

Developer’s Guide for Siebel e-
Billing Manager

Version 4.5.3.1
Data Published: 5.26.2005

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2005 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photographic, magnetic, or other record,
without the prior agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, UAN, Universal Application Network, Siebel CRM OnDemand,
TrickleSync, Universal Agent, and other Siebel names referenced herein are trademarks of
Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered
trademarks of their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation,
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement,
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer
Software and Commercial Computer Software Documentation, and as such, any use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be
subject to the restrictions contained in the applicable Siebel license agreement. All other use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions
contained in subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted
Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway,
San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in
this documentation and in Siebel eBusiness
Applications Online Help to be Confidential
Information. Your access to and use of this
Confidential Information are subject to the terms and
conditions of: (1) the applicable Siebel Systems
software license agreement, which has been executed
and with which you agree to comply; and (2) the
proprietary and restricted rights notices included in
this documentation.

Siebel e-Billing Manager Developer's Guide | 3

1 Preface

2 Siebel e-Billing Manager Functionality Overview

2.1 Siebel e-Billing Manager Features 13

2.2 Siebel e-Billing Manager Overview and Architecture 15

2.3 e-Billing Manager Components 18

2.4 e-Billing Manager Install Directories 23

2.5 Config Directory 24

2.6 About Siebel e-Billing Manager Applications 24

2.7 Application Directories 25

2.8 Application Profiles 26

2.9 Application Packaging 27

3 Presentation Framework

3.1 Introducing e-Billing Manager Application Basics 35

3.2 Struts and Tiles and the Siebel View Architecture 37

3.3 Development Utilities 49

3.4 Look and Feel 55

4 Statementing and Content Access

4.1 View Architecture Basics 59

4.2 Downloadable View Support 60

4.3 Writing and Configuring Post Processors 61

4.4 Live Data Extraction 67

5 Security: Enrollment, Authentication, Authorization

5.1 About Role-Based Security 75

Contents

Contents �

4 | Siebel e-Billing Manager Developer's Guide

5.2 Controlling Access to Resources 78

5.3 Integrating Security Providers 85

6 Customer Service Representative (CSR)
Access/Capabilities

6.1 Overview 91

6.2 CSR Access (Impersonate User) 91

6.3 CSR Application 93

7 Payment Cartridges

8 Downloading Views and Converting AFP to PDF

8.1 Downloading CSV, XML, and PDF Views 97

8.2 Further Reading About XML, XSL, and XSLT 103

9 BSL Hierarchy Connector

9.1 Overview 105

9.2 How to Create and Manage Hierarchies via XML 106

9.3 How to Synchronize Hierarchies with eStatement Indexer Data 111

9.4 Hierarchy APIs 114

9.5 How to Implement Hierarchy-Based Access Control (HBAC) 117

9.6 How to Search for and Find Objects Within Hierarchies 118

10 Profile Management

10.1 Overview 119

10.2 How to Manage the User Profile 119

10.3 How to Manage the Security Profile 119

10.4 How to Manage the Company and Company User Profiles 120

11 Notifications

11.1 Email Overview 121

11.2 Configuring Email Messaging 122

Contents �

Siebel e-Billing Manager Developer's Guide | 5

11.3 Email Notifications 123

11.4 Modifying Email Addresses Programmatically 125

12 Address Books

12.1 Address Book Overview 127

12.2 Personal Address Books 127

12.3 Corporate Address Books 135

12.4 AddressBook Component 135

13 Custom Jobs

13.1 About Jobs and the Shell Command Task 141

13.2 Defining a New Job Type 142

14 Charting

14.1 Introduction and Components 153

14.2 Configuring Charting for Your Server 154

14.3 Composing Charts in Statements 159

14.4 Customizing Chart Properties 163

14.5 Publishing Charts 185

14.6 Designing Custom Charts with the Charting Servlet 186

14.7 Troubleshooting Charts 190

14.8 Application Programming Interfaces (APIs) for Charting 192

14.9 Default Properties and Attributes 198

Index

Siebel e-Billing Manager Developer's Guide | 7

About Siebel e-Billing Manager
The objective of the Siebel e-Billing Manager application is to provide online account
management and customer self-service for communications provider’s business
customers.

The main features of e-Billing Manager are:

• Administration – Online management of company profiles and company users,
hierarchy management, and managing business structures and corporate address
books.

• Statements – e-Billing Manager customers can view summary and detailed
statements on accounts, devices, and usage.

• Analytics – Standard account, device, and usage reporting functionality. Advanced
reporting and report creation is available in a separate application (Siebel
Communications Analytics Manager).

• Service Management – A separate application (Siebel Communications Self-Service
Manager) for service management and analysis is available for integration into e-
Billing Manager.

• Payments – Companies can set up payment accounts for recurring and one-time
payments, which historical payment activity for a configurable period of time.

• User Profile Management – Users are able to manage personal profiles and address
books, user names and passwords, and notifications.

• CSR Management – Siebel’s standalone application for CSR management includes
searching accounts and invoking impersonate company user functionality.

About This Guide
The Siebel Software Developers Kit allows developers to write custom code against
Siebel applications. This SDK guide is intended for Siebel system integrator partners,
senior developers with a Siebel client company, and Siebel Professional Services
representatives.

The Siebel e-Billing Manager SDK assumes you have an in-depth understanding of and
practical experience with:

1 Preface

Preface �

8 | Siebel e-Billing Manager Developer's Guide

• e-Billing Manager system architecture, installation, deployment, application design,
and administration

• Java 2 Enterprise Edition (J2EE), Enterprise JavaBeans (EJBs), servlets, and JSPs

• Packaging and deploying J2EE applications for WebLogic or WebSphere

• Directory services including the Java Naming Directory Interface (JNDI) and the
Lightweight Directory Access Protocol (LDAP)

• HTML and XML, web server administration, and web browsers

This guide also assumes you have:

• Read the e-Billing Manager product documentation and are familiar with e-Billing
Manager functionality

• Read the javadoc that comes with the SDK

• Successfully installed e-Billing Manager in a J2EE development environment

• Knowledge of how to develop J2EE web applications using JSP, Struts, Tiles and
XML

Related Documentation
This guide is part of the Siebel e-Billing Manager documentation set. For more
information about implementing your e-Billing Manager application, see one of the
following guides:

Print Document Description

Siebel e-Billing Manager
Installation Guides

How to install Siebel e-Billing Manager in a
distributed environment.

Siebel e-Billing Manager
Presentation Design Guide

How to use Composer to define the rules for
mapping data to templates for viewing statements.

Siebel e-Billing Manager
Administration Guide

How to set up and run a live e-Billing Manager
application in a J2EE environment.

Siebel e-Billing e-Billing
Manager Data Definition
Guide

How to use DefTool to define the rules for data
extraction in a DDF file.

Siebel e-Billing Manager
Presentation Design Guide

How to design data presentment for an e-Billing
Manager application with the Composer.

The following online help is also available for the Siebel Command Center and tools
(DefTool and Composer).

Preface �

Siebel e-Billing Manager Developer's Guide | 9

Online How to Access

DefTool and Composer Help In DefTool or Composer, select Help>Help Topics.

Command Center Help In the Command Center, click the Help button on the
menu. You can also click the Help button on Command
Center screens for context-sensitive help.

Obtaining Siebel Software and Documentation
You can download Siebel software and documentation directly from Customer Central at
https://support.edocs.com. After you log in, click on the Downloads button on the left.
When the next page appears, you will see a table displaying all of the available
downloads. To search for specific items, select the Version and/or Category and click the
Search Downloads button. If you download software, an email from Siebel Technical
Support will automatically be sent to you (the registered owner) with your license key
information.

If you received a Siebel product installation CD, load it on your system and navigate
from its root directory to the folder where the software installer resides for your operating
system. You can run the installer from that location, or you can copy it to your file
system and run it from there. The product documentation included with your CD is in the
Documentation folder located in the root directory. The license key information for the
products on the CD is included with the package materials shipped with the CD.

If You Need Help
Technical Support is available to customers who have an active maintenance and support
contract with Siebel. Technical Support engineers can help you install, configure, and
maintain your Siebel application.

This guide contains general troubleshooting guidelines intended to empower you to
resolve problems on your own. If you are still unable to identify and correct an issue,
contact Technical Support for assistance.

Information to provide
Before contacting Siebel Technical Support, try resolving the problem yourself using the
information provided in this guide. If you cannot resolve the issue on your own, be sure
to gather the following information and have it handy when you contact technical
support. This will enable your Siebel support engineer to more quickly assess your
problem and get you back up and running more quickly.

Please be prepared to provide Technical Support the following information:

Preface �

10 | Siebel e-Billing Manager Developer's Guide

Contact information:

• Your name and role in your organization.

• Your company’s name

• Your phone number and best times to call you

• Your e-mail address

Product and platform:

• In which Siebel product did the problem occur?

• What version of the product do you have?

• What is your operating system version? RDBMS? Other platform information?

Specific details about your problem:

• Did your system crash or hang?

• What system activity was taking place when the problem occurred?

• Did the system generate a screen error message? If so, please send us that message.
(Type the error text or press the Print Screen button and paste the screen into your
email.)

• Did the system write information to a log? If so, please send us that file. For more
information, see the Siebel e-Billing Manager Troubleshooting Guide.

• How did the system respond to the error?

• What steps have you taken to attempt to resolve the problem?

• What other information would we need to have (supporting data files, steps we’d
need to take) to replicate the problem or error?

Problem severity:

• Clearly communicate the impact of the case (Severity I, II, III, IV) as well as the
Priority (Urgent, High, Medium, Low, No Rush).

• Specify whether the problem occurred in a production or test environment.

Contacting Siebel Technical Support
You can contact Technical Support online, by email, or by telephone.

Siebel provides global Technical Support services from the following Support Centers:

US Support Center
Natick, MA
Mon-Fri 8:30am – 8:00pm US EST
Telephone: 508-652-8400

Preface �

Siebel e-Billing Manager Developer's Guide | 11

Europe Support Center
London, United Kingdom
Mon-Fri 9:00am – 5:00 GMT
Telephone: +44 20 8956 2673

Asia Pac Rim Support Center
Melbourne, Australia
Mon-Fri 9:00am – 5:00pm AU
Telephone: +61 3 9909 7301

Customer Central
https://support.edocs.com

Email Support
mailto:support@edocs.com

Escalation process
Siebel managerial escalation ensures that critical problems are properly managed through
resolution including aligning proper resources and providing notification and frequent
status reports to the client.

Siebel escalation process has two tiers:

1. Technical Escalation - Siebel technical escalation chain ensures access to the right
technical resources to determine the best course of action.

2. Managerial Escalation - All severity 1 cases are immediately brought to the
attention of the Technical Support Manager, who can align the necessary resources
for resolution. Our escalation process ensures that critical problems are properly
managed to resolution, and that clients as well as Siebel executive management
receive notification and frequent status reports.

By separating their tasks, the technical resources remain 100% focused on resolving the
problem while the Support Manager handles communication and status.

To escalate your case, ask the Technical Support Engineer to:

1. Raise the severity level classification

2. Put you in contact with the Technical Support Escalation Manager

3. Request that the Director of Technical Support arrange a conference call with the
Vice President of Services

4. Contact VP of Services directly if you are still in need of more immediate assistance.

Siebel e-Billing Manager Developer's Guide | 13

1.

2.1 Siebel e-Billing Manager Features
The following table provides a complete list of the use cases that specify the functionality
of the e-Billing Manager application:

Requirement Category Description Use Cases

Enrollment and Login Enroll users and manage
the login user session. The
Log In To Application use
cases is a pre-condition for
all customer use cases

Login to Application
Logout of Application
Enroll Company Users
Enroll As User
Forgot Password

Administration Manage the billing
hierarchy.

Manage Company Profile
Manage Billing Accounts (3 use cases)
Manage Billing Account Users
Manage Business Structures (4 use cases)
Manage Business Structure Users
Manage Business Structure Devices
Edit Business Structure Devices or Accounts
Manage Folder Nodes (4 use cases)
Manage Company Users (2 use cases)
Manage Corporate Address Book

Statement Presentment Provide a place to perform
functions related to
presenting and accessing
customer statements

View Business Dashboard
View Account Summary
View Device List
View Device Summary
View Record Details for Device
View Unbilled Activity
View Bill Messages
Print Current View
Print Invoice
Download Account Data

Payment Handle user payments Make One-Time Payment
Setup Recurring Payment

2 Siebel e-Billing Manager
Functionality Overview

Siebel e-Billing Manager Functionality Overview �

14 | Siebel e-Billing Manager Developer's Guide

Requirement Category Description Use Cases

Manage Payment Accounts
View Payment Activity

Analytics Summarize data in a
variety of reports

View Account Level Report
View Device Report

Profile Management Manage user account and
profile information
Send e-mail notifications as
appropriate to customer

Manage Personal Profile
Manage Notifications
Manage Personal Address Book (PAB)
Manage PAB Entry
Manage Password
Manage Username

Customer Service Customer Service
Application that enables
critical account
management access and
capabilities to customer
service representatives.

Create Organization
Create Organization Summary
Create Administrator User
Create Administrator Summary
Edit Administrator
Edit Administrator Details Summary
Search Organization
Search Organization Results
View Accounts for Organization
View Administrators for Organization
Search for an Account
Search Account Results
View Last Statement for Account
Add Billing Account
Billing Account Added
Search for Internal User
Search Internal User Results
Edit Internal Users
Edit Internal Users Summary
Add Internal Users
Add Internal User Summary
Edit Internal User Profile

Help Siebel e-Billing Manager-specific (FAQs,
Contact, Terms, Conditions

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 15

2.2 Siebel e-Billing Manager Overview and
Architecture

2.2.1 Overview
e-Billing Manager is the leading Electronic Bill Presentment and Payment (EBPP)
solution for communications service providers. e-Billing Manager provides the mission-
critical application platform required for securely managing customer account
information such as bills, statements, and other data. With e-Billing Manager, carriers can
provide business and consumer customers with highly personalized online account
information and self-service capabilities that can be served across multiple channels
(Web, PDF, IVR, hand-held devices and e-mail). It serves as the foundation for managing
recurring customer relationships.

e-Billing Manager is specifically designed for organizations with large numbers of
customers, high data volumes and extensive integration with systems and business
processes across the enterprise. With its sophisticated data access layer, platform services
and data stores, e-Billing Manager are uniquely capable of powering the most complex
EBPP and Customer Self-Service solutions.

e-Billing Manager is available in a consumer edition and business edition with specific
features and functionality designed for each user base.

2.2.2 Functional Areas

Data Access

e-Billing Manager provides a core set of features in support of defining file formats,
defining presentation formats and accessing both indexed (previous prepared) or live
(returned at runtime) data. The Deftool and Composer tools provide easy to use, yet
sophisticated, mechanisms for defining record layouts and combining those layouts into
presentable content templates known as views.

Command Center

The Siebel Command Center is a sophisticated web interface for managing all the aspects
of an e-Billing Manager install. Command Center provides all the required tools for
managing batch processes, defining payment interactions, determining run time status
and configuring Siebel applications. Using command center you can quickly and easily
add a new application, configure application services or determine the state of a running
system.

Siebel e-Billing Manager Functionality Overview �

16 | Siebel e-Billing Manager Developer's Guide

Enrollment

Siebel provides a complete user management framework(UMF). Siebel Out-of-the-box
enrollment supports a user management framework known as Common Directory Access
(CDA), an LDAP light implementation perfect for the needs of emerging and smaller
businesses. Siebel also provides a plugable interface providing the interfaces required to
connect the Siebel enrollment services with an external user management framework
such as LDAP

Role Based Access Control

Siebel provides a complete role based access control subsystem(RBAC). RBAC provides
all the require services to define roles, define permissions, define resources and to grant
or deny access to resources based on these definitions.

Hierarchy Based Access Control

Siebel provides a complete Hierarch y based access control system allowing for the
definition and display of content based on relative position in a corporate hierarchy.
Using Siebel Hierarchy clients can specify their particular set of hierarchy elements, for
example geographies, divisions within geographies, managers in divisions, accounts
associated with managers etc and then grant or deny access to accounts and other data
based on a users location within the defined corporate hierarchy.

Payment Integration

Siebel provides interfaces and tools for managing connections to external payment
providers while also including the ability to schedule and manage personal payment data.
Using the Siebel Payment subsystems clients can define the relationship and connection
data required to interface with external payment providers such as the Check Free,
Verisign, or a custom payment-clearing house.

2.2.3 Architecture Components & Services
The e-Billing Manager Architecture is based on a set of core concepts and sub-systems
that allow developers and external service providers the ability to interaction with and
provide services to the e-Billing Manager core. Conceptually e-Billing Manager is
composed of:

• Action Classes – the set of actions used by client applications to extract data from v
Manager for presentation and to perform application navigation. e-Billing Manager
provides support for developing and extending existing functionality around action
classes via EdocsAction, EdocsActionForm and similar classes.

• Customer Account Management (CAM) – the set of API classes providing
mechanisms to access subscriber data and current subscriber session data. The CAM
API provides support for obtaining subscriber data and all the underlying subscriber
data such as Accounts, Sub Accounts, User profile etc

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 17

• View Processing – The view processing system combines the areas obtaining data
and combining with a predefined view; Live Data Extraction(LDE), obtaining data
from a non-traditional data source(DDN) and View Post Processing, massaging view
content before presentation.

• Security Access Framework(SAF) – the SAF framework provides support for rules
based authentication and access control. SAF provides a complete framework for
defining resources, and granting or denying access to resources based on well-
defined sets of users and rights granting uses access to resources.

• Business Services Layer(BSL) – BSL supports both exposing underlying system
content and accessing that content for the purposes of user authentication, user, user
profile, company, company profile and other entity management. BSL provides the
core services to access current use state as well as provides the underlying SPI
interfaces for integration user management sub-systems.

• ePayment Manager– The ePayment sub-subsystems provide both the ability to
integrate back end payment processors, via payment gateways, and the UI services to
manage payment data such as registering a bank account or setting up a recurring
payment.

• eStatement Manager – The eStatement sub-subsystems provide the abilities to select,
index and present billing data via custom data definitions (DDFs) and presentment
definitions (views) rendered via Struts and Tiles.

• Hierarchy – The hierarchy sub-system provides the required services to define and
load hierarchy data; associate a subscriber with a location in a hierarchy; and return
resources viewable at a location in a hierarchy.

Siebel e-Billing Manager Functionality Overview �

18 | Siebel e-Billing Manager Developer's Guide

2.3 e-Billing Manager Components

Business Services Layer (BSL) API Interface

Customer Account Manager
(CAM)

caches and serves up
session data

Security Profile
Manager

Account
Manager

(AMF)

Company
Profile

Manager
(CMF)

User Profile
Manager
(UMF)

Authentication
Manager

Tiles for
Login, Statement Presentment,

Payment

eStatement VIEWS =
Index Tables

+ HTML

Live Data Extraction
(LDE) Protocol

Handler

Hierarchy Connector

LDAP or other implementation

Security Access
Framework

(role based access
controls)

Loader Synchronizer

XMA
Hierarchy
Manager

Telco Bill

ePayment

CSV/XML

Enrollment
Authentication

Customer Service
Rep (CSR) Module

Business Services Layer (BSL) SPI Interface

TBM Web App

Struts action classes
and forms

Display
Tiles

Controller

authorizes web page access

authorizes account-level access

authenticates user

gets user and account info

gets session data for display

gets ddn content

gets account info

gets hierarchy from indexed bill

loads hierarchy from

uses

reads

Telco e-Billing
Manager Components

External
Data

calls

handles

2.3.1 eStatement Subsystem

Content Retrieval

Content Retrieval is a domain-independent API set that providing runtime access to client
data elements and presentation of data. Key features include:

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 19

• Well defined API for accessing statement and client data.

• Core object definitions such as Customer, Account, Statement etc.

• Definition of data content via DDF files, mapping traditional “bill” content to field
definitions

• Definition of presentation via views, describing the placement, output format, sort,
filtering and other characteristics of data presentment at run time.

• Flexible Struts/Tiles based application development, supporting easily definition of
applications

• Definition of “statement/bill” structure for easy data access in client application

Data Indexing

Data Indexing is a domain-independent component that provides support for fast loading
and return of client data. Key features include:

• Easily customizable indexing batch jobs, managing client data for ultra-fast retrieval

• Easily customizable data definition files (DDF) for defining which fields within a file
should be indexed for fast access

2.3.2 ePayment Subsystem

Payment Utils

Payment Utilities is a domain-independent API set providing run time access to payment
account data. Key features include:

• Well-defined API for accessing payment data.

• Core object definitions such as Check, CreditCard, PaymentAccount,
Invoice etc, fully modeling traditional payment requirements.

Payment Gateway Manager

Payment Gateways are domain-independent component thats provides development-time
and run-time support for interacting with payment services providers such as ACH,
Checkfree, Verisign and others. Key features include:

• Fully integrated into the Siebel Command Center for ease of gateway definition and
management.

• Comprehensive set of gateway attributes covering areas of connectivity, auditing,
security etc.

• Comprehensive API/SPI set for developing custom payment gateways

• Comprehensive set of payment batch jobs for managing the day-to-day process of
interacting with payment service providers.

Siebel e-Billing Manager Functionality Overview �

20 | Siebel e-Billing Manager Developer's Guide

• Payment Plugins – a complete set of payment job lifecycle interfaces providing client
developers the support required to interact with each and every payment job during
its run time lifecycle.

2.3.3 Customer Account Management
Customer Account Management(CAM)

CAM is a Communictions-specific API set that provides access to subscriber data. Key
features include:

• Well-defined API for accessing Customer/Subscriber data.

• Ability to access current account information, including both default and accounts
selected by account id.

• Ability to access current and specific sets of summary account data.

Using the CAM Layer developers can read, write and create customer specific data
including profile, account and individual attributes.

In addition the CAM API interfaces can be extended to return custom extensions to core
objects. CAM interfaces are extended by modifying properties to specify custom classes
extending core Siebel implementations. The custom implementations are then returned
via traditional API calls.
Examples of extendable interfaces in the package
com.edocs.application.tbm.cam.api.* are:

• Customer – Implementation of ICustomer, may be extended to add custom
functionality for the specific vertical domain.

• CustomerAccount – Implementation of ICustomerAccount, may be
extended to add custom functionality specific to customer accounts.

2.3.4 Business Services Layer

Business Services Layer API(BSL)

BSL API is a domain-independent component that provides run-time access to core e-
Billing Manager services required by API based applications. Key features of BSL
specific to API applications include:

• Ability to read, write and create Billing Accounts.

• Ability to read, write and create user objects, representing a logged in user.

• Ability to read, write and create Customer objects and associated profile objects.

• Ability to read, write and create Company objects, and associated profile objects.

• Ability to search for and return instances of a variety of entities such as users,
companies, company profiles etc.

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 21

Often BSL is used as an integration point with various entity managers, however BSL
can be used directly to manager various entities, typically in support of CSR
functionality.

Business Services Layer Service Provider Interfaces

BSL SPI is a domain-independent component focused on providing key interfaces linking
E-Billing Manager with external entities managers such as LDAP. Key interfaces and
features including:

• IUserProfileManager – interface between BSL and external user management
systems for the purposes of Authentication

• ISecurityProfileManager – interface between BSL and external user
management systems for the purposes of user management operations such as create,
update and delete.

• ICompanyProfileManager – interface between BSL and external company
management systems for the purpose of managing Company and Company profile
instances.

The BSL package contains a complete set of core implementations based on the Database
user management sub-system any of which can be replaced as required. Additionally the
BSL package comes with an LDAP implementation that can be used as a starting point
for custom LDAP integration.

2.3.5 View Processing

Display Tiles Controller

The Display Tiles Controller is a domain-independent component that extends
Struts/Tiles framework to provide key support for Communications Self-Service
Manager features. Features include:

• View Loading Support – The ability to load a specific view using a provided JSP
page and an e-Billing Manager Tag.

• Live Data Extraction Support – the ability to use the e-Billing Manager view merge
engine with non-traditional data sources, for example merging data from a database
with view defined specifically for that data

• View Post Processing Support – the ability to take a view and change its contents
programmatically after the content has been merged with the view but before the
content is presented to the user.

Live Data Extraction (LDE)

LDE is a domain-independent component of view processing that allows for the
integration of external data content with the view merge engine Key features include:

• Seamlessly integrated into the Communications Self-Service Manager product, and
can take advantage of all view specific features such as sorting, filtering etc

Siebel e-Billing Manager Functionality Overview �

22 | Siebel e-Billing Manager Developer's Guide

• The ability to apply ddf templates to external data for use with Views

• The ability to take advantage of client context, from session data obtained via an
action class, to extract data only appropriate for current user.

View Post Processing

View Post Processing is a domain-independent component of view processing that
provides mechanisms for interacting with the view processing engine to perform run time
changes to data pre-display Key features include:

• Custom view processing, with complete access to user context and raw data content.

• Complete access to e-Billing Manager features and functions, in support of data
transformations

• Seamlessly integrated into the Communications Self-Service Manager applications

• Can be configured per tile, per view or for all views

• Can be chained together to perform complex processing

2.3.6 Security Access Framework

Role Based Access Control (RBAC)

RBCA is a domain-independent component that provides role based access control to e-
Billing Manager applications. Key features include:

• XML based rights repository, defining role to resource accessibility mappings, often
referred to as rights, privileges or permissions.

• Role based mapping engine supporting mapping client roles to a simpler set of roles
for use in web applications.

• Out of the box permission implementations for protecting resources such as Struts
actions, JSP buttons, JSP Pages, sections of pages, menu items on pages etc.

• Java based Permission definitions, allowing for sophisticated permission definitions
that can be used to create complex “implies” permissions where permissions imply or
leads to other permission.

• Complete API for accessing the permission engine directly, supporting custom access
development.

2.3.7 Hierarchy Based Access Control

Hierarchy Bulk Load

Hierarchy Bulk Load is a domain-independent component that provides mechanisms for
limited statement content display based on user position in a hierarchy. Key features
include:

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 23

• Well-defined XML based bulk loading and synchronization services, provided as
standard e-Billing Manager jobs for easy integration of client hierarchy data.

• Custom integration with BSL for integration with external providers of hierarchy data
such as Companies, company profiles etc

• Well-define developer API for use in custom hierarchy application implementation

2.4 e-Billing Manager Install Directories

Folder Contents
Root folder Root Directory (c:\Siebel or /opt/Siebel)
Common SDK Support default files

Config Configuration common all of e-Billing Manager

DB Schema files for Oracle, DB2 and MSSQL

estatement Statement specific support

J2EE apps Command Center and e-Billing Manager default
applications

Jre JRE Support

Lib Common libraries

payment Payment specific support

Release notes Release notes

Uninstall Uninstall Support

views Prepackaged views

The J2EEApps directory contains:

• eStatement - The Siebel Command Center application

• ebm-b2b (Business Edition) -
EBM B2B out of the box application

• ebm-csr (Business Edition) - e-Billing Manager CSR Application

• ebm-b2c (Consumer Edition) - e-Billing Manager B2C out of the box application

The estatement directory contains:

• Support, samples and documentation core to statement based applications

The payment directory contains:

• support, samples and documentation core to payment based applications

Siebel e-Billing Manager Functionality Overview �

24 | Siebel e-Billing Manager Developer's Guide

2.5 Config Directory
The EBM\Config directory contains:

• app-config.properties - Properties specific to all e-Billing Manager
applications

• common-logging.properties - Apache logging properties

• hibernate.properties - Hiberbate properties for Oracle,DB2 and MS-SQL

• hierarchy.cfg.xml - Support for hierarchy

• hierarchy.hibernate.properties - Hibernate properties specific to
hierarchy

• log4j.xml - Logging properties

2.6 About Siebel e-Billing Manager Applications
e-Billing Manager Applications are combination of:
• A set of artifacts created and managed by the Command Center

• J2EE Applications

• A set of application DDN and other properties associated with an application (run
time configuration via app-config.properties)

You create and name an e-Billing Manager application in the Command Center to match
the APP_DDN entry in app-config.properties. This DDN becomes the parent or
primary ddn associated with the application.

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 25

By default, e-Billing Manager applications contain two DDN entries:

• DDN.Summary - Specifies the source of the summary data

• DDN.TBM - Specifies where core e-Billing Manager data is obtained

While these two DDNs are often the same, both refering to the actual DDN e-Billing
Manager, they can use different data sources for content.

The "primary" application created with Command Center must match the APP_DNN
entry in app-config.properties:

FILE_PROP_VERSION=TIME_STAMP

APP_DDN=TBM

DDN

DDN.Summary = TBM

DDN.TBM=TBM

DDN for Unbilled Activity

DDN.TBM_UA_Detail=TBM_UA

DDN.TBM_UA=TBM_UA

Views

DDN_NAME_AccountList = Account_Summary

#LDE_MAX_CACHE_SIZE=52428800

. . .

2.7 Application Directories
Artifacts of the Command Center create application operation are:

• Registration of the application

• Creation of AppProfile, input, data and output directories

When you use the Command Center to create e-Billing Manager application, it creates a
number of directory artifacts. These artifacts represent Input, Data and Output processing
directories, each named based on the application. Indexer and other jobs use these
directories to manage files.

As files are processed time stamps are prepended to the file name to allow for intelligent
management of multiple instances of the same file name.

Indexer jobs:

Siebel e-Billing Manager Functionality Overview �

26 | Siebel e-Billing Manager Developer's Guide

• Process files found in Input directories

• Move results to Data directories

2.8 Application Profiles
Application profiles:
• Are created when you add a new application in Command Center

• Contain all the underlying artifacts of publishing

• Contain subdirectories by functional area (HTML, Indexer support etc)

Functional areas contain time-stamped directories containing "version sets"

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 27

2.9 Application Packaging
e-Billing Manager applications:

• Are packaged as an Enterprise Application Archives (.EARs)

• Contain a set of supporting EJBs

• Contain one or more Web Applications (.WARs)

• Must have an associated a Data Definition Name (DDN) created and configured
using the Command Center, including all views, application logic files, html
templates and data definitions required for presentment

Data Definition Files:

• End with a .ddf extension

• Contain the rules for finding and extracting customer data with a "paper" bill

• Are created using representative business data and Siebel tools

Specialized DDF files are used for a core indexer batch job run regularly to prepare data
for presentation:

Views, application logic files, and HTML templates

Views:

• Are combinations of data definitions, HTML templates and data created with Siebel
tools

Siebel e-Billing Manager Functionality Overview �

28 | Siebel e-Billing Manager Developer's Guide

• Are used to present client data

• Can be formatted to generate HTML, XML, Charts or other formats such as CVS

• Are versioned

Application Logic Files:

• Contain the rules to present extracted data

• Define formatting, sorting, filtering, business logic and output formatting.

• May use HTML templates

A view is a set of design files what result in particular presentation of statement data.
View files enable a user to dynamically display formatted statements, review
notifications, emails or other account data.

A typical HTML based statement view includes a pair of DDF and ALF files as well as
one or more template HTML files.

View functionality

• Views provide the ability to sort, filter, page, and total fields easily

• View types include charts, drill-downs, downloads, and printer friendly

• Views can also be used as front ends to messaging & personal address book style
functionality

View development

Design Elements
• Version Sets

• DDF - Provides data extraction rules

• ALF - Provides formatting and personalization rules

• HTML with embedded Siebel tags - Provides presentation templates

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 29

View Types

• CSV - Downloadable comma-separated values based on core data

• CHART - Displayable chart genenerated by Kavachart. Customizable via properties.

• HTML - Standard view type using generated or core data, an ALF and a HTML
Template.

• XSLT - Downloadable XML, HTML or anything else generatable by XSLT and
XML.

• XML, XML Query - Specialized view run of a detail extractor job to load the
statement detail into the database, then generated by an SQL statement off stored
data.

DefTool – Data extraction and mapping

DefTool:

• Is a GUI tool for graphically defining data formats and outputs .DDF files

• Requires no programming or scripting experience

• Supports multi-format data-parsing to allow building connectors into multiple format
data sources

• Include powerful post-processing formatting

• Includes a simulator for real-time rules testing

Siebel e-Billing Manager Functionality Overview �

30 | Siebel e-Billing Manager Developer's Guide

DefTool - Interface

Composer – Business rules and presentation

Composer:

• Is a GUI tool for defining how data and HTML are merged, including WYSIWYG
HTML editing

• Requires no programming or scripting experience

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 31

• Includes powerful business logic and personalization engine as well as simulator for
testing views

Composer Interface

The Command Center

The Command Center provides easy to use, integrated:

• Application configuration

Siebel e-Billing Manager Functionality Overview �

32 | Siebel e-Billing Manager Developer's Guide

• Run time reporting and statistics

• View and batch process management

Command center includes:

• Main Console - For creating and managing applications and job execution

• Publisher - For managing views

Batch Processes

e-Billing Manager supports standard and custom batch processing.

Batch processes:

• Are known as jobs

• Have one or more steps known as tasks

• Can be scheduled to run periodically

All installed applications have at least one job known as the Indexer Job.

e-Billing Manager comes with two types of batch jobs:

• The Indexer job, which:

• Scans for and processes input billing statements

• Specialized jobs that:

• Generate email notification

• Extract specialized details for charts and reports

Siebel e-Billing Manager Functionality Overview �

Siebel e-Billing Manager Developer's Guide | 33

• Generate HTML output

• Generate XML output

Such specialized jobs are often run in preparation of large reports, etc.

Common Jobs

• Indexer - Standard job to prepare statement data for presentment. Required for
dynamic presentment

• Email Notification - Standard job to generates an email notification when an online
statement is complete and ready to review.

• Purge App - System maintenance job that removes index, email, reporting, detail,
and other data from the database

• Purge Logs - System maintenance job that removes historical log information.

• HTML & XML Output - Statement presentment job which creates either HTML or
XML output for each extracted primary key. Not required if live data retrieval is
used.

• Detail Extractor - Specialized job to generate up-loadable XML based on XSLT
style sheets.

Creating Applications

e-Billing Manager Applications are combinations of:

• Application name

• Data source

• Indexer job

Creating an application is a multi-step process composed of:

• Deploy the e-Billing Manager J2EE application ear

• Create the e-Billing Manager application

• Publish the indexer files

• Create the indexer job

Creating applications, adding jobs

See the Siebel e-Billing Manager Administration Guide for information on setting up
applications and jobs.

Publishing

Publishing is the process of uploading design time artifacts to the Siebel system such that
applications can use them. You can publish individual sets of files or entire groups of
files (bulk).

Siebel e-Billing Manager Functionality Overview �

34 | Siebel e-Billing Manager Developer's Guide

Version sets are:

• Dated combinations of files

• Are applied based on the current data

Live retrieval of historical bills & statement is handled by:

• Extract data from statement

• Compare against version set dates

• Select version set and apply

Batch Processing Vs. Dynamic Version Set

Batch processing:

• Uses most recent version set

• Applies to: Indexing, Email Notification, HTML Output, XML Output, Detail
Extractor

Web view version sets are

• Determined based on data of presentation data

• Apply to: HTML, XML, CSV, XSLT, XMLQuery

Scheduler

The scheduler:

• Must be running to use scheduling & jobs

• Is found in: %EDX_HOME/%estatement/bin

• Is started with: wl_scheduler OR ws_scheduler –start –url
t3://<server>:<port>

Siebel e-Billing Manager Developer's Guide | 35

This chapter describes:

• Core features of the Siebel struts & tiles extensions

• e-Billing Manager application development architecture

• Extending e-Billing Manager applications to include new menus and pages

• The TBMTags tag library used by e-Billing Manager, and Siebel libraries

• How to configure e-Billing Manager applications, including resources, properties and
internationalization

• How to modify the application look and feel

3.1 Introducing e-Billing Manager Application
Basics

This section describes:

• e-Billing Manager application fundamentals

• The e-Billing Manager directory architecture & structure

• Standard pageflows

3.1.1 e-Billing Manager Application Fundamentals
e-Billing Manager applications:

• Are packaged as an Enterprise Application Archives (.EARs)

• Contain a set of supporting EJBs

• Contain one or more Web Applications (.WARs)

• Must have an associated a Data Definition Name (DDN) created and configured
using the Command Center

• Are configured by app-config.properties

e-Billing Manager-based applications:

• Are J2EE applications

• Are based on Struts and Tiles

• Support a set of core functionality including:

3 Presentation Framework

Presentation Framework �

36 | Siebel e-Billing Manager Developer's Guide

• Login/logout - Authenticate a user

• Statement presentation - Present summary and statement details

• Payment - Make payments

• Profile management - Manage uid/pwd, personal address book etc.

