

Payment Designer Guide

V4.5.2
Date Published: 01.31.2005

 1996−2005 edocs Inc. All rights reserved.

edocs, Inc., One Apple Hill Dr., Natick, MA 01760

The information contained in this document is the confidential and proprietary information of edocs, Inc.
and is subject to change without notice.

This material is protected by U.S. and international copyright laws. edocs is registered in the U.S. Patent
and Trademark Office.

No part of this publication may be reproduced or transmitted in any form or by any means without the
prior written permission of edocs, Inc.

All other trademark, company, and product names used herein are trademarks of their respective
companies.

Printed in the USA.

Payment Designer's Guide | 3

Table of Contents

Preface.. 5
1 Check Payments .. 9

Check Payment Overview ...9
Adding a Check Account ...9

Check Account Enrollment Status Flow .. 10
Check Payment Transactions..11

Check Payment Status Flow ... 12
Credit ... 13

ACH ..13
Supported SEC Codes .. 13
ACH Change Codes (NOC)... 13
ACH Return Codes.. 14
NOC Transactions ... 15
ACH Effective Date.. 15
ACH Settlement Date .. 15
ACH Addenda Records ... 15

2 Credit Card Payments ... 17
Credit Card Payment Status ..17
Credit Card Payment Transactions..18

Instant Credit Card Payments ... 18
Scheduled Credit Card Payments ... 19
Reversals... 20

User Options ...20
Using VeriSign as a Payment Gateway ...20
AVS (Address Verification Service) ...20

3 Recurring Payments .. 23
Overview ...23
Recurring Payment Transaction Cycle...24

Tables Affected by Recurring Payments ... 26
Recurring Payment Examples ... 26
Scheduling Payment Jobs ... 34
Payment Job Status Monitoring... 34
Payment Job Plug-In ... 34
To Configure Recurring Payments .. 34

Testing Recurring Payment ...35
Case 1: Pay Amount Due X days Before Due Date .. 35

4 | Payment Designer's Guide

Case 2: Pay Amount Due on a Fixed Date ... 36
Case 3: Pay fixed Amount X Days Before Due Date .. 37
Case 4: Pay Fixed Amount On A Fixed Date .. 37

Rebill and Recurring Payment ...38
Description... 38
Payment Settings .. 38
Payment History .. 39
Email.. 39
Logic .. 39

4 Configuring Payment Gateways ... 41
Configuring a Payment Gateway ...41
Payment Global Configuration...42
Check Payment Gateways ..44

ACH Gateway Parameters .. 44
ACH Federal Holidays ... 49
CheckFree Gateway Parameters .. 49

Credit Card Payment Gateways ..53
Updating a Payment Gateway Configuration ...56
Deleting a Payment Gateway Configuration ..57

Table Column Definitions .. 57
5 Payment Tables.. 59

Payment indexes ... 69
Payment Database Migration ..70

Index ... 71

Payment Designer's Guide | 5

Preface

About Customer Self-Service and Payment™
edocs Payment™ is the electronic payment solution that decreases payment processing
costs, accelerates receivables and improves operational efficiency. Payment is a complete
payment scheduling and warehousing system with real-time and batch connections to
payment gateways for Automated Clearing House (ACH) and credit card payments, and
payments via various payment processing service providers.

About This Guide
This guide describes the tasks required to setup and configure Payment.

This guide is intended for the designer of the Payment implementation, who will design a
payment production environment.

This guide assumes you have installed your edocs application(s).

Related Documentation
This guide is part of the Payment documentation set. For more information about
implementing Payment, see one of the following guides:

Print Document Description

Installation Guide The installation guide for your application that
explains how to install and configure it in a
distributed environment.

Payment Administration Guide How to set up and run Payment with your J2EE
application .

Payment Design Guide How to design and implement Payment in a
production environment.

Preface

6 | Payment Designer's Guide

Obtaining edocs Software and Documentation
You can download edocs software and documentation directly from Customer Central at
https://support.edocs.com. After you log in, click on the Downloads button on the left.
When the next page appears, you will see a table displaying all of the available
downloads. To search for specific items, select the Version and/or Category and click the
Search Downloads button. If you download software, an email from edocs Technical
Support will automatically be sent to you (the registered owner) with your license key
information.

If you received an edocs product installation CD, load it on your system and navigate
from its root directory to the folder where the software installer resides for your operating
system. You can run the installer from that location, or you can copy it to your file
system and run it from there. The product documentation included with your CD is in the
Documentation folder located in the root directory. The license key information for the
products on the CD is included with the package materials shipped with the CD.

If You Need Help
Technical Support is available to customers who have an active maintenance and support
contract with edocs. Technical Support engineers can help you install, configure, and
maintain your edocs application.

This guide contains general troubleshooting guidelines intended to empower you to
resolve problems on your own. If you are still unable to identify and correct an issue,
contact Technical Support for assistance.

Information to Provide
Before contacting edocs Technical Support, try resolving the problem yourself using the
information provided in this guide. If you cannot resolve the issue on your own, be sure
to gather the following information and have it handy when you contact technical
support. This will enable your edocs support engineer to more quickly assess your
problem and get you back up and running more quickly.

Please be prepared to provide Technical Support the following information:

Contact information:

• Your name and role in your organization.

• Your company’s name

• Your phone number and best times to call you

• Your e-mail address

Product and platform:

• In which edocs product did the problem occur?

• What version of the product do you have?

Preface

Payment Designer's Guide | 7

• What is your operating system version? RDBMS? Other platform information?

Specific details about your problem:

• Did your system crash or hang?

• What system activity was taking place when the problem occurred?

• Did the system generate a screen error message? If so, please send us that message.
(Type the error text or press the Print Screen button and paste the screen into your
email.)

• Did the system write information to a log? If so, please send us that file. For more
information, see the troublshooting guide for your application.

• How did the system respond to the error?

• What steps have you taken to attempt to resolve the problem?

• What other information would we need to have (supporting data files, steps we’d
need to take) to replicate the problem or error?

Problem severity:

• Clearly communicate the impact of the case (Severity I, II, III, IV) as well as the
Priority (Urgent, High, Medium, Low, No Rush).

• Specify whether the problem occurred in a production or test environment.

Contacting edocs Technical Support
You can contact Technical Support online, by email, or by telephone.

edocs provides global Technical Support services from the following Support Centers:

US Support Center
Natick, MA
Mon-Fri 8:30am – 8:00pm US EST
Telephone: 508-652-8400

Europe Support Center
London, United Kingdom
Mon-Fri 9:00am – 5:00 GMT
Telephone: +44 20 8956 2673

Asia Pac Rim Support Center
Melbourne, Australia
Mon-Fri 9:00am – 5:00pm AU
Telephone: +61 3 9909 7301

Customer Central
https://support.edocs.com

Email Support
mailto:support@edocs.com

Preface

8 | Payment Designer's Guide

Escalation Process
edocs managerial escalation ensures that critical problems are properly managed through
resolution including aligning proper resources and providing notification and frequent
status reports to the client.

edocs escalation process has two tiers:

1. Technical Escalation - edocs technical escalation chain ensures access to the right
technical resources to determine the best course of action.

2. Managerial Escalation - All severity 1 cases are immediately brought to the
attention of the Technical Support Manager, who can align the necessary resources
for resolution. Our escalation process ensures that critical problems are properly
managed to resolution, and that clients as well as edocs executive management
receive notification and frequent status reports.

By separating their tasks, the technical resources remain 100% focused on resolving the
problem while the Support Manager handles communication and status.

To escalate your case, ask the Technical Support Engineer to:

1. Raise the severity level classification.

2. Put you in contact with the Technical Support Escalation Manager.

3. Request that the Director of Technical Support arrange a conference call with the
Vice President of Services.

4. Contact VP of Services directly if you are still in need of more immediate assistance.

Check Payments
1
Payment Designer's Guide | 9

1. FAke

Check Payment Overview
Payment supports check payments through ACH or CheckFree payment gateways. This
section describes check enrollment, and then check payment.

Adding a Check Account
The following actions describe the process to enroll a new user with Payment who
specifies a check account at enrollment time:

1. A new customer enrolls for check payment services by completing an enrollment
form in the user interface. Payment saves the information in the payment_accounts
table with an enrollment status of "pnd_active".

2. The pmtSubmitEnroll job runs to submit the enrollment information to the payment
gateway. It changes the enrollment status to "pnd_wait". If the check cannot be
submitted, its status is changed to "failed".

For ACH only, pmtSubmitEnroll sends customer enrollment information, which is
contained in a zero amount check called a prenote, to an ACH payment gateway for
verification. To send a prenote, the pmtSubmitEnroll job creates a zero amount check
with status of "prenote_scheduled", and immediately inserts the check into the
check_payments table with a status of "prenote_processed". This means that the
status "prenote_scheduled" is transitory, and so is not visible in the check_payments
table. A summary report is created, which can be viewed from the Command Center.

3. After receiving the customer enrollment information, the ACH payment gateway
responds with a return file only if there are errors in the customer enrollment
information. If there are no errors, ACH will not send a return file, or any other form
of acknowledgement.

4. The pmtConfirmEnrollment job runs. This job updates the status of the customer
enrollment status to "active "if there are no problems after a specified number of days
(by default, three days).

Check Payments

10 | Payment Designer's Guide

If the payment enrollment information is not correct, the pmtConfirmEnrollment job
updates the customer enrollment status to "bad_active". An exception report is
created, which can be viewed from the Command Center.

5. The customer may optionally receive an email about enrollment status from the
pmtNotifyEnroll job.

Check Account Enrollment Status Flow
The following diagram shows the status changes that a new check account goes through
for enrollment, depending on customer actions and the pmtSubmitEnroll and
pmtConfirmEnroll jobs. The status is kept in the account_status field in the
payment_accounts table.

active bad_active

cancelled

ConfirmEnroll

User

pnd_wait

New Checking
Account Submitted

pnd_active

SubmitEnroll

The following table describes each status:

Enrollment
Status

Description

pnd_active A new check account is enrolled, pending approval.

pnd_wait The check account has been sent to the bank for verification

active The check account has been activated for payment.

Check Payments

Payment Designer's Guide | 11

Enrollment
Status

Description

bad_active The check account failed to be activated.

Check Payment Transactions
The following diagram shows the entities in an ACH payment transaction:

Customer Payment

ACH Operator

ODFI
(biller's bank)

RDFI
(customer's bank)

The following steps describe a typical ACH check payment transaction cycle (excluding
transfers between the ODFI, ACH operator and RDFI):

1. A customer logs in and schedules a new payment. Payment inserts a check into the
database with a status of "scheduled".

If the customer later cancels the payment, the check status is changed to "cancelled",
but the payment remains in the database for the customer to view as a cancelled
payment.

2. The pmtCheckSubmit job runs, selects all the checks that are due for payment,
creates a batch file of selected checks, and sends the batch file to the payment
gateway (ODFI). It also changes the status of each selected check to "processed" in
the Payment database.

If the check cannot be submitted, the status is changed to "failed". A summary report
log is generated, which can be viewed from Command Center.

3. The payment gateway (ODFI) processes the received check payment through the
ACH operator to the RDFI. If there is an error clearing the check, ACH creates a file
containing a code that indicates why the check was returned, and sends the file to
Payment.

4. The pmtCheckUpdate job runs. If there is no return code, and five business days
(default) have passed, pmtCheckUpdate changes the status of the check from
"processed "to "paid".

Check Payments

12 | Payment Designer's Guide

If the payment gateway returns the check, the pmtCheckUpdate job updates the
check’s status to "returned", and saves the reason code in the txn_err_msg field of the
check_payments table. An exception report is generated to summarize the
information in the returned file, which can be viewed from Command Center.

If there is an error other than "returned", pmtCheckUpdate changes the check status
to "failed".

5. If configured, the pmtPaymentReminder job sends email to the customer about the
status of the check payment.

Check Payment Status Flow
The following diagram shows the states that a check can be in, and the jobs that change
the state:

6
Scheduled

7
Processed

9
Canceled

8
Paid

-4
Returned

-1
Failed

C
ustom

er

CheckSubmit

CheckSubm
it

CheckUpdate

C
heckU

pdate

CheckUpdate

ACH
return file

-5
NOC_

returned

The following table lists the statuses that can occur during a check payment transaction
cycle. The values in parentheses () are the actual values saved in the payment database.

Transaction Status Description

Scheduled(6) A customer scheduled a new check payment.

Processed(7) Payment processed a check and sent it to the ACH or CheckFree
payment gateway.

Paid(8) ACH paid or cleared a check.

Cancelled(9) The customer cancelled a check.

Failed(-1) ACH failed to pay a check failed for a reason other than "returned".

Check Payments

Payment Designer's Guide | 13

Transaction Status Description

Returned(-4) ACH returned a check.

noc_returned(-5) This customer’s payment account information needs to be changed.

Credit
Credit reversals are supported.

ACH

Supported SEC Codes
For ACH We Support the following SEC Codes (Standard Entry Class Codes):

• Web- Internet initiated entry (default for Payment).

Debit entries are originated (either single or recurring) from a customer's account
using web based authorization.

• PPD - Pre Arranged Payment and Deposit Entry. Under PPD the following types are
included:

• Direct Deposit: The credit application transfers funds into the customer's account.

• Preauthorized Bill Payment: This is a debit application, where billers transfer
electronic bill payment entries through the ACH network.

• CTX - Corporate Trade Exchange

Supports multiple Addenda record based on ANSI ASC X12 standards. Can be used
either with the credit or debit application.

ACH Change Codes (NOC)
The following table lists some of the ACH change codes (also known as NOC codes) that
may appear in the returns file after running the pmtCheckUpdate job if previously valid
payment information is now incorrect or out-of-date.

Code ACH Change Code Description

C01 Incorrect DFI Account Number

C02 Incorrect Routing Number

C03 Incorrect Routing Number and Incorrect DFI Account Number

C05 Incorrect Transaction Code

C06 Incorrect DFI Account Number and Incorrect Transaction Code

C07 Incorrect Routing Number, Incorrect DFI Account Number, and
Incorrect Transaction Code

Check Payments

14 | Payment Designer's Guide

Additional information about these and additional ACH change codes are available from
www.nacha.org.

ACH Return Codes
The following table lists some of the ACH return codes that may appear in the returns file
after running the pmtCheckUpdate job.

