edocs
Payment Developer’'s Guide

V4.5.2
Data Published: 01.31.2005

© 1996-2005 edocs! Inc. All rights reserved.
edocs, Inc., One Apple Hill Dr., Natick, MA 01760

The information contained in this document is the confidential and proprietary information of edocs, Inc.
and is subject to change without notice.

This material is protected by U.S. and international copyright laws. edocsisregistered in the U.S. Patent
and Trademark Office.

No part of this publication may be reproduced or transmitted in any form or by any means without the
prior written permission of edocs, Inc.

All other trademark, company, and product names used herein are trademarks of their respective
companies.

Printed in the USA.

Table of Contents

I 1= - o = 5
P22 | 10 To LU o3 1 o o ISR 9
ArChItECTUre Of PaYMENTuuiiiiiiiiiiiiiti e 9

M@JOr PAYMENE BEEANSccoiiiiiiiiiiiiiii ettt ettt e e e e ekttt e e e e e e s sabe bt e e e e e e e e annbeaeeaaaeaaans 11

3 RECUITING PAYMENTS ...ttt e e et a e e e e e e e e eeannan s 15
ReCUrring PAaYMENT Ulcooiiiiiiiiiiiee ettt e e e e e s s st e e e e e e s e st e e e e e e e s e annrnnneeeeeean 17

Recurring payment — back end Job:........c.uuviiiii i 23

Recurring Payment SChedulingo.ouuiiiiii e e e 28
Recurring paymMeEnt FAQ e 31

4 PaYyMENT PIUG-INS ..ttt e ettt s e e e e e e e e eeeaba e e e e e aeeeeenes 35
PlUug-1N CUSTOMUZATION ...ttt 35

ACH Check SUBMIt PIUG-IN ...t e e e e e s e e e e e e s e e eeeaeeeans 35

VeriSign Credit Card Payment PIUG-iNoouiiiiiiiii ettt siaee e 37

Payment Reminder PIUQ-in..........ou ettt e e e e e 39

Recurring Payment PIUG-IN.........eoi ittt e e 40

5 Customizing Payment Template FileS........coovviriiiiiiiie e 43
Understanding the Payment Template ENQINE..........cccovviiiiiiiiiiiii e 43
Customizing Email TEMPIALEScooerniiiiiee e 45
Payment Reminder TEMPIALE........uuiiie i e e e e e e e s e are e e e e e e e e e 46

Enrollment Notification TEMPIALE.ccoi i e e 49

Recurring Payment Scheduled Notification Template............ccuueeeiiiiiiiiiiieeee s 53

Payment NOtification TEMPIALE........ccieeiii i e e e e e e e nrrer e e e e e e an 55

Credit Card Expiration Notification TEMPIALEcooiiiiiiiiiiiii e 63
Customizing ACH TemPIALES........oouiiiiii e 64
Matching a Check in the ACH Return to the Database.............c..coeviiiiiiiiiiiiiiiieeee e 67

6 Generating Accounts Receivables (A/R) Files ..o, 71
Customizing arQUETY. XMoo i e e 72

QUETY CASE STUY ...ttt e ettt e e e e e e et bbbt et e e e e e e aabbbbeeeaaaeeeannbeneeaeeas 73
Customizing arFlat_template.tXtcooo oo 75
Customizing arXML_template.Xmlcoooi e 75
Customize arXML_template.xml and use XSLT to generate XML/flat AR fileccc..... 76
Re-implement IJARPaymMentINtegratorooov e iiiieiiiiie e e e e e eeeeees 76

Select only check or credit card PaYMENTS..........ccvvviiiiiiiiiiiiiiiiiiieeeee e 77
Compiling and packaging a custom IARINtEGrator.............cevvviiviiiiiiiie e 77

L 1= =T g =SSR 78

SINGle PAyMENt TYPE ...ttt 78

Payment Developer's Guide | 3

7 Packaging Payment CUSTOM COA@.......uuiiiiiiiiiiiiiiiie et 79

8 Debugging PayMENt ..o 81
VIeWING WEDLOGIC LOGS ... o eeiiieeiiiiie ettt e e e e et e e e e e e e e eetenn e e e aeeeeeenes 81

View logs from the Command CeNEI:ccoeiiiieee e e 81
Turning On the Payment Debug FIagocooovviiiiiiiiie e 81

9 Plug-in SAMPIE COUE ... 83
AChCheckSUbMItPIUGINJAVAuueiiiiiiiiiiiiiii e 83
PaymentReminderPlugin.java ..o 85
RecurringPaymentPIUGIN.JaVEAcoooiiiiiiiie e e e e e aaaanes 86
VerisignCreditCardSubmitPIugIN.java...............euueiiiiiiiiiiiiiiieieeeeeeees 87
AddendaCheckSubmitPIUGINJAVAcoovvviiiiiiii e 89
SampleRecUrriNgPIUGIN.JAVAouviii e 91

IO AU o 11 Yo S 95
JobS that @re QUAITEduiiiiii et e e e e 95

Ul actions that are aUIted.............cooii it e e e e e e e e aaes 96

EXAmMPIe Ul AUIt FIOW ...oooeiiiiiieie et e e e e st e e e e e e e s st e e e ae e s s nnnnreneeeeeeeane 96

(@ T 1= YA 1 =T 101
U T Lo AN o [A @ TN =T = 102

(O T[T ST =] (U] o P 103
WiINAOWS CONFIQUIALION ...ttt e e et e e e e e e s abeeeeaaeeeas 104

L8]] Q@] 1T [V =11 SR 104

Running the QUENES IN WINGOWS.........coiiiieeiiieiece e e e 105
5151] PP RP PR PUPPPRTPN 105

(O] 7Tl [P PTRTTSTR 106

] 2 107

Running the QUEeries iN UNIX ... 108

L@ - Tox L= PRSP RR 108

)] PP TSSPP 109

F Lo [== o F= 1 < USRI 110
[o [1iT=To I IF= 1] [PP PTU TR 110

=T I o LS PP 111

AUdit Table CONSLANTScoiiiiiiii ettt e e e e e e s et e e e e e e e e s e annbeeeaaaeaaaan 112

JOD NAME ENLHES ..eeiiiiiiiee ittt sttt ettt e e st e e s snba e e e e sbbeeeesbeeeene 112

11 Implementing A Custom Payment Cartridge..........cuuvveeieieeeeeeveeiiiciee e eeeeeeennnns 115
Demonstration Cartfidgeuu.ueieeee e e e e e e e e e e e e e et e e e e e e eaarana 115
Implementing Custom Credit Card Cartridgeuuuvrreeriiiriiiieiee e e e e e e e e 115

12 Miscellaneous CUSTOMIZALIONuuiiiiiiiiiiiiiiiiiiieiiieeeeieeeeeeeeeeeeeaeeeeeeeeeeeeeeeeeeneenenes 119
Avoiding paying a bill more than ONCEe..........ooo e 119

Handling multiple payee ACH aCCOUNTScoviiiiiiiiiiiiiiee e st e e s s e e e e e rneeeee s 119

IR T [o 1= PP TSURPPPRPPRN 123

4 | Payment Developer's Guide

Preface

About Customer Self-Service and Payment™

edocs Payment™ is the electronic payment solution that decreases payment processing
costs, accelerates receivables and improves operational efficiency. edocs Payment is a
complete payment scheduling and warehousing system with real-time and batch
connections to payment gateways for Automated Clearing House (ACH) and credit card
payments, and payments via various payment processing service providers.

About This Guide

This guide describes the tasks required to develop an application to use Payment.

This guide isintended for the application developer and those involved in the process of
designing a Payment application.

This guide assumes you have:

» Installed and configured Payment

* Know XML structure and syntax

* Undertand J2EE: JSP, HTML, Strutsand Tiles

Related Documentation

Thisguideis part of the Payment documentation set. For more information about
implementing your Payment application, see one of the following guides:

Print Document Description

Installation Guide How to install Payment for your application and
configure it in a distributed environment.

Payment Administration Guide | How to set up and run alive edocs applicationin a
J2EE environment.

Payment Designer Guide How to design your payment architecture.

Payment Developer's Guide | 5

Preface

Obtaining edocs Software and Documentation

Y ou can download edocs software and documentation directly from Customer Central at
https://support.edocs.comy/. After you log in, click on the Downloads button on the left.
When the next page appears, you will see atable displaying al of the available
downloads. To search for specific items, select the Version and/or Category and click the
Search Downloads button. If you download software, an email from edocs Technical
Support will automatically be sent to you (the registered owner) with your license key
information.

If you received an edocs product installation CD, load it on your system and navigate
from itsroot directory to the folder where the software installer resides for your operating
system. Y ou can run the installer from that location, or you can copy it to your file
system and run it from there. The product documentation included with your CD isin the
Documentation folder located in the root directory. The license key information for the
products on the CD isincluded with the package materials shipped with the CD.

If You Need Help

Technical Support is available to customers who have an active maintenance and support
contract with edocs. Technical Support engineers can help you install, configure, and
maintain your edocs application.

This guide contains general troubleshooting guidelines intended to empower you to
resolve problems on your own. If you are still unable to identify and correct an issue,
contact Technical Support for assistance.

Information to Provide

Before contacting edocs Technical Support, try resolving the problem yourself using the
information provided in this guide. If you cannot resolve the issue on your own, be sure
to gather the following information and have it handy when you contact technical
support. Thiswill enable your edocs support engineer to more quickly assess your
problem and get you back up and running more quickly.

Please be prepared to provide Technical Support the following information:

Contact information:

* Your name and rolein your organization.

* Your company’s name

* Your phone number and best times to call you

e Your email address

Product and platform:
» Inwhich edocs product did the problem occur?

* What version of the product do you have?

6 | Payment Developer's Guide

Preface

* What isyour operating system version? RDBM S? Other platform information?

Specific details about your problem:
» Did your system crash or hang?
* What system activity was taking place when the problem occurred?

» Didthe system generate a screen error message? If so, please send us that message.
(Typethe error text or press the Print Screen button and paste the screen into your
email.)

» Didthe system write information to alog? If so, please send usthat file.
* How did the system respond to the error?
* What steps have you taken to attempt to resolve the problem?

* What other information would we need to have (supporting datafiles, stepswe'd
need to take) to replicate the problem or error?

Problem severity:

e Clearly communicate the impact of the case (Severity I, 11, 111, IV) aswell asthe
Priority (Urgent, High, Medium, Low, No Rush).

» Specify whether the problem occurred in a production or test environment.

Contacting edocs Technical Support
Y ou can contact Technical Support online, by email, or by telephone.

edocs provides global Technical Support services from the following Support Centers:

US Support Center

Natick, MA

Mon-Fri 8:30am — 8:00pm US EST
Telephone: 508-652-8400

Europe Support Center
London, United Kingdom
Mon-Fri 9:00am —5:00 GMT
Telephone: +44 20 8956 2673

Asia Pac Rim Support Center
Melbourne, Australia

Mon-Fri 9:00am — 5:00pm AU
Telephone: +61 3 9909 7301

Customer Central
https://support.edocs.com

Email Support
mailto: support@edocs.com

Payment Developer's Guide | 7

Preface

Escalation Process

edocs managerial escalation ensures that critical problems are properly managed through
resolution including aligning proper resources and providing notification and frequent
status reportsto the client.

edocs escal ation process has two tiers:

1. Technical Escalation - edocs technical escalation chain ensures access to the right
technical resources to determine the best course of action.

2. Managerial Escalation - All severity 1 cases are immediately brought to the
attention of the Technical Support Manager, who can align the necessary resources
for resolution. Our escalation process ensures that critical problems are properly
managed to resolution, and that clients as well as edocs executive management
receive notification and frequent status reports.

By separating their tasks, the technical resources remain 100% focused on resolving the
problem while the Support Manager handles communication and status.

To escalate your case, ask the Technical Support Engineer to:
1. Raisethe severity level classification.
2. Put you in contact with the Technical Support Escalation Manager.

3. Reguest that the Director of Technical Support arrange a conference call with the
Vice President of Services.

4. Contact VP of Servicesdirectly if you are still in need of more immediate assistance.

8 | Payment Developer's Guide

Introduction

Architecture of Payment

Payment is based on the J2EE platform. It uses Servlets and JSPs for the presentation
layer and uses enterprise java beans (EJB) for the business logic layer. It offers the
following sets of functions:

» Enrollment functions: to enroll users for both viewing bills and paying bills
(Payment). Examples of user information include account numbers and email
addresses, and examples of payment account information include bank account
numbers and credit card accounts.

» Payment functions: to make payments, set up payment reminders and recurring
payments, etc.

* Administration functions: to set up payment jobs, view payment reports and
configure Payment Settings.

Payment Developer's Guide | 9

Introduction

The following diagram shows an overview of the J2EE architecture of Payment:

Internet Users Admin Users
Payment Servlet Command Center Servlet
Payment Settings Command
Enrollment JSP Payment JSP & Report JSP Center Job JSP
Enroliment EJBs Payment EJB Payment Admin Payment Job/
(IAccount, etc) (IPayServer, etc) EJB Task EJBs

e
Enroliment Payment Database edx
Database Database

In this architecture, the servlet is responsible for user authentication. After authentication,
the servlet forwards the request to JSP pages, which do the bulk of the actual work. The
Payment user JSP pages can be categorized into two groups:

» Enrollment JSP pages are responsible for Payment user enrollment

» Payment JSP pages are responsible for core Payment functionality: schedule
payment, set up recurring payment, etc.

All Payment database access is done through EJB objects. The JSPs and servlets do not
access the database directly.

There are also Payment batch jobs that run inside the command center. For alist and
description of Payment jobs, refer to the Administration Guide.

10 | Payment Developer's Guide

Introduction

Major Payment Beans

The following tables describe the major Payment beans defined in both user EAR and
command center EAR (ear-Payment.ear).

Name

PayServer

Remote Interface

Com.edocs.payment.remote.| PayServer

Home Interface

Com.edocs.payment.remote.| PayServerHome

Bean Type State-less

Jar file €jb-Payment-payserver.jar

Description Thisisthe main EJB bean for user application to access
Payment database.

Name PayAdmin Server

Remote Interface

Com.edocs.payment.remote.| PayAdminServer

Home Interface

Com.edocs.payment.remote.| PayAdminServerHome

Bean Type State-less
Jar file gjb-Payment-admin.jar
Description Thisisthe main EJB bean for Command Center to configure

Payment Settings and view payment reports.

Payment Developer's Guide | 11

Introduction

Name I PaymentAccount Manager
Remote Interface Com.edocs.payment.remote. PaymentAccountManager
Home Interface com.edocs.payment.remote.
| PaymentAccountManagerHome
Bean Type Stateful
Jar file g b-Payment-acctmgr .jar
Description Thisisthe main EJB bean for user application to access
payment account information inside Payment database.
Name CreditCardSubmit
Remote Interface Com.edocs.pwe.tasks.| Task
Home Interface Com.edocs.pwec.tasks.| TaskHome
Bean Type Stateful
Jar file € b-Payment-ccsubmit.jar
Description Credit card submit task.
Name ChkSubmit
Remote Interface com.edocs.pwe.tasks.| Task
Home Interface com.edocs.pwec.tasks.| TaskHome
Bean Type Stateful
Jar file €jb-Payment-chksubmit.jar
Description Check submit task.

12 | Payment Developer's Guide

Introduction

Name

ChkUpdate

Remote Interface

com.edocs.pwe.tasks.| Task

Home Interface

com.edocs.pwe.tasks.| TaskHome

Bean Type Stateful

Jar file gjb-Payment-chkupdate.jar
Description Check update task.

Name ConfirmEnroll

Remote Interface

com.edocs.pwe.tasks.| Task

Home Interface

com.edocs.pwe.tasks.| TaskHome

Bean Type Stateful

Jar file €jb-Payment-confirm-enroll.jar
Description Confirm enroll task.

Name NotifyEnroll

Remote Interface

com.edocs.pwe.tasks.| Task

Home Interface

com.edocs.pwec.tasks.| TaskHome

Bean Type Stateful
Jar file €jb-Payment-notify-enroll.jar
Description Notify enroll task.

Payment Developer's Guide | 13

Introduction

Name

RecurPayment

Remote Interface

com.edocs.pwe.tasks.| Task

Home Interface

com.edocs.pwec.tasks.| TaskHome

Bean Type

Stateful

Jar file

€jb-Payment-recur-payment.jar

Description

Recurring payment task.

Name

PaymentReminder

Remote Interface

com.edocs.pwe.tasks.| Task

Home Interface

com.edocs.pwec.tasks.| TaskHome

Bean Type

Stateful

Jar file

€b-Payment-reminder .jar

Description

Payment reminder task.

Name

SubmitEnroll

Remote Interface

com.edocs.pwe.tasks.| Task

Home Interface

com.edocs.pwec.tasks.| TaskHome

Bean Type

Stateful

Jar file

€jb-Payment-submit-enroll.jar

Description

Submit enroll task.

14 | Payment Developer's Guide

Recurring Payments

Payment's recurring payment feature is a very complicated process that involves a great
deal of business logics. This section discusses the recurring payment processing in detail.

Recurring payments consist of actions at the front-end (Ul) and back end (command
center jobs). The Ul allows a user to insert/update/del ete a recurring payment, and the
back end pmtRecurPayment job actually makes the payment.

To understand how recurring payment works, we need to track the changes to the
information in the recurring_payments table:

Column Name Comment

AMOUNT_TYPE and AMOUNT These two columns record how the payment amount is
generated. They are only updated through the Ul and are used
by back-end jobs to cal culate how much to pay. The valid
values of AMOUNT _TYPE are:

« “fixed amount”: pay afixed amount and the amount value
is specified by AMOUNT column.

e “amount du€’: pay amount due on the bill and, AMOUNT
columnis not used (null).

e “minimal due’: pay minimuml amount due on the bill and
AMOUNT column is not used (null).

e “lessdue’: means pay the amount due if it isless than the
value of the AMOUNT column; otherwise, pay nothing
and send email notification.

e “upto amount”: payD the amount dueif it isless than the

value of the AMOUNT column; otherwise, pay the value
of AMOUNT and send email notification.

Payment Developer's Guide | 15

Recurring Payments

Column Name

Comment

PAY_INTERVAL
DAY_OF PAY_INTERVAL

MONTH_OF PAY_INTERVAL

These three columns record how the payment date is generated.
They are only updated through the Ul, and are used by back-
end jobsto calculate when to pay. The valid values of
PAY_INTERVAL are

e “weekly”: user specified to make payments weekly. The
day of week is specified by DAY_OF _PAY_INTERVAL.
The MONTH_OF _PAY_INTERVAL isirrelevant.

* “monthly”: user specified to make payments monthly. The
day of month is specified by DAY_OF PAY_INTERVAL.
The MONTH_OF_PAY_INTERVAL isirrelevant.

e ‘“quarterly”: user specified to make payments quarterly.
The day of month is specified by
DAY_OF _PAY_INTERVAL. The month of quarter is
specified by MONTH_OF_PAY_INTERVAL (oneof 1,2
or3).

START_DATE
END_DATE
CURR_NUM_PAYMENTS
MAX_NUM_PAYMENTS
STATUS

These four columns determine when to start the recurring
payment and when to stop it. START_DATE, END_DATE and
MAX_NUM_PAYMENTS can only be updated through the
ul.

START_DATE isrequired, but you set only one of the
END_DATE (end by that date) or MAX_NUM_PAYMENTS
(end when this number of paymentsis made).

The recurring payment STATUS is"active" when it is created
and it has not reached either END_DATE or
MAX_NUM_PAYMENTS. When one of them is reached, the
STATUS is changed to "inactive" and the recurring payment
will never take effect again.

If END_DATE ischosen, NEXT_PAY_DATE (the pay date
for the next bill needsto be paid) is>= START_DATE and <=
END_DATE, the bill will be paid. The STATUSis set to
inactiveif NEXT_PAY_DATE > END_DATE.

If MAX_NUM_PAYMENTS s chosen, the STATUS s
changed to inactive when CURR_NUM_PAY MENTS reaches
MAX_NUM_PAYMENTS.

LAST_PAY_DATE

Thisisthe pay date of last hill. It is set to 01/07/1970 when
recurring payment is created to indicate that there isvalid
information.

NEXT_PAY_DATE

Thisisthe pay date of next bill. When the recurring payment
job runs, it schedules a payment with a pay date of
NEXT_PAY_DATE. Note, NEXT_PAY_DATE iscalculated
based on LAST_PAY_DATE and PAY _INTERNAL. For
details, see below.

16 | Payment Developer's Guide

Recurring Payments

Column Name

Comment

LAST_PROCESS_TIME

Records the date of the last time the recurring payment job ran.
During the recurring job synchronization process, Payment
retrieves hills between LAST _PROCESS TIME and current
timeto avoid retrieving duplicated bills and so, improve the
performance.

Note, previous versions of Payment recorded both date and
timeinformationin LAST_PROCESS TIME. It was found that
abill could be lost if the bill was indexed the second time on
the same date because the DOC_DATES of hillsdon’t include
time information. Currently, the LAST_PROCESS _TIME only
includes date info.

BILL_SCHEDULED
BILL_ID

BILL_SCHEDULED indicates whether the latest bill identified
by BILL_ID has been paid or not.

BILL_ID decides whether arecurring payment needs to
synchronize with the command center.

Recurring Payment Ul

This section discusses the actions of the recurring payment Ul.

The Ul sets up arecurring payment: the Ul allows you to insert/update/del ete a recurring
payment and get back the list of recurring payments.

The following UML diagram illustrates the objects involved in the process.

Payment Developer's Guide | 17

Recurring Payments

insertfupdate/deleterget

FayServer

------------------.:;.-u,

JS5PiServlet

IRecurring Payment Log

|
:
|
calcul atelnternal
1
1
1
1
1

i

RecurringPayrment Ltil

winterfacean
IPapServer

t::_p table

FayServer Bean

recurring_paymernts

Retrieving and deleting recurring payments from the database is straightforward, so the
next sections discuss what happens when a recurring payment is inserted or updated.

Insert recurring payment from Ul

The following sequence diagram demonstrates what happens when a recurring payment
isinserted into database using the Ul:

18 | Payment Developer's Guide

Recurring Payments

recuringP ayment

FaySemer

IFaySener FaySemwerBean RecurringF avmentLog RecurringF avmentUtil recuring_payvments

Create j=p

tabla

| insertRecuringP ayment)
: - !

-

inserlRecurringPayi'nenﬁj

[
o

insertRecurringPa\,i:meniﬂ

L
-

insert]

L |

calculatelnternal()
| -
|

inity)

chekSynchronization)
1

'
caleulatebMonthlyWBefqrebuel)

inzert ! !
| -
L L L L] ! g

The next section explains RecurringPaymentUtil.cal culatelnternal (). This method
calculates the next_pay date and status of the recurring payment beforeit is being
inserted into database.

This method calculates the internal states of recurring payment differently for insert and
update. For the insert operation, this method does these things:

1

Call init() method: this method sets some of the recurring payment fields.

If user chooses to end recurring payment by maximum number of payments, set
end_date to 01/01/3000 00:00:00.

If user chooses to end recurring payments by afixed date, set
max_num_paymentsit java.lang.Integer. MAX_VALUE.

Set last_pay_date to 01/01/1970 00:00:00; this means no bill has been paid.

Set bill_scheduled to "Y" if the recurring payment is fixed amount and fixed
date. Note, in this case, the flag should be always true because whenever a
payment is made, the next payment is calculated. It has the same effect as making
the next bill available immediately.