• Hieararchy - Present and manage company and business based bill presentation
hierarchy

3.1.2 Architecture & Structure
e-Billing Manager application architecture features:

• Clear separation between UI, business logic and controller

• Struts MVC framework developed by the Apache Software Foundation

• Separation of roles in a project

• Customer-ready, flexible UI’s

• Use of the Tiles templating engine

• Internationalization and multi-language support

• Best Practices

• Standardized validation and error handling

• No Java (business logic) code in JSP

Application structure

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 37

3.1.3 Standard Page Flows

3.2 Struts and Tiles and the Siebel View
Architecture

This section describes:

• Out of the box architecture components

• Modifying Existing Views

• e-Billing Manager Tags

• Configuring e-Billing Manager Applications

Presentation Framework �

38 | Siebel e-Billing Manager Developer's Guide

3.2.1 e-Billing Manager Application Architecture

• UserManagement: IUser, IUserProfile, IUserProfileManager

• Security Roles: ISecurityProfile,ISecurityProfileManager

• Authentication: IAuthenticationManager

• Company Management Framework: ICompany,ICompanyProfile,
ICompanyManager,ICompanyManagerProfile

• Account Management: IBillingAccount,IBilling

3.2.2 e-Billing Manager Struts and Tiles
e-Billing Manager extends the Struts/Tiles framework to:

• Provide specialized struts support infrastructure

• Define core page flow and navigation common to all e-Billing Manager applications

• Define core page layout, used by navigation, common to all applications

• Provide internationalization and look & feel support

Overall the e-Billing Manager Struts/files framework provides an extensible environment
that can be easily extended to meet customer needs

Typical flow

Pages can include forms and invoke Siebel defined actions.

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 39

Configuration example

Typical app-config.properties

Presentation Framework �

40 | Siebel e-Billing Manager Developer's Guide

3.2.3 Mapping DDNs
• Actual DDNs represent available sources of data

• Views specify data via abstract DDNs

• Abstract DDNs are mapped at run time to actual DDNs via configuration entries.

DDN.Summary = TBM

Used by view Defined in Command Center

DDN Mapping at runtime

DDN mapping is important because it allows the developer and system administrator to
quickly and easily associate content with data without application coding changes.
Applications normally have a default DDN, which also is specified by the Siebel
application name. The default DDN is used in a variety of places within the struts/tiles
hierarchy as well as other locations and should rename TBN. Under normal
circumstances the Summary view is mapped to the application DDN although it can be
changed to map to any appropriate DDN associated with an indexer job.

You can create other DDNs that map to whatever data is required. Typically a detail
extractor job is run, associated with a details job, for the purpose of quick access to
account level billing details. Other DDNs typically used are unbilled data, or custom
charting or reporting.

3.2.4 Struts Extensions
e-Billing Manager extends Struts in several areas

• EdocsActionServlet extends ActionServlet to handle e-Billing Manager
session initialization

• EdocsAction extends Action to:

• Check and force login as required

• Check for and handle multiple submits

• Forward to developer implemented doAction

• EdocsActionForm extends ActionForm to handle reset and auto-population of
fields. In addition EdocsActionForm adds a base hashmap variable which can be
used to add new content to the form without the need for adding additional class
scope variables.

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 41

3.2.5 e-Billing Manager Tiles
e-Billing Manager uses a tiles structure to define the look and feel of applications. The
default structure includes a set of template tiles definitions that define the main functional
areas of applications.

• e-Billing Manager uses a set of core tiles definitions to define the general e-Billing
Manager structure and actions.

• Tiles definitions are used to create templates for each UI functional area.

• Templates are further specified by tab and sub tabs.

Some of the e-Billing Manager template tiles definitions included are:

• .template.main – Defines the overall structure of a presented page. Header, footer
etc sections are defined here. tab menus etc.

• .template.tabs - Defines a core tab layout for applications. Pages normally have
a set of tabs and sub tabs. The template tabs definition defines the page and other
attributes of this list such as selected tab and sub tab list.

• .template.module – Defines a number of top level pages which do NOT include
content. Such pages include, login, error, etc.

• .view.setup – Defines the default attributes for a presentable view (core defaults).
Common attributes of a view include its name, type and ddn.

General tiles structure

Presentation Framework �

42 | Siebel e-Billing Manager Developer's Guide

.template.main

.template.main snippet Example:
<definition name=".template.main" path="/_assets/templates/main_template.jsp">

<put name="title" value="pagetitle" type="string"/>
. . .
<put name="tabs" value=".template.tabs" type="definition"/>

<put name="tab" value="AccountSummary"/>
<put name="subtab" value="" type="string"/>

. . .
<put name="action" value="/_asssets/includes/blank_page.jsp" type="page"/>
<put name="lnav" value="/ asssets/_includes/blank_page.jsp" type="page"/>
<put name="summary" value="/_includes/blank_page.jsp" type="page"/>
<put name="module1" value="/_includes/blank_page.jsp" type="page"/>
. . .
<put name="analytics" value="/_includes/blank_page.jsp" type="page"/>
<put name="view" value="/_includes/blank_page.jsp" type="page"/>
<put name="sidebar" value="sidebar.simple" type="definition"/>
<put name="footer" value="/_includes/footer.jsp" type="page"/>

</definition>

based on main template

ear-tbm-xxx.ear/war-tbm-xxx.war/WEB-INF/tiles-def.xml

various content tiles

includes various navigation tiles

Example Main Summary Screen

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 43

.main.statement.account.summary

Example:
<tiles-definitions>

<definition name=".main.account.summary" extends=".template.main">
<put name="page_name" value="com.edocs.page.name.bill.summary"/>
<put name="page_description"

value="com.edocs.page.description.bill.summary"/>
<put name="page_title" value="com.edocs.page.name.account.summary"/>
<put name="tabs" value=".tabs.statements" type="definition"/>

<put name="tab" value="Statements"/>
<put name="subtab" value="AccountSummary"/>

<put name="action" value="/_assets/includes/action.jsp" type="page"/>
<put name="lnav" value="/_assets/includes/blank_page.jsp" type="page"/>
<put name="module1" value="/_assets/includes/account_info.jsp" type="page"/>

. . .
</definition>

ear-tbm.ear/war-tbm.war/WEB-INF/tiles-defs-statement.xml

includes various navigation tiles

The statement account summary definition defines a tabbed page that presents an account
summary under the statements general tab.

Examining the definition reveals that .main.account.summary:

• Defines page name, description and title properties, loaded from
ApplicationResources.properties via com.edocs.page.
description.bill.summary and name.bill.summary.

• Specifies the sub tab set that should be displayed via the tab tile, which in this
example uses .tabs.statements.

• Specifies itself as the within the “Statements” menu and as the
“AccountSummary”, defined in applicationresources.properties via
properties of the form com.edocs.tabname.Tab and
com.edocs.tabname.AccountSummary.

• Includes a navigation panel, shown on the left side of the page and module content
pages.

Presentation Framework �

44 | Siebel e-Billing Manager Developer's Guide

.template.tabs

.template.tabs:
<definition name=".template.tabs" path="/_asssets/templates/tab_template.jsp">

<putList name="tabList">
<item value="Overview" link="/hierarchy/main/dashboard/show.do"

classtype="com.edocs. . .EdocsBaseMenuItem"/>
<item value="Administration" . . . />
<item value="Help" link="/view/toDo.do"

classtype="com.edocs. . .EdocsBaseMenuItem"/>
</putList>
<putList name="subtabList"/>

</definition>

ear-tbm-xxx.ear/war-tbm-xxx.war/WEB-INF/tiles-def.xml

.template.tabs defines the top level tab menus. Additionally top level menu items are
added by inserting a new <item…> element specifying the name of the tab and the action
to execute when it is selected.

.tabs.statements

.tabs.statements:

<!-- Statements Sub Tab List -->
<definition name=".tabs.statements" extends=".template.tabs">

<putList name="subtabList">
<item value="AccountSummary" link="/view/account_summary.do"

classtype="com.edocs.application.tbm.core.menus.EdocsBaseMenuItem"/>
<item value="DeviceSummary" link="/view/device_summary.do"

classtype="com.edocs.application.tbm.core.menus.EdocsBaseMenuItem"/>
<item value="DeviceUsage" link="/view/device_details.do"

classtype="com.edocs.application.tbm.core.menus.EdocsBaseMenuItem"/>
<item value="UnbilledActivity" link="/view/unbilled_activity.do"

classtype="com.edocs.application.tbm.core.menus.EdocsBaseMenuItem"/>
</putList>

</definition>

ear-tbm-xxx.ear/war-tbm-xxx.war/WEB-INF/tiles-def.xml

various content tiles

includes various navigation tiles

.tab.statements represents the set of sub tabs for a specific functional area. Sub tab
lists always extend .template.tabs, inheriting the top level tab definitions, and add a
set of items under the subtabList element representing each of the sub tabs, their
associated. Note that the value attribute of each item element is used as a look up
property in applicationresources.properties to find the corresponding tab text.

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 45

3.2.6 View Tiles

The .view.setup tiles definition defines the default values for view tiles. At a
minimum tiles inheriting from view setup set the viewName tile to the view that should
be displayed. Additionally you may specify the view type and ddn. Note that the DDN is
a virtual or abstract DDN that is mapped by the app-config.properties file to the
actual DDN at run time. The viewName attribute is used by the display_view.jsp to
define which view should be rendered at runtime.

3.2.7 Creating Custom Tabs
You can extend e-Billing Manager using custom tabs. Custom tabs include:

• Tab and sub tab page definitions

• Struts actions defining page flows

• Various properties files containing localizable text

To create custom tabs:

1. Define the tab structure and flows.

Presentation Framework �

46 | Siebel e-Billing Manager Developer's Guide

2. Create a tab, sub tabs and tab menu elements

3. Create action mapping.

Tab structure and flows

To create a Tabs & Subtab sets:

1. Add the new top menu tab element to .template.tabs

2. Define a set of sub tabs extending .template.tabs

3. Define page definition(s) that extends .template.main

4. Add properties to Application.Properties for various properties

Add .template.tabs item example

1. Define tabs using the .template.tabs tile.

2. Create sub tabs lists by extending this tile and adding a sub tab list

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 47

Define sub tabs

Sub tab lists contain the list of sub tab element to action mappings displayed for a sub tab
set. Each element in a sub tab list consists of three things:

• value - Containing property id of the sub tab, always prefixed with
com.edocs.tabname.

• link - The action to perform when the sub tab is selected

• classtype - Either
com.edocs.application.tbm.core.menus.EdocsBaseMenuItem or a
class that extends EdocsBaseMenu item.

Extending EdocsBaseMenuItem

You can extend EdocsBaseMenuItem to support custom visible/invisiblity code for a
menu element as shown below:

Presentation Framework �

48 | Siebel e-Billing Manager Developer's Guide

Define Tab Pages

Every tab page extends .template.main and specifies a number of elements. The
properties, page_description, page_name and page_title are rendered based on
potentially localized version of properties found in
ApplicationResources.Properties or a locale specific version. The tabs element
defines the tab and sub tab lists to be defined in the page as well as the tab and sub tab
properties

The module1-n tiles defines the page content. Modules 1-7 are defined and over-
writable from .template.main. Normally modulex definitions specify another tiles
definition containing a view show below the actual .template.main example show.

Defining pages:
<definition name=".main.area.subarea" extends=".template.main">
<put name="selectDisplayMenu" value="/_includes/select_display_type.jsp"

type="page"/>

. . .
<put name="page_name" value="page name property"/>
<put name="page_description" value="page desc property"/>
<put name="tabs" value=".tabs.name" type="definition"/>

<put name="tab" value="tabtitlepropertyid"/>
<put name="subtab" value="subtabtitlepropertyid"/>

<put name="action" value="/_includes/action.jsp" type="page"/>
<put name="leftSideNav" value="/_includes/side_navbar.jsp" type="page"/>
<put name="module1" value=".area.subarea...view" type="definition"/>

</definition>

<definition name=".area.subarea...view " extends=".view.setup">
<put name="viewName" value="AssociatedViewName"/>

</definition>

extend .template.main

Set Titles

Set propertie values
for name & description

Set content

Create Action Mapping

Create Action Mappings in struts-config.xml. For each sub tab in the tabs list create
an action:

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 49

3.3 Development Utilities
e-Billing Manager includes support for:

• Custom e-Billing Manager tags

• Custom configuration files

• Custom log4j

Developers can use either custom properties files, or layer properties within the packaged
configuration files

e-Billing Manager includes all required jars and configuration for log4j support.

3.3.1 e-Billing Manager Tags
e-Billing Manager comes with a set of custom tags that can:

• Force login or return login/user or account data

• Display a view, view data, or control view display

• Render content in a JSP page (buttons and other content) based on security settings

e-Billing Manager Tags are specified in JSP include but you can specify them directly.

Presentation Framework �

50 | Siebel e-Billing Manager Developer's Guide

getView Tag

The getView tag displays a named view or the summary view by default.

summaryDates Tag

The summaryDates tag outputs the list of summary dates as a section name. It returns a
SELECT= statement populated with the current set of selectable summary dates.

summaryInfo Tag

The summaryInfo tag returns any summary field based on the currently selected
statement. Common summary fields are:

• AcctNum

• CurrentCharges

• PymtType

• StatementDate

• AmountDue

• LateFee

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 51

checkLogin Tag

The checkLogin tag forces the application to the login page if no valid user is in the
session. Use this tag on any page requiring a login.

getGeneralAccountInfo tag

getGeneralAccountInfo returns a specified account or billing account level
property

Here are some common Properties used by getGeneralAccountInfo. See the
IAccount documentation for a complete list.

• UserId - Currently logged in user

• Associated Email Address - EmailAddress";

• First name - FirstName

Presentation Framework �

52 | Siebel e-Billing Manager Developer's Guide

• Last Name - LastName

• Default – DDN

• Associated Account Number

3.3.2 Working With Properties

e-Billing Manager applications can access properties via Configuration objects.

Configuration objects:

• Can load and store string, integer and sets of configuration values

• Auto update based on changes in backing store

• Auto store based on changes to in memory instances

3.3.3 Working With Logs
e-Billing Manager Applications can perform custom logging via log4J. Log4J supports:

• Controlling logging levels at runtime

• Configuring custom loggers

• Defining log message format

Classes can instantiate loggers, write logging code and then control log output via
configuration files.

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 53

3.3.4 Developing Custom Actions
e-Billing Manager custom struts actions:

• Extend EdocsAction

• May use forms which extend EdocsActionForm

• Can access environment using the CAM/SessionUtils layer.

3.3.5 Customer Account Manager
See the CAM javadocs delivered in this SDK for implementation details about the
Customer Account Manager (CAM) components of e-Billing Manager.

The Customer Account Manager (CAM):

• Provides information required to manage that state of a customer session.

• Includes a hierarchy of objects including customer, customer accounts, billing
information etc.

• Uses a factory metaphore to access underlying customer data.

The Customer Account Manager, or CAM, is a subsystem designed for the purpose of
managing access to underlying data. In the context of an action class CAM is typically
used to access customer state information. The CAMClassFactory is a factory object
which accesses both the current session and the underlying BSL subsystem to return
requested data.

Presentation Framework �

54 | Siebel e-Billing Manager Developer's Guide

Customer account numbers are accessed via the ICustomerAccount interface which
exposes a getAccountNumber method.

Common CAM interfaces

CAM example

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 55

3.4 Look and Feel
To manage application look and feel you can:

• Manage template files such as header/footer.jsp

• Set a core color and text scheme using style sheets

• Manage images

Place these items in the e-Billing Manager directory as follows:

Define application header & footer content using:
tbm-[b2b|b2c_assets_includes\header.jsp & footer.jsp

<%@ include file="/_includes/taglibraries.jsp" %>
<div id="navtop">
 <div id="navtopblackbar"> </div>
 <div id="navtoplogobar">
 <img src="<%= request.getContextPath()
 %>/_assets/client_images/logo.gif"
 alt="Alternate test" />
 <div id="navtoplinks">
 Contact Us |
 <a href="<%= request.getContextPath()
 %>/logout/perform.do">Logout
 </div>
 </div>
 <div id="navtopredbar"> </div>
</div>

3.4.1 Message Rendering and Localization
UI text content is obtained extensively using resource properties.

Presentation Framework �

56 | Siebel e-Billing Manager Developer's Guide

Resource properties are:

• Read from WEB-INF\classes\application[_locale].properties based on
run time locale

• Rendered by <bean:message key="property name"> tags

You can localize text resources by:

• Creating a locale specific application properties file

• Adding or replacing property text with localized versions

3.4.2 Style Sheets
e-Billing Manager Application style is controlled by style sheets found in:
tbm-[b2b|b2c_assets\css\ and tbm-[b2b|b2c\skins\

_assets\skins\skin.css

• Primary CSS for look and feel

• Define the look and feel of pages and navigation

• Can change definitions (fonts, size etc)

• Should NEVER add or remove definitions

assets\css\edx.css

• Support of additional look and feel

• Exists to be customized

• Can contain new additions

_assets\css\hierarchy.css

• Primary CSS for look and feel for hierarchy

• Can change definitions (fonts, size etc)

• Should NEVER add or remove definitions

3.4.3 Images
Images and logos exist to further define application look and feel

_assets\client_images\

• Contains replaceable images

• Should contain any new images

skins\

Presentation Framework �

Siebel e-Billing Manager Developer's Guide | 57

• Contains UI images for tabs etc

• Can be replaced, but must maintain size

images\

• Contains core images which can be modified but no new images added

• Can be replaced, but must maintain size

Siebel e-Billing Manager Developer's Guide | 59

This chapter describes how to extend and customize views, including:

• View architecture basics

• Downloadable view support

• How to write and configure post processors

• How to write and configure live data extraction

4.1 View Architecture Basics
e-Billing Manager simplifies view presentment via a custom tiles controller, view jsp and
view tiles.

View tiles:

• Use TBMTags via template jsp to render view content.

• Defines viewName, viewType, and DDN tiles, used by the view controller to specify
content.

You can write custom template view jsp pages to manage special requirements such as
download views

View architecture

e-Billing Manager Supports two source data types:

• Indexed views, obtaining data from indexed DDNs and requiring no specialized
actions

• Live data views, obtaining data from custom sources

e-Billing Manager View processing is extended based on a specialized tiles controller
DisplayTiledView, which:

• Provides view rendering support

• Provides view post processing

• Is extensible, providing support for custom post processors and live data

4 Statementing and Content Access

Statementing and Content Access �

60 | Siebel e-Billing Manager Developer's Guide

Display Tiles run time architecture

The Display Tiles Controller hooks run time requests to display views and executes as
follows:

1. The struts/tiles framework calls the DisplayTiledView (DTV) controller.

2. The DTV controller then uses the CAM layer to obtain a view stream for processing.

3. Standard post processors and custom post processors are applied in the order defined
in the view definition.

4. The resulting, perhaps changed, view is set back into the underlying session via
CAM.

5. The actual JSP tied to the view via its .view.setup defined definition is run and
the tbmtags:getView tag renders the view.

4.2 Downloadable View Support
e-Billing Manager supports creating download views:

1. Create and publish a download view

2. Use or modify download template jsp

Statementing and Content Access �

Siebel e-Billing Manager Developer's Guide | 61

3. Define downloadable view tile:

4. Use new tile in appropriate page

4.3 Writing and Configuring Post Processors
Post processors are used to transform data in some way after it has been returned from a
data source. Views can be associated with one or more Post Processors.

Post Processors:

• Are called after a view has been obtained from a data source

• Can transform data programmatically

• Can be parameterized for a specific view in a tiles definition

• Can be chained one after another

Statementing and Content Access �

62 | Siebel e-Billing Manager Developer's Guide

Examples of post processing include:

• Replacing text with a link, for example to insert personal address book data.

• Adding new text, for example replacing a phone number with a name.

• Summarizing data as its presented (usage statistics).

• Logging information about data.

Post processor lifestyle

4.3.1 How to Write a Post Processor

To write a post processor:

1. Write a class that extends PostProcessor (writing two specific methods)

2. Register the postprocessor logical name in app-config.properties

3. Modify the tiles def which specifies the view to be post processed to reference the
view logical name

4. Optionally modify the tiles def to supply additional arguments to the view

Each step is described here:

Statementing and Content Access �

Siebel e-Billing Manager Developer's Guide | 63

1. Extending PostProcessor

import com.edocs.application.tbm.displayview.PostProcessor;
import com.edocs.application.tbm.core.common.ViewInfo;
import javax.servlet.http.HttpServletRequest;
import org.apache.commons.logging.*;
public class MyPP extends PostProcessor{

 private static Log m_cLog = LogFactory.getLog(MyPP.class);
 //-- definitions for initial and final string to match. --
 private static final String cszBeginMatchString = "startpattern";
 private static final String cszBeginMatchTemplate = "XXXXXXXXXXX";
 private static final String cszEndMatchString = "end pattern";
 private static final String cszEndMatchTemplate = "XXXXXXXXXXX";

 // -- matching classes. --
 private OutputThroughMatch m_FindBeginMatch = null;
 private RetainThroughMatch m_RetainMatch = null;

 public MyPP() {
 m_FindBeginMatch = new OutputThroughMatch(
 cszBeginMatchString,
 cszBeginMatchTemplate);
 m_RetainMatch = new RetainThroughMatch(
 cszEndMatchString,
 cszEndMatchTemplate)
 }
 protected void handleExtraLogic(ViewInfo viewInfo,
 HttpServletRequest request,
 HashMap parameters)
 throws Exception {

 if (m_cLog.isDebugEnabled()) {
 String aParam = (String)parameters.get(new String("key"));
 String anotherParam = (String)parameters.get(
 new String("key2"));
 }
 }
 protected String processInput(String inputLine) throws Exception {
 if (m_cLog.isDebugEnabled())
 m_cLog.debug("MyPP -- entering with string \""+
 inputLine + "\"");

Statementing and Content Access �

64 | Siebel e-Billing Manager Developer's Guide

 String t_szRet = m_FindBeginMatch.process(inputLine);
 if (m_FindBeginMatch.isMatchComplete()) {
 // found the beginning, look for the end if
(m_RetainMatch.isMatchComplete()) setProceed(false);
 }
 return t_szRet;
 } // -- end of processInput
}

2. Register the Post Processor

To register the Post Processors:

• Register in app-config.properties

• Assign logical name referenced by tiles definitions

3. Modify the Tiles Definition

View tiles specify post processors via the postProcessor tiles

4. Provide Optional Parameters

Statementing and Content Access �

Siebel e-Billing Manager Developer's Guide | 65

Parameters as passed to post processors via a “postprocessname”Params tile. In the
example below the “ReportChart” post processor retrieves its parameters from the
“ReportCharParameters” tile. Parameters are specified as name=value pairs
separated by the the pipe(|) character.

Specifying a Post Processor:
In general:
<definition name=".some.definition" extends=".view.setup">

<put name="viewName" value="Name of View"/>
... other parameters
<put name="postProcessor" value="{post processorName}"/>
<put name="{post processorName}Params" value="key=value[|key2=value2…]"/>

</definition>

For example:
<definition name=".analysis.expensive.tx.chart" extends=".view.setup">
. . .

<put name="postProcessor" value="ReportChart"/>
<put name="ReportChartParams" value="start=MyMatch|startMask=XXXXXXX"/>
</definition>

{WEBAPPLICATION}/WEB-INF/tiles-*.xml

4.3.2 Pattern Processing
View Processors typically:

• Search for a starting and ending character sequence

• Extract the contents between the starting and ending sequence for use as a data
retrieval key

• Replace the sequence

The com.edocs.domain.telco.tagprocessing package contains four classes for
pattern processing: OutputThroughMatch, ExactThroughMatch,
RetailThroughMatch, DiscardUpToMatch .

The heart of view post processing is pattern matching. Typically a post processor
processes content by finding a starting and ending sequence, extracting the intermediate
content and uses the content in some way. In Personal Address Book applications the
intermediate content, normally a phone number, is used as a key into a table and the
number itself replaced with a URL that displays address book content.

In support of pattern matching four classes are provided, all extending
ProcessThroughMatch.

Classes of the package com.edocs.domain.telco.tagprocessing are:

• OutputThroughMatch - Returns everything up to and including the match string
from the input

Statementing and Content Access �

66 | Siebel e-Billing Manager Developer's Guide

• ExactThroughMatch - Retains all input in a special internal buffer

• RetailThoughMatch - Retains the input up to the but not including the match

• DiscardUpToMatch - Discards all input to to the match.

OutputThroughMatch

Return the output of a match-up through and including the match string.

Example

Statementing and Content Access �

Siebel e-Billing Manager Developer's Guide | 67

4.4 Live Data Extraction
DDNs can be:

• Static - based on an a batch job for content

• Dynamic, or live - based on a data stream managed dynamically by a live data stream
and the LDE Manager

Views using dynamic perform identically to traditional views, and can employ all the
same mechanisms such as view post processing

Live data processing is managed via a custom data stream and the lde manager.
Developers write a custom action class, which interacts with the current session for
customer information, and the view management system to access data and present it
dynamically.

From the perspective of view presentment, live data streams behave identically to
traditional data streams and can take advantage of post processors etc. For all practical
purposes dynamic data is no different, to the view subsystem, then previously processed
data.

4.4.1 About the LDE Manager

The LDEManager manages dynamic view content using a least recently used algorithm.
Data content returned by data sources is stored and then purged over time. Several
configuration parameters control how data is managed.

The LDE Manager:

• Caches LDE Data streams for presentation, periodically expiring and clearing content

• Interacts with the view subsystem to provide dynamic content for presentation

• Is tunable based on configuration settings in app-config.properties

The LDE Cache size represents the maximum size of view data that can be kept in
memory and defaults to 10mb.

The LDE Cleanup period represents the time period used to sweep through the cache and
deleted expired objects and defaults to every 5 minutes.

The LDE Expiration period represents the lifetime of a cached object and defaults to 10
minutes.

Statementing and Content Access �

68 | Siebel e-Billing Manager Developer's Guide

LDE Process

4.4.2 About LDE Data Streams
LDE Data Streams:

• Behave identically to traditional view data streams and are used by the LDE Manager
to access run time data

• Must ultimately implement public interface
com.edocs.domain.telco.lde.ILDEStream

• Often extend abstract class
com.edocs.domain.telco.lde.ALDEStream or
com. . .lde.AZipMemoryLDEStream

4.4.3 Developing Live Data Extractors
There are five steps to writing Live Data Extractors:

1. Create a representative DDN for the data stream using the LDE data source

Statementing and Content Access �

Siebel e-Billing Manager Developer's Guide | 69

2. Write a class that extends ILDEStream, ALDEStream or
AZipMemoryLDEStream

3. Write and configure an action class that registers the LDE Stream and forwards to
view display page

4. Modify edx.config.[bat|sh] to support the LDE protocol

5. Define view definition, extending .view.setup defining the view parameters

Each step is described below.

1. Register the DDN

1. Login to the Siebel Command Center
For example http://localhost:7001/edocs

2. From the main window select Create New Application

3. Enter a suitable name

4. Enter the lde data source
For example: edx/{appname}/ejb/LdeDataSource

2. Write the LDE Data Source Class

Writing LDE Data Classes:

1. Write a class that extends:

• ILDEStream

• ALDEStream

• AZipMemoryLDEStream

2. Write a Constructor and store the DDN and optionally obtains configuration
information.

3. Write a method, traditionally getData, which:

1. Obtains a byte array of data

2. Stores it using the inherited internalSetContent method

3. Returns true or false indicating whether data is loaded.

LDE data source example
import java.io.ByteArrayOutputStream;
import com.edocs.domain.telco.lde.AZipMemoryLDEStream;
import com.edocs.application.tbm.config.Configuration;
import com.edocs.domain.telco.lde.LDEManager;
import java.io.*;

Statementing and Content Access �

70 | Siebel e-Billing Manager Developer's Guide

public class SimpleLDEDataSource extends AZipMemoryLDEStream {

 /** file to obtain content from */
 private String m_ContentFile = null;

 public SimpleLDEDataSource(String ddn) {
 super(ddn);
 loadConfig();
 }

 public boolean getData(String key) {
 byte buffer[] = null;
 //---
 // Get a fileName, read the file and set the content
 // to the byte array
 // ---
 if (m_ContentFile != null && m_ContentFile.length() > 0) {
 File file = new File(m_ContentFile);
 int size = (int)file.length();
 buffer = new byte[size];
 try {
 InputStream fileIn = new FileInputStream(m_ContentFile);
 fileIn.read(buffer);
 } catch (IOException e) { e.printStackTrace(); }
 }

 // call setinternalContent if the byte array is not null
 if (buffer != null && buffer.length > 0) {
 internalSetContent(buffer);
 }
 else
 return false;
 return true;
 }
 private void loadConfig() {
 Configuration cConfig = Configuration.getConfiguration();
 if (cConfig != null) {
 String value = cConfig.getValue("simplelde.contentFile");
 }
 }
}

3. Write Action Class

Writing LDE Data Classes:

1. Write a class that extends EdocsAction

2. Implement doAction which typically:

a. Obtains an instance of an LDE Manager

b. Obtains the DDN and other key data required by the datasource

c. Creates an instance of the underlying data source

d. Registers the datasource with the LDE Manager

e. Creates and populate one or more views

Statementing and Content Access �

Siebel e-Billing Manager Developer's Guide | 71

Statementing and Content Access �

72 | Siebel e-Billing Manager Developer's Guide

LDE action class example

Statementing and Content Access �

Siebel e-Billing Manager Developer's Guide | 73

import com.edocs.application.tbm.core.common.*;
import com.edocs.application.tbm.cam.api.*;
import com.edocs.application.tbm.core.common.ViewInfo;
import com.edocs.domain.telco.lde.LDEManager;
import org.apache.struts.action.*;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.commons.logging.*;
public class SimpleLDEAction extends EdocsAction {
 public ActionForward doAction(ActionMapping actionMapping,
 ActionForm actionForm,
 HttpServletRequest req,
 HttpServletResponse resp)
 throws RIException {
 try {

 ICustomer t_cust = CAMClassFactory.getCustomer(req);
 ICustomerAccount t_acct = t_cust.getCurrentAccount();
 IAccountSummary t_sum = t_acct.getSummaryInfoDefaultDDN();
 IDDNMap ddnMap = t_cust.getDDNMap();
 String ddn = ddnMap.getDDN("Simple");
 SimpleLDEDataSource ds = new SimpleLDEDataSource (ddn);
 LDEManager ldeManager = LDEManager.getInstance();
 if (ldeManager == null)
 return actionMapping.findForward(RIConstants.ERROR);
 if (ds.getData() != true)
 return actionMapping.findForward(RIConstants.ERROR);
 String DocId = ldeManager.setContent(ds);
 if (docId == null || t_szDocId.length()== 0) {
 return actionMapping.findForward(RIConstants.ERROR);
 ViewInfo view = new ViewInfo();
 view.setDdn(szUnbilled_ddn);
 view.setDocId(t_szDocId);
 view.setViewName("SimpleSummary"); // SimpleDetails
 view.setViewType("HTML");
 SessionUtils.setView(req, view);

 } catch(RISessionNotFoundException re) { return
actionMapping.findForward(RIConstants.ERROR);
 } catch(java.lang.Exception ex) {
 return actionMapping.findForward(RIConstants.ERROR);
 } // end try

 return actionMapping.findForward(RIConstants.SUCCESS);

 } // end doAction

}

4. Support the LDE Protocol

The LDE protocol is specified via the java.protocol.handler.pkgs property.

Statementing and Content Access �

74 | Siebel e-Billing Manager Developer's Guide

LDE Protocol support: edx.config[.bat|.sh]
By default the LDE protocol is loaded in TBM via a statement in edx.config similar to:

@set PROTOCOL_HANDERS=com.edocs.protocol
@set PROTOCOL_HANDERS="%PROTOCOL_HANDERS%|

com.edocs.domain.telco.lde.protocol"

@set JAVA_OPTIONS=%JAVA_OPTIONS% -Dedx.home="%EDX_HOME%"
-Djava.protocol.handler.pkgs=%PROTOCOL_HANDLERS%

@set CLASSPATH=%CLASSPATH$;{path}\LDEProtocol.jar

Line continued

Line continued

Protocol handler jar

Pipe character

5. Define View

Views which use LDE specified DDNs must specify the skipLoadingData tile with a
value of true.

Example Tiles definition for a LDE based view:
<definition name=".my.ldebased.view" extends=".view.setup">

<put name="viewName" value="viewName"/>
<put name="viewType" value="HTML"/>
<put name="ddn" value="associatedDDN"/>
<put name="skipLoadingData" value="true"/>

</definition>
{WEBAPPLICATION}/WEB-INF/tiles-*.xml

Must be true

LDE DDN

Siebel e-Billing Manager Developer's Guide | 75

This chapter describes:

• Authentication concepts

• Role-based security concepts

• Implementing access controls

• Implementing custom security providers

5.1 About Role-Based Security
Security is based on:

• Authentication - The process where by a user is validated, typically using a uid/pwd
combination

• Authorization - The process of determining whether an authenticated user can access
a resource

• Access Rights - The definition who has the rights to access a specific resource

TBM Provides:

• Security Authorization framework

• Security SPIs

The Siebel Security Authorization Framework provides:

• Definitions of access rights via an XML or custom store

• Run time checking access

The Siebel BSL layer provides:

• IAuthenticationManager - Authenticate users

• ISecurityProfileManager - Create and otherwise manage user credentials &
security questions

• IUserProfileManager - Manage userprofile data such name, address.

5 Security: Enrollment, Authentication,
Authorization

Security: Enrollment, Authentication, Authorization �

76 | Siebel e-Billing Manager Developer's Guide

5.1.1 What is Security and Authorization Framework (SAF)?
The Security and Authorization Framework (SAF) provides the answer to the question:

• Given user, resource, and request context, should application grant or deny resource
access

The SAF subsystem:

• Takes users, and resources and determines access rights based on a pluggable rules
based authorization policy system

• Defaults to an XML based authorization scheme packaged with e-Billing Manager

• Uses the underlying security management framework to obtain user and role
information

See the SAF javadoc delivered with this SDK for details about using and customizing the
Security and Authorization Framework.

5.1.2 Authenticate
e-Billing Manager Authentication Subsystem:

• Includes authentication and impersonate support

• Return ISubject instances

• Defined by IAuthenticationManager

ISubject instances contain user* and role data for a given authenticated user

Security: Enrollment, Authentication, Authorization �

Siebel e-Billing Manager Developer's Guide | 77

* Similar to Principals for those familiar with JAAS

5.1.3 Security Profile
e-Billing Manager Security Profile Subsystem:

• Manages ISecurityProfile

• Manages ISecurityRole

• Defined by ISecurityProfileManager

ISecurityProfile instances contain roles', secret questions and similar information
for a given uid.

ISecurityRole instances contain role and role descriptions

5.1.4 User Profiles
e-Billing Manager User Profile Subsystem:

• Manages IUserProfile

• Defined by IUserProfileManager

IUserProfile instances contain name,address, email etc information for a given uid.