Code ACH Return Code Description

R01 Insufficient Funds

R02 Account Closed

R03 No Account/Unable to Locate Account

R04 Invalid Account Number

R05 Reserved

R06 Returned per ODFI’s Request

R07 Authorization Revoked by Customer (adjustment entries)

R08 Payment Stopped or Stop Payment on Item

R09 Uncollected Funds

R10 Customer Advises Not Authorized; Item Is Ineligible, Notice Not
Provided, Signatures Not Genuine, or Item Altered (adjustment entries)

R11 Check Truncation Entry Return (Specify) or State Law Affecting
Acceptance of PPD Debit Entry Constituting Notice of Presentment or
PPD Accounts Receivable Truncated Check Debit Entry

R12 Branch Sold to Another DFI

R14 Representative Payee Deceased or Unable to Continue in that Capacity

R15 Beneficiary or Account Holder (Other Than a Representative Payee)
Deceased

R16 Account Frozen

R17 File Record Edit Criteria (Specify)

R20 Non-Transaction Account

R21 Invalid Company Identification

R22 Invalid Individual ID Number

R23 Credit Entry Refused by Receiver

R24 Duplicate Entry

R29 Corporate Customer Advises Not Authorized

R31 Permissible Return Entry (CCD and CTX only)

R33 Return of XCK Entry

Additional information about these and additional ACH return codes are available from
http://www.nacha.org/.

http://www.nacha.org/

Check Payments

Payment Designer's Guide | 15

NOC Transactions
When a prenote is returned with a NOC, TXN_MESSAGE is populated with NOC
information formatted as
NOC_CODE::NEW_ADDENDA_INFO::OLD_ADDENDA_INFO.

NOC_CODE is the three-character code returned.
NEW_ADDENDA_INFO is the NOC information returned from ACH, which can
include the corrected account number, routing and account type.
OLD_ADDENDA_INFO is the existing addenda information.

ACH Effective Date
The Skip non-business days for batch effective entry date field on the Payment Settings
page for an ACH check payment gateway controls how the effective entry date is
calculated when the ACH batch file is created by pmtCheckSubmit.

If the field is set to Yes, then non-business days are not taken into consideration. The
effective entry date is set to the payment date that the customer specified when
scheduling the payment.

If the field is set to No, then non-business days are skipped, and the effective entry date is
the next business day following the computed date. Payment checks the scheduled
payment date to see if it is on or before the end of today. If it is, the computed date is the
customer-scheduled date plus one. If it is not, then the computed date is the customer-
scheduled date.

Non-business days are weekend days, plus the U.S. Federal holidays. The Federal
holidays are listed in ACH Federal Holidays on pageXXXX.

ACH Settlement Date
The ACH settlement date is not written to the ACH batch file by pmtCheckSubmit. That
date is added by the ACH Operator when the payment is actually settled.

ACH Addenda Records
Payment supports ACH addenda records, which means you can append a list of addenda
records after an entry detail record in an ACH file. Addenda records are biller-specific, so
customization is required to support this feature. Theoretically, you can put any
information into an addenda record. For example, the invoices of a payment. To add
addenda records, you must write a plug-in for the pmtCheckSubmit job. Contact edocs
Professional Services or your development team for more information about supporting
ACH addenda records.

Credit Card Payments
2
Payment Designer's Guide | 17

2. FAke

Credit card payments are supported for immediate or future (scheduled) payments. Credit
card payments require two steps: authorization and settlement. Authorization verifies the
customer account and puts a hold on the account for the amount of the payment.
Settlement occurs when the payment is actually made. Payment performs authorization
and settlement in one transaction using the credit card gateway for credit card payments.

Credit card payments require an agreement with a credit card gateway to process credit
card transactions. A cartridge for VeriSign is provided with Payment, which requires
signing up with VeriSign Payment Services. An edocs Professional Services
representative can walk you through that process. In addition, other cartridges can be
created by edocs Professional Services to support other payment processors.

Credit Card Payment Status
The following table lists the statuses that can occur during a credit card payment
transaction cycle. The values in parentheses () are the actual values saved in the payment
database.

Transaction Status Description

Scheduled (6) A customer has scheduled a new credit card payment.

Settled (8) The credit card payment was authorized and settled
successfully.

Failed-authorized (-4) A credit card payment failed during authorization.

Cancelled (9) A credit card payment was cancelled by the customer.

Failed (-1) A credit card payment failed because of network
problems. This state occurs only for instant payments.
For scheduled payments or recurring payments, the
state stays "scheduled" if there is a network problem,
so that it will be tried again. There is no need for
Payment to retry an instant payment; the user will see
the error message and optionally retry payment.

Credit Card Payments

18 | Payment Designer's Guide

Credit Card Payment Transactions
The following diagram shows the entities involved in a credit card payment transaction:

Customer Payment

Payment Processor
(e.g. First Data)

Payment Gateway
(e.g. Verisign)

Biller's bank

Card Association
(optional, e.g. VISA)

Card Issuing Bank

Credit card processing usually goes through the following steps:

1. A user enters credit card number and other card related information.

1. The card information is sent to the card-issuing bank for authorization. Authorization
only guarantees that the money is available at the time of authorization.

2. The merchant issues a settlement request to issuing bank so that the money can be
transferred. The merchant usually does this after fulfillment (sending out ordered
goods). For bill payments, the biller does not send out ordered goods, so
authorization and synchronization are combined into one operation; a credit card
payment is settled at the same time it is authorized.

3. Since credit card is processing is real-time, real-time and not batch-based, the life
cycle of credit card is simpler than check processing.

Instant Credit Card Payments
The following diagram shows the states for an instant credit card payment. For instant
payments, there is no scheduled state:

Credit Card Payment ! settled
 |-> failed-authorize
 |-> Failed

1. A user submits an instant credit card payment from the UI.

Credit Card Payments

Payment Designer's Guide | 19

2. Payment sends the payment to credit card cartridge in real time.

3. If the card is authorize and settled, the credit card state is set to "settled".

4. If the card failed to authorize, the state is set to "failed_authorize".

5. If there is a network problem, the state is set to "failed".

6. The card is inserted into creditcard_payments table.

7. The result of the transaction is presented to the user.

8. The pmtPaymentReminder job runs and (optionally) sends emails to users who have
made an instant payment.

Scheduled Credit Card Payments
The following diagram shows the states for a scheduled credit card payment:

Credit Card Payment ! Scheduled ! Cancelled
 |
 | pmtCreditCardSubmit job
 |! settled
 |! failed-authorize
 |! scheduled

1. A credit card payment is scheduled by the customer through the user interface, and
the payment is marked as "scheduled" in the creditcard_payments table.

Before the scheduled credit card payment is processed by pmtCreditCardSubmit, the
user can modify or cancel it.

2. When the pmtCreditCardSubmit job runs, it selects all credit card payments that are
scheduled to be paid at the time the job runs, opens a connection to the credit card
payment gateway, and starts making payments. The Number of days before a credit
card's pay date for it to be submitted field on the pmtCreditCardSubmit job
determines how many days ahead to look when selecting payments to be made.

If the IVerisignCreditCardSubmitPlugIn has been implemented in Payment Settings,
this job modifies the credit card payments that are scheduled to be paid, or takes
other actions related to the selected credit card payments. Functions in the plugin are
called before and after credit card payment processing. For more information about
the pmtCreditCardSubmit job and its IVerisignCreditCardSubmitPlugin, see the
description of the pmtCreditCardSubmit job in the Payment Administration Guide.
For information about configuring job plugins, contact Professional Services.

3. The credit card gateway sends the transactions to the credit card processor. The credit
card processor either authorizes and settles the credit card payment, or rejects it. The
results are returned to the credit card gateway, which forwards the results to the
pmtCreditCardSubmit job.

4. The pmtCreditCardSubmit job changes the status of the credit card payment in the
database depending on the transaction status returned by the credit card processor,
and optionally sends email to the customer about the status of the payment.

Credit Card Payments

20 | Payment Designer's Guide

If the card is authorized and settled, the credit card state is set to "settled".

If the card fails to authorize, the state is set to "failed_authorize".

If there is a network problem, the state remains "scheduled", so it will be processed
the next time pmtCreditCardSubmit runs.

5. The pmtPaymentReminder job runs and (optionally) sends emails to users about the
status of their scheduled payment.

Reversals
Credit reversals are supported.

User Options
The user interface to Payment can offer a variety of credit card payment options. Some of
those options require that fields be configured in Payment Settings for a credit card
payment gateway. See Credit Card Payment Gateway under Configuring Payment
Gateways for more information about configuration.

Using VeriSign as a Payment Gateway
A cartridge for VeriSign is provided with Payment. Before configuring a VeriSign credit
card payment gateway, you must obtain a digital certificate through VeriSign. When
choosing VeriSign as the credit card gateway type, the Payment Settings page will have
several VeriSign specific fields, which require information from your registration with
VeriSign, and the path to the digital certificate. A test certificate through VeriSign is
included with Payment.

You must also configure your application server to support a VeriSign payment gateway.
See the Payment Installation and Configuration guide for details.

AVS (Address Verification Service)
Address Verification Service (AVS) reduces the risk of fraudulent transactions by
verifying that the credit card holder's billing address matches the one on file at the card
issuer. The address is optional and does not affect whether the payment is accepted or
rejected. However, using an address may get a lower rate from card issuer.

Credit Card Payments

Payment Designer's Guide | 21

A merchant (also known as the biller) submits the AVS request through the payment
process directly to the specific credit card association (for example, VeriSign) for address
comparison. If AVS is turned on by the System Administrator, address information is
passed into VeriSign as part of the VeriSign request. VeriSign then contacts the credit
card issuing bank and passes along the address information. The credit card issuing bank
verifies the credit card address information on record matches the address information
passed in by VeriSign. The credit card issuing bank then replies back to VeriSign
whether information matched (address and zip code are checked during AVS). "Y" means
yes, "N" means no, and "X" means a match can not be determined. VeriSign then accepts
or rejects (voids) the transaction based on the filter set through Payment (for both street
address and zip code). There is also a filter option to set the international AVS code to
determine if the AVS response was international, US or could not be determined. Some
credit card issuing banks require city and state verification as well. Payment will not
handle these by default, but the pmtCreditCardSubmit job has a plugin to allow custom
code pass in the AVS values. For more information about AVS functionality, see
http://www.verisign.com/support/payflow/genResources/avs.html.

If Payment does not send the address information to VeriSign, or the system
administrator did not turn on AVS, and the AVS check level is set to Full, the transaction
will fail. If the card issuer address is sent to the payment gateway, but the address doesn't
match the information on the gateway, then the gateway can send an AVS code. If an
AVS code is received, Payment logs the AVS code in the audit tables.

Payment supports Payflow Pro, but Payflow Pro does not support turning AVS on or off
per transaction. However, the lower capability Payflow Link can. You also must set up
the AVS level with VeriSign as part of your Payflow Pro agreement. When setting up the
account with VeriSign, the merchant must specify the level of AVS check: full, medium
or light (see the VeriSign documentation for further information). When Payment passes
the address information, VeriSign accepts or rejects the transaction based on the AVS
check level. Note that the AVS check level is specified once during merchant account
setup and applies to all transactions for that merchant. The customer (merchant) also
needs to specify to VeriSign, during setup and that they will be using Payflow Pro
(through Payment) for transactions.

Recurring Payments
3
Payment Designer's Guide | 23

Overview
Payment provides two types of recurring payments for check and credit card:

• A recurring payment allows a customer to schedule a payment amount that is fixed,
for the entire amount due from a bill, or for the minimum amount due from a bill.
The payment can be scheduled to be paid on a certain date of the week, month or
quarter.

• An automatic payment allows a customer to schedule a payment of a fixed amount,
for the entire amount due from a bill, or for the minimum amount due from a bill, to
be made a certain number of days before due date. Automatic payments of the entire
amount due can also be made, if the amount due is less than a specified amount.

Both recurring and automatic payments are designated as recurring payments by the
NACHA 2001 specification. NACHA 2001 defines a payment as recurring when the
account manager (Payment) keeps the account information (in a database).

Recurring payments can be modified or cancelled at any time before the payment is
scheduled.

Recurring payment allows a customer to make payments automatically, based on the
amount and pay date. There are five kinds of recurring payments:

• (Minimum) amount due and before due date. For example, pay the entire amount due
two days before the due date.

• (Minimum) amount due and fixed pay date. For example, pay minimal amount due
on day 31 of each month.

• Fixed amount and before the due date. For example, pay $100 one day before the due
date.

• Fixed amount and fixed pay date. For example, pay $100 on the first day of each
month.

• (Minimum) amount due up to a fixed amount, and send email if over that fixed
amount.

Amount defines how much the recurring payment is going to pay for each payment. The
amount can be fixed, amount due or minimum amount due. If the amount is (minimum)
amount due, then it must be indexed by the Composer. The name and format of the
(minimum) amount due must be specified in the Payment Settings section of the
Command Center.

Recurring Payments

24 | Payment Designer's Guide

Pay date defines when each payment is going to be cleared (money will be transferred).
Pay date can be fixed or before due. If it is before due, then the due date must be indexed
by the Composer. The name and format of the due date must be specified in the Payment
Settings section of the Command Center.

For monthly payments, if day 29, 30, or 31 is selected, and that day does not exist for a
particular month, the pay date defaults to the last day of that month. For example,
specifying day 31 of each month ensures that payments will be made at the last day of
each month.

For weekly payments, the week starts on Sunday. For example, day 1 of each week
means Sunday.

The effective period defines when a recurring payment starts and ends. A payment will
be made if its pay date is within the effective period (inclusive). If the pay date is after
the end date of the effective period, the recurring payment will be deactivated. By
default, a recurring payment will only start tomorrow. This is done so that all bills that
arrive up to and including today are considered paid, so recurring payment should not pay
these bills a second time.

There is also a script that can be run after installation that prevents a bill from being paid
twice. For more information about that script, see the Installation Guide for the platform
you are running.

After an end-customer creates a recurring payment, that customer is not permitted to
change the payment amount from fixed to (minimum) amount due, or to change the pay
date from fixed to before due date, or vice versa. When a recurring payment starts (which
is when the first recurring payment has been made), the start date of the recurring
payment cannot be modified.

Caution

Recurring payment supports only one customer account per biller.
Recurring payment does not support multiple customer accounts with a
single biller.

The next section provides examples for the first four recurring payment types. The
section after that explains how to test those payment types.

Recurring Payment Transaction Cycle
Recurring payment information is saved into the recurring_payments table.

Recurring payments can support only one customer account per biller. Recurring
payments do not support multiple customer accounts with a single biller.

pmtRecurringPayment retrieves bills, makes payments (check or credit card) and sends
email notifications for recurring payments. The job performs two actions:

Recurring Payments

Payment Designer's Guide | 25

1. pmtRecurringPayment gets the latest bill for a recurring payment that a customer set
up through the UI. This process is called synchronization. A recurring payment can
only be synchronized with the command center database if it’s associated with a bill
and the amount to pay is the minimum (amount) due or the pay date is before the due
date. A recurring payment with fixed amount and fixed date won’t be synchronized
with the comand center database, which means there is no bill information associated
with this recurring payment.

2. pmtRecurringPayment schedules payments (inserts a payment with status of
"scheduled "in the check_payments or creditcard_payments table so that the
payments will be processed. This process is called scheduling. A payment will be
scheduled three days before the pay date (by default). The number of days can be
changed by changing the Number of days before pay date to schedule the payment
field in the job configuration. This delay allows the customer to modify or cancel this
payment before the payment is processed by the pmtCheckSubmit or
pmtCreditCardSubmit jobs.

