
Cover Page
Idc Command Reference Guide
10g Release 3 (10.1.3.3.0)

March 2007

Idc Command Reference Guide, 10g Release 3 (10.1.3.3.0)

Copyright © 2007, Oracle. All rights reserved.

Contributing Authors: Will Harris, Jean Wilson

Contributors: Eva Cordes, Rick Petty, Sam White

The Programs (which include both the software and documentation) contain proprietary information; they

are provided under a license agreement containing restrictions on use and disclosure and are also protected by

copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or

decompilation of the Programs, except to the extent required to obtain interoperability with other independently

created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the

documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may

be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced

or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf

of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data

delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"

pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,

use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical

data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the

extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted

Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous

applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other

measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim

liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates.

Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.

Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all

risks associated with the use of such content. If you choose to purchase any products or services from a third party,

the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-

party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including

delivery of products or services and warranty obligations related to purchased products or services. Oracle is not

responsible for any loss or damage of any sort that you may incur from dealing with any third party.

C
T a b l e o f C o n t e n t s

Chapter 1: Overview
About This Guide .1-1

Chapter 2: IdcCommand: Java Command Utility
IdcCommand Setup and Execution .2-2

Command File .2-2

Command File Syntax .2-3
Precedence .2-4
Special Tags and Characters .2-4

Configuration Options .2-5

Running IdcCommand .2-7

Using the Launcher .2-7

Quoting .2-9
Computed Settings .2-9
Launcher Environment Variables. .2-12
User Interface .2-13
Configuring the Launcher .2-14
Configuration File Example .2-14

Calling Services Remotely .2-17

Chapter 3: IdcCommandX and IdcCommandUX: ActiveX
Command Utilities

IdcCommandUX Overview. .3-2

Setup .3-2
Calling Procedures .3-2

Visual Basic. .3-2
Visual C++. .3-3

Executing Services .3-3

Calling IdcCommandUX from an Active Server Page3-4
Idc Command Reference Guide iii

Table of Contents
HDA example. .3-4
Creating a COM Object .3-5
Initializing the Connection .3-5
Defining the Service and Parameters .3-5
Referencing Custom Resources .3-6
Executing the Service .3-6
Retrieving Results .3-6

SOAP Example .3-7

Formatting Content with a Resource Include .3-9

Connecting to Content Server from a Remote Machine 3-10

Coding the ASP Page .3-11

IdcCommandUX Methods .3-16

addExtraHeadersForCommand. .3-17
closeServerConnection .3-17
computeNativeFilePath .3-18
computeURL .3-19
computeWebFilePath .3-22
connectToServer .3-23
executeCommand .3-24
executeFileCommand .3-25
forwardRequest .3-26
getLastErrorMessage .3-26
init (deprecated). .3-27
initRemote .3-28

Chapter 4: IdcClient OCX Component
IdcClient OCX Description .4-2

General Description .4-2
Events, Methods, and Properties. .4-3

OCX Events .4-3
OCX Methods .4-3
OCX Properties .4-4

IdcClient OCX Interface .4-4

IdcClient OCX Control Setup .4-5

Component Setup .4-5
Creating a Visual Interface .4-5

IdcClient Events .4-16

IntradocBeforeDownload .4-17
IntradocBrowserPost .4-17
IntradocBrowserStateChange .4-17
IntradocRequestProgress .4-18
iv Idc Command Reference Guide

Table of Contents
IntradocServerResponse .4-18

IdcClient Methods .4-18

AboutBox .4-19
Back. .4-19
CancelRequest .4-20
DoCheckoutLatestRev. .4-20
DownloadFile .4-21
DownloadNativeFile. .4-21
Drag .4-22
EditDocInfoLatestRev .4-23
Forward .4-23
GoCheckinPage. .4-24
Home .4-25
InitiateFileDownload .4-25
InitiatePostCommand .4-26
Move .4-26
Navigate. .4-27
NavigateCgiPage. .4-27
RefreshBrowser .4-28
SendCommand .4-28
SendPostCommand. .4-28
SetFocus .4-29
ShowDMS .4-30
ShowDocInfoLatestRev .4-30
ShowWhatsThis. .4-30
StartSearch .4-31
Stop .4-31
UndoCheckout .4-32
ViewDocInfo. .4-32
ViewDocInfoLatestRev .4-33
ZOrder .4-33

IdcClient Properties .4-34

ClientControlledContextValue .4-34
HostCgiUrl .4-34
Password .4-35
UseBrowserLoginPrompt. .4-35
UseProgressDialog .4-35
UserName .4-35
WorkingDir .4-36
Idc Command Reference Guide v

Appendix A: Third Party Licenses
Apache Software License . A-1

W3C® Software Notice and License . A-2

Zlib License . A-3

General BSD License. A-4

General MIT License . A-5

Unicode License. A-5

Miscellaneous Attributions . A-7

C h a p t e r

1
1.OVERVIEW

INTRODUCTION

The information contained in this guide is based on Content Server 10gR3. The
information is subject to change as the product technology evolves and as hardware and
operating systems are created and modified.

Due to the technical nature of browsers, web servers, and operating systems, Oracle, Inc.,
cannot warrant compatibility with all versions and features of third-party products.

This section contains these topics:

About This Guide (page 1-1)

ABOUT THIS GUIDE

This guide provides information on using the IdcCommand and IdcCommandX utilities to
access content server services from other applications. You can access these utilities on the
support site.

The IdcCommand Java Command Utility is a stand-alone Java application that
enables users to execute content server services. See Chapter 2 (IdcCommand: Java
Command Utility).

IdcCommandX and IdcCommand UX are ActiveX controls that allows a program to
execute a service and retrieve file path information. IdcCommandX serves as a COM
wrapper for the standard IdcCommand services used by content server.
IdcCommandUX is an updated IdcCommandX control that works with multibyte
Idc Command Reference Guide 1-1

Overview
languages. See Chapter 3 (IdcCommandX and IdcCommandUX: ActiveX Command
Utilities).

An Object Linking and Embedding Control Extension (OCX) control is also provided
for connecting to a remote content server.and executing Content Server services. The
IdcClient OCX control is used within a Windows Visual Basic development
environment to gain access to the content and content management functions within
Content Server. See Chapter 4 (IdcClient OCX Component).

Audience

This guide is intended for application developers who need to access Content Server
functions. This guide provides information on the Java Command Utility, ActiveX
Command Utility, and OCX Component for the content server.

This guide is intended for content server administrators who want to use the Layout
Manager functionality to provide alternate interface navigation and design.

Conventions

The following conventions are sed throughout this guide:

The notation <install_dir>/ is used throughout this guide to refer to the location on
your system where Content Server product is installed.

Forward slashes (/) are used to separate the directory levels in a path name. A forward
slash will always appear after the end of a directory name.

Note: The information contained in this guide is based on Content Server 10gR3. The
information is subject to change as the product technology evolves and as hardware and
operating systems are created and modified. Due to the technical nature of browsers,
databases, web servers, and operating systems, Oracle, Inc. cannot warrant compatibility
with all versions and features of third-party products.

Note: This reference guide is part of the Software Developer’s Kit (SDK). See Getting
Started with the Software Developer’s Kit (SDK) for more information.

Note: For information on using services in custom components, see the Services Reference
Guide and the Working with Components guide.
1-2 Idc Command Reference Guide

Overview
Notes, technical tips, important notices, and cautions use these conventions:

Symbols Description

This is a note. It is used to bring special attention to information.

This is a technical tip. It is used to identify information that can be used
to make your tasks easier.

This is an important notice. It is used to identify a required step or
required information.

This is a caution. It is used to identify information that might cause loss
of data or serious system problems.
Idc Command Reference Guide 1-3

Overview
1-4 Idc Command Reference Guide

C h a p t e r

2
2.IDCCOMMAND: JAVA COMMAND

UTILITY

INTRODUCTION

The IdcCommand utility is a stand-alone Java application that executes Content Server
services. Almost any action you can perform from the content server browser interface or
administration applets can be executed from IdcCommand.

The program reads a Command File (page 2-2), which contains service commands and
parameters, and then calls the specified services. A log file can record the time that the call
was executed, whether the service was successfully executed, and if there were execution
errors.

This section covers the following topics:

IdcCommand Setup and Execution (page 2-2)

Command File (page 2-2)

Running IdcCommand (page 2-7)

Using the Launcher (page 2-7)

Calling Services Remotely (page 2-17)

Note: The IdcCommand utility only returns information about the success or failure of the
command. To retrieve information from the content server in an interactive session, use
the IdcCommandX Java COM wrapper available on Windows platforms. See Chapter 3
(IdcCommandX and IdcCommandUX: ActiveX Command Utilities) for additional
information.
Idc Command Reference Guide 2-1

IdcCommand: Java Command Utility
IDCCOMMAND SETUP AND EXECUTION

To set up IdcCommand, you must specify the following two things:

A Command File (page 2-2), which specifies the services to be executed and any
service parameters.

Configuration Options (page 2-5), which specify the command file and other
IdcCommand information. You can set IdcCommand configuration options in two
places:

• In a configuration file, using name/value pairs such as:

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/stellent/newlog.txt
ConnectionMode=server

• On the command line when running IdcCommand, specifying option flags such
as:

-f newfile.hda -u admin -l C:/stellent/newlog.txt -c server

IdcCommand Execution

IdcCommand is run from a command line. You can specify the Configuration Options
(page 2-5) either from the command line or in a configuration file. See Running
IdcCommand (page 2-7) for more information.

COMMAND FILE

The command file defines the service commands and parameters that are executed by the
IdcCommand utility. The command file follows these rules:

Command File Syntax (page 2-3)

Precedence (page 2-4)

Special Tags and Characters (page 2-4)

Note: Command line configuration options override the settings in the configuration file.
2-2 Idc Command Reference Guide

IdcCommand: Java Command Utility
Command File Syntax

The command file uses the HDA (hyperdata file) syntax to define service commands.

Each service to be executed, along with its parameters, is specified in a @Properties
LocalData section.

For some services, a @ResultSet section is used to specify additional information.

Data from one section of the command file is not carried over to the next section. Each
section must contain a complete set of data for the command.

Service names and parameters are case sensitive.

For example, the following command file executes the ADD_USER service and defines
attributes for two new users:

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>

Add users
@Properties LocalData
IdcService=ADD_USER
dName=jsmith
dUserAuthType=Local
dFullName=Jennifer Smith
dPassword=password
dEmail=email@email.com
@end
@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
jsmith
role,contributor,15
@end
<<EOD>>
@Properties LocalData
IdcService=ADD_USER
dName=pwallek
dUserAuthType=Local
dFullName=Peter Wallek
dPassword=password
dEmail=email@email.com
@end
@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
pwallek
Idc Command Reference Guide 2-3

IdcCommand: Java Command Utility
role,contributor,15,account,marketing,7
@end
<<EOD>>

Precedence

IdcCommand uses precedence to resolve conflicts among the name/value pairs within the
LocalData section of the command file. When normal name/value pairs are parsed, they
are assumed to be within the @Properties LocalData tag. If the section contains HDA
tags, the normal name/value pairs take precedence over name/value pairs within the
@Properties LocalData tag.

For example, if foo=x is in a normal name/value pair and foo=y is within the
@Properties LocalData tag, the name/value pair foo=x takes precedence because it is
outside the tag.

Special Tags and Characters

These special tags and characters can be used in a command file:

Special Character Description

IdcService=service_na
me

Each section of the command file must specify the name of
the service it is calling.

<<EOD>>
The end of data marker. The command file can include one or
more sections separated with an end of data marker. See
Command File Syntax (page 2-3) for an example.

#
The pound character placed at the beginning of a line
indicates that the line is a comment.

\ The backslash is an escape character.
2-4 Idc Command Reference Guide

IdcCommand: Java Command Utility
CONFIGURATION OPTIONS

To run the IdcCommand utility, specify the following on the command line or in the
intradoc.cfg configuration file:

Command File

You must specify the name of the command file that contains the service commands and
parameters. The command file parameter can specify a full path (such as
C:/command_files/command.txt), or it can specify a relative path. See Command File
(page 2-2) for more information.

