
ContactIF legalContact;

ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart ();

ActionItemIF item;

ActionMgrIF actionMgr;

if (request.getParameter("parent_id")!= null)

 {

 // You need to specify the id of the parent entry to know where to add the new one.

 // the parent_id is set to the member action manager when creating the contract

 item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("parent_id")),true);

 actionMgr = (ActionMgrIF) item;

 MemberIF member;

 member = (MemberIF)actionMgr.getObject();

 // Write the code here to fill the contactMgr with the request parameters.

 member.createContact (actionMgr, legalContact, null);

 }

else

 {

 // here the action_id is set to addlegal contact action item

 // when modifying an add legal contract entry

 item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("action_id")),true);

 actionMgr = (ActionMgrIF) item;

 MemberIF member;

 member = (MemberIF)actionMgr.getActionMgr().getObject();

 // Write the code to fill the contactMgr with the request parameters.

 member.modifyLegalContact (actionMgr, legalContact, null);

 }

210 Developing Telco Service Manager (TSM)

Modifying Additional Information
You can also modify the additional information of objects in the shopping cart.

To change additional parameter values, you:

1 Create the link to a "modify" page

2 Get the entry to be modified

3 Call the modify additional information method for the entry

In general, you modify shopping cart items in a separate page. You must pass the
entry id to the modify page by using the HTTP request. The sample code shows how to
modify the additional information of the object related to an action manager.
ActionItemIF entry;

ParameterIF[] criteria=new ParameterIF[0];

if ((entry.getOptParameters (criteria)!=null) && (entry.getOptParameters (criteria).length>0))

 {

 Hashtable parameters = new Hashtable ();

 parameters.put (�action_id�, entry.getIdentifier().toString());

 <a href=�<%=jspHelper.encodeURLFunct("MODIFY_PAGE_STEP",parameters, false)%>�>Modify entry

 }

In the modify form handler, you get the entry to modify:
ActionItemIF item;

ActionMgrIF actionMgr;

item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("action_id")),true);

actionMgr = (ActionMgrIF) item;

 // Fill the newParameters array with the request data

This code illustrates the complete sequence required to change additional information.
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart ();

ActionItemIF item;

item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("action_id")),true);

ParameterIF []newParameters;

 // Additional information are part of the request data

item.setOptParameters (newParameters);

 211

Modifying the Quantity
You can only modify the quantity of services.

Modifying the quantity of services involves:

1 Creating a link to a "modify" page if the service quantity is modifiable

2 Getting the service to modify

3 Calling the modify entry quantity method

In general, you modify shopping cart items in a separate page. You must pass the
entry id to the modify page by using the HTTP request. The sample code shows how to
modify the service quantity.

ActionItemIF currentService;

If ((currentService.getMaxQuantity ()>=2) && (currentService.getMaxQuantity ()!=currentService.getMinQuantity
()))

 {

 Hashtable parameters = new Hashtable ();

 parameters.put (�action_id�, currentService.getIdentifier().toString());

 <a href=�<%=jspHelper.encodeURLFunct("MODIFY_QUANTITY_STEP", parameters, false)%>�>Modify service quantity

 }

The modify quantity entry method to call:
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart ();

ActionItemIF item;

item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("action_id")),true);

int quantity;

 // Fill the quantity object with the request data

item.setQuantity(quantity);

Modifying Service Parameters
Modifying service parameters involves:

1 Creating a link to a "modify" page if the service is modifiable

2 Getting the service to modify

3 Calling the modify entry parameters method

212 Developing Telco Service Manager (TSM)

In general, you modify shopping cart items in a separate page. You must pass the
entry id to the modify page by using the HTTP request. The sample code shows how to
modify the service parameters.
ActionItemIF currentService;

If (currentService.isModifiable ())

 {

 Hashtable parameters = new Hashtable ();

 parameters.put (�action_id�, currentService.getIdentifier().toString());

 <a href=�<%=jspHelper.encodeURLFunct("MODIFY_SERVICE_STEP",parameters, false)%>�>Modify service parameters

 }

This code illustrates the complete sequence required to change set new parameter
value.
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart ();

ActionItemIF item;

item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("action_id")),true);

ParameterIF []newParameters;

 // Fill the newParameters array with the request data

item.setModifiableParameters (newParameters);

Removing a Shopping Cart Item
Removing an item from the shopping cart involves:

1 Create a link to a "remove" page if the entry can be removed

2 Get the entry to remove

3 Call the remove entry method on its parent

The following code shows how to create the link.
ActionItemIF entry;

If (entry.isRemovable ())

 {

 Hashtable parameters = new Hashtable ();

 parameters.put (�action_id�, entry.getIdentifier().toString());

 <a href=�<%=jspHelper.encodeURLFunct("REMOVE_ENTRY_STEP",parameters, false)%>�>Remove entry

 }

The following code illustrates the complete sequence required to remove the entry
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart ();

ActionItemIF item;

item = shoppingCart.getActionItem (ObjectId.instantiate(request.getParameter("action_id")),true);

item.getActionMgr ().removeActionItem (item);

 Working with Shopping Carts 213

 214

Displaying the Contents of a
Shopping Cart

Your application may display the contents of a shopping cart to users so they can look
over their order before submitting them.

These examples show you how to browse and display the contents of a shopping cart.
This example is based on a shopping cart creating a customer.

Browsing the shopping cart
Browsing the shopping cart involves:

1 Getting the created customer

2 Getting the customer contact and payment information

3 Getting the members created

4 Getting the member contacts and logins

5 Getting the created contracts of each member

6 Getting the contract services

You get the created customer by retrieving the shopping cart:
ActionMgrIF shoppingCart = null;

shoppingCart = jspHelper.getCurrentShoppingCart ();

 You get the customer contact and payment information:
ActionItemIF[] legalContacts;

legalContacts = shoppingCart.findActionItemsByAction (DescriptorOidIF.ACTION_ADD_LEGAL_CONTACT, false);

ActionItemIF[] billingContacts;

billingContacts = shoppingCart.findActionItemsByAction(DescriptorOidIF.ACTION_ADD_BILLING_CONTACT, false);

ActionItemIF[] billingAccounts;

billingAccounts = shoppingCart.findActionItemsByAction (DescriptorOidIF.ACTION_ADD_BILLING_ACCT, false);

Get the created members:
ActionItemIF[] members;

members = shoppingCart.findActionItemsByAction (DescriptorOidIF.ACTION_ADD_MEMBER, false);

 Working with Shopping Carts 215

For each member, you get the contacts, logins and contracts:
ActionMgrIF currentMember;

for (int intMembers=0; intMembers < members.length; intMembers++)

 {

 currentMember = (ActionMgrIF) members[intMembers];

 ActionItemIF[] legalContacts;

 legalContacts = currentMember.findActionItemsByAction (DescriptorOidIF.ACTION_ADD_LEGAL_CONTACT, false);

 ActionItemIF[] billingContacts;

 billingContacts = currentMember.findActionItemsByAction(DescriptorOidIF.ACTION_ADD_BILLING_CONTACT, false);

 ActionItemIF[] logins;

 logins = currentMember.findActionItemsByAction (DescriptorOidIF.ACTION_ADD_LOGIN, false);

 ActionItemIF[] contracts;

 contracts = currentMember.findActionItemsByAction (DescriptorOidIF.ACTION_ADD_CONTRACT, false);

 }

For each contract, you get its contracted services:
ActionMgrIF currentContract;

For (int intContracts=0; intContracts < contracts.length; intContracts++)

 {

 currentContract = (ActionMgrIF) contracts[intContracts];

 ActionItemIF[] services;

 services = currentContract.findActionItemsByAction (DescriptorOidIF.ACTION_ADD_SERVICE

, false);

 }

The sample code shows detailed information (actually objects parameters and
attributes) that is handled by the shopping cart through Action Item objects.

You should be familiar with the types of action items you can work with.

216 Developing Telco Service Manager (TSM)

Displaying All Items
To display shopping cart entries, you use the generic methods of Action Item objects.

The following generic methods are available for every type of entry in your shopping
cart:

METHOD COMMENTS

ActionItemIF.getAction().getItemName() Get the localized name of the entry type.
(ex. Contract, Member, �)

ActionItemIF.getLabel () Get useful information specifying the
entry. (ex. service name in case of an
add service entry)

ActionItemIF.getQuantity () Get the ordered quantity if applicable,
returns �1 if not

ActionItemIF. getAmount(ActionItemIF.FEE_ACCESS)

Or

ActionItemIF. GetAmount(ActionItemIF.FEE_SUBSCRIPTION)

Get the two possible costs of an entry if
applicable, or return Double.NaN if not.

If you want to display the total cost of the contents of your shopping cart, use the
following method:
double totalFeeAccess = shoppingCart.getTotalAmount(ActionItemIF.FEE_ACCESS);

double totalFeeSubscription = shoppingCart.getTotalAmount(ActionItemIF.FEE_SUBSCRIPTION);

 Working with Shopping Carts 217

Working with core services
When working with the shopping cart, remember the following when dealing with core
services.

! While creating a contract, core services are automatically included when submitted.
! When creating a contract using a shopping cart, the core services included with the

new contract object are not available as shopping cart action items.

Therefore, you cannot handle core services through generic action item APIs.

If you need to display them for a contract being created in the shopping cart, you can
use the following code:
ContractIF contract;

Contract = (ContractIF) currentContract.getObject ();

ContractedServiceIF[] coreServices;

coreServices = contract.getContractedServices(null,null); // null because we want only core services

Retrieving the detail of an entry
To get more details of an item:

! If the item is itself an action manager or is an add billing account action, use the
following code:

MemberIF member;

member = (MemberIF)currentMember.getObject();

// Insert code to display any attribute of the member

! You must get the parent object then retrieve the object to display. The following is
an example of getting the added legal contact of a created member.
ActionItemIF currentLegalContact;

ActionMgrIF parentActionMgr;

MemberIF member;

parentActionMgr = currentLegalContact.getActionMgr();

member = (MemberIF)parentActionMgr.getObject();

ContactIF legalContact;

legalContact = member.getLegalContact();

 218

Saving Shopping Carts
Your application may need to create a backup copy of the contents of a shopping cart
for several reasons. These reasons include:

! Users losing their connections and the sessions time out
! Remember the contents of a shopping cart for users when reconnect to the

application

These examples show you how to backup the contents of the shopping cart and
display the contents of a saved shopping cart. Not only can this feature be used for
backup copies of the shopping cart, you can also create content templates in order to
create shopping carts with predefined items.

About Saving Shopping Carts
When saving shopping carts and their contents, you should keep in mind the following:

! You use the PersistentActionManager interface to manage the persistence of
an action manager

! There is no limit to the number of saved shopping carts per user
! There is no history of saved shopping carts

You use
com.netonomy.blm.interfaces.util.PersistantActionManagerIF to
manage shopping carts saved in the CID. When saving an action manager, you can
set the following:

! Name to identify the persistent shopping cart if required
! Description to describe it if required
! Category to specify the future use
! Additional information to be used as criteria to retrieve it if required

When saving PersistentActionManagers in the CID, you use the CORE_BACKUP
category for backup copies. You can also create your own categories in the CID to
save Persistent Action Managers. When retrieving saved PersistentActionManagers
from the CID, you use the
ObjectRefMgr.getPersistentActionMgrCategoryByCode method to retrieve a
list of the saved PersistentActionManagers. You can then look for the optional name,
description, or additional parameters.

The Shopping Cart Package of the CID contains the tables used to save the
information concerning the shopping cart. The tables include:

! PERSISTENT_ACTIONMGR_CATEGORY Table
! PERSISTENT_ACTIONMGR Table

 Working with Shopping Carts 219

Saving a Shopping Cart
Your application may need to save the shopping cart while the user adds and modifies
the contents of the shopping cart.

Saving the contents of a shopping cart involves:

1 Creating a Persistent Action Manager

2 Saving the action manager using the Persistent Action Manager

3 If required, update the attributes of a saved copy. For saved copies, you can only
update the attributes. If you need to save other changes, use the standard method
to save the shopping cart.

The sample code shows how to create and update a Persistent Action Manager:

PersistentActionMgrIF persistentActionMgr=ObjectMgr.createPersistentActionManager();

PersistentActionMgrCategoryIF persistentActionMgrCat= null;

 persistentActionMgr.setCategory(persistentActionMgrCat);

persistentActionMgrCat= ObjectRefMgr.getPersistentActionMgrCategoryByCode("CORE_BACKUP");

// get current shopping cart from the session to save

ActionMgrIF actionMgr = JFNJspHelper.getCurrentShoppingCart();

 if ((actionMgr != null) && (actionMgr.getActionItems().length > 0))

 {

 //Set the name of the persistent action manager

 //for your application if required

 persistentActionMgr.setName("PAM name");

 //Set the description of the persistent action manager

 //for your application if required

 persistentActionMgr.setDescription("PAM description");

 //Set the category of the persistent action manager

 //to one of the categories in the PERSISTENT_ACTIONMGR_CATEGORY table

 //in this example, it is the CORE_BACKUP.

 //Set the additional parameters of the

 //persistent action manager if required

 persistentActionMgr.setAdditionalParameters(yourAdditionalParameters[]);

 //Save to the database

 persistentActionMgr.persist(actionMgr);

 }

//code your application

//Update if required

persistentActionMgr.update();

220 Developing Telco Service Manager (TSM)

Create a Shopping Cart from a Saved Copy
Your application may save the contents of the shopping cart for workflows or security
reasons. You may also have templates you want to use to create content templates to
ease navigation and create ready-to-purchase shopping cart contents.

