

Self-Service for
Communications Developers
Guide

V5.0.0
Date Published: 3.31.05

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2005 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photographic, magnetic, or other record,
without the prior agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, UAN, Universal Application Network, Siebel CRM OnDemand,
TrickleSync, Universal Agent, and other Siebel names referenced herein are trademarks of
Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered
trademarks of their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation,
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement,
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer
Software and Commercial Computer Software Documentation, and as such, any use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be
subject to the restrictions contained in the applicable Siebel license agreement. All other use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions
contained in subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted
Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway,
San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this
documentation and in Siebel eBusiness Applications Online
Help to be Confidential Information. Your access to and use of
this Confidential Information are subject to the terms and
conditions of: (1) the applicable Siebel Systems software
license agreement, which has been executed and with which
you agree to comply; and (2) the proprietary and restricted
rights notices included in this documentation.

Self Service Manager Developers Guide | 3

Contents

1 Preface

About Self Service Manager for Communications 7

2 Developing with and Extending Self Service
Manager

How to Use This Guide 13

Core Functionality 14

Extending Connectivity 14

Accessing Self Service Manager Data 15

Interacting with Self Service Manager Transactions 15

Extending Self Service Manager with Custom Transactions 16

3 Understanding Self Service Manager

Data Loading and Synchronization 17

Bulk Load Features 17

Bulk Load Process 18

Data Load Configuration 19

Self Service Manager Bulk Loading Configuration & Runtime
Requirements 22

Bulk Loading Command Syntax 23

Error Handling 24

Bulk Loading Quick Validation 25

Data Formats 25
Search & Update Functionality 29

Self Service Manager Search & Update APIs 29

Self Service Manager Search Sequence Of Events 30

Obtaining Context 31

4 | Self Service Manager Developers Guide

Obtaining an instance of a TSMDataManager 33

Finding a Service Agreement 33

Managing Rate Plan Elements 34

Common Exceptions 35

Purging out of date data 35

Service Agreement Locking 36
Self Service Manager Transaction API 37

Self Service Manager Sequence Of Events 38

Self Service Manager Transaction APIs 39

Obtaining an instance of a TSMServiceManager 40

Obtaining an instance of an IServiceAgreement 40

Obtaining and populating specific transactions 41

Generate Voice Mail Password Transaction 41

Changing Voice Mail Password Transaction 42

Change Phone Number Transaction 43

Port Phone Number Transaction 44

Change Digital Subscriber Number Transaction 45

Activate/Deactivate/Suspend/Resume Service Transactions 46

Add Delete Feature Transaction 47

Change Rate Plan Request 49

Find Subscriber Profile/Change Subscriber Profile Transactions 51

Obtain Available area codes/exchanges/phone number Transactions 52

Bulk Transaction Handling 53

Transaction Response Handling 54

Common Exceptions 54
Enterprise Systems Connectivity 55

Concepts 55

Defining Destinations 56

Self Service Manager Developers Guide | 5

Understanding Response Codes: 57

Adding messages to a response request 59

Defining a Destination in sm.xma.xml 61

Defining Transactions 62

Transaction Lifecycle Events 69

Custom Request and Response Persistence 74

Supporting Asynchronous requests 76

Integrating Transactions 78

Response Processors 81

4 Glossary of Terms

Index 87

Self Service Manager Developers Guide | 7

 1 Preface

About Self Service Manager for
Communications

Siebel's Self-Service for Communications includes every application that
communications service providers need to enable a complete online customer-
self service experience at their website. The suite includes software applications
for:

• e-Billing and Payment

• Service and Order Management

• Point-of-Sale

• Reporting and Analytics

• Rate Plan Advice

Siebel's Self-Service applications for the telecommunications industry combine
Siebel's unrivaled Customer Self-Service and e-Billing software suite with its
extensive industry domain expertise. The packaged, out-of-the-box applications
are tailored to solve communications service providers’ distinct business
problems and to meet communications industry-specific process requirements.

Siebel's Self-Service for Communications includes:

Communications Billing Manager

Communication Billing Manager is a complete e-billing application for
communications service providers that gives business and consumer customers
valuable and convenient access to their communications bills along with the
ability to easily make online payments.

Communications Self-Service Manager

Communications Self-Service Manager enables customers of communications
service providers to manage every aspect of their service relationship online.
From a single convenient interface, customers can easily activate and manage
subscriptions, change rate plans and features, and modify subscriber profile
settings. Business customers are able to complete these activities for individual
employees, as well as company departments and divisions, across their entire
organization.

8 | Self Service Manager Developers Guide

Communication Analytics Manager

Communication Analytics Manager is a reporting solution for business customers
that empowers both individual employees and business managers to analyze and
understand their communications costs and usage by investigating and
identifying trends and patterns across multiple views of their own unique
organization.

Rate Plan Advisor

Rate Plan Advisor is a web-based application that recommends the ideal rate plan
for wireless subscribers in real-time. Individual consumers as well as large
businesses can analyze their actual historical voice/mobile/data usage, find the
best-fit rate plans, and compare the features offered by those plans. With its
intuitive wizard user interface, Rate Plan Advisor quickly guides end-customers
or customer service representatives through the entire analysis process. In
addition, a service provider’s customer care and marketing groups can also use
Rate Plan Advisor to identify pre-churn subscribers, simulate new rate plans, and
run predictive analytics.

About This Guide
The Siebel Software Developers Kit allows developers to write custom code
against Siebel applications. This guide is intended for Siebel system integrator
partners, senior developers with a Siebel client company, and Siebel Professional
Services representatives.

The Self Service Manager SDK assumes you have an in-depth understanding of
and practical experience with:

• TBM & Self Service Manager system architecture, installation, deployment,
application design, and administration

• Java 2 Enterprise Edition (J2EE), Enterprise JavaBeans (EJBs), servlets, and
JSPs

• Apache Struts, Tiles and Log4J and Velocity

• Packaging and deploying J2EE applications for WebLogic or WebSphere

• Directory services including the Java Naming Directory Interface (JNDI) and
the Lightweight Directory Access Protocol (LDAP)

• HTML and XML, web server administration, and web browsers

• The Spring Framework, see www.springframe.org for more information

• The hibernate persistence framework, see www.hibernate.org for more
information

This guide also assumes you have:

http://www.springframe.org/
http://www.hibernate.org/

Self Service Manager Developers Guide | 9

• Read the Self Service Manager product documentation and are familiar with
Self Service Manager functionality

• Read the reviewed and have ready the javadoc packaged with the Self
Service Manager SDK

• Successfully installed Self Service Manager in a J2EE development
environment

• Knowledge of how to develop J2EE web applications using JSP, Struts, Tiles
and XML

Related Documentation
This guide is part of the Telco documentation set including Telco Service
Manager and Telco Business Manager. For more information about
implementing your Self Service Manager application, see one of the following
guides:

Print Document Description

Self Service Manager
Architecture Guide

Overview of the Self Service Manager Architecture
and Data Model

TBM & Self Service Manager
Installation Guides

How to install Telco e-Billing Manager and Telco
Service Manager in a distributed environment.

TBM Presentation Design Guide How to use Composer to define the rules for mapping
data to templates for viewing statements.

TBM Administration Guide How to set up and run a live TBM application in a
J2EE environment.

TBM Data Definition Guide How to use DefTool to define the rules for data
extraction in a DDF file.

TBM Developers guide How to extend, develop and otherwise work with the
TBM product

Obtaining edocs Software and Documentation
You can download edocs software and documentation directly from Customer
Central at https://support.edocs.com. After you log in, click on the Downloads
button on the left. When the next page appears, you will see a table displaying all
of the available downloads. To search for specific items, select the Version
and/or Category and click the Search Downloads button. If you download
software, an email from edocs Technical Support will automatically be sent to
you (the registered owner) with your license key information.

10 | Self Service Manager Developers Guide

If you received an edocs product installation CD, load it on your system and
navigate from its root directory to the folder where the software installer resides
for your operating system. You can run the installer from that location, or you
can copy it to your file system and run it from there. The product documentation
included with your CD is in the Documentation folder located in the root
directory. The license key information for the products on the CD is included
with the package materials shipped with the CD.

If You Need Help
Technical Support is available to customers who have an active maintenance and
support contract with edocs. Technical Support engineers can help you install,
configure, and maintain your edocs application.

This guide contains general troubleshooting guidelines intended to empower you
to resolve problems on your own. If you are still unable to identify and correct an
issue, contact Technical Support for assistance.

Information to provide
Before contacting edocs Technical Support, try resolving the problem yourself
using the information provided in this guide. If you cannot resolve the issue on
your own, be sure to gather the following information and have it handy when
you contact technical support. This will enable your edocs support engineer to
more quickly assess your problem and get you back up and running more
quickly.

Please be prepared to provide Technical Support the following information:

Contact information:

• Your name and role in your organization.

• Your company’s name

• Your phone number and best times to call you

• Your e-mail address

Product and platform:

• In which edocs product did the problem occur?

• What version of the product do you have?

• What is your operating system version? RDBMS? Other platform
information?

Specific details about your problem:

• Did your system crash or hang?

Self Service Manager Developers Guide | 11

• What system activity was taking place when the problem occurred?

• Did the system generate a screen error message? If so, please send us that
message. (Type the error text or press the Print Screen button and paste the
screen into your email.)

• Did the system write information to a log? If so, please send us that file. For
more information, see the TBM Troubleshooting Guide.

• How did the system respond to the error?

• What steps have you taken to attempt to resolve the problem?

• What other information would we need to have (supporting data files, steps
we’d need to take) to replicate the problem or error?

Problem severity:

• Clearly communicate the impact of the case (Severity I, II, III, IV) as well as
the Priority (Urgent, High, Medium, Low, No Rush).

• Specify whether the problem occurred in a production or test environment.

Contacting edocs Technical Support

You can contact Technical Support online, by email, or by telephone.

edocs provides global Technical Support services from the following Support
Centers:

US Support Center
Natick, MA
Mon-Fri 8:30am – 8:00pm US EST
Telephone: 508-652-8400

Europe Support Center
London, United Kingdom
Mon-Fri 9:00am – 5:00 GMT
Telephone: +44 20 8956 2673

Asia Pac Rim Support Center
Melbourne, Australia
Mon-Fri 9:00am – 5:00pm AU
Telephone: +61 3 9909 7301

Customer Central
https://support.edocs.com

Email Support
mailto:support@edocs.com

12 | Self Service Manager Developers Guide

Escalation process
edocs managerial escalation ensures that critical problems are properly managed
through resolution including aligning proper resources and providing notification
and frequent status reports to the client.

edocs escalation process has two tiers:

1. Technical Escalation - edocs technical escalation chain ensures access to the
right technical resources to determine the best course of action.

2. Managerial Escalation - All severity 1 cases are immediately brought to the
attention of the Technical Support Manager, who can align the necessary
resources for resolution. Our escalation process ensures that critical problems
are properly managed to resolution, and that clients as well as edocs
executive management receive notification and frequent status reports.

By separating their tasks, the technical resources remain 100% focused on
resolving the problem while the Support Manager handles communication and
status.

To escalate your case, ask the Technical Support Engineer to:

1. Raise the severity level classification

2. Put you in contact with the Technical Support Escalation Manager

3. Request that the Director of Technical Support arrange a conference call with
the Vice President of Services

4. Contact VP of Services directly if you are still in need of more immediate
assistance.

Self Service Manager Developers Guide | 13

2 Developing with and Extending Self
Service Manager

How to Use This Guide
Developing and deploying Self Service Manager applications requires a core set
of functionality be in place. Common tasks a developer must perform are
customarily referred to in this guide as developer use cases. For each developer
use case there may be one or more activities that need to be performed in order to
complete the development effort. The remainder of this section details the most
common developer use cases and the sections that describe the underlying
technology involved to implement each.

Self Service Manager Development falls into several areas:

• Core functionality — required by all Self Service Manager deployments,
populating the Self Service Manager data store, writing a connector etc.

• Extending Connectivity — adding hooks and custom processing for single or
multiple back end systems

• Accessing Self Service Manager Data — interacting with the Self Service
Manager database

• Interacting with Self Service Manager transactions — interacting with
existing transactions

• Extending Self Service Manager with custom transactions — adding your
own transactions

• Extending the Self Service Manager Data model — adding and accessing
customer data within the Self Service Manager data model

14 | Self Service Manager Developers Guide

Core Functionality
Every Self Service Manager deployment requires a core set of Self Service
Manager functionality be created and deployed. Chief of these activities is
populating the Self Service Manager database and configuring a Self Service
Manager Destination.
In Order To: Read These Sections To Perform These Activities
Manage Self Service
Manager Data

• Self Service Manager Architecture –
data model

• Bulk Load Process
• Data Load Configuration
• Validation

• Understand the core data model
• Understand the data loading process
• Configure your environment
• Validate loaded data

Understand
Transactions

• Self Service Manager Architecture –
Arch. Overview

• Self Service Manager Transactions –
sequence of events

• Self Service Manager Transactions –
specific transactions

• Understand Self Service Manager Core
Components

• Understand OSS interaction from the
front end perspective

• Understand transaction specifics

Connect to an
existing OSS

• Self Service Manager Architecture –
Arch. Overview

• Enterprise Sys. Conn. – Concepts
• Enterprise Sys. Conn. – Defining

Destinations

• Understand Self Service Manager Core
Components

• Understand ESS Component details
• Connecting Self Service Manager to an

external OSS

Extending Connectivity
Custom processing can be integrated into Self Service Manager for the purpose
of providing specific processing for a given OSS return status. Such processing
can be applied to a single OSS or to a set of OSS’s.
In order to: Read These Sections To Perform These Activities
Add a custom
response handler

• Self Service Manager Architecture –
Arch. Overview

• Enterprise Sys. Conn. – Concepts
• Enterprise Sys. Conn. – Response

Handlers

• Understand the purpose of response hand
• Understand how response handlers are c
• Write and configure a custom response

handlers

Self Service Manager Developers Guide | 15

In order to: Read These Sections To Perform These Activities
Perform Custom
Persistence
Management

• Self Service Manager Architecture –
data model

• Enterprise Sys. Conn. – Concepts

• Enterprise Sys. Conn. – Persistence
Management

• Search & Update – Entire section

• Understand the core data model
• Understand when and why persistence

management is important
• Write and configure persistence manager

• Cascade changes from an OSS back to th

Service Manager database

Accessing Self Service Manager Data
Most applications will need to interact with the Self Service Manager database in
order to search for and update existing data.
In order to: Read These Sections To Perform These Activities
Interact with the Self
Service Manager
Database

• Self Service Manager Architecture –
data model

• Search and Update – Entire section

• Understand the core data model
• Store changes back into the Self Service

Manager database
Purge the Self Service Manager Databas
out of data information

Interacting with Self Service Manager Transactions
Most applications will interact existing Self Service Manager transactions, either
for the purpose of writing GUI implementations or otherwise interacting with the
Self Service Manager Service manager to perform or interact with transaction
processing.