@Include filename This tag enables you to include content from another file at
the spot where the @Include tag is placed. This tag can be
used to include a complete HDA file or to include shared
name/value pairs. This inclusion takes the exact content of the
specified file and places it in the location of the @Include
tag. A file can be included as many times as desired and an
included file may include other files. However, circular
inclusions are not allowed.

Special Character Description

Parameter Required? Command Line Syntax Configuration File Syntax

Command File (page 2-5) Yes -f name.txt IdcCommandFile=name.txt

User (page 2-6) Yes -u sysadmin IdcCommandUserName=sysadmin

Log File (page 2-6) No -l C:/logs/log.txt IdcCommandLog=C:/logs/log.txt

Connection Mode (page 2-6) No -c auto ConnectionMode=auto

Note: Command line configuration options override the settings in the configuration file.
Idc Command Reference Guide 2-5

IdcCommand: Java Command Utility
User

You must specify a content server user name. This user must have permission to execute
the services being called.

Log File

You can specify a path and file name for an IdcCommand log file. As each command is
executed, a message is sent to the log file, which records the time the command was
executed and its success or failure status. If the log file already exists, it will be
overwritten with the new message. The log file can be used to display processing
information to the user.

If the action performed is successful, a “success” message is written to the log file.

If the action performed is not successful, an error message is written to the log file.

If no log file is specified, information is logged only to the screen.

Connection Mode

You can specify the connection mode for executing the IdcCommand services.

Connection Mode Description

auto

IdcCommand will attempt to connect to the content server. If
this fails, services are executed in stand-alone mode.

This is the default connection mode.

server
IdcCommand will execute services only through the content
server.

standalone

IdcCommand will execute services in a stand-alone session.

There are certain services that cannot be executed in stand-
alone mode. In general, these services are performed
asynchronously by the server in a background thread. For
example, this happens during update or rebuild of the search
index.
2-6 Idc Command Reference Guide

IdcCommand: Java Command Utility
RUNNING IDCCOMMAND

To run IdcCommand:

1. Create a new IdcCommand working directory.

Use this directory for your command file and configuration file.

2. Create a Command File (page 2-2) in the working directory to specify the desired
service commands.

3. Copy the intradoc.cfg configuration file from <install_dir>/bin/ into the working
directory.

4. Add IdcCommand options to the intradoc.cfg file in the working directory. See
Configuration Options (page 2-5) for more information.

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/stellent/newlog.txt

5. Run the IdcCommand stored in the <install_dir>/bin directory:

IdcCommand.exe

USING THE LAUNCHER

The Launcher is a native C++ application used to manage services in Windows
environments and to construct command line arguments and environment settings for the
Java VM.

The main operation of the Launcher is to find and read its configuration files, compute any
special values, then launch an executable with a command line that it constructs.
Configuration files support Bourne Shell-like substitutions, all of which start with the
dollar sign ($) followed by an alphanumeric identifier or expression inside braces ({ }).

The Launcher executable is installed in <install_dir>/shared/os/platform/bin/Launcher.
On UNIX systems, symlinks are created in the bin/ directory to Launcher.sh, a Bourne
Shell wrapper which executes the Launcher executable. The purpose of this wrapper is to
locate the correct binary Launcher executable for the platform. The term “Launcher” is
used here to refer to the native Launcher executable or to the Launcher.sh Bourne Shell
script.

Important: Do not delete the IntradocDir or WebBrowserPath information.
Idc Command Reference Guide 2-7

IdcCommand: Java Command Utility
The Launcher or the symlink to the Launcher.sh must reside in a directory with a valid
intradoc.cfg configuration file and must have the same name as the Java class file to be
launched (case sensitive). The Launcher uses this name to set the environment variable
STARTUP_CLASS.

On Windows this name is computed by calling GetModuleFileName(). On UNIX systems,
it is computed by inspecting argv[0]. The PLATFORM variable is set to the Content Server
identifier for the platform. The variable BIN_DIR is set to the directory where the Launcher
is located.

The Launcher reads a file named intradoc.cfg from BIN_DIR. This file should contain a
value for IntradocDir. The IntradocDir is used as the base directory for resolving relative
paths. Any unqualified path in this document should be taken as relative to the
IntradocDir. Future releases of the Content Server may change or remove these variable
names.

If the intradoc.cfg file does not contain a value for SharedDir, the Launcher sets SharedDir
to be $IntradocDir/shared. If the Launcher is starting a Windows service, it sets
IS_SERVICE to 1. If it is unset, the Launcher will also set PATH_SEPARATOR to the correct
character for the platform.

The Launcher then reads all available configuration files in this order:

1. $SharedDir/config/resources/launcher.cfg

2. $SharedDir/config/resources/launcher-local.cfg

3. $BIN_DIR/../config/config.cfg

4. $IntradocDir/config/config.cfg

5. $IntradocDir/config/config-$PLATFORM.cfg

6. $IntradocDir/config/state.cfg

7. $SharedDir/os/$PLATFORM/launcher.cfg

8. $SharedDir/os/$PLATFORM/launcher-local.cfg

9. $BIN_DIR/intradoc.cfg

10. $BIN_DIR/intradoc-$PLATFORM.cfg

11. All files specified on the command line, using the -cfg option.
2-8 Idc Command Reference Guide

IdcCommand: Java Command Utility
Quoting

The Launcher uses Bourne Shell-like quoting rules. A string can be quoted inside double
quotes (“) to escape spaces. A backslash (\) can precede any character to provide that
character. After a final command line is computed, the Launcher separates it into non-
quoted spaces. Each string is then unquoted and used as an entry in the argv array for the
command.

Computed Settings

After reading the configuration files, the Launcher processes variable substitutions. Some
variables can have extra computations to validate directories or files, build command line
argument lists, or construct PATH-like variables.

These special computations are performed for variables based on their type. To set a type
for a variable, set TYPE_variable_name=typename in any of the configuration files listed
previously.

The following list describes Launcher variable types:

file

• Examples:

TYPE_PASSWD_FILE=file
PASSWD_FILE_sys5=/etc/passwd
PASSWD_FILE_bsd=/etc/master.passwd

The type looks for a file. If the value of variable_name is a path to an existing file, it is
kept. If not, every variable beginning with variable_name_ is checked. The last value
which is a path to an existing file is used for the new value of variable_name.

In this example PASSWD_FILE will be set to /etc/master if /etc/master.passwd exists, or
it will be set to /etc/passwd if /etc/passwd exists. Otherwise, PASSWD_FILE will
be undefined.

directory

• Examples:

TYPE_JDK=directory
JDK_java_home=$JAVA_HOME
OS_DIR=$SharedDir/os
DEFAULT_JDK_DIR=$OS_DIR/$PLATFORM
JDK_legacy142=$DEFAULT_JDK_DIR/j2sdk1.4.2_04
JDK_default=$DEFAULT_JDK_DIR/jdk1.5.0_07
Idc Command Reference Guide 2-9

IdcCommand: Java Command Utility
In this example JDK will be set to the the same value as the last of the JDK_ variables
that is a directory. Typically this would point at the JDK installed with the Content
Server. Note that JDK_java_home references $JAVA_HOME; if a variable isn't defined in
any configuration file but is in the environment, the environment value will be used.

executable

• Examples:

TYPE_JAVA_EXE=executable
JAVA_EXE_default=java$EXE_SUFFIX
JAVA_EXE_jdk_default=$JDK/bin/java$EXE_SUFFIX

The executable type looks for an executable. It works very much like the file type, but
will look through every directory in $PATH for each candidate value. In this example
JAVA_EXE will be set to the java executable in the JDK if it exists. Otherwise it will be
set to the first java executable in the PATH.

list

• Examples:

TYPE_JAVA_OPTIONS=list
JAVA_MAX_HEAP_SIZE=384
DEFINE_PREFIX=-D
JAVA_OPTIONS_BIN_DIR=${DEFINE_PREFIX}idc.bin.dir=$BIN_DIR
JAVA_OPTIONS_maxheap=${JAVA_MAX_HEAP_SIZE+-Xmx${JAVA_MAX_HEAP_SIZE\}m}
JAVA_OPTIONS_service=${IS_SERVICE+$JAVA_SERVICE_EXTRA_OPTIONS}

The list type computes a list of options for an executable. Each value that begins with
variable_name_ will become a quoted option, and variable_name will be set to the
entire list. In this example JAVA_OPTIONS will be set to the string:

"-Didc.bin.dir=/intradocdir/bin/" "-Xmx384m".

path

• Examples:

TYPE_JAVA_CLASSPATH=path
JAVA_CLASSPATH_legacy=$CLASSPATH
JAVA_CLASSPATH_orig=$IntradocDir/classes
JAVA_CLASSPATH_unpackaged=$SharedDir/classes
JAVA_CLASSPATH_components=$COMPONENTS_CLASSPATH
JAVA_CLASSPATH_server=$SharedDir/classes/server.zip
JAVA_CLASSPATH_refinery=$SharedDir/classes/idcrefinery.zip
JAVA_CLASSPATH_flexion=$SharedDir/classes/flexionxml.jar
JAVA_CLASSPATH_jspserver=$SharedDir/classes/jspserver.jar
JAVA_CLASSPATH_ldap=$SharedDir/classes/ldapjdk.jar
2-10 Idc Command Reference Guide

IdcCommand: Java Command Utility
The classpath type computes a path-like value.The value of each variable starting with
variable_name_ is appended to the value of variable_name separated by the value of
PATH_SEPARATOR. In this example JAVA_CLASSPATH will be set to a very long classpath.

lookupstring

• Examples:

TYPE_VDK_PLATFORM=lookupstring
PARAMETER_VDK_PLATFORM=${PLATFORM}_${UseVdkLegacySearch+vdk27}
VDK_PLATFORM_aix_vdk27=_rs6k41
VDK_PLATFORM_aix_=_rs6k43
VDK_PLATFORM_hpux_vdk27=_hpux11
VDK_PLATFORM_hpux_=_hpux11
VDK_PLATFORM_freebsd_vdk27=_ilnx21
VDK_PLATFORM_freebsd_=_ilnx21
VDK_PLATFORM_linux_vdk27=_ilnx21
VDK_PLATFORM_linux_=_ilnx21
VDK_PLATFORM_solaris_vdk27=_ssol26
VDK_PLATFORM_solaris_=_ssol26
VDK_PLATFORM_win32_vdk27=_nti40
VDK_PLATFORM_win32_=_nti40

The lookupstring uses a second parameter to construct a lookup key for the final
value. The second parameter is the value of $PARAMETER_variable_name. If this value
is undefined, the current value of variable_name is used as the lookup key. In this
example PARAMETER_VDK_PLATFORM has the value of ${PLATFORM}_ or
${PLATFORM}_vdk27 depending on the value of UseVdkLegacySearch.

This value is then used to look up the value of the variable
VDK_PLATFORM_${PARAMETER_VDK_PLATFORM} which is then quoted and assigned to
VDK_PLATFORM.

lookuplist

• Examples:

TYPE_STARTUP_CLASS=lookuplist
STARTUP_CLASS_version=Installer --version
STARTUP_CLASS_installer=Installer
STARTUP_CLASS_WebLayoutEditor=IntradocApp WebLayout
STARTUP_CLASS_UserAdmin=IntradocApp UserAdmin
STARTUP_CLASS_RepositoryManager=IntradocApp RepositoryManager
STARTUP_CLASS_Archiver=IntradocApp Archiver
STARTUP_CLASS_WorkflowAdmin=IntradocApp Workflow
STARTUP_CLASS_ConfigurationManager=IntradocApp ConfigMan
Idc Command Reference Guide 2-11

IdcCommand: Java Command Utility
The lookuplist uses a second parameter to construct a lookup key for the final value.
The second parameter is the value of $PARAMETER_variable_name. If this value is
undefined, the current value of variable_name is used as the lookup key.

Unlike lookupstring, lookuplist does not quote the final value. In this example
assume the current value of STARTUP_CLASS is version. STARTUP_CLASS will be
replaced with the value Installer --version.

Launcher Environment Variables

After processing the computed settings, the Launcher iterates over all variables that begin
with the string EXPORT_. The value of each variable is used as an environment variable
name, which has the value of the second half of the EXPORT_ variable assigned. For
example, EXPORT_IDC_LIBRARY_PATH=LD_LIBRARY_PATH exports the value of
the IDC_LIBRARY_PATH variable with the name LD_LIBRARY_PATH.

