
 

 

 

 

Oracle® Real-Time Decisions 
 

 

 

Integration with Oracle RTD

7 
Version 2.2 Document Revised February 200



   

Copyright © 2003, 2007, Oracle. All rights reserved. 

The Programs (which include both the software and documentation) contain proprietary 
information; they are provided under a license agreement containing restrictions on use 
and disclosure and are also protected by copyright, patent, and other intellectual and 
industrial property laws. Reverse engineering, disassembly, or decompilation of the 
Programs, except to the extent required to obtain interoperability with other independently 
created software or as specified by law, is prohibited. 

The information contained in this document is subject to change without notice. If you find 
any problems in the documentation, please report them to us in writing. This document is 
not warranted to be error-free. Except as may be expressly permitted in your license 
agreement for these Programs, no part of these Programs may be reproduced or 
transmitted in any form or by any means, electronic or mechanical, for any purpose. 

If the Programs are delivered to the United States Government or anyone licensing or 
using the Programs on behalf of the United States Government, the following notice is 
applicable: 

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation 
and technical data delivered to U.S. Government customers are "commercial computer 
software" or "commercial technical data" pursuant to the applicable Federal Acquisition 
Regulation and agency-specific supplemental regulations. As such, use, duplication, 
disclosure, modification, and adaptation of the Programs, including documentation and 
technical data, shall be subject to the licensing restrictions set forth in the applicable 
Oracle license agreement, and, to the extent applicable, the additional rights set forth in 
FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle 
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065. 

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or 
other inherently dangerous applications. It shall be the licensee's responsibility to take all 
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of 
such applications if the Programs are used for such purposes, and we disclaim liability for 
any damages caused by such use of the Programs. 

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle 
Corporation and/or its affiliates. Other names may be trademarks of their respective 
owners. 

The Programs may provide links to Web sites and access to content, products, and 
services from third parties. Oracle is not responsible for the availability of, or any content 
provided on, third-party Web sites.You bear all risks associated with the use of such 
content. If you choose to purchase any products or services from a third party, the 
relationship is directly between you and the third party. Oracle is not responsible for: (a) 
the quality of third-party products or services; or (b) fulfilling any of the terms of the 
agreement with the third party, including delivery of products or services and warranty 
obligations related to purchased products or services. Oracle is not responsible for any 
loss or damage of any sort that you may incur from dealing with any third party. 

Integration with Oracle RTD     i



   

Integration with Oracle RTD 
Section 1: Overview ..................................................................................................................................................... 3 

1.1 Choosing the best means of integration.......................................................................................................... 3 

1.1.1 About the Java Smart Client ................................................................................................................... 3 

1.1.2 .NET Smart Client................................................................................................................................... 4 

1.1.3 Web Services.......................................................................................................................................... 4 

1.2 About the CrossSell Inline Service .................................................................................................................. 4 

1.2.1 Using Decision Studio to identify Object IDs .......................................................................................... 4 

1.2.2 Determining the Response of an Advisor ............................................................................................... 5 

1.2.3 Knowing how to respond to the server ................................................................................................... 6 

1.2.4 Identifying session keys and arguments................................................................................................. 6 

Section 2: Using the Java Smart Client........................................................................................................................ 7 

2.1 Before you get started ..................................................................................................................................... 7 

2.2 Integrating with an Inline Service using the Java Smart Client........................................................................ 7 

2.2.1 Java Smart Client API Reference........................................................................................................... 7 

2.2.2 Preparing the Java Smart Client example .............................................................................................. 7 

2.2.3 About Java Smart Client properties ........................................................................................................ 8 

2.2.4 Creating the properties file...................................................................................................................... 9 

2.2.5 Creating the Java Smart Client............................................................................................................. 10 

2.2.6 Creating the request ............................................................................................................................. 12 

2.2.7 Invoking the request ............................................................................................................................. 13 

2.2.8 Examining the response ....................................................................................................................... 14 

2.2.9 Closing the loop .................................................................................................................................... 15 

2.2.10 Closing the client .................................................................................................................................. 16 

Section 3: Using Java Smart Client JSP tags ............................................................................................................ 17 

3.1 Before you get started ................................................................................................................................... 17 

3.2 Integrating with an Inline Service using Java Smart Client JSP tags ............................................................ 17 

Integration with Oracle RTD     ii



   

3.2.1 JSP Smart Client Tag Reference.......................................................................................................... 17 

3.2.2 Sample JSP code ................................................................................................................................. 17 

3.2.3 Deploying the JSP Smart Client example............................................................................................. 18 

Section 4: Using the .NET Smart Client ..................................................................................................................... 21 

4.1 Before you get started ................................................................................................................................... 21 

4.2 Integrating with an Inline Service using the .NET Smart Client ..................................................................... 21 

4.2.1 .NET API Reference ............................................................................................................................. 21 

4.2.2 .NET integration example ..................................................................................................................... 22 

Section 5: Zero Client Integration............................................................................................................................... 23 

5.1 About Web Services...................................................................................................................................... 23 

Integration with Oracle RTD     iii



   

Preface 
The Oracle Real-Time Decisions (Oracle RTD) platform allows you to develop enterprise software solutions that 
analyze business process behavior and make recommendations in real-time, allowing you to identify and address 
problems and opportunities as soon as they emerge. 

About this document 
This guide provides information about integrating with Oracle RTD. It shows several methods of integration, including 
RTD Smart Clients, Web Services, and directly messaging the Real-Time Decision Server.  