16 | Self Service Manager Developers Guide

In order to: Read These Sections To Perform These Activities
Interact with Core
Self Service Manager
Transactions

• Self Service Manager Architecture –
Arch. Overview

• Self Service Manager Transaction API –
Seq. of events

• Self Service Manager Transactions API
– Specific transactions

• Self Service Manager Transaction API –
Bulk Transaction Handling

• Self Service Manager Transaction API –
Exception Processing

• Enterprise Sys. Conn. – Concepts

• Understand the general transaction conc
• Understand transaction processing

• Understand and interact with a given

transaction
• Handle bulk transaction responses

• Handle Exceptions
• Understand how transaction is handled b

Extending Self Service Manager with Custom Transactions
Custom applications can add there own specific transactions which enhance Self
Service Manager to provide support for transactions outside the scope of those
prepackaged with Self Service Manager.
In order to: Read These Sections To Perform These Activities
Extend the Self
Service Manager
Transaction set with
custom transactions

• Self Service Manager Architecture –
Arch. Overview

• Self Service Manager Transaction API –
Seq. of events

• Enterprise Sys. Conn. – Concepts

• Enterprise Sys. Conn. – Defining
Transactions

• Enterprise Sys. Conn. – Integrating
Transactions

• Enterprise Sys. Conn. – Defining
Destinations

• Understand the general transaction conc
• Understand transaction processing

• Understand how transaction is handled b
• Defining new transactions

• Installing and configuring new transactio

• Add support at the OSS level for new

transactions

Self Service Manager Developers Guide | 17

3 Understanding Self Service Manager

Data Loading and Synchronization
Self Service Manager is not the system of record with respect to Service
Agreements and their underlying data and as such the Self Service Manager
database must be loaded and regularly synchronized.
Both service agreements and their constituent parts are loaded in bulk and then
regularly synchronized via custom jobs. Key processes with respect to data
management are:

• Bulk Data Loading — initial population of Self Service Manager database
with rate plans, rate plan features and service agreements instances

• Synchronization — updates to rate plans, rate plan groups, and rate plan
features as well as addition of new service agreements.

Bulk Load Features
The bulk load process is responsible for initially loading and updates to the Self
Service Manager data cache with the customer’s service data. Key features of
bulk loading are:

• XML-based file format representing each data element, supporting create,
update and inactivate functionality.

• Multi-threaded for parallel loading.

• XML-based error log.

• Statistic tracking.

• Configurable — abort threshold, range of records to process., email
Notification of abort/Success, JDBC batch size.

• Configurable Data Transfer Object classes for mapping XML to Java

• Start from last abort support

• Database pre & post-load script support Comment [AJS1]: There is no
definition of how to configure this in the
TSM ETL document.

Bulk Load Process
The bulk load process is driven by a set of XML based configuration classes as
well as a set of processing classes. The XML configuration defines the set of files
to process. Processing classes, implemented based on SAX, are responsible for
handling each of the underlying data elements.

TSM Data
Files

Scheduled
bulk load

Read Content

ValidateError
Files

Create Object
Representations TSM DBInvalid

Content

Invalid
Format

Process flow:

0. Data files are copied to a directory specified by the bulk load process.

1. Scheduled bulk load begins.

2. Content is reviewed and validated for correct format against DTD, error
files are produced for any validation errors.

3. For each element in the file being loaded:

a. Perform the required operation, for example create appropriate
object representation, log invalid content to error files as
appropriate.

b. Complete the operation against the Self Service Manager
database.

18 | Self Service Manager Developers Guide

Self Service Manager Developers Guide | 19

Data Load Configuration
The Self Service Manager data loading process is configured via
tsmproperties.xml found in the Self Service Manager installations config
directory (for example, %ETL_HOME%\config\tsmproperties.xml).

Self Service Manager Configuration files are validated against the DTD below:
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT tsm-configuration (file-config, files-to-
process)>
<!ELEMENT file-config EMPTY>
<!ATTLIST file-config
 data-dir CDATA #REQUIRED
 error-dir CDATA #REQUIRED
 mapping-dir CDATA #REQUIRED>

<!ELEMENT files-to-process (file+)>

<!ELEMENT file EMPTY>
<!ATTLIST file
 type CDATA #REQUIRED
 process-file CDATA #REQUIRED
 input-name CDATA #REQUIRED
 object-map CDATA #REQUIRED
 node-name CDATA #REQUIRED
 error-name CDATA #REQUIRED
 record-start CDATA #REQUIRED
 record-end CDATA #REQUIRED
 abort-total CDATA #REQUIRED
 abort-process CDATA #IMPLIED
 verbose CDATA #REQUIRED
 jdbc-batch-size CDATA #REQUIRED
 commit CDATA #REQUIRED
 parser-class CDATA #REQUIRED
 run-as-user CDATA #REQUIRED
 run-as-user-pw CDATA #REQUIRED
 threads CDATA #IMPLIED
 node-read-size CDATA #IMPLIED
 node-message-frequency CDATA #IMPLIED>

file-config Attributes

Attribute Meaning
data-dir Data file input directory. Will append input-name to this

specification at runtime.

error-dir Error file output directory. Will append error-name to this
specification at runtime.

Mapping-dir Mapping file input directory. Will append object-map to this
specification at runtime.

20 | Self Service Manager Developers Guide

file Attributes

Attribute Meaning
type Identifies the type of file to process. ETL supports device-type,

rate-plan, rate-plan-group and service-agreement.
Note that Service Agreement groups must be added last as they may
require or be based on elements from the device type or rate plan
groups.

input-name File to be processed, prepended with data-dir

object-map Identifies the file that contains the object mapping information that is
used to map data from the input file to its corresponding DTO object,
prepended with mapping-dir.

node-name Identifies the name of the node that contains the data to be imported.
This is used by XPATH to return the list of nodes

output-name The name of the output file if the data is to be transformed to a pipe-
delimited file

error-name The name of the file to store errors that occurred during the ETL
process, prepended with error-dir.

record-
start

The starting record (node) in the data file. If this is left blank, ETL
starts from the beginning of the file.

record-end The ending record (node) to stop processing. If this is left blank, ETL
runs until it reaches the end of the file.

abort-total Indicates the number of errors that have occurred before the process is
aborted.

abort-
process

Indicates if the entire ETL process is to be aborted if the errors that
occurred are greater than the value specified by abort-total

threads Indicates the number of threads used to process the import file. This is
only applicable for the service agreement import. Each thread creates a
separate session.

verbose Indicates if messages are displayed during processing

jdbc-batch-
size

Not currently used

commit If the value is set to true, data is persisted through the Self Service
Manager object model.

parser-
class

Indicates the class to use to perform the parsing of the data file.

run-as-user A valid Self Service Manager user that will be used while importing
data.

run-as-
user-wd

Password for run-as-user.

Self Service Manager Developers Guide | 21

Example TSMProperties.xml
<files-to-process>
 <file-config
 data-dir="c:\tsm\data\"
 error-dir="c:\tsm\data\"
 mapping-dir="c:\tsm\data\"/>
 <file type=”device-type”
 input-name=”big-telco-device-data.xml”
 object-map=”tsm-device-type-mapping.xml”
 node-name=”//tsm-device-type//DeviceType”
 error-name=” device-loading-error.xml”
 record-start=’1” record-end=”100”
 abort-total=”0” abort-process=”true”
 verbose=”false”
 jdbc-batch-size=”100”
 commit=”true”
 parser-class=

”com.edocs.tsm.etl.process.TSMProcessDeviceTypes”
 run-as-user”import-admin”
 run-as-use-pw=”importadmin”
 />
</files-to-process>

Self Service Manager bulk data loading has a predefined loading order which is
important since the data has dependencies. Load order is listed below:

1. Device Types

2. Rate Plan Groups

3. Rate Plans

4. Service Agreements

Self Service Manager Data Transfer Objects

Self Service Manager Data Transfer Objects (DTO) are used to map data from
the XML data files to Self Service Manager Java objects. Transfer objects are
used to manipulate the data and assign it to the Self Service Manager persistence
API or output it to a different format. The following DTO classes are provided:

Class Description

com.edocs.application.tsm.etl.dto.TSMAgreementDTO
This class represents data
contained in the service
agreement import XML file.

com.edocs.application.tsm.etl.dto.TSMDeviceTypeDTO
This class represents data
contained in the Telco
Device Types import XML
file.

22 | Self Service Manager Developers Guide

Class Description

com.edocs.application.tsm.etl.TSMRatePlanGroupDTO
This class represents data
contained in the Telco Rate
Plans import XML file.

com.edocs.application.tsm.etl.dto.TSMRatePlanDTO
This class represents data
contained in the Rate Plan
import file.

com.edocs.application.tsm.etl.TSMRatePlanFeatureDTO
This class represents a Rate
Plan Feature.

com.edocs.application.tsm.etl.
TSMRatePlanFeatureInstanceDTO

This class represents a Rate
Plan Feature associated with
a Rate Plan.

com.edoc.application.tsm.etl.
TSMServiceAgreementAttributesDTO

This class represents data
associated with a Service
Agreement attribute.

Self Service Manager Bulk Loading Configuration & Runtime
Requirements

The Self Service Manager Bulk loader requires the following be installed and
configured:

• JDK 1.4 or higher. If multiple versions of the JDK are installed, 1.4
should be first in the PATH.

• Ant 1.6 or higher: The default bulk load process uses ANT via
buildrun.xml. See edocs Professional Services if you DO NOT wish to
use ANT.

• TBM 4.5.1 or higher

• Self Service Manager 5.0.0 or higher

Note that it is assumed that while the Self Service Manager bulk loader can be
run separate from Self Service Manager, that TBM and Self Service Manager
were installed and configured normally with the edocs TBM/Self Service
Manager install process.

Confirm that the TSMDataSource Property element in tsm-xma.xml matches your
hibernate settings as described in the TBM and Self Service Manager installation
guides. For reference the default setting is shown below:

Self Service Manager Developers Guide | 23

tsm.xma.xml snippet
<bean id="TSMDataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName">
 <value>oracle.jdbc.driver.OracleDriver</value>
 </property>
 <property name="url">

<value>jdbc:oracle:thin:@localhost:1521:edx0</value>
 </property>
 <property name="username">
 <value>edx_dba</value>
 </property>
 <property name="password">
 <value>edx</value>
 </property>
</bean>

Bulk Loading Command Syntax
The Self Service Manager Bulk Loading process is implemented as a Java
program that is run via ANT. Once ANT has been installed correctly and the ant
command is in your path, the Self Service Manager Bulk load process can be run
using the following syntax:

ant –f buildrun.xml [target]

Where target is any one of:

Target Description

Usage
Displays all available targets.
ant –f buildrun.xml usage

etl-run
Bulk load per the TSMProperties file. No previously data is removed.
ant –f buildrun.xml etl-run

etl-run-
truncate

Runs the ETL process and TRUNCATES ALL device types, rate plan groups, rate plans
and service agreements. This ANT target executes the SQL file ddl/trunc.sql.
ant –f buildrun.xml etl-runtruncate

etl-config
Displays the configuration that will be used when bulk load, no load is performed.
ant –f buildrun.xml etl-config

etl-ivp
Runs an configuration check to make sure that bulk has been installed correctly using the
parameters specified by the –DinitFile option.
ant –f buildrun.xml etl-ivp

etl-stats
The ETL process is run but the data is not committed. This parameter should be used in
conjunction with the com.edocs.application.tsm.etl.runQueue logging
parameter.

24 | Self Service Manager Developers Guide

Error Handling

Logging Errors

The bulk loader logs all errors as they are encountered. Two specific logs are
maintained: The Node File contains all data nodes that were not processed
successfully. A file is created for each import (Device Type, Rate Plan Group,
Rate Plans and Service Agreements). The name of the file is specified within the
Self Service Manager properties file. The entry error-file must be a valid
filename.

The Log File supports application level logging. The log4j.xml property
files file located in the config directory controls logging levels and output. All
errors that are encountered are simultaneously written to the specified output. See
http://logging.apache.org for detailed information about how to configure log4j
logging.

System Errors

All system errors are written to the log file. System errors may include the items
listed below:

• Invalid input file names

• Invalid output file names

• IO Errors such as disk full

Database Errors

The bulk loading process will write the data node causing the problem to the
Node file and a stack trace of the error to the system log.

Data Errors

Bulk loading supports data validation in two passes. The first pass is to validate
that the contents of the data files conform to their assigned DTD. This should be
done before the import process is run. See the section on Validating Data for
information on how to run this data. The second pass occurs during the process
of loading data. Bulk loading will validate the data constraints listed below.

• All Rate Plans belong to a valid Rate Plan Category.

• All Service Agreements have a valid Rate Plan.

• All Service Agreements have a valid Device Type.

• All Service Agreements can be assigned to a valid Telco Customer.

http://logging.apache.org/

Self Service Manager Developers Guide | 25

Aborting the Bulk Loading Process

Bulk Loading is aborted under the conditions specified in the Self Service
Manager properties file. Counters are maintained of all errors for each data file.
The error counter is reset for each file. If the error count exceeds the abort-
total specified for the data file, that load process aborts. If the abort-
process setting is set to true, the entire ETL process is aborted.

Data validation in a two-pass process. During the first pass, data format is
validated against the appropriate DTD. During the 2nd pass data, values are
validated for correctness.

Bulk Loading Quick Validation
The Self Service Manager Bulk Loading process results can be validating by
running on of the queries listed in the table below:

Validation Queries

Validates Query

Device Types
SELECT COUNT(*) FROM EDX_TSM_DEVICE_TYPE;
The returned value should match the number of Device Type elements in the input
data.

Rate Plan Group
SELECT COUNT(*) FROM EDX_TSM_RATEPLAN_GROUP;
The returned value should match the number of Rate Plan Group elements in the
input data.

Rate Plans
SELECT COUNT(*) FROM EDX_TSM_RATEPLAN;
The returned value should match the number of rate plan elements in the input data.
SELECT COUNT(*) FROM EDX_TSM_RP_FEATURE;
The returned value should match the number of RatePlanFeature elements in the
input data.

Service Agreements
SELECT COUNT(*) FROM EDX_TSM_SERVICE_AGRMNT;
The returned value should match the number of ServiceAgreement elements in the
input data

Data Formats
Data is loaded into the Self Service Manager database via a well-defined set of
DTDs. These DTDs define the content for the element to be loaded and are used
to validate the content is well-formed.

Comment [AJS2]: Correctness
Criteria?