To create a shopping cart from a saved Persistent Action Manager, you:

1 Find the Persistent Action Manager to use.

2 Fill the Action Manager with the contents of the correct Persistent Action Manager.

3 Verify the contents of the Action Manager.

4 Declare this Action Manager as the current shopping cart.

5 Remove old persistent shopping carts.

This example contains code to create a shopping cart from backup copies when the
user logs in.
PersistentActionMgrIF persistentActMgr;
ActionMgrIF action;
ParameterIF[] criteria;
FilterIF filter;
// get filter, fill mandatory criteria

filter = ObjectRefMgr.getFilterByCode("CORE_PAMBYCATEGORY");
criteria = filter.getCriteria(FilterIF.ALL);

// get the Persistent Action Manager created by the specified user and category

((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,
"CORE_C_PAMGENERATEDBY")).setDynamicValue(user.getLoginId());

((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,
"CORE_C_PAMCATEGORY")).setDynamicValue(ObjectRefMgr.getPersistentActionMgrCategoryByCode("CORE_BACKUP").getIden
tifier());

PersistentActionMgrIF[] actMgrs = ObjectMgr.searchPersistentActionManagers(filter);
 if (actMgrs.length > 0)

 {
 // Fill the Action ManagerIF with the first Persistent Action Manager found (the newest one)
 action = actMgrs[0].instantiateActionMgr();
 if (action != null)
 {
 // Test Action Manager to make sure the contents are valid
 BLMErrorIF[] actionMgrError = action.verify();
 if (actionMgrError.length == 0)
 {
 // Declare this new Action Manager as the current shopping cart for this session
 jspHelper.setCurrentShoppingCart(action);
 // Delete all returned persistent shopping carts
 for (int j=0;j<actMgrs.length;j++)

 {
 actMgrs[j].delete();
 }
 }
 else {
 // Code error management if content is not valid
 }
 }
 }

 221

Using Shopping Cart Templates

About Persistent Action Managers
Shopping Carts correspond to BLM Action Managers. These action managers do
exactly what their name implies, they manage the actions in the current context. An
action manager is considered a shopping cart when it holds a set of actions to submit
at the same time. The types of action managers are:

! Action Managers
! Persistent Action Managers

The context of your application determines which type of action manager you use. In
general, you use Action Managers to manage the actions in a specific context or
workflow. However these action managers and their contents cannot be saved. If your
application requires saving the contents of an action manager, you use Persistent
Action Managers. The saved Persistent Action Managers can be backup copies of the
shopping cart or used as a shopping cart template.

When saving persistent action managers as Shopping Carts and templates, you should
keep in mind the following:

! There is no limit to the number of saved persistent action managers
! There is no history of saved persistent action managers

Shopping Cart templates have the following:

! Name
! Description
! Category
! Additional information to be used as criteria to retrieve it

The shopping carts are saved in the same table as the backup shopping carts. This
information is in the Shopping Cart Package tables in the CID:

! PERSISTENT_ACTIONMGR_CATEGORY Table
! PERSISTENT_ACTIONMGR Table

 222

About Shopping Cart Templates
You can create and manage shopping cart templates. One of the primary uses of a
shopping cart template is to implement quick buy features where your application
presents pre-configured shopping carts to users. The templates may correspond to
contracts with a specific rate plan and selection of services. Once these templates are
saved, your application can use them to fill a shopping cart with all the options and
services needed to let users order quickly and without having to go through an entire
workflow to sign up to for a contract.

Technically, a shopping cart template is a saved Persistent Action Manager. There is
also a tool to help you manage the templates you create.

For more information about managing saved templates, refer to Administrating Telco
Service & Analytics Manager Applications.

Using shopping cart templates involves:

! Saving shopping carts as templates
! Viewing the list of available templates
! Using a template to quickly create a new order
! Deleting shopping cart templates

The examples show you how to save the contents of the shopping cart as a template.
You can then view the template, use it in a shopping cart. Once it is no longer needed,
an example shows you how to delete it.

This feature is restricted to creating and managing contract templates.

Saving a Shopping Cart as a Template
Saving the contents of a shopping cart as a template involves:

1 Creating a Persistent Action Manager.

2 Setting the category of the Persistent Action Manager

3 Saving the Persistent Action Manager as a template.

 Working with Shopping Carts 223

The sample code shows how to save an Action Manager as a template:

Get the current
Action Manager
and create the
Persistent
Action Manager

ActionMgrIF actionMgr;

//The code below gets the current action manager.

actionMgr = getCurrentActionMgr (request, response, jspHelper);

PersistentActionMgrIF persistentActionMgr = ObjectMgr.createPersistentActionManager();

Set the
category, name
and description

//The code below initializes the category and sets the category of the
// Persistent Action Manager to save.

PersistentActionMgrCategoryIF persistentActionMgrCat =
ObjectRefMgr.getPersistentActionMgrCategoryByCode("CORE_CONTRACTTEMPLATE");
persistentActionMgr.setName (request.getParameter ("template_name"));
persistentActionMgr.setDescription (request.getParameter ("template_description"));
persistentActionMgr.setCategory (persistentActionMgrCat);

Save the
Persistent
Action Manager

persistentActionMgr.persist (actionMgr);

Getting the List of Available Templates
Displaying the list of shopping cart templates involves:

! Getting the list of available templates

The sample code shows how to display the list of templates:

Declare
variables

PersistentActionMgrIF []templates;

ParameterIF[] criteria;

FilterIF filter;

Get default filter
and fill the PAM
category criteria

// get filter, fill mandatory criteria

filter = ObjectRefMgr.getDefaultFilter(DescriptorOidIF.OBJECTTYPE_PERSISTENTACTIONMGR);

criteria = filter.getCriteria(FilterIF.ALL);

((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,
"CORE_C_PAMCATEGORY")).setDynamicValue(ObjectRefMgr.getPersistentActionMgrCategoryByCode("C
ORE_CONTRACTTEMPLATE").getIdentifier());

Search for
templates and
put matching
templates in
array

templates = ObjectMgr.searchPersistentActionManagers(filter);

Using Shopping Cart Templates
Using a shopping cart template in a shopping cart involves:

1 Get the template

2 Reset level and member of the contract template

3 Insert the template contents into the shopping cart

4 Validate the template

224 Developing Telco Service Manager (TSM)

5 Submit the shopping cart

The sample code shows how to add a shopping cart template to a shopping cart:

Instantiate the
template

actionMgrIF actionMgr;

actionMgr = template.instantiateActionMgr();

Get the
shopping cart

ActionMgrIF shoppingCart=getCurrentActionMgr (request, response, jspHelper);

Reset level and
member then
add the
template to the
shopping cart

//here you should reset the level and member of the contract template

//

shoppingCart.addChild (actionMgr);

Check for errors BlmErrorIF[] errors = actionMgr.verify ();

if ((errors == null) || (errors.length==0))

 {

Submit the
shopping cart

 shoppingCart.submit (RequestIF.SUBMIT_MODE_NORMAL);

 }

Deleting Shopping Cart Templates
Deleting shopping cart templates involves:

1 Getting the template to delete

2 Deleting the selected templates

The sample code shows how to retrieve and delete a previously saved template:

Get the template PersistentActionMgrIF template;
ObjectId templateId = ObjectId.instantiate (request.getParameter ("templateId"), true);
template = ObjectMgr.getPersistentActionManager (templateId);

Delete the
template

if (template != null)
 {
 template.delete ();
 }

226
227
228
229
230

C H A P T E R 1 2

Using Bulk Ordering

In This Section

About Bulk Ordering..
Adding a Service to Contracts...
Modifying a Service of Contracts ..
Removing a Service from Contracts
Changing the Rate Plan of Contracts......................................

 226

About Bulk Ordering
When you create an application to manage several users and contracts, sometimes
you may need to group together changes to a specific set of contracts. Instead of
changing the contracts individually, you can use the bulk ordering feature to allow
administrators to change sets of contracts.

Using bulk ordering involves:

! Adding a service
! Modifying a service
! Removing a service
! Changing a rate plan

The examples show you how to use this feature in your application.

 Using Bulk Ordering 227

Adding a Service to Contracts
Adding a service to a set of contracts involves:

1 Getting the selected contracts to modify

2 Getting the service selected by the user

3 Adding the service to the contracts

4 Getting any errors that occurred for further processing

The sample code shows how to add a service to a set of contracts:

Getting the
contracts

 // we get selected contracts from the request. The selected contracts identifier
// are represented by the contractId request parameters

 SessionF blmSession = jspHelper.getBlmSession ();
 String[] values = request.getParameterValues("contractId");
 ContractF[] contracts = new ContractF[values.length];
 for (int i=0;i<values.length;i++) {
 contracts[i] = new ContractF(blmSession, ObjectId.instantiate(values[i]));
 }

Get the list of
available
services

OrganizationF org = jspHelper.getLevel().getOrganization();

RatePlanServiceIF[] rateplanServices = org.getAllowedRatePlanServices(null, null,
CommercialOfferIF.TYPE_PRIORITY_TO_DEDICATED, new Boolean(false), new Boolean(true), null,
null);

ListServiceHelper listServiceHelper = new ListServiceHelper(rateplanServices);

ServiceIF[] services = listServiceHelper.getServices();

Get the service
selected by the
user

 // we get selected service from the request. The selected service identifier
// is represented by the service request parameters

ServiceIF service;

// Instantiate the service using its identifier
service =ObjectRefMgr.getService(ObjectId.instantiate(request.getParameter("service")));

Add the service
and get the
errors

BlmErrorIF[] blmError = null;
ParameterIF[] parameters = null;

parameters = service.getParameters ();

// use this method from the setParameters.jsp form handler

fillParametersWithRequest (parameters, request);

// for a quick buy bulk order, pass Null as the ActionMgr parameter,
// otherwise pass the shopping cart action manager.

blmError = ContractF.addServiceToContracts(actionMgr, contracts, service, parameters, true,
null);

// blmError is an array of business logic errors that occurred when submitting changes
//(incompatible services, expired services or contracts, and so on)

//You can use the blmError.getObject method to get the object that caused the error
// (in this case, it should be the contract that caused the error)

228 Developing Telco Service Manager (TSM)

Modifying a Service of Contracts
Modifying a service to a set of contracts involves:

1 Getting the selected contracts to modify

2 Getting the service selected by the user

3 Modifying the service to the contracts

4 Getting any errors that occurred for further processing

The sample code shows how to modify a service of a set of contracts:

Getting the
contracts

 // we get selected contracts from the request. The selected contracts identifier
// are represented by the contractId request parameters

 SessionF blmSession = jspHelper.getBlmSession ();
 String[] values = request.getParameterValues("contractId");
 ContractF[] contracts = new ContractF[values.length];

 ObjectId[] objectId = new ObjectId[values.length];
 for (int i=0;i<values.length;i++) {
 contracts[i] = new ContractF(blmSession, ObjectId.instantiate(values[i]));

 objectId[i] = ObjectId.instantiate(values[i]);
 }

Get the list of
modifiable
services

 // get filter, fill mandatory criteria

 filter = ObjectRefMgr.getFilterByCode("CORE_SERVICEMODIFIABLE");

 criteria = filter.getCriteria(FilterIF.ALL);

 ((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,
"CORE_C_CONTRACTSID")).setDynamicValue(objectId);

 services = ObjectRefMgr.searchServices(filter);

Get the service
selected by the
user

 // we get selected service from the request. The selected service identifier
// is represented by the service request parameters

ServiceIF service;

// Instantiate the service using its identifier
service =ObjectRefMgr.getService(ObjectId.instantiate(request.getParameter("service")));

Modify the
service and get
the errors

// MODIFY YOUR SERVICE HERE

BlmErrorIF[] blmError = null;
ParameterIF[] parameters = null;

parameters = service.getParameters ();

//You can use the blmError.getObject method to get the object that caused the error
// (in this case, it should be the contract that caused the error)

// use this method from the setParameters.jsp form handler

fillParametersWithRequest (parameters, request);

// for a quick buy bulk order, pass Null as the ActionMgr parameter,
// otherwise pass the shopping cart action manager.

blmError = ContractF.modifyServiceOfContracts(actionMgr, contracts, service, parameters,
true, null);

// blmError is an array of business logic errors that occurred when submitting changes
//(incompatible services, expired services or contracts, and so on)

 Using Bulk Ordering 229

Removing a Service from Contracts
Removing a service to a set of contracts involves:

1 Getting the selected contracts to modify

2 Getting the service selected by the user

3 Removing the service from the contracts

4 Getting any errors that occurred for further processing

The sample code shows how to remove a service from a set of contracts:

Getting the
contracts

 // we get selected contracts from the request. The selected contracts identifier
// are represented by the contractId request parameters

 SessionF blmSession = jspHelper.getBlmSession ();
 String[] values = request.getParameterValues("contractId");
 ContractF[] contracts = new ContractF[values.length];
 ObjectId[] objectId = new ObjectId[values.length];
 for (int i=0;i<values.length;i++) {
 contracts[i] = new ContractF(blmSession, ObjectId.instantiate(values[i]));

 objectId[i] = ObjectId.instantiate(values[i]);
 }

Get the list of
services to
remove

 // get filter, fill mandatory criteria

 filter = ObjectRefMgr.getFilterByCode("CORE_SERVICEREMOVABLE");

 criteria = filter.getCriteria(FilterIF.ALL);

 ((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,
"CORE_C_CONTRACTSID")).setDynamicValue(objectId);

 services = ObjectRefMgr.searchServices(filter);

Get the service
selected by the
user

 // we get selected service from the request. The selected service identifier
// is represented by the service request parameters

ServiceIF service;

// Instantiate the service using its identifier
service =ObjectRefMgr.getService(ObjectId.instantiate(request.getParameter("service")));

Removing the
service and get
the errors

BlmErrorIF[] blmError = null;

// for a quick buy bulk order, pass Null as the ActionMgr parameter,
// otherwise pass the shopping cart action manager.

blmError = ContractF.removeServiceFromContracts(actionMgr, contracts, service, parameters,
true, null);