Intended audience 
This document is intended for developers who will use the Java-based API, .NET component, or Web Services to 
integrate enterprise applications with Oracle RTD Inline Services. Integrators do not need to have full knowledge of 
Java, .NET, or Web Services, but they should be familiar with these protocols and understand how they can be used 
for application integration purposes. Integrators should also be familiar with using Decision Studio and Inline Services. 

How to use this guide 
This document is divided into the following sections:  

Section 1: Overview provides an overview of the methods of integration to Oracle RTD.  

Section 2: Using the Java Smart Client explains how to use the Java Smart Client to integrate to an Inline Service.  

Section 3: Using Java Smart Client JSP tags explains how to use JSP tags for Java Smart Client integration.  

Section 4: Using the .NET Smart Client explains how to use the .NET Smart Client to integrate to an Inline Service.  

Section 5: Zero Client Integration explains the SOAP interface for RTD Decision Service. 

Document conventions 

Convention Description 

monospace Indicates source code and program output. 

bold Indicates portions of the user interface, such as labels, tabs, and 
menus.  

italic Italics are used to highlight the first use of terms. 

‘quote’ Indicates input required from the user.  

 

Indicates additional information that may make the task easier. 

 

Indicates additional information about the subject.  

Integration with Oracle RTD     1



   

Convention Description 

 

Indicates actions that may result in loss of data or errors.  

Integration with Oracle RTD     2



   

Section 1: Overview 
Oracle Real-Time Decisions features several robust and easy-to-use ways to integrate with enterprise operational 
systems:   

 Smart Clients: For Java and .NET environments, these components manage communication to 
Integration Points on the Real-Time Decision Server. 

 Zero Clients: Access to Integration Points is available through Web Services as a zero client approach.  

This document outlines how to use these ways to integrate with deployed Inline Services running on Oracle RTD.  

For information about using Decision Studio to deploy Inline Services, see Getting Started with Oracle RTD. For 
information about the integration APIs, see the Decision Studio online help.  

 

1.1 Choosing the best means of integration 
Oracle Real-Time Decisions offers multiple means of integration. To choose the best means for your environment you 
should consider the platform you are working on, performance needs and the additional functionality offered by RTD 
Smart Client over other methods of integration.  

1.1.1 About the Java Smart Client  

The RTD Smart Client for Java is a component that allows easy, managed integration to deployed Inline Services for 
operational systems. If you are working in a Java environment, the Java Smart Client is the preferred means of 
integration. The Java Smart Client offers two important features above and beyond the other methods of integration: 
session key mapping (to facilitate HTTP session affinity management by an external load balancer) and default 
response handling. 

The factory methods of the Java Smart Client interface take parameters representing the minimal information required 
to establish contact with a cluster of servers. After connecting, the component’s full configuration is downloaded from 
the server. This way only a small set of parameters must be managed in the client application, while most of the 
component’s configuration is centrally managed by the server’s administration console. 

The configuration information returned by the server to the client is shared by all the instances of the Smart Client 
created in the same Java virtual machine. There is a client-side class called a client-side dispatcher that manages this 
shared configuration and also manages session-affinity information used to dispatch requests to the correct server, 
based on session keys in the request. 

The Java Smart Client is thread-safe, but for optimal performance a separate Java Smart Client should be created for 
each thread. Separate instances of the Java Smart Client share information and connections, so there is practically no 
penalty to having multiple instances. 

Several factory methods are available to create a Java Smart Client. Most either directly or indirectly reference a 
properties file in the file system or on a Web server. The properties file supplies addresses for connecting to one or 
more servers in a single cluster as well as other properties that configure the connection to the server.  Factory 
methods are also available to directly supply an HTTP URL and port or use a default address.  

After the client’s constructor communicates with one server and receives more complete configuration information, the 
detailed configuration is saved in a local file called the client configuration cache, where it can be accessed should the 
client restart when the server is unavailable. The configuration cache contains information such as the client’s set of 
default responses for all integration points in all Inline Services. The client’s configuration cache is updated 
automatically by the client whenever it changes in the server.  

Integration with Oracle RTD     3



   

Part of the configuration information downloaded to a client from the server includes a set of default responses to use if 
the client loses contact with the server or the server fails to respond to an integration point request in a timely fashion. 
This maintains the Service Level Agreement (SLA) between the Real-Time Decision Server and client application 
regardless of individual transactional availability.  

These default responses are configured at the granularity of the individual integration points; each integration point 
relies on its own specialized default response. When any default responses are reconfigured on the server, the 
changes are propagated automatically to the client's out-of-band data, bundled together with normal integration point 
responses. 

The Java Smart Client automatically keeps track of any HTTP cookies that are returned by the Real-Time Decision 
Server’s Web Container. The next time the same Inline Service key is used in a request, its cookies are included in the 
HTTP request so that the external load balancer can route the request to the server instance that is already handling 
that Inline Service key. 

To achieve clustering using other methods of integration, the application must track the Inline Service keys itself. 

1.1.2 .NET Smart Client  

For the .NET environment, a .NET Smart Client component is available. This component offers a way to call the same 
interfaces provided by the Java Smart Client. However, it does not offer the added functionality of maintained session 
affinity or default values. 

1.1.3 Web Services 

Any client can access the Real-Time Decision Server through Web Services. The benefit to this means of integration is 
the lack of code needed on the client. Web service operations are defined in a WSDL file and definitions are contained 
in a schema file.  

