

Oracle® Real-Time Decisions

Getting Started with Oracle RTD

7
Version 2.2 Document Revised February 200

Copyright © 2003, 2007, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use
and disclosure and are also protected by copyright, patent, and other intellectual and
industrial property laws. Reverse engineering, disassembly, or decompilation of the
Programs, except to the extent required to obtain interoperability with other independently
created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. This document is
not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or
using the Programs on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are "commercial computer
software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in
FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or
other inherently dangerous applications. It shall be the licensee's responsibility to take all
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of
such applications if the Programs are used for such purposes, and we disclaim liability for
any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

The Programs may provide links to Web sites and access to content, products, and
services from third parties. Oracle is not responsible for the availability of, or any content
provided on, third-party Web sites.You bear all risks associated with the use of such
content. If you choose to purchase any products or services from a third party, the
relationship is directly between you and the third party. Oracle is not responsible for: (a)
the quality of third-party products or services; or (b) fulfilling any of the terms of the
agreement with the third party, including delivery of products or services and warranty
obligations related to purchased products or services. Oracle is not responsible for any
loss or damage of any sort that you may incur from dealing with any third party.

Getting Started with Oracle RTD i

Getting Started with Oracle RTD
Section 1: About Oracle RTD... 2

1.1 Terminology... 2
1.2 About Decision Studio ... 3

1.2.1 Inline Service Explorer View... 3
1.2.2 Problems View.. 3
1.2.3 Test View.. 4
1.2.4 Cheat Sheets View ... 4
1.2.5 Editor area .. 4
1.2.6 Arranging Views and Resizing Editors.. 4

1.3 About Decision Center... 4
1.4 Overview of the Inline Service lifecycle ... 5

Section 2: Creating an Inline Service ... 9
2.1 Overview of the tutorial.. 9
2.2 A note about naming and descriptions .. 11

2.2.1 Before you begin... 11
2.2.2 How to configure the Application element .. 11

2.3 Accessing data .. 11
2.4 Creating a data source .. 12

2.4.1 Importing the outputs for a data source.. 12
2.5 Creating an entity .. 13

2.5.1 About additional entity properties ... 14
2.5.2 Adding an entity key ... 14

2.6 About the Session entity.. 14
2.6.1 Adding an attribute to the Session entity .. 15
2.6.2 Creating a session key ... 15
2.6.3 Mapping the entity to the data source... 15

2.7 Creating an Informant.. 15
2.7.1 Adding an Informant ... 16
2.7.2 Adding testing logic to the Informant .. 16

2.8 Testing the Inline Service .. 17
2.8.1 Deploying the Inline Service for testing .. 17

2.9 Adding functionality ... 18
2.9.1 Creating a call entity ... 18
2.9.2 Creating the Call Begin Informant... 19
2.9.3 Creating the Service Complete Informant... 20

Getting Started with Oracle RTD ii

2.9.4 Creating the Call End Informant ... 21
2.9.5 Testing the Informants .. 22

2.10 Analyze Call Reasons ... 23
2.10.1 About using choices for analysis .. 23
2.10.2 Adding a choice group.. 23
2.10.3 About the analytical model.. 24
2.10.4 Adding an analytical model... 24
2.10.5 Adding logic for selecting choices... 25
2.10.6 Testing it all together .. 26

Section 3: Simulating Load for Inline Services... 27
3.1 Performance under load.. 27

3.1.1 Creating the Load Generator script .. 27
3.1.2 Viewing analysis results in Decision Center ... 30
3.1.3 Excluding the attribute .. 31

3.2 Resetting the Model learnings... 31
3.2.1 Summary of the Inline Service.. 32

Section 4: Enhancing the Call Center Inline Service.. 33
4.1 About using choice groups and scoring to cross sell .. 33

4.1.1 Creating an offer inventory using choice groups .. 33
4.1.2 Configuring Performance Goals ... 35
4.1.3 Scoring the choices .. 35
4.1.4 About Advisors.. 36
4.1.5 Creating the Decisions.. 36
4.1.6 Creating the Advisor ... 37
4.1.7 Viewing the integration map ... 38
4.1.8 Testing the Advisor ... 39

Section 5: Closing the Feedback Loop .. 41
5.1 About the use of events to track success.. 41

5.1.1 About defining events in choice groups.. 41
5.1.2 Defining events in a choice group... 41
5.1.3 About the choice event model .. 42
5.1.4 Defining a choice event model.. 42
5.1.5 Additional model settings.. 42
5.1.6 About closing the loop .. 43
5.1.7 Remembering the extended offer ... 43
5.1.8 Creating the feedback Informant .. 44
5.1.9 Testing the feedback Informant .. 45

Getting Started with Oracle RTD iii

5.1.10 Updating the Load Generator script.. 46
5.2 Using the predictive power of models ... 48

5.2.1 Adding a base Revenue choice attribute .. 49
5.2.2 Adding a second performance goal – Maximize Revenue ... 49
5.2.3 Calculating score value for performance goal Maximize Revenue... 50
5.2.4 Updating the Select Offer Decision to include second performance goal... 50
5.2.5 Adding a choice attribute to view likelihood of acceptance... 51
5.2.6 Checking the likelihood value ... 51
5.2.7 Introducing offer acceptance bias for selected customers.. 53
5.2.8 Running Load Generator script... 54
5.2.9 Studying the results .. 55

Getting Started with Oracle RTD iv

Preface
Oracle Real-Time Decisions (Oracle RTD) enables you to develop adaptive enterprise software solutions. These
adaptive solutions continuously learn from business process transactions while they execute and optimize each
transaction, in real time, by way of rules and predictive models.

About this document
This document contains information and examples to help you get started using Oracle RTD. The examples in this
guide assume the reader has installed Oracle RTD on a Windows system.

Intended audience
This document is designed to help technical users of Oracle RTD get acquainted with the capabilities, terminology,
tools, and methodologies used to configure Inline Services.

How to use this guide
This document is divided into the following sections:

Section 1: About Oracle RTD provides background on Oracle RTD.

Section 2: Creating an Inline Service explains how to build an Oracle RTD inline service.

Section 3: Simulating Load for Inline Services provides information about using the Load Generator to simulate the
run-time operation of the system.

Section 4: Enhancing the Call Center Inline Service expands the functionality of the Inline Service.

Section 5: Closing the Feedback Loop further enhances the Inline Service to add a self-learning model that uses
predictive methods to update the Inline Service.

Document conventions

Convention Description

monospace Indicates source code and program output.

bold Indicates portions of the user interface, such as labels, tabs, and
menus.

italic Italics are used to highlight the first use of terms.

‘quote’ Indicates input required from the user.

Indicates additional information that may make the task easier.

Indicates additional information about the subject.

Indicates actions that may result in loss of data or errors.

Getting Started with Oracle RTD 1

Section 1: About Oracle RTD
Oracle RTD provides a new generation of enterprise analytics software solutions that enable companies to make better
decisions in real time at key, high-value points in operational business processes.

Oracle RTD easily integrates with enterprise applications both on the front end (such as CRM applications) and on the
back end (such as enterprise data stores). Oracle RTD also includes other helpful load testing and debugging tools.

1.1 Terminology
Oracle RTD consists of five components:

 Decision Studio

 Real-Time Decision Server

 Decision Center

 Administration (JMX)

 Load Generator

Inline Service refers to the configured application that is deployed.

Inline Services are configured and deployed using Decision Studio and analyzed and updated using Decision Center.
Inline Services run on Real-Time Decision Server.

An Inline Service can gather data and analyze characteristics of enterprise business processes on a real-time and
continuous basis. It also leverages that data and analysis to provide decision-making capability and feedback to key
business processes.
Elements are one of the following types of objects:

1. Application: The application object identifies the application level settings for models, and any parameters
needed for the Inline Service.

2. Performance Goals: Performance Goals identify the Key Performance Indicators (KPIs) that the Inline
Service is designed to track and optimize.

3. Choices: Choices represent the offers that will be presented through the Inline Service or the attributes to be
tracked by the self learning model.

4. Rules: Rules are graphically configured rules used to target segments of population, decide whether a choice
is eligible or score a particular choice.

5. Decisions: Decisions score and weigh the eligible choices and present the one that optimizes performance
goals.

6. Selection Functions: Selection Functions can be used by decisions as a custom way to make a choice.

7. Entities: Entities represent the actors in the system.

8. Data sources: Data Sources retrieve data from tables or stored procedures.

9. Integration Points: Integration Points are the places where the Inline Service touches outside systems, either
with data coming in or advice going out. There are two classes of Integration Points: Informants and
Advisors. Informants receive data from outside systems, whereas Advisors receive data and also send
advice back to outside systems.

10. Models: Self-learning, predictive models optimize decisions and analyze data.

11. Statistics collectors: Statistic Collectors are special models that track statistics about entities.

12. Categories: Categories are used to segment data for display in Decision Center.

Getting Started with Oracle RTD 2

1.2 About Decision Studio
Decision Studio is a graphical development tool for configuring Inline Services, the services that allow you to monitor
activity, gather statistics, and make recommendations.

Decision Studio is fully integrated with Eclipse, an open source Java IDE produced by the Eclipse Foundation.
Decision Studio exists as a standard plug-in to the Eclipse environment. If you are using Eclipse, you have the
advantage of using the environment for additional development and advanced features. If you are not familiar with
Eclipse, it is completely transparent to using Decision Studio. Eclipse and Decision Studio both have online help
available through the Help menu.

Decision Studio allows you to work with an Inline Service from several perspectives. A perspective defines the initial
set and layout of views and editors for the perspective. Each perspective provides a set of functionality aimed at
accomplishing a specific type of task or works with specific types of resources. Perspectives control what appears in
certain menus and toolbars.

To select or change to a different Perspective (such as Inline Service, Java, Resource, and so on), click the Window
menu in Decision Studio and choose Open Perspective, then choose from the list of available Perspectives. The
default Perspective when starting Decision Studio for the first time is Inline Service. We will use this Perspective in
this tutorial. In general, this will be the Perspective you use to develop Inline Services.

The default Inline Service perspective contains four views and an editor area:

1.2.1 Inline Service Explorer View
The Inline Service Explorer View gives a view of the overall project structure. When you start a new Inline Service,
this view is populated by all the elements of the Inline Service you have chosen.

1.2.2 Problems View
The Problems View shows validation (.sda) and compilation errors (.java) as you build your Inline Service. If you
double-click a validation error, Problems View opens the metadata/element-editor at the point of the error. If you

Getting Started with Oracle RTD 3

double-click a compilation error, Problems View opens the generated source code (.java files) at the point of the
error. You should not edit generated source code files directly; instead, fix related metadata/element problems, which
will then regenerate and recompile the source code.

1.2.3 Test View
The Test View allows you to test your Inline Services against the server as you build them.

1.2.4 Cheat Sheets View
The Cheat Sheets View provides step-by-step instructions for common tasks. After installation, it is located on the
right-hand side of the window.

Tip: You may want to close the Cheat Sheets View to give more
editor space. The Cheat Sheets are unused in this tutorial.

1.2.5 Editor area
The center area of the Inline Service Perspective is the editor area, and shows an editor that is specific to the node on
the project tree you have highlighted. To change to a new editor, double-click the element from the Inline Service
Explorer View you wish to edit.

1.2.6 Arranging Views and Resizing Editors
Tabs on the editors indicate the name of resources that are currently open for editing. An asterisk (*) indicates that an
editor has unsaved changes. Tabs may have a toolbar that provides functionality.

You can drag the views and editors of a perspective to any space on the screen. Views and editors will resize
themselves to fit the area in which they are placed. Occasionally, portions of an editor (where you do your main work)
or view will become covered by other views, or resized to an area that is not convenient to use. To resize the editor or
view, either close other open views and the remaining will automatically resize, or maximize the editor or view by
double-clicking the editor tab.

Both Editors and Views can be toggled between Maximize and Minimize by double-clicking the tab, or by using the
right-click menu item.

To show additional Views or open Views that were closed, click the Window menu in Decision Studio and choose
Show View, then choose from the list of available Views.

1.3 About Decision Center
Decision Center is a Web-based application that allows the business analyst to monitor and optimize deployed Inline
Services. From Decision Center, you can view statistics gathered from the models and fine-tune campaigns such as
cross-selling, as well as adjust how decisions are made.

The Decision Center user interface displays Inline Services in two panes. The left pane shows the list of Inline Service
elements, while the right pane displays detailed information related to the selected element.

Getting Started with Oracle RTD 4

1.4 Overview of the Inline Service lifecycle

Studio

Management Service

Create new
Inline Service,

Configure elements:
Entities, decisions,
choices, goals, etc.

Inline Service
metadata saved,

Java files compiled
to classes.

XML
metadata
in memory

Metadata moved
to server

Create Save Deploy

Inline
Service

Decision Center

Update
parameters of
Inline Service

View
and

Update

Redeploy
Inline Service

Re-
deploy

1 2 3

4 5

Database

Download
deployed

Inline
Service

6
Down
load

 Inline Service
saved in DB

Real-Time Decision Server

Getting Started with Oracle RTD 5

Inline Services are created using Decision Studio. The following steps outline the overall process by which Inline
Services are created, deployed, and downloaded:

1. Create: Using Decision Studio, elements are created and configured. Configuration often consists of
checking attributes or settings that apply to your business situation. Examples of elements are: Choice
Groups, Performance Goals, Decisions, Informants, Advisors, Entities, and Data Sources.
Some elements allow the use of Java scriptlets in Logic and Asynchronous Logic attributes. For instance, an
Informant element is shown below. This element is named ‘Call Begin.’ In addition to the Description and the
Advanced button, there are three tabs, each with a set of attributes for the Informant.

In the Logic tab of this ‘Call Begin’ Informant, we can write optional Java code to perform specific tasks:

As elements are created and saved, XML metadata is created in memory that describes the object.

