

eaSDK: Building
Custom Jobs

V3.4
Document ID: SDGN-06-3.4-02

Data Published: 2.6.2003

eaSDK is a member of the eaSuite product line

 1997−2003 edocs Inc. All rights reserved.

edocs, Inc., Two Apple Hill, 598 Worcester Road, Natick, MA 01760

The information contained in this document is the confidential and proprietary information of
edocs, Inc. and is subject to change without notice.

This material is protected by U.S. and international copyright laws. edocs and eaPost are
registered in the U.S. Patent and Trademark Office.

No part of this publication may be reproduced or transmitted in any form or by any means
without the prior written permission of edocs, Inc.

eaSuite, eaDirect, eaPay, eaCare, eaAssist, eaMarket, and eaXchange are trademarks of edocs,
Inc.

All other trademark, company, and product names used herein are trademarks of their
respective companies.

Printed in the USA

Building Custom Jobs | 3

Table of Contents

 Preface..5

About Customer Self-Service and eaSuite� ...5
About This Guide...8
Related Documentation ...9
If You Need Help ...10

1 About Custom Job Types ...13
About Jobs and the Shell Command Task ...13

2 Defining a New Job Type ..15
Create the Job Type Script ..15

Example sqlplus script for Oracle ...16
Example script for AIX/DB2 ..17
Name the Job..21
Specify Job Tasks...21
Define Input Arguments ..22

Configuring Your New Job Type ..25
Define the Shell Command Task ..26

Another Example of Defining a New Job Type...27
 Index...29

Building Custom Jobs | 5

Preface

About Customer Self-Service and eaSuite�

eaSuite

edocs has developed the industry's most comprehensive software and services for
deploying Customer Self-Service solutions. eaSuite� combines electronic
presentment and payment (EPP), order management, knowledge management,
personalization and application integration technologies to create an integrated,
natural starting point for all customer service issues. eaSuite's unique architecture
leverages and preserves existing infrastructure and data, and offers unparalleled
scalability for the most demanding applications. With deployments across the
healthcare, financial services, energy, retail, and communications industries, and
the public sector, eaSuite powers some of the world's largest and most
demanding customer self-service applications. eaSuite is a standards-based,
feature rich, and highly scalable platform, that delivers the lowest total cost of
ownership of any self-service solution available.

eaSuite is designed to support how organizations approach designing and
deploying Customer Self-Service applications:

Customer-Facing Solutions present customers with the sophisticated
functionality to meet customers' self-service needs. eaSuite offers a full set of
capabilities to enable the range of business and consumer customer service
activities, along with the flexibility to completely customize the solution to meet
vertical industry and specific company requirements.

Preface

6 | Building Custom Jobs

Enterprise-Facing Solutions empower employees within an organization and
external partners to leverage the edocs platform to facilitate self-service and to
support assisted service. Customer service representatives (CSRs), sales agents,
account managers, marketing managers, broker-dealers and channel partners all
play a role in delivering customer service, creating content, accessing
information and performing activities for the benefit of customers.

Platform and Development Tools are designed to meet the rigorous
infrastructure demands of the most technologically advanced organizations.
These components of the eaSuite power edocs solutions with the functionality
and development tools necessary to make account data available, and to create
the customer- and enterprise-facing applications that enable customer self-
service.

Preface

Building Custom Jobs | 7

eaAssist

eaAssist� reduces interaction costs and increases customer satisfaction by
enabling enterprise agents � customer service representatives (CSRs), sales
agents, broker-dealers and others � to efficiently access critical account data and
service-related information to effectively service customers. Through its browser
interface designed especially for the enterprise agent, eaAssist enables agents to
take advantage of customer-facing online capabilities to provide better service by
more efficiently resolving customer account inquiries at the point of customer
contact.

eaMarket

eaMarket� is the personalization, campaign and content management solution
that enables organizations to increase revenue and improve customer satisfaction
by weaving personalized marketing and customer service messages throughout
the Customer Self-Service experience. The transactional account data that
provides the foundation for a Customer Self-Service solution � such as
transaction activity, service or usage charges, current task and prior service
history � bring valuable insight into customers and can help optimize
personalized marketing and customer service campaigns. eaMarket leverages that
data to present relevant marketing and customer service messages to customers.

eaDirect

eaDirect� is the core infrastructure of enterprise Customer Self-Service
solutions for organizations large and small with special emphasis on meeting the
needs of organizations with large numbers of customers, high data volumes and
extensive integration with systems and business processes across the enterprise.
Organizations use eaDirect with its data access layer, composition engine, and
security, enrollment and logging framework to power complex Customer Self-
Service applications.