The variable JAVA_COMMAND_LINE is used to get the command line. Any command
line arguments to the Launcher that haven't been consumed are appended to the command
line. On UNIX systems, the command line is parsed and quoting is undone and then execv
is called. On Windows, a shutdown mutex is created and CreateProcess is called with the
command line. Care should be taken because CreateProcess doesn't undo backslash-
quoting.

The principal mechanism for debugging the Launcher is to add the flag -debug prior to any
arguments for the final command. You can also create a file named $BIN_DIR/debug.log
which will trigger debug mode and contain the debug output.

The Launcher has knowledge of the following configuration entries which it either sets or
used to control its behavior. Note that these configuration variables may change or be
removed in future releases of the Content Server:

IDC_SERVICE_NAME: the name of the win32 service used for service registration,
unregistration, startup, and shutdown.

IDC_SERVICE_DISPLAY_NAME: the display name of the win32 used for service
registration.

IntradocDir: the base directory for relative path names.

IdcBaseDir: an alternate name for IntradocDir.

SharedDir: set to $IntradocDir/shared if otherwise undefined.

SHARED_CONFIG_DIR: set to $SharedDir/config if otherwise unset.

OS_DIR: set to $SharedDir/os if otherwise unset.
2-12 Idc Command Reference Guide

IdcCommand: Java Command Utility
PATH_SEPARATOR: set to either colon (:) or semi-colon (;) if otherwise unset.

STARTUP_CLASS: set to the name of the Launcher executable.

MUTEX_NAME: the name used to create a shutdown mutex on win32.

BEFORE_WIN_SERVICE_START_CMD: if set, is a command line that is executed before a
win32 service starts.

UseRedirectedOutput: if set tells the Launcher on win32 to redirect the output from
the Java VM to a file.

ServiceStartupTimeout: the timeout used for waiting for a Java process to
successfully start on win32.

User Interface

The UI for the Launcher is exactly the same as the application it launches. For example, if
the Launcher is renamed to IntradocApp, the following command line arguments are given
to launch the Web Layout Editor:

IntradocApp WebLayout

This will launch the Web Layout Editor as a stand-alone application.

By default, the application will be launched without console output. However, when
launching IdcServer, IdcAdmin, IdcCommandX, or the Installer, Java output is printed to
the screen. In all other cases, the output is suppressed for a cleaner interface.

For some applications, such as the Batch Loader and the Repository Manager, it is
desirable to view the Java output from the application. To force the Launcher to dump the
Java output to the screen, use the -console flag in this manner:

IntradocApp RepMan -console

The output will now be written to the console from which the Repository Manager was
launched.

If the Launcher is renamed IdcServer, BatchLoader, SystemProperties, or any other Java
class that requires no additional parameters, it can be launched with a simple double-click.
In other cases, a shortcut can be used to launch them by double-clicking.

Tech Tip: By using the Launcher.exe, changing the status.dat file, and altering the value
of the JVM command line, you could theoretically run any Java program as a Windows
service. This is not recommended for normal use, but it does explain the many ways you
could configure the Launcher.
Idc Command Reference Guide 2-13

IdcCommand: Java Command Utility
Configuring the Launcher

To use the Launcher, you must first rename the Launcher.exe file to an executable with the
same name as the class file to be launched. Typical examples include IdcServer.exe or
IntradocApp.exe.

Configuration File Example

Configuration file example entries:

<?cfg jcharset="Cp1252"?>
#Content Server Directory Variables
IntradocDir=C:/stellent/idcm1/
CLASSPATH=$COMPUTEDCLASSPATH;$SHAREDDIR/classes/jtds.jar

This is sufficient to launch nearly all Content Server applications. Others, such as the
Inbound Refinery, require additional classes in the classpath. This file can also be
modified to enable Content Server to be run with different Java virtual machines.

The CLASSPATH is designed to look for class files in order of the listed entries. In other
words, the Launcher will search the entire <install_dir>/classes/ directory before it looks
in the shared directory or server.zip file. This is desirable if the users wish to overload Java
classes without patching the Zip file. Additionally, the Launcher can be used to install,
uninstall, and run Java applications as Windows Services, provided that they follow the
correct API for communicating back to the Launcher. See the source code for
IdcServer.java or IdcAdmin.java for more details on how to make any Java application run
as a Windows service with the Launcher.

The COMPUTEDCLASSPATH is used to add class files to the CLASSPATH that the Launcher uses.
To add class files, override this flag.

For example, to run Content Server with IBM’s virtual machine on a Windows system, the
command line would look like:

#customized for running IBM's VM

Note: If you want to make a custom application, you should create the custom directory,
and rename the Launcher.exe to the service that is to be launched. A valid intradoc.cfg file
needs to be in the same directory as the executable. The only required parameter is
IntradocDir; however, other entries can be included to alter the way the Java application is
launched.

Note: The intradoc.cfg file is usually altered to include JDBC drivers for their particular
database upon install. If you want to use alternate JDBC drivers, place them in the
<install_dir>/shared/classes directory, and alter the intradoc.cfg file accordingly.
2-14 Idc Command Reference Guide

IdcCommand: Java Command Utility
JAVA_EXE=full path

When using a custom JVM, use the full path to the Java executable file to be used.

If you choose to change which JVM you are using, and if that VM has all the standard Sun
SDK jar files, then it is better to use the J2SDK configuration entry to relocate the root
directory of the SDK directory rather than use JAVA_EXE to specify the location of the Java
executable (this is not applicable for the IBM VM).

The J2SDK variable changes the directory where the Sun SDK libraries are found (such as
tools.jar). If you change this entry without setting the JAVA_EXE entry then Java
executables are assumed to be in the \bin directory of the path in J2SDK. The default value
for J2SDK is ...\shared\os\win32\j2sdk1.4.2_04.

To override the value for $JAVA_OPTIONS, use $JAVA_OPTIONS=-server or another similar
value.

The following are commonly used command line options. Those options noted with an
asterisk (*) are available on Windows platforms only. Unmarked options are available for
Windows or UNIX platforms:

Caution: It is not recommended that you override the JVM command line. If you do, start
with the following command line:

JvmCommandLine=$JAVA_EXE $JAVA_OPTIONS $JAVA_SERVICE_EXTRA_OPTIONS
$DEFINE_PREFIXjava.endorsed.dirs=$ENDORSEDPATH $APPEND_CLASSPATH
"$CLASSPATH" $STARTUPCLASS

Option Description

-console * Forces the Launcher to keep a Windows console window
open so that the Java output and error streams are printed to
the console.

-debug Shows paths and variables in use at startup as well as startup
errors.

-fileDebug Similar to the -debug option but this option dumps debug
data to the debug.log file. It is usually only set in
JAVA_OPTIONS or JAVA_SERVICE_EXTRA_OPTIONS in the
intradoc.cfg file to debug Windows services.
Idc Command Reference Guide 2-15

IdcCommand: Java Command Utility
-install * Used to install the Java application referred to by the
Launcher as a Windows Service.

-install_autostart * Similar to the -install option but this option installs the
application to start when the server starts.

-uninstall * Used to uninstall the Java application referred to by the
Launcher as a Windows Service.

-remove * Same as -uninstall.

-dependent service-
name

* Makes the Windows service dependent on whether or not
the service service-name is also running.

This command is useful when you want to make a dependent
call for each service.

For example, if you want to launch a database before
starting the content server, you can specify the content
server startup to be dependent on the database startup.

-dependent user
password

* Used with -install, installs the service with the
credentials of the user specified by user with password
password.

This command will check the user regardless of the
credentials, but may not install the service. The credentials
of the user need to extend to the service for the auto-start to
run the service automatically.

For certain services, such as the Inbound Refinery, the last
flag is required so the service can run with higher
permissions. The user name must be in the typical Microsoft
format DOMAIN\User. Once users change passwords, the
service will not be able to log in, and therefore will not run.

-help Provides verbose output on Launcher use.

-version Displays the version number for the Launcher and exits.

-asuser user password * Used during an install to install a service as a specified
user with a specific password.

Option Description
2-16 Idc Command Reference Guide

IdcCommand: Java Command Utility
PATH=$SHAREDDIR\\os\\win32\\lib\\;$SHAREDDIR\\search\\vdk_nti40\\bin;$SHARED
DIR\\search\\vdk_nti40\\filters;$OLDPATH

If you want to load custom .dlls, you should put them in the
<install_dir>/shared/os/win32/lib/ directory

CALLING SERVICES REMOTELY

To use services remotely, you must have these files on the remote machine:

<install_dir>/bin/IdcCommand.exe

<install_dir>/bin/intradoc.cfg (same file as on the content server).

<install_dir>/config/config.cfg

In addition, the following configuration entries must be defined in the #Additional
Variables section of the config.cfg file on the remote machine:

IntradocServerPort=4444

IntradocServerHostName=IP or DNS

-exec pathname Overrides the argv[0] setting. Used by the Launcher.sh to
specify the target pathname because the target of the
symlink does not know its source.

-cfg configfilename Specifies additional config files to read before determining
computed settings.

-idcServiceName
servicename

* Specifies the name of the Windows service. This can
used with -remove to uninstall another Content Server
service without using that Content Server’s Launcher (for
example, if an entire installation directory has been
removed).

Option Description

Tech Tip: To customize the classpath to alter the system path to load Oracle .dll files, you
can change the pathway to:
Idc Command Reference Guide 2-17

Idc Command Reference Guide 3-1

C h a p t e r

3
3.IDCCOMMANDX AND

IDCCOMMANDUX: ACTIVEX
COMMAND UTILITIES

INTRODUCTION

IdcCommandUX is an ActiveX control that allow a program to execute content server
services and retrieve file path information. Each control serves as a COM wrapper for the
standard IdcCommand services used by content server.

IdcCommandUX is the same as IdcCommandX, except it has been updated to work with
multi-byte languages and has more functions which increase its usage for ASPs and
SOAP.

This chapter discusses IdcCommandUX, which has more functionality than
IdcCommandX.

This chapter covers the following topics:

IdcCommandUX Overview (page 3-2)

Calling IdcCommandUX from an Active Server Page (page 3-4)

Formatting Content with a Resource Include (page 3-9)

Connecting to Content Server from a Remote Machine (page 3-10)

IdcCommandUX Methods (page 3-16)

Note: A Visual Basic or Visual C++ development environment is required to use
IdcCommandUX.

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
IDCCOMMANDUX OVERVIEW

This section covers these topics:

Setup (page 3-2)

Calling Procedures (page 3-2)

Executing Services (page 3-3)

Setup

To set up IdcCommandUX, run the IdcCommandUX setup file, which is stored in
Extras/IdcCommandUX/Setup.exe on the Content Server DVD.

Calling Procedures

Use one of the following procedures to call IdcCommandUX:

Visual Basic (page 3-2)

Visual C++ (page 3-3)

Visual Basic
To call IdcCommandUX from a Visual Basic environment:

1. Add IdcCommandUX as a control to the Visual Basic project.

2. Create the control as follows:

Set idcCmd=CreateObject("Idc.CommandUX")

3. Define and initialize the connection by calling the init (deprecated) (page 3-27)
function and defining the UserName and StellentDir parameters:

Dim idcCmd
idcCmd.init("UserName", "StellentDir")

• The UserName parameter specifies a user that has permission to execute the
services being called by IdcCommandUX.

• The StellentDir parameter specifies the complete path to the content server
directory that contains the intradoc.cfg configuration file.

For example:

Dim idcCmd
idcCmd.initRemote("sysadmin", "c:\stellent\bin")
3-2 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
Visual C++
Add the IdcCommandUX control to the project and call the desired IdcCommandUX
class.

Executing Services

When executing services using IdcCommandUX, keep these points in mind:

IdcCommandUX must be initialized with a valid user name and the location of the
intradoc.cfg file.

Functions that must use HDA format for communication include
computeWebFilePath (page 3-22), computeNativeFilePath (page 3-18) and
computeURL (page 3-19). For more information on HDA formats, see the Working
with Components guide.

executeCommand (page 3-24) can take HDA format or SOAP commands. To use
SOAP, you must use the initRemote (page 3-28) function instead of the init
(deprecated) function.

IdcCommandUX attempts to establish a connection to a running content server. If a
connection is not made, it fails.