 

1.2 About the CrossSell Inline Service 
Example Inline Services are included with Decision Studio. One of these is a cross selling example.  

The CrossSell Inline Service simulates a simple implementation for a credit card contact center. As calls come into the 
center, information about the customer and the channel of the contact is captured.  

Based on what we know of this customer, a cross selling offer is selected that is extended to the customer. The 
success or failure of that offer is tracked and sent back to the server so that the underlying decision model has the 
feedback that helps to refine its ability to make a better cross selling recommendation.  

The CrossSell Inline Service is used to demonstrate the various means of integration in this guide.  

Several Integration Points are included in the CrossSell example. Use the following instructions to familiarize yourself 
with these Integration Points.  

Informants execute on the server when supplied with the proper parameters. Advisors execute and also return data. In 
order to supply the correct parameters for calls to Integration Points, we must first identify the Object IDs.  

1.2.1 Using Decision Studio to identify Object IDs  

1 Open Decision Studio by running RTD_HOME\eclipse\eclipse.exe. 

2 Select File > Import to open the CrossSell Inline Service. Import appears.  

Integration with Oracle RTD     4



   

3 Select Existing Project into Workspace and click Next. Browse for the CrossSell project at 
the location RTD_HOME\examples\CrossSell. Select OK and click Finish, opening 
the project.  

4 Using the Inline Service Explorer, expand Integration Points. Informants and Advisors are 
listed below. Expand each of these to view the Integration Points. Use the Object ID toggle 

 to show the Object ID in the Inline Service Explorer. When the toggle is highlighted, the 
Object IDs show in the Explorer; when not, the display label is shown. 

 

The Object ID of the Integration Point may or may not be the same as the 
label. Object IDs are used to reference Integration Points in method calls. 

1.2.2 Determining the Response of an Advisor 

Integration Points that deliver responses are called Advisors. An Advisor‘s Response tab in Decision Studio 
determines the response, by identifying a parameterized Decision object that gets implicitly invoked by the Advisor. 
The Decision object’s responsibility is to select the best Choices from its assigned Choice Group. The choice attributes 
that are returned are determined by the configuration set on the definition of the Choice Group. 

In our example the OfferRequest integration point is an Advisor. It returns a single cross sell offer when it is invoked.  

1 In Studio, select the OfferRequest Integration Point to view the editor.  

2 On the Response tab, under Decision, look up the Decision that OfferRequest uses to return 
a response. It should be OfferDecision.  

3 Double-click OfferDecision under Decisions to view its detail pane.  

4 On the Selection Criteria tab, under Number of Choices to Select, find the number of 
responses that OfferRequest provides.  

5 On the Selection Criteria tab, under Choice Group, find the Choice Group that OfferRequest 
uses. It should be Offers.  

6 Under Choices, double-click Offers to see the choice attributes associated with this Choice 
Group. These attributes will be returned when a call to the Advisor is made.  

In Decision Studio, use the Test view to call the Advisor and see what 
is returned. This way, you will see the offer returned and the attributes that 
come with it. Test is available using the tab beside Problems. Use the 

Execute Request  button to send the request to the server.  

Integration with Oracle RTD     5



   

1.2.3 Knowing how to respond to the server 

Inline Services are most powerful when the success or failure of a Choice is tracked and the model is self learning 
based on that information. To know what feedback the server needs to be self learning, you must examine the Choice 
Event Model.   

1 In Studio, double-click the Offer Acceptance Choice Event Model. The editor will appear on 
the right.  

2 On the Choice tab, under Positive Outcome Events, you see the Events that the server is 
interested in for learning. These are: 

 Interested  

 Purchased 

These outcomes are to be reported to the server from your Inline Service to give the proper feedback to 
the model.   

3 The OfferResponse Integration Point is responsible for reporting this information.   

1.2.4 Identifying session keys and arguments 

To invoke an Integration Point, we must supply values for the session keys and arguments expected by the 
Integration Point. In the request, we must use the Object IDs defined by Decision Studio for the Integration Point’s 
session keys and arguments. The key name must match one of the session key names defined in Decision Studio 
for the Integration Point.  

1 Select the CallStart Integration Point. On the Request tab of the editor of the Integration 
Point, under the Session Keys list, a path to the session key is shown starting with 
session; the last name in the path is the Object ID of the session key.  

 Note: If the session key is not displayed in object format, use the Object 

ID toggle  to change the display settings. Only the final object ID is 
necessary for the session key. For example, in the case shown above, only the 
final string, customerId, is used.  

2 To identify the arguments of the Integration Point, use the detail pane of to view the Incoming 
Attribute column of the Request tab. The CallStart incoming argument is channel.   

Integration with Oracle RTD     6



   

Section 2: Using the Java Smart Client  
This section introduces using the Java Smart Client for integration. An example is included with Oracle RTD 
installation.  

 

2.1 Before you get started 
You must perform the following tasks first before you can work with the Java Smart Client example: 

1. Install a Java Development Kit (JDK), with the JAVA_HOME environment variable set to its location. To obtain a 
JDK, go to the Sun Microsystems Web site, http://java.sun.com/products/.  

2. Install the Oracle RTD files and deploy Oracle RTD to an application server. See Installation and Administration of 
Oracle RTD for full information. 