Preface

8 | Building Custom Jobs

eaPay

eaPay� is the electronic payment solution that decreases payment processing
costs, accelerates receivables and improves operational efficiency. eaPay is a
complete payment scheduling and warehousing system with real-time and batch
connections to payment gateways for Automated Clearing House (ACH) and
credit card payments, and payments via various payment processing service
providers.

eaPost

eaPost® is the account content distribution system that handles all the
complexities of enrollment, authentication and secure distribution of summary
account information to any endpoint, while also bringing customers back the
organization�s Website to manage and control their self-service experience.

Development Tools

eaSuite Development Tools� are visual development applications that provide
intuitive graphical user interface (GUI) environments for designing and
developing Customer Self-Service solutions. The Development Tools encompass
data management, workflow authoring, rules management and accounts
receivable integration, as well as a full Software Developers Kit for custom
application development.

About This Guide
The edocs Software Developers Kit (eaSDK) allows developers to write custom
code against edocs applications. This SDK is intended for edocs system
integrator partners, senior developers with an edocs client company, and edocs
Professional Services representatives.

eaSDK Building Custom Jobs is intended for software developers defining and
adding a custom job type to the Command Center.

The eaSDK assumes you have:

• Completed a Statement Mastering Plan

Preface

Building Custom Jobs | 9

• Installed and configured eaDirect and the sample application eaSample

This SDK assumes in-depth understanding of and practical experience with:

• eaDirect system architecture, installation, deployment, application design,
and administration

• Java 2 Enterprise Edition (J2EE), Enterprise JavaBeans (EJBs), servlets, and
JSPs

• Packaging and deploying J2EE applications for WebLogic 6.1 or WebSphere
4.0

• Directory services including the Java Naming Directory Interface (JNDI) and
the Lightweight Directory Access Protocol (LDAP)

• HTML and XML, web server administration, and web browsers

Related Documentation
Javadoc for the SDK, Online Help for DefTool and Composer, and a PDF
version of this guide are also available.

Online How to Access

Javadoc SDK Javadoc is available on the eaDirect SDK CD-ROM.

Help Select Help > Help Topics in DefTool or Composer.

PDF A PDF of this guide is available on the eaDirect SDK CD-ROM.

This guide is part of the eaDirect documentation set. For more information about
implementing your eaDirect application, see one of the following guides:

Print Document Description

eaDirect Installation and
Configuration Guide

How to install eaDirect and configure it in a
distributed environment.

Preface

10 | Building Custom Jobs

Print Document Description

eaDirect User�s Guide

How to design and create an eaDirect application
and use the eaDirect DefTool and Composer.

eaDirect Production Guide How to set up and run a live eaDirect application in
a J2EE environment.

If You Need Help
Technical support is available to customers who have valid maintenance and
support contracts with edocs. Technical support engineers can help you install,
configure, and maintain your edocs application.

To reach the U.S. Service Center, located in Natick, MA (Monday through
Friday 8:00am to 8:00pm EST):

• Telephone: 508.652.8400

• Toll Free: 877.336.3362

• E-support: support.edocs.com (This requires a one-time online registration)

• E-mail: support@edocs.com

When you report a problem, please be prepared to provide us the following information:

• What is your name and role in your organization?

• What is your company�s name?

• What is your phone number and best times to call you?

• What is your e-mail address?

• In which edocs product did a problem occur?

• What is your Operating System version?

• What were you doing when the problem occurred?

mailto:support@edocs.com

Preface

Building Custom Jobs | 11

• How did the system respond to the error?

• If the system generated a screen message, please send us that screen
message.

• If the system wrote information to a log file, please send us that log file.

If the system crashed or hung, please tell us.

About Custom Job Types

This guide describes how to create custom job types that include the Shell
Command Task. This task allows you to run an external command script to

1

Building Custom Jobs | 13

process the output files from other tasks within the job. You can use this guide to:

• Define a custom job type for the Command Center and create a SQL script,
containing job type and task information, to add the new job type.

• View and configure the new job type in the Command Center.

About Jobs and the Shell Command Task
eaDirect has several predefined job types available in its Command Center. Each
job is made up of one or more tasks. For complete listing of jobs and tasks, see
the eaDirect Production Guide.

However, there may be times when you will want to expand these predefined
Jobs to fit your needs. For cases like this eaDirect has the ability to define your
own custom Job Type that you can make up from a combination of the
predefined tasks that come with eaDirect and/or your own custom task by
defining what is referred to in eaDirect as a Shell Command Task.