5.1.5 Security Management
Implementing Security Management involves:
• Implementing authorization

• Implementing Security Profiles including roles

• Implementing User Profiles*

• Linking common sub-systems

* User profiles are not strictly required but add value

5.1.6 Authorization
Implementing authorization involves:
• Creating and registering permissions on resources

• Authorizing at run time by:

1. Obtaining ISubject instance from the BSL subsystem

2. Obtaining permission instances for a given resource

Security: Enrollment, Authentication, Authorization �

78 | Siebel e-Billing Manager Developer's Guide

3. Testing access via the SAF Subsystem

5.2 Controlling Access to Resources

5.2.1 Using the SAF Sub-system
The SAF sub-system can be used with:

• Action classes to control access to resources

• In EdocsBaseMenuItem extended classes to control menu element visibility

• In any program element where a resource access should be protected

RITilesMenuBean can be used out of the box to provide security on Struts actions via
SAF

5.2.2 SAF Components
SAF subsystem requires:

• Resource information - name etc of resource being accessed

• Roles - Defining sets of users

• ISubject - Instance of authorized subject attempting to access resource

• Permission object - Instance of a permission defined on the resource

• Policy files - Linking a given resource to a set of authorization rules

5.2.3 SAF Configuration

SAF uses azcfg.properties:

• to register role mappers

• to map groups to roles

• to define the name & location of the xml based policy

Security: Enrollment, Authentication, Authorization �

Siebel e-Billing Manager Developer's Guide | 79

azcfg.properties snippet:
. . .
com.edocs.ps.security.azresolver=

com.edocs.ps.security.authorization.providers.SimpleAZResolver

. . .
com.edocs.ps.security.rolemappers=

com.edocs.ps.security.authorization.providers.SimpleRoleMapper,
com.edocs.ps.security.authorization.providers.GroupRoleMapper

. . .
com.edocs.ps.security.rolemappers.secrole.ALL_USERS=Admin,CSR. . .
. . .
PolicyStoreData=azcfg/policy/azpolicy.xml

WEB-INF\classes\azcfg.properties

5.2.4 Role Mapping
SAF uses a pluggable role mapping engine to map groups to roles. Roles are typically
defined in azcfg.properties and mapped from underlying roles to the roles defined
in the SAF permissions files.

Roll Mapping Examples:
com.edocs.ps.security.rolemappers.secrole.ALL_USERS=Admin,CSR,SuperAdmin
com.edocs.ps.security.rolemappers.secrole.SUPER_ADMIN=SuperAdmin
com.edocs.ps.security.rolemappers.secrole.ADMIN_ONLY=Admin
com.edocs.ps.security.rolemappers.secrole.ALL_ADMIN=Admin,SuperAdmin

WEB-INF\classes\azcfg.properties

5.2.5 Policy Store
The SAF default policy store:
• Is defined in XML

• Contains permission elements defining a mapping between a right to access resources
with a set of authorization rules

Permission elements contain:

• <name> - thing to protect</name>

• <cpath> - permission object </cpath>

• <rule> rules on who can access resources

• <name> </name>

• <type>SecurityRole</type>

Security: Enrollment, Authentication, Authorization �

80 | Siebel e-Billing Manager Developer's Guide

• <value>Comma separated list of security roles</value>

Permissions
• Are based on class implementations

• May imply one another to implement hierarchical rights

5.2.6 Rights Engine
To check access rights via the access engine:

1. Obtains all rules defined for a permission request

2. Given a permission, get all mapped policy rules
If no mapped policy rules found

1. Get implied permission

Security: Enrollment, Authentication, Authorization �

Siebel e-Billing Manager Developer's Guide | 81

2. Continue

3. For mapped policy rules check

1. Does user have role granting access? Allow.

2. Otherwise deny

5.2.7 Implied Policies
Policies can be explicit or imply one another.

Permission classes can parse resource name and return "implied" permissions.

5.2.8 Permission Classes
• Model resource types (eg. JSP, Text file, URL)

• Class instances instantiated with a particular name model resource instances

• Are extentions of PermissionBase which includes core methods such as equals
and hashCode

• Can return "impliers"

5.2.9 Custom Impliers
Custom impliers are used when a permission may imply another.

Security: Enrollment, Authentication, Authorization �

82 | Siebel e-Billing Manager Developer's Guide

5.2.10 JSP Permission - Example

This permission can be used with policies of the form:

 <permission>
 <name>*.jsp</name>
 <cpath>JSPPermission</cpath>
 <rule>
 <name>all</name>
 <type>SecurityRole</type>
 <values>Everyone</values>
 </rule>
 </permission>
 <permission>
 <name>admin.jsp</name>
 <cpath>JSPPermission</cpath>
 <rule>
 <name>all</name>
 <type>SecurityRole</type>
 <values>ADMIN</values>
 </rule>
 </permission>

To grant access to most jsps but guard others.
import com.edocs.ps.security.authorization.AZException;
import com.edocs.ps.security.authorization.IPermission;

Security: Enrollment, Authentication, Authorization �

Siebel e-Billing Manager Developer's Guide | 83

public final class JSPPermission
 extends PermissionBase
 implements IPermission {

 private static final String ANY_JSP = "*.jsp";
 private static final String JSP_EXT = ".jsp";

 public JSPPermission(String name) {
 super(name);
 }
 /**
 * Limited to matching * as 'all'.
 */
 public IPermission getImplier() throws AZException {
 IPermission perm = null;
 String name = this.getName();
 if (!name.equals(ANY_JSP) && name.endsWith(JSP_EXT)) {
 perm = new JSPPermission(ANY_JSP);
 }
 return perm;
 }
}

5.2.11 Using programmatic security
Steps for using programmatic security:

1. Write a permission that extends BasePermission. (See details, below.)

a. Implement getImplier() if required

2. Register the new permissions in the azpolicy.xml. (See details, below.)

3. Check policy where applicable:(e.g. in a action)

a. Obtain an ISubject

b. Create an instance of a permission representing the resource

c. Use SAF to check the access

Security: Enrollment, Authentication, Authorization �

84 | Siebel e-Billing Manager Developer's Guide

1. Write permission

2. Register permission

Obtain an ISubject

ISubject instances can be obtained from using SessionUtils.

Security: Enrollment, Authentication, Authorization �

Siebel e-Billing Manager Developer's Guide | 85

Check permissions method

3. Check access

5.3 Integrating Security Providers
This section describes how to integrate security interfaces from e-Billing Manager’s
Business Services Layer (BSL):

• Working with IAuthenticationManager

Security: Enrollment, Authentication, Authorization �

86 | Siebel e-Billing Manager Developer's Guide

• Working with ISecurityProfile

• Working with ISecurityProfileManager

5.3.1 BSL Security SPI’s
The e-Billing Manager Business Services Layer provides: Service Provider Interfaces
(SPI's) for the purposes of providing custom:

• Authorization

• Security and user profile management

• Company and account management

Authorization, Security and User profile management are considered Security
management SPI's and are used to implement custom Single Sign-On etc.

See the BSL javadocs delivered with this SDK for implementation details about the BSL
API and SPI.

5.3.2 BSL Security Concepts
BSL Security provides the instances of the classes required to answer the question: Given
user, resource, and request context, should application grant or deny resource access

BSL is conceptually modeled as:

Subject:

• Modeled by ISubject

• Managed by IAuthenticationManager

Roles and Security Profiles:

• Modeled by ISecurityRole, ISecurityProfile

• Managed by IAuthenticationManager

Security: Enrollment, Authentication, Authorization �

Siebel e-Billing Manager Developer's Guide | 87

User Profiles:

• Modeled by IUserProfile

• Managed by IUserProfileManager

5.3.3 Common Implementation Use Cases
Federate with existing authentication only:

• Only need implement IAuthenticationManager

• Cannot self-enroll, can manage security questions and user profile data

• User profile and security profile handled by default systems

Authentication and account management

• Implement IAuthenticationManager

• Implement ISecurityProfileManager

• Can self-enroll, new accounts populated back to system of record

Authentication, account management, and user profile

• Implement IAuthenticationManager, ISecurityProfileManager and
IUserProfileManager

• Can self-enroll, new accounts populated back to system of record

• Can access pre-populated specialized User Profile data

5.3.4 Authentication

IAuthenticationManager interface implementations provide authorization
services to BSL

ISubject implementations contain:

• Principal - "who" the subject is

• Principal roles - "what roles the subject belongs to"

Security: Enrollment, Authentication, Authorization �

88 | Siebel e-Billing Manager Developer's Guide

5.3.5 Security Manager Profiles
ISecurityProfileManager interface implementations provide role and security profile
services to BSL

5.3.6 User Profiles

IUserProfileManager interface implementations provide user profile services to
BSL:

Security: Enrollment, Authentication, Authorization �

Siebel e-Billing Manager Developer's Guide | 89

5.3.7 Configuring BSL Providers
The BSL Subsystem: retrieves core interface instance information via a
BSLConfiguration.properties. Each property represents a class replacement
implementing a profile manager.

BSLConfiguration.properties:
bsl.AuthenticationManager=
bsl.SecurityProfileManager=
bsl.UserProfileManager=
bsl.CompanyManager=
...

{WEBAPPROOT}\WEB-INF\classes\BSLConfiguration.properties

Siebel e-Billing Manager Developer's Guide | 91

6.1 Overview
The CSR application delivered with e-Billing Manager provides an interface to create and
manage CSR administrators and organizations. Through this application a CSR can also
impersonate a user. When a CSR enrolls in a CSR-enabled application, profiles are
created in the database just as they are when regular users enroll. Depending on the CSR
roles configured, a CSR can be limited to specific UI views and actions on behalf of
another user. As with normal users, SAF authorizes access based on the permissions set
for the CSR role.

6.2 CSR Access (Impersonate User)
When a CSR logs into the CSR application, he/she intends to either administer
organizations, search for users or other CSR’s or impersonate another user to provide
support for that user. A CSR can see all the users he works with and click on an
impersonate hyperlink for that user. When the impersonate hyperlink is clicked,
CSRAction.impersonate() is executed:

public class CSRAction extends EdocsAction {

 private static Log log = LogFactory.getLog(CSRAction.class);

 public ActionForward impersonate(String uid,

 ActionMapping mapping,

 HttpServletRequest request,

 HttpServletResponse response) {

 if (log.isDebugEnabled()) {

 log.debug("Doing CSRAction: Impersonate");

 }

 ActionErrors errors = null;

 try {

 String urlString = "uid=" + uid

 + "&pwd=" +
SessionUtils.getUserSession(request).getUser().getSecurityProfile().

getPassword()

 + "&csr=" + SessionUtils.getUserId(request);

6 Customer Service Representative
(CSR) Access/Capabilities

Customer Service Representative (CSR) Access/Capabilities �

92 | Siebel e-Billing Manager Developer's Guide

 if (log.isDebugEnabled()) {

 log.debug("Impersonate: urlString contains uid: " + uid + " csr:"
+ SessionUtils.getUserId(request));

 }

 // DDN needs to be passed separately in the URL String. Else, payment

 // initialization will fail (really!)

 String link = "/tbmb/impersonateuser.do" +
//CSRConfiguration.getConfig().getCustAppURL() +

 "?value(" + RIConstants.CSR_TOKEN_ATTRIBUTE + ")="

 + RIEncryptUtil.encrypt(urlString)

 + "&ddn=" + CSRConfiguration.getConfig().getCustAppDdn();

 if (log.isDebugEnabled()) {

 log.debug("@impersonateCustomer: Set Link request attribute to :
" +

 link);

 }

 // Write a record to the log to indicate that the

 // user was impersonated

 Logger.log(new CSRActivityItem("TBM_CSR",

 "Impersonate",

 CSRConfiguration.getConfig().getCustAppDdn(),

 SessionUtils.getUserId(request), // CSR User Id.

 "",

 "",

 "STARTING",

 uid, // Log userid of user being impersonated.

 "",

 "",

 ""));

 // Use request.setAttribute() so that the parameters do not show up

 // in the URL.

 request.setAttribute("CSRImpersonationUrl", link);

 return mapping.findForward(RIConstants.SUCCESS);

 } catch (EncryptionException e) {

 log.error("EncryptionException: " + e.getMessage(), e);

 errors.add(ActionErrors.GLOBAL_ERROR, new
ActionError(RIHierarchyMessages.ENCRYPTION_EXCEPTION));

 } catch (RIException e) {

Customer Service Representative (CSR) Access/Capabilities �

Siebel e-Billing Manager Developer's Guide | 93

 log.error("Exception with RI: " + e.getMessage(), e);

 errors.add(ActionErrors.GLOBAL_ERROR, new
ActionError(RIHierarchyMessages.SYSTEM_RI_ERROR));

 }

 if (!errors.isEmpty())

 saveErrors(request, errors);

 return mapping.findForward(RIConstants.ERROR); }

The CSRImpersonationUrl request attribute above is configured in app-
config.properties. to the tbm-app with the authenticated user’s credentials is passed.
Read the tbm-csr-app javadocs for more detailed information about the CSR application.

BSL and SAF provide the authentication classes needed to impersonate. Implement
BSL’s IAuthenticationManager.impersonate(UID) to authenticate both the CSR and the
impersonated user (UID). Configure the CSR permissions in the SAF policy file and
create permission objects that the SAF engine uses to authenticate and authorize user
access.

To create tiered access for CSR’s, configure the SAF policy file with permissions tied to
specific roles, such as CSR SuperAdmin (all privileges), CSR Manager (most privileges),
CSR (some privileges), CSRImpersonate (impersonation only). Create permission
classes to filter access. Employ the checkAccess tile definition in UI jsp’s to ask the SAF
engine for access control by role (RBAC) of specific UI components.

For details about configuring SAF, see the Security chapter in this guide.

6.3 CSR Application
See the J2EE/tbm-csr-app javadoc for a description of the delivered reference
implementation that demonstrates CSR access.

The CSR application WAR file contains the tiles (*.jsp) for the application. Under
src/webroot are a variety of packages containing tiles that address key CSR view
functions such as impersonating and finding a CSR’s customer (access-cust), enrolling
the CSR and searching for a customer’s CSR (manage-csr), enrolling the customer
(manage-cust), and searching and managing organizations (manage-org).

Under src/main/com/edocs/application/tbm/csr/ (compiled source) are action, form, and
tag classes which comprise the model and controller of the CSR application. The
common package contains a variety of CSR helper classes for login, enrollment,
authentication, and configuration.

See the src/webroot/WEB-INF for the struts configuration beans and forwarding actions
for this CSR application. The tiles configuration resides here also.

See the misc/app-config.properties file for how to configure access to the customer
application from the CSR app, how to specify the customer application DDN that will be
used during impersonation, and the list of CSR roles that are enabled.

Customer Service Representative (CSR) Access/Capabilities �

94 | Siebel e-Billing Manager Developer's Guide

Below are CSR Application properties

URL to use to access the customer application

tbm.csr.config.CUSTOMER_APPLICATION_URL=/tbm/impersonateuser.do

Customer Application DDN that will be used during impersonation

tbm.csr.config.CUSTOMER_APPLICATION_DDN=TBM

List of CSR Roles

tbm.csr.config.CSR_ROLE_LIST=Admin,CSR,SuperAdmin

Siebel e-Billing Manager Developer's Guide | 95

The default implementation delivered with e-Billing Manager provides a payment
component which provides a rich API for accessing e-Payment services. Read the
javadocs delivered for this component and customize the key classes in this
implementation to suit your payment needs.

Look in tbm-app/src/webroot/payment to find default jsp tile pages which you can re-use
and customize for your own payment UI.

Look in tbm-app/src/webroot/WEB-INF to find the payment tiles and struts definition
files for the default implementation of e-Billing Manager. Examine these files to see how
the UI is configured, what beans are available, and what payment actions or services are
at your disposal.

Read the javadocs delivered for the e-Billing Manager payment component in
com.edocs.common.api.payment. Implement the payment interfaces as needed to
customize the payment service. Place new implementations in com.edocs.payment.
Re-use or extend already provided default implementation classes in com.edocs.payment
as needed to customize the payment service for your application. Services, cassettes, and
enrollment classes always reside in com.edocs.payment sub-packages.

New or template payment cartridges may be implemented to support international debit
cards or other payment vehicles. To start, familiarize yourself with e-Payment cartridges
by reading the chapter, Implementing a Custom Payment Cartridge, in the Payment
Developer’s Guide. Here you learn how to create and integrate custom cartridges and
how to configure these new cartridges through Command Center Payment Settings.
Implementing a Custom Payment Cartridge references demonstration source code. See
cassette_demo.zip, which is delivered with this SDK.

7 Payment Cartridges

Siebel e-Billing Manager Developer's Guide | 97

8.1 Downloading CSV, XML, and PDF Views
e-Billing Manager supports downloading of views in a variety of formats, including
comma separated values(CSV), eXtensible Markup Language(XML), custom via
eXtensible Style Sheets (XSLT) and Portable Document Format(PDF). The default
implementation, tbm-b2b-app, provides several examples.

Creating a downloadable view requires the steps:

1. Create and publish view specific files defining the content of the view

2. Create view specific tiles definitions to render the view

3. Incorporate the view tiles into application as required.

8.1.1 Common Download View Setup
Before content can be rendered for download, various web application infrastructures are
required specific to downloadable views. e-Billing Manager provides a tiles definition,
similar to that shown below, that provides support for downloadable views. The
download setup tile defines the various fields overridden by the developer when new
downloads are being created. By default all downloads use the
display_download_view.jsp specifies the view name and output file name required by the
view. Note that the out-of-the-box download jsp also expect the name of a file for
download, this file is normally obtained from a user form in an action class and set with
code similar to request.setAttribute("FILE_NAME",”myfile.csv”);

Download set up tile from tiles-defs-download.xml
<definition name=".download.setup"
 path="/_templates/display_download_view.jsp"
 controllerClass="com.edocs.application.tbm.displayview.DisplayTiledView">
 <put name="viewName" value="DefaultView"/>
 <put name="viewType" value="XSLT"/>
 <put name="ddn" value="TBM"/>
 <put name="download" value="true"/>
</definition>

Download set up tile from display_download_view.jsp
<%@ include file="/_includes/taglibraries.jsp" %>
<tiles:useAttribute id="viewName" name="viewName" classname="java.lang.String" />
<% String fileName=(String)request.getAttribute("FILE_NAME"); %>
<tbmtags:getView name="<%=viewName%>" fileName="<%=fileName%>" download="true"/>

8 Downloading Views and Converting
AFP to PDF

Downloading Views and Converting AFP to PDF �

98 | Siebel e-Billing Manager Developer's Guide

Views are then specified within a given Tiles definition file as shown below. Note that
the view extends .download.setup, specifies the actual view name, view type and
associated DDN using the viewName, viewType and ddn tiles. The specified tile would
then be rendered in response to some struts action.
<definition name=".download.MyViewName.PDF" extends =".download.setup">
 <put name="viewName" value="MyViewNameWhichIsPDF"/>
 <put name="viewType" value="XSLT"/>
 <put name="ddn" value="TBM"/>
</definition>

8.1.2 Comma Separated Value (CSV) Downloadable views
Comma Separated Value downloadable content is produced by combining a DDF
defining the universe of all downloadable fields and a TOK file defining the specific
fields, their order, separator etc that will be included in the download. Once the view has
been it is rendered via a tiles definition and it struts action trigger.

Elements of a CSV Downloadable View are:

• Publishable components:
 DDF defining input fields
 TOK file defining comma separated outputs

• View tile definition, specified in an appropriate tiles definition, specifying a
viewType of CSV.

• Action causing the tile rendering the view to be rendered

Token File Format:

Command separated downloads are defined by the fields listed in the .TOK file. There
are three areas of interest in this file. The first is the delimiter value itself and is typically
a “,” (comma). Second is the list of header fields, denoted by the FIELDS element with
attribute HEADER=”TRUE”. The FIELDS element is a list of the name of each header
elements for the various columns being output. Content itself is generated by the set of
fields listed in the RECORDS element. Each repeating group to be downloaded is then
specified by a RECORD element specifying the name of the repeating group via the NAME
attribute and the actual fields to be output using one or more FIELD elements, each of
which specifying the individual fields via the NAME attribute.

Downloading Views and Converting AFP to PDF �

Siebel e-Billing Manager Developer's Guide | 99

Sample Token File
<DOCUMENT>
<DELIMITER VALUE=","/>
<TITLE VALUE=""/>
<FIELDS HEADER="TRUE">
 <FIELD NAME="AcctNum" TYPE="S" BLANKLINE="0"/>
 <FIELD NAME="CustName" TYPE="S" BLANKLINE="0"/>
 <FIELD NAME="StatementDate" TYPE="S" BLANKLINE="0"/>
 </FIELDS>
<RECORDS HEADER="TRUE">
 <RECORD NAME="SummaryInfo" HEADER="TRUE" BLANKLINE="0">
 <FIELD NAME="SummaryInfoLab" TYPE="S" BLANKLINE="0"/>
 <FIELD NAME="SummaryInfoAmt" TYPE="S" BLANKLINE="0"/>
 <FIELD NAME="SummaryInfoCR" TYPE="S" BLANKLINE="0"/>
 </RECORD>
</RECORDS>
<RECORDGROUPS HEADER="TRUE"></RECORDGROUPS>
</DOCUMENT>

The token file, along with its associated DDF is then published with a given name and
specified to be rendered for a given struts action as described in the prior section
Common Download View Setup.

Note that CSV views are specified for legacy purposes, all new development should use
the more flexible XSLT view type and define a style sheet transform specifying the
comma-separated content.

8.1.3 eXtensible Markup Language(XML) views
e-Billing Manager supports the ability to create downloadable XML via XML Views.
Generate XML data by specifying the fields that should be rendered in a DDF and then
publishing the DDF as an XML view. The content is rendered using a view tile as shown
below.

Download set up tile for XML
<definition name=".download.MyViewName.xml" extends =".download.setup">
 <put name="viewName" value="MyViewNameWhichIsXML"/>
 <put name="viewType" value="XML"/>
 <put name="ddn" value="TBM"/>
</definition>

Elements of a XML Downloadable View are:

• DDF specifying content, published as a XML view

• View tile definition, specified in an appropriate tiles definition, specifying a
viewType of XML.

• Action causing the tile rendering the view to be rendered

Downloading Views and Converting AFP to PDF �

100 | Siebel e-Billing Manager Developer's Guide

8.1.4 eXtensible Stylesheet Language(XSLT) views
e-Billing Manager supports the transform of data via XSLT views. XSLT views generate
XML data by specifying the fields that should be rendered in a DDF and then publishing
the DDF as an XML view. The content is rendered using a view tile as shown below.

e-Billing Manager uses XML to read, write, and transform data using the universal
standard of XSLT. e-Billing Manager applications use the XML dynamic web view and
an XSLT stylesheet to transform data into the desired format. For example, an XSLT
View could transform one XML format to another, to comma-separated values (CSV) for
download, or to a proprietary format such as Quicken QIF (in text or HTML format).

The advantage of using the XSLT View is quick and easy output of different data formats
from the same DDF, using the existing functionality of e-Billing Manager.

Download set up tile for XSLT
<definition name=".download.MyViewName.xslt" extends =".download.setup">
 <put name="viewName" value="MyViewNameWhichIsXSLTBased"/>
 <put name="viewType" value="XSLT"/>
 <put name="ddn" value="TBM"/>
</definition>

Elements of a XML Downloadable View are:

• Publishable components:
 DDF defining input fields
 Stylesheet specifying transform as XSL file

• View tile definition, specified in an appropriate tiles definition, specifying a
viewType of XSLT.

• Action causing the tile rendering the view to be rendered

Example Token File

This template processes the elements in the a table element specified within the DDF as
SummaryInfo. It selects the docID specified, inserts a unique detailID, retrieves the
column data and trims any white space, and inserts a comma between values and a line
feed between rows.

Downloading Views and Converting AFP to PDF �

Siebel e-Billing Manager Developer's Guide | 101

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<!-- Instructs the XSLT processor to produce text not XML -->
 <xsl:output method="text"/>
 <xsl:variable name="newline">
 <xsl:text>
</xsl:text>
 </xsl:variable>
 <xsl:variable name="separator">
 <xsl:text>","</xsl:text>
 </xsl:variable>
 <!-- This template matches the root of the XML document -->
 <xsl:template match="/">
 <!-- Only process elements in the Summary Info table -->
 <xsl:apply-templates
 select="/doc/view/SummaryInfo/SummaryInfo-row"/>
 </xsl:template>
 <xsl:template match="SummaryInfo-row">
 <!-- Insert the Document ID -->
 <xsl:value-of select="/doc/@docid"/>
 <xsl:text>,</xsl:text>
 <!-- Insert a unique id for the detail -->
 <xsl:value-of select="@id"/>
 <xsl:value-of select="$separator"/>
 <!-- Insert the column data -->
 <!-- Trim any extra whitespace from the data value -->
 <xsl:value-of select="normalize-space(SummaryInfoLab)"/>
 <xsl:value-of select="$separator"/>
 <xsl:value-of select="normalize-space(SummaryInfoAmt)"/>
 <xsl:value-of select="$newline"/>
 </xsl:template>
</xsl:stylesheet>

Example Generated Content
ivn-1/po-0/bc-17152/pc-7/dd-20011214,1,PREVIOUS BALANCE,285.12
. . .
ivn-1/po-0/bc-17152/pc-7/dd-20011214,14,LATE FEE,1.61
ivn-1/po-0/bc-17152/pc-7/dd-20011214,15,TOTAL CURRENT AMOUNT,117.17

8.1.5 Portable Document Format (PDF_FO) views
e-Billing Manager supports the production of PDF format files on the fly via data via
PDF_FO views. PDF_FO views produce files by using XSLT:FO objects to specify the
placement of data on a page and DDF files to specify page content.

Please note that PDF_FO views are designed for the production of 2-3 page output and
typically generate 1-2 pages per second when rendered. For generating longer output
please speak to a Siebel Professional Services representative.

Download set up tile for PDF_FO
<definition name=".download.MyViewName.pfg" extends =".download.setup">
 <put name="viewName" value="MyViewNameWhichGeneratedPDF"/>
 <put name="viewType" value="PDF_FO"/>
 <put name="ddn" value="TBM"/>
</definition>

Downloading Views and Converting AFP to PDF �

102 | Siebel e-Billing Manager Developer's Guide

Elements of a PDF_FO Downloadable View are:

• Publishable components:
 DDF specifying content,
 FO based Stylesheet specifying resulting format, as .TXSL file
 images.jar – jar file containing any referenced images
 fonts.jar – jar file containing any referenced fonts
 PMCONFIG.txml – file defining the characteristics of the fonts, sizes kerning etc.

• View tile definition, specified in an appropriate tiles definition, specifying a
viewType of PDF_FO.

• Action causing the tile rendering the view to be rendered

Example XSLT Stylesheet using FO for PDF generation
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:fox="http://xml.apache.org/fop/extensions"
 xmlns:java="http://xml.apache.org/xalan/java"
 version="1.0" xml:space="preserve">
 <xsl:template match="/">
 <fo:root linefeed-treatment="preserve">
 <fo:layout-master-set>
. . .

8.1.6 Mapping a DDF to XML
Mapping a DDF to XML is the first step in the process content as XML or for creating
XSLT or PDF views.

About XML DTDs for e-Billing Manager

The e-Billing Manager format for XML output uses DDF names as XML element names.
For example, if the DDF contains a FIELD named AccountNumber, the DTD will have
an element name AccountNumber, with the value of the extracted FIELD appearing in a
CDATA section of that XML element.

Therefore, there is no “standard” DTD for XML in e-Billing Manager—each DDF
defines its own DTD. However, all e-Billing Manager DTDs contain a common element,
shown in this example fragment:
<!ELEMENT doc (view)>

<!ATTLIST doc docid ID #required>

The <view> element contains the complete extracted document content. The required
attribute docid is the standard docid that uniquely identifies the document within the
system.

These XML conventions provide a more compact and intuitive reflection of the
underlying document structure, improving performance and ease of use.

Downloading Views and Converting AFP to PDF �

Siebel e-Billing Manager Developer's Guide | 103

Standard Elements

• If there is no data extracted for some DDF-defined item, no XML is generated.

• Space characters (‘ ‘) in DDF item names are mapped to the dash (‘-‘) character.

• e-Billing Manager does not prevent collisions among FIELD, TABLE, and GROUP
names as e-Billing Manager constrains DDF item names to be unique within the
DDF.

The following topics describe the XML representations of common DDF object types in
e-Billing Manager.

FIELD Elements

A FIELD defined in a DDF is represented as an XML element with the same name as the
FIELD. The extracted content is wrapped in a CDATA section of the FIELD element.

Within the DDF, one FIELD is designated as the “primary key” for the document. In the
generated XML, this element has an attribute “role” with the value “PRIMARYKEY”.

No other attributes are supplied. In particular, no “type” information is presented.

TABLE Elements

A TABLE defined in a DDF is represented as an XML element with the same name as
the TABLE. It is a collection of rows, each of which is a collection of the columns. The
element name of the columns is the same as the DDF name of the column, and the
extracted data is within a CDATA section, just as a FIELD.

However, there is no DDF name for a row, so adding the string “-row” to the TABLE
name creates a name for the rows. Thus, a TABLE named Detail with columns Name,
Date, and Amount becomes:
<Detail>

<Detail-row>

<Name><![CDATA[Joe the Lion]]></Name>

<Date><![CDATA[June 1, 1974]]></Date>

<Amount><![CDATA[801]]></Amount>

</Detail-row>

</Detail>

GROUP Elements

A GROUP defined in a DDF is represented as an XML element with the same name as
the GROUP.

8.2 Further Reading About XML, XSL, and XSLT
Bradley, Neil, The XSL Companion, Addison Wesley, 2000

Downloading Views and Converting AFP to PDF �

104 | Siebel e-Billing Manager Developer's Guide

Burke, Eric M., Developing, Applying and Optimizing XSLT with Java Servlets,
12/15/2000 http://www.onjava.com/pub/a/onjava/2000/12/15/xslt_servlets.html

Fung, Khun Yee, XSLT: Working with XML and HTML, Addison Wesley, 2001

Holzner, Steven, Inside XSLT, New Riders, 201 West 103rd Street, Indiana 46290, July
2001

Sun Microsystems, Tutorial for the Java™/ API for XML Parsing (JAXP) version 1.1,
http://java.sun.com/xml/tutorial_intro.html

W3C, The Extensible Stylesheet Language (XSL), http://www.w3.org/Style/XSL/

Siebel e-Billing Manager Developer's Guide | 105

9.1 Overview

Hierarchy - A system organized in the shape of a pyramid, with each row of objects,
sometimes called nodes, linked to objects directly beneath it. A hierarchy contains a root
directory at the top of the pyramid and subdirectories below it.

Node - A position in the hierarchy. A node can associate with a link target to indicate
what the node represents. Users can be assigned to a node in the hierarchy to determine
their access to that node and its subtree. Nodes are organized into parent -child
relationships in the hierarchy. Nodes may have any number of name:value attributes.

Link target - A business object that can be associated to a hierarchy node.

URI - universal resource identifier to reference objects that exist in other modules. When
a relationship is many-to-many, Hibernate requires that both sides of the relationship
exist within the module domain. In order to fully use Hibernate for the hierarchy module,
create a reference class within the module to do the many-to-many mapping between
source object and reference object (proxy for original target object). In the Hierarchy
module, UserReference class is a reference object for the IUser object from the UMF
module.

9 BSL Hierarchy Connector

BSL Hierarchy Connector �

106 | Siebel e-Billing Manager Developer's Guide

Folder - Predefined link target object inside hierarchy module. Folder’s life cycle is
managed by its containing hierarchy.

Hierarchy User - A user with permission to view/modify (but not create) a hierarchy.
For example CSR or any user in the system as long as they are given the permission.

Permission - A permission allows a user to view or take action on information they have
access to, based on the node they are assigned to in the hierarchy. Permissions include
view summary, view detail, pay, report, manage hierarchy, assign users, assign
permissions, etc.

The Business Services Layer contains a connector package that provides import,
synchronization, and hierarchy management for e-Billing Manager applications. BSL
connector employs several sub-systems to create, modify, and synchronize hierarchical
information from a variety of sources, including XML files and eStatement DDNs.

Use the BSL connector in concert with other BSL components, the e-Billing Manager
CAM component, the Hierarchy module, Struts action classes, Tiles, and an optional
third-party jsp tree tag library to display hierarchies of data in your e-Billing Manager
application. See the J2EE/tbm-app directory for a reference implementation of
hierarchies.

See the BSL javadoc delivered with this SDK for detailed implementations of hierarchy
import and synchronization interfaces.

The BSL connector relies implicitly on a hierarchy module that is delivered in another e-
Billing Manager jar. All basic hierarchy functionality is provided for by this hierarchy
module, which should not need to be customized, as it provides basic hierarchy support:
adding, deleting, editing, and searching at the node level. Also programmatic linking of
users to nodes provides a means of hierarchy-based access control at this level. A key
core class often used is com.edocs.common.hieararchy.core.HierarachyManager, which
implements IHierarchyManager and employs several hierarchy module interfaces and
classes to perform the low-level management of hierarchy elements.

See the hierarchy module javadoc delivered with this SDK for detailed descriptions of
key hierarchy interfaces and default implementations.