26 | Self Service Manager Developers Guide

Device Types
<!ELEMENT tsm-device-type (DeviceType*) >
<!ELEMENT DeviceType (Description) >
<!ATTLIST DeviceType
 Code CDATA #REQUIRED
 action CDATA #REQUIRED
 type (create|change|delete|inactivate) "create"
>
<!ELEMENT Description (#PCDATA) >

Device Type Example
<?xml version="1.0"?>
<!DOCTYPE tsm-device-type SYSTEM
 "../config/castor/dtd/tsm-device-type.dtd">
<tsm-device-type>
 <DeviceType Code="MOTOROLA80" action="create">
 <Description>Motorola 80</Description>
 </DeviceType>
 <DeviceType Code="NOKIAI730" action=" update">
 <Description> Nokia i730 –with
Slider</Description>
 </DeviceType>
 <DeviceType Code=" NOKIA3120" action="inactivate">
 <Description>Nokia 3120</Description>
 </DeviceType>
</tsm-device-type>

Rate Plans
<!ELEMENT tsm-rate-plan (RatePlan*) >
<!ELEMENT RatePlan (Description, Price, RatePlanGroup,
RatePlanFeature*) >
<!ATTLIST RatePlan
 Name CDATA #REQUIRED
 action CDATA #REQUIRED
 type (create|change|delete|inactivate) "create">
<!ELEMENT Description (#PCDATA) >
<!ELEMENT Price (#PCDATA) >
<!ELEMENT RatePlanGroup (#PCDATA)>
<!ELEMENT RatePlanFeature (FeaturePrice,
 FeatureDescription,
 Unit, Included)>
<!ATTLIST RatePlanFeature FeatureName CDATA #REQUIRED >
<!ELEMENT FeaturePrice (#PCDATA)>
<!ELEMENT FeatureDescription (#PCDATA) >
<!ELEMENT Unit (#PCDATA)>
<!ELEMENT Included (#PCDATA)>

Self Service Manager Developers Guide | 27

Rate Plans Groups
<!ELEMENT tsm-rate-plan-group (RatePlanGroup*) >
<!ELEMENT RatePlanGroup (Description) >
<!ATTLIST RatePlanGroup
 Name CDATA #REQUIRED
 action CDATA #REQUIRED
 type (create|change|delete|inactivate) "create">
<!ELEMENT Description (#PCDATA) >

Service Agreement Attributes
<!ELEMENT tsm-agreements (Agreement*) >
<!ELEMENT Agreement (Name, Description, SAStatus,
 PPUStreet1,
 PPUStreet2, PPUCity, PPUState,
 PPUZipCode1, PPUZipCode2,
 ESN,
 Subscriber,
 DeviceTypeKeyCode,
 RatePlanKeyCode) >
<!ATTLIST Agreement LegacyId CDATA #REQUIRED >
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Description (#PCDATA) >
<!ELEMENT SAStatus (#PCDATA)>
<!ELEMENT PPUStreet1 (#PCDATA) >
<!ELEMENT PPUStreet2 (#PCDATA) >
<!ELEMENT PPUCity (#PCDATA) >
<!ELEMENT PPUState (#PCDATA) >
<!ELEMENT PPUZipCode1 (#PCDATA) >
<!ELEMENT PPUZipCode2 (#PCDATA) >
<!ELEMENT ESN (#PCDATA) >
<!ELEMENT Subscriber (#PCDATA) >
<!ELEMENT DeviceTypeKeyCode (#PCDATA) >
<!ELEMENT RatePlanKeyCode (#PCDATA) >

28 | Self Service Manager Developers Guide

Service Agreements
<!ELEMENT tsm-agreements (Company*) >
<!ELEMENT Company (BillingAccount*) >
<!ATTLIST Company Name ID #REQUIRED >
<!ELEMENT BillingAccount (Agreement*) >
<!ATTLIST BillingAccount AccountNumber ID #REQUIRED >
<!ELEMENT Agreement (Name,
 Description,
 PPUStreet1, PPUStreet2,
 PPUCity, PPUState,
 PPUZipCode1, PPUZipCode2,
 DSN,
 SubscriberFirstName,
 SubscriberLastName,
 DeviceTypeKeyCode, RatePlanKeyCode,
 Status,
 RatePlanFeatureInstance*) >
<!ATTLIST Agreement
 LegacyId CDATA #REQUIRED
 action CDATA #REQUIRED
 type (create|change|delete|inactivate) "create">
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Description (#PCDATA) >
<!ELEMENT PPUStreet1 (#PCDATA) >
<!ELEMENT PPUStreet2 (#PCDATA) >
<!ELEMENT PPUCity (#PCDATA) >
<!ELEMENT PPUState (#PCDATA) >
<!ELEMENT PPUZipCode1 (#PCDATA) >
<!ELEMENT PPUZipCode2 (#PCDATA) >
<!ELEMENT DSN (#PCDATA) >
<!ELEMENT SubscriberFirstName (#PCDATA) >
<!ELEMENT SubscriberLastName (#PCDATA) >
<!ELEMENT DeviceTypeKeyCode (#PCDATA) >
<!ELEMENT RatePlanKeyCode (#PCDATA) >
<!ELEMENT Status (#PCDATA) >

<!ELEMENT RatePlanFeatureInstance (RatePlanFeatureName,

RatePlanFeatureDescription,
 FeaturePrice,
 Unit,
 Included,
 Activated) >
<!ELEMENT RatePlanFeatureName (#PCDATA) >
<!ELEMENT RatePlanFeatureDescription (#PCDATA)>
<!ELEMENT FeaturePrice (#PCDATA)>
<!ELEMENT Unit (#PCDATA)>
<!ELEMENT Included (#PCDATA)>
<!ELEMENT Activated (#PCDATA)>

Self Service Manager Developers Guide | 29

Search & Update Functionality
The Telco Services Manager Search & Update APIs are designed to support the
ability to query for instances of Service Agreements, Rate plans, Rate Plan
Groups, Rate Plans by Group etc within the local Self Service Manager database.
Additionally the API also supports the ability to update various elements within
the Self Service Manager database. Note that searches and updates are handled
and stored LOCALLY and not via the system of record. Changes to the system or
record are made via Self Service Manager Transactions described later on in this
document.

Three specific search types are provided:

• Search for a service agreement, rate plan or other element based on a fixed
search key identifier. Examples of such a searches are:
TSMDataManager.getServiceAgreement(String phoneNumber)
TSMDataManager.getDeviceType(String deviceTypeName).

• Search for a service agreement within a specific hierarchy. An example of
such a search is:
TSMDataManager.findServiceAgreementsByRatePlanGroup(…).

• Search for a service agreement within a specific hierarchy using a partial
match such as “ends with”. An example of such a search is:
TSMDataManager.findServiceAgreementsBySubscriberName(.…)
.

For a complete listing of all arguments, methods and exceptions for the Telco
Service Manager Search and Update APIs see the Javadoc for the package
com.edocs.domain.telco.tsm.*.

Self Service Manager Search & Update APIs
Developers interact with the Self Service Manager data model via a series of
interfaces and implementation classes. Key Self Service Manager Search API
classes and interfaces are:

• com.edocs.domain.telco.tsm.ITSMDataManager &
TSMDataManager– Interface and implementation class for telco-domain-
specific searching and updating of the Self Service Manager database.

• com.edocs.domain.telco.api.tsm.IServiceAgreement – Interface
to Service agreement. Contains all methods for interacting with an instance
of a service agreement such as getRatePlanFeatures, etc.

• com.edocs.domain.telco.api.tsm.IDeviceType – Interface to
device types such a Nokia8080 etc.

• com.edocs.domain.telco.api.tsm.IRatePlanGroup – Interface to
grouped collections of rate plans.

• com.edocs.domain.telco.api.tsm.IRatePlan – Interface to
definitions of individual rate plans. Note that service agreements start out as
copies of the features of rate plans. IRatePlan instances are generic rate
plan definitions.

• com.edocs.domain.telco.api.tsm.IRatePlanFeature – Interface
to the individual features of a rate plan.

• com.edocs.domain.telco.api.tsm.IRatePlanFeatureInstance –
Interface to feature instances within a service agreement. Feature Instances
differ from features in the same way java classes differ from java class
instances. Features are definitions, feature instances are specific features
associated with a rate plan.

Self Service Manager Search Sequence Of Events

Developer
es code which
eds Service
ement or rate
lan details

30 | Self Service Manager Developers Guide

Writ
Ne

Agre
p

Telco
Service

Manager
Some Class

TSM
Local Data

Model

Search API

Rate plan,
Service

Agreement …

Fabricate
Database

Search

Marshall
Data into Java

Objects

Return Objects

Return
Requested Data

Developer
es result as
required

Us

Request Instance of
TelcoServiceManager

TSM
Local

Database

Hibernate
DB Query

Result

1. Obtain context information

2. Obtain an instance of TSMDataManager

3. Perform search using appropriate API

Self Service Manager Developers Guide | 31

Obtaining Context
Search and update function in terms of user context. Context elements typically
include the current user identify, user hierarchy position, lists of subscriber phone
numbers and other information. Contextual data is typically obtained in web
applications within EdocsAction extended classes that access the Telco Billing
Manager Customer Account Management(CAM) API and the SessionUtils
APIs.

Context is initialized after a successful authentication and resides in session,
application and request scope as appropriate, maintained by the Servlet container.
See the TBM javadoc for a complete list of the Session Utils APIs.

Various Self Service Manager APIs require an IUser instance. IUser
instances can be obtained as shown below:

Obtaining IUser instances in an action class
import com.edocs.common.api.bsl.ISession;
import com.edocs.common.bsl.umf.api.IUser;
import org.apache.struts.action.*;
import javax.servlet.http.*;

public class getPhoneNumberExample extends EdocsAction {
 public ActionForward doAction(
 ActionMapping
actionMapping,
 ActionForm actionForm,
 HttpServletRequest
req,
 HttpServletResponse
res)
 throws RIException {
 ISession session
=SessionUtils.getUserSession(req);
 IUser user = session.getUser();
 String uid = user.getUID();
 // Other code appropriate to the action
 }
}

ICustomer instances represent the currently subscribed user. ICustomer can
be used to obtain other specifics about subscriber such as the set of associated
phone numbers.

32 | Self Service Manager Developers Guide

IUser – ICustomer relationship

There is a one-to-one relationship between IUser and ICustomer. This
relationship represents the logical joining of a “user name” and the underlying
subscriber that username represents. In B2C applications IUser is normally
assigned by a customer action which requires specifying a phone number,
contract information or other billing data used to identify the customer. In B2B
applications the connection between IUser and ICustomer might be made by a
CSR but they act identically at run time.

Obtaining ICustomer instances in an action class

Add the following import to any action class and the code snippet below to
obtain an ICustomer instance and from it the list of associated phone numbers.

import com.edocs.application.tbm.cam.api.*;

ICustomer subscriber = CAMClassFactory.getCustomer(req);
// Get Current Account
ICustomerAccount account =
subscriber.getCurrentAccount();
// Get all accounts and select
String[] allAccountNumbers =
subscriber.getAccountNumbers();
ICustomerAccount specificAccount =

subscriber.getAccount(allAccountNumbers[0]);
String phoneNumber = account.getAccountNumber();

IHierarchyNode instances represent the currently subscribed users position in
a corporate hierarchy and is required for search- and update-related methods.

Obtaining IHierarchyNode instances in an action class

The Business Services Layer, or BSL, provides a variety of functions to the
developer, one of which is access to hierarchy information. BSL can be used as
shown below to obtain the current hierarchy node for use in subsequent calls.

import com.edocs.common.api.bsl.*;
import com.edocs.common.hierarchy.api.*;
import com.edocs.common.hierarchy.api.core.*;

IUser user = session.getUser();

IBusinessServices bsl = new BusinessServices();
IHierarchyNode[] hierarchy =
bsl.findHierarchyNodesForUser(user.getIdentityID());
if ((hierarchy == null) || (hierarchy.length == 0)) {
 // unexpected error
}

Self Service Manager Developers Guide | 33

Most often the Self Service Manager Database Search and Update API calls
require the root of a hierarchy which is provided as hierarchy[0].

Obtaining an instance of a TSMDataManager
The Telco Services Data Manager interface contains a factory method for
returning instances of classes implementing ITSMDataManager and interacting
with the underlying Self Service Manager database. . ITSMDataManager
instances can be obtained as shown below:

import com.edocs.domain.telco.tsm.*;
. . .
HttpServletRequest req;
ISession s =SessionUtils.getUserSession(req);
ITSMDataManager tdm =
 TSMDataManager.getTSMDataManager(s);

Finding a Service Agreement
Service agreements can be obtained either via a phone number or via selection
criteria. Phone number, subscriber name, rate plan, etc. are all supported
searches. Search examples for the most common use cases as shown below.

Find Service Agreement By Phone Number
ICustomer subscriber = CAMClassFactory.getCustomer(req);
ICustomerAccount account =
subscriber.getCurrentAccount();
String phoneNmbr = account.getAccountNumber();
IServiceAgreement sa = tsm
getServiceAgreement(phoneNmbr);

Find Service Agreement By Rate Plan Group
IUser user = // as shown previously
ITSMDataManager tdm = // as previously shown
IHierarchyNode[] hierarchy = // as previously shown
ServiceAgreementStatus status =
ServiceAgreementStatus.ACTIVE;
IServiceAgreement[] sas =
tdm.findServiceAgreementsByRatePlan(user.getIdentityID()
,
 hierarchy[0],
 ”SomeRatePlan,
 status);

Several search methods may search using “starts with”, “ends with” type syntax.
Search types are:

34 | Self Service Manager Developers Guide

• SearchType.EXACT – return only exact matches for the provided search
string

• SearchType.CONTAINS – return any match which contains the provided
search string

• SearchType.STARTS_WITH – return any match which starts with the
provided search string

Find Service Agreements By Subscriber Name

“Find by subscriber name” is an example of a search that can select service
agreements based on search types.

IUser user = // as shown previously
ITSMDataManager tdm = // as previously show
IHierarchyNode[] hierarchy = // as previously shown
IServiceAgreement[] sas =
 tdm.findServiceAgreementsBySubscriberName(
 user.getIdentityID(),
 hierarchy[0],
 ”lastnameprefix”,
 SearchType.STARTS_WITH);

Managing Rate Plan Elements
Devices, Rate Plans, Rate Plan Groups, and Rate Plan features can be managed
via the Self Service Manager Search and Update API. Typical uses of these
API’s are:

• Obtain an instance of a specific element such as IDeviceType.

• Obtain all instances of a specific element.

• Create a new instance of an element1.

• Update existing element values.

• Set an element inactive

Return All IDeviceType objects.
ITSMDataManager tdm = // as previously show
IDeviceType[] dt = tdm.getAllDeviceTypes()

1 Note that newly created elements are ONLY maintained within the edocs TSM database
and NOT propagated back to the system of record.

Self Service Manager Developers Guide | 35

Return A specific IDeviceType .
ITSMDataManager tdm = // as previously show
IDeviceType dt = tdm.getDeviceType(“Nokia8080”);

Create A new IDeviceType objects.
IDeviceType dt = new DeviceType(”Kyocera SE47”,
 ”Kyocera slide phone”);
ITSMDataManager tdm = // as previously show
IDeviceType dt = tdm.createDeviceType (dt);

Update an existing IDeviceType .
ITSMDataManager tdm = // as previously show
IDeviceType dt = tdm.getDeviceType(“Nokia8080”);
dt.setDescription(“some update”);
tdm.updateDeviceType(dt);

Deactivate an existing IDeviceType .
ITSMDataManager tdm = // as previously show
IDeviceType dt =.getDeviceType(“Nokia8080”);
tdm.deactivateDevice(dt);

Common Exceptions
The Telco Service Manager methods may throw exceptions from the package:
com.edocs.domain.telco.api.tsm.exception.*.

Exceptions fall into three specific areas:

• InvalidArgumentException – Programmer error or a particular
argument is invalid, for example a call to obtain the current hierarchy
element failed or an attempt was made to purge a data model element which
is still referenced by other elements.

• DataStoreException – Self Service Manager cannot contact the
underlying database. Normally a configuration error.

• CommunicationException – Self Service Manager cannot contact the
underlying ESS layer, not thrown by search and update methods.

Purging out of date data
Over time devices, rate plans, rate plan groups and service agreements become
inactive. The TSMDataManager provides specific functions for purging the
database of such stale data.

36 | Self Service Manager Developers Guide

Purge IServiceAgreement objects.

Purge a specific Service Agreement.

Example: Purge inactive service agreements
IUser user = // as shown previously
ITSMDataManager tdm = // as previously shown
IHierarchyNode[] hierarchy = // as previously shown
ServiceAgreementStatus status =
ServiceAgreementStatus.INACTIVE;
IServiceAgreement[] sas =
tdm.findServiceAgreementsByRatePlan(user.getIdentityID()
,
 hierarchy[0],
 ”SomeRatePlan,
 status);
for (int i = 0; i< sas.length;i++)
 purgeServiceAgreement(sas[i]);

Purge IDeviceType objects.

Purge a specific Device Type. Throws InvalidArgumentException if
referenced and the device type is not purged.

void ITSMDataManager purgeDeviceType(IDeviceType dt);

Purge IRatePlan objects.

Purge a specific Rate Plan. Throws InvalidArgumentException if
referenced by a service agreement and the Rate Plan is not purged.

void purgeRatePlan(IRatePlan rp);

Purge IRatePlanGroup objects.

Purge a specific Rate Plan Group. Throws InvalidArgumentException if
referenced and the rate plan group is referenced by a rate plan and is not purged.

void purgeRatePlanGroup(IRatePlanGFroup rpg);

Service Agreement Locking
Under normal circumstances Service Agreements should not be modified while a
transaction is pending. However the Self Service Manager Database manager is
not tied directly to the Self Service Manager Transaction subsystem, but rather
they are loosely coupled independent sub systems. Service agreements can be
marked part of a order, with associated id, while a Self Service Manager
Transaction is in progress. The ITSMDatabaseManager interface provides

Self Service Manager Developers Guide | 37

void setServiceAgreementStatus(IServiceAgreement,
 Long,
 ServiceAgreementStatus
status);

and
void resetOrderInProgress(IServiceAgreement sa);

Either of which might throw:

InvalidArgumentException – if invalid arguments are passed

or

DataStoreException – if a database operation fails.

