

Payment Developer’s Guide

V4.5.2
Data Published: 01.31.2005

 1996−2005 edocs Inc. All rights reserved.

edocs, Inc., One Apple Hill Dr., Natick, MA 01760

The information contained in this document is the confidential and proprietary information of edocs, Inc.
and is subject to change without notice.

This material is protected by U.S. and international copyright laws. edocs is registered in the U.S. Patent
and Trademark Office.

No part of this publication may be reproduced or transmitted in any form or by any means without the
prior written permission of edocs, Inc.

All other trademark, company, and product names used herein are trademarks of their respective
companies.

Printed in the USA.

Payment Developer's Guide | 3

Table of Contents

1 Preface.. 5
2 Introduction.. 9

Architecture of Payment ..9
Major Payment Beans ... 11

3 Recurring Payments .. 15
Recurring Payment UI ... 17
Recurring payment – back end job:... 23

Recurring Payment Scheduling ...28
Recurring payment FAQ..31

4 Payment Plug-ins... 35
Plug-In Customization ...35

ACH Check Submit Plug-in ... 35
VeriSign Credit Card Payment Plug-in .. 37
Payment Reminder Plug-in.. 39
Recurring Payment Plug-in.. 40

5 Customizing Payment Template Files.. 43
Understanding the Payment Template Engine...43
Customizing Email Templates ...45

Payment Reminder Template.. 46
Enrollment Notification Template... 49
Recurring Payment Scheduled Notification Template... 53
Payment Notification Template.. 55
Credit Card Expiration Notification Template .. 63

Customizing ACH Templates...64
Matching a Check in the ACH Return to the Database... 67

6 Generating Accounts Receivables (A/R) Files .. 71
Customizing arQuery.xml ..72

Query Case Study ... 73
Customizing arFlat_template.txt ..75
Customizing arXML_template.xml ...75

Customize arXML_template.xml and use XSLT to generate XML/flat AR file 76
Re-implement IARPaymentIntegrator ..76
Select only check or credit card payments...77
Compiling and packaging a custom IARIntegrator ...77
A/R Filenames...78
Single Payment Type ..78

4 | Payment Developer's Guide

7 Packaging Payment Custom Code... 79
8 Debugging Payment .. 81

Viewing WebLogic Logs ..81
View logs from the Command Center: ...81
Turning On the Payment Debug Flag ..81

9 Plug-in Sample Code ... 83
AchCheckSubmitPlugIn.java ...83
PaymentReminderPlugIn.java ...85
RecurringPaymentPlugIn.java ...86
VerisignCreditCardSubmitPlugIn.java..87
AddendaCheckSubmitPlugIn.java ...89
SampleRecurringPlugIn.java ...91

10 Auditing .. 95
Jobs that are audited ... 95
UI actions that are audited... 96
Example UI Audit Flow .. 96

Query Files..101
Running Audit Queries ..102
Query Setup ..103

Windows Configuration.. 104
UNIX Configuration.. 104

Running the Queries in Windows...105
MSSQL .. 105
Oracle .. 106
DB2.. 107

Running the Queries in UNIX ..108
Oracle .. 108
DB2.. 109

Audit Database..110
Modified Tables ... 110
New Tables.. 111
Audit Table Constants ... 112
Job Name Entries .. 112

11 Implementing A Custom Payment Cartridge... 115
Demonstration Cartridge ...115

Implementing Custom Credit Card Cartridge .. 115
12 Miscellaneous Customization... 119

Avoiding paying a bill more than once... 119
Handling multiple payee ACH accounts .. 119

13 Index ... 123

Payment Developer's Guide | 5

Preface

About Customer Self-Service and Payment™
edocs Payment™ is the electronic payment solution that decreases payment processing
costs, accelerates receivables and improves operational efficiency. edocs Payment is a
complete payment scheduling and warehousing system with real-time and batch
connections to payment gateways for Automated Clearing House (ACH) and credit card
payments, and payments via various payment processing service providers.

About This Guide
This guide describes the tasks required to develop an application to use Payment.

This guide is intended for the application developer and those involved in the process of
designing a Payment application.

This guide assumes you have:

• Installed and configured Payment

• Know XML structure and syntax

• Undertand J2EE: JSP, HTML, Struts and Tiles

Related Documentation
This guide is part of the Payment documentation set. For more information about
implementing your Payment application, see one of the following guides:

Print Document Description

Installation Guide How to install Payment for your application and
configure it in a distributed environment.

Payment Administration Guide How to set up and run a live edocs application in a
J2EE environment.

Payment Designer Guide How to design your payment architecture.

Preface

6 | Payment Developer's Guide

Obtaining edocs Software and Documentation
You can download edocs software and documentation directly from Customer Central at
https://support.edocs.com/. After you log in, click on the Downloads button on the left.
When the next page appears, you will see a table displaying all of the available
downloads. To search for specific items, select the Version and/or Category and click the
Search Downloads button. If you download software, an email from edocs Technical
Support will automatically be sent to you (the registered owner) with your license key
information.

If you received an edocs product installation CD, load it on your system and navigate
from its root directory to the folder where the software installer resides for your operating
system. You can run the installer from that location, or you can copy it to your file
system and run it from there. The product documentation included with your CD is in the
Documentation folder located in the root directory. The license key information for the
products on the CD is included with the package materials shipped with the CD.

If You Need Help
Technical Support is available to customers who have an active maintenance and support
contract with edocs. Technical Support engineers can help you install, configure, and
maintain your edocs application.

This guide contains general troubleshooting guidelines intended to empower you to
resolve problems on your own. If you are still unable to identify and correct an issue,
contact Technical Support for assistance.

Information to Provide
Before contacting edocs Technical Support, try resolving the problem yourself using the
information provided in this guide. If you cannot resolve the issue on your own, be sure
to gather the following information and have it handy when you contact technical
support. This will enable your edocs support engineer to more quickly assess your
problem and get you back up and running more quickly.

Please be prepared to provide Technical Support the following information:

Contact information:

• Your name and role in your organization.

• Your company’s name

• Your phone number and best times to call you

• Your e-mail address

Product and platform:

• In which edocs product did the problem occur?

• What version of the product do you have?

Preface

Payment Developer's Guide | 7

• What is your operating system version? RDBMS? Other platform information?

Specific details about your problem:

• Did your system crash or hang?

• What system activity was taking place when the problem occurred?

• Did the system generate a screen error message? If so, please send us that message.
(Type the error text or press the Print Screen button and paste the screen into your
email.)

• Did the system write information to a log? If so, please send us that file.

• How did the system respond to the error?

• What steps have you taken to attempt to resolve the problem?

• What other information would we need to have (supporting data files, steps we’d
need to take) to replicate the problem or error?

Problem severity:

• Clearly communicate the impact of the case (Severity I, II, III, IV) as well as the
Priority (Urgent, High, Medium, Low, No Rush).

• Specify whether the problem occurred in a production or test environment.

Contacting edocs Technical Support
You can contact Technical Support online, by email, or by telephone.

edocs provides global Technical Support services from the following Support Centers:

US Support Center
Natick, MA
Mon-Fri 8:30am – 8:00pm US EST
Telephone: 508-652-8400

Europe Support Center
London, United Kingdom
Mon-Fri 9:00am – 5:00 GMT
Telephone: +44 20 8956 2673

Asia Pac Rim Support Center
Melbourne, Australia
Mon-Fri 9:00am – 5:00pm AU
Telephone: +61 3 9909 7301

Customer Central
https://support.edocs.com

Email Support
mailto:support@edocs.com

Preface

8 | Payment Developer's Guide

Escalation Process
edocs managerial escalation ensures that critical problems are properly managed through
resolution including aligning proper resources and providing notification and frequent
status reports to the client.

edocs escalation process has two tiers:

1. Technical Escalation - edocs technical escalation chain ensures access to the right
technical resources to determine the best course of action.

2. Managerial Escalation - All severity 1 cases are immediately brought to the
attention of the Technical Support Manager, who can align the necessary resources
for resolution. Our escalation process ensures that critical problems are properly
managed to resolution, and that clients as well as edocs executive management
receive notification and frequent status reports.

By separating their tasks, the technical resources remain 100% focused on resolving the
problem while the Support Manager handles communication and status.

To escalate your case, ask the Technical Support Engineer to:

1. Raise the severity level classification.

2. Put you in contact with the Technical Support Escalation Manager.

3. Request that the Director of Technical Support arrange a conference call with the
Vice President of Services.

4. Contact VP of Services directly if you are still in need of more immediate assistance.

1
Payment Developer's Guide | 9

Introduction

1. FAke

Architecture of Payment
Payment is based on the J2EE platform. It uses Servlets and JSPs for the presentation
layer and uses enterprise java beans (EJB) for the business logic layer. It offers the
following sets of functions:

• Enrollment functions: to enroll users for both viewing bills and paying bills
(Payment). Examples of user information include account numbers and email
addresses, and examples of payment account information include bank account
numbers and credit card accounts.

• Payment functions: to make payments, set up payment reminders and recurring
payments, etc.

• Administration functions: to set up payment jobs, view payment reports and
configure Payment Settings.

Introduction

10 | Payment Developer's Guide

The following diagram shows an overview of the J2EE architecture of Payment:

Internet Users Admin Users

Payment Servlet Command Center Servlet

Enrollment JSP Payment JSP Payment Settings
& Report JSP

Command
Center Job JSP

Enrollment
Database

Payment Database edx
Database

Enrollment EJBs
(IAccount, etc)

Payment EJB
(IPayServer, etc)

Payment Admin
EJB

Payment Job/
Task EJBs

In this architecture, the servlet is responsible for user authentication. After authentication,
the servlet forwards the request to JSP pages, which do the bulk of the actual work. The
Payment user JSP pages can be categorized into two groups:

• Enrollment JSP pages are responsible for Payment user enrollment

• Payment JSP pages are responsible for core Payment functionality: schedule
payment, set up recurring payment, etc.

All Payment database access is done through EJB objects. The JSPs and servlets do not
access the database directly.

There are also Payment batch jobs that run inside the command center. For a list and
description of Payment jobs, refer to the Administration Guide.

Introduction

Payment Developer's Guide | 11

Major Payment Beans
The following tables describe the major Payment beans defined in both user EAR and
command center EAR (ear-Payment.ear).

Name PayServer

Remote Interface Com.edocs.payment.remote.IPayServer

Home Interface Com.edocs.payment.remote.IPayServerHome

Bean Type State-less

Jar file ejb-Payment-payserver.jar

Description This is the main EJB bean for user application to access
Payment database.

Name PayAdmin Server

Remote Interface Com.edocs.payment.remote.IPayAdminServer

Home Interface Com.edocs.payment.remote.IPayAdminServerHome

Bean Type State-less

Jar file ejb-Payment-admin.jar

Description This is the main EJB bean for Command Center to configure
Payment Settings and view payment reports.

Introduction

12 | Payment Developer's Guide

Name IPaymentAccount Manager

Remote Interface Com.edocs.payment.remote.PaymentAccountManager

Home Interface com.edocs.payment.remote.
IPaymentAccountManagerHome

Bean Type Stateful

Jar file ejb-Payment-acctmgr.jar

Description This is the main EJB bean for user application to access
payment account information inside Payment database.

Name CreditCardSubmit

Remote Interface Com.edocs.pwc.tasks.ITask

Home Interface Com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-Payment-ccsubmit.jar

Description Credit card submit task.

Name ChkSubmit

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-Payment-chksubmit.jar

Description Check submit task.

Introduction

Payment Developer's Guide | 13

Name ChkUpdate

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-Payment-chkupdate.jar

Description Check update task.

Name ConfirmEnroll

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-Payment-confirm-enroll.jar

Description Confirm enroll task.

Name NotifyEnroll

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-Payment-notify-enroll.jar

Description Notify enroll task.

Introduction

14 | Payment Developer's Guide

Name RecurPayment

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-Payment-recur-payment.jar

Description Recurring payment task.

Name PaymentReminder

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-Payment-reminder.jar

Description Payment reminder task.

Name SubmitEnroll

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-Payment-submit-enroll.jar

Description Submit enroll task.

2
Payment Developer's Guide | 15

Recurring Payments

2. FAke

Payment's recurring payment feature is a very complicated process that involves a great
deal of business logics. This section discusses the recurring payment processing in detail.

Recurring payments consist of actions at the front-end (UI) and back end (command
center jobs). The UI allows a user to insert/update/delete a recurring payment, and the
back end pmtRecurPayment job actually makes the payment.

To understand how recurring payment works, we need to track the changes to the
information in the recurring_payments table:

Column Name Comment

AMOUNT_TYPE and AMOUNT These two columns record how the payment amount is
generated. They are only updated through the UI and are used
by back-end jobs to calculate how much to pay. The valid
values of AMOUNT_TYPE are:
• “fixed amount”: pay a fixed amount and the amount value

is specified by AMOUNT column.
• “amount due”: pay amount due on the bill and, AMOUNT

column is not used (null).
• “minimal due”: pay minimuml amount due on the bill and

AMOUNT column is not used (null).
• “less due”: means pay the amount due if it is less than the

value of the AMOUNT column; otherwise, pay nothing
and send email notification.

• “upto amount”: payD the amount due if it is less than the
value of the AMOUNT column; otherwise, pay the value
of AMOUNT and send email notification.

Recurring Payments

16 | Payment Developer's Guide

Column Name Comment

PAY_INTERVAL
DAY_OF_PAY_INTERVAL
MONTH_OF_PAY_INTERVAL

These three columns record how the payment date is generated.
They are only updated through the UI, and are used by back-
end jobs to calculate when to pay. The valid values of
PAY_INTERVAL are:
• “weekly”: user specified to make payments weekly. The

day of week is specified by DAY_OF_PAY_INTERVAL.
The MONTH_OF_PAY_INTERVAL is irrelevant.

• “monthly”: user specified to make payments monthly. The
day of month is specified by DAY_OF_PAY_INTERVAL.
The MONTH_OF_PAY_INTERVAL is irrelevant.

• “quarterly”: user specified to make payments quarterly.
The day of month is specified by
DAY_OF_PAY_INTERVAL. The month of quarter is
specified by MONTH_OF_PAY_INTERVAL (one of 1,2
or 3) .

START_DATE
END_DATE
CURR_NUM_PAYMENTS
MAX_NUM_PAYMENTS
STATUS

These four columns determine when to start the recurring
payment and when to stop it. START_DATE, END_DATE and
MAX_NUM_PAYMENTS can only be updated through the
UI.
START_DATE is required, but you set only one of the
END_DATE (end by that date) or MAX_NUM_PAYMENTS
(end when this number of payments is made).
The recurring payment STATUS is "active" when it is created
and it has not reached either END_DATE or
MAX_NUM_PAYMENTS. When one of them is reached, the
STATUS is changed to "inactive" and the recurring payment
will never take effect again.
If END_DATE is chosen, NEXT_PAY_DATE (the pay date
for the next bill needs to be paid) is >= START_DATE and <=
END_DATE, the bill will be paid. The STATUS is set to
inactive if NEXT_PAY_DATE > END_DATE.
If MAX_NUM_PAYMENTS is chosen, the STATUS is
changed to inactive when CURR_NUM_PAYMENTS reaches
MAX_NUM_PAYMENTS.

LAST_PAY_DATE This is the pay date of last bill. It is set to 01/07/1970 when
recurring payment is created to indicate that there is valid
information.

NEXT_PAY_DATE This is the pay date of next bill. When the recurring payment
job runs, it schedules a payment with a pay date of
NEXT_PAY_DATE. Note, NEXT_PAY_DATE is calculated
based on LAST_PAY_DATE and PAY_INTERNAL. For
details, see below.

Recurring Payments

Payment Developer's Guide | 17

Column Name Comment

LAST_PROCESS_TIME Records the date of the last time the recurring payment job ran.
During the recurring job synchronization process, Payment
retrieves bills between LAST_PROCESS_TIME and current
time to avoid retrieving duplicated bills and so, improve the
performance.
Note, previous versions of Payment recorded both date and
time information in LAST_PROCESS_TIME. It was found that
a bill could be lost if the bill was indexed the second time on
the same date because the DOC_DATEs of bills don’t include
time information. Currently, the LAST_PROCESS_TIME only
includes date info.

BILL_SCHEDULED
BILL_ID

BILL_SCHEDULED indicates whether the latest bill identified
by BILL_ID has been paid or not.
BILL_ID decides whether a recurring payment needs to
synchronize with the command center.

Recurring Payment UI
This section discusses the actions of the recurring payment UI.

The UI sets up a recurring payment: the UI allows you to insert/update/delete a recurring
payment and get back the list of recurring payments.

The following UML diagram illustrates the objects involved in the process.

Recurring Payments

18 | Payment Developer's Guide

Retrieving and deleting recurring payments from the database is straightforward, so the
next sections discuss what happens when a recurring payment is inserted or updated.

Insert recurring payment from UI

The following sequence diagram demonstrates what happens when a recurring payment
is inserted into database using the UI:

Recurring Payments

Payment Developer's Guide | 19

The next section explains RecurringPaymentUtil.calculateInternal(). This method
calculates the next_pay_date and status of the recurring payment before it is being
inserted into database.

This method calculates the internal states of recurring payment differently for insert and
update. For the insert operation, this method does these things:

1. Call init() method: this method sets some of the recurring payment fields.

• If user chooses to end recurring payment by maximum number of payments, set
end_date to 01/01/3000 00:00:00.

• If user chooses to end recurring payments by a fixed date, set
max_num_payments it java.lang.Integer.MAX_VALUE.

• Set last_pay_date to 01/01/1970 00:00:00; this means no bill has been paid.

• Set bill_scheduled to "Y" if the recurring payment is fixed amount and fixed
date. Note, in this case, the flag should be always true because whenever a
payment is made, the next payment is calculated. It has the same effect as making
the next bill available immediately.

• Set last_process_time to start_date, which by default must be tomorrow or later.
This means that any bills indexed through today (inclusive) won’t be picked up
by recurring payment.

Note: in Payment 4.2, the recurring payment UI has been enhanced to check whether
there are unpaid bills when a recurring payment is setup, and reminds the user to
make a one-time payment to pay the outstanding bill.

2. Call the checkSynchornization method: Checks whether any required
information is missing from recurring payment before inserting it into the database.

Recurring Payments

20 | Payment Developer's Guide

3. Check whether the recurring payment has expired by checking the current number of
payments against maximum number of payments. Note, this check always return
false for insert case.

4. Calculate the next_pay_date by calling one of calculateMonthly(),
calculateQuarterly(), calculateWeekly() or calculateBeforeDue()
depending on whether pay_interval is “monthly”, “quarterly” or “weekly” or
“before_due” respectively.

• Call calculateMonthly() when pay_interval is “monthly”

This method calculates the next pay date, which is based on last_pay_date, start_date
and day_of_pay_internal. Since last_pay_date is 01/01/1970, the next_pay_date is
the nearest date with day_of_pay_internal after the start_date. If
date_of_pay_internal is 29, 30 or 31 and there is no such date in that month, the last
day of that month is used. After next_pay_date is calculated, it is checked against the
end_date. If next_pay_date passes the end_date, the status of the recurring payment
is set to “inactive”.

The following table displays some examples of how next_pay_date is calculated:

Day_of_pay_interval Start_date Next_pay_date

1 Sep 10 Oct 1

10 Sep 10 Sep 10

15 Sep 10 Oct 15

31 Sep 10 Sep 30

• Call calculateQuarterly() when pay_interval is “quarterly”: works similar
to “monthly”

• Call calculateWeekly() when pay_interval is “weekly”: works similar to
“weekly”.

• Call calculateBeforeDue() when pay_interval is “before due”: since there is
no bill yet (bill due date is null), the recurring payment status is set to "active"
and the next_pay_date is set to 01/01/3000.

Update recurring payment from the UI

This section assumes that the UI prevents a user from updating a recurring payment from
fixed date to before due date or vise versa. If the UI is changed to allow a user to do so,
the behavior of recurring payment is not tested.

The following sequence diagram demonstrates what happens when a recurring payment
is updated using the UI into the database.

Recurring Payments

Payment Developer's Guide | 21

The next section explains RecurringPaymentUtil.calculateInternal(). This
method to calculates the next_pay_date and the status of the recurring payment before it
is inserted into database. This example starts from
IRecurringPaymentLog.update(). Note that this method is also used for update by
the back end job.

1. Call IRecurringPaymentLog.update()

2. Call RecurringPaymentUtil.calculateInternal()

3. Call checkSynchronization() method to check whether the information required
for recurring payment is present.

4. If checkSynchronization() throws an exception indicating missed information,
then:

• Call synchronize() method to read the missed information from the database
and populate the missing information into the recurring payment object.

• Call checkSynchronization() again to make sure the required information
has been populated.