The following table shows the columns that are updated in the recurring_payments table
by the pmtRecurringPayment job:

recurring_payments
Column Name

Description

bill_scheduled Y/N: determines whether the current bill associated with the
recurring payment has been scheduled (inserted) into
check_payments or creditcard_payments. It’s always “N”
for a fixed amount and fixed pay date.

Status Active/Inactive: This status is calculated internally. It
indicates whether the recurring payment has ended, because
either the pay date is after the end date, or the number of
payments has reached the maximum allowed.

last_process_time The last synchronization time. To improve performance,
only bills whose doc date falls between last_process_time
and the current job running time (inclusive) are
synchronized. By default, last_process_time is set to the
start_date of the effective period when the recurring
payment is created, which means all bills whose doc dates
are before start_date won’t be synchronized.

last_pay_date The pay date of last payment made. It is set to 01/01/1970 if
the recurring payment has not started yet.

next_pay_date The pay date of next payment. It is calculated based on
start_date, last_pay_date and pay_interval.

bill_id A foreign key reference to a row in the
payment_bill_summaries table. Use bill_id to retrieve the
latest bill information paid by the recurring payment. It may
be null if there is no such bill.

curr_num_payments Current number of payments made.

Recurring Payments

26 | Payment Designer's Guide

Tip

There is no payment inserted into check_payments or creditcard_payments table when a
recurring payment is created by the user. Payments are inserted by the pmtRecurringPayment
job. See the section about the pmtRecurringPayment job for more information about how a
payment is made.

Tables Affected by Recurring Payments
The recurring_payments table only contains the setup information for the recurring
payment, which is the data entered from web interface by end users. It is not used to save
bill summary or actual payment information. The amount field in the recurring_payments
table records the amount when you:

• specify the recurring payment to pay fixed amount, or

• pay if less than this amount, or

• pay up to this amount

Bill summary information is pulled from the command center tables and saved into the
payment_bill_summaries table. After the pmtRecurringPayment job runs, the
payment_bill_summaries table is populated, and the bill_id of the recurring_payments
table is also populated.

Actual payment information is scheduled into the check_payments (for check) or
creditcard_payments (for credit card) tables. The recurring_payments table is updated
with the payment_id.

Recurring Payment Examples
The first four cases of recurring payment are described next, with additional details about
the relevant database interactions:

Case 1: Amount Due And Before Due Date

1. On date 04/09/2001, a customer with account number acct1111 creates a recurring
payment. The amount is amount due, the pay date is one day before due date, the start
date is 04/10/2001, and the end date is 06/10/2001.

recurring_payments
Column Name

Value

payer_account_number acct1111

bill_scheduled Y

status active

last_process_time 04/10/2001, same as start date

last_pay_date 01/01/1970, not paid yet

next_pay_date 01/01/3000; this future date ensures there is no due date
available yet

Recurring Payments

Payment Designer's Guide | 27

recurring_payments
Column Name

Value

bill_id null

max_num_payments 2147483647; this large number means the recurring
payment will only be deactivated when the pay date is
after end date

2. The command center Indexer job runs and indexes one bill (the doc id is bill1, in this
example) on 03/10/2001. On 04/10/2001, the indexer job runs again and indexes two
more bills: bill2 and bill3.

Z_PRIMARY Z_DOC_ID Z_DOC_DATE AmountDue DueDate

acct1111 bill1 03/10/2001 100.01 04/15/2001

acct1111 bill2 04/10/2001 50.00 04/25/2001

acct1111 bill3 04/10/2001 100.00 05/15/2001

3. The pmtRecurringPayment job runs on 04/10/2001 23:59:00PM, after the Indexer
job. The job searches the recurring_payments table to find all recurring payments
whose bill_scheduled is "Y" and status is "active". It finds the example recurring
payment and then asks command center to return all bills whose account number is
acct1111 and whose Z_DOC_DATE is between 04/10/2001 (last_process_time) and
04/10/2001 23:59:00PM (job run time). Two bills, bill2 and bill3 will be returned.
pmtRecurringPayment then finds the bill with latest due date bill3. bill2 is ignored
because only the latest bill is paid.

4. After finding the latest bill from command center, pmtRecurringPayment checks
whether the due date of this bill is after the due date of the bill used in the last
payment (last bill info can be retrieved from payment_bill_summaries using the
bill_id). If not, that means this is an old bill and should not paid. In this case, since
there is no last payment, the bill bill3 will be paid.

5. bill3 is inserted into the payment_bill_summaries table and the recurring_payment
table is recalculated as follows:

Column Name Value

payer_account_number acct1111

bill_scheduled N, means this bill has not been paid or scheduled

status active, because next_pay_date is within the effective
period

last_process_time 04/10/2001 23:59:00PM, changes to job run time

last_pay_date 01/01/1970, unchanged

next_pay_date 05/14/2001, one day before the due date, 05/15/2001

bill_id bill3

Recurring Payments

28 | Payment Designer's Guide

6. If pmtRecurringPayment runs between 04/11/2001 and 05/10/2001, nothing happens
to this recurring payment because synchronization and scheduling will not happen.
The table remains unchanged.

7. On 05/11/2001 11:59:00PM, three days before next_pay_date, pmtRecurringPayment
runs again. The recurring payment mentioned previously won’t be synchronized,
because it’s bill_scheduled is "N". However, it will be scheduled.
pmtRecurringPayment finds all recurring payments whose bill_scheduled is N, status
is "active "and next_pay_date is equal to or before 05/14/2001 (05/11/2001 + 3 days).
The previously mentioned recurring payment is picked up and a payment is inserted
into the check_payments or creditcard_payments table. The amount of the payment is
$100.00, and the pay date is 05/14/2001. After this, the recurring payment table is
changed to:

Column Name Value

payer_account_number acct1111

bill_scheduled Y, means this bill has been paid

status "active" because next_pay_date is within the effective
period

last_process_time 04/10/2001 23:59:00PM, unchanged since there was no
synchronization

last_pay_date 05/14/2001, change to check’s pay date

next_pay_date 05/14/2001, unchanged

bill_id bill3

payment_id points to the new payment_id inserted into the
check_payments or creditcard_payments table

The customer can now view the payment from Future Payments in the example
interface. They can update or cancel the scheduled payment if desired.

8. On 05/12/2001 23:59:00PM, pmtRecurringPayment runs again and finds bills whose
doc date is between 04/10/2001 11:59:00PM and 05/12/2001 23:59:00PM. No bills
exist, and the last process time will be updated to 05/12/2001 23:59:00PM.
Everything else remains the same.

9. On 05/13/2001, the indexer job runs again and inserts a new bill, bill4:

Z_PRIMARY Z_DOC_ID Z_DOC_DATE AmountDue DueDate

acct1111 bill1 03/10/2001 100.01 04/15/2001

acct1111 bill2 04/10/2001 50.00 04/25/2001

acct1111 bill3 04/10/2001 100.00 05/15/2001

acct1111 bill4 05/13/2001 80.00 06/15/2001

Recurring Payments

Payment Designer's Guide | 29

10. On 05/13/2001 23:59:00PM, the pmtRecurringPayment job runs again. It contacts
command center and retrieves bills whose doc date are between 05/12/2001
23:59:00PM and 05/13/2001 23:59:00PM. bill4 is retrieved and the
recurring_payments table is updated like this:

Column Name Value

payer_account_number acct1111

bill_scheduled N, means this bill has not been paid

status "inactive", because next_pay_date is beyond the effective
period

last_process_time 05/15/2001 23:59:00PM, changes to job run time

last_pay_date 05/14/2001, unchanged

next_pay_date 06/14/2001, one day before due date, 06/15/2001

bill_id bill4

After synchronization, the recurring payment is deactivated, and it will never be
synchronized or scheduled again.

Case 2: Amount Due And Fixed Pay Date

Case 2 is similar to case 1. Refer to case 1 for extra information.

1. On 04/09/2001, a customer with account number acct1111 creates a recurring
payment. The amount is amount due, the pay date is day 31 of each month, the start
date is 04/10/2001,and the recurring payment stops after 10 payments.

Column Name Value

payer_account_number acct1111

bill_scheduled Y

status "active"

last_process_time 04/10/2001

last_pay_date 01/01/1970

next_pay_date 4/30/2001; the first available pay date after 04/10/2001
(because there is no April 31).

bill_id null

end_date 01/01/3000; The end date is so far in the future that the
recurring payment will only be deactivated when the
number of payments reaches maximum allowed.

curr_num_payments 0; no payments yet.

The index table has the following values:

Recurring Payments

30 | Payment Designer's Guide

Z_PRIMARY Z_DOC_ID Z_DOC_DATE AmountDue DueDate

acct1111 bill1 03/10/2001 100.01 04/15/2001

acct1111 bill2 04/10/2001 50.00 04/25/2001

acct1111 bill3 04/10/2001 100.00 05/15/2001

Even though the pay date is not related to the due date, DueDate must still be indexed
because it is used to decide which bill is the latest.

2. pmtRecurringPayment runs on 04/10/2001 23:59:00PM, after the indexer job. bill3 is
found in the index table and inserted into the payment_bill_summaries table. The
recurring_payments table is recalculated as follows:

Column Name Value

payer_account_number acct1111

bill_scheduled N; this bill has not been paid.

status "active"; curr_num_payments is less than
max_num_payments.

last_process_time 04/10/2001 23:59:00PM; changes to job run time.

last_pay_date 01/01/1970; unchanged.

next_pay_date 04/30/2001; there is no April 31.

bill_id bill3

curr_num_payments 0

3. On 04/27/2001, three days before next_pay_date, pmtRecurringPayment runs again.
There is no synchronization (bill_scheduled is "N"), but a payment is inserted into
the check_payments or creditcard_payments table. The amount of the check is
$100.00 and its pay date is 04/30/2001. The recurring payment table is changed as
follows:

Column Name Value

payer_account_number acct1111

bill_scheduled Y; means this bill has been paid.

status "active"; curr_num_payments is less than
max_num_payments.

last_process_time 04/10/2001 23:59:00PM: not changed since there has
been no synchronization.

last_pay_date 04/30/2001; changed to next_pay_date.

next_pay_date 05/31/2001; changed to next available pay date.

bill_id bill3

payment_id Points to the new payment_id inserted into the
check_payments or creditcard_payments table.

Recurring Payments

Payment Designer's Guide | 31

Column Name Value

curr_num_payments 1

4. Repeat steps 2, 3 and 4 until curr_num_payments reaches 10. At step 4 of the tenth
payment, the status will be changed to "inactive".

If no bills arrive for a month, then next_pay_date will be automatically moved to next
month. For example, if there is no bill for April, then the next_pay_date will be
automatically moved from 04/30/2001 to 05/31/2001 when the current job run time is
May 1.

Case 3: Fixed Amount and Before Due Date

Case 3 is similar to case 1. Refer to case 1 for additional information.

1. On 04/09/2001, a customer with account number as acct1111 creates a recurring
payment from the UI. The amount is $50, the pay date is one day before the due date,
the start date is 04/10/2001 and the recurring payment stops after 10 payments.

Column Name Value

payer_account_number acct1111

bill_scheduled Y

status "active"

last_process_time 04/10/2001

last_pay_date 01/01/1970

next_pay_date 01/01/300

bill_id null

end_date 01/01/3000; the end date is so far in the future that the
recurring payment will only be deactivated when the
number of payments reaches the maximum allowed.

curr_num_payments 0; no payment yet.

Index table entries are as follows:

Z_PRIMARY Z_DOC_ID Z_DOC_DATE DueDate

acct1111 bill1 03/10/2001 04/15/2001

acct1111 bill2 04/10/2001 04/25/2001

acct1111 bill3 04/10/2001 05/15/2001

Amount due is not required for this case.

Recurring Payments

32 | Payment Designer's Guide

2. The pmtRecurringPayment job runs on 04/10/2001 23:59:00PM, after the indexer
job. In this case, bill3 is found in the index table and inserted into the
payment_bill_summaries table. The recurring_payments table is recalculated as
follows:

Column Name Value

payer_account_number acct1111

bill_scheduled N; this bill has not been paid.

status "active"; curr_num_payments is less than
max_num_payments.

last_process_time 04/10/2001 23:59:00PM; changes to job run time.

last_pay_date 01/01/1970; unchanged.

next_pay_date 05/14/2001; one day before due date, 05/15/2001.

bill_id bill3

curr_num_payments 0

3. On 05/11/2001, three days before next_pay_date, pmtRecurringPayment runs again.
There is no synchronization (because bill_scheduled is "N"), but a payment is
inserted into the check_payments or creditcard_payments table. The amount of the
payment is $50.00 and its pay date is 05/14/2001. The recurring_payments table is
changed as follows:

Column Name Value

payer_account_number acct1111

bill_scheduled Y; means this bill has been paid.

status "active"; next_pay_date is not after end_date.

last_process_time 04/10/2001 23:59:00PM; unchanged, since there was no
synchronization.

last_pay_date 05/11/2001; changed to next_pay_date.

next_pay_date 05/11/2001; unchanged, the next bill is not known.

bill_id bill3

payment_id Points to the new payment_id inserted into the
check_payments or creditcard_payments table.

curr_num_payments 1

Repeat steps 2, 3 and 4 until next_pay_date is after end_date, when status will be
changed to inactive.

Case 4: Fixed Amount and Fixed Pay Date

Case 4 is similar to case 1. Refer to case 1 for additional information.

Recurring Payments

Payment Designer's Guide | 33

1. On 04/09/2001, a customer with account number “acct1111” creates a recurring
payment. The amount is $50 and the pay date is day 1 of each month. The recurring
payment starts at 04/10/2001 and ends at 06/10/2001. The columns in the
recurring_payments table are updated as follows:

Column Name Value

payer_account_number acct1111

bill_scheduled N

status "active"

last_process_time 04/10/2001

last_pay_date 01/01/1970

next_pay_date 05/01/2001

bill_id null

end_date 06/10/2001

curr_num_payments 0; no payment yet.

2. On 04/28/2001, three days before next_pay_date, pmtRecurringPayment runs again.
There is no synchronization (bill_scheduled is always "N") but a payment is inserted
into the check_payments or creditcard_payments table. The amount of the check is
$50.00 and its pay date is 05/01/2001. The columns in the recurring_payments table
are updated as follows:

Column Name Value

payer_account_number acct1111

bill_scheduled N; this bill has been paid.

status "active"; next_pay_date is not after end_date.

last_process_time 04/10/2001; unchanged, since there was no
synchronization.

last_pay_date 05/01/2001; changed to next_pay_date.

next_pay_date 06/01/2001; changed to the next available pay date.

bill_id null

payment_id Points to the new payment_id inserted into the
check_payments or creditcard_payments table.

curr_num_payments 1

Repeat step 2 until next_pay_date is after end_date. Then the status will be changed to
"inactive".