The returned HDA-format string contains information about the success or failure of
the command, using the StatusCode and StatusMessage variables.

• If the command is successful, StatusCode is zero (0), and StatusMessage is a
login message (“You are logged in as sysadmin”).

• If the command fails, StatusCode is negative (-1), and StatusMessage is an error
message.

Note: See the Idoc Script Reference Guide for more information.

Tech Tip: See Using the Launcher (page 2-7) for information on using the Launcher (a
native C++ application that allows a Java program to start as a Windows service).
Idc Command Reference Guide 3-3

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
CALLING IDCCOMMANDUX FROM AN ACTIVE
SERVER PAGE

Calling IdcCommandUX from an Active Server Page (ASP) consists of the following
steps, which are discussed further in this section:

1. Creating a COM Object (page 3-5)

2. Initializing the Connection (page 3-5)

3. Defining the Service and Parameters (page 3-5)

4. Optional—Formatting Content with a Resource Include (page 3-9)

5. Formatting Content with a Resource Include (page 3-9)

6. Retrieving Results (page 3-6)

Two samples are provided: one using HDA and one using SOAP. The examples show the
steps needed to obtain a list of content server documents that match a specified criteria.
The detailed parts of each step are discussed in the HDA example.

HDA example

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")
' Initialize the connection to the server
x = idcCmd.initRemote(“/stellent/”, “socket:localhost:4444”, "sysadmin", true)
' Define the service
cmd = "@Properties LocalData" + Chr(10)
cmd = cmd + "IdcService=GET_SEARCH_RESULTS" + Chr(10)
' Define the service parameters
cmd = cmd + "ResultCount=5" + Chr(10)
cmd = cmd + "SortField=dInDate" + Chr(10)
cmd = cmd + "SortOrder=Desc" + Chr(10)
cmd = cmd + "QueryText=dDocType=research" + Chr(10)
' Reference a custom component
cmd = cmd + "MergeInclude=ASP_SearchResults" + Chr(10)
cmd = cmd + "ClassStyle=home-spotlight" + Chr(10)
cmd = cmd + "@end" + Chr(10)
' Execute the command
results = idcCmd.executeCommand(cmd)
' Retrieve results
Response.Write(results)
3-4 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
See Also

– Connecting to Content Server from a Remote Machine (page 3-10) for additional
information.

Creating a COM Object
The first line of code creates the COM object:

Initializing the Connection
To initialize the connection to the content server, call the initRemote function (see
initRemote (page 3-28) for details about all parameters). In this example:

The HttpWebRoot parameter specifies a value for the web root as defined in the
config/config.cfg file.

The idcReference parameter specifics a string containing information on connection to
the content server. This is specified as “socket” followed by the
IntradocServerHostName and the IntradocServer Port address.

The idcUser is the user you are connecting as.

The isSoap parameter is a Boolean value indicating if the request is in SOAP XML
format or HDA format. In this case it is FALSE because it is in HDA format.

Defining the Service and Parameters
To define the service and parameters, build an HDA-formatted string that contains with
the following lines:
@Properties LocalData
service
parameters
@end

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")

' Initialize the connection to the server
x = idcCmd.initRemote("/stellent/", "socket:localhost:4444", "sysadmin", false)

Important: The required and optional parameters will vary depending on the service
being called. See the Services Reference Guide for more information.
Idc Command Reference Guide 3-5

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
Referencing Custom Resources
You can reference custom resources and pass parameters to a resource include from your
ASP as follows:

To reference a custom resource include, set the MergeInclude parameter to the name
of the include.

In this example, the ASP_SearchResults include is used to format the output as HTML
rather than a ResultSet. See Formatting Content with a Resource Include (page 3-9)
for more information.

To pass a parameter to a resource include, set the variable as name/value pair.

In this example, the ClassStyle variable with a value of home-spotlight is available to
the ASP_SearchResults include.

Executing the Service
To execute the service, call the executeCommand (page 3-24) method.

Retrieving Results
The results can either be formatted HTML or a ResultSet.

Note: In this example, the @end string is created after the optional custom component
reference. See Formatting Content with a Resource Include (page 3-9).

Note: The @end code is required to close the @Properties LocalData section in an
HDA-formatted string. See Defining the Service and Parameters (page 3-5).

' Reference a custom component
cmd = cmd + "MergeInclude=ASP_SearchResults" + Chr(10)
cmd = cmd + "ClassStyle=home-spotlight" + Chr(10)
cmd = cmd + "@end" + Chr(10)

Note: After executing the service, you could use the closeServerConnection (page 3-17)
method to make sure that the connection is closed.

' Execute the service
results = idcCmd.executeCommand(cmd)
3-6 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
In this example, the result of the service call is formatted HTML.

SOAP Example

In this example:

The GET_SEARCH_RESULTS service is called.

The parameters for the service are defined using field/value pairs:

• The ResultCount parameter sets the number of returned results to 5.

• The SortField parameter sorts the returned results by release date.

• The SortOrder parameter orders the returned results in descending order.

• The QueryText parameter defines the query expression as “Content Type matches
research.”

The initRemote (page 3-28) function must be used and isSOAP must be set to TRUE for a
SOAP-formatted request, which is shown in the following example.

' Retrieve results
Response.Write(results)
Idc Command Reference Guide 3-7

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
' Create COM object

Set idcCmd = CreateObject("Idc.CommandUX")

' Initialize the connection to the server

x = idcCmd.initRemote("/stellent/ ", "sysadmin",

"socket:localhost:4444”, true)

' Create the SOAP envelope

cmd = cmd & "<?xml version='1.0' ecoding='UTF-8'?>" + Chr(10)

cmd = cmd & "<SOAP-ENV:Envelope xmlns:SOAP-ENV=""http://

schemas.xmlsoap.org/soap/envelope/"">" + Chr(10)

cmd = cmd & "<SOAP-ENV:Body>" + Chr(10)

' Define the service

cmd = cmd & "<idc:service xmlns:idc=""http://www.stellent.com/

IdcService/""" + Chr(10)

cmd = cmd & "IdcService=""GET_SEARCH_RESULTS"">" + Chr(10)

' Define the service parameters

cmd = cmd & "<idc:document>" + Chr(10)

cmd = cmd & "<idc:field name=""NoHttpHeaders"">1</idc:field>" +

Chr(10)

cmd = cmd & "<idc:field name=""ClientEncoding"">UTF8</idc:field>"

+ Chr(10)

cmd = cmd & "<idc:field name=""QueryText"">dDocType

<matches> research</idc:field>" + Chr(10)

cmd = cmd & "<idc:field name=""ResultCount"">5</idc:field>" +

Chr(10)

cmd = cmd & "<idc:field name=""SortOrder"">Desc</idc:field>" +

Chr(10)

cmd = cmd & "<idc:field name=""SortField"">dInDate</idc:field>" +

Chr(10)

cmd = cmd & "</idc:document>" + Chr(10)

cmd = cmd & "</idc:service>" + Chr(10)

cmd = cmd & "</SOAP-ENV:Body>" + Chr(10)

cmd = cmd & "</SOAP-ENV:Envelope>" + Chr(10)

' End SOAP envelope and execute the command

results= idcCmd.executeCommand(cmd)

' Retrieve results

Response.Write(results)
3-8 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
FORMATTING CONTENT WITH A RESOURCE INCLUDE

This section provides an example of a custom resource include that is used to format the
output of a service executed by IdcCommandUX.

In the example described in Calling IdcCommandUX from an Active Server Page
(page 3-4), the ASP_SearchResults resource include is used to format the output of a
search function and return HTML rather than a ResultSet:

The <@dynamichtml ASP_SearchResults@> entry defines the name of the resource
include. The <@end@> entry ends the resource definition.

The code defined between the <$loop SearchResults$> and <$endloop$> entries
will be executed for each content item in the SearchResults ResultSet, which includes
all documents that matched the query defined for the GET_SEARCH_RESULTS
service.

The <td class="<$ClassStyle$>"> entry displays the value of the <$ClassStyle$>
Idoc Script variable. In this example, the ClassStyle value was passed in on the API
call.

The <a href="<URL>" target=new><$dDocTitle$> entry displays the Title
of the current content item as a link to the file.

The <$xAbstract$> entry displays the Abstract value for the current content item.

<@dynamichtml ASP_SearchResults@>
<table border=0>

<$loop SearchResults$>
<tr class="site-default">

<td class="<$ClassStyle$>">
<a href="<URL>" target=new><$dDocTitle$>

<$xAbstract$>
</td>

</tr>
<$endloop$>

</table>
<@end@>
Idc Command Reference Guide 3-9

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
The HTML generated and returned to the Active Server Page from this resource include
would have this format:

Displaying this HTML page in a browser would look like this:

CONNECTING TO CONTENT SERVER FROM A
REMOTE MACHINE

This section describes how to establish a connection to the content server from a remote
machine using IdcCommandUX from an Active Server Page. These steps are required :

1. Creating Variables (page 3-12)

2. Creating a COM Object (page 3-13)

3. Initializing the Connection (page 3-13)

<table border=0>
<tr class="site-default">
<td class="home-spotlight">
Article 1

This is the abstract for Article 1
</td>
<td class="home-spotlight">
Article 2

This is the abstract for Article 2
</td>
<td class="home-spotlight">
Article 3

This is the abstract for Article 3
</td>
<td class="home-spotlight">
Article 4

This is the abstract for Article 4
</td>
<td class="home-spotlight">
Article 5

This is the abstract for Article 5
</td>
</tr>
</table>
3-10 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
4. Returning Connection Status (page 3-14)

5. Defining the Service and Parameters (page 3-14)

6. Executing the Service (page 3-16)

7. Retrieving Results (page 3-16)

The example in this section calls the CHECKIN_UNIVERSAL service to provide a
checkin function from a remote machine.

Coding the ASP Page

This section provides the steps for coding an Active Server Page to access the content
server from a remote machine.

Important: This code does not check for an error condition.
Idc Command Reference Guide 3-11

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
Creating Variables
The following variables need to be created for this example:

' Create variables
Dim idccommand, sConnect, str
' Create COM object
Set idccommand = Server.CreateObject("idc.CommandUX")
' Initialize the connection to the server
x = idccommand.initRemote ("/stellent/ ", "sysadmin", "socket:localhost:4444”,
false)
' Return connection status (optional)
sConnect = idccommand.connectToServer
if sConnect then
Response.Write "Connected"
else
Response.Write "Not Connected"
end if
str = "@Properties LocalData" & vbcrlf
' Define the service
str = str + "IdcService=" & "CHECKIN_UNIVERSAL" & vbcrlf
' Define the service parameters
str = str + "doFileCopy=1" & vbcrlf
str = str + "dDocName=RemoteTestCheckin23" & vbcrlf
str = str + "dDocTitle=Test1" & vbcrlf
str = str + "dDocType=ADACCT" & vbcrlf
str = str + "dSecurityGroup=Public" & vbcrlf
str = str + "dDocAuthor=sysadmin" & vbcrlf
str = str + "dDocAccount=" & vbcrlf
str = str + "primaryFile:path=C:/inetpub/Scripts/query2.asp" & vbcrlf
str = str + "@end" & vbcrlf
' Execute the command
res=idccommand.executeCommand(str)
' Return connection status
sClosed = idcCmd.closeServerConnection
if sClosed then
Response.Write "Server connection closed"
else
Response.Write "Failed to close server connection"
end if
' Retrieve results
Response.Write(res)
3-12 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
idccommand—The name of the COM object.

sConnect—The status of the connection to the content server.

str—The HDA-formatted string that defines the service and its parameters.

Creating a COM Object
The first line of code creates the COM object:

Initializing the Connection
To initialize the connection to the content server:

' Create variables
Dim idccommand, sConnect, str

' Create COM object
Set idccommand = Server.CreateObject("idc.CommandUX")

' Initialize the connection to the server
x = idccommand.initRemote ("/stellent/ ", "sysadmin", "socket:localhost:4444”,
false)
Idc Command Reference Guide 3-13

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
Returning Connection Status
In this example, the connectToServer (page 3-23) and closeServerConnection (page 3-17)
methods are used to return connection status information before and after the service is
executed.