A Shell Command Task is a way of invoking a shell script, executable, or other
program that was written to perform a task specific to your requirements. It
enables you to run custom scripts or programs, such as pre- or post- processors as
part of a user-defined job. You can create your own Job Type by creating a SQL
script that updates the database. Once the database is updated this Job Type
becomes available to you via the Command Center. The new Job Type can then
be configured, scheduled, and run from within the Command Center.

About Custom Job Types

14 | Building Custom Jobs

For example, you could create a new custom job called Preprocess to run a
pre-processor on the input file in an Indexer job. At runtime, this job would insert
a custom shell command task ShellCmdTask between the Scanner and the
Indexer tasks. Another use would be to create a job to run a validation engine
(sum all amount due, for example) on the output of the Indexer task. At runtime,
the SumAllDue task would be inserted between the Indexer and the IXLoader
tasks.

The following illustration shows a new custom Indexer job type in the Command
Center for the latter example.

Defining a New Job Type

This chapter includes information about:

2

Building Custom Jobs | 15

• Creating the job type script

• Configuring the new job type

• Examples of the job type script

Create the Job Type Script
To create a job type you create a single SQL script to run in the eaDirect database
using the Oracle utility sqlplus. Within this SQL script you define:

1 The job name

2 The tasks and the order in which they will run

3 The input arguments

The following sections provide a detailed topic description of each part. Each
section uses the example of specifying a new job type that is similar to the
current Indexer job, except that between scanning for an input file (Scanner
Task) and actually indexing the file (Indexer Task) you need to invoke a
preprocessor to modify the input file. This is the situation where you need to
insert the ShellCmdTask between the other tasks.

Defining a New Job Type

16 | Building Custom Jobs

Example sqlplus script for Oracle
DECLARE jtid NUMBER;
BEGIN

 -- Define the job name
 jtid := pwc_job_types.create_job_type ('myIndexer');

 -- Specify the job tasks and their order

 pwc_job_types.create_job_type_task(jtid,'Scanner', 1);

 pwc_job_types.create_job_type_task(jtid,'ShellCmdTask', 2);

 pwc_job_types.create_job_type_task(jtid,'Indexer', 3);

 pwc_job_types.create_job_type_task(jtid,'IXLoader',
4);

 pwc_job_types.create_job_type_task(jtid,
'AutoIndexVolAccept', 5);

 -- Define the tasks input arguments

 pwc_job_types.create_job_type_io(jtid,'ShellCmdTask',
'input params', 'INPUT', 2,'Scanner', 'output file
name', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'Indexer','data
file name', 'INPUT', 3, 'ShellCmdTask','shell output',
'OUTPUT', 2);

 pwc_job_types.create_job_type_io(jtid, 'Indexer', 'ddn
volume number', 'INPUT', 3,'Scanner', 'ddn volume
number', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'IXLoader',
'index volume number', 'INPUT', 4,'Scanner', 'ddn volume
number', 'OUTPUT', 1);

 pwc_job_types. create_job_type_io (jtid, 'IXLoader',
'ir file name', 'INPUT', 4, 'Indexer', 'ir file name',
'OUTPUT', 3);

 pwc_job_types.create_job_type_io(jtid,
'AutoIndexVolAccept', 'index volume number', 'INPUT', 5,
'Scanner', 'ddn volume number, 'OUTPUT', 1);

END;

Defining a New Job Type

Building Custom Jobs | 17

Example script for AIX/DB2

To create a DB2 shell command for a custom job in AIX, run the following
command:

 db2 -td@ -vf customjob.sh

where customjob.sh is the name of a shell script customized for your job,
platform, and environment. See the example below for a sample script to
customize.

DROP PROCEDURE db2inst1.tmp_pwc_jtt_sp() @

CREATE PROCEDURE db2inst1.tmp_pwc_jtt_sp()

 LANGUAGE SQL

BEGIN

 DECLARE jtid INTEGER;

 DECLARE l_job_type_name VARCHAR(32);

 DECLARE l_task_name VARCHAR(32);

 DECLARE l_task_order INTEGER;

 DECLARE l_i_task_name VARCHAR(32);

 DECLARE l_i_task_io_name VARCHAR(32);

 DECLARE l_i_task_io_type VARCHAR(32);

 DECLARE l_i_task_order INTEGER;

 DECLARE l_o_task_name VARCHAR(32);