Recurring Payments

34 | Payment Designer's Guide

Scheduling Payment Jobs
We recommend that you schedule payment jobs to run during periods of low customer
activity, for example. midnight.

If two jobs access the same table, schedule them to run at different times. For example,
you should run pmtCheckSubmit, pmtCheckUpdate and pmtPaymentReminder at
different times, allowing enough time between jobs so that two jobs won’t try to access
the same database table at the same time (which could lead to a database access error).
pmtSubmitEnroll, pmtConfirmEnroll and pmtNotifyEnroll should also run at different
times. The best solution is to use the pmtAllCheckTasks job, or the job chain feature
from the command center to create a chain of jobs, both of which ensure that no two jobs
will run at the same time. See the section pmtAllCheckTasks for more information.

There is no strict ordering of payment jobs. For check jobs, we recommend that you run
pmtRecurringPayment, pmtCheckSubmit, pmtCheckUpdate and pmtPaymentReminder
in that order. For enroll jobs, we recommend that you run pmtSubmitEnroll,
pmtConfirmEnroll and pmtNotifyEnroll in that order. There is only one credit card job,
pmtCreditCardSubmit, and we suggest that you run it and then the pmtPaymentReminder
job.

Many recurring payments depend on the bill data in the command center being indexed.
In order to ensure that recurring jobs run successfully for all users, the indexer job must
run on the same calendar day as the recurring payment job. For example, run the indexer
at 12:30 AM and pmtRecurringPayment at 5AM.

Payment Job Status Monitoring
When a payment job is done, an email can be sent to the administrator about the status of
the mail. This feature is enabled in the Payment Settings.

Payment Job Plug-In
Some payment jobs support plug-ins to extend core payment functionality. See the
Customizing and Extending Payment for more details.

To Configure Recurring Payments
Recurring payments are configured by the pmtRecurringPayment job.

Recurring payments can be configured to provide email notification when a payment is
scheduled by Payment, when the effective period has ended, and when a recurring
payment is cancelled because the check or credit card account information in the
recurring payment does not match the account in the user profile.

See the pmtRecurringPayment job for details about configuring recurring payments.

Recurring Payments

Payment Designer's Guide | 35

Testing Recurring Payment
Testing Recurring Payments is somewhat more complex than testing other payment
functionality because not all steps in the recurring payment cycle can occur on the same
calendar date. As a result, unless one is willing to conduct “real-time” testing that takes
place over more than one day, the test process involves changing the system date of the
machine(s) on which the application server and database reside. This is certainly not
recommended in a production environment. Even in a test environment, recurring
payment testing should not be conducted while testing other functionality, because the
system date changes are likely to interfere with the results of the other tests.

If operating in a distributed environment (with the application server and database server
on different machines), moving the system date forward must be done on both machines.
It should not matter if the time on each machine differs by a few minutes. Once testing is
completed and the environment is to be returned to the actual current date, both the
database and the application server must be shut down (not the machine itself), the date
should be reset, and then the database and application server may be restarted. The edocs
logger and scheduler should also be shut down and restarted in this manner. Billing data
and transactions that were indexed or entered while the system date was moved ahead
should not be used for additional testing after the environment has been reset to the
current date because the associated “future” dates recorded in the database will cause
incorrect behavior.

The following example test sequences validate the operation of Recurring Payment. The
numbering corresponds to the first four cases listed in the Recurring Payments document.
All examples assume a beginning “true” date of April 1. For testing purposes, it may be
necessary to manipulate the due date of certain bills. This is done by altering the source
data prior to indexing, or by updating the due date field directly in the database after
indexing.

Case 1: Pay Amount Due X days Before Due Date
1. Some billing data is already indexed, and a user is enrolled with a valid payment

account.

2. On April 1, a user sets up a recurring payment, to pay the amount due 1 day before
the due date. The amount due and the date due must both be indexed fields. The start
date is April 2, 2002 (the earliest possible start date).

3. Move system date ahead to April 2, 2002.

4. Index another bill, with a due date of (for example) April 10, 2002.

5. Run the recurring payment task. Note that on the pmtRecurringPayment job
configuration page, the number of days before pay date to schedule the payment
defaults to three. This does not affect when a payment is made; it affects how long
before the pay date the customer will see the payment on the future payments page.
This gives the customer time to cancel or modify the payment, if so desired, if this
functionality has been allowed by your application.

Recurring Payments

36 | Payment Designer's Guide

6. The bill in question should now be recorded in the payment_bill_summaries table; it
has been synchronized, but not yet scheduled. The recurring_payments table should
show this bill’s bill_id, bill_scheduled should equal “N,” and the next_pay_date
should be 04/09/2002 (one day before the due date).

7. Move the system date ahead to April 9, 2002.

8. Run the pmtRecurringPayment task. The payment should be shown as "scheduled",
because it is now one day before the due date. In the recurring_payments table,
bill_scheduled should equal “Y,” and both next_pay_date and last_pay_date should
be 04/09/2002. These values will not change again until another bill is synchronized.
The payment itself should now appear in the check_payments or
creditcard_payments table, whichever applies.

Note that the pmtRecurringPayment job had not been run on April 2, but only after
the system date was set to April 9, then the bill would be synchronized and the
payment would be scheduled at the same time.

9. Run the applicable submission job (CreditCard or Check), and the payment should be
submitted as expected.

Case 2: Pay Amount Due on a Fixed Date
1. Some billing data is already indexed, and a user is enrolled with a valid payment

account.

2. On April 1, a user sets up a recurring payment, to pay the amount due on the 10th day
of the month. Only the amount due must be an indexed field. The start date is April 2,
2002 (the earliest possible start date).

3. Move system date ahead to April 2, 2002.

4. Index another bill.

5. Run the recurring payment task.

6. The bill in question should now be recorded in the payment_bill_summaries table; it
has been synchronized, but not yet scheduled. The recurring_payments record should
show this bill’s bill_id, bill_scheduled should equal “N,” and the next_pay_date
should be 04/10/2002 (the customer’s desired pay date).

7. Move the system date ahead to April 7, 2002.

8. Run the pmtRecurringPayment job. The payment should be shown as "scheduled", if
the “number of days before pay date to schedule the payment” on the
pmtRecurringPayment configuration page is set to 3. In the recurring_payments
table, bill_scheduled should equal “Y,” next_pay_date should be 05/10/2002, and
last_pay_date should be 04/10/2002.

9. Move the system date ahead to April 10, 2002.

10. Run the applicable submission job (CreditCard or Check), and the payment should be
submitted as expected.

Recurring Payments

Payment Designer's Guide | 37

Case 3: Pay fixed Amount X Days Before Due Date
1. Some billing data is already indexed, and a user is enrolled with a valid payment

account.

2. On April 1, a user sets up a recurring payment, to pay the specific amount of $19.95
one day before the due date. In this case, only date due must be indexed, although it
is unlikely a biller would not index the amount due. The start date is April 2, 2002
(the earliest possible start date).

3. Move the system date ahead to April 2, 2002.

4. Index another bill, with a due date of (for example) April 10, 2002.

5. Run the pmtRecurringPayment task.

6. The bill in question should now be recorded in the payment_bill_summaries table; it
has been synchronized, but not yet scheduled. The recurring_payments record should
show this bill’s bill_id, bill_scheduled should equal “N,” and the next_pay_date
should be 04/09/2002 (one day before the due date).

7. Move the system date ahead to April 9, 2002.

8. Run the pmtRecurringPayment job. The payment should be shown as "scheduled",
because it is now one day before the due date. In the recurring_payments table,
bill_scheduled should equal “Y,” and both next_pay_date and last_pay_date should
be 04/09/2002. These values will not change again until another bill is synchronized.
The payment of $19.95 should now appear in the check_payments or
creditcard_payments table, whichever applies. Note that if the pmtRecurringPayment
task had not been run on April 2, but only after the system date was set to April 9,
then the bill would be synchronized and the payment would be scheduled at the same
time.

9. Run the applicable submission job (pmtCreditCardSubmit or pmtCheckSubmit), and
the payment should be submitted as expected.

Case 4: Pay Fixed Amount On A Fixed Date
1. Some billing data is already indexed, and a user is enrolled with a valid payment

account.

2. On April 1, a user sets up a recurring payment, to pay the specific amount of $19.95
on April 10. This payment does not rely on any indexed fields. The start date is April
2, 2002 (the earliest possible start date).

3. Move the system date ahead to April 7, 2002.

Recurring Payments

38 | Payment Designer's Guide

4. Run the pmtRecurringPayment task. The payment should be shown as "scheduled", if
the number of days before pay date to schedule the payment on the
pmtRecurringPayment configuration page is set to "3". In the recurring_payments
table, bill_scheduled should equal “Y,” next_pay_date should be 05/10/2002, and
last_pay_date should be 04/10/2002. There will be no record inserted into the
payment_bill_summaries table, since this recurring payment does not depend on any
indexed fields.

5. Move the system date ahead to April 10, 2002.

6. Run the applicable submission job (CreditCard or Check), and the payment should be
submitted as expected.

Rebill and Recurring Payment

Description
A rebill is a bill that is reissued during the current billing cycle. This occurs when a biller
makes frequent adjustments to a bill before the due date.

After a user sets up a recurring payment, the pmtRecurringPayment job runs to schedule
payments. pmtRecurringPayment gets the latest bill from the command center (which is
called synchronization), and then determines whether to schedule it for payment.

In previous versions of Payment, the bill amount was synchronized when the bill first
arrived. If the bill amount was adjusted after synchronization, then the amount of
payment scheduled would not be correct, until the payment was actually scheduled, and
the bill was synchronized again.

By default, Payment now synchronizes a rebill each time the pmtRecurringPayment job
runs. Payment can also be configured to synchronize only once, to reduce processing
overhead for sites that do not adjust bills during a billing cycle.

Payment Settings
The following parameter belongs to the pmtRecurringPayment job: "When to
synchronize recurring payment with the command center".

By default, Payment uses the latest available bill when submitting the payment to the
payment gateway. You can configure each payment gateway to only synchronize once,
which reduces processing. The setting "whenever job runs" can be changed to "Only after
the current bill is scheduled", which causes Payment to synchronize only once; when the
bill is scheduled.

The following additional parameter has been added to Payment Settings:

For the parameter Implementation of com.edocs.payment.imported.BillDepot:

• com.edocs.payment.imported.eadirect.BillDepot - default

Recurring Payments

Payment Designer's Guide | 39

• com.edocs.payment.imported.eadirect.SampleBillDepot - adds the following features:

• If the rebill has a zero amount, the due date is set to the previous bill's due date.

• If the due date is "ON RECPT", the due date is changed to the current date.

Payment History
Bills that were adjusted are marked as "scheduled". Only the latest bill is marked as
"active".

Email
If pmtRecurringPayment is configured to send email when a payment is scheduled, then
email will be sent for each rebill.

Logic
Payment does recognizes a rebill using doc_id and INV number. It does not check the
date of the bill, or the amount. Because of this, a rebill must be indexed after the original
bill.

The following list describes the steps Payment takes to synchronize a bill for the default
payment setting:

1. If the setting of When to Synchronize recurring payment with the command center is
Whenever job runs, the pmtRecurringPayment job synchronizes the bill with the
command center every time pmtRecurringPayment runs. If it is Only after the
current bill is scheduled, a rebill will not be synchronized unless it is time
to schedule the payment.

2. The pmtRecurringPayment job runs again. If the setting of Synchronize with the
command center Every Time the Job Runs is Yes, and a rebill arrives, the
pmtRecurringPayment job synchronizes the bill with the command center.

If the payment for this bill has already been scheduled, the job cancels the scheduled
payment, and schedules a payment for the updated amount.

If the status of the bill is "processed", then the rebill is ignored.

Each time the pmtRecurringPayment job runs, it looks at the bills indexed by the
command center since the last time the pmtRecurringPayment job ran. To determine
whether a bill is newer, it checks the due date. If the due date is the same as the previous
bill, then the bill is considered newer if the doc_date database field or the IVN number is
newer, and the bill's payment status is "processed". The last process time of that recurring
payment is updated.

Configuring Payment Gateways
4
Payment Designer's Guide | 41

Configuring a Payment Gateway
You must configure at least one payment gateway for ACH, credit card, FDR or
CheckFree payments after installing Payment and creating an application. You can also
update a payment gateway at any time to add or remove information about a particular
payee.

Configuration information that is specific to a payment gateway must be provided by the
payment gateway or by the biller's bank. This information should be in hand before
configuring.

To configure a payment gateway:

1. Access the Command Center by pointing your web browser to the virtual directory
on the Web Server (<server_name>/edocs). Log on using the admin username and
its password (the default is "edocs).

2. From the Command Center menu, click Settings. The Settings page appears.

3. Click the Payment Settings tab. A Browse Payment Configuration page appears
showing the name of the DDN (Application) and Payment Types that can be
configured, along with a Global Configuration button.

4. Select a DDN (Application) and Payment Type and click Create. The Create New
Payment Configuration page appears listing payment configuration forms for the
payment type you have chosen. Only one payment gateway can be configured at a
time. See the following sections for descriptions of the configuration parameters for
each type of payment gateway.

Configuring Payment Gateways

42 | Payment Designer's Guide

5. The type of configuration screen you will see depends on the Payment Type: check
or credit card. See the topics on those payment gateway types for information about
configuring them.

6. After configuring the payment gateway, click Create. You will see the following
message:

7. After you have configured a payment gateway, click on the Global Configuration
button and configure those parameters.

8. After completing configuration, return to the Main Console page and begin the
process of creating jobs for the payment applications you want to run.

When creating jobs for Payment, you must select a Job Type (also referred to as a task)
and define configuration parameters for it. To access a job configuration page for a
selected Job Type, click Configure Job and Continue on the Create New Job
page in the Command Center. Then, configure the job as necessary.

The following sections describe the parameters for Global Configuration, and the Check
and Credit Card payment gateways.

Payment Global Configuration
Clicking the Global Configuration button allows you to set these parameters:

Credit Card Account

Save Full Credit card Number: Y saves the full Credit card Number in Payment
database. N saves only last four digits of the credit card number in the Payment database.

Encrypt credit card number: Specifies whether or not to encrypt credit card
information in the Payment database. This is highly recommended if you choose to save
the entire credit card number, which is specified in the previous configuration parameter.

Check Account

Encrypt Check Account Number: Y causes Payment to encrypt check account numbers
in the Payment database.

Configuring Payment Gateways

Payment Designer's Guide | 43

Audit Configuration

Enable Payment Audit: Y causes any actions performed that affect the payment tables
check_payments or creditcard_payments to be audited. These actions can be from the
web application or from the payment jobs. N disables auditing. The default is Y.

Enable Recurring Payment Audit: Y causes any actions that affect the
recurring_payments tables to be audited. These actions can be from the web application
or from the payment jobs. N disables auditing. The default is Y.