Defining the Service and Parameters
To define the service and parameters, build an HDA-formatted string that contains the
following lines:
@Properties LocalData
service
parameters
@end

In this example:

The CHECKIN_UNIVERSAL service is called.

The parameters for the service are defined using field/value pairs:

• The doFileCopy parameter is set to TRUE (1), so the file will not be deleted from
hard drive after successful check in.

• The dDocName parameter defines the Content ID.

• The dDocTitle parameter defines the Title.

• The dDocType parameter defines the Type.

' Return connection status
sConnect = idccommand.connectToServer
if sConnect then
Response.Write "Connected"
else
Response.Write "Not Connected"
end if
...
' Return connection status
sClosed = idcCmd.closeServerConnection
if sClosed then
Response.Write "Server connection closed"
else
Response.Write "Failed to close server connection"
end if

Important: The required and optional parameters will vary depending on the service
being called. See the Services Reference Guide for more information.
3-14 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
• The dSecurityGroup parameter defines the Security Group.

• The dDocAuthor parameter defines the Author.

• The dDocAccount parameter defines the security account. (If accounts are
enabled, this parameter is required.)

• The primaryFile parameter defines original name for the file and the absolute path
to the location of the file as seen from the server.

Important: The required parameters will vary depending on the service called. See the
Services Reference Guide for additional information.

str = "@Properties LocalData" & vbcrlf
' Define the service
str = str + "IdcService=" & "CHECKIN_UNIVERSAL" & vbcrlf
' Define the service parameters
str = str + "doFileCopy=1" & vbcrlf
str = str + "dDocName=RemoteTestCheckin23" & vbcrlf
str = str + "dDocTitle=Test1" & vbcrlf
str = str + "dDocType=ADACCT" & vbcrlf
str = str + "dSecurityGroup=Public" & vbcrlf
str = str + "dDocAuthor=sysadmin" & vbcrlf
str = str + "dDocAccount=" & vbcrlf
str = str + "primaryFile:path=C:/inetpub/Scripts/query2.asp" & vbcrlf
str = str + "@end" & vbcrlf
Idc Command Reference Guide 3-15

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
Executing the Service
To execute the service, call the executeCommand (page 3-24) method.

Retrieving Results
In this example, the result of the CHECKIN_UNIVERSAL service call is formatted
HTML.

IDCCOMMANDUX METHODS

This section describes the following IdcCommandUX methods:

addExtraHeadersForCommand (page 3-17)

closeServerConnection (page 3-17)

computeNativeFilePath (page 3-18)

computeURL (page 3-19)

computeWebFilePath (page 3-22)

connectToServer (page 3-23)

executeCommand (page 3-24)

executeFileCommand (page 3-25)

forwardRequest (page 3-26)

getLastErrorMessage (page 3-26)

initRemote (page 3-28)

init (deprecated) (page 3-27)

initRemote (page 3-28)

' Execute the service
res=idccommand.executeCommand(str)

' Retrieve results
Response.Write(res)

Important: All parameters are required unless otherwise indicated.
3-16 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
addExtraHeadersForCommand

This command adds extra HTTP-like headers to a command.

For security reasons, some parameters can only be passed in the headers.

The most common use for this command is to set the values for EXTERNAL_ROLES and
EXTERNAL_ACCOUNTS in a request.

Values must be all on one string and separated by a carriage return and a line feed.

Example

The following is an ASP example:
extraHeaders = “EXTERNAL_ROLES=contributor” _

+ vbcrlf _
+ “EXTERNAL_ACCOUNTS=my_account”

idcCmd.addExtraHeadersForCommand(extraHeaders)

closeServerConnection
Public Sub closeServerConnection()

Description

Closes the server connection.

This method does not have to be called, because the executeCommand (page 3-24)
method automatically closes a connection after executing a service. It is provided only
as a convenience for managing the state of the connection.

Parameters

None

Output

Returns TRUE if the connection is closed.

Returns FALSE if the connection failed to close.
Idc Command Reference Guide 3-17

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
Example

This ASP example passes the result of the closeServerConnection method to a variable
and uses an if/else statement to return a connection status message:
sClosed = idcCmd.closeServerConnection
if sClosed then
Response.Write "Server connection closed"
else
Response.Write "Failed to close server connection"
end if

See Also

– executeCommand (page 3-24)

– connectToServer (page 3-23)

computeNativeFilePath
Public Function computeNativeFilePath(Data As String) As String

Description

HDA-only function.

Returns the path of a native file as a string.

This function is generally used for processing native files to perform actions such as
bulk file loading or retrieval.

To determine the values for the required parameters (such as dDocType and dID), you
can reference the ResultSet returned from a DOC_INFO or SEARCH_RESULTS
service call.

• The DOC_INFO service can be used to specify previous revisions (DOC_INFO
returns a list of previous revision labels).

• The SEARCH_RESULTS service returns only enough data to specify the most
recent revision of a content item.

Parameters

Data: An HDA-formatted string that defines the content item:

• dDocType—The content item Type, such as ADACCT or FILES.

• dID—The generated content item revision ID.

• dExtension—The file extension such as HCSF, DOC, or TXT.
3-18 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
• dDocAccount—The account for the content item. If accounts are enabled, this
parameter must be defined.

Output

Returns a string that defines NativeFilePath as the value of the string passed in as a
parameter. For example:

NativeFilePath=c:\stellent\vault\adacct\1.doc

Returns an HDA string containing StatusCode and StatusMessage.

• If the command is successful, StatusCode is zero (0), and StatusMessage is a
login message (“You are logged in as sysadmin”).

• If the command fails, StatusCode is negative (-1), and StatusMessage is an error
message.

• Returns FALSE if there is a connection failure.

Example

This is an example of an HDA-formatted string:
String str = "@Properties LocalData\n"+
"dDocType=ADACCT\n"+
"dID=67\n"+
"dExtension=DOC\n"+
"dDocAccount=mainaccount\n"+
"@end\n";

computeURL
Public Function computeURL(Data As String, IsAbsolute As Boolean) As String

Description

HDA-only function.

Returns the URL of a content item as a string.

A relative or absolute URL can be supplied to the content server.

• When a relative URL is defined, the function evaluates the URL as a location
valid on the local server.

Note: Do not confuse the Content ID (dDocName) with the internal content item revision
identifier (dID). The dID is a generated reference to a specific revision of a content item.
Idc Command Reference Guide 3-19

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
For example:

/stellent/groups/Public/documents/FILE/doc.txt

• When an absolute URL is defined, the function returns the absolute URL path.

For example:

http://server/stellent/groups/Public/documents/FILE/doc.txt

To determine the values for the content server parameters (HttpRelativeWebRoot and
HttpServerAddress), you can reference the properties data returned from a
GET_DOC_CONFIG_INFO service call.

To determine the values for the required content item parameters (such as
dSecurityGroup and dDocType), you can reference the ResultSet returned from a
DOC_INFO or SEARCH_RESULTS service call.

• The DOC_INFO service can be used to specify previous revisions (DOC_INFO
returns a list of previous revision labels).

• The SEARCH_RESULTS service returns only enough data to specify the most
recent revision of a content item.

To return the URL for a specific revision and rendition, use the content item revision
label (dRevLabel) and the file extension (dWebExtension) entries. For example:

dDocName=test10
dRevLabel=2
dWebExtension=pdf

To return the URL for the most recent revision, the content item revision label
(dRevLabel) entry can be omitted. For example, defining just the Content ID
(dDocName) and the file extension (dWebExtension) returns the most recent revision:

dDocName=test11
dWebExtension=html

Parameters

Data: An HDA-formatted string that defines the content item:

• HttpRelativeWebRoot—The web root directory as a relative path, such as
/stellent/. This entry is required for a relative URL, and is optional for an absolute
URL.

• HttpServerAddress—The domain name of the content server, such as
testserver17 or mycomputer.com. (The server address is specified as a partial URL
such as mycomputer.com rather than a full address such as
http://www.mycomputer.com/). This entry is required for an absolute URL, and is
optional for a relative URL.
3-20 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
• dSecurityGroup—The security group, such as Public or Secure.

• dDocType—The Type, such as ADACCT or FILES.

• dDocName—The Content ID, such as test10 or hr_0005467.

• dWebExtension—The file extension of the web-viewable file, such as xml, html,
or txt.

• dDocAccount—The account for the content item. If accounts are enabled, this
parameter must be defined.

• dRevLabel (optional)—The revision label for the content item. If defined, the
specific revision will be referenced.

IsAbsolute: Set to TRUE (1) to define an absolute URL address.

Output

Returns a string that defines URL as the value of the string passed in as a parameter.
For example:

URL=http://server/stellent/groups/public/documents/FILE/doc.txt

Returns an HDA string containing StatusCode and StatusMessage.

• If the command is successful, StatusCode is zero (0), and StatusMessage is a
login message (“You are logged in as sysadmin”).

• If the command fails, StatusCode is negative (-1), and StatusMessage is an error
message.

• Returns FALSE if there is a connection failure.

Example

This is an example of an HDA-formatted string:
String str = "@Properties LocalData\n"+
"HttpServerAddress=testserver17\n"+
"HttpRelativeWebRoot=/stellent/\n"+
"dDocAccount=mainaccount\n"+
"dSecurityGroup=Public\n"+
"dDocType=ADACCT\n"+
"dDocName=test11\n"+
"dWebExtension=html\n"+
"@end\n";

Note: Do not confuse the Content ID (dDocName) with the internal content item revision
identifier (dID). The dID is a generated reference to a specific revision of a content item.
Idc Command Reference Guide 3-21

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
computeWebFilePath
Public Function computeWebFilePath(Data As String) As String

Description

HDA-only function.

Returns the path of a web-viewable file as a string.

This function is generally used for processing web-viewable text files (such as XML)
to perform actions such as bulk file loading or retrieval.

Using computeWebFilePath instead of computeNativeFilePath (page 3-18) provides
the advantage of needing only the Content ID (dDocName) rather than the specific
revision ID (dID) to return the most recent revision.

To determine the values for the required parameters (such as dSecurityGroup and
dDocType), you can reference the ResultSet returned from a DOC_INFO or
SEARCH_RESULTS service call.

• The DOC_INFO service can be used to specify previous revisions (DOC_INFO
returns a list of previous revision labels).

• The SEARCH_RESULTS service returns only enough data to specify the most
recent revision of a content item.

Parameters

Data: An HDA-formatted string that defines the content item:

• dSecurityGroup—The security group, such as Public or Secure.

• dDocType—The content item Type, such as ADACCT or FILES.

• dDocName—The Content ID, such as test10 or hr_0005467.

• dWebExtension—The file extension of the web-viewable file, such as xml, html,
or txt.

• dDocAccount—The account for the content item. If accounts are enabled, this
parameter must be defined.

Note: Do not confuse the Content ID (dDocName) with the internal content item revision
identifier (dID). The dID is a generated reference to a specific revision of a content item.
3-22 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
Output

Returns a string that defines WebFilePath as the value of the string passed in as a
parameter. For example:

WebFilePath=http:\\testserver17.stellent.com\stellent\groups\main\documents\te
st.xml

Returns an HDA string containing StatusCode and StatusMessage.

• If the command is successful, StatusCode is zero (0), and StatusMessage is a
login message (“You are logged in as sysadmin”).

• If the command fails, StatusCode is negative (-1), and StatusMessage is an error
message.

• Returns FALSE if there is a connection failure.

Example

This is an example of an HDA-formatted string:
String str = "@Properties LocalData\n"+
"dDocAccount=mainaccount\n"+
"dSecurityGroup=Public\n"+
"dDocType=ADACCT\n"+
"dDocName=test11\n"+
"dWebExtension=xml\n"+
"@end\n";

connectToServer
Public Function connectToServer() As Boolean

Description

Establishes a connection to the server.

The connection is held open until a command is executed. After a command is
executed, the connection is closed automatically.

This method does not have to be called, because the executeCommand (page 3-24)
method automatically opens a connection to execute a service. It is provided only as a
convenience for managing the state of the connection.

Parameters

None
Idc Command Reference Guide 3-23

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
Output

Returns TRUE if the connection is opened.

Returns FALSE if there is a connection failure.