 DECLARE l_o_task_io_name VARCHAR(32);

 DECLARE l_o_task_io_type VARCHAR(32);

 DECLARE l_o_task_order INTEGER;

 -- job type with
'Scanner':'ShellCmdTask':'Indexer':'IXLoader':'AutoIndex
VolAccept'

 SET l_job_type_name = 'Custom_Indexer';

 CALL pwc_job_types.create_job_type(jtid,
l_job_type_name);

Defining a New Job Type

18 | Building Custom Jobs

 SET l_task_name = 'Scanner';

 SET l_task_order = 1;

 CALL pwc_job_types.create_job_type_task(jtid,
l_task_name, l_task_order);

 SET l_task_name = 'ShellCmdTask';

 SET l_task_order = 2;

 CALL pwc_job_types.create_job_type_task(jtid,
l_task_name, l_task_order);

 SET l_task_name = 'Indexer';

 SET l_task_order = 3;

 CALL pwc_job_types.create_job_type_task(jtid,
l_task_name, l_task_order);

 SET l_task_name = 'IXLoader';

 SET l_task_order = 4;

 CALL pwc_job_types.create_job_type_task(jtid,
l_task_name, l_task_order);

 SET l_task_name = 'AutoIndexVolAccept';

 SET l_task_order = 5;

 CALL pwc_job_types.create_job_type_task(jtid,
l_task_name, l_task_order);

 SET l_i_task_name = 'ShellCmdTask';

 SET l_i_task_io_name = 'input params';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 2;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'output file name';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

Defining a New Job Type

Building Custom Jobs | 19

CALL pwc_job_types.create_job_type_io(jtid,
l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'Indexer';

 SET l_i_task_io_name = 'data file name';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 3;

 SET l_o_task_name = 'ShellCmdTask';

 SET l_o_task_io_name = 'shell output';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 2;

CALL pwc_job_types.create_job_type_io(jtid,
l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'Indexer';

 SET l_i_task_io_name = 'ddn volume number';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 3;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'ddn volume number';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid,
l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

Defining a New Job Type

20 | Building Custom Jobs

 SET l_i_task_name = 'IXLoader';

 SET l_i_task_io_name = 'index volume number';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 4;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'ddn volume number';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid,
l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'IXLoader';

 SET l_i_task_io_name = 'ir file name';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 4;

 SET l_o_task_name = 'Indexer';

 SET l_o_task_io_name = 'ir file name';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 3;

CALL pwc_job_types.create_job_type_io(jtid,
l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'AutoIndexVolAccept';

 SET l_i_task_io_name = 'index volume number';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 5;

Defining a New Job Type

Building Custom Jobs | 21

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'ddn volume number';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid,
l_i_task_name, l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

END @

CALL db2inst1.tmp_pwc_jtt_sp() @

DROP PROCEDURE db2inst1.tmp_pwc_jtt_sp() @

Name the Job

The first part of the script is to give your new task a name. The syntax to do this
is:

jtid := pwc_job_types.create_job_type ('<new_job_name>');

In the script, the create_job_type call defines a unique job type ID (jtid)
for the new Indexer1 job type.

So if your new job name is myIndexer, then the code script will be:
jtid := pwc_job_types.create_job_type ('myIndexer');

Specify Job Tasks

The next step is to specify what tasks will be part of the new job, and in what
order will they execute. The syntax is:

pwc_job_types.create_job_type_task(jtid,'<task_name>', n);

Defining a New Job Type

22 | Building Custom Jobs

where n equals the order number of the task and jtid is the job type id � created
with pwc_job_types.create_job_type() function. The
create_job_type_task call defines the order of the tasks in the job.

In the above example, the plan is to create a new job type based on the current
Indexer job type. The tasks included in the Indexer Job are (in their order of
execution):

Job Tasks

Scanner

Indexer

IXLoader

Indexer

AutoIndexVolAccept

If you insert the ShellCmdTask after the ScannerError! Bookmark not defined.
Task, it will become task 2, and the others will be incremented by one. The code
example is:

pwc_job_types.create_job_type_task(jtid,'Scanner', 1);

pwc_job_types.create_job_type_task(jtid,'ShellCmdTask',
2);

pwc_job_types.create_job_type_task(jtid,'Indexer', 3);

pwc_job_types.create_job_type_task(jtid,'IXLoader', 4);

pwc_job_types.create_job_type_task(jtid,
'AutoIndexVolAccept', 5);

Define Input Arguments

Each task has input and output arguments, and a particular task may require the
output arguments from a previous task to function properly. For example, in the
default Indexer job, its Indexer task takes two input arguments from the Scanner
Task. In the SQL Script you define which specific input arguments for a task are
used from the specific output arguments from another task.