9.2 How to Create and Manage Hierarchies via XML
To manage hierarchies, you can use the following DTD file to validate an XML file that
specifies the create, update, and remove operations for hierarchy management:

BSL Hierarchy Connector �

Siebel e-Billing Manager Developer's Guide | 107

<!ELEMENT HierarchyList (HierarchyToBeCreated?, HierarchyToBeUpdated?,
HierarchyToBeRemoved?)>
<!ELEMENT HierarchyToBeCreated (Hierarchy*)>
<!ELEMENT HierarchyToBeUpdated (UpdateHierarchy*)>
<!ELEMENT HierarchyToBeRemoved (RemoveHierarchy*)>
<!-- ===
 * Section for creating hierarchy
 ===
 -->

<!ELEMENT Hierarchy (Name, Description, NewHierarchyNode)>
<!ATTLIST Hierarchy
 id CDATA #REQUIRED
 companyId CDATA #REQUIRED
 type (billing | business | report) "business"
>
<!ELEMENT NewHierarchyNode ((LinkTargetReference | SimpleNodeFolder), Alias?,
CanBeAccessedBy?, ChildNodeList?)>
<!ELEMENT ChildNodeList (NewHierarchyNode*)>
<!ELEMENT SimpleNodeFolder (Name?, Description, Attribute*)>
<!ATTLIST SimpleNodeFolder
 id CDATA #REQUIRED
>
<!ELEMENT Attribute EMPTY>
<!ATTLIST Attribute
 name CDATA #REQUIRED
 value CDATA #REQUIRED
>
<!ELEMENT LinkTargetReference (Name?, Description?)>
<!ATTLIST LinkTargetReference
 id CDATA #REQUIRED
 type (BillingAccount | BusinessUnit | CostCenter) "BillingAccount"
 action (Link | Create | Override) "Link"
>
<!-- Use this element to describe the list of the users who have granted
access to the node and all nodes below in the hierarchy. -->

BSL Hierarchy Connector �

108 | Siebel e-Billing Manager Developer's Guide

<!ELEMENT CanBeAccessedBy (UserExternalReference*)>
<!ELEMENT UserExternalReference EMPTY>
<!ATTLIST UserExternalReference
 id CDATA #REQUIRED
>
<!ELEMENT Alias (#PCDATA)>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ATTLIST HierarchyID
 value CDATA #REQUIRED
>
<!-- ===
 * Section for updating hierarchy
 ===
 -->
<!ELEMENT UpdateHierarchy (NodesToBeCreated?, NodesToBeUpdated?,
NodesToBeRemoved?)>
<!ATTLIST UpdateHierarchy
 id CDATA #REQUIRED
 companyId CDATA #REQUIRED
>
<!ELEMENT NodesToBeCreated (NewNode*)>
<!ELEMENT NewNode (ParentNode, NewHierarchyNode)>
<!ELEMENT NodesToBeUpdated (UpdateNode*)>
<!ELEMENT UpdateNode (ParentNode, ChildNode)>
<!ELEMENT ParentNode EMPTY>
<!ATTLIST ParentNode
 id CDATA #REQUIRED
 type (BillingAccount | BusinessUnit | CostCenter | Folder)
"BillingAccount"
>
<!ELEMENT ChildNode EMPTY>
<!ATTLIST ChildNode
 id CDATA #REQUIRED
 type (BillingAccount | BusinessUnit | CostCenter | Folder)
"BillingAccount"
>
<!ELEMENT NodesToBeRemoved (NodeToDelete*)>
<!ELEMENT NodeToDelete EMPTY>
<!ATTLIST NodeToDelete
 id CDATA #REQUIRED
 type (BillingAccount | BusinessUnit | CostCenter | Folder)
"BillingAccount"
>
<!-- ===
 * Section for removing hierarchy
 ===
 -->
<!ELEMENT RemoveHierarchy EMPTY>
<!ATTLIST RemoveHierarchy
 id CDATA #REQUIRED
 companyId CDATA #REQUIRED
>

BSL Hierarchy Connector �

Siebel e-Billing Manager Developer's Guide | 109

Example Hiearchy XML File
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HierarchyList SYSTEM "eDocs_Hierarchy_Interchange1.0.dtd">
<HierarchyList>
 <HierarchyToBeCreated>
 <Hierarchy id="100" companyId="COMP-0001" type="billing">
 <Name>eDocs Billing</Name>
 <Description>This is a sample hierarchy</Description>
 <NewHierarchyNode>
 <SimpleNodeFolder id="20001">
 <Name>HR Accounts</Name>
 <Description>This folder list all accountfor HR Department
 </Description>
 <Attribute name="Address " value="1 Appl Hill, Natick, MA"/>
 <Attribute name="Phone " value="508-652-8700"/>
 </SimpleNodeFolder>
 <CanBeAccessedBy>
 <UserExternalReference id="user1"/>
 <UserExternalReference id="user2"/>
 </CanBeAccessedBy>
 <ChildNodeList>
 <NewHierarchyNode>
 <LinkTargetReference id="acct20001" type="BillingAccount">
 <Name>Account #2001 </Name>
 <Description>This is the account 20001</Description>
 </LinkTargetReference>
 </NewHierarchyNode>
 <NewHierarchyNode>
 <LinkTargetReference id="acct20002" type="BillingAccount">
 <Description>This is the account 20002</Description>
 </LinkTargetReference>
 </NewHierarchyNode>
 </ChildNodeList>
 </NewHierarchyNode>
 </Hierarchy>
 <Hierarchy id="200" companyId="COMP-0002" type="billing">
 <Name>ePays Billing</Name>
 <Description>This is a sample billing hierarchy</Description>
 <NewHierarchyNode>
 <LinkTargetReference id="c30001" type="CostCenter"/>
 <CanBeAccessedBy>
 <UserExternalReference id="user10"/>
 <UserExternalReference id="user20"/>
 </CanBeAccessedBy>

BSL Hierarchy Connector �

110 | Siebel e-Billing Manager Developer's Guide

 <ChildNodeList>
 <NewHierarchyNode>
 <SimpleNodeFolder id="40001">
 <Name>PS Team</Name>
 <Description>This folder list all accounts for PS Department
 </Description>
 <Attribute name="Company Address "
 value="2 Apple Hill, Natick, MA"/>
 <Attribute name="Company Phone " value="508-652-8700"/>
 </SimpleNodeFolder>
 <Alias>Text</Alias>
 <CanBeAccessedBy>
 <UserExternalReference id="user11"/>
 <UserExternalReference id="user22"/>
 </CanBeAccessedBy>
 <ChildNodeList>
 <NewHierarchyNode>
 <LinkTargetReference id="acct30003"
 type="BillingAccount"/>
 </NewHierarchyNode>
 <NewHierarchyNode>
 <LinkTargetReference id="acct30004"
 type="BillingAccount"/>
 </NewHierarchyNode>
 </ChildNodeList>
 </NewHierarchyNode>
 <NewHierarchyNode>
 <LinkTargetReference id="acct30001" type="BillingAccount"/>
 </NewHierarchyNode>
 <NewHierarchyNode>
 <LinkTargetReference id="acct30002" type="BillingAccount"/>
 </NewHierarchyNode>
 </ChildNodeList>
 </NewHierarchyNode>
 </Hierarchy>
 </HierarchyToBeCreated>
 <HierarchyToBeUpdated>
 <UpdateHierarchy id="200" companyId="COMP0002">
 <NodesToBeCreated>
 <NewNode>
 <ParentNode id="40001" type="Folder"/>
 <NewHierarchyNode>
 <LinkTargetReference id="acct30005" type="BillingAccount"/>
 <Alias>Text</Alias>
 </NewHierarchyNode>
 </NewNode>
 </NodesToBeCreated>
 <NodesToBeUpdated>
 <UpdateNode>
 <ParentNode id="c30003" type="CostCenter"/>
 <ChildNode id="acct30001” type="BillingAccount"/>
 </UpdateNode>
 </NodesToBeUpdated>
 <NodesToBeRemoved>
 <NodeToDelete id="acct30001" type="BillingAccount"/>
 </NodesToBeRemoved>
 </UpdateHierarchy>
 </HierarchyToBeUpdated>
 <HierarchyToBeRemoved>
 <RemoveHierarchy id="100" companyId="COMP-0001"/>
 <RemoveHierarchy id="200" companyId="COMP-0002"/>
 </HierarchyToBeRemoved>
</HierarchyList>

BSL Hierarchy Connector �

Siebel e-Billing Manager Developer's Guide | 111

To manage the hierarchies specified in the above XML, use or extend
connector/tasks/HierarchyImporter.java and register it in a job in the Command Center.
See the chapter, Custom Jobs, for details on how to do this.

HierarchyImporter loads hierarchies from XML files. HierarchyImporter calls
com.edocs.common.bsl.connector.HierarchyXMLParser to read the file. See
the BSL connector/tasks javadoc for implementation details.

9.3 How to Synchronize Hierarchies with
eStatement Indexer Data

Another way to create hierarchies for the e-Billing Manager application is to obtain the
information from the eStatement Indexer database table using a Command Center job.
Use or extend connector/tasks/BillingDataSynchronizer.java and register it in a job in the
Command Center.

BillingDataSynchronizer synchronizes pre-existing hierarchies with eStatement indexer
data. BillingDataSynchronizer calls BillingHierarchyLoader(aBillingHierSyncHandler)
to perform the synchronization.

The classpath resource, hierarchy.cfg.xml, is used to configure the hierarchy
synchronization handler bean. See the default example delivered with e-Billing Manager
in bsl/config:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
 <bean id="billingHierarchyHandler"
 class="com.edocs.common.bsl.connector.BillingHierSyncHandler"
 singleton="false">
 <property name="serviceBuilder">
 <ref local="bslServiceBuilder"/>
 </property>
 <property name="billingHierarchyName">
 <value>BILLING</value>
 </property>
 <property name="defaultCompanyName">
 <value>__default__</value>
 </property>

BSL Hierarchy Connector �

112 | Siebel e-Billing Manager Developer's Guide

 <property name="companyColumnName">
 <value>CustName</value>
 </property>
 </bean>
 <bean id="bslServiceBuilder"
 class="com.edocs.common.bsl.connector.BusinessServiceBuilder"
 singleton="true">
 <property name="userId">
 <value>admin</value>
 </property>
 <property name="userPassword">
 <value>edocs</value>
 </property>
 </bean>
 <bean id="billingHierarchyBuilderProxy"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target">
 <ref local="billingHierarchyHandler"/>
 </property>
 <!-- <property name="interceptorNames">
 <value>afterReturningInterceptor</value></property> -->
 <property name="interceptorNames">
 <value>billingSyncAdvisor</value>
 </property>
 </bean>
 <bean id="billingSyncAdvisor"
 class="org.springframework.aop.support.DefaultPointcutAdvisor">
 <property name="pointcut">
 <bean
class="com.edocs.common.hierarchy.connector.BillingHierSyncPointcut">
 </property>
 <property name="advice">
 <ref local="afterReturningInterceptor"/>
 </property>
 </bean>
 <!-- Replace class name with your own interceptor class name -->
 <bean id="afterReturningInterceptor"
class="com.edocs.common.bsl.connector.tasks.AccountStatementInterceptor"/>
</beans>

The synchronizer may not pick up all the indexed data that is available from eStatement
by default. To extract more data or do additional processing after the synchronization
handler processes each row in the indexer table, create an interceptor and register it in
hierarchy.cfg.xml.

In BSL’s connector/tasks package, AccountStatementInterceptor implements
org.springframework.aop.AfterReturningAdvice. But you can also create an
interceptor by extending
com.edocs.common.hierarchy.api.BillingHierAfterReturningIntercept
or and overriding afterReturningHook():

/**

 * Override this method to do any additional processing.

 * Called every time a row in the indexer table is processed.

 * Each row represents either a parent account or a nested

 * sub-account or Mobile Telephone Number (MTN). Uses Z-Context

BSL Hierarchy Connector �

Siebel e-Billing Manager Developer's Guide | 113

 * field to determine how to sort rows into unresolved and accounts

 * hashtables.

 *

 * @param handler handler object that synchronizes billing hierarchy with

 * indexed billing information.

 * @param zPrimary Z_PRIMARY field value in the current row

 * @param zContext Z_CONTEXT field value in the current row

 * @param rowData all other field vlaues in the current row.

 * Each field is indexed by the column name.

 */

 protected void afterReturningHook(IBillingHierSyncHandler handler, String
zPrimary, String zContext, HashMap rowData) throws Exception {

 String statementDate = (String)rowData.get("StatementDate");

 String[] amount = {(String)rowData.get("TotalAmtDueAmt"),
(String)rowData.get("MTNCurrChgs"), (String)rowData.get("MTNCurrChgsCR")};

 log.debug("AccountStatementInterceptor.afterReturningHook(): Z_PRIMARY =
" + zPrimary + "; Z_CONTEXT=" + zContext + "; StatementDate=" + statementDate +

 "; TotalAmtDueAmt=" + amount[0] + "; TotalMtnAmt="+amount[1] + ";
TotalMtnAmt="+amount[2]);

 if (zContext==null || zContext.trim().length()<1) {

 // Top-level Account

 _store(zPrimary, statementDate, _resolveAmount(amount));

 } else {

 // Nested Account or MTN

 if (statementDate!=null) {

 _store(zPrimary, statementDate, _resolveAmount(amount));

 } else {

 BillingStatement statement =
(BillingStatement)accounts.get(zContext);

 if (statement==null) {

 // Add MTN to the unresolved pile

 Vector unMtns = (Vector)unresolved.get(zContext);

 if (unMtns==null) {

 unMtns = new Vector();

 unresolved.put(zContext, unMtns);

 }

 // add to unresolved list

 String[] data = {zPrimary, _resolveAmount(amount)};

 unMtns.add(data);

BSL Hierarchy Connector �

114 | Siebel e-Billing Manager Developer's Guide

 } else {

 // Parent Account found

 _store(zPrimary, statement.getStatementDate(),
_resolveAmount(amount));

 }

 }

 }

}

AfterReturningHook() is called after each row in the indexer table is processed by
the synchronizer. The rowData hashMap contains all the values in the record, keyed by
the column name. You can also get table name, ivn, and ddn through the handler class
which is passed in as the first argument.

Be sure to add the interceptor class to the bean definition in hierarchy.cfg.xml as follows:
<bean id="afterReturningInterceptor"
class="com.edocs.common.bsl.connector.tasks.AccountStatementInterceptor"/>

Place hierarchy.cfg.xml anywhere in the deployment classpath. In order to compile the
interceptor class, the following jars should be in our CLASSPATH:

• Aopalliance-1.0.jar

• Spring-1.0.2.jar

9.4 Hierarchy APIs
See the BSL connector javadocs for implementation details about high-level hierarchy
management. Refer to the hierarchy module javadocs for implementation details about
low-level hierarchy structures.

Customization of low-level hierarchy management may never be required, as most of the
work needed to manage hierarchies at this level is fully implemented as follows. The
package to look for in the hierarchy module jar is com.edocs.common.hierarchy.api.

9.4.1 Creating Hierarchies Programmatically
To create hierarchy a new hierarchy
IHierarchyManager hMgr = new HierarchyManager()

String companyId = new String(“COMP-1”);

String hierName = new String (“BILLING”);

IHierarchyType hierType = Hierarchy.BUSINESS;

IHierarchy hier = hMgr.createHierarchy(companyId, hierName, hierType);

…..

BSL Hierarchy Connector �

Siebel e-Billing Manager Developer's Guide | 115

To create hierarchy from an existing hierarchy:
IHierarchyNode rootNode = hier.getRoot();

IHierarchy anotherHier = createHierarchyFromNode(root);

9.4.2 Adding Entities to a Hierarchy
Any Business Objects that implement IHierarchyLinkTarget can be added into Hierarchy:
public interface IBusinessObject {

 public String getExternalID();

 public String getIdentityURI();

 public String getDisplayName();

 public String getTypeCode();

}

public interface IHierarchyLinkTarget extends IBusinessObject

 boolean isContainer();

To add a link target to Hierarchy:
IHierarchyLinkTarget linkAcct = bs.findAccount(“acc100”);

IHierarchyNode acctNode = hMgr.addLinkTarget(rootNode ,linkAcct);

To add a folder to Hierarchy:

IHierarchyFolder hFolder = new HierarchyFolder(“HR", "Human Resource",

 “This is HR folder“);

hFolder.addAttribute(new Attribute(“Phone: ”, “508-123-8700”));

IHierarchyNode fNode = hMgr.addFolder hMgr.addFolder(rootNode, hFolder);

}

To ad a node to Hierarchy:
hMgr.addNode(fNode, acctNode);

9.4.3 Finding Hierarchies, Nodes, and Folders
Developers decide how much data to load: Lazy (metadata only) or Bulk Loads.

To load Hierarchy MetaData (container) only:
getAllHierarchyMetaData()

getAllHierarchyMetaData(hierarchyType);

getAllHierarchyMetaDataForUser(userName);

BSL Hierarchy Connector �

116 | Siebel e-Billing Manager Developer's Guide

getAllHierarchyMetaDataForUser(hierarchyType, userName);

To load Hierarchy including its tree structure:
getHierarchy(“COMP-1”, “BILLING”, true);

Returns the whole tree

getHierarchyForUser(“COMP-1”, “BILLING”, “jwang”, true);

Returns a list of root nodes that the given user has access to

To load Hierarchy meta data and non-leaf node only:
getHierarchyStructure(“COMP-2”, “BUSINESS”)

To locate a node in Hierarchy:
IHierarchyNode findNodeByIdentityURI(Ihierarchy hier, String uri)

IHierarchyNode[] findObjNodeByIdentityId(String identityId)

IHierarchyNode[] findObjNodeByIdentityId(IHierarchy hier, String identityId)

IHierarchyNode[] findObjNodeByIdentityId(IHierarchyNode hierNode, String
identityId)

IHierarchyNode[] findObjectsNodeByURI(String uri)

IHierarchyNode findObjNodeByURI(IHierarchy hier, String uri)

IHierarchyNode findObjNodeByURI(IHierarchyNode hierNode, String uri)

To locate a folder in Hierarchy:
IHierarchyNode [] findFolderNode(IHierarchy hier, String name)

IHierarchyNode[] findFolderNode(IHierarchNode node, String name)

9.4.4 Updating Nodes
To update a node:
updateFolder(IHierarchy hierarchy, IHierarchyFolder folder);

updateNode(IHierarchyNode hNode);

To move node to a different parent:
moveNodeTo(IHierarchyNode node, IHierarchyNode destinationNode)

To delete a node:
deleteNode(IHierarchyNode nodeToBeDeleted)

BSL Hierarchy Connector �

Siebel e-Billing Manager Developer's Guide | 117

9.4.5 Giving User Access to Nodes
To give user access to a node:
addUserAccess(IHierarchyNode hNode, String userId)

addUserAccess(IHierarchy hier, IHierarchyLinkTarget target,

 String userId)

To remove user access from a node:
removeUserAccess(IHierarchyNode hNode, String userId)

removeUserAccess(Ihierarchy hier, IHierarchyLinkTarget target,

 String userId)

Permission types come from user object.

9.5 How to Implement Hierarchy-Based Access
Control (HBAC)

HBAC provides another level of security for your e-Billing Manager application. When
a user enrolls, a security profile registers one or more roles for the user. The SAF sub-
system tests the logged-in user’s permission to access key parts of the application. When
a user is assigned to specific nodes in a business structure hierarchy, the access of the
user is further limited via HBAC.

To implement HBAC, you can use the CanBeAccessedBy element in an XML file to add
user access to specific nodes in the hierarchy as follows:
…

<CanBeAccessedBy>

| <UserExternalReference id="user1"/>
 <UserExternalReference id="user2"/>
</CanBeAccessedBy>

…

You can do this programmatically by extending the BSL core/BusinessServices class or
re-implementing bsl/api/IBusinessServices methods to assign users to specific nodes
according to your needs. You might constrain hierarchy access by role as well. Or the
logged-in user’s account list might be filtered through CAM according to account-level
pattern matching. The flexibility provided by e-Billing Manager makes the final solution
entirely up to you.

See the CAM and BSL javadocs for default implementations available. Also see the
J2EE/app-b2b source code for a reference implementation of HBAC.

BSL Hierarchy Connector �

118 | Siebel e-Billing Manager Developer's Guide

9.6 How to Search for and Find Objects Within
Hierarchies

Implement BSL’s api/IBusinessServices.java or use BSL’s core/BusinessServices class,
which implements IBusinessServices, to search existing hierarchies for pertinent
information.

Using IBusinessServices methods you can locate and return whole hierarchies or
just the metadata for hierarchies. You can also search for objects within hierarchies.
There is a method for every search that is based on a specific filter parameter.

See the BSL/api javadoc for implementation details.

Siebel e-Billing Manager Developer's Guide | 119

10.1 Overview
The Business Services Layer contains interfaces and default implementations for user
profile management, security profile management, and company profile management.
The packages for these components are as follows:

• User profile management – bsl/umf

• Security profile management – bsl/authentication

• Company profile management – bsl/cmf

10.2 How to Manage the User Profile
When a user enrolls, a user profile is created and stored in the database. The user profile
may be programmatically managed through the BSL via implementations of
IUserProfileManger and other interfaces in the umf package. The BSL controller,
IBusinessServices, calls these umf classes to access user profile information. See the
BSL/umf javadoc for default implementations that may be extended to customize user
profile management.

10.3 How to Manage the Security Profile
When a user enrolls, a security profile is created and stored in the database. The security
profile is an important aspect of SAF and role-based access control. The security profile
may be programmatically managed through the BSL via implementations of
ISecurityProfileManger and other interfaces in the authentication package. The
BSL controller, IBusinessServices, calls these authentication classes to access
security profile information. See the BSL/authentication javadoc for default
implementations that may be extended to customize security profile management.

10 Profile Management

Profile Management �

120 | Siebel e-Billing Manager Developer's Guide

10.4 How to Manage the Company and Company
User Profiles

When a user enrolls, a company and company user profile may be created and stored in
the database. The company profile may be programmatically managed through the BSL
via implementations of ICompanyProfileManger and other interfaces in the cmf
package. The BSL controller, IBusinessServices, calls these cmf classes to access
company and company user profile information. See the BSL/cmf javadoc for default
implementations that may be extended to customize company profile management.

Siebel e-Billing Manager Developer's Guide | 121

11.1 Email Overview
The e-Billing Manager Email system is designed to send emails based on various
notification and payment lifecycle events. Such events include bill notifications, payment
due, payment sent etc. The email subsystem supports a rich XSLT template based
facility for support of both HTML and text based emails as well as pluggable support for
other messaging providers, such as SMS. Both payment and enrollment-based activities
can result in message generation. The diagrams below detail the major components of
the email subsystem.

General Email Subsystem

7. Send the email to an
external system

3. Compose an
email using the
correct template.

Email Composer

Database

Email template

Disk

4. Save the
composed
email to disk

6. Get the email file
from disk

2. Extract the
email addresses
for the account
numbers

4. Save the composed
email to disk

External System
[e.g. SMTP HOST]

5. Get the next
email address from
queue

Email Dispatcher

Account Resolver

Conceptually the e-Billing Manager email subsystem is composed from:

• The email composer is triggered by various email jobs and interacts with the e-
Billing Manager database to determine what email should be sent. For each message
generated a message is created, and stored.

• Account Resolver is a pluggable component which returns email addresses for a
given account number.

• The email dispatcher takes stored emails and sends them based on selected external
transport type, eg SMTP.

11 Notifications

Notifications �

122 | Siebel e-Billing Manager Developer's Guide

Email Grouping via Composer

Group
Group the account numbers
belonging to the same email
address

Compose a consolidated email and add
the email address to the queue and
save the email address to disk

Disk

Database
Compose

Queue

The Email Composer is further broken down into three components which function
together to group multiple account numbers by email address in support of message roll
up. Composer components are:

• Group account numbers by send to address

• Compose a group message based on a template

• Create a grouped message for a given queue

11.2 Configuring Email Messaging
Email delivery is configured via properties in app-config.properties. At a
minimum you must specify the name of a mail host via the property mail.host. You may
also specify an SMPT host and a variety of other mail specific properties as shown
below:

app-config.properties snippet associated with mail configuration

SMTP server for email notification for enrollment

mail.smtp.host= exchangeus.edocs.com
mail.host=exchangeus.edocs.com

mail.queue.storageDirectory=mailqueue
mail.xsl.templateFilename=templates.xsl

mail.transport.protocol=SMTP
mail.queue.threadMax=10
mail.queue.elementsPerThread=30
mail.queue.dispatcherSleepPeriod=5
mail.queue.hangingTimeout=10

Notifications �

Siebel e-Billing Manager Developer's Guide | 123

Email Configuration properties

Property Description
mail.smpt.host
mail.host

Fully qualified IP address or name of a host
running the SMTP which can be used to send
email.

mail.xsl.templateFilename Template XML Style sheet, located in
%EDX_HOME%\config\, used for composing
email messages. Default:templates.xml.

mail.queue.storageDirectory Directory in %EDX_HOME%\config\ used to
temporarily store undeliverable emails.
Default:mailqueue.

mail.queue.threadMax Maximum number of mail threads to create
when sending emails. Default 10 threads.

mail.queue.elementsPerThread Email messages are sent in batches, by
thread.The maximum number of messages each
thread should send per batch. Default 30
messages.

mail.queue.dispatherSleepPeriod Period, in seconds, the dispatcher should sleep
between sending emails, to allow other threads
to complete sends before removing queued
messages.

mail.queue.hangingTimeout Period, in seconds, the dispatcher should wait
before deciding the mail host is not responding
and queue messages. Default 15 seconds

11.3 Email Notifications
e-Billing Manager supports a number of email notifications directly out of the box.
These notifications fall into two categories, bill ready notification and payment
notifications. The text of each notification is managed via an XML style sheet containing
text and variables that can be modified for each notification. Variable text itself is
defined via XSLT Style sheets. The style sheet contains a number of elements that
should be customized to reflect your install.

Email templates reflect the content of each of the various notifications supported by e-
Billing Manager. Each notification template email started with an XSLT template match
statement similar to <xsl:template match="notificationType">. Where
notificationType is one of the known notification types.

Notifications �

124 | Siebel e-Billing Manager Developer's Guide

Each notification contains one or more variables that may be substituted within the body
text of the message. Additionally each variable may contain sub-elements. In support of
apply style sheet transforms the variables themselves, and then sub variables, are
provided to the notification as snippets of XML. As such the content may be processed
with XSLT statements. The Bill Notification email template style sheet is shown below:
<xsl:template match="BillNotification">
From: yourcustomerservice@yourco.com
Subject: tbm account bill ready notification
Content-Type: text/html

 <html>
 Follwing accounts registered under your email address
 have their bills ready.

 <xsl:for-each select="acct">
 Account payment is overdue for account #:
 <xsl:value-of select="number"/>
 </xsl:for-each>

 This is an automatically generated email.
 Please do not reply to this email address.
 </html>
 </xsl:template>

Notifications �

Siebel e-Billing Manager Developer's Guide | 125

Notification Email Variables

Notification Description & Example

Bill
Notification

Account Numbers within accounts.
<acct>
 <number>00000001</number>
 <number>00000002</number>
</acct>

Enrollment
Notification

Username and password
<user>someUser</user>
<pass>password</pass>

RecurringPayment
Notification

User, Account number for recurring payment, amount of
payment
<uid>someUser</uid>
<actnum>00000001</actnum>
<amount>15.00</amount>

RecuringPaymentUpdate
Notification

User, Account number for recurring payment, amount of
payment
<uid>someUser</uid>
<actnum>00000001</actnum>
<amount>15.00</amount>

QuickPayment
Notification

Quick payment amount, transaction status message
<amount>15.00<amount>
<msg>exmplaination</msg>

QuickPaymentFailure
Notification

Quick payment amount, transaction status message
<amount>15.00<amount>
<msg>explaination</msg>

The email subsystem merges the message template with runtime information to create the
email message. The messenger then calls the gateway, configured in app-
config.properties, to send the email message.

11.4 Modifying Email Addresses Programmatically
Subscribers may have zero or more email addresses associated with a login id. The e-
Billing Manager B2C and B2B applications provide support for managing email
addresses via the Profiles tab pages. However, developers may create custom interactions
which support add, delete and update operations on a given set of email addresses. The
Javadoc for the BSL subsystem provides a complete description of the fields and methods
associated with email addresses. The example below shows how you might interact with
the Business Services Layer to obtain the current set of email addresses, add a new email
address, and associate an updated set of email addresses back with a user.

Notifications �

126 | Siebel e-Billing Manager Developer's Guide

Add Email Address Example Action
public ActionForward doAction(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 // Obtain user associated with the current login ID
 String uid = SessionUtils.getUserId(request);
 IBusinessServices bsl = new BusinessServices();
 IUser u = bsl.findUserByUID(uid);
 try {
 // Using the current user obtain the current
 // list of email addresses
 Set emails = u.getNotificationEmails();
 if (should new addy be primary email addy? == true) {
 Iterator it = emails.iterator();
 while (it.hasNext()) {
 IEmail e = (IEmail)it.next();
 if (e.isPrimary()) e.setPrimary(false);
 break;
 }
 // create a new email address instance, set it primary
 // add to the current set, and then update the user in backing store
 IEmail newEmailAddress = new DefaultEmail(“some@somplace.com”);
 newEmailAddress.setPrimary(true);
 emails.add(newEmailAddress);
 bsl.updateUser(u);
 } catch (Exception e) {

. . .
 return mapping.findForward(RIConstants.SUCCESS);
}

Siebel e-Billing Manager Developer's Guide | 127

12.1 Address Book Overview
e-Billing Manager supports personal and corporate address books. These address books
are displayed in e-Billing Manager LDE views, so each has its own DDN. Configure
address book DDN’s in app-config.properties as follows:

PAB DDN

DDN.PersonalAddressBook=PAB

CAB DDN

DDN.CorporateAddressBook=CAB

See the javadocs delivered for the LDEToolkit component and Chapter 3, Statementing
and Content Access for details about e-Billing Manager Views and Live Data Extraction
for Views.

12.2 Personal Address Books
e-Billing Manager supports personal address books and follows a standard application
flow architecture involving Struts and Tiles. Inspect the WAR file delivered in the e-
Billing Manager application EAR to see the configuration and jsp files described below.

The top-level e-Billing Manager UI involves templates defined in webroot/WEB-
INF/tiles-defs.xml and struts-config.xml. e-Billing Manager delivers a tabbed interface
placing a personal address book sub-tab under a profile tab. This is configured in tiles-
defs.xml as follows:

<tiles-definitions>

<definition name=".template.main" path="/_templates/main_template.jsp">

 <put name="title" value="Welcome to Telco Wireless - We work
for you " type="string"/>

 <put name="header" value="/_includes/header.jsp" type="page"/>

 <put name="sectionHeader" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="sectionHeadline" value="" type="string"/>

12 Address Books

Address Books �

128 | Siebel e-Billing Manager Developer's Guide

 <put name="subSectionHeadLine" value="" type="string"/>

 <put name="selectDisplayMenu" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="tabs" value=".template.tabs" type="definition"/>

 <put name="tab" value="Account Sum"/>

 <put name="subtab" value="" type="string"/>

 <put name="action" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="leftSideNav" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="summary" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="module1" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="module2" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="module3" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="module4" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="module5" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="module6" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="module7" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="view" value="/_includes/blank_page.jsp"
type="page"/>

 <put name="sidebar" value="sidebar.simple" type="definition"/>

 <put name="footer" value="/_includes/footer.jsp" type="page"/>

 </definition>

<definition name=".template.sectionHeader"
path="/_includes/section_header.jsp"/>

 <!-- Top Navigation Definitions -->

 <definition name=".template.tabs" path="/_templates/tab_template.jsp">

 <putList name="tabList">

 <item value="Overview"
link="/hierarchy/main/dashboard/show.do"
classtype="com.edocs.application.tbm.core.menus.EdocsBaseMenuItem"/>

 …

 </putList>

 <putList name="subtabList"/>

 </definition>

 …

Address Books �

Siebel e-Billing Manager Developer's Guide | 129

 <!-- Profile Sub Tab List -->

 <definition name=".tabs.profile" extends=".template.tabs">

 <putList name="subtabList">

 <item value="Personal Profile"
link="/profile/personal_profile.do"
classtype="com.edocs.application.tbm.core.menus.EdocsBaseMenuItem"/>

 <item value="Notifications"
link="/profile/notifications.do"
classtype="com.edocs.application.tbm.core.menus.EdocsBaseMenuItem"/>

 <item value="Personal Address Book"
link="/profile/personal_address_book.do"
classtype="com.edocs.application.tbm.core.menus.EdocsBaseMenuItem"/>

 </putList>

 </definition>

The profile sub tab list above indicates that when the Personal Address Book subtab is
selected, navigation proceeds to the Struts action, /profile/personal_address_book.

Struts-config.xml defines this action as follows:

<action path="/profile/personal_address_book"
forward=".main.profile.personalAddressBook">

 </action>

The action forwards to another tile that is defined in tiles-defs.xml as follows:

<!-- Personal Address Book -->

 <definition name=".main.profile.personalAddressBook"
extends=".template.main">

 <put name="sectionHeader" value=".template.sectionHeader"
type="definition"/>

 <put name="sectionHeadline" value="Profile"/>

 <put name="subSectionHeadLine" value="Personal Address Book"/>

 <put name="tabs" value=".tabs.profile" type="definition"/>

 <put name="tab" value="Profile"/>

 <put name="subtab" value="Personal Address Book"/>

 <put name="leftSideNav" value="/_includes/side_navbar.jsp"
type="page"/>

 <put name="module1" value="/personaladdressbook.do"
type="definition"/>

 <put name="module3" value="/addressbook/pab-addlink.jsp"
type="page"/>

 </definition>

Personal address book modules above (module1 and module3) are configured in
webroot/WEB-INF/tiles-defs-addressbook.xml and struts-config-addressbook.

Address Books �

130 | Siebel e-Billing Manager Developer's Guide

module3 above places an add link on the page. The link points to the Struts action class,
com.edocs.application.tbm.b2b.actions.PersonalShowAddressAction, in struts-config-
addressbook:

<!-- Show the PAB AddNew Page -->

 <action path="/addressbook/pab-addnew/show"
type="com.edocs.application.tbm.b2b.actions.PersonalShowAddressAction"
name="addressBookForm" scope="request" parameter=".main.addressbook.pab.addnew"
validate="false">

 <!-- <set-property property="checkLogin" value="false" /> -
->

 <forward name="success"
path=".main.addressbook.pab.addnew"/>

 </action>

The action class forwards to .main.addressbook.pab.addnew which pops up another tile,
.module.addressbook.pab.addnew, both defined in tiles-defs-addressbook:

<definition name=".main.addressbook.pab.addnew" extends=".template.popup">

 <put name="module1" value=".module.addressbook.pab.addnew"/>

 </definition>

 <definition name=".module.addressbook.pab.addnew"
extends=".template.module">

 <put name="form" value="/addressbook/pab-addnew.jsp" type="page"/>

 <put name="activeModule" value="addressbook"/>

 <putList name="moduleNames">

 <add value="addressbook"/>

 </putList>

 <putList name="moduleLinks">

 <add value="#"/>

 </putList>

 </definition>

module1 above is configured to read the struts definition, /personaladdressbook.do,
defined in struts-config-addressbook.xml:

<!-- ========== Action Mapping Definitions ============================== -->

 <action-mappings
type="com.edocs.application.tbm.core.common.EdocsActionMapping">

Address Books �

Siebel e-Billing Manager Developer's Guide | 131

 <!--
** -->

 <!-- ***** LDE ACTIONS
** -->

 <!--
** -->

 <action path="/personaladdressbook"
type="com.edocs.application.tbm.b2b.actions.PersonalAddressBookRequestAction"
name="addressBookForm" scope="request" validate="false">

 <!-- <set-property property="checkLogin" value="false" /> -
->

 <forward name="success"
path=".module.addressbook.personaladdressbook"/>

 </action>

The Struts action class,
com.edocs.application.tbm.b2b.actions.PersonalAddressBookRequestAction, loads the
address book view into another tile, .module.addressbook.personaddressbook, defined in
tiles-defs-addressbook.xml:

<definition name=".module.addressbook.personaladdressbook"
extends=".view.setup">

 <put name="viewName" value="Pab_Display"/>

 <put name="viewType" value="HTML"/>

 <put name="ddn" value="PersonalAddressBook"/>

 <put name="useExistingViewInfo" value="true"/>

 </definition>

This tile extends .view.setup, which is defined in tiles-defs.xml:

<!-- Views Setup (Base definition for rendering the views created by eadirect) --
>

 <definition name=".view.setup" path="/_templates/display_view.jsp"
controllerClass="com.edocs.application.tbm.displayview.DisplayTiledView">

 <put name="viewName" value="DefaultView"/>

 <put name="viewType" value="HTML"/>

 <put name="ddn" value="TBM"/>

 </definition>

Here are other popup tiles available in tiles-defs-addressbook.xml. Note that you can
also define a list of module names and links for the session here.