Example

This ASP example passes the result of the connectToServer method to a variable and uses
an if/else statement to return a connection status message:
sConnect = idcCmd.connectToServer
if sConnect then
Response.Write "Connected"
else
Response.Write "Not Connected"
end if

See Also

– executeCommand (page 3-24)

– closeServerConnection (page 3-17)

executeCommand
Public Sub executeCommand(Data As String)

Description

Executes a content server service.

This method evaluates whether a connection has already been established with a
connectToServer call. If a connection exists, it will use the open connection. If a
connection does not exist, it will establish a connection.

On completion of the command, the connection will be closed.

Parameters

Data: An HDA-formatted string that defines the IdcService command and any
service parameters. For example:

@Properties LocalData
IdcService=GET_SEARCH_RESULTS
ResultCount=5
SortField=dInDate
SortOrder=Desc
3-24 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
QueryText=dDocType=research
@end@

This can also be a SOAP-formatted message as shown in the previous example
(SOAP Example (page 3-7)). See also initRemote (page 3-28).

Output

Returns a string representing an HDA file that holds the original request as well as the
results.

Returns an HDA string containing StatusCode and StatusMessage.

• If the command is successful, StatusCode is zero (0), and StatusMessage is a
login message (“You are logged in as sysadmin”).

• If the command fails, StatusCode is negative (-1), and StatusMessage is an error
message.

• Returns FALSE if there is a connection failure.

The return string is SOAP-formatted XML if a SOAP request was sent.

Example

This ASP example executes the command specified in the data string defined by the cmd
variable:
results = idcCmd.executeCommand(cmd)

See Also

– connectToServer (page 3-23)

– closeServerConnection (page 3-17)

executeFileCommand
executeFileCommand (requestString)

Description

This function is used to execute a service request, then pipe the raw response to the client.
This command is identical to executeCommand but can only be called on an Active Server
Page (ASP).
Idc Command Reference Guide 3-25

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
The response from the content server is redirected back to the client’s browser (this is
different from the response via executeCommand, in which the response is given as a
string which can then be manipulated on the ASP).

This is useful for GET_FILE and similar services in which you need to transfer binary
files from the content server to a client browser through an ASP.

This function returns extra headers unless the request parameters are passed as
environment variables.

requestString is the name of the service request.

See executeCommand (page 3-24) for more information.

Parameters

None

forwardRequest
forwardRequest()

Description

This function is used to forward a multipart form post to the content server. This is useful
for executing checkins.

Parameters

None

getLastErrorMessage
getLastErrorMessage()

Description

This method retrieves the specific error details for a communication or configuration error.
For example, if you do not put in the correct hostname for making a connection, this
method returns the connection error. It does not return a value if the error is returned by
the Content Server as part of the return value for a request.
3-26 Idc Command Reference Guide

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
Parameters

None

Example

This example creates an object and initializes a connection to the server.
Set idcCmd = Server.CreateObject("Idc.CommandUX")

x = idcCmd.init("sysadmin", "c:\stellent\bin")
If x = false Then
y = idcCmd.getLastErrorMessage()
Response.Write(y)
End If

init (deprecated)
Public Function init(UserName As String, StellentDir As String) As Boolean

Description

This is a deprecated function. Use initRemote (page 3-28).

This function initializes the connection to the content server.

This function must be called before establishing a connection to the content server or
executing a content server service.

Required Parameters

UserName: A valid content server user that has permission to execute the services
specified in the IdcCommandUX call.

StellentDir: The complete path to the directory that contains the intradoc.cfg
configuration file. If this parameter is not set, the current working directory is used.

Output

Returns FALSE if the service fails to execute.

Example

This ASP example initializes the connection to the server:

x = idcCmd.init("sysadmin", "c:/stellent_english/bin/")
Idc Command Reference Guide 3-27

IdcCommandX and IdcCommandUX: ActiveX Command Utilities
initRemote
initRemote(HttpWebRoot, idcReference, idcUser, isSoap)

Description

This function initializes the module to connect to a content server. Note that you must first
declare idcCmd, as in this example:

Dim idcCmd
idcCmd.initRemote(“stellent”, “socket:test204:4444”, “sysadmin”, “false”)

Required Parameters

HttpWebRoot: The IdocScript value for HttpWebRoot.

idcReference: A string containing information on how to connect to the content server
in the form socket:hostname:port. This is typically socket:localhost:4444. The
hostname should be identical to IntradocServerHostName and port identical to
IntradocServerPort.

idcUser: The user you are connecting as.

isSoap: A Boolean value indicating if the request is in SOAP XML format or HDA
format.
3-28 Idc Command Reference Guide

C h a p t e r

4
4.IDCCLIENT OCX COMPONENT

INTRODUCTION

An Object Linking and Embedding Control Extension (OCX) control is provided for
connecting to a remote content server.and executing Content Server services. The
IdcClient OCX control is used within a Windows Visual Basic development environment
to gain access to the content and content management functions within Content Server.

This section provides a desription of the IdcClient OCX control, setup instructions, and
and lists the events, methods, and properties. The IdcClient.ocx control is used to connect
to a remote content server and perform typical server functions.

This chapter covers the following topics:

IdcClient OCX Description (page 4-2)

IdcClient OCX Control Setup (page 4-5)

IdcClient Events (page 4-16)

IdcClient Methods (page 4-18)

IdcClient Properties (page 4-34)

Note: A Visual Basic or Visual C++ development environment is required to use the
IdcClient OCX component.
Idc Command Reference Guide 4-1

IdcClient OCX Component
IDCCLIENT OCX DESCRIPTION

This section provides a general description of the IdcClient OCX control and basic
information on events, methods, and properties. The IdcClient OCX interface is also
discussed.

This section covers the following topics:

General Description (page 4-2)

Events, Methods, and Properties (page 4-3)

IdcClient OCX Interface (page 4-4)

General Description

IdcClient is an ActiveX control that allows a program to perform actions such as executing
a service and retrieving file path information. The IdcClient control is also a wrapper for
the Microsoft Internet Explorer browser.

The IdcClient OCX control is designed to use the Unicode standard and in most cases
exchanges data with the content server in UTF-8 format. Unicode uses two bytes (16 bits)
of storage per character and can represent characters used in a wide range of languages
(e.g., English, Japanese, Arabic). Since English language ASCII (American Standard
Code for Information Interchange) characters only require one byte (8 bits), when an
ASCII character is represented the upper byte of each Unicode character is zero.

In most cases, the methods use the serialized HDA format for communication. A
serialized HDA format is a Java method used for communication. The returned serialized
HDA format string contains information about the success or failure of the command.

The IdcClient OCX control provides functionality that can be performed with a method
call. Methods perform actions and often return results. Information is passed to methods
using parameters. Some functions do not take parameters; some functions take one

Important: IdcClient OCX is built atop the Microsoft Layer for Unicode, which allows
Unicode applications to run on Win9x platforms. When distributing the IdcClient OCX
Control on 9x platforms, the "unicows.dll" needs to also be distributed. This conpanion
DLL cannot be distributed on Windows-based systems.

Note: Refer to the Unicode Consortium on the Web for additional information on the
Unicode standard (http://www.unicode.org/).
4-2 Idc Command Reference Guide

IdcClient OCX Component
parameter; some take several. For example, a function with two parameters passed as
strings would use this format:

Function(Parameter As String, Parameter As String) As String

IdcClient OCX enables users to write client applications to execute services. The
OCX control takes name/value pairs containing commands and parameters and calls
the specified services. Execution results are passed back to the calling program.

IdcClient OCX requires a username and password to execute the commands. The user
must have the appropriate permissions to execute the commands. Some commands
will require an administrative access level, other commands may require only write
permission.

Events, Methods, and Properties

The IdcClient OCX control is used to connect to a remote Content Server and perform
server functions. This section provides a basic overview on Visual Basic events, methods,
and properties.

OCX Events
Events are executed when the user or server performs an action.

For example:

The IntradocBrowserPost event executes every time a user submits a form from
within a browser.

The IntradocServerResponse event executes after the server completes a requested
action.

OCX Methods
The Visual Basic Standard Controls provide methods that are common to every Visual
Basic development environment. In addition, the IdcClient OCX control provides methods

Note: See the Services Reference Guide for additional information.

Note: See IdcClient Events (page 4-16) for additional information.
Idc Command Reference Guide 4-3

IdcClient OCX Component
that are private and unique to this specific control. These methods are used to perform or
initiate an action rather than setting a characteristic.

For example:

The AboutBox() method launches the About box containing product version
information.

The GoCheckinPage method checks in a new content item or a content item revision.

OCX Properties
Properties describe or format an object and can be modified with code or by using the
property window in the Visual Basic development environment. Properties describe the
basic characteristic of an object.

For example:

The UserName property provides the assigned user name.

The WorkingDir property specifies the location where downloaded files are placed.

IdcClient OCX Interface

The IdcClient OCX control is used within a Windows Visual Basic development
environment to gain access to the content and content management functions within
Content Server. The OCX integration is designed to call services in a visual development
environment, or to connect to a remote content server.

In most cases, methods use the serialized HDA format for communication. The returned
serialized HDA format string contains information about the success or failure of the
command. The StatusCode will be negative if a failure occurs, and StatusMessage will
indicate the error. If the returned HDA does not contain a StatusCode parameter, the
service call succeeded.

Note: See IdcClient Methods (page 4-18) for additional information.

Note: See IdcClient Properties (page 4-34) for additional information.
4-4 Idc Command Reference Guide

IdcClient OCX Component
IDCCLIENT OCX CONTROL SETUP

This section provides a the steps required to setup the IdcClient OCX component and also
provides information on creating a visual interface in the the Microsoft Visual Basic
development environment.

This section covers the following topics:

Component Setup (page 4-5)

Creating a Visual Interface (page 4-5)

Component Setup

Follow these steps to set up the IdcClient OCX component in the Microsoft Visual Basic
development environment:

1. Create a new project.

2. Select Project—Components.

3. Browse to the IdcClient.ocx file on your system and click Open.

The IdcClient module is added to the Component Controls list.

4. Ensure that the check box for IdcClient ActiveX Control module is enabled and click
OK.

The IdcClient OCX control is placed in the list of controls.

5. Optional—You can use the Visual Basic development environment to build your own
visual interface or follow the steps providied in Creating a Visual Interface (page 4-5)
to build a basic visual interface.

Creating a Visual Interface

Follow these steps to build a basic visual interface:

1. Select the control and draw it on the Visual Basic form (see Figure 4-1).

Note: It is assumed that a Visual Basic project has been created and the IdcClient OCX
control has been placed in the list of controls. See Component Setup (page 4-5) for
additional information.
Idc Command Reference Guide 4-5

IdcClient OCX Component
Figure 4-1 OCX control drawn on a Visual Basic form

2. From the drop-down list of the Propreties Window, select the IdcClient OCX control
(if the Properies Window is not currently displayed select View—Properties
Window from the main menu).

3. Rename the IdcClient OCX control IdcClientCtrl.

4. Define the HostCgiUrl to reference the iss_idc_cgi.dll for your particular instance (see
Figure 4-2).

For example:

http://testserver/intradoc-cgi/iss_idc_cgi.dll
4-6 Idc Command Reference Guide

IdcClient OCX Component
Figure 4-2 Edited IdcClient Properties

5. On the form, draw a textbox and name it CgiUrl.

6. For the Text field, enter the HostCgiUrl value as the text to be displayed (see
Figure 4-3).

For example:

http://testserver/intradoc-cgi/iss_idc_cgi.dll
Idc Command Reference Guide 4-7

IdcClient OCX Component
Figure 4-3 Edited CgiUrl TextBox propertie

7. On the form, draw a textbox and name it Command.

8. Clear the entry for the Text field (leave blank) and set MultiLine to True (see
Figure 4-4).
4-8 Idc Command Reference Guide

IdcClient OCX Component
Figure 4-4 Edited Command TextBox properties.

9. On the form, draw a textbox and name it Response.

10. Clear the entry for the Text field (leave blank).
Idc Command Reference Guide 4-9

IdcClient OCX Component
Figure 4-5 Edited Reaponse TextBox propertie

11. On the form, draw a button and name it SendPostCommand.

12. For the Caption field, enter “Send Post Command” as the text to be displayed (see
Figure 4-6).
4-10 Idc Command Reference Guide

IdcClient OCX Component
Figure 4-6 Edited SendPostCommand CommandButton properties.