// blmError is an array of business logic errors that occurred when submitting changes
//(incompatible services, expired services or contracts, and so on)

//You can use the blmError.getObject method to get the object that caused the error
// (in this case, it should be the contract that caused the error)

230 Developing Telco Service Manager (TSM)

Changing the Rate Plan of
Contracts

Changing the rate plan of a set of contracts involves:

1 Getting the selected contracts

2 Getting the selected commercial offer (if required)

3 Getting the list of available rate plans

4 Changing the rate plan of the selected contracts

5 Getting any errors that occurred for further processing

The sample code shows how to change the rate plan of a set of contracts:

Get the
contracts

 // we get selected contracts from the request. The selected contracts identifier
// are represented by the contractId request parameters

 SessionF blmSession = jspHelper.getBlmSession ();
 String[] values = request.getParameterValues("contractId");
 ContractF[] contracts = new ContractF[values.length];
 for (int i=0;i<values.length;i++)
 {
 contracts[i] = new ContractF(blmSession, ObjectId.instantiate(values[i]));
 }

Get the
commercial offer

// we get the selected commercial offer from the request. The selected offer identifier
// is represented by the offerId request parameter

ObjectId offerId = ObjectId.instantiate (request.getParameter ("offerId"),true);

Get the list of
available rate
plans

RatePlanIF[] ratePlans;
CommercialOfferIF offer = null;

// if at least one offerId is available, rate plans are selected using this offerId
// if not, we get all the authorized rate plans allowed for the current organization
if (offerId!= null)
 {
 offer = ObjectRefMgr.getCommercialOffer(offerId);
 ratePlans = offer.getAllowedRatePlans(new Boolean(true), null, null);
 }
 else

Get the rate
plan selected by
the user

 {
 ratePlans = jspHelper.getLevel().getOrganization().getAllowedRatePlans(null, null,
CommercialOfferIF.TYPE_PRIORITY_TO_DEDICATED, new Boolean(true), null);
 }

Change rate
plans and get
the errors

BlmErrorIF[] blmError = null;

// for a quick buy bulk order, pass Null as the ActionMgr parameter,
// otherwise pass the shopping cart action manager.

 blmError = ContractF.changeRatePlanOfContracts(null, contracts, rateplan, null);

// blmError is an array of business logic errors that occurred when submitting changes
//(expired rate plans or contracts, and so on)

//You can use the blmError.getObject method to get the object that caused the error
// (in this case, it should be the contract that caused the error)

232
239
240
245
246

C H A P T E R 1 3

Working with Approvals

In This Section

About Approving Orders..
About Approval Processes Logic ..
Creating a New Approval Process Class
Deploying the Approval Class ...
Running the Approval Sequencer ...

 232

About Approving Orders
Submitting a request can be subject to approval by a specified user. For instance,
users of your application can modify their contracts but the changes are not taken into
account until approved by an administrator. Your application can also send a request
for approval by the OSS.

When users submit a request and after checking security and business logic rules, a
request is inserted in the CID for processing by the Synchronizer connector. You can
program the request to obtain approval by specified users before being processed by
the Synchronizer connector. Obtaining approval for a specific request is called the
Approval Process.

The approval process manages:

! Order requests
! Create customer requests
! Create level requests
! Create member requests
! Create contract requests

In the process of approving requests, there are users and OSS systems which are part
of the process. Their role is to approve or deny a request and your approval process
may have more than one user or OSS system needed to approve a request. In the
approval process, an actor which approves or denies requests is referred to as an
Approval. For instance, in order to change the rate plan of a contract, your approval
process may require both the manager and the billing system to approve changes to
rate plans of a contract. This approval process has two approvals before the request
considered as approved.

Using the Approval Process involves:

! Creating an Approval Process
! Submitting Requests for Approval
! Displaying the Requests for Approval
! Approving or Denying Requests
! Creating a new Approval logic class
! Running the Approval Sequencer

When dealing with simple modifications, such as AddService, you put the simple
modification in an Order request to be validated.

 Working with Approvals 233

Creating Approval Processes
When you create an approval process, you specify which users must approve the
request before the request status changes from To be approved to Not yet
submitted.

Creating an approval process involves:

1 Creating an ApprovalProcess

2 Determining which users approve the request

3 Adding the user to the process

The sample JSP code shows how to create an approval process that requires:

! The hierarchical superior to approve the request:
! If a business subscriber, their administrator must approve the request

! If a level manager, their superior approves the request

234 Developing Telco Service Manager (TSM)

! The OSS to approve the request

Create the approval
process

// Now creates the approval process

ApprovalProcessIF process = ObjectMgr.createApprovalProcess ();

// A business subscriber must be approved by an administrator

if (jspHelper.checkRole (new String []{"SUBSCRIBER"}) && (!jspHelper.checkRole (new
String []{"CUSTADMIN"})) &&(jspHelper.getLevel().getHierarchyRoot
().getOrganization ().getType().getCode ().equals ("BUSINESS")))

 {

 // Gets the first custadmin

 LevelF level = jspHelper.getLevel ();

 FilterIF filter = ObjectRefMgr.getFilterByCode ("CORE_INTORG_MEMBERBYROLES");

 RoleIF adminRole = ObjectRefMgr.getRoleByCode ("CUSTADMIN");

 ValueDynamicIF levelParam =
(ValueDynamicIF)ParameterHelper.getParameterByCode
(filter.getCriteria(FilterIF.HIDDEN), "CORE_C_ORGID");

 levelParam.setDynamicValue (level.getIdentifier());

 ValueDynamicIF roleParam = (ValueDynamicIF)ParameterHelper.getParameterByCode
(filter.getCriteria(FilterIF.ALL), "CORE_C_ROLES");

 roleParam.setDynamicValue (adminRole.getIdentifier());

 if ((admins!=null) && (admins.length>0))

 {

 process.addMemberApproval (admins[0], null, null);

 }

 }

If the user is a
business
subscriber, the
request must be
approved by an
administrator

 UserF admins[] = UserF.search (filter);

 Working with Approvals 235

If the user is an
administrator, the
request must be
validated by the
administrator's
superior

 else if (jspHelper.checkRole (new String []{"CUSTADMIN"}))

 {

 // Adds an approval for the parent administrator

 LevelIF level = jspHelper.getBlmSession().getUserF().getLevel
().getParentLevel();

 if (level != null)

 {

 FilterIF filter = ObjectRefMgr.getFilterByCode
("CORE_INTORG_MEMBERBYROLES");

 RoleIF adminRole = ObjectRefMgr.getRoleByCode ("CUSTADMIN");

 ValueDynamicIF levelParam =
(ValueDynamicIF)ParameterHelper.getParameterByCode
(filter.getCriteria(FilterIF.HIDDEN), "CORE_C_ORGID");

 levelParam.setDynamicValue (level.getIdentifier());

 ValueDynamicIF roleParam =
(ValueDynamicIF)ParameterHelper.getParameterByCode
(filter.getCriteria(FilterIF.ALL), "CORE_C_ROLES");

 roleParam.setDynamicValue (adminRole.getIdentifier());

 UserF admins[] = UserF.search (filter);

 if ((admins!=null) && (admins.length>0))

 {

 process.addMemberApproval (admins[0], null, null);

 }

 }

 }

 process.addOSSApproval ("OSS_APPROVER_SAMPLE", null);

The OSS must also
approve this
request

 process.addOSSApproval ("OSS_APPROVER_SAMPLE", null);

236 Developing Telco Service Manager (TSM)

Submitting Requests for Approval
Once the approval process has been written, you submit the action manager to be
processed.

Submitting a request for approval involves:

! Using the actionMgr.submitForApproval method

The sample JSP code shows how to submit the action manager for approval:

Create the approval
process

ApprovalProcessIF process = ObjectMgr.createApprovalProcess ();

// Code you approval process here

Submit for approval actionMgr.submitForApproval(process);

Displaying Requests for Approval
To display the requests that a user must approve, you use the search feature to return
a list of requests to approve.

Retrieving the requests involves:

1 Declaring the user

2 Using the search filter to return the requests to approve

 Working with Approvals 237

The sample JSP code shows how to return an array of requests to approve for the
current user:

Declare user and
filter

ParameterIF[] criteria;

FilterIF filter;

SessionF blmSession = jspHelper.getBlmSession();

UserF user = blmSession.getUserF();

// get filter, fill mandatory criteria

filter = ObjectRefMgr.getFilterByCode("CORE_REQUESTBYAPPROVALMEMBER");

criteria = filter.getCriteria(FilterIF.ALL);

final int maxCount = filter.getRowCount();

filter.setRowCount (maxCount+1);

((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,
"CORE_C_APPROVALMEMBERID")).setDynamicValue(new ObjectId[]
{user.getIdentifier()});

Find requests
RequestIF[] requests = ObjectMgr.searchRequests(filter);

Approving or Denying Requests
To approve or deny a request, you change the status of the approval related to the
user to APPROVED or DENIED.

Approving or denying the requests involves:

1 Getting the request and its approval process

2 Getting the list of approvals associated with the user

3 Changing the status of the approval

4 Applying changes

238 Developing Telco Service Manager (TSM)

The sample JSP code shows how to approve or deny requests of the current user:

Get the request and its
approval process

//Get the requestId and the reasonpassed as parameters of the request

ObjectId requestId = ObjectId.instantiate
(request.getParameter("request"));

ApprovalProcessIF process = ObjectMgr.getApprovalProcess (requestId);

Get the approvals
associated with the user

ApprovalIF[] toApprove = process.findApprovalsByMember
(jspHelper.getBlmSession().getUserF());

jspHelper.doNotSend ("reason");

jspHelper.doNotSend ("request");

Change the status of the
approval to APPROVED
or DENIED

String reason = request.getParameter ("reason");

if ((toApprove != null) && (toApprove.length>0))

 {

 for (int i=0;i<toApprove.length;i++)

 {

 if (toApprove[i].isNext() && toApprove[i].getStatus
().getIdentifier().equals (ApprovalStatusIF.TO_BE_APPROVED))

 {

 toApprove[i].setStatus (ObjectRefMgr.getApprovalStatus
(ApprovalStatusIF.APPROVED));

//to deny the request

//toApprove[i].setStatus (ObjectRefMgr.getApprovalStatus
(ApprovalStatusIF.DENIED));

 if (reason != null)

 toApprove[i].setReason (reason);

 }

 }

 }

Update the approval
process

process.update (true);

 239

About Approval Processes Logic
An approval process is when another user must approve a request before it can be
submitted.

For example, an approval process can designate a certain user in an organization who
is responsible for approving changes to contracts and services made by other users of
the organization.Not only can you designate who is responsible for approving requests,
you can write your own code that carries out your approval process logic to fit your
needs.

The approval process evaluation logic is in the BLM external class
com.netonomy.blm.external.EvaluateApprovalProcess.

The default approval process evaluation logic is:

! A request is denied if one approver has denied it
! A request is approved if every approver has approved it
! The approval process is sequential. Approvers approve the request one after the

other in the same order that the approval wew added to the approval process.

Implementing your own approval process evaluation logic involves:

! Writing a new class with your approval process evaluation logic that extends the
existing class

! Deploying and declaring your class

 240

Creating a New Approval Process
Class

Writing a new class implementing your own approval process evaluation logic involves:

! Defining a new package for your custom class
! Creating the new class extending the core class
! Redefining the evaluate method in your class
! Writing your approval process logic:
! To evaluate the next status of the request

! To set the next approver(s)

! To send notification (if required)
! Compiling your class

Once you have written and compiled your class, you deploy it and declare it in the
BLM.

When creating your java class, we suggest declaring a Java Package to implement
your class.

For example, com.<yourclasspackage>.netonomy.blm.external where
<yourclasspackage> is the name of your company or the name of your customer.

To create a new class extending the core class

Example of extending the core class:

package com.<yourclasspackage>.netonomy.blm.external;

import com.netonomy.blm.interfaces.validation.ApprovalProcessIF;

import com.netonomy.blm.interfaces.validation.ApprovalStatusIF;

import com.netonomy.blm.util.BlmLogicException;

import com.netonomy.blm.api.utils.ObjectRefMgr;

import com.netonomy.blm.interfaces.validation.ApprovalIF;

import com.netonomy.blm.external.EvaluateApprovalProcess;

public class CustomEvaluateApprovalProcess extends EvaluateApprovalProcess

{

}

 Working with Approvals 241

To redefine the evaluate method in your class

The approval process evaluation logic is implemented in the evaluate method.

The evaluate method has the following parameters:

! ApprovalProcess: approval process to evaluate
! SendNotifications: Boolean to enable or disable notifications

This flag is used by Analtical Applications. If you use TAM, refer to Developing
Telco Analytics Manager (TAM). If not, ignore this parameter.

The evaluate method returns an ApprovalStatusIF which corresponds to the
global status of the approval process and the next status of the request. The status is
one of the following:

! APPROVED: the request status will be set to not yet submitted
! DENIED: the request status will be set to denied
! TO BE APPROVED: the request status will stay unchanged.

Example of the evaluate method in your class:
package com.<yourclasspackage>.netonomy.blm.external;

import com.netonomy.blm.interfaces.validation.ApprovalProcessIF;

import com.netonomy.blm.interfaces.validation.ApprovalStatusIF;

import com.netonomy.blm.util.BlmLogicException;

import com.netonomy.blm.api.utils.ObjectRefMgr;

import com.netonomy.blm.interfaces.validation.ApprovalIF;

import com.netonomy.blm.external.EvaluateApprovalProcess;

public class CustomEvaluateApprovalProcess extends EvaluateApprovalProcess

{

public ApprovalStatusIF evaluate(ApprovalProcessIF approvalProcess, boolean sendNotifications) {

 ApprovalStatusIF globalStatus = null;

 return globalStatus;

 }

}

242 Developing Telco Service Manager (TSM)

To code your approval process logic

You can now implement your own logic.