<!-- ** -->

 <!-- ***** PERSONAL ADDRESS BOOK popup tiles
************************** -->

Address Books �

132 | Siebel e-Billing Manager Developer's Guide

 <!--
** -->

 <definition name=".main.addressbook.pab.add"
extends=".template.popup">

 <put name="module1" value=".module.addressbook.pab.add"/>

 </definition>

 <definition name=".module.addressbook.pab.add"
extends=".template.module">

 <put name="form" value="/addressbook/pab-add.jsp" type="page"/>

 <put name="activeModule" value="addressbook"/>

 <putList name="moduleNames">

 <add value="addressbook"/>

 </putList>

 <putList name="moduleLinks">

 <add value="#"/>

 </putList>

 </definition>

 <definition name=".main.addressbook.pab.edit"
extends=".template.popup">

 <put name="module1" value=".module.addressbook.pab.edit"/>

 </definition>

 <definition name=".module.addressbook.pab.edit"
extends=".template.module">

 <put name="form" value="/addressbook/pab-edit.jsp"
type="page"/>

 <put name="activeModule" value="addressbook"/>

 <putList name="moduleNames">

 <add value="addressbook"/>

 </putList>

 <putList name="moduleLinks">

 <add value="#"/>

 </putList>

 </definition>

 <definition name=".main.addressbook.pab.addnew"
extends=".template.popup">

 <put name="module1" value=".module.addressbook.pab.addnew"/>

 </definition>

 <definition name=".module.addressbook.pab.addnew"
extends=".template.module">

 <put name="form" value="/addressbook/pab-addnew.jsp"
type="page"/>

 <put name="activeModule" value="addressbook"/>

 <putList name="moduleNames">

Address Books �

Siebel e-Billing Manager Developer's Guide | 133

 <add value="addressbook"/>

 </putList>

 <putList name="moduleLinks">

 <add value="#"/>

 </putList>

 </definition>

The jsp pages in the tile definitions above often point to two submit actions, “show.do”
and “save.do”, as defined in struts-config-addressbook:

<!-- ** -->

 <!-- ***** PERSONAL ADDRESS BOOK
************************************** -->

 <!--
** -->

 <!-- Show the PAB Add Page -->

 <action path="/addressbook/pab-add/show"
type="com.edocs.application.tbm.b2b.actions.PersonalShowAddressAction"
name="addressBookForm" scope="request" parameter=".main.addressbook.pab.add"
validate="false">

 <!-- <set-property property="checkLogin" value="false"
/> -->

 <forward name="success"
path=".main.addressbook.pab.add"/>

 </action>

 <!-- Save the new PAB -->

 <action path="/addressbook/pab-add/save"
type="com.edocs.application.tbm.b2b.actions.PersonalSaveAddressAction"
name="addressBookForm" scope="request" parameter="/addressbook/pab-
complete.jsp" validate="true" input="pab_add">

 <!-- <set-property property="checkLogin" value="false"
/> -->

 <forward name="success" path="/addressbook/pab-
complete.jsp"/>

 </action>

 <!-- Show the PAB Edit Page -->

 <action path="/addressbook/pab-edit/show"
type="com.edocs.application.tbm.b2b.actions.PersonalShowAddressAction"
name="addressBookForm" scope="request" parameter=".main.addressbook.pab.edit"
validate="false">

 <!-- <set-property property="checkLogin" value="false"
/> -->

 <forward name="success"
path=".main.addressbook.pab.edit"/>

 </action>

 <!-- Save the PAB Edit -->

Address Books �

134 | Siebel e-Billing Manager Developer's Guide

 <action path="/addressbook/pab-edit/save"
type="com.edocs.application.tbm.b2b.actions.PersonalSaveAddressAction"
name="addressBookForm" scope="request" parameter="/addressbook/pab-
complete.jsp" validate="true" input="pab_edit">

 <!-- <set-property property="checkLogin" value="false"/>
-->

 <forward name="success" path="/addressbook/pab-
complete.jsp"/>

 </action>

 <!-- Show the PAB AddNew Page -->

 <action path="/addressbook/pab-addnew/show"
type="com.edocs.application.tbm.b2b.actions.PersonalShowAddressAction"
name="addressBookForm" scope="request"
parameter=".main.addressbook.pab.addnew" validate="false">

 <!-- <set-property property="checkLogin" value="false"
/> -->

 <forward name="success"
path=".main.addressbook.pab.addnew"/>

 </action>

 <!-- Save the PAB Delete -->

 <action path="/addressbook/pab-delete/save"
type="com.edocs.application.tbm.b2b.actions.PersonalDeleteAddressAction"
name="addressBookForm" scope="request" validate="false" input="pab">

 <!-- <set-property property="checkLogin" value="false"
/> -->

 <forward name="success"
path="/profile/personal_address_book.do"/>

 </action>

Note that the form used in these jsp pages is configured in a form-bean in struts-config-
addressbook.xml. Read the javadocs for
com.edocs.application.tbm.b2b.forms.AddressBookForm:

<struts-config>

 <!-- ========== Form Bean Definitions
=================================== -->

 <form-beans>

 <form-bean name="addressBookForm"
type="com.edocs.application.tbm.b2b.forms.AddressBookForm"/>

 </form-beans>

…

Address Books �

Siebel e-Billing Manager Developer's Guide | 135

To customize a personal address book for the e-Billing Manager application, read the
javadocs for the tbm-b2b-app application, paying particular attention to the Struts action
and form classes delivered for personal address books. Open the WAR file delivered
with the tbm-b2b-app ear to see the tiles delivered in webroot/_templates and
webroot/addressbook. Also see the Struts and Tiles configuration files delivered in
webroot/WEB-INF.

Extend or use com.edocs.application.tbm.b2b.forms.AddressBookForm and
com.edocs.application.tbm.b2b.actions.Personal*AddressActions classes as needed.
These classes employ the AddressBook component delivered with e-Billing Manager. To
customize the AddressBook component, read the javadocs delivered for the
com.edocs.domain.telco.addrbook classes. See Section 11.3, AddressBook Component
for a description of lower level services provided by e-Billing Manager.

12.3 Corporate Address Books
Corporate address books follow the same application architecture used for personal
address books as discussed in Section 11.1 above. See corresponding corporate address
book sections defined in the configuration files described above.

12.4 AddressBook Component
The AddressBook component services both personal and corporate address book
applications. The AddressBook component is delivered in the e-Billing Manager EAR.
Read the javadocs delivered for com.edocs.domain.telco.addrbook for implementation
details.

The AddressBook component consists of the following classes:

com.edocs.domain.telco.addrbook.ABException (exception class for addressbook use)

com.edocs.domain.telco.addrbook.AddrBookViewProcessor (extends RIViewProcessor
and provides address tag substitution capability for views)

com.edocs.domain.telco.addrbook.AddressBook (abstract superclass of
PersonalAddressBook and CorporateAddressBook)

com.edocs.domain.telco.addrbook.AddressBookFactory (gets/creates personal or
corporate address books from/for the session)

com.edocs.domain.telco.addrbook.AddressBookRequestZLDEStream (creates an
LDEToolkit stream given a ddn, account number, and addressbook)

com.edocs.domain.telco.addrbook.AddressBookViewHelper (provides stream filtering)

Address Books �

136 | Siebel e-Billing Manager Developer's Guide

com.edocs.domain.telco.addrbook.AddressEntry (an address)

com.edocs.domain.telco.addrbook.CABDataSource (corporate address book data source)

com.edocs.domain.telco.addrbook.CorporateAddressBook (extends AddressBook)

com.edocs.domain.telco.addrbook.PABDataSource (personal address book data source)

com.edocs.domain.telco.addrbook.PersonalAddressBook (extends AddressBook)

The Struts action classes delivered in the e-Billing Manager application WAR were
described in Section 11.1 in the context of their interface with personal address book
tiles. Here we describe their interface with the AddressBook component. The Struts
action classes involved:

com.edocs.application.tbm.b2b.actions.AddressActionBase

com.edocs.application.tbm.b2b.actions.PersonalAddressBookRequestA
ction

com.edocs.application.tbm.b2b.actions.PersonalShowAddressAction

com.edocs.application.tbm.b2b.actions.PersonalSaveAddressAction

com.edocs.application.tbm.b2b.actions.PersonalDeleteAddressAction

com.edocs.application.tbm.b2b.actions.CorporateAddressBookRequest
Action

com.edocs.application.tbm.b2b.actions.CorporateShowAddressAction

com.edocs.application.tbm.b2b.actions.CorporateSaveAddressAction

com.edocs.application.tbm.b2b.actions.CorporateDeleteAddressActio
n

These action classes extend the EBM core component, EdocsAction. These action classes
call the AddressBook component to configure and load an addressbook into an e-
Statement view (PersonalAddressBookRequestAction) or to show
(PersonalShowAddressAction), save (PersonalSaveAddressAction), or delete
(PersonalDeleteAddressAction) addresses from the address book.

12.4.1 Displaying the Address Book
The PersonalAddressBookRequestAction is configured in the action mapping
/personaladdressbook in struts-config-addressbook.xml. This action class loads the
personal address book into a view as follows:

try {

 log.debug("Entering PersonalAddressBookRequestAction.doAction()");

 LDEManager ldeManager = LDEManager.getInstance();

Address Books �

Siebel e-Billing Manager Developer's Guide | 137

 AddressBook addressBook =
AddressBookFactory.getSessionPersonalAddressBook(httpServletRequest);

 ICustomer customer = CAMClassFactory.getCustomer(httpServletRequest);

 String accountNumber =
customer.getCurrentAccount().getAccountNumber();

 String ddn = customer.getDDNMap().getDDN("PersonalAddressBook");

 log.debug("addressbook ddn " + ddn);

 AddressBookRequestZLDEStream ldeStream = new
AddressBookRequestZLDEStream(ddn, accountNumber, addressBook);

 String docId = ldeManager.setContent(ldeStream);

 ViewInfo viewInfo = new ViewInfo();

 viewInfo.setDdn(ddn);

 viewInfo.setDocId(docId);

 viewInfo.setViewName("Pab_Display");

 viewInfo.setViewType("HTML");

 SessionUtils.setView(httpServletRequest, viewInfo);

This action instantiates an LDEToolkit component,
com.edocs.domain.telco.lde.LDEManager, and the AddressBook component,
AddressBook . It uses the CAM layer component, CAMClassFactory, to get the current
customer, account number, and personal address book DDN. It instantiates a live data
extraction (LDE) stream (AddressBookRequestZLDEStream) which it uses to set the
view content. ViewInfo parameters are populated and the view is set in the session for
display. (For more information about LDE, see Chapter 3.4 Live Data Extraction.)

Once the personal address book is loaded and ready for display, the action class forwards
to the “success” jsp tile defined in struts-config-addressbook:

<!-- ** -->

 <!-- ***** LDE ACTIONS
** -->

 <!--
** -->

 <action path="/personaladdressbook"
type="com.edocs.application.tbm.b2b.actions.PersonalAddressBookRequestAction"
name="addressBookForm" scope="request" validate="false">

 <!-- <set-property property="checkLogin" value="false"
/> -->

 <forward name="success"
path=".module.addressbook.personaladdressbook"/>

 </action>

Address Books �

138 | Siebel e-Billing Manager Developer's Guide

.module.addressbook.personaladdressbook in tiles-defs-addressbook extends .view.setup
from tiles-defs.xml. Finally, webroot/_templates/display_view.jsp is called to display the
personal address book view.

(From tiles-defs.xml)

<!-- Views Setup (Base definition for rendering the views created by eStatement)
-->

 <definition name=".view.setup" path="/_templates/display_view.jsp"
controllerClass="com.edocs.application.tbm.displayview.DisplayTiledView">

 <put name="viewName" value="DefaultView"/>

 <put name="viewType" value="HTML"/>

 <put name="ddn" value="TBM"/>

 </definition>

(From tiles-defs-addressbook.xml)

<definition name=".module.addressbook.personaladdressbook" extends=".view.setup">

 <put name="viewName" value="Pab_Display"/>

 <put name="viewType" value="HTML"/>

 <put name="ddn" value="PersonalAddressBook"/>

 <put name="useExistingViewInfo" value="true"/>

 </definition>

12.4.2 Showing Addresses
When an address is selected from the personal address book view, the Struts action class,
PersonalShowAddressAction, instantiates AddressBookForm and calls the AddressBook
Component, AddressBookFactory, to get the current personal address book from the
session or create one, if it does not exist. PersonalAddressBook gets an instance of
PABDataSource to persist the address book. Then it passes anAddressBookForm and
anAddressBook as parameters in a call to AddressActionBase.populateForm(), which
calls PersonalAddressBook.getEntry() to instantiate another AddressBook component,
AddressEntry. Once the form is populated, the Struts action forwards to
addressbook/pab-add.jsp.

See the javadocs delivered for the AddressBook component for more implementation
details.

12.4.3 Saving and Deleting Addresses
After an address has been shown, it may be updated, saved, or deleted. A submit button
on the addressbook/pab-add.jsp page forwards to a save.do Struts action.

Address Books �

Siebel e-Billing Manager Developer's Guide | 139

The Struts actions, PersonalDeleteAddressAction and PersonalSaveAddressAction,
instantiate AddressBookForm and call the AddressBookFactory to get the current
personal address book from the session. Then the action classes pass these parameters in
calls to AddressActionBase.updateAddressBook(), which deletes, updates, or saves new
AddressEntry information to the PABDataSource via
PersonalAddressBook.deleteEntry(), PersonalAddressBook.updateEntry(), and
PersonalAddressBook.addEntry().

 See the javadocs delivered for the AddressBook component for more implementation
details.

12.4.4 Address Book View Processing
The AddressBook component provides an address book processor for filtering address
book views. LDE view streams are strings that may be manipulated to change
presentation in certain ways. The AddressBook component, AddrBookViewProcessor,
takes a ViewInfo object, processes the input stream from the ViewInfo object inserting
address book entries where address book tags appear (via AddrBookViewHelper), and
then returns a new ViewInfo object with the address book entries inserted.

AddressBookViewHelper creates a “(Don’t) Show Nicknames” toggle link on the address
book view and substitutes phone numbers with nickname hyperlinks, if the nickname
function is toggled on. See webroot/_assets/scripts/addrbook.js for the javascript
functions.

12.4.5 Address Book Post-Processing of e-Billing Manager Views
As for address book views, support for substitution of phone numbers with nickname
hyperlinks is provided for all e-Billing Manager views. See the javadocs delivered for
the DisplayView component and Chapter 3, Statementing and Content Access for details.

To configure a view to use an address book post processor, set name=“postprocessor”
and name=”usePersonalAddressBook” in tiles-defs.xml as follows:

<!--View Display Detailed Usage (Home) Collapsed-->

 <definition name=".statement.detailedUsage.view"
extends=".view.setup">

 <put name="viewName" value="B2B_DetHomeCol"/>

 <put name="usePersonalAddressBook" value="true"/>

 <put name="postProcessor" value="AddressBook"/>

 <put name="useViewInfoForFilters" value="true"/>

 <put name="subIdx" value="true"/>

 </definition>

Address Books �

140 | Siebel e-Billing Manager Developer's Guide

The AddressBookPostProcessor resides in the DisplayView component package,
com.edocs.application.tbm.displayview. Override this class as needed and configure it in
app-config.properties:

#post processor classes

PostProcessors=PostProcessEngine

PostProc.PostProcessEngine=com.~.displayview.PostProcessorComposition

PostProcessor.classes=addressbook.class

addressbook.class=com.~.displayview.AddressBookPostProcessor

Siebel e-Billing Manager Developer's Guide | 141

This chapter describes how to create custom job types that include the Shell Command
Task. This task allows you to run an external command script to process the output files
from other tasks within the job.

You can use this chapter to:

• Define a custom job type for the Command Center and create a SQL script,
containing job type and task information, to add the new job type.

• View and configure the new job type in the Command Center.

13.1 About Jobs and the Shell Command Task
e-Billing Manager has several predefined job types available in its Command Center.
Each job is made up of one or more tasks. For complete listing of jobs and tasks, see the
Siebel e-Billing Manager Administration Guide.

However, there may be times when you will want to expand these predefined Jobs to fit
your needs. For cases like this e-Billing Manager has the ability to define your own
custom Job Type that you can make up from a combination of the predefined tasks that
come with e-Billing Manager and/or your own custom task by defining what is referred
to in e-Billing Manager as a Shell Command Task.

A Shell Command Task is a way of invoking a shell script, executable, or other program
that was written to perform a task specific to your requirements. It enables you to run
custom scripts or programs, such as pre- or post- processors as part of a user-defined job.
You can create your own Job Type by creating a SQL script that updates the database.
Once the database is updated this Job Type becomes available to you via the Command
Center. The new Job Type can then be configured, scheduled, and run from within the
Command Center.

For example, you could create a new custom job called Preprocess to run a pre-
processor on the input file in an Indexer job. At runtime, the Preprocess task would be
inserted between the Scanner and the Indexer tasks. Another use would be to create a job
to run a validation engine (sum all amount due, for example) on the output of the Indexer
task. At runtime, the SumAllDue task would be inserted between the Indexer and the
IXLoader tasks.

The following illustration shows a new custom Indexer job type in the Command Center
for the latter example.

13 Custom Jobs

Custom Jobs �

142 | Siebel e-Billing Manager Developer's Guide

13.2 Defining a New Job Type
This section includes information about:

• Creating the job type script

• Configuring the new job type

• Examples of the job type script

13.2.1 Create the Job Type Script
To create a job type you create a single SQL script to run in the e-Billing Manager
database using the Oracle utility sqlplus. Within this SQL script you define:

1. The job name

2. The tasks and the order in which they will run

Custom Jobs �

Siebel e-Billing Manager Developer's Guide | 143

3. The input arguments

The following sections provide a detailed topic description of each part. Each section
uses the example of specifying a new job type that is similar to the current Indexer job,
except that between scanning for an input file (Scanner Task) and actually indexing the
file (Indexer Task) you need to invoke a preprocessor to modify the input file. This is the
situation where you need to insert the ShellCmdTask between the other tasks.

Example sqlplus script for Oracle
DECLARE jtid NUMBER;
BEGIN

 -- Define the job name
 jtid := pwc_job_types.create_job_type ('myIndexer');

 -- Specify the job tasks and their order

 pwc_job_types.create_job_type_task(jtid,'Scanner', 1);

 pwc_job_types.create_job_type_task(jtid,'ShellCmdTask', 2);

 pwc_job_types.create_job_type_task(jtid,'Indexer', 3);

 pwc_job_types.create_job_type_task(jtid,'IXLoader', 4);

 pwc_job_types.create_job_type_task(jtid, 'AutoIndexVolAccept', 5);

 -- Define the tasks input arguments

 pwc_job_types.create_job_type_io(jtid,'ShellCmdTask', 'input params', 'INPUT',
2,'Scanner', 'output file name', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'Indexer','data file name', 'INPUT', 3,
'ShellCmdTask','shell output', 'OUTPUT', 2);

 pwc_job_types.create_job_type_io(jtid, 'Indexer', 'ddn volume number', 'INPUT',
3,'Scanner', 'ddn volume number', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'IXLoader', 'index volume number',
'INPUT', 4,'Scanner', 'ddn volume number', 'OUTPUT', 1);

 pwc_job_types. create_job_type_io (jtid, 'IXLoader', 'ir file name', 'INPUT',
4, 'Indexer', 'ir file name', 'OUTPUT', 3);

 pwc_job_types.create_job_type_io(jtid, 'AutoIndexVolAccept', 'index volume
number', 'INPUT', 5, 'Scanner', 'ddn volume number, 'OUTPUT', 1);

END;

Example script for AIX/DB2

To create a DB2 shell command for a custom job in AIX, run the following command:
 db2 -td@ -vf customjob.sh

where customjob.sh is the name of a shell script customized for your job, platform,
and environment. See the example below for a sample script to customize.
DROP PROCEDURE db2inst1.tmp_pwc_jtt_sp() @

CREATE PROCEDURE db2inst1.tmp_pwc_jtt_sp()

 LANGUAGE SQL

BEGIN

 DECLARE jtid INTEGER;

Custom Jobs �

144 | Siebel e-Billing Manager Developer's Guide

 DECLARE l_job_type_name VARCHAR(32);

 DECLARE l_task_name VARCHAR(32);

 DECLARE l_task_order INTEGER;

 DECLARE l_i_task_name VARCHAR(32);

 DECLARE l_i_task_io_name VARCHAR(32);

 DECLARE l_i_task_io_type VARCHAR(32);

 DECLARE l_i_task_order INTEGER;

 DECLARE l_o_task_name VARCHAR(32);

 DECLARE l_o_task_io_name VARCHAR(32);

 DECLARE l_o_task_io_type VARCHAR(32);

 DECLARE l_o_task_order INTEGER;

 -- job type with
'Scanner':'ShellCmdTask':'Indexer':'IXLoader':'AutoIndexVolAccept'

 SET l_job_type_name = 'Custom_Indexer';

 CALL pwc_job_types.create_job_type(jtid, l_job_type_name);

 SET l_task_name = 'Scanner';

 SET l_task_order = 1;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name, l_task_order);

 SET l_task_name = 'ShellCmdTask';

 SET l_task_order = 2;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name, l_task_order);

 SET l_task_name = 'Indexer';

 SET l_task_order = 3;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name, l_task_order);

 SET l_task_name = 'IXLoader';

 SET l_task_order = 4;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name, l_task_order);

 SET l_task_name = 'AutoIndexVolAccept';

 SET l_task_order = 5;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name, l_task_order);

 SET l_i_task_name = 'ShellCmdTask';

 SET l_i_task_io_name = 'input params';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 2;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'output file name';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

Custom Jobs �

Siebel e-Billing Manager Developer's Guide | 145

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name, l_o_task_io_name,
l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'Indexer';

 SET l_i_task_io_name = 'data file name';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 3;

 SET l_o_task_name = 'ShellCmdTask';

 SET l_o_task_io_name = 'shell output';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 2;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name, l_o_task_io_name,
l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'Indexer';

 SET l_i_task_io_name = 'ddn volume number';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 3;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'ddn volume number';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name, l_o_task_io_name,
l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'IXLoader';

 SET l_i_task_io_name = 'index volume number';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 4;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'ddn volume number';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name, l_o_task_io_name,
l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'IXLoader';

 SET l_i_task_io_name = 'ir file name';

Custom Jobs �

146 | Siebel e-Billing Manager Developer's Guide

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 4;

 SET l_o_task_name = 'Indexer';

 SET l_o_task_io_name = 'ir file name';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 3;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name, l_o_task_io_name,
l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'AutoIndexVolAccept';

 SET l_i_task_io_name = 'index volume number';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 5;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'ddn volume number';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name, l_o_task_io_name,
l_o_task_io_type,

l_o_task_order);

END @

CALL db2inst1.tmp_pwc_jtt_sp() @

DROP PROCEDURE db2inst1.tmp_pwc_jtt_sp() @

Name the Job

The first part of the script is to give your new task a name. The syntax to do this is:
jtid := pwc_job_types.create_job_type ('<new_job_name>');

In the script, the create_job_type call defines a unique job type ID (jtid) for the
new Indexer1 job type.

So if your new job name is myIndexer, then the code script will be:
jtid := pwc_job_types.create_job_type ('myIndexer');

Specify Job Tasks

The next step is to specify what tasks will be part of the new job, and in what order will
they execute. The syntax is:
pwc_job_types.create_job_type_task(jtid,'<task_name>', n);

Custom Jobs �

Siebel e-Billing Manager Developer's Guide | 147

where n equals the order number of the task and jtid is the job type id – created with
pwc_job_types.create_job_type() function. The create_job_type_task call
defines the order of the tasks in the job.

In the above example, the plan is to create a new job type based on the current Indexer
job type. The tasks included in the Indexer Job are (in their order of execution):

• Scanner

• Indexer

• IXLoader

• AutoIndexVolAccept

If you insert the ShellCmdTask after the Scanner Task, it will become task 2, and the
others will be incremented by one. The code example is:
pwc_job_types.create_job_type_task(jtid,'Scanner', 1);

pwc_job_types.create_job_type_task(jtid,'ShellCmdTask', 2);

pwc_job_types.create_job_type_task(jtid,'Indexer', 3);

pwc_job_types.create_job_type_task(jtid,'IXLoader', 4);

pwc_job_types.create_job_type_task(jtid, 'AutoIndexVolAccept', 5);

Define Input Arguments

Each task has input and output arguments, and a particular task may require the output
arguments from a previous task to function properly. For example, in the default Indexer
job, its Indexer task takes two input arguments from the Scanner Task. In the SQL Script
you define which specific input arguments for a task are used from the specific output
arguments from another task.

For a list of arguments, see the Javadoc for the SDK API Specification.

To define the input and output parameters, the following is the syntax of the function of
the call that uses nine arguments:
pwc_job_types.create_job_type_io(jtid,
 '<input_task_name>',
 '<input_argument>',
 'INPUT',
 x,
 '<output_task_name>',
 '<output_argument>',
 'OUTPUT',
 y);

where x is the order number of the input task and y is the order number of the output task.
The create_job_type_io calls define the input values for each job task. It accepts the
following parameter values:

• The job type ID (jtid)

• The task name receiving the input value

• The input parameter name

Custom Jobs �

148 | Siebel e-Billing Manager Developer's Guide

• The I/O type (INPUT)

• The order number for the task receiving the input value (defined earlier in the script)

• The previous task name dispensing the output to be used for input

• The output parameter name from the previous task

• The I/O type (OUTPUT)

• The order number of the task dispensing the output value (defined earlier in the
script)

The following breaks down the input arguments used in the above example script:
pwc_job_types.create_job_type_io(jtid,
 'ShellCmdTask',
 'input params',
 'INPUT',
 2,
 'Scanner',
 'output file name',
 'OUTPUT',
 1);

The input argument input params for the ShellCmdTask uses the output argument
output file name from the Scanner task.
pwc_job_types.create_job_type_io(jtid,
 'Indexer',
 'data file name',
 'INPUT',
 3,
 'ShellCmdTask',
 'shell output',
 'OUTPUT',
 2);

pwc_job_types.create_job_type_io(jtid,
 'Indexer',
 'ddn volume number',
 'INPUT',
 3,
 'Scanner',
 'ddn volume number',
 'OUTPUT',
 1);

The input arguments data file name and ddn volume number for the Indexer task uses the
output arguments shell output from the ShellCmdTask and ddn volume number from
the Scanner task respectively.
pwc_job_types.create_job_type_io(jtid,
 'IXLoader',
 'index volume number',
 'INPUT',
 4,
 'Scanner',
 'ddn volume number',
 'OUTPUT',
 1);

pwc_job_types. create_job_type_io (jtid,
 'IXLoader',
 'ir file name',

Custom Jobs �

Siebel e-Billing Manager Developer's Guide | 149

 'INPUT',
 4,
 'Indexer',
 'ir file name',
 'OUTPUT',
 3);

The input arguments index volume number and ir file name for the IXLoader task uses
the output arguments ddn volume number from the Scanner and ir file name from the
Indexer respectively.
pwc_job_types.create_job_type_io(jtid,
 'AutoIndexVolAccept',
 'index volume number',
 'INPUT',
 5,
 'Scanner',
 'ddn volume number,
 'OUTPUT',
 1);

The input argument index volume number for the AutoIndexVolAccept task uses the
output argument ddn volume number from the Scanner task.

13.2.2 Configuring Your New Job Type
After creating the script, you need to run it against the Oracle database used by e-Billing
Manager (as described in the Installation and Configuration Guides). For example, if the
script is named myindexer.sql and placed in /opt/EDCSbd/db (the default database
location for e-Billing Manager), you could run the following in SQL*Plus:
$ sqlplus -s edx_dba/edx@edx.db @ /opt/EDCSbd/db/myindexer.sql

The above command presumes you are using the default names for the e-Billing Manager
database (edx0) and database administrator/password (edx_dba/edx).

Before the new job type is available in the Command Center, you have
to stop and start Your application server after running the script.

Once the new job type is available to you in the Command Center, you can define the
new job using that new job type.

Define the Shell Command Task

If you have included the ShellCmdTask with your new job type, it has 2 input fields to
define:

• Shell Command

• Environment variables

The Shell Command field defines the location of the shell script to execute on your
system. Note that the user that starts the application server must have read/execute
permissions for that location.

Custom Jobs �

150 | Siebel e-Billing Manager Developer's Guide

The shell command must output, on its standard output, the name of its output file that is
the input file to be processed by the next task in the job. If the shell command doesn't
output any file name, the job stops as a no-op. If it is successful, the shell command must
set its exit code to 0.

If the shell command fails, it must set its exit code to a non-zero value. Additionally, it
may output, on its standard error, a message describing the failure. The error message
will be logged into the log file by e-Billing Manager. However, any errors within the
shell command are not logged and must be handled separately.

For example, the following shell command would be useful after the Scanner task to
ensure Windows files have the correct format for UNIX:
#!/bin/csh
Preprocessor to run dos2unix on the input file

dos2unix $SHELL_INPUT $SHELL_INPUT.ux >& /dev/null
if ($status != 0) exit $status # failure
echo $SHELL_INPUT.ux # new input file
exit 0 # success

The Environment variables field specifies the environment variables for the shell
command. By default, the external command is passed the following environment
variables:

• DDN - the name of the application to which the job belongs

• JOB_NAME - the name of the job to which the task is a part of.

• STATUS - the status of the job (has it been started, did it succeed/fail, etc).

• PREVIOUS_STATUS

• SHELL_INPUT - any input from a previous task. The SHELL_INPUT variable is
only set if the shell command task is linked with another task in the context of a job.
Otherwise it is null.

If your shell command requires any other environment variables, you’ll need to specify
them in this field.

13.2.3 Another Example of Defining a New Job Type
The following is another example that defines an index job called Indexer2 with the
following tasks:

• Scanner

• Indexer

• ShellCmdTask

• IXLoader

• AutoIndexVolAccept

Custom Jobs �

Siebel e-Billing Manager Developer's Guide | 151

As mentioned in the previous section, a reason for this new job type could be to run a
validation engine (sum all amount due for example) on the output of the Indexer task. If
the amount due exceeds a certain amount, it may require a careful verification of the
input data stream as described in the SDK Module: Auditing Data Streams with the
Verify API.

For this case you can create the following SQL script:
DECLARE jtid NUMBER;
BEGIN

 jtid := pwc_job_types.create_job_type('Indexer2');

 pwc_job_types.create_job_type_task(jtid, 'Scanner', 1);

 pwc_job_types.create_job_type_task(jtid, 'Indexer', 2);

 pwc_job_types.create_job_type_task(jtid, 'ShellCmdTask', 3);

 pwc_job_types.create_job_type_task(jtid, 'IXLoader', 4);

 pwc_job_types.create_job_type_task(jtid, 'AutoIndexVolAccept', 5);

 pwc_job_types.create_job_type_io(jtid, 'Indexer', 'data file name', 'INPUT', 2,
'Scanner', 'output file name', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'Indexer', 'ddn volume number', 'INPUT',
2, 'Scanner', 'ddn volume number', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'ShellCmdTask', 'input params', 'INPUT',
3, 'Indexer', 'ir file name', 'OUTPUT', 2);

 pwc_job_types.create_job_type_io(jtid, 'IXLoader', 'index volume number',
'INPUT', 4, 'Scanner', 'ddn volume number', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'IXLoader', 'ir file name', 'INPUT', 4,
'Indexer', 'ir file name', 'OUTPUT', 2);

 pwc_job_types.create_job_type_io(jtid, 'AutoIndexVolAccept', 'index volume
number', 'INPUT', 5, 'Scanner', 'ddn volume number', 'OUTPUT', 1);

END;

Siebel e-Billing Manager Developer's Guide | 153

14.1 Introduction and Components
e-Billing Manager can format statement data as a graphical chart in a dynamic HTML
page. Charts consist of the chart data, which must be a table or group with at least two
data rows, and the chart properties, which specify the type, design, and layout of the
chart graphic.

Charting can involve most of the actors in a typical e-Billing Manager workflow. The
following overview diagram highlights the main tasks in the charting process.

14.1.1 Charting Use Case Overview Diagram

System
Administrator

Web Dev eloper

Designer/Presentment
Consultant

Production
Manager

configure
serv er for

charting

compose
chart data
and logic

customize
chart

properties

publish
chart v iew

v iew chart
in statement

Customer

prev iew
chart in

Simulator

To present charts in online statements:

1. The system administrator follows the steps in Configuring Charting for Your Server
to set up the display device, permissions, and awareness on the application server
rendering the charts, and to install any specified fonts.

14 Charting

Charting �

154 | Siebel e-Billing Manager Developer's Guide

2. The e-Billing Manager application designer follows the steps in Composing Charts
in Statements to insert a chart placeholder in the Application Logic File (ALF) with
the Composer.

3. The web application developer or the designer follows the steps in Customizing
Chart Properties to fine-tune the design, layout, and data presentation of the chart in
the ALF and the chart properties file. Advanced designers and developers may
extend the available chart properties for Designing Custom Charts with the Charting
Servlet.

4. During the design process, the designer or developer can follow the steps in
Simulating Charts to preview the chart in a simulated online statement with the
Simulator API.

5. When the chart data and design are finalized, the production manager follows the
steps in Publishing Charts to include the chart(s) in any dynamic online statements
processed through the Siebel Command Center.

6. Once the chart view and any associated views are published, the customer can view
the chart as part of an online statement, so that charts will refresh dynamically with
each new version set of statement data.

The sections in this chapter describe each of these tasks in detail.

14.1.2 Components of Charting
• Indexed data source (DDN and Indexer job)

• Application Logic File (ALF)

• Chart Properties File (*.properties)

• Simulator API

• HTML Web View for a Charting ALF

• Chart View for each Chart

14.2 Configuring Charting for Your Server

14.2.1 About Servers and Charting
The server rendering the charts, not the machine viewing the statement, determines font
sizes and styles in charts. The server displaying charts must also have access permissions
set to display charts, and requires awareness of an actual or virtual display device. This
chapter discusses:

• Fonts

• Configuring a Headless Server for Charting

Charting �

Siebel e-Billing Manager Developer's Guide | 155

• Display Devices and xvfb

• Display Permissions and xhost

• Display Awareness

Caution

The configuration steps in this chapter apply primarily to deployment
servers. Servers in a production environment often have physical
display devices with graphics support, so that configuration may not be
an issue. Always test charts (with the rest of your web application) on
your deployment platform, and make any needed configurations for
your charts to display properly with the correct fonts and styles.

14.2.2 About Fonts
Charts require graphics utilities and fonts that vary across platforms. Windows NT/2000
has rich support for both graphics and fonts. UNIX systems like Solaris and AIX support
graphics with an X server, or by using a virtual display, for example xvfb. Either option
can offer rich font and style support, depending on fonts installed.

Any fonts you reference in your chart properties must be available on your deployment
server, not on the machine where your browser views the charts. If you receive “font not
found” or similar error messages when charting, check the fonts and styles available on
your X server against those in your chart properties file.

14.2.3 Configuration Activity Diagram

configure
serv er for

charting

server
configured

for
charting

set display
permissions

set display
awareness

set display
dev ice

server
has

physical
display

install and
configure

v irtual display
(xfv b)

install X
libraries

run xhost +

server
has X

libraries

grant
access

to all
hosts
and
users

run xhost
[serv ername]

change
default
startup
display

setenv
DISPLAY

[serv ername]

export
DISPLAY

[serv ername]

NO

NO

YES

NO

NO

YES

YES

YES

Charting �

156 | Siebel e-Billing Manager Developer's Guide

14.2.4 Setting Display Devices and xvfb
Like other Java graphics packages, Siebel charting extends the java.awt interface, which
contains all of the classes for creating user interfaces and for painting graphics and
images. These classes in turn require X libraries and access to an X display. To display
charts properly, the web server rendering the charts must have a real or virtual X display
device and the necessary X libraries.

In a development environment, the web server may have a real physical display device
attached and have X Libraries loaded. However, at a typical server host site, few if any of
the racks of server machines are connected to a display, and system administrators may
hesitate to load X libraries if they are not installed.

If your deployment environment does not have a physical display and X libraries, your
“headless” server will need a virtual X display like xvfb. The X Virtual Frame Buffer
(xvfb) is an X server that can run on machines without display hardware or input
devices. It emulates a dumb framebuffer using virtual memory.

xvfb may already be installed on your Unix system, in /usr/X11R6. If not, you will
need to obtain and install a copy.

Tip

Documentation for xvfb (man xvfb) is hard to find. Many versions of
UNIX have no manual entry for xvfb or have it in the wrong place. The
University of Texas has posted man xvfb version 1 at
http://dell5.ma.utexas.edu/cgi-bin/man-cgi?xvfb+1. NOAA also has an
excellent README.xvfb and a binary of xvfb at
ftp://ferret.wrc.noaa.gov/special_request/xvfb/solaris

14.2.5 Setting Display Permissions and xhost
You can control access to your X server with the UNIX program xhost. This access
control program can add and delete host names or user names to the list permitted to
connect to the X server.

Tip

The privacy and security controls in xhost are generally sufficient for a
single-user workstation environment. You may prefer to use a custom
authentication system for stronger access control.

xhost is located in different places on different systems. Look in /usr/openwin/bin
or /usr/local/share to start. Siebel recommends that you add xhost to your
environment PATH variable.

To grant X server display access to all available hosts and users, type:
xhost +

For other options, see Syntax and Parameters.

Charting �

Siebel e-Billing Manager Developer's Guide | 157

xhost Syntax and Parameters

Security requires that xhost be run only from the controlling host. For workstations, this
is the server machine. For X terminals, it is the login host. The command syntax is:
xhost [[+-]name ...]

Parameter Description

 [+]name Adds the given host name or user name to the list allowed to connect to
the X server. The plus sign is optional.

-name Removes the given host name or user name from the list allowed to
connect to the X server. Existing connections are not broken, but new
connection attempts will be denied.

+ Turns off access control; grants access to all host names and user
names, even if not on the X server list.

- Turns on access control; restricts access to only those host names and
user names on the X server list.

nothing Typing xhost without arguments prints a message indicating whether
access control is enabled and listing those allowed to connect. This is
the only option available to machines other than the controlling host.

Caution

Use care in removing hosts and users. xhost allows you to remove the
current machine, but then will not permit further connections, including
attempts to add it back. You must then reset the server in order to allow
local connections again.