13. On the form, select View—Code.

14. Select SendPostCommand and then Click from the drop-down lists and modify the
code to perform these actions (see Figure 4-7):

Set the Host Cgi Url

Issue the command

Optional—replace LF with CRLF tro make the presentation in the edit control
more readable.

Display the response

For example:

Dim R As String
IdcClientCtrl.HostCgiUrl = CgiUrl.Text
R = IdcClientCtrl.1.SendPostCommand(Command.Text)
R = Replace(R, vbLf, vbCrLf
Response.Text = R
Idc Command Reference Guide 4-11

IdcClient OCX Component
Figure 4-7 Edited SendPostCommand_Click code

15. Select Form and then Load from the drop-down lists and add the following lines to set
the login prompt for the content server (see Figure 4-8):

IdcClientCtrl.UseBrowserLoginPrompt = True
IdcClientCtrl.UseProgressDialog = True

Figure 4-8 Edited Form_Load code

16. Optional—add appropriate descriptive labels such as Cgi Url, Command, and
Response (see Figure 4-9):
4-12 Idc Command Reference Guide

IdcClient OCX Component
Figure 4-9 Visual interface with descriptive label

17. Select Run—Start to test the visual interface.
Idc Command Reference Guide 4-13

IdcClient OCX Component
Figure 4-10 Completed visual interfac

18. Enter a formatted command in the Command field (see Figure 4-11).

For example, this command adds a user:

@Properties LocalData
IdcService=ADD_USER
dName=user99
dUserAuthType=Local
@end

Note: See the Services References Guide for additional information on the ADD_USER
service.
4-14 Idc Command Reference Guide

IdcClient OCX Component
Figure 4-11 Visual interface with defined command.

19. Click the Send Post Command button to execute the command. The returned results
are displayed in the Response field.(see Figure 4-12).
Idc Command Reference Guide 4-15

IdcClient OCX Component
Figure 4-12 Visual interface with returned results

Verify the Command

20. In a web browser, login to the content server as the administrotor.

21. Select Administration—Admin Applets.

22. Click the User Admin link. The applet launches and displays the added user (e.g.,
user99).

IDCCLIENT EVENTS

Events are executed when the user or server performs an action. The following are
IdcClient OCX Events:

IntradocBeforeDownload (page 4-17)

IntradocBrowserPost (page 4-17)

IntradocBrowserStateChange (page 4-17)
4-16 Idc Command Reference Guide

IdcClient OCX Component
IntradocRequestProgress (page 4-18)

IntradocServerResponse (page 4-18)

IntradocBeforeDownload

Executes before a file is downloaded.

Initiates the server actions and updates required prior to a download.

Parameters

The event passes these parameters:

ByVal params As String

cancelDownload As Boolean

IntradocBrowserPost

Executes every time a form is submitted from within a browser.

Parameters

The event passes these parameters:

ByVal url As String

ByVal params As String

cancelPost As Boolean

IntradocBrowserStateChange

Executes whenever the browser state changes.

Parameters

The event passes these parameters:

ByVal browserStateItem As String

ByVal enabled As Boolean
Idc Command Reference Guide 4-17

IdcClient OCX Component
IntradocRequestProgress

Executes a request for a progress report to be sent from the server. This event only occurs
after a method has been called.

Parameters

The event passes these parameters:

ByVal statusData As String

ByVal isDone As Boolean

IntradocServerResponse

Executes after the server completes a requested action. For example, after a file has been
downloaded. This event handles HDA encoded data that is a response from the server.
This event only occurs when an action is performed in the browser.

Parameters

The event passes one parameter:

ByVal response As String

IDCCLIENT METHODS

The following IdcClient OCX Methods are available:

AboutBox (page 4-19) NavigateCgiPage (page 4-27)

Back (page 4-19) RefreshBrowser (page 4-28)

CancelRequest (page 4-20)* SendCommand (page 4-28)*

DoCheckoutLatestRev (page 4-20) SendPostCommand (page 4-28)*

DownloadFile (page 4-21) SetFocus (page 4-29)

DownloadNativeFile (page 4-21) ShowDMS (page 4-30)

Drag (page 4-22) ShowDocInfoLatestRev (page 4-30)

EditDocInfoLatestRev (page 4-23) ShowWhatsThis (page 4-30)
4-18 Idc Command Reference Guide

IdcClient OCX Component
Methods marked with an asterisk (*) are ones which are not related to browser activity and
which return a value.

AboutBox
Sub AboutBox()

Description

Launches the About box containing product version information.

This method displays the product About box.

The method returns FALSE if the call cannot be executed.

Parameters

None

Back
Sub Back()

Description

Displays the previous HTML page.

Returns the user to the previous screen.

Forward (page 4-23) StartSearch (page 4-31)

GoCheckinPage (page 4-24) Stop (page 4-31)

Home (page 4-25) UndoCheckout (page 4-32)

InitiateFileDownload (page 4-25)* ViewDocInfo (page 4-32)

InitiatePostCommand (page 4-26)* ViewDocInfoLatestRev (page 4-33)

Move (page 4-26) ZOrder (page 4-33)

Navigate (page 4-27)

Important: All parameters are required unless otherwise indicated.
Idc Command Reference Guide 4-19

IdcClient OCX Component
The method retrieves the previous HTML page from cached information for display to
the user.

Parameters

None

CancelRequest
Function CancelRequest() As Boolean

Description

This method cancels the currently active request. Returns FALSE if the function is unable
to cancel the request or if there is no request currently active.

Parameters

None

Output

Returns a Boolean value:

Returns TRUE if request is cancelled.

Returns FALSE if the cancel request is not performed.

DoCheckoutLatestRev
Sub DoCheckoutLatestRev(docName As String, curID As String)

Description

Checks out or locks the latest content item revision.

Given a content item name and the version label, the method checks out the latest
content item revision.

Executes the IntradocServerResponse event. The event is executed before the
method occurs. See IdcClient Events (page 4-16) for details.

Note: The curID is the content item version label, not the generated content item revision
ID.
4-20 Idc Command Reference Guide

IdcClient OCX Component
This function returns the following:

Serialized HDA containing dID and dDocName.

FALSE if the latest revision cannot be checked out or cannot be found in the system.

The data that was passed in as parameters.

Parameters

docName: The user-assigned content item name.

curID: The unique identifier for the latest revision. Optional.

DownloadFile
Function DownloadFile(command As String, filename As String) As String

Description

Downloads the defined file.

Given a currently-associated command and the file type, this method performs a file
download of the post-conversion file (compare DownloadNativeFile).

Executes the IntradocBeforeDownload event. The event is executed before the
method occurs. See IdcClient Events (page 4-16) for details.

This function returns the following:

Serialized HDA containing the status code and status method.

The data that was passed in as parameters.

FALSE if it is unable to download the specified file.

Parameters

command: The currently-associated command.

filename: The file format. This is the file type such as PDF, HTM, or other supported
format.

DownloadNativeFile
Function DownloadNativeFile(id As String, docName As String, filename As String)
As String
Idc Command Reference Guide 4-21

IdcClient OCX Component
Description

Downloads the defined native file.

Given a content item revision ID, a content item name, and a file type, this method
performs a file download of the native file (compare DownloadFile).

Executes the IntradocBeforeDownload event. The event is executed before the
method occurs. See IdcClient Events (page 4-16) for details.

This function returns the following:

Serialized HDA containing dID and dDocName.

The data that was passed in as parameters.

FALSE if it is unable to download the specified file.

Parameters

id: The unique identifier for the latest revision.

docName: The user-assigned content item name.

filename: The file format. This is the file type such as DOC, RTF, or any other
supported format.

Drag
Sub Drag([nAction])

Description

Begins, ends, or cancels a drag operation.

The Drag method is handled the same as a Standard Control implementation.

Refer to a Visual Basic API reference for additional information.

Parameters

nAction: Indicates the action to perform. If you omit nAction, nAction is set to 1.

The settings for the Drag method are:

Note: The id is the generated content item revision ID, not the content item version label.
4-22 Idc Command Reference Guide

IdcClient OCX Component
0: Cancel drag operation; restore original position of control.

1: (Default) Begin dragging the control.

2: End dragging — drop the control.

EditDocInfoLatestRev
Sub EditDocInfoLatestRev(docName As String, curID As String, activateAction As
String)

Description

Edits the content item information for the latest revision.

ODMA related.

Given a content item name, the version label, and the currently-active requested
action, the method edits the content item information for the latest revision.

The function returns FALSE if the content item information for the latest revision
cannot be edited or cannot be found in the system.

Parameters

curID: The unique identifier for the latest revision.

activateAction: Passed to ODMActivate. This can be used as Idoc Script. Optional.

docName: The user-assigned content item name. Optional.

Forward
Sub Forward()

Description

Displays the next HTML page.

Moves the user to the next screen.

This method retrieves cached information for the next HTML page for display to the
user.

Note: The curID is the content item version label, not the generated content item revision
ID.
Idc Command Reference Guide 4-23

IdcClient OCX Component
Parameters

None

GoCheckinPage
Sub GoCheckinPage(id As String, docName As String, isNew As Boolean, params As
String)

Description

Checks in a new content item or a content item revision.

Given the content item revision ID and the content item name, the function checks in a
new content item or a content item revision.

This method opens the content item check-in page and enters the unique content item
identifier, user-assigned content item name, and any assigned content item parameters
into the associated text fields. It is also specified whether this is a new content item or
a revision.

This function returns the following:

FALSE if it is unable to check in the specified file.

Serialized HDA containing dID and dDocName.

The data that was passed in as parameters.

Parameters (all optional)

id: The unique identifier for the latest revision.

docName: The user-assigned content item name.

IsNew: Defines whether the content item to be checked in is a new content item or a
revision.

• If TRUE, a new unique content item version label is assigned.

• Default is TRUE.

params: The parameters that pre-fill the Check In page.

Note: The id is the generated content item revision ID, not the content item version label.
4-24 Idc Command Reference Guide

IdcClient OCX Component
Home
Sub Home()

Description

Returns the user to the defined home page.

Moves the user to the home screen.

Executes an HTML page request and displays the defined home page to the user.

Parameters

None

InitiateFileDownload
Function InitiateFileDownload(command As String, filename As String) As String

Description

Initiates a file download.

Given the currently-associated command and the file type, the function initiates a file
download. This method initiates a file download of a specific rendition of a content
item, the latest revision, or the latest released revision.

Executes the IntradocServerResponse event. The event is executed before the
method occurs.

See IdcClient Events (page 4-16) for details.

Parameters

command: The currently-associated command.

filename: The file format. This is the file type such as PDF, HTM, or other supported
format.

Output

Returns serialized HDA containing the requested information.

Returns the data that was passed in as parameters.
Idc Command Reference Guide 4-25

IdcClient OCX Component
InitiatePostCommand
Function InitiatePostCommand(postData As String) As String

Description

Initiates a post command.

Initiates a service call. Given assigned post data, this method initiates a post
command.

Executes the IntradocServerResponse event. The event is executed before the
method occurs. See IdcClient Events (page 4-16) for details.

Parameters

postData: The serialized HDA containing the service command and any necessary
service parameters.

Output

Returns serialized HDA containing the requested information.

Returns StatusCode and StatusMessage.

• The StatusCode will be negative if a failure occurs, and StatusMessage
will indicate the error.

• If the returned HDA does not contain a StatusCode parameter, the service call
succeeded.

Move
Sub Move(Left As Single, [Top], [Width], [Height])

Description

Moves an object.

The Move method is handled the same as a Standard Control implementation.

Refer to a Visual Basic API reference for additional information.
4-26 Idc Command Reference Guide

IdcClient OCX Component
Parameters

nLeft: Specifies the horizontal coordinate for the left edge of the object. This is a
single-precision value.

nTop: Specifies the vertical coordinate for the top edge of the object. This is a single-
precision value.

nWidth: Specifies the new width of the object. This is a single-precision value.

nHeight: Specifies the new height of the object. This is a single-precision value.

Navigate
Sub Navigate(url As String)

Description

Computes the URL path.

Given a complete URL, this method computes the URL from the serialized HDA and
returns the value as a string.

This function returns the following:

Serialized HDA containing the requested information.

The data that was passed in as parameters.

Parameters

url: The complete URL path.