Enable Payment Account Audit: Y causes any actions that affect the payment_accounts
table to be audited. These actions can be from the web application or from the payment
jobs. N disables auditing. The default is N.

Enable Payment Reminder Audit: Y cause any actions that affect the
payment_reminders table to be audited. These actions can be from the web application or
from the payment jobs. N disables auditing. The default is N.

Enable Bill Summary Audit: Y causes any actions that affect the
payment_bill_summaries table to be audited. These actions can be from web application
or from the payment jobs. N disables auditing. The default is Y.

Email Notification Audit

Email Content Audit Length: Specifies how many characters of an email's content will
be audited. The default is 100. The audit length must be between 0 and 2048.

Email Content AuditOffset: Specifies where to start the audit in the email content.

Enable Recurring Payment Notification Audit: Y causes emails sent out by the
recurring payment job to be audited. N disables email auditing. The default is N.

Enable Payment Reminder Notification Audit: Payment reminders send out two kinds
of emails: remind-pay-bill emails and payment status notification emails. Y causes the
remind-pay-bill emails (fixed-date payment reminder, pre-due-date payment reminder
and post-due-date reminder) to be audited. The default is N.

Enable Payment Status Notification Audit: Y causes payment status notification
emails to be audited for both check and credit card payments. N disables payment status
notification email auditing. The default is N.

Enable Payment Account Enrollment Notification Audit: Y causes enrollment
notification emails sent by the pmtNotifyEnroll job to be audited. N disables enrollment
notification emails auditing. The default is N.

Enable Credit Card Expiration Notification Audit: Y causes credit card expiration
emails sent by the pmtCreditCardExpNotify job to be audited. N disables credit card
expiration emails auditing. The default is N.

Configuring Payment Gateways

44 | Payment Designer's Guide

Check Payment Gateways
If you chose ACH or CheckFree for the payment gateway type, you will see the
following configuration screen:

The first two entries in the Payment Configuration page list the DDN (also referred to as
Biller or command center Application) and Payment Type you chose to create for this
payment gateway. When you choose the Gateway from the drop-down list on this form,
the parameters for the selected gateway type will be displayed on a new screen.

As part of the check payment gateway configuration process, you must manually create
inbound and outbound directories to store transaction files that will be sent to and
received from each payment gateway. Configuration requires the full pathnames of those
directories. These directories are used to store payment transaction files that are sent to
and received from the payment gateway. Payment does not automatically create the
directories for you when you save the payment configuration.

Select a Gateway from the drop down list and complete the form as required. The
following tables describe the fields on the forms for the ACH and CheckFree payment
gateways:

ACH Gateway Parameters
This section describes the configurable parameters for an ACH payment gateway:

The following parameter is listed, but cannot be changed from this screen:

Gateway - The type of payment gateway: ACH.

The following parameters are shared by both the credit card cartridge (if
any) and check cartridge used by this DDN:

Batch Size for Payment Reminder Table - Specifies the number of payment reminders
to be read into memory from the payment database for the pmtReminder job. Note that
specifying a batch size that is too small will increase the number of times the database is
accessed, and specifying a batch size value that is too large might result in an excessive
amount of memory being used.

Configuring Payment Gateways

Payment Designer's Guide | 45

A batch size of 100 is suggested for a medium-sized database, and a batch size of 1000 is
suggested for a large database.

A batch size of 0 (zero) may be entered to disable batched table reads, but it is not
recommended because it requires a lot of system memory. Entering zero means that one
partition ID will be created for all payments, and that all payments will processed at once,
instead of in batches. This also means that the resulting batch file will not have multiple
batch records, which some banks prefer.

Implementation of com.edocs.payment.imported.IBillDepot - The default
com.edocs.payment.imported.eadirect.BillDepot retains the default handling for bill
processing. Choosing com.edocs.payment.imported.eadirect.SampleBillDepot adds the
following features:
• If the rebill has a zero amount, the due date is set to the previous bill's due date.

• If the due date is "ON RECPT", the due date is changed to the current date.

Name of Due Date in command center Index Table (for recurring payment)- The
name of the field you have defined to extract the Due Date from each statement. This
Field must be routinely indexed in the command center database, during data processing,
for use in Payment. Please see the Administration Guide for details.

Tip

This field only applies to recurring payments. If you will not be implementing recurring
payments, you can leave this field empty.

Due Date Format - Selected from the dropdown list, the format of the data extracted as
the Due Date from each statement. This parameter depends on the format of the legacy
data source.

Name of Amount Due in command center Index Table (for recurring payment)- The
name of the field you have defined to extract the Amount Due from each statement. This
Field must be routinely indexed in the command center database, during data processing,
for use in Payment. Please see the Administration Guide for details.

Tip

This field only applies to recurring payments. If you will not be implementing recurring
payments, you can leave this field empty.

Amount Due Format - Selected from the dropdown list, the format of the data extracted
as the Amount Due from each statement. This setting depends on the format of the legacy
data source.

Name of Minimum Amount Due in command center Index Table - The name of the
variable defined by the DefTool for minimum amount due, which must be indexed by the
command center. If scheduling options that require minimum amount due are not going
to be offered in the customer interface, then this value should be left blank.

Minimum Amount Due Format - Selected from the dropdown list, the format of the
data extracted from each statement, as the field that you have designated as the Minimum
Amount Due. This setting depends on the format of the legacy data source.

Configuring Payment Gateways

46 | Payment Designer's Guide

Send Email Notification when Payment Jobs are Done (with or without error) - Y
enables and N disables sending of email about the status of the Payment jobs that support
job status notification. Additional email information is specified in the following fields.

Mail server for job status notification - The name of the mail server to be used for job
status notification.

Mail-to addresses (separated by ";", semicolon) for job status notification - One or
more email addresses that should be sent job status notification, separated by semicolons.

Email template for job status notification - The path to the email template to be used to
format the email used for job status notification.

JNDI name of IAccount - Implementation of IAccount, which must match the
enrollment model (single or multiple DDNs per user account) used by applications that
use this payment gateway (DDN).

Implementation of IUserAccountAccessor - The name of the class that will handle
getting command center user information, which is determined by the type of enrollment
supported. The options are:

com.edocs.payment.payenroll.usracct.JNDISingleDDNUserAccountAccessor, for
when single DDN command center user information is stored in CDA.

or

com.edocs.payment.payenroll.usracct.JNDIMultipleDDNUserAccountAccessor, for
when multiple DDN command center user information is stored in CDA.

Select the class you want to use from the drop-down list on the right, and it will appear in
the left box.

Implementation of IPaymentAccountUserAccessor - The name of the class that will
handle getting Payment user information. The options are:

com.edocs.payment.payenroll.payacct.SSOPaymentAccountAccessor, for when
Payment user information is stored in CDA.

Select the class you want to use from the drop-down list on the right, and it will appear in
the left box.

The following parameters are specific to check payment gateways:

Batch Size for Payment Table - Specifies the number of scheduled checks to read into
memory from the payment database as a batch job. Note that specifying a batch size that
is too small will increase the number of database accesses, and specifying a batch size
value that is too large might result in an excessive amount of memory being used.

A batch size of 100 is suggested for a medium-sized database, and a batch size of 1000 is
suggested for a large database.

Configuring Payment Gateways

Payment Designer's Guide | 47

A batch size of 0 (zero) may be entered to disable batched table reads, but it is not
recommended because it requires a lot of system memory. Entering zero means that one
partition ID will be created for all payments, and that all payments will processed at once,
instead of in batches. This also means that the resulting ACH file will not have multiple
batch records, which some banks prefer.

Days to Clear Checks - The number of business days for a check to be marked as paid
after submitting to the payment gateway without returns or failures. The default is five
business days.

Days to Activate Pending Subscribers - The number of business days to wait before
approving a customer for online payment. If a prenote file is returned before this time,
then the customer will be rejected for the causes stated in the prenote file. The default is
three days.

Update Payment enrollment in Case of NOC - "Y" causes the pmtCheckUpdate job to
update enrollment status when a NOC is returned. "N" means that this value will be
updated by the customer through the user interface.

Send Email Notification in Case of NOC - "Y" causes the pmtNotifyEnroll job to send
emails to customers whose payment returns a NOC. "N" means the customer will not
receive email when a NOC is returned.

Skip non-business days for batch effective entry date - Determines whether batch
effective dates will skip U.S. federal holidays and weekends.

Generate empty ACH file when there are no checks to submit - Determines whether
the pmtCheckSubmit job generates an empty ACH file if there a no checks to submit.

Immediate Destination - The routing number of the Biller (DDN). This information is
assigned to you by your bank, and follows a format specified by the Biller's bank (ODFI).
The pmtCheckSubmit job inserts this information into the ACH File Header record's
Company Name field. The pmtCheckUpdate job uses this value to validate entries in the
ACH return file. Must be exactly 10 characters in length and must start with a blank; the
leading blank is counted as one of the 10 characters.

Immediate Origin - The Routing Number of the Biller's bank (ODFI). This number is
assigned to you by your bank. The pmtCheckSubmit job writes this information to the
ACH File Header record's Immediate Destination field. The pmtCheckUpdate job uses
this value to validate entries in the ACH return file. Must be exactly 10 characters in
length. The value assigned to you by your bank may or may not have a leading blank. If
the value is less than 10 characters in length (including the leading blank, if there is one),
you must pad the entry with trailing blanks to reach a total length of 10 characters.

Immediate Destination Name - The name of the Biller. This information is assigned to
you by your bank, and follows a format specific to the needs of the ODFI. The
pmtCheckSubmit job inserts this information into the ACH File Header record's
Immediate Destination Name field. The pmtCheckUpdate job uses this value to validate
entries in the ACH return file.

Configuring Payment Gateways

48 | Payment Designer's Guide

Immediate Origin Name - The name of the Biller's bank (ODFI). This information is
assigned to you by your bank, and follows a format specific to the needs of the ODFI.
The pmtCheckSubmit job inserts this information into the ACH File Header record's
Immediate Destination Name field. The pmtCheckUpdate job uses this value to validate
entries in the ACH return file.

Company Name - The name given to the Biller by the Biller's bank (ODFI). This
information is assigned to you by your bank, and follows a format specific to the needs of
the ODFI. The pmtCheckSubmit job inserts this information into the ACH File Header
record's Company Name field. The pmtCheckUpdate job uses this value to identify the
biller in the ACH return file.

Company ID - The routing number of the Biller's bank (ODFI). This information is
assigned to you by your bank, and follows a format specific to the needs of the ODFI.
The pmtCheckSubmit job inserts this information into the ACH Batch Header record's
Company ID field. The pmtCheckUpdate job uses this value to identify the biller in the
ACH return file.

Company Entry Description - Describes the purpose of the detail records, and is
dependent on the type of details records. For example, this could be "Gas Bill" if the
ACH Detail records following this Batch Header record are of type PPD. This value
provided by your bank (the payment gateway). The pmtCheckSubmit job inserts this
information into the ACH Batch Header record's Company Entry Description field.

ODFI - The routing number of the Biller's bank (ODFI). This value provided by the
payment gateway. The pmtCheckSubmit job inserts this information into the ACH Batch
Header record's Originating DFI ID field.

ACH File Output Directory - Directory where ACH files are created to be sent to the
originating bank. Payment does not create this directory.

ACH File Input Directory - Directory where the originating bank sends ACH return
files. Payment does not create this directory.

ACH Template Directory - Directory where ACH XML files are stored. The default for
Unix is: $PAYMENT_HOME/lib/payment_resources/ach/template.

Implementation of IAchCheckSubmitPlugIn - The plugin allows modification of
whether a check payment is submitted, plus other actions based on a check selected for
payment. For example, to generate a remittance file with a format different from the
standard ACH file specification.

For information about implementing this class, contact edocs Professional Services. The
default is com.edocs.payment.cassette.ach.AchCheckSubmitPlugIn.

Flexible Field 1 and 2 - IAchCheckSubmitPlugin can take up to two parameters, which
can be specified here.

Configuring Payment Gateways

Payment Designer's Guide | 49

ACH Federal Holidays
ACH check payment gateways have the field Skip non-business days for batch effective
entry date to determine when a payment should be made. Non-business days in Payment
include the following U.S. federal holidays:

Holiday Date

New Years Day January 1

Martin Luther King's Birthday Third Monday in January

Presidents' Day Third Monday in February

Memorial Day Last Monday in May

Independence Day July 4

Labor Day First Monday in September

Columbus Day Second Monday in October

Veterans' Day November 11

Thanksgiving Fourth Thursday in November

Christmas Day December 25

Caution

If a U.S. federal holiday falls on a Saturday, then the previous Friday is a holiday for
Federal employees, but it is not a holiday for most businesses and employees.

CheckFree Gateway Parameters
The following table describes the configurable parameters for a (CheckFree) CDP
payment gateway:

Gateway - The type of payment gateway, either CDP or ACH. You can change the type
of payment gateway here, which refreshes the screen with the fields for the new gateway
type.

Batch Size for Payment Reminder Table - Specifies the number of payment reminders
to be read into memory from the payment database as a batch job. Note that specifying a
batch size that is too small will increase the number of times the database is accessed, and
specifying a batch size value that is too large might result in an excessive amount of
memory being used.

A batch size of 100 is suggested for a medium-sized database, and a batch size of 1000 is
suggested for a large database.

A batch size of 0 (zero) may be entered to disable batched table reads, but it is not
recommended because it requires a lot of system memory. Entering zero means that one
partition ID will be created for all payments, and that all payments will processed at once,
instead of in batches. This also means that the resulting batch file will not have multiple
batch records, which some banks prefer.

Configuring Payment Gateways

50 | Payment Designer's Guide

Implementation of com.edocs.payment.imported.IBillDepot - The default
com.edocs.payment.imported.eadirect.BillDepot retains the default handling for bill
processing. Choosing com.edocs.payment.imported.eadirect.SampleBillDepot adds the
following features:
• If the rebill has a zero amount, the due date is set to the previous bill's due date.

• If the due date is "ON RECPT", the due date is changed to the current date.

JNDI Name of DataSource - Determines the type of datasource used for this DDN.
edx/ejb/edocsDataSource tells Payment to look in the command center/Payment
database. edx/ejb/XSDataSource tells Payment to look in the XS store. The datasource
used is determined by which job the command center used to read the data; either the
Indexer or XML Loader.

Name of Due Date in command center Index Table (for recurring payment)- The
name of the field you have defined to extract the Amount Due from each statement. This
Field must be routinely indexed in the command center database, during data processing,
for use in Payment. Please see the Administration Guide for details.

Tip

This field only applies to recurring payments. If you will not be implementing recurring
payments, you can leave this field empty.

Due Date Format - Selected from the dropdown list, the format of the data extracted as
the Due Date from each statement. This parameter depends on the format of the legacy
data source.