14.2.6 Setting Display Awareness
When you use X Windows tools, you must assign the environment variable DISPLAY to
point to your local workstation, or wherever you would like the windows from the X
Windows application displayed. When you run an application or web server from the
command line, your server will use the current DISPLAY environment variable.

Tip

If you are running an X server on a remote machine, and displaying the
windows on your local machine, you may also have to run xhost on
your local machine to allow windows to be opened there: xhost
+remote_machine

UNIX users can change where windows are displayed with the shell commands setenv
DISPLAY or export DISPLAY.

To change the default display awareness and permissions:

1. Advanced users can modify the startup script for your application server.

For WebLogic, the startup script is located at:
<WL_HOME>/config/mydomain/startWebLogic.sh

For WebSphere, the startup script is located at:

Charting �

158 | Siebel e-Billing Manager Developer's Guide

<WS_HOME>/bin/startupServer.sh

2. Insert the following lines in your startup script, where MyServer:2.0 is the name of
your display:

DISPLAY=MyServer:2.0

export DISPLAY

/usr/openwin/bin/xhost + webservername

3. Specifying the web server name limits the X DISPLAY 2.0 to connections from the
specified server. If the web server name is omitted (xhost +), then any host machine can
connect to X on the server.

For more information on working with application server scripts, see the Siebel e-Billing
Manager Installation Guide.

14.2.7 Configuring a Headless Server for Charting
If your deployment environment does not have a physical display and X libraries, your
“headless” server will need a virtual X display like xvfb. For more information on
display devices, permissions, and awareness, see the previous sections.

Tip

for AIX

The X Windows client for AIX systems requires the X11 package, which
comes with the O/S but is not installed by default. To check whether X11
is installed, run smit and check the installed packages option for AIX
Windows X11 libraries, or look in the default directory /usr/lpp/X11.

To enable charting on a “headless” server (Solaris):

Download xvfb from
ftp://www.ferret.noaa.gov/special_request/xvfb/solaris/

Install to /usr/X11R6. xvfb will be installed in the /bin directory.

Enable X display permission on your web server with the command xhost +.

To set the current display to use the frame buffer for graphics display, set your DISPLAY
variable, for example:
DISPLAY=ella:1; export DISPLAY

This will send any graphics output going to display 1 to shared memory.

Run xvfb as a background process.
/usr/X11R6/bin/xvfb :1 -screen 0 800x600x24 &

The "&" will kill the command window and leave the task running in the background.

This procedure will create a virtual display at :1.0 with a size of 800x600 pixels and a
color depth of 24 bits. To ensure that your Java environment will draw to this display,
you must set the DISPLAY environment variable to :1.0 before invoking Java. If you
receive an environment exception, try changing the color depth or screen size.

Charting �

Siebel e-Billing Manager Developer's Guide | 159

Caution

xvfb must be installed in the directory /usr/X11R6, as it looks in this
directory for needed fonts. If these fonts are not found under
/usr/X11R6, xvfb will fail.

14.3 Composing Charts in Statements

14.3.1 About Charting in the Composer
Web designers and developers can use the e-Billing Manager Composer tool to define
data objects and custom tags in HTML templates for e-Billing Manager applications.
Defining a chart tag for a table or group will display that data object as a graphical
chart in the online statement.

The Composer GUI allows you to define only a few basic chart properties: a chart type
of Pie, the X and Y-axes for data, and the width and height of the chart. Once you have
created this “placeholder chart” in the Composer, you will customize the look and feel of
the chart by Customizing Chart Properties in the ALF or the chart properties file.

For more information on working with the Composer, see the Siebel e-Billing Manager
Administration Guide.

14.3.2 Inserting a Chart Tag in the Composer
To chart data for any table in the DDF, you can drag and drop tables into the HTML
template using the WYSIWYG or the HTML editor. You can represent a table as either a
text table or as a chart.

Tip

Tables to be charted must have at least two fields, one of which must
contain numeric values. The Composer converts any values in non-
numeric field types to numbers.

To insert a chart tag in the Composer:

1. Open an ALF in the Composer. For this example, open
NatlWireless\NW_LocSummary.alf.

2. Click the WYSIWYG tab or HTML tab.

3. Click the Definition tab in the Tree.

4. Click to open Tables in the Tree.

5. Drag and drop the table definitions into the HTML template. The table assumes
the properties of the area in which it is placed. (Drag and drop the
LocalChargeSummary table to the HTML template.)

Charting �

160 | Siebel e-Billing Manager Developer's Guide

6. Select Chart.

7. Select a field for the X-axis of the chart. (Select LocalChargeAmount.)

8. Select a field for the Y-axis of the chart. (Select LocalChargeDesc.)

9. Select the type of chart. (Select Pie.)

Caution

Pie charts are the only chart type available through the Composer
Selecting Bar or Line will still generate a Chart Type of Pie in the ALF
and the chart properties file. For how to create chart types other than pie
charts, see Customizing Chart Properties.

10. Select the width and height settings for the chart. (Leave at 400 and 300
respectively.)

11. Enter the URL path to your web application root.

12. Click OK. (The tag [E]LocalChargeSummary_0,U[/E] appears.) This chart tag
adds a placeholder for the chart to the HTML template.

Charting �

Siebel e-Billing Manager Developer's Guide | 161

Tip

Make a note of the name of the table you are charting, which appears in
the chart tag. When you publish a chart view, you must name the view
with this table name, in this example LocalChargeSummary_0.
This name will also match the name of the chart properties file created
by the Composer.

13. Delete any temporary placeholders in the HTML template, for example “XX.”

14. Click the Save Template icon .

15. Save the ALF by clicking the Save ALF icon .

Tip

When mapping a table to a template in the Composer, it is not necessary
to encapsulate the table with HTML table row <TR> and table data <TD>
(cell) tags. The table rows and table data (cells) are generated when the
data is dynamically pulled from the data file and passed to the Siebel
WebComposer object. This object formats the table rows, cells, and font
characteristics of the data based on the settings defined in the
Composer.

14.3.3 Naming Conventions for Charts
The Composer names each chart tag and properties file with the name of the table being
charted, plus an incremental counter. For example, the first chart for the table
LocalChargeSummary would generate the chart tag
[E]LocalChargeSummary_0,U[/E] and the properties file
LocalChargeSummary_0.properties.

If you created a second chart for the same table, the Composer would generate the chart
tag [E]LocalChargeSummary_1,U[/E] and the properties file
LocalChargeSummary_1.properties.

When you publish an HTML view, you will select the application name
(NatlWireless) and specify a view name (LocSummary). For each chart in your
HTML view, you must give the matching view name (LocSummary) and name the Chart
view name with the chart tag (LocalChargeSummary_0). This name allows e-Billing
Manager to match each published chart properties view with the correct chart tag in the
ALF.

Caution

The chart properties file overrides ALF attributes. Do not rename charts in
the Composer, the ALF, or the HTML template. Use the chart properties
X.Axis.Title.String and X.Axis.Title.String to define
more user-friendly names for chart titles and legends.

Charting �

162 | Siebel e-Billing Manager Developer's Guide

14.3.4 About Chart Tags in the ALF
The Composer writes the chart tag and properties into the ALF, which is an XML file. In
this illustration (created in Altova XML Spy), the ALF file for NW_LocSummary.ddf
has had two charts added, LocalLineSummary_0 and LocalChargeSummary_0.

The Composer creates many more default chart properties in the ALF than those you edit
in the Chart dialog window. You can edit these properties directly in the ALF, or override
them by editing the chart properties file. For tables of available properties and values in
the ALF and in the chart properties file, see Customizing Chart Properties.

14.3.5 About The Chart Properties File
The Composer also stores your chart definition in a chart properties file, for example
LocalLineSummary_0.properties. This file has the same name as the table data being
charted, with a counter appended. The Composer creates the properties file in the same
folder as the ALF and HTML template files. You must edit these properties directly in
the chart properties file. For tables of available properties and values in the ALF and in
the chart properties file, see Customizing Chart Properties.

Tip

You can chart the same data table in two different charts. This will increment
the counter in the chart tag and properties files, for example
LocalLineSummary_0.properties and
LocalLineSummary_1.properties.

Charting �

Siebel e-Billing Manager Developer's Guide | 163

14.3.6 About Simulating Charts
The Composer has a Simulator tool that allows you to view your sample data as
published with the current HTML template. However, Composer simulation does not
render charts. You will need to use the Chart Simulator API, which is a command-line
Java tool.

Before you simulate your chart, you will probably want to edit the ALF and properties
files to get a closer first approximation of your desired chart look and feel. You can then
simulate, edit, and simulate again until you are satisfied with the final design and layout.

For more information, see Customizing Chart Properties, which includes procedures for
Using com.edocs.app.chart.Simulator.

14.4 Customizing Chart Properties
The Composer allows you to set only a few chart properties directly. To customize the
format and design of your charts, you will edit chart properties in the ALF file itself; in
the chart properties file; and/or in the HTML template. Any of these files can be edited
with the text editor of your choice.

Caution

When you make any manual edits to ALF files, make sure to validate the
XML and check to see that it is well formed.

This chapter discusses how to customize chart properties in the ALF and in the chart
properties file. It also describes how to simulate, or preview, charts.

14.4.1 About Chart Attributes in the ALF
The ALF, or Application Logic File, is an XML document that defines business logic and
formatting for presenting statement data. An element of type ALF must contain certain
required sub-elements:
<!ELEMENT ALF (VERSION, DATA_GROUP, DDF, SWITCH, HOME, TEMPLATES, CONTENTS,
CONDITIONS, PROFILES, BUSINESSCONDITIONS, RECORDS, PAGE_ELEMENTS, composition-
specs)>

Charts are defined as a subelement of the TEMPLATES element.
<!ELEMENT TEMPLATES (Template)+>

 <!ELEMENT Template (SECTIONS, CHARTS, GROUPS, GroupTemplate*)>

 <!ATTLIST Template

The CHART element in its turn defines a list of chart attributes, listed in the Table of
ALF Chart Attributes.
 <!ELEMENT CHARTS (Chart*)>

 <!ELEMENT Chart EMPTY>

Charting �

164 | Siebel e-Billing Manager Developer's Guide

 <!ATTLIST Chart

Table of ALF Chart Attributes

Attribute Name Description Example

Name Table name in Composer LocalLineSummary_0

XField X axis of chart LocalLinePhNo

YField Y axis of chart LocalLineAmt

Type Chart Type (pie, bar, &c) Pie

HidePieLegend Set to 1 only if Type=5 (pie) 0

AddValueToLegend Displays the percentage in the chart
legend 1=yes, 0=no

0

Height Total height of the canvas in pixels 300

Width Total width of the canvas in pixels 400

HidePieLegend Toggles the display of legends for
Pie charts

BaseURL Points to the web application
associated with the chart data. This
property writes only to an existing
directory, and does not create one if
none exists.

UnixChart By default, the Composer sets
UNIXChart=Pie To create other
types of charts, set the chart type in
the properties file.

Pie

You will notice other attributes listed in the ALF. These attributes are placed in the ALF
for backward compatibility with previous versions of e-Billing Manager and have no
effect on the current version of e-Billing Manager.

The following XML example shows the default chart properties written to
NatlWireless.alf after creating a chart tag for the LocalLineSummary table.

XML Example of Chart Attributes
<TEMPLATES>

 <Template Name="Default_Template">

 <SECTIONS/>

 <CHARTS>

Charting �

Siebel e-Billing Manager Developer's Guide | 165

 <Chart Name=" _0" RecordName="LocalLineSummary"
TopTitle="Top Lable" BottomTitle="Bottom Lable" LeftTitle="" RightTitle=""
XField="LocalLinePhNo" YField="LocalLineAmt" Key="0" StackedStyle="0"
ColorScheme="0" GridLines="0" Full3D="0" AngleX="0" AngleY="0" Atribute="0"
MarkerVolume="0" Shadow="0" MultiShape="0" Dimension_3D="0" View3DDepth="0"
Type="1" CGITimeSpan="" BackgroundColor="White" ForgroundColor="Black"
Height="300" Width="400" LegendShow="1" LegendToolSize="100"
LegendToolStyle="167116800" HidePieLegend="0" SeriesColor="" LeftGap="40"
RightGap="40" ImgQuality="75" ImgSmooth="0" AddValueToLegend="0" BaseURL="/Chart"
UNIXChart="Pie"/>

 </CHARTS>

 <GROUPS/>

 </Template>

 </TEMPLATES>

14.4.2 Customizing a Chart in the ALF
Adding Percentages or Values to Labels

To display the chart with data values as labels, set AddValueToLegend=1.

To display the chart without data values, set AddValueToLegend=0.

Changing Axis Titles

By default, the Composer allows you to select from the names of table rows as titles for
the X- and Y-axes. Usually, these titles will not be suitable for presentment to end
customers. Modify the text of axis titles in the chart properties file. Do not modify titles in
the ALF as your changes will not stick.

Caution

Title values defined in the chart properties file (X.Axis.TitleString and
Y.Axis.TitleString) take precedence over those defined in the ALF
(XField and YField

Suppressing Percentage Values in Pie Charts

Pie charts (type=5) have percentage values for each slice set as the default. To suppress
these values, you will need to set the URL T/F flag in the ALF for HidePieLegend
attribute to 1. This only applies to pie charts.

14.4.3 Customizing the Chart Properties File
The chart properties file is a list of name-value pairs that control the graphic look and feel
of the chart: its type, legend, labels, axes, et cetera.

• The first and most important property is Type. This determines whether the data will
appear as a pie, line, bar, or other type of chart. Note that this property name and its
value are both case sensitive. All the remaining property names and their values are
case insensitive.

Charting �

166 | Siebel e-Billing Manager Developer's Guide

• The naming convention of a chart property indicates its scope. For example,
properties Chart.* affect the entire chart, while properties X.Axis.* affect the X-
axis only. The final element of the property name indicates the property being set.

• Color and font properties have three sub-properties each. To define a color, specify
individual RGB values between 0 and 255. To define a font, specify its name, style,
and size.

• Most display properties are Boolean (true/false); for example, whether to display axis
title or gridlines, or to display the legend vertically.

• Do not set properties that are not applicable to a chart type. For example, do not set
Axis properties when requesting a Pie chart. Do not set Bar properties while
rendering a Pie chart.

• For charts created using the Composer tool, the chart types: HiLoBar,
HorizHiLoBar, and Speedo are not available, as these charts typically require
additional data.

14.4.4 Chart Type
The primary chart property is Type, which defines the visual representation of the data.
To create a pie chart, set Type=Pie. To create a bar chart, set Type=Bar.

Caution

Both the Type property and its value are case-sensitive, unlike other
chart properties in the properties file.

This section illustrates each available chart type for this example dataset.
 X-axis label = {"Jan-Feb", "Mar-Apr", "May-Jun",

 "Jul-Aug", "Sep-Oct", "Nov-Dec"};

 DataSet for 1999 = {1000.0, 1200.0, 1400, 1900.0, 1800.0, 1700.0};

 DataSet for 2000 = {900.0, 1100.0, 1300, 1800.0, 1700.0, 1600.0};

 X-Axis = Months

 Y-Axis = Fuel Consumption;

14.4.5 Pie

Charting �

Siebel e-Billing Manager Developer's Guide | 167

Pie chart with one slice per data point.

To define pie properties:

Pie.* properties should be defined only when Type=Pie. These properties control the
aspect ratio (height and width) of the pie; the angle, size, and colors of the slices; and the
labels and legends. For a round pie, set Pie.Height and Pie.Radius based on the
height and width of the chart in pixels.

Property Default Description

PieLabelPosition =2 Defines the position of the pie slice
labels.

PieStartDegrees =0 Defines the angle of the first pie slice.

PieTextLabelsOn =false true displays pie slice name, for
example College Fund

PieValueLabelsOn =false true displays the numeric data value of
each pie slice, for example 30.5

PiePercentLabelsOn =true true displays percent of total for each
pie slice, for example 30.5%

PieLabelColor.Blue =0 RGB value of blue (0-255).

PieLabelColor.Green =0 RGB value of green (0-255).

PieLabelColor.Red =0 RGB value of red (0-255).

PieLabelFont.Name =Times New
Roman

same as java.awt.font

PieLabelFont.Style =plain same as java.awt.font

PieLabelFont.Size =12 same as java.awt.font

Pie.Height =0.5 Vertical dimension of the pie, as a
percentage of plot area height. Default
value produces a circle.

PieWidth =0.33 Horizontal dimension of the pie, as a
percentage of plot area width. Default
value produces a circle.

PieXLoc =0.5 Horizontal center of the pie, as a
percentage of plot area height.

Pie.YLoc =0.5 Vertical center of the pie, as a
percentage of plot area height.

Charting �

168 | Siebel e-Billing Manager Developer's Guide

Sample Properties Sample Chart
height=200 pixels
width=300 pixels
Pie.Height=0.5 (0.5 *
200=100)
Pie.Width=0.33 (0.33 *
300=100)
Chart.LegendVisible=true
Legend.IconGap=0.02
Legend.IconHeight=0.05
Legend.IconWidth=0.07
Legend.LabelColor.Red=123
Legend.LabelColor.Blue=126
Legend.LabelColor.Green=129
Legend.LlX=0.7
Legend.LlY=0.4
Legend.VerticalLayout=false
Pie.LabelPosition=2
Pie.PercentLabelsOn=true
Pie.StartDegrees=0
Pie.TextLabelsOn=false
Pie.ValueLabelsOn=false
Pie.XLoc=0.5
Pie.YLoc=0.5

Tip

If labels appear too crowded, you can use a legend instead. Set
Chart.Legend.Visible=true and specify values for legend height,
width, and color. Turn off pie labels by setting TextLabelsOn,
ValueLabelsOn, and PercentLabelsOn properties to false.

14.4.6 Bar

Charting �

Siebel e-Billing Manager Developer's Guide | 169

Displays each data series vertically in a single color (sometimes called a column chart).
To display horizontally, use HorizBar.To display different colors for each bar in a
series, use IndBar (horizontal)or IndColumn (vertical).

To define bar properties:

Property Default Description

Bar.Baseline =0.0 Value from which bars will ascend or descend. Default is X-axis.

Bar.ClusterWidth =0.8 width of a cluster of bars, as a percentage of the available space (1.0
means that clusters will touch; 0.5 means that clusters are as wide as
the space separating clusters).

Bar.DoClip =false true will clip bar values to the outer edge of the plot area (off by
default).

14.4.7 Line

Displays data values as lines on a graph, without value labels for each data point.

To define LineClip property:

To clip line values at the boundary of the plot area, set LineClip=true. Default is
Clip=false.

Vertical bar chart with High and Low values indicated.

14.4.8 Horizontal Bars (HorizBar)

Charting �

170 | Siebel e-Billing Manager Developer's Guide

Displays each data series horizontally in a single color. To display vertically, (sometimes
called a column chart). To display different colors for each bar in a series, use IndBar
(horizontal) or IndColumn (vertical).

14.4.9 Individually Colored Bars (IndBar)

Horizontal bar chart that uses a separate color for each bar.

14.4.10 Individually Colored Columns (IndColumn)

Vertical bar chart that uses a separate color for each bar.

14.4.11 (LabelLine)

Displays data values as lines on a graph, with user-defined labels on the X-axis.

Charting �

Siebel e-Billing Manager Developer's Guide | 171

14.4.12 Polar Chart (Polar)

A chart that looks like a radar screen. Plots only one data value, but the scale is
determined by all the data.

14.4.13 Regression (Regress)

A chart that plots OLS regression for data values.

14.4.14 Stacked Bars (StackBar)

A chart that stacks data values horizontally.

Charting �

172 | Siebel e-Billing Manager Developer's Guide

14.4.15 Stack Column Chart (StackColumn)

A chart that stacks data values vertically.

14.4.16 Stick Chart (Stick)

Chart that draws a vertical line to the Y-axis height of each data value.

14.4.17 StickBar Chart (StickBar)

Chart that draws a vertical line to the Y-axis height of each data value.

Charting �

Siebel e-Billing Manager Developer's Guide | 173

14.4.18 General Properties

Property Default Description

Chart.LegendVisible FALSE true sets legend visible. Invisible by default.

Chart.Name MyChart User-defined string for chart title.

Chart.ThreeD FALSE true displays chart with 3D drop shadows.

Chart.XAxisVisible TRUE true sets X-axis visible (default).

Chart.XOffset 0 number of pixels of offset in X direction for 3D effect
(default 0)

Chart.YAxisVisible TRUE true sets Y-axis visible (default).

Chart.YOffset 0 number of pixels of offset in Y direction for 3D effect
(default 0)

ChartQuality =1 Set to 1 for highest quality (larger) image, 0 for lower
quality (smaller) image.

14.4.19 Background Properties
Titles and sub-titles are elements of the chart background. Their color, font and string
value are controlled by the following properties:

Property Default Description

Background.Gc.FillColor.Blue 0 RGB value of blue (0-255).

Background.Gc.FillColor.Green 0 RGB value of green (0-255).

Background.Gc.FillColor.Red 0 RGB value of red (0-255).

Background.Gc.Image
<unimplem
ented>

UNIMPLEMENTED. Sets a background
image for the chart. Do not use.

Background.Gc.LineColor.Blue 0 RGB value of blue (0-255).

Background.Gc.LineColor.Green 0 RGB value of green (0-255).

Background.Gc.LineColor.Red 0 RGB value of red (0-255).

Background.Gc.LineWidth 1 Sets line width in pixels.

Background.Gc.MarkerColor.Blue 0 RGB value of blue (0-255).

Background.Gc.MarkerColor.Green 0 RGB value of green (0-255).

Background.Gc.MarkerColor.Red 0 RGB value of red (0-255).

Background.SubTitleColor.Blue 0 RGB value of blue (0-255).

Background.SubTitleColor.Green 0 RGB value of green (0-255).

Charting �

174 | Siebel e-Billing Manager Developer's Guide

Property Default Description

Background.SubTitleColor.Red 0 RGB value of red (0-255).

Background.SubTitleFont.name
Times New
Roman

Uses available values from
java.awt.font.

Background.SubTitleFont.size 12
Uses available values from
java.awt.font.

Background.SubTitleFont.style plain
Uses available values from
java.awt.font.

Background.SubTitleString null
User-defined string for the background
subtitle.

Background.TitleColor.Blue 0 RGB value of blue (0-255).

Background.TitleColor.Green 0 RGB value of green (0-255).

Background.TitleColor.Red 0 RGB value of red (0-255).

Background.TitleFont.name
Times New
Roman Uses available values from java.awt.font.

Background.TitleFont.size 12 Uses available values from java.awt.font.

Background.TitleFont.style plain Uses available values from java.awt.font.

Background.TitleString null User-defined string for the background title.

14.4.20 Plot Area Properties
The plot area is the region bounded by the axes; where the data are plotted. These
properties specify the fill color for this region, and marker and grid line settings.

Property Default Description

Plotarea.Gc.FillColor.Blue 0 RGB value of blue (0-255).

Plotarea.Gc.FillColor.Green 0 RGB value of green (0-255).

Plotarea.Gc.FillColor.Red 0 RGB value of red (0-255).

Plotarea.Gc.LineColor.Blue 0 RGB value of blue (0-255).

Plotarea.Gc.LineColor.Green 0 RGB value of green (0-255).

Plotarea.Gc.LineColor.Red 0 RGB value of red (0-255).

Plotarea.Gc.LineWidth 1 Sets line width in pixels.

Plotarea.Gc.MarkerColor.Blue 0 RGB value of blue (0-255).

Plotarea.Gc.MarkerColor.Green 0 RGB value of green (0-255).

Plotarea.Gc.MarkerColor.Red 0 RGB value of red (0-255).

Charting �

Siebel e-Billing Manager Developer's Guide | 175

14.4.21 Axis Properties
The axis properties control the location of the axis on the canvas, its major and minor
ticks, title, grid, and labels.

• Properties listed here are for the X-axis. An identical set of properties exists for the
Y-axis, Y.Axis.*.

• Axis.Start: By default, axes automatically determine a starting and ending value. By
setting this value, you can give the axis a default minimum value. If the Axis is set to
noAutoScale, this value will be used directly. Otherwise, this value may be
adjusted slightly to yield better-looking labels. For example, if you set X.AxisStart
to 0.01, the chart may decide to round the value down to 0.0 to create even axis
increments.

Property Default Description

X.Axis.AutoScale TRUE
Automatically creates X axis scale based on data
values (default).

X.Axis.AxisEnd 6
Ending value of X-axis. Set to greater than or equal
to number of data points anticipated.

X.Axis.AxisStart 0 Starting value on X-axis.

X.Axis.BarScaling TRUE
Scales bars to axis length. Set true for bar charts
(default).

X.Axis.GridGc.FillColor.Blue 0 RGB value of blue (0-255).

X.Axis.GridGc.FillColor.Green 0 RGB value of green (0-255).

X.Axis.GridGc.FillColor.Red 0 RGB value of red (0-255).

X.Axis.GridGc.LineColor.Blue 0 RGB value of blue (0-255).

X.Axis.GridGc.LineColor.Green 0 RGB value of green (0-255).

X.Axis.GridGc.LineColor.Red 0 RGB value of red (0-255).

X.Axis.GridGc.LineWidth 1 Sets line width in pixels.

X.Axis.GridGc.MarkerColor.Blue 0 RGB value of blue (0-255).

X.Axis.GridGc.MarkerColor.Green 0 RGB value of green (0-255).

X.Axis.GridGc.MarkerColor.Red 0 RGB value of red (0-255).

X.Axis.GridVis FALSE
true sets X-axis grid lines visible (invisible by
default).

X.Axis.LabelAngle 0 Sets the number of degrees to rotate X axis labels.

X.Axis.LabelColor.Blue 0 RGB value of blue (0-255).

X.Axis.LabelColor.Green 0 RGB value of green (0-255).

X.Axis.LabelColor.Red 0 RGB value of red (0-255).

Charting �

176 | Siebel e-Billing Manager Developer's Guide

Property Default Description

X.Axis.LabelFont.Name
Times
Roman Uses available values from java.awt.font.

X.Axis.LabelFont.Size 12 Uses available values from java.awt.font.

X.Axis.LabelFont.Style plain Uses available values from java.awt.font.

X.Axis.LabelFormat null
Defines data format for labels, for example first three
letters of month name.

X.Axis.LabelPrecision 2
Sets the number of digits past the decimal point to
display X axis labels.

X.Axis.LabelVis TRUE true sets X axis labels visible (default).

X.Axis.LineGc.FillColor.Blue 0 RGB value of blue (0-255).

X.Axis.LineGc.FillColor.Green 0 RGB value of green (0-255).

X.Axis.LineGc.FillColor.Red 0 RGB value of red (0-255).

X.Axis.LineGc.LineColor.Blue 0 RGB value of blue (0-255).

X.Axis.LineGc.LineColor.Green 0 RGB value of green (0-255).

X.Axis.LineGc.LineColor.Red 0 RGB value of red (0-255).

X.Axis.LineGc.LineWidth 1 Sets line width in pixels.

X.Axis.LineGc.MarkerColor.Blue 0 RGB value of blue (0-255).

X.Axis.LineGc.MarkerColor.Green 0 RGB value of green (0-255).

X.Axis.LineGc.MarkerColor.Red 0 RGB value of red (0-255).

X.Axis.LineVis TRUE true sets X axis lines visible (default).

X.Axis.LogScaling FALSE true sets X axis to use log scaling; linear by default.

X.Axis.MajTickLength 5 Sets length of X axis major ticks in pixels.

X.Axis.MajTickVis TRUE Sets X axis major ticks visible (default).

X.Axis.MinTickLength 2 Sets length of X axis minor ticks in pixels.

X.Axis.MinTickVis FALSE Sets X axis minor ticks visible (default).

X.Axis.NumGrids 5
Sets the number of grid lines on the X axis to set to
noAutoScale.

X.Axis.NumLabels 5
Sets the number of labels on the X axis to set to
noAutoScale.

X.Axis.NumMajTicks 5
Sets the number of major ticks on the X axis to set to
noAutoScale.

X.Axis.NumMinTicks 10
Sets the number of minor ticks on the X axis to set to
noAutoScale.

X.Axis.Plotarea.LlX 0.2 Shifts the horizontal position of the axis start on the

Charting �

Siebel e-Billing Manager Developer's Guide | 177

Property Default Description
canvas. Negative values shift left, positive shift right.

X.Axis.Plotarea.LlY 0.2
Shifts the vertical position of the axis start on the
canvas. Negative values shift down, positive shift up.

X.Axis.Plotarea.UrX 0.8
Sets the upper right X location of the plot area as a
double ranging from 0 to 1.

X.Axis.Plotarea.UrY 0.8
Sets the upper right X location of the plot area as a
double ranging from 0 to 1.

X.Axis.Side 1

X.Axis.TickGc.FillColor.Blue 0 RGB value of blue (0-255).

X.Axis.TickGc.FillColor.Green 0 RGB value of green (0-255).

X.Axis.TickGc.FillColor.Red 0 RGB value of red (0-255).

X.Axis.TickGc.LineColor.Blue 0 RGB value of blue (0-255).

X.Axis.TickGc.LineColor.Green 0 RGB value of green (0-255).

X.Axis.TickGc.LineColor.Red 0 RGB value of red (0-255).

X.Axis.TickGc.LineWidth 1 Sets line width in pixels.

X.Axis.TickGc.MarkerColor.Blue 0 RGB value of blue (0-255).

X.Axis.TickGc.MarkerColor.Green 0 RGB value of green (0-255).

X.Axis.TickGc.MarkerColor.Red 0 RGB value of red (0-255).

X.Axis.TitleColor.Blue 0 RGB value of blue (0-255).

X.Axis.TitleColor.Green 0 RGB value of green (0-255).

X.Axis.TitleColor.Red 0 RGB value of red (0-255).

X.Axis.TitleFont.Family

Times
New
Roman Uses available values from java.awt.font.

X.Axis.TitleFont.Name

Times
New
Roman Uses available values from java.awt.font.

X.Axis.TitleFont.Size 12 Uses available values from java.awt.font.

X.Axis.TitleFont.Style plain Uses available values from java.awt.font.

X.Axis.TitleString User-defined string for X axis title.

X.Axis.UseDisplayList FALSE
UNIMPLEMENTED. Retrieves objects using mouse
click events. Do not use.

Charting �

178 | Siebel e-Billing Manager Developer's Guide

14.4.22 Legend Properties

Property Default Description

Legend.BackgroundGC.Gc.FillColor.Blue 0 RGB value of blue (0-255).

Legend.BackgroundGC.Gc.FillColor.Green 0 RGB value of green (0-255).

Legend.BackgroundGC.Gc.FillColor.Red 0 RGB value of red (0-255).

Legend.BackgroundGC.Gc.Image

<unimpl
emented
>

Sets a background image for the legend.
Do not use.

Legend.BackgroundGC.Gc.LineColor.Blue 0 RGB value of blue (0-255).

Legend.BackgroundGC.Gc.LineColor.Green 0 RGB value of green (0-255).

Legend.BackgroundGC.Gc.LineColor.Red 0 RGB value of red (0-255).

Legend.BackgroundGC.Gc.LineWidth 1 Sets line width in pixels.

Legend.BackgroundGC.Gc.MarkerColor.Blue 0 RGB value of blue (0-255).

Legend.BackgroundGC.Gc.MarkerColor.Green 0 RGB value of green (0-255).

Legend.BackgroundGC.Gc.MarkerColor.Red 0 RGB value of red (0-255).

Legend.BackgroundVisible TRUE
Set false to avoid displaying background
in chart legend.

Legend.IconGap 0.02 separation between rows of the legend.

Legend.IconHeight 0.05
Legend icon height 0 < k < 1.0, where
1.0 = full height of canvas

Legend.IconWidth 0.07
Legend icon width 0 < k < 1.0, where
1.0 = full width of canvas

Legend.LabelColor.Blue 0 RGB value of blue (0-255).

Legend.LabelColor.Green 0 RGB value of green (0-255).

Legend.LabelColor.Red 0 RGB value of red (0-255).

Legend.LabelFont.Name

Times
New
Roman

Uses available values from
java.awt.font.

Legend.LabelFont.Size 12
Uses available values from
java.awt.font.

Legend.LabelFont.Style plain
Uses available values from
java.awt.font.

Legend.LlX 0
lower x left corner 0 < y < 1.0, 1.0 = full
width

Legend.LlY 0 lower y left corner 0 < y < 1.0, 1.0 = full

Charting �

Siebel e-Billing Manager Developer's Guide | 179

Property Default Description
height

Legend.UrX 0
upper x right corner 0 < y < 1.0, 1.0 =
full width

Legend.UrY 0
upper y right corner 0 < y < 1.0, 1.0 =
full height

Legend.VerticalLayout FALSE
Set true to display legend at side of
chart, false to display below chart.

14.4.23 Favorite Colors Properties
You can specify favorite colors as RGB values, to fill pie slices, bars, and other data
values. For example, you may want to match the chart colors to the color scheme of the
embedding page. Favorite colors are specified using the prefix Favorite.1.Color,
where 1 is the first color in the series.

• Number: Favorite colors become active when the number of colors defined is greater
than or equal to the number of data points displayed (unless the for individual colors).
For example, if a Pie has six slices but only five favorite colors specified, the favorite
colors will not be used. This is because there is no way to guess which colors would
go well with those already specified.

• Order: The favorite colors are used in the order specified. Define each color to be
distinguishable from adjacent colors for contrast and readability.

This example defines two favorite colors:
Favorite.1.Color.Red=201
Favorite.1.Color.Blue=92
Favorite.1.Color.Green=132

Favorite.2.Color.Red=51
Favorite.2.Color.Blue=52
Favorite.2.Color.Green=53

14.4.24 Default Chart Properties
The following properties are the default values created in the chart properties file. For a
full listing, see Appendix A: Default Chart Properties and ALF Attributes.
Type=Pie

Legend.BackgroundVisible=true

Legend.IconGap=0.02

Legend.IconHeight=0.05

Legend.IconWidth=0.07

Legend.LabelColor.Red=0

Legend.LabelColor.Blue=0

Legend.LabelColor.Green=0

Legend.LabelFont.Name=Times New Roman

Charting �

180 | Siebel e-Billing Manager Developer's Guide

Legend.LabelFont.Style=plain

Legend.LabelFont.Size=12

Legend.LlX=0.0

Legend.LlY=0.0

Legend.UrX=0.0

Legend.UrY=0.0

Legend.VerticalLayout=false

X.Axis.CullingLabel=false;

X.Axis.AutoScale=true

X.Axis.AxisEnd=6.0

X.Axis.AxisStart=0.0

X.Axis.BarScaling=true

X.Axis.GridVis=false

X.Axis.LabelAngle=0

X.Axis.LabelColor.Red=0

X.Axis.LabelColor.Blue=0

X.Axis.LabelColor.Green=0

X.Axis.LabelFont.Name=Times New Roman

X.Axis.LabelFont.Style=plain

X.Axis.LabelFont.Size=12

X.Axis.LabelFormat=null

X.Axis.LabelPrecision=2

X.Axis.LabelVis=true

X.Axis.LineVis=true

X.Axis.LogScaling=false

X.Axis.MajTickLength=5

X.Axis.MajTickVis=true

X.Axis.MinTickLength=2

X.Axis.MinTickVis=false

X.Axis.NumGrids=5

X.Axis.NumLabels=5

X.Axis.NumMajTicks=5

X.Axis.NumMinTicks=10

X.Axis.Plotarea.LlX=0.2

X.Axis.Plotarea.LlY=0.2

X.Axis.Plotarea.UrX=0.8

X.Axis.Plotarea.UrY=0.8

X.Axis.TitleRotated=true

X.Axis.TitleColor.Red=0

X.Axis.TitleColor.Blue=0

X.Axis.TitleColor.Green=0

Charting �

Siebel e-Billing Manager Developer's Guide | 181

X.Axis.TitleFont.Family=TimesNewRoman

X.Axis.TitleFont.Name=Times New Roman

X.Axis.TitleFont.Style=plain

X.Axis.TitleFont.Size=12

X.Axis.TitleString=RemembertosetXaxistitle!