• Call init() method: unlike the insert operation, this method checks whether the
recurring payment has started or not by checking the last_pay_date (01/01/1970
means not started yet) and then sets the last process time to the start_date of the
recurring payment if the recurring payment has not been started. The last process
time won’t be updated if recurring payment has been started.

Recurring Payments

22 | Payment Developer's Guide

5. Check whether the recurring payment has expired by checking the current number of
payments against maximum number of payments. If true, set the recurring payment
as inactive and return.

6. Calculate next_pay_date and recurring payment status by calling one of
calculateMonthly(), calculateQuarterly() or calculateWeekly()
based on pay_interval of “monthly”, “quarterly” or “weekly”.

• Call calculateMonthly() when pay_interval is “monthly”, to calculate the
next pay date.

If the last_pay_date is 01/01/1970, then the next_pay_date is calculated based on the
start_date and day_of_pay_interval. It is set to the nearest date with
day_of_pay_interval as day of month after the start_date. This is the same as the
insert case. See previous section for details.

If the last_pay_date is not 01/01/1970, that means that recurring payment has started,
so the next_pay_date is calculated based on the last_pay_date and
day_of_pay_interval. It is set to the date one month after the last_pay_date. Note,
here, the calculation doesn’t depend on the current date. For example, if the recurring
payment job runs today on Oct 1, the last_pay_date is Aug 30 and
day_of_pay_interval is 30, the next_pay_date will be Sep 30 (not Oct 30 as you may
think) even though this date is in the past. In the case of fixed date and pay amount
due, this can pose a problem if there is no bill for a certain month: the pay date will
be in the past. To fix the problem, the recurring payment job will move the
last_pay_date ahead by one month if there is no bill for that month. See following
discussion for more details about the recurring payment job.

If day_of_pay_interval is 29, 30 or 31 and there is no such date in that month, the last
day of that month is used.

After next_pay_date is calculated, it is checked against the end_date and if it passes
the end_date, the status of the recurring payment is set to “inactive”.

• Call calculateQuarterly() when pay_interval is “quarterly”: works similar
to “monthly”

• Call calculateWeekly() when pay_interval is “weekly”: works similar to
“weekly”.

• Call calculateBeforeDue() when pay_interval is “before_due”:

First check whether the recurring payment has been synchronized (bill due date not
null) and if so, set status to active and next pays date to 01/01/3000 and return.

Calculate the proposed next pay date by current bill due date and day_of_internal.

If the proposed next_pay_date is before start_date, set the status of recurring
payment to "active" and next_pay_date to 01/01/3000 and return: the bill won’t be
paid in this case because it falls outside the effective period of the recurring payment.

If the proposed next pay date is after end_date, set the status of recurring payment to
inactive and set the next_pay_date to 01/01/3000 and return.

Otherwise, set the status of the recurring payment to "active" and set its
next_pay_date to the proposed next pay date.

Recurring Payments

Payment Developer's Guide | 23

Recurring payment – back end job:
The pmtRecurringPayment job gets bills from the command center and then schedules
payments. The first process is called “synchronization” and the second process is called
“scheduling”. In Payment version 4.2, these two processes are split into two separate
tasks.

Recurring Payment Synchronization

During the synchronization process, the job retrieves a list of recurring payments to be
synchronized, and then tries to get the bills for the recurring payments from the command
center. The following UML diagram illustrates this process:

The following diagram shows the synchronization:

Recurring Payments

24 | Payment Developer's Guide

The following steps explain synchronization:

1. RecurPaymentTask.executeTask() is called when the job runs, which calls
RecurringPaymentTask.synchronizeSummary().

2. RecurringPaymentTask.synchronizeSummary() is called. This method does the real
work of synchronization and following are the actions taken in this method.

3. IRecurringPaymentLog.getRecurringPaymentsToBeSynchronized() is called to get a
list of recurring payments to be synchronized. The query result is affected by the
recurring payment job configuration parameter “When to synchronize recurring
payment with eaDirect”. When this configuration is “whenever job runs”, all the
recurring payments are retrieved from the recurring_payments table with payee_id as
the job DDN and status as “active”. If “only after current bill is scheduled” is
selected, then all the payments with the payee_id as job DDN and status as “active”
and bill_scheduled as “Y” will be retrieved from the recurring_payments table.

4. For each recurring payment,
IRecurringPaymentPlugIn.preGetLatestSummary() is called. This method
allows the recurring payment plug-in code to decide whether to retrieve bills for a
particular recurring payment based on biller-specific business rules.

5. Call RecurPaymentTask.updateRecuringPaymentOnly() if the plug-in rejects
this recurring payment by returning PRE_GET_LATEST_SUMMARY_REJECT.
This method does these things:

• Update last_process_time to the current time.

Recurring Payments

Payment Developer's Guide | 25

• If the recurring payment pay date is fixed date (monthly/quarterly/weekly) and
pay amount is based on (minimum) amount due, and no bill arrives for this pay
period (bill_scheduled is "Y" and current time is after the current
next_pay_date), the last_pay_date is updated to current next_pay_date. This
ensures that if no bill arrives for this pay period; the next bill will be paid on the
correct date.

• Call IRecurringPayment.update(): this method calculates the
next_pay_date based on the current last_pay_date. See the preceding section for
more information about how this update () operation works.

6. Call IBillDepot.getNewBillSummary(). This interface is implemented by
com.edocs.payment.imported.eadirect.BillDepot. The BillDepot class retrieves the
latest bill summary for the specified account.

• BillDepot.getNewBillSummary() is called, which then calls
BillDepot.getSummary()

• BillDepot.getSummary() is called. This method calls
IDataSource.getDocumentSummary() to get all the bills indexed for this account
between the last_process_time of the recurring payment and the current job run
time.

• The returned bills are in the format of name value pairs with value of string. They
are interpreted to retrieve due date, amount due and/or minimum amount due.

a. For each bill, if minimum amount due is not null, call
BillDepot.preParseMinAmountDue() to give a child class of
BillDepot (via the plug-in) a chance to manipulate the minimum amount
due string before it is parsed, then it parses min amount due.

b. If the bill’s amount due is not null, call
BillDepot.preParseAmountDue() to give child class of BillDepot (via
the plug-in) a chance to manipulate the amount due string before it is
parsed, then it parses the amount due. If the amount due fails to parse, the
bill is ignored.

If the bill has no amount due, or its amount due is set to null by
preParseAmountDue(), or the amount due failed parsing, then the bill is
ignored.

c. If the bill’s due date is not null, call BillDepot.preParseDueDate() to
give child class of BillDepot (via the plug-in) a chance to manipulate the
due date string before it is parsed, then it parses the due date.

If the bill has no due date, or its due date is set to null by
preParseAmountDue(), or the due date failed parsing, then the bill is
ignored.

• All the successfully parsed bills are compared with the bill summary associated
with the current recurring payment, if the summary is not null. The following
business rules are used to decide which bill is the latest one:

The due dates of the bill summaries retrieved are compared and the one with
latest due date is chosen.

Recurring Payments

26 | Payment Developer's Guide

For re-bill, multiple bills with the same due date may be retrieved. In this case, a
re-bill is chosen based on the following rules: the one with latest doc date and in
case of the same doc date, the one with the larger IVN number. This assumes that
a re-bill is indexed after its original bill. A re-bill will be ignored if its original
bill has been paid (the bill_scheduled flag of recurring payment is "Y").

• BillDepot.Summary() returns the latest bill if there is one found, otherwise, it
returns null.

Recurring Payment Scheduling

1. Call RecurPaymentTask.isValidBillSummar() to validate the latest retrieved
bill summary. The latest bill summary could be ignored if it has no bill due date, or if
the recurring payment is based on minimum amount due but the bill summary has no
minimum amount due, or the recurring payment is based on amount due but the bill
summary has no amount due.

2. Now we have a valid bill summary. If the payment to the previous bill summary is
still in "scheduled" status, do following:

• Call RecurPaymentTask.cancelScheduledPayment() to cancel this
payment. The reason to cancel it is that the new bill summary just retrieved
should include the balance of this scheduled bill, and we need to cancel the
payment so that we won’t pay the same bill twice.

• Call RecurPaymentTask.modifyLastPayDate(): If a recurring payment has
a fixed pay date, but the amount is based on amount due or minimum amount
due, we need to back date the last pay date because the previous bill payment has
been cancelled. Failing to do so will cause the current new bill being paid in next
pay interval, not the current one. For example, assume that current bill cycle is
October, the previous bill was retrieved on Oct 10 and is scheduled to pay on Oct
15. As a result, the last_pay_date and next_pay_date of the recurring payment
are updated to Oct 15 and Nov 15, respectively. On Oct 11, a new bill is retrieved
and the payment is scheduled. If we don’t back up the last_pay_date, the new bill
will be scheduled to pay on Nov 15. But in this case, we do want to pay the bill
on Oct 15 because we are still in the Oct billing cycle. To fulfill this goal, we are
going to back date the last_pay_date to Sep 15 so the next_pay_date will be
calculated as Oct 15, which will be used as the pay date for the new bill.

3. Call RecurPaymentTask.insertNewBillAndUpdateRecurring(), which
inserts the retrieved new bill and updates recurring payment accordingly.

• Call IRecurringPaymentPlugIn.preInsertLatestSummary() before
inserting the bill summary in the payment_bill_summaries table.

• If PRE_INSERT_LATEST_SUMMARY_REJECT is returned from the plug-in,
call RecurPaymenTask.updateRecurringPaymentOnly() and return. See
step 5 for details about what this method does.

• Call IBillSummaryLog.insert() to insert this new bill summary.

Recurring Payments

Payment Developer's Guide | 27

• If IBillSummaryLog.insert() throws DuplicateKeyException indicating
that this bill is already in the database, so call
RecurPaymenTask.updateRecurringPaymentOnly(). See step 5 for
details about what this method does.

• Set the bill_scheduled flag to "N" if the payment amount is not negative, or "Y"
if it is negative. This means that no credit/reversal will be issued from recurring
payment; the credit should show up as part of the next bill.

• Set the bill_id of the recurring payment to the one of the new bill summary.

• Call IRecurringPaymentPlugIn.preUpdateSynchronizedRecurring().

• If PRE_UPDATE_SYNCHRONIZED_RECURRING_REJECT is returned from
the plug-in, call RecurPaymenTask.updateRecurringPaymentOnly() and return.
See step 5 for details about what this method does.

• Call IRecurringPaymentLog.update() to update the recurring payment.
The following table lists the information being updated:

Column Value

last_pay_date In the case where the pay date is fixed, but amount is based on amount
due, last_pay_date could be moved one pay_interval back if a scheduled
payment is cancelled because a new bill arrives. Otherwise, last_pay_date
will stay the same.

next_pay_date Next_pay_date will be updated in
RecurringPaymentUtil.calculateInternal(). In the case of
fixed pay date, it will be updated based on last_pay_date; in case of before
due, it will be updated based on the due date of the new bill. See the
previous section, Update Recurring Payment from the UI on page 20 for
more information.

status Since next_pay_date is changed, the status could be changed to “inactive”
if next_pay_date falls after end_date.

bill_id It is set to the bill_id (doc id) of the bill being inserted into the
payment_bill_summaries table.

bill_scheduled The bill_scheduled flag is set to "N" if the payment amount is not negative,
"Y" if it is negative.

last_process_time Set to the current time.

Recurring Payments

28 | Payment Developer's Guide

Recurring Payment Scheduling
During scheduling processing, the recurring payment job retrieves a list of recurring
payments to be scheduled, and then schedules them. The following UML diagram shows
the objects involved in this process.

The following diagram shows the action sequence:

The following steps describe the details of the actions that occur during recurring
payment scheduling process:

1. RecurPaymentTask.execute() is called when the job starts.

2. RecurringPaymentTask.schedulePayments() is called to do the actual
scheduling work.

Recurring Payments

Payment Developer's Guide | 29

3. IRecurringPaymentLog.getRecurringPaymentsToBeScheduled() is called
to get a list of recurring payments to be scheduled. The result is affected by the
recurring payment job configuration parameter “Number of days before pay date to
schedule the payment”, which is a number, N. The SQK query finds all the recurring
payments where the payee_id is the job’s DDN reference, bill_scheduled is “N” and
next_pay_date is <= today + N.

4. IPayUserAccountAccessor.getPaymentAccount() is called to get the current
payment account information associated with this recurring payment. A sanity check
is done on the retrieved payment account and different actions can be take based on
the result:

• If no payment account has been retrieved, which means it has been deleted from
database, then the current recurring payment setup will be de-activated
(IRecurringPaymentLog.update() is called to update status to inactive) and
no payment is scheduled.

• If the payment account is a check account, it’s status is cancelled, and the job
configuration parameter “Cancel recurring payment if payment account is
canceled?” is true, then the current recurring payment setup is de- activated
(IRecurringPaymentLog.update() is called to update status to inactive) and no
payment is scheduled.

• If the payment account is a credit card account, it has expired, and the job
configuration parameter “Cancel recurring payment if payment account is
canceled?” is true, then the current recurring payment setup is de-activated
(IRecurringPaymentLog.update() is called to update status to inactive) and
no payment is scheduled.

5. RecurPaymentTask.createPaymentTransaction() is called to create a new
payment transaction (either a check or a credit card) with status as scheduled and pay
date and amount as specified by recurring payment setup.

6. IRecurringPaymentPlugin.preSchedulePayment() is called, which gives PS
a change to customize the payment transaction before it is inserted into the database.
If this method returns PRE_SCHEDUE_PAYMENT_REJECT, the payment won’t
be scheduled and the program return to process next recurring payment; If not, the
program will go to next step to schedule the payment.

7. Call ICheckPaymentLog.insert() to insert a check or
ICreditCardPaymentLog.insert() to insert a credit card if the amount of the
payment is not negative (Actually it will never be negative because the
bill_scheduled won’t be "N" if amount is negative. See job synchronization part for
detail). Following table lists part of the payment information inserted into the
payment tables:

Column Value

status 6

Recurring Payments

30 | Payment Developer's Guide

Column Value

pay_date Should be the next_pay_date (calculated during synchronization process)
of the current recurring payment. Since recurring payment will be updated
after this insert operation, this value should actually be the same value as
last_pay_date of the updated recurring payment.

Amount This value is decided by amount_type and the amount of the recurring
payment. It is calculated when
RecurPaymentTask.createPaymentTransaction() is called. It should be the
same as the amount column of the recurring payment if amount_type is
“fixed”. It should be the same as the amount_due or min_amount_due of
the bill associated with current recurring payment if amount_type is
“amount due” or “minimal due”, respectively. If amount_type is “less
due”, the payment amount is the amount due of the bill if amount due is
less than or equal to the amount column value of the recurring payment.
Otherwise, the payment amount value is 0. If amount_type is “upto
amount”, then the payment amount is the amount due of the bill if amount
due is less than or equal to the amount column value of the recurring
payment. Otherwise, the payment amount is the amount column value of
the recurring payment.

bill_id Same as the one from recurring payment

Pid Same as the one from recurring_payment

payer_id Same as the one from recurring_payment

payer_acct_number Same as the one from recurring_payment

8. IRecurringPaymentLog.update() is called to update the recurring payment. The
following information of the recurring payment will be updated:

Column Value

Curr_num_payments Increased by 1.

Bill_scheduled “N” if pay date is on fixed date (monthly, quarterly or weekly) and pay
amount is fixed amount; “Y” otherwise.

Last_pay_date The last_pay_date is set to the current next_pay_date of the recurring
payment.

Next_pay_date After last_pay_date is set to the current next_pay_date, the
next_pay_date is calculated again by
RecurringPaymentUtil.calculateInternal(). If the payment is using a
fixed pay date (weekly, quarterly or weekly), then next_pay_date is
calculated and moved to the next pay date in the next pay interval. In
case of before due date, the next pay date will be calculated based on the
current due date (whose bill has been paid), so this next_pay_date has no
meaning until the next bill is synchronized.

Status Status is re-calculated and will be changed to “inactive” if
next_pay_date is after end_date, or curr_num_payments is greater than
max_num_payments. See the previous section about UI update for
details.

Recurring Payments

Payment Developer's Guide | 31

9. IRecurringPaymentPlugIn.preSendEmail() is called so that the plug-in can
customize the email being sent out. The email won’t be sent out if this method
returns PRE_SEND_EMAIL_REJECT.

10. Template.parse() is called to parse the email template and generate the content
of email.

11. PaymentMailer.send() is called to send emails. (IMailer.sendTo() was
called for version 4.1.)

Recurring payment FAQ
This section answers a few common questions about recurring payment.

1. Why is my current bill not paid by recurring payment after I set up my recurring
payment?

The recurring payment start date can only start from tomorrow, so the
last_process_date is set to start from tomorrow. This means all the bills indexed
before today won’t be processed by the recurring payment. The reason is that,
currently, there is no reliable way for recurring payment to know whether the current
bill has been paid or not. The user may have paid it through a one time payment or
through paper check. To avoid paying the bill twice, recurring payment will only start
processing bills indexed since tomorrow.

When a recurring payment is created, the JSP page checks whether there are any
indexed bills for the account. If so, Payment retrieves the latest bill for the account.
Payment also checks whether the latest bill has been paid by checking its doc id
against the bill_id of payment tables. If there is no match, we can reasonably assume
that the bill has not been paid, so we prompt the user to make a one-time payment to
pay that bill.

2. What assumptions does recurring payment make about the bill system?

Recurring payment assumes that the bill balances are accumulative; that is, the bill of
this billing cycle includes the balance of the bill from previous billing cycle, and the
later bill has a due date after that of the previous bill (the only case the same due date
can happen is for re-bill, see below).

Recurring payment also assumes that each bill has a date indicating the chronological
order of bills; this is usually the date when the bill arrives billing system. For
example, in the case of the command center, doc date can be used to indicate the
chronological order of arriving bills. In the case of an external billing system, other
dates such as statement date can be used for this purpose. When recurring payment
synchronizes with the command center or other billing systems, it must retrieve the
latest bill issued between the last_process_time and current time. This chronological
date of bills (doc date or statement date) should be used to guarantee that
functionality.

3. Can recurring payment work with a billing system other than the command center?

Recurring Payments

32 | Payment Developer's Guide

Yes. Recurring payment assumes nothing specific to the command center and the
only thing you need to do is to re-implement the IBillDepot API. Of course, the
billing system should meet assumptions stated in item 2.

4. Do the bills need to have due dates?

Yes, if the recurring payment is not fixed date and fixed amount. The due date is used
to decide which bill is the latest one to pay. For the command center, you must index
the due date or some date equivalent to use as the due date.

5. What is rebill? How do I enable it?

Re-bill means the same bill can be issued multiple times during one billing cycle to
handle adjustments. All the re-bills must have the same due dates. To decide which
re-bill is the latest bill to pay, the current IBillDepot implementation considers the
one the latest with latest doc date. If there is more than one bill with same doc date,
the bill with highest IVN number is chosen. Note, this implementation assumes that a
later re-bill is always indexed after a previous re-bill, and no re-bills will be put
together in one data file (which cause them have same doc date and IVN number). If
you want to consider other factor such as amount for making the decision, you must
re-implement IBillDepot.

Re-bill is enabled by job configuration parameter “When to synchronize with
eaDirect?”. To use re-bill, you must choose “Whenever the job runs”. If you don’t
have re-bill, you can choose either “whenever the job runs” or “only after current bill
is scheduled”.

Technically, there is not much difference between a regular bill and re-bill. The
major difference is the logic required to decide which re-bill is the latest bill, which
goes beyond checking bill due date. You can think about non rebill as a special case
of rebill: rebill allows the same bill to appear more than once in a single billing
period, but non rebill appears only once. The code and programming logic actually
doesn’t distinguish between these two cases.

6. When re-bill is not involved, is there any difference between the job configuration
options for the job configuration parameter" when to synchronize with eaDirect?”

It should not affect functionality, and you can choose either of them. But you should
consider these two things:

First, performance may be deteriorated by choosing “whenever the job runs” because
instead of waiting until current bill is scheduled, the job will try to synchronize with
the command center for each recurring payment. This can be especially true if you
are talking with a billing system other than the command center that may have a slow
connection.

Second, a scheduled payment may be cancelled because of an “unexpected” early-
arrival of next bill. Because we only want to pay the latest bill, the scheduled
payment will be cancelled and the new bill will be scheduled.

7. Why and when can a scheduled payment be cancelled by recurring payment job?

The cancellation of a scheduled payment can only happen when the job
configuration, “when to synchronize with eaDirect” is set to “whenever job runs”.

It can happen because of two reasons:

Recurring Payments

Payment Developer's Guide | 33

The first case is: (for re-bill) after the original bill is scheduled, but before it is
processed, the re-bill arrives. In this case, the original payment will be cancelled, and
the re-bill will be scheduled.

Second, the bill of this billing cycle is still scheduled, but before it is processed, the
bill of next billing cycle arrives (early). In this case, this bill’s payment is cancelled
and the next bill is scheduled.