3. The Java Smart Client example works with the sample CrossSell Inline Service. Because of this, you must first 
populate the Oracle RTD Database with the CrossSell example data, then deploy the CrossSell Inline Service 
using Decision Studio. For information about populating the Oracle RTD Database with the CrossSell example 
data, see Installation and Administration of Oracle RTD. For information about deploying Inline Services, see 
Decision Studio Reference Guide.  

4. Start the Real-Time Decision Server. For more information, see Installation and Administration of Oracle RTD. 

 

2.2 Integrating with an Inline Service using the Java Smart Client 
In general, integration using the Java Smart Client includes the following steps:  

1. Prepare a properties file. 

2. Create a connection to the Inline Service. 

3. Create a request that identifies the Integration Point to connect to and the parameters to identify the session 
and any other information the Integration Point needs to determine an outcome. 

4. Invoke the request.  

5. Gather and parse any response information from Advisors.  

6. Close the connection.  

2.2.1 Java Smart Client API Reference 

For full information about the Java Smart Client API, see the Decision Studio online help.  

2.2.2 Preparing the Java Smart Client example 

For this example, the CrossSell Inline Service has been integrated to a simple command-line application to 
demonstrate how to use the Java Smart Client for integration. 

Use the following steps to prepare the Smart Client example.  

Integration with Oracle RTD     7

http://java.sun.com/products/


   

1 Locate the file RTD_HOME\client\Client Examples\Java Client 
Example\lib\sdbootstrap.properties and open it for editing. Comment out 
all properties except for client=true, as follows: 

client=true 

#StudioStaticFilesLocation=shared_ui/studio 

#WebServerLocation=http://localhost:8080 

#WorkbenchServlet=/ui/workbench 

Then, save and close the file.  

2 Open Decision Studio and choose File > Import , then select Existing Projects into 
Workspace and click Next.  

3 For Select root directory, browse to RTD_HOME\client\Client Examples\ 
Java Client Example and click OK. Then, click Finish. 

4 From the menu bar, select Window > Open Perspective > Java. If the Console view is not 
visible, select Window > Show View > Console. 

5 From the menu bar, select Run > Run. 

6 In the Create, manage, and run configurations screen, select Java Application and click 
New. 

7 Click Browse next to the Project field, then select JavaSmartClientExample and click OK. 

8 Click Search next to the Main class field, then select Example and click OK. 

9 Click Apply, then click Run. In the Console view, the following text appears: 

  

10 Place the cursor after the colon, then enter a customer ID (such as 5) and press Enter. The 
response appears similar to the following: 

  

11  Place the cursor after the final colon, then enter 1 to select the offer. The server responds 
with a final message. 

12 The process repeats. Enter a customer ID greater than 1000 to stop the program. 

You can find the source code for this example in the file RTD_HOME\client\Client 
Examples\Java Client Example\src\com\sigmadynamics\client\ 
example\Example.java. The example is explained below.  

2.2.3 About Java Smart Client properties 

When a client application creates a Java Smart Client, it passes a set of properties to a Java Smart Client factory that 
represents the component’s endpoint configuration. This file contains just enough information to allow the client to 
connect to a server endpoint. There are additional factory methods that use default configuration values; however it is 
best to explicitly specify the properties. The default properties file is shown below.  

Integration with Oracle RTD     8



   

The factory method uses the properties to connect to the server. When the factory connects to the server, it downloads 
the more complete configuration information to the client, such as the set of default responses that the client should 
use if it ever needs to run when the server is unavailable. The detailed client configuration is saved in a local file, the 
Java Smart Client configuration cache, and is updated automatically whenever the server’s configuration changes. 

2.2.4 Creating the properties file 

1 Locate the file RTD_HOME\client\Client Examples\Java Client 
Example\lib\sdclient.properties and open it for editing. The file should 
appear as follows: 
UseEndpointsInOrder = HTTP1 

appsCacheDirectory = ${rootDir}/etc 

timeout = 0 

HTTP1.type = http 

HTTP1.url = http://localhost:8080/ 

2 Modify the contents to match your server configuration. Explanations of the elements of this 
file are listed in the table below. In particular, make sure that you have a valid cache directory 
and the endpoint URL is the URL and port of your local Real-Time Decision Server. By 
default, this is http://localhost:8080. 

Element Description 

UseEndpointsInOrder A comma-separated list of endpoint names, indicating the order in 
which the endpoints should be tried when establishing an initial 
connection to the server cluster during the Smart Client’s initialization. 
After initialization, this list of endpoints is irrelevant because the server 
will supply an updated list of endpoints.  

The endpoint names in this list refer to definitions within this properties 
file; the names are not used elsewhere.  

appsCacheDirectory A file URL identifying a writable directory into which the client 
component may save the configuration information that it gets from the 
server. The cache provides insurance against the possibility that the 
Real-Time Decision Server might be unavailable to the client 
application when the application initializes its client components. If 
sdclient.properties specifies a cache directory, it must 
already exist, otherwise, the client will use the Java virtual machine’s 
temp directory 

timeout The timeout, in milliseconds, used by the original attempt to contact the 
server during the client component’s initialization. After connecting to 
the server, the client uses the server’s timeout, configured through JMX 
MBean property, EntryPointRequestTimeout. 

<endpoint_name>.type The named endpoint type. Only HTTP is supported at this time. 

<endpointName>.url A URL specifying the HTTP host and port of the server’s HTTP 
endpoint. The default endpoint is http://localhost:8080. 