Set last_process timeto start_date, which by default must be tomorrow or later.
This means that any bills indexed through today (inclusive) won't be picked up
by recurring payment.

Note: in Payment 4.2, the recurring payment Ul has been enhanced to check whether
there are unpaid bills when arecurring payment is setup, and reminds the user to
make a one-time payment to pay the outstanding bill.

Call thecheckSynchor ni zat i on method: Checks whether any required
information is missing from recurring payment before inserting it into the database.

Payment Developer's Guide | 19

Recurring Payments

3. Check whether the recurring payment has expired by checking the current number of

payments against maximum number of payments. Note, this check always return
false for insert case.

Calculate the next_pay_date by calling one of cal cul at eMont hl y(),

cal cul ateQuarterly(),cal cul at eWeekl y() or cal cul at eBef or eDue()
depending on whether pay_interval is*“monthly”, “quarterly” or “weekly” or
“before_due” respectively.

* Cadll cal cul at eMont hl y() when pay_interval is“monthly”

This method cal cul ates the next pay date, which is based on last_pay_date, start_date
and day_of pay internal. Sincelast_pay dateis01/01/1970, the next_pay dateis
the nearest date with day_of pay internal after the start_date. If

date_of pay_internal is 29, 30 or 31 and there is no such date in that month, the last
day of that month is used. After next_pay dateis calculated, it is checked against the
end_date. If next_pay date passesthe end_date, the status of the recurring payment
isset to “inactive”.

The following table displays some examples of how next_pay_date is calcul ated:

Day of pay interval |[Start_date Next_pay_date
1 Sep 10 Oct 1

10 Sep 10 Sep 10

15 Sep 10 Oct 15

31 Sep 10 Sep 30

e CadlcalculateQuarterly() when pay_interval is“quarterly”: works similar
to “monthly”

e Cdl cal cul at eWeekl y() when pay_interval is“weekly”: works similar to
“weekly”.

* Cadll cal cul at eBef or eDue() when pay_interval is*before due’: sincethereis
no hill yet (bill due date is null), the recurring payment statusis set to "active"
and the next_pay_dateis set to 01/01/3000.

Update recurring payment from the Ul

This section assumes that the Ul prevents a user from updating a recurring payment from
fixed date to before due date or vise versa. If the Ul is changed to allow a user to do so,
the behavior of recurring payment is not tested.

The following sequence diagram demonstrates what happens when a recurring payment
is updated using the Ul into the database.

20 | Payment Developer's Guide

Recurring Payments

recuringP avment

FPaySener IFaySerner

FayServerBean

RecurningPavmentLog

RecurringP awmentUtil

recuring_pawments

UpdateDelate.
isp

table

v updateRecuringP aymént)
\ -

-

I
updateRecurringPai,rmenﬁj
!

Ll

I
updateRecuningPa:rymeniO

[

updatel)

Y

H
caloulatelnternal) &

update

-

|

chediSynchronization(y
|

synchronizel)

chediSynchronization()

I
calcuIateMontthOl’Elef%:reDueO
I

The next section explainsRecur ri ngPaynent Uti | . cal cul at el nternal (). This

method to calculates the next_pay_date and the status of the recurring payment before it
isinserted into database. This example starts from
| Recur ri ngPaynent Log. updat e() . Note that this method is also used for update by

Cdl | Recurri ngPaynent Log. updat e()

Cal RecurringPaynment Util . cal cul atel nternal ()

Call checkSynchr oni zat i on() method to check whether the information required

the back end job.
1.
2.
3.
for recurring payment is present.
4,

If checkSynchroni zati on() throwsan exception indicating missed information,

then:

e Cdl synchroni ze() method to read the missed information from the database
and populate the missing information into the recurring payment object.

e Cadll checkSynchroni zati on() againto make sure the required information

has been populated.

e Cdlinit() method: unlike the insert operation, this method checks whether the
recurring payment has started or not by checking the last_pay_date (01/01/1970
means not started yet) and then sets the last process timeto the start_date of the
recurring payment if the recurring payment has not been started. The last process
time won't be updated if recurring payment has been started.

Payment Developer's Guide | 21

Recurring Payments

5. Check whether the recurring payment has expired by checking the current number of

payments against maximum number of payments. If true, set the recurring payment
asinactive and return.

Calculate next_pay_date and recurring payment status by calling one of
cal cul at eMont hl y(), cal cul ateQuarterly() orcal cul at eWeekl y()

based on pay_interval of “monthly”, “quarterly” or “weekly”.

e Call cal cul at eMont hl y() when pay_interval is“monthly”, to calculate the
next pay date.

If thelast_pay date is 01/01/1970, then the next_pay date is calculated based on the
start_date and day_of_pay_interval. It is set to the nearest date with

day_of pay interval asday of month after the start_date. Thisis the same as the
insert case. See previous section for details.

If thelast_pay_date is not 01/01/1970, that means that recurring payment has started,
so the next_pay_dateis calculated based on the last_pay_date and

day_of pay interval. It is set to the date one month after the last_pay_date. Note,
here, the calculation doesn’t depend on the current date. For example, if the recurring
payment job runs today on Oct 1, thelast_pay dateis Aug 30 and

day_of pay interval is 30, the next_pay_date will be Sep 30 (nhot Oct 30 as you may
think) even though this date isin the past. In the case of fixed date and pay amount
due, this can pose a problem if there is no bill for a certain month: the pay date will
be in the past. To fix the problem, the recurring payment job will move the

last_pay date ahead by one month if there is no bill for that month. See following
discussion for more details about the recurring payment job.

If day_of pay interval is29, 30 or 31 and there is no such date in that month, the last
day of that month is used.

After next_pay dateis calculated, it is checked against the end_date and if it passes
the end_date, the status of the recurring payment is set to “inactive”.

 Cadlcal cul ateQuarterly() when pay_interval is"quarterly”: works similar
to “monthly”

e Cadll cal cul at eweekl y() when pay_interval is“weekly”: works similar to
“weekly”.

e Cadll cal cul at eBef or eDue() when pay_interval is“before_due’:

First check whether the recurring payment has been synchronized (bill due date not
null) and if so, set status to active and next pays date to 01/01/3000 and return.

Calculate the proposed next pay date by current bill due date and day_of_internal.

If the proposed next_pay_date is before start_date, set the status of recurring
payment to "active" and next_pay_date to 01/01/3000 and return: the bill won't be
paid in this case because it falls outside the effective period of the recurring payment.

If the proposed next pay date is after end_date, set the status of recurring payment to
inactive and set the next_pay_date to 01/01/3000 and return.

Otherwise, set the status of the recurring payment to "active" and set its
next_pay_date to the proposed next pay date.

22 | Payment Developer's Guide

Recurring payment — back end job:

Recurring Payments

The pmtRecurringPayment job gets bills from the command center and then schedules
payments. The first processis called “ synchronization” and the second processis called
“scheduling”. In Payment version 4.2, these two processes are split into two separate

tasks.

Recurring Payment Synchronization

During the synchronization process, the job retrieves alist of recurring paymentsto be
synchronized, and then tries to get the bills for the recurring payments from the command
center. The following UML diagram illustrates this process:

RecurPaymertTask
R winterfaces
getRecuriog Payn‘re*rrtTt-El’e’S'yr_nfcﬂ-ru::n-ize d iRecurringtaymeriiog
___________ e
__update - -o---m7T0
schedule - o
: "o preGetlastestSummarny
Adrmin S Tl winterdfaces
o "prelns.e_\rtSummar;r‘ RRE T . RecurringPayrmerfPlugln
B prellpdateSyn c‘h‘rﬁ ritzedBecurming
insg’;t getNewEliIilSummanr "
- L/ winterdfaces X
winterfaces . winterfaces
i 1BillDepaf
1BillSurmnrarylog Dafa Source

getDocumentSummand)

R ,______________.L_____:H:}

The following diagram shows the synchronization:

Payment Developer's Guide | 23

Recurring Payments

Q RecurPaymentT ash IRecurming IRecuring IBillSummaryLog IBillDepot IDataSaurce Indexer

M

FPaymentLog FaymentPlugin Tahle

Admin
admin

E exacute T ash)

L |

synchronizeSummanf)

getRecuringP aymehtsToBeSynchronized()

preGetlatestSummdny
|

'
getMewBillSummar |
I I |
I ' Loan
' I
H gethocumentSummany
: |- :
' Laall '
H H
' quens '
prelnserlLatestSumriﬂary E E E
=
insert E
H H
preUpdateSynchronlzedRecurring H
| I‘-=|_'|
H

update

The following steps explain synchronization:

1

RecurPaymentTask.executeTask() is called when the job runs, which calls
RecurringPaymentTask.synchronizeSummary().

RecurringPaymentTask.synchronizeSummary() is called. This method does the real
work of synchronization and following are the actions taken in this method.

IRecurringPaymentL og.getRecurringPaymentsT oBeSynchronized() is called to get a
list of recurring payments to be synchronized. The query result is affected by the
recurring payment job configuration parameter “When to synchronize recurring
payment with eaDirect”. When this configuration is “whenever job runs’, all the
recurring payments are retrieved from the recurring_payments table with payee id as
the job DDN and status as “active’. If “only after current bill is scheduled” is
selected, then all the payments with the payee id asjob DDN and status as “ active’
and bill_scheduled as“Y™” will be retrieved from the recurring_paymentstable.

For each recurring payment,

| Recurri ngPayment Pl ugl n. preGet Lat est Summar y() iscaled. This method
allows the recurring payment plug-in code to decide whether to retrieve billsfor a
particular recurring payment based on biller-specific business rules.

Cadl Recur Paynent Task. updat eRecur i ngPayment Onl y() if the plug-in rejects
this recurring payment by returning PRE_GET_LATEST_SUMMARY _REJECT.
This method does these things:

* Update last_process timeto the current time.

24 | Payment Developer's Guide

Recurring Payments

If the recurring payment pay date is fixed date (monthly/quarterly/weekly) and
pay amount is based on (minimum) amount due, and no bill arrives for this pay
period (bill_scheduled is"Y" and current time is after the current
next_pay_date), the last_pay_date is updated to current next_pay_date. This
ensures that if no bill arrives for this pay period; the next bill will be paid on the
correct date.

Cadl | Recurri ngPaynent . updat e() : thismethod calculates the
next_pay_date based on the current last_pay date. See the preceding section for
more information about how this update () operation works.

6. CalIBill Depot.get NewBil | Summary() . Thisinterface isimplemented by
com.edocs.payment.imported.eadirect.BillDepot. The Bi | | Depot classretrieves the
latest bill summary for the specified account.

Bi | | Depot . get NewBi | | Summar y() iscaled, which then calls
Bi | | Depot . get Summar y()

BillDepot.getSummary() is called. This method calls

| DataSource.getDocumentSummary() to get all the bills indexed for this account
between the last_process _time of the recurring payment and the current job run
time.

Thereturned bills are in the format of name value pairs with value of string. They
are interpreted to retrieve due date, amount due and/or minimum amount due.

a For each bill, if minimum amount due is not null, call
Bi | | Depot . pr ePar seM nAnount Due() to give achild class of
Bi | | Depot (viathe plug-in) achance to manipulate the minimum amount
due string before it is parsed, then it parses min amount due.

b. If thebill’samount dueis not null, cal
Bi | | Depot . pr ePar seAmount Due() to give child class of BillDepot (via
the plug-in) a chance to manipulate the amount due string before it is
parsed, then it parses the amount due. If the amount due fails to parse, the
bill isignored.

If the bill has no amount due, or its amount dueis set to null by
pr ePar seAmount Due() , or the amount due failed parsing, then the bill is
ignored.

c. If thehill’sduedateisnot null, call Bi | | Depot . pr ePar seDueDat e() to
give child class of Bi | | Depot (viathe plug-in) a chance to manipulate the
due date string before it is parsed, then it parses the due date.

If the bill has no due date, or its due date is set to null by
pr ePar seAmount Due() , or the due date failed parsing, then the bill is
ignored.

All the successfully parsed bills are compared with the bill summary associated
with the current recurring payment, if the summary is not null. The following
business rules are used to decide which hill isthe latest one:

The due dates of the bill summaries retrieved are compared and the one with
latest due date is chosen.

Payment Developer's Guide | 25

Recurring Payments

For re-bill, multiple bills with the same due date may be retrieved. In this case, a
re-bill is chosen based on the following rules: the one with latest doc date and in
case of the same doc date, the one with the larger IVN number. This assumes that
are-bill isindexed after its original bill. A re-bill will be ignored if its original
bill has been paid (the bill_scheduled flag of recurring payment is"Y").

Bi | | Depot . Sunmar y() returnsthe latest bill if thereis one found, otherwise, it
returns null.

Recurring Payment Scheduling

1. Cal Recur Paynent Task. i sVal i dBi | | Summar () to validate the latest retrieved
bill summary. The latest bill summary could be ignored if it has no bill due date, or if
the recurring payment is based on minimum amount due but the bill summary has no
minimum amount due, or the recurring payment is based on amount due but the bill
summary has no amount due.

2. Now we have avalid bill summary. If the payment to the previous bill summary is
still in "scheduled” status, do following:

Call Recur Paynent Task. cancel Schedul edPaynent () to cancel this
payment. The reason to cancel it is that the new bill summary just retrieved
should include the balance of this scheduled bill, and we need to cancel the
payment so that we won'’t pay the same bill twice.

Call Recur Paynment Task. nodi f yLast PayDat e() : If arecurring payment has
afixed pay date, but the amount is based on amount due or minimum amount
due, we need to back date the last pay date because the previous bill payment has
been cancelled. Failing to do so will cause the current new bill being paid in next
pay interval, not the current one. For example, assume that current bill cycleis
October, the previous bill was retrieved on Oct 10 and is scheduled to pay on Oct
15. Asaresult, thelast_pay date and next_pay_date of the recurring payment
are updated to Oct 15 and Nov 15, respectively. On Oct 11, anew bill isretrieved
and the payment is scheduled. If we don’t back up the last_pay_date, the new bill
will be scheduled to pay on Nov 15. But in this case, we do want to pay the bill
on Oct 15 because we are still in the Oct billing cycle. To fulfill thisgoal, we are
going to back date the last_pay_date to Sep 15 so the next_pay_date will be
calculated as Oct 15, which will be used as the pay date for the new bill.

3. Call Recur Paynent Task. i nsert NewBi | | AndUpdat eRecurri ng() , which
inserts the retrieved new bill and updates recurring payment accordingly.

Call | Recurri ngPaynent Pl ugl n. prel nsert Lat est Sunmar y() before
inserting the bill summary in the payment_bill_summaries table.

If PRE_INSERT _LATEST SUMMARY_REJECT isreturned from the plug-in,
call Recur PaynmenTask. updat eRecur ri ngPaynment Onl y() and return. See
step 5 for details about what this method does.

Cal 1 Bi | | SunmarylLog. i nsert () toinsert thisnew bill summary.

26 | Payment Developer's Guide

Recurring Payments

e IfIBillSummarylog.insert () throws DuplicateKeyException indicating
that this bill is already in the database, so call
Recur PaymenTask. updat eRecur ri ngPayment Onl y() . Seestep 5 for
details about what this method does.

» Setthebill_scheduled flag to "N" if the payment amount is not negative, or "Y"
if it is negative. This means that no credit/reversal will beissued from recurring
payment; the credit should show up as part of the next hill.

» Setthehill_id of the recurring payment to the one of the new bill summary.

e Cdl I RecurringPaynent Pl ugl n. preUpdat eSynchroni zedRecurring().

* If PRE_UPDATE_SYNCHRONIZED RECURRING_REJECT isreturned from
the plug-in, call RecurPaymenT ask.updateRecurringPaymentOnly() and return.
See step 5 for details about what this method does.

e Cadl I RecurringPaynment Log. updat e() to update the recurring payment.
The following table lists the information being updated:

Column

Value

last_pay date

In the case where the pay date is fixed, but amount is based on amount
due, last_pay_date could be moved one pay_interval back if a scheduled
payment is cancelled because anew bill arrives. Otherwise, last_pay date
will stay the same.

next_pay_date

Next_pay date will be updated in

RecurringPaynment Util . cal cul at el nt ernal (). Inthe case of
fixed pay date, it will be updated based on last_pay_date; in case of before
due, it will be updated based on the due date of the new bill. See the
previous section, Update Recurring Payment from the Ul on page 20 for
more information.

status

Since next_pay_date is changed, the status could be changed to “inactive”
if next_pay_date falls after end_date.

bill_id

It is set to the bill_id (doc id) of the bill being inserted into the
payment_bill_summaries table.

bill_scheduled

The bill_scheduled flag is set to "N" if the payment amount is not negative,
"Y" if it is negative.

last_process time

Set to the current time.

Payment Developer's Guide | 27

Recurring Payments

Recurring Payment Scheduling

During scheduling processing, the recurring payment job retrieves alist of recurring
payments to be scheduled, and then schedules them. The following UML diagram shows
the objectsinvolved in this process.

RecurFaymentTask getRecuringPaymentsToBeScheduled sinterfaces
-------------------------------------- ‘-;T-? IRecurringPapmenflog
update
schedule ::: ______________________________________ ;_—,:
Tl H"H,‘preSchedulePayment
Adrmin Tl trell
; . Tea L preSehdEmail
- _.’ ‘. ‘-\ -"“'“-.__‘ -"“'“-__‘
/-’ v [- el el
s . “nsert ..l .-
in=ert I R R -
paxrse' senJ-:FTo '5‘ = el 2 winterfaces
i ;f "‘ - "l RecurringPayareniPlughn
- -
r v ! -
i'i 4 |;/ \J H-l interf
. I winterfaces
-~ sintefaces winterfaces CraditcandE "
Template Mailer ICheckPaymenilog reddL ST Ay e o8
The following diagram shows the action sequence:
32 RecurPaymentTasi| |IRecuringPaymentlog| |IRecuringPaymentPlugln IChe P aymentLog! Template IMailer
I ICreditCardPaymentlog
Admin i H
- r 1 1 1 1 1 1
H executeTash | ! ! ! ! !
Lanl : : 1 1 1
getRecurringPa\,rment:sToEleScheduled E E E E
preScheduIePa\,rmeni: - : : E E
' [. .
insert , H H 1
I -l—"'|_'_| 1 1
preSendEmail E : E E
- : :
Ll : :
parse | E E
T i
sendTo H H
i i =

The following steps describe the details of the actions that occur during recurring
payment scheduling process:

1. Recur Paynent Task. execut e() iscalled when the job starts.

2. RecurringPaynent Task. schedul ePaynent s() iscalled to do the actual
scheduling work.

28 | Payment Developer's Guide

3.

Recurring Payments

| Recur ri ngPayment Log. get Recur ri ngPayment sToBeSchedul ed() iscaled
to get alist of recurring payments to be scheduled. The result is affected by the
recurring payment job configuration parameter “Number of days before pay date to
schedule the payment”, which is anumber, N. The SQK query finds all the recurring
payments where the payee id isthe job’s DDN reference, bill_scheduledis“N” and
next_pay dateis<=today + N.

| PayUser Account Accessor . get Paynent Account () iscalled to get the current
payment account information associated with this recurring payment. A sanity check
is done on the retrieved payment account and different actions can be take based on
the result:

» If no payment account has been retrieved, which means it has been deleted from
database, then the current recurring payment setup will be de-activated
(I Recurri ngPayment Log. updat e() iscaled to update status to inactive) and
no payment is scheduled.

» If the payment account is acheck account, it's status is cancelled, and the job
configuration parameter “Cancel recurring payment if payment account is
canceled?’ istrue, then the current recurring payment setup is de- activated
(IRecurringPaymentL og.update() is called to update status to inactive) and no
payment is scheduled.

» If the payment account is acredit card account, it has expired, and the job
configuration parameter “Cancel recurring payment if payment account is
canceled?’ istrue, then the current recurring payment setup is de-activated
(I Recurri ngPaynment Log. updat e() iscaled to update status to inactive) and
no payment is scheduled.

Recur Paynment Task. cr eat ePayment Tr ansact i on() iscaled to create anew
payment transaction (either a check or a credit card) with status as scheduled and pay
date and amount as specified by recurring payment setup.

| Recur ri ngPaynment Pl ugi n. pr eSchedul ePaynent () iscalled, which gives PS
a change to customize the payment transaction before it is inserted into the database.
If this method returns PRE_ SCHEDUE_PAYMENT_REJECT, the payment won't
be scheduled and the program return to process next recurring payment; If not, the
program will go to next step to schedul e the payment.

Cal | CheckPaynent Log. i nsert () toinsert acheck or

| Credit CardPayment Log. i nsert () toinsert acredit card if the amount of the
payment is not negative (Actually it will never be negative because the
bill_scheduled won't be "N" if amount is negative. See job synchronization part for
detail). Following table lists part of the payment information inserted into the
payment tables:

Column Value

status 6

Payment Developer's Guide | 29

Recurring Payments

Column

Value

pay date

Should be the next_pay_date (calculated during synchronization process)
of the current recurring payment. Since recurring payment will be updated
after thisinsert operation, this value should actually be the same value as
last_pay date of the updated recurring payment.

Amount

Thisvalueis decided by amount_type and the amount of the recurring
payment. It is calculated when
RecurPayment T ask.createPaymentTransaction() is called. It should be the
same as the amount column of the recurring payment if amount_typeis
“fixed”. It should be the same as the amount_due or min_amount_due of
the bill associated with current recurring payment if amount_type is
“amount due”’ or “minimal due”, respectively. If amount_typeis*“less
due’, the payment amount is the amount due of the bill if amount dueis
less than or equal to the amount column value of the recurring payment.
Otherwise, the payment amount value is 0. If amount_typeis “upto
amount”, then the payment amount is the amount due of the bill if amount
dueislessthan or equal to the amount column value of the recurring
payment. Otherwise, the payment amount is the amount column value of
the recurring payment.

bill_id

Same as the one from recurring payment

Pid

Same as the one from recurring_payment

payer_id

Same as the one from recurring_payment

payer_acct_number

Same as the one from recurring_payment

8. IRecurringPaymentL og.update() is called to update the recurring payment. The
following information of the recurring payment will be updated:

Column

Value

Curr_num_payments

Increased by 1.

Bill_scheduled

“N" if pay dateis on fixed date (monthly, quarterly or weekly) and pay
amount is fixed amount; “Y” otherwise.

Last pay date

Thelast_pay dateis set to the current next_pay_date of the recurring
payment.

Next_pay date

After last_pay dateis set to the current next_pay_date, the
next_pay_dateis calculated again by

RecurringPaymentUtil.calculatel nternal (). If the payment isusing a
fixed pay date (weekly, quarterly or weekly), then next_pay dateis
calculated and moved to the next pay date in the next pay interval. In
case of before due date, the next pay date will be calculated based on the
current due date (whose bill has been paid), so thisnext_pay_date has no
meaning until the next bill is synchronized.

Status

Statusis re-calculated and will be changed to “inactive” if

next_pay_ dateis after end date, or curr_num_paymentsis greater than
max_num_payments. See the previous section about Ul update for
details.

30 | Payment Developer's Guide

Recurring Payments

9. I RecurringPaynent Pl ugl n. preSendEmai | () iscalled so that the plug-in can
customize the email being sent out. The email won’'t be sent out if this method
returns PRE_SEND_EMAIL_REJECT.