For a list of arguments, see the Javadoc for the eaSDK 3.0 API Specification.

Defining a New Job Type

Building Custom Jobs | 23

To define the input and output parameters, the following is the syntax of the
function of the call that uses nine arguments:

pwc_job_types.create_job_type_io(jtid,
 '<input_task_name>',
 '<input_argument>',
 'INPUT',
 x,
 '<output_task_name>',
 '<output_argument>',
 'OUTPUT',
 y);

where x is the order number of the input task and y is the order number of the
output task. The create_job_type_io calls define the input values for each job
task. It accepts the following parameter values:

• The job type ID (jtid)

• The task name receiving the input value

• The input parameter name

• The I/O type (INPUT)

• The order number for the task receiving the input value (defined earlier in the
script)

• The previous task name dispensing the output to be used for input

• The output parameter name from the previous task

• The I/O type (OUTPUT)

• The order number of the task dispensing the output value (defined earlier in
the script)

The following breaks down the input arguments used in the above example
script:

Defining a New Job Type

24 | Building Custom Jobs

pwc_job_types.create_job_type_io(jtid,
 'ShellCmdTask',
 'input params',
 'INPUT',
 2,
 'Scanner',
 'output file name',
 'OUTPUT',
 1);

The input argument input params for the ShellCmdTask uses the output
argument output file name from the Scanner task.

pwc_job_types.create_job_type_io(jtid,
 'Indexer',
 'data file name',
 'INPUT',
 3,
 'ShellCmdTask',
 'shell output',
 'OUTPUT',
 2);

pwc_job_types.create_job_type_io(jtid,
 'Indexer',
 'ddn volume number',
 'INPUT',
 3,
 'Scanner',
 'ddn volume number',
 'OUTPUT',
 1);

The input arguments data file name and ddn volume number for the Indexer task
uses the output arguments shell output from the ShellCmdTask and ddn volume
number from the Scanner task respectively.

pwc_job_types.create_job_type_io(jtid,
 'IXLoader',
 'index volume number',
 'INPUT',
 4,
 'Scanner',
 'ddn volume number',
 'OUTPUT',
 1);

Defining a New Job Type

Building Custom Jobs | 25

pwc_job_types. create_job_type_io (jtid,
 'IXLoader',
 'ir file name',

 'INPUT',
 4,
 'Indexer',
 'ir file name',
 'OUTPUT',
 3);

The input arguments index volume number and ir file name for the IXLoader task
uses the output arguments ddn volume number from the Scanner and ir file name
from the Indexer respectively.

pwc_job_types.create_job_type_io(jtid,
 'AutoIndexVolAccept',
 'index volume number',
 'INPUT',
 5,
 'Scanner',
 'ddn volume number,
 'OUTPUT',
 1);

The input argument index volume number for the AutoIndexVolAccept task uses
the output argument ddn volume number from the Scanner task.

Configuring Your New Job Type
After creating the script, you will need to run it against the Oracle database used
by eaDirect (as described in the Installation and Configuration Guide). For
example, if the script is named myindexer.sql and placed in /opt/EDCSbd/db (the
default database location for eaDirect), you could run the following in SQL*Plus:

$ sqlplus -s edx_dba/edx@edx.db @ /opt/EDCSbd/db/myindexer.sql

The above command presumes you are using the default names for the eaDirect
database (edx0) and database administrator/password (edx_dba/edx).

Before the new job type is available in the Command Center, you have
to stop and start Your application server after running the script.

Defining a New Job Type

26 | Building Custom Jobs

Once the new job type is available to you from the Command Center, you can
define the new job using that new job type.

Define the Shell Command Task

If you have included the ShellCmdTask with your new job type, it has 2 input
fields to define:

• Shell Command

• Environment variables

The Shell Command field defines the location of the shell script to execute on
your system. Note that the user that starts the application server must have
read/execute permissions for that location.

The shell command must output, on its standard output, the name of its output
file that is the input file to be processed by the next task in the job. If the shell
command doesn't output any file name, the job stops as a no-op. If it is
successful, the shell command must set its exit code to 0.

If the shell command fails, it must set its exit code to a non-zero value.
Additionally, it may output, on its standard error, a message describing the
failure. The error message will be logged into the log file by eaDirect. However,
any errors within the shell command are not logged and must be handled
separately.