Name of Amount Due in command center Index Table - The name of the field you
have defined to extract the Amount Due from each statement. This Field must be
routinely indexed in the command center database, during data processing, for use in
Payment. Please see the Administration Guide for details.

Tip

This field only applies to recurring payments. If you will not be implementing recurring
payments, you can leave this field empty.

Amount Due Format - Selected from the dropdown list, the format of the data extracted
as the Amount Due from each statement. This setting depends on the format of the legacy
data source.

Name of Minimum Amount Due in command center Index Table - The name of the
variable defined by the DefTool for minimum amount due, which must be indexed by the
command center. If scheduling options that require minimum amount due are not going
to be offered in the customer interface, then this value should be left blank.

Minimum Amount Due Format - Selected from the dropdown list, the format of the
data extracted from each statement, as the field that you have designated as the Minimum
Amount Due. This setting depends on the format of the legacy data source.

Send Email Notification when Payment Jobs are Done (with or without error) - Y
enables and N disables sending of email about the status of the Payment jobs that support
job status notification. Additional email information is specified in the following fields.

Configuring Payment Gateways

Payment Designer's Guide | 51

Mail server for job status notification - The name of the mail server to be used for job
status notification.

Mail-to addresses (separated by ";", semicolon) for job status notification - One or
more email addresses that should be sent job status notification, separated by semicolons.

Email template for job status notification - The path to the email template to be used to
format the email used for job status notification.

Implementation of IUserAccountAccessor - The name of the class that will handle
getting command center user information, which is determined by the type of enrollment
supported. The options are:

com.edocs.payment.payenroll.usracct.JNDISingleDDNUserAccountAccessor, for
when single DDN command center user information is stored in CDA.

or

com.edocs.payment.payenroll.usracct.JNDIMultipleDDNUserAccountAccessor, for
when multiple DDN command center user information is stored in CDA.

Select the class you want to use from the drop-down list on the right, and it will appear in
the left box.

Implementation of IPaymentAccountAccessor - The name of the class that will handle
getting Payment user information. The options are:

com.edocs.payment.payenroll.payacct.SSOPaymentAccountAccessor, for when
Payment user information is stored in CDA.

Select the class you want to use from the drop-down list on the right, and it will appear
in the left box.

Batch Size for Payment Table - Specifies the number of scheduled checks to be read
into memory from the payment database for the pmtCheckSubmit and pmtCheckUpdate
jobs. Note that specifying a batch size that is too small will increase the number of times
the database is accessed, and specifying a batch size value that is too large might result in
an excessive amount of memory being used.

A batch size of 100 is suggested for a medium-sized database, and a batch size of 1000 is
suggested for a large database.

A batch size of 0 (zero) may be entered to disable batched table reads, but it is not
recommended because it requires a lot of system memory. Entering zero means that one
partition ID will be created for all payments, and that all payments will processed at once,
instead of in batches. This also means that the resulting ACH file will not have multiple
batch records, which some banks prefer.

Days to Clear Checks - The number of business days for a check to be marked as paid
after submitting to the payment gateway without returns or failures. The default is five
business days.

Days to Activate Pending Subscribers - The number of business days to wait before
approving a customer for online payment. If a prenote file is returned before this time,
then the customer will be rejected for the causes stated in the prenote file.

Configuring Payment Gateways

52 | Payment Designer's Guide

Client ID - Supplied by CheckFree. It is unique for each customer and must be set up in
advance. CheckFree requires four weeks to set up a new account for a customer.

Sender ID - Supplied by CheckFree.

FTP User Name - Supplied by CheckFree. Files are transmitted to and from CheckFree
using FTP via the Internet. CheckFree only allows transfers from specific FTP user
names that originate from specific IP addresses.

File Transmission Mode - Select either Test or Production. This value is included in the
name of the debit file that the command center creates, and is handled differently by
CheckFree when the file is received Test files are run through the CheckFree processes
but no debits are actually made.

Generate Empty File - Y causes pmtCheckSubmit to generate an empty CDP when there
are no checks. This file will contain 0000, 3000, or 9999 records (but no 4000 records). N
causes no empty CDP file to be created (default).

Payee Number - Supplied by CheckFree.

Payee Short Name-This value must be present, but is not always validated by
CheckFree. Contact CheckFree to see if they have a value that must be used. If not, make
one up.

Payee Name - Matches Payee Short Name.

Payee Address - Street address for the customer, which should match the information
that CheckFree has on file.

Payee City - This information should match CheckFree's information.

Payee State - This information should match CheckFree's information.

Payee Zip - This information should match CheckFree's information.

CDP File Output Path - Directory where pmtCheckSubmit will create debit files.

CDP File Input Path - Directory where pmtCheckUpdate should look for files to
process.

Template File Directory - For a standard installation, should be:

/opt/PAYMENT_HOME/lib\payment_resources/ checkfree/cdp/template (Unix)

C:\ PAYMENT_HOME\lib\payment_resources\checkfree\cdp\template (Windows).

Configuring Payment Gateways

Payment Designer's Guide | 53

Credit Card Payment Gateways
If you chose to create a credit card type payment gateway, you will see the following
screen, where you choose the type of credit card gateway from the list of available credit
card processors:

Additional credit card processor support can be added. Contact Professional Services for
more information.

This section describes the configurable parameters for a Credit Card Payment gateway
using the VeriSign payment processor:

The following parameter is listed, but cannot be changed from this screen:

Gateway - The name of the credit card cassette to be used for this payment gateway. The
same cassette can be used for more than one credit card payment gateway.

The following parameters are shared by both the credit card and check
cartridges for this DDN:

Batch Size for Payment Reminder Table - Specifies the number of credit card
reminders to be read into memory from the payment database for the
pmtPaymentReminder job. Note that specifying a batch size that is too small will increase
the number of times the database is accessed, and specifying a batch size value that is too
large might result in an excessive amount of memory being used.

A batch size of 100 is suggested for a medium-sized database, and a batch size of 1000 is
suggested for a large database.

A batch size of 0 (zero) may be entered to disable batched table reads, but it is not
recommended because it requires a lot of system memory. Entering zero means that one
partition ID will be created for all payments, and that all payments will processed at once,
instead of in batches. This also means that the resulting ACH file will not have multiple
batch records, which some banks prefer.

Implementation of com.edocs.payment.imported.IBillDepot - The default
com.edocs.payment.imported.eadirect.BillDepot retains the default handling for bill
processing. Choosing com.edocs.payment.imported.eadirect.SampleBillDepot adds the
following features:

• If the rebill has a zero amount, the due date is set to the previous bill's due date.

Configuring Payment Gateways

54 | Payment Designer's Guide

• If the due date is "ON RECPT", the due date is changed to the current date.

Name of Due Date in command center Index Table (for recurring payment)- The
name of the field you have defined to extract the Amount Due from each statement. This
field must be routinely indexed in the command center database, during data processing,
for use in Payment. Please see the Administration Guide for details.

Tip

This field only applies to recurring payments. If you will not be implementing recurring
payments, you can leave this field empty.

Due Date Format - Selected from the dropdown list, the format of the data extracted as
the Due Date from each statement. This parameter depends on the format of the legacy
data source.

Name of Amount Due in edocs Index Table (for recurring payment)- The name of the
field you have defined to extract the Amount Due from each statement. This Field must
be routinely indexed in the command center database, during data processing, for use in
Payment. Please see the Administration Guide for details.

Tip

This field only applies to recurring payments. If you will not be implementing recurring
payments, you can leave this field empty.

Amount Due Format - Selected from the dropdown list, the format of the data extracted
as the Amount Due from each statement. This setting depends on the format of the legacy
data source.

Name of Minimum Amount Due in edocs Index Table - The name of the variable
defined by the DefTool for minimum amount due, which must be indexed by the
command center. If scheduling options that require minimum amount due are not going
to be offered in the customer interface, then this value should be left blank.

Minimum Amount Due Format - Selected from the dropdown list, the format of the
data extracted from each statement, as the field that you have designated as the Minimum
Amount Due. This setting depends on the format of the legacy data source.

Send Email Notification when Payment Jobs are Done (with or without error) -Y
enables and N disables sending of email about the status of the Payment jobs that support
job status notification. Additional email information is specified in the next few fields.

Mail Server for Job Status Notification - The mail server(s) to be used to send Payment
job status notification emails. This is usually the name or IP address of the SMTP server,
or the name of the Microsoft Exchange server. If using multiple mail servers, separate the
names by semi-colons.

Mail-to Addresses for Job Status Notification - List the email addresses of the people
to whom job status notification email should be sent by Payment jobs that support this
feature.

Email Template for Job Status Notification - Path to the template used to create the job
status notification email. The example template for Unix is in
$EDX_HOME/lib/payment_resources/notifyPaymentTask.txt.

Configuring Payment Gateways

Payment Designer's Guide | 55

JNDI name of IAccount - Implementation of IAccount, which must match the
enrollment model (single or multiple DDNs per user account) used by applications that
use this payment gateway (DDN).

Implementation of IUserAccountAccessor - The name of the class that will handle
getting command center user information, which is determined by the type of enrollment
supported. The options are:

com.edocs.payment.payenroll.usracct.JNDISingleDDNUserAccountAccessor for
when single DDN command center user information is stored in CDA.

or

com.edocs.payment.payenroll.usracct.JNDIMultipleDDNUserAccountAccessor, for
when multiple DDN command center user information is stored in CDA.

Select the class you want to use from the drop-down list on the right, and it will appear in
the left box.

Implementation of IPaymentAccountAccessor - The name of the class that will handle
getting Payment user information. The options are:

com.edocs.payment.payenroll.payacct.SSOPaymentAccountAccessor, for when
Payment user information is stored in CDA or LDAP.

Batch Size for Credit Card Payment Table - Specifies the number of scheduled credit
card payments to be read into memory from the payment database for the
pmtCreditCardSubmit job. Note that specifying a batch size that is too small will increase
the number of times the database is accessed, and specifying a batch size value that is too
large might result in an excessive amount of memory being used.

A batch size of 100 is suggested for a medium-sized database, and a batch size of 1000 is
suggested for a large database.

A batch size of 0 (zero) may be entered to disable batched table reads, but it is not
recommended because it requires a lot of system memory. Entering zero means that one
partition ID will be created for all payments, and that all payments will processed at once,
instead of in batches. This also means that the resulting batch file will not have multiple
batch records, which some banks prefer.

The following parameters are specific to a VeriSign gateway:

VeriSign Host Name - The URL to the VeriSign host that will process credit card
transactions for this payment gateway. The options are: "test-payflow.verisign.com" (for
testing) and "payflow.verisign.com" (for production).

VeriSign Host Port - The TCP port number to be used when contacting the VeriSign
host. The default is 443.

VeriSign Timeout Period for Transaction - The number of seconds the
pmtCreditCardSubmit job will wait for a transaction to complete with the VeriSign Host
before timing out.

VeriSign User - The case-sensitive vendor name from VeriSign. This should match
VeriSign Vendor.

Configuring Payment Gateways

56 | Payment Designer's Guide

VeriSign Vendor - The case-sensitive vendor name assigned by registering with
VeriSign.

VeriSign Partner - If PayFlow service is provided by a VeriSign Reseller, the reseller
ID. Otherwise, "VeriSign".

VeriSign Password - The case-sensitive password assigned by VeriSign.

VeriSign Certificate Path - The path to the SSL server certificate purchased from
VeriSign and installed on the application server.

Number of Threads - Specifies the number of connections to open with the VeriSign
payment gateway at one time. More threads consume more system and network
resources, but decrease the time it takes the pmtCreditCardSubmit job to complete
processing credit card payments. The maximum allowed is 10; the default is 1.

Enable verisign address verification service - Y (default) enables address verification
for credit card payments. AVS support must also be set up with Verisign. See the section
about AVS on page 20 for more information.

Implementation of IVeriSignCreditCardSubmitPlugIn - The plugin allows
modification of whether a credit card payment is submitted, plus other actions based on
the payments selected for settlement. For example, to deny a credit card payment based
on additional business rules.

For information about implementing this class, contact edocs Professional Services. The
default is: com.edocs.payment.cassette.verisign.VeriSignCreditCardSubmitPlugIn.

Flexible Field 1 and 2 - The plugin can take up to two parameters, which are specified
here.

Updating a Payment Gateway Configuration
To update a payment gateway's settings:

1. Click Settings from the Command Center menu. The Settings page appears.

2. Click the Payment Settings tab. The Browse Payment Configuration Summary
page appears, indicating the name of a payment gateway in the Gateway column.

3. Click Create for a DDN (payee). The Create New Payment Configuration page
appears. The configuration parameters on the update screens are the same as those
used for creating a new payment gateway. See the previous sections for descriptions
of those fields.

Configuring Payment Gateways

Payment Designer's Guide | 57

4. Click Save when you are finished. The following message is displayed:

Deleting a Payment Gateway Configuration
To delete a payment gateway configuration:

1. From the Browse Payment Configuration Screen, click Delete for a payee. A View
Payment Configuration page appears.

2. Click Delete. A confirmation box appears.

3. Click OK. The following message is displayed:

Table Column Definitions

Payment Tables
5
Payment Designer's Guide | 59

3. FAke

CHECK_PAYMENTS

This table saves check payment information.

Name Null? Type Description

PAYMENT_ID NOT
NULL

NUMBER(28) Unique for each check. It’s time stamp value.

LAST_MODIFY_TIME NOT
NULL

DATE The last time this check was updated.

CREATE_TIME NOT
NULL

DATE The time when this check is created.

NEEDS_BACKUP NOT
NULL

CHAR(1) Not used.

BILL_ID VARCHAR2(255) The ID of the bill paid by this check.

PAYEE_ID NOT
NULL

NUMBER(10) DDN reference number.

PAYER_ID NOT
NULL

VARCHAR2(40) User/Login ID.

PAY_DATE NOT
NULL

DATE Check’s pay date (the date the user wishes the
check to be cleared).

STATUS NOT
NULL

NUMBER(2) Check’s status: scheduled(6), processed(7),
paid(8), returned(-4) or failed(-1).

ROUTING_TRANSIT NOT
NULL

VARCHAR2(9) Check’s routing transit number.

ACCOUNT_NAME NOT
NULL

VARCHAR2(40) Check account name.

CHECK_ACCOUNT_
NUMBER

NOT
NULL

VARCHAR2(255) Check account number.

AMOUNT NOT
NULL

NUMBER(28,2) Check amount.

TXN_TIMESTAMP_1 DATE Flexible date field. Can be used for customization.

TXN_TIMESTAMP_2 DATE Flexible date field. Can be used for customization.

Payment Tables

60 | Payment Designer's Guide

Name Null? Type Description

PARTITION_ID NOT
NULL

NUMBER(10)

This number is used to partition the table into
fixed-size buckets for performance tuning. It is
configured by Payment settings.

TXN_STATUS VARCHAR2(20) The transaction status returned from the payment
gateway. May not be available for some gateways.