2. Save: By saving the Inline Service in Decision Studio, the metadata is written to an Inline Service directory
on the local file system, in XML files with the extension *.sda. The metadata for the Informant ‘Call Begin’ is
saved in a file called CallBegin.sda, and the content is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<sda:RTAPType xmlns:sda="http://www.sigmadynamics.com/schema/sda"
internalName="CallBegin" lastModifiedTime="1133228616435" name="Call
Begin" schemaVersion="20050818" forcesSessionClose="false" order="1.0">
 <sda:description>The Call Begin Informant starts the session after the
customer's call enters the IVR system. Logic could be added here to
pre-populate certain values (example: customer profile) that may be used
later on.</sda:description>
 <sda:system ref="Ivr"/>
 <sda:sessionKey path="customer.customerId" relativeTo="session"/>
 <sda:requestMapper internalName="RequestMapper">
 <sda:entity type="ApplicationSession" var="session"/>

Getting Started with Oracle RTD 6

 <sda:dataSource type="RequestDataSource" var="result">
 <sda:arg>
 <sda:path localVarName="session" path="request"
relativeTo="local"/>
 </sda:arg>
 </sda:dataSource>
 </sda:requestMapper>
 <sda:requestData internalName="RequestDataSource">
 <sda:param internalName="message" dataType="object"
objectType="com.sigmadynamics.client.wp.SDRequest"/>
 <sda:request>
 <sda:resultSet/>
 </sda:request>
 </sda:requestData>
 <sda:body>
 <sda:java order="0">/* Trigger data retrieval
*/
session().getCustomer().fill(); </sda:java>
 </sda:body>
 <sda:postOutputBody/>
</sda:RTAPType>

The attributes that were assigned to the element in Decision Studio, such as Session Key and External
System, are represented here. Note that the Java scriptlet is also inserted into the body of the XML file.

As Inline Service elements are added, configured, and saved, Decision Studio automatically generates the
necessary Java code and compiles them into Java class files. Two classes of Java code are generated. The
first set is the base Java files used by the Inline Service; these files are named the element id preceded by
GEN. For example, the CallBegin element will produce a file called GENCallBegin.java.

The second set of Java files is created to allow overriding of the generated code. These files are named the
same as the element id. For instance, the CallBegin element will produce a file named
CallBegin.java. Note that by default, the Java class CallBegin simply extends the class
GENCallBegin.

When the Inline Service is compiled, the generated code is used unless we specifically instruct that the
override code be used. To do this, update and move the override Java file (for example,
CallBegin.java) from the generated source files folder:
[InlineServiceProjectRootFolder]\gensrc\com\sigmadynamics\sdo\

to the override source files folder:
[InlineServiceProjectRootFolder]\src\com\sigmadynamics\sdo\

Decision Studio will now compile using the override Java file instead of the generated Java file.

Tip: The XML for any Inline Service object can be viewed with
Decision Studio’s built-in Text Editor. Right-click an Inline Service object in the
Inline Service Explorer View and in the Open With menu, select Text Editor.
To switch back to normal editor format, select the option Inline Service Editor.
Note: You should not edit the XML (*.sda) files directly to modify the Inline
Service objects; instead, use the corresponding Inline Service Editors.

Getting Started with Oracle RTD 7

3. Deploy: The Inline Service is deployed to the Real-Time Decision Server using Decision Studio. The

Management Service on the server receives the metadata and compiled Inline Service files, stores the Inline
Service in the database, and loads the Inline Service into memory. The Inline Service can now be utilized to
process requests, view reports, and so on.

4. View and Update: Reports and learnings are viewed through the browser-based Decision Center interface.
Selected elements and parameters of your Inline Service can be updated from Decision Center. Updated
Inline Services are not available for run-time use until they are redeployed.

5. Redeploy: If updates are made to the Inline Service in Decision Center, the changes are made available for
use by redeploying the Inline Service in Decision Center. The Management Service will regenerate all
necessary metadata and Java files, recompile the Inline Service, store the Inline Service in the database,
and load it in memory.

6. Download: Using Decision Studio, you can download a deployed Inline Service from the server.
Downloading involves copying the Inline Service that resides in the database and placing all of the metadata,
Java, and class files into a Decision Studio project on the hard drive. This is useful if you were not the
original developer of the Inline Service and thus do not have the metadata files. Even if you had originally
developed and deployed the Inline Service from Decision Studio, if your business process allows other users
to make changes and redeploy the Inline Service through Decision Center, then to make additional changes
to the Inline Service in Decision Studio, you would first need to download the latest version from the server.

Getting Started with Oracle RTD 8

Section 2: Creating an Inline Service
This section is designed to demonstrate how to build an Inline Service that acts as an Observer. Observer Inline
Services are aimed at analyzing characteristics of target process on a real-time and continuous basis. An Observer
Inline Service guides business users in their analysis of those various business events and how they change over time.

The Inline Service for this tutorial is based around a credit card company’s call center. The Inline Service will collect
data about the customer and the call center operational system and will analyze information about the call and its
resolution.

The goal of this Inline Service is to analyze the patterns about calls, reasons for calling, and customers. In later
sections, we will extend the capability of this Inline Service to provide recommendations to the CRM system on cross
selling offers and then to add feedback to the service on the success of its recommendations.

2.1 Overview of the tutorial
An Inline Service is created using the Studio graphical development tool. In general, an Inline Service is created in the
following fashion:

 A project is started in Decision Studio.
 Elements are added to that project and then configured to meet your business needs.
 Logic is added in the form of Java scriptlets to certain elements that perform operations.
 The Inline Service is deployed to the Real-Time Decision Server, where it runs.
 Results from the Inline Service are viewed through Decision Center.

In this tutorial the following elements are added and configured:

1. Application: The Application element establishes any application level settings that are needed, as well as
defines security for the Inline Service. An Application element is automatically created for every Inline
Service.

2. Performance Goals: Performance Goals represent organizational goals composed of metrics that are
optimized using scoring. For instance, revenue and call duration are performance metrics. An organizational
goal would be to maximize revenue while minimizing call duration.

3. Data source: The data source element acts as a provider of data from an outside data source. The structure
and format of data from data sources can vary. For example:

 Rows and columns of a RDBMS table

 Output values and result row sets from a stored procedure

A data source is a provider of data that you can map to Entity elements to supply the data for those
elements.

For example, in this tutorial we add a data source that connects to a table in the database. This table
contains customer data.

4. Entity: The Entity is a logical representation of data that can be built from one or more data sources. Entities
serve the following purposes:

 To organize the data into objects for organizational, analytical, and modeling purposes.

 To allow relatively easy and intuitive access from Java code of data from various sources.

 To hide the details by which the data is obtained so that those details can change without requiring
the logic to change.

 To hide the mechanisms by which the data is obtained to save the user of this data from needing to
deal with the APIs that are used to obtain the data.

Getting Started with Oracle RTD 9

 To support sharing of objects when objects need to be shared. For example, an object
representing a service agent could be used in multiple sessions.

Attributes of an entity can be key values. The entity key is used to identify an instance of an entity.

For example, in this tutorial we create an entity to represent a customer. The attributes of that entity are
mapped to the data source for values. The customer ID is chosen as the key for the customer entity.

Later we will also create an entity that represents a Call.

5. Session Entity: A special entity of an Inline Service is the Session entity. The Session entity represents a
container for attributes that are specific to a particular defined Session. The Session key identifies the start
and end of the Session.

Entities that have been defined can be associated with the session by being made attributes of the Session
Entity. Only Entities that are Session attributes can have their keys marked as session keys.

For example, in this tutorial we add the Customer entity to the Session entity as an attribute, and then we
choose the Customer key value, Customer ID, as a Session key.

6. Informant: An Informant is an Integration Point within the Inline Service that identifies the business
interactions as they occur and triggers business logic that continuously identifies relevant statistical patterns
in the data. Informants watch a process; they do not interact with it.

In this tutorial we first create a testing Informant, and then create an Informant that gathers completion of
service data from a CRM system.

Later in the tutorial we create an Informant that provides feedback to the Inline Service on the success or
failure of the predictions of the model.

7. Choice Groups: Choice Groups are useful for organizing choices. Choice Groups can be used in one of two
ways: they provide a way to organize the observations that are collected and analyzed; they are also a way
to organize the feedback we will give to the business process through the Advisor Integration Points.
For example, in this tutorial we first create Choice Group that organizes the reason for calls. When we extend
the Inline Service to include an Advisor, a Choice Group is used to organize cross sell offers that are
recommended to the service center agent.

8. Models: Built in analytical models allow self-learning and automatic analysis. Models can be used to simply
analyze data or to make recommendations to the business process.
In this tutorial we create a model that analyzes the reasons for calls, and then later a model which helps to
determine the most likely cross sell offer to be accepted by the customer.

9. Decision: A Decision is used by an Advisor to determine eligible Choices, score those Choices dynamically,
weight the scoring according to segments of the population, and present to best-fit choice.

10. Advisors: Advisors extend the capability of the Inline Service by allowing a return of information into the
business process. Advisors are tightly related to Choice Groups and Rules.

In this tutorial we will create a Choice Group of offers that can be made to callers to the credit card service
center. The Advisor calls on a Decision to determine the best offer for the caller based on information about
the call and caller. The Advisor passes that cross sell recommendation to the front end application, so that
the call center agent can make the offer.

Getting Started with Oracle RTD 10

2.2 A note about naming and descriptions
Element names and descriptions are used extensively in Decision Center, the user interface for business users.
Therefore, it is very important that as you create elements you take the time to name them intuitively and to write good
descriptions for all elements.

2.2.1 Before you begin
Before you begin, ensure that Real-Time Decision Server is started. See Installation and Administration of Oracle RTD
for more information about how to start Real-Time Decision Server.

2.2.2 How to configure the Application element
1 Open Decision Studio by running RTD_HOME\eclipse\eclipse.exe. After Decision

Studio opens, use File > New > Inline Service Project to begin a new project.

Note: This tutorial assumes you are using a new installation, with the
original preferences set. If Decision Studio or Eclipse has been used in the
past, you may want to switch to a new workspace. To switch to a new
workspace, use File > Switch Workspace and choose a new workspace
folder.

2 Enter the name for the Project, Tutorial and choose the Basic Application template.
Click Finish. If you are asked about upgrading the Inline Service, select Yes. The Inline
Service project is created in the Inline Service Explorer. By default, the files for the
project/Inline Service are stored in the Decision Studio workspace, in a folder with the same
name as the project (for example, C:\Documents and
Settings\Win_User\Oracle RTD Studio\Tutorial).

3 In Studio, expand the Tutorial and Service Metadata folders. Double-click the Application
element to bring up the element editor. In the element editor, type a description for the Tutorial
Inline Service.

4 On the Permissions tab, use Add to add users to the application permissions. To choose a
Real-Time Decision Server, click Select Server (by default localhost:8080). The
Connect to a Server window appears. Enter the server Host Name and Port Number, then
enter the User Name and Password of a user with Oracle RTD administrative permissions
(permission 0). Oracle RTD authentication and users were set up during Oracle RTD
installation and configuration; see Installation and Administration of Oracle RTD for more
information.

5 Click Connect. After you are logged on to the server, select the box Show users and use Get
Names to display a list of users on the server. Your user name should be listed. Choose your
user name and click OK.

6 Select your user and click under Granted to grant privileges. You will notice that some
privileges imply other privileges. For instance, if you choose Deploy Service from Studio,
you automatically get open, read and deploy privileges in Decision Center. Select all
privileges.

2.3 Accessing data
In order to access organizational data, we will configure two elements:

 Data source: The data source is the element that represents the structure of the data in the database.
 Entity: The entity is a logical representation of data that can be populated by one or more data sources

or contextual data retrieved by an Informant.

Getting Started with Oracle RTD 11

2.4 Creating a data source
1 Select Data Sources in the Inline Service Explorer and right-click it. Select New SQL Data

Source. Enter the data source name, Customer Data Source, and click OK. The
data source Editor appears.

2 Under Description, add the following description for the data source: Customer data
from a database table.

Tip: Good descriptions are very important. These descriptions are
used in Decision Center and are essential for business users to identify
components of reports and analysis.

Note: You may notice that there are some other data sources already
defined. These are part of the Inline Service framework and are not used in this
tutorial.

2.4.1 Importing the outputs for a data source
The outputs of a data source are the columns that are retrieved from the database. Outputs do not have to include all
the columns in the table.

1 Click Import. Import Database Table appears. You server should appear next to Server.
Click Next to connect to the server. Select Table or View appears.

2 Select the SDDS Data Source and the Table Name, CrossSellCustomers. This table
was created and populated by the default standard installation.

3 Click Finish.

4 All of the columns of the table are imported into the Output columns table.

5 Set the input column for the data source. The input is the column that you will be matching on
to retrieve the data record. In this case, we can select the column name Id from the Output
columns table and click the right arrow () to move Id to the Input columns table. The data
type is Integer.

6 Set the output columns for the data source. In the Output columns table, select and use
Remove to remove all except the following columns.

Getting Started with Oracle RTD 12

Name Type

Age Integer

HasCreditProtection String

Language String

LastStatementBalance Double

MaritalStatus String

NumberOfChildren Integer

Occupation String

7 Save your work using File > Save All. If there are errors in your work, you will receive
notification in the Problems View.

Note: You can use Import to import the column names and data
types to the Outputs for the data source. Remove any columns you will not be
using with Remove.

2.5 Creating an entity
Now that we have the data source defined, we can proceed to define a corresponding Entity. Entities are the objects
that are used by the other elements in the configuration. Entities provide a level of abstraction from sources of data
such as Data Sources or Informants. A single entity can have data coming from many data sources, or even computed
values. For now, we will create a simple entity that maps directly to the structure of the data source.

1 In the Inline Service Explorer, locate the group Entities. Right-click and use the menu item
New Entity. Enter the name Customer and click OK. The Entity Editor appears. Add
Customer entity for Description.

Note: Object IDs are automatically made to conform to Java naming
conventions: variables are mixed case with a lowercase first letter; classes are
mixed case with an uppercase first letter. If you have spaces in your label
name, they will be removed when forming the object ID.

You can use the icon on the Inline Explorer task bar to toggle between
the label of the object and its object ID.

Tip: Good descriptions for entity attributes are of particularly high
importance. Make sure you add a good description for every entity.

2 Use Import to import the attributes names and data types from ‘Customer Data Source'.
Leave the option Build data mappings for the selected data source checked.

Getting Started with Oracle RTD 13

3 In the column Default Value of the Definition tab, click to get an insertion point and add a
default value for each attribute. Values for String data types will be automatically surrounded
by double quotes.

Name Type Default Value

age Integer 35

hasCreditProtection String NO

language String English

lastStatementBalance Double 1000

maritalStatus String Single

numberOfChildren Integer 0

occupation String Student

2.5.1 About additional entity properties
You can modify additional settings about the attributes of an entity. For example, in more complex Inline Services, you
may want to define categories of attributes. To do this, create a category element and assign it using the Category on
the attribute's Properties. To view the properties of an attribute, select the attribute in the Definition tab, then right-
click and choose Properties from the menu.

You may also want to indicate that an attribute should not be used for learning. For example, if you have the phone
number of the customer it does not make sense to have analytics on the number, so in that case you would deselect
Use for Analysis.