In case of fixed pay date and pay amount due, if a scheduled payment is cancelled,
the last_pay_date and next_pay_date should all be move back by the pay_interval
before the next bill is scheduled. This ensures that the next bill is paid with the same
pay date as the previous bill.

8. In the case of fixed pay date and pay amount due, what happens if there is no bill for
this billing cycle?

Recurring payment can never be triggered for a billing cycle if there is no bill, or if
the bill’s balance is negative (recurring payment doesn’t issue credit). For example, a
user sets to pay the bill's amount due on the 15th of each month, and current month is
Oct. The next_pay_date will be set to Oct 15. However, if no bill arrives before Oct
15, then after Oct 15, the next_pay_date will be changed to Nov 15 to ensure that the
bill arrives it will be paid in the next pay period. Otherwise, the user may end up
paying the Nov bill with Oct pay date.

9. Will recurring payment make a pay if the balance is negative?

No. Instead, recurring payment assumes that this credit will roll into the balance of
next bill. However, a zero dollar payment will be made if the balance is zero.

10. Can I set up a recurring payment to pay from multiple payment accounts?

No, you can only pay from one payment account for each recurring payment.

11. Why does the default recurring payment update UI limit some options after the
recurring payment is started? For example, it is not possible to switch from "pay on
fixed date" to "pay before due".

The logic to calculate next pay date becomes extremely complicated, so it is
disallowed. If a custom UI does allow such update, the behavior is undefined.

12. What happens if my credit card account expires?

The recurring payment won’t schedule a payment. It is then be de-activated and an
email is sent to the user to indicate that he/she needs to update their credit card
account info. In this case, the user must log on to cancel the inactive recurring
payment and create a new one.

13. Why wasn't my bill scheduled?

This is the most often asked question, but there can be many causes. So here are offer
a few hints to debug this problem. To start, review the recurring payment logic steps
described previously.

First, check whether this is a false alarm. A bill can be synchronized, but yet
scheduled. Also check the next_pay_date to see whether it reflects the correct pay
date for the bill.

Recurring Payments

34 | Payment Developer's Guide

If the bill is not even synchronized, check whether it has been indexed;

If indexed, check whether it falls into the synchronization period. Only bills whose
doc date fall between last_process_time and the current time will be considered.

Check whether this bill has valid information. For example, whether its due date,
amount due are valid parse-able strings. A bill with invalid bill info or with negative
balance won’t be paid.

Even though this is a valid bill, it may not still be paid because its due date is before
the due date of the current bill associated with the recurring payment.

Custom plug-ins may be a factor. The custom code may not have been thoroughly
tested, so check the plug-in the code carefully. Especially if the custom plug-in is
manipulating the bill’s due date or amount due or recurring payment information
directly.

The bill may not be scheduled because the payment account has been cancelled or
deleted or de-activated.

14. Will a single recurring payment failure fail the whole recurring payment job?

It should not, otherwise it’s a bug. If this happens, contact edocs Technical Support.

15. What is bill id?

It’s a unique id used to identify each bill. In the command center, it is the doc id.

16. What is last process time? What is it used for?

It is the time when the last recurring payment job ran. It is used to ensure that a bill is
only retrieved once from the command center. Payment only retrieves bills indexed
between the last process time and the current time. That is, bills whose doc date >=
last process time and <= current time. Previous versions of Payment also had time
information as part of the last process time, but as of Payment 40, the last process
time only contains date information (because the doc date only contains date
information).

17. What happens if a bill is indexed twice?

This is similar to re-bill. The two bills have the same due dates, but the second
indexing produces a later doc date, or a larger IVN, if they are indexed in the same
day.

If “when to synchronize with eaDirect” is set to “whenever job runs”, this is a true re-
bill case, and will be treated as a re-bill.

If “when to synchronize with eaDirect” is set to “after current bill is scheduled”, the
second indexed bill will be ignored during next round of synchronization.

3
Payment Developer's Guide | 35

Payment Plug-ins

3. FAke

Plug-In Customization
The Payment plug-in is a callback, which allows you to add code to extend the
functionality of Payment. There are four plug-ins:

• IAchCheckSubmitPlugIn for the ACH cartridge when submitting checks to ACH.

• IVerisignCreditCardSubmitPlugIn for the VeriSign cartridge when
submitting credit cards to VeriSign.

• IPaymentReminderPlugIn for the job pmtPaymentReminder

• IRecurringPaymentPlugIn for the job pmtRecurPayment

For each plug-in, Payment provides a default implementation. We recommend that you
derive your plug-in from the default implementation to ensure that future updates to the
plug-in will not break your code. The plug-ins and sample code are provided in Sample
Plugin Code on page 83.

ACH Check Submit Plug-in

Overview

The ACH cartridge supports a plug-in to modify ACH file generation. When the
pmtCheckSubmit job runs for ACH, it calls the methods of the implementation of
IAchCheckSubmitPlugIn (defined in Payment Settings) during numerous events. The
default implementation is AchCheckSubmitPlugIn, which does nothing.

Payment Plug-ins

36 | Payment Developer's Guide

The following diagram shows the workflow for the pmtCheckSubmit job plug-in:

pmtCheckSubmit runs

ACH cartridge invoked

Get a list of checks to
be submitted from the

database

Write ACH file header

Write ACH batch header

Write a check

IAchCheckSubmitPlugIn.
begin

IAchCheckSubmitPlugIn.
preWriteFileHeader

IAchCheckSubmitPlugIn.
preWriteBatchHeader

IAchCheckSubmitPlugIn.
preWriteCheck

IAchCheckSubmitPlugIn.
postWriteCheck

IAchCheckSubmitPlugIn.
preWriteBatchTrailer

Write ACH batch trailer

Write ACH file trailer

Return to
pmtCheckSubmit

IAchCheckSubmitPlugIn.
preWriteFileTrailer

IAchCheckSubmitPlugIn.
finish

Writing a Plug-in

You can use the pmtCheckSubmit plug-in to change the default name of the ACH file,
create a remittance file in addition to the standard ACH file, deny a check or change the
default information put into the ACH file. You need to create your own implementation
to accomplish these tasks. Refer to the Payment SDK JavaDoc for information about
writing an implementation of IAchCheckSubmitPlugIn. To create your own
implementation:

1. Derive your implementation from the default implementation
AchCheckSubmitPlugIn.

2. Overwrite the methods whose behavior you wish to change.

Payment Plug-ins

Payment Developer's Guide | 37

3. When compiling, include Payment_common.jar and Payment_client.jar into your
java classpath.

4. Package this class into Payment_custom.jar of each EAR file. See Packaging
Payment Custom Code on page 79 for information about redeploying EAR files.

5. Change the Payment Settings to point to your new class.

Using a Plug-in to Write ACH Addenda Records

You can use the pmtCheckSubmit plug-in to write addenda records for ACH. The
implementation called AddendaCheckSubmitPlugIn gets the invoice information of a
payment and writes them out as addenda records. Check this class in the JavaDoc for its
implementation details, and then follow the steps in Writing a Plug-in on page 36 to write
your own implementation.

VeriSign Credit Card Payment Plug-in

CreditCardSubmit Plug-in Overview

Unlike the ACH plug-in, the VeriSign credit card plug-in is invoked from both the front
end (when an instant credit card is made) and the back end (when credit card submit job
runs). This plug-in allows you to audit the credit card payment, deny it, or even changes
the HTTP request sent to Verisign HTTP server. Check the API
IVerisignCreditCardSubmitPlugIn for details.

The following diagram shows the workflow of the plug-in when an instant credit card
payment is submitted:

User submits an
instant credit card

payment

Contact Verisign

Display
authorization

result

IVerisignCreditCardSubmitPlugin
.preAuthorize

IVerisignCreditCardSubmitPlugin
.postAuthorize

Payment Plug-ins

38 | Payment Developer's Guide

The following diagram shows the workflow of the plug-in when the
pmtCreditCardSubmit job runs for VeriSign:

pmtCreditCardSubmit runs

Invoke Verisign cartridge

Get a list of credit cards to be
sumbitted, and for each one:

Send the credit card payment to
Verisign

Return the payment to the
pmtCreditCardSubmit job

IVerisignCreditCardSubmitPlugin.
begin

IVerisignCreditCardSubmitPlugin.
PreAuthorize

IVerisignCreditCardSubmitPlugin.
PostAuthorize

IVerisignCreditCardSubmitPlugin.
finish

Next
payment

Writing a Credit Card Plug-in

The default implementation of IVerisignCreditCardSubmitPlugIn,
VerisignCreditCardSubmitPlugIn, just does nothing. To write you own
implementation, you should:

1. Derive your implementation from VerisignCreditCardSubmitPlugIn.

2. Overwrite the methods for which you wish to change the default behavior.

3. When compiling, include Payment_common.jar and Payment_client.jar in your javac
class path.

4. Package this class into Payment_custom.jar of each ear file. For details about how to
do that, see the SDK: Customizing and Deploying Applications document.

5. Change the Payment Settings of that DDN to use the new plug-in implementation.

Payment Plug-ins

Payment Developer's Guide | 39

Payment Reminder Plug-in

Payment Reminder Plug-in Overview

The payment reminder plug-in is invoked when the pmtPaymentReminder job runs.
pmtPaymentReminder does three things:

• regular payment reminders

• check status notification

• credit card status notification

There are corresponding plug-ins for the preceding tasks. Refer to
com.edocs.payment.tasks.reminder.IPaymentReminderPlugIn for details.

The following diagram shows the workflow for the plug-in of the pmtPaymentReminder
job:

pmtPaymentReminder
job runs

get list of payment reminders
to be sent

send email for one reminder

get list of check payments to
be notified

send email for one check

get list of credit card payments
to be notified

send email for one credit card

finish

IPaymentReminder.
preSendEmailCheck

IPaymentReminder.
preSendEmailCreditCard

IPaymentReminder.
preSendEmailReminder

Payment Plug-ins

40 | Payment Developer's Guide

Creating a pmtPaymentReminder Plug-in

The default plug-in implementation,
com.edocs.payment.tasks.reminder.PaymentReminderPlugIn, actually does nothing. To
implement your own plug-in:

1. Derive your implementation class from PaymentReminderPlugIn.

2. Overwrite the methods for you wish to change behavior.

3. When compiling, include Payment_common.jar and Payment_client.jar in your javac
class path.

4. Package this class into Payment_custom.jar of each ear file. See the SDK:
Customizing and Deploying Applications document.

5. Update the pmtPaymentReminder job configuration to use the new class.

Recurring Payment Plug-in

Recurring Payment Overview

The recurring payment plug-in is called when the pmtRecurPayment job runs. You can
use this plug-in to prevent a recurring payment from being scheduled based on business
rules. Or, you can extract some indexed fields from the index table and put them into the
payment being scheduled. The implementations:
com.edocs.tasks.payment.recur_payment.RecurringPaymentPlugIn, is the default one and
it does nothing.

The file SampleRecurringPlugin.java provides an example implementation. See Sample
Recurring Plugin on page 91 for more information.

Payment Plug-ins

Payment Developer's Guide | 41

The following diagram shows the workflow of recurring payment and how the plug-in
works:

Insert summary into
payment_bill_summaries

table

Update the payment
database with the bill

summary

pmtRecurPayment runs

Find all recurring
payments that need a bill
summary from eaDirect

Get summary from
eaDirect for a recurring

payment
IRecurringPaymentPlugIn.
preInsertLatestSummary

Find all recurring
payments that need to be

scheduled

IRecurringPaymentPlugIn.
preUpdatesSynchronizedRecurring

IRecurringPaymentPlugIn.
preGetLatestSummary

IRecurringPaymentPlugIn.
preSchedulePayment

Schedule a payment
(insert into the payment
table) for one recurring

payment

Send email notification

pmtRecurPayment done

IRecurringPaymentPlugIn.
preSendMail

Writing a Plug-in

The default plug-in implementation,
com.edocs.payment.tasks.recur_payment.RecurringPaymentPlugIn, does nothing indeed.
To implement your own plug-in:

1. Derive your implementation class from RecurringPaymentPlugIn.

2. Overwrite the method that you wish to change behavior of.

Payment Plug-ins

42 | Payment Developer's Guide

3. When compiling, include Payment_common.jar and Payment_client.jar in your javac
class path.

4. Package this class into Payment_custom.jar of each EAR file. For more information,
see the SDK: Customizing and Deploying Applications document.

5. Update the pmtRecurPayment job configuration to use the new class.

Populating Index Fields into Payment Flexible Fields

com.edocs.paymenttasks.recur_payment.SampleRecurringPlugIn demonstrates how to
use a plug-in to populate the flexible fields of the payment database (ICheck or
ICreditCard) with the indexed information from the indexer table.

4
Payment Developer's Guide | 43

Customizing Payment Template Files

4. FAke

Payment provides a template engine to generate Payment-wide text messages, such as
emails, ACH files, and A/R files. This chapter describes how to use Payment templates to
customize those text messages.

Understanding the Payment Template Engine
The payment templates provide a generic template mechanism based on Java reflection.
The template engine generates custom text output based on the templates. Similar to JSP,
the template engine replaces the special placeholders inserted into the text file with the
values of Java objects. For more detailed API documentation, see the Payment JavaDoc
included with the SDK.

The Template engine hosts a pool of objects in its context in the form of a hash table.
You can refer to the variables in that context by their names. For example, there is a
Check object whose name is “check”. You can refer to that object as: %check%. This
means replace %check% with the string returned from check.toString(). This is
true for all Java objects except java.util.Date, where getTime() is called and inserts a
long value that is the number of milliseconds since January 1, 1970, 00:00:00 GMT. If a
method returns void, then nothing will be printed out.

The content of the message consists of text plus resolved placeholders. Placeholders are
Java variables, which are Payment hosted objects including their attributes and methods.

For more information about the Template class, see the Payment SDK JavaDoc.

All template variables must be enclosed by two %s. To escape '%', use '%%'. For
example, "%%40" means "%40"

In addition to referring to variables, you can also access an object’s public fields and
methods. The valid reference is: %name.field%, %name.method(param1, param2, ...)%,
where each parameter to a method can be either of name, name.field or
name.method(param1, param2, ,,,). The number of parameters is unlimited and an
arbitrary level of method nesting is allowed (nesting means that a method's return value is
used as a parameter when calling another method). For example, suppose there are two
objects in contexts: "buf" which is a StringBuffer, and "str" which is a String. The
following references are valid: %buf%, %buf.append(str)%,
%buf.append(str.toString())%.

Customizing Payment Template Files

44 | Payment Developer's Guide

A static field or method can be accessed directly without instantiating an object. For
example, java.lang.Integer has a static field called MIN_VALUE and a static method
called parseInt. You can refer to them as %java.lang.Integer.MIN_VALUE% or
%java.lang.Integer.parseInt(“12.34”)%.

All variables must be preset by calling putToContext on the Template class. Some
variables are already set by Payment which you can use directly. But you can also put
your own variables into the context:

%template.putToContext(“buf”, new java.lang.StringBuffer())%

This means to put a new StringBuffer object called "buf" into the template context. You
can then refer to this object by its name:

%buf.append(“abc”)%

This appends “abc” to the end of the StringBuffer’s value.

The current payment engine has some limitations. One is that it cannot do math
operations, for example: x + y. You must call a Java method to do math operations.
Another limitation is that it doesn’t allow you to concatenate method calls, for example:
%variable.method().method() %. You must write your own Java method to do method
concatenation.

Included with the Payment package, there are a few utility classes to help you overcome
the weakness of payment template engine. These classes are:

com.edocs.payment.util.DecimalUtil
com.edocs.payment.util.DateUtil
com.edocs.payment.util.StringUtil.

One useful method in StringUtil is concat. It is declared and used as follows:
public static String concat(String s1, String s2, String s3)
%com.edocs.payment.util.StringUtil.concat(s1,s2,s3)%

Remember, you cannot do %s1.concat(s2).concat(s3)% inside a template, instead, you
must call this function from template:

%com.edocs.payment.util.StringUtil.concat(s1,s2,s3)%.

Another useful method is format() from DateUtil class. This method helps format a Date
object into different display formats. For example:
%com.edocs.payment.util.DateUtil.format(“MMM dd, yyyy”, check.getPayDate())%
formats a check’s pay date to display as “Jan 01, 2000”. For a complete list of possible
date formats, please check the JDK document about java.text.SimpleDateFormat.

When writing customized Java code, we strongly recommend that you use static methods
as frequently as possible, so you can call them directly from a template without creating
an instance of that object first. For example, by default, the individual ID field of an ACH
entry detail field is populated with the customer’s account number using
%check.getPayerAcctNumber()%. The returned result is 16 bytes long, but the actual
account number is 15 bytes, so you must truncate the retrieved value. The following steps
describe how to create a java class to do truncation, and enable it in the Payment template
engine:

Customizing Payment Template Files

Payment Developer's Guide | 45

1. Write a Java class:
package com.edocs.ps;
public class MyUtil {
 public static String truncate(String s){
 return s.substring(1);
 }
}

2. Compile the class and put it into Payment_custom.jar of each EAR file, then re-
deploy the EAR files.

3. You can now refer to this class in a template as follows:
%com.edocs.ps.MyUtil.truncate(check.getPayerAcctNumber())%

Customizing Email Templates
Payment uses template files to generate customized text that will be sent in a notification
email. The email templates can be customized for you by edocs Professional Services, or
you can customize them yourself. This appendix describes how email template variables
and how they can be customized.

Separate email notification templates are used for:

Type of notification Task that Specifies Template File

Reminder to pay bills and
the status of the checks

pmtPaymentReminder paymentReminder.txt

Enrollment status pmtNotifyEnroll motifyEnroll.txt

Recurring payment was
scheduled

pmtRecurPayment recurringNotify.txt

Payment command center
job status

All Payment jobs notifyPaymentTask.txt

Credit card expiration pmtCreditCardExpNotify CCExpNotify.txt

For Unix, the default path to the email template files is
$PAYMENT_HOME/lib/payment_resources/.
For Windows, it is:
%PAYMENT_HOME%\lib\payment_resources.

The email templates use a simple programming structure that works similar to JSP (but is
not JSP). The template language includes a list of placeholders that refer to Java objects,
which are hosted by Payment. It also includes some simple logic control directives such
as IF and LOOP.

See the Payment JavaDoc for more information about the Template class.

Customizing Payment Template Files

46 | Payment Developer's Guide

Payment Reminder Template
Payment reminder messages are generated based on PaymentReminder.txt, which resides
in $PAYMENT_HOME/lib/payment_resources
(%PAYMENT_HOME%\lib\payment_resources for Windows).