10. Tenpl at e. par se() iscalled to parse the email template and generate the content
of email.

11. Paynent Mai | er . send() iscaledto send emails. (I Mai | er . sendTo() was
called for version 4.1.)

Recurring payment FAQ

This section answers afew common questions about recurring payment.

1. Why ismy current bill not paid by recurring payment after | set up my recurring
payment?

The recurring payment start date can only start from tomorrow, so the

last_process dateis set to start from tomorrow. This means all the bills indexed
before today won't be processed by the recurring payment. The reason is that,
currently, there is no reliable way for recurring payment to know whether the current
bill has been paid or not. The user may have paid it through a one time payment or
through paper check. To avoid paying the bill twice, recurring payment will only start
processing bills indexed since tomorrow.

When arecurring payment is created, the JSP page checks whether there are any
indexed bills for the account. If so, Payment retrieves the latest bill for the account.
Payment also checks whether the latest bill has been paid by checking itsdoc id
against the bill_id of payment tables. If there is no match, we can reasonably assume
that the bill has not been paid, so we prompt the user to make a one-time payment to
pay that bill.

2. What assumptions does recurring payment make about the bill system?

Recurring payment assumes that the bill balances are accumulative; that is, the bill of
this billing cycle includes the balance of the bill from previous billing cycle, and the
later bill has a due date after that of the previous bill (the only case the same due date
can happen isfor re-bill, see below).

Recurring payment also assumes that each bill has a date indicating the chronol ogical
order of bills; thisis usually the date when the bill arrives billing system. For
example, in the case of the command center, doc date can be used to indicate the
chronological order of arriving bills. In the case of an external billing system, other
dates such as statement date can be used for this purpose. When recurring payment
synchronizes with the command center or other billing systems, it must retrieve the
latest bill issued between the last_process _time and current time. This chronol ogical
date of bills (doc date or statement date) should be used to guarantee that
functionality.

3. Canrecurring payment work with a billing system other than the command center?

Payment Developer's Guide | 31

Recurring Payments

Y es. Recurring payment assumes nothing specific to the command center and the
only thing you need to do isto re-implement the | Bi | | Depot API. Of coursg, the
billing system should meet assumptions stated in item 2.

4. Do the hills need to have due dates?

Yes, if the recurring payment is not fixed date and fixed amount. The due date is used
to decide which bill isthe latest one to pay. For the command center, you must index
the due date or some date equivalent to use as the due date.

5. What isrehill? How do | enableit?

Re-bill means the same bill can be issued multiple times during one billing cycle to
handle adjustments. All the re-bills must have the same due dates. To decide which
re-bill isthe latest bill to pay, the current | Bi | | Depot implementation considers the
onethe latest with latest doc date. If there is more than one bill with same doc date,
the bill with highest IVN number is chosen. Note, thisimplementation assumes that a
later re-bill is always indexed after a previous re-bill, and no re-bills will be put
together in one data file (which cause them have same doc date and IVN number). If
you want to consider other factor such as amount for making the decision, you must
re-implement | Bi | | Depot .

Re-hill is enabled by job configuration parameter “When to synchronize with
eaDirect?’. To usere-bill, you must choose “Whenever the job runs’. If you don’t
have re-bill, you can choose either “whenever the job runs’ or “only after current bill
is scheduled”.

Technically, thereis not much difference between aregular bill and re-bill. The
major difference isthe logic required to decide which re-bill is the latest bill, which
goes beyond checking bill due date. Y ou can think about non rebill as a special case
of rebill: rebill allows the same hill to appear more than once in a single billing
period, but non rebill appears only once. The code and programming logic actually
doesn’t distinguish between these two cases.

6. When re-bill isnot involved, is there any difference between the job configuration
options for the job configuration parameter" when to synchronize with eaDirect?’

It should not affect functionality, and you can choose either of them. But you should
consider these two things:

First, performance may be deteriorated by choosing “whenever the job runs’ because
instead of waiting until current bill is scheduled, the job will try to synchronize with
the command center for each recurring payment. This can be especially trueif you
are talking with a billing system other than the command center that may have a slow
connection.

Second, a scheduled payment may be cancelled because of an “unexpected” early-
arrival of next bill. Because we only want to pay the latest hill, the scheduled
payment will be cancelled and the new bill will be scheduled.

7. Why and when can a scheduled payment be cancelled by recurring payment job?

The cancellation of a scheduled payment can only happen when the job
configuration, “when to synchronize with eaDirect” is set to “whenever job runs’.

It can happen because of two reasons:

32 | Payment Developer's Guide

10.

11.

12.

13.

Recurring Payments

Thefirst caseis: (for re-bill) after the original bill is scheduled, but beforeitis
processed, the re-bill arrives. In this case, the original payment will be cancelled, and
the re-bill will be scheduled.

Second, the bill of thisbilling cycleis still scheduled, but before it is processed, the
bill of next billing cycle arrives (early). In this case, this bill’s payment is cancelled
and the next bill is scheduled.

In case of fixed pay date and pay amount due, if a scheduled payment is cancelled,
thelast_pay_date and next_pay date should all be move back by the pay_interval
before the next bill is scheduled. This ensures that the next bill is paid with the same
pay date as the previous bill.

In the case of fixed pay date and pay amount due, what happens if there is no bill for
this billing cycle?

Recurring payment can never be triggered for abilling cycle if thereis no bill, or if
the bill’ s balance is negative (recurring payment doesn’t issue credit). For example, a
user setsto pay the bill's amount due on the 15th of each month, and current month is
Oct. The next_pay_date will be set to Oct 15. However, if no bill arrives before Oct
15, then after Oct 15, the next_pay_date will be changed to Nov 15 to ensure that the
bill arrivesit will be paid in the next pay period. Otherwise, the user may end up
paying the Nov bill with Oct pay date.

Will recurring payment make a pay if the balance is negative?

No. Instead, recurring payment assumes that this credit will roll into the balance of
next bill. However, a zero dollar payment will be made if the balance is zero.

Can | set up arecurring payment to pay from multiple payment accounts?
No, you can only pay from one payment account for each recurring payment.

Why does the default recurring payment update Ul limit some options after the
recurring payment is started? For example, it is not possible to switch from "pay on
fixed date" to "pay before due”.

Thelogic to calculate next pay date becomes extremely complicated, soit is
disallowed. If a custom Ul does allow such update, the behavior is undefined.

What happensif my credit card account expires?

The recurring payment won’t schedule a payment. It is then be de-activated and an
email is sent to the user to indicate that he/she needs to update their credit card
account info. In this case, the user must log on to cancel the inactive recurring
payment and create a new one.

Why wasn't my bill scheduled?

Thisisthe most often asked question, but there can be many causes. So here are offer
afew hints to debug this problem. To start, review the recurring payment logic steps
described previously.

First, check whether thisisafalse alarm. A bill can be synchronized, but yet
scheduled. Also check the next_pay_date to see whether it reflects the correct pay
date for the bill.

Payment Developer's Guide | 33

Recurring Payments

14.

15.

16.

17.

If the bill is not even synchronized, check whether it has been indexed;

If indexed, check whether it falls into the synchronization period. Only bills whose
doc date fall between last_process_time and the current time will be considered.

Check whether this bill has valid information. For example, whether its due date,
amount due are valid parse-able strings. A bill with invalid bill info or with negative
balance won't be paid.

Even though thisis avalid hill, it may not still be paid because its due date is before
the due date of the current bill associated with the recurring payment.

Custom plug-ins may be afactor. The custom code may not have been thoroughly
tested, so check the plug-in the code carefully. Especialy if the custom plug-inis
manipulating the bill’ s due date or amount due or recurring payment information
directly.

The bill may not be scheduled because the payment account has been cancelled or
deleted or de-activated.

Will asingle recurring payment failure fail the whole recurring payment job?

It should not, otherwise it’s a bug. If this happens, contact edocs Technical Support.

What is bill id?
It'saunique id used to identify each bill. In the command center, it is the doc id.

What is last process time? What isit used for?

It is the time when the last recurring payment job ran. It is used to ensure that a bill is
only retrieved once from the command center. Payment only retrieves bills indexed
between the last process time and the current time. That is, bills whose doc date >=
last process time and <= current time. Previous versions of Payment also had time
information as part of the last process time, but as of Payment 40, the last process
time only contains date information (because the doc date only contains date
information).

What happensif abill isindexed twice?

Thisissimilar to re-bill. The two bills have the same due dates, but the second
indexing produces alater doc date, or alarger IVN, if they are indexed in the same
day.

If “when to synchronize with eaDirect” is set to “whenever job runs’, thisisatrue re-
bill case, and will be treated as are-bill.

If “when to synchronize with eaDirect” is set to “after current bill is scheduled”, the
second indexed bill will be ignored during next round of synchronization.

34 | Payment Developer's Guide

Payment Plug-ins

Plug-In Customization

The Payment plug-in is a callback, which allows you to add code to extend the
functionality of Payment. There are four plug-ins:

* | AchCheckSubni t Pl ugl n for the ACH cartridge when submitting checksto ACH.

e IVerisignCreditCardSubnt Pl ugl n for the VeriSign cartridge when
submitting credit cardsto VeriSign.

e | Paynent Reni nder Pl ugl n for the job pmtPaymentReminder

* | RecurringPaynent Pl ugl n for the job pmtRecurPayment

For each plug-in, Payment provides a default implementation. We recommend that you
derive your plug-in from the default implementation to ensure that future updates to the
plug-in will not break your code. The plug-ins and sample code are provided in Sample
Plugin Code on page 83.

ACH Check Submit Plug-in

Overview

The ACH cartridge supports a plug-in to modify ACH file generation. When the
pmtCheckSubmit job runs for ACH, it calls the methods of the implementation of

I AchCheckSubni t Pl ugl n (defined in Payment Settings) during numerous events. The
default implementation is AchCheckSubni t Pl ugl n, which does nothing.

Payment Developer's Guide | 35

Payment Plug-ins

The following diagram shows the workflow for the pmtCheckSubmit job plug-in:

pmtCheckSubmit runs

Y

ACH cartridge invoked

IAchCheckSubmitPlugin.
begin

Get a list of checks to
be submitted from the
database

IAchCheckSubmitPlugin.
preWriteFileHeader
Write ACH file header
IAchCheckSubmitPlugin.
preWriteBatchHeader

Write ACH batch header

[y
|

IAchCheckSubmitPlugin.
preWriteCheck

/

Write a check

IAchCheckSubmitPlugin.
postWriteCheck

IAchCheckSubmitPlugin.
preWriteBatchTrailer

y
Write ACH batch trailer
IAchCheckSubmitPlugin.
preWriteFileTrailer
Write ACH file trailer
IAchCheckSubmitPlugin.
finish

Return to
pmtCheckSubmit

Writing a Plug-in

Y ou can use the pmtCheckSubmit plug-in to change the default name of the ACH file,
create aremittance file in addition to the standard ACH file, deny a check or change the
default information put into the ACH file. Y ou need to create your own implementation
to accomplish these tasks. Refer to the Payment SDK JavaDoc for information about
writing an implementation of | AchCheckSubni t Pl ugl n. To create your own
implementation:

1. Deriveyour implementation from the default implementation
AchCheckSubni t Pl ugl n.

2. Overwrite the methods whose behavior you wish to change.

36 | Payment Developer's Guide

Payment Plug-ins

3. When compiling, include Payment_common.jar and Payment_client.jar into your
java classpath.

4. Package this classinto Payment _custom.jar of each EAR file. See Packaging
Payment Custom Code on page 79 for information about redeploying EAR files.

5. Change the Payment Settings to point to your new class.

Using a Plug-in to Write ACH Addenda Records

Y ou can use the pmtCheckSubmit plug-in to write addenda records for ACH. The
implementation called AddendaCheckSubni t Pl ugl n gets the invoice information of a
payment and writes them out as addenda records. Check this classin the JavaDoc for its

implementation details, and then follow the steps in Writing a Plug-in on page 36 to write
your own implementation.

VeriSign Credit Card Payment Plug-in

CreditCardSubmit Plug-in Overview

Unlike the ACH plug-in, the VeriSign credit card plug-in is invoked from both the front
end (when an instant credit card is made) and the back end (when credit card submit job
runs). This plug-in allows you to audit the credit card payment, deny it, or even changes
the HTTP request sent to Verisign HTTP server. Check the API

| Veri si gnCredit Car dSubmi t Pl ugl n for details.

The following diagram shows the workflow of the plug-in when an instant credit card
payment is submitted:

User submits an
instant credit card
payment

| IVerisignCreditCardSubmitPlugin
\ .preAuthorize

Contact Verisign

| IVerisignCreditCardSubmitPlugin
\ .postAuthorize

Display
authorization
result

Payment Developer's Guide | 37

Payment Plug-ins

The following diagram shows the workflow of the plug-in when the
pmtCreditCardSubmit job runs for VeriSign:

pmtCreditCardSubmit runs

Y

Invoke Verisign cartridge

IVerisignCreditCardSubmitPlugin.

\ begin
Get a list of credit cards to be
sumbitted, and for each one:
> IVerisignCreditCardSubmitPlugin.
o PreAuthorize
Y

Send the credit card payment to

Verisign
IVerisignCreditCardSubmitPlugin.
> PostAuthorize
Next
payment

IVerisignCreditCardSubmitPlugin.
finish

y

Return the payment to the
pmtCreditCardSubmit job

Writing a Credit Card Plug-in

The default implementation of | Ver i si gnCr edi t Car dSubmi t Pl ugl n,
Veri si gnCr edi t Car dSubmi t Pl ugl n, just does nothing. To write you own
implementation, you should:

1
2.

Derive your implementation from Ver i si gnCr edi t Car dSubni t Pl ugl n.
Overwrite the methods for which you wish to change the default behavior.

When compiling, include Payment_common.jar and Payment_client.jar in your javac
class path.

Package this classinto Payment_custom.jar of each ear file. For details about how to
do that, see the SDK: Customizing and Deploying Applications document.

Change the Payment Settings of that DDN to use the new plug-in implementation.

38 | Payment Developer's Guide

Payment Reminder Plug-in

Payment Plug-ins

Payment Reminder Plug-in Overview

The payment reminder plug-in is invoked when the pmtPaymentReminder job runs.

pmtPaymentReminder does three things:

regular payment reminders

check status notification

credit card status notification

There are corresponding plug-ins for the preceding tasks. Refer to
com.edocs.payment.tasks.reminder .| PaymentReminder Plugln for details.

The following diagram shows the workflow for the plug-in of the pmtPaymentReminder

job:

pmtPaymentReminder
job runs

v

get list of payment reminders
to be sent

-

IPaymentReminder.
preSendEmailReminder

send email for one reminder

v

get list of check payments to

be notified

-

IPaymentReminder.
preSendEmailCheck

send email for one check

v

get list of credit card payments
to be notified

-

v

IPaymentReminder.
preSendEmailCreditCard

send email for one credit card

v

finish

Payment Developer's Guide | 39

Payment Plug-ins

Creating a pmtPaymentReminder Plug-in

The default plug-in implementation,
com.edocs.payment.tasks.reminder.PaymentReminder Plugln, actually does nothing. To
implement your own plug-in:

1. Derive your implementation class from Paynment Reni nder Pl ugl n.
2. Overwrite the methods for you wish to change behavior.

3. When compiling, include Payment_common.jar and Payment_client.jar in your javac
class path.

4. Package this classinto Payment_custom.jar of each ear file. See the SDK:
Customizing and Deploying Applications document.

5. Update the pmtPaymentReminder job configuration to use the new class.

Recurring Payment Plug-in

Recurring Payment Overview

The recurring payment plug-in is called when the pmtRecurPayment job runs. Y ou can
use this plug-in to prevent a recurring payment from being scheduled based on business
rules. Or, you can extract some indexed fields from the index table and put them into the
payment being scheduled. The implementations:
com.edocs.tasks.payment.recur_payment.RecurringPaymentPluglin, isthe default oneand
it does nothing.

The file SampleRecurringPlugin.java provides an example implementation. See Sample
Recurring Plugin on page 91 for more information.

40 | Payment Developer's Guide

Payment Plug-ins

The following diagram shows the workflow of recurring payment and how the plug-in

works:

pmtRecurPayment runs

/

Find all recurring
payments that need a bill
summary from eaDirect

4
Get summary from
eaDirect for a recurring
payment

4
Insert summary into

payment_bill_summaries
table

IRecurringPaymentPlugin.
prelnsertLatestSummary

Update the payment
database with the bill
summary

IRecurringPaymentPlugin.
preUpdatesSynchronizedRecurring

/
Find all recurring

payments that need to be
scheduled

[
|

IRecurringPaymentPlugin.
preGetLatestSummary

Schedule a payment
(insert into the payment
table) for one recurring

payment

Send email notification

Y

pmtRecurPayment done

Writing a Plug-in

The default plug-in implementation,

IRecurringPaymentPlugin.
preSchedulePayment

IRecurringPaymentPlugin.
preSendMalil

com.edocs.payment.tasks.recur_payment.RecurringPaymentPlugln, does nothing indeed.

To implement your own plug-in:

1. Derive your implementation class from RecurringPaymentPlugin.

2. Overwrite the method that you wish to change behavior of.

Payment Developer's Guide | 41

Payment Plug-ins

3. When compiling, include Payment_common.jar and Payment_client.jar in your javac
class path.

4. Package this classinto Payment_custom.jar of each EAR file. For more information,
see the DK: Customizing and Deploying Applications document.

5. Update the pmtRecurPayment job configuration to use the new class.

Populating Index Fields into Payment Flexible Fields

com.edocs.paymenttasks.recur_payment.SampleRecurringPlugln demonstrates how to
use a plug-in to populate the flexible fields of the payment database (I Check or
| Cr edi t Car d) with the indexed information from the indexer table.

42 | Payment Developer's Guide

Customizing Payment Template Files

Payment provides a template engine to generate Payment-wide text messages, such as
emails, ACH files, and A/R files. This chapter describes how to use Payment templates to
customi ze those text messages.

Understanding the Payment Template Engine

The payment templates provide a generic template mechanism based on Java reflection.
The template engine generates custom text output based on the templates. Similar to JSP,
the template engine replaces the special placeholders inserted into the text file with the
values of Java objects. For more detailed API documentation, see the Payment JavaDoc
included with the SDK.

The Template engine hosts a pool of objectsin its context in the form of a hash table.

Y ou can refer to the variables in that context by their names. For example, thereisa
Check object whose name is “check”. Y ou can refer to that object as: %check%. This
means replace %check% with the string returned from check. t oSt ri ng() . Thisis
true for all Java objects except java.util.Date, where get Ti me() iscaled and inserts a
long value that is the number of milliseconds since January 1, 1970, 00:00:00 GMT. If a
method returns void, then nothing will be printed out.

The content of the message consists of text plus resolved placeholders. Placeholders are
Javavariables, which are Payment hosted objects including their attributes and methods.

For more information about the Template class, see the Payment SDK JavaDoc.

All template variables must be enclosed by two %s. To escape '%', use '%%'. For
example, "%%40" means "%40"

In addition to referring to variables, you can also access an object’s public fields and
methods. The valid reference is: %name.field%, Yoname.method(paraml, param2, ...)%,
where each parameter to a method can be either of name, name.field or
name.method(paraml, paramz, ,,,). The number of parametersis unlimited and an
arbitrary level of method nesting is allowed (nesting means that a method's return value is
used as a parameter when calling another method). For example, suppose there are two
objects in contexts: "buf" which is a StringBuffer, and "str" which isa String. The
following references are valid: %buf%, %buf.append(str)%o,
%buf.append(str.toString()) %.

Payment Developer's Guide | 43

Customizing Payment Template Files

A static field or method can be accessed directly without instantiating an object. For
example, javalang.Integer has a static field called MIN_VALUE and a static method
called parselnt. You can refer to them as %javalang.Integer. MIN_VALUE% or
%java.lang.Integer.parselnt(“ 12.34")%.

All variables must be preset by calling putToContext on the Template class. Some
variables are already set by Payment which you can use directly. But you can also put
your own variables into the context:

% enpl at e. put ToCont ext (“buf”, new java.lang. StringBuffer())%

This meansto put a new StringBuffer object called "buf" into the template context. Y ou
can then refer to this object by its name:

%uf . append(“abc”) %
This appends “abc” to the end of the StringBuffer’s value.

The current payment engine has some limitations. One is that it cannot do math
operations, for example: x +y. You must call a Java method to do math operations.
Another limitation isthat it doesn’t allow you to concatenate method calls, for example:
%variable.method().method() %. Y ou must write your own Java method to do method
concatenation.

Included with the Payment package, there are afew utility classesto help you overcome
the weakness of payment template engine. These classes are:

com edocs. paynment . util . Decimal Uti |
com edocs. paynent. util.DateUti |
com edocs. paynent. util.StringUtil.

One useful method in StringUtil is concat. It is declared and used as follows:

public static String concat(String sl1, String s2, String s3)
%om edocs. paynent. util.StringUil.concat(sl,s2,s3)%

Remember, you cannot do %s1.concat(s2).concat(s3)% inside a template, instead, you
must call this function from template:

%om edocs. paynent. util.StringUil.concat(sl,s2,s3)%

Another useful method is format() from DateUtil class. This method helps format a Date
object into different display formats. For example:
%com.edocs.payment.util.DateUtil.format(*MMM dd, yyyy”, check.getPayDate())%
formats a check’ s pay date to display as “Jan 01, 2000”. For a complete list of possible
date formats, please check the JDK document about java.text.SimpleDateFormat.

When writing customized Java code, we strongly recommend that you use static methods
as frequently as possible, so you can call them directly from atemplate without creating
an instance of that object first. For example, by default, the individual 1D field of an ACH
entry detail field is populated with the customer’ s account number using

% heck. get Payer Acct Nunmber () % The returned result is 16 bytes long, but the actual
account number is 15 bytes, so you must truncate the retrieved value. The following steps
describe how to create ajava class to do truncation, and enable it in the Payment template
engine:

44 | Payment Developer's Guide

Customizing Payment Template Files

1. WriteaJavaclass;

package com edocs. ps;
public class MUl {
public static String truncate(String s){
return s.substring(l);
}

}

2. Compilethe class and put it into Payment_custom.jar of each EAR file, then re-
deploy the EAR files.

3. You can now refer to this classin atemplate as follows:
%om edocs. ps. MyUti | . truncat e(check. get Payer Acct Nunber ()) %

Customizing Email Templates

Payment uses template files to generate customized text that will be sent in anotification
email. The email templates can be customized for you by edocs Professional Services, or
you can customize them yourself. This appendix describes how email template variables
and how they can be customized.

Separate email notification templates are used for:

Type of notification Task that Specifies Template File
Reminder to pay billsand |pmtPaymentReminder paymentReminder .txt
the status of the checks

Enrollment status pmtNotifyEnroll motifyEnroll.txt
Recurring payment was pmtRecurPayment recurringNotify.txt
scheduled

Payment command center |All Payment jobs notifyPaymentTask.txt
job status

Credit card expiration pmtCreditCardExpNotify |CCExpNotify.txt

For Unix, the default path to the email template filesis
$PAYMENT_HOME/lib/payment_resources/.

For Windows, it is:
Y%PAYMENT_HOME%\lib\payment_resources.

The email templates use a simple programming structure that works similar to JSP (but is
not JSP). The template language includes alist of placeholders that refer to Java objects,
which are hosted by Payment. It also includes some simple logic control directives such
as |[F and LOOP.

See the Payment JavaDoc for more information about the Tenpl at e class.