Here is an example of the location of approval process logic in the evaluate method:
package com.<yourclasspackage>.netonomy.blm.external;

import com.netonomy.blm.interfaces.validation.ApprovalProcessIF;

import com.netonomy.blm.interfaces.validation.ApprovalStatusIF;

import com.netonomy.blm.util.BlmLogicException;

import com.netonomy.blm.api.utils.ObjectRefMgr;

import com.netonomy.blm.interfaces.validation.ApprovalIF;

import com.netonomy.blm.external.EvaluateApprovalProcess;

public class CustomEvaluateApprovalProcess extends EvaluateApprovalProcess

{

public ApprovalStatusIF evaluate(ApprovalProcessIF approvalProcess, boolean sendNotifications) {

 ApprovalStatusIF globalStatus = null;

 // Type your own code to evaluate the approval process and calculate the global status to return

 if (globalStatus.equals(TO_BE_APPROVED)) {

 // Type your code to set the next approver(s)

 if (sendNotifications) {

 // Type your own code if you want to send notifications

 }

 }

 return globalStatus;

 }

}

 Working with Approvals 243

Example of the default evaluate method code:
public ApprovalStatusIF evaluate(ApprovalProcessIF approvalProcess, boolean sendNotifications) {

 ApprovalStatusIF TO_BE_APPROVED = ObjectRefMgr.getApprovalStatus(ApprovalStatusIF.TO_BE_APPROVED);

 ApprovalStatusIF DENIED = ObjectRefMgr.getApprovalStatus(ApprovalStatusIF.DENIED);

 ApprovalStatusIF APPROVED = ObjectRefMgr.getApprovalStatus(ApprovalStatusIF.APPROVED);

 ApprovalIF[] approvals = approvalProcess.getApprovals();

 // Evaluate the current global status of the approval process

 boolean hasOneDeniedOrMore = false;

 boolean hasOneToBeApprovedOrMore = false;

 if (hasOneDeniedOrMore) {

 approvals[i].setNext(true);

 for (int i=0; i<approvals.length; i++) {

 if (approvals[i].getStatus().equals(TO_BE_APPROVED)) {

 hasOneToBeApprovedOrMore = true;

 }

 if (approvals[i].getStatus().equals(DENIED)) {

 hasOneDeniedOrMore = true;

 }

 }

 ApprovalStatusIF globalStatus = null;

 globalStatus = DENIED;

 } else {

 if (hasOneToBeApprovedOrMore) {

 globalStatus = TO_BE_APPROVED;

 } else {

 globalStatus = APPROVED;

 }

 }

 if (globalStatus.equals(TO_BE_APPROVED)) {

 // define the next to be approved

 ApprovalIF[] nextPendingApprovals = approvalProcess.getNextPendingApprovals();

 if (nextPendingApprovals.length == 0) {

 for (int i=0; i<approvals.length; i++) {

 if (approvals[i].getStatus().equals(TO_BE_APPROVED)) {

 // update the approval process (for the setNext change)

 // the flag stateChanged is set to false because

 // the approval sequencer shouldn't treat this approval process again

 // until another change

 approvalProcess.update(false);

 break;

 }

 }

 }

 }

 return globalStatus;

 }

244 Developing Telco Service Manager (TSM)

To compile your class

To compile your class, you need to make sure the following jar files are in your
classpath:

! lib/nmycore.jar
! lib/nmyutil.jar

 245

Deploying the Approval Class

To deploy your class

1 Create sub folders consistent with your package name. For example create a folder
called classes/com/<yourclasspackage>/netonomy/blm/external.

2 Copy your compiled class to this folder.

To declare your class

1 Go to <home_dir>/classes/nmycfg/blm.

2 Open the external_custom.xml customization file.

3 Find the class element with default attribute equal to
com.netonomy.blm.external.EvaluateApprovalProcess.

4 Enter the name of your custom class as the value of the custom attribute.

Example:
<class default=" com.netonomy.blm.external.EvaluateApprovalProcess" custom="
com.<yourclasspackage>.netonomy.blm.external.CustomEvaluateApprovalProcess"/>

1 Save your changes.

 246

Running the Approval Sequencer
The Approval Sequencer is an agent which evaluates requests requiring approval.

The Approval Sequencer applies the Approval Process logic whenever the information
in a request requiring approval changes.

For more information about running the Approval Sequencer, refer to Administrating
Telco Service & Analytics Manager Applications.

About the BLM Exceptions.. 248
249

C H A P T E R 1 4

Managing Errors

In This Section

Customizing Error Messages ..

248 Developing Telco Service Manager (TSM)

About the BLM Exceptions
When errors occur in the BLM, you can use the following exceptions to display
customized messages to users. These chained exceptions help you display meaningful
messages to users and help you manage workflow and handle security problems.

You should use or expand these exceptions instead of using generic Java exceptions.

BlmLogicException
BLM Logic Exceptions occur when an error occurs in the processing of business logic.
For example, a BlmLogicException is thrown if you try to change the rate plan of a
contract that cannot change rate plans.

BlmSecurityException

BLM Security Exceptions occur when a security violation occurs when processing
business logic. For example, a BlmSecurityException is thrown if a user tries to
view an invoice of another user.

BlmBadValueException
 BLM Security Exceptions occur when the value of a parameter does not meet the
specified format. For example, a BlmBadValueException occurs when a user tries
to enter parameter value of 110 when the parameter is limited to numbers between 10
and 100.

PersistenceException
Persistence exceptions occur when an error occurs in saving the instance of the BLM
object.

 Managing Errors 249

Customizing Error Messages
The core_<language>.properties configuration file contains the BLM error
messages. The files are located in <home_dir>/classes/nmycfg/errors.

The BLM has one message file per language.

You can use one of the following language properties files:

! core_english.properties
! core_french.properties

You can customize these files to create your own error messages or use them as a
template to create a new language file.

If your application does not specify a language, the BLM uses the
core_english.properties configuration file.

An example of BLM error messages in the core_english.properties
configuration file

BLM ERROR MESSAGES
--

Contract error messages

--

2000=We are sorry. We cannot process your request. The pending declaration of loss or theft has not been processed.

Change RatePlan

2010=We are sorry. The {0} rate plan is not allowed.

2011=We are sorry. You cannot change your {0} rate plan. The pending request to change this rate plan has not been
processed.

2012=We are sorry. You cannot change your current rate plan {1} to {0}.

257
260

C H A P T E R 1 5

Logging Events

In This Section

About Logging Events ... 252
About the Logger API..
Creating the Custom Event Code File.....................................
Programming Custom Event Logs .. 262

 252

About Logging Events
The system logger generates standarized logs to track important system events for
development and supervision. No matter which component generates a message, you
can be sure that it corresponds to a set format and content. This also allows you to use
supervision tools to manage and administrate your TSM.

When you extend components and create custom modules, you can also use this
logger to log your own events. The BLM comes with a logger utility package that
contains all the tools you need to create your own log messages.

Logging events from your code involves:

! Creating your event codes
! Using the logger to log your events

Before You Get Started
Before you get started, you need to understand how logs are created.

The basis of the logger is to create a record for events. An event is when something
specific occurs while the application is running. For example, events include initializing
components, loading configurations, opening connections, and so on. When an event
occurs, the logger creates a structured record with attributes.

The attributes of an event record (or log entry) include:

! An associated type
! A severity level
! The module that generated the event

 253

Logger Events
ATTRIBUTE DESCRIPTION

Date/Time ISO-8601 date string to identify the time

Thread id To identify the thread that hosts the event generator

Unique id To identify the event

Session id To identify the user session

Type To classify the impact of event

Severity To classify the issue level

Module To identify the event technical source

Code To classify and describe what occurs

Description To classify and describe what occurs � linked to code

Debug information To provide additional technical information

 254

Event Types
EVENT TYPE DESCRIPTION

INIT Covers application/module initialization processes

STATE Covers application/module state changes

EXCEPTION Covers internal exceptions

SESSION Covers user session life cycle

REQUEST Covers request life cycles

MESSAGE Covers lifecycle in the integration framework

OBJECT Covers object handling

RESOURCE Covers component events

DATA Covers customer data handling in the CID

NONE Unclassified events

 255

Severity Levels
SEVERITY LEVEL

FATAL Events that have an impact on the availability of the application

ERROR Events that cause a given application workflow to not work properly

WARN Events that may impact the behavior of the application

INFO Events that record successful basic system actions for supervision

DEBUG Level 0: no debug information.
Level 3: for activation in a production environment within a working day.
Level 5: for activation in a production environment for a limited period.
Level 7: for activation in a very limited way with one or two concurrent
users.

DESCRIPTION

 256

Event Modules
EVENT MODULE DESCRIPTION

AGT Any agent � synchronizer, connector, sequencer

BLM Business Logic Manager

DAL Data Access Layer

SmartLink (ISF) SmartLink (ISF) Framework and all of its sub modules

JSPF JSP Framework

Java Server Pages

LOG The logger platform

NIL No module involved

QRA Query, Reporting, and Analysis Engine

UTL Internal utility components

WFS Web File System

JSP

Event Code/description:

! Events are coded to ensure the description, for a given case, is always the same
whatever the event source is.

! A code is associated with a description, which is the actual event message.
! The code is the reference to detect what occurs.

Filtering Logs
You can configure the logger to filter events by type and severity. It is also possible
to filter events by module for given event types.

 Logging Events 257

About the Logger API
The BLM comes with the com.netonomy.util.api.logger package you use to
create your logs.

 For detailed information about the classes and their methods, refer to the UTIL API
Reference Documentation.

Available Events
You use the logger to create log entries with the following attributes:

! Event Types
! INIT

! STATE

! EXCEPTION

! SESSION

! REQUEST

! MESSAGE

! OBJECT

! DATA

! NONE
! Event Severity
! FATAL

! ERROR

! WARN

! INFO

! DEBUG

! DEBUG LEVEL (used when severity is DEBUG)

258 Developing Telco Service Manager (TSM)

! Debug Information
Standard logger debug output. This technical information is a set of lines.

! Event Code
The code that sets the event description.

You can only use your custom event codes with an event code greater than
2000000. Messages with codes that are less than 2000000 are system events.
You cannot use system event codes with this logger.

! Event Description Parameters
A list of strings that are value parameters for event description � these parameters
depend on the event code (through its associated description)

When using this logger, the Module attribute of the log is CUS (custom).

Custom Event Codes
You specify your event codes in a standard properties file. The logger comes with
the methods you need to access this file via the CLASSPATH.

You can load as many Custom Even Code properties files as are required by your
application.

 Logging Events 259

Logger API Object Model

260 Developing Telco Service Manager (TSM)

Creating the Custom Event Code
File

When you program your application to use the logger, you need to give the logger an
event code. To assure efficient and coherent integration of supervision platforms, you
cannot use the standard set of system event codes. For your custom code, you create
your own set of codes. This way, your event codes match the different events in your
code you want to track.

The custom event codes are specified in a standard properties file.

Creating the custom event code file involves:

! Creating the properties file
! Entering your custom event codes

Creating the properties File
Using a text editor, create a properties file. You declare the event codes in this file.
Use the syntax:

! <code> your event code

<code> = <description>

! <description> description of the event

Your description can contain dynamic information. Use the standard Java-formatting
syntax to mark the dynamic sections of your description:

[<tag name>="{<parameter #>}"]

 Logging Events 261

Example of the Custom Event Code File
In this example, this custom event code properties file declares the following event
codes:

EVENT CODE DESCRIPTION

3003100 Creating my new thread.

3003101 Creating my new thread failed.

Creating my new thread [thread id={thread_id}] succeeded.

3050000 New custom message to process in the request queue [message type
id={message_type_id}], [request id={request_id}].

3050001 Retrieving custom message request from the request queue. [message type
id={message_type_id}], [request id={request_id}].

3003102

The properties file contains the following:

3003100 = Creating my new thread.

3003101 = Creating my new thread failed.

3003102 = Creating my new thread [thread id={0}] succeeded.

3050000 = New custom message to process in the request queue [message type id={0}], [request id={1}].

3050001 = Retrieving custom message request from the request queue. [message type id={0}], [request id={1}].

In this sample above, the event descriptions have a mixture of static and dynamic
parameters.

When logging an event using a code, the logger requires a table of parameters to be
set as input parameters.

Your event codes must be greater than 2000000.

Deploying the Custom Event Code File
The TSM uses the CLASSPATH to find the custom event code properties file that
contains your codes and their associated descriptions. As the logger is instantiated
several times by different components such as the Synchronizer, Connectors, or BLM,
this file must be available to all of these components.

To deploy the custom event code properties file, you place the file in a location
accessible via the CLASSPATH.

262 Developing Telco Service Manager (TSM)

Programming Custom Event Logs
After you have created and deployed your custom event code .properties file, you
can use the system logger to log your custom events.

When logging your events, keep in mind that your log events are used to monitor a
specific business process of your application. You must be careful when setting event
attributes because these attributes are used by others to filter log files and generate
alerts.

Programming your custom event logs involves:

! Loading the custom event code .properties file
! Initializing the Logger object
! Logging the event using the appropriate method

When using the logger in your JSPs, you should implement a static java class that
initializes the logger objects and loads the properties file. Otherwise, you have to
initialize the logger object and load the custom event code properties file in each
JSP.

Loading the Custom Event Code
Before using the logger in your custom code, you must import the logger classes. This
class is located in com.netonomy.util.api.logger.

You use the LoggerMgr.addCustomEventCodes method to load the custom event
code .properties file.

Use the syntax:

addCustomEventCodes(String fileName)

! fileName the name of the .properties file containing your custom event
codes

 Logging Events 263

Example of Loading the Custom Event Code File

This example shows you how to:

! Import the logger package
! Load the customCodes.properties Custom Event Code file.