This template is used for regular payment reminder and email notifications for processed,
returned or failed payments:

%<IF isRemind>%
Dear %reminder.getPayerId()%:
 This email is to remind you to pay your current
%reminder.getPayeeId()%'s
 bill. Please refer to this url to pay your bill:
 http://www.edocs.com.
 Thanks,
%</IF>%

%<IF isCheck>%
Dear user %check.getPayerId()%:

%<IF isPaid>%
%<IF! isAmtNegative>%
 Your check of $%check.getAmount()% has been paid on
%dateUtil.format("MMM dd yyyy", check.getPayDate())%.
%</IF!>%
%<IF isAmtNegative>%
 A credit of $%decimalUtil.absolute(check.getAmount())% has been
issued to your check account on %dateUtil.format("MMM dd yyyy",
check.getPayDate())%.
%</IF>%
%</IF>%

%<IF isReturned>%
%<IF! isAmtNegative>%
 Your check of $%check.getAmount()% has been returned. The error
message is:
%com.edocs.payment.cassette.ach.AchReturnCode.get(check.getTxnErr
Msg())%
%</IF!>%
%<IF isAmtNegative>%
 Your request to issue
$%decimalUtil.absolute(check.getAmount())% credit to your check
account has been rejected. The error message is:
%com.edocs.payment.cassette.ach.AchReturnCode.get(check.getTxnErr
Msg())%.
%</IF>%
%</IF>%

Customizing Payment Template Files

Payment Developer's Guide | 47

%<IF isFailed>%
 There is a problem to process your check. The error message is:
%check.getTxnErrMsg()%
%</IF>%

%<IF isCanceled>%
%<IF! isAmtNegative>%
 Your check of $%check.getAmount()% has been canceled by the
payment system because the check account is not valid. Please
check your enrollment information.
%</IF!>%
%<IF isAmtNegative>%
 Your request to issue
$%decimalUtil.absolute(check.getAmount())% credit to your check
account has been canceled by the payment system because the check
account is not valid. Please check your enrollment information.
%</IF>%
%</IF>%

%<IF isProcessed>%
%<IF! isAmtNegative>%
 Your check of $%check.getAmount()% has been sent to bank for
clearing.
%</IF!>%
%<IF isAmtNegative>%
 Your request to issue
$%decimalUtil.absolute(check.getAmount())% credit to your check
account has been sent to bank for clearing.
%</IF>%
%</IF>%

%</IF>%

%<IF isCCard>%
Dear user %creditcard.getPayerId()%:

%<IF isSettled>%
%<IF! isAmtNegative>%
 Your credit card payment of $%creditcard.getAmount()% has been
authorized successfully.
%</IF!>%
%<IF isAmtNegative>%
 Your request to reverse
$%decimalUtil.absolute(creditcard.getAmount())% to your credit
card has been authorized successfully.
%</IF>%
%</IF>%

%<IF isFailed>%
%<IF! isAmtNegative>%
 Your credit card payment of $%creditcard.getAmount()% failed
authorization.
 The error message is: %creditcard.getTxnErrMsg()%
%</IF!>%

Customizing Payment Template Files

48 | Payment Developer's Guide

%<IF isAmtNegative>%
 Your request to reverse
$%decimalUtil.absolute(creditcard.getAmount())% to your credit
card failed authorization.
 The error message is: %creditcard.getTxnErrMsg()%
%</IF>%
%</IF>%

%<IF isSystemFailure>%
%<IF! isAmtNegative>%
 Your credit card payment of $%creditcard.getAmount()% failed.
 The error message is: %creditcard.getTxnErrMsg()%
%</IF!>%
%<IF isAmtNegative>%
 Your request to reverse
$%decimalUtil.absolute(creditcard.getAmount())% to your credit
card failed.
 The error message is: %creditcard.getTxnErrMsg()%
%</IF>%
%</IF>%

%<IF isCanceled>%
%<IF! isAmtNegative>%
 Your credit card payment $%creditcard.getAmount()% has been
canceled by the payment system because the account is invalid.
Please check your enrollment information.
%</IF!>%
%<IF isAmtNegative>%
 Your request to reverse
$%decimalUtil.absolute(creditcard.getAmount())% to your credit
card has been canceled by the payment system because the account
is invalid. Please check your enrollment information.
%</IF>%
%</IF>%

%</IF>%

The following table describes the payment reminder template variables:

Variable Type Description

check ICheck The ICheck object being notified, valid only when
isCheck is true.

creditcard ICreditCard The ICreditCard object being notified, valid only
when isCCard is true.

isCCard Boolean True means this is for credit card status notification.

isCheck Boolean True means this is for check status notification.

isFailed Boolean True means the payment has failed to process
(isFailedAuthorize).

isPaid Boolean True means the check has been paid or cleared.

isProcessed Boolean True means the check has been processed.

Customizing Payment Template Files

Payment Developer's Guide | 49

Variable Type Description

isReminded Boolean True means this is for regular payment reminders.

isReturned Boolean True means the check has been returned.

isSettled Boolean True means the credit card has been settled.

isSystemFailure Boolean True means there has been a system error. For
example, a network failure.

reminder IPaymentReminder The IPaymentReminder object being reminded,
valid only when isReminded is true.

Enrollment Notification Template
The enrollment notification template notifies customers about "active "and "bad-active"
payment accounts and NOC returns. Enrollment reminder messages are generated based
on enrollNotify.txt:

Dear %checkAccount.getUserId()%:

%<IF isACH>%
%<IF success>%
 Your payment account %checkAccount.getAccountNumber()% has
been succesfully activated.
%</IF>%
%<IF! success>%
 There has been a problem activating your payment account
%checkAccount.getAccountNumber()%.
 The return reason code is: %errCode%
%</IF!>%
%</IF>%

%<IF isNOC>%
%<IF isC01>%
%<IF isAutoUpdate>%
 Your Bank Account Number has been changed.
 New Bank Account Number is: %newPaymentAccount%
 Old Bank Account Number was: %oldPaymentAccount%
%</IF>%
%<IF! isAutoUpdate>%
 Your current Bank Account Number is out of date.
 New Bank Account Number is: %newPaymentAccount%
 Current Bank Account Number is: %oldPaymentAccount%
 Please login to change your profile.
%</IF!>%
%</IF>%

Customizing Payment Template Files

50 | Payment Developer's Guide

%<IF isC02>%
%<IF isAutoUpdate>%
 Your Bank Routing Number has been changed.
 New Bank Routing Number is: %newRouting%
 Old Bank Routing Number was: %oldRouting%
%</IF>%
%<IF! isAutoUpdate>%
 Your current Bank Routing Number is out of date.
 New Bank Routing Number is: %newRouting%
 Current Bank Routing Number is: %oldRouting%
 Please login to change your profile.
%</IF!>%
%</IF>%
%<IF isC03>%
%<IF isAutoUpdate>%
 Your Bank Account Information has been changed.
 New Bank Account Number is: %newPaymentAccount%
 Old Bank Account Number was: %oldPaymentAccount%
 New Bank Routing Number is: %newRouting%
 Old Bank Routing Number was: %oldRouting%
%</IF>%
%<IF! isAutoUpdate>%
 Your current Bank Account Information is out of date.
 New Bank Account Number is: %newPaymentAccount%
 Current Bank Account Number was: %oldPaymentAccount%
 New Bank Routing Number is: %newRouting%
 Current Bank Routing Number is: %oldRouting%
 Please login to change your profile.
%</IF!>%
%</IF>%
%<IF isC05>%
%<IF isAutoUpdate>%
 Your Bank Account Information has been changed.
 Your new Bank Type is %newPaymentType%
 Your old Bank Type was %oldPaymentType%
%</IF>%
%<IF! isAutoUpdate>%
 Your current Bank Account Type is out of date.
 Your new Bank Type is %newPaymentType%
 Your current Bank Type is %oldPaymentType%
 Please login to change your profile.
%</IF!>%
%</IF>%
%<IF isC06>%
%<IF isAutoUpdate>%
 Your Bank Account Information has been changed.
 New Bank Account Number is: %newPaymentAccount%
 Old Bank Account Number was: %oldPaymentAccount%
 Your new Bank Type is %newPaymentType%
 Your old Bank Type was %oldPaymentType%
%</IF>%
%<IF! isAutoUpdate>%
 Your current Bank Account Information is out of date.
 New Bank Account Number is: %newPaymentAccount%
 current Bank Account Number is: %oldPaymentAccount%
 New Bank Type is %newPaymentType%
 Current Bank Type is %oldPaymentType%

Customizing Payment Template Files

Payment Developer's Guide | 51

 Please login to change your profile.
%</IF!>%
%</IF>%
%<IF isC07>%
%<IF isAutoUpdate>%
 Your Bank Account Information has been changed.
 New Bank Account Number is: %newPaymentAccount%
 Old Bank Account Number was: %oldPaymentAccount%
 New Bank Routing Number is: %newRouting%
 Old Bank Routing Number was: %oldRouting%
 Your new Bank Type is %newPaymentType%
 Your old Bank Type was %oldPaymentType%
%</IF>%
%<IF! isAutoUpdate>%
 Your current Bank Account Information is out of date.
 New Bank Account Number is: %newPaymentAccount%
 Current Bank Account Number is: %oldPaymentAccount%
 New Bank Routing Number is: %newRouting%
 Current Bank Routing Number is: %oldRouting% <>
 New Bank Type is %newPaymentType%
 Current Bank Type is %oldPaymentType%
 Please login to change your profile.
%</IF!>%
%</IF>%
%</IF>%

%<IF isCDP>%
%<IF success>%
 Your payment account %checkAccount.getAccountNumber()% has
been succesfully activated.
%</IF>%
%<IF! success>%
 There has been a problem activating your payment account
%checkAccount.getAccountNumber()%. Please contact your
customer service representative for further assistance.
%</IF!>%
%</IF>%

This template is used for both ACH and Checkfree CDP. The text between %<IF
isACH>% and the corresponding %</IF>% is for ACH. The text between %<IF isCDP>%
and the corresponding %</IF>% is for Checkfree. If there are no payment gateways for
Checkfree or for ACH, you can remove that section from the template file.

Each payment account will be sent an individual email. Payment supports multiple
payment accounts, so there may be more than one email sent out for each customer (if
that customer has multiple payment accounts).

The following tables list the variables available for use in the Enrollment Notification
email template. The first table is for ACH, the second table is for ACH NOC returns, and
the third table is for Checkfree CDP

Customizing Payment Template Files

52 | Payment Developer's Guide

The following variables apply to all the cases:

Variable Type Description

checkAccount ICheckAccount The current check account being notified

template Template The Payment template engine, which is
used to declare new variables for the
template.

config IPaymentConfig Payment setting information, which is
configured from the Command Center.

The following variables apply to ACH:

ACH Variable Type Description

isACH boolean True indicates this is an ACH notification.

success boolean Success means this account has been activated
successfully.

errCode String ACH return code, if the transaction failed.

The following variables apply to ACH NOC returns:

ACH NOC Variable Type Description

isNOC boolean True indicates this is an NOC return.

isC01, isC02,
isC03, isC05,
isC06, isC07

boolean True indicates the returned NOC code(s).

isAutoUpdate boolean Returns the state of the
com.edocs.payment.cassette
.ach.autoUpdatNOC flag, which is configured
on the Payment Settings page from the Command
Center.

newPaymentAccount String New payment account number.

oldPaymentAccount String Old payment account number.

newRouting String New payment routing number.

oldRouting String Old payment routing number.

newPaymentType String New payment account type.

oldPaymentType String Old payment account type.

The following variables apply to Checkfree CDP:

CDP Variable Type Description

isCDP Boolean True indicate this is a Checkfree CDP notification.

success Boolean True indicates this account has been activated
successfully.

Customizing Payment Template Files

Payment Developer's Guide | 53

Recurring Payment Scheduled Notification Template
When recurring payment schedules a payment, email notification messages are generated
from the template file recurringNotify.txt:

Dear %recurringPayment.getPayerId()%,
%<IF isPaymentScheduled>
 %<IF isCheck>%

 This email is to inform you a check payment has been
scheduled automatically for you.

The check amount is $%payment.getAmount()%. The pay date is
%dateUtil.format("MM/dd/yyyy", payment.getPayDate())%.

 %</IF>%

 %<IF isCCard>%

 This email is to inform you a credit card payment has
been scheduled automatically for you.

The check amount is $%payment.getAmount()%. The pay date is
%dateUtil.format("MM/dd/yyyy", payment.getPayDate())%.

 %</IF>%^M

 You can update or cancel this transaction following
this URL http://www.edocs.com.

%</IF>%

%<IF isPaymentNotScheduled>%

Dear %recurringPayment.getPayerId()%,

 This email is to inform you that your recurring
payment scheduled on %dateUtil.format("MM/dd/yyyy",
recurringPayment.getNextPayDate())% is not made as requested.
Please contact your biller for detail.

%</IF>%

%<IF isLessPayment>%

Dear %recurringPayment.getPayerId()%,

 This email is to inform you that the amount due
$%recurringPayment.getBillAmountDue()% is more than the
maximal amount, $%recurringPayment.getAmount()%, specified in
the recurring payment.

The bill is not paid by recurring payment.

%</IF>%

%<IF isAlreadyPaid>%

Dear %recurringPayment.getPayerId()%,

 The bill, due on %dateUtil.format("MM/dd/yyyy",
recurringPayment.getBillDueDate())%, is not paid

by recurring payment because it is already been paid.

%</IF>%

%<IF isLastRecurringPayment>%

Customizing Payment Template Files

54 | Payment Developer's Guide

 This is the last payment from the recurring payment.

%</IF>%

%<IF isRecurringPaymentCanceled>%

 This email is to inform you that your recurring
payment schedule has been deactivated,

due to your account status, and no payments have been
scheduled.

 Please contact your biller for further details.

%</IF>%

 Number of payments made until now is
%recurringPayment.getCurrNumPayment()%.

The recurring notification template variables are:

Variable Name Type Description

recurringPayment IRecurringPayment Contains recurring payment
information and current bill
information paid by this recurring
payment, when applicable. Bill
information is null if the amount
and pay date are both fixed.

isPaymentScheduled Boolean True if a payment has been
scheduled.

isCheck Boolean True if the payment scheduled is a
check.

isCCard Boolean True if the payment scheduled is a
credit card.

payment IPaymentTransaction ICheck if isCheck is true or
ICreditCard if isCCard is
true. This is the payment being
scheduled.

isPaymentNotScheduled Boolean True if the payment is not
scheduled for some reason.
Usually this is because a payment
job plug-in rejected the payment
based on a customer business
rule.

isLessPayment Boolean True if the amount due is less than
a certain amount, but the amount
due is more than that. Notify the
customer to pay manually.

isAlreadyPaid Boolean True when Payment finds a
DuplicateBillIdExceptio
n during the insertion of a
payment into database.

isLastRecurringPayment Boolean True if this is the last payment.

Customizing Payment Template Files

Payment Developer's Guide | 55

Variable Name Type Description

isRecurringPaymentCancelled Boolean True if the recurring payment is
cancelled. For example, if the
payment account is cancelled. See
the job configuration for details.

Payment Notification Template
This template controls the format of emails that are sent to the administrator by each job.
The template file is notifyPaymentTask.txt:

%<IF isOK>%
 %taskName% was done without error at
%dateUtil.format("MM/dd/yyyy HH:mm:ss", currentTime)%.
%</IF>%
%<IF! isOK>%
 %taskName% was done with an error at
%dateUtil.format("MM/dd/yyyy HH:mm:ss", currentTime)%. The
error message is : %taskException.getMessage()%.
%</IF!>%

%<IF skipSynchronization>%

 As Skip SynchronizationTask setting is set to YES, The
Synchronization Task was skipped
%</IF>%

%<IF recurringPmtSyncTask>%
 %<IF isDone>%
 Job Name : %jobName%
 Total Number of RecurringPayments to be synchronized :
%syncCount%
 Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount%
 Total Number of Recurring Payments that failed to
synchronize : %syncFailureCount%.
 %</IF>%
%<IF! isDone>%
 Please look at the audit tables for detail.

 Job Name : %jobName%
 Total Number of RecurringPayments to be synchronized :
%syncCount%
 Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount%
 Total Number of Recurring Payments that failed to
synchronize : %syncFailureCount%.

 %</IF!>%
%</IF>%

Customizing Payment Template Files

56 | Payment Developer's Guide

%<IF recurringPmtSchedulerTask>%
 %<IF isDone>%
 Job Name : %jobName%
 Total Number of RecurringPayments to be scheduled :
%scheduleCount%
 Total Number of RecurringPayments that are scheduled
Successfully : %scheduleSuccessCount%
 Total Number of Recurring Payments that failed to be
scheduled : %scheduleFailureCount%.
 %<IF isDecryptFailed>%

 Total Number of Recurring Payments cancelled due to
decryption failure : %CancelCount%

 %</IF>%
 %</IF>%
%<IF! isDone>%
 Please look at the audit tables for detail.

 Job Name : %jobName%
 Total Number of RecurringPayments to be scheduled :
%scheduleCount%
 Total Number of RecurringPayments that are scheduled
Successfully : %scheduleSuccessCount%
 Total Number of Recurring Payments that failed to be
scheduled : %scheduleFailureCount%.
 %<IF isDecryptFailed>%

 Total Number of Recurring Payments cancelled due to
decryption failure : %CancelCount%

 %</IF>%

 %</IF!>%
%</IF>%

%<IF paymentReminderTask>%
 %<IF isDone>%
 Job Name : %jobName%
 Total Number of Good Check Payment notifications :
%goodCheckPaymentsCount%
 Total Number of Check Payment notifications failed due to
decryption failure : %badCheckPaymentsCount%

 Total Number of Good CreditCard Payment notifications :
%goodCCPaymentsCount%
 Total Number of CreditCard Payment notifications failed due
to decryption failure : %badCCPaymentsCount%
 %</IF>%
%</IF>%

%<IF CreditCardExpNotifyTask>%
 %<IF isDone>%
 Job Name : %jobName%

 Total Number of CreditCard expiration notifications to be
processed : %ccexpNotifyCount%

Customizing Payment Template Files

Payment Developer's Guide | 57

 Total Number of CreditCard expiration notifications that
are processed Successfully : %ccexpNotifySuccessCount%
 Total Number of CreditCard expiration notifications that
are failed : %ccexpNotifyFailureCount%

 Total Number of Good CreditCard notifications :
%goodCCAccountCount%
 Total Number of Bad CreditCard notifications :
%badCCAccountCount%
 %</IF>%
%</IF>%

%<IF CheckSubmitTask>%
%<IF isDone>%
 Job Name : %jobName%
 %<IF isHoliday>%
 This job was not run since today
(%dateUtil.format("MM/dd/yyyy", todayDate)%) is a holiday.
 %</IF>%
 %<IF isDecryptFailed>%
 While running the job, there were account decryption
failures.
 %</IF>%
 %</IF>%
%</IF>%

%<IF SubmitEnrollTask>%
%<IF isDone>%
 Job Name : %jobName%
 %<IF isHoliday>%
 This job was not run since today
(%dateUtil.format("MM/dd/yyyy", todayDate)%) is a holiday.
 %</IF>%

 %<IF isDecryptFailed>%
 While running the job, there were account decryption
failures.
 %</IF>%
 %</IF>%
%</IF>%

%<IF CreditCardSubmitTask>%
%<IF isDone>%
 Job Name : %jobName%
 %<IF isDecryptFailed>%
 While running the job, there were account decryption
failures.
 %</IF>%
 %</IF>%
%</IF>%

Customizing Payment Template Files

58 | Payment Developer's Guide

pmtCreditCardExpNotify Variables

The payment notification template variables related to pmtCreditCardExpNotifiy are:

Variable Value type Description

CreditCardExpNotifyTask String Identifies the credit card expiration
notification task.

isDone Boolean (true or false) Identifies the job had done.

jobName String Identifies the job name.

ccexpNotifyCount int Total number of notifications to be made.

ccexpNotifySuccessCount int Successful number of accounts.

ccexpNotifyFailureCount int Failed number of accounts.

goodCCAccountCount int Number of good credit card accounts (due
to decryption).

badCCAccountCount int Number of bad credit card accounts (due to
decryption).

Example:
%<IF recurringPmtSyncTask>%
%<IF skipSynchronization>%

 As Skip SynchronizationTask setting is set to YES, The
Synchronization Task was skipped
%</IF>%
 %<IF isDone>%
 Job Name : %jobName%
 Total Number of RecurringPayments to be synchronized :
%syncCount%
 Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount%
 Total Number of Recurring Payments that failed to
synchronize : %syncFailureCount%.
 %</IF>%
%<IF! isDone>%
 Please look at the audit tables for detail.

 Job Name : %jobName%
 Total Number of RecurringPayments to be synchronized :
%syncCount%
 Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount%
 Total Number of Recurring Payments that failed to
synchronize : %syncFailureCount%.

 %</IF!>%
%</IF>%

Customizing Payment Template Files

Payment Developer's Guide | 59

pmtRecurringPayment Variables

The recurring notification template variables for the synchronization task are:

Recurring Synch
Variable

Type Description

skipSynchronization Boolean (true or false) True enables the skip synchronization option.

recurringPmtSyncTask Boolean (true or false) True identifies this as the recurring payment
task.

isDone Boolean (true or false) True indicates that the job is done.

jobName String The job name.

syncCount int Total number of accounts to be synchronized.

syncSuccessCount int Successful number of synchronized accounts.

syncFailureCount int Number of failed of synchronized accounts.

Example:
%<IF recurringPmtSyncTask>%
%<IF skipSynchronization>%
 As Skip SynchronizationTask setting is set to YES, The
Synchronization Task was skipped
%</IF>%
 %<IF isDone>%
 Job Name : %jobName%
 Total Number of RecurringPayments to be synchronized :
%syncCount%
 Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount%
 Total Number of Recurring Payments that failed to
synchronize : %syncFailureCount%.
 %</IF>%
%<IF! isDone>%
 Please look at the audit tables for detail.
 Job Name : %jobName%
 Total Number of RecurringPayments to be synchronized :
%syncCount%
 Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount%
 Total Number of Recurring Payments that failed to
synchronize : %syncFailureCount%.
 %</IF!>%
%</IF>%

The recurring notification template variables for the scheduler task are:

Recurring Scheduler
Variable

Type Description

recurringPmtSchedulerTask String Identifies the scheduler task.

isDone Boolean (true or false) To identify the job had done.