Telco Services Manager uses these API’s to lock and unlock Service Agreements
while transactions are in progress.

Self Service Manager Transaction API
The Telco Services Manager Transaction APIs are designed to support the ability
to interact with an OSS/BSS to manage various elements associated with a
subscribers rate plan. Core to managing features and services is the concept of a
Self Service Manager transaction. Self Service Manager transactions
encapsulate taking an agreement or set of agreements and managing current
feature set for those agreements. Transactions could be as simple as changing a
single feature such as voice mail password, or as complex as completely re-
writing an service agreement feature set.

The Self Service Manager Transaction API manages Service Agreement state by
creating sets of Self Service Manager Transactions. Self Service Manager
Transactions currently fall into the following categories:

• Add/Delete Features – Add or delete a specific feature from a service
agreement.

• Change Voice Mail Password – Change the voice mail password associated
with a given device.

• Change Mobile Phone Number – Change the mobile phone number
associated with a given device.

• Port Phone Number – insert a pre-existing phone number from another
provider.

• Change Device Serial Number – Change the serial number associated with a
device.

• Change Rate Plan – Select a different rate plan.

• Suspend or Resume service – Suspend or resume service for a given device.

38 | Self Service Manager Developers Guide

• Change Subscriber Profile – Update the subscriber information for a given
service agreement.

The Self Service Manager Service Manager supports two types of transactions,
Transient and Persisted. Both types of transactions can interact with the
underlying OSS layer.

Transient transactions are typically “helper functions”, and do not participate in
the transaction lifecycle – and don’t require an audit trail.

Persisted transactions both interact with the underlying OSS, an manage and
track the lifecycle of the transaction. Persistent transactions save information
into the local Self Service Manager database about transaction state, request and
result data etc.

Any of the Persistent transactions can be Synchronous or Asynchronous.

Synchronous transactions will wait for a response for the server and block for the
lifetime of the request.

Asynchronous transactions send a request to the Legacy System and expect to
complete some time “later”. Asynchronous transactions return a
acknowledgment which puts the Service Request into a “Pending State”, waiting
for an asynchronous reply to be received from the legacy system.

For a complete listing of all arguments, methods and exceptions for the Telco
Service Manager Transactions APIs see the Javadoc for the packages:

• com.edocs.common.tsm.sm.core.* - the Self Service Manager
transactions defined specific to the Self Service Manager implementation.

• com.edocs.common.sm.api.*. – general Service Manager controlling
lifecycle management etc.

Self Service Manager Sequence Of Events
The state of a service agreement contents is changed via a Self Service Manager
Transaction Request. Transaction Requests, representing a request to change a
given feature or value, are passed to the Self Service Manager. Self Service
Manager then routes the request to the registered proxy/connector for fulfillment.
The proxy completes or rejects the request and then in real-time returns a
Transaction Response. Transaction Responses encapsulate the result of the
request and are in turn returned to the calling method via Self Service Manager.

Action Sequence Diagram - Synchronous

User Initiates
Change

Action
Class

Package
Request()

Telco
Service

Manager

Enterprise
Systems

Connectivity

Back End
OSS

via proxy

Package
Response()

Send Request Determine
appropriate

ESS and route

Unpackage
Request

& process

Determine
Origin and Return

Response

Success or Failure

Return Response

Enter via
GUI

Display
Response

User Notified
of results

Self Service Manager Transaction APIs
Developers interact with back-end OSS systems via a set of Self Service
Manager Transaction APIs. Are core set of transactions is provided with Self
Service Manager along with the ability to add custom Self Service Manager
Transactions.

Key Self Service Manager Transaction API classes and interfaces are:

• com.edocs.common.tsm.sm.core.ITSMServiceManager &
TSMServiceManager – Interface and implementation class for interacting
with the underlying service manager to create and manage transactions
pertaining to the Telco Services Manager.

• com.edocs.common.sm.api.ISMServiceRequest – generic
service request. Contains all the details of a specific update or change.
Rarely used directly, derived classes provide specific instances of service
requests.

The ISMServiceRequest has the following major sub-components
Case – Hook for the lifecycle management object model.

• ISMAction – Defines the “type” of transaction (with ramifications on
response handling)

Self Service Manager Developers Guide | 39

40 | Self Service Manager Developers Guide

• ISMRequest - Wrapper for the request data associated with the
“Action”

• ISMResponse – Wrapper for the response data associated with the
“Action”

• ISMCredentials – Wrapper for the credentials for the specific system.

• com.edocs.common.sm.api.ISMServiceResponse – The result of
issuing a Self Service Manager transaction request. Returned by
TSMServiceManager.processRequest().com.edocs.common.sm.ap
i.ISMCredentials,

• com.edocs.common.tsm.sm.core.TSMCredentials – Class
encapsulation of user instance data required for transaction support.
TSMCredentials wraps the credentials for the Self Service Manager user in
an SM- required format.

Running a transactions require several specific steps

1. Search – find an instance of a IServiceAgreement. See prior sections for
details of searching.

2. Obtain and prepare an instance of ITSMServiceManager

3. Create and populate a set of request data

4. Execute the transaction against the service manager

5. Examine the resulting response

Obtaining an instance of a TSMServiceManager
The TSMServiceManager interface contains a factory method for returning
instances of classes implementing ITSMServiceManager. .
ITSMServiceManager instances can be obtained as shown below:

import com.edocs.domain.telco.tsm.*;
. . .
ITSMServiceManager tsm =
 TSMServiceManager.getTSMServiceManager();

Obtaining an instance of an IServiceAgreement
Previous sections have detailed the process of obtaining an instance of an
IServiceAgreement. However since almost all service request transactions
depend on service agreement a simple example is provided below:

Self Service Manager Developers Guide | 41

00 ICustomer subscriber =
01 CAMClassFactory.getCustomer(request);
02 ICustomerAccount account =
subscriber.getCurrentAccount();
03 String phoneNmbr = account.getAccountNumber();
04 ITSMDataManager tdm =
05 TSMDataManager.getTSMDataManager(s);
06 IServiceAgreement sa = tdm
getServiceAgreement(phoneNmbr);

Obtaining and populating specific transactions
The Self Service Manager Service Manager is an extension of the underlying
service manager and adds functionality specific to supporting Telco-domain-
specific transactions. Transaction instances are obtained via method calls against
a TSMServiceManager instance and then populated as required by the
underlying transaction. In general the process entails obtaining a transaction
request object, populating that object with appropriate content, and then
submitting the request to the TSMServiceManager instance. The
TSMServiceManager then processes the request and returns a response object
that contains both the result of the transaction, and response data returned by the
subsystem that handled the request.

Generate Voice Mail Password Transaction
Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core.GenPasswdRsp – Response
returned by generate password requests

• com.edocs.common.tsm.sm.core.ITSMServiceManager.
newChangeVmPassGenerateRequest – Create a service request
instance using a provided service agreement representing a generate
password request.

42 | Self Service Manager Developers Guide

Example
00 String pNumber = …;
01 ITSMDataManager tdm =
02 TSMDataManager.getTSMDataManager(s);
03 IServiceAgreement sa = tdm
getServiceAgreement(phoneNmbr);
04 ISession s = SessionUtils.getUserSession(request);
05 ISMCredentials cred = new
TSMCredentials(s.getUser());
06 ITSMServiceManager tsm =
07
TSMServiceManager.getTSMServiceManager();
09 ISMServiceRequest srx =
10 tsm.newChangeVmPassGenerateRequest(sa);
11 try {
12 ISMResponse rsp = tsm.processServiceRequest(cred,
srx);
13 if (rsp.isSuccessful()) {
14 GenPasswdRsp data = (GenPasswdRsp)
rsp.getData();
15 String sPass = data.getGeneratedPassword();
16 }
17 catch (SMServiceNotSupportedException e) {. . .}
18 catch (SMException e) { . . . }
19 catch (SMAuthorizationException e) {. . .}
20 catch (SMInvalidArgumentException e) {. . .}

Code Examination

Line 09 & 19: Use the provided method to create a service request, Line 11:
Execute the transaction. Lines 13 and 14, interrogate the response and extract the
generated password.

Changing Voice Mail Password Transaction
Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core.
newChangeVoicemailPasswordRequest –Create a service request
instance representing a change password request.

Self Service Manager Developers Guide | 43

Example
00 ISession s = SessionUtils.getUserSession(request);
01 ISMCredentials cred = new
TSMCredentials(s.getUser());
02
03 ITSMServiceManager tsm =
04 TSMServiceManager.getTSMServiceManager();
05 String pNumber = …;
06 String newPwd = …;
07 ISMServiceRequest srx =
08 tsm.newChangeVoicemailPasswordRequest(pNumber,
newPwd);
09
10 ISMResponse rsp = null;
11 try {
12 rsp = tsm.processServiceRequest(cred, srx);
13 if(!rsp.isSuccessful()) { error code }
14 } catch (. . .)

Code Examination

Line 01: Create a credentials instance that will be used by the service manager to
validate if the current user has rights to perform a specific operation.

Lines 03 & 04: Using the factory method obtain an instance of a
TSMServerManager.

Lines 07 & 08: Using the Self Service Manager instance create a transaction
request. Note that each transaction request is specific to the actual transaction
being executed. In the case of a Change Voicemail Password request we provide
the specific phone number and new password when the request is created. In
other cases additional code may be required to populate the underlying requests
context.

Line 12: Execute the request, returning an instance of a service manager response
object. Service manager response objects contain a variety of information about
the transaction request, including its transaction id and success or failure status.

Line 13: Did the transaction complete successfully?

Change Phone Number Transaction
Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core.newChangePhoneNumberRequ
est–Create a service request instance representing a change phone
number request.

44 | Self Service Manager Developers Guide

Example
00 ICustomer subscriber =
01 CAMClassFactory.getCustomer(request);
02 ICustomerAccount account =
subscriber.getCurrentAccount();
03 String phoneNmbr = account.getAccountNumber();
04 ITSMDataManager tdm =
05 TSMDataManager.getTSMDataManager(s);
06 IServiceAgreement sa = tdm
getServiceAgreement(phoneNmbr);
07
08 ISession s = SessionUtils.getUserSession(request);
09 ISMCredentials cred = new
TSMCredentials(s.getUser());
10 ITSMServiceManager tsm =
11 TSMServiceManager.getTSMServiceManager();
12 String newNumber = …; // some phone #
13 ISMServiceRequest srx =
14 tsm. newChangePhoneNumberRequest (sa, newNumber);
15 ISMResponse rsp = null;
16 try {
17 rsp = tsm.processServiceRequest(cred, srx);
18 if(!rsp.isSuccessful()) { error code }
14 } catch (. . .)

Code Examination

Lines 01-11: Obtain a service agreement, credentials and
TSMServiceManager instance. Lines 13 & 14, obtain a service request
representing the change phone number request. Lines 17 & 18, execute the
request and examine the result.

Note that under normal circumstances a successful change to a service agreement
element such as phone number should be propagated back to the database via the
TSMDataManager database interfaces.

Port Phone Number Transaction
Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core.newChangePortNumberReque
st–Create a service request instance representing a port phone number
request.

Example

00 // Obtain service agreement normally
01 IServiceAgreement sa = . . .
02
03 ISession s = SessionUtils.getUserSession(request);
04 ISMCredentials cred = new
TSMCredentials(s.getUser());
05 ITSMServiceManager tsm =
06 TSMServiceManager.getTSMServiceManager();
07 String phoneNumber = …; // phone number to port
08 ISMServiceRequest srx =
09 tsm. newPortPhoneNumberRequest(sa, phoneNumber);
10 ISMResponse rsp = null;
11 try {
12 rsp = tsm.processServiceRequest(cred, srx);
13 if(!rsp.isSuccessful()) { error code }
14 } catch (. . .)

Code Examination

Lines 00-02: Obtain a service agreement, credentials and
TSMServiceManager instance. Lines 08 & 09, obtain a service request
representing the port # request, note that we provide the phone # being ported..
Lines 12 & 13, execute the request and examine the result.

Note that under normal circumstances a successful change to a service
agreement element such as port phone # should be propagated back to
the database via the TSMDataManager database interfaces.

Caution

Change Digital Subscriber Number Transaction
Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core.newChgDSNRequest–Create a
service request instance representing a change DSN request.

Self Service Manager Developers Guide | 45

46 | Self Service Manager Developers Guide

Example
00 // Obtain service agreement normally
01 IServiceAgreement sa = . . .
02
03 ISession s = SessionUtils.getUserSession(request);
04 ISMCredentials cred = new
TSMCredentials(s.getUser());
05 ITSMServiceManager tsm =
06 TSMServiceManager.getTSMServiceManager();
07 String newDSN = …; // some dsn likely obtained from a
form
08 ISMServiceRequest srx =
09 tsm. newChgDSNRequest(sa, newDSN);
10 ISMResponse rsp = null;
11 try {
12 rsp = tsm.processServiceRequest(cred, srx);
13 if(!rsp.isSuccessful()) { error code }
14 } catch (. . .)

Code Examination

Lines 00-02: Obtain a service agreement, credentials and
TSMServiceManager instance. Lines 08 & 09, obtain a service request
representing the change DSN request. Lines 12 & 13, execute the request and
examine the result.

Note that under normal circumstances a successful change to a service agreement
element such as DSN should be propagated back to the database via the
TSMDataManager database interfaces.

Activate/Deactivate/Suspend/Resume Service Transactions
Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core.newActivateServiceRequest–
Create a service request instance representing an activate request.

• com.edocs.common.tsm.sm.core.newDeactivateServiceRequest–
Create a service request instance representing a deactivate request.

• com.edocs.common.tsm.sm.core.newSuspendServiceRequest–
Create a service request instance representing a suspend request.

• com.edocs.common.tsm.sm.core.newResumeServiceRequest–
Create a service request instance representing a resume request.

Self Service Manager Developers Guide | 47

Example
00 // Obtain service agreement normally
01 IServiceAgreement sa = . . .
02
03 ISession s = SessionUtils.getUserSession(request);
04 ISMCredentials cred = new
TSMCredentials(s.getUser());
05 ITSMServiceManager tsm =
06 TSMServiceManager.getTSMServiceManager();
08 ISMServiceRequest srx =
09 tsm.newActivateServiceRequest(sa);

08 ISMServiceRequest srx =
09 tsm.newDeactivateServiceRequest(sa);

08 ISMServiceRequest srx =
09 tsm.newSuspendRequest(sa);

08 ISMServiceRequest srx =
09 tsm.newResumeRequest(sa);
10 ISMResponse rsp = null;
11 try {
12 rsp = tsm.processServiceRequest(cred, srx);
13 if(!rsp.isSuccessful()) { error code }
14 } catch (. . .)

Code Examination

Lines 00-02: Obtain a service agreement, credentials and
TSMServiceManager instance. Lines 08 & 09, obtain a service request
representing the request. Each suspend/resume/activate/deactivate action works
in the exact same way. Lines 12 & 13, execute the request and examine the
result.

Note that under normal circumstances a successful change to a service agreement
element such as DSN should be propagated back to the database via the
TSMDataManager database interfaces.

Add Delete Feature Transaction
Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core. newAddDeleteFeatureRequest –
Create a service request instance representing a “change feature request”.