TXN_FEE NUMBER(28,2) The transaction fee charged by payment gateway.
May not be always available.

REMINDED NOT
NULL

CHAR(1) "Y" or "N"; indicates whether an email
notification has been sent for the current status.

TXN_ERR_MSG VARCHAR2(255) The transaction error message returned from
payment gateway. For ACH, this is the ACH
return error code.

TXN_NUMBER VARCHAR2(40) Transaction number sent to or assigned by the
payment gateway. For ACH, this is the ACH trace
number.

PAYER_ACCOUNT_
NUMBER

 VARCHAR2(40) User’s account number with the biller.

MEMO VARCHAR2(255) Check memo, which can be used for
customization.

ACCOUNT_TYPE NOT
NULL

VARCHAR2(10) Account type, payment gateway dependent. For
ACH: either “checking” or “saving”. For
Checkfree: “DDA”.

CHECK_USAGE VARCHAR2(10) “personal” or “business”.

CHECK_NUMBER NUMBER(10) Check number. Not used.

ACTION_CODE VARCHAR2(20) Payment gateway action code. For ACH:
27(checking debit) or 37(saving debit). For
Checkfree: “ADD”

LOG_ID NUMBER(28) This login id points to a log id in the payment_log
table. It associates the check with a payment
report.

GATEWAY_
PAYMENT_ID

NOT
NULL

VARCHAR2(255) For Checkfree, this is the payment id assigned by
Checkfree. For ACH, it matches a returned check
from the ACH file to the database, when it is not
possible to populate a check payment ID into the
ACH file.

TXN_START_DATE DATE For ACH, this is the effective batch entry date for
the check.

TXN_END_DATE NULL DATE Reserved.

PAYMENT_SOURCE NOT
NULL

CHAR(1) R/S: “S” means paid from UI, “R” means paid
from recurring payment

FLEXIBILE_FIELD_1 VARCHAR2(255) Flexible field for customization.

FLEXIBILE_FIELD_2 VARCHAR2(255) Flexible field for customization.

FLEXIBILE_FIELD_3 VARCHAR2(255) Flexible field for customization.

Payment Tables

Payment Designer's Guide | 61

Name Null? Type Description

PID VARCHAR2(255) The unique id used to identify this payment
account.

LINE_ITEM_ID VARCHAR2(255) Keeps track of data for line-item disputes.

CHECK_PAYMENTS_HISTORY

This table records the status changes that a check goes through. Whenever a check
changes status, a new record is inserted into this table. A check usually goes through
three statuses: "scheduled", processed" and then "paid". This means there are usually
three records in this table for that check. Use this table to keep track of a check: when it is
processed, when it gets paid, returned, cancelled, etc.

This table schema is exactly the same as the check_payments table, except that the
payment_id is no longer a primary key.

CHECK_PAYMENTS_STATUS

This table explains the legal check payment status and their meanings.

Name Null? Type Description

STATUS NOT NULL NUMBER(2) Numeric value of check status.

STRING_VALUE NOT NULL VARCHAR(20) String value of check status.

DESCRIPTION NOT NULL VARCHAR2(255) Description of each value.

CREDITCARD_PAYMENTS

This table contains credit card payment information. Payment does not save credit card
numbers, so the payment gateway must have a real-time connection to a credit card
processor, such as Verisign.

Name Null? Type Description

PAYMENT_ID NOT NULL NUMBER(28) Unique for each check. It’s time stamp
value.

LAST_MODIFY_TIME NOT NULL DATE The last time this payment is updated

CREATE_TIME NOT NULL DATE The time when this payment is created

BILL_ID VARCHAR2(255) The ID of the bill paid by this payment

PAYEE_ID NOT NULL NUMBER(10) DDN reference number

PAYER_ID NOT NULL VARCHAR2(40) User/Login ID

PAYER_ACCOUNT_
NUMBER

 VARCHAR2(40) User’s account number with the biller.

CARD_HOLDER_
NAME

 VARCHAR2(40) Name on the card.

Payment Tables

62 | Payment Designer's Guide

Name Null? Type Description

CARD_NUMBER VARCHAR2(255) The account number on the card. The
contents depend on the payment settings.

CARD_TYPE VARCHAR2(40) Type of card. For example, VISA, MC,
AMEX.

PID VARCHAR2(255) The unique id used to identify this payment
account.

CARD_EXPIRE_DATE DATE Card expiration date.

CARD_EXPIRE_
DATE_FORMAT

 VARCHAR2(40) Format of the expiration date.

CARD_STREET VARCHAR2(255) Street address of cardholder.

CARD_CITY VARCHAR2(40) City of cardholder.

CARD_STATE VARCHAR2(40) State of cardholder.

CARD_ZIP VARCHAR2(40) Zip code of cardholder.

CARD_COUNTRY VARCHAR2(40) Country of cardholder.

PAY_DATE NOT NULL DATE Payment date.

AMOUNT NOT NULL NUMBER(28,2) Payment amount.

STATUS NOT NULL NUMBER(2) Payment status.

TXN_STATUS VARCHAR2(20) The transaction status returned from
payment gateway. May not be available for
some gateways.

TXN_ERR_MSG VARCHAR2(255) The transaction error message returned
from payment gateway. For ACH, this is
the ACH return error code.

TXN_NUMBER VARCHAR2(40) Transaction number sent to or assigned by
payment gateway. For ACH, this is the
ACH trace number.

TXN_FEE NUMBER(28,2) The transaction fee charged by payment
gateway. May not be always available.

TXN_AUTH_CODE VARCHAR2(40) Transaction authentication code.

TXN_AVS_CODE VARCHAR2(40) Address verification code

REMINDED NOT NULL CHAR(1) Determines whether a user should be sent
reminder email.

PARTITION_ID NOT NULL NUMBER(10) This number partitions the table into fixed-
size buckets for performance tuning. The
size is configurable through Payment
Settings.

LOG_ID NUMBER(28) ID of the summary report in the
payment_log table.

TXN_START_DATE DATE Transaction start date.

TXN_END_DATE DATE Transaction end date.

Payment Tables

Payment Designer's Guide | 63

Name Null? Type Description

PAYMENT_SOURCE CHAR(1) Describes which Payment function
scheduled this payment. R" for recurring
and "S" for single payment.

TXN_TIMESTAMP_1 DATE For customization.

TXN_TIMESTAMP_2 DATE For customization.

MEMO VARCHAR2(255) Check memo, which can be used for
customization.

FLEXIBLE_FIELD_1 VARCHAR2(255) Flexible field for customization.

FLEXIBILE_FIELD_2 VARCHAR2(255) Flexible field for customization.

FLEXIBILE_FIELD_3 VARCHAR2(255) Flexible field for customization.

LINE_ITEM_ID VARCHAR2(255) Keeps track of data for line-item disputes

CREDITCARD_PAYMENTS_HISTORY

This table records the status changes a credit card payment goes through. Whenever the
payment status changes, a new record is inserted into this table. Use this table to keep
track of a credit card payment: when it is processed, when it settled, returned, cancelled,
etc.

This table schema is exactly the same as the creditcard_payments table, except that the
payment_id is no longer a primary key.

CHECK_PAYMENTS_STATUS

Describes the possible status that a check payment can have, which is stored in the
check_payments table.

Name Null? Type Description

STATUS NOT NULL NUMBER(2) Check status as a digit.

STRING_VALUE NOT NULL VARCHAR2(20) Check status name.

DESCRIPTION NOT NULL VARCHAR2(255) Description of check status.

CREDITCARD_PAYMENTS_STATUS

Describes the possible status that a credit card payment can have, which is stored in the
creditcard_payments table.

Name Null? Type Description

STATUS NOT NULL NUMBER(2) Credit card status as a digit.

STRING_VALUE NOT NULL VARCHAR2(20) Credit card status name.

DESCRIPTION NOT NULL VARCHAR2(255) Description of credit card status.

Payment Tables

64 | Payment Designer's Guide

PAYMENT_ACCOUNTS

This table saves information about all payment accounts.

Name Null? Type Description

PID NOT
NULL

VARCHAR2(40) Identifies this payment account.

USER_ID NOT
NULL

VARCHAR2(40) The user who owns this payment account.

DDN NULL VARCHAR2(18) The DDN name, used for ACH pre-note

PAYMENT_TYPE NOT
NULL

VARCHAR2(10) Either “check” or “ccard”

ACCOUNT_HOLDER_
NAME

NOT
NULL

VARCHAR2(40) The customer’s name for the payment
account.

ACCOUNT_NUMBER NOT
NULL

VARCHAR2(255) The customer’s payment account number.

ACCOUNT_TYPE NOT
NULL

VARCHAR2(40) For check: “checking” or “saving”. For
credit card: the card type, such as “visa”,
"AMEX", etc.

ACCOUNT_USAGE NULL VARCHAR2(40) “personal” or “business”.

ACCOUNT_STATUS NULL VARCHAR2(40) Can be “active”, “inactive”, "bad_active",
"pnd_active", "pnd_wait".

ROUTING_TRANSIT NULL VARCHAR2(9) For check: the check routing number.

EXPIRATION_DATE_FORMAT NULL VARCHAR2(20) The date format of the credit card account
expiration date.

EXPIRATION_DATE NULL DATE The date when the payment account
expires.

STREET NULL VARCHAR2(255) Billing address.

CITY NULL VARCHAR2(40) Billing address.

STATE NULL VARCHAR2(40) Billing address.

ZIPCODE NULL VARCHAR2(40) Billing address.

COUNTRY NULL VARCHAR2(40) Billing address.

NOTIFY_SOURCE NULL CHAR(1) Used for ACH prenote notification.

NOTIFY_STATUS NULL CHAR(1) For ACH prenote notification. Indicates
whether the payment account has been
notified.

TXN_MESSAGE NULL VARCHAR2(255) Contains the error message for ACH
prenote or NOC.

TXN_DATE NULL DATE For ACH prenote. Date of the transaction
happens.

FLEX_FIELD_1 NULL VARCHAR2(255) Used for customization.

FLEX_FIELD_2 NULL VARCHAR2(255) Used for customization.

Payment Tables

Payment Designer's Guide | 65

Name Null? Type Description

FLEX_DATE_1 NULL DATE Used for customization.

PAYMENT_BILL_SUMMARIES

This table saves all the bill summaries paid by recurring payments.

Name Null? Type Description

BILL_ID NOT NULL VARCHAR2(255) DOC id of a bill.

PAYER_ID NOT NULL VARCHAR2(40) User login name.

PAYEE_ID NOT NULL NUMBER(10) DDN reference

PAYER_ACCT_NUM NOT NULL VARCHAR2(40) User account number with biller.

DOC_DATE NOT NULL DATE Doc date of index table, when the
bill was indexed.

BILL_DUE_DATE DATE Bill due date.

BILL_AMOUNT_DUE NUMBER(28,2) Bill amount due.

MIN_AMOUNT_DUE NUMBER(28,2) Minimal amount due.

PAYMENT_ID NUMBER(28) The payment id of the payment
made against this bill

FLEX_FIELD_1 VARCHAR2(255) Available for customization.

FLEX_FIELD_2 VARCHAR2(255) Available for customization.

PAYMENT_COUNTERS

This table generates counters. Payment uses this table to generate the ACH trace number,
File ID Modifier, etc.

Name Null? Type Description

COUNTER_NAME NOT NULL VARCHAR2(40) Counter name.

COUNTER_VALUE NOT NULL NUMBER(28) Counter value.

SEED NOT NULL NUMBER(28) Counter start value.

INCREMENTAL NOT NULL NUMBER(28) Counter incremental value.

MIN_VALUE NOT NULL NUMBER(28) Counter minimal value.

MAX_VALUE NOT NULL NUMBER(28) Counter maximal value.

Payment Tables

66 | Payment Designer's Guide

PAYMENT_INVOICES

This table contains customer invoice information, usually obtained from the command
center.

Name Null? Type Description

INV_ID NOT NULL NUMBER(28) Unique invoice ID generated by
Payment.

PAYER_ID NOT NULL VARCHAR2(40) User login ID.

PAYEE_ID NOT NULL NUMBER(10) DDN reference number.

PAYER_ACCOUNT_
NUMBER

NOT NULL VARCHAR2(40) User account number with biller.

INV_DATE NULL DATE Date when the invoice is issued.
Actually not used by Payment and it
can be customized.

INV_NUMBER NULL VARCHAR2(40) A string assigned by the biller to
identify this invoice. Not used by
Payment, so it can be used for
customization.

INV_AMOUNT NOT NULL NUMBER(28,2) Invoice amount.

INV_DUE_DATE NULL DATE Invoice due date. Not used by
Payment, so it can be used for
customization.

INV_ISSUER NULL VARCHAR2(40) The entity that issued the invoice. Not
used by Payment, so it can be used for
customization.

INV_MEMO NULL VARCHAR2(250) Invoice memo. Not used by Payment,
so it can be used for customization.

INV_ISSUER NULL VARCHAR2(40) The entity issues the invoice. Not used
by Payment, so it can be used for
customization.

AMT_TO_BE_PAID NOT NULL NUMBER(28,2) The actual amount being paid for this
invoice.

PROCESS_FLAG NOT NULL VARCHAR2(10) This flag can be used by custom
written jobs. Not used by Payment, so
it can be used for customization.

PAYMENT_ID NOT NULL NUMBER(28) The payment id of the associated check
payment.

TRACKING_NO NULL VARCHAR2(40) Invoice tracking number. Not used by
Payment, so it can be used for
customization.

TRANSACTION_
DATE

NULL DATE Invoice transaction date. Not used by
Payment, so it can be used for
customization.

Payment Tables

Payment Designer's Guide | 67

Name Null? Type Description

FLEXIBLE_FIELD_1 NULL VARCHAR2(255) Flexible field. Not used by Payment, so
it can be used for customization.

FLEXIBLE_FIELD_2 NULL VARCHAR2(255) Flexible field. Not used by Payment, so
it can be used for customization.

FLEXIBLE_FIELD_3 NULL VARCHAR2(255) Flexible field. Not used by Payment, so
it can be used for customization.

FLEXIBLE_FIELD_4 NULL VARCHAR2(255) Flexible field. Not used by Payment
and is customizable.

FLEXIBLE_FIELD_5 NULL VARCHAR2
(1000)

Flexible field. Not used by Payment, so
it can be used for customization.

BILL_ID NULL VARCHAR2(255) The bill id associated with the invoice.

PAYMENT_PROFILE

This table saves the Payment Settings information entered through the Command Center.

Name Null? Type Description

PAYEE_ID NOT NULL NUMBER(10) DDN reference number.

PAYMENT_TYPE NOT NULL VARCHAR2 (40) “check”, “ccard” or “reminder”.

PARAM_NAME NOT NULL VARCHAR2(40) Name of payment setting parameter.

PARAM_VALUE NOT NULL VARCHAR2(255) Value of payment setting parameter.

CLOSE_DATE DATE Not used by Payment.