Integration with Oracle RTD     9



   

2.2.5 Creating the Java Smart Client 

1 Open the source file for the Example application at RTD_HOME\client\Client 
Examples\Java Client Example\src\com\sigmadynamics\client\ 
example\Example.java. 

This example source code can be used as a template for your Java Smart 
Client implementation.  
 

2 The following imports are used to support Oracle RTD integration: 
import com.sigmadynamics.client.IntegrationPointRequestInterface; 

import 
com.sigmadynamics.client.IntegrationPointResponseInterface; 

import com.sigmadynamics.client.ResponseItemInterface; 

import com.sigmadynamics.client.SDClientException; 

import com.sigmadynamics.client.SDClientFactory; 

import com.sigmadynamics.client.SDClientInterface; 
  

3 In the main method, the Example application demonstrates several techniques for using 
SDClientFactory to create an implementation of SDClientInterface, based on the 
arguments supplied to the Example application.   

These arguments are passed to getClient, where the proper factory method is identified.  

SDClientInterface client = getClient(args); 

There are several factory methods used to create a Java Smart Client. By examining getClient, 
we see the various methods:  

private static SDClientInterface getClient(String[] args ){ 

    try{ 

      if ( args.length == 0 ) 

        return getClientWithDefaultPropertiesFile(); 

Creates a Java Smart Client with the default properties file using 
create(java.lang.String). The default properties file is referenced 
above.   

      if ( "-h".equals(args[0])){ 

        if ( args.length < 2 ) 

          return getClientWithDefaultHttpAddress(); 

Creates a Java Smart Client with the default HTTP address of 
http://localhost:8080. This is the default installation URL and port 
of the Real-Time Decision Server. Uses 
createHttp(java.lang.String, int, boolean). 

Integration with Oracle RTD     10



   

        return getClientWithHttpAddress( args[1]); 

      } 

Creates a Java Smart Client with a supplied HTTP address. This is the address 
and port of your Real-Time Decision Server, if it is not at the default address.  
Uses createHttp(String). 

      if ( "-u".equals(args[0])){ 

        if ( args.length < 2 ) 

        { 

          System.out.println("Missing properties file URL 
          argument" ); 

          System.exit(-1); 

        } 

        return getClientWithPropertiesFileURL( args[1] ); 

      } 

Creates a Java Smart Client with the information supplied in the properties file 
at the address specified. Uses createFromProperties. 

      if ( "-f".equals(args[0])){ 

        if ( args.length < 2 ) 

        { 

          System.out.println("Missing properties filename          
argument" ); 

          System.exit(-1); 

        } 

        return getClientWithPropertiesFileName( args[1] ); 

      } 

Creates a Java Smart Client with the information supplied in the properties file.  
Uses createFromPropertiesURL. 

      System.out.println("Unrecognized argument"); 

    }catch (SDClientException e ){ 

      e.printStackTrace(); 

    } 

    System.exit(-1); 

    return null; 

  }  

These methods are summarized in the Java Smart Client API section of the Decision Studio online help. 

 

Integration with Oracle RTD     11



   

2.2.6 Creating the request 

1 Next, the client application creates a request to send to the Real-Time Decision Server.  

SDClientInterface is used to create a request object: 
createRequest(String appName, String integrationPointName);                  

The appName parameter is the name of a server-resident application, 
developed in Decision Studio.  

The integrationPointName parameter is the name of the application’s 
Informant or Advisor that is to receive the request.  

See Section 1.2.1, Using Decision Studio to identify Object IDs to locate these 
values.  

In our example, the request is created here: 

IntegrationPointRequestInterface request  =  
client.createRequest(INLINE_SERVICE_NAME, "CallStart"); 

2 The request object provides a method to set a single session key; call it separately for each 
key. 
void setSessionKey(String keyName, String keyValue); 

By example, if an Integration Point’s session key is listed in Decision Studio as 
session.customer.customerId, you would pass customerId as the key name 
to setSessionKey. 

See Section 1.2.4, Identifying session keys and arguments to locate these 
values.  

In the example application the request session key is populated using:  

         request.setSessionKey( SESSION_KEY, sCustID ); 

where SESSION_KEY was set  

static final String SESSION_KEY = "customerId"; 

and sCustID was captured from the command-line input.  

3 The request object provides two methods to set a single argument; call the appropriate one 
separately for each argument. The first method accepts an argument having a string value. 
The second method accepts an array of string values. 
void setArg(String argName, String argValue); 

void setArg(String argName, String[] argValue); 

The argument name should match one of the input names listed in Decision 
Studio for the Integration Point.  

Integration with Oracle RTD     12



   

See Section 1.2.4, Identifying session keys and arguments to locate these 
values. The value of this argument should be determined from the application 
design. 

In the example application, the request is populated using:  

         request.setArg( "channel", "Call"); 

2.2.7 Invoking the request 

1 After populating the request, the client application calls the invoke method of 
SDClientInterface to send the request to the server and receives an 
IntegrationPointResponseInterface representing an array of choices 
calculated by the server. 
IntegrationPointResponseInterface 
invoke(IntegrationPointRequestInterface request); 

In the example application, this call is made:  

client.invoke(request); 

Note: If the client application wants to send a request for which it does 
not expect a response, and for which message delivery sequence is not critical, 
it can use the invokeAsync method instead of invoke. 