Import the
logger package

import com.netonomy.util.api.logger.*;

Load the
Custom Event
Code file

public class myClass {

 public void myClass() {

 LoggerMgr.addCustomEventCodes("custom/customCodes.properties");

 �

 �

 }

}

Initalizing the Logger
You use the LoggerMgr.getLogger method to initialize a Logger object. You
initialize one Logger object per event type to be used.

Use the syntax:

getLogger(eventType)

You can use one of the following event types:

! INIT events cover application/module initialization processes

! STATE events cover application/module state changes

! EXCEPTION events cover internal exceptions

! SESSION events cover user session life cycle

! REQUEST events cover request life cycles

! MESSAGE events cover lifecycle in the integration framework

! OBJECT events cover object handling

! DATA events cover customer data handling in the CID

! EXCEPTION events cover internal exceptions

! NONE events are unclassified events

264 Developing Telco Service Manager (TSM)

Example of Logging INIT and MESSAGE Events

This example shows you how to:

! Import the logger package
! Initalize the following loggers:
! INIT

! MESSAGE

Import the logger
package

import com.netonomy.util.api.logger.*;

Initalize an INIT
logger

public class myClass {

 public void myClass() {

 LoggerMgr myLogger_initEvents = LoggerMgr.getLogger(EventType.INIT);

Initalize a
MESSAGE logger

 LoggerMgr myLogger_messageEvents = LoggerMgr.getLogger(EventType.MESSAGE);

 �

 �

 }

}

Checking Severity Settings
You can use the Logger API to see if a given severity has been activated. This means
your custom code can check to see if a given severity level has been activated before
you carry our different actions required to obtain information for the logger output.

For instance, before collecting information about various system settings and taking a
snapshot of your system configuration while debugging, your code can check to see if
this information is to be put in the log message. This way you can keep from using
system resources to generate information that will not be logged in the current logger
configuration.

You use the Logger.isLoggable method to verify if the severity has been activated
for logging. Use the syntax:

isLoggable(severity)

! severity the severity to check

 Logging Events 265

Example of Severity Checking Before Logging

This example shows you how to:

! Import the logger package
! Load the Custom Event Code .properties file
! Test the DEBUG severity

Import the logger
package

import com.netonomy.util.api.logger.*;

Load the Custom
Event Code file

public class myClass {

 public void myClass() {

// Load event codes

 LoggerMgr.addCustomEventCodes("custom/customCodes.properties");

Get a Logger object
for INIT event type

//Get logger

 LoggerMgr myLogger_initEvents = LoggerMgr.getLogger(EventType.INIT);

Test the DEBUG
severity

// Test using the DEBUG severity is relevant

 if (myLogger_initEvents.isLoggable(Severity.DEBUG)) {

If TRUE, build the
debug info and log
the event

 // Build the debug info

 String debugInfo;

 �.

 // Log the event

 myLogger_initEvents.logDebug("03100420", null, debugInfo, 7);

 }

 else {

 // no event logged

 }

 }

}

266 Developing Telco Service Manager (TSM)

Logging Standard Messages
You use the Logger object method that corresponds to the severity of the message you
want to log.

Use the syntax:

! Event Code of 03100420

log<Severity>(String eventCode, Object[] params, String
debugInfo)

! <severity> is one of the following:
FATAL

ERROR

WARN

INFO

! eventCode one of your custom codes.

! params a one-dimension table that handles the parameters to be used to build
the description. This table must have as many elements as the number of
parameters declared in the description associated with the code.

! debugInfo a string that contains technical information to be logged as
DEBUG_INFO. For instance, items of a list, HTTP stream, XML stream, and so
on. This string may be a block of strings

Example of a Simple Event Log

This example shows you how to:

! Import the logger package
! Load the custom event code .properties file
! Log an INIT FATAL event having:

! A static message

 Logging Events 267

Import the logger
package

import com.netonomy.util.api.logger.*;

Load the Custom
Event Code file

public class myClass {

 public void myClass() {

// Load event codes

 LoggerMgr.addCustomEventCodes("custom/customCodes.properties");

Get a Logger object
for INIT event type

//Get logger

 LoggerMgr myLogger_initEvents = LoggerMgr.getLogger(EventType.INIT);

Log the event // Log the event

 myLogger_initEvents.logFatal("03100420", null, null);

 }

}

Example of a Dynamic Event Log

This example shows you how to:

! Import the logger package
! Load the custom event code .properties file
! Log an REQUEST INFO event having:
! Event Code of 02600360

! A dynamic message

268 Developing Telco Service Manager (TSM)

Import the logger
package

import com.netonomy.util.api.logger.*;

Load the Custom
Event Code file

public class myClass {

 public void myClass() {

// Load event codes

 LoggerMgr.addCustomEventCodes("custom/customCodes.properties");

Get a Logger object
for REQUEST event
type

// Get a logger

 LoggerMgr myLogger_requestEvents = LoggerMgr.getLogger(EventType.REQUEST);

Build the description
parameters table

// Build the description parameters table

 Object [] eventParameters = new Object [] {"#1 parameter"};

// Log the event

 myLogger_ requestEvents.logInfo("02600360", eventParameters, null);

 }

}

Log the event

Logging Debug Messages
You use the Logger object logDebug method to log debug information.

Use the syntax:

logDebug(String eventCode, Object[] params, String debugInfo,
int debugLevel)

! eventCode one of your custom codes.

! params a one-dimension table that handles the parameters to be used to build
the description. This table must have as many elements as the number of
parameters declared in the description associated with the code.

! debugInfo a string that contains technical information to be logged as
DEBUG_INFO. For instance, items of a list, HTTP stream, XML stream, and so
on. This string may be a block of strings

! debugLevel the level of logged information and the usage:

Level 0: no debug information

Level 3: for activation in a production environment within a working day

Level 5: for activation in a production environment for a limited period

Level 7: for activation in a very limited way with one or two concurrent users

 Logging Events 269

Example of Debug

This example shows you how to:

! Import the logger package
! Load the custom event code .properties file
! Log an INIT DEBUG event:
! Having Event Code of 04200440

! A dynamic message

! Some DEBUG info

! DEBUG level set to 7

Import the logger
package

import com.netonomy.util.api.logger.*;

Load the Custom
Event Code file

public class myClass {

 public void myClass() {

// Load event codes

 LoggerMgr.addCustomEventCodes("custom/customCodes.properties");

Get a Logger object
for INIT event type

//Get logger

 LoggerMgr myLogger_initEvents = LoggerMgr.getLogger(EventType.INIT);

Build the description
parameters table

// Build the description parameters table

 Object [] eventParameters = new Object [] {"#1 parameter"};

Build the debug info // Build the debug info

 String debugInfoString = "Debug line 1\n" + "Debug line 2\n" + "Debug line 3\n";

Log the event // Log the event

// The debug level is set to 7 because of the context:

// advanced debugging while the application is offline.

 myLogger_ sessionEvents.logDebug("04200440", eventParameters, debugInfoString, 7);

 }

}

This debug event is to track a very specific workflow result in an advanced debugging
context. For performance reasons, the application is not available to end-users.

270 Developing Telco Service Manager (TSM)

Logging Messages During Development
The system logger has been designed to ease application supervision and create
standard messages for supervision platforms. The logger API uses this system logger,
which requires that each event have a specific code before the event can be logged.

This is not very practical when debugging an application. You cannot code all of the
possible event codes before debugging. And when debugging, you may need to
quickly log some information to pinpoint a specific problem that does not require an
event code.

The logger comes with a special method for DEBUG events that does not require an
Event Code. Use the syntax:

logDebug(String description, String debugInfo, int
debugLevel)

! description free form description

! debugInfo optional free form, multi-line debug information

! debugLevel verbosity (3=low frequency, 5=medium frequency, 7=heavy
frequency)

This should be used for development debugging only. All other DEBUG log messages
should use an Custom Event code in order to ensure efficient supervision of your
application.

All other log messages (INFO, WARN, and so on) require a Event Code in the Custom
Event Code .properties file.

 Logging Events 271

Example of Logging for Development

This example shows you how to:

! Import the logger package
! Load the custom event code .properties file
! Log an INIT DEBUG event using the development logDebug method

Import the logger
package

import com.netonomy.util.api.logger.*;

Load the Custom
Event Code file

public class myClass {

 public void myClass() {

// Load event codes

 LoggerMgr.addCustomEventCodes("custom/customCodes.properties");

Get a Logger object
for INIT event type

//Get logger

 LoggerMgr myLogger_initEvents = LoggerMgr.getLogger(EventType.INIT);

Test a condition // Test using the DEBUG severity is relevant

 if (<condition>) {

 myLogger_initEvents.logDebug("my message 1", null, 7);

 }

 else {

 // Log the debug event

 myLogger_initEvents.logDebug("my message 2", null, 7);

 }

 }

}

Log the event // Log the debug event

This debug method is for development purposes only.

274
275

C H A P T E R 1 6

Working with User Events

In This Section

About User Events ..
About Creating Custom User Events

 274

About User Events
User events are log entries which you use to trace certain application events.

User events belong to one of the following categories:

! Session events (login, logout, session expiration)
! Execution features (creation of requests)
! Custom user events
! DO events generated by an OSS
! Organization views
! Reporting

For information about purging User Events in the CID, refer to Administrating Telco
Service Manager (TSM).

 275

About Creating Custom User Events
You can easily modify the user event tracking to meet your needs. You can extend the
list of user events to include your own user events.

Customizing user events involves:

! Creating your own type of user event
! Inserting the call to a user event at a specific point of JSP processing

To create a custom user event type

1 Use your database tool to connect to the CID.

2 In the USER_TYPE_EVENT table, create a row and enter the following required
information:

! USER_TYPE_EVENT_ID

The value should be greater than 10000

! USER_TYPE_EVENT_CODE

This code must begin with CS_

! USER_TYPE_CATEGORY_ID

The value to enter is 4 corresponding to Custom User Events in the
USER_TYPE_EVENT_CATEGORY table.

3 If required, enter the following:

! USER_TYPE_EVENT_NAME

! STRING_ID

! USER_TYPE_EVENT_DESCRIPTION

! USER_TYPE_EVENT_DESCRIPTION_STRING_ID

4 In the ACTIVATION_FLAG column, enter 1.

5 Save your changes.

6 Restart your application server.

To program a user event in a JSP

1 Open the JSP.

2 Use the UserEventIF methods to insert a user event.

276 Developing Telco Service Manager (TSM)

Example of a Login User Event
UserEventIF toSave = ObjectMgr.createUserEvent ();
toSave.setStatusCode("LOGIN_SUCCESS");
toSave.setUserEventType(ObjectRefMgr.getUserEventTypeFromCode("LOGIN"));
toSave.setLoginID (blmSession.getUserF().getIdentifier());
ParameterIF[] params = new ParameterIF[3];
params[0] = ObjectRefMgr.getParameterByCode ("APPSERVSID");
params[0].setValue (session.getId());
params[1] = ObjectRefMgr.getParameterByCode ("USERAGENT");
params[1].setValue (jspHelper.nonNullString(request.getHeader("User-Agent")));params[2] =
ObjectRefMgr.getParameterByCode ("ACCESCHAN");
params[2].setValue ("0");
toSave.setParameters (params);
toSave.insert();

 Working with User Events 277

Example of a User Event

In the ListEventHistory form_handler JSP, this code searches the DO user
evens impacting a contract.

278 Developing Telco Service Manager (TSM)

<%!

/**
 * Form handler for a list of events on contract administered by a telco or dealer
 *
 * @param session The current HTTP session
 * @param request The current HTTP request
 * @param response The current HTTP response
 * @param objHelper The JSP helper class
 * @param results Hashtable of returned objects
 * @param errors Hashtable of error objects
 */
public void formHandler_listContractHistory (HttpSession session,
 HttpServletRequest request,
 HttpServletResponse response,
 JFNJspHelper jspHelper,
 Hashtable results,
 Hashtable errors) throws Throwable
{
 ParameterIF[] criteria;
 FilterIF filter;
 SessionF blmSession = jspHelper.getBlmSession();
 UserF user = jspHelper.getUser();
 ContractF contract = new ContractF (blmSession, ObjectId.instantiate(request.getParameter ("contract")));
 // get filter, fill mandatory criteria
 filter = ObjectRefMgr.getFilterByCode("CORE_UEVTSBYIMPACTEDORCREATEDOBJECT");
 criteria = filter.getCriteria(FilterIF.ALL);

 ((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,

"CORE_C_UEVTIMPACTEDOBJECTTYPEID")).setDynamicValue(new ObjectId[]

{contract.getContractType().getIdentifier()});

 ((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,

"CORE_C_UEVTIMPACTEDOBJECTID")).setDynamicValue(new ObjectId[] {contract.getIdentifier()});

 ((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,

"CORE_C_UEVTCREATEDOBJECTTYPEID")).setDynamicValue(new ObjectId[]

{contract.getContractType().getIdentifier()});

 ((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,

"CORE_C_UEVTCREATEDOBJECTID")).setDynamicValue(new ObjectId[] {contract.getIdentifier()});

 ((ValueDynamicIF) ParameterHelper.getParameterByCode(criteria,

"CORE_C_UEVTTYPECATEGORY")).setDynamicValue(new ObjectId[]

{ObjectRefMgr.getUserEventTypeCategoryByCode("CORE_UEVT_0003").getIdentifier()});

 UserEventIF[] userEvents = ObjectMgr.searchUserEvents(filter);
 request.setAttribute("userevents", userEvents);
 request.setAttribute("type", "contract");
 request.setAttribute ("display", Boolean.TRUE);
}
%>

 Working with User Events 279

In the view_history JSP, this code displays the user events found.