The Show in Decision Center option is used to control whether the attribute is visible in Decision Center. This is
useful when an attribute has only technical meaning and no direct or interesting business meaning.

2.5.2 Adding an entity key
In order to fully map the entity object to the data source, we need an entity attribute to map to the key value of the data
source and complete the mapping.

1 On the Definition tab of the Customer Entity, use Add Key to add a key attribute. Add Key
appears. Enter customerId, add a description for the key value, change the data type to
Integer, and click OK.

2 Save your work using File > Save All. You may see several errors in the Problems View –
this is expected because the mapping definition of the Customer entity attributes to its data
source is incomplete. Proceed to the next section in order to complete the mapping definition.

2.6 About the Session entity
The Session is the root of runtime data for a unit of a process. Data is kept in memory during the duration of the
session. In order to track data about an Entity, we associate it with the Session entity that is part of the Oracle RTD
framework. To associate the Entity to the session, make it an attribute of the Session entity. A key is chosen for the
session. When a unique instance of that key is detected, the session begins.

As an example, consider a call center process being tracked by Oracle RTD. The Session contains entities that
represent the Caller and the Agent. For the duration of the session (in other words, the call in this case) the data
defined by those entities and the interaction between them is kept in memory and available for analysis and decision
making.

Getting Started with Oracle RTD 14

2.6.1 Adding an attribute to the Session entity
1 In the Inline Service Explorer, double-click Session under Entities.

2 From the Definition tab, use Add Attribute. Enter an attribute name, customer, then add
a Description. Note that the initial data type is type String. We'll change this in the next step.

3 From Data type, scroll down to Other and select it. A Type selection dialog appears. Under
Entity Types, choose Customer. Click OK.

2.6.2 Creating a session key
1 In Session Keys from Dependent Entity, click Select.
2 Expand the tree to see the keys of all entities associated with the Session. Expand customer

and select customerId as a session key by checking the box. Click OK.

Tip: Oracle RTD supports multiple session keys to enable the
tracking of a session when different systems are sending Informants and
Advisors to the same Inline Service. In this tutorial and in many real
installations only one session key is needed.

2.6.3 Mapping the entity to the data source
We associate the Customer entity with the Customer Data Source through mappings defined in the Entity object editor.
Our mapping of the Customer entity’s attributes to the Customer Data Source output columns was automatically done
when the attributes were imported from the Customer Data Source – see section 2.5. We need to now map the input
column value for the Customer Data Source in the Customer entity.

Open the Customer Entity and select the Mapping tab. Entities editors are identified by an 'E' icon .

1 Since we used Import, the Customer Data Source attributes are already mapped to the
Customer entity attributes. For attribute ‘Age’, the Source value should look like Customer
Data Source / Age (or Customer Data Source.Age if the Show Object ID
icon is selected). If you had added additional attributes beyond the import, they are mapped
by clicking under Source and locating the data source attribute.

2 We need to identify the input column values for each Data Source (in this case, Customer
Data Source) in the Attributes table. The input columns for the data source are the identifier
(the ‘where’ clause in a SQL select statement) by which records are retrieved. In the
Customer Data Source, we had only one input column, Id, thus in this Mapping tab, we will
see only one entry in the Data Source Input Values table, located below the Attributes
table. In the Input Value cell of this entry, click on to bring up an Edit Value dialog.

3 For this inline service, we will select the Customer entity’s key. Choose Attribute or
Variable. Expand Customer, choose customerId, then click OK.

4 Save the Inline Service using File > Save All.

2.7 Creating an Informant
Informants are a type of Integration Point that can send a message to the Real-Time Decision Server containing
information about a specific unit in a process.

Getting Started with Oracle RTD 15

To test the Inline Service at this stage, we will create a testing Informant that prints out the age of the customer. To
view the actual printed statement, we will need to deploy the Inline Service to the Real-Time Decision Server and then
call the Informant.

If we get a number back, we will know that the entity, mapping, and data source are working.

2.7.1 Adding an Informant
1 In the Inline Service Explorer, go to Integration Points and then select Informants. Right-

click and select New Informant from the menu. Enter an object name, Testing, then OK.

2 In the Testing Editor, add a description under Description.

3 Click Advanced next to Description. Deselect Show in Decision Center. This will make this
Informant invisible to the business users of the Decision Center. Click OK.

2.7.2 Adding testing logic to the Informant

On the 'Testing' Informant Editor, select the Request tab. Informants are identified by an 'I' icon .

1 To add a session key, click Select under Session Keys. Choose customerId from
Customer. Click OK.

Note: When you configure an entity in Decision Studio, a class is
generated. The generated classes have a property, getter, and setter for each
attribute.

2 Choose the Logic tab. Under Logic add the following scriptlet:
logInfo("Customer age = " + session().getCustomer().getAge());

The logInfo call allows us to output information to the Log sub tab of the Test view and also the server
log file (usually in RTD_HOME\log). We will use the session to access the Customer object and get
the contents of the age attribute.

3 Now we should be ready to deploy. Save the configuration using File > Save All.
4 The following diagram shows how the ‘Testing’ Informant will access customer data when the

Informant is called and a session created.

Getting Started with Oracle RTD 16

RTD Database

2.8 Testing the Inline Service
To test the Inline Service, we deploy it, call the Informant with test data, and use the Test View to observe the results.
Because Informants do not return value to their callers, the results will be seen in the Log tab of Test View.

2.8.1 Deploying the Inline Service for testing

1 Click the Deploy icon on the taskbar to deploy the Inline Service.

Note: You can also use the menu item Project > Deploy to deploy
your Inline Service.

2 Use the Select button to select the server where you want to deploy. Deploy to the location of
your Real-Time Decision Server. This defaults to localhost, as does the default configuration
of the installation. Use the drop-down list to select a deployment state, Development.
Check Terminate Active Sessions (used for testing). Click Deploy.
Deployment takes anywhere from about 10 seconds to a few minutes. A message 'Tutorial deployed
successfully' will appear below the Inline Service Explorer when deployment is complete.

Getting Started with Oracle RTD 17

Note: The reason we terminate active sessions is that we want to
make sure we are testing against the latest deployed Inline Service. If there
were active sessions and we used the same session id (in this case, it is also
the customerId), testing of the Informant would be against an earlier version of
the deployed Inline Service. If we terminate the currently active sessions, then
we are guaranteed to be testing against the latest deployed Inline Service,
regardless of the session id used.

3 In the Test View at the bottom of the screen, select Testing as the Integration Point to test.

Enter a value for customerId by typing 7 in the field. Click Send .

4 Select the Log tab within Test View to see the results. Every printout coming from a
logInfo command will be printed out with a timestamp.

Your results should look similar to this:
11:53:54,102 Customer age = 38

2.9 Adding functionality
We will now create an entity to hold information specific to the call. This is contextual information about the nature of
the interaction with the customer. The data in this entity will come from Informants or be computed, but it will not be
retrieved from any database.

First we create an entity to represent a call, then an Informant that gathers data from calls. Choices are created as the
targets of our analysis of the calls. In our case we are interested in focusing our analysis on the reasons for the calls.

Using this entity, we will explore the factors related to the reasons for calls, like the call lengths for each call reason,
the most likely customer characteristics for these calls, and so on. In order to gather and analyze the call reasons
gathered by the Informant, a self-learning analytical model will be added and reports will be displayed in Decision
Center.

2.9.1 Creating a call entity
1 In the Inline Service Explorer, select the group Entities. Right-click and use the menu to New

Entity. Enter the object name Call and click OK.

2 For each attribute listed in the table below, do the following:

 On the Definition tab of the Entity Editor click Add Attribute. Add Attribute appears. Enter the
values from the table and click OK.

 Click in Type. Choose the proper data type for each attribute using the pull down.

Name Type

agent String

length Integer

Getting Started with Oracle RTD 18

Name Type

reason code Integer

3 In the Inline Service Explorer double-click Session under Entities.

4 From the Definition tab, click Add Attribute. Enter an object name, call. Note that the
default type is String. We will change the default type in the next step.

5 From Data type, scroll down to Other. From Other select Entity types and then Call as the
type. Add a Description for ‘call’. Click OK.

6 Save the changes to the Inline Service using File > Save All.
2.9.2 Creating the Call Begin Informant
We will now create three Informants that will be called by the CRM application: ‘Call Begin’, ‘Service Complete’, and
‘Call End’. The first, ‘Call Begin,’ will start the session. In this Informant, we could optionally preload and cache certain
session attribute values so they can be accessed more quickly later. For example, we may want to preload the
customer’s profile if this information will be used later on and the loading of this information is expected to be slow due
to database calls or other constraints.

Note that it is not necessary to preload session attribute values as they are automatically loaded whenever they are
needed. For example, when we want to print the customer’s Age, as the ‘Testing’ Informant did in the previous section
(2.7.2), the Real-Time Decision Server will automatically populate the entire session’s Customer entity attribute and
return the Age value. In this Tutorial Inline Service, our ‘Call Begin’ Informant will simply start the session, but will not
pre-populate any session attribute values.

1 In the Inline Service Explorer, under Integration Points, select the group External Systems.
Right-click and use the menu to New External System. Object Name appears. Name the
system IVR and click OK. Give the element a description. Save this object.

2 In the Inline Service Explorer, select the group Informants. Right-click and use the menu to
New Informant. Object Name appears. Name the Informant Call Begin and click OK.

3 Using the Informant Editor, enter a description for ‘Call Begin’.

4 To add a session key to the ‘Call Begin’ Informant, click Select adjacent to Session Keys in
the Request tab. Choose customerId. Click OK.

5 While still in the Request tab, choose IVR from the External System drop-down list and
enter 1 in the Order box. Do not select Force session close. The External System and
Order determine the display layout and order in Decision Center’s Integration Map (see
section 4.1.7). When we have finished defining the three Informants and deployed the Inline
Service, the Integration Map in Decision Center will look like the following figure:

Getting Started with Oracle RTD 19

6 In the Logic tab, add the following code:
/*

Prepopulate customer data during start of call even though the
information may not be used until much later. This is not explicitly
necessary since the server will automatically retrieve the information
whenever logic in the Inline Service needs it.

*/

//session().getCustomer().fill();

int CustomerID = session().getCustomer().getCustomerId();

logInfo("Integration Point - CallBegin: Start Session for customerID = "
+ CustomerID);

7 Save the changes to the Inline Service using File > Save All.
2.9.3 Creating the Service Complete Informant
The second Informant will report on call information such as the agent that handled the call, the length of the call, and
the reason for the customer’s call. This Informant is called by the CRM application when the call center agent has
responded to the customer’s need, or in other words, when service is complete. The data that is gathered by the
Informant will populate the Call entity.

1 In the Inline Service Explorer, under Integration Points, select the group External Systems.
Right-click and use the menu to New External System. Object Name appears. Name the
system CRM and click OK. Give the element a description. Save this object.

2 In the Inline Service Explorer, select the group Informants. Right-click and use the menu to
New Informant. Object Name appears. Name the Informant Service Complete and
click OK.

3 Using the Informant Editor, enter a description for ‘Service Complete’.

4 To add a session key to the ‘Service Complete’ Informant, click Select adjacent to Session
Keys in the Request tab. Expand Customer and choose customerId. Click OK.

5 While still in the Request tab, choose CRM from the External System drop-down list and
enter 2 in the Order box. Do not select Force session close.

6 To add the additional pieces of data to the Informant, do the following for each incoming
parameter listed in the table below:

Getting Started with Oracle RTD 20

 On the Request tab of the Informant Editor, use the Add button. Enter the name and then select
the data type using the drop-down list. Click OK.

 Under Session Attribute, click the ellipsis to use Assignment. Follow the drop-down list to
‘call’ and then the call attribute that matches the incoming item.

Incoming Parameter Name Type Session Attribute

agent String call / agent (or call.agent if the Show Object
ID icon is selected)

length Integer call / length (or call.length if the Show Object
ID icon is selected

reason code Integer call / reason code (or call.reason code if the
Show Object ID icon is selected)

7 In the Logic tab, add the following code:
logInfo("Integration Point - Service Complete");

logInfo(" Reason Code: " + session().getCall().getReasonCode());

logInfo(" Agent: " + session().getCall().getAgent());

logInfo(" Call Length: " + session().getCall().getLength());

8 Save the changes to the Inline Service using File > Save All.
2.9.4 Creating the Call End Informant
The third Informant will close the session and could be the last Informant called by the CRM application. In this Tutorial
Inline Service, we will only use this Informant to close the session, but in a real system, you might perform additional
processing and/or trigger learning for a model.

1 In the Inline Service Explorer, select the group Informants. Right-click and use the menu to
New Informant. Object Name appears. Name the Informant Call End and click OK.

2 Using the Informant Editor, enter a description for ‘Call End’.

3 To add a session key to the ‘Call End’ Informant, click Select adjacent to Session Keys in the
Request tab. Expand Customer and choose customerId. Click OK.

4 While still in the Request tab, choose CRM from the External System drop-down list and
enter 5 in the Order box. The reason we set the Order to 5 is because we will add two more
integration points (an Advisor and another Informant) later in this tutorial.

5 Make sure the option Force session close is selected. Choosing this option will explicitly
close the session once the Informant has been called and its logic processed. Note that if we
do not explicitly close a session, the session will automatically close after some period of time
– the default is 30 minutes and can be changed using JConsole.

6 In the Logic tab, add the following code:
logInfo("Integration Point - CallEnd");

logInfo("***************************");

7 Save the changes to the Inline Service using File > Save All.
8 The following diagram shows how the three Informants access and update the same session.

Getting Started with Oracle RTD 21

RTD Database

2.9.5 Testing the Informants
We will now test a simple scenario where three Informants you just created are called, corresponding to 1) start of a
call, 2) service completion, and 3) end of the call. We will use the Test View to call the Informants and view the log
messages we had placed in the logic portions of the Informants.

1 Deploy to the server. Use Deploy on the taskbar to deploy the Tutorial Inline Service.
Remember to select Terminate Active Sessions (used for testing).

2 In the Test View, located in the bottom portion of Decision Studio, select the Integration
Point Call Begin. For the request input customerId, enter an integer value, say 7.
Click Send to send the request to the server. In the Log tab within the Test View, you
should see a message indicating that the ‘Call Begin’ integration point was called.