Payment Developer's Guide | 45

Customizing Payment Template Files

Payment Reminder Template

Payment reminder messages are generated based on PaymentReminder.txt, which resides
in $PAYMENT_HOMFE/lib/payment_resources
(%PAYMENT_HOMEY\ib\payment_resources for Windows).

Thistemplate is used for regular payment reminder and email notifications for processed,
returned or failed payments:

%I F i sRem nd>%
Dear % em nder. get Payer|d() %
This email is to rem nd you to pay your current
% em nder . get Payeel d() % s
bill. Please refer to this url to pay your bill:
http://ww. edocs. com
Thanks,
%</ | F>%

%I F i sCheck>%
Dear user % theck. get Payer|d() %

%I F i sPai d>%
%I F! isAntNegative>%

Your check of $%heck. get Ambunt () % has been paid on
Y%dateUtil.format ("MW dd yyyy", check. getPayDate()) %
%</ | F! >%
%I F i sAm Negati ve>%

A credit of $%lecimal Util.absol ute(check. get Amount ()) % has been
i ssued to your check account on %lateUtil.format ("MW dd yyyy",
check. get PayDat e()) %
%</ | F>%
9%/ | F>%

%I F i sRet ur ned>%
%I F! isAnt Negative>%

Your check of $%heck. get Ambunt () % has been returned. The error
nessage is:
%com edocs. paynent. cassette. ach. AchRet ur nCode. get (check. get TxnErr
Msg()) %
%/ | F! >%
%<l F i sAm Negati ve>%

Your request to issue
$%leci mal Uti | . absol ut e(check. get Amount ()) % credit to your check
account has been rejected. The error message is:
%com edocs. paynent . cassette. ach. AchRet ur nCode. get (check. get TxnErr
Msg()) %
%</ | F>%
%</ | F>%

46 | Payment Developer's Guide

Customizing Payment Template Files

%I F isFail ed>%

There is a problemto process your check. The error message is:
Y%check. get TxnErr Msg() %
%</ | F>%

%I F i sCancel ed>%
%<l F! isAnt Negative>%

Your check of $%heck. get Ambunt ()% has been cancel ed by the
paynment system because the check account is not valid. Please
check your enrollnent information.

%</ | Fl >%
%I F i sAm Negati ve>%

Your request to issue
$%leci mal Wil . absol ut e(check. get Amount ())%credit to your check
account has been cancel ed by the paynent system because the check
account is not valid. Please check your enrollnent information.
%</ | F>%

%</ | F>%

%I F i sProcessed>%
%<l F! isAnt Negative>%
Your check of $%heck. get Anount ()% has been sent to bank for
cl eari ng.
%</ 1 F! >%
%I F i sAm Negati ve>%
Your request to issue
$%leci mal Uti | . absol ut e(check. get Amount ()) % credit to your check
account has been sent to bank for clearing.
%</ | F>%
%</ | F>%

9%/ | F>%

%I F i sCCard>%
Dear user %reditcard. getPayerld()%

%I F isSettl ed>%
%I F! isAnt Negative>%
Your credit card paynent of $%reditcard. get Anount ()% has been
aut hori zed successfully.
9%/ | F! >%
%<l F i sAm Negati ve>%
Your request to reverse
$%leci mal Uil . absol ute(creditcard. get Ambunt())%to your credit
card has been authorized successfully.
9%/ | F>%
9%/ | F>%

%I F isFail ed>%
%<l F! isAntNegative>%
Your credit card payment of $%reditcard. get Anount ()% fail ed
aut hori zati on.
The error message is: Y%reditcard. get TxnErrMsg() %
%/ | F! >%

Payment Developer's Guide | 47

Customizing Payment Template Files

%I F i sAm Negati ve>%
Your request to reverse
$%leci mal Uil . absol ute(creditcard. get Ambunt())%to your credit
card failed authorization.
The error nessage is: %reditcard. get TXxnErrMsg() %
%</ | F>%
%</ | F>%

%I F isSystenfail ure>%
%<l F! isAnt Negative>%
Your credit card paynment of $%reditcard. get Amount ()% fail ed.
The error nessage is: %reditcard. get TXxnErrMsg() %
%</ |1 F! >%
%I F i sAm Negati ve>%
Your request to reverse
$%leci mal Uti | . absol ute(creditcard. get Anount())%to your credit
card fail ed.

The error message is: %reditcard. get TxnErrMsg() %

%</ | F>%
%</ | F>%

%I F i sCancel ed>%

%I F! isAnt Negative>%
Your credit card payment $%reditcard. get Ambunt () % has been

cancel ed by the payment system because the account is invalid.

Pl ease check your enroll ment

%</ | F! >%

%Il F i sAm Negati ve>%

Your request to reverse

i nformati on.

$%leci mal Uti | . absol ute(creditcard. get Anount())%to your credit
card has been cancel ed by the paynent system because the account
is invalid. Please check your enrollnent information.

%</ 1 F>%
%</ 1 F>%

%</ | F>%

The following table describes the payment reminder template variables:

Variable Type Description

check | Check The | Check object being notified, valid only when
i sCheck istrue.

creditcard I CreditCard Thel Cr edi t Car d object being notified, valid only
when isCCard istrue.

i sCCard Boolean True meansthisisfor credit card status notification.

i sCheck Boolean True meansthisisfor check status notification.

i sFai | ed Boolean True means the payment has failed to process
(isFailedAuthorize).

i sPaid Boolean True means the check has been paid or cleared.

i sProcessed Boolean True means the check has been processed.

48 | Payment Developer's Guide

Customizing Payment Template Files

Variable Type Description

i sRem nded Boolean True meansthisisfor regular payment reminders.
i SRet ur ned Boolean True means the check has been returned.
isSettled Boolean True means the credit card has been settled.

i sSystentail ure

Boolean

True means there has been a system error. For
example, a network failure.

rem nder

| Paynent Remi nder

Thel Payment Rem nder object being reminded,
valid only wheni sRem nded istrue.

Enrollment Notification Template

The enrollment notification template notifies customers about "active "and "bad-active"
payment accounts and NOC returns. Enrollment reminder messages are generated based
on enrolINotify.txt:

Dear %theckAccount. get Userld() %

%<l F i SACH>%
%< F success>%

Your paynment account
been succesfully activated.

%</ | F>%

%I F! success>%
There has been a problem activating your paynent account
%¢heckAccount . get Account Nurrber () %
The return reason code is: %orrCode%

%</ | F! >%
%</ | F>%

%I F i sSNOC%
%I F i sC01>%

%<l F i sAut

oUpdat e>%

Your Bank Account Nunber
New Bank Account Nunber

ad d Bank Account

9%/ | F>%

%I F! isAut oUpdat e>%

Your cur

rent Bank Account

New Bank Account Nunber

Current

%</ | F! >%
%</ | F>%

%checkAccount . get Account Nunber () % has

has been changed.

i s: %mewPaynent Account %
Nunber was: %ol dPaynent Account %

Nunber is out of date.

is: Y%mewPaynment Account %

Bank Account Nunber is: %l dPaynent Account %
Pl ease | ogin to change your profile.

Payment Developer's Guide | 49

Customizing Payment Template Files

%I F i sC02>%

%<l F i sAut oUpdat e>%
Your Bank Routing Nunber has been changed.
New Bank Routing Number is: %mewRouti ng%
A d Bank Routing Number was: %ol dRouti ng%

%</ | F>%

%<l F! i sAut oUpdat e>%
Your current Bank Routing Nunmber is out of date.
New Bank Routing Number is: %mewRouti ng%
Current Bank Routing Nunmber is: %ol dRouti ng%
Pl ease | ogin to change your profile.

%</ 1 Fl >%

%</ | F>%

%I F i sC0O3>%

%<l F i sAut oUpdat e>%
Your Bank Account I|nfornmation has been changed.
New Bank Account Nunber is: %ewPaynent Account %
A d Bank Account Number was: %ol dPaynent Account %
New Bank Routing Number is: %mewRouti ng%
A d Bank Routing Number was: %ol dRouti ng%

%</ | F>%

%<l F! i sAut oUpdat e>%
Your current Bank Account Information is out of date.
New Bank Account Number is: %mewPayment Account %
Current Bank Account Nunber was: %ol dPayment Account %
New Bank Routing Nunber is: %ewRouti ng%
Current Bank Routing Nunmber is: %ol dRouti ng%
Pl ease | ogin to change your profile.

%/ | F! >%

%</ | F>%

%I F i sC05>%

%<l F i sAut oUpdat e>%
Your Bank Account |nformation has been changed.
Your new Bank Type is Y%mewPaynent Type%
Your ol d Bank Type was %ol dPaynent Type%

%</ | F>%

%<l F! isAut oUpdat e>%
Your current Bank Account Type is out of date.
Your new Bank Type is Y%mewPaynent Type%
Your current Bank Type is %0l dPaynment Type%
Pl ease | ogin to change your profile.

%</ | F! >%

%</ | F>%

%I F i sC06>%

%<l F i sAut oUpdat e>%
Your Bank Account |nfornmation has been changed.
New Bank Account Nunber is: %mewPaynent Account %
A d Bank Account Number was: %ol dPaynent Account %
Your new Bank Type is Y%mewPaynent Type%
Your ol d Bank Type was %ol dPaynent Type%

%</ | F>%

%<l F! isAut oUpdat e>%
Your current Bank Account Information is out of date.
New Bank Account Number is: %mewPayment Account %
current Bank Account Nunber is: %ol dPaynent Account %
New Bank Type is %mewPaynment Type%
Current Bank Type is %l dPaynent Type%

50 | Payment Developer's Guide

Customizing Payment Template Files

Pl ease | ogin to change your profile.

%</ | Fl >%

%</ | F>%

%I F i sCO7>%

%<l F i sAut oUpdat e>%
Your Bank Account |nfornmation has been changed.
New Bank Account Nunber is: %mewPaynent Account %
A d Bank Account Number was: %ol dPaynent Account %
New Bank Routing Number is: %mewRouti ng%
A d Bank Routing Number was: %ol dRouti ng%
Your new Bank Type is Y%mewPaynent Type%
Your ol d Bank Type was %ol dPaynent Type%

%</ | F>%

%I F! isAut oUpdat e>%
Your current Bank Account Information is out of date.
New Bank Account Nunber is: %ewPaynent Account %
Current Bank Account Nunmber is: %ol dPaynent Account %
New Bank Routing Number is: %mewRouti ng%
Current Bank Routing Nunmber is: %ol dRouti ng% <>
New Bank Type is %mewPaynment Type%
Current Bank Type is %l dPaynent Type%
Pl ease | ogin to change your profile.

%</ 1 F! >%

%</ | F>%

%</ | F>%

%I F i sCDP>%
%I F success>%
Your payment account %heckAccount. get Account Nurber () % has
been succesfully activated.
9%/ | F>%
%I F! success>%

There has been a problem activating your paynment account
%checkAccount . get Account Nurber () % Pl ease contact your
custoner service representative for further assistance.

%</ | F! >%
9%/ | F>%

Thistemplate is used for both ACH and Checkfree CDP. The text between %I F

i sACH>%and the corresponding %</ | F>%is for ACH. The text between %I F i sCDP>%
and the corresponding %</ | F>%is for Checkfree. If there are no payment gateways for
Checkfree or for ACH, you can remove that section from the templatefile.

Each payment account will be sent an individual email. Payment supports multiple
payment accounts, so there may be more than one email sent out for each customer (if
that customer has multiple payment accounts).

The following tableslist the variables available for use in the Enrollment Notification
email template. Thefirst table isfor ACH, the second tableisfor ACH NOC returns, and
the third table is for Checkfree CDP

Payment Developer's Guide | 51

Customizing Payment Template Files

The following variables apply to all the cases:

Variable Type Description

checkAccount | CheckAccount The current check account being notified

templ ate Templ at e The Payment template engine, which is
used to declare new variables for the
template.

config | Payment Confi g |Payment setting information, whichis
configured from the Command Center.

The following variables apply to ACH:

ACH Variable |Type Description

i SACH boolean Trueindicates thisis an ACH notification.

success boolean Success means this account has been activated
successfully.

err Code String ACH return code, if the transaction failed.

The following variables apply to ACH NOC returns:

ACH NOC Variable Type

Description

i SNOC boolean |Trueindicatesthisisan NOC return.

i sC01, isC02, boolean |Trueindicates the returned NOC code(s).
i sC03, isCo5,

i sC06, isC07

i sAut oUpdat e boolean |Returnsthe state of the

com.edocs.payment.cassette
.ach.autoUpdatNOC flag, which is configured
on the Payment Settings page from the Command
Center.

newPaynment Account |String

New payment account number.

ol dPaynent Account |String

Old payment account number.

newRout i ng String New payment routing number.
ol dRout i ng String Old payment routing number.
newPayment Type String New payment account type.

ol dPaynment Type String Old payment account type.

The following variables apply to Checkfree CDP:

CDP Variable |[Type Description
i sCDP Boolean True indicate thisis a Checkfree CDP notification.
success Boolean True indicates this account has been activated

successfully.

52 | Payment Developer's Guide

Customizing Payment Template Files

Recurring Payment Scheduled Notification Template

When recurring payment schedules a payment, email notification messages are generated
from the template file recurringNotify.txt:

Dear % ecurri ngPaynent. get Payerld() %
%I F i sPayment Schedul ed>
%I F i sCheck>%

This email is to informyou a check paynent has been
schedul ed autonmatically for you.

The check amount is $Y%paynent. get Anount ()% The pay date is
Y%dateUtil.format (" MV dd/ yyyy", payment. getPayDate()) %

%</ | F>%
%I F i sCCar d>%
This email is to informyou a credit card paynent has

been schedul ed automatically for you.

The check amount is $Y%paynent. get Amount ()% The pay date is
Y%dateUtil.format (" MV dd/ yyyy", payment. getPayDate()) %

%</ | F>%'M

You can update or cancel this transaction follow ng
this URL http://ww. edocs. com

%</ | F>%
%I F i sPayment Not Schedul ed>%
Dear % ecurri ngPaynent. get Payerld() %

This email is to informyou that your recurring
paynment schedul ed on %ateUtil.fornat (" MM dd/yyyy",
recurringPayment. get Next PayDate()) % i s not made as requested.
Pl ease contact your biller for detail.

%</ | F>%
%I F i sLessPaynent >%
Dear % ecurri ngPaynent. get Payerld() %

This email is to informyou that the anpbunt due
$% ecur ri ngPaynent . getBi | | Amount Due() % is nore than the
maxi mal amount, $% ecurringPaynment. get Anount ()% specified in
the recurring paynent.

The bill is not paid by recurring paynent.
%</ | F>%

%I F isAl readyPai d>%

Dear % ecurri ngPaynent. get Payer|d() %

The bill, due on %lateUtil.fornat (" VWM dd/yyyy"
recurringPaynment.getBill DueDate())% is not paid

by recurring payment because it is already been paid.
9%/ | F>%

%<l F i sLast RecurringPaynment >%

Payment Developer's Guide | 53

Customizing Payment Template Files

This is the | ast

%</ | F>%

%I F i sRecurri ngPaynent Cancel ed>%

This emni |

due to your account status,

schedul ed.

paynment fromthe recurring payment.

is to informyou that your recurring
paynment schedul e has been deacti vat ed,

and no paynents have been

Pl ease contact your biller for further details.

%</ | F>%

Nunber of paynents nade until

% ecurri ngPayment . get Curr NunPayment () %

The recurring notification template variables are:

now i s

Variable Name

Type

Description

recurri ngPayment

| Recur ri ngPaynent

Contains recurring payment
information and current bill
information paid by this recurring
payment, when applicable. Bill
information is null if the amount

and pay date are both fixed.

i sPaynent Schedul ed Boolean Trueif apayment has been
scheduled.

i sCheck Boolean Trueif the payment scheduled isa
check.

i sCCard Boolean Trueif the payment scheduled isa
credit card.

payment | Paynent Tr ansaction || Check ifi sCheck istrueor

| CreditCardifisCCardis
true. Thisis the payment being
scheduled.

i sPaynent Not Schedul ed

Boolean

True if the payment is not
scheduled for some reason.
Usually thisis because a payment
job plug-in rejected the payment
based on a customer business
rule.

i sLessPaynent

Boolean

Trueif the amount due is less than
acertain amount, but the amount
due is more than that. Notify the
customer to pay manually.

i sAl readyPai d

Boolean

True when Payment finds a
DuplicateBillldExceptio
n during the insertion of a
payment into database.

i sLast Recurri ngPaynent

Boolean

True if thisis the last payment.

54 | Payment Developer's Guide

Customizing Payment Template Files

Variable Name

Type

Description

i sRecurri ngPaynent Cancel | ed

Boolean

True if the recurring payment is
cancelled. For example, if the
payment account is cancelled. See
the job configuration for details.

Payment Notification Template

Thistemplate controls the format of emails that are sent to the administrator by each job.

The template file is notifyPaymentTask.txt:

U<l F i sOK>%

% askName% was done wi t hout error
%dateUtil.format (" MV dd/yyyy HH nm ss",

</ | F>%
U<l F! i sOK>%

% askName% was done with an error
Y%dateUtil.format (" MV dd/yyyy HH nm ss”,
% askExcepti on. get Message() %

error nmessage is :
%</ | F! >%

current Ti ne) %

currentTinme) % The

%<l F ski pSynchroni zati on>%

As Skip SynchronizationTask setting is set to YES, The
Synchroni zati on Task was ski pped
%</ | F>%

%I F recurringPm SyncTask>%
%I F i sDone>%

Job Nane : % obNanme%

Total Number of RecurringPayments to be synchronized :
Y%syncCount %

Total Number of RecurringPayments that are synchronized
Successfully : %yncSuccessCount %

Total Number of Recurring Paynents that failed to
synchroni ze : %yncFai |l ureCount %
9%/ | F>%
%I F! i sDone>%

Pl ease | ook at the audit tables for detail.

Job Nane : % obNane%

Total Number of RecurringPayments to be synchronized :
Y%syncCount %

Total Number of RecurringPaynents that are synchroni zed
Successfully : %syncSuccessCount %

Total Number of Recurring Paynents that failed to
synchroni ze : %yncFai |l ur eCount %

%</ | F! >%
9%/ | F>%

Payment Developer's Guide | 55

Customizing Payment Template Files

%I F recurringPnt Schedul er Task>%
%I F i sDone>%

Job Nane : % obNane%

Total Number of RecurringPayments to be schedul ed :
%schedul eCount %

Total Number of RecurringPaynents that are schedul ed
Successfully : % chedul eSuccessCount %

Total Number of Recurring Paynments that failed to be
schedul ed : Y%schedul eFai | ur eCount %

%I F i sDecryptFail ed>%

Total Number of Recurring Paynents cancelled due to
decryption failure : 9%Cancel Count %

</ | F>%
U</ | F>%
%I F! i sDone>%
Pl ease | ook at the audit tables for detail.

Job Nane : % obNane%

Total Nunmber of RecurringPaynents to be schedul ed
%schedul eCount %

Total Number of RecurringPayments that are schedul ed
Successfully : %chedul eSuccessCount %

Total Number of Recurring Paynments that failed to be
schedul ed : %schedul eFai | ur eCount %

%I F i sDecryptFai |l ed>%

Total Number of Recurring Paynments cancelled due to
decryption failure : %Cancel Count %

%</ | F>%
%</ | F! >%
9%/ | F>%

%<l F payment Remi nder Task>%
%I F i sDone>%

Job Nane : % obNanme%

Total Number of Good Check Paynent notifications :
%goodCheckPayment sCount %

Total Nunmber of Check Payment notifications failed due to
decryption failure : %adCheckPaynent sCount %

Total Nunmber of Good CreditCard Paynent notifications :
%goodCCPaynent sCount %
Total Number of CreditCard Paynent notifications failed due
to decryption failure : % adCCPaynment sCount %
%</ | F>%
%</ | F>%

%<l F CreditCardExpNotifyTask>%
%<1 F i sDone>%
Job Nane : % obNane%

Total Nunmber of CreditCard expiration notifications to be
processed : %cexpNoti fyCount %

56 | Payment Developer's Guide

Customizing Payment Template Files

Total Number of CreditCard expiration notifications that
are processed Successfully : %cexpNotifySuccessCount %

Total Number of CreditCard expiration notifications that
are failed : % cexpNotifyFail ureCount %

Tot al Nunber of Good CreditCard notifications :
%goodCCAccount Count %
Total Number of Bad CreditCard notifications
%%adCCAccount Count %
U</ | F>%
U</ | F>%

%<l F CheckSubmi t Task>%
%I F i sDone>%
Job Nane : % obNane%
%I F i sHol i day>%
This job was not run since today
(Y%dateltil.format (" MM dd/yyyy", todayDate)% is a holiday.
%</ | F>%
%I F i sDecryptFail ed>%
Wil e running the job, there were account decryption
fail ures.
%</ | F>%
%</ | F>%
%</ | F>%

%<l F Submi t Enrol | Task>%
%I F i sDone>%
Job Nane : % obNane%
%I F i sHol i day>%
This job was not run since today
(Y%dateltil.format (" MV dd/yyyy", todayDate)% is a holiday.
%</ | F>%

%I F i sDecryptFail ed>%
Wil e running the job, there were account decryption
failures.
%</ | F>%
%</ | F>%
%</ | F>%

%I F CreditCardSubm t Task>%
%I F i sDone>%

Job Nane : % obNane%

%I F i sDecryptFail ed>%

Wil e running the job, there were account decryption

fail ures.

%</ | F>%
%</ | F>%
%</ | F>%

Payment Developer's Guide | 57

Customizing Payment Template Files

pmtCreditCardExpNotify Variables

The payment notification template variables related to pmtCreditCardExpNotifiy are:

Variable Value type Description

CreditCardExpNotifyTask [String Identifies the credit card expiration
notification task.

isDone Boolean (true or false) |Identifiesthe job had done.

jobName String I dentifies the job name.

ccexpNotifyCount int Total number of notifications to be made.

ccexpNotifySuccessCount |int Successful number of accounts.

ccexpNotifyFailureCount int Failed number of accounts.

goodCCA ccountCount int Number of good credit card accounts (due
to decryption).

badCCA ccountCount int Number of bad credit card accounts (dueto
decryption).

Example:

%I F recurringPm SyncTask>%
%<l F ski pSynchroni zati on>%

As Skip SynchronizationTask setting is set to YES, The
Synchroni zati on Task was ski pped
%</ | F>%
%< F i sDone>%

Job Nane : % obNane%

Total Number of RecurringPaynments to be synchronized :
Y%syncCount %

Total Number of RecurringPayments that are synchronized
Successfully : %yncSuccessCount %

Total Number of Recurring Paynents that failed to
synchroni ze : %yncFai |l ureCount %
%</ | F>%
%I F! i sDone>%

Pl ease | ook at the audit tables for detail.

Job Nane : % obNane%

Total Number of RecurringPaynments to be synchronized :
Y%syncCount %

Total Nunmber of RecurringPaynents that are synchronized
Successfully : %yncSuccessCount %

Total Number of Recurring Paynents that failed to
synchroni ze : %yncFai |l ureCount %

%</ | F! >%
9%/ | F>%

58 | Payment Developer's Guide

pmtRecurringPayment Variables

Customizing Payment Template Files

The recurring notification template variables for the synchronization task are:

Recurring Synch
Variable

Type

Description

skipSynchronization

Boolean (true or false)

True enables the skip synchronization option.

recurringPmtSyncTask

Boolean (true or false)

True identifies this as the recurring payment
task.

isDone Boolean (true or false) |Trueindicates that thejob is done.

jobName String The job name.

syncCount int Total number of accounts to be synchronized.
syncSuccessCount int Successful number of synchronized accounts.
syncFailureCount int Number of failed of synchronized accounts.