<table cellspacing="0" cellpadding="2">

<tr>
 <td class="headerText" width="80"><%=jspHelper.localize ("date_header")%></td>
 <td class="headerText"><%=jspHelper.localize ("event_name_header")%></td>
 <% if (request.getAttribute("type") != null) { %>
 <td class="headerText"><%=jspHelper.localize ("object_header")%></td>
 <% } %>
</tr>
<%
 //'*** now we can display history ***
 int n=0;
 boolean isFirst;
 isFirst=true;

 //' Display requests

 for (int intInfo = 0;intInfo != result.length; intInfo ++)
 {
 n++;
 %>
<tr><%-- for alternate background color --%>
 <td class="<%= (n % 2)==0 ? "listAText" : "listBText" %>">
 <%= jspHelper.convertToDisplayString(result[intInfo].getUserEventDate()) %>
 </td>
 <td class="<%= (n % 2)==0 ? "listAText" : "listBText" %>"><%=
result[intInfo].getUserEventType().getName()%></td>
 <% if (request.getAttribute("type") != null) { %>
 <td class="<%= (n % 2)==0 ? "listAText" : "listBText" %>"><%=
result[intInfo].getUserEventType().getDescription()%></td>
 <% } %>
</tr>
<%
 }
%>
</table>

About Portals and Telco Service & Analytics Manager........... 282
284
285
286
287
288
289

C H A P T E R 1 7

Working with Portals

In This Section

Overview of Integrating Telco Service & Analytics Manager...
Setting Entry Points...
Encoding URLs ...
Managing Sessions...
Managing Stylesheets...
Managing Forbidden Tags ..

 282

About Portals and Telco Service &
Analytics Manager

A portal application is a Web site that gives users a unique entry point to several
different applications and services. The role of the portal is to give its users access to
the application and determine how information is displayed. When displaying
information from an application, portals use a component called a portlet to
communicate with the application and, in some cases, determine how information is
displayed.

Telco Service & Analytics Manager is designed as a stand-alone application. However,
it can be quickly modified to fit seamlessly into any market-leading portal application.

Before you begin modifying your Telco Service & Analytics Manager application, you
need to determine the type of integration your portal application requires. The way an
application works with a portal falls into one of the following categories:

! Source Formatted Content
When the portal uses source formatted content, all of the content format and
display properties are determined by the application and not the portal. Things like
the graphical chart, styles, colors are all controlled by the application and not the
portal.

The portal/portlet usually calls pages in application using http. The portlet does not
need to change the content provided by the application.

This is called the Source Formatted Content because the remote application
prepares the content for the portal.

If you use this solution, your Telco Service & Analytics Manager application is ready
for integration with only minor modifications.

! Non Formatted Source Content
When the portal uses non formatted source content, the content retrieved from the
remote application needs to be adapted in order to be displayed according to the
display format of the portal application. This way, the portal ensures a coherent
presentation of content and application data.

The content received from the application is not formatted and the portlet must
modify it for the portal application.

This is called the Non Formatted Source Content because the remote application
does not prepare the content for display in the portal.

If you use this solution, your Telco Service & Analytics Manager application is ready
for integration without modifications.

The portlet is responsible for formatting the content coming from Telco Service &
Analytics Manager. This cannot be done using standard portlets and requires
customizing your portal application's portlets.

 Working with Portals 283

This section gives you an overview of what you need to do when integrating Telco
Service & Analytics Manager in portal environments.

 284

Overview of Integrating Telco
Service & Analytics Manager

For Source Formatted Content, integrating Telco Service & Analytics Manager
involves:

! Configuring an entry point
! Encoding the URLs
! Managing Sessions
! Managing Stylesheets
! Removing Forbidden Tags

For Non Formatted Source Content, integrating Telco Service & Analytics Manager
involves:

! Configuring an entry point
! Managing Sessions
! Managing Stylesheets

 285

Setting Entry Points
When the portal first calls your Telco Service & Analytics Manager application, the
Telco Service & Analytics Manager application navigation context is not set. All Telco
Service & Analytics Manager applications begin with a specific In step in the default
page flow.

Setting entry points involves:

! In the PLS, Finding the name of or create the In step of your application. This is the
In step of the default page flow.

! In the portal, calling the application using an authorized page call, such as
http://myserver/MyWeb/index.jsp or
http://myserver/MyWeb/login.jsp.
These jsp pages corresponds to a functional step called by a IN step in the default
pageflow.

If the pages you call are different, you need to modify framework_start.inc to
set the corresponding functional step to the name of your JSP.

These authorized pages must be part of the default page flows as they are the only
page flows accessible to internal http calls.

 286

Encoding URLs
Depending on your portal, the URLs generated by the Telco Service & Analytics
Manager application may be inappropriate.

If you need to change the way the URLs used by Telco Service & Analytics Manager,
you use the rendering_helper.inc file. This JSP file contains the code used to
encode the URLs in Telco Service & Analytics Manager application. If you need to
change the way URLs are built or need to modify the behavior of the methods, you can
modify this file.

This file is located in <home_dir>/channels/<channel_name>/helpers.

The JSPF methods in this file include:

! encodeURLFunct

! encodeURLMainFunct

! getUrl

! encodeIndirectUrlFunct

! encodeURL

! generateAllParametersAsHiddenFields

! generateAllNonSystemHiddenFields

! makeAnchor

! makeAnchorFunct

! makeMenuAnchor

! encodeHTML

! getJFNAppSkinUrl

If required, you can also add the getIndirectUrl method found in the
JFNJspHelper class.

 287

Managing Sessions
Some portal environments allow users to change skins or languages. In most cases,
the portal also wants its applications to reflect these changes as well. For instance, if a
user changes the language to Spanish, it is understandable that the language of the
application in the portal also are in Spanish.

On each request call, you can specify the following parameters:

! lang the language code
! skin the name of the folder containing the skin files located in

<home_dir>/channels/<channel_name>/include. The name of this folder is
the value of the Personalization Data parameter with the SKIN code. This
parameter is part of a Personalization Data group called LAYER.

For more information about Personalization Data, refer to the CID Reference
Guide.

The default values of these parameters are declared for the application and can be
easily changed by being passed in the URL.

For example, if your page request has a called skin=red parameter, the skin changes
change instantaneously using the files in the
<home_dir>/channels/<channel_name>/include/red directory and stores
the setting in the http session.

 288

Managing Stylesheets
The portal environment may use CSS stylesheets to determine the presentation of its
content.

Telco Service & Analytics Manager channels also use stylesheets to manage styles.
Each skin has its own stylesheet.

These files are located in
<home_dir>/channels/<channel_name>/include/css and
<home_dir>/channels/<channel_name>/include/<skin_name>/css

When integrating Telco Service & Analytics Manager channels, you need to merge the
content of the Telco Service & Analytics Manager CSS stylesheet with the portal
stylesheets.

If there is a conflict of style names when merging the stylesheets, use the portal style
definition in order to preserve the formatting of the portal content.

 289

Managing Forbidden Tags
In order to preserve the portal formatting and display, some portals may forbid certain
HTML tags in the content it receives from applications. These tags are usually HTML
tags such as <html>, <head>, and <body>.

To remove such tags from the Telco Service & Analytics Manager content of your
portal, modify the following:

! framework_head.inc

! framework_tail.inc

These files are located in <home_dir>/channels/<channel_name>/fwk and
<home_dir>/channels/<channel_name>/fwk/<graphical_chart>/fwk.

292
293
299
304

C H A P T E R 1 8

Deploying Telco Service Manager
(TSM)

In This Section

About Deploying..
For WebSphere 4.x ...
For WebLogic 6.x and 7.x ...
For Oracle 9i Application Server ...

 292

About Deploying
After installing and configuring, you deploy the TSM channels as a web application.
When you deploy your channel, you are telling the application server where to find your
TSM's JSPs and components. As each application server handles JSPs and other files
differently, deploying your channel depends on the version and the editor of your
application server.

This section covers deploying your application on different application servers.
Deploying channels can be as easy as configuring your application server to look for
the JSPs in a directory. Other application servers recommend that you deploy web
applications as a J2EE Web Application aRchive (WAR) file.

For detailed information about configuring and deploying web applications, refer to your
application server's documentation and Installing Telco Service & Analytics Manager
Applications.

 TSM

For WebSphere 4.x
Deploying Channels on WebSphere 4.x involves:

! Configuring your environment
! Creating and deploying a WAR file
! Configuring the deployed channel

Configuring Your Environment
Depending on your application server and environment, you may have to carry out
certain tasks before you can deploy your channel.

For this application server, preparing your environment involves:

! Creating the data source for each database
! Specifying Java memory settings

To create a CID data source

1 Start the WebSphere Administration Server.

2 Start the Administration Console.

3 Choose Console>Wizards>Create Data Source. The wizard opens.

4 Enter the following information:

Name: cidDatasource

Database name: your database name

5 Choose Next.

6 Choose Create a new JDBC Driver.

7 Enter the following information:

! Name: cidDatasource

! Implementation class

For the name of your implementation class, refer to your application server
documentation.

8 Choose Next. A summary window appears.

9 Choose Finish.

10 On the console tree, go to the Resources>JDBC Providers>cidDatasource/Data
Sources node.

11 On the General tab, enter the following:

294 Developing Telco Service Manager (TSM)

! User ID: your CID user name

! Password: the associated password

! Add the required Custom Properties for your database.

For more information about custom properties, select the Help button on the tab.

12 Choose Apply.

To specify Java memory settings

1 Start the WebSphere Administration Server.

2 Start the Administration Console.

3 Go to the Nodes>Node Name>Application Servers/Default Server node on the
console tree.

4 Change the Command Line Parameter to increase the amount of allocated
memory. By default, WebSphere does not allocate enough memory.

For example, enter -Xms196m -Xmx196m to increase the allocated memory to 196
MB.

Creating and Deploying a WAR File
In Java2EE, Sun Microsystems published the specification and tools to create Web
Application Archive files (WAR) files. A WAR file is a JAR file containing java class files
and other files required by Web applications (utility classes, HTML files, applets, and
so on.) When using WAR files, you create a single file containing all of the required
files for easy deployment on all Java2EE-compliant application servers.

A Web application can be run from directly from the WAR file or a directory that
conforms to the WAR specification.

The WAR file for applications contains the following:

! Personalization Manager channel JSPs
! WEB-INF directory containing:

! web.xml file describing the application

 TSM

! WEB-INF/lib directory containing jar files
! WEB-INF/classes directory containing configuration files

After you generate your WAR file, you install this file using the application server's
administration console.

Building a WAR file involves:

! Configuring the web.xml file
! Moving configuration files
! Generating the WAR file
! Deploying the WAR file

The java command for building WAR files (jar.exe) is located in your application
server's copy of the Java Development Kit (JDK)

To configure the web.xml File

1 Go to <app_dir>/WEB-INF where <app_dir> is the location of your channel
files.

2 Open web.xml.

3 Do the following:

! In the <display-name> element, enter the name of your application.

! In the <description> element, enter a description of the application.

The name and description you enter here are for the application server only.

4 Save your changes.

Example of web.xml
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>Welcome to MyWeb</display-name>

 <description>Welcome to MyWeb</description>

</web-app>

296 Developing Telco Service Manager (TSM)

To prepare your files

During installation, there are two identical sets of application configuration files. This is
done to respect the requirements of the J2EE Web Application aRchive (WAR) file
specifications and to help you easily deploy your application.

The sets of configuration files are:

! Core configuration files
These configuration files are in <home_dir>/classes/nmycfg.

! Channel configuration files
These configuration files are in <app_dir>/WEB-INF/classes/nmycfg where
<app_dir> is the location of your channel files. By default, they are installed in
<home_dir>/Channels.

However, when you develop your application, you may need to modify some of the
core configuration files. When deploying your application, you must make sure that
your modifications are also in the Channel configuration files. If you do not, your
deployed application will not behave as expected.

1 Open the JSPF Configuration file (by default MyWeb.xml) and enable URL
rewriting. Under the <config> element, change the content of the <property
name="GETURL_CALL_ENCODE_URL"> element to true. Example:

<property name="GETURL_CALL_ENCODE_URL">true</property>

2 Copy the entire directory structure (nmycfg/...) of core configuration files located
under <home_dir>/classes to <app_dir>/WEB-INF/classes.

Your directory structure is now a deployable directory structure that conforms to the
WAR specification. The structure should look like this:

DIRECTORIES CONTENTS
<Channels>/ common/ Contents of <home_dir>/channels/common

 MyWeb/ Contents of <home_dir>/channels/MyWeb

 WEB-INF/ The web.xml file

 lib/ Copy of the required jar files in
<home_dir>/lib

 classes/ Copy of <home_dir>/classes

 TSM

To generate the WAR file

1 Go to <home_dir>/Channels.

2 Generate the WAR file. Use the syntax:
jar -cvf <home_dir>/myweb.war .

Do not forget the final period at the end of this command.

This Java command generates a WAR file called myweb.war in <home_dir>. You
can generate this file in another directory if required. You use your application
server's administration console to locate and deploy the generated WAR file.

To deploy the WAR file

1 Start the WebSphere Administration Server.

2 Start the Administration Console.

3 Choose Console>Wizards>Install Enterprise Application. The wizard opens.

4 Choose Install stand-alone module.

5 Enter the following information:

Path: <home_dir>/myweb.war

Name: MyWeb

Root: /<instance_name>

6 Choose Next. Accept the default values and choose Next until you exit the wizard.

Configuring Deployed Channels
During installation, the installer creates directories and copies files in standard default
locations.

There is also a set of configuration files that have default values that you may have to
change for your environment.

After deploying your channels, you need to configure some configuration files. You
modify the files found in your <DEPLOY_DIR>.

By default, WebSphere deploys the war files in
<WEBSPHERE_HOME>/AppServer/installedApps/MyWeb.ear/myweb.war.