Repeat the process for the other two integration points, ‘Service Complete’ and ‘Call End,’ in
order and with the input values as shown in the following table. Examples of what you should
see in the Log tab is also shown in this table:

Integration Point Request Inputs Log tab
Call Begin customerId: 7 09:15:41,753 Integration Point - CallBegin: Start

Session for customerID = 7

Service Complete customerId: 7
agent: John
length: 21
reason code: 18

09:17:51,845 Integration Point - Service Complete
09:17:51,845 Reason Code: 18
09:17:51,845 Agent: John
09:17:51,845 Call Length: 21

Call End customerId: 7 09:20:17,342 Integration Point - CallEnd
09:20:17,342 ***************************

3 Note that you could have called the Informants in any order. The ‘Call Begin’ Informant is not
needed to start a session and ‘Call End’ is not needed to end the session. If we had only

Getting Started with Oracle RTD 22

called the ‘Service Complete’ Informant, the session would still be started correctly and the
response would have been the same, although the session would then remain open. We are
working with three Informants in this tutorial to demonstrate the different locations of a call
center process that could make calls to the Real-Time Decision Server.

Tip: Troubleshooting

If there were errors in compilation, a dialog in Decision Studio will show these
errors in the Problems View. Double clicking the error will take you to the
editor of the element that has the error.

Make sure that the server with which you are communicating is “localhost.”
Decision Studio will remember in the drop-downs the values previously
entered, and the default may not be 'localhost'.

2.10 Analyze Call Reasons
In the previous sections, we created three Informants, the second of which – ‘Service Complete’ – sends call
information from the CRM application to the Real-Time Decision Server. One of the pieces of call information is the call
reason – why the customer called. In this section, we will analyze the call reasons registered through the use of
choices and a model. The objective is to able to view basic reports on call reasons – how many of each reason were
recorded and how/if there were correlations between each call reason and session attributes.

2.10.1 About using choices for analysis
Choices are used to create targets for analysis. In our case, we are first interested in focusing our analysis on the
reasons for the calls. We will first create a choice group for the call reasons. Then, we will define an attribute for this
choice group – ‘code’. The individual choices created within this group will then inherit the attribute definition, although
the values can differ for each choice.

2.10.2 Adding a choice group

1 In the Inline Service Explorer, select the folder Choices inside Service Metadata. Right-click
and select the item New Choice Group. Name the group Call Reason and click OK. Add
a description.

2 In the Choice Group Editor for ‘Call Reason’, in the Choice Attributes tab, click Add next to
the Attributes table. Name it code. Select data type Integer. Select Overridable. Add
the description Choice codes.

Getting Started with Oracle RTD 23

Note: We made this a choice attribute as opposed to a group
attribute. The difference between the two is that choice attributes are meant to
be given values for each of the choices in the hierarchy, while group attributes
are only given to the current group.

3 To create choices underneath the group, right-click the choice group ‘Call Reason’ in the
Inline Service Explorer and select New Choice. Add a Choice, Check Balance.

Repeat for the following choices: Make Payment, Rate Inquiry and Other. Add a
description for each.

4 In the Inline Service Explorer, under Choices, expand the Call Reason group to show the
choices.

5 For each of the four choices:

Select the Choice in the Inline Service Explorer. In the Editor for that choice, under the Attribute Values
tab, for the attribute ‘code’, set the Attribute Value as shown in the following table:

Choice Attribute Value

Check Balance 17

Make Payment 18

Other 20

Rate Inquiry 19

6 Save the changes to the Inline Service using File > Save All.
2.10.3 About the analytical model
A self-learning analytical Model is created to perform the automatic analysis of the reasons for calls. This model will
track the reason for each call and correlate all the session attributes with these outcomes. Decision Center uses this
model to build reports and send alerts.

2.10.4 Adding an analytical model
1 In the Inline Service Explorer, select the group Models. Right-click and use the menu to New

Choice Model. Name the model Reason Analysis and click OK. Make sure to use a
Choice Model, and not a Choice Event Model.

2 Deselect Use for prediction.

3 To indicate that the target of analysis is the ‘choice’ model attribute, select the Choice tab and
choose Call Reason from the Choice Group drop-down list.

4 On the Editor, on the Learn Location tab, select On Integration Point.
5 Use Select to choose ‘Service Complete’ from the list.

Getting Started with Oracle RTD 24

6 Save the changes to the Inline Service using File > Save All.
2.10.5 Adding logic for selecting choices
When the ‘Service Complete’ Informant is received, we need to select the choice that represents the corresponding
reason for the call. We will do so by adding reasons to the model’s choice array using the method of the Choice Model
addToChoice.

1 In the Inline Service Explorer, expand Integration Points. Under Informant select the
‘Service Complete’ Informant.

2 Select the Logic tab and enter the following logic. This adds the Object ID of the Choice that
represents the reason for call to the model.

logInfo ("Integration Point – Service Complete. ");

logInfo (" Reason Code: " + session().getCall().getReasonCode());

logInfo (" Agent: " + session().getCall().getAgent());

logInfo (" Length: " + session().getCall().getLength());

int code=session().getCall().getReasonCode();
switch ode) { (c
 case 17:
 ReasonAnalysis.addToChoice("CheckBalance");
 ogInfo (" CheckBalance was added to the model"); l
 break;
 case 18:
 ReasonAnalysis.addToChoice("MakePayment");
 logInfo (" MakePayment was added to the model");
 break;
 case 19:
 ReasonAnalysis.addToChoice("RateInquiry");
 logInfo (" RateInquiry was added to the model");
 break;
 default:
 ReasonAnalysis.addToChoice("Other");
 fo (" Other was added to the model"); logIn
 break;
}

3 Save the configuration using File > Save All.
4 The following diagram shows how the model ‘Reason Analysis’ is updated when the Informant

‘Service Complete’ is called.

Getting Started with Oracle RTD 25

Customer Data Source
DATA SOURCE

SD DATABASE

INPUT
customerId

Customer
ENTITY

Session
ENTITY

customer

OUTPUT
age

language
etc ...

CrossSellCustomers
TABLE

MAPPED TO

Key: customerId

Call Begin
INFORMANT

Key: customerId
age, language, ...

Key: customerId

INTEGRATION POINTS

CREATES or
UPDATES

Tutorial Inline Service Objects

Call
ENTITY

agent, length, ...

callExternal System: IVR

Service Complete
INFORMANT

Key: customerId

External System: CRM

agent, length, ...

Call End
INFORMANT

Key: customerId

External System: CRM

1.

2.

3.

CLOSE

ACCESS

Input

Input

Input

Input

Call Reason
CHOICE GROUP

code

Check Balance
CHOICE

code = 17

Make Payment
CHOICE

code = 18

Rate Inquiry
CHOICE

code = 19

Other
CHOICE

code = 20

Reason Analysis
CHOICE MODEL

ANALYSIS
TARGET

TRIGGER
LEARNING

2.1

2.2

RTD Database

2.10.6 Testing it all together
1 Deploy the configuration to the server. Make sure there are no errors in deployment or

compilation.

2 Use the Test view to test the Integration Point. Select ‘Service Complete’ and set values for
the different arguments: customerId = 7, agent = John, length = 21, and reasonCode = 18.

Click Send. You should see results similar to the following:

13:57:29,794 Integration Point - Service Complete

13:57:29,794 Reason Code: 18

13:57:29,794 Agent: John

13:57:29,794 Call Length: 21

13:57:29,794 MakePayment was added to the ReasonAnalysis model

When this Informant with the shown input values is called, the Call entity, which is an attribute of the Session, is
populated with information about the agent, length of call, and reason code. The Informant logic then determines that
since the reason code was 18, then the choice ‘Make Payment’ will be added to the ‘Reason Analysis’ model. That is,
the count for choice ‘Make Payment’ will have been increased by one. Along with the count, the model also tracks all of
the session attributes and correlation with the choices.

 Change the values and test a few times to see that the correct Object ID is being added to the model for other reason
codes.

Getting Started with Oracle RTD 26

Section 3: Simulating Load for Inline Services
This section of the tutorial contains step-by-step instructions for utilizing the Load Generator to simulate the run-time
operation of the system. In general, the Load Generator is used in three situations:

1. Performance: To characterize the performance of the system under load, measuring response time and
making sure the whole system, including back-end data feeds, can cope with the expected load.

2. Initialize: To initialize the learnings and statistics with some significant data for demonstration purposes.

3. Process: To process off-line batch sources – for example, when exploring previously collected data at the
initial stages of a project.

3.1 Performance under load
To evaluate performance under load, we will create a load-simulator script that calls the integration points defined in
the Inline Service: ‘Begin Call’, ‘Service Complete’, and ‘Call End’. The script will call this series of three integration
points multiple times, each time with different customer id’s, call reason codes, agent names, and call lengths. The
‘Reason Analysis’ model will learn on each of these iterations and we will be able to see the analysis results in
Decision Center reports.

For this tutorial, we can think of Load Generator as simulating the CRM application making multiple iterations of
integration point calls to the Real-Time Decision Server. The Load Generator Script (saved as an xml file) we will
create will contain the definition of this simulation.

Note: When defining the Load Generator script, all references to
inline service objects must be in the form of object IDs, not labels. To view the

object IDs in Studio, use the object ID toggle icon on the Inline Service
Explorer taskbar. For example, the ID for the Informant ‘Service Complete’ is
‘ServiceComplete’, the id for the Informant parameter ‘reason code’ is
‘reasonCode’ and so forth.

3.1.1 Creating the Load Generator script
1 Open Load Generator by running RTD_HOME\scripts\loadgen.cmd. Then, click

Create a new Load Generator script.
2 You can press F1 to read the online help for this tool and explanations for the parameters that

are not explained in this tutorial.

3 Select the General tab and enter the following parameters:

Parameter Explanation Value

Client
ConfigurationFile

A properties file that indicates the protocol to be used to
communicate with the server, what server to talk to and
through what port. The default is to communicate using
HTTP to the local server using port 8080. The default file is
suitable for our needs.

RTD_HOME\client\
clientHttpEndPoints.
properties

Graph refresh
Interval in
Seconds

This parameter only affects the user interface. It determines
the refresh rate for the UI graph and counters. The default is
to refresh every 2 seconds.

2

Getting Started with Oracle RTD 27

Parameter Explanation Value

Inline Service This is the name we gave the Inline Service we created in the
previous section.

Tutorial

Random
Number
Generator Seed

The seed used to generate random numbers. Default is -1. -1

Think Time Think Time is the time in between transactions. In a session
oriented load simulation you would give different numbers
here. For this tutorial we will explore the maximum
throughput, sending as many sessions as possible. Values
for Think Time can be fixed or a range of values.

Fixed Global Think Time

Constant A fixed constant for think time in between transactions. 0

Number of
concurrent
scripts to run

This is the number of sessions active at any given point,
running in parallel. In this case we will just run one session at
a time.

1

Maximum
number of
scripts to run

The total number of session that will be created. Load
Generator will stop sending events after this number has
been reached.

2000

Enable Logging Checkbox to enable/disable loadgen counters log. This log
maintains a history of loadgen performance data, including
the number of requests sent by Load Generator, number of
errors, the average and peak response times of a request,
etc. If deselected, the remaining three logging parameters
(Append to Existing File, Log File, Logging Interval in
Seconds) are ignored.

Unchecked

Append to
Existing File

Checkbox to indicate whether to overwrite or append to an
existing log file each time a loadgen script is run.

Unchecked

Log File File path to an ascii file. This is the location where the
Load Generator log will be written, in tab-delimited format.

RTD_HOME\log\loadgen.
csv

Logging Interval
in Seconds

This parameter only affects the Load Generator log. It
determines the interval for writing to the log. The default is 10
seconds.

10

In the path names, make sure to replace RTD_HOME with the path where you installed Real-Time Decision Server (for
example, C:\OracleBI\RTD).

Note that parameters related to sessions cannot be changed in the middle of execution. More precisely, they can be
changed, but their changes will not affect execution until the Load Generator script is stopped and restarted.

4 Save the configuration. It is customary to save Load Generator Script in a folder named etc
within the inline service project folder. If you had created the Tutorial inline service in the
default workspace, the path would be similar to: C:\Documents and
Settings\Win_User\Oracle RTD Studio\Tutorial\etc. Name the script
(an xml file) anything you like (for example, TutorialLoadgen.xml).

Getting Started with Oracle RTD 28

5 To define the values for the parameters to the Integration Point, click the Variables tab.
Variables allow an Integration Point’s parameter values to be drawn from different sources.

Note: It is possible that not all the tree is visible on the left. To make it
all visible, you can drag the bar dividing the two areas.

6 Right-click Script and select Add Variable. Name it var_customerId. In Contents,
select Integer Range from 1 to 2000, sequential. This definition will create a variable that is
computed once per session and goes from 1 to 2000 sequentially, that is, the first session will
have var_customerId = 1 and the last one will be 2000. Right-click Script and select Add
Variable three more times for a total of four variables:

Parameter Content type Variable Value

var_customerId Integer Range Minimum = 1, Maximum = 2000, Access type = Sequential

var_reasonCode Integer Range Minimum = 17, Maximum = 20, Access type = Random

var_agent String Array To add a string to the array, right-click on the table area and
select Add Item. Then select (double-click) the newly created
row to get a cursor and type the name to be used. Press the
Enter key to register the value for that row. Add a few sample
values of agent names (for example, John, Peter, Mary, and
Sara).

var_length

Integer Range Minimum = 75, Maximum = 567, Access type = Sequential.

This will be used as the length of the call in seconds.

7 Select the Edit Script tab, then right-click the left area and select Add Action. We will add
three actions, each corresponding to an integration point. We need the actions to be in the
right order – ‘CallBegin’, ‘ServiceComplete’, and finally ‘CallEnd’.

8 For the first action, set the type to Message and the Integration Point name to
CallBegin. In Input Fields, right-click and choose Add item to add an input field.
Double-click in the space under Name and enter the value customerId; press Enter to
register the new value. In the Variable column for customerId, choose var_customerId
from the drop-down list. Select Session Key to identify this field as the session key.

9 In the Edit Script tab, right -click the left area and select Add Action. Set the type to
Message and the Integration Point name to ServiceComplete. In Input Fields, right-
click and chose Add item to add an input field. Set the Name to customerId, the
Variable to var_customerId, and select Session Key.

10 For the action ‘ServiceComplete’, add three additional fields (reasonCode, agent, and
length) and set their names and variable values to that shown in the following figure.

Getting Started with Oracle RTD 29

Again, the names here must match exactly with the incoming parameter IDs for the ‘ServiceComplete’
Informant as seen in Decision Studio. You can use the icon on the Inline Service Explorer task bar
in Decision Studio to toggle between the label of the object and its object ID.

11 In the Edit Script tab, right-click the left area and select Add Action. Set the type to
Message and the Integration Point name to CallEnd. In Input Fields, right-click and
chose Add item to add an input field. Set the Name to customerId, the Variable to
var_customerId, and select Session Key.