Requests sent through invokeAsync are not guaranteed to arrive at the 
server before requests sent through subsequent invokeAsync or invoke 
calls. When message delivery sequence is important, the invoke method 
should be used instead of invokeAsync, even when no response is 
expected. 

2 After the request to the CallStart Integration Point is invoked, a new request is prepared and 
invoked for CallInfo. 
// Supply some additional information about the telephone call. 

          // Apparently the CrossSell service expects very little here --  

          // just the channel again, which it already knows. Hence this 
message  

          // could be left out with no consequences. 

          request = client.createRequest(INLINE_SERVICE_NAME, "CallInfo"); 

          request.setSessionKey( SESSION_KEY, sCustID ); 

          request.setArg( "channel", "Call"); 

          client.invoke(request); 

 

Integration with Oracle RTD     13



   

2.2.8 Examining the response 

When an Advisor is invoked, a number response items, also known as Choices, will be returned. Your application must 
be prepared to handle this number of response items. See Section 1.2.2, Determining the Response of an Advisor for 
more information.  

In the client application, the selected Choices are accessible through the 
IntegrationPointResponseInterface returned by the invoke method. The 
IntegrationPointResponseInterface provides access to an array of response item objects, 
ResponseItemInterface, where each response item corresponds to a Choice object selected by the Advisor’s 
Decision.  

The package com.sigmadynamics.client surfaces a Choice as a collection of value strings, keyed by name 
string. 

In our example, the response is examined as such:  

1 When invoking a request on an Advisor Integration Point, be prepared to receive a response.  
// Based on what the server knows about this customer, ask for 
some 

// product recommendations. 

request = client.createRequest(INLINE_SERVICE_NAME, 
"OfferRequest"); 

request.setSessionKey( SESSION_KEY, sCustID ); 

IntegrationPointResponseInterface response = 
client.invoke(request); 

Integration with Oracle RTD     14



   

 

2 Knowing the number of responses expected allows you handle them accurately.  The 
responses are read from the array and displayed to the customer.  
if ( response.size() > 0 ){ 

// Since I know that CrossSell's OfferDecision returns only  

// one Choice, I could get that choice from the response with 

// response.get(0); Instead, I'll pretend that 

// multiple offers could be returned instead of just one. 

         System.out.println(); 

         System.out.println("Here are the deals we've got for you:"); 

         ResponseItemInterface[] items = response.getResponseItems(); 

         for ( int i = 0; i < items.length; i++ ){ 

           System.out.println(" " + (i+1) + ": " + items[i].getId()); 

           String message = items[i].getValue("message"); 

           if ( message != null ) 

             System.out.println("   " + message ); 

         } 

         System.out.println(); 

      System.out.println("Enter the line number of the offer  

      that catches your interest, or zero if none do: " );          

 

2.2.9 Closing the loop 

Many Inline Services are designed to be self learning. In the CrossSell Inline Service, the OfferResponse Informant 
reports interest in a cross sell offer back to a Choice Event model.   

// Tell the server the good news. 

request = client.createRequest(INLINE_SERVICE_NAME, "OfferResponse"); 

request.setSessionKey( SESSION_KEY, sCustID ); 

request.setArg( "choiceName", prodName ); 

 

// "Interested" is one of the Choice Events defined for the choice 
group, Offers. 

To identify the Choice Event model and Choices, see Section 1.2.3, Knowing 
how to respond to the server. 

request.setArg( "choiceOutcome", "Interested" ); 

client.invoke(request); 

 

Finally, the session is closed by invoking the CallResolution Informant in the server, which in the CrossSell example 
has been designed to terminate the session. 

Integration with Oracle RTD     15



   

// Close the server's session. 

request = client.createRequest(INLINE_SERVICE_NAME, "CallResolution"); 

request.setSessionKey( SESSION_KEY, sCustID ); 

client.invoke(request); 

2.2.10 Closing the client 

When the client application is finished using its SDClientInterface, and doesn’t intend to use it again, it calls 
the component’s close method, to release any instance-specific information. 

client.close(); 

 

Integration with Oracle RTD     16



   

Section 3: Using Java Smart Client JSP tags 

A convenient way to integrate a Web application with a deployed Inline Service is to use the JSP client integration tags. 
JSP allows you to generate interactive Web pages that use embedded Java. The JSP tags provided are based on the 
Java Smart Client discussed in the previous section. 

There is negligible overhead when using the JSP tags. In addition, the tags incorporate automatic reuse of Smart 
Clients for same session to enhance performance. When a Java Smart Client is created using the JSP tag, a check is 
performed to see if a client already exists with the same name and properties and has not been closed. If it does, it 
automatically reuses that client; if not it will create a new one.  

 

3.1 Before you get started 
You must perform the following tasks first before you can work with the JSP client integration tags: 

1. Install a Java Development Kit (JDK), with the JAVA_HOME environment variable set to its location. To obtain a 
JDK, go to the Sun Microsystems Web site, http://java.sun.com/products/.  

2. Install the Oracle RTD files and deploy Oracle RTD to an application server. See Installation and Administration of 
Oracle RTD for full information. 

3. The Java Smart Client example works with the sample CrossSell Inline Service. Because of this, you must first 
populate the Oracle RTD Database with the CrossSell example data, then deploy the CrossSell Inline Service 
using Decision Studio. For information about populating the Oracle RTD Database with the CrossSell example 
data, see Installation and Administration of Oracle RTD. For information about deploying Inline Services, see 
Decision Studio Reference Guide.  