48 | Self Service Manager Developers Guide

Example
00 ICustomer subscriber =
01 CAMClassFactory.getCustomer(request);
02 ICustomerAccount account =
subscriber.getCurrentAccount();
03 String phoneNmbr = account.getAccountNumber();
04 ITSMDataManager tdm =
05 TSMDataManager.getTSMDataManager(s);
06 IServiceAgreement sa = tdm
getServiceAgreement(phoneNmbr);
07
08 // All the features in the rate plan
09 Collection ratePlanFeatures=sa.getRpFeatures();
10
11 // All the current features
12 Collection optionalFeatures = new Vector();
13 Iterator iter=rtPlanCol.iterator();
14 while(iter.hasNext()){
15 IRatePlanFeatureInstance ratePlanFeature=
16 (IRatePlanFeatureInstance)iter.next();
17 if(!ratePlanFeature.isIncluded() ||
18 !ratePlanFeature.isActivated()){
19 ratePlanFeature.setActivated(true);
20 optionalFeatures.add(ratePlanFeature);
21 }
22 }
23 ISession s = SessionUtils.getUserSession(request);
24 ISMCredentials cred = new
TSMCredentials(s.getUser());
25 ITSMServiceManager tsm =
26 TSMServiceManager.getTSMServiceManager();
27 ISMServiceRequest tx =
tsm.newAddDeleteFeatureRequest(sa,
28
optionalFeatures);
29 try {
30 ISMResponse rsp = tsm.processServiceRequest(cred,
srx);
31 if(!rsp.isSuccessful()) { error code }
32 } catch (. . .)

Code Examination

The bulk of the example code for the add delete features transaction actually has
very little to do with the transaction itself, but deals primarily with obtaining a
service agreement and examining its features to determine which are included
and active.

Lines 06 & 09: Obtain the service agreement associated with a given phone
number (Line 06) from the Telco Services Manager database and from the
service agreement obtain the current feature set (Line 09).

Self Service Manager Developers Guide | 49

Lines 12-20: From the retrieved set of rate plan elements, create a new set of rate
plan elements activating all listed features.

Lines 27-28: Create a new service request as an AddDeleteFeatures request
for the provided service agreement, adding the set of optional features.

Line 30: Send the service request to the TSMServiceManager for processing by
the underlying OSS.

Change Rate Plan Request
Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core.newChangeRatePlatRequest –
Create a service request instance representing a “change rate plan request”.

• com.edocs.domain.telco.util.NameSelectionPair– Instance,
normally used as an array, of a feature name, active flag for turning on and
off optional features in a rate plan.

50 | Self Service Manager Developers Guide

Example
00 ICustomer subscriber =
01 CAMClassFactory.getCustomer(request);
02 ICustomerAccount account =
subscriber.getCurrentAccount();
03 String phoneNmbr = account.getAccountNumber();
04 ITSMDataManager tdm =
05 TSMDataManager.getTSMDataManager(s);
06 IServiceAgreement sa = tdm
getServiceAgreement(phoneNmbr);
07
08 IRatePlan rp=tdm.getRatePlan("SomeRatePlan");
09 int oCount=rp.getOptionalFeatures().length;
10 NameSelectionPair[] oFeatures=
11 new NameSelectionPair[oCount];
12 Iterator i = rp.getFeatures().iterator();
13 for (int which =0;i.hasNext(); which++) {
14 IRatePlanFeature rpf =(IRatePlanFeature)i.next();
15 if(!rpf.isIncluded().booleanValue()){
16 oFeatures[which] =
17 new NameSelectionPair (rpf.getName(),
18 new Boolean(true));
19 }
20 ISession s = SessionUtils.getUserSession(request);
21 ISMCredentials cred =
 new TSMCredentials(s.getUser());
22 ITSMServiceManager tsm =
23 TSMServiceManager.getTSMServiceManager();
24 ISMServiceRequest tx =
25 tsm.newChangeRatePlanRequest(sa,rp,oFeatures);
26 try {
30 ISMResponse rsp = tsm.processServiceRequest(cred,
31 srx);
32 if(!rsp.isSuccessful()) { error code }
33 } catch (. . .)

Code Examination

The bulk of the example code for the change rate plan s transaction actually has
very little to do with the transaction itself, but deals primarily with obtaining a
service agreement and creating a set of optional features which should be enabled
for the given plan instance. .

Lines 08 -19: Obtain an instance of a named rate plan(08), and from that rate plan
obtain the set of optional features. From the set of optional features, create a
populated NameSelectionPair containing each active feature. In the example
shown all features are active (line 18). The named selection pair array is then
used on line 24-25 when the change rate plan service request is created. Line 30
then executes the request.

Self Service Manager Developers Guide | 51

Find Subscriber Profile/Change Subscriber Profile
Transactions

Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core.
newChangeSubscriberProfileRequest –Create a service request
instance representing a “change subscriber profile request”.

• com.edocs.common.tsm.sm.core.ISubscriberProfile– Interface
definition for subscriber profiles.

Common Code
00 ICustomer subscriber =
01 CAMClassFactory.getCustomer(request);
02 ICustomerAccount account =
subscriber.getCurrentAccount();
03 String phoneNmbr = account.getAccountNumber();
04 ITSMDataManager tdm =
05 TSMDataManager.getTSMDataManager(s);
06 IServiceAgreement sa = tdm
getServiceAgreement(phoneNmbr);
07
08 ISession s = SessionUtils.getUserSession(request);
09 ISMCredentials cred = new
TSMCredentials(s.getUser());
10 ITSMServiceManager tsm =
11 TSMServiceManager.getTSMServiceManager();

Find a Subscriber Profile
12
13 ISubscriberProfile sp =
tsm.findSubscriberProfile(cred,sa);
14 if (sp == null) { error, no profile found }

Modify Subscriber Profile
15 sp.setFirstName(“Chad”);
16 sp.setLastName(“Bigglesworth”);
17
18 ISMServiceRequest tx =
19 tsm.newChangeSubscriberProfileRequest(sa,
20 prof
);
21 try {
22 ISMResponse rsp = tsm.processServiceRequest(cred,
srx);
23 if(!rsp.isSuccessful()) { error code }
324 } catch (. . .)

52 | Self Service Manager Developers Guide

Code Examination

The bulk of the example code for the find/change subscriber profile has to do
with obtaining the initial service agreement. Lines 01-06 obtain an instance of a
service agreement. Lines 08-11 obtain a set of user credentials and an instance of
a TSMServiceManager. Lines 13 and 14 use the service agreement and
credentials to return the associated profile or null if no profile is found.

Lines 15 and 16 make some change to the profile, see the
ISubscriberProfile javadoc for a complete listing of all subscriber profile
mutator methods.

Lines 18 and 19 obtain a service request representing a change profile and line 22
executes the request.

Obtain Available area codes/exchanges/phone number
Transactions

Key classes, interfaces and methods:

• com.edocs.common.tsm.sm.core.ITSMServiceManager.
getAvailAreaCodes – Return a list of available area codes for a given zip
code.

• com.edocs.common.tsm.sm.core.ITSMServiceManager.
getAvailExchanges – Return a list of available exchanges for a given area
code

• com.edocs.common.tsm.sm.core.ITSMServiceManager.
getAvailPhoneNumbers – Return a list of available phone numbers for a
given area code and exchange

Common Code
01 ISession s = SessionUtils.getUserSession(request);
02 ISMCredentials cred = new
TSMCredentials(s.getUser());
03 ITSMServiceManager tsm =
04
TSMServiceManager.getTSMServiceManager();

Obtain Area Codes
05 String[]ac = tsm.getAvailAreaCodes(cred,”01760”);
06 if (!ac || ac.length == 0) { error }

Obtain Available Exchanges
07 String[]ex = tsm.getAvailExchanges(cred,ac[n]);
08 if (!ex || ex.length == 0) { error }

Self Service Manager Developers Guide | 53

Obtain Available Phone Numbers
09 String[]pn = tsm.getAvailExchanges(cred,ac[n],
ex[m],5);
10 if (!pn || pn.length == 0) { error }

Code Examination

Line 01-04: Obtain credentials and an instance of a TSMServiceManager.
Lines 05 and 06, for a given zip code, return the current list of area codes.
Line 07 and 08, for a given area code, return the list of available exchanges.
Lines 09-10, for a given area code, exchange in area code, return specified count
of phone numbers.

Bulk Transaction Handling
Bulk transactions are individual service requests compiled together and then
submitted as a group. The process for working with bulk transactions is similar
to the process for handling individual transaction. The example below shows the
common steps for working with a bulk transactions.

00 String[] phones = ..
01 String[] pwds = ...
02 ISMServiceRequest bsr = sm.newBulkRequest();
03 for (int i = 0; i< phones.length; i++) {
04 ISMServiceRequest sr=
05
sm.newChangeVoicemailPasswordRequest(phones[i],
06
pwds[i]);
07 bsr.addBulkRequestElement(sr);
08 }
09 ISMResponse rsp = sm.processServiceRequest(cred,
srx);
10
11

Code Examination

Line 02 – Create a bulk transaction request, as opposed to a individual
transaction request. Lines 04-06 - For each component of the bulk transaction,
create an individual request. Line 07 – Add the individual element to the bulk
service request. Line 09 – Process the result normally.

Bulk Requests supported in Self Service Manager 5.0.0

Request Description & Notes

Change Voice Mail
Password

No special processing required. Obtain a service request and
register with the ISMServiceRequest instance normally.

54 | Self Service Manager Developers Guide

Request Description & Notes

Generate Voice Mail
Password

No special processing required. Obtain a service request and
register with the ISMServiceRequest instance normally.

Add Delete Feature
Request

No special processing required. Obtain a service request and
register with the ISMServiceRequest instance normally.

Transaction Response Handling
The Telco Service Manager reports transaction status via ISMResponse objects.
ISMResponse.isSuccessful() method returns true or false indicating if
a transaction was successful. In addition ISMResponse.getResponseCode()
returns a string representation of a response code. Possible return values are:

• ISMResponse.RSP_CODE_ACK – The transaction is in a pending state.

• ISMResponse.RSP_CODE_SUCCESS – Transaction completed successfully.

• ISMResponse.RSP_CODE_FAILURE – Transaction failed.

• ISMResponse.RSP_CODE_SYSUNAVAIL – Transaction failed, underlying
OSS not available (Reserved).

• ISMResponse.RSP_CODE_NEED_CUSTOMER_INFO – Transaction failed, in
sufficient customer data(Reserved).

In the event of a transaction failure use Collection
ISMResponse.getErrorMsgs() & Collection
ISMResponse.getInformationalMsgs() to determine the exact nature of
the problem.

Common Exceptions
The Telco Service Manager transaction methods may throw exceptions from the
package: com.edocs.common.sm.api.exception.*.

Exceptions fall into these specific areas:

• SMException – Generic base exception thrown by the Transaction APIs

• SMServiceNotSupportedException – No destination found for named
transaction.

• SMAuthorizationException – User does not have the rights to perform
requested operation.

• SMInvalidArgumentException – In sufficient or invalid arguments.

Self Service Manager Developers Guide | 55

For a complete listing of all arguments, methods and exceptions for the Telco
Service Manager Search and Update APIs see the Javadoc for the package
com.edocs.common.sm.api.exception.*.

Enterprise Systems Connectivity

Concepts
The Enterprise Systems Connectivity layer of Self Service Manager provides the
required infrastructure to connect Self Service Manager with external service
providers. Conceptually Self Service Manager managers are composed of a
number of component parts whose relationships are between defined in
sm.xma.xml:

• Transactions also know as Actions – define the set of operations that can be
executed by applications. Actions are mapped to a specific Connector by a
Service Manager. Self Service Manager comes with a core set of actions and
can be extended with developer written custom actions.

• Connectors – are a combination of inbound and outbound transforms as well
as the transport class that performs the work of connecting to a specific back
end OSS. Connectors represent a set of services managed by a specific OSS.

• Transports – implement the required functionality to interconnect Self
Service Manager with a back end OSS and handle a well-defined set of
actions.

• Transforms – implement the required functionality to convert a message
from one format to another. Outbound transforms convert messages before
they are passed to the underlying Connector. Inbound transforms responses
from the underlying OSS into a format appropriate for use by Self Service
Manager.

• Service Managers – define the interrelationship between actions and the
connectors that handle them. Each Service Manager has an associated set of
Response Handlers that manage the processing of different return result
codes.

• Response Handlers – are mapped to specific Connector responses and can
perform custom processing as required by the underlying action. A default
set of no-op response handlers is provided by Self Service Manager.

56 | Self Service Manager Developers Guide

Defining Destinations
The combination of transport, inbound, and outbound translations are referred to
as a Destination and defined within sm.xma.xml. Out-of-the-box Self Service
Manager has defined support for a single destination that handles core
transactions as dummy code. Demonstration Transport, Inbound and outbound
classes are provided in the package com.edocs.common.tsm.sm.core.demo.
At a minimum client must develop a transport supporting the core transaction set.

Example Transport

Transports must implement
com.edocs.common.eai.api.core.IETransport and implementing public
IEAIResponse sendMessage(…) as shown below. A typical implementation
of a send message includes a switch statement for each action handled by the
transport class. Actions, defined later in this document, are identified by a
unique integer that is the basis for the switch statement. You MUST implement a
custom replacement for the demo transport.

Self Service Manager Developers Guide | 57

import java.io.Serializable;
import com.edocs.common.eai.api.core.*;
import com.edocs.common.eai.api.exception.*;
import com.edocs.common.tsm.sm.core.ChangeVMPasswordRsp;

public class DEMOTransport extends IETransport {

// mimics the definitions in sm.xma.xml
 private static final int ACTION_TYPE_CHGVMPASS =
100;

 public String getName() {
 return "Demo Transport";
 }

 public IEAIResponse sendMessage(Long requestId,
 IAction action,
 Serializable data)
 throws ServerLookupException,
TransportException {
 IEAIResponse rsp = null;
 Serializable rspData = null;
 switch (action.getMessageType()) {
 case ACTION_TYPE_CHGVMPASS : {
 ChangeVMPasswordRsp payload =
 new ChangeVMPasswordRsp();
 EAIResponse rsp = new
EAIResponse(requestId

payload);
 rsp.setConfirmationNumber(
 System.currentTimeMillis());

rsp.setResponseCode(rsp.RSP_CODE_SUCCESS);
 break;
 }
 } // end switch
 return rsp;
 }
}

Understanding Response Codes:
For a given request, the underlying transport must return one of a set of well
defined response codes: The current response code set and their meanings are:

58 | Self Service Manager Developers Guide

Supported Response Codes

Response Code Meaning
IEAResponse.RSP_CODE_SUCCESS Call to the back end OSS/BSS

succeeded.
IEAResponse.RSP_CODE_FAILURE Call to the back end OSS/BSS

failed.
Add one or more error messages.

IEAResponse.RSP_CODE_SYSUNAVAIL Call to the back end OSS/BSS
failed due to connectivity issues.
Will be retried.
Add one or more error messages.

IEAResponse.RSP_CODE_ACK Call will be completed in the
background. Transport must start a
thread to handle the response
which calls the registered called
back handler when completed.

sendMessage syntax
public IEAIResponse sendMessage(Long requestId,
 IAction action,
 Serializable data)

Where:
long requestID – unique transaction identifier provided by the ESC
Subsystem.
IAction action – the action be performed. See the Javadoc for a definition of
the IAction interface. IAction.getMessageType() returns the action
identifier for the current action.
Serializable data – the developer defined payload or contents of the action.

Returns:
IEAIResponse – Normally a derived class implementing or extending
IEAIResponse defining response content particular to the action being
processed.

Self Service Manager Developers Guide | 59

Adding messages to a response request
Response instances can transport to the originating caller a set of messages.
Messages can be either errors or informational and are added using code similar
to that shown below.