12 Once again, save the Load Generator configuration script. Our Load Generator script now
contains calls to three integration points. Make sure the order of the actions in the Edit Script
tab is correct: ‘CallBegin’, ‘ServiceComplete’, and ‘CallEnd’. If not in this order, right-click the
actions to move items up or down. Then, save the script again.

13 Go to the Run tab and press the Play button. Allow Load Generator to complete.

Note: There is a Pause button and a Stop button. The difference
between these two is that Pause remembers the sequences and will continue
from the point it was paused, whereas Stop resets everything.

Tip:
Troubleshooting
Look at the Total Errors in the Run tab. If the number is above 0, look at the
server output window. There may be an indication of the problem. Common
mistakes are:

1. The Inline Service has not been deployed.

2. There is a spelling or case mistake in the name of the Inline Service or the
Integration Point.

3. The server is not running.

If the Total Number of Requests stays at 1 and does not grow, there may be
a mistake in the definition of the loadgen script. Some things to look for:

1. In Integer Range variables, make sure the Minimum is below the
Maximum.

2. Make sure that the mapping of values sent in messages to variables is
correct. For example, if a variable name is changed, the mapping needs to
be redone.

3. Make sure the Client Configuration file is correct.

3.1.2 Viewing analysis results in Decision Center
You can use the Decision Center to check what has been learned by the models after running the Load Generator.

1 Open Decision Center by opening a Web browser and going to the URL
http://server_name:8080/ui. Log in as a user with administrative permissions
(permission 0).

2 Click Open Inline Services. The Select Inline Service window appears. Select Tutorial, then
expand Call Reason and select one of the Choices, such as Make Payment. In the right

Getting Started with Oracle RTD 30

pane, navigate to the Analysis tab and then the Best-fit subtab. This report summarizes the
number of times this call reason was seen, and correlations between this call reason and
attribute values.

3 You will see something interesting. The call reason code has an unexpectedly strong
correlation to the Make Payment.

Since we generated the call data randomly with Load Generator variables, we would not
expect to have any significant correlations. In this case, however, the call reason code (sent
by the ‘ServiceComplete’ Informant) absolutely determines the call reason (see logic written
in section 2.10.5).

To remove this induced-correlation, we should exclude this attribute from being used as an
input to the model. Another type of attribute we might exclude from models is a customer’s
full telephone number. After all, it is unlikely that correlations can be found between unique
telephone numbers and the reason he/she called. On the other hand, there may be
correlations between the area codes of customers and the call reasons, so this would be an
attribute that we would not exclude from the model. In the next section, you will exclude the
‘reason code’ attribute from the model and re-run the Load Generator script.

3.1.3 Excluding the attribute
4 In Decision Studio, open the Tutorial project.

5 Expand Service Metadata > Models, then select Reason Analysis from the Inline Service
Explorer.

6 Go to the Attributes tab. In the lower table, titled Excluded Attributes, click Select to choose
an attribute to exclude. Expand the Session node, then expand the call entity and select
reason code.

7 Save all and redeploy to the localhost server.

8 You can now re-run the Load Generator script.

If you use Decision Center now to look at the counts, you will notice that they include the events from both runs of the
Load Generator. This happens because we did not reset the models between the two times we ran the Load Generator
script.

3.2 Resetting the Model learnings
Use the JConsole administration tool to reset the Model learnings.

1 If you are using OC4J or WebLogic, open JConsole by running
JAVA_HOME\bin\jconsole.exe. If you are using WebSphere, run the batch script
you created during JConsole configuration. See Installation and Administration of Oracle RTD
for more information about accessing JConsole.

2 Click the Remote tab. Then, enter the appropriate port number (typically 12345) and the
administrator credentials you created during installation and click Connect.

Getting Started with Oracle RTD 31

3 Click the MBean tab, then go to the OracleRTD > InlineServiceManager > Tutorial >
Development > Loadable MBean.

4 Click the Operations tab, then use the deleteAllOperationalData() operation to remove all
operational data, including the study, for this Inline Service.

5 To see the new results in Decision Center, run the Load Generator script again.

3.2.1 Summary of the Inline Service
We have so far created a simple but fully functional Inline Service. We did so by starting with the definition of the data
environment, the data source and entity for the customer, and then the entity for the current call data. After testing the
basic functionality, we created several Integration Points and a model to perform the analysis. Logic was added to
determine the reasons of the customer calls and to record occurrence of the different reasons in a model for analysis
purposes. We then used Load Generator to simulate requests against the Real-Time Decision Server and the Tutorial
inline service. The results are then viewed in Decision Center.

Getting Started with Oracle RTD 32

Section 4: Enhancing the Call Center Inline Service
In Section 2, we created an Inline Service that tracks and analyzes incoming data related to the reason for calls to a
credit card call center. In Section 3, we used Load Generator to simulate client requests (through Informant calls) to
our Inline Service.

In this section, we will enhance the Tutorial Inline Service to provide cross-selling advice to the CRM application. The
process enhancement is this: after the agent has finished processing the customer’s call in the normal way (‘Service
Complete’ Informant called), the agent then takes the opportunity to present an offer to the customer. In section 5, we
will track the customer’s response to the offer, and then use what was learned from the responses in presenting offers
to other customers.

4.1 About using choice groups and scoring to cross sell
We will create a choice group of offers that can be extended to customers calling the service center. Choice scores are
based on cost in order to support our Performance Metric of minimizing cost. Next, an Advisor is created to pass that
cross sell recommendation to the CRM application, so that the call center agent can extend the offer.

4.1.1 Creating an offer inventory using choice groups

1 In the Inline Service Explorer, select the group Choices. Right-click and choose New Choice
Group. Name the group Cross Selling Offer and click OK.

2 Expand Choices and select/open the newly created group. Add a description.

3 In the Choice Attributes tab, click Add next to the Attributes table. Add the following
attributes, making sure to select Send to client and Overridable:

Attribute name Data type Send to client Overridable

Offer Description String √ √

URL String √ √

Agent Script String √ √

Getting Started with Oracle RTD 33

Note: These attributes are sent to the client because they are needed
by the client (call center agent) to present the offer.

The attributes should be overridable because their values will be different for
each actual offer. Cross Selling offers will be represented by choices in this
choice group.

In a real Inline Service, we are likely to see several levels of choice groups
before we get to actual offers. Each choice group provides a logical group for
offers, and may have attributes or business rules that apply uniformly to a
group of offers.

4 In the Inline Service Explorer, under Choices, select the Cross Selling Offer choice group
and add five choices with their attributes, as shown in the table below.

For each of the choices:

 Right-click Cross Selling Offer in the Inline Service Explorer and select New Choice. Add the
following choices: Credit Card, Savings Account, Life Insurance, Roth IRA, and Brokerage
Account.

 In the Inline Service Explorer, under Choices, expand the Cross Selling Offer Group to show the
choices.

 For each of the five choices:

1. Select the Choice in the Inline Service Explorer. In the Editor for that choice, add a
description.

2. On the Attribute Values tab you will see the three attributes: Agent Script, Offer Description,
and URL. Using Attribute Value, add the attribute values from the following table:

Choice name Agent Script Offer description URL

Brokerage Account

Would you like to try our
new brokerage account?

Brokerage Account offer

http://www.offer.com/offer1.html

Credit Card Would you like to try our
new credit card?

Credit Card offer http://www.offer.com/offer2.html

Life Insurance

Would you like to try our
new life insurance?

Life Insurance offer

http://www.offer.com/offer3.html

Roth IRA

Would you like to try our
new Roth IRA?

Roth IRA offer

http://www.offer.com/offer4.html

Savings Account

Would you like to try our
new savings account?

Savings Account offer http://www.offer.com/offer5.html

5 Save the configuration using File > Save All.

Getting Started with Oracle RTD 34

http://www.offer.com/offer1.html
http://www.offer.com/offer2.html
http://www.offer.com/offer3.html
http://www.offer.com/offer4.html
http://www.offer.com/offer5.html

4.1.2 Configuring Performance Goals
1 In the Inline Service Explorer, double-click the Performance Goals element to open the

editor. Use the Add button to add a Performance Metric. Name the metric Cost. Click OK.

2 In Optimization, choose Minimize and make the metric Required.

Note: If you have more than one performance metric, you must use
the Normalization Factor to normalize the values. For instance, if you had
another metric called "Minimize hold time" measured in seconds, the
normalization factor would be how many minimized seconds are worth a dollar
(revenue) to your organization.

3 Save the configuration using File > Save All.
4.1.3 Scoring the choices
Each product costs the company an average amount to maintain on a yearly basis. The cost in dollars is the score for
that product.

1 In the Inline Service Explorer, under Choices, select and open the Cross Selling Offer
choice group. In the Scores tab, click on Select Metrics and choose the performance metric
Cost. This sets up the choice group with a Cost score. The actual score values will be set on
a per-choice basis.

2 Score values do not have to be constants. In many cases, score for one type of customer can
differ by a significant amount from another customer type. We can express such differences
through the use of formulas or scoring rules. For example, the Cost to maintain a credit card
account may be less for customers who are age 40 or under. We will define this logic in a
Scoring Rule and then assign this rule to the Cost score for the Credit Card offer.

3 In the Inline Service Explorer, right click the folder Scoring Rules and select New Scoring
Rule. Name the scoring rule Credit Card Score. The editor for this new rule opens.

4 Click the Add conditional value button to set up a rule condition in addition to the
default. A new row will appear, where the left cell is a two-sided rule and the right cell is the
score value. The logic is as follows: “If the left cell evaluates to true, then the value in the right
cell will be returned, otherwise use the value in the second row of the rule.” Click the left side
of the rule and then on the ellipsis . An Edit Value dialog appears. Select Attribute,
expand session attributes > customer and select Age, then click OK. Click the condition
operator , then click the lower-right corner triangle and select the less than or equal to
symbol (<=). Click in the right half of the rule and type the number 40. In the Then cell, type
the number 130. In the second row, select and type in the number 147 for the value. The full
rule should look like the following:

Save the Credit Card Score scoring rule. For the other offers, we will set constant values for
the Cost score.

5 For each of the choices under the choice group Cross Selling Offer, open the Scores tab. In
the Score column for the Cost metric, enter the values shown in the following table. To set the

Getting Started with Oracle RTD 35

Cost score for the Credit Card choice, click the ellipsis in the Score column, then select
Function or rule call as the Value Source. In the Function to Call drop-down list, select
Credit Card Score.

Choice Cost Score

Brokerage Account 150

Credit Card “Credit Card Score” scoring rule:
130 if age <=40, otherwise 147

Life Insurance 140

Roth IRA 145

Savings Account 135

Since our Performance Goal is to minimize costs, it is clear that the Savings Account offer (score =135)
will be chosen unless the customer’s age is 40 or below (score = 130), in which case the Credit Card
offer will be chosen. In later sections of the tutorial, we will add another Performance Goal, Maximize
Revenue, to see how these two competing performance metrics are optimized by the platform.

6 Save the configuration using File > Save All.
4.1.4 About Advisors
When an external system needs a decision to be made on its behalf, it calls an Advisor. Here, we create the Advisor
that will send back to the CRM application an offer selected for a specific customer.

The Advisor’s internal structure includes a Decision which associates it with one or more Choice Groups. These
Choice Groups contain the offers that are to be made. The result of the decision is the result sent to the Advisor.

An Advisor has two decisions, one for normal processing and the other for the control group. The control group serves
as a baseline to show performance gains achieved by Oracle RTD.

4.1.5 Creating the Decisions

1 In the Inline Service Explorer, select the group Decisions. Right-click and choose New
Decision. Name the Decision Select Offer and click OK.

2 Add a description for 'Select Offer'. On the Selection Criteria tab in the Decision editor, locate
Select Choices from. Use Select to select the Cross Selling Offer from the list and click
OK.

3 For our control group, we will have a decision that chooses an offer randomly. Create a new
Decision and name it Random Choice.

4 Add a description for 'Random Choice'. On the Selection Criteria tab in the Decision editor,
locate Select Choices from. Use Select to select the Cross Selling Offer from the list and
click OK.

Getting Started with Oracle RTD 36

5 Check the Select at random box.

Note: The Control Group acts as a baseline so that the business user
can compare the results of the predictive model against the pre-existing
business process. It is important to correctly define the Control Group decision
to truly reflect the decision as it would have been made if Oracle RTD was not
installed. For example, in a cross-selling application for a call center, if agents
randomly selected an offer before Oracle RTD was introduced, then the
Control Group Decision should return a random selection.

6 Save the configuration using File > Save All.
4.1.6 Creating the Advisor

1 In the Inline Service Explorer, under Integration Points, select the group Advisors. Right-
click and choose New Advisor. Name the element Get Cross Sell Offer and click
OK.

2 To add a session key to the Get Cross Sell Offer Advisor, use Select under Session Keys in
the Editor and choose customerId from Customer. Click OK.

3 Under External System, select CRM. For Order, enter 3.

Recall that we had set the Order for Informant ‘Service Complete’ to 2. We are preparing to call the Get
Cross Sell Offer Advisor after this Informant, and thus the order number 3. Note that the Order is only
used in Decision Center’s integration map to help graphically describe the application process; Order
does not force integration points to execute in any particular sequence.

4 On the Response tab, select a Decision for both the normal processing and the control
group. Select Select Offer for the Decision and Random Choice for the Control
Group Decision.

5 In the Default Choices section, use Select to choose Life Insurance from the list and click
OK. This will make the selected Offer the default response for this Advisor. This default will be
used when there is any problem in the computation (for instance, if there is a timeout).

6 In the Asynchronous Logic tab, enter the following code:
logInfo("Integration Point - Get Cross Sell Offer");

logInfo(" Customer age = " + session().getCustomer().getAge());
// 'choices' is array returned by the 'Select Offer' decision

if (choices.size() > 0) {

 //Get the first offer from array
 Choice offer = choices.get(0);

 logInfo(" Offer presented: '" + offer.getSDOLabel() + "'");

}

If we had entered the code in the Logic tab, it would have been executed before the decision
was made on which offer to return, and we would not be able to print the name of the offer
returned. In the above code, we print the customer’s age and the presented offer name.
Recall that because we are minimizing on Cost, only the offers Savings Account and Credit
Card will be presented, depending on the age of the customer.

7 Save the Inline Service. Click the Deploy button. Select Terminate Active Sessions (used
for testing) to remove any session that is still currently active. Deploy.

8 The following diagram shows how the Get Cross Sell Offer Advisor retrieves an offer from the
Cross Selling Offer choice group, based on the performance goal Cost.