X.Axis.UseDisplayList=false

Y.Axis.CullingLabel=false;

Y.Axis.AutoScale=true

Y.Axis.AxisEnd=6.0

Y.Axis.AxisStart=0.0

Y.Axis.BarScaling=true

Y.Axis.GridVis=false

Y.Axis.LabelAngle=0

Y.Axis.LabelColor.Red=0

Y.Axis.LabelColor.Blue=0

Y.Axis.LabelColor.Green=0

Y.Axis.LabelFont.Name=Times New Roman

Y.Axis.LabelFont.Style=plain

Y.Axis.LabelFont.Size=12

Y.Axis.LabelFormat=null

Y.Axis.LabelPrecision=2

Y.Axis.LabelVis=true

Y.Axis.LineVis=true

Y.Axis.LogScaling=false

Y.Axis.MajTickLength=5

Y.Axis.MajTickVis=true

Y.Axis.MinTickLength=2

Y.Axis.MinTickVis=false

Y.Axis.NumGrids=5

Y.Axis.NumLabels=5

Y.Axis.NumMajTicks=5

Y.Axis.NumMinTicks=10

Y.Axis.Plotarea.LlX=0.2

Y.Axis.Plotarea.LlY=0.2

Y.Axis.Plotarea.UrX=0.8

Y.Axis.Plotarea.UrY=0.8

X.Axis.TitleRotated=true

Y.Axis.TitleColor.Red=0

Y.Axis.TitleColor.Blue=0

Y.Axis.TitleColor.Green=0

Y.Axis.TitleFont.Family=TimesNewRoman

Charting �

182 | Siebel e-Billing Manager Developer's Guide

Y.Axis.TitleFont.Name=Times New Roman

Y.Axis.TitleFont.Style=plain

Y.Axis.TitleFont.Size=12

Y.Axis.TitleString=RemembertosetXaxistitle!

Y.Axis.UseDisplayList=false

Pie.LabelColor.Red=0

Pie.LabelColor.Blue=0

Pie.LabelColor.Green=0

Pie.LabelFont.Name=Times New Roman

Pie.LabelFont.Style=plain

PieLabelFont.Size=12

Pie.LabelPosition=2

Pie.PercentLabelsOn=true

Pie.StartDegrees=0

Pie.TextLabelsOn=false

Pie.ValueLabelsOn=false

Pie.Height=0.6

Pie.Width=0.6

Pie.XLoc=0.5

Pie.YLoc=0.5

Chart.LegendVisible=false

Chart.Name=MyChart

Chart.ThreeD=false

Chart.XOffset=0

Chart.YOffset=0

Chart.YAxisVisible=true

Chart.XAxisVisible=true

Chart.Quality=1.0

14.4.25 Customizing Default Properties
The default settings for the chart properties file are stored in the text file
ChartDefaults.properties inside the com.edocs.app.chart directory of
edx_servlet.jar. If you are creating a series if similar charts, you may find it
convenient to modify the default properties as a base template.

The eaSample web application contains two instances of edx_servlet.jar: one in
the WEB-INF/lib directory of the EAR file ear-easample-ear and another in the
WEB-INF/lib directory of WAR file war-easample.war. You can edit either instance
of ChartDefaults.properties as long as you add the edited version of
edx_servlet.jar to your classpath.

Charting �

Siebel e-Billing Manager Developer's Guide | 183

Unjar the EAR and WAR archive files, and then unjar edx_servlet.jar, to find
ChartDefaults.properties in each archive. For example, the path to the default
properties file in the WAR file for a default installation of e-Billing Manager (WebLogic
for Windows 2000) is:
C:/EDCSbd/samples/eaSample/J2EEApps/weblogic/ear-easample/war-easample/WEB-
INF/lib/edx_servlet/ com/edocs/app/chart/ChartDefaults.properties

Open ChartDefaults.properties with a text editor and make any desired changes
to the default properties; for example, change the default if you are creating a series of
bar charts. Jar up the servlet, WAR, and EAR files, and add your modified
edx_servlet.jar to your classpath. Now, when you create a chart in the Composer,
the default chart properties should reflect your new settings.

14.4.26 Previewing Charts with com.edocs.app.chart.Simulator
The Chart Simulator API is a simple command line interface for
com.edocs.app.chart.ChartClient.java. The API chart.Simulator
requires a Java environment with javachart.jar, edx_servlet.jar and
edx_client.jar in the default classpath. These JAR files are installed with e-Billing
Manager, but you must add them to your classpath to use the Simulator.

Setting the Display Environment for Simulation

You can control where your charts are simulated by setting your display awareness to
either your production or deployment server. For simple previews to check if data is
being correctly retrieved, a local simulation on your production workstation may be fine.
However, remember that the appearance of your chart is controlled by the deployment
server. This server may have different fonts available or be running a virtual display with
different resolution or other graphics settings. Always preview your charts in a
deployment environment before finalizing your chart properties and ALF.

For more information on display environments, including display devices, permissions,
and awareness, see Configuring Charting For Your Server.

Formatting Data Strings for Chart Data

The Charting API passes chart data directly as one or more encoded data strings, for
example:
"Series1*F*30*apple*56.8*orange*12.5*banana"

Enclose the data string in quotes, and separate each value with an asterisk (*). The first
value in the string must be the data series name. The second is a T/F value that
determines whether to label data values with the pie slice percentage (T=labels, F=no
labels).

All remaining values in the string must be value/name pairs, where the first item in each
pair is the numeric data value and the second item is its label name.

Charting �

184 | Siebel e-Billing Manager Developer's Guide

Tip

Remember to put values first, then labels (the opposite of a standard
name/value pair).

The Simulator also takes parameters for the height and width of the chart canvas. If you
find that labels or legends are clipped or cut off, adjust your chart canvas and properties
file settings to accommodate the maximum length of legends and other objects.

To simulate a chart:

1. Edit your chart properties file.

2. Add javachart.jar, edx_servlet.jar and edx_client.jar to your classpath.

3. (optional) Create a text file with your formatted data strings, which you can then
copy and paste into the command.

4. Run the Simulator from the command line.
java com.edocs.app.chart.Simulator propsFileName imgOutputFilename.jpg width
height encodedDataString1 encodedDataString2

5. View the generated image file in your browser. By default, the generated image is
saved in the directory containing the ALF and properties file.

The Composer can simulate only charts containing a single data string. To display
multiple datasets, you must customize the charting servlet to extract and present data as
multiple strings. For more information, see your Siebel Professional Services
representative.

Parameters

Parameter Description
propsFileName Chart properties file

imgOutputFilename File name for image output. JPEG format required

Width Width of chart canvas in pixels.

Height Height of chart canvas in pixels.

encodedDataString A single data string enclosed in quotes and separated by
asterisks. See Formatting Data Strings for the Simulator.

Charting �

Siebel e-Billing Manager Developer's Guide | 185

14.5 Publishing Charts
The e-Billing Manager application server compiles charts dynamically at web time.
When an HTML template contains a chart tag, the web application requests the table
from the e-Billing Manager database and posts an HTTP request to the charting servlet.
The servlet uses the chart properties file published for that version set to format the data
from the table, and renders the chart as a JPEG embedded in the dynamic HTML.

14.5.1 Before Publishing Charts
To prepare your application for chart viewing:

1. Create an application, in this example NatlWireless.

2. Create, configure, and run an Indexer job to index your dataset.

3. Publish an HTML web view, in this example

14.5.2 Publishing a Chart View
You must publish a CHART view for each individual chart in an online statement. Chart
views merge the DDF and ALF information from the specified HTML web view with the
properties you defined for the chart, and embed the chart data in the Chart URL published
by the HTML web view.

Caution

If you publish an HTML web view for an ALF with a chart tag, you must
publish a CHART view for that chart before it will display. If there is no
chart view available, the HTML web view will display only a placeholder
for the chart graphic.

Charting �

186 | Siebel e-Billing Manager Developer's Guide

To publish a Chart view:

1. In the Command Center, select Publisher from the navigation bar. A new Publisher
window appears.

2. Select Create from the navigation bar. The Create a version set for CHART window
appears.

3. Select the name of your application from the dropdown list, for example,
NatlWireless. The view type is set to CHART.

4. Enter the View Name associated with this chart. This view name must be the name of
the chart, for example LocChargeSummary_0.

5. Enter the path to the chart properties file, for example
C:/EDCSbd/samples/NatlWireless/LocChargeSummary_0.properties

This file must have an extension of *.properties.

6. If you have modified the view name since creating your ALF, update the ALF to
point to the correct web view for your application,

7. Click Submit to publish your chart view.

14.5.3 Viewing Charts in Statements
To view charts in statements:

1. Index your statement data with an Indexer job.

2. Publish at least one HTML web view with an ALF containing chart tag(s).

3. Publish a Chart view for each chart.

4. Browse your web application and enroll one or more customers.

5. Log in as the customer whose statement you wish to view and browse the statement
with the chart(s).

14.6 Designing Custom Charts with the Charting
Servlet

The previous sections describe how to use the Siebel charting servlet to compose and
publish charts in online statements. The com.edocs.app.chart API allows you to
create your own charting servlets to generate customized charts. Your servlet will be
creating an instance of the ChartClient class.

Charting �

Siebel e-Billing Manager Developer's Guide | 187

Caution

Ensure that you set servlet response type appropriately before sending
any output to the servlet. The response object of the servlet is a required
input to the generateChart method of the ChartClient class,
which streams the chart as a jpeg. Always set
response.setContentType("image/jpeg") in custom
servlets.

Browse to the charting servlet with a URL of this syntax for your application:

http://hostname:portNum/eStatements/Chart?app=Charter\
&ddn=MyApp&viewName=MyView&W=200&H=300\ &data=encodedData.

ChartData is a constructor that takes an encoded data string. A chart may have one or
more such encoded data sets.

The width and height parameters are not present in the properties file, since the
dimensions of the canvas are not actual properties of the chart.

Tip

Remember to register any custom servlets you create in the web.xml file
for your web application.

14.6.1 Customizing Charter.java
This topic presents the complete code for the default charting servlet that ships with e-
Billing Manager, with comments on where and how to begin customization.

To customize your servlet, you will need to import the following packages, as well as any
other packages you intend to use. Package chart is the Charting API. Class App is the
base class for all e-Billing Manager application servlets, and class LoginRequired is
the interface which signals that an account is required before access should be granted.
package com.edocs.app.chart;

import java.io.*;

import java.util.*;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.Frame;

import javax.servlet.*;

import javax.servlet.http.*;

import com.edocs.app.App;

import com.edocs.app.LoginRequired;

Your custom servlet can extend the base servlet class with a new instance of the
Charter class, which contains the getDataSets method that requests the ChartData
object. This class takes the response from the client browser and sends it to the
application server, which in turn fulfills the servlet request and passes a chart URL back
to the browser. You may customize a chart servlet to obtain its data from another source,
or in a different format.

Charting �

188 | Siebel e-Billing Manager Developer's Guide

public class Charter extends App implements LoginRequired {

 static private boolean DEBUG = Constants.DEBUG;

 public void doPost(HttpServletRequest request,

 HttpServletResponse response) {

The charting engine returns images in JPEG format. You must set the content type of
your servlet to JPEG for the output stream.
 try {

response.setContentType("image/jpeg");

ServletOutputStream out = response.getOutputStream();

You will then request the parameters from the DDN (data source) and the CHART view
name (ALF for presentation logic and properties from the chart properties file). Together,
these parameters identify the file to retrieve from the versioning system and determine
the chart properties. If you have multiple charts in a single statement, create a
String ddn = request.getParameter("ddn");

String viewName = request.getParameter("viewName");

Requesting the width and height parameters will determine the canvas size of your chart.
You set these parameters in the chart properties file.
int width = Integer.parseInt(request.getParameter("W"));

int height = Integer.parseInt(request.getParameter("H"));

You then call a Java Properties object that loads the specified chart properties, DDN, and
view name with the getChartPropsStream method of the PublisherWrapper
class. This links the data source and graphic elements of the chart.
Properties chartProps = new Properties();

chartProps.load(PublisherWrapper.getChartPropsStream(ddn,viewName));

The ChartData class constructs the datasets for the chart from the encoded data passed
in the chart URL. For details of this constructor, which has five signatures, see Class
ChartData in Application Programming Interfaces (APIs) for Charting.
 ChartData[] dataSets = getDataSets(request);

Tip

You can insert a custom error message here, for example to advise of
too much data in the chart URL. See Example: Custom Error Message.

Your servlet now creates a new ChartClient to hold the chart properties and the
dimensions of the canvas, and generates the chart as an out object for the servlet
response, catching any exceptions.
 ChartClient cl = new ChartClient(chartProps, width, height);

 cl.generateChart(out, dataSets);

 } catch (Exception e) {

 e.printStackTrace();

 doForwardException(request, response, e);

 }

Charting �

Siebel e-Billing Manager Developer's Guide | 189

 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 {

 doPost(request, response);

 }

ChartData gets the encoded data string from the chart object in the ALF. Any data
properties specified in the chart properties file will override these ALF attributes.
 static private ChartData[] getDataSets(HttpServletRequest request)

 throws ChartException {

 String[] dataStrs = request.getParameterValues("data");

 int num = dataStrs.length;

 ChartData[] dataSets = new ChartData[num];

 for (int i = 0; i < num; i++) {

 dataSets[i] = new ChartData(dataStrs[i]);

 if (DEBUG) {

 System.out.println("DataSet(" + i + ") : " + dataSets[i]);

 }

 }

 return dataSets;

 }

}

Example: Custom Error Message
chartProps.load(PublisherCommon.getChartPropsStream(ddn,viewName));

try {

ChartData[] dataSets = getDataSets(request);

} catch (Exception be) {

String msg = e.getMessage(); if (msg.indexOf("data format error")) { // then
perhaps our URL is too long // get the sorry too much charting data // open the
gif tooMuch.gif // write it to the output stream return; } else { throw be; }

}

ChartClient cl = new ChartClient(chartProps, width, height);
cl.generateChart(out, dataSets);

 } catch (Exception e) { e.printStackTrace(); doForwardException(request,
response, e); } }

Charting �

190 | Siebel e-Billing Manager Developer's Guide

14.7 Troubleshooting Charts

14.7.1 Charting Checklist
• Are xwindow displays enabled on the web-server machine? In an x-term window or a

terminal that knows a notion of "DISPLAY" enter "echo $DISPLAY." If you get a
non-null string, run xhost + on the machine indicated in the display variable.

• Does your machine have a physical display device or is it headless? A machine
without a physical display requires an x-virtual frame buffer, such as xvfb.

• Does your web/application server know where to send its x-displays? Make sure the
DISPLAY environment variable is correctly set, either in the start script for your
web/application server or in the xterm for your start command.

• Is xhost running? Ensure you have not closed the xterm which issued "xhost + " unless
you have "xhost +" as part of your server startup script.

• Have you published a CHART view in the e-Billing Manager Publisher? A Chart
view requires a chart properties file; make sure you have published the one associated
with your e-Billing Manager application.

• Does the BaseURL charting attribute in the ALF file match your web application
name? This attribute points the servlet to the correct CHART view. Make sure they
match.

• Can you see charts in statements? If not, repeat the steps above. If you are still having
trouble:

• How long is your chart URL? For large datasets, you may need to customize the
charting servlet.

• Does your data contain special characters? The chart servlet may not handle these
characters correctly. You will need to customize the charting servlet.

14.7.2 Common Problems and Known Issues
AIX Does Not Display Charts

The X Windows client for AIX systems requires the X11 package, which comes with the
O/S but is not installed by default. To check whether X11 is installed, run smit and
check the installed packages option for AIX Windows X11 libraries, or look in the
default directory /usr/lpp/X11.

Pie Chart Displays When Another Chart Type Is Selected

The Composer’s chart dialog box offers three, , and Pie. However, the Composer will
create only a Pie chart by default. To change the chart type and display an example, edit
the chart properties file (not the ALF) and simulate the chart with the Simulator API.

Charting �

Siebel e-Billing Manager Developer's Guide | 191

Small Segments Collide In Pie Charts

Remove the % values that appear close to the pie, by setting chart properties
Pie.PercentLabelsOn=false

Pie.TextLabelsOn=false

UNDO Button In Composer Does Not Affect ALF

Inserting a chart modifies both the ALF and the HTML template, enabling the UNDO
button. If you then click UNDO, only the HTML template changes are reversed—not
those in the ALF. This can cause the Composer to fail when processing a section of a
statement. Use caution in using the UNDO button to reverse changes.

Chart Quality Is Poor

The default chart property is Chart.Quality=.75. For highest quality charts, set chart
property Chart.Quality=1.

ALF Axis Titles Overwritten By Properties File

Title values defined in the chart properties file (X.Axis.TitleString and
Y.Axis.TitleString) take precedence over those defined in the ALF (XField and
YField).

Changing Addtolegend In ALF Does Not Change Chart URL

Changing the value in the ALF for the property AddValuetoLegend does not change
the URL "T"/"F" property. Instead, it actually passes the value as part of the legend. In
order to change the URL "T"/"F" property through the ALF file you will need to set the
HidePieLegend property to 1. This will only work if the Type property is set to 5 for
pie.

Title Fonts Do Not Appear Bold

Setting font properties, for example Y.Axis.TitleFont.Style=Bold, on a headless
server requires that fonts be available and requires a virtual display, or virtual frame
buffer, such as xvfb. To display fonts and styles correctly, see Display Devices and
xvfb and Configuring a Headless Server for Charting.

Bold Italic Does Not Display Correctly

Setting fonts to both bold and italic in the chart properties file may cause text to display
as a bitmap. Charting implements fonts through java.awt.font, and the bold italic
combination is handled as a bitmap of java.awt.Font.BOLD and java.awt.ITALIC.

Chart Servlet Suppresses Commas And Spaces

In a legend label, the charting servlet interprets "July 25, 2002" as "July252002.” The
workaround is to reformat the data at the JSP layer, but this does not work for web views.

Charting �

192 | Siebel e-Billing Manager Developer's Guide

14.8 Application Programming Interfaces (APIs) for
Charting

14.8.1 Package com.edocs.app.chart Description
Contains classes, constructors, and methods to render and publish charts as JPEG
graphics and to extend the charting servlet (an instance of the Charter class).

14.8.2 Class ChartClient
Contains a constructor and methods to draw a chart as a JPEG graphic.

Available Chart Types

Type Description

Pie Pie chart with one slice per data point.

Bar Displays each data series vertically in a single color (sometimes called a
column chart). To display horizontally, use HorizBar To display
different colors for each bar use IndBar (horizontal) or IndColumn
(vertical).

Line Displays data values as lines on a graph, without value labels for each data
point.

HiLoBar Vertical bar chart with High and Low values indicated.

HorizBar Displays each data series horizontally in a single color. To display
vertically, use Bar (sometimes called a column chart). To display different
colors for each bar, use IndBar (horizontal) or IndColumn (vertical).

HorizHiLoBar Horizontal bar chart with High and Low values indicated.

IndBar Horizontal bar chart that uses separate color for each bar.

IndColumn Vertical bar chart that uses a separate color for each bar.

LabelLine Displays data values as lines on a graph, with user-defined labels on the X-
axis.

Polar A chart that looks like a radar screen. Plots only one data value, but the
scale is determined by all the data.

Regress Subclass of Line chart that plots OLS regression for data values.

Speedo A chart that looks like a gauge or speedometer, similar to Polar.

StackBar Bar chart that stacks data values horizontally.

StackColumn Bar chart that stacks data values vertically.

Stick Chart that draws a vertical line to the Y-axis height of each data value.

StickBar Chart that draws a vertical line to the Y-axis height of each data value.

Charting �

Siebel e-Billing Manager Developer's Guide | 193

Class Diagram

ChartClient

- DEBUG: boolean = Constants
~ chart: Chart = null
~ favoriteColors: Hashtable = null
~ width: int
~ height: int
~ chartType: String = null
~ chartQuality: float

+ ChartClient(Properties, int, int)
+ generateChart(OutputStream, ChartData[]) : void
- setData(ChartData, int) : void
- useFavoriteColors(int) : void
- getFavColor(int) : Color

Constructors
chartClient(java.util.Properties properties, int canvasWidth, int canvasHeight)
throws ChartException

The ChartClient constructor takes a java properties object that specifies the default
properties for the chart, and integers that specify the dimensions of the canvas in pixels.

Parameters

Parameter Description

properties Default property list. See java.util.Properties.

canvasWidth Integer specifying the chart width in pixels.

canvasHeight Integer specifying the chart height in pixels.

Methods
generateChart(java.io.OutputStream out, ChartData[] dataSets) throws
ChartException

generateChart is invoked to render the chart as a graphic.

Parameters

Parameter Description

out Defines an output stream, for example to generate the output
for a servlet response object.

data String specifying the data to be charted.

Charting �

194 | Siebel e-Billing Manager Developer's Guide

14.8.3 Class ChartData
Contains a constructor and methods to create the ChartData object required by the
ChartClient. Also contains get and set methods for constructor parameters. For
details, see the Siebel e-Billing Manager API Specification.

Class Diagram

ChartData

- DEBUG: boolean = Constants
~ XAxisTitle: String = null
~ YAxisTitle: String = null
~ labels: String[] = null
~ xValues: double[] = null
~ yValues: double[] = null
~ highValues: double[] = null
~ lowValues: double[] = null
~ closeValues: double[] = null
~ seriesName: String = null

+ ChartData(String[], double[])
+ ChartData(String[], double[], String, String)
+ ChartData(String[], double[], String, String, String)
+ ChartData(String)
- addPercentToLabel(double[], ArrayList) : String[]
+ ChartData(String, double[], double[], double[], double, String, String)
+ getLabels() : String[]
+ getXValues() : double[]
+ getCloseValues() : double[]
+ getHighValues() : double[]
+ getLowValues() : double[]
+ getYValues() : double[]
+ setXAxisTitle(String) : void
+ getXAxisTitle() : String
+ setYAxisTitle(String) : void
+ getYAxisTitle() : String
+ getSeriesName() : String
+ toString() : String
- doubleArray2String(String, double[]) : String
- stringArray2String(String, String[]) : String

Constructors

Five signatures of ChartData construct the ChartData object to pass to the
ChartClient.
ChartData(java.lang.String URLencodedDataStr)

Constructs an object containing an encoded URL in an HTTP Get request, or any raw
data string.

Charting �

Siebel e-Billing Manager Developer's Guide | 195

ChartData(java.lang.String[] theLabels, double[] vals)

Constructs an object containing chart labels and name-value pairs of data values, as from
a properties file.

ChartData(java.lang.String[] theLabels, double[] vals,
java.lang.String xTitle, java.lang.String yTitle)

Constructs an object containing chart labels, name-value pairs of data values, and axis
titles, as from a properties file. Use when charting a single data series.
ChartData(java.lang.String[] theLabels, double[] vals, java.lang.String xTitle,
java.lang.String yTitle, java.lang.String dataSeriesName)

Constructs an object containing chart labels, name-value pairs of data values, axis titles,
and the name of each data series, as from a properties file. Use when charting multiple
data series, as for stacked lines or bars.
ChartData(java.lang.String dataSeriesName, double[] xVals, double[] hiVals,
double[] loVals, double[] closeVals, java.lang.String xTitle, java.lang.String
yTitle)

Constructs an object containing parameters for high-low bar charts.

Parameters

Parameter Description

closeVals[] Double parameter for closing values in a high-low bar chart.

dataSeriesName Display name for the data series being charted. Use when
displaying multiple data series in a single chart.

hiVals Double parameter for high values in a high-low bar chart.

loVals Double parameter for low values in a high-low bar chart.

theLabels String array containing values for data labels.

URLencodedDataStr Chart data passed as a string. For syntax, see Formatting Data
Strings for the Simulator.

vals Array of doubles, the value to chart

xTitle Display name for the X-Axis.

xVals double[]

yTitle Display name for the Y-Axis.

14.8.4 Class Charter
Servlet class for the charting servlet. Contains the getDataSets method that requests
the ChartData object. Implements com.edocs.app.LoginRequired,
javax.servlet.Servlet, and extends com.edocs.app.App. Also contains
doPost and doGet methods that override those in class com.edocs.app.App. For
details, see the Siebel e-Billing Manager API Specification.

Charting �

196 | Siebel e-Billing Manager Developer's Guide

Class Diagram

App
LoginRequired

Charter

- DEBUG: boolean = Constants

+ doPost(HttpServletRequest, HttpServletResponse) : void
+ doGet(HttpServletRequest, HttpServletResponse) : void
- getDataSets(HttpServletRequest) : ChartData[]

14.8.5 Class Constants
Contains a constructor and default fields for defining custom chart parameters. For
details, see the Siebel e-Billing Manager API Specification.

Class Diagram

Constants
{leaf}

+ CHART_DEBUG_FLAG: String = {}
+ DEBUG: boolean = Boolean
+ chartTypes: String[] = {}
+ AxisTypes: String[] = {}
+ delimMethod: String = "&"
+ delimProp: String = "."
+ delimValue: String = "*"
+ delimLength: int = delimMethod
~ methodValueSeparator: String = "="
~ WIDTH: String = "Width"
~ HEIGHT: String = "Height"
~ TYPE: String = "Type"
~ chartDefaults: Properties = new Properties()

+ getDefault(String) : String

14.8.6 Class PublisherCommon
Contains a constructor, fields, and methods to retrieve the root directory and web views
for the chart from the Publisher. For details, see the Siebel e-Billing Manager API
Specification.

Charting �

Siebel e-Billing Manager Developer's Guide | 197

Class Diagram

PublisherCommon

+ WebRoot: String = getRootDir
+ APPRoot: String = getRootDir
+ WEB_VIEW_TYPES: String[] = {}

- getRootDir(String) : String
+ getResource(String, String) : byte[]
+ getVersionSet(String, String, String) : IVersionSetReader
+ timeDisplayPublisher(long) : String

14.8.7 Class PublisherWrapper
Contains a constructor, fields, and methods to retrieve chart properties as an input stream.
For details, see the Siebel e-Billing Manager API Specification.

Class Diagram

PublisherWrapper

+ CHART_TYPE: String = "CHART"
+ CHART_PATH: String = "CHART_PATH"
+ CHART_PROPS_EXT: String = ".properties"

+ getChartPropsStream(String, String) : ByteArrayInputStream

14.8.8 Class Simulator
Constructor and methods that behave like a shell command to create a JPEG image of the
specified data and chart properties. Extends class java.awt.Frame. For usage, see
Previewing Charts with com.edocs.app.chart.Simulator. For details, see the Siebel e-
Billing Manager API Specification.

14.8.9 Class Util
Utility class to support the Charting API. For details, see the Siebel e-Billing Manager
API Specification.

Charting �

198 | Siebel e-Billing Manager Developer's Guide

Class Diagram

Util

- DEBUG: boolean = Constants

+ getColor(String, Properties) : Color
+ getFont(String, Properties) : Font
- inRGBRange(int) : boolean
+ arrayListToStringArray(ArrayList) : String[]
+ arrayListToDoubleArray(ArrayList) : double[]
+ getBoolean(String) : boolean
+ inArrayList(ArrayList, String) : boolean
+ debugProps(Properties) : void
+ getPropVal(String, Properties) : String
+ getFloat(String) : float

14.9 Default Properties and Attributes

14.9.1 ChartDefaults.properties

Kavachart3.2 properties influencing chart presentation # initially 3.1,
with addition of CullingLabel, its 3.2

Primary Properties

Chart type: Pie

DateLine

FinCom

HiLoBar

HiLoClose

HorizBar == to generate horizontal bar chart

**** Please note, the property name, "Type" IS case sensitive, and its

**** value is case sensitive.

Type=Pie

Charting �

Siebel e-Billing Manager Developer's Guide | 199

Legend related

 Legend.BackgroundVisible=true

-- separation between rows of the legend

 Legend.IconGap=0.02

-- Legend icon height 0 < k < 1.0, where 1.0 = full height of canvas

 Legend.IconHeight=0.05

-- Legend icon width 0 < k < 1.0, where 1.0 = full width of canvas

 Legend.IconWidth=0.07

-- R G B values

 Legend.LabelColor.Red=0

 Legend.LabelColor.Blue=0

 Legend.LabelColor.Green=0

-- this needs to be broken up into its components

 Legend.LabelFont.Name=Times New Roman

 Legend.LabelFont.Style=plain

 Legend.LabelFont.Size=12

-- lower x left corner 0 < y < 1.0, 1.0 = full width

 Legend.LlX=0.0

-- lower y left corner 0 < y < 1.0, 1.0 = full height

 Legend.LlY=0.0

-- upper x right corner 0 < y < 1.0, 1.0 = full width

 Legend.UrX=0.0

--upper y right corner 0 < y < 1.0, 1.0 = full height

 Legend.UrY=0.0

-- legend below chart

 Legend.VerticalLayout=false

-- To change the Legend's Graphic component

Legend.BackgroundGC.Gc.FillColor.Red=0

Legend.BackgroundGC.Gc.FillColor.Blue=0

Legend.BackgroundGC.Gc.FillColor.Green=0

Legend.BackgroundGC.Gc.LineColor.Red=0

Legend.BackgroundGC.Gc.LineColor.Blue=0

Legend.BackgroundGC.Gc.LineColor.Green=0

Legend.BackgroundGC.Gc.LineWidth=1

Legend.BackgroundGC.Gc.MarkerColor.Red=0

Charting �

200 | Siebel e-Billing Manager Developer's Guide

Legend.BackgroundGC.Gc.MarkerColor.Blue=0

Legend.BackgroundGC.Gc.MarkerColor.Green=0

Legend.BackgroundGC.Gc.Image -- unimplemented

Class name = javachart.chart.Axis

Specific to X axis

to skip labels that collide

meaningful if the user can guess the missed labels

 X.Axis.CullingLabel=false;

 X.Axis.AutoScale=true

-- Determines end of an axis for a default axis.

-- For log-scale its a power of ten.

 X.Axis.AxisEnd=6.0

-- Determines start of axis.

-- For AUTO_SCALE, selection of axis start is automatic,

-- for log scale its a pwoer of ten.

 X.Axis.AxisStart=0.0

-- placed bar within axis, set true for bar charts

 X.Axis.BarScaling=true

 X.Axis.GridVis=false

 X.Axis.LabelAngle=0

-- Axis label color

 X.Axis.LabelColor.Red=0

 X.Axis.LabelColor.Blue=0

 X.Axis.LabelColor.Green=0

 X.Axis.LabelFont.Name=Times New Roman

 X.Axis.LabelFont.Style=plain

 X.Axis.LabelFont.Size=12

-- Label Format determines how the label must be redenered,

-- eg. first three letters of month name, basically the defined method

-- is applied to the actual label

 X.Axis.LabelFormat=null

For double quantities such as currency

 X.Axis.LabelPrecision=2

Determines whether the label is visible

 X.Axis.LabelVis=true

Determines whether the axis line is visible

 X.Axis.LineVis=true

Charting �

Siebel e-Billing Manager Developer's Guide | 201

Determines whether the scale is log based

 X.Axis.LogScaling=false

 X.Axis.MajTickLength=5

 X.Axis.MajTickVis=true

 X.Axis.MinTickLength=2

 X.Axis.MinTickVis=false

 X.Axis.NumGrids=5

 X.Axis.NumLabels=5

 X.Axis.NumMajTicks=5

 X.Axis.NumMinTicks=10

reduce LlX to left shift axis position on canvas

increase for right shift, that is along the X direction

 X.Axis.Plotarea.LlX=0.2

-- reduce LlX to left shift on the canvas the axis start

-- increase LlX to right shift axis start on canvas

 X.Axis.Plotarea.LlY=0.2

similar to LlX and LlY, but controls upper right corner

 X.Axis.Plotarea.UrX=0.8

 X.Axis.Plotarea.UrY=0.8

true sets the title perpendicular to the axis, in the middle

 X.Axis.TitleRotated=true

 X.Axis.TitleColor.Red=0

 X.Axis.TitleColor.Blue=0

 X.Axis.TitleColor.Green=0

 X.Axis.TitleFont.Family=Times New Roman

 X.Axis.TitleFont.Name=Times New Roman

 X.Axis.TitleFont.Style=plain

 X.Axis.TitleFont.Size=12

 X.Axis.TitleString=Remember to set X axis title!

-- ignore this, not planning to retrieve objects using

-- mouse click events

 X.Axis.UseDisplayList=false

X.Axis.GridGc.FillColor.Red=0

X.Axis.GridGc.FillColor.Blue=0

X.Axis.GridGc.FillColor.Green=0

X.Axis.GridGc.Image -- unimplemented

X.Axis.GridGc.LineColor.Red=0

Charting �

202 | Siebel e-Billing Manager Developer's Guide

X.Axis.GridGc.LineColor.Blue=0

X.Axis.GridGc.LineColor.Green=0

X.Axis.GridGc.LineWidth=1

X.Axis.GridGc.MarkerColor.Red=0

X.Axis.GridGc.MarkerColor.Blue=0

X.Axis.GridGc.MarkerColor.Green=0

valid values = Left, Right, Top, Bottom

X.Axis.Side=Left

X.Axis.TickGc.FillColor.Red=0

X.Axis.TickGc.FillColor.Blue=0

X.Axis.TickGc.FillColor.Green=0

X.Axis.TickGc.Image -- unimplemented

X.Axis.TickGc.LineColor.Red=0

X.Axis.TickGc.LineColor.Blue=0

X.Axis.TickGc.LineColor.Green=0

X.Axis.TickGc.LineWidth=1

X.Axis.TickGc.MarkerColor.Red=0

X.Axis.TickGc.MarkerColor.Blue=0

X.Axis.TickGc.MarkerColor.Green=0

X.Axis.LineGc.FillColor.Red=0

X.Axis.LineGc.FillColor.Blue=0

X.Axis.LineGc.FillColor.Green=0

X.Axis.LineGc.Image -- unimplemented

X.Axis.LineGc.LineColor.Red=0

X.Axis.LineGc.LineColor.Blue=0

X.Axis.LineGc.LineColor.Green=0

X.Axis.LineGc.LineWidth=1

X.Axis.LineGc.MarkerColor.Red=0

X.Axis.LineGc.MarkerColor.Blue=0

X.Axis.LineGc.MarkerColor.Green=0

Class name = javachart.chart.Axis

Specific to Y axis

to skip labels that collide

Charting �

Siebel e-Billing Manager Developer's Guide | 203

meaningful if the user can guess the missed labels

 Y.Axis.CullingLabel=false;

 Y.Axis.AutoScale=true

-- Determines end of an axis for a default axis.

-- For log-scale its a power of ten.

 Y.Axis.AxisEnd=6.0

-- Determines start of axis.

-- For AUTO_SCALE, selection of axis start is automatic,

-- for log scale its a pwoer of ten.

 Y.Axis.AxisStart=0.0

-- placed bar within axis, set true for bar charts

 Y.Axis.BarScaling=true

 Y.Axis.GridVis=false

 Y.Axis.LabelAngle=0

-- Axis label color

 Y.Axis.LabelColor.Red=0

 Y.Axis.LabelColor.Blue=0

 Y.Axis.LabelColor.Green=0

 Y.Axis.LabelFont.Name=Times New Roman

 Y.Axis.LabelFont.Style=plain

 Y.Axis.LabelFont.Size=12

-- Label Format determines how the label must be redenered,

-- eg. first three letters of month name, basically the defined method

-- is applied to the actual label

 Y.Axis.LabelFormat=null

For double quantities such as currency

 Y.Axis.LabelPrecision=2

Determines whether the label is visible

 Y.Axis.LabelVis=true

Determines whether the axis line is visible

 Y.Axis.LineVis=true

Determines whether the scale is log based

 Y.Axis.LogScaling=false

 Y.Axis.MajTickLength=5

 Y.Axis.MajTickVis=true

 Y.Axis.MinTickLength=2

 Y.Axis.MinTickVis=false

 Y.Axis.NumGrids=5

 Y.Axis.NumLabels=5

 Y.Axis.NumMajTicks=5

Charting �

204 | Siebel e-Billing Manager Developer's Guide

 Y.Axis.NumMinTicks=10

reduce LlX to left shift axis position on canvas

increase for right shift, that is along the X direction

 Y.Axis.Plotarea.LlX=0.2

-- reduce LlX to left shift on the canvas the axis start

-- increase LlX to right shift axis start on canvas

 Y.Axis.Plotarea.LlY=0.2

similar to LlX and LlY, but controls upper right corner

 Y.Axis.Plotarea.UrX=0.8

 Y.Axis.Plotarea.UrY=0.8

true sets the title perpendicular to the axis, in the middle

 X.Axis.TitleRotated=true

 Y.Axis.TitleColor.Red=0

 Y.Axis.TitleColor.Blue=0

 Y.Axis.TitleColor.Green=0

 Y.Axis.TitleFont.Family=Times New Roman

 Y.Axis.TitleFont.Name=Times New Roman

 Y.Axis.TitleFont.Style=plain

 Y.Axis.TitleFont.Size=12

 Y.Axis.TitleString=Remember to set X axis title!