Example:

%I F recurringPm SyncTask>%
%<l F ski pSynchroni zati on>%

As Skip SynchronizationTask setting is set to YES, The
Synchroni zati on Task was ski pped

%</ | F>%

%<l F i sDone>%

Job Nane :
Tot al
Y%syncCount %
Tot al

% obNane%

Nunmber of RecurringPaynments to be synchronized :

Nunber of RecurringPaynments that are synchronized
Successful ly :

%syncSuccessCount %

Nunber of Recurring Paynents that failed to

Tot al
synchroni ze : %yncFai |l ureCount %
%</ | F>%
%I F! isDone>%

Pl ease | ook at the audit tables for
% obNane%
Nunber of RecurringPaynments to be synchronized :

Job Nane :
Tot al
Y%syncCount %
Tot al

Tot al
synchroni ze :
%</ 1 F! >%
%</ | F>%

detail .

Nunber of RecurringPaynments that are synchronized
Successful ly :

%syncSuccessCount %

Nunber of Recurring Paynents that failed to
%syncFai | ureCount %

The recurring notification template variables for the scheduler task are:

Recurring Scheduler Type Description
Variable
recurringPmtSchedulerTask [String | dentifies the scheduler task.

isDone

Boolean (true or false)

To identify the job had done.

Payment Developer's Guide | 59

Customizing Payment Template Files

Recurring Scheduler Type Description

Variable

jobName String To identify the job name.

schedul eCount Int Total number of accounts to be
scheduled

schedul eSuccessCount Int Successful number of scheduled
accounts

schedul eFailureCount Int Failed number of scheduled accounts

Cancel Count Int Cancelled number of scheduled
accounts

isDecryptFailed Boolean value (true or To identify whether there was/were

fase) decryption failure/s
Example:

%I F recurringPm SyncTask>%
%<l F ski pSynchroni zati on>%

As Skip SynchronizationTask setting is set to YES, The
Synchroni zati on Task was ski pped
9%/ | F>%
%I F i sDone>%

Job Nane : % obNane%

Total Number of RecurringPaynments to be synchronized :
Y%syncCount %

Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount %

Total Number of Recurring Paynents that failed to
synchroni ze : %yncFai |l ureCount %
9%/ | F>%
%I F! isDone>%

Pl ease | ook at the audit tables for detail.

Job Nane : % obNanme%

Total Number of RecurringPaynments to be synchronized :
Y%syncCount %

Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount %

Total Number of Recurring Paynents that failed to
synchroni ze : %yncFai |l ureCount %
9%/ | F! >%
9%/ | F>%

pmtPaymentReminder Variables

Reminder Variable Type Description

paymentReminderTask String Identifies the payment reminder task.
isDone Boolean (true or false) |(Identifiesthejob isdone.

jobName String I dentifies the job name.
goodCheckPaymentsCount |Int Number of successful check accounts.

60 | Payment Developer's Guide

Customizing Payment Template Files

Reminder Variable Type Description

badCheckPaymentsCount Int Number of failed check accounts
goodCCPaymentsCount Int Number of successful credit card accounts.
badCCPaymentsCount int Number of failed credit card accounts.
Example:

%<l F paynment Rem nder Task>%

%I F i sDone>%

Job Nane : % obNane%

Total Number of Good Check Paynent notifications :
%goodCheckPayment sCount %

Total Number of Check Paynent

decryption failure :

notifications failed due to
%adCheckPaynent sCount %

Total Number of Good CreditCard Paynent notifications :
%goodCCPayment sCount %
Total Number of CreditCard Paynent notifications failed due

to decryption failure :

%</ 1 F>%
%</ | F>%

pmtCreditCardExpNotify Variables

%badCCPaynent sCount %

CCExpNotify Variable Type Description

CreditCardExpNotifyTask [String Identifies the credit card expiration
notification task.

isDone Boolean (true or false) |ldentifiesthejob isdone.

jobName String I dentifies the job name.

ccexpNotifyCount int Total number of notifications to be made

ccexpNotifySuccessCount |int Number of successful accounts.

ccexpNotifyFailureCount int Number of failed accounts.

goodCCA ccountCount int Number of good credit card accounts (due
to successful decryption).

badCCA ccountCount int Number of bad credit card accounts (dueto
unsuccessful decryption).

Example:

Payment Developer's Guide | 61

Customizing Payment Template Files

%<IF CreditCardExpNotifyTask>%

%-<IF isDone>%

Job Name : %jobName%

Total Number of CreditCard expiration notifications to be processed :
%ccexpNotifyCount%
Total Number of CreditCard expiration notifications that are processed

Successfully : %ccexpNotifySuccessCount%

Total Number of CreditCard expiration notifications that are failed :
%ccexpNotifyFailureCount%

Total Number of Good CreditCard notifications : %goodCCA ccountCount%
Total Number of Bad CreditCard notifications : %badCCA ccountCount%

%</IF>%
%</IF>%

pmtCheckSubmit Variables

Check Submit Type Description

Variable

CheckSubmitTask Boolean value (true or I dentifies the check submit task
false)

isDone Boolean (true or false) Identifies the job had done.

jobName String I dentifies the job name.

isHoliday Boolean value (true or Identifies a holiday.
false)

dateUtil DateUtil object Format of the expiration date.

isDecryptFailed Boolean value (true or I dentifies whether there was/were decryption
false) failure/s.

Example:

%<l F CheckSubm t Task>%
%I F i sDone>%

Job Nane :

% obNane%

%I F isHol i day>%

(Y%dateUtil . format (" MV dd/yyyy",

This job was not

9%/ | F>%
%I F isDecryptFailed >%

failures.

VWil e running the job,

9%/ | F>%

9%/ | F>%
%</ | F>%

62 | Payment Developer's Guide

run since today

todayDate)% is a holiday.

there were account decryption

pmtSubmitEnroll

Customizing Payment Template Files

Submit Ernoll Type Description
Variable
SubmitEnroll Task String | dentifies the submit enroll task

isDone Boolean (true or false) I dentifies the job had done.

jobName String I dentifies the job name.

isHoliday Boolean value (true or Identifies a holiday.
false)

isDecryptFailed Boolean value (true or | dentifies whether there was/were decryption
fase) failure/s.

Example:

%<l F Subm t Enrol | Task>%
%<l F i sDone>%

Job Nane :

% obNane%

%I F i sHol i day>%

This job was not
(Ydateltil . format (" MV dd/yyyy",

%</ | F>%

%I F i sDecryptFail ed>%

VWil e running the job,

failures.
o</ | F>%
U</ | F>%
U</ | F>%

run since today

todayDate)% is a holiday.

there were account decryption

Credit Card Expiration Notification Template

When a credit card is about to expire, email notification messages are generated from the
template file CCExpNotify.txt:

Dear %account. get Userld() %

This emni |
t he account

%I F!

is to renmnd you that your credit card which has

accExpi red>%

nunber %account. get ShorttenedAccNunber () %

is about to expire in %ateltil.format ("MW yyyy",
account . get ExpireDate ())%

%</ | F! >%

%<l F accExpired>%

has expired in %dateUtil.formt ("MW yyyy",
account . get Expi reDate()) %

9%/ | F>%

Pl ease login to the Paynent system and update the credit card

i nformati on.

Payment Developer's Guide | 63

Customizing Payment Template Files

Thanks

The credit card expiration notification template variables are:

variable Valuetype Description

accExpired |Boolean value (true or false) |Identify whether the account is expired or not

account | CreditCardAccount object |Object of | CreditCardAccount that has the
information about the account

Customizing ACH Templates

The ACH records of interest arein File Header, Batch Header, Entry Detail for PPD,
Addenda and return for PPD, Batch Trailer and File Trailer. ACH fields may be
mandatory, required, or optional. The contents of mandatory fields are fixed and should
not be customized. Required fields are usually defined by the receiving bank, and may be
customized for different banks. Optional fields can be customized, also.

By default, secCode is set to WEB to be compliant with the ACH 2001 format. However,
you can change the SEC code based on the requirements of abiller’s bank by editing the
batchHeader_template.xml file.

Thefollowing tableis alist of some ACH fields. The ACH fields can be customized
upon a billers' request. The pmtCheckSubmit jobs running date is referred to as T oday.

Field Name Where Description
Company Descriptive |8" field in batch Default set to Today; the date that
Date header, optional pmtCheckSubmit is running.

Effective Entry Date 9" field in batch, The date when checksin the batches need to be
required cleared. Thisis a suggested date from ACH, but
the actual date that checks are cleared may vary.
All checks with the same pay date will be put into
one batch. The effective entry date may not
always be the pay date. The default setting for
effective entry date is: If the pay dateis
tomorrow or earlier, then it isthe earliest
business date after today. If the pay date is after
tomorrow, then it is the earliest business date
after the pay date (including the pay date).

Individual 1D 7" field in PPD entry |By default set to the customer’ s account with the
detail, optional or biller. Since thisfield is 15 bytes, the length of
required customer’saccount must not exceed 15 bytes.

If the customer account islonger than 15 bytes,
either the field will not be populated, or you must
truncate this field using Java code or the Java
classes provided by Payment.

Individual Name 8" field in PPD entry |By defauilt set to the check’s payment ID.
detail. Required Payment ID is the primary key on the

check paymentstable. It can be used to map a
returned check back to the onein Payment
database.

64 | Payment Developer's Guide

Customizing Payment Template Files

The templates for ACH are actually XML files, which describe the format of each ACH
record, such asthe start position, length, etc. There are two sets of templates: one to
generate ACH files, and another to parse ACH return files.

Thefirst set of templatesis used to generate ACH files. They are
fileHeader_template.xml, batchHeader _template.xml, entryDetail_template.xml,
batchTrailer_template.xml andTrailer_templatexml. When an ACH file is generated,
check information is pulled from the database and then popul ated into the content of the
XML files by replacing the template variables. The resulting XML fileistransferred into
an ACH file according to the format specified by the XML tags. The generic format of an
XML tagis:

<ampunt pos="30" len="10" fnt="N' fract="2">%

where;

amount isthe name of the tag

pos isthe start position

| en isthe length of the field

f m istheformat of the field

f ract isthe number of digits after decimal point if thefmtis“N” (numerical).

The tables below list the template variables that are predefined in the Payment template
engine. These variables are used to populate the content of the templates.

The following template variables are used by all templates:

Global Variable [Type Description

Name

template com.edocs.util.template. The template engine.
Template

stringUtil com.edocs.payment. Makes calling the static methods of
util.SringUtil SringUtil easier. Instead of using:

%om edocs. paynent. util.
StringWil.concat(“a”,”b",”

c”) Y%use:
%stringUtil.concat(“a”,
“b”, “c”)%
decimal Util com.edocs.payment. Provides decimal number
util.Decimal Util manipulations.
dateUtil com.edocs.payment. Provides date manipulation methods
util.DateUtil Also acalendar, which includes all US
holidays.
batch com.edocs.payment. The payment summary report, which
| PaymentBatch you can view through the Command
Center.

Payment Developer's Guide | 65

Customizing Payment Template Files

Global Variable [Type Description
Name
config com.edocs.payment. Payment setting information.

config.IPaymentConfig

attributeName com.edocs.payment.

config.AttributeName

Payment setting parameter names, Use it
with the variable conf i g to get
payment setting information.

The following template variables are used by File Header :

Variable Name (Type Description

fileCreateDate java.util.Date Creation date of the ACH file.
fileCreateTime java.util.Date Creation time of the ACH file.

fileldModifier javalang.String |ACH file modifier, “A” to “Z” and “0" to “9".

The following template variables are used by Batch Header:

Variable Name Type Description

curPayDate java.util.Date |The pay date of checks in the batch. All the
checksin the same batch have the same pay
date.

companyDescData String From Payment Settings.

companyDescDate Date Defaultsto Today. To use another date, you
must call a static Java method.

batchNumber int Starts from “1”; identifies the batches in the
ACH.

batchEffectiveEntryDate |Date | dentifies the batches in the ACH.

The following template variables are used by Entry Detail:

Variable Name Type Description

check com.edocs. All check payment information, including
payment.| Check the trace number.

addenda int Indicates whether there is addenda record

Record for entry detail. 0=No; 1=Yes.

Indicator

The following template variables are used

by Batch Trailer:

Variable Name

Type

Description

batchEntryHash

String

See the ACH documentation.

batchEntryAddendaCount int

Number of entries in the batch.

batchDebitAmount

String

Total debit amount in the batch.

66 | Payment Developer's Guide

Customizing Payment Template Files

Variable Name Type Description

batchCreditAmount String Always*“0".

Template variables used by Batch Trailer:

Variable Name Type Description

batchCount int Number of batchesin thefile.
blockCount int See the ACH documentation.
totalEntryHash String See the ACH documentation.

total EntryAddendaCount int Total number of entriesin thefile
total DebitAmount String Total debit amount in thefile.

Matching a Check in the ACH Return to the Database

Return files are parsed by the return templates, fileHeader_return_template.xml,
batchHeader return_template.xml, entryDetail _return_template.xml,
addenda_return_template.xml, batchTrailer_return_template.xml and
fileTrailer_return_template.xml. The format of these filesis similar to the format of the
submit templates described previously. For example:

<i ndi vi dual Name pos="55" |en="22" fnt="AN'
target ="%heck. set Payment | d(?) % ></ i ndi vi dual Nane>

retrieves the part of the text from positions 55 to 77, puts them into avariable called “?’
and then callscheck. set Paynent | d() to set payment_id for the check. The
template executes the template statement specified by XML tag “target” only.

When a check is returned from the ACH network, Payment matches it to that check in the
database and marksit as returned. ACH modifies several fieldsin the return file. Payment
populates one or more unchanged fields with identification information to help in
matching them back to a check in the database. Consult the ACH documentation for
information about which fields are not changed.

The return template does two things. First, it retrieves the error return code from the
addenda record, and then tries to reconstruct the payment ID or gateway payment ID to
match a check in the database. If Payment cannot populate the payment 1D into the ACH
file, it uses the gateway payment 1D, which is a concatenation of afew check payment
fields that can identify a check. The procedure is described in the following steps:

By default, Payment populates the payment_id of the check into the individual namefield
to create the ACH file. The following linein entryDetail_template.xml populates the
payment ID into an individual name:

<i ndi vi dual Name pos="55" | en="22"
fnt =" AN'>%heck. get Paynent | d() %</ i ndi vi dual Nane>
Thefollowing line in entryDetail _return_template.xml extracts the payment id:

< individual Name pos="55" |en="22" fnt="AN'
t ar get =" %heck. set Paynent | d(?) % ></i ndi vi dual Nane >

Payment Developer's Guide | 67

Customizing Payment Template Files

Thefollowing linein addenda return_template.xml extracts the return error code:

<r et ur nReasonCode pos="4" |en="3"
target ="%heck. set TxnErr Msg(?) % ></r et ur nReasonCode>

Payment then changes the status of the check to "returned" and updates this check in the
database using its payment_id.

If the individual name is required for something else, for example the check account
name (which is the first 22 bytes), then following these steps to use gateway payment id:

1. Modify entryDetail _template.xml to populate individual name with account name.
Change:

<i ndi vi dual Name pos="55" | en="22"
fm =" AN'>%heck. get Paynent | d() %/ i ndi vi dual Nane>

to:

<i ndi vi dual Name pos="55" | en="22"
fnt="AN'>%tringUil.substring(check.get Account Name(), O,
22) %/ i ndi vi dual Name>

2. Modify entryDetail_return_template.xml so that payment ID won't be set for a
returned check. Change:

<i ndi vi dual Name pos="55" |en="22" fnt="AN'
target =" %¢heck. set Paynenl d(?) % ></i ndi vi dual Name>

to:
<i ndi vi dual Nanme pos="55" |en="22" fm ="AN'></indi vi dual Nane>

3. Since payment ID cannot be used to match checks, we can use gateway payment ID
instead. Gateway payment 1D isthe ID generated by the template that submitted the
ACH fileto ACH. Thistemplate generates a unique 1D based on the information
submitted to ACH. This ID must contain information that won’t be changed by ACH
in the return file. The Payment engine will use the gateway payment ID to find a
match in the database.

In very rare circumstances, more than one match may be found. In that case, the match
with the latest creation time is used. The following exampl e discusses several ways to
generate the gateway payment 1D.

Payment generates atrace number and puts that into the entry detail record. By default,
the trace number starts at 0000000 and increases by one for each check until it reaches
9999999. After this point, the numbering restarts at 0000000. It's possible to get a
duplicate trace number (after 10 million checks). However, since the Payment engine
always chooses the payment with the latest date, the correct check will be matched. Y ou
can use both the trace number and individual 1D (customer account number) to identify a
payment and use them for the gateway payment ID.

68 | Payment Developer's Guide

Customizing Payment Template Files

Example 1: unchanged ACH trace number

In the following example, we assume that the ACH/Bank will return both original trace
number and individual ID to Payment. To do that:

1.

At the start of entryDetail _template.xml, see the section:

<ACH_6>

%<* >%

% heck. set Gat ewayPaymnent | d(com edocs. paynent . util. StringUtil.c
oncat (check. get Payer Acct Nunber (), "_", check. get TxnNunber ())) %
U</ *>%

This statement is commented out in the template, using %<*>% and %</*>%.
Removing the comment tags enabl es the statement.

The trace number is stored as txnNumber in the check object. This statement
concatenates the customer account number, a“_", and trace number as the gateway
payment ID. Theset Gat ewayPaynent | d method returns void, so nothing will
print out. (If it did return a value, then that would print, which would ruin the format
of the XML file.) After running pmtCheckSubmit, check the gateway payment ID in
the check _payments table, which should be the concatenation of the individual 1D
and the trace number that are written into the entry detail record.

Next, Payment retrieves the original trace number from the return file, and setsit as
the gateway payment ID. In the addenda_return_template.xm, find this section:

<traceNumber pos="80" |en="15" fm="N'

t arget 1=" %¢heck. set Gat ewayPayment | d(t xnNumnber) %

t ar get 2=' %¢heck. set Gat ewayPaynent | d(stringUtil. concat (payer Acc
t Number, " ", txnNunber)) % ></traceNunber >

Rename “target2” to “target”, which will reconstruct the gateway payment ID based
on the returned customer account number and trace number. Template variable
payer Acct Nunmber has been set in entryDetail_return_template.xml and
txnNumber has been set before this line in the addenda_return_template.xml by
calling template.putToContext.

Now you are al set. You should test this setting using an actual return file and verify
that the check’ s status has been updated to —4 in the check _payments table.

Example 2: modified ACH trace number

If theindividual 1D isnot returned as it was set, you can try to use other information,
such asindividual name combined with trace number. If only the trace number can be
used for gateway payment 1D, use that by:

1

At the start of entryDetail_template.xml, see the section:

%<* | >%
%check. set Gat ewayPaynent | d(check. get TxnNunber ()) %
%</ * >%

Remove the comment tags to enable the statement.

Payment Developer's Guide | 69

Customizing Payment Template Files

2.

In addenda return_template.xml , see the section:

<traceNumber pos="80" |en="15" fm="N'

target 1=" %¢heck. set Gat ewayPaynent | d(t xnNunber) %

t ar get 2=' %¢heck. set Gat ewayPaynent | d(stringUtil. concat (payer Acc
t Number, "_", txnNunber))% ></traceNunber >

and rename “target]” to “target” to enable using trace number as gateway payment
ID.

70 | Payment Developer's Guide

Generating Accounts Receivables (A/R)
Files

It is often necessary to synchronize the Payment system with abiller’s A/R system.
Payment usually needs to periodically send A/R filesto a biller's A/R system, which
includes the payments being made through Payment. The format of the file varies among
billers. To support this function, Payment has the pmtARIntegrator job, which uses a
template and XML/XSLT to generate output in a variety of file formats.

The pmtARIntegrator job queries the Payment database to get proper payments, and then
writes the payments into aflat file or an XML file using the Payment Template engine.
The XML file can be further transformed into other format by using XSLT. The default
implementation of thisjob does following things:

1. Queriesthe Payment database to get alist of check and/or credit card payments. The
query is defined in arQuery.xml file, which finds all the check and credit card
payments where the payee_id matches the current job DDN , the statusis 8 ("paid")
and flexible_field 3is“N".

2. Invokesthe process() method of the default implementation of
com.edocs.payment.tasks.ar.| ARPaymentl ntegrator, which is
com.edocs.payment.tasks.ar.SampleARPaymentIntegrator. In this method,
ARPaynent | nt egr at or writesthe paymentsinto aflat file or XML file using the
Payment Template engine. There are two templates provided by Payment:

» arFlat_template.txt, which generates aflat A/R file
e arXML_template.txt, which generates an XML file

The output file nameis: ar_yyyyMMddHHMmMssSSS.extension, where extension
matches the extension of the template file.

3. Insidetheprocess() method, if the output isan XML file,
Sanpl eARPaynent | nt egr at or can optionally apply an XSLT file against the
output file to transform it into another format. The transformed file nameis:
ar_trans_yyyyMMddHHmMmMssSSS extention, where extension is defined by the
pmtARIntegrator job configuration.

4. Insidetheprocess() method, Sanpl eARPaynent | nt egr at or updates
flexible field 3 of both check and credit card paymentsto “Y”, and writes that to
database. This ensures these payments won'’t be processed again by the next run of
pmtARIntegrator.

Payment Developer's Guide | 71

Generating Accounts Receivables (A/R) Files

Customizing arQuery.xml

The SQL queries used by the pmtARIntegrator job are defined in an XML file,
arQuery.xml, which is provided by the default Payment installation. arQuery.xml is based
on edocs XML Query technology. For details about this definition, see the SDK: Content
Access document that is part of the command center SDK.

wn XMLQuery supports paging, but this feature must not be used for this job

Most of the A/R file creation is done by an implementation class of the interface
com.edocs.payment.tasks.ar.| ARPaymentl ntegrator. This adaptor interface provides
maximum flexibility for customizing this job. The default implementation is
com.edocs.payment.tasks.ar.SampleARPaymentlI ntegrator.

Before the actual query is executed in the database, the job invokes the get Map()

method of | ARPaynent | nt egr at or , which getsalist of objectsthat are used to replace
the variables“?’ defined in the SQL query of arQuery.xml. See the Payment SDK
JavaDoc about | ARPaymentlntegrator for more information.

The default | ARPaynent | nt egr at or implementation, SampleARPaymentl ntegrator,
uses this arQuery.xml for database query:

<?xm version="1.0" encodi ng="UTF-8"7?>
<guery- spec>
<dat a_source_t ype>SQ.</ dat a_source_t ype>

<query nane="checkQuery">

<sql - st nt ><! [CDATA[sel ect * from check_paynents where
payee id = ? and statu
s = 8]]></sql-stnt>

<par am nane="payee_i d" type="java.l ang. | nteger”
position="1"/>

<l --param nane="last_nodify_tinme"
type="j ava. sql . Ti nest anp" position="2" /[/-->

</ query>

<query nane="credit CardQery">

<sql -stnt ><! [CDATA[sel ect * from creditcard_paynents where
payee id = ? and st
atus = 8 and flexible field 3 = "N]]></sql-stnt>

<par am nane="payee_id" type="java.l ang. | nteger”
position="1"/>

</ query>

</ query-spec>
Two queries are defined:

» checkQuery - queries check payments

e creditCardQuery - queries credit card payments

72 | Payment Developer's Guide

Generating Accounts Receivables (A/R) Files

Both these queries get all the successful payments (status=8) of the current payee (biller
or DDN of current job) from the relevant Payment payment tables. They both use
flexible_field_3 asaflag to prevent a payment from being sent to the A/R job twice. This
flagisinitially set to “N” when the payment is created. After the A/R job runs, the

Sanpl eARPayment | nt egr at or changestheflagto“Y”.