Getting Started with Oracle RTD 37

Customer Data Source
DATA SOURCE

SD DATABASE

INPUT
customerId

Customer
ENTITY

Session
ENTITY

customer

OUTPUT
age

language
etc ...

CrossSellCustomers
TABLE

MAPPED TO

Key: customerId

Call Begin
INFORMANT

Key: customerId

age, language, ...

Key: customerId

INTEGRATION POINTS

CREATES or
UPDATES

Tutorial Inline Service Objects

Call
ENTITY

agent, length, ...

call
External System: IVR

Service Complete
INFORMANT

Key: customerId

External System: CRM

agent, length, ...

Call End
INFORMANT

Key: customerId

External System: CRM

1.

2.

4.

CLOSE

ACCESS

Input

Input

Input

Input

Cross Selling Offer
CHOICE GROUP

url, agent script, ...

Brokerage Account
CHOICE

Score: cost = 150

Credit Card
CHOICE

Score: cost = RULE

Life Insurance
CHOICE

Score: cost = 140

Roth IRA
CHOICE

Score: cost = 145

Life Insurance
CHOICE

Score: cost = 135

Credit Card Score
SCORING RULE

GET COST

Select Decision
DECISION

Decide on:
Score = 100% Cost

CHOOSE
FROM

Get Cross Sell Offer
ADVISOR

Key: customerId

External System: CRM

CHOICE

3. Input

Output
GET

CHOICE

Scores: Cost

RTD Database

4.1.7 Viewing the integration map
1 Open Decision Center by opening a Web browser and going to the URL

http://server_name:8080/ui. Log in using the default administrator credentials
you created during installation. Real-Time Decision Server must be started for Decision
Center to run.

2 Click Open an Inline Service.

3 Choose the Tutorial Inline Service.

Getting Started with Oracle RTD 38

4 On the left-hand tree, click the root node Tutorial. In the right pane, on the Definition tab,
click to view the Integration Map subtab. You should see something similar to the following:

5 The following symbols are used on the Integration Map to indicate integration points,

processing, entities and information flow.

Symbol Significance

Processing on the Real-Time Decision
Server

Advisor call

Information provided to the Real-Time
Decision Server

Informant Call

4.1.8 Testing the Advisor
1 In Decision Studio, use the Test view to send a request integration point. Select the Service

Complete Informant and fill in some values for the parameters. For example: customerId = 7,
agent = John, length = 21, reason code = 18 (others: 17, 19, or 20).

2 Click Send and confirm in the Log subtab that the message was sent. This Informant
call creates a new session based on the customer id and registers the customer’s call reason,
agent’s name, and call length.

3 Now select the Get Cross Sell Offer Advisor, leaving the customerId as it is, as we want to
continue with the same session. Click Send.

The selected offer and its attributes are returned and displayed in the Response pane in the Test View.

In the Log subtab in the Test View, for customerId = 7, you should see something similar to:

00:24:40,764 Integration Point - Get Cross Sell Offer

00:24:40,764 Customer age = 38

00:24:40,764 Offer presented: 'Credit Card'

Getting Started with Oracle RTD 39

4 Repeat steps 1 to 3 with different values for customerId and other parameters. Notice that
the Credit Card offer is returned if the customer’s age is 40 or below, and the Savings Account
offer is returned for all other ages. This is expected because so far, we have only optimized on
the Cost performance metric, thus the lowest cost offer is either Savings Account or Credit
Card, depending on the customer’s age (see the Credit Card Score scoring rule in section
4.1.3).

5 In the Trace subtab of the Test view, you will find a description of the sequence taken to
arrive at the offer, from determining which offers are eligible to computing scores for each
offer, and finally choosing the offer that met the performance goal (minimize Cost).

Getting Started with Oracle RTD 40

Section 5: Closing the Feedback Loop
In the previous section, we added an Advisor that returns an offer to the CRM application so the call center agent can
present it to the customer. Once presented to the customer, we want to track whether the customer has accepted the
offer and thus close the loop on the offer presentation/acceptance process. The feedback loop can be closed in
different ways and at different times. It is not unusual to know the results only days or weeks after a decision or offer is
made. Even then, in many cases, only the positive result is seen, but not the negative. Feedback can come directly
from customers, from the agents handling the call, from operational systems that handle service, fulfillment or billing, or
even from batch processes.

The way the feedback loop is closed with an Inline Service is by notifying the Real-Time Decision Server through the
use of Informants.

5.1 About the use of events to track success
In most cases, there are different events in the lifetime of an offer that are interesting from the point of view of tracking
success. For example, the events in the life of a credit card offer may be:

 Offer presented

 Customer showed interest

 Applied for the card

 Received the card

 Used the card

An argument could be made that only when the customer uses the credit card is there any real success. The goal is to
bring more customers that not only show interest, apply and get the card, but for them to also use it, as card usage is
what brings revenue to the company.

Usually, it is easier to track events that are closer to the presentation of the offer. For example, if an offer is presented
in the call center by an agent, the agent can gauge the degree of interest shown by the customer. For an offer
presented in a Web site, a click-through may be the indicator of interest.

Events further down the life of an offer may be much more difficult to track and decide on the right offer. Therefore, it is
not unusual to begin a project having only the immediate feedback loop closed, and adding events further down the
road as the system matures. Nevertheless, even with only immediate feedback, Oracle RTD can provide significant lift
in marketing decisions.

5.1.1 About defining events in choice groups
Events are defined at the Choice Group level. While they can be defined at any level in the hierarchy, they are usually
found at the highest level, close to the root.

We will define two events, one to represent the fact that an offer was presented to the customer, and the other to
represent the fact that the offer was accepted. For the tutorial, we will assume that every offer selected as a result of
the Advisor will be presented, and that the acceptance of offers is known immediately.

5.1.2 Defining events in a choice group
1 In the Inline Service Explorer, select the Choice Group Cross Selling Offer.
2 Select the Choice Events tab. Use Add to add two events, one named Presented and

the second named Accepted. Note that these event names are simply labels and do not
correspond to any internal state of the offer. These events will be used in a Choice Event
Model (described in the next section), where these event names will take on meaning.

3 For each event, set the Statistic Collector to Choice Event Statistic
Collector using the drop-down list. This is the default statistics collector. This will provide
for statistics gathering regarding each of the events.

Getting Started with Oracle RTD 41

4 Make sure that the Event History (days) is set to Session Duration.

This setting indicates that the system will remember the events only for the duration of the session. If we
were interested in remembering offer events for a few days or weeks, we would set it up here.

5 Leave the Value Attribute empty.

This is used for the automatic computation of the event. In this tutorial, we will be causing the events to
be recorded from the logic of the feedback Informant.

6 Save All.

5.1.3 About the choice event model
Events are defined and are ready to have statistics tracked. In addition to tracking statistics, we are interested in
having a self-learning-model learn about the correlations between the characteristics of the customers, calls and
agents, and the success or failure of offers. This knowledge is useful in two ways:

 It is useful for providing insight and understanding to the marketing and operations people.
 It is useful to provide automatic predictions of the best offer to present in each situation.

In this tutorial we will show both usages.

5.1.4 Defining a choice event model
1 In the Inline Service Explorer, select Models, then right-click and choose New Choice Event

Model. Call the new model Offer Acceptance Predictor and click OK.

2 In the Editor, deselect Default time window and set it to a week.

3 Under Choice Group, choose Cross Selling Offer.

This is the group at the top of the choice hierarchy for which we will track offer acceptance using this
model.

4 Under Base Event, choose Presented. Recall that you had defined these event names in
the choice group in section 5.1.2.

This is the event from which we want to measure the success. We want to track whether an offer was
accepted after it was presented.

5 In Positive Outcome Events, use Select to choose Accepted from the list and click OK. For
the tutorial, this is the only positive outcome. If more events were being tracked, we would add
them here also.

6 Optionally, you may change the labels to be more offer-centric.

5.1.5 Additional model settings
There are other settings that are useful for Choice Event Models. Using the Attributes tab, you see there are two main
settings: partitioning attributes and excluded attributes.
5.1.5.1 Partitioning attributes

Partitioning attributes are used to divide the model along strong lines that make a big difference. For example, the
same offer is likely to have quite different acceptance profiles when presented in the Web or the call center, thus the
presentation channel can be set as a partitioning attribute.

You can have more than one partitioning attribute, but you should be aware that there may be memory usage
implications. Each partitioning attribute multiplies the number of models by the number of values it has. For example, a
model having one partitioning attribute with three possible values and another with four possible values will use twelve
times the memory used by a non-partitioned model. Nevertheless, do use partitioning attributes when it makes sense
to do so, as it can significantly improve the predictive and descriptive capabilities of the model.

Getting Started with Oracle RTD 42

5.1.5.2 Excluded Attributes

Sometimes, it does not make sense to have an attribute be an input to a model. For example, we saw in the Reason
Analysis model (section 3.1.2) that having the reason code as an input created a correlation between reason code and
the call reason choices. This relationship was entirely expected due to the logic we had written in section 2.10.5. Since
this correlation was artificial and did not offer insight, we excluded reason code from the model.

It should be noted that the reason code could be an important factor for other models and should not be excluded. For
example, in the Offer Acceptance Predictor model, we would be very interested to see if offer acceptance was
correlated with the reason code.
5.1.5.3 Learn Location

The Learn Location tab has the settings for the location in the process where model learning happens. The default,
On session close, is a good one for most cases. Learning on specific Integration Points may be useful when it is
desired to learn from more than one state in a session.

5.1.6 About closing the loop
The choice event model is complete and it is ready to be used. In order to feed it with the right information, we need to
complete the logic for closing the loop.

In order to have available which offer was extended, we will remember the offer ID in the session. This is not absolutely
necessary, as the front-end client could remember that, but here we do not want to make any assumptions about the
capabilities of the front end. We will just use a simple String attribute to remember the offer; in more complex cases we
would use an array to remember many choices.

5.1.7 Remembering the extended offer
1 In the Inline Service Explorer, select the Session entity under Entities.

2 Use Add Attribute to add an attribute named Offer Extended.

3 Enter a description. Deselect Show in Decision Center and Use for Analysis. Click OK.
We do so because for now, we will treat this as an internal variable, not to be seen by the business
users.

4 In the Inline Service Explorer, select Get Cross Sell Offer under Integration Points:
Advisors. Go to the Editor.

5 In the Asynchronous Logic tab, update the existing code by adding several lines to record
the presented event and to set the OfferExtended session attribute with the value of the
choice id. The completed code should be as follows:

logInfo("Integration Point - Get Cross Sell Offer");

logInfo(" Customer age = " + session().getCustomer().getAge());

// 'choices' is array returned by the 'Select Offer' decision

if (choices.size() > 0) {

 //Get the first offer from array
 Choice offer = choices.get(0);

 //For the selected offer, record that it has been 'presented'
 offer.recordEvent("presented");

 //Set the session attribute 'OfferExtended' with the offer's ID.
 session().setOfferExtended(offer.getSDOId());

 logInfo(" Offer presented: '" + offer.getSDOLabel() + "'");

}

This will assign the SDOId of the selected choice to the ‘OfferExtended’ attribute of the session entity.
The SDOId is a unique identifier. Every object in an Oracle RTD configuration has a unique SDOId. It
will also record the Presented event for the selected offer. Note the event name is in lowercase and

Getting Started with Oracle RTD 43

corresponds to the choice event id for ‘Presented’. To see the id, go to Inline Service Explorer, expand
Choices, double-click on Cross Selling Offer, click on the Choice Events tab, and click on the label/id
toggle button: .

At this point of the decision, the session knows which offer has been chosen to be presented to the
customer by the call center agent (through the Get Cross Sell Offer Advisor). We do not yet know the
response from the customer. The response will be sent through a feedback Informant described in the
next section.

5.1.8 Creating the feedback Informant
This Informant provides Oracle RTD with the information needed to determine the result of the offer selection decision.

1 In the Inline Service Explorer, expand Integration Points and select Informants. Right click
and use the menu and select New Informant. Call the Informant Offer Feedback.

2 In the Editor, type a description. Under External System, select CRM. Under Order, enter 4.

3 To add a session key to the Offer Feedback Informant, use Select near Session Keys to
choose customerId from Customer. Click OK.

4 Use Add to add an incoming parameter. Call it Positive.

5 Select the data type String if is not already selected.

Leave it unmapped. We do not need to map it to any session attribute because we will use this
argument immediately to determine whether the offer was accepted or not. A yes value will be used to
indicate offer acceptance.

Using the Logic tab, enter the following under Logic to record the acceptance event when appropriate.
logInfo("Integration Point - Offer Feedback");

//"yes" or "no" to accept offer.
String positive = request.getPositive();
positive = positive.toLowerCase();

//Get the offer id from session attribute 'OfferExtended'
String extendedOfferID = session().getOfferExtended();

if (extendedOfferID != null) {
 //Get the offer from choice group 'Cross Selling Offer'
 Choice offer = CrossSellingOffer.getChoice(extendedOfferID);

 if (offer != null){
 String offerId = offer.getSDOId();

 //If response is "yes", then record the offer as accepted.
 if (positive.equals("yes")) {
 offer.recordEvent ("accepted");
 logInfo(" Offer '" + offer.getSDOLabel() + "' accepted");
 }

 }

}

6 Save all and redeploy the Inline Service. On the Deploy dialog, check Terminate Active
Sessions (used for testing).

7 The following diagram shows how the Get Cross Sell Offer Advisor retrieves and presents an
offer, and then the Offer Feedback Informant accepts or rejects the offer. When the Call End
Informant closes the session, the Offer Acceptance Predictor model is updated with the offer
Presented/Accepted events.

Getting Started with Oracle RTD 44

5.1.9 Testing the feedback Informant
In order to test the Offer Feedback Informant, we need to first call the Get Cross Sell Offer to retrieve and present an
offer.

1 In Test View, select the Integration Point Get Cross Sell Offer. Enter a value for the
customerId, such as 10.

Customer Data Source
DATA SOURCE

SD DATABASE

INPUT
customerId

Customer
ENTITY

Session
ENTITY

customer

OUTPUT
age

language
etc ...

CrossSellCustomers
TABLE

MAPPED TO

Key: customerId

Call Begin
INFORMANT

Key: customerId

age, language, ...

Key: customerId

NTEGRATION POINTS

CREATES or
UPDATES

Tutorial Inline Service Objects

Call
ENTITY

agent, length, ...

call
External System: IVR

Service Complete
INFORMANT

Key: customerId

External System: CRM

agent, length, ...

Call End
INFORMANT

Key: customerId

External System: CRM

1.

5.

2.