EAIResponse rsp = . . . ;

// Obtain the message container
IEIResponseMessages msgs = rsp.getResponseMessages();
// Add error or informational messages
msgs.newErrorMsg("Something bad happened", serializable
data);
// insert the updated message collection back into the
to be
// returned response
rsp.setResponseMessages(msgs);

The ultimate recipient of the response could then obtain the send messages using
code similar to:

IEIResponseMessages msgs = rsp.getResponseMessages();
if (msgs.hadErrorMsgs()) {
 Iterator it = msgs.getErrorMsgs().iterator();
 while(it.hasNext) {
 IEIResponseMessage msg = it.next():
 String msgString = msg.getMessageCode();
 Serializable[]data = msg.getMessageData();
}

See the Self Service Manager javadoc for a complete list of all classes and
methods pertaining to response messages.

Example Transform

Transforms can be either inbound or outbound and provide a mechanism for
processing a message payload before it is sent or after it has been processed, ,
generally to convert the data from the edocs’ object model to the Customer’s
object model. Outbound transforms are called before the transport send message
method is invoked and can modify or transform data as required. Inbound
transforms are called after the transform send message method is invoked and
transform responses as required.

Both inbound and outbound transforms are optional.

Transforms must extend com.edocs.common.eai.api.core.IEITranslator
and implement public Serializable translate() as shown below. A
typical implementation of translate includes a switch statement for each
action handled by the translator class.

60 | Self Service Manager Developers Guide

import java.io.Serializable;
import com.edocs.common.eai.api.core.IEIAction;
import com.edocs.common.eai.api.core.IEITranslator;
import
com.edocs.common.eai.api.exception.TranslationException;
import com.edocs.common.tsm.sm.core.ChangeVMPasswordRsp;

public class InboundXForm implements IEITranslator {
 // mimics the definitions in sm.xma.xml
 private static final int ACTION_TYPE_CHGVMPASS =
100;
 public Serializable translate(IEIAction action,
 Serializable msg)

 throws TranslationException {
 Serializable rspData = null;
 switch (action.getMessageType()) {
 case ACTION_TYPE_CHGVMPASS : {
 ChangeVMPasswordRsp rsp =
 (ChangeVMPasswordRsp) msg;
 rspData = rsp;
 break;
 }
 }
 return rspData;
 }

 public Serializable translate(IEIAction action,
 Serializable[] msgs)
 throws
TranslationException
 { return null; }
}

Example translate syntax
public Serializable translate(IAction action,
 Serializable msg)

Where:
 IAction action – the action be performed. See the Javadoc for a definition
of the IAction interface. IAction.getMessageType() returns the action
identifier for the current action.
Serializable msg – the developer defined payload or contents of the action.

Returns:
Serializabe – Transformed content.

Self Service Manager Developers Guide | 61

Defining a Destination in sm.xma.xml
Self Service Manager uses the inversion of control concepts of the Spring
framework to externalize the class dependencies representing the core Self
Service Manager systems in terms of bean references. Each bean reference
defines the set of properties and other beans that a given object uses or
references. For more information on spring and the spring framework see
www.springframework.org.

The Spring Framework defines relationships in terms of java beans which can be
used a component parts of other beans. At a minimum spring defines a parent
(uses) child (is used by) relation \ship as:

 <bean id="child.bean"
 class="com.myco.mypackage.child"/>
 <bean id="parent" class="com.myco.mypackage.parent">
 <property name="child">
 <ref bean="child.bean"/>
 </property>
 </bean>

Spring defines an expected set of bean methods that in turn are used to maintain
the class relationships external to the classes themselves.

Destinations are defined in sm.xma.xml with three bean elements representing
the inbound, outbound and transport components. The Destination bean, defined
in terms of com.edocs.common.eai.core.Destination, then specifies
these three beans as properties.

Properties of com.edocs.common.eai.core.Destination:

Property Value
inboundTranslator Bean ID of a bean implementing

com.edocs.common.eai.api.core.IEITranslator
Can be omitted.

outboundTranslator Bean ID of a bean implementing
com.edocs.common.eai.api.core.IEITranslator.
Can be omitted.

transport Bean ID of a bean implementing
com.edocs.common.eai.api.core.ITransport

timeout Timeout value in seconds for sendMessage & translate
method calls. Comment [AJS3]: We need defaults

here.

62 | Self Service Manager Developers Guide

Destination Bean Example
<beans>
. . .
 <bean id="DemoTSMOutboundTrn.Java"

class="com.edocs.common.tsm.sm.core.demo.OutboundXForm"/>
 <bean id="DemoTSMInboundTrn.Java"

class="com.edocs.common.tsm.sm.core.demo.InboundXForm"/>
 <bean id="DemoTSMTransport"
 class="com.edocs.common.tsm.sm.core.Demo.Transport"/>
 <bean id="DemoTSMDestination"
 class="com.edocs.common.eai.core.Destination">
 <property name="outboundTranslator">
 <ref bean="DemoTSMOutboundTrn.Java"/>
 </property>
 <property name="inboundTranslator">
 <ref bean="DemoTSMInboundTrn.Java"/>
 </property>
 <property name="transport">
 <ref bean="DemoTSMTransport"/>
 </property>
 <property name="timeout">
 <value>2</value>
 </property>
 </bean>

. . .

Defining Transactions
Transactions, or actions are they are called within the Self Service Manager
framework; define the operations which client applications can perform on
Service Agreements via an underlying OSS. At run time, an action is executed
by a client application, which in turn is routed via the Self Service Manager
subsystems to the underlying connector that performs the required work. The
connector then returns back an appropriate response.

Actions are composed of:

• A set of request/response objects defining the data into and returned from the
underlying OSS when the action is performed.

• An extension class of TSMServiceManager that implements the code to
fabricate ISMServiceRequest instances specific to the new requests.

• A snippet of XML defining the action and associated the specified request
and response classes with that action

• DBMS statements to register the action in the Self Service Manager Database
tables.

• An optional set of response handlers.

Actions can be either Synchronous or Asynchronous and go through a defined set
of lifecycle states. The following diagrams detail the lifecycle states of an action.

Synchronous Action Lifecycle

preProcess
Request

Request
Data

Create
Action +

Done

Action History
Request Data

TSM
History

persist
Request

Outbound
Translate

Transport
SendMessage

Inbound
Translate

*
*

*

*

postProcess
Response

*

*

persist
Response
*

Action History
Request Data

*- Can be extended

Client
System

The lifecycle of a Self Service Manager transaction is designed to be extendable
and robust. Synchronous lifecycle states are:

1. Create Action – The client application creates a specific action and its
associated request data and passes the action to the underlying Self Service
Manager Transaction subsystem.

2. Persist Request – The specifics of the action request are persisted to the Self
Service Manager history database for both audit and user review purposes.
Persist request is an extendable service.

3. Pre-Process Request – The outbound request is then pre-processed. Default
pre-processing is a noop however, pre-processing is extendable as required.

4. Outbound Translate – The outbound request can be transformed or translated
to another format required buy the underlying connector as required. Default
translate is a noop.

5. Connector SendMessage – The connector is then invoked to send the
message to the back end client system which performs the requested action
and returns a response in “real time”. Note that regardless of success or
failure the result of the request is sent back down stream.

Self Service Manager Developers Guide | 63

6. Inbound Translate – The Inbound response can be transformed or translated
to another format required buy the underlying connector as required. Default
translate is a noop.

7. Persist Response – The specifics of the results of the action are persisted to
the Self Service Manager history database for both audit and user review
purposes. Persist response is an extendable service.

8. Post Process Response – The inbound result can then be post-processed as
required. Default post-processing is a no-op however, post-processing is
extendable as required.

Asynchronous Action Lifecycle

preProcess
Request

Create
Action +
Request

Data

Done

Action History
Request Data

TSM
History

persist
Request

Outbound
Translate

Transport
SendMessage

Inbound
Translate

*

*

*

*

Post-Process
Response

*

*

Persist
Response

*

Action History
Request Data

*- Can be extended

Returns
Ack indicating
in-progress

Persist
ACK

Via thread

Done

Client
System

The Asynchronous lifecycle states are shown below: Note the create action to
Outbound Translate states are identical to the synchronous case.

1. Connector SendMessage – Starts a developer written thread to process the
send message action. Returns an asynchronous acknowledgement to indicate
the action is in progress.

2. Perist ACK – The returned acknowledgement is persisted to the Self Service
Manager history database as action pending.

3. Inbound Translate – The Inbound response can be transformed or translated
to another format required buy the underlying connector as required. Default
translate is a noop.

4. Persist Response – The specifics of the results of the action are persisted to
the Self Service Manager history database for both audit and user review
purposes. Persist response is an extendable service.

64 | Self Service Manager Developers Guide

Self Service Manager Developers Guide | 65

5. Post Process Response – The inbound result can then be post-processed as
required. Default post-processing is a no-op however, post-processing is
extendable as required.

General Transaction Characteristics

Transactions are defined within Self Service Manager in two parts, within an
XML configuration file and within the Self Service Manager database. Defined
transaction request data is exposed to Self Service Manager via a Custom
Request class derived from TelNoReq. Custom response classes, derived from
Serializable, provide the returned result. And custom methods, added by
extending, TSMServiceManager, provide the factories required to tie the areas
together.

Actions are defined within Self Service Manager via entries in sm.xma.xml.
Each action has one attribute and 3 required properties. Actions may also add a
map of optional response handlers.

Properties of com.edocs.common.sm.core.SMAction:

Property Value
id Any unique name starting with Action. The id can be anything

but is normally the name of the action less spaces. For example,
Set Special name might be setSpecialName.

class Bean class: must be or extend
com.edocs.application.tsm.sm.core.TSMAction.

messageType A unique integer identifier, values less then 1000 are reserved for
Seibel actions.

externalName External name matching the id.

transient Action is transient if true. Transient operations are NOT
persisted to the Self Service Manager database and cannot be
tracked for the purposes of history. Default false.

Defining a Action in sm.xma.xml

Self Service Manager Transactions are named combinations of actions, action
input data and action response data. To define a new action:

1. Select an unused message value and name for your action and registration

2. Create request and response classes,

3. Define the action and associate with it its underlying request and response
classes.

The example below, defined in sm.xma.xml, defines an action called Set
Special Name. Request and response objects referenced are coded below.

66 | Self Service Manager Developers Guide

<beans>
. . .
 <bean id="ReqData.setSpecialName"
 class=" com.myco.demo.setSpecialNameReq"/>
 <bean id="RspData.setSpecialName "
 class=" com.myco.demo setSpecialNameRsp"/>
 <bean id="Action.setSpecialName"
 class="com.edocs.common.sm.core.TSMAction" >
 <property name="messageType">
 <value>1000</value></property>
 <property name="externalName">
 <value>setSpecialName</value></property>
 </bean>
. . .

Defining a Action in Self Service Manager Database

Actions must also be registered in the Self Service Manager database. The
snippet of SQL below adds the required records to the TBMS database tables in
support of a new action 1000, a unique integer not previously used for any action.

insert into CMSCASE_TYPE_REF
 (case_type_key, ‘descrip’, is_active,
key_code)
 values
 (1000, 'Set Special Name', 1, setSpecialName);

If multiple languages are supported, messages can be entered into the database as
shown below. Each element differing by locale and translated text:

insert into AMSI18N_TRN_REF
 (document_type_key, document_key, locale,
field_name,

translated_text)
 values
 (15003, 1000, 'es_US', 'Description',
 'spanish: Set Special
Name');

Sample Request

Request objects are the data associated with a Self Service Manager transaction.
All Self Service Manager Transactions are combinations of an underlying action
and the data that action works on. The first step in developing a custom Self
Service Manager transaction is creating the request class.

In the following example we create an action that adds a “special name” to a
service agreement. The special name is no more then a string passed to the
underlying Destination. Since all requests pertaining to Self Service Manager are
by definition telco requests, and each must extend TelNoReq and include any
special data required by the underlying OSS connector to process the request.

Self Service Manager Developers Guide | 67

package com.myco.demo;
import java.io.Serializable;
import com.edocs.application.tsm.sm.data.*;
public class setSpecialNameReq extends TelNoReq
 implements Serializable {
 String specialName= "";
 public void setSpecialName(String specialName) {
 this.specialName = specialName;
 }
 public setSpecialNameReq (IServiceAgreement sa,
 String specialName) {
 this.specialName = specialName;
 this.setServiceAgreement(sa);
 }
}

Sample Response

Response objects are simple Java classes that are generated by the underlying
OCC connector and can return special status or other content to the calling
action. A sample response is shown below:

package com.myco.demo;
import java.io.Serializable;
public class setSpecialNameRsp implements Serializable {
 public setSpecialNameRsp () { }
}

Response objects can be combined with OSS Connectors to provide a
query/response mechanism that does not actually change a service agreement but
rather returns an answer to a question. Such a transaction is normally configured
as transient and takes a query style payload rather then the contents of an update.
The connector associated with the transaction then takes the question, performs
the query, and returns the response.

Sample TSMServiceManager extension classes

TSMServiceManager extended classes are the glue that tie actions to request
data. ISMServiceRequest objects package actions together with their required
data. TSMServiceManager is, amongst other things, a service request factory.
New service requests are created by extending this class and adding additional
methods supporting custom transactions. The example below shows an example
of such a class which defines a new method, newSetSpecialNameRequest,
which returns an instance of ISMServiceRequest.

68 | Self Service Manager Developers Guide

00 package com.myco.demo;
01 import org.springframework.context.ApplicationContext;
02 import com.edocs.common.sm.api.*;
03 import com.edocs.common.sm.api.exception.*;
04 import com.edocs.common.tsm.sm.core.*;
05 public class CustomServiceManager extends
TSMServiceManager{
06 public ISMServiceRequest newSetSpecialNameRequest(
07
IServiceAgreement sa,
08 String sn) {
09 ApplicationContext ctx = this.getTheContext();
10 ISMServiceRequest srx = null;
11 IEIAction action = (ISMAction)
12
ctx.getBean("Action.setSpecialName")
13 setSpecialNameReq data =
14 new setSpecialNameReq(sa,sn);
15 srx = newServiceRequest(action, data);
16 return srx;
17 }
18 }

Code Examination

Self Service Manager transaction code centers around ISMServiceRequest
instances. ISMServiceRequest instances contain both the data and the action
to perform on that data. The following paragraphs detail the development of
sample code shown above.

All custom Self Service Manager classes must extend TSMServiceManager
(line 05). Service Requests are based on methods returning instances of classes
implementing ISMServiceRequest(line 06). Service Actions are returned via
the Spring framework using a context, line 09, and a getBean operation on that
context (line 10-11). An instance of the request data(lines 12-13) is then passed
to the newServiceRequest() inherited method to create the required
ISMServiceRequest instance.

The new transaction can then be used as if it was part of the out-of-the-box Self
Service Manager transaction set as shown below:

ISMServiceRequest tx = tsm.
newAddSpecialNameRequest(sa,”name”);
try {
 ISMResponse rsp = tsm.processServiceRequest(cred, srx);
 if(!rsp.isSuccessful()) { error code }
 }
 . . .

Self Service Manager Developers Guide | 69

Transaction Lifecycle Events
Self Service Manager supports the ability to integrate into the lifecycle of Self
Service Manager Actions.
As previously shown, actions have four lifecycle events which can be
intercepted.

Lifecycle processing falls into two categories:

• Pre and post process – interjecting custom processing before an action is
processed and/or after an action returns from processing

• Persistence Management – custom persistence processing replacing or
augmenting existing persistence management.

An example of action pre/post processing of actions might be performing custom
success code such as storing a returned password or contents back into the Self
Service Manager local database.

An example of action persistence management might be adding custom
persistence to an action in support of storing additional log or processing
information into a custom database, persisting requests to an XML data for later
processing and reporting or otherwise storing custom information.