When using flexible_field_3 asan A/R flag, you can create an index for it to increase
performance. Payment provides a script just for that purposein
EDCSpay/db/create ar_index.sqgl. This script is not run when the Payment database is
created, so you must run it manually.

Each of the queriesin arQuery.xml has an SQL variable (*?') that must be resolved
before the query can be sent to the database. The A/R job callsthe get Map() method of
| ARPayment | nt egr at or to get aMap of query variables, and usestheir valuesto
replace the ‘7 sin the query. The names of the Map elements should match those defined
in the "param" tags of the "query" tags.

For example, the default arQuery.xml has the "param" tag:
<par am nane="payee_i d" type="java.lang.|nteger" position="1"/>
To support this you should define a Map element whose hame is "payee id" and whose

value (which must be an Integer, and contains the DDN reference number) replaces the
"?" mark with "payee_id" in the query:

sel ect * from check_paynents where payee_id = ? and status = 8
and flexible field 3 ="'N

The following query result set will be transferred to alist of checks (I Check objects) for
checkQuery, and credit cards (1 Cr edi t Car d objects) for creditCardQuery, and then pass
that list to the pr ocess() method of | ARPaynent | nt egr at or.

Caution The XMLQuer y object supports paging, but this feature must not be
used for A/R query.

Y ou can maodify thisfile to use different queries.

Query Case Study

The new requirement for this exampleisto retrieve all payments whose status is returned
or paid between 5:00PM today (the job run date) and 5:00PM yesterday (yesterday's job
run date).

Step 1

Change arQuery.xml for checkQuery:
<query nane="checkQuery">

<sql - st nt ><! [CDATA[sel ect * from check_paynents where
payee_i d=? and status in (8,-4) and last_nodify_time >= ? and
last_modify time < ?]] </sql-stnt>

<par am nane="payee_id" type="java.lang.|nteger" position="1"/>

Payment Developer's Guide | 73

Generating Accounts Receivables (A/R) Files

<param nane="mn_|ast_nodify tinme" type="java.sql.Ti nestanp"”
position="2"/>

<param nane="max_| ast _nodi fy_time" type="java.sql . Ti nestanp”
position="3"/>

</ query>

Tip Usej ava. sql . Ti nest anp instead of j ava. uti | . Dat e.

Step 2
Do the same thing for creditCardQuery:

1. Sinceyou are adding more “?’s to the query, you need to override the get Map()
method of the default ARPaynent | nt egr at or :
pacakge com edocs. ps. ar;
i mport java.util.?*;
i mport com edocs. paynent.util.Dateltil;

public class M/ARI nt egrator extends ARPaynent| ntegrator

{

/**Override this nethod to populate the SQU variables in
ar Query. xm

*/
public Map get Map(ARPaynent | nt egr at or Par ans
payl nt egr at or Par am
String objectFlag) throws

Exception
{

val ue

//call super class because we need to get the payee_id

Map map = super. get Map(payl nt egr at or Par am
obj ect Fl ag) ;
/1 no need to check objectFlag because we actually
popul ate t he
[/ same val ues for both checkQuery and credit CardQuery
Date today = new Date();

today = Dateltil.dayStart(today);//set to 00:00: 00AM
Date today5 = DateUtil.addHours(today, 17); //set to
05: 00: O0OPM

Date yesterday5 = DateUtil.addHours(today, -7) ;//set
to 05: 00: OOPM of yest erday

map. put (“mn_last_nodify_tinme”,
DateUtil.toSql Ti mestanp(yesterday5b));

map. put (“max_Il ast_nodify_time”,
DateUtil.toSql Ti mestanp(today5));
}

74 | Payment Developer's Guide

Generating Accounts Receivables (A/R) Files

2. If you wish to make the cutoff time configurable instead of fixed at 5:00PM, use the
flexible configuration fields of the A/R job, which are passed in as part of
ARPayment | nt egr at or Par ans. For more information about
ARPaynent | nt egr at or Par ans, see the Payment SDK JavaDoc.

3. Compileyour class using the Payment_client.jar and Payment_common.jar that
comes with Payment, package the compiled class into the Payment EAR files, and re-
deploy the EAR files.

4. Login to the Command Center and change the configuration of the A/R job to use the
new implementation of the | ARPaynent I nt egr at or,
com.edocs.ps.ar.MyARIntegrator.

Customizing arFlat_template.txt

Payments returned by arQuery.xml are written to an A/R file using a Payment template
file. Two templates come with Payment:
arFlat_template.txt- generates aflat A/R file

arXML_template.xml - generates an XML A/R file

arFlat_template.txt generates a sample flat A/R file. If thisfile includes most of your
required data, but the format is not what you want, you can edit the template file to
generate your own format. For more information about using the Template class, see the
Payment JavaDoc.

The A/R job using arFlat_template.txt does two things:
1. Loopsthrough thelist of check and credit card paymentsto print out their details.

2. Cadlculatesthetotals for check debits, check credits, credit card debits and credit card
credits (reversals).

Customizing arXML_template.xml

arXML_templatexml generates the same information as arFlat_template.txt, but in XML
format. After creating the XML file, you can use XSLT to transform it into another XML
fileor into aflat file. The default ar Transform.xsl transforms the original XML file into
the same format as the one generated by arFlat_template.txt. Using XSLT isthe
recommended way to do the customization, because it is easy and powerful.

The A/R job using ar XML _template.xml does two things:

1. Loopsthrough thelist of check and credit card paymentsto print out their details.

Payment Developer's Guide | 75

Generating Accounts Receivables (A/R) Files

2. Cadlculatesthetotals for check debits, check credits, credit card debits and credit card
credits (reversals).

To generate different file formats, change ar Transform.xsl. Or, customize the
arXML_templatexml file directly.

Customize arXML_template.xml and use XSLT to generate XML/flat
AR file

The arXML_template.xml generates the same information as arFlat_template.txt, but in
XML format. After generating the XML file, you can use XSLT to transfer it into another
XML file or into aflat file. The default ar Transform.xsl transforms the XML file into the
same format as the one generated by arFlat_template.txt. If you are familiar with XSLT,
thisis the recommended way to do the customization because XSLT is easy to use and
powerful.

This template does two things:
1. Loopsthrough thelist of check and credit card paymentsto print out their details.

2. Cadlculatesthetotals for check debits, check credits, credit card debits and credit card
credits (reversals).

To generate different file formats, change ar Transform.xsl. If required, you can also
customize the ar XML _template.xml file.

To rename the generated files:

To rename the files generated by these utilities you must write a simple implementation
of | ARPaynent I nt egr at or . The following code demonstrates how to rename the
XSLT output file to another name:

i mport java.io.*;

public class M/ARI nt egrator extends ARPaynent| ntegrator

{

protected void

get Tr ansf or medARFi | eName(ARPaynent | nt egr at or Par ans
payl nt egratorParam) throws Exception

{

return "newARNane. t xt”;

}
}

Re-implement IARPaymentintegrator

Y ou may want to re-implement the default Sanpl eARPaynent | nt egr at or if you wish
to add any of the following features. The following steps describe how to do this:

1. Re-name the default AR files.

76 | Payment Developer's Guide

Generating Accounts Receivables (A/R) Files

2. Changethe SQL query to add more “?’ variables and to set values for those variables
in the |ARPaymentlntegrator implementation.

3. Add any additional steps, such as putting more objects into Template context before
itisparsed.

4. Change the result of the template parsing. For example, because of limitations of
Template engine, sometimes unwanted empty new lines are added. Y ou should
remove those lines.

5. Moaodify the check or credit card objects before they are updated in the database. By
default, only f 1 exi bl e_fi el d_3 isupdated from "N" to "Y". Another alternativeis
to update the check or credit card object in the template ,and all your updates will be
updated in the database.

To add any of the preceding features, you must extend from SampleARPayment| ntegrator
and configure the pmtARIntegrator job to use your implementation.

Y ou can overwrite following methods for your customization:

1. get ARFi | eNane() : overwrite to change the name of the AR flat file generated from
arFlat_template.txt.

2. get Map() : overwrite

Select only check or credit card payments

A biller may support only one of check or credit card payments. In this case, you must
configure the pmtARIntegrator job to leave the “ Credit card query namein XML query
file” field blank. Also, you may want to customize the template files (arFlat_template.txt
or arXML_template.xml) to remove any reference to the unavailable payment type, but
thisis optional.

Compiling and packaging a custom IARIntegrator

If you re-implement | ARI nt egr at or or you have some custom Java classesto call from
the AR template, you must re-compile and package your changes.

In most cases, you put your custom code into Payment_custom.jar. Unfortunately, the
| ARI nt egr at or and its related classes are packaged as part of ejb-Payment-ar.jar, not
Payment_custom.jar, so adifferent procedureis required.

See “How to compile/package Payment custom code”.

To compile, you may need to put gjb-Payment-ar.jar along with Payment_common.jar,
Payment_custom.jar and Payment_client.jar in your class path to re-implement
IARIntegrator.

To package, drop all your AR custom classes into the gjb-Payment-ar .jar.

Payment Developer's Guide | 77

Generating Accounts Receivables (A/R) Files

A/R Filenames

The generated A/R files have default names of
ar_yyyyMMddHHmmssSSS.template file_ext, where the template file extisthefile
extension of the template file. The XSLT transformed file has default name of
ar_trans yyyyMMddHHmMmMssSSS extension, where extension is defined by the
pmtARIntegrator job configuration. Y ou may want to rename these files to amore
meaningful name.

To rename the files, write a simple implementation of | ARPaynent | nt egr at or . The
following code demonstrates how to rename the XSLT output file to another name:

package com edocs. ps. ar;

i mport com edocs. paynent . tasks. ar. *;

public class M/ARI ntegrator extends ARPaynentl| ntegrator
{

/**Override this method to give a new nane*/

protected void

get Tr ansf or medARFi | eNanme(ARPaynent | nt egr at or Par ans
payl ntegratorParam) throws Exception

{

return "newARNane. t xt"”;

}
}

Single Payment Type

A biller may have only ACH and not credit card payments, or vice versa. In this case, you
can customize the template files (arFlat_template.txt or arXML_template.xml) to remove
any references to the unavailable payment type.

Or, when configuring the pmtARIntegrator job enter an empty value for the Check
query nanme in XM. query fileorCredit card query nane in XM. query
file parameter.

78 | Payment Developer's Guide

Packaging Payment Custom Code

Y ou can package your custom code, both plug-in code and custom A/R jobs and
templates, by adding it to Payment_custom.jar. The Payment EAR files will accessthis
JAR, and find the custom code. The Payment EAR files are merged into the command
center EAR file as part of installation, so your custom code will aso be seen by the
command center.

To make this JAR file accessible by all the Payment EJB, JAR and WAR files, placeitin
the classpath of the MANIFEST file of each JAR and WAR file. For details of how the
MANIFEST file works, refer to the J2EE or EJB specifications or the SDK: Customizing
and Deploying Applications document that comes with the Command Center SDK. When
the EJB JAR or WAR files are loaded, this JAR will be loaded and can be accessed by
the EJB jar files or war files.

Caution Never put your custom EJB code into Payment_custom.jar; put your EJB
code in your own JAR files.

To write anew plug-in for | AchCheckSubni t Pl ugl n:

1. Write and then compile your implementation class. Y ou may want to use
Payment_common.jar and Payment_client.jar from Payment as part of your class
path.

2. CreateaJARfile called Payment_custom,jar, or use the Payment_custom.jar from
any of the Payment EAR files. Place your implementation class into that JAR file
using thej ar command.

3. Replace al the Payment_custom.jar files under the lib directory of all the deployed
Payment EAR files with the new Payment_custom.jar, using jar command.

4. Deploy the new Payment EAR files on your application server.

5. Go to Payment Settings in the Command Center, and configure the payment
gateway(s) to use the new class by replacing the default one,
com.edocs.payment.cassette.ach.AchCheckSubmitPlugln, with your new plug-in.

6. Run the pmtCheckSubmit job, which will load the new class from
Payment_custom.jar, because you added it to the classpath of the MANIFEST file of
€jb-Payment-chksubmit.jar.

Payment Developer's Guide | 79

Debugging Payment

First, follow the installation steps carefully to set up Payment. After installation and
initial configuration, if you still have problems, the next sections describe afew things
you can do to help narrow down the cause.

Viewing WebLogic Logs

From the WebL ogic console, you can change the level of log messages. By default, only
error messages will be printed out to the console. Y ou can change it to print more
detailed information.

View logs from the Command Center:

If aPayment job fails, you can View Logs from the Command Center to see the details of
the error message.

Turning On the Payment Debug Flag

If you have problems with executing payment operations, such as making a check
payment or running a payment job, you may want to turn on the
com.edocs.payment.debug flag to see more details.

Configure your app server so that it uses “-Dcom.edocs.payment.debug=true” as part of
the VM starting option.

For example, for WebL ogic on UNIX, change startWebL ogic.sh to add another option to
“java’ command:

j ava —Dcom edocs. paynent . debug=true ...

Payment Developer's Guide | 81

Plug-in Sample Code

This chapter lists the sample code for the job plug-ins, for:

Job Plug-in Code

pmtPaymentReminder |PaymentReminderPlugln.java on page 85

pmtCreditCardSubmit |VerisignCreditCardSubmitPlugin.java on page 87

pmtCheckSubmit AchCheckSubmitPlugln.java on page 83

AddendaCheckSubmitPlugln.java on page 89 shows an example
implementation.

pmtRecurringPayment |RecurringPaymentPlugln.javaon page 86

SampleRecurringPlugln.java on page 91 shows an example
implementation.

AchCheckSubmitPlugin.java

package com edocs. paynent. cassette. ach;

i mport
i mport
i mport
i mport

com edocs. paynent . *;
com edocs. paynent.config.*;
com edocs. paynent. cassette. Cassett eExcepti on;

com edocs. paynent . cassette. CheckSubm t Par ans;

/**A default inplenentation for | AchCheckSubnitPlugln. It does nothing

*in each net hod.

*If you want to wite your own inplenmentation, your should derive

*your inplenentation fromthis class and overwite the

*met hods for which you want to change the behavi or.

*/

public class AchCheckSubnitPl ugln inplements | AchCheckSubmi t Pl ugln

{

private static bool ean DEBUG = Bool ean. get Bool ean(" com edocs. paynent . debug");

Payment Developer's Guide | 83

Plug-in Sample Code

public void begi n(AchCheckSubmi t Pl ugl nParans parans) throws CassetteException

{
i f(DEBUG Systemout.println("lIn AchCheckSubm tPl ugln.begin()");

public int preWiteFil eHeader (AchCheckSubnit Pl ugl nPar ans par ans) throws
Cassett eException

{
i f(DEBUG Systemout.println("In AchCheckSubm tPlugln.preWiteFileHeader()");
return PRE_WRI TE_FI LE_HEADER ACCEPT;

public int preWiteBatchHeader (AchCheckSubnit Pl ugl nParams parans) throws
Cassett eException

{
i f(DEBUG Systemout.println("In AchCheckSubm tPl ugln.preWiteBatchHeader()");

return O;

public int preWiteCheck(AchCheckSubm t Pl ugl nParans parans) throws CassetteException

{

i f(DEBUG Systemout.println("In AchCheckSubm tPl ugln. preWiteCheck().
par ans="+par ans) ;

return PRE_WRI TE_CHECK_ ACCEPT;

public int postWiteCheck(AchCheckSubnitPl ugl nParans parans) throws
Cassett eException

{
i f(DEBUG Systemout.println("In AchCheckSubm tPl ugln. postWiteCheck()");

return POST WRI TE_CHECK_NOT_MODI FI ED;

public void onWiteCheckExcepti on(AchCheckSubm t Pl ugl nPar ans par ans)

{
i f(DEBUG Systemout.println("In AchCheckSubm tPl ugln.onWiteCheckException");

public int preWiteBatchTrail er (AchCheckSubmi t Pl ugl nParans parans) throws
Cassett eExcepti on

84 | Payment Developer's Guide

Plug-in Sample Code

i f(DEBUG Systemout.println("lIn AchCheckSubmtPlugln.preWiteBatchTrailer()");

return O;

public int preWiteFil eTrail er(AchCheckSubnit Pl ugl nParams parans) throws
Cassett eException

{
i f(DEBUG Systemout.println("In AchCheckSubmitPlugln.preWiteFileTrailer()");

return O;

public void finish(AchCheckSubm t Pl ugl nParans parans) throws CassetteException

{
i f(DEBUG Systemout.println("lIn AchCheckSubmitPlugln.finish()");

public void abort(AchCheckSubmi t Pl ugl nPar ans par ans)

{
i f(DEBUG Systemout.println("In AChCheckSubm tPl ugln.abort()");

PaymentReminderPlugln.java

package com edocs. paynent . tasks. rem nder;

/**This is a default inplenentation of |PaynentRem nderPlugln. This inplenmentation
*doesn't doesn nothing in the call back nethods. To wite your own plug-in,
*derive your plug-in class fromthis inplenmentation
*and overwite the nethods for which you want to change the behavi or.
*/
public class Paynent Rem nder Pl ugl n i npl ements | Paynent Reni nder Pl ugl n
{
private bool ean DEBUG = Bool ean. get Bool ean("com edocs. paynent. debug");
public int preSendEnail Renmi nder (Paynent Reni nder Pl ugl nPar ans parans) throws Exception

{

i f(DEBUG System out.println("Payment Reni nder Pl ugl n. pr eSendEnai | Rem nder,
rem nder =" +par ans. get Paynent Rem nder ()) ;

return PRE_SEND_ENAI L_ACCEPT,

Payment Developer's Guide | 85

Plug-in Sample Code

public int preSendEmai | Check(Payment Rem nder Pl ugl nPar ans parans) throws Exception

i f(DEBUG System out. println("Paynment Rem nder Pl ugl n. pr eSendEnai | Check,
check="+par ans. get Check());

return PRE_SEND_EMAI L_ACCEPT;

public int preSendEmail Credit Card(Payment Rem nder Pl ugl nPar ams paranms) throws
Excepti on

{

i f(DEBUG System out. println("Paynment Rem nder Pl ugl n. preSendEnai | Credit Card,
ccard="+parans.getCreditCard());

return PRE_SEND_EMNAI L_ACCEPT,

RecurringPaymentPluglin.java

package com edocs. paynent.tasks. recur_paynent;

i mport com edocs. paynent . *;
i mport com edocs. paynent.config.*;

i mport com edocs. paynent. payenrol | . *;

/**This class inplements | RecurringPaynmentPlugln. It does nothing in each nethod.
*Wen you wite your own plug-in, derive your plug-in
*class fromthis class, and then overwite the nethods for which you want to
*change the default behavior.
*/

public class RecurringPaynent Pl ugln

i mpl ement's | Recurri ngPaynent Pl ugl n
private static bool ean DEBUG = Bool ean. get Bool ean(" com edocs. paynent . debug");
public int preGetLatestSumrary(Synchroni zeRecurringPl ugl nParanms p) throws Exception

{

i f(DEBUG System out.println("RecurringPaynentPl ugln. preGetLatestSunmary() is
call ed");

86 | Payment Developer's Guide

Plug-in Sample Code

return PRE_GET_LATEST SUMVARY ACCEPT;

public int prelnsertLatestSunmary(Synchroni zeRecurringPl ugl nParans p) throws
Excepti on

{

i f(DEBUG System out.println("RecurringPaynent Pl ugln. prelnsertLatestSunmary() is
call ed");

return PRE_| NSERT LATEST SUMMARY ACCEPT;

public int preUpdateSynchroni zedRecurring(Synchroni zeRecurri ngPl ugl nParans p) throws
Excepti on

{

i f (DEBUG)
System out . println("RecurringPaynment Pl ugl n. preUpdat eSynchr oni zeRecurring() is
called");

return PRE_UPDATE_SYNCHRONI ZED RECURRI NG_ACCEPT;
public int preSchedul ePayment (Schedul ePaynment Pl ugl nPar anms parans) throws Exception

i f(DEBUG System out. println("Schedul ePaynent Pl ugl n. preSchedul ePaynment() is
called");

return PRE_SCHEDULE_PAYMENT_ACCEPT;
public int preSendEmail (Schedul ePaynent Pl ugl nPar ans parans) throws Exception

i f(DEBUG System out. println("Schedul ePaynent Pl ugln. preSendEnail () is called");
return PRE_SEND_ENAI L_ACCEPT,

VerisignCreditCardSubmitPlugln.java

package com edocs. paynent. cassette. verisign;

Payment Developer's Guide | 87

Plug-in Sample Code

i mport com edocs. paynent. *;
i mport com edocs. paynent. config.*;

i mport com edocs. paynent . cassette. *;

/**This class offers a default inplenmentation for
| Veri si gnCreditCardSubmi t Pl ugl n.

*Each nethod currently does nothing and return directly.
*You should re-inplement this interface if needed.

*We strongly reconmended that you derive your inplenentation class from
this

*default inpl enentation.
*/

public class VerisignCreditCardSubnitPlugln inplenents
| Veri si gnCredit CardSubmit Pl ugln

{

private static bool ean DEBUG =
Bool ean. get Bool ean("com edocs. paynent . debug") ;

public void begin(VerisignCreditCardSubnit Pl ugl nParans parans) throws
Cassett eException

{

i f(DEBUG Systemout.printin("In
Veri si gnCredit CardSubmi t Pl ugl n. begin()");

}

public int preAuthorize(VerisignCreditCardSubm t Pl ugl nParans parans)

{

i f(DEBUG Systemout.println("In
Veri si gnCredit CardSubmi t Pl ugl n. preAut hori ze. parans="+par ans) ;

return PRE_AUTH_ACCEPT;

public int postAuthorize(VerisignCreditCardSubm tPluglnParanms parans)

{

i f(DEBUG Systemout.printin("In
Veri si gnCredi t Car dSubmi t Pl ugl n. post Aut hori ze");

return POST_AUTH _NOT_MODI FI ED,

88 | Payment Developer's Guide

Plug-in Sample Code

public void onAut hori zeExcepti on(VerisignCreditCardSubm tPl ugl nPar ans
par ans)

{

i f(DEBUG Systemout.println("In
Veri si gnCredi t Car dSubmi t Pl ugl n. onAut hori zeExcepti on");

}

public void finish(VerisignCreditCardSubm tPl ugl nParans parans)

{

i f(DEBUG Systemout.printin("In
Veri si gnCredit CardSubm t Pl ugln.finish()");

}

public void abort(VerisignCreditCardSubmn tPl ugl nParans parans)

{

i f(DEBUG Systemout.printin("In
Veri si gnCredi t CardSubm t Pl ugl n. abort()");

}

AddendaCheckSubmitPlugln.java

package com edocs. paynent. cassette. ach;

i mport com edocs. paynent . *;

i mport com edocs. paynent.config.*;

i mport com edocs. paynent. db. *;

i mport com edocs. paynent . cassette. CassetteException;

import java.util.*;

/**This plug-in denonstrates how to append a list of addenda records to
*a check paynent record in an ACH file. Addenda information is biller-specific.
*You should wite your own inplenmentation to retrieve the addenda i nformation
*for a particular biller.
*/

public class AddendaCheckSubnit Pl ugl n extends AchCheckSubm t Pl ugln inplenents
I AchCheckSubni t Pl ugl n

{

private static bool ean DEBUG = Bool ean. get Bool ean(" com edocs. paynent . debug");

Payment Developer's Guide | 89

Plug-in Sample Code

/**Thi s method cal | s Addenda. set AddendaNote() to set the addenda infornmation
*of a check paynent. The addenda information actually comes fromthe
*invoi ces of the check paynent. This nethod first checks whether there are
*invoi ces associated with this check. |If so, it retrieves the invoices, and
*for each invoice creates an Addenda record whose addenda note is set
*to a format |ike "invoiceNunber=..., invoiceAmunt=...".