I

CLOSE

ACCESS

Input

Input

Input

Input

Cross Selling Offer
CHOICE GROUP

url, agent script, ...

Brokerage Account
CHOICE

Score: cost = 150

Credit Card
CHOICE

Score: cost = RULE

Life Insurance
CHOICE

Score: cost = 140

Roth IRA
CHOICE

Score: cost = 145

Life Insurance
CHOICE

Score: cost = 135

Credit Card Score
SCORING RULE

GET COST

CHOOSE
FROM

Get Cross Sell Offer
ADVISOR

Key: customerId

External System: CRM

CHOICE

Input

Output

3. GET
CHOICE

OfferAcceptance
Predictor

CHOICE EVENT MODEL

Scores: Cost
Events: presented, accepted

Select Decision
DECISION

Decide on:
Score = 100% Cost

Base Event: presented
Outcome Event: accepted

FIRE
PRESENTED

EVENTOffer Feedback
INFORMANT

Key: customerId

External System: CRM

positive = yes, no

4. Input

Input
FIRE

ACCEPTED
EVENT

3.1

3.2

ANALYSIS
TARGET

TRIGGER
LEARNING

5.1

5.2

RTD Database

Getting Started with Oracle RTD 45

2 Click Send and confirm in the Response subtab that an offer was retrieved. In the Log
subtab, you should see something similar to:

00:45:28,466 Integration Point - Get Cross Sell Offer

00:45:28,466 Customer age = 38

00:45:28,466 Offer presented: 'Credit Card'

Note that even if you tried different values for customerId, the offer presented is always
Savings Account or Credit Card. This is because we have only one performance goal at this
point – to minimize cost, and Savings Account or Credit Card is the lowest cost, depending on
the age of the customer.

3 Now select the Offer Feedback Informant from the Integration Point drop-down list. Leave
the customerId as it is, as we want to continue with the same session. Enter a value for input
Positive, such as yes.

4 Click Send and confirm in the Log subtab that the offer retrieved by the Get Cross Sell Offer
Advisor is accepted. You should see something similar to:

00:46:01,418 Integration Point - Offer Feedback

00:46:01,418 Offer 'Credit Card' accepted

5 Change the input Positive value to no and re-Send the Offer Feedback Informant. The Log
subtab will look something similar to:

00:47:31,494 Integration Point - Offer Feedback

5.1.10 Updating the Load Generator script
We will now update the Load Generator script to include calls to the GetCrossSellOffer Advisor and the OfferFeedback
Informant. Note that these integration point calls should take place after the ServiceComplete Informant but before the
CallEnd Informant, which closes the session. The logic is: 1) call begins, 2) regular service is complete – we record
and analyze call reasons using the ReasonAnalysis model, 3) agent presents a cross sell offer to customer, based on
lowest Cost goal, 4) we record if customer has accepted offer, 5) call/session ends, OfferAcceptancePredictor model
learns on offer presented/accepted.

Add the GetCrossSellOffer Advisor to the Load Generator script:

1 Open Load Generator by running RTD_HOME\scripts\loadgen.cmd. Then, open
the previous script.

2 Select the Edit Script tab, then right-click the left area and select Add Action. The action is
of type Message and the Integration Point name should be GetCrossSellOffer.

3 In Input Fields, right-click and chose Add item to add an input field. Click in the space under
Name and add customerId.

4 Click Variable for the input field and use the drop-down list to choose the matching variable,
var_customerId (see section 3.1.1). Mark customerId as a session key by selecting
Session Key.

5 After we add this action to the script, it is placed at the bottom of the actions list. We need to
adjust the order so that GetCrossSellOffer is called after ServiceComplete. In the left side of
the Edit Script tab, right-click GetCrossSellOffer and select Move Up or Move Down so that
the order is CallBegin, ServiceComplete, GetCrossSellOffer, and CallEnd.

6 Save the Load Generator script.

Add the OfferFeedback Informant to the Load Generator script:

1 Before we add the call to OfferFeedback in the Edit Script tab, we need to create a new
variable in the Variables tab. Recall in the definition of the OfferFeedback Informant, the

Getting Started with Oracle RTD 46

parameter positive is used to indicate offer acceptance. In Load Generator, we will set the
value of this parameter to randomly be yes 30% of the time and no 70% of the time. We do
this by using a weighted string array.

2 In the Variables tab, in the left side, right-click on the folder Script and select Add Variable.
Enter var_positive for Variable name, then set the Contents type to Weighted String
Array. Add two items to the array (right-click in the space below the content type and select
Add Item). For the first item, double-click in the Weight cell to make it editable and type in the
value 30, and in the corresponding String cell, type in the value yes. The second item
should have the weight value of 70 and string value of no. Note that the weights did not have
to add up to 100, they are normalized automatically. Weight values of 6 and 14 would have
had the same desired effect.

3 Select the Edit Script tab and right-click on the left area and select Add Action. The action is

of type Message and the Integration Point name should be OfferFeedback.

4 In Input Fields, right-click and chose Add item to add an input field. Click in the space under
Name and add customerId. In the Variable column, select the matching variable,
var_customerId (see section 3.1.1). Mark customerId as a session key by selecting
Session Key.

5 Again in Input Fields, right-click and chose Add item to add an input field. Click in the space
under Name and add positive. In the Variable column, select the matching variable,
var_positive.

6 After we add this action to the script, it is placed at the bottom of the actions list. We need to
adjust the order so that OfferFeedback is called after GetCrossSellOffer. In the left side of the
Edit Script tab, right-click OfferFeedback and select Move Up or Move Down so that the
order is CallBegin, ServiceComplete, GetCrossSellOffer, OfferFeedback, and CallEnd.

7 Save the Load Generator script.

You can run the Load Generator script at this point. Again, it is recommended that you remove existing data before
running the script so the results are not mixed with older data – see section 3.2 for information about how to do this. If
you do run the Load Generator script, you can view the results in Decision Center. Log in to Decision Center and click
on the choice group Cross Selling Offer to show the results of the Offer Acceptance Predictor model. Click the
Performance tab and then the Counts subtab. The distribution of offers and the Pareto graph should look like the
following:

Getting Started with Oracle RTD 47

Notice that only two offers were presented – Credit Card and Savings Account, and each one had an acceptance rate
of about 30%. This is entirely expected due to the logic we have set up so far: 1) Only one performance goal –
minimizing Cost was to be met and the Cost is lowest for Savings Account or Credit Card, depending on the age of the
customer (see section 4.1.3). 2) In the Load Generator script, we specified 30% of the time, a positive response to an
offer is registered through the OfferFeedback Informant. If we drill down into the analysis reports of individual offers, we
will not see much correlation between the acceptance of an offer and session attributes. This is because we are using
random customer profile data and forcing the acceptance rate to be 30%, regardless of customer or other attributes
(such as call length, call agent name, call reason, and so on).

We have now demonstrated how to use performance goal to decide which offer to present and how to use a choice
event model to record how often presented offers are accepted. We have only used the model for analysis so far. In
the next section, we will add a second performance goal (Maximize Revenue) and use what the model has learned in
order to influence which offer is to be presented. We will also introduce an artificial bias that increases the likelihood of
customers who have two or more children to accept the Life Insurance offer if it is presented. We will then be able to
see how the bias affects the model results.

5.2 Using the predictive power of models
The model we have created learns the correlations between the characteristics of the customers, the call
characteristics, and the cross selling results. This model can be used in a predictive fashion, to predict the likelihood an
offer will be accepted. We can use the likelihood information to adjust the values of offers when deciding which offer to
present. For example, if offer A is twice as likely to be accepted as offer B, it is reasonable to favor offer A when an

Getting Started with Oracle RTD 48

offer is picked to be presented. In this section, we will introduce a second performance goal – Maximize Revenue –
whose value/score is calculated as the product of the likelihood of acceptance and the base Revenue.

For example, if the base Revenue for the Brokerage Account offer is $300, and the likelihood of acceptance is 30%
(0.3), then the Maximize Revenue score is $300 x 0.3 = $90. If the base Revenue for the offer Life Insurance is $185,
but the likelihood of acceptance is 60% (0.6), then the Maximize Revenue score is $185 x 0.6 = $111. Even though
Brokerage Account had a higher base Revenue value, the Life Insurance offer would be favored because its Maximize
Revenue score is higher.

Note that we will be choosing the offer to present based on both the Cost and Maximize Revenue performance goals,
so in the previous example, Brokerage Account may still win if the weighted total of its Cost and Maximize Revenue is
higher than the total for Life Insurance.

We will begin this section by adding a base Revenue, then adding the second performance goal Maximize Revenue.
Then we will set the score for the Maximize Revenue goal to Revenue multiplied by the likelihood of acceptance.
Afterwards, we will update the Select Offer decision so that both Cost and Maximize Revenue goals are considered
when choosing an offer to present. Finally, in the Offer Feedback, we will add logic to introduce offer acceptance bias
for customers with a certain profile who are presented the Life Insurance offer.

5.2.1 Adding a base Revenue choice attribute
1 In the Inline Service Explorer, select the Choice Group Cross Selling Offer. In the Choice

Attributes tab, click the Add button.

2 Set the name of this attribute to Revenue of data type Integer. Make sure the
Overridable option is selected, as we will assign a different value for each of the offers.

3 For each choice under choice group Cross Selling Offer, set the value of the Revenue
attribute as shown in the following table:

Choice Revenue Value

Brokerage Account 300

Credit Card 205

Life Insurance 185

Roth IRA 190

Savings Account 175

5.2.2 Adding a second performance goal – Maximize Revenue
Earlier in this tutorial, we defined a Cost performance goal. Now we will add a second performance goal – Maximize
Revenue. We will use the likelihood of acceptance and the base Revenue of the choice in calculating the score for this
new performance metric. The formula for this is: (Revenue) * (likelihood of acceptance) = potential revenue score.

1 In the Inline Service Explorer, double-click Performance Goals to open the editor. Use the
Add button to add a Performance Metric. Name the metric Maximize Revenue, then
click OK.

2 In Optimization, choose Maximize and make the metric Required. Since $1 of cost equals
$1 of revenue, the Normalization Factor does not need to be adjusted.

3 We need to next add this metric to the Cross Selling Offer choice group. In Inline Service
Explorer, select the Choice Group Cross Selling Offer. In the Scores tab, click Add. In the
Select dialog, select Maximize Revenue and click OK.

Getting Started with Oracle RTD 49

5.2.3 Calculating score value for performance goal Maximize Revenue
To calculate the score value for the Maximize Revenue goal, we need the base Revenue and the likelihood of
acceptance value as determined by the Offer Acceptance Predictor choice event model. This can be retrieved easily
using the edit value dialog by changing the value source to Model Prediction.

1 In Inline Service Explorer, select the Choice Group Cross Selling Offer. In the Scores tab,
click in the Score column for the Maximize Revenue metric, then click the ellipsis to bring
up the edit value dialog.

2 For the Value Source, select Function or rule Call. Under Function to Call, choose the
function Multiply. In the parameters to multiply, click in the Value cell for parameter a. Click
the ellipsis and choose Attribute or variable, then expand the Choice folder, select
Revenue, and click OK. In the parameters to multiply, click in the Value cell for parameter b.
Click the ellipsis and choose Model Prediction. Choose the likelihood predicted by the
Offer Acceptance Predictor model and the Accepted event, then click OK.

The actual value of the likelihood is from 0 to 1, 1 being 100% likely to accept. It is also
possible for the value to be NaN (Not a number), which means the model did not have enough
data to compute a likelihood value. In such situations, the Maximize Revenue score cannot be
computed and the offer selection by the Select Offer decision will be based on built-in score
comparison logic, which depends on whether the score is or is not required.

3 By defining the score for Maximize Revenue on the choice group level, all of the choices
within this group will inherit the definition and apply choice-specific values for Revenue and
likelihood of acceptance during runtime.

5.2.4 Updating the Select Offer Decision to include second performance goal
We have so far defined a new performance metric and how to calculate its value. We will now update the Select Offer
decision to consider both performance metrics when choosing an offer to present.

1 In Inline Service Explorer, open the Decisions folder and open Select Offer.
2 In the Selection Criteria tab, you should see in the Priorities for “Default” Segment table only

one Performance Goal, Cost, with a Weight value of 100%. Click Goals, then select the goal
Maximize Revenue and click OK.

3 The priorities table now shows two performance goals, each with a Weight of 50%. The
default is to evenly split weighting between all selected metrics. If you wanted the Maximize
Revenue performance goal to take precedence over Cost, you could adjust the percentages
so that it had more weight. We will use the default Weight of 50% in this tutorial.

4 The following table represents an example of how the Select Offer decision calculates a total
score for a particular offer, assuming the offer’s Cost score is 150 and its Maximize Revenue
score is 215:

Getting Started with Oracle RTD 50

Performance goal Score Weight Max/Min Norm. Weighted Score
Cost 150 50% Min 1 -75
Maximize Revenue 215 50% Max 1 107.5
 Total score 32.5

The total weighted score of the offer is 32.5. The weighted Cost score is negative because the
optimization is Minimize. The total score of the offer is the sum of the two weighted scores.
The total score is calculated for each offer, and the offer with the highest value will be
selected.

5.2.5 Adding a choice attribute to view likelihood of acceptance
To view the value of the likelihood of acceptance, we can add a choice attribute and display it through logInfo or in the
Response tab of Test view.

1 Choose the Cross Selling Offers choice group from the Inline Service Explorer. In the
Choice Attributes tab, click Add to add an attribute. In the properties dialog, set the Display
Label to Likelihood Of Acceptance. Set the Data Type to Double.

2 Deselect the option Overridable, as all choices in this choice group will use the same
definition for this attribute. Then, select the option Send to client and click OK.

3 In the Value column for the Likelihood Of Acceptance attribute, click the ellipses to set its
value. In the Edit Value dialog, set the Value Source to Model prediction. Choose the Offer
Acceptance Predictor model and the Accepted event, then click OK.

4 Save all changes to the inline service.

5.2.6 Checking the likelihood value
To view values of the likelihood, add a logInfo statement in the Get Cross Sell Offer Advisor.