Configuring deployed channels involves:

! Changing path to log files in log4j.properties

298 Developing Telco Service Manager (TSM)

To change logger paths

1 Go to <DEPLOY_DIR>/WEB-INF/classes/nmycfg/util.

2 Open log4j.properties.

3 Do the following:

! Set log4j.appender.ROL.File to /tmp/nmy_application.log

! Set log4j.appender.DAY.File to /tmp/nmy_daily_application.log

4 Save your changes.

Accessing a Deployed Channel
Before you can access your application, you need to restart your WebSphere server
along with any other required components.

After you restart your application components, you can access your application using
the following URL:

http://host:port/<instance_name>/MyWeb/index.jsp

where

http://host:port/<instance_name> corresponds to your WebSphere Server
instance

 TSM

For WebLogic 6.x and 7.x
Deploying Channels on WebLogic 6.x and 7.x involves:

! Configuring your environment
! Creating and deploying a WAR file

Configuring Your Environment
Depending on your application server and environment, you may have to carry out
certain tasks before you can deploy your channel.

For this application server, preparing your environment involves:

! Creating the connection pool
! Creating the data source for each database

To create a connection pool

Before creating your data source, you must create and configure a connection pool.

Refer to your application server documentation for more information about creating
connection pool and activating the database connectivity.

For SQL Server, you must change the default SelectMethod in the JDBC connection
string properties. The default SelectMethod is direct. The SelectMethod must
be set to cursor.

To create a CID data source

1 Start the Weblogic Server.

2 Open the Weblogic Server Console.

3 Under JDBC, click Data Sources. The JDBC Data Sources page appears.

4 Click Configure a new JDBC Data Source. The Configure JDBC Data Sources
page appears.

5 On the Configuration tab, enter the following:

FIELD VALUE

Name cidDatasource

JNDI Name jdbc/cidDatasource

6 Click Create. The data source appears on the top of the page.

300 Developing Telco Service Manager (TSM)

7 Click the home icon to return to the console home page.

Your WebLogic Server now has a declared data source corresponding to the CID.

Creating and Deploying a WAR File
In Java2EE, Sun Microsystems published the specification and tools to create Web
Application Archive files (WAR) files. A WAR file is a JAR file containing java class files
and other files required by Web applications (utility classes, HTML files, applets, and
so on.) When using WAR files, you create a single file containing all of the required
files for easy deployment on all Java2EE-compliant application servers.

A Web application can be run from directly from the WAR file or a directory that
conforms to the WAR specification.

The WAR file for applications contains the following:

! Personalization Manager channel JSPs
! WEB-INF directory containing:

! web.xml file describing the application

! WEB-INF/lib directory containing jar files
! WEB-INF/classes directory containing configuration files

After you generate your WAR file, you install this file using the application server's
administration console.

Building a WAR file involves:

! Configuring the web.xml file
! Moving configuration files
! Generating the WAR file
! Deploying the WAR file

The java command for building WAR files (jar.exe) is located in your application
server's copy of the Java Development Kit (JDK)

To configure the web.xml File

1 Go to <app_dir>/WEB-INF where <app_dir> is the location of your channel
files.

2 Open web.xml.

3 Do the following:

! In the <display-name> element, enter the name of your application.

! In the <description> element, enter a description of the application.

 TSM

The name and description you enter here are for the application server only.

4 Save your changes.

Example of web.xml
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>Welcome to MyWeb</display-name>

 <description>Welcome to MyWeb</description>

</web-app>

To prepare your files

During installation, there are two identical sets of application configuration files. This is
done to respect the requirements of the J2EE Web Application aRchive (WAR) file
specifications and to help you easily deploy your application.

The sets of configuration files are:

! Core configuration files
These configuration files are in <home_dir>/classes/nmycfg.

! Channel configuration files
These configuration files are in <app_dir>/WEB-INF/classes/nmycfg where
<app_dir> is the location of your channel files. By default, they are installed in
<home_dir>/Channels.

However, when you develop your application, you may need to modify some of the
core configuration files. When deploying your application, you must make sure that
your modifications are also in the Channel configuration files. If you do not, your
deployed application will not behave as expected.

1 Open the JSPF Configuration file (by default MyWeb.xml) and enable URL
rewriting. Under the <config> element, change the content of the <property
name="GETURL_CALL_ENCODE_URL"> element to true. Example:

<property name="GETURL_CALL_ENCODE_URL">true</property>

2 Copy the entire directory structure (nmycfg/...) of core configuration files located
under <home_dir>/classes to <app_dir>/WEB-INF/classes.

302 Developing Telco Service Manager (TSM)

Your directory structure is now a deployable directory structure that conforms to the
WAR specification. The structure should look like this:

DIRECTORIES CONTENTS
<Channels>/ common/ Contents of <home_dir>/channels/common

 MyWeb/ Contents of <home_dir>/channels/MyWeb

 WEB-INF/ The web.xml file

 lib/ Copy of the required jar files in
<home_dir>/lib

 classes/ Copy of <home_dir>/classes

To generate the WAR file

1 Go to <home_dir>/Channels.

2 Generate the WAR file. Use the syntax:
jar -cvf <home_dir>/myweb.war .

Do not forget the final period at the end of this command.

This Java command generates a WAR file called myweb.war in <home_dir>. You
can generate this file in another directory if required. You use your application
server's administration console to locate and deploy the generated WAR file.

To deploy your WAR file

1 Start the WebLogic Server.

2 Open the WebLogic Server Console.

3 Under Deployments, click Web Applications. The Web Applications page appears.

4 Click Install a new Web Application. The Upload and Install an Application page
appears.

5 Click Browse to locate your myweb.war file. After locating the file, you return to the
Upload and Install an Application page.

6 Click Upload to begin installation. The Upload and Install an Application page
displays a message when the installation is finished.

 303

Accessing a Deployed Channel
Before you can access your application, you need to restart your WebLogic server
along with any other required components.

After you restart your application components, you can access your application using
the following URL:

http://host:port/<instance_name>/MyWeb/index.jsp

where

http://host:port/<instance_name> corresponds to your WebLogic Server
instance

304 Developing Telco Service Manager (TSM)

For Oracle 9i Application Server
Deploying Channels on WebLogic 6.x and 7.x involves:

! Configuring your environment
! Creating and deploying a WAR file

Configuring Your Environment
Depending on your application server and environment, you may have to carry out
certain tasks before you can deploy your channel.

For this application server, preparing your environment involves:

! Creating the data source for each database

To create a CID data source

1 Start the Oracle 9i Application Server Administration Server.

2 Open the Web Oracle 9i Application Server Administration Console.

3 Under Applications, select the application to create a data source for.

4 Under Administration > Application Defaults, click Data Sources. The Data Sources
page appears showing the available data sources for this application.

5 Click Create Data Source. The Create Data Source page appears.

6 Under General, enter the following:

FIELD VALUE

Name cidDatasource

Description A description of the data source

Data Source Class com.evermind.sql.DriverManagerDataSource

Schema leave blank

Username your CID user name

Password associated password

JDBC URL refer to your application server's documentation

JDBC Driver refer to your application server's documentation

7 Under JNDI Locations, enter the following:

 TSM

FIELD VALUE

Location jdbc/cidDatasource

Transactional (XA) Location jdbc/XA/cidDatasource

EJB Location jdbc/ejb/cidDatasource

8 Click Create. The confirmation page appears.

9 Click Yes to restart the instance. You must restart the instance to take into account
your changes.

Creating and Deploying a WAR File
In Java2EE, Sun Microsystems published the specification and tools to create Web
Application Archive files (WAR) files. A WAR file is a JAR file containing java class files
and other files required by Web applications (utility classes, HTML files, applets, and
so on.) When using WAR files, you create a single file containing all of the required
files for easy deployment on all Java2EE-compliant application servers.

A Web application can be run from directly from the WAR file or a directory that
conforms to the WAR specification.

The WAR file for applications contains the following:

! Personalization Manager channel JSPs
! WEB-INF directory containing:

! web.xml file describing the application

! WEB-INF/lib directory containing jar files
! WEB-INF/classes directory containing configuration files

After you generate your WAR file, you install this file using the application server's
administration console.

Building a WAR file involves:

! Configuring the web.xml file
! Moving configuration files
! Generating the WAR file
! Deploying the WAR file

The java command for building WAR files (jar.exe) is located in your application
server's copy of the Java Development Kit (JDK)

306 Developing Telco Service Manager (TSM)

To configure the web.xml File

1 Go to <app_dir>/WEB-INF where <app_dir> is the location of your channel
files.

2 Open web.xml.

3 Do the following:

! In the <display-name> element, enter the name of your application.

! In the <description> element, enter a description of the application.

The name and description you enter here are for the application server only.

4 Save your changes.

Example of web.xml
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>Welcome to MyWeb</display-name>

 <description>Welcome to MyWeb</description>

</web-app>

 TSM

To prepare your files

During installation, there are two identical sets of application configuration files. This is
done to respect the requirements of the J2EE Web Application aRchive (WAR) file
specifications and to help you easily deploy your application.

The sets of configuration files are:

! Core configuration files
These configuration files are in <home_dir>/classes/nmycfg.

! Channel configuration files
These configuration files are in <app_dir>/WEB-INF/classes/nmycfg where
<app_dir> is the location of your channel files. By default, they are installed in
<home_dir>/Channels.

However, when you develop your application, you may need to modify some of the
core configuration files. When deploying your application, you must make sure that
your modifications are also in the Channel configuration files. If you do not, your
deployed application will not behave as expected.

1 Open the JSPF Configuration file (by default MyWeb.xml) and enable URL
rewriting. Under the <config> element, change the content of the <property
name="GETURL_CALL_ENCODE_URL"> element to true. Example:

<property name="GETURL_CALL_ENCODE_URL">true</property>

2 Copy the entire directory structure (nmycfg/...) of core configuration files located
under <home_dir>/classes to <app_dir>/WEB-INF/classes.

Your directory structure is now a deployable directory structure that conforms to the
WAR specification. The structure should look like this:

DIRECTORIES CONTENTS
<Channels>/ common/ Contents of <home_dir>/channels/common

 MyWeb/ Contents of <home_dir>/channels/MyWeb

 WEB-INF/ The web.xml file

 lib/ Copy of the required jar files in
<home_dir>/lib

 classes/ Copy of <home_dir>/classes

308 Developing Telco Service Manager (TSM)

To generate the WAR file

1 Go to <home_dir>/Channels.

2 Generate the WAR file. Use the syntax:
jar -cvf <home_dir>/myweb.war .

Do not forget the final period at the end of this command.

This Java command generates a WAR file called myweb.war in <home_dir>. You
can generate this file in another directory if required. You use your application
server's administration console to locate and deploy the generated WAR file.

To deploy your WAR file

1 Start the Oracle 9i Application Server Administration Server.

2 Open the Web Oracle 9i Application Server Administration Console.

3 Select the OC4J instance to use for your application.

4 Under Deployed Applications > Applications, click Deploy WAR file. The Deploy
Web Application page appears.

5 Do the following:

! In Web Application, enter the full path of the channel WAR file to deploy.

! In Application Name, enter the channel name. This is the
<APPLICATION_NAME> directory.

! In Map to URL, enter the absolute path corresponding to the URL of the MyWeb
channel. This is the <MAP_TO_URL> directory. For instance /myweb.

6 Click Deploy. The confirmation page appears.

When Oracle 9i Application Server deploys your WAR file, it does the following:

! Copies the WAR file to
<ORACLE_HOME>/j2ee/<your_OC4J_instance>/applications/<APPLI
CATION NAME>

! Extracts the directories and files in the WAR file under
<ORACLE_HOME>/j2ee/<your_OC4J_instance>/applications/<APPLI
CATION_NAME>/<APPLICATION_NAME>/

This is the <DEPLOY_DIR> directory.

 309

Configuring Deployed Channels
During installation, the installer creates directories and copies files in standard default
locations.

There is also a set of configuration files that have default values that you may have to
change for your environment.

After deploying your channels, you need to configure some configuration files. You
modify the files found in your <DEPLOY_DIR>.

Configuring deployed channels involves:

! Changing path to log files in log4j.properties
! Precompiling your channel JSPs

After modifying any of these settings, you must restart your OC4J instance.

To change logger paths

1 Go to <DEPLOY_DIR>/WEB-INF/classes/nmycfg/util.

2 Open log4j.properties.

3 Do the following:

! Set log4j.appender.ROL.File to /tmp/nmy_application.log

! Set log4j.appender.DAY.File to /tmp/nmy_daily_application.log

4 Save your changes.

310 Developing Telco Service Manager (TSM)

To precompile your channel JSPs

When the Oracle 9i Application Server deploys your WAR file, it unpacks the files and
moves them to their required locations.

The Oracle 9i Application Server comes with a JSP pre-compiler called ojspc. You
can use this precompiler to compile your deployed JSPF channel JSPs. Depending on
the size of your application, precompiling your JSP may take a few minutes.

When running, the Oracle 9i Application Server compiles the JSPs and places the
resulting class files in
<ORACLE_HOME>/j2ee/<your_OC4J_instance>/application-
deployments/<APPLICATION_NAME>/<APPLICATION_NAME>/persistence/_p
ages. This is the <COMPILE_DIR>.

Before running this command, you need to make sure your JVM is set to use at least
256MB.

1 Go to <ORACLE_HOME>/bin.

2 Open the ojspc file and find following JVM command $JAVA_HOME/bin/java

3 Change the -mx parameter to 256 (or greater) and save your changes.

Your ojspc file should now have the following JVM command line:

$JAVA_HOME/bin/java -ms64m -mx256m -classpath...