* @ar am par ans An AchCheckSubni t Pl ugl nPar ans obj ect .
*@eturn | AchCheckSubmi t Pl ugl n. PRE_WRI TE_CHECK_ ACCEPT
*/
public int preWiteCheck(AchCheckSubmi t Pl ugl nParans par ans)
{

i f(params.isPrenote())

return PRE_WRI TE_CHECK_ ACCEPT;

| nvoi ce invoi ce;

List invoices = null;

i f(DEBUG Systemout.println("In AchCheckSubm tPl ugln. preWiteCheck(),
check="+par ans. get Check());

/1 retrieve invoice info, put into parans.
I
Paynment Quer yPar ans query_param = new Paynent Quer yPar ans() ;
| Paynment | nvoi ceLog pi |l og = Paynent DBFact ory. newPaynent | nvoi ceLog() ;
query_param set Paynent | d(par ans. get Check() . get Paynent1d());
try {
i nvoi ces = pilog.query(query_param;
} catch (Throwable e) { }
Iterator iter = invoices.iterator();
Li st addendas = new Li nkedLi st ();
while (iter.hasNext()) {

invoice = (lnvoice)iter.next();
Addenda addenda = new Addenda();

90 | Payment Developer's Guide

Plug-in Sample Code

addenda. set AddendaNot e("i nvoi ceNurber =" +i nvoi ce. get | nvoi ceNunber () +", i nvoi ceAnount =" +i
nvoi ce. get I nvoi ceAnount ()) ;

addendas. add(addenda) ;
}
par anms. set Addendas(addendas) ;

return PRE_WRI TE_CHECK_ ACCEPT;

SampleRecurringPluglin.java

package com edocs. paynent.tasks. recur_paynent;

import java.util.*;

i mport com edocs. paynent . *;

i mport com edocs. paynent.config.*;

i mport com edocs. paynent. payenrol | . *;

i mport com edocs. paynent.util.tenpl ate.*;

/**Thi s sanpl e recurring payment plug-in denonstrates howto fill in the
*flexible fields of |Payment Transaction (check or credit card) with the
*information retrieved fromIBill Sumrary.

*/
public class Sanpl eRecurringPl ugln

ext ends RecurringPaynent Pl ugln i nmplerments | RecurringPaynent Pl ugln
private static bool ean DEBUG = Bool ean. get Bool ean(" com edocs. paynent . debug");

/**Must have this default constructor.
*/

publ i c Sanpl eRecurringPl ugl n()

{

}

/**This method is called before the pnt RecurPaynent job tries to get the latest bill
summary

Payment Developer's Guide | 91

Plug-in Sample Code

*for a user account. This inplementation is enpty (does nothing).
*@aramp A Synchroni zeRecurringPl ugl nPar ans obj ect .
*@eturn | RecurringPaynent Pl ugl n. PRE_GET_LATEST_SUMVARY_ACCEPT
*/
public int preGetlLatestSumrary(Synchroni zeRecurringPl ugl nParans p) throws Exception

{

i f(DEBUG System out.println("RecurringPaynentPl ugln. preGetLatestSunmary() is
called");

i f(p.getPaynent Config() == null)

t hrow new Exception("config is not set");

return PRE_GET_LATEST SUMVARY ACCEPT;

/**This method is called before the pntRecurPaynent job inserts the |atest sunmary
*into the Payment table. The IBill Summary object has a |ist of extended attributes
*whi ch can hold any bill summary information not required by Paynent.

*However, these extended attributes won't be inserted into

*Paynent database. This nethod checks whether there are at |east two extended
attributes

*in the sutmmary, and if so, fills the two flexible fields, 1 and 2, of IBill Sunmary
*with the first and second extended attributes, respectively. The two flexible
*fields are inserted into the Paynent database by the pntRecurPaynent job.

*@aram p A Synchroni zeRecurringPl ugl nPar ans obj ect .

*@eturn int; |RecurringPayment Pl ugl n. PRE_| NSERT_LATEST_SUMVARY_ACCEPT

*/

public int prelnsertLatestSunmary(Synchroni zeRecurringPl ugl nParans p) throws
Excepti on

{

i f (DEBUG System out.println("RecurringPaynent Pl ugln. prelnsertLatestSunmary() is
call ed");

IBill Sunmary sum = p.getBill Sunmary();
if(sum!= null)
{
Map attrs = sum get Ext endedAttri butes();
if(attrs !I'= null && attrs.size() >= 2){
oj ect[] keys = attrs. keySet().toArray();
sum set Fl exi bl eFi el d1((String)attrs. get(keys[0]));
sum set Fl exi bl eFi el d2((String)attrs. get (keys[1]));

i f(DEBUG Systemout.println("RecurringPaynentPlugln, sunmary flex fields set.
sunE" +sum ;

92 | Payment Developer's Guide

Plug-in Sample Code

}
return PRE_| NSERT_LATEST SUMVARY ACCEPT;

/**This method is called before the pntRecurPaynent job wites the "synchroni zed"
* recurring paynent back to the database. A "synchronized" recurring paynment
* means that there is a new bill that needs to be paid. This nethod fills
* the flexible fields 1 and 2 of current |RecurringPaynent with the
* flexible fields 1 and 2 of current IBill Sunmary, respectively. The recurring
* job then updates the | RecurringPaynent into the database.
*@aram p A Synchroni zeRecurringPl ugl nPar ans obj ect
*@eturn int; |RecurringPayment Summary. PRE_UPDATE_SYNCHRONI ZED RECURRI NG_ACCEPT
*/

public int preUpdateSynchroni zedRecurring(Synchroni zeRecurri ngPl ugl nParans p) throws
Excepti on

{

i f (DEBUG)
System out . println("RecurringPayment Pl ugl n. preUpdat eSynchr oni zeRecurring() is
called");

IBi || Summary sum = p.getBill Summary();
| RecurringPaynment rec = p.getRecurringPaynent();

if(sum!=null &k rec != null)

{

Map attrs = sum get Ext endedAttri butes();

if(attrs = null && attrs.size() >= 2){
oj ect[] keys = attrs. keySet().toArray();
rec. set Fl exi bl eFi el d1(sum get Fl exi bl eFi el d1());
rec. set Fl exi bl eFi el d2(sum get Fl exi bl eFi el d2());

i f(DEBUG System out.println("RecurringPaynentPlugln, recurring flex fields
set. rec="+rec);

}

}
return PRE_UPDATE_SYNCHRONI ZED_RECURRI NG_ACCEPT;

/**This nethod is called before the pntRecurPaynent job schedules (inserts) a new
*paynment into the Payment database. This nethod fills in the flexible
*fields 1 and 2 of the paynent(check or credit card) with the flexible

*fields 1 and 2 of the | RecurringPaynment, respectively. The job then

Payment Developer's Guide | 93

Plug-in Sample Code

*inserts the paynent with the flexible fields into database
* @ar am parans A Schedul ePayrnent Pl ugl nPar ans obj ect .
*@eturn | RecurringPaynent. PRE_SCHEDULE PAYMENT_ACCEPT

*/

public int preSchedul ePaynment (Schedul ePaynent Pl ugl nPar ans parans) throws Exception

i f(DEBUG System out.println("Schedul ePaynent Pl ugl n. preSchedul ePayment () is
call ed");

| Payment Transaction tran = parans. get Paynment () ;
| RecurringPaynent rec = parans. getRecurringPayment();
if(rec '=null & tran !'= null){
if(tran instanceof | Check){
((I Check)tran). set Fl exi bl eFi el d1(rec. get Fl exi bl eFi el d1());
((I Check)tran). set Fl exi bl eFi el d2(rec. get Fl exi bl eFi el d2());
}el sef
((ICreditCard)tran). set Fl exi bl eFi el d1(rec. get Fl exi bl eFi el d1());
((ICreditCard)tran). set Fl exi bl eFi el d2(rec. get Fl exi bl eFi el d2());

}
return PRE_SCHEDULE PAYMENT ACCEPT;

/**This method is called before the pntRecurPaynent job sends an email to the user.

* The passed in Schedul ePayment Pl ugl nParans paraneter includes the nail-to address
and subj ect.

* You can use this nethod to check/change the mail-to addresses and subject.
* The mail -to addresses and subject of Schedul ePaynment Pl ugl nPar anms
* will be passed back to Paynent and used by Paynent to send out email.
* @ar am parans A Schedul ePayrent Pl ugl nPar ans obj ect .
*@eturn | RecurringPaynent. PRE_SEND EMAI L_ACCEPT
*/
public int preSendEmail (Schedul ePaynent Pl ugl nPar ans parans) throws Exception
{
i f (DEBUG) System out. println("Schedul ePaynent Pl ugl n. preSendEnail () is called");
parans. set Mai | Subj ect ("Hi, this subject is set by Sanpl eRecurringPaynent Pl ugl n");
return PRE_SEND EMAI L_ACCEPT;

94 | Payment Developer's Guide

Auditing

Payment audits some Payment jobs to track a variety of transaction failures. Audits are
kept for actions taken through the Ul, aswell as jobs.

Jobs that are audited

The jobs that write to the audit tables are listed below aong with the information that is
audited.

pmtCheckSubmit job
» Paymentsthat failed during submission

* Encryption exceptions

pmtPaymentReminder

Payment reminders that were not sent, including:

* Regular payment reminders that failed to send, for any reason, such as bad email
address.

» Check payment emails that failed to send, for any reason, such as encryption error,
bad email address.

» Credit card payment emails failed to send, for any reason, such as encryption error or
bad email address.

pmtCreditCardSubmit

Credit card payments failed to submit, for example, because of encryption errors, invalid
credit card information (such as invalid account) or network errors.

pmtintegrator (AR) job

Check and credit card payments that were not written to the AR file. For example,
because of encryption errors or file write errors.

pmtRecurringPayment

Check and credit card payments that failed.

Payment Developer's Guide | 95

Auditing

pmtCheckSubmit and pmtCreditCardSubmit

Ul actions that are audited

Lists successful and unsuccessful payments along with a reason code.

The Ul actions that trigger an audit entry are listed below"

Create Recurring Payment

Update Recurring Payment

Delete Recurring Payment

Create Schedule Payment

Create Instant Payment

Cancel Future Payment - Credit Card Payment
Update Future Payment - Credit Card Payment
Cancel Future Payment - Check Payment
Update Future Payment - Check Payment
Create Payment Reminder

Update Payment Reminder

Delete Payment Reminder

Create Check Account

Edit Check Account

Delete Check Account

Create Credit Card Account

Edit Credit Card Account

Delete Credit Card Account

Example Ul Audit Flow

1. The customer selects the Setup of recurring payment option, populates the

information to initially set up recurring payment, and submits it. The following
information is recorded as the audit datain the recurring_payments_history tablein
addition to the columns defined in the recurring _payments table. (This history table
contains all the columns defined in the recurring_payments (regular table) table plus
the additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the

recurring_payment_const table.

96 | Payment Developer's Guide

Auditing

Column Value Description

audit_status 1 Status constant value successful operation. This constant value
for the status is explained in the recurring_payment_const
table.

audit_reason Description of the audit.

Job _id 0 Since thisisan Ul operation, job id valueis 0 (not ajob).

Job_name NULL Since thisisa Ul operation, job nameis NULL.

Timestamp The current system time when an audit is taken place.

2. The customer selects Recurring Payment option, and then selects Update, and
updates the recurring payment information and submitsiit, the following information
isrecorded as the audit data in recurring_payments_history table other than the
columns defined in the regular recurring _payments table. (This history table contains
al the columns defined in the recurring_payments (regular table) table and additional
following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
recurring_payment_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
recurring_payment_const table.

audit_reason Description of the audit.

Job_id 0 Since thisisa Ul operation, jobid valueisO.

Job_name NULL Since thisisa Ul operation, job nameis NULL.

Timestamp The current system time when an audit is taken place.

3. The customer selects Recurring Payment option, and then selects Delete, the
following information is recorded as the audit data in recurring_payments_history
table other than the columns defined in the regular recurring _payments table. (This
history table contains all the columns defined in the recurring_payments (regular
table) table and additional following columns).

Column Value Description

audit_operation 1003 Tthis constant value for the operation is explained in the
recurring_payment_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the statusis explained in the
recurring_payment_const table.

audit_reason Description of the audit.

Job_id 0 Since thisisa Ul operation, job id valueisO.

Job_name NULL Since thisisa Ul operation, job nameis NULL.

Timestamp The current system time when an audit is taken place.

Payment Developer's Guide | 97

Auditing

4. The customer selects Create Check account in the “User Profile” Ul, and submits
the new check account information, the following audit dataisrecorded in
payment_accounts_history table other than the columns defined in the regular
payment_accounts table. (This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the statusis explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since thisisa Ul operation, job id valueisO.

Job_name NULL Since thisisa Ul operation, job nameis NULL.

Timestamp The current system time when an audit is taken place.

5. The customer selects Update Check account in the “User Profile” Ul, and submits
the updated check account information, the following audit datais recorded in
payment_accounts_history table other than the columns defined in the regular
payment_accounts table. (This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the statusis explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Sincethisisa Ul operation, jobid valueisO.

Job_name NULL Since thisisa Ul operation, job nameis NULL.

Timestamp The current system time when an audit is taken place.

6. Thecustomer selects Delete Check account in the “User Profile” Ul, and submits
the delete request, the following audit data is recorded in payment_accounts_history
table other than the columns defined in the regular payment_accounts table. (This
history table contains all the columns defined in the payment_accounts (regular table)
table and additional following columns).

Column

Value

Description

audit_operation

1003

this constant value for the operation is explained in the
payment_account_const table).

98 | Payment Developer's Guide

Auditing

Column Value Description

audit_status 1 Status constant value for successful operation. (this constant
value for the statusis explained in the
payment_account_const table).

audit_reason Description of the audit.

Job_id 0 Since thisisa Ul operation, job id valueisO.

Job_name NULL Since thisisa Ul operation, job nameis NULL.

Timestamp The current system time when an audit is taken place.

7. The customer selects Create Credit Card account in the “User Profile” Ul, and
submits the new credit card account information, the following audit datais recorded
in payment_accounts_history table other than the columns defined in the regular
payment_accounts table. (This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the statusis explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since thisisa Ul operation, job id valueisO.

Job_name NULL Since thisisa Ul operation, job nameis NULL.

Timestamp The current system time when an audit is taken place.

8. The customer selects Update Credit Card account in the “User Profile” Ul, and
submits the updated credit card account information, the following audit datais
recorded in payment_accounts_history table other than the columns defined in the
regular payment_accounts table. (This history table contains all the columns defined
in the payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the statusis explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Sincethisisa Ul operation, job id valueisO.

Job_name NULL Since thisisa Ul operation, job nameis NULL.

Timestamp The current system time when an audit is taken place.

Payment Developer's Guide | 99

Auditing

9. The customer selects Delete Credit Card account in the “User Profile” Ul, and
submits the delete request, the following audit datais recorded in
payment_accounts_history table other than the columns defined in the regular
payment_accounts table. (This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the statusis explained in the
payment_account_const table.

audit_reason Description of the audit.

Job _id 0 Sincethisisa Ul operation, job id value will be 0.

Job_name NULL Since thisisa Ul operation, job name will be NULL.

Timestamp The current system time when an audit is taken place.

10. The customer selects Create payment reminder in the “User Profile” Ul, and
submits the new payment reminder information, the following audit datais recorded
in payment_reminders_history table other than the columns defined in the regular
payment_reminders table. (This history table contains al the columns defined in the
payment_reminders (regular table) table and additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_reminder_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the statusis explained in the
payment_reminder_const table.

audit_reason Description of the audit.

Job_id 0 Since thisisa Ul operation, job id valueisO.

Job_name NULL Since thisisa Ul operation, job nameis NULL.

Timestamp The current system time when an audit is taken place.

11. The customer selects Update payment reminder in the “User Profile” Ul, and
submits the updated payment reminder information, the following audit datais
recorded in payment_reminders_history table other than the columns defined in the
regular payment_reminderstable. (This history table contains all the columns defined
in the payment_reminders (regular table) table and additional following columns).

Column

Value

Description

audit_operation

1002

This constant value for the operation is explained in the
payment_reminder_const table.

100 | Payment Developer's Guide

Auditing

Column Value Description

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_reminder_const table.

audit_reason Description of the audit.

Job_id 0 Since thisisa Ul operation, job id valueisO.

Job_name NULL Since thisisa Ul operation, job name will be NULL.

Timestamp The current system time when an audit is taken place.

12. The customer selects Delete payment reminder in the “User Profile” Ul, and
submits the del ete request for the payment reminder, the following audit datais
recorded in payment_reminders_history table other than the columns defined in the
regular payment_reminders table. (This history table contains all the columns defined
in the payment_reminders (regular table) table and additional following columns).

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_reminder_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the statusis explained in the
payment_reminder_const table.

audit_reason Description of the audit.

Job_id 0 Since thisisa Ul operation, job id valueisO.

Job_name NULL Since thisisa Ul operation, job name will be NULL.

Timestamp The current system time when an audit is taken place.

Query Files

The following files are provided for each platform to supprt queries of the audit tables.

Windows SQL2000

getAuditDataByPid.bat

getAuditDataByPaymentl d.bat
getAuditDataByAccount.bat

Payment Developer's Guide | 101

Auditing

ORACLE
Windows

getAuditDataByAccount.bat
getAuditDataByAccount.sgl
getAuditDataByPaymentld.bat
getAuditDataByPaymentld.sql
getAuditDataByPid.bat
getAuditDataByPid.sql
set_audit_isgl_options.bat

Unix

getAuditl nfoByAccount.sh
getAuditlnfoByAccount.sql
getAuditlnfoByPaymentld.sh
getAuditlnfoByPaymentid.sql

getAuditinfoByPid.sh
getAuditinfoByPid.sql

DB2

Windows

getAuditDataByAccount.bat
getAuditDataByPaymentl d.bat
getAuditDataByPid.bat
set_audit_isgl_options.bat

Unix

getAuditDataByAccount.sh
getAuditDataByPaymentld.sh
getAuditDataByPid.sh

Running Audit Queries

Audit queries require on of the following arguments:
* Payment ID

* User Account Number

 PID

The audit queries are implemented in batch files, which require the user argument and
date range. The results are displayed on the console.

Before running the queries, you must preform setup. The description for each query
describes the setup.

102 | Payment Developer's Guide

Auditing

Query Audit data by Payment ID

Displays data from al history tables which have a payment ID column. This query
performs a simple select on each table where the Payment ID matches and the
time_stamp is between “fromTime” and “toTime”. The following tables are queried:

» check_payments_history
» creditcard_payments_history
* payment_bill_summaries_history

* payment_email_history

Query Audit data by User Account Number

Displays datafrom all history tables which have a payer ID column. This query performs
asimple select on each table where the payer ID matches “ Account Number”, and whose
time_stamp is between “fromTime” and “toTime”. The AccountNumber is the account
number with the biller (payee _id column). The following tables are queried:

» check_payments_history
» creditcard_payments_history
e payment_bill_summaries_history

* recurring_payments_history

Query Audit data by PID

Displays data from al the history tables which have a PID column. This query performsa
simple select on each table where the PID matches and whose time_stamp is between
“fromTime” and “toTime”. The following tables are queried:

» check_payments_history
» creditcard_payments_history
* payment_accounts_history

e recurring_payments_history

Query Setup

Before running the queries, you must:

1. Set the database connection parameters

2. Configure TNS Listener for Oracle (Client / Server)
3. Configure DB2 Clients for windows platform
4

Check execution permissions for shell scripts

Payment Developer's Guide | 103

Auditing

5. Database connection parameters

Configuration for each platform is described bel ow:

Windows Configuration
For Windows set_isqgl_options.bat must be edited before running the queries. The file
constrains the following line:

set | SQL_OPTI ONS=- U <usernane> -P <password> -S <sql svr-
Servernane> -d <dat abase nanme>

Edit thisfile and enter your values for username, password, server name and database
name. For example:

set | SQL_OPTI ONS=-U edx1l -P edxl -S EDXSERVER -d edxDB

UNIX Configuration

For UNIX platforms, the database connection string is embedded in the file. Y ou must
edit the connection parametersin each file before running the queries. The connection
parameters are as follows:

For DB2:

db2 connect to <database> user <usernane> using <password>

For example:
db2 connect to EDXDB41L user db2instl wusing db2adm n

For Oracle:

sql pl us <user nane>/ <passwor d>@TNS nane>

For example:
sql pl us edx1/ edxadm n@dxdb

TNS Listener for Oracle (Client / Server)

The TNS Listener has to be configured for Oracle DB in Windows and Unix platforms
for client / server.

Permissions on Unix platform

Execution permissions for shell scripts should be granted to run the shell scripts
successfully. For example:

$ chnod 755 *.sh

104 | Payment Developer's Guide

Auditing

Running the Queries in Windows

MSSQL

Q1l: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentld.bat. Thisfile requires three parameters: Payment ID, From
Timestamp, and To Timestamp. The execution format is:

get Audi t Dat aByPaynent | d <Paynent |D>, <from date>, <to date>

For example:
get Audi t Dat aByPaynent | d 123465564, ' 2003- 01- 01’ , ' 2004-12- 12’

Where:
dateformat isYYYY-MM-DD

payment ID is numeric

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From
Timestamp, and To Timestamp. The execution format is:

get Audi t Dat aByAccount <account _nunber >, <from dat e>, <t 0 dat e>

For example:

get Audi t Dat aByAccount ' 123465564',' 2003-01-01',' 2004-12-12'
Where:

DateformatisYYYY-MM-DD

Account Number isastring

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run
getAuditDataByPid.bat. Thisfile requires three parameters. PID, From Timestamp, and
To Timestamp. The execution format is:

get Audi t Dat aByPi d <pi d>, <from date>, <to date>

For example:
get Audi t Dat aByPi d ' 123465564' , ' 2003- 01- 01’ , ' 2004- 12- 12"

Where:
DateformatisYYYY-MM-DD
PID isastring

Payment Developer's Guide | 105

Auditing

Oracle

Q1l: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentld.bat. This file requires three parameters: Payment ID, From
Timestamp, and To Timestamp. The execution format is:

get Audi t Dat aByPaynent | d <Paynent | D>, <from date>, <to dat e>

For example:
get Audi t Dat aByPayment | d 123465564, ' 2003- 01- 01’ , ' 2004- 12- 12"

Where:
DateformatisYYYY-MM-DD.