1 In the Inline Service Explorer, select Get Cross Sell Offer under Integration Points:
Advisors. Go to the Editor.

2 In the Asynchronous Logic tab, update the existing code by adding several lines to print the
value of the Likelihood Of Acceptance. The completed code should be as follows:

Getting Started with Oracle RTD 51

logInfo("Integration Point - Get Cross Sell Offer");

logInfo(" Customer age = " + session().getCustomer().getAge());

// 'choices' is array returned by the 'Select Offer' decision. The
// name 'choices' was set (and can be changed) in the 'Choice Array'
// text box in the 'Select Offer' decision’s 'Pre/Post Selection
// Logic' tab.
if (choices.size() > 0) {

 //Get the first offer from array
 Choice offer = choices.get(0);

 //For the selected offer, record that it has been 'presented'
 offer.recordEvent("presented");

 //Set the session attribute 'OfferExtended' with the offer's ID.
 session().setOfferExtended(offer.getSDOId());

 logInfo(" Offer presented: '" + offer.getSDOLabel() + "'");

 //Cast selected offer to type CrossSellingOfficeChoice -
 //the base Choice type of choice group 'Cross Selling Offer'
 CrossSellingOfferChoice cso = (CrossSellingOfferChoice) offer;
 logInfo(" Likelihood of Acceptance = " + cso.getLikelihoodOfAcceptance());

}

3 To see the effect of the changes to the Advisor, save all and deploy the Inline Service.

4 In Test view, select the Get Cross Sell Offer integration point and input a value for
customerId, such as 8. Click Send. In the Response subtab in Test view, you should see
something similar to:

In the Log subtab, you should see something similar to:

14:07:37,908 Integration Point - Get Cross Sell Offer

14:07:37,908 Customer age = 57

14:07:37,908 Offer presented: 'Brokerage Account'

14:07:37,908 Likelihood of Acceptance = 0.4482416848652328

If you are getting a value of NaN (Not A Number) for Likelihood Of Acceptance, this means the model
did not have enough data to compute the likelihood value for this offer. The number of iterations
necessary to reach model convergence (likelihood numbers no longer NaN) depends on the application
and quality of the data.

In our case, we had imposed a definite offer acceptance rate of about 30% (see section 5.1.10), and
since we are using random customer profile data, the Offer Acceptance Predictor model should
converge quickly and be able to compute likelihood of acceptance values within just a few hundred
iterations. Before the model has reached convergence, the offer selection process is based on built-in
score comparison logic, which depends on whether the score is required.

5 The following diagram shows the Get Cross Sell Offer Advisor retrieving an offer from the
Cross Selling Offer choice group, where the total score of each offer is a weighted sum of two
scores – Cost and Maximize Revenue.

Getting Started with Oracle RTD 52

5.2.7 Introducing offer acceptance bias for selected customers
Earlier in the Offer Feedback Informant, we specified whether to accept a presented offer through the Positive
Informant parameter. We then updated the Load Generator script so that when this Informant is called, we pass the
value yes to the parameter Positive 30% of the time (see section 5.1.10). This percentage did not depend on any
customer profile data – any presented offer had a 30% chance of being accepted by any customer.

Customer Data Source
DATA SOURCE

SD DATABASE

INPUT
customerId

Customer
ENTITY

Session
ENTITY

customer

OUTPUT
age

language
etc ...

CrossSellCustomers
TABLE

MAPPED TO

Key: customerId

Call Begin
INFORMANT

Key: customerId

age, language, ...

Key: customerId

NTEGRATION POINTS

CREATES or
UPDATES

Tutorial Inline Service Objects

Call
ENTITY

agent, length, ...

call
External System: IVR

Service Complete
INFORMANT

Key: customerId

External System: CRM

agent, length, ...

Call End
INFORMANT

Key: customerId

External System: CRM

1.

5.

2.

I

CLOSE

ACCESS

Input

Input

Input

Input

Cross Selling Offer
CHOICE GROUP

revenue, likelihood, ...

Brokerage Account
CHOICE

Scores:
1. cost = 150
2. maximize revenue =
(likelihood to accept) *
(revenue)

Credit Card
CHOICE

Life Insurance
CHOICE

Roth IRA
CHOICE

Life Insurance
CHOICE

Credit Card Score
SCORING RULE

GET COST

CHOOSE
FROM

Get Cross Sell Offer
ADVISOR

Key: customerId

External System: CRM

CHOICE

3. Input

Output

GET
CHOICE

OfferAcceptance
Predictor

CHOICE EVENT MODEL

Scores: Cost, MaxRevenue
Events: presented, accepted

Select Decision
DECISION

Decide on:
Score = 50% Cost,
50% Max. Revenue

Base Event: presented
Outcome Event: accepted

FIRE
PRESENTED

EVENTOffer Feedback
INFORMANT

Key: customerId

External System: CRM

positive = yes, no

4. Input

Input
FIRE

ACCEPTED
EVENT

3.1

3.2

ANALYSIS
TARGET

TRIGGER
LEARNING

5.1

5.2

GET
PREDICTION

FOR
Likelihood of
acceptance

revenue = 300

Scores:
1. cost = RULE
2. maximize revenue =
(likelihood to accept) *
(revenue)

revenue = 205

Scores:
1. cost = 140
2. maximize revenue =
(likelihood to accept) *
(revenue)

revenue = 185

Scores:
1. cost = 145
2. maximize revenue =
(likelihood to accept) *
(revenue)

revenue = 190

Scores:
1. cost = 135.
maximize revenue =
(likelihood to accept) *
(revenue)

revenue = 175

RTD Database

Getting Started with Oracle RTD 53

If we run the Load Generator Script at this point, the models would not show any strong correlation between customer
attribute to the acceptance of the offer. We will introduce an artificial bias in the Offer Feedback Informant logic which
will always record positive offer acceptances for customers who have two or more children and who were presented
the Life Insurance offer. This logic is in addition to the default acceptance rate (as defined in the Load Generator
Script) and will skew the acceptance rate for the Life Insurance offer to more than 30%. In Decision Center, we will be
able to see clear correlations between the number of children and the acceptance rate of this offer.

1 In the Inline Service Explorer, select Offer Feedback under Integration Points: Informants.
Go to the Editor.

2 In the Logic tab, update the existing code by adding several lines to add offer acceptance
bias for customers who have two or more children and who were presented the Life Insurance
offer. The completed code should be as follows:

logInfo("Integration Point - Offer Feedback");

//"yes" or "no" to accept offer.
String positive = request.getPositive();
positive = positive.toLowerCase();

//Get the offer id from session attribute 'OfferExtended'
String extendedOfferID = session().getOfferExtended();

if (extendedOfferID != null) {
 //Get the offer from choice group 'Cross Selling Offer'
 Choice offer = CrossSellingOffer.getChoice(extendedOfferID);

 if (offer != null){
 String offerId = offer.getSDOId();

 //Introduce artificial bias for customers with 2 or more
 //children to always accept "LifeInsurance" if it was
 //selected after scoring.
 //If data source is Oracle, change the following method from
 //getNumberOfChildren() to getNumberofchildren()
 int numOfChildren = session().getCustomer().getNumberOfChildren();
 if (numOfChildren >= 2 && offerId.equals("LifeInsurance")) {
 positive="yes";
 }

 //If response is "yes", then record the offer as accepted.
 if (positive.equals("yes")) {
 offer.recordEvent ("accepted");
 logInfo(" Offer '" + offer.getSDOLabel() + "' accepted");
 }

 }

}

3 Save all changes and deploy the inline service.

5.2.8 Running Load Generator script
In section 5.1.10, we updated the Load Generator Script to include the GetCrossSellOffer Advisor and the
OfferFeedback Informant. At that point, the offer selection process was based on only one performance goal – to
minimize Cost. We then added a second performance goal, Maximize Revenue, which uses predicted values of
acceptance likelihoods as computed by the Offer Acceptance Predictor model. The offer selection process now
depends on both performance goals. We have also introduced an artificial acceptance bias for customers who fit a
certain profile, and who were presented the Life Insurance offer. We will now run the Load Generator script again to
see the results.

1 If you are using OC4J or WebLogic, open JConsole by running
JAVA_HOME\bin\jconsole.exe. If you are using WebSphere, run the batch script

Getting Started with Oracle RTD 54

you created during JConsole configuration. See Installation and Administration of Oracle RTD
for more information about using JConsole.

2 Click the Remote tab. Then, enter the appropriate port number (typically 12345) and the
administrator credentials you created during installation and click Connect.

3 Click the MBean tab, then go to the OracleRTD > InlineServiceManager > Tutorial >
Development > Loadable MBean.

4 Click the Operations tab, then use the deleteAllOperationalData() operation to remove all
operational data, including the study, for this Inline Service.

5 Start Load Generator and open the Load Generator script previously defined. There should
be no changes necessary.

6 Start the Load Generator script. After about 200 total finished scripts, click the pause button
 to temporarily stop sending requests to the server. View the server’s output in the

server.log file. You will see that the printed Likelihood Of Acceptance values are NaN for all
sessions. This is an indication that the model has not yet learned enough data to be able to
compute the likelihood of acceptance. Note that offers are still being presented despite the
lack of likelihood values. Offers are being selected using built-in scores comparison logic.

7 Un-pause the Load Generator script and let it finish running for 2000 total finished scripts. In
the server output, you should now see actual values for Likelihood Of Acceptance, varying
around 0.3 for all offers except Life Insurance, which has higher values because of the bias
introduced.

8 It is important to note that the model-predicted Likelihood Of Acceptance values for a given
offer will differ for different customer profiles. For example, suppose we have two customers
John and Tom, who only differ in the number of children they have. If we printed the
Likelihood Of Acceptance values for the Life Insurance offer for these two customers (at a
snapshot in time), we will see a higher value for Tom. This is because Tom has three children,
and is therefore more likely to accept the Life Insurance offer, if it is presented to him.

Customer # of children Likelihood Of Acceptance for offer Life Insurance
John Doe 0 0.32
Tom Smith 3 0.89

Since we determine which offer to present to the customer based on the combination of Cost
and Maximize Revenue scores, and because Maximize Revenue depends on the model’s
predicted Likelihood Of Acceptance value for each offer, the Life Insurance offer will have a
high Maximize Revenue value for customers with two or more children, and therefore for such
customers, Life Insurance will be presented (and then accepted) far more frequently than
other offers!

5.2.9 Studying the results
To view the results of the Load Generator run, log into Decision Center. Click the choice group Cross Selling Offer in
the left navigation box. This will show the results of the Offer Acceptance Predictor model. Click the Performance tab
and then the Counts subtab. You should see a table similar to the following:

Getting Started with Oracle RTD 55

The above table shows the distribution of the offers – how many were presented and how many were accepted for
each offer. Except for Life Insurance, all of the other offers had acceptance rate of about 30%. This is expected
because of how we set up the load generator script (see section 5.1.10). The acceptance rate for Life Insurance is
higher than 30% because of the artificial bias we introduced in section 5.2.7. The bias dictated that in addition to 30%
of the customers accepting any offer, customers who had two or more children and were offered Life Insurance will
always accept the offer.

Given the artificial bias, the model results should show that for the Life Insurance offer, the NumberOfChildren attribute
will be an excellent predictor for whether or not the offer will be accepted. This is exactly what we see in the Decision
Center reports: click the choice group Cross Selling Offer and click on the Analysis tab, then the Drivers subtab. In
the Report Settings section, change the Minimum Predictiveness value to 0 and then click Go. You will see a list of
attributes, ordered by the maximum predictiveness value. The highest value for Max Predictiveness should be for the
NumberOfChildren attribute, since it is the only artificial bias we added. The corresponding offer should be Life
Insurance, similar to the following figure:

We can further analyze the importance of the NumberOfChildren attribute for the Life Insurance offer by viewing
reports specific to this offer. In the navigation box in Decision Center, expand the choice group Cross Selling Offer
and click on the choice Life Insurance, then click on the Analysis tab and finally the Drivers tab. This report shows
the important drivers for acceptance of this particular offer (Life Insurance).

In the Report Settings section, change the Minimum Predictiveness value to 0 and then click Go. You will see a list
of attributes, ordered by the Predictiveness value. The NumberOfChildren attribute should have the highest

Getting Started with Oracle RTD 56

predictiveness value. Click the attribute name to display more detailed reports, the first of which should look similar to
the following figure:

This graph shows that for NumberOfChildren values of 2 and above, there is a strong positive correlation for offer
acceptance. This means that the number of acceptances of this offer for these attribute values (2 or more) is much
higher than expected. Similarly, for values of 0 or 1, the correlation is also very strong, but is negative, meaning that
customers with 0 children or 1 child did not accept Life Insurance as much as expected.

Getting Started with Oracle RTD 57

	About this document
	Intended audience
	How to use this guide
	Document conventions
	About Oracle RTD
	Terminology
	About Decision Studio
	Inline Service Explorer View
	Problems View
	Test View
	Cheat Sheets View
	Editor area
	Arranging Views and Resizing Editors

	About Decision Center
	Overview of the Inline Service lifecycle

	Creating an Inline Service
	Overview of the tutorial
	A note about naming and descriptions
	Before you begin
	How to configure the Application element

	Accessing data
	Creating a data source
	Importing the outputs for a data source

	Creating an entity
	About additional entity properties
	Adding an entity key

	About the Session entity
	Adding an attribute to the Session entity
	Creating a session key
	Mapping the entity to the data source

	Creating an Informant
	Adding an Informant
	Adding testing logic to the Informant

	Testing the Inline Service
	Deploying the Inline Service for testing

	Adding functionality
	Creating a call entity
	Creating the Call Begin Informant
	Creating the Service Complete Informant
	Creating the Call End Informant
	Testing the Informants

	Analyze Call Reasons
	About using choices for analysis
	Adding a choice group
	About the analytical model
	Adding an analytical model
	Adding logic for selecting choices
	Testing it all together

	Simulating Load for Inline Services
	Performance under load
	Creating the Load Generator script
	Viewing analysis results in Decision Center
	Excluding the attribute

	Resetting the Model learnings
	Summary of the Inline Service

	Enhancing the Call Center Inline Service
	About using choice groups and scoring to cross sell
	Creating an offer inventory using choice groups
	Configuring Performance Goals
	Scoring the choices
	About Advisors
	Creating the Decisions
	Creating the Advisor
	Viewing the integration map
	Testing the Advisor

	Closing the Feedback Loop
	About the use of events to track success
	About defining events in choice groups
	Defining events in a choice group
	About the choice event model
	Defining a choice event model
	Additional model settings
	Partitioning attributes
	Excluded Attributes
	Learn Location

	About closing the loop
	Remembering the extended offer
	Creating the feedback Informant
	Testing the feedback Informant
	Updating the Load Generator script

	Using the predictive power of models
	Adding a base Revenue choice attribute
	Adding a second performance goal – Maximize Revenue
	Calculating score value for performance goal Maximize Revenu
	Updating the Select Offer Decision to include second perform
	Adding a choice attribute to view likelihood of acceptance
	Checking the likelihood value
	Introducing offer acceptance bias for selected customers
	Running Load Generator script
	Studying the results