Customizing Payment Template Files

60 | Payment Developer's Guide

Recurring Scheduler
Variable

Type Description

jobName String To identify the job name.

scheduleCount Int Total number of accounts to be
scheduled

scheduleSuccessCount Int Successful number of scheduled
accounts

scheduleFailureCount Int Failed number of scheduled accounts

CancelCount Int Cancelled number of scheduled
accounts

isDecryptFailed Boolean value (true or
false)

To identify whether there was/were
decryption failure/s

Example:
%<IF recurringPmtSyncTask>%
%<IF skipSynchronization>%
 As Skip SynchronizationTask setting is set to YES, The
Synchronization Task was skipped
%</IF>%
 %<IF isDone>%
 Job Name : %jobName%
 Total Number of RecurringPayments to be synchronized :
%syncCount%
 Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount%
 Total Number of Recurring Payments that failed to
synchronize : %syncFailureCount%.
 %</IF>%
%<IF! isDone>%
 Please look at the audit tables for detail.
 Job Name : %jobName%
 Total Number of RecurringPayments to be synchronized :
%syncCount%
 Total Number of RecurringPayments that are synchronized
Successfully : %syncSuccessCount%
 Total Number of Recurring Payments that failed to
synchronize : %syncFailureCount%.
 %</IF!>%
%</IF>%

pmtPaymentReminder Variables

Reminder Variable Type Description

paymentReminderTask String Identifies the payment reminder task.

isDone Boolean (true or false) Identifies the job is done.

jobName String Identifies the job name.

goodCheckPaymentsCount Int Number of successful check accounts.

Customizing Payment Template Files

Payment Developer's Guide | 61

Reminder Variable Type Description

badCheckPaymentsCount Int Number of failed check accounts

goodCCPaymentsCount Int Number of successful credit card accounts.

badCCPaymentsCount int Number of failed credit card accounts.

Example:
%<IF paymentReminderTask>%
 %<IF isDone>%
 Job Name : %jobName%
 Total Number of Good Check Payment notifications :
%goodCheckPaymentsCount%
 Total Number of Check Payment notifications failed due to
decryption failure : %badCheckPaymentsCount%

 Total Number of Good CreditCard Payment notifications :
%goodCCPaymentsCount%
 Total Number of CreditCard Payment notifications failed due
to decryption failure : %badCCPaymentsCount%
 %</IF>%
%</IF>%

pmtCreditCardExpNotify Variables

CCExpNotify Variable Type Description

CreditCardExpNotifyTask String Identifies the credit card expiration
notification task.

isDone Boolean (true or false) Identifies the job is done.

jobName String Identifies the job name.

ccexpNotifyCount int Total number of notifications to be made

ccexpNotifySuccessCount int Number of successful accounts.

ccexpNotifyFailureCount int Number of failed accounts.

goodCCAccountCount int Number of good credit card accounts (due
to successful decryption).

badCCAccountCount int Number of bad credit card accounts (due to
unsuccessful decryption).

Example:

Customizing Payment Template Files

62 | Payment Developer's Guide

%<IF CreditCardExpNotifyTask>%
 %<IF isDone>%
 Job Name : %jobName%

 Total Number of CreditCard expiration notifications to be processed :
%ccexpNotifyCount%
 Total Number of CreditCard expiration notifications that are processed
Successfully : %ccexpNotifySuccessCount%
 Total Number of CreditCard expiration notifications that are failed :
%ccexpNotifyFailureCount%

 Total Number of Good CreditCard notifications : %goodCCAccountCount%
 Total Number of Bad CreditCard notifications : %badCCAccountCount%
 %</IF>%
%</IF>%

pmtCheckSubmit Variables

Check Submit
Variable

Type Description

CheckSubmitTask Boolean value (true or
false)

Identifies the check submit task

isDone Boolean (true or false) Identifies the job had done.

jobName String Identifies the job name.

isHoliday Boolean value (true or
false)

Identifies a holiday.

dateUtil DateUtil object Format of the expiration date.

isDecryptFailed Boolean value (true or
false)

Identifies whether there was/were decryption
failure/s.

Example:
%<IF CheckSubmitTask>%
%<IF isDone>%
 Job Name : %jobName%
 %<IF isHoliday>%
 This job was not run since today
(%dateUtil.format("MM/dd/yyyy", todayDate)%) is a holiday.
 %</IF>%
 %<IF isDecryptFailed >%
 While running the job, there were account decryption
failures.
 %</IF>%
 %</IF>%
%</IF>%

Customizing Payment Template Files

Payment Developer's Guide | 63

pmtSubmitEnroll

Submit Ernoll
Variable

Type Description

SubmitEnrollTask String Identifies the submit enroll task

isDone Boolean (true or false) Identifies the job had done.

jobName String Identifies the job name.

isHoliday Boolean value (true or
false)

Identifies a holiday.

isDecryptFailed Boolean value (true or
false)

Identifies whether there was/were decryption
failure/s.

Example:
%<IF SubmitEnrollTask>%
%<IF isDone>%
 Job Name : %jobName%
 %<IF isHoliday>%
 This job was not run since today
(%dateUtil.format("MM/dd/yyyy", todayDate)%) is a holiday.
 %</IF>%

 %<IF isDecryptFailed>%
 While running the job, there were account decryption
failures.
 %</IF>%
 %</IF>%
%</IF>%

Credit Card Expiration Notification Template
When a credit card is about to expire, email notification messages are generated from the
template file CCExpNotify.txt:

Dear %account.getUserId()%:

 This email is to remind you that your credit card which has
the account number %account.getShorttenedAccNumber()%,

 %<IF! accExpired>%

 is about to expire in %dateUtil.format("MMM yyyy",
account.getExpireDate ())%.

 %</IF!>%

 %<IF accExpired>%

 has expired in %dateUtil.format("MMM yyyy",
account.getExpireDate())%.

 %</IF>%

Please login to the Payment system and update the credit card
information.

Customizing Payment Template Files

64 | Payment Developer's Guide

Thanks

The credit card expiration notification template variables are:

variable Value type Description
accExpired Boolean value (true or false) Identify whether the account is expired or not

account ICreditCardAccount object Object of ICreditCardAccount that has the
information about the account

Customizing ACH Templates
The ACH records of interest are in File Header, Batch Header, Entry Detail for PPD,
Addenda and return for PPD, Batch Trailer and File Trailer. ACH fields may be
mandatory, required, or optional. The contents of mandatory fields are fixed and should
not be customized. Required fields are usually defined by the receiving bank, and may be
customized for different banks. Optional fields can be customized, also.

By default, secCode is set to WEB to be compliant with the ACH 2001 format. However,
you can change the SEC code based on the requirements of a biller’s bank by editing the
batchHeader_template.xml file.

The following table is a list of some ACH fields. The ACH fields can be customized
upon a billers’ request. The pmtCheckSubmit jobs running date is referred to as Today.

Field Name Where Description

Company Descriptive
Date

8th field in batch
header, optional

Default set to Today; the date that
pmtCheckSubmit is running.

Effective Entry Date 9th field in batch,
required

The date when checks in the batches need to be
cleared. This is a suggested date from ACH, but
the actual date that checks are cleared may vary.
All checks with the same pay date will be put into
one batch. The effective entry date may not
always be the pay date. The default setting for
effective entry date is: If the pay date is
tomorrow or earlier, then it is the earliest
business date after today. If the pay date is after
tomorrow, then it is the earliest business date
after the pay date (including the pay date).

Individual ID 7th field in PPD entry
detail, optional or
required

By default set to the customer’s account with the
biller. Since this field is 15 bytes, the length of
customer’s account must not exceed 15 bytes.
If the customer account is longer than 15 bytes,
either the field will not be populated, or you must
truncate this field using Java code or the Java
classes provided by Payment.

Individual Name 8th field in PPD entry
detail. Required

By default set to the check’s payment ID.
Payment ID is the primary key on the
check_payments table. It can be used to map a
returned check back to the one in Payment
database.

Customizing Payment Template Files

Payment Developer's Guide | 65

The templates for ACH are actually XML files, which describe the format of each ACH
record, such as the start position, length, etc. There are two sets of templates: one to
generate ACH files, and another to parse ACH return files.

The first set of templates is used to generate ACH files. They are
fileHeader_template.xml, batchHeader_template.xml, entryDetail_template.xml,
batchTrailer_template.xml andTrailer_template.xml. When an ACH file is generated,
check information is pulled from the database and then populated into the content of the
XML files by replacing the template variables. The resulting XML file is transferred into
an ACH file according to the format specified by the XML tags. The generic format of an
XML tag is:

<amount pos="30" len="10" fmt="N" fract="2">%

where:

amount is the name of the tag
pos is the start position
len is the length of the field
fmt is the format of the field
fract is the number of digits after decimal point if the fmt is “N” (numerical).

The tables below list the template variables that are predefined in the Payment template
engine. These variables are used to populate the content of the templates.

The following template variables are used by all templates:

Global Variable
Name

Type Description

template com.edocs.util.template.
Template

The template engine.

stringUtil com.edocs.payment.
util.StringUtil

Makes calling the static methods of
StringUtil easier. Instead of using:
%com.edocs.payment.util.
StringUtil.concat(“a”,”b”,”
c”)% use:
%stringUtil.concat(“a”,
“b”, “c”)%

decimalUtil com.edocs.payment.
util.DecimalUtil

Provides decimal number
manipulations.

dateUtil com.edocs.payment.
util.DateUtil

Provides date manipulation methods
Also a calendar, which includes all US
holidays.

batch com.edocs.payment.
IPaymentBatch

The payment summary report, which
you can view through the Command
Center.

Customizing Payment Template Files

66 | Payment Developer's Guide

Global Variable
Name

Type Description

config com.edocs.payment.
config.IPaymentConfig

Payment setting information.

attributeName com.edocs.payment.
config.AttributeName

Payment setting parameter names, Use it
with the variable config to get
payment setting information.

The following template variables are used by File Header:

Variable Name Type Description

fileCreateDate java.util.Date Creation date of the ACH file.

fileCreateTime java.util.Date Creation time of the ACH file.

fileIdModifier java.lang.String ACH file modifier, “A” to “Z” and “0” to “9”.

The following template variables are used by Batch Header:

Variable Name Type Description

curPayDate java.util.Date The pay date of checks in the batch. All the
checks in the same batch have the same pay
date.

companyDescData String From Payment Settings.

companyDescDate Date Defaults to Today. To use another date, you
must call a static Java method.

batchNumber int Starts from “1”; identifies the batches in the
ACH.

batchEffectiveEntryDate Date Identifies the batches in the ACH.

The following template variables are used by Entry Detail:

Variable Name Type Description

check com.edocs.
payment.ICheck

All check payment information, including
the trace number.

addenda
Record
Indicator

int Indicates whether there is addenda record
for entry detail. 0=No; 1=Yes.

The following template variables are used by Batch Trailer:

Variable Name Type Description

batchEntryHash String See the ACH documentation.

batchEntryAddendaCount int Number of entries in the batch.

batchDebitAmount String Total debit amount in the batch.

Customizing Payment Template Files

Payment Developer's Guide | 67

Variable Name Type Description

batchCreditAmount String Always “0”.

Template variables used by Batch Trailer:

Variable Name Type Description

batchCount int Number of batches in the file.

blockCount int See the ACH documentation.

totalEntryHash String See the ACH documentation.

totalEntryAddendaCount int Total number of entries in the file

totalDebitAmount String Total debit amount in the file.

Matching a Check in the ACH Return to the Database
Return files are parsed by the return templates, fileHeader_return_template.xml,
batchHeader_return_template.xml, entryDetail_return_template.xml,
addenda_return_template.xml, batchTrailer_return_template.xml and
fileTrailer_return_template.xml. The format of these files is similar to the format of the
submit templates described previously. For example:

<individualName pos="55" len="22" fmt="AN"
target="%check.setPaymentId(?)%"></individualName>

retrieves the part of the text from positions 55 to 77, puts them into a variable called “?”
and then calls check.setPaymentId() to set payment_id for the check. The
template executes the template statement specified by XML tag “target” only.

When a check is returned from the ACH network, Payment matches it to that check in the
database and marks it as returned. ACH modifies several fields in the return file. Payment
populates one or more unchanged fields with identification information to help in
matching them back to a check in the database. Consult the ACH documentation for
information about which fields are not changed.

The return template does two things. First, it retrieves the error return code from the
addenda record, and then tries to reconstruct the payment ID or gateway payment ID to
match a check in the database. If Payment cannot populate the payment ID into the ACH
file, it uses the gateway payment ID, which is a concatenation of a few check payment
fields that can identify a check. The procedure is described in the following steps:

By default, Payment populates the payment_id of the check into the individual name field
to create the ACH file. The following line in entryDetail_template.xml populates the
payment ID into an individual name:

<individualName pos="55" len="22"
fmt="AN">%check.getPaymentId()%</individualName>

The following line in entryDetail_return_template.xml extracts the payment id:
< individualName pos="55" len="22" fmt="AN"
target="%check.setPaymentId(?)%"></individualName >

Customizing Payment Template Files

68 | Payment Developer's Guide

The following line in addenda_return_template.xml extracts the return error code:
<returnReasonCode pos="4" len="3"
target="%check.setTxnErrMsg(?)%"></returnReasonCode>

Payment then changes the status of the check to "returned" and updates this check in the
database using its payment_id.

If the individual name is required for something else, for example the check account
name (which is the first 22 bytes), then following these steps to use gateway payment id:

1. Modify entryDetail_template.xml to populate individual name with account name.
Change:
<individualName pos="55" len="22"
fmt="AN">%check.getPaymentId()%</individualName>

to:
<individualName pos="55" len="22"
fmt="AN">%stringUtil.substring(check.getAccountName(), 0,
22)%</individualName>

2. Modify entryDetail_return_template.xml so that payment ID won’t be set for a
returned check. Change:
<individualName pos="55" len="22" fmt="AN"
target='%check.setPaymenId(?)%'></individualName>

to:
<individualName pos="55" len="22" fmt="AN"></individualName>

3. Since payment ID cannot be used to match checks, we can use gateway payment ID
instead. Gateway payment ID is the ID generated by the template that submitted the
ACH file to ACH. This template generates a unique ID based on the information
submitted to ACH. This ID must contain information that won’t be changed by ACH
in the return file. The Payment engine will use the gateway payment ID to find a
match in the database.

In very rare circumstances, more than one match may be found. In that case, the match
with the latest creation time is used. The following example discusses several ways to
generate the gateway payment ID.

Payment generates a trace number and puts that into the entry detail record. By default,
the trace number starts at 0000000 and increases by one for each check until it reaches
9999999. After this point, the numbering restarts at 0000000. It’s possible to get a
duplicate trace number (after 10 million checks). However, since the Payment engine
always chooses the payment with the latest date, the correct check will be matched. You
can use both the trace number and individual ID (customer account number) to identify a
payment and use them for the gateway payment ID.

Customizing Payment Template Files

Payment Developer's Guide | 69

Example 1: unchanged ACH trace number

In the following example, we assume that the ACH/Bank will return both original trace
number and individual ID to Payment. To do that:

1. At the start of entryDetail_template.xml, see the section:
<ACH_6>
%<*>%
%check.setGatewayPaymentId(com.edocs.payment.util.StringUtil.c
oncat(check.getPayerAcctNumber(), "_", check.getTxnNumber()))%

%</*>%

This statement is commented out in the template, using %<*>% and %</*>%.
Removing the comment tags enables the statement.

The trace number is stored as txnNumber in the check object. This statement
concatenates the customer account number, a “_”, and trace number as the gateway
payment ID. The setGatewayPaymentId method returns void, so nothing will
print out. (If it did return a value, then that would print, which would ruin the format
of the XML file.) After running pmtCheckSubmit, check the gateway payment ID in
the check_payments table, which should be the concatenation of the individual ID
and the trace number that are written into the entry detail record.

2. Next, Payment retrieves the original trace number from the return file, and sets it as
the gateway payment ID. In the addenda_return_template.xm, find this section:
<traceNumber pos="80" len="15" fmt="N"
target1='%check.setGatewayPaymentId(txnNumber)%'
target2='%check.setGatewayPaymentId(stringUtil.concat(payerAcc
tNumber, "_", txnNumber))%'></traceNumber>

Rename “target2” to “target”, which will reconstruct the gateway payment ID based
on the returned customer account number and trace number. Template variable
payerAcctNumber has been set in entryDetail_return_template.xml and
txnNumber has been set before this line in the addenda_return_template.xml by
calling template.putToContext.

3. Now you are all set. You should test this setting using an actual return file and verify
that the check’s status has been updated to –4 in the check_payments table.

Example 2: modified ACH trace number

If the individual ID is not returned as it was set, you can try to use other information,
such as individual name combined with trace number. If only the trace number can be
used for gateway payment ID, use that by:

1. At the start of entryDetail_template.xml, see the section:
 %<*/>%

%check.setGatewayPaymentId(check.getTxnNumber())%

%</*>%

Remove the comment tags to enable the statement.

Customizing Payment Template Files

70 | Payment Developer's Guide

2. In addenda_return_template.xml , see the section:
<traceNumber pos="80" len="15" fmt="N"
target1='%check.setGatewayPaymentId(txnNumber)%'
target2='%check.setGatewayPaymentId(stringUtil.concat(payerAcc
tNumber, "_", txnNumber))%'></traceNumber>

and rename “target1” to “target” to enable using trace number as gateway payment
ID.

5
Payment Developer's Guide | 71

Generating Accounts Receivables (A/R)
Files

5. FAke

It is often necessary to synchronize the Payment system with a biller’s A/R system.
Payment usually needs to periodically send A/R files to a biller’s A/R system, which
includes the payments being made through Payment. The format of the file varies among
billers. To support this function, Payment has the pmtARIntegrator job, which uses a
template and XML/XSLT to generate output in a variety of file formats.

The pmtARIntegrator job queries the Payment database to get proper payments, and then
writes the payments into a flat file or an XML file using the Payment Template engine.
The XML file can be further transformed into other format by using XSLT. The default
implementation of this job does following things:

1. Queries the Payment database to get a list of check and/or credit card payments. The
query is defined in arQuery.xml file, which finds all the check and credit card
payments where the payee_id matches the current job DDN , the status is 8 ("paid")
and flexible_field_3 is “N”.

2. Invokes the process() method of the default implementation of
com.edocs.payment.tasks.ar.IARPaymentIntegrator, which is
com.edocs.payment.tasks.ar.SampleARPaymentIntegrator. In this method,
ARPaymentIntegrator writes the payments into a flat file or XML file using the
Payment Template engine. There are two templates provided by Payment:

• arFlat_template.txt, which generates a flat A/R file

• arXML_template.txt, which generates an XML file

The output file name is: ar_yyyyMMddHHmmssSSS.extension, where extension
matches the extension of the template file.

3. Inside the process() method, if the output is an XML file,
SampleARPaymentIntegrator can optionally apply an XSLT file against the
output file to transform it into another format. The transformed file name is:
ar_trans_yyyyMMddHHmmssSSS.extention, where extension is defined by the
pmtARIntegrator job configuration.

4. Inside the process() method, SampleARPaymentIntegrator updates
flexible_field_3 of both check and credit card payments to “Y”, and writes that to
database. This ensures these payments won’t be processed again by the next run of
pmtARIntegrator.

Generating Accounts Receivables (A/R) Files

72 | Payment Developer's Guide

Customizing arQuery.xml
The SQL queries used by the pmtARIntegrator job are defined in an XML file,
arQuery.xml, which is provided by the default Payment installation. arQuery.xml is based
on edocs XMLQuery technology. For details about this definition, see the SDK: Content
Access document that is part of the command center SDK.

Caution

XMLQuery supports paging, but this feature must not be used for this job

Most of the A/R file creation is done by an implementation class of the interface
com.edocs.payment.tasks.ar.IARPaymentIntegrator. This adaptor interface provides
maximum flexibility for customizing this job. The default implementation is
com.edocs.payment.tasks.ar.SampleARPaymentIntegrator.

Before the actual query is executed in the database, the job invokes the getMap()
method of IARPaymentIntegrator, which gets a list of objects that are used to replace
the variables “?” defined in the SQL query of arQuery.xml. See the Payment SDK
JavaDoc about IARPaymentIntegrator for more information.

The default IARPaymentIntegrator implementation, SampleARPaymentIntegrator,
uses this arQuery.xml for database query:

<?xml version="1.0" encoding="UTF-8"?>
<query-spec>
 <data_source_type>SQL</data_source_type>

<query name="checkQuery">
 <sql-stmt><![CDATA[select * from check_payments where
payee_id = ? and statu
s = 8]]></sql-stmt>
 <param name="payee_id" type="java.lang.Integer"
position="1"/>
 <!--param name="last_modify_time"
type="java.sql.Timestamp" position="2" /-->
 </query>

 <query name="creditCardQuery">
 <sql-stmt><![CDATA[select * from creditcard_payments where
payee_id = ? and st
atus = 8 and flexible_field_3 = 'N']]></sql-stmt>
 <param name="payee_id" type="java.lang.Integer"
position="1"/>
 </query>

</query-spec>

Two queries are defined:

• checkQuery - queries check payments

• creditCardQuery - queries credit card payments

Generating Accounts Receivables (A/R) Files

Payment Developer's Guide | 73

Both these queries get all the successful payments (status=8) of the current payee (biller
or DDN of current job) from the relevant Payment payment tables. They both use
flexible_field_3 as a flag to prevent a payment from being sent to the A/R job twice. This
flag is initially set to “N” when the payment is created. After the A/R job runs, the
SampleARPaymentIntegrator changes the flag to “Y”.