Payment ID is numeric

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From
Timestamp, and To Timestamp. The execution format is:

get Audi t Dat aByAccount <account _nunber >, <from dat e>, <t 0 dat e>

For example:
get Audi t Dat aByAccount ' 123465564',' 2003-01-01’, ' 2004-12-12'

Where:
DateformatisYYYY-MM-DD

Account Number isastring

Q3: Query Audit data by PID

Change your working directory to the location of the query script files ,and run
“getAuditDataByPid.bat”. Thisfile requires three parameters. PID, From Timestamp, and
To Timestamp. The execution format is:

get Audi t Dat aByPi d <pi d>, <from dat e>, <t o date>

For example:

get Audi t Dat aByPi d ' 123465564' , ' 2003- 01- 01’ , ' 2004- 12- 12"
Where:

Dateformat isYYYY-MM-DD

PID isastring

106 | Payment Developer's Guide

DB2

Auditing

Q1l: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentld.bat. This file requires three parameters: Payment ID, From
Timestamp, and To Timestamp. The execution format is:

get Audi t Dat aByPaynent | d <Paynent | D>, <from date>, <to dat e>

For example:
get Audi t Dat aByPayment | d 123465564, ' 2003- 01- 01’ , ' 2004- 12- 12"

Where:
DateformatisYYYY-MM-DD

Payment ID isnot astring it is a numeric value

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From
Timestamp, and To Timestamp. The execution format is:

get Audi t Dat aByAccount <account _nunber >, <from dat e>, <t 0 dat e>

For example:

get Audi t Dat aByAccount ' 123465564',' 2003-01-01',' 2004-12-12'
Where:

DateformatisYYYY-MM-DD.

Account Number is astring.

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run
getAuditDataByPid.bat. Thisfile requires three parameters. PID, From Timestamp, and
To Timestamp. The execution format is:

get Audi t Dat aByPi d <pi d>, <from dat e>, <t o date>

For example:
get Audi t Dat aByPi d ' 123465564' , ' 2003- 01- 01", ' 2004- 12- 12"

Where:
Dateformat isYYYY-MM-DD
PID isastring

Payment Developer's Guide | 107

Auditing

Running the Queries in UNIX

Oracle

Q1l: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditlnfoByPaymentld.sh. Thisfile requires three parameters: Payment ID, From
Timestamp, and To Timestamp. The execution format is:

$./get Auditl nfoByPaynentld.sh <Paynment |D> <from date> <to
dat e>

For example:

$./getAuditlnfoByPaynentld.sh 123465564 ' 2003-01-01' ' 2004-
12-12'

Where:
DateformatisYYYY-MM-DD

Payment ID is numeric

Arguments are separated by spaces

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditlnfoByAccount.sh. Thisfile requires three parameters: Account Number, From
Timestamp, and To Timestamp. The execution format is:

$./get Auditl nfoByAccount.sh <account_nunber> <from date> <to
dat e>

For example:

& ./ get Audi t| nfoByAccount.sh '123465564' '2003-01-01" ' 2004-
12-12'

Where:
DateformatisYYYY-MM-DD

Account Number isastring

Arguments are separated by spaces

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run
getAuditinfoByPid.sh. Thisfile requires three parameters: PID, From Timestamp, and To
Timestamp. The execution format is:

$./getAuditlnfoByPid.sh <pid> <from date> <to date>

For example:

108 | Payment Developer's Guide

DB2

Auditing

$./getAuditlnfoByPid '123465564' '2003-01-01" '2004-12-12'

Where:
DateformatisYYYY-MM-DD
PID isastring
Arguments are separated by spaces

Q1l: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentld.sh. This file requires three parameters. Payment 1D, From
Timestamp, and To Timestamp. The execution format is:

$./ get Audi t Dat aByPaynent | d. sh <Paynment | D> <from date> <to
dat e>

For example:

$./ get Audi t Dat aByPaynent | d. sh 123465564 ' 2003-01- 01’ ' 2004-
12-12'

Where:
Dateformat isYYYY-MM-DD
Payment ID isnot astring it is a numeric value

Arguments are separated by spaces

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
“getAuditDataByAccount.sh”. Thisfile requires three parameters: Account Number,
From Timestamp, and To Timestamp. The execution format is:

$./ get Audi t Dat aByAccount . sh <account _nunber> <from date> <to
dat e>

For example:

$./ get Audi t Dat aByAccount . sh ' 123465564"' ' 2003-01-01" ' 2004-
12-12'

Where:
Dateformat isYYYY-MM-DD
The Account Number isastring

Arguments are separated by spaces

Payment Developer's Guide | 109

Auditing

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run
getAuditDataByPid.sh. Thisfile requires three parameters: PID, From Timestamp, and
To Timestamp. The execution format is:

$./ get Audi t Dat aByPi d. sh <pi d> <from date> <to date>

For example:
$./get Audi t Dat aByPi d. sh ' 123465564"' ' 2003-01-01" '2004-12-12'

Where:
DateformatisYYYY-MM-DD
PID isastring
Arguments are separated by spaces

Audit Database

The Command Center/Payment database has been updated to support auditing.

Modified Tables

The following tables have the new columns:
» check payments history
e creditcard payments history

The history tables have all the columns that the base table has (check_payments and
creditcard_payments), plus the following columns:

Column Name Comments

audit_operation Defined in corresponding constant tables

audit_status Defined in corresponding constant tables

audit_reason Description of the audit

job_id Pwc job id

job_name User given job name (see Job Name Entries)

time_stamp Therecord insertion time. For example: 1/18/2004 11:47:38 AM

110 | Payment Developer's Guide

New Tables

Auditing

All the following tables are based on the table name with "_history" at the end. They
have all the columns in the base table, plus the new columns listed in the preceding table
(in the Modified Tables section) to support audit.

e payment_accounts_history

e payment_bill_summeries history

e payment_reminder_history

e recurring_payments_history

payment_email_history

Thistable is new, and not based on a previous table. It has the following columns, plus
the columns listed in the preceding table (in the Modified Tables section) to support audit.

Column Name

Comments

type

This indicates the purpose of the email. Possible values are listed in the table
‘Email Types below.

payeeid DDN

payer_id User id

account_numer Check or credit card number

payment_id Payment id

to_address Receivers email address. If there are multiple addresses, they will bein
semicolon separated.

content Note, actual length of the email content must be truncated based on job

audit_operation

configuration, “Email Content Audit Length”.
Defined in corresponding constant tables

audit_status Defined in corresponding constant tables

audit_reason Description of the audit

job_id Pwc job id

job_name User given job name (see Job Name Entries)

time_stamp Therecord insertion time. For example: 1/18/2004 11:47:38 AM

The following table lists the possible values for email types and description.

Email Type Description

0 Unknown email type.

1 A fixed date payment reminder email.

2 Before due date payment reminder email.
3 After due date payment reminder email.

Payment Developer's Guide | 111

Auditing

Email Type Description

Check status notification email.

Credit card status notification email.

Recurring payment cancelled email.

Recurring payment scheduled email.

Payment account status notification email.

O 0| N[0 | b

Credit card expiration notification email.

Audit Table Constants

The following table lists the tables that have audit information, and the names of the
corresponding code tables that explain the numeric codes for audit columns. See the
tables in your Payment database for the |atest descriptions for each code.

Constant Table name History table name
credit_card_const creditcard_payments_history
check_const check_payments_history
recurring_payment_const recurring_payment_history
payment_email _const payment_email _history
payment_bill_summaries_const payment_bill_summaries history
payment_account_const payment_accounts_history
payment_reminders_const payment_reminders_history

Job Name Entries

User job names are combined with a shortened version of the task name to keep database
entries manageable. The name of the job given by the user is combined with a shortened
version of the task name as follows:

<j ob nane given by the Adm n>-<shorten task nane>

The following table shows the shortened name for each job.

Task name Shortened task name
CheckSubmitTask ChkSubTsk
CheckUpdateTask ChkUpdTsk
PaymentIntegrator Task PmtintTsk
CreditCardExpNotifyTask CCEXpNTsk
CreditCardSubmitTask CCSubTsk
CreditCardUpdateTask CCUpdTsk
ConfirmEnrol Task ConEnrTsk

112 | Payment Developer's Guide

Task name

Shortened task name

NotifyEnroll Task

NotEnrTsk

RecurPaymentSchedul er Task RcuSchTsk
RecurPaymentSynchronizer Task RcuSynTsk
PaymentReminder Task PmtRmdTsk
SubmitEnroll Task SubEnrTsk
CustomTask CustomTsk

Payment Developer's Guide | 113

Implementing A Custom Payment
Cartridge

Demonstration Cartridge

Payment provides an example cartridge that demonstrates how to implement a custom
cartridge. The code isin /vobs/payment/convedocs/payment/cassette/demo. There are two
cartridges:

demo_CheckCassette.java for check payments
demo_CreditCardCassette.java for credit card payments

The example cartridge delegates all API callsto demo_CheckProcessor Proxy.java and
demo_CreditCardProcessor Proxy.java to communicate with a dummy payment gateway.

If you configure a DDN to use the demonstration cartridge, then you can make payments
against it from the user interface.

Implementing Custom Credit Card Cartridge

The example cartridge is based on the interface

com.edocs.payment.cassette.| CreditCardCassette, which extends from
com.edocs.payment.cassette.| PaymentCassette, which then extends from
com.edocs.payment.cassette.l EnrollmentCassette. In general, you don't need to modify

| Enr ol | ment Casset t e, sinceit defines how to verify acredit card when a user enrolls
it through the user interface.

To implement the cartridge, extend your cartridge implementation from
Paynment Cassette, and implement | Cr edi t Car dCassette.
public class MyCreditCardCassette extends Payment Cassette
i mpl enents | CreditCardCassette
Use demo_CreditCardCassette.java to create your implementation. The three methods
you should consider implementing are:
| Paynent Cassette. get Defaul t Confi gAttri butes()
| Credit CardCassette. aut hori ze()
| Credit CardCassette. bat chAut hori ze()

Payment Developer's Guide | 115

Implementing A Custom Payment Cartridge

Y ou must implement | Payrent Casset t e. get Def aul t Confi gAttri butes() to
return alist of parameters (of type com.edocs.payment.config.Attribute), which are used
to configure the cartridge. Calling

| Paynent Casset t e. get Def aul t Confi gAttri butes() causesthose parametersto
be displayed in the Payment Settings of the Command Center, where you can use them to
configure the cartridge. These parameters include the global ones, the ones shared by
both credit card and check types, and the ones specific to this credit card cartridge. Y our
implementation of get Def aul t Confi gAttri but es() must at least return the global
and shared parametersin that list. See

deno_Credit Car dCasset t e. get Def aul t Confi gAttri butes() inthePayment
JavaDoc, and the file demo_CreditCardAttributes.java for more information.

If you wish to support instant payments, then you must implement the

| Credit CardCassette. aut hori ze() method. In this method, you must get the
payment information from the | Cr edi t Car d object that is passed in, then send it to the
payment gateway. The payment gateway will send back a response, which you will useto
update the status of the | Cr edi t Car d object, as described below:

1. If the payment is authorized, set the status to "settled” by calling:
| CreditCard. set Status(Credit CardState. SETTLED);

2. If the payment failed authorization, set statusto "failed-authorize" by calling:
| CreditCard. set Status(CreditCardState. FAl LED AUTHORI ZE) ;

Youmay asowanttocal | Credit Card. set TxnErr Msg() tolog an error
message.

3. If thereisasystem or network error (Payment failed to connect to payment gateway),
set the status to "failed" by calling:

| CreditCard. set Status(CreditCardState. FAI LED);

Youmay asowanttocal | Credit Card. set TxnErr Msg() tolog an error
message.

When you call these methods, Payment updates the credit card information in the
database. The Payment JSP pages get the credit card information from the user and

pass the information to the cartridge. After the card is processed, Payment updates
Payment database.

If your application will support scheduled payments, then you must implement

| Credit CardCassette. bat chAut hori ze() . Thismethod is caled by the
CreditCardSubmit job, which extracts all the scheduled payments from the database
and sends them to the payment gateway. Y our cartridge should do the following
things:

4. Get the scheduled payments from Payment database. There are examples of using the
APIsindeno_Credit CardCassette. bat chSubmit ().

116 | Payment Developer's Guide

Implementing A Custom Payment Cartridge

Loop through the list of payments and send them to the payment gateway. The status
of each payment should be set the same way as for instant payments. After setting the
status and other information, call the Payment API to update this credit card back to
Payment database (note, thisis different from Instant payments, because Payment
does not update the database).

Package your custom cartridge.

If you are using Payment2.2 with WebSphere, you should package it into
Payment_client.jar which isin the lib dir of each Payment EAR.

If you are using Payment3.0 with WebL ogic, you should package it into
Payment_custom.jar which isin the lib directory of each Payment EAR.

Pre-popul ate Payment database.

Tell Payment about your cartridge implementation class by populating the
payment_gateway_configuretable. If your cartridge class nameis
com.edocs.ps.MyCreditCardCartridge, and you want to name it
“customCCardCartridge”, use:

insert into

paynment _gat eway_confi gur e(GATEWAY, PAYMENT _TYPE, CARTRI DGE_CLASS

)val ues(* cust onCCardCartridge’, ‘ccard’,
‘com edocs. ps. My/Credi t CardCartridge’);

When you go to payment settings of command center and configure aDNN for your
credit card cartridge, the JSP page will read the list of available cartridges from this
table and allow you to select one of them.

After you finish al the preceding steps, you should create a DDN, configure a
cartridge for it and then make the payments from Ul.

Payment Developer's Guide | 117

Miscellaneous Customization

Avoiding paying a bill more than once

By default, Payment allows a bill to be paid more than once. If you want to ensure that a
bill can only be paid once, you need to add a unique key constraint on the bill_id field of
the check payments table. Y ou can run PAYMENT HOME/db/set_unique bill _id.sgl to
set the unique constraint. Note, the bill_id in Payment is the same as the doc id in the
command center.

If a customer tries to pay a bill that has already been paid (either from the Ul or by a
previously scheduled recurring payment) after the unique key constraint has been added,
the customer will receive an error message saying that the bill has been aready paid. If
the bill is paid from the Ul and a recurring payment tries to pay it again, the payment will
fail and an email notification message will be sent to the customer (if recurring payments
are configured for that email notification).

Adding this constraint won't prevent a customer from making a payment using a bill id.
For example, a customer can still make a payment directly from the Make Check
Payment link, which allows them to make a payment without specifying a bill.

The unique key constraint only informs a customer that the bill has been paid when they
try to pay abill that has already been paid. If you want to provide additional features,
such as disabling the payment button when the bill has already been paid, you must query
the database to get that information. Be careful when adding extra functions, because
performing additional database queries can affect Payment performance. Make sure the
proper index has been created if you plan to create a new query.

Handling multiple payee ACH accounts

By default, Payment only allows one payee (biller) ACH account per DDN, whichis
limited by Payment Settings. However, some billers may have multiple ACH accounts
and their users will usually choose to pay to one of the ACH accounts when scheduling a
payment. The way that the user chooses the ACH account to pay with can be based on
some business rules added to the JSP. The rest of this section describes a solution to this
problem.

The assumptions for this solution are:

» All ACH accounts are at the same bank, which means they have the same immediate
origination and immediate destination but different company name and company Id.

Payment Developer's Guide | 119

Miscellaneous Customization

The business logic elements required to route the payment transaction to one ACH
account versus another is available or can be made available in the web application
and in the execution context of a Payment payment plugin.

We also assume there are N ACH accounts and thereis one DDN for this biller. We call
this DDN the “Real DDN". Here are the steps you need to go through:

1

Create areal DDN. Y ou use thisreal DDN to configure Payment Settings for one of
the ACH accounts.

Create virtual DDNs: Create N — 1 virtual DDNs, where each of their Payment
Settingsis configured to one of the N — 1 ACH accounts, respectively. Make sure the
immediate origination and immediate destination are the same for all N DDNs but
their company name and company ID are different.

Note, there will be no indexer jobs run against these virtual DDNs. They are used
solely for payment purposes.

Customize the Ul: Y our Ul should employ some business logic to determine which
DDN (effectively, ACH account) the payment transaction is to be entered against and
set the payeeid of the payment to that DDN.

Run the pmtCheckSubmit Job: Configure a single pmtCheckSubmit job under the
real DDN and configureit to pull payments from the all the N —1 virtual DDNsin
addition to the real DDN. The payments from the same DDN will be under same
batch.

Run the pmtCheckUpdate Job: pmtCheckUpdate processes the ACH return file.
Since return files will include returns from all DDNs and the pmtCheckUpdate job
can process these returns, we only need to create one pmtCheckUpdate job under the
real DDN to process al the returned transactions (even though the returns may
belong to other virtual DDNS).

Run the Payment pmtRecurringPayment Job: A single recurring payment job
configured with the real DDN isrequired. A Recurring Payment plugin isrequired to
execute the same logic as in scheduled payment; that is, apply the business rulesto
determine which DDN (effectively, ACH account) the recurring payment should be
applied against. Y ou should override the plug-in’s pr eSchedul ePaynent ()
method for this purpose.

Change the Payment pmtPaymentReminder Job setting: Six payment reminders, one
per DDN, must be configured.

Run the pmtARIntegrator Job: The AR _Query.xml fileisan XML definition of the
database query that queries the Payment payment tables to build the default A/R file.
The default query must be customized to include the virtual DDNs. Sincethe query is
using the DDN reference numbers, you must pass that info into the query through one
of these:

» Directly hard code the DDN references numbers in the query, though thisis risky
in the sense that if the DDN isre-created, your query will fail.

120 | Payment Developer's Guide

Miscellaneous Customization

» Extend the Sanpl eARI nt egr at or and overwrite the get Map() method and
use com.edocs.payment.util. DDNULil to find out the DDN reference number of a
DDN, then set it asa“?’ parameter used by the query. In this solution, the DDN
names are hard coded but not the DDN reference numbers.

» Passin the names of virtual DDNs as a flexible job configuration parameter from
the job Ul. The getMap() method can then parse the parameter to get the list of
virtual DDNSs. This method is recommended.

9. Add support for the ACH Prenote: If you are using ACH prenote, then you must
create pmtSubmitEnroll, pmtConfirmEnroll and pmtNotifyEnroll jobs for each
virtual DDN, which means you will get N prenote ACH files. pmtSubmitEnroll
cannot aggregate prenotes from different DDNs into one.

Payment Developer's Guide | 121

ACH
addenda records, 37
customizing, 64
individual ID, 44, 64
individual name, 64
plugin, 35
return files, 67
templates, 64
addenda records, 37

enrollment
email template, 49

Help
technical support, 6

Payment ear
beans, 11

payments reminders
template, 46

plugin
creating for credit cards, 38
for recurring payments, 40

overview for credit cards,
37

overview for reminders, 39
plug-in

creating for ACH, 36

overview for ACH, 35
pmtCheckSubmit

bean, 12

Index

job email template, 62

plugin, 35
pmtCheckUpdate

bean, 13
pmtConfirmEnroll

bean, 13
pmtCreditCardExpNotifiy

user email template, 64
pmtCreditCardExpNotify

job email template, 58, 61
pmtCreditCardSubmit

bean, 12
pmtNotifyEnroll

bean, 13
pmtPaymentReminder

bean, 14

job email template, 60
pmtRecurPayment

bean, 14

email template, 53
pmtRecurringPayment

job email template, 59

jobemail template, 59
pmtSubmitEnroll

bean, 14

job email template, 63

recurring payments
email template, 53, 55
plugin, 40

reminders
plugin, 39

Payment Developer's Guide | 123

Payment Developer's Guide | 124

	Preface
	
	
	To escalate your case, ask the Technical Support Engineer to:

	Introduction
	Architecture of Payment
	Major Payment Beans

	Recurring Payments
	
	Recurring Payment UI
	Insert recurring payment from UI
	Update recurring payment from the UI

	Recurring payment – back end job:
	Recurring Payment Synchronization
	Recurring Payment Scheduling

	Recurring Payment Scheduling
	Recurring payment FAQ

	Payment Plug-ins
	Plug-In Customization
	ACH Check Submit Plug-in
	Overview
	Writing a Plug-in
	Using a Plug-in to Write ACH Addenda Records

	VeriSign Credit Card Payment Plug-in
	CreditCardSubmit Plug-in Overview
	Writing a Credit Card Plug-in

	Payment Reminder Plug-in
	Payment Reminder Plug-in Overview
	Creating a pmtPaymentReminder Plug-in

	Recurring Payment Plug-in
	Recurring Payment Overview
	Writing a Plug-in
	Populating Index Fields into Payment Flexible Fields

	Customizing Payment Template Files
	Understanding the Payment Template Engine
	Customizing Email Templates
	Payment Reminder Template
	Enrollment Notification Template
	Recurring Payment Scheduled Notification Template
	Payment Notification Template
	pmtCreditCardExpNotify Variables
	pmtRecurringPayment Variables
	pmtPaymentReminder Variables
	pmtCreditCardExpNotify Variables
	pmtCheckSubmit Variables
	pmtSubmitEnroll

	Credit Card Expiration Notification Template

	Customizing ACH Templates
	Matching a Check in the ACH Return to the Database
	Example 1: unchanged ACH trace number
	Example 2: modified ACH trace number

	Generating Accounts Receivables (A/R) Files
	Customizing arQuery.xml
	Query Case Study
	Step 1
	Step 2

	Customizing arFlat_template.txt
	Customizing arXML_template.xml
	Customize arXML_template.xml and use XSLT to generate XML/flat AR file
	To rename the generated files:

	Re-implement IARPaymentIntegrator
	Select only check or credit card payments
	Compiling and packaging a custom IARIntegrator
	A/R Filenames
	Single Payment Type

	Packaging Payment Custom Code
	Debugging Payment
	Viewing WebLogic Logs
	View logs from the Command Center:
	Turning On the Payment Debug Flag

	Plug-in Sample Code
	AchCheckSubmitPlugIn.java
	PaymentReminderPlugIn.java
	RecurringPaymentPlugIn.java
	VerisignCreditCardSubmitPlugIn.java
	AddendaCheckSubmitPlugIn.java
	SampleRecurringPlugIn.java

	Auditing
	
	Jobs that are audited
	pmtCheckSubmit job
	pmtPaymentReminder
	pmtCreditCardSubmit
	pmtIntegrator (AR) job
	pmtRecurringPayment
	pmtCheckSubmit and pmtCreditCardSubmit

	UI actions that are audited
	Example UI Audit Flow

	Query Files
	
	Windows SQL2000
	ORACLE
	DB2

	Running Audit Queries
	
	Query Audit data by Payment ID
	Query Audit data by User Account Number
	Query Audit data by PID

	Query Setup
	Windows Configuration
	UNIX Configuration
	For DB2:
	For Oracle:
	TNS Listener for Oracle (Client / Server)
	Permissions on Unix platform

	Running the Queries in Windows
	MSSQL
	Q1:	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	Oracle
	Q1: 	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	DB2
	Q1: 	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	Running the Queries in UNIX
	Oracle
	Q1: 	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	DB2
	Q1: 	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	Audit Database
	Modified Tables
	New Tables
	payment_email_history

	Audit Table Constants
	Job Name Entries

	Implementing A Custom Payment Cartridge
	Demonstration Cartridge
	Implementing Custom Credit Card Cartridge

	Miscellaneous Customization
	
	Avoiding paying a bill more than once
	Handling multiple payee ACH accounts

	Index