Pre and post processing:

The com.edocs.common.sm.api.ISMAction interface defines three
methods, shown below, which can be implemented by the developer to perform
custom pre and post processing.

public interface ISMAction extends IEIAction {
 public void preProcessRequest(ISMServiceRequest srx)
 throws SMPersistException, SMException;
 public void postProcessResponseSuccess(
 ISMServiceManager sm,
 ISMServiceRequest srx)
 throws SMPersistException, SMException;
 public void postProcessResponse(
 ISMServiceManager sm,
 ISMServiceRequest srx)
 throws SMPersistException, SMException;
. . .
}

Per the synchronous and asynchronous lifecycle diagrams the
preProcessRequest method is invoked by the SM subsystem immediately
after the action is submitted for processing and BEFORE the action is persisted.
In this way changes can be made to the data and those changes persisted to
backing store along with the remainder of the request. Post processing occurs
immediately following the request being persisted as it normally does not involve
changing any content or results but rather making changes to the Self Service
Manager database.

70 | Self Service Manager Developers Guide

Post processing is supported via two methods postProcessResponse and
postProcessResponseSuccess, the latter only invoked when actions return a
result of IEAResponse.RSP_CODE_SUCCESS.

Note that the TSMAction extends SMAction which implements ISMAction and
is the base class for all Self Service Manager actions as it adds a host of
functionality particular to the Telco domain. TSMAction should the starting
point of an action class used in the context of Self Service Manager.

Adding lifecycle management support

Lifecycle management support is added to actions by implementing the one or
more of the Process Request/Response methods shown above. An example
action, which interacts with the Telco Data Manager to persist a successful result
back to the local database, is shown below.

Self Service Manager Developers Guide | 71

00 package com.myco.demo;
01
02 import com.edocs.application.tsm.sm.core.*;
03 import com.edocs.common.sm.api.*;
04 import com.edocs.common.sm.api.exception.*;
05 import com.edocs.domain.telco.api.tsm.*;
06 import com.edocs.domain.telco.api.tsm.exception.*;
07 import org.apache.commons.logging.*;
08
09 public class setSpecialNameAction extends TSMAction {
10 public static final int ACTION_TYPE_SETSPECIALNAME
11 = 1000;
12 public static final String ACTION_NAME =
13 "setSpecialName";
14 private static log =
15 LogFactory.getLog(setSpecialNameAction.class);
16 public void
17 postProcessResponseSuccess(ISMServiceManager sm,
18 ISMServiceRequest srx)
19 throws SMPersistException, SMException {
20 try {
21 ISMRequest req = srx.getTheRequest();
22
23 // Obtain an instance of the
24 // Telco Data Manager
25 // Assumming we need to persist some data
26 // back to the db
27 ITSMDataManager tdm =
28 getTelcoDataManager(sm, srx);
29
30 // Get the original request
31 setSpecialNamReq data =
32 (setSpecialNamReq) req.getData();
33
34
35 // use the TSMAction method
36 // loadServiceAgreement to get the
37 // associated service agreement
38 // assuming we need the service agreement to
39 // persist the data
40 IServiceAgreement sa =
41 loadServiceAgreement(sm, srx, data)
42
43 // extract phone number from the
44 // request data assuming we use the phone
45 // number for a key somewhere!
45 String newPhoneNumber =
46 data.getNewPhoneNumber();
47
48 // call the data manager to perform
49 // some sort of data operation
50 // such as update the service agreement
51 // with a new phone number etc
52

72 | Self Service Manager Developers Guide

53 // tdm.doSomethingtoDB(sa,...)
54 if (log.isDebugEnabled()) {
55 log.debug("Successfully updated db");
56 }
57 } catch (InvalidArgumentException e) {
58 throw new SMException();
59 } catch (DataStoreException e) {
60 throw new SMPersistException();
61 } catch (CommunicationException e) {
62 throw new SMException();
63 }
64 }
65 }

Code Examination

Lines 02-06 detail the required imports. Line 08 imports the apache log package
uses in lines 13-14 and 54-55. Lines 10-13 define constants matching those in
sm.xma.xml and defining the actions identify. Lines 17 to 19 define the
overloaded post process method.

The remaining code is particular to the actions post processing. The convenience
method getTelcoDataManager can be used to return a ITSMDataManager
instance in the event code needs to update the data base with returned a returned
result, a common occurrence. Likewise the code uses the
loadServerAgreement method to obtain the associated service agreement.
See the javadocs for TSMAction for a complete list of the TSMAction inherited
methods. Line 53 represents some method to submit the resulting change back to
the Self Service Manager database. Use the appropriate method, rather then the
dummy shown, to persist the result back to the database.

Updated Action Definition

The action definition, found in sm.xma.xml, would then be updated as shown
below to reflect the extended action class.

<beans>
. . .
 <bean id="ReqData.setSpecialName"
 class=" com.myco.demo.setSpecialNameReq"/>
 <bean id="RspData.setSpecialName "
 class=" com.myco.demo setSpecialNameRsp"/>
 <bean id="Action.setSpecialName"
 class="com.myco.demo.setSpecialNameAction " >
 <property name="messageType">
 <value>1000</value></property>
 <property name="externalName">
 <value>setSpecialName</value></property>
 </bean>
. . .

Self Service Manager Developers Guide | 73

Persistence Management

The com.edocs.common.sm.api.ISMAction interface defines two methods,
shown below, which can be implemented by the developer to perform custom
persistence management.

public interface ISMAction extends IEIAction {
 public void persistNewRequest(ISMServiceManager sm,
 ISMServiceRequest srx)
 throws SMPersistException;

 public void persistNewResponse(ISMServiceManager sm,
 ISMServiceRequest srx)
 throws SMPersistException;
. . .
}

Per the synchronous and asynchronous lifecycle diagrams the
persistNewRequest method is invoked by the SM subsystem after the request
has bee preprocessed but before it is translated. Likewise, the
persistNewResponse method is called immediately following any outbound
transformation, but before post processing.

persistNewRequest and persistNewResponse are defined almost identically and
typically contain similar processing with the exception of the focus of the
processing (before request being processed vs after completion). Two specific
use cases are normally managed by these methods, extend the existing
persistence, or replace the existing persistence. The example below shows how
one might extend the persistence mechanism to a secondary storage mechanism,
while maintaining the existing persistence mechanism.

Adding persistence management support

Persistence management support is added to actions by overriding the one or both
of the persist methods shown above. An example action, which uses the
underlying persistence engine is shown below. Note that only the additional
method is shown not the entire class.

74 | Self Service Manager Developers Guide

00 package com.myco.demo;
. . .
01 public void persistNewRequest(ISMServiceManager sm,
02 ISMServiceRequest srx)
03 throws SMPersistException {
04 try {
05 super.persistNewRequest(sm,srx)
06 } catch (SMPersistException sme) {
07 throw sme;
08 }
09
10 // Obtain the original request
11 ISMRequest req = srx.getTheRequest();
12
13 // Cast as appropriate
14 setSpecialNamReq data =
15 (setSpecialNamReq) req.getData();
15 // Do custom persistence
17 // save statistics to a db etc.
18 }
. . .

Code Examination

Note that this example is only partial and would normally be part of a larger
TSMAction extended class. . Line 05 uses the parent method to perform any out
of the box persistence, catching and throwing any unexpected exceptions. Lines
11 onward are devoted to extracting the resulting request data and performing
any custom actions required.

Custom Request and Response Persistence
Action data is persisted to backing store as XML via Castor. See www.castor.org
for a complete description of Castor. Castor provides marshall/unmarshall
support for converting Java objects into and out of XML via mappings which
may be automatically generated or specified via xml based mapping files.

For many objects Castor mappings are generated automatically and mapped into
and out of XML without issue. Occasionally, given very complex object nesting,
castor may generate an invalid mapping resulting in run time errors. In such
cases castor mappings can be defined externally via sm.castor.xml, a portion
of which is shown below

http://www.castor.org/

Self Service Manager Developers Guide | 75

Example sm.castor.xml
<?xml version="1.0" encoding="UTF-8"?>
<mapping>
 <class name="com.edocs.common.sm.core.SMResponse"
 auto-complete="false">
 <description>Default mapping for class

com.edocs.common.sm.core.SMResponse</description>
 <map-to xml="SMResponse"/>
 <field name="responseMessages"
 type=

"com.edocs.common.eai.api.core.IEIResponseMessages"
 required="false" direct="false"
transient="false">
 <bind-xml name="response-messages"
 node="element"
 reference="false"/>
 </field>
 <field name="confirmationId"
 type="string"
 required="false"
 direct="false" transient="false">
 <bind-xml name="confirmation-id"
 node="element" reference="false"/>
 </field>
. . .
 </class>
 <class
name="com.edocs.common.eai.core.EIResponseMessage"
 auto-complete="false">
. . .
 </class>
. . .
</mapping>

Custom castor mappings can be specified by adding new <class> elements to the
default castor mapping file.

Assuming the earlier setSpecialNameReq java object we could define a
custom castor mapping as:

76 | Self Service Manager Developers Guide

Custom Castor Mapping for setSpecialNameReq
<class name="com.myco.demo.setSpecialNameReq"
 auto-complete="false">
 <description>Default mapping for class
 com.myco.demo. setSpecialNameReq </description>
 <map-to xml="setspecialname-req"/>
 <field name="specialName" type="string"
 required="false" direct="false"
 transient="false">
 <bind-xml name="name" node="element"
 reference="false"/>
 </field>

</class>

The mapping would then be added to sm.castor.xml and objects matching
the class type would be marshaled and unmarshalled from xml using the
providing mapping. The benefits of castor go beyond the simple example above
and mappings can be defined in terms of complex object hierarchies including
arrays, collects, sets etc. See the castor documentation for a complete description
of castor mappings.

Supporting Asynchronous requests
The ESC subsystem assumes that transport sendMessage returning either
IEAResponse.RSP_CODE_SUCCESS or IEAResponse.RSP_CODE_FAILURE
have completed. Similarly sendMessage calls returning
IEAResponse.RSP_CODE_ACK are marked as pending and are considered in
process, running asynchronously either in a background thread or in some other
fashion`. Such requests follow the lifecycle shown in the asynchronous
transaction diagram by creating a thread to process the result and then call back
into the SM layer via a callback mechanism to signal request complete.

As a result asynchronous requests must be handled in separate threads or via
external applications.

Self Service Manager Developers Guide | 77

Automatic versus programmatic asynchronous behaviors

Actions are normally synchronous in nature. Under normal circumstances an
action starts, does its work and completes returning success or failure. However
actions can sometimes take long periods of time to complete. Service Manager
supports such actions in two ways, each of which places the burden of
completing the action on a different set of shoulders. First, actions can be marked
asynchronous by the Service Manager itself. Service Manager watches each
transactions and determines and if any action has "timed out". Actions which
have timed out are ack'd asynchronously automatically. Timed out actions are
not stopped or in any way changed. In fact they continue to execute normally
with the expectation that they will complete but for some reason are running late.
The Service Manager, when the action completes, runs the remainder of the
actions lifecycle normally.

Actions which return RSP_CODE_ACK are considered programmatically or
explicitly acknowledged. Such actions will never complete on their own,
although Service Manager will eventually delete such actions if they remain
inactive long enough. Once an action is marked inactive an external mechanism
must be provided for capturing and completely the actions processing.

In support of asynchronous messaging the ISMServiceManager interface,
and implementation, provides the following method.

receiveAsynchResponse method
public interface ISMServiceManager {
. . .
 public void receiveAsynchResponse(
 Long requestId,
 String statusCode,
 Serializable data)

. . .
}

The receive asynchronous response method is used by

1. Obtaining the originating request id, The originating id must match the id
provided via the sendMessage call originally staring the request.

2. Obtaining an appropriate status code, a status of
IEIResponse.RSP_CODE_SUCCESS; or
IEIResponse.RSP_CODE_FAILURE from the back end service.

3. Returning any optional serialable data expected by action.

78 | Self Service Manager Developers Guide

The example below shows the core steps to completing an asynchronous request
and would normally be inserted into a web service, a stand alone web application
or other utility application which can be called by the OSS completing the action.
Key to completing a transaction is the ability to obtain the originating ID and
interface with the SM Service Manager. The bolded lines below illustrate how to
create the result codes and well as call back into the service manager.

Completing Asynchronous transactions explicitly
import com.edocs.common.sm.api.*;
import com.edocs.common.eai.core.EIResponse;
import com.edocs.common.eai.api.core.*;
import com.edocs.common.eai.api.exception.*;
import com.edocs.application.tsm.sm.core.*;
import com.edocs.application.tsm.sm.data.*;
import com.edocs.domain.telco.api.tsm.*;
Long originalID;
// captured from sendMessage(Long requestId,...)
int actionID = -1; // from sendMessage(…,IEIAction
action,...)
Serializable payload = null;
String rspCode = IEIResponse.RSP_CODE_SUCCESS;
switch (actionID) {
 case TSMAction.ACTION_TYPE_PORT_NUMBER:
 PortPhoneNumberRsp rspData = new
PortPhoneNumberRsp();
 // populate from implementation
 payload = rspData
 break
}
ISMServiceManager sm =

TSMServiceManager.getTSMServiceManager();
sm.receiveAynchResponse(originalID, rspCode, payload);
. . .

Integrating Transactions
Self Service Manager Transactions are connected to the underlying connector
that handles them via services definitions in the ServiceManager bean. Each
such connection is defined in sm.xma.xml as shown in the relationship diagram
below:

Se

IsA

rviceManager

:TSMServiceManager

Services property

TSMServiceProviderA

IsA:SMService

requestDestination property

Demo Destination

IsA:Destination

transport property
outboundTranslator property
inboundTranslator property

Other Destination

IsA:Destination
TSMServiceProviderB

IsA:SMService

. . .

Service Manager beans have a services property that defines the mapping
between an action request and the underlying SMServices instance bean that
provides the service. SMServices instances in turn define a set of core
operational properties and a Destination bean which implements the transport
required to provide the service.

A portion of the ServicesManager bean definition is shown below.

Self Service Manager Developers Guide | 79

80 | Self Service Manager Developers Guide

ServiceManager Bean Example
<bean id="ServiceManager"

class="com.edocs.common.tsm.sm.core.TSMServiceManager">
 . . .
 <property name="services">
 <map>
 <entry key="chgVmPass">
 <ref bean="TSMService"/>
 </entry>
 . . .
 <entry key="bulkRequest">
 <ref bean="TSMService"/>
 </entry>
 </map>
 </property>
 <property name="responseHandlers" >
 <map>
 <entry key="created">
 <ref bean="LifecycleHandler.created"/>
 </entry>
 <entry key="success">
 <ref bean="LifecycleHandler.success"/>
 </entry>
 . . .
 </map>
 </property>
</bean>

Properties of com.edocs.common.tsm.sm.core.TSMServiceManager:

Property/Attribute Value
id Always ServiceManager.

class Always
com.edocs.common.tsm.sm.core.TSMServiceManager.

services Map of service. Each entry key represents an action
and the associated ref bean the SMService bean which
provides it.

responseHandlers Map of response handlers. See Response Processors

Each supported service has an entry in the services map that defines the name of
the service provider and the name of the action the provider supports.

Self Service Manager Developers Guide | 81

SMService Bean Example
<bean id="TSMService"
 class="com.edocs.common.sm.core.SMService">
 <property name = "requestDestination">
 <ref bean=" DemoTSMDestination"/>
 </property>
 <property name="requestMode">
 <value>sync</value>
 </property>
 <property name="authorizationCheck">
 <value>false</value>
 </property>
 <property name="timeout">
 <value>2</value>
 </property>
</bean>

Properties of com.edocs.common.tsm.sm.core.ServiceManager:

Property/Attribute Value
Id Bean identifier, referenced in ServiceManager

bean definition.

Class Always
com.edocs.common.sm.core.SMService.

RequestDestination ID of bean to be used as the destination of the actions
sent to this service. See Defining Destinations

RequestMode Future use, must always be synchronized

authorizationCheck Future use, must always be false

Timeout Timeout value for messages to this service, in
minutes.