When using flexible_field_3 as an A/R flag, you can create an index for it to increase
performance. Payment provides a script just for that purpose in
EDCSpay/db/create_ar_index.sql. This script is not run when the Payment database is
created, so you must run it manually.

Each of the queries in arQuery.xml has an SQL variable (‘?’) that must be resolved
before the query can be sent to the database. The A/R job calls the getMap() method of
IARPaymentIntegrator to get a Map of query variables, and uses their values to
replace the ‘?’s in the query. The names of the Map elements should match those defined
in the "param" tags of the "query" tags.

For example, the default arQuery.xml has the "param" tag:
<param name="payee_id" type="java.lang.Integer" position="1"/>

To support this you should define a Map element whose name is "payee_id" and whose
value (which must be an Integer, and contains the DDN reference number) replaces the
"?" mark with "payee_id" in the query:

select * from check_payments where payee_id = ? and status = 8
and flexible_field_3 = 'N'

The following query result set will be transferred to a list of checks (ICheck objects) for
checkQuery, and credit cards (ICreditCard objects) for creditCardQuery, and then pass
that list to the process() method of IARPaymentIntegrator.

Caution

The XMLQuery object supports paging, but this feature must not be
used for A/R query.

You can modify this file to use different queries.

Query Case Study
The new requirement for this example is to retrieve all payments whose status is returned
or paid between 5:00PM today (the job run date) and 5:00PM yesterday (yesterday's job
run date).

Step 1

Change arQuery.xml for checkQuery:
<query name="checkQuery">

<sql-stmt><![CDATA[select * from check_payments where
payee_id=? and status in (8,-4) and last_modify_time >= ? and
last_modify_time < ?]] </sql-stmt>

<param name="payee_id" type="java.lang.Integer" position="1"/>

Generating Accounts Receivables (A/R) Files

74 | Payment Developer's Guide

<param name="min_last_modify_time" type="java.sql.Timestamp"
position="2"/>

<param name="max_last_modify_time" type="java.sql.Timestamp"
position="3"/>

</query>

Tip

Use java.sql.Timestamp instead of java.util.Date.

Step 2

Do the same thing for creditCardQuery:

1. Since you are adding more “?”s to the query, you need to override the getMap()
method of the default ARPaymentIntegrator:
pacakge com.edocs.ps.ar;
import java.util.*;
import com.edocs.payment.util.DateUtil;

public class MyARIntegrator extends ARPaymentIntegrator

{

 /**Override this method to populate the SQL variables in
arQuery.xml

 */

public Map getMap(ARPaymentIntegratorParams
payIntegratorParam,
 String objectFlag) throws
Exception
{
 //call super class because we need to get the payee_id
value
 Map map = super.getMap(payIntegratorParam,
objectFlag);
 //no need to check objectFlag because we actually
populate the
 //same values for both checkQuery and creditCardQuery
 Date today = new Date();

 today = DateUtil.dayStart(today);//set to 00:00:00AM
 Date today5 = DateUtil.addHours(today, 17); //set to
05:00:00PM

 Date yesterday5 = DateUtil.addHours(today, -7) ;//set
to 05:00:00PM of yesterday
 map.put(“min_last_modify_time”,
DateUtil.toSqlTimestamp(yesterday5));

 map.put(“max_last_modify_time”,
DateUtil.toSqlTimestamp(today5));
}

Generating Accounts Receivables (A/R) Files

Payment Developer's Guide | 75

}

2. If you wish to make the cutoff time configurable instead of fixed at 5:00PM, use the
flexible configuration fields of the A/R job, which are passed in as part of
ARPaymentIntegratorParams. For more information about
ARPaymentIntegratorParams, see the Payment SDK JavaDoc.

3. Compile your class using the Payment_client.jar and Payment_common.jar that
comes with Payment, package the compiled class into the Payment EAR files, and re-
deploy the EAR files.

4. Login to the Command Center and change the configuration of the A/R job to use the
new implementation of the IARPaymentIntegrator,
com.edocs.ps.ar.MyARIntegrator.

Customizing arFlat_template.txt
Payments returned by arQuery.xml are written to an A/R file using a Payment template
file. Two templates come with Payment:

arFlat_template.txt- generates a flat A/R file

arXML_template.xml - generates an XML A/R file

arFlat_template.txt generates a sample flat A/R file. If this file includes most of your
required data, but the format is not what you want, you can edit the template file to
generate your own format. For more information about using the Template class, see the
Payment JavaDoc.

The A/R job using arFlat_template.txt does two things:

1. Loops through the list of check and credit card payments to print out their details.

2. Calculates the totals for check debits, check credits, credit card debits and credit card
credits (reversals).

Customizing arXML_template.xml
arXML_template.xml generates the same information as arFlat_template.txt, but in XML
format. After creating the XML file, you can use XSLT to transform it into another XML
file or into a flat file. The default arTransform.xsl transforms the original XML file into
the same format as the one generated by arFlat_template.txt. Using XSLT is the
recommended way to do the customization, because it is easy and powerful.

The A/R job using arXML_template.xml does two things:

1. Loops through the list of check and credit card payments to print out their details.

Generating Accounts Receivables (A/R) Files

76 | Payment Developer's Guide

2. Calculates the totals for check debits, check credits, credit card debits and credit card
credits (reversals).

To generate different file formats, change arTransform.xsl. Or, customize the
arXML_template.xml file directly.

Customize arXML_template.xml and use XSLT to generate XML/flat
AR file

The arXML_template.xml generates the same information as arFlat_template.txt, but in
XML format. After generating the XML file, you can use XSLT to transfer it into another
XML file or into a flat file. The default arTransform.xsl transforms the XML file into the
same format as the one generated by arFlat_template.txt. If you are familiar with XSLT,
this is the recommended way to do the customization because XSLT is easy to use and
powerful.

This template does two things:

1. Loops through the list of check and credit card payments to print out their details.

2. Calculates the totals for check debits, check credits, credit card debits and credit card
credits (reversals).

To generate different file formats, change arTransform.xsl. If required, you can also
customize the arXML_template.xml file.

To rename the generated files:

To rename the files generated by these utilities you must write a simple implementation
of IARPaymentIntegrator. The following code demonstrates how to rename the
XSLT output file to another name:

import java.io.*;
public class MyARIntegrator extends ARPaymentIntegrator
{
protected void
getTransformedARFileName(ARPaymentIntegratorParams
 payIntegratorParam,) throws Exception
{
return ”newARName.txt”;
}
}

Re-implement IARPaymentIntegrator
You may want to re-implement the default SampleARPaymentIntegrator if you wish
to add any of the following features. The following steps describe how to do this:

1. Re-name the default AR files.

Generating Accounts Receivables (A/R) Files

Payment Developer's Guide | 77

2. Change the SQL query to add more “?” variables and to set values for those variables
in the IARPaymentIntegrator implementation.

3. Add any additional steps, such as putting more objects into Template context before
it is parsed.

4. Change the result of the template parsing. For example, because of limitations of
Template engine, sometimes unwanted empty new lines are added. You should
remove those lines.

5. Modify the check or credit card objects before they are updated in the database. By
default, only flexible_field_3 is updated from "N" to "Y". Another alternative is
to update the check or credit card object in the template ,and all your updates will be
updated in the database.

To add any of the preceding features, you must extend from SampleARPaymentIntegrator
and configure the pmtARIntegrator job to use your implementation.

You can overwrite following methods for your customization:

1. getARFileName(): overwrite to change the name of the AR flat file generated from
arFlat_template.txt.

2. getMap(): overwrite

Select only check or credit card payments
A biller may support only one of check or credit card payments. In this case, you must
configure the pmtARIntegrator job to leave the “Credit card query name in XML query
file” field blank. Also, you may want to customize the template files (arFlat_template.txt
or arXML_template.xml) to remove any reference to the unavailable payment type, but
this is optional.

Compiling and packaging a custom IARIntegrator
If you re-implement IARIntegrator or you have some custom Java classes to call from
the AR template, you must re-compile and package your changes.

In most cases, you put your custom code into Payment_custom.jar. Unfortunately, the
IARIntegrator and its related classes are packaged as part of ejb-Payment-ar.jar, not
Payment_custom.jar, so a different procedure is required.

See “How to compile/package Payment custom code”.

To compile, you may need to put ejb-Payment-ar.jar along with Payment_common.jar,
Payment_custom.jar and Payment_client.jar in your class path to re-implement
IARIntegrator.

To package, drop all your AR custom classes into the ejb-Payment-ar.jar.

Generating Accounts Receivables (A/R) Files

78 | Payment Developer's Guide

A/R Filenames
The generated A/R files have default names of
ar_yyyyMMddHHmmssSSS.template_file_ext, where the template_file_ext is the file
extension of the template file. The XSLT transformed file has default name of
ar_trans_yyyyMMddHHmmssSSS.extension, where extension is defined by the
pmtARIntegrator job configuration. You may want to rename these files to a more
meaningful name.

To rename the files, write a simple implementation of IARPaymentIntegrator. The
following code demonstrates how to rename the XSLT output file to another name:

package com.edocs.ps.ar;

import com.edocs.payment.tasks.ar.*;

public class MyARIntegrator extends ARPaymentIntegrator

{

/**Override this method to give a new name*/

protected void
getTransformedARFileName(ARPaymentIntegratorParams
 payIntegratorParam,) throws Exception
{

return ”newARName.txt”;

}

}

Single Payment Type
A biller may have only ACH and not credit card payments, or vice versa. In this case, you
can customize the template files (arFlat_template.txt or arXML_template.xml) to remove
any references to the unavailable payment type.

Or, when configuring the pmtARIntegrator job enter an empty value for the Check
query name in XML query file or Credit card query name in XML query
file parameter.

6
Payment Developer's Guide | 79

Packaging Payment Custom Code

6. FAke

You can package your custom code, both plug-in code and custom A/R jobs and
templates, by adding it to Payment_custom.jar. The Payment EAR files will access this
JAR, and find the custom code. The Payment EAR files are merged into the command
center EAR file as part of installation, so your custom code will also be seen by the
command center.

To make this JAR file accessible by all the Payment EJB, JAR and WAR files, place it in
the classpath of the MANIFEST file of each JAR and WAR file. For details of how the
MANIFEST file works, refer to the J2EE or EJB specifications or the SDK: Customizing
and Deploying Applications document that comes with the Command Center SDK. When
the EJB JAR or WAR files are loaded, this JAR will be loaded and can be accessed by
the EJB jar files or war files.

Caution

Never put your custom EJB code into Payment_custom.jar; put your EJB
code in your own JAR files.

To write a new plug-in for IAchCheckSubmitPlugIn:

1. Write and then compile your implementation class. You may want to use
Payment_common.jar and Payment_client.jar from Payment as part of your class
path.

2. Create a JAR file called Payment_custom.jar, or use the Payment_custom.jar from
any of the Payment EAR files. Place your implementation class into that JAR file
using the jar command.

3. Replace all the Payment_custom.jar files under the lib directory of all the deployed
Payment EAR files with the new Payment_custom.jar, using jar command.

4. Deploy the new Payment EAR files on your application server.

5. Go to Payment Settings in the Command Center, and configure the payment
gateway(s) to use the new class by replacing the default one,
com.edocs.payment.cassette.ach.AchCheckSubmitPlugIn, with your new plug-in.

6. Run the pmtCheckSubmit job, which will load the new class from
Payment_custom.jar, because you added it to the classpath of the MANIFEST file of
ejb-Payment-chksubmit.jar.

Payment Developer's Guide | 81

Debugging Payment

7. FAke

First, follow the installation steps carefully to set up Payment. After installation and
initial configuration, if you still have problems, the next sections describe a few things
you can do to help narrow down the cause.

Viewing WebLogic Logs
From the WebLogic console, you can change the level of log messages. By default, only
error messages will be printed out to the console. You can change it to print more
detailed information.

View logs from the Command Center:
If a Payment job fails, you can View Logs from the Command Center to see the details of
the error message.

Turning On the Payment Debug Flag
If you have problems with executing payment operations, such as making a check
payment or running a payment job, you may want to turn on the
com.edocs.payment.debug flag to see more details.

Configure your app server so that it uses “-Dcom.edocs.payment.debug=true” as part of
the JVM starting option.

For example, for WebLogic on UNIX, change startWebLogic.sh to add another option to
“java” command:

java –Dcom.edocs.payment.debug=true …

7

8
Payment Developer's Guide | 83

Plug-in Sample Code

8. FAke

This chapter lists the sample code for the job plug-ins, for:

Job Plug-in Code

pmtPaymentReminder PaymentReminderPlugIn.java on page 85

pmtCreditCardSubmit VerisignCreditCardSubmitPlugIn.java on page 87

pmtCheckSubmit AchCheckSubmitPlugIn.java on page 83
AddendaCheckSubmitPlugIn.java on page 89 shows an example
implementation.

pmtRecurringPayment RecurringPaymentPlugIn.javaon page 86
SampleRecurringPlugIn.java on page 91 shows an example
implementation.

AchCheckSubmitPlugIn.java
package com.edocs.payment.cassette.ach;

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.cassette.CassetteException;

import com.edocs.payment.cassette.CheckSubmitParams;

/**A default implementation for IAchCheckSubmitPlugIn. It does nothing

 *in each method.

 *If you want to write your own implementation, your should derive

 *your implementation from this class and overwrite the

 *methods for which you want to change the behavior.

 */

public class AchCheckSubmitPlugIn implements IAchCheckSubmitPlugIn

{

 private static boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

Plug-in Sample Code

84 | Payment Developer's Guide

 public void begin(AchCheckSubmitPlugInParams params) throws CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.begin()");

 }

 public int preWriteFileHeader(AchCheckSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteFileHeader()");

 return PRE_WRITE_FILE_HEADER_ACCEPT;

 }

 public int preWriteBatchHeader(AchCheckSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteBatchHeader()");

 return 0;

 }

 public int preWriteCheck(AchCheckSubmitPlugInParams params) throws CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteCheck().
params="+params);

 return PRE_WRITE_CHECK_ACCEPT;

 }

 public int postWriteCheck(AchCheckSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.postWriteCheck()");

 return POST_WRITE_CHECK_NOT_MODIFIED;

 }

 public void onWriteCheckException(AchCheckSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.onWriteCheckException");

 }

 public int preWriteBatchTrailer(AchCheckSubmitPlugInParams params) throws
CassetteException

Plug-in Sample Code

Payment Developer's Guide | 85

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteBatchTrailer()");

 return 0;

 }

 public int preWriteFileTrailer(AchCheckSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteFileTrailer()");

 return 0;

 }

 public void finish(AchCheckSubmitPlugInParams params) throws CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.finish()");

 }

 public void abort(AchCheckSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In AChCheckSubmitPlugIn.abort()");

 }

}

PaymentReminderPlugIn.java
package com.edocs.payment.tasks.reminder;

/**This is a default implementation of IPaymentReminderPlugIn. This implementation

 *doesn't doesn nothing in the call back methods. To write your own plug-in,

 *derive your plug-in class from this implementation

 *and overwrite the methods for which you want to change the behavior.

 */

public class PaymentReminderPlugIn implements IPaymentReminderPlugIn

{

 private boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

 public int preSendEmailReminder(PaymentReminderPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("PaymentReminderPlugIn.preSendEmailReminder,
reminder="+params.getPaymentReminder());

 return PRE_SEND_EMAIL_ACCEPT;

Plug-in Sample Code

86 | Payment Developer's Guide

 }

 public int preSendEmailCheck(PaymentReminderPlugInParams params) throws Exception

{

 if(DEBUG) System.out.println("PaymentReminderPlugIn.preSendEmailCheck,
check="+params.getCheck());

 return PRE_SEND_EMAIL_ACCEPT;

}

 public int preSendEmailCreditCard(PaymentReminderPlugInParams params) throws
Exception

 {

 if(DEBUG) System.out.println("PaymentReminderPlugIn.preSendEmailCreditCard,
ccard="+params.getCreditCard());

 return PRE_SEND_EMAIL_ACCEPT;

 }

}

RecurringPaymentPlugIn.java
package com.edocs.payment.tasks.recur_payment;

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.payenroll.*;

/**This class implements IRecurringPaymentPlugIn. It does nothing in each method.

 *When you write your own plug-in, derive your plug-in

 *class from this class, and then overwrite the methods for which you want to

 *change the default behavior.

 */

public class RecurringPaymentPlugIn

 implements IRecurringPaymentPlugIn

{

 private static boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

 public int preGetLatestSummary(SynchronizeRecurringPlugInParams p) throws Exception

 {

 if(DEBUG) System.out.println("RecurringPaymentPlugIn.preGetLatestSummary() is
called");

Plug-in Sample Code

Payment Developer's Guide | 87

 return PRE_GET_LATEST_SUMMARY_ACCEPT;

 }

 public int preInsertLatestSummary(SynchronizeRecurringPlugInParams p) throws
Exception

 {

 if(DEBUG) System.out.println("RecurringPaymentPlugIn.preInsertLatestSummary() is
called");

 return PRE_INSERT_LATEST_SUMMARY_ACCEPT;

 }

 public int preUpdateSynchronizedRecurring(SynchronizeRecurringPlugInParams p) throws
Exception

 {

 if(DEBUG)
System.out.println("RecurringPaymentPlugIn.preUpdateSynchronizeRecurring() is
called");

 return PRE_UPDATE_SYNCHRONIZED_RECURRING_ACCEPT;

 }

 public int preSchedulePayment(SchedulePaymentPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("SchedulePaymentPlugIn.preSchedulePayment() is
called");

 return PRE_SCHEDULE_PAYMENT_ACCEPT;

 }

 public int preSendEmail(SchedulePaymentPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("SchedulePaymentPlugIn.preSendEmail() is called");

 return PRE_SEND_EMAIL_ACCEPT;

 }

}

VerisignCreditCardSubmitPlugIn.java
package com.edocs.payment.cassette.verisign;

Plug-in Sample Code

88 | Payment Developer's Guide

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.cassette.*;

/**This class offers a default implementation for
IVerisignCreditCardSubmitPlugIn.

 *Each method currently does nothing and return directly.

 *You should re-implement this interface if needed.

 *We strongly recommended that you derive your implementation class from
this

 *default implementation.

 */

public class VerisignCreditCardSubmitPlugIn implements
IVerisignCreditCardSubmitPlugIn

{

 private static boolean DEBUG =
Boolean.getBoolean("com.edocs.payment.debug");

 public void begin(VerisignCreditCardSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.begin()");

 }

 public int preAuthorize(VerisignCreditCardSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.preAuthorize. params="+params);

 return PRE_AUTH_ACCEPT;

 }

 public int postAuthorize(VerisignCreditCardSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.postAuthorize");

 return POST_AUTH_NOT_MODIFIED;

 }

Plug-in Sample Code

Payment Developer's Guide | 89

 public void onAuthorizeException(VerisignCreditCardSubmitPlugInParams
params)

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.onAuthorizeException");

 }

 public void finish(VerisignCreditCardSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.finish()");

 }

 public void abort(VerisignCreditCardSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.abort()");

 }

}

AddendaCheckSubmitPlugIn.java
package com.edocs.payment.cassette.ach;

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.db.*;

import com.edocs.payment.cassette.CassetteException;

import java.util.*;

/**This plug-in demonstrates how to append a list of addenda records to

 *a check payment record in an ACH file. Addenda information is biller-specific.

 *You should write your own implementation to retrieve the addenda information

 *for a particular biller.

 */

public class AddendaCheckSubmitPlugIn extends AchCheckSubmitPlugIn implements
IAchCheckSubmitPlugIn

{

 private static boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

Plug-in Sample Code

90 | Payment Developer's Guide

 /**This method calls Addenda.setAddendaNote() to set the addenda information

 *of a check payment. The addenda information actually comes from the

 *invoices of the check payment. This method first checks whether there are

 *invoices associated with this check. If so, it retrieves the invoices, and

 *for each invoice creates an Addenda record whose addenda note is set

 *to a format like "invoiceNumber=..., invoiceAmount=...".

 *@param params An AchCheckSubmitPlugInParams object.

 *@return IAchCheckSubmitPlugIn.PRE_WRITE_CHECK_ACCEPT

 */

 public int preWriteCheck(AchCheckSubmitPlugInParams params)

 {

 if(params.isPrenote())

 return PRE_WRITE_CHECK_ACCEPT;

 Invoice invoice;

 List invoices = null;

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteCheck(),
check="+params.getCheck());

 // retrieve invoice info, put into params.