4. Start the Real-Time Decision Server. For more information, see Installation and Administration of Oracle RTD. 

 

3.2 Integrating with an Inline Service using Java Smart Client JSP tags 
In general, integration using the Java Smart Client includes the following steps:  

1. Prepare a properties file. 

2. Use an Invoke or AsyncInvoke tag to create a request to the server.  

3. Gather and parse any response information from Advisors.  

4. Close the connection.  

3.2.1 JSP Smart Client Tag Reference 

For full information about the JSP Smart Client tags, see the Decision Studio online help. 

3.2.2 Sample JSP code 

A working example of using the Smart Client JSP tags for integration can be found at 
RTD_HOME\client\Client Examples\JSP Client Example\example.jsp.  

Integration with Oracle RTD     17

http://java.sun.com/products/


   

3.2.3 Deploying the JSP Smart Client example 

For this example, the CrossSell Inline Service has been integrated to a simple command-line application to 
demonstrate how to use the Smart Client for integration. You need to deploy the JSP Smart Client example to your 
application server, as described in the following sections. 

3.2.3.1 Deploying the JSP Smart Client example to OC4J 

1 Log in to the Application Server Control as the oc4jadmin user. You can access the 
Application Server Control at http://oc4j_host:port/em. For the standalone 
version of OC4J, the port number is typically 8888.  

2 On the OC4J home page, click the Applications tab.  

Note: If you are using OC4J as part of Oracle Application Server, first click home under the Groups 
heading, then proceed to the Applications tab. 

3 Click Deploy. On the Deploy: Select Archive page, under the Archive heading, browse to 
specify the archive location RTD_HOME/client/Client Examples/JSP 
Client Example/sdclient-test.war. Then, click Next. 

4 On the Deploy: Application Attributes page, enter JSPClientExample for Application 
Name, then choose rtd-web-site for Bind Web Module to Site. Then, click Next. 

5 On the Deploy: Deployment Settings page, click Deploy. 

6 To access the application, open a Web browser and go to: 
http://ocj4_host:8080/sdclient-test/example.jsp 

A Web page appears that simulates a service call. For example: 

 

7 Enter a customer ID (such as 5) and click OK. A response page appears, displaying an offer 
and an option to end the call: 

 

8 Click the offer link, or click End this call. 
 

Integration with Oracle RTD     18



   

3.2.3.2 Deploying the JSP Smart Client example to WebSphere 

1 Access the Integrated Solutions Console at the URL http://websphere_host: 
port/ibm/console. At the login prompt, enter the administrator user name and 
password. On Windows, you can also access the Integrated Solutions Console through Start 
> Programs. 

2 In the tree on the left, expand Applications, then choose Enterprise Applications. 

3 Click Install. 
4 In the Path to the new application section, enter or browse to the path 

RTD_HOME/client/Client Examples/JSP Client Example/ 
sdclient-test.war. 

5 For Context root, enter sdclient-test. 

6 Click Next, then click Next again, then click Next again. 

7 Click Finish, then click Save. 

8 On the Enterprise Applications page, select the sdclient-test application and click Start.  
9 To access the application, open a Web browser and go to: 

http://websphere_host:8080/sdclient-test/example.jsp 

A Web page appears that simulates a service call. For example: 

 

10 Enter a customer ID (such as 5) and click OK. A response page appears, displaying an offer 
and an option to end the call: 

 

11 Click the offer link, or click End this call. 
3.2.3.3 Deploying the JSP Smart Client example to WebLogic 

1  Access the WebLogic Server Administration Console for your Oracle RTD domain at the URL 
http://weblogic_host:port/console. At the login prompt, enter the 
administrator user name and password. On Windows, you can also access the WebLogic 
Server Administration Console through Start > Programs > BEA Products > User Projects 
> domain_name > Admin Server Console. 

2 In the tree on the left, click Deployments. 

Integration with Oracle RTD     19



   

3 Click Install. You may need to click Lock & Edit first to enable the Install button. 

4 Go to RTD_HOME/client/Client Examples and select JSP Client Example, then 
click Next. 

5 Select Install this deployment as an application, then click Next. 
6 On the Optional Settings page, enter JSPClientExample for Name. Then, click Next. 

7 Review your settings and click Finish. 

8 Click Save, then click Activate Changes. 

9 Start the application by selecting JSPClientExample application in the Deployments table, 
then clicking Start > Servicing all Requests. When prompted, click Yes. The application is 
now running. 

10 To access the application, open a Web browser and go to: 
http://weblogic_host:8080/JSP %20Client %20Example/example.jsp 

A Web page appears that simulates a service call. For example: 

 

11 Enter a customer ID (such as 5) and click OK. A response page appears, displaying an offer 
and an option to end the call: 

 

12 Click the offer link, or click End this call. 
 

Integration with Oracle RTD     20



   

Section 4: Using the .NET Smart Client 
The .NET Smart Client provides a very similar client to the Java API to make calls from your application. With the 
current implementation, the .NET Smart Client does not have some of the advanced features of the Java Smart Client, 
including session affinity management and default response handling..  

The .NET Smart Client is located at RTD_HOME\client\Client Examples\Dot Net Client 
Example\sdclient.dll. This file should be co-located with your application in order to be accessible. 

 

4.1 Before you get started 
You must perform the following tasks first before you can work with the .Net Smart Client: 

5. Install a Java Development Kit (JDK), with the JAVA_HOME environment variable set to its location. To obtain a 
JDK, go to the Sun Microsystems Web site, http://java.sun.com/products/.  