For example, the following shell command would be useful after the Scanner
task to ensure Windows files have the correct format for UNIX:

#!/bin/csh
Preprocessor to run dos2unix on the input file

dos2unix $SHELL_INPUT $SHELL_INPUT.ux >& /dev/null
if ($status != 0) exit $status # failure
echo $SHELL_INPUT.ux # new input
file
exit 0 # success

The Environment variables field specifies the environment variables for the shell
command. By default, the external command is passed the following
environment variables:

Defining a New Job Type

Building Custom Jobs | 27

• DDN - the name of the application to which the job belongs

• JOB_NAME - the name of the job to which the task is a part of.

• STATUS - the status of the job (has it been started, did it succeed/fail, etc).

• PREVIOUS_STATUS

• SHELL_INPUT - any input from a previous task. The SHELL_INPUT
variable is only set if the shell command task is linked with another task in
the context of a job. Otherwise it is null.

If your shell command requires any other environment variables, you�ll need to
specify them in this field.

Another Example of Defining a New Job Type
The following is another example that defines an index job called Indexer2 with
the following tasks:

Job Tasks

Scanner

Indexer

ShellCmdTask

IXLoader

Indexer2

AutoIndexVolAccept

As mentioned in the previous chapter, a reason for this new job type could be to
run a validation engine (sum all amount due for example) on the output of the
Indexer task. If the amount due exceeds a certain amount, it may require a careful
verification of the input data stream as described in the SDK Module: Auditing
Data Streams with the Verify API.

For this case you can create the following SQL script:
DECLARE jtid NUMBER;
BEGIN

Defining a New Job Type

28 | Building Custom Jobs

 jtid := pwc_job_types.create_job_type('Indexer2');

 pwc_job_types.create_job_type_task(jtid, 'Scanner',
1);

 pwc_job_types.create_job_type_task(jtid, 'Indexer',
2);

 pwc_job_types.create_job_type_task(jtid,
'ShellCmdTask', 3);

 pwc_job_types.create_job_type_task(jtid, 'IXLoader',
4);

 pwc_job_types.create_job_type_task(jtid,
'AutoIndexVolAccept', 5);

 pwc_job_types.create_job_type_io(jtid, 'Indexer',
'data file name', 'INPUT', 2, 'Scanner', 'output file
name', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'Indexer',
'ddn volume number', 'INPUT', 2, 'Scanner', 'ddn volume
number', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid,
'ShellCmdTask', 'input params', 'INPUT', 3, 'Indexer',
'ir file name', 'OUTPUT', 2);

 pwc_job_types.create_job_type_io(jtid, 'IXLoader',
'index volume number', 'INPUT', 4, 'Scanner', 'ddn
volume number', 'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'IXLoader',
'ir file name', 'INPUT', 4, 'Indexer', 'ir file name',
'OUTPUT', 2);

 pwc_job_types.create_job_type_io(jtid,
'AutoIndexVolAccept', 'index volume number', 'INPUT', 5,
'Scanner', 'ddn volume number', 'OUTPUT', 1);

END;

Building Custom Jobs | 29

Index

A
Auditing Data Streams,

27
AutoIndexVolAccept task,

25

B
Building Custom Jobs, 8

C
Configuring custom jobs,

25
Customer Self Service, 5

D
DDN, 27
Development Tools,

eaSuite, 8

E
eaAssist, 7
eaDirect, 7
eaMarket, 7
eaPay, 8
eaPost, 8
eaSample, 9
eaSuite, 5

H
Help

documentation, 9
technical support, 10

I
Indexer job, 14
Indexer task, 14
Input and output

arguments, 15, 22, 23
IXLoader task, 14

J
JOB_NAME, 27

O
Oracle sqlplus utility, 15

P
PREVIOUS_STATUS, 27

S
Scanner, 14
Scanner task, 14
SDK, 8
Shell command task, 15
SHELL_INPUT, 27
SQL scripts task, 15
sqlplus, 15
STATUS, 27

Index

30 | Building Custom Jobs

V Verify, 27

	Preface
	About Customer Self-Service and eaSuite™
	About This Guide
	Related Documentation
	If You Need Help

	About Custom Job Types
	About Jobs and the Shell Command Task

	Defining a New Job Type
	Create the Job Type Script
	Example sqlplus script for Oracle
	Example script for AIX/DB2
	Name the Job
	Specify Job Tasks
	Define Input Arguments

	Configuring Your New Job Type
	Define the Shell Command Task

	Another Example of Defining a New Job Type

	Index