4 Go to the <DEPLOY_DIR> directory.

5 Run the ojspc compiler. Use the syntax:

ojspc -d <COMPILE_DIR>/WEB-INF/MyWeb/*.jsp

When finished, the precompiler does not display a message. If an error occurs
while compiling, the compiler displays all corresponding messages in the
application console.

The JSPF framework JSPs have calls to deprecated JSPF APIs.

As this version introduced a new way to design applications, these calls remain in
the JSPs in order to insure backwards compatibility.

6 Repeat this command for each channel.

 311

Accessing a Deployed Channel
Before you can access your application, you need to restart your OC4J instance and
your application server along with any other required components.

After you restart your application components, you can access your application using
the following URL:

http://host:port/<MAP_TO_URL>/MyWeb/index.jsp

where

http://host:port corresponds to your 9iApplication Server instance

MyWeb the channel name

<MAP_TO_URL>/MyWeb/index.jsp is the path to your channel.

 313

query syntax � 106, 108

Index

A
accessors_custom.properties

declaring search methods � 98, 103
ActionManager

about � 184
and persistent ActionManagers � 221
and shopping carts � 191, 192
approval processes � 236
changes to BLM Objects � 186
hierarchy � 197, 199
saving � 218
types � 192, 204

Approval Processes
about � 232, 239
compiling � 244
creating � 233
customizing � 239, 240, 241, 242, 245
declaring approval process � 233
displaying approval requests � 236
submitting requests � 236
using � 237, 245

Auditing
customizing User Events � 275

B
BLM (Business Logic Manager)

and external approval processes � 239,
245

configuring � 27
customizing � 125
errors � 247
reference data � 174, 177
search features � 110

BLM Objects
managing changes � 184, 185, 186, 187
refreshing � 177, 178, 179, 181, 182

Bulk Ordering
about � 226
limits � 226
using � 227, 228, 229, 230

Business Logic

customizing � 125
using custom classes � 125

C
Channels

accessing deployed channels � 298, 303,
311

deploying � 293, 299, 304
CID (Customer Interaction Datastore)

about � 34
accessing external data sources � 142
adding search filters � 94, 96, 97
and BLM Object changes � 184, 185,

186, 187
approval processes � 232
configuring data access � 293, 299, 304
customizing � 34
optimizing for searches � 92
users � 133

Configuration Files
and WAR files � 294
core_english.properties � 249
core_french.properties � 249

Configuring
Configuring - environment for

application servers � 293, 299, 304
core_english.properties Configuration File

about � 249
location � 249
using � 161, 249

core_french.properties Configuration File
about � 249
location � 249
using � 161

core_queries.xml Customization File
and search filters � 107
creating custom queries file � 147

CSS Applications
about � 26
deploying � 292

Custom Classes
about � 125

314 Developing Telco Service Manager (TSM)

compiling � 244
creating � 127
creating approval processes � 240, 241,

242
declaring � 128
defining package � 240
deploying � 128
developing � 127
extending core class � 240
extending the BLM with � 125

Data Access Layer (DAL)

localizing � 249

Customizing
Approval Processes � 239
Business Logic � 125
CID � 34
logger � 260, 262

D

accessing external data sources � 142,
143

creating new search queries � 105, 106,
107, 108

declaring new instance � 143
declaring search methods � 98, 102, 103,

104
query syntax � 106, 108

Data Sources
configuring for Oracle Application

Server � 304
configuring for WebLogic � 299
configuring for WebSphere � 293
external data sources � 142

Deploying
about � 292
Oracle 9i Application Server � 304
using WAR files � 292
WebLogic � 299
WebSphere � 293

E
Errors

BLM exceptions � 248, 249

Event Codes
about � 257
creating custom event codes � 260, 261
example of custom event codes � 261
using � 262

Explicit Security
about � 137

using � 137, 138
external_custom.xml Customization File

about � 125
location � 125
using � 127, 128

F
Filter Criteria

about � 89
and search filters � 88
customizing � 84

Form Handler JSPs
and shopping carts � 194

functions_routing.properties Configuration
File � 146
about � 146
location � 146
using � 146

I
instances.properties Customization File

about � 143
creating � 144
location � 143
using � 143

J
jfnApplication.properties Configuration

File
using � 154

jsp_parameters.properties Configuration
File
about � 157
location � 157
using � 157

JSPF Framework
character encoding � 154
search pages � 54, 109

L
Languages

about � 152, 153, 156, 157
adding � 168
and strings � 166
declaring languages � 156
localizing � 166
localizing the BLM � 161, 248, 249
localizing the CID � 160
specifying formats � 157
specifying the character set � 154

 Index 315

specifying the default language � 156,
157

Localizing
about � 152, 153, 166
and languages � 168
BLM error messages � 161
character sets � 154
CID data � 160
creating strings � 169
formats � 157
generating strings � 171
JSPs � 164, 166
languages � 156
limits � 153
localizing � 172
strings � 166

log4j.properties Configuration File
and WebSphere � 297, 298

Logger
and the logger API � 257, 259
configuring events to log � 254, 258
customizing � 260, 262
modules � 256
severity levels � 255
using in custom code � 252

Logic Handler JSPs
search pages � 119

Logs

N

Persistent Action Managers

Portals

components � 253, 254, 255, 256
contents of � 253
custom event codes � 258, 260, 261
custom log messages � 266, 267, 268,

269, 270, 271
event types � 253, 254, 257
severity levels � 255

Notification Logic Class
creating new class � 240

O
Oracle Application Server

accessing deployed applications � 311
creating WAR file for � 294
deploying WAR file � 308
post deployment configuration � 298,

309, 310
Overriding

strings � 169

P
Parameters

and search filters � 98

about � 221
and shopping cart templates � 221
and Shopping Carts � 221
in the CID � 221

Personalization Manager
customizing � 28

policy.properties Configuration File
using � 178, 181

and Telco Service & Analytics Manager
� 282

entry points � 284

R
Reference Data

reloading � 178, 179, 181, 182

S
Search Filters

about � 88
activating criteria � 83
and filter criteria � 57
available filters � 58
creating � 56, 91
declaring as default � 83
declaring criteria � 96, 97, 112
declaring criteria as mandatory � 84
declaring in the CID � 94, 96
declaring search methods � 98, 102
default value � 84
display order � 84

Security
about � 132
and CID users � 133
explicit security � 137

Shopping Cart Templates
about � 221, 222
and persistent action managers � 221
listing � 223
removing � 224
saving � 222
using � 223

Shopping Carts
about � 190
adding contents � 195, 201, 202

316 Developing Telco Service Manager (TSM)

and Action Managers � 192, 193
and Persistent Action Managers � 221

generating � 171

deploying WAR file � 297

complex shopping cart � 194, 195, 197,
199, 201, 202, 204, 205

displaying contents � 195, 214, 216, 217
limits in MyWeb channel � 193
modifying contents � 208, 210, 211, 212
multiple ActionManagers � 194, 197,

199
removing contents from � 212
retrieving saved contents � 220
saving content of � 218, 219, 220
simple shopping cart � 194, 195
submitting � 195
templates � 222

Strings
about � 169
and languages � 168
creating � 169

localizing � 171
overriding � 169

T
translator.properties Configuration File

about � 161
location � 161
using � 161

U
User Events

creating � 275
examples � 277, 279

W
WAR File

about � 292, 294
deploying � 292, 294, 297, 302, 308
generating � 294, 297
installing � 297, 302, 308

WebLogic
accessing deployed application � 303
configuring � 299
creating WAR file for � 294, 295, 296,

297
data source � 299
deploying WAR file � 302
recommended deployment � 299

WebSphere
accessing deployed application � 298

configuring � 294, 295, 297, 298
creating WAR file for � 294, 295, 296,

297
data source � 293

enabling URL rewriting � 296
memory settings � 294
post deployment configuration � 297,

298

	Preface
	Overview of Developing Telco Service Manager (TSM)
	About Developing Applications
	Configuring the BLM
	Building a User Interface
	Developing Connectors
	Deploying Your Solution
	Using the Demo Application

	Extending the BLM Object Model
	About Working with the CID
	About Extending the BLM Object Model
	Before You Start
	Determining if the Object is Extensible
	Adding Tables for Attribute Values
	Declaring the Attributes in the DAL
	Accessing Attribute Values
	Modifying Attribute Values

	Specifying the Attribute in the CID
	Extending the Object Definition
	Extending the Object Definition in the SmartLink (ISF)
	Working With New Attributes
	Returning the Object Description
	Returning Values
	Setting Values of Attributes
	Setting Values of Objects Being Created or Modified

	Working with Search Features
	About Using the Search Feature
	About the BLM Methods

	About Search Filters
	About Filter Criteria
	Available Filters and Criteria

	Configuring Search Filters
	Customizing Filters
	Customizing Criteria

	Creating Search Filters
	About Search Filters
	About Filter Criteria
	Overview of Creating Search Filters
	Optimizing Oracle Databases For Searches
	Declaring the New Filter in the CID
	Declaring the New Search Method in the DAL
	Writing the New Query
	Writing a Search JSP
	Getting the Filter
	Getting Dynamic and Hidden Criteria
	Displaying the Search Criteria
	Executing the Search
	Displaying the Results

	Changing the BLM Business Logic
	About Business Logic
	Changing Business Logic

	Managing Security
	About Security
	Understanding the CID Schema Security
	Configuring Authentication
	Using Trust Modes
	Managing Access to BLM Objects
	Using Explicit Security
	About Explicit Security
	Getting Managers of a Contract
	Specifying a Manager
	Removing a Manager

	Accessing External Data Sources
	About Accessing External Data Sources
	Configuring a New DAL Instance
	Creating the Configuration File
	Specifying the Binding Properties
	Programming the Data Access

	Localizing Your Application
	About Localizing an Application
	Limitations of Localizing Applications
	Specifying the Character Set
	Specifying Application Languages
	Specifying Language-specific Formats
	Localizing Database Entries
	Localizing BLM Error Messages
	Localizing JSPs
	About Localizing Applications
	Working with Languages
	Working with Strings

	Localizing Strings

	Managing Reference Data
	About Reference Data
	Returning All Reference Data
	Returning Only Certain Types of Reference Data
	Reloading Reference Data
	How the Internal BLM Cache Works

	Updating Reference Objects in the Cache
	Programming your Application for Reference Data Reloads
	Example of JSPs Using the Reference Data Reload Feature

	Managing Changes to BLM Objects
	About Changes to BLM Objects
	Managing Basic Changes to Objects
	Managing Changes with the ActionManager
	Managing Changes in Synchronous Mode

	Working with Shopping Carts
	About Shopping Carts
	About the BLM Interfaces
	Before Developing Shopping Carts
	Action Manager Hierarchies
	Action Manager Types
	About the Presentation Layer

	Creating a Simple Shopping Cart
	Declaring and Retrieving the Shopping Cart
	Listing Services in the Shopping Cart
	Adding Services to the Shopping Cart
	Submitting the Shopping Cart

	Managing Complex Shopping Cart Contents
	Creating a Complex Shopping Cart for Contracts

	Adding a Contract
	Adding a Service to the Contract
	Creating Customers in the Shopping Cart
	Modifying a Shopping Cart Item
	Editing the Object
	Modifying Additional Information

	Modifying the Quantity
	Modifying Service Parameters
	Removing a Shopping Cart Item

	Displaying the Contents of a Shopping Cart
	Browsing the shopping cart
	Displaying All Items
	Working with core services
	Retrieving the detail of an entry

	Saving Shopping Carts
	About Saving Shopping Carts
	Saving a Shopping Cart
	Create a Shopping Cart from a Saved Copy

	Using Shopping Cart Templates
	About Persistent Action Managers

	About Shopping Cart Templates
	Saving a Shopping Cart as a Template
	Getting the List of Available Templates
	Using Shopping Cart Templates
	Deleting Shopping Cart Templates

	Using Bulk Ordering
	About Bulk Ordering
	Adding a Service to Contracts
	Modifying a Service of Contracts
	Removing a Service from Contracts
	Changing the Rate Plan of Contracts

	Working with Approvals
	About Approving Orders
	Creating Approval Processes
	Submitting Requests for Approval
	Displaying Requests for Approval
	Approving or Denying Requests

	About Approval Processes Logic
	Creating a New Approval Process Class
	Deploying the Approval Class
	Running the Approval Sequencer

	Managing Errors
	About the BLM Exceptions
	BlmLogicException
	BlmSecurityException
	BlmBadValueException
	PersistenceException

	Customizing Error Messages

	Logging Events
	About Logging Events
	Before You Get Started

	Logger Events
	Event Types
	Severity Levels
	Event Modules
	Filtering Logs

	About the Logger API
	Available Events
	Custom Event Codes
	Logger API Object Model

	Creating the Custom Event Code File
	Creating the properties File
	Example of the Custom Event Code File
	Deploying the Custom Event Code File

	Programming Custom Event Logs
	Loading the Custom Event Code
	Initalizing the Logger
	Checking Severity Settings
	Logging Standard Messages
	Logging Debug Messages
	Logging Messages During Development

	Working with User Events
	About User Events
	About Creating Custom User Events

	Working with Portals
	About Portals and Telco Service & Analytics Manager
	Overview of Integrating Telco Service & Analytics Manager
	Setting Entry Points
	Encoding URLs
	Managing Sessions
	Managing Stylesheets
	Managing Forbidden Tags

	Deploying Telco Service Manager (TSM)
	About Deploying
	For WebSphere 4.x
	Configuring Your Environment
	Creating and Deploying a WAR File
	Configuring Deployed Channels
	Accessing a Deployed Channel

	For WebLogic 6.x and 7.x
	Configuring Your Environment
	Creating and Deploying a WAR File
	Accessing a Deployed Channel

	For Oracle 9i Application Server
	Configuring Your Environment
	Creating and Deploying a WAR File
	Configuring Deployed Channels
	Accessing a Deployed Channel

	Index