 //

 PaymentQueryParams query_param = new PaymentQueryParams();

 IPaymentInvoiceLog pilog = PaymentDBFactory.newPaymentInvoiceLog();

 query_param.setPaymentId(params.getCheck().getPaymentId());

 try {

 invoices = pilog.query(query_param);

 } catch (Throwable e) { }

 Iterator iter = invoices.iterator();

 List addendas = new LinkedList();

 while (iter.hasNext()) {

 invoice = (Invoice)iter.next();

 Addenda addenda = new Addenda();

Plug-in Sample Code

Payment Developer's Guide | 91

addenda.setAddendaNote("invoiceNumber="+invoice.getInvoiceNumber()+",invoiceAmount="+i
nvoice.getInvoiceAmount());

 addendas.add(addenda);

 }

 params.setAddendas(addendas);

 return PRE_WRITE_CHECK_ACCEPT;

 }

}

SampleRecurringPlugIn.java
package com.edocs.payment.tasks.recur_payment;

import java.util.*;

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.payenroll.*;

import com.edocs.payment.util.template.*;

/**This sample recurring payment plug-in demonstrates how to fill in the

 *flexible fields of IPaymentTransaction (check or credit card) with the

 *information retrieved from IBillSummary.

 */

public class SampleRecurringPlugIn

 extends RecurringPaymentPlugIn implements IRecurringPaymentPlugIn

{

 private static boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

 /**Must have this default constructor.

 */

 public SampleRecurringPlugIn()

 {

 }

 /**This method is called before the pmtRecurPayment job tries to get the latest bill
summary

Plug-in Sample Code

92 | Payment Developer's Guide

 *for a user account. This implementation is empty (does nothing).

 *@param p A SynchronizeRecurringPlugInParams object.

 *@return IRecurringPaymentPlugIn.PRE_GET_LATEST_SUMMARY_ACCEPT

 */

 public int preGetLatestSummary(SynchronizeRecurringPlugInParams p) throws Exception

 {

 if(DEBUG) System.out.println("RecurringPaymentPlugIn.preGetLatestSummary() is
called");

 if(p.getPaymentConfig() == null)

 throw new Exception("config is not set");

 return PRE_GET_LATEST_SUMMARY_ACCEPT;

 }

 /**This method is called before the pmtRecurPayment job inserts the latest summary

 *into the Payment table. The IBillSummary object has a list of extended attributes

 *which can hold any bill summary information not required by Payment.

 *However, these extended attributes won't be inserted into

 *Payment database. This method checks whether there are at least two extended
attributes

 *in the summary, and if so, fills the two flexible fields, 1 and 2, of IBillSummary

 *with the first and second extended attributes, respectively. The two flexible

 *fields are inserted into the Payment database by the pmtRecurPayment job.

 *@param p A SynchronizeRecurringPlugInParams object.

 *@return int; IRecurringPaymentPlugIn.PRE_INSERT_LATEST_SUMMARY_ACCEPT

 */

 public int preInsertLatestSummary(SynchronizeRecurringPlugInParams p) throws
Exception

 {

 if(DEBUG) System.out.println("RecurringPaymentPlugIn.preInsertLatestSummary() is
called");

 IBillSummary sum = p.getBillSummary();

 if(sum != null)

 {

 Map attrs = sum.getExtendedAttributes();

 if(attrs != null && attrs.size() >= 2){

 Object[] keys = attrs.keySet().toArray();

 sum.setFlexibleField1((String)attrs.get(keys[0]));

 sum.setFlexibleField2((String)attrs.get(keys[1]));

 if(DEBUG) System.out.println("RecurringPaymentPlugIn, summary flex fields set.
sum="+sum);

Plug-in Sample Code

Payment Developer's Guide | 93

 }

 }

 return PRE_INSERT_LATEST_SUMMARY_ACCEPT;

 }

 /**This method is called before the pmtRecurPayment job writes the "synchronized"

 * recurring payment back to the database. A "synchronized" recurring payment

 * means that there is a new bill that needs to be paid. This method fills

 * the flexible fields 1 and 2 of current IRecurringPayment with the

 * flexible fields 1 and 2 of current IBillSummary, respectively. The recurring

 * job then updates the IRecurringPayment into the database.

 *@param p A SynchronizeRecurringPlugInParams object.

 *@return int; IRecurringPaymentSummary.PRE_UPDATE_SYNCHRONIZED_RECURRING_ACCEPT

 */

 public int preUpdateSynchronizedRecurring(SynchronizeRecurringPlugInParams p) throws
Exception

 {

 if(DEBUG)
System.out.println("RecurringPaymentPlugIn.preUpdateSynchronizeRecurring() is
called");

 IBillSummary sum = p.getBillSummary();

 IRecurringPayment rec = p.getRecurringPayment();

 if(sum != null && rec != null)

 {

 Map attrs = sum.getExtendedAttributes();

 if(attrs != null && attrs.size() >= 2){

 Object[] keys = attrs.keySet().toArray();

 rec.setFlexibleField1(sum.getFlexibleField1());

 rec.setFlexibleField2(sum.getFlexibleField2());

 if(DEBUG) System.out.println("RecurringPaymentPlugIn, recurring flex fields
set. rec="+rec);

 }

 }

 return PRE_UPDATE_SYNCHRONIZED_RECURRING_ACCEPT;

 }

 /**This method is called before the pmtRecurPayment job schedules (inserts) a new

 *payment into the Payment database. This method fills in the flexible

 *fields 1 and 2 of the payment(check or credit card) with the flexible

 *fields 1 and 2 of the IRecurringPayment, respectively. The job then

Plug-in Sample Code

94 | Payment Developer's Guide

 *inserts the payment with the flexible fields into database.

 *@param params A SchedulePaymentPlugInParams object.

 *@return IRecurringPayment.PRE_SCHEDULE_PAYMENT_ACCEPT

 */

 public int preSchedulePayment(SchedulePaymentPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("SchedulePaymentPlugIn.preSchedulePayment() is
called");

 IPaymentTransaction tran = params.getPayment();

 IRecurringPayment rec = params.getRecurringPayment();

 if(rec != null && tran != null){

 if(tran instanceof ICheck){

 ((ICheck)tran).setFlexibleField1(rec.getFlexibleField1());

 ((ICheck)tran).setFlexibleField2(rec.getFlexibleField2());

 }else{

 ((ICreditCard)tran).setFlexibleField1(rec.getFlexibleField1());

 ((ICreditCard)tran).setFlexibleField2(rec.getFlexibleField2());

 }

 }

 return PRE_SCHEDULE_PAYMENT_ACCEPT;

 }

 /**This method is called before the pmtRecurPayment job sends an email to the user.

 * The passed in SchedulePaymentPlugInParams parameter includes the mail-to address
and subject.

 * You can use this method to check/change the mail-to addresses and subject.

 * The mail-to addresses and subject of SchedulePaymentPlugInParams

 * will be passed back to Payment and used by Payment to send out email.

 *@param params A SchedulePaymentPlugInParams object.

 *@return IRecurringPayment.PRE_SEND_EMAIL_ACCEPT

 */

 public int preSendEmail(SchedulePaymentPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("SchedulePaymentPlugIn.preSendEmail() is called");

 params.setMailSubject("Hi, this subject is set by SampleRecurringPaymentPlugIn");

 return PRE_SEND_EMAIL_ACCEPT;

 }

}

9
Payment Developer's Guide | 95

Auditing

9. FAke

Payment audits some Payment jobs to track a variety of transaction failures. Audits are
kept for actions taken through the UI, as well as jobs.

Jobs that are audited
The jobs that write to the audit tables are listed below along with the information that is
audited.

pmtCheckSubmit job

• Payments that failed during submission

• Encryption exceptions

pmtPaymentReminder

Payment reminders that were not sent, including:

• Regular payment reminders that failed to send, for any reason, such as bad email
address.

• Check payment emails that failed to send, for any reason, such as encryption error,
bad email address.

• Credit card payment emails failed to send, for any reason, such as encryption error or
bad email address.

pmtCreditCardSubmit

Credit card payments failed to submit, for example, because of encryption errors, invalid
credit card information (such as invalid account) or network errors.

pmtIntegrator (AR) job

Check and credit card payments that were not written to the AR file. For example,
because of encryption errors or file write errors.

pmtRecurringPayment

Check and credit card payments that failed.

Auditing

96 | Payment Developer's Guide

pmtCheckSubmit and pmtCreditCardSubmit

UI actions that are audited
Lists successful and unsuccessful payments along with a reason code.

The UI actions that trigger an audit entry are listed below"

• Create Recurring Payment

• Update Recurring Payment

• Delete Recurring Payment

• Create Schedule Payment

• Create Instant Payment

• Cancel Future Payment - Credit Card Payment

• Update Future Payment - Credit Card Payment

• Cancel Future Payment - Check Payment

• Update Future Payment - Check Payment

• Create Payment Reminder

• Update Payment Reminder

• Delete Payment Reminder

• Create Check Account

• Edit Check Account

• Delete Check Account

• Create Credit Card Account

• Edit Credit Card Account

• Delete Credit Card Account

Example UI Audit Flow
1. The customer selects the Setup of recurring payment option, populates the

information to initially set up recurring payment, and submits it. The following
information is recorded as the audit data in the recurring_payments_history table in
addition to the columns defined in the recurring _payments table. (This history table
contains all the columns defined in the recurring_payments (regular table) table plus
the additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
recurring_payment_const table.

Auditing

Payment Developer's Guide | 97

Column Value Description

audit_status 1 Status constant value successful operation. This constant value
for the status is explained in the recurring_payment_const
table.

audit_reason Description of the audit.

Job_id 0 Since this is an UI operation, job id value is 0 (not a job).

Job_name NULL Since this is a UI operation, job name is NULL.

Timestamp The current system time when an audit is taken place.

2. The customer selects Recurring Payment option, and then selects Update, and
updates the recurring payment information and submits it, the following information
is recorded as the audit data in recurring_payments_history table other than the
columns defined in the regular recurring _payments table. (This history table contains
all the columns defined in the recurring_payments (regular table) table and additional
following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
recurring_payment_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
recurring_payment_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name is NULL.

Timestamp The current system time when an audit is taken place.

3. The customer selects Recurring Payment option, and then selects Delete, the
following information is recorded as the audit data in recurring_payments_history
table other than the columns defined in the regular recurring _payments table. (This
history table contains all the columns defined in the recurring_payments (regular
table) table and additional following columns).

Column Value Description

audit_operation 1003 Tthis constant value for the operation is explained in the
recurring_payment_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
recurring_payment_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name is NULL.

Timestamp The current system time when an audit is taken place.

Auditing

98 | Payment Developer's Guide

4. The customer selects Create Check account in the “User Profile” UI, and submits
the new check account information, the following audit data is recorded in
payment_accounts_history table other than the columns defined in the regular
payment_accounts table. (This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name is NULL.

Timestamp The current system time when an audit is taken place.

5. The customer selects Update Check account in the “User Profile” UI, and submits
the updated check account information, the following audit data is recorded in
payment_accounts_history table other than the columns defined in the regular
payment_accounts table. (This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name is NULL.

Timestamp The current system time when an audit is taken place.

6. The customer selects Delete Check account in the “User Profile” UI, and submits
the delete request, the following audit data is recorded in payment_accounts_history
table other than the columns defined in the regular payment_accounts table. (This
history table contains all the columns defined in the payment_accounts (regular table)
table and additional following columns).

Column Value Description

audit_operation 1003 this constant value for the operation is explained in the
payment_account_const table).

Auditing

Payment Developer's Guide | 99

Column Value Description

audit_status 1 Status constant value for successful operation. (this constant
value for the status is explained in the
payment_account_const table).

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name is NULL.

Timestamp The current system time when an audit is taken place.

7. The customer selects Create Credit Card account in the “User Profile” UI, and
submits the new credit card account information, the following audit data is recorded
in payment_accounts_history table other than the columns defined in the regular
payment_accounts table. (This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name is NULL.

Timestamp The current system time when an audit is taken place.

8. The customer selects Update Credit Card account in the “User Profile” UI, and
submits the updated credit card account information, the following audit data is
recorded in payment_accounts_history table other than the columns defined in the
regular payment_accounts table. (This history table contains all the columns defined
in the payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name is NULL.

Timestamp The current system time when an audit is taken place.

Auditing

100 | Payment Developer's Guide

9. The customer selects Delete Credit Card account in the “User Profile” UI, and
submits the delete request, the following audit data is recorded in
payment_accounts_history table other than the columns defined in the regular
payment_accounts table. (This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value will be 0.

Job_name NULL Since this is a UI operation, job name will be NULL.

Timestamp The current system time when an audit is taken place.

10. The customer selects Create payment reminder in the “User Profile” UI, and
submits the new payment reminder information, the following audit data is recorded
in payment_reminders_history table other than the columns defined in the regular
payment_reminders table. (This history table contains all the columns defined in the
payment_reminders (regular table) table and additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_reminder_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_reminder_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name is NULL.

Timestamp The current system time when an audit is taken place.

11. The customer selects Update payment reminder in the “User Profile” UI, and
submits the updated payment reminder information, the following audit data is
recorded in payment_reminders_history table other than the columns defined in the
regular payment_reminders table. (This history table contains all the columns defined
in the payment_reminders (regular table) table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_reminder_const table.

Auditing

Payment Developer's Guide | 101

Column Value Description

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_reminder_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name will be NULL.

Timestamp The current system time when an audit is taken place.

12. The customer selects Delete payment reminder in the “User Profile” UI, and
submits the delete request for the payment reminder, the following audit data is
recorded in payment_reminders_history table other than the columns defined in the
regular payment_reminders table. (This history table contains all the columns defined
in the payment_reminders (regular table) table and additional following columns).

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_reminder_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_reminder_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job id value is 0.

Job_name NULL Since this is a UI operation, job name will be NULL.

Timestamp The current system time when an audit is taken place.

Query Files
The following files are provided for each platform to supprt queries of the audit tables.

Windows SQL2000

getAuditDataByPid.bat
getAuditDataByPaymentId.bat
getAuditDataByAccount.bat

Auditing

102 | Payment Developer's Guide

ORACLE

Windows

getAuditDataByAccount.bat
getAuditDataByAccount.sql
getAuditDataByPaymentId.bat
getAuditDataByPaymentId.sql
getAuditDataByPid.bat
getAuditDataByPid.sql
set_audit_isql_options.bat

Unix

getAuditInfoByAccount.sh
getAuditInfoByAccount.sql
getAuditInfoByPaymentId.sh
getAuditInfoByPaymentId.sql
getAuditInfoByPid.sh
getAuditInfoByPid.sql

DB2

Windows

getAuditDataByAccount.bat
getAuditDataByPaymentId.bat
getAuditDataByPid.bat
set_audit_isql_options.bat

Unix

getAuditDataByAccount.sh
getAuditDataByPaymentId.sh
getAuditDataByPid.sh

Running Audit Queries
Audit queries require on of the following arguments:

• Payment ID

• User Account Number

• PID

The audit queries are implemented in batch files, which require the user argument and
date range. The results are displayed on the console.

Before running the queries, you must preform setup. The description for each query
describes the setup.

Auditing

Payment Developer's Guide | 103

Query Audit data by Payment ID

Displays data from all history tables which have a payment ID column. This query
performs a simple select on each table where the Payment ID matches and the
time_stamp is between “fromTime” and “toTime”. The following tables are queried:

• check_payments_history

• creditcard_payments_history

• payment_bill_summaries_history

• payment_email_history

Query Audit data by User Account Number

Displays data from all history tables which have a payer ID column. This query performs
a simple select on each table where the payer ID matches “Account Number”, and whose
time_stamp is between “fromTime” and “toTime”. The AccountNumber is the account
number with the biller (payee_id column). The following tables are queried:

• check_payments_history

• creditcard_payments_history

• payment_bill_summaries_history

• recurring_payments_history

Query Audit data by PID

Displays data from all the history tables which have a PID column. This query performs a
simple select on each table where the PID matches and whose time_stamp is between
“fromTime” and “toTime”. The following tables are queried:

• check_payments_history

• creditcard_payments_history

• payment_accounts_history

• recurring_payments_history

Query Setup
Before running the queries, you must:

1. Set the database connection parameters

2. Configure TNS Listener for Oracle (Client / Server)

3. Configure DB2 Clients for windows platform

4. Check execution permissions for shell scripts

Auditing

104 | Payment Developer's Guide

5. Database connection parameters

Configuration for each platform is described below:

Windows Configuration
For Windows set_isql_options.bat must be edited before running the queries. The file
constrains the following line:

set ISQL_OPTIONS=-U <username> -P <password> -S <sqlsvr-
Servername> -d <database name>

Edit this file and enter your values for username, password, server name and database
name. For example:

set ISQL_OPTIONS=-U edx1 -P edx1 -S EDXSERVER -d edxDB

UNIX Configuration
For UNIX platforms, the database connection string is embedded in the file. You must
edit the connection parameters in each file before running the queries. The connection
parameters are as follows:

For DB2:
db2 connect to <database> user <username> using <password>

For example:
db2 connect to EDXDB41L user db2inst1 using db2admin

For Oracle:
sqlplus <username>/<password>@<TNS name>

For example:
sqlplus edx1/edxadmin@edxdb

TNS Listener for Oracle (Client / Server)

The TNS Listener has to be configured for Oracle DB in Windows and Unix platforms
for client / server.

Permissions on Unix platform

Execution permissions for shell scripts should be granted to run the shell scripts
successfully. For example:

$ chmod 755 *.sh

Auditing

Payment Developer's Guide | 105

Running the Queries in Windows

MSSQL

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.bat. This file requires three parameters: Payment ID, From
Timestamp, and To Timestamp. The execution format is:

getAuditDataByPaymentId <Payment ID>,<from date>,<to date>

For example:
getAuditDataByPaymentId 123465564,'2003-01-01’,'2004-12-12'

Where:

date format is YYYY-MM-DD

payment ID is numeric

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From
Timestamp, and To Timestamp. The execution format is:

getAuditDataByAccount <account_number>,<from date>,<to date>

For example:
getAuditDataByAccount '123465564','2003-01-01’,'2004-12-12'

Where:

Date format is YYYY-MM-DD

Account Number is a string

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run
getAuditDataByPid.bat. This file requires three parameters: PID, From Timestamp, and
To Timestamp. The execution format is:

getAuditDataByPid <pid>,<from date>,<to date>

For example:
getAuditDataByPid '123465564','2003-01-01’,'2004-12-12'

Where:

Date format is YYYY-MM-DD

PID is a string

Auditing

106 | Payment Developer's Guide

Oracle

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.bat. This file requires three parameters: Payment ID, From
Timestamp, and To Timestamp. The execution format is:

getAuditDataByPaymentId <Payment ID>,<from date>,<to date>

For example:
getAuditDataByPaymentId 123465564,'2003-01-01’,'2004-12-12'

Where:

Date format is YYYY-MM-DD.

Payment ID is numeric

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From
Timestamp, and To Timestamp. The execution format is:

getAuditDataByAccount <account_number>,<from date>,<to date>

For example:
getAuditDataByAccount '123465564','2003-01-01’,'2004-12-12'

Where:

Date format is YYYY-MM-DD

Account Number is a string

Q3: Query Audit data by PID

Change your working directory to the location of the query script files ,and run
“getAuditDataByPid.bat”. This file requires three parameters: PID, From Timestamp, and
To Timestamp. The execution format is:

getAuditDataByPid <pid>,<from date>,<to date>

For example:
getAuditDataByPid '123465564','2003-01-01’,'2004-12-12'

Where:

Date format is YYYY-MM-DD

PID is a string

Auditing

Payment Developer's Guide | 107

DB2

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.bat. This file requires three parameters: Payment ID, From
Timestamp, and To Timestamp. The execution format is:

getAuditDataByPaymentId <Payment ID>,<from date>,<to date>

For example:
getAuditDataByPaymentId 123465564,'2003-01-01’,'2004-12-12'

Where:

Date format is YYYY-MM-DD

Payment ID is not a string it is a numeric value

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From
Timestamp, and To Timestamp. The execution format is:

getAuditDataByAccount <account_number>,<from date>,<to date>

For example:
getAuditDataByAccount '123465564','2003-01-01’,'2004-12-12'

Where:

Date format is YYYY-MM-DD.

Account Number is a string.