Response Processors
Both Actions and Service Managers can define processing that is executed when
a connector returns a specific response; such processing is referred to as a
Response Processor or Handler. Response handlers are special processors called
when a given result is returned. For example a special response handler might be
defined for a given service to handle system unavailable errors. Default response
handlers are defined to handle the specific responses list below:

Default Response Handlers

Response Handler
Codes

When called

Success Called when an action returns a status of success

Ack Future use only. Called when a response handler
returns a status of ack

Failure Called when an action returns failure

systemUnavailable Called when an action returns system unavailable

bulkElementSuccess Called when an action returns a status of success for
an element of the bulk operations

bulkElementFailure Called when an action returns a status of failure for
an element of the bulk operations

Developers overload the provided response handlers and providing replacements
that perform specialized processing when a given response is processed. Such
handlers can be associated with a SMService instance or with specific actions.

Response handlers are developed by extending the class SMResponseHandler
and implementing processEIResponse(…) as shown below. Response
handlers have complete access to both the calling Service Manager instance and
the action that generated the response.

Note that after any custom code the super.processEIResponce() method
must be called as shown to complete the lifecycle management functions
of the SM system.

Caution

Custom Response Handler
package com.myco.demo;
import com.edocs.common.sm.api.ISMServiceManager;
import com.edocs.common.sm.api.ISMServiceRequest;
import com.edocs.common.sm.api.exception.SMException;
import com.edocs.common.sm.core.*;
public class CustomResponseHandler
 extends SMResponseHandler {
 public void processEIResponse(ISMServiceManager sm,
 ISMServiceRequest srx)
 throws
SMException {
 System.out.println(
 "CustomResponseHandler called for
action " +
 srx.getAction().getExternalName());
 super.processEIResponse(sm, srx);
 }
}

82 | Self Service Manager Developers Guide

Self Service Manager Developers Guide | 83

Configuring Custom Response Handlers

There are two steps in configuring response handlers:

1. Define a bean representing the response handler

2. Reference the newly defined handler in either a TSMServiceManager or an
SMAction instance.

Defining a bean reference for a response handler involves adding a snippet of
XML as shown below.

<bean id="CustomResponse.systemUnavailable"
 class=" com.myco.demo.CustomResponseHander" >
 <property name="theStatus">
 <ref bean="Status.runnable" />
 </property>
 <property name="theQueue">
 <ref bean="Queue.runnable"/>
 </property>
 <property name="historyTypeKey">
 <value>1000</value>
 </property>
</bean>

Properties of SMResponseHandler derived classes:

Property/Attribute Value
id Bean identifier, by convention the name of the response handler

followed by “.”(dot) followed by the status being handled.

class Fully qualified class name of a class extending
com.edocs.common.sm.core.SMResponseHandler

resolutionMsg Text string representing the message to be stored in the history
table with respect to this response handler.

historyTypeKey A unique integer identifier used to identify the action in the
history list, values less then 1000 are reserved for edocs history.

theQueue Reserved. Optional. Bean id of a queue where this message
should be placed.
Possible values are:

Queue.runnable – retry operation.
Queue.needsManualIntervention – action
cannot be completed without manual intervention.
Queue.ack – action is part of a bulk asynchronous
action. Future use only.

theStatus Bean id of an existing status message matching the status being
handled. For example: status.runnable,
status.success, status.failure etc.

Comment [AJS4]: Are these the
correct explanations? Need comments on
when a queue should be specified.

84 | Self Service Manager Developers Guide

Defined response handlers are associated with actions by setting up a map of
status to response handlers using the optional SMAction property
responseHandlers. Or by replacing one of the default response handlers
defined for TSMServiceManager beans. An example of specifying a custom
response handler for an action is shown below.

<bean id="Action.chgVmPass"
 class="com.edocs.common.sm.core.SMAction" >
. . .
 <property name="responseHandlers" >
 <map>
 <entry key="success">
 <ref bean="CustomResponse.success"/>
 </entry>
 <entry key="systemUnavailable">
 <ref
bean="CustomResponse.systemUnavailable"/>
 </entry>

 </map>
 </property>
</bean>

Note that a single response handler class can be configured to handle multiple by
adding code in the processEIResponse(ISMServiceManager sm,
ISMServiceRequest srx) method similar to:

ISMResponse resp = srx.getTheResponse();
String respCode = resp.getResponseCode();
if (respCode.equals(ISMResponse.RSP_CODE_SUCCESS)) . . .

And then creating multiple instances of the response handler, one for each status
such as:

<bean id="CustomResponse.systemUnavailable"
 class=" com.myco.demo.CustomResponseHander" >
. . .
</bean>
<bean id="CustomResponse.success"
 class=" com.myco.demo.CustomResponseHander" >
. . .
</bean>

. . .

Self Service Manager Developers Guide | 85

 4 Glossary of Terms

Bulk – The concept of performing the same action on multiple service
agreements or accounts in one transaction flow.

CTN – Cellular Telephone Number: See MTN and MIN.

DSN – Device Serial Number: The unique identification number embedded in a
wireless phone by the manufacturer. Each time a call is placed, the DSN is
automatically transmitted to the base station so the wireless carrier's mobile
switching office can check the call's validity. The DSN cannot be altered in the
field. The DSN differs from the mobile identification number, which is the
wireless carrier's identifier for a phone in the network. MINs and DSNs can be
electronically checked to help prevent fraud.

ETL– Process of extracting data from some source, such as a text file, translating
that data into a readable format, and loading the data into an edocs database..

Final Request – A final request occurs upon the submission of the transaction to
the appropriate backend system for processing, all information needed to process
the transaction is included in this request.

Interim Request – An interim request is used to retrieve additional information
from the external backend systems that is required to complete a transaction.

LNP – Local Number Portability: The ability of subscribers to switch local or
wireless carriers and still retain the same phone number, as they can now with
long-distance carriers.

MIN –Mobile Identification Number: Uniquely identifies a mobile unit within a
wireless carrier's network. The MIN often can be dialed from other wireless or
wireline networks. The MIN is meant to be changeable, since the phone could
change hands or a customer to another city. The number differs from the ESN
which is the unit number assigned by a phone manufacturer. (also see MTN).

MTN– Mobile Telephone Number: See MIN.

OSS Operational Support System, a generic term for a suite of programs that
enable an enterprise to monitor, analyze and manage a network system. OSS has
since been applied to the business world in general to mean a system that
supports an organization’s network operations.

86 | Self Service Manager Developers Guide

SIM – Subscriber Identity Module card - a small printed circuit board that must
be inserted in any GSM-based mobile phone when signing on as a subscriber. It
contains subscriber details, security information and memory for a personal
directory of numbers. The card can be a small plug-in type or sized as a credit-
card but has the same functionality. The SIM card also stores data that identifies
the caller to the network service provider.

TNI – Telephone Number Inventory is a term used to identify the system of
record for all telephone number management.

Self Service Manager–Self Service Manager is an edocs’ application that
provides Self-Service and Order Management functionality within the Self
Service for Communications Application Suite.

Self Service Manager Developers Guide | 87

Index
B

Bulk, 85
Bulk Load

Error Handling, 24
ETLMain, 23
Run time requirements,

22
Self Service Manager

Data Transfer
Objects, 21

tsmproperties.xml, 19
Validation, 25

Bulk Loading
Device Type Example,

26
DeviceType, 26
RatePlan, 26
RatePlanGroup, 27
Service Agreement, 28
Service Agreement

Attributes, 27

C
Cellular Telephone

Number, 85
CTN, 85

D
Digital Serial Number, 85
DSN, 85

E
ESC

Action, 55

Action Example Bean,
65

Connector, 55
Custom Response

Handler Example, 82
Default Response

Handlers, 82
Defining Actions, 62
Defining Destination,

61
Defining Transactions,

62
Destination, 56
Destination Example

Bean, 62
Destination Properties,

61
Response Handlers, 55
Service Managers, 55
ServiceManager

Example Bean, 80
ServiceManager

Properties, 81
SMAction Example

Bean, 84
SMAction Properties,

65
SMResponseHandler

Properties, 83
SMService Example

Bean, 81
Transaction

Characteristics, 65
Transform, 55

88 | Self Service Manager Developers Guide

Transform Example, 59
Transport, 55
Transport Example, 56
TSMServiceManager

Properties, 80
ETL, 85
Extract Translate Load,

85

F
Final Request, 85

H
Help

technical support, 10
Hierarchy

Obtaining
IHierarchyNode, 32

I
Interim Request, 85

L
LNP, 85
Local Number Portability,

85

M
MIN, 85
Mobile Identification

Number, 85
Mobile Telephone

Number, 85
MTN, 85

O
Operational Support

System, 85
OSS, 85

S
Self Service for

Communications, 86
Self Service Manager, 86

DeviceType, 30
IDeviceType, 30

IRatePlan, 30
IRatePlanFeatureInsta

nce, 30
IRatePlanGroup, 30
IServiceAgreement, 29
RatePlan, 30
RatePlanFeatureInstan

ce, 30
RatePlanGroup, 30
resetOrderInProgress,

37
ServiceAgreement, 29
setServiceAgreementSt

atus, 37
Transaction

Categories, 37
Transaction Response,

39
Transient vs Persisted

Transactions, 38
Self Service Manager

Purge
purgeDeviceType, 36
purgeRatePlan, 36
purgeRatePlanGroup,

37
purgeServiceAgreemen

t, 36
Self Service Manager

Search
createDeviceType, 35
getAllDeviceTypes, 35
getDeviceType, 35
Obtaining

IServiceAgreement,
33, 34

Obtaining
ITSMDataManager,
33

Self Service Manager
Transaction
Activate Service

Transaction, 46

Self Service Manager Developers Guide | 89

Add Delete Feature Tx,
47

Bulk Transaction
Handling, 53

Change Digital
Subscriber
Transaction, 45

Change Phone Number
Transaction, 43

Change Rate Plan Tx,
49

Change Subscriber
ProfileTx, 51

Change Voice Mail
Password Tx, 42

Deactivate Service
Transaction, 46

Find Subscriber Profile
Tx, 51

Generate Voicemail
Password Tx, 41

Obtain available area
codes Tx, 52

Obtain available
exchanges Tx, 52

Obtain available phone
number Tx, 52

Obtaining
ITSMServicesManag
er, 41

Port Phone Number
Transaction, 44

Response Handling, 54
Self Service Manager

Service Manager, 41

SMAuthorizationExcept
ion, 54

SMException, 54
SMInvalidArgumentExc

eption, 55
SMServiceNotSupporte

dException, 54
Transaction, 55

Self Service Manager
Update
deactivateDevice, 35
updateDeviceType, 35

SIM, 86
Spring Framework, 61
Subscriber Identity

Module card, 86

T
TBM

Account Number, 32
CAM, 31
Customer Account

Management, 31
Obtaining ICustomer,

32
SessionUtils, 31

Telephone Number
Inventory, 86

TNI, 86
TSM

ITSMDataManager, 29
TSMDataManager, 29

	About Self Service Manager for Communications
	Communications Billing Manager
	Communications Self-Service Manager
	Communication Analytics Manager
	Rate Plan Advisor
	To escalate your case, ask the Technical Support Engineer to:

	How to Use This Guide
	Core Functionality
	Extending Connectivity
	Accessing Self Service Manager Data
	Interacting with Self Service Manager Transactions
	Extending Self Service Manager with Custom Transactions

	Data Loading and Synchronization
	Bulk Load Features
	Bulk Load Process
	Data Load Configuration
	file-config Attributes
	file Attributes
	Example TSMProperties.xml
	Self Service Manager Data Transfer Objects

	Self Service Manager Bulk Loading Configuration & Runtime Requirements
	tsm.xma.xml snippet

	Bulk Loading Command Syntax
	Error Handling
	Logging Errors
	System Errors
	Database Errors
	Data Errors
	Aborting the Bulk Loading Process

	Bulk Loading Quick Validation
	Validation Queries

	Data Formats
	Device Types
	Device Type Example
	Rate Plans
	Rate Plans Groups
	Service Agreement Attributes
	Service Agreements

	Search & Update Functionality
	Self Service Manager Search & Update APIs
	Self Service Manager Search Sequence Of Events
	Obtaining Context
	Obtaining IUser instances in an action class
	IUser – ICustomer relationship
	Obtaining ICustomer instances in an action class
	Obtaining IHierarchyNode instances in an action class

	Obtaining an instance of a TSMDataManager
	Finding a Service Agreement
	Find Service Agreement By Phone Number
	Find Service Agreement By Rate Plan Group
	Find Service Agreements By Subscriber Name

	Managing Rate Plan Elements
	Return All IDeviceType objects.
	Return A specific IDeviceType .
	Create A new IDeviceType objects.
	Update an existing IDeviceType .
	Deactivate an existing IDeviceType .

	Common Exceptions
	Purging out of date data
	Purge IServiceAgreement objects.
	Example: Purge inactive service agreements
	Purge IDeviceType objects.
	Purge IRatePlan objects.
	Purge IRatePlanGroup objects.

	Service Agreement Locking

	Self Service Manager Transaction API
	Self Service Manager Sequence Of Events
	Action Sequence Diagram - Synchronous

	Self Service Manager Transaction APIs
	Obtaining an instance of a TSMServiceManager
	Obtaining an instance of an IServiceAgreement
	Obtaining and populating specific transactions
	Generate Voice Mail Password Transaction
	Example
	Code Examination

	Changing Voice Mail Password Transaction
	Example
	Code Examination

	Change Phone Number Transaction
	Example
	Code Examination

	Port Phone Number Transaction
	Example
	Code Examination

	Change Digital Subscriber Number Transaction
	Example
	Code Examination

	Activate/Deactivate/Suspend/Resume Service Transactions
	Example
	Code Examination

	Add Delete Feature Transaction
	Example
	Code Examination

	Change Rate Plan Request
	Example
	Code Examination

	Find Subscriber Profile/Change Subscriber Profile Transactions
	Common Code
	Find a Subscriber Profile
	Modify Subscriber Profile
	Code Examination

	Obtain Available area codes/exchanges/phone number Transactions
	Common Code
	Obtain Area Codes
	Obtain Available Exchanges
	Obtain Available Phone Numbers
	Code Examination

	Bulk Transaction Handling
	Code Examination
	Bulk Requests supported in Self Service Manager 5.0.0

	Transaction Response Handling
	Common Exceptions

	Enterprise Systems Connectivity
	Concepts
	Defining Destinations
	Example Transport

	Understanding Response Codes:
	Supported Response Codes
	sendMessage syntax

	Adding messages to a response request
	Example Transform
	Example translate syntax

	Defining a Destination in sm.xma.xml
	Properties of com.edocs.common.eai.core.Destination:
	Destination Bean Example

	Defining Transactions
	Synchronous Action Lifecycle
	Asynchronous Action Lifecycle
	General Transaction Characteristics
	Properties of com.edocs.common.sm.core.SMAction:
	Defining a Action in sm.xma.xml
	Defining a Action in Self Service Manager Database
	Sample Request
	Sample Response
	Sample TSMServiceManager extension classes
	Code Examination

	Transaction Lifecycle Events
	Pre and post processing:
	Adding lifecycle management support
	Code Examination
	Updated Action Definition
	Persistence Management
	Adding persistence management support
	Code Examination

	Custom Request and Response Persistence
	Example sm.castor.xml
	Custom Castor Mapping for setSpecialNameReq

	Supporting Asynchronous requests
	Automatic versus programmatic asynchronous behaviors
	receiveAsynchResponse method
	Completing Asynchronous transactions explicitly

	Integrating Transactions
	ServiceManager Bean Example
	Properties of com.edocs.common.tsm.sm.core.TSMServiceManager:
	SMService Bean Example
	Properties of com.edocs.common.tsm.sm.core.ServiceManager:

	Response Processors
	Default Response Handlers
	Custom Response Handler
	Configuring Custom Response Handlers
	Properties of SMResponseHandler derived classes:

	Index