-- ignore this, not planning to retrieve objects using

-- mouse click events

 Y.Axis.UseDisplayList=false

Y.Axis.GridGc.FillColor.Red=0

Y.Axis.GridGc.FillColor.Blue=0

Y.Axis.GridGc.FillColor.Green=0

Y.Axis.GridGc.Image -- unimplemented

Y.Axis.GridGc.LineColor.Red=0

Y.Axis.GridGc.LineColor.Blue=0

Y.Axis.GridGc.LineColor.Green=0

Y.Axis.GridGc.LineWidth=1

Y.Axis.GridGc.MarkerColor.Red=0

Y.Axis.GridGc.MarkerColor.Blue=0

Y.Axis.GridGc.MarkerColor.Green=0

valid values = Left, Right, Top, Bottom

Charting �

Siebel e-Billing Manager Developer's Guide | 205

Y.Axis.Side=Left

Y.Axis.TickGc.FillColor.Red=0

Y.Axis.TickGc.FillColor.Blue=0

Y.Axis.TickGc.FillColor.Green=0

Y.Axis.TickGc.Image -- unimplemented

Y.Axis.TickGc.LineColor.Red=0

Y.Axis.TickGc.LineColor.Blue=0

Y.Axis.TickGc.LineColor.Green=0

Y.Axis.TickGc.LineWidth=1

Y.Axis.TickGc.MarkerColor.Red=0

Y.Axis.TickGc.MarkerColor.Blue=0

Y.Axis.TickGc.MarkerColor.Green=0

Y.Axis.LineGc.FillColor.Red=0

Y.Axis.LineGc.FillColor.Blue=0

Y.Axis.LineGc.FillColor.Green=0

Y.Axis.LineGc.Image -- unimplemented

Y.Axis.LineGc.LineColor.Red=0

Y.Axis.LineGc.LineColor.Blue=0

Y.Axis.LineGc.LineColor.Green=0

Y.Axis.LineGc.LineWidth=1

Y.Axis.LineGc.MarkerColor.Red=0

Y.Axis.LineGc.MarkerColor.Blue=0

Y.Axis.LineGc.MarkerColor.Green=0

Optional Properties:

Set the Bar baseline.

##Bar.Baseline=0.0

sets the cluster width

##Bar.ClusterWidth=0.8

Set to true to clip bars at Plotarea boundaries.

Bar.DoClip=false

Charting �

206 | Siebel e-Billing Manager Developer's Guide

Optional Properties: Line

true clips lines at the plot area boundary

Line.Clip=false

Optional Properties: Pie

 Pie.LabelColor.Red=0

 Pie.LabelColor.Blue=0

 Pie.LabelColor.Green=0

 Pie.LabelFont.Name=Times New Roman

 Pie.LabelFont.Style=plain

 Pie.LabelFont.Size=12

 Pie.LabelPosition=2

 Pie.PercentLabelsOn=true

 Pie.StartDegrees=0

 Pie.TextLabelsOn=false

 Pie.ValueLabelsOn=false

-- if you want a circular pie, scale Height and Width to

-- be equal in terms of pixels after you've taken into

-- consideration true canvas height and width

 Pie.Height=0.6

 Pie.Width=0.6

-- this is the center of the pie, do you want it in the center

-- of the canvas or to one side. Elect side if the labels to be

-- rendered on the legend are long.

-- choose up or down, if you have more vertical real estate on the

-- html page

 Pie.XLoc=0.5

 Pie.YLoc=0.5

General chart properties

 Chart.LegendVisible=false

 Chart.Name=MyChart

x and y offset determine the three dimensional effect

 Chart.ThreeD=false

 Chart.XOffset=0

Charting �

Siebel e-Billing Manager Developer's Guide | 207

 Chart.YOffset=0

 Chart.YAxisVisible=true

 Chart.XAxisVisible=true

-- The chart quality has a default value of 1. It can take values

-- from 0 to 1, where 0 is the poorest quality, while 1 is the best

-- 0.75 is a good balance between image size and quality

 Chart.Quality=1.0

Plotarea Graphic Component properties

Plotarea.Gc.FillColor.Red=0

Plotarea.Gc.FillColor.Blue=0

Plotarea.Gc.FillColor.Green=0

Plotarea.Gc.Image -- unimplemented

Plotarea.Gc.LineColor.Red=0

Plotarea.Gc.LineColor.Blue=0

Plotarea.Gc.LineColor.Green=0

Plotarea.Gc.LineWidth=1

Plotarea.Gc.MarkerColor.Red=0

Plotarea.Gc.MarkerColor.Blue=0

Plotarea.Gc.MarkerColor.Green=0

Background properties

Background.Gc.FillColor.Red=0

Background.Gc.FillColor.Blue=0

Background.Gc.FillColor.Green=0

Background.Gc.Image -- unimplemented

Background.Gc.LineColor.Red=0

Background.Gc.LineColor.Blue=0

Background.Gc.LineColor.Green=0

Background.Gc.LineWidth=1

Background.Gc.MarkerColor.Red=0

Background.Gc.MarkerColor.Blue=0

Background.Gc.MarkerColor.Green=0

Background.SubTitleColor.Red=0

Charting �

208 | Siebel e-Billing Manager Developer's Guide

Background.SubTitleColor.Blue=0

Background.SubTitleColor.Green=0

Background.SubTitleFont.name=Times New Roman

Background.SubTitleFont.style=plain

Background.SubTitleFont.size=12

Background.SubTitleString=null

Background.TitleColor.Red=0

Background.TitleColor.Blue=0

Background.TitleColor.Green=0

Background.TitleFont.Name=Times New Roman

Background.TitleFont.Style=plain

Background.TitleFont.Size=12

Background.TitleString=null

Favorite.1.Color.Red=0

Favorite.1.Color.Blue=0

Favorite.1.Color.Green=0

Favorite.2.Color.Red=0

Favorite.2.Color.Blue=0

Favorite.2.Color.Green=0

Favorite.3.Color.Red=0

Favorite.3.Color.Blue=0

Favorite.3.Color.Green=0

Favorite.4.Color.Red=0

Favorite.4.Color.Blue=0

Favorite.4.Color.Green=0

Favorite.5.Color.Red=0

Favorite.5.Color.Blue=0

Favorite.5.Color.Green=0

14.9.2 NW_LocSummary.ALF
<?xml version="1.0"?>

<!DOCTYPE ALF [

 <!-- An element of type ALF must contain following subelements -->

 <!ELEMENT ALF (VERSION, DATA_GROUP, DDF, SWITCH, HOME, TEMPLATES,
CONTENTS, CONDITIONS, PROFILES, BUSINESSCONDITIONS, RECORDS, PAGE_ELEMENTS,
composition-specs)>

 <!-- An element of type VERSION contains a mixture of character data -->

Charting �

Siebel e-Billing Manager Developer's Guide | 209

 <!ELEMENT VERSION (#PCDATA)>

 <!-- An element of type DATA_GROUP contains a mixture of character data --
>

 <!ELEMENT DATA_GROUP (#PCDATA)>

 <!-- An element of type DDF contains a mixture of character data -->

 <!ELEMENT DDF (#PCDATA)>

 <!-- An element of type SWITCH consist of Optional Statement element -->

 <!ELEMENT SWITCH (Statement?)>

 <!-- An element of type Statement can contain three subelements. Firstly
it must

have Condition element and Action1 element. This is Optionaly followed by the
Action2 element -->

 <!ELEMENT Statement (Condition, Action1, Action2?)>

 <!ATTLIST Statement

 Profile (Y | N) #IMPLIED

>

 <!-- An element of type Condition contains a mixture of character data -->

 <!ELEMENT Condition (#PCDATA)>

 <!-- An element of type Action1 contains a mixture of character data -->

 <!ELEMENT Action1 (#PCDATA)>

 <!-- An element of type Action2 contains a mixture of character data or
Statement elements in any order-->

 <!ELEMENT Action2 (#PCDATA | Statement)*>

 <!ELEMENT HOME (DefaultTemplate, Statement?)>

 <!ELEMENT DefaultTemplate (#PCDATA)>

 <!ELEMENT TEMPLATES (Template)+>

 <!ELEMENT Template (SECTIONS, CHARTS, GROUPS, GroupTemplate*)>

 <!ATTLIST Template

 Name CDATA #REQUIRED

>

 <!ELEMENT FormatSpecification (#PCDATA)>

 <!ELEMENT Action (#PCDATA)>

 <!ELEMENT SECTIONS (Section*)>

 <!ELEMENT Section (Statement+ | (FormatSpecification, Action)+)>

 <!ATTLIST Section

 Name CDATA #REQUIRED

 Promotional CDATA #IMPLIED

>

 <!ELEMENT CHARTS (Chart*)>

 <!ELEMENT Chart EMPTY>

 <!ATTLIST Chart

 Name CDATA #REQUIRED

 RecordName CDATA #REQUIRED

Charting �

210 | Siebel e-Billing Manager Developer's Guide

 TopTitle CDATA #REQUIRED

 BottomTitle CDATA #REQUIRED

 LeftTitle CDATA #REQUIRED

 RightTitle CDATA #REQUIRED

 XField CDATA #REQUIRED

 YField CDATA #REQUIRED

 Key CDATA #REQUIRED

 StackedStyle CDATA #REQUIRED

 ColorScheme CDATA #REQUIRED

 GridLines CDATA #REQUIRED

 Full3D CDATA #REQUIRED

 AngleX CDATA #REQUIRED

 AngleY CDATA #REQUIRED

 Atribute CDATA #REQUIRED

 MarkerVolume CDATA #REQUIRED

 Shadow CDATA #REQUIRED

 MultiShape CDATA #REQUIRED

 Dimension_3D CDATA #REQUIRED

 View3DDepth CDATA #REQUIRED

 Type CDATA #REQUIRED

 CGITimeSpan CDATA #REQUIRED

 BackgroundColor CDATA #REQUIRED

 ForgroundColor CDATA #REQUIRED

 Height CDATA #REQUIRED

 Width CDATA #REQUIRED

 LegendShow CDATA #REQUIRED

 LegendToolSize CDATA #REQUIRED

 LegendToolStyle CDATA #REQUIRED

 HidePieLegend CDATA #REQUIRED

 SeriesColor CDATA #REQUIRED

 LeftGap CDATA #REQUIRED

 RightGap CDATA #REQUIRED

 ImgQuality CDATA #REQUIRED

 ImgSmooth CDATA #REQUIRED

 AddValueToLegend CDATA #REQUIRED

 BaseURL CDATA #REQUIRED

 UNIXChart CDATA #REQUIRED

>

 <!ELEMENT GROUPS (Group*)>

 <!ELEMENT Group (Statement)>

 <!ATTLIST Group

Charting �

Siebel e-Billing Manager Developer's Guide | 211

 Name CDATA #REQUIRED

>

 <!ELEMENT GroupTemplate (SECTIONS, CHARTS, GROUPS, GroupTemplate*)>

 <!ATTLIST GroupTemplate

 Name CDATA #REQUIRED

>

 <!ELEMENT CONTENTS (Content)+>

 <!ELEMENT Content (#PCDATA)>

 <!ATTLIST Content

 Name CDATA #REQUIRED

 Type (MainTemplate | RGTemplate1 | RGTemplate2 | SectionTemplate |
ALF | Image | Text | Active | GlobalAction) "MainTemplate"

 Parent CDATA #REQUIRED

 ParentTemplate CDATA #REQUIRED

>

 <!ELEMENT CONDITIONS (SavedCondition)*>

 <!ELEMENT SavedCondition (#PCDATA)>

 <!ATTLIST SavedCondition

 Name CDATA #REQUIRED

 SavedConditionProfile (Y | N) #REQUIRED

>

 <!ELEMENT PROFILES (Profile)*>

 <!ELEMENT Profile (#PCDATA)>

 <!ATTLIST Profile

 Name CDATA #REQUIRED

>

 <!ELEMENT BUSINESSCONDITIONS (BusinessCondition)*>

 <!ELEMENT BusinessCondition (#PCDATA)>

 <!ATTLIST BusinessCondition

 Name CDATA #REQUIRED

>

 <!ELEMENT RECORDS (Record)*>

 <!ELEMENT Record (#PCDATA)>

 <!ATTLIST Record

 Name CDATA #REQUIRED

 ApplyAll (Y | N) #REQUIRED

 PresentationTable CDATA #IMPLIED

>

 <!ELEMENT PAGE_ELEMENTS (PageElement)*>

 <!ELEMENT PageElement (#PCDATA)>

 <!ATTLIST PageElement

 Name CDATA #REQUIRED

Charting �

212 | Siebel e-Billing Manager Developer's Guide

 Type (Table | Group) #REQUIRED

 Enable (yes | no) #REQUIRED

 Mode (line | occurrence) #REQUIRED

 SetSize CDATA #REQUIRED

 Occurrences CDATA #REQUIRED

>

 <!ELEMENT composition-specs ((sort-spec | filter-spec | select-spec |
arithmetic-spec)*, combine-spec)>

 <!ELEMENT sort-spec (sorted-element, sort-by-element)+>

 <!ATTLIST sort-spec

 name CDATA #REQUIRED

 mode (Table | Group) #REQUIRED

>

 <!ELEMENT sorted-element (#PCDATA)>

 <!ELEMENT sort-by-element (#PCDATA)>

 <!ATTLIST sort-by-element

 data-type CDATA #REQUIRED

 format-string CDATA #REQUIRED

 direction (a | d) #REQUIRED

>

 <!ELEMENT filter-spec (filtered-element, filtered-by-element, filter-
expression)+>

 <!ATTLIST filter-spec

 name CDATA #REQUIRED

 mode (Table | Group) #REQUIRED

>

 <!ELEMENT filtered-element (#PCDATA)>

 <!ELEMENT filtered-by-element (#PCDATA)>

 <!ELEMENT filter-expression (#PCDATA)>

 <!ELEMENT select-spec (selected-element, selected-by-element)+>

 <!ATTLIST select-spec

 name CDATA #REQUIRED

 mode (Table | Group) #REQUIRED

>

 <!ELEMENT selected-element (#PCDATA)>

 <!ELEMENT selected-by-element (#PCDATA)>

 <!ATTLIST selected-by-element

 data-type CDATA #REQUIRED

 format-string CDATA #REQUIRED

 direction (Top | Bottom) #REQUIRED

 default-count CDATA #REQUIRED

>

Charting �

Siebel e-Billing Manager Developer's Guide | 213

 <!ELEMENT combine-spec (combine-element)*>

 <!ELEMENT combine-element (#PCDATA)>

 <!ELEMENT arithmetic-spec (arithmetic-element, arithmetic-by-element)>

 <!ATTLIST arithmetic-spec

 name CDATA #REQUIRED

>

 <!ELEMENT arithmetic-element (#PCDATA)>

 <!ELEMENT arithmetic-by-element (#PCDATA)>

 <!ATTLIST arithmetic-by-element

 data-type CDATA #REQUIRED

 format-string CDATA #REQUIRED

 mode (total | count) #REQUIRED

 output-format-string CDATA #REQUIRED

>

]>

<ALF>

 <VERSION>3.0</VERSION>

 <DATA_GROUP>Local_Summary</DATA_GROUP>

 <DDF>C:/EDCSbd/samples/NatlWireless/NW_LocSummary.ddf</DDF>

 <SWITCH/>

 <HOME>

 <DefaultTemplate>Default_Template</DefaultTemplate>

 </HOME>

 <TEMPLATES>

 <Template Name="Default_Template">

 <SECTIONS/>

 <CHARTS>

 <Chart Name="LocalLineSummary_0"
RecordName="LocalLineSummary" TopTitle="Top Lable" BottomTitle="Bottom Lable"
LeftTitle="" RightTitle="" XField="LocalLinePhNo" YField="LocalLineAmt" Key="0"
StackedStyle="0" ColorScheme="0" GridLines="0" Full3D="0" AngleX="0" AngleY="0"
Atribute="0" MarkerVolume="0" Shadow="0" MultiShape="0" Dimension_3D="0"
View3DDepth="0" Type="1" CGITimeSpan="" BackgroundColor="White"
ForgroundColor="Black" Height="300" Width="400" LegendShow="1"
LegendToolSize="100" LegendToolStyle="167116800" HidePieLegend="0" SeriesColor=""
LeftGap="40" RightGap="40" ImgQuality="75" ImgSmooth="0" AddValueToLegend="0"
BaseURL="/Chart" UNIXChart="Pie"/>

 <Chart Name="LocalChargeSummary_1"
RecordName="LocalChargeSummary" TopTitle="Top Lable" BottomTitle="Bottom Lable"
LeftTitle="" RightTitle="" XField="LocalChargeAmt" YField="LocalChargeDesc"
Key="1" StackedStyle="0" ColorScheme="0" GridLines="0" Full3D="0" AngleX="0"
AngleY="0" Atribute="0" MarkerVolume="0" Shadow="0" MultiShape="0"
Dimension_3D="0" View3DDepth="0" Type="1" CGITimeSpan="" BackgroundColor="White"
ForgroundColor="Black" Height="300" Width="400" LegendShow="1"
LegendToolSize="100" LegendToolStyle="167116800" HidePieLegend="0" SeriesColor=""
LeftGap="40" RightGap="40" ImgQuality="75" ImgSmooth="0" AddValueToLegend="0"
BaseURL="/eaSample" UNIXChart="Pie"/>

 </CHARTS>

Charting �

214 | Siebel e-Billing Manager Developer's Guide

 <GROUPS/>

 </Template>

 </TEMPLATES>

 <CONTENTS>

 <Content Name="Default_Template" Type="MainTemplate" Parent=""
ParentTemplate=""><![CDATA[C:/EDCSbd/samples/NatlWireless/NW_LocSummary.htm]]></C
ontent>

 </CONTENTS>

 <CONDITIONS/>

 <PROFILES/>

 <BUSINESSCONDITIONS/>

 <RECORDS>

 <Record Name="CustAddress" ApplyAll="Y"><![CDATA[<table border=1
width="100%">

 <TBODY>

 <tr>

 <td height=% width=%><font color=#5c00d9 face=Arial

size=2>[E]CustAddressLine[/E]</td></tr></TBODY></table>]]
></Record>

 <Record Name="LocalChargeSummary" ApplyAll="Y"><![CDATA[<TABLE
border=1 width="100%">

 <TBODY>

 <TR>

 <TD height=% width=%><FONT color=#000000 face=Arial

 size=2>[E]LocalChargeDesc[/E]</TD>

 <TD align=right height=% width=%><FONT color=#000000 face=Arial

 size=2>[E]LocalChargeAmt[/E]</TD></TR></TBODY></TABLE>]]></Record>

 <Record Name="LocalLineSummary" ApplyAll="Y"><![CDATA[<table
border=1 width="100%">

 <TBODY>

 <tr>

 <td height=% width=%><font color=#000000 face=Arial

 size=2>[E]LocalLinePhNo[/E]</td>

 <td align=right height=% width=%><font color=#000000 face=Arial

 size=2>[E]LocalLineAmt[/E]</td></tr></TBODY></table>]]></Record>

 </RECORDS>

 <PAGE_ELEMENTS/>

 <composition-specs>

 <combine-spec/>

 </composition-specs>

</ALF>

Siebel e-Billing Manager Developer's Guide | 215

A
ALF, 154, 159, 162, 164, 165
Architecture

Account Resolver, 121
Action Classes, 19
BSL, 19
Business Services Layer,

19
CAM, 19
Compose, 122
Customer Account

Management, 19
Email Composer, 121
Email Dispather, 121
ePayment, 19
eStatement, 19
Group, 122
Hierarchy, 19
LDE, 19
Live Data Extraction, 19
Payment Gateway, 19
SAF, 19
Security Access

Framework, 19
View Post Processing, 19
View Processing, 19

Auditing Data Streams, 150
AutoIndexVolAccept task,

149
Axis Properties, 175

B
Background Properties, 173
Bar, 169

C
Chart

creating, 160
Chart view, 162, 185

ChartClient, 187
Charter, 187
com.edocs.app.chart, 182
Composer, 154, 159, 160,

161, 162

D
DDF, 160
DDN, 150

E
e-Billing Manager

Action EdocsAction, 19
Action EdocsActionForm,

19
e-Billing Manager

Content Retrieval, 20
e-Billing Manager

Indexing, 21
e-Billing Manager

Payment Utils, 21
e-Billing Manager

Payment Gateway, 21
e-Billing Manager

Customer Account
Manager, 22

e-Billing Manager
CAM, 22

e-Billing Manager
Business Services Layer,

22
e-Billing Manager

BSL, 22
e-Billing Manager

Business Services Layer-
Service Provider
interface, 23

e-Billing Manager
Display Tiles Controller, 23

e-Billing Manager

Index

Index �

216 | Siebel e-Billing Manager Developer's Guide

Live Data Extraction, 23
e-Billing Manager

LDE, 23
e-Billing Manager

View Post Processing, 24
e-Billing Manager

Role Based Access
Control, 24

e-Billing Manager
RBAC, 24

e-Billing Manager
Security Access

Framework, 24
e-Billing Manager

SAF, 24
e-Billing Manager

Bulk Load &
Synchronization, 24

edx_servlet.jar, 182

F
Favorite Colors Properties,

179
FIELD, 102, 103
Fonts, 155

G
General Properties, 173
GROUP, 103

H
Help

technical support, 11
HiLoBar, 166
HorizBar, 169, 170
HorizHiLoBar, 166
HTML template, 159, 160,

161

I
IndBar, 169, 170
IndColumn, 169, 170
Indexer, 155
Indexer job, 141
Indexer task, 141

Input and output arguments,
142, 147

IXLoader task, 141

J
JOB_NAME, 150

L
LabelLine, 171
Legend Properties, 178
Line, 169

M
Mapping

tables as charts, 160

N
NatlWireless.alf, 165
NW_LocSummary.alf, 160

O
Oracle sqlplus utility, 142

P
Parameters, 184
Pie, 159, 164, 165, 167
Plot Area Properties, 174
Polar, 171
PREVIOUS_STATUS, 150
PublisherWrapper, 197

Q
Queue, 122

R
Regress, 171

S
Scanner, 141
Scanner task, 141
Servlet, 154
Shell command task, 143
SHELL_INPUT, 150
Simulator, 154, 163, 183
Speedo, 166
SQL scripts task, 142
sqlplus, 142
StackBar, 172

Index �

Siebel e-Billing Manager Developer's Guide | 217

StackColumn, 172
STATUS, 150
Stick, 172
StickBar, 173

T
TABLE, 103

V
Verify, 150

W
web.xml, 187

X
xvfb, 155, 156, 158

	To escalate your case, ask the Technical Support Engineer to:
	2.1 Siebel e-Billing Manager Features
	2.2 Siebel e-Billing Manager Overview and Architecture
	2.2.1 Overview
	2.2.2 Functional Areas
	Data Access
	Command Center
	Enrollment
	Role Based Access Control
	Hierarchy Based Access Control
	Payment Integration

	Architecture Components & Services
	2.3 e-Billing Manager Components
	2.3.1 eStatement Subsystem
	Content Retrieval
	Data Indexing

	2.3.2 ePayment Subsystem
	Payment Utils
	Payment Gateway Manager

	2.3.3 Customer Account Management
	Customer Account Management(CAM)

	2.3.4 Business Services Layer
	Business Services Layer API(BSL)
	Business Services Layer Service Provider Interfaces

	2.3.5 View Processing
	Display Tiles Controller
	Live Data Extraction (LDE)
	View Post Processing

	2.3.6 Security Access Framework
	Role Based Access Control (RBAC)

	2.3.7 Hierarchy Based Access Control
	Hierarchy Bulk Load

	2.4 e-Billing Manager Install Directories
	2.5 Config Directory
	2.6 About Siebel e-Billing Manager Applications
	2.7 Application Directories
	2.8 Application Profiles
	2.9 Application Packaging
	Views, application logic files, and HTML templates
	View functionality
	View development
	View Types
	DefTool – Data extraction and mapping
	DefTool - Interface
	Composer Interface
	The Command Center
	Batch Processes
	Common Jobs
	Creating Applications
	Creating applications, adding jobs
	Publishing
	Batch Processing Vs. Dynamic Version Set
	Scheduler

	3.1 Introducing e-Billing Manager Application Basics
	3.1.1 e-Billing Manager Application Fundamentals
	3.1.2 Architecture & Structure
	Application structure

	3.1.3 Standard Page Flows

	3.2 Struts and Tiles and the Siebel View Architecture
	3.2.1 e-Billing Manager Application Architecture
	3.2.2 e-Billing Manager Struts and Tiles
	Typical flow
	Configuration example
	Typical app-config.properties

	3.2.3 Mapping DDNs
	3.2.4 Struts Extensions
	3.2.5 e-Billing Manager Tiles
	General tiles structure
	.template.main
	 Example Main Summary Screen
	.main.statement.account.summary
	.template.tabs
	.tabs.statements

	3.2.6 View Tiles
	3.2.7 Creating Custom Tabs
	To create custom tabs:
	Tab structure and flows
	To create a Tabs & Subtab sets:
	Add .template.tabs item example
	Define sub tabs
	Extending EdocsBaseMenuItem
	Define Tab Pages
	Create Action Mapping

	3.3 Development Utilities
	3.3.1 e-Billing Manager Tags
	getView Tag
	summaryDates Tag
	summaryInfo Tag
	checkLogin Tag
	getGeneralAccountInfo tag

	3.3.2 Working With Properties
	3.3.3 Working With Logs
	3.3.4 Developing Custom Actions
	3.3.5 Customer Account Manager
	Common CAM interfaces
	CAM example

	3.4 Look and Feel
	3.4.1 Message Rendering and Localization
	3.4.2 Style Sheets
	3.4.3 Images

	4.1 View Architecture Basics
	View architecture
	Display Tiles run time architecture

	4.2 Downloadable View Support
	4.3 Writing and Configuring Post Processors
	Post processor lifestyle
	4.3.1 How to Write a Post Processor
	To write a post processor:
	1. Extending PostProcessor

	4.3.2 Pattern Processing
	OutputThroughMatch

	4.4 Live Data Extraction
	4.4.1 About the LDE Manager
	LDE Process

	4.4.2 About LDE Data Streams
	4.4.3 Developing Live Data Extractors
	LDE data source example

	5.1 About Role-Based Security
	5.1.1 What is Security and Authorization Framework (SAF)?
	5.1.2 Authenticate
	5.1.3 Security Profile
	5.1.4 User Profiles
	5.1.5 Security Management
	5.1.6 Authorization

	5.2 Controlling Access to Resources
	5.2.1 Using the SAF Sub-system
	5.2.2 SAF Components
	5.2.3 SAF Configuration
	5.2.4 Role Mapping
	5.2.5 Policy Store
	5.2.6 Rights Engine
	5.2.7 Implied Policies
	5.2.8 Permission Classes
	5.2.9 Custom Impliers
	5.2.10 JSP Permission - Example
	5.2.11 Using programmatic security
	1. Write permission
	2. Register permission
	Obtain an ISubject
	Check permissions method

	5.3 Integrating Security Providers
	5.3.1 BSL Security SPI’s
	5.3.2 BSL Security Concepts
	5.3.3 Common Implementation Use Cases
	5.3.4 Authentication
	5.3.5 Security Manager Profiles
	5.3.6 User Profiles
	5.3.7 Configuring BSL Providers

	6.1 Overview
	6.2 CSR Access (Impersonate User)
	6.3 CSR Application
	8.1 Downloading CSV, XML, and PDF Views
	Creating a downloadable view requires the steps:
	8.1.1 Common Download View Setup
	Download set up tile from tiles-defs-download.xml
	Download set up tile from display_download_view.jsp

	8.1.2 Comma Separated Value (CSV) Downloadable views
	Elements of a CSV Downloadable View are:
	Token File Format:
	Sample Token File

	8.1.3 eXtensible Markup Language(XML) views
	Download set up tile for XML
	Elements of a XML Downloadable View are:

	8.1.4 eXtensible Stylesheet Language(XSLT) views
	Download set up tile for XSLT
	Elements of a XML Downloadable View are:
	Example Token File
	Example Generated Content

	8.1.5 Portable Document Format (PDF_FO) views
	Download set up tile for PDF_FO
	Elements of a PDF_FO Downloadable View are:
	Example XSLT Stylesheet using FO for PDF generation

	8.1.6 Mapping a DDF to XML
	About XML DTDs for e-Billing Manager
	Standard Elements
	FIELD Elements
	TABLE Elements
	GROUP Elements

	8.2 Further Reading About XML, XSL, and XSLT
	9.1 Overview
	9.2 How to Create and Manage Hierarchies via XML
	Example Hiearchy XML File

	9.3 How to Synchronize Hierarchies with eStatement Indexer Data
	9.4 Hierarchy APIs
	9.4.1 Creating Hierarchies Programmatically
	To create hierarchy a new hierarchy
	To create hierarchy from an existing hierarchy:

	9.4.2 Adding Entities to a Hierarchy
	To add a link target to Hierarchy:
	To add a folder to Hierarchy:
	To ad a node to Hierarchy:

	9.4.3 Finding Hierarchies, Nodes, and Folders
	To load Hierarchy MetaData (container) only:
	To load Hierarchy including its tree structure:
	To load Hierarchy meta data and non-leaf node only:
	To locate a node in Hierarchy:
	To locate a folder in Hierarchy:

	9.4.4 Updating Nodes
	To update a node:
	To move node to a different parent:
	To delete a node:

	9.4.5 Giving User Access to Nodes
	To give user access to a node:
	To remove user access from a node:

	9.5 How to Implement Hierarchy-Based Access Control (HBAC)
	9.6 How to Search for and Find Objects Within Hierarchies
	10.1 Overview
	10.2 How to Manage the User Profile
	10.3 How to Manage the Security Profile
	10.4 How to Manage the Company and Company User Profiles
	11.1 Email Overview
	General Email Subsystem
	Email Grouping via Composer

	11.2 Configuring Email Messaging
	app-config.properties snippet associated with mail configuration
	Email Configuration properties

	11.3 Email Notifications
	Notification Email Variables

	11.4 Modifying Email Addresses Programmatically
	Add Email Address Example Action

	12.1 Address Book Overview
	12.2 Personal Address Books
	12.3 Corporate Address Books
	12.4 AddressBook Component
	12.4.1 Displaying the Address Book
	12.4.2 Showing Addresses
	12.4.3 Saving and Deleting Addresses
	12.4.4 Address Book View Processing
	12.4.5 Address Book Post-Processing of e-Billing Manager Views

	13.1 About Jobs and the Shell Command Task
	13.2 Defining a New Job Type
	13.2.1 Create the Job Type Script
	Example sqlplus script for Oracle
	Example script for AIX/DB2
	Name the Job
	Specify Job Tasks
	Define Input Arguments

	13.2.2 Configuring Your New Job Type
	Define the Shell Command Task

	13.2.3 Another Example of Defining a New Job Type

	14.1 Introduction and Components
	14.1.1 Charting Use Case Overview Diagram
	To present charts in online statements:

	14.1.2 Components of Charting

	14.2 Configuring Charting for Your Server
	14.2.1 About Servers and Charting
	14.2.2 About Fonts
	14.2.3 Configuration Activity Diagram
	14.2.4 Setting Display Devices and xvfb
	14.2.5 Setting Display Permissions and xhost
	xhost Syntax and Parameters

	14.2.6 Setting Display Awareness
	To change the default display awareness and permissions:

	14.2.7 Configuring a Headless Server for Charting
	To enable charting on a “headless” server (Solaris):

	14.3 Composing Charts in Statements
	14.3.1 About Charting in the Composer
	14.3.2 Inserting a Chart Tag in the Composer
	To insert a chart tag in the Composer:

	14.3.3 Naming Conventions for Charts
	14.3.4 About Chart Tags in the ALF
	14.3.5 About The Chart Properties File
	14.3.6 About Simulating Charts

	14.4 Customizing Chart Properties
	14.4.1 About Chart Attributes in the ALF
	 <!ATTLIST Chart
	Table of ALF Chart Attributes
	XML Example of Chart Attributes

	14.4.2 Customizing a Chart in the ALF
	Adding Percentages or Values to Labels
	Changing Axis Titles
	Suppressing Percentage Values in Pie Charts

	14.4.3 Customizing the Chart Properties File
	14.4.4 Chart Type
	14.4.5 Pie
	To define pie properties:

	14.4.6 Bar
	To define bar properties:

	14.4.7 Line
	To define LineClip property:

	14.4.8 Horizontal Bars (HorizBar)
	14.4.9 Individually Colored Bars (IndBar)
	14.4.10 Individually Colored Columns (IndColumn)
	14.4.11 (LabelLine)
	14.4.12 Polar Chart (Polar)
	14.4.13 Regression (Regress)
	14.4.14 Stacked Bars (StackBar)
	14.4.15 Stack Column Chart (StackColumn)
	14.4.16 Stick Chart (Stick)
	14.4.17 StickBar Chart (StickBar)
	14.4.18 General Properties
	14.4.19 Background Properties
	14.4.20 Plot Area Properties
	14.4.21 Axis Properties
	14.4.22 Legend Properties
	14.4.23 Favorite Colors Properties
	14.4.24 Default Chart Properties
	14.4.25 Customizing Default Properties
	14.4.26 Previewing Charts with com.edocs.app.chart.Simulator
	Setting the Display Environment for Simulation
	Formatting Data Strings for Chart Data
	To simulate a chart:
	Parameters

	14.5 Publishing Charts
	14.5.1 Before Publishing Charts
	To prepare your application for chart viewing:

	14.5.2 Publishing a Chart View
	To publish a Chart view:

	14.5.3 Viewing Charts in Statements
	To view charts in statements:

	14.6 Designing Custom Charts with the Charting Servlet
	14.6.1 Customizing Charter.java
	Example: Custom Error Message

	14.7 Troubleshooting Charts
	14.7.1 Charting Checklist
	14.7.2 Common Problems and Known Issues
	AIX Does Not Display Charts
	Pie Chart Displays When Another Chart Type Is Selected
	Small Segments Collide In Pie Charts
	UNDO Button In Composer Does Not Affect ALF
	Chart Quality Is Poor
	ALF Axis Titles Overwritten By Properties File
	Changing Addtolegend In ALF Does Not Change Chart URL
	Title Fonts Do Not Appear Bold
	Bold Italic Does Not Display Correctly
	Chart Servlet Suppresses Commas And Spaces

	14.8 Application Programming Interfaces (APIs) for Charting
	14.8.1 Package com.edocs.app.chart Description
	14.8.2 Class ChartClient
	Available Chart Types
	Class Diagram
	Constructors
	Parameters
	Methods
	Parameters

	14.8.3 Class ChartData
	Class Diagram
	Constructors
	Parameters

	14.8.4 Class Charter
	Class Diagram

	14.8.5 Class Constants
	Class Diagram

	14.8.6 Class PublisherCommon
	Class Diagram

	14.8.7 Class PublisherWrapper
	Class Diagram

	14.8.8 Class Simulator
	14.8.9 Class Util
	Class Diagram

	14.9 Default Properties and Attributes
	14.9.1 ChartDefaults.properties
	14.9.2 NW_LocSummary.ALF