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run
getAuditDataByPid.bat. This file requires three parameters: PID, From Timestamp, and
To Timestamp. The execution format is:

getAuditDataByPid <pid>,<from date>,<to date>

For example:
getAuditDataByPid '123465564','2003-01-01’,'2004-12-12'

Where:

Date format is YYYY-MM-DD

PID is a string

Auditing

108 | Payment Developer's Guide

Running the Queries in UNIX

Oracle

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditInfoByPaymentId.sh. This file requires three parameters: Payment ID, From
Timestamp, and To Timestamp. The execution format is:

$./getAuditInfoByPaymentId.sh <Payment ID> <from date> <to
date>

For example:
$./getAuditInfoByPaymentId.sh 123465564 '2003-01-01’ '2004-
12-12'

Where:

Date format is YYYY-MM-DD

Payment ID is numeric

Arguments are separated by spaces

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditInfoByAccount.sh. This file requires three parameters: Account Number, From
Timestamp, and To Timestamp. The execution format is:

$./getAuditInfoByAccount.sh <account_number> <from date> <to
date>

For example:
& ./getAuditInfoByAccount.sh '123465564' '2003-01-01’ '2004-
12-12'

Where:

Date format is YYYY-MM-DD

Account Number is a string

Arguments are separated by spaces

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run
getAuditInfoByPid.sh. This file requires three parameters: PID, From Timestamp, and To
Timestamp. The execution format is:

$./getAuditInfoByPid.sh <pid> <from date> <to date>

For example:

Auditing

Payment Developer's Guide | 109

$./getAuditInfoByPid '123465564' '2003-01-01’ '2004-12-12'

Where:

Date format is YYYY-MM-DD

PID is a string

Arguments are separated by spaces

DB2

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.sh. This file requires three parameters: Payment ID, From
Timestamp, and To Timestamp. The execution format is:

$./getAuditDataByPaymentId.sh <Payment ID> <from date> <to
date>

For example:
$./getAuditDataByPaymentId.sh 123465564 '2003-01-01’ '2004-
12-12'

Where:

Date format is YYYY-MM-DD

Payment ID is not a string it is a numeric value

Arguments are separated by spaces

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
“getAuditDataByAccount.sh”. This file requires three parameters: Account Number,
From Timestamp, and To Timestamp. The execution format is:

$./getAuditDataByAccount.sh <account_number> <from date> <to
date>

For example:
$./getAuditDataByAccount.sh '123465564' '2003-01-01’ '2004-
12-12'

Where:

Date format is YYYY-MM-DD

The Account Number is a string

Arguments are separated by spaces

Auditing

110 | Payment Developer's Guide

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run
getAuditDataByPid.sh. This file requires three parameters: PID, From Timestamp, and
To Timestamp. The execution format is:

$./getAuditDataByPid.sh <pid> <from date> <to date>

For example:
$./getAuditDataByPid.sh '123465564' '2003-01-01’ '2004-12-12'

Where:

Date format is YYYY-MM-DD

PID is a string

Arguments are separated by spaces

Audit Database
The Command Center/Payment database has been updated to support auditing.

Modified Tables
The following tables have the new columns:

• check_payments_history

• creditcard_payments_history

The history tables have all the columns that the base table has (check_payments and
creditcard_payments), plus the following columns:

Column Name Comments

audit_operation Defined in corresponding constant tables

audit_status Defined in corresponding constant tables

audit_reason Description of the audit

job_id Pwc job id

job_name User given job name (see Job Name Entries)

time_stamp The record insertion time. For example: 1/18/2004 11:47:38 AM

Auditing

Payment Developer's Guide | 111

New Tables
All the following tables are based on the table name with "_history" at the end. They
have all the columns in the base table, plus the new columns listed in the preceding table
(in the Modified Tables section) to support audit.

• payment_accounts_history

• payment_bill_summeries_history

• payment_reminder_history

• recurring_payments_history

payment_email_history

This table is new, and not based on a previous table. It has the following columns, plus
the columns listed in the preceding table (in the Modified Tables section) to support audit.

Column Name Comments

type This indicates the purpose of the email. Possible values are listed in the table
‘Email Types’ below.

payee id DDN

payer_id User id

account_numer Check or credit card number

payment_id Payment id

to_address Receivers email address. If there are multiple addresses, they will be in
semicolon separated.

content Note, actual length of the email content must be truncated based on job
configuration, “Email Content Audit Length”.

audit_operation Defined in corresponding constant tables

audit_status Defined in corresponding constant tables

audit_reason Description of the audit

job_id Pwc job id

job_name User given job name (see Job Name Entries)

time_stamp The record insertion time. For example: 1/18/2004 11:47:38 AM

The following table lists the possible values for email types and description.

Email Type Description

0 Unknown email type.

1 A fixed date payment reminder email.

2 Before due date payment reminder email.

3 After due date payment reminder email.

Auditing

112 | Payment Developer's Guide

Email Type Description

4 Check status notification email.

5 Credit card status notification email.

6 Recurring payment cancelled email.

7 Recurring payment scheduled email.

8 Payment account status notification email.

9 Credit card expiration notification email.

Audit Table Constants
The following table lists the tables that have audit information, and the names of the
corresponding code tables that explain the numeric codes for audit columns. See the
tables in your Payment database for the latest descriptions for each code.

Constant Table name History table name

credit_card_const creditcard_payments_history

check_const check_payments_history

recurring_payment_const recurring_payment_history

payment_email_const payment_email_history

payment_bill_summaries_const payment_bill_summaries history

payment_account_const payment_accounts_history

payment_reminders_const payment_reminders_history

Job Name Entries
User job names are combined with a shortened version of the task name to keep database
entries manageable. The name of the job given by the user is combined with a shortened
version of the task name as follows:

<job name given by the Admin>-<shorten task name>

The following table shows the shortened name for each job.

Task name Shortened task name

CheckSubmitTask ChkSubTsk

CheckUpdateTask ChkUpdTsk

PaymentIntegratorTask PmtIntTsk

CreditCardExpNotifyTask CCExpNTsk

CreditCardSubmitTask CCSubTsk

CreditCardUpdateTask CCUpdTsk

ConfirmEnrollTask ConEnrTsk

Payment Developer's Guide | 113

Task name Shortened task name

NotifyEnrollTask NotEnrTsk

RecurPaymentSchedulerTask RcuSchTsk

RecurPaymentSynchronizerTask RcuSynTsk

PaymentReminderTask PmtRmdTsk

SubmitEnrollTask SubEnrTsk

CustomTask CustomTsk

 1
1
Payment Developer's Guide | 115

Implementing A Custom Payment
Cartridge

10. FAke

Demonstration Cartridge
Payment provides an example cartridge that demonstrates how to implement a custom
cartridge. The code is in /vobs/payment/com/edocs/payment/cassette/demo. There are two
cartridges:

demo_CheckCassette.java for check payments

demo_CreditCardCassette.java for credit card payments

The example cartridge delegates all API calls to demo_CheckProcessorProxy.java and
demo_CreditCardProcessorProxy.java to communicate with a dummy payment gateway.

If you configure a DDN to use the demonstration cartridge, then you can make payments
against it from the user interface.

Implementing Custom Credit Card Cartridge
The example cartridge is based on the interface
com.edocs.payment.cassette.ICreditCardCassette, which extends from
com.edocs.payment.cassette.IPaymentCassette, which then extends from
com.edocs.payment.cassette.IEnrollmentCassette. In general, you don't need to modify
IEnrollmentCassette, since it defines how to verify a credit card when a user enrolls
it through the user interface.

To implement the cartridge, extend your cartridge implementation from
PaymentCassette, and implement ICreditCardCassette.

public class MyCreditCardCassette extends PaymentCassette
implements ICreditCardCassette

Use demo_CreditCardCassette.java to create your implementation. The three methods
you should consider implementing are:

IPaymentCassette.getDefaultConfigAttributes()

ICreditCardCassette.authorize()

ICreditCardCassette.batchAuthorize()

Implementing A Custom Payment Cartridge

116 | Payment Developer's Guide

You must implement IPaymentCassette.getDefaultConfigAttributes() to
return a list of parameters (of type com.edocs.payment.config.Attribute), which are used
to configure the cartridge. Calling
IPaymentCassette.getDefaultConfigAttributes() causes those parameters to
be displayed in the Payment Settings of the Command Center, where you can use them to
configure the cartridge. These parameters include the global ones, the ones shared by
both credit card and check types, and the ones specific to this credit card cartridge. Your
implementation of getDefaultConfigAttributes() must at least return the global
and shared parameters in that list. See
demo_CreditCardCassette.getDefaultConfigAttributes() in the Payment
JavaDoc, and the file demo_CreditCardAttributes.java for more information.

If you wish to support instant payments, then you must implement the
ICreditCardCassette.authorize() method. In this method, you must get the
payment information from the ICreditCard object that is passed in, then send it to the
payment gateway. The payment gateway will send back a response, which you will use to
update the status of the ICreditCard object, as described below:

1. If the payment is authorized, set the status to "settled" by calling:
ICreditCard.setStatus(CreditCardState.SETTLED);

2. If the payment failed authorization, set status to "failed-authorize" by calling:
ICreditCard.setStatus(CreditCardState.FAILED_AUTHORIZE);

You may also want to call ICreditCard.setTxnErrMsg() to log an error
message.

3. If there is a system or network error (Payment failed to connect to payment gateway),
set the status to "failed" by calling:
ICreditCard.setStatus(CreditCardState.FAILED);

You may also want to call ICreditCard.setTxnErrMsg() to log an error
message.

When you call these methods, Payment updates the credit card information in the
database. The Payment JSP pages get the credit card information from the user and
pass the information to the cartridge. After the card is processed, Payment updates
Payment database.

If your application will support scheduled payments, then you must implement
ICreditCardCassette.batchAuthorize(). This method is called by the
CreditCardSubmit job, which extracts all the scheduled payments from the database
and sends them to the payment gateway. Your cartridge should do the following
things:

4. Get the scheduled payments from Payment database. There are examples of using the
APIs in demo_CreditCardCassette.batchSubmit().

Implementing A Custom Payment Cartridge

Payment Developer's Guide | 117

5. Loop through the list of payments and send them to the payment gateway. The status
of each payment should be set the same way as for instant payments. After setting the
status and other information, call the Payment API to update this credit card back to
Payment database (note, this is different from Instant payments, because Payment
does not update the database).

6. Package your custom cartridge.

If you are using Payment2.2 with WebSphere, you should package it into
Payment_client.jar which is in the lib dir of each Payment EAR.

If you are using Payment3.0 with WebLogic, you should package it into
Payment_custom.jar which is in the lib directory of each Payment EAR.

7. Pre-populate Payment database.

Tell Payment about your cartridge implementation class by populating the
payment_gateway_configure table. If your cartridge class name is
com.edocs.ps.MyCreditCardCartridge, and you want to name it
“customCCardCartridge”, use:
insert into
payment_gateway_configure(GATEWAY,PAYMENT_TYPE,CARTRIDGE_CLASS
)values(‘customCCardCartridge’, ‘ccard’,
‘com.edocs.ps.MyCreditCardCartridge’);

8. When you go to payment settings of command center and configure a DNN for your
credit card cartridge, the JSP page will read the list of available cartridges from this
table and allow you to select one of them.

9. After you finish all the preceding steps, you should create a DDN, configure a
cartridge for it and then make the payments from UI.

 2
1
Payment Developer's Guide | 119

Miscellaneous Customization

11. FAke

Avoiding paying a bill more than once
By default, Payment allows a bill to be paid more than once. If you want to ensure that a
bill can only be paid once, you need to add a unique key constraint on the bill_id field of
the check_payments table. You can run PAYMENT_HOME/db/set_unique_bill_id.sql to
set the unique constraint. Note, the bill_id in Payment is the same as the doc id in the
command center.

If a customer tries to pay a bill that has already been paid (either from the UI or by a
previously scheduled recurring payment) after the unique key constraint has been added,
the customer will receive an error message saying that the bill has been already paid. If
the bill is paid from the UI and a recurring payment tries to pay it again, the payment will
fail and an email notification message will be sent to the customer (if recurring payments
are configured for that email notification).

Adding this constraint won’t prevent a customer from making a payment using a bill id.
For example, a customer can still make a payment directly from the Make Check
Payment link, which allows them to make a payment without specifying a bill.

The unique key constraint only informs a customer that the bill has been paid when they
try to pay a bill that has already been paid. If you want to provide additional features,
such as disabling the payment button when the bill has already been paid, you must query
the database to get that information. Be careful when adding extra functions, because
performing additional database queries can affect Payment performance. Make sure the
proper index has been created if you plan to create a new query.

Handling multiple payee ACH accounts
By default, Payment only allows one payee (biller) ACH account per DDN, which is
limited by Payment Settings. However, some billers may have multiple ACH accounts
and their users will usually choose to pay to one of the ACH accounts when scheduling a
payment. The way that the user chooses the ACH account to pay with can be based on
some business rules added to the JSP. The rest of this section describes a solution to this
problem.

The assumptions for this solution are:

• All ACH accounts are at the same bank, which means they have the same immediate
origination and immediate destination but different company name and company Id.

Miscellaneous Customization

120 | Payment Developer's Guide

• The business logic elements required to route the payment transaction to one ACH
account versus another is available or can be made available in the web application
and in the execution context of a Payment payment plugin.

We also assume there are N ACH accounts and there is one DDN for this biller. We call
this DDN the “Real DDN”. Here are the steps you need to go through:

1. Create a real DDN. You use this real DDN to configure Payment Settings for one of
the ACH accounts.

2. Create virtual DDNs: Create N – 1 virtual DDNs, where each of their Payment
Settings is configured to one of the N – 1 ACH accounts, respectively. Make sure the
immediate origination and immediate destination are the same for all N DDNs but
their company name and company ID are different.

Note, there will be no indexer jobs run against these virtual DDNs. They are used
solely for payment purposes.

3. Customize the UI: Your UI should employ some business logic to determine which
DDN (effectively, ACH account) the payment transaction is to be entered against and
set the payee id of the payment to that DDN.

4. Run the pmtCheckSubmit Job: Configure a single pmtCheckSubmit job under the
real DDN and configure it to pull payments from the all the N –1 virtual DDNs in
addition to the real DDN. The payments from the same DDN will be under same
batch.

5. Run the pmtCheckUpdate Job: pmtCheckUpdate processes the ACH return file.
Since return files will include returns from all DDNs and the pmtCheckUpdate job
can process these returns, we only need to create one pmtCheckUpdate job under the
real DDN to process all the returned transactions (even though the returns may
belong to other virtual DDNs).

6. Run the Payment pmtRecurringPayment Job: A single recurring payment job
configured with the real DDN is required. A Recurring Payment plugin is required to
execute the same logic as in scheduled payment; that is, apply the business rules to
determine which DDN (effectively, ACH account) the recurring payment should be
applied against. You should override the plug-in’s preSchedulePayment()
method for this purpose.

7. Change the Payment pmtPaymentReminder Job setting: Six payment reminders, one
per DDN, must be configured.

8. Run the pmtARIntegrator Job: The AR_Query.xml file is an XML definition of the
database query that queries the Payment payment tables to build the default A/R file.
The default query must be customized to include the virtual DDNs. Since the query is
using the DDN reference numbers, you must pass that info into the query through one
of these:

• Directly hard code the DDN references numbers in the query, though this is risky
in the sense that if the DDN is re-created, your query will fail.

Miscellaneous Customization

Payment Developer's Guide | 121

• Extend the SampleARIntegrator and overwrite the getMap() method and
use com.edocs.payment.util.DDNUtil to find out the DDN reference number of a
DDN, then set it as a “?” parameter used by the query. In this solution, the DDN
names are hard coded but not the DDN reference numbers.

• Pass in the names of virtual DDNs as a flexible job configuration parameter from
the job UI. The getMap() method can then parse the parameter to get the list of
virtual DDNs. This method is recommended.

9. Add support for the ACH Prenote: If you are using ACH prenote, then you must
create pmtSubmitEnroll, pmtConfirmEnroll and pmtNotifyEnroll jobs for each
virtual DDN, which means you will get N prenote ACH files. pmtSubmitEnroll
cannot aggregate prenotes from different DDNs into one.

Payment Developer's Guide | 123

Index

A
ACH

addenda records, 37
customizing, 64
individual ID, 44, 64
individual name, 64
plugin, 35
return files, 67
templates, 64

addenda records, 37

E
enrollment

email template, 49

H
Help

technical support, 6

P
Payment ear

beans, 11
payments reminders

template, 46
plugin

creating for credit cards, 38
for recurring payments, 40
overview for credit cards,

37
overview for reminders, 39

plug-in
creating for ACH, 36
overview for ACH, 35

pmtCheckSubmit
bean, 12

job email template, 62
plugin, 35

pmtCheckUpdate
bean, 13

pmtConfirmEnroll
bean, 13

pmtCreditCardExpNotifiy
user email template, 64

pmtCreditCardExpNotify
job email template, 58, 61

pmtCreditCardSubmit
bean, 12

pmtNotifyEnroll
bean, 13

pmtPaymentReminder
bean, 14
job email template, 60

pmtRecurPayment
bean, 14
email template, 53

pmtRecurringPayment
job email template, 59
jobemail template, 59

pmtSubmitEnroll
bean, 14
job email template, 63

R
recurring payments

email template, 53, 55
plugin, 40

reminders
plugin, 39

Payment Developer's Guide | 124

	Preface
	
	
	To escalate your case, ask the Technical Support Engineer to:

	Introduction
	Architecture of Payment
	Major Payment Beans

	Recurring Payments
	
	Recurring Payment UI
	Insert recurring payment from UI
	Update recurring payment from the UI

	Recurring payment – back end job:
	Recurring Payment Synchronization
	Recurring Payment Scheduling

	Recurring Payment Scheduling
	Recurring payment FAQ

	Payment Plug-ins
	Plug-In Customization
	ACH Check Submit Plug-in
	Overview
	Writing a Plug-in
	Using a Plug-in to Write ACH Addenda Records

	VeriSign Credit Card Payment Plug-in
	CreditCardSubmit Plug-in Overview
	Writing a Credit Card Plug-in

	Payment Reminder Plug-in
	Payment Reminder Plug-in Overview
	Creating a pmtPaymentReminder Plug-in

	Recurring Payment Plug-in
	Recurring Payment Overview
	Writing a Plug-in
	Populating Index Fields into Payment Flexible Fields

	Customizing Payment Template Files
	Understanding the Payment Template Engine
	Customizing Email Templates
	Payment Reminder Template
	Enrollment Notification Template
	Recurring Payment Scheduled Notification Template
	Payment Notification Template
	pmtCreditCardExpNotify Variables
	pmtRecurringPayment Variables
	pmtPaymentReminder Variables
	pmtCreditCardExpNotify Variables
	pmtCheckSubmit Variables
	pmtSubmitEnroll

	Credit Card Expiration Notification Template

	Customizing ACH Templates
	Matching a Check in the ACH Return to the Database
	Example 1: unchanged ACH trace number
	Example 2: modified ACH trace number

	Generating Accounts Receivables (A/R) Files
	Customizing arQuery.xml
	Query Case Study
	Step 1
	Step 2

	Customizing arFlat_template.txt
	Customizing arXML_template.xml
	Customize arXML_template.xml and use XSLT to generate XML/flat AR file
	To rename the generated files:

	Re-implement IARPaymentIntegrator
	Select only check or credit card payments
	Compiling and packaging a custom IARIntegrator
	A/R Filenames
	Single Payment Type

	Packaging Payment Custom Code
	Debugging Payment
	Viewing WebLogic Logs
	View logs from the Command Center:
	Turning On the Payment Debug Flag

	Plug-in Sample Code
	AchCheckSubmitPlugIn.java
	PaymentReminderPlugIn.java
	RecurringPaymentPlugIn.java
	VerisignCreditCardSubmitPlugIn.java
	AddendaCheckSubmitPlugIn.java
	SampleRecurringPlugIn.java

	Auditing
	
	Jobs that are audited
	pmtCheckSubmit job
	pmtPaymentReminder
	pmtCreditCardSubmit
	pmtIntegrator (AR) job
	pmtRecurringPayment
	pmtCheckSubmit and pmtCreditCardSubmit

	UI actions that are audited
	Example UI Audit Flow

	Query Files
	
	Windows SQL2000
	ORACLE
	DB2

	Running Audit Queries
	
	Query Audit data by Payment ID
	Query Audit data by User Account Number
	Query Audit data by PID

	Query Setup
	Windows Configuration
	UNIX Configuration
	For DB2:
	For Oracle:
	TNS Listener for Oracle (Client / Server)
	Permissions on Unix platform

	Running the Queries in Windows
	MSSQL
	Q1:	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	Oracle
	Q1: 	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	DB2
	Q1: 	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	Running the Queries in UNIX
	Oracle
	Q1: 	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	DB2
	Q1: 	Query Audit data by Payment ID
	Q2:	Query Audit data by Account
	Q3:	Query Audit data by PID

	Audit Database
	Modified Tables
	New Tables
	payment_email_history

	Audit Table Constants
	Job Name Entries

	Implementing A Custom Payment Cartridge
	Demonstration Cartridge
	Implementing Custom Credit Card Cartridge

	Miscellaneous Customization
	
	Avoiding paying a bill more than once
	Handling multiple payee ACH accounts

	Index