PAYMENT_LOG

This table saves payment reports. Whenever checks are submitted to gateway, a summary
report is generated. Whenever there is a return file from gateway, an exception report is
generated. Each report contains a list of name-value pairs.

Name Null? Type Description

LOG_ID NOT NULL NUMBER(28) Unique ID for this report.

PARAM_NAME NOT NULL VARCHAR2(80) Report parameter name.

PARAM_VALUE VARCHAR2(512) Report parameter value.

BATCH_INDEX NOT NULL NUMBER(38) Payment internal use, record the batch
indexes in a payment record.

Payment Tables

68 | Payment Designer's Guide

PAYMENT_REMINDERS

This table records the payment reminders set by the users through Payment UI.

Name Null? Type Description

PAYER_ID NOT NULL VARCHAR2(40) Login ID.

PAYEE_ID NOT NULL NUMBER(10) DDN reference.

START_DATE NOT NULL DATE Date when this reminder will start.

REMINDER_
INTERVAL

NOT NULL VARCHAR2(20) The reminder interval: monthly, weekly,
etc.

NEXT_REMINDER_
DATE

NOT NULL DATE The actual date the email will be sent
out.

PAYER_EMAIL_
ADDR

NOT NULL VARCHAR2(50) User’s email address for payment
reminders.

PARTITION_ID NOT NULL NUMBER(10) For performance reasons, this table is
partitioned into fixed-size buckets. The
bucket size is configured through
Payment Settings. This is the number of
each bucket.

REMIND_STATUS NOT NULL VARCHAR2(20) "active" or "inactive". Emails are only
sent for active reminders.

USE_ENROLLMENT_
EMAIL

NOT NULL CHAR(1) "Y" means use the email address from
the payment_profile table. "N" means
use the email address from this table.

RECURRING_PAYMENTS

Name Null? Type Description

PAYEE_ID NOT NULL NUMBER(10) DDN reference.

PAYER_ID NOT NULL VARCHAR2(40) User login name.

PAYER_ACCT_NUM NOT NULL VARCHAR2(40) User account number with biller.

PAYMENT_ACCT_
NUM

NOT NULL VARCHAR2(40) For check, the check account number.
For credit card, the card number.

PAYMENT_TYPE NOT NULL VARCHAR2(10) “check”/”ccard”, check or credit card.

AMOUNT NOT NULL NUMBER(28,2) Amount to be paid. For fixed amount,
the amount specified from the UI. For
pay amount due less than specified
amount, the max amount specified.
Otherwise, not used.

AMOUNT_TYPE NOT NULL VARCHAR2(40) Can be: “fixed”, “amount due” or “less
than”.

DAY_OF_PAY_
INTERVAL

NOT NULL NUMBER(12) Pay date: the day of the pay interval.
For monthly/quarterly: 1-31. For
weekly: 1-7

Payment Tables

Payment Designer's Guide | 69

Name Null? Type Description

MONTH_OF_PAY_
INTERVAL

NOT NULL NUMBER(12) Applies to quarterly: 1-3

PAY_INTERVAL NOT NULL VARCHAR2(20) “monthly”, “weekly”, “quarterly”.

START_DATE NOT NULL DATE When the recurring payment starts.

END_DATE NOT NULL DATE When the recurring payment ends.

MAX_NUM_
PAYMENTS

NOT NULL NUMBER(12) Maximal number of payments to be
paid.

CURR_NUM_
PAYMENTS

NOT NULL NUMBER(12) Current number of payments have been
paid.

STATUS NOT NULL VARCHAR2(10) "active" or "inactive": whether the
recurring payment has ended.

EMAIL_IND NOT NULL CHAR(1) "Y" or "N": whether to send email when
amount due is more than the amount
specified.

BILL_ID VARCHAR2(255
)

DOC id of the bill being paid, if
applicable.

BILL_SCHEDULED NOT NULL CHAR(1) "Y" or "N": whether the current payment
has been scheduled.

LAST_PROCESS_
TIME

NOT NULL DATE The last time the job ran.

NEXT_PAY_DATE NOT NULL DATE Pay date of the next payment available.

LAST_PAY_DATE NOT NULL DATE Pay date of the last payment made.

FLEX_FIELD_1 VARCHAR2(255
)

Flexible field. Not used by Payment, so
it can be used for customization.

FLEX_FIELD_2 VARCHAR2(255
)

Flexible field. Not used by Payment, so
it can be used for customization.

PID VARCHAR2(255
)

The unique id that identifies this
payment account.

Payment indexes
The following table lists the Indexes defined on payment and enrollment tables:

Table name Index name Indexed columns

payment_profile pk_payment_profile payee_id, payment_type,
param_name

check_payments pk_check_payments payment_id

check_payments nuk_check_payments_1 status, pay_date

check_payments nuk_check_payments_2 status, reminded

Payment Tables

70 | Payment Designer's Guide

Table name Index name Indexed columns

check_payments nuk_check_payments_3 gateway_payment_id

check_payments nuk_check_payments_4 payer_id

check_payments nuk_check_payments_5 partition_id

check_payments_history nuk_check_payments_history_1 log_id, status

payment_invoices pk_payment_invoices inv_id

payment_invoices nuk_payment_invoices_1 payment_id

payment_invoices nuk_payment_invoices_2 payee_id, process_flag,
inv_amount

credit_card_payments pk_credit_card_payments payment_id

credit_card_payments nuk_credit_card_payments_1 payee_id, partition_id,
payer_id, status, pay_date

payment_reminders pk_payment_reminders payer_id,payee_id

payment_reminders nuk_payment_reminders_1 payee_id, partition_id,
remind_status,
next_reminder_date

payment_log index_payment_log_1 param_name, param_value

payment_log index_payment_log_2 log_id

payment_counters pk_payment_counters counter_name

recurring_payments pk_recurring_payments payer_id, payee_id,
payer_acct_num

reccurring_payments nuk_recur_payment_2 status, bill_scheduled,
next_pay_date

payment_bill_summaries pk_payment_bill_summaries bill_id

payment_bill_summaries nuk_pymt_bill_summary_2 payer_id

Payment Database Migration
The Payment database is designed to migrate from a previous version to new version,
whenever Payment upgrades the database schema. If you have a payment database from
an older version of Payment, and you want to upgrade to a newer version, just run the
install script that comes with the newer version. The installation script automatically
alters the existing schema while preserving the old data. However, since the Payment
database depends on the document_definition_name table from the command center, it’s
very important to make sure that this table is migrated, too. If a DDN name/reference is
removed or changed during migration, that can cause problems for Payment.

Payment Designer's Guide | 71

Index

A
ACH

change codes, 13
effective date, 15
effective date and holidays,

47
federal holidays, 49
File Input Directory, 48
File Output Directory, 48
immediate destination, 47
immediate origin, 47
return codes, 14
return directory, 48
settlement date, 15
submit directory, 48
Template Directory, 48

Amount Due Format, 45, 50,
54

B
bank holidays

listed, 49
Batch Size for Credit Card

Payment Table, 55
Batch Size for Payment

Reminder Table, 49, 53
gateway parameter, 44

Batch Size for Payment
Table, 46, 51

C
CDA

configuration, 46
CDA configuration, 46
CDP

File Input Path, 52
File Output Path, 52

Check Payment Gateway
overview, 44
parameters, 44

check payments
clearing checks, 47
transaction cycle, 11
transaction statuses, 12

CheckFree
gateway configuration, 49

Client ID, 52
Company Entry Description,

48
Company ID, 48
Company Name, 48
credit card

Batch Size for Credit Card
Payment Table, 55

overview, 17
Payment Gateway, 53
scheduled payment logic,

19
statuses, 17
transaction overview, 18
user options, 20
Verisign configuration, 20
Verisign overview, 20

D
Days to Activate Pending

Subscribers, 47, 51
Days to Clear Checks, 47, 51
Due Date Format, 50, 54

Index

72 | Payment Designer's Guide

gateway parameter, 45

E
email notification

Email Template for Job
Status Notification, 54

job status configuration, 50
Mail Addresses for Job

Status Notification, 54
Mail Server for Job Status

Notification, 54
Send Email Notification

when Payment Jobs are
Done, 54

Email template for job status
notification, 46, 51

enrollment
configuring activation

delay, 47
configuring for payment

information, 55
configuring for user

information, 55
Enrollment XML file(for flat

enrollment only), 46, 55
Implementation of

IPaymentAccountUserAc
cessor, 55

Implementation of
IUserAccountUserAcces
sor, 55

payment configuration, 51
user configuration, 51

F
File Transmission Mode, 52
Flexible Field 1 and 2

ACH, 48
CheckFree, 56

FTP User Name, 52

G
Gateway

ACH gateway parameter,
44

CheckFree gateway
parameter, 49

Generate empty ACH file
when there are no checks
to submit, 47

Generate Empty File, 52

H
Help

technical support, 6
holidays

federal, 49

I
Immediate Destination, 47
Immediate Destination

Name, 47
Immediate Origin, 47
Immediate Origin Name, 48
Implementation of

ICheckSubmitPlugIn, 48
Implementation of

IPaymentAccountUserAcce
ssor, 46, 51

Implementation of
IUserAccountUserAccesso
r, 46, 51

instant payments
logic, 18

J
job status

Email Template for Job
Status Notification, 54

Mail Addresses for Job
Status Notification, 54

Mail Server for Job Status
Notification, 54

Send Email Notification
when Payment Jobs are
Done, 54

M
Mail server for job status

notification, 46, 51

Index

Payment Designer's Guide | 73

Mail-to addresses (separated
by ";", semicolon) for job
status notification, 46, 51

minimum amount due
Minimum Amount Due

Format, 54
Name of Minimum Amount

Due in Index Table, 54
Minimum Amount Due

Format, 50
Minimum Amount Due

Format, 45

N
Name of Amount Due in

Index Table, 50, 54
Name of Amount Due in

Index Table, 45
Name of Due Date in Index

Table, 50, 54
Name of Due Date in Index

Table, 45
Name of Minimum Amount

Due in Index Table, 50
Name of Minimum Amount

Due in Index Table, 45
noc

enrollment update, 47
NOC

codes, 13

O
ODFI

ACH payment gateway
setting, 48

P
Payee Address, 52
Payee City, 52
Payee Name, 52
Payee Number, 52
Payee Short Name, 52
Payee State, 52
Payee Zip, 52
Payment gateway, 42

configuring, 41

deleting, 57
updating, 56

Payment Gateway
check overview, 44

plugin
ACH gateway, 48

pmtCheckSubmit
ACH company name, 48
ACH immediate origin, 47
and ACH effective date, 15
company entry description,

48
date, 15
empty ACH configuration,

47
empty CheckFree

configuration, 52
immediate destination, 47
ODFI configuration, 48

pmtCheckUpdate
ACH company name, 48
ACH immediate

destination, 47
ACH immediate origin, 47
and ACH change codes,

13
and ACH return codes, 14
enrollment and NOC, 47

pmtCreditCardSubmit
and the payment

transaction cycle, 19
pmtNotifyEnroll

ACH NOC, 47

R
recurring payments

configuring, 34
Recurring Payments

overview, 23

S
Send Email Notification in

Case of NOC, 47

Index

74 | Payment Designer's Guide

Send Email Notification when
Payment Jobs are Done
(with or without error), 50

Send Email Notification when
Payment Jobs are
Done(with or without error),
46

Sender ID
CheckFree parameter, 52

Skip non-business days for
batch effective entry date,
47

T
template

CheckFree, 52

U
Update Payment enrollment

in Case of NOC, 47

V
Verisign

Certificate Path, 56
configuration, 20
Host Name, 55
Host Port, 55
Implementation of

IVeriSignCreditCardSub
mitPlugIn, 56

Number of Threads, 56
Partner, 56
Password, 56
Timeout Period for

Transactions, 55
User, 55
Vendor, 56

	Preface
	
	
	To escalate your case, ask the Technical Support Engineer to:

	Check Payments
	Check Payment Overview
	Adding a Check Account
	Check Account Enrollment Status Flow

	Check Payment Transactions
	Check Payment Status Flow
	Credit

	ACH
	Supported SEC Codes
	ACH Change Codes (NOC)
	ACH Return Codes
	NOC Transactions
	ACH Effective Date
	ACH Settlement Date
	ACH Addenda Records

	Credit Card Payments
	Credit Card Payment Status
	Credit Card Payment Transactions
	Instant Credit Card Payments
	Scheduled Credit Card Payments
	Reversals

	User Options
	Using VeriSign as a Payment Gateway
	AVS (Address Verification Service)

	Recurring Payments
	Overview
	Recurring Payment Transaction Cycle
	Tables Affected by Recurring Payments
	Recurring Payment Examples
	Case 1: Amount Due And Before Due Date
	Case 2: Amount Due And Fixed Pay Date
	Case 3: Fixed Amount and Before Due Date
	Case 4: Fixed Amount and Fixed Pay Date

	Scheduling Payment Jobs
	Payment Job Status Monitoring
	Payment Job Plug-In
	To Configure Recurring Payments

	Testing Recurring Payment
	Case 1: Pay Amount Due X days Before Due Date
	Case 2: Pay Amount Due on a Fixed Date
	Case 3: Pay fixed Amount X Days Before Due Date
	Case 4: Pay Fixed Amount On A Fixed Date

	Rebill and Recurring Payment
	Description
	Payment Settings
	Payment History
	Email
	Logic

	Configuring Payment Gateways
	Configuring a Payment Gateway
	Payment Global Configuration
	
	Credit Card Account
	Check Account
	Audit Configuration
	Email Notification Audit

	Check Payment Gateways
	ACH Gateway Parameters
	The following parameter is listed, but cannot be changed from this screen:
	The following parameters are shared by both the credit card cartridge (if any) and check cartridge used by this DDN:
	The following parameters are specific to check payment gateways:

	ACH Federal Holidays
	CheckFree Gateway Parameters

	Credit Card Payment Gateways
	
	The following parameter is listed, but cannot be changed from this screen:
	The following parameters are shared by both the credit card and check cartridges for this DDN:
	The following parameters are specific to a VeriSign gateway:

	Updating a Payment Gateway Configuration
	Deleting a Payment Gateway Configuration
	Table Column Definitions

	Payment Tables
	
	
	CHECK_PAYMENTS
	CHECK_PAYMENTS_HISTORY
	CHECK_PAYMENTS_STATUS
	CREDITCARD_PAYMENTS
	CREDITCARD_PAYMENTS_HISTORY
	CHECK_PAYMENTS_STATUS
	CREDITCARD_PAYMENTS_STATUS
	PAYMENT_ACCOUNTS
	PAYMENT_BILL_SUMMARIES
	PAYMENT_COUNTERS
	PAYMENT_INVOICES
	PAYMENT_PROFILE
	PAYMENT_LOG
	PAYMENT_REMINDERS
	RECURRING_PAYMENTS

	Payment indexes

	Payment Database Migration

	Index