6. Install the Oracle RTD files and deploy Oracle RTD to an application server. See Installation and Administration of 
Oracle RTD for full information. 

7. The .NET Smart Client example works with the sample CrossSell Inline Service. Because of this, you must first 
populate the Oracle RTD Database with the CrossSell example data, then deploy the CrossSell Inline Service 
using Decision Studio. For information about populating the Oracle RTD Database with the CrossSell example 
data, see Installation and Administration of Oracle RTD. For information about deploying Inline Services, see 
Decision Studio Reference Guide.  

8. Start the Real-Time Decision Server. For more information, see Installation and Administration of Oracle RTD. 

 

4.2 Integrating with an Inline Service using the .NET Smart Client 
The following example outlines how to use the .NET Smart Client for integration to deployed Inline Services on Oracle 
RTD.  

In general, the following are the steps for integration:  

1. Create the RTD Smart Client within your application code.  

2. Create a request directed at an Inline Service and an Integration Point. 

3. Populate the request with arguments and session keys.  

4. Invoke the request using the Smart Client.  

5. If the request is invoked on an Advisor, examine the response. 

6. Close the Smart Client when finished.  

4.2.1 .NET API Reference 

For full information about the .NET Smart Client API, see the Decision Studio online help. 

Integration with Oracle RTD     21

http://java.sun.com/products/


   

4.2.2 .NET integration example 

You can find an example of a .NET integration client in RTD_HOME\client\Client Examples\Dot Net 
Client Example\DotNetSmartClientExample.sln. You can open this example in Microsoft Visual 
Studio, then run or debug the example. 

In this example, Informant and Advisor Integration Points are invoked on the CrossSell Inline Service. To familiarize 
yourself with this Inline Service, see Section 1.2, About the CrossSell Inline Service. In the example, the Integration 
Points are invoked and the return values from the Advisor are written to the console. 

Follow these steps to run the example in Microsoft Visual Studio: 

1 Start Microsoft Visual Studio .NET. 

2 From the menu bar, select File > Open > Project. 
3 For File Name, select RTD_HOME\client\Client Examples\Dot NET 

Client Example\DotNetSmartClientExample.sln and click Open. 

4 If Real-Time Decision Server is running on a different computer, in the right-hand Solution 
Explorer window, double-click DotNetSmartClientExample.cs. Locate the following line: 
SDClient client = new SDClient("http://localhost:8080"); 

Change localhost to the name of the computer where Real-Time Decision Server is running. Then, 
save and close the file. 

5 From the menu bar, select Debug > Start. In the Console window, the following text appears: 

  

6 Place the cursor after the colon, then enter a customer ID (such as 5) and press Enter. The 
response appears similar to the following: 

  

7 Place the cursor after the final colon, then enter 1 to select the offer. The server responds with 
a final message. 

8 The process repeats. Press Enter at the Customer ID prompt, without entering a number, to 
stop the program. 

Integration with Oracle RTD     22



   

Section 5:  Zero Client Integration 
Real-Time Decision Server Integration Points are available through a Zero Client approach. Integration Points on a 
deployed Inline Service are exposed through a Web Services definition. 

It is recommended that you work through the tutorial outlined in Section 2: Using the Java Smart Client to understand the 
process of invoking Integration Points. 

 

5.1 About Web Services 
The ability to invoke and asynchronously invoke a deployed Integration Point is exposed as a Web Service by the 
Real-Time Decision Server. The definition of these operations are available in a WSDL file, located at  
RTD_HOME\deploy\DecisionService\DecisionService.wsdl. The WSDL file defines all complex 
types and operations available.  

Some slight structural changes were introduced in Version 2.2 to bring the Decision Service up to the WS-I Basic level 
of compliance. The previous version of the WSDL file is named RTD_HOME\deploy\DecisionService\ 
DecisionServiceLegacy.wsdl. Although implementors should develop new clients using the new WSDL, 
the server still understands the protocol defined by DecisionServiceLegacy.wsdl, and existing clients 
should experience no loss of functionality. 

Integration with Oracle RTD     23


	About this document
	Intended audience
	How to use this guide
	Document conventions
	Overview
	Choosing the best means of integration
	About the Java Smart Client
	.NET Smart Client
	Web Services

	About the CrossSell Inline Service
	Using Decision Studio to identify Object IDs
	Determining the Response of an Advisor
	Knowing how to respond to the server
	Identifying session keys and arguments


	Using the Java Smart Client
	Before you get started
	Integrating with an Inline Service using the Java Smart Clie
	Java Smart Client API Reference
	Preparing the Java Smart Client example
	About Java Smart Client properties
	Creating the properties file
	Creating the Java Smart Client
	Creating the request
	Invoking the request
	Examining the response
	Closing the loop
	Closing the client


	Using Java Smart Client JSP tags
	Before you get started
	Integrating with an Inline Service using Java Smart Client J
	JSP Smart Client Tag Reference
	Sample JSP code
	Deploying the JSP Smart Client example
	Deploying the JSP Smart Client example to OC4J
	Deploying the JSP Smart Client example to WebSphere
	Deploying the JSP Smart Client example to WebLogic



	Using the .NET Smart Client
	Before you get started
	Integrating with an Inline Service using the .NET Smart Clie
	.NET API Reference
	.NET integration example


	Zero Client Integration
	About Web Services