NavigateCgiPage
Sub NavigateCgiPage(params As String)

Description

Computes the CGI path.

Given defined content item parameters, this method computes the CGI path from the
serialized HDA and returns the value as a string.
Idc Command Reference Guide 4-27

IdcClient OCX Component
Parameters

params: The assigned content item parameters.

RefreshBrowser
Sub RefreshBrowser()

Description

Refreshes the browser.

This method refreshes the web browser and updates dynamic information.

Parameters

None

SendCommand
Function SendCommand(params As String) As String

Description

Issues a service request to the content server.

Given defined content item parameters, the function executes a service from the
content server related to content item handling.

Parameters

params: The CGI URL encoded parameters.

Output

Returns serialized HDA containing the requested information.

Returns the data that was passed in as parameters.

SendPostCommand
Function SendPostCommand(postData As String) As String
4-28 Idc Command Reference Guide

IdcClient OCX Component
Description

Sends a post command.

Executes a service call.

Executes the IntradocBrowserPost event. The event is executed before the method
occurs. See IdcClient Events (page 4-16) for details.

Parameters

postData: The serialized HDA containing the service command and any necessary
service parameters.

Output

Returns serialized HDA containing the requested information.

Returns StatusCode and StatusMessage.

• The StatusCode will be negative if a failure occurs, and StatusMessage
will indicate the error.

• If the returned HDA does not contain a StatusCode parameter, the service call
succeeded.

SetFocus
Sub SetFocus()

Description

Assigns the focus to a control.

The SetFocus method is handled the same as a Standard Control implementation.

Refer to a Visual Basic API reference for additional information.

Parameters

None
Idc Command Reference Guide 4-29

IdcClient OCX Component
ShowDMS
Sub ShowDMS()

Description

Opens the HTML page associated with the Content Manager.

ODMA related.

Displays the Content Manager access page in a browser.

Parameters

None

ShowDocInfoLatestRev
Sub ShowDocInfoLatestRev(docName As String, curID As String, activateAction As
String)

Description

Displays the content item information for the latest revision.

Given a content item name, the version label, and the action to perform, the function
displays the content item information for the latest revision in the browser control.

Parameters

docName: The user-assigned content item name.

curID: The unique identifier for the latest revision. Optional.

activateAction: The currently-active requested action. Optional

ShowWhatsThis
Sub ShowWhatsThis()

Note: The curID is the content item version label, not the generated content item revision
ID.
4-30 Idc Command Reference Guide

IdcClient OCX Component
Description

Displays the What’s This Help topic specified for an object with the WhatsThisHelpID
property.

The ShowWhatsThis method is handled the same as a Standard Control
implementation.

Refer to a Visual Basic API reference for additional information.

Parameters

Object: Specifies the object for which the What’s This Help topic is displayed.

StartSearch
Sub StartSearch()

Description

Displays the query page in the browser control.

Preforms browser manipulation.

Parameters

None

Stop
Sub Stop()

Description

Stops the browser.

This method stops or cancels the loading of information in the browser.

Parameters

None
Idc Command Reference Guide 4-31

IdcClient OCX Component
UndoCheckout
Sub UndoCheckout(docName As String, curID As String)

Description

This service reverses a content item checkout.

Given a content item name and a version label, this service attempts to locate the
content item in the system and undo the check out. The service fails if the content item
does not exist in the system, if the content item is not checked out or the user does not
have sufficient privilege to undo the checkout.

Executes the IntradocServerResponse event. The event is executed before the
method occurs.

See IdcClient Events (page 4-16) for details.

Parameters

curID: The unique identifier for the latest revision.

docName: The user-assigned content item name. Optional.

ViewDocInfo
Sub ViewDocInfo(id As String)

Description

Navigates to the content item information page and displays content item information in a
browser.

Performs browser manipulation.

Given a content item revision ID, the method displays content item information in a
browser.

Note: The curID is the content item version label, not the generated content item revision
ID.

Note: The id is the generated content item revision ID, not the content item version label.
4-32 Idc Command Reference Guide

IdcClient OCX Component
Parameters

id: The unique identifier for the latest revision.

ViewDocInfoLatestRev
Sub ViewDocInfoLatestRev(docName As String, curID As String)

Description

Navigates to the content item information page and displays content item information for
the latest revision.

Given a content item name and a version label, the method displays the content item
information for the latest revision.

This function returns the following:

Serialized HDA containing dID and dDocName.

The data that was passed in as parameters.

Parameters

docName: The user assigned content item name.

curID: The unique identifier for the latest revision.

ZOrder
Sub ZOrder([Position])

Description

Places a specified form or control at the front or back of the z-order within its graphical
level.

The ZOrder method is handled the same as a Standard Control implementation.

Refer to a Visual Basic API reference for additional information.

Note: The curID is the content item version label, not the generated content item revision
ID.
Idc Command Reference Guide 4-33

IdcClient OCX Component
Parameters

nOrder: Specifies an integer indicating the position of the object relative to other
objects. If you omit nOrder, the setting is 0.

The settings for the ZOrder method are:

0: (Default) The object is positioned at the front of the z-order.

1: The object is positioned at the back of the z-order.

IDCCLIENT PROPERTIES

Each data item or “attribute” is implemented as a “Property” in Visual Basic. Properties
are exposed through the Public Interface of an object within the Visual Basic development
environment. These attributes can be used to further describe elements.

These are the IdcClient OCX Properties:

ClientControlledContextValue (page 4-34)

HostCgiUrl (page 4-34)

Password (page 4-35)

UseBrowserLoginPrompt (page 4-35)

UseProgressDialog (page 4-35)

UserName (page 4-35)

WorkingDir (page 4-36)

ClientControlledContextValue

Provides the user-supplied context value. This value becomes available to Idoc Script as
the variable ClientControlled in any web page delivered by the content server.

Returns the value as a string.

Takes no parameters.

HostCgiUrl

Provides the complete URL path of the host CGI bin.
4-34 Idc Command Reference Guide

IdcClient OCX Component
Returns the value as a string.

Takes no parameters.

Password

Provides the assigned user password.

Returns the value as a string.

Takes no parameters.

UseBrowserLoginPrompt

Allows the use of a browser login prompt. Defines whether a dialog box for user
authentication will display.

If set to TRUE, control will open a dialog box for user authentication

Default is TRUE.

Returns a Boolean value:

Returns TRUE if the login was successful.

Returns FALSE if the login was denied.

UseProgressDialog

Allows the use of a user progress dialog. Defines whether a dialog box for user
authentication will display.

If set to TRUE, control will open a dialog box for user progress.

Default is TRUE.

Returns a Boolean value:

Returns TRUE if the action was completed.

Returns FALSE if the action failed.

UserName

Provides the assigned user name.
Idc Command Reference Guide 4-35

IdcClient OCX Component
Returns the value as a string.

Takes no parameters.

WorkingDir

Specifies the working directory as a full path. This is the location where downloaded files
are placed.

Returns the value as a string.

Takes no parameters.
4-36 Idc Command Reference Guide

A p p e n d i x

A
A.THIRD PARTY LICENSES

OVERVIEW

This appendix includes a description of the Third Party Licenses for all the third party
products included with this product.

Apache Software License (page A-1)

W3C® Software Notice and License (page A-2)

Zlib License (page A-3)

General BSD License (page A-4)

General MIT License (page A-5)

Unicode License (page A-5)

Miscellaneous Attributions (page A-7)

APACHE SOFTWARE LICENSE

* Copyright 1999-2004 The Apache Software Foundation.

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

* http://www.apache.org/licenses/LICENSE-2.0

*
Idc Command Reference Guide A-1

Third Party Licenses
* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

W3C® SOFTWARE NOTICE AND LICENSE

* Copyright © 1994-2000 World Wide Web Consortium,

* (Massachusetts Institute of Technology, Institut National de

* Recherche en Informatique et en Automatique, Keio University).

* All Rights Reserved. http://www.w3.org/Consortium/Legal/

*

* This W3C work (including software, documents, or other related items) is

* being provided by the copyright holders under the following license. By

* obtaining, using and/or copying this work, you (the licensee) agree that

* you have read, understood, and will comply with the following terms and

* conditions:

*

* Permission to use, copy, modify, and distribute this software and its

* documentation, with or without modification, for any purpose and without

* fee or royalty is hereby granted, provided that you include the following

* on ALL copies of the software and documentation or portions thereof,

* including modifications, that you make:

*

* 1. The full text of this NOTICE in a location viewable to users of the

* redistributed or derivative work.

*

* 2. Any pre-existing intellectual property disclaimers, notices, or terms

* and conditions. If none exist, a short notice of the following form

* (hypertext is preferred, text is permitted) should be used within the

* body of any redistributed or derivative code: "Copyright ©

* [$date-of-software] World Wide Web Consortium, (Massachusetts
A-2 Idc Command Reference Guide

Third Party Licenses
* Institute of Technology, Institut National de Recherche en

* Informatique et en Automatique, Keio University). All Rights

* Reserved. http://www.w3.org/Consortium/Legal/"

*

* 3. Notice of any changes or modifications to the W3C files, including the

* date changes were made. (We recommend you provide URIs to the location

* from which the code is derived.)

*

* THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS

* MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT

* NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

* PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE

* ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

*

* COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR

* CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR

* DOCUMENTATION.

*

* The name and trademarks of copyright holders may NOT be used in advertising

* or publicity pertaining to the software without specific, written prior

* permission. Title to copyright in this software and any associated

* documentation will at all times remain with copyright holders.

*

ZLIB LICENSE

* zlib.h -- interface of the 'zlib' general purpose compression library

 version 1.2.3, July 18th, 2005

Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages
Idc Command Reference Guide A-3

Third Party Licenses
 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly jloup@gzip.org

 Mark Adler madler@alumni.caltech.edu

GENERAL BSD LICENSE

Copyright (c) 1998, Regents of the University of California

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

"Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

"Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

"Neither the name of the <ORGANIZATION> nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.
A-4 Idc Command Reference Guide

Third Party Licenses
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

GENERAL MIT LICENSE

Copyright (c) 1998, Regents of the Massachusetts Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

UNICODE LICENSE

UNICODE, INC. LICENSE AGREEMENT - DATA FILES AND SOFTWARE

Unicode Data Files include all data files under the directories
http://www.unicode.org/Public/, http://www.unicode.org/reports/, and
http://www.unicode.org/cldr/data/ . Unicode Software includes any source code
published in the Unicode Standard or under the directories
http://www.unicode.org/Public/, http://www.unicode.org/reports/, and
http://www.unicode.org/cldr/data/.
Idc Command Reference Guide A-5

Third Party Licenses
A-6 Idc Command Reference Guide

NOTICE TO USER: Carefully read the following legal agreement. BY DOWNLOADING,
INSTALLING, COPYING OR OTHERWISE USING UNICODE INC.'S DATA FILES ("DATA FILES"),
AND/OR SOFTWARE ("SOFTWARE"), YOU UNEQUIVOCALLY ACCEPT, AND AGREE TO BE BOUND BY,
ALL OF THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE, DO NOT
DOWNLOAD, INSTALL, COPY, DISTRIBUTE OR USE THE DATA FILES OR SOFTWARE.

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1991-2006 Unicode, Inc. All rights reserved. Distributed under the
Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy of the
Unicode data files and any associated documentation (the "Data Files") or Unicode
software and any associated documentation (the "Software") to deal in the Data
Files or Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, and/or sell copies of the Data Files
or Software, and to permit persons to whom the Data Files or Software are furnished
to do so, provided that (a) the above copyright notice(s) and this permission notice
appear with all copies of the Data Files or Software, (b) both the above copyright
notice(s) and this permission notice appear in associated documentation, and (c)
there is clear notice in each modified Data File or in the Software as well as in
the documentation associated with the Data File(s) or Software that the data or
software has been modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO
EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in these Data
Files or Software without prior written authorization of the copyright holder.

__Unicode and the Unicode logo are trademarks
of Unicode, Inc., and may be registered in some jurisdictions. All other trademarks
and registered trademarks mentioned herein are the property of their respective
owners

Third Party Licenses
MISCELLANEOUS ATTRIBUTIONS

Adobe, Acrobat, and the Acrobat Logo are registered trademarks of Adobe Systems Incorporated.

FAST Instream is a trademark of Fast Search and Transfer ASA.

HP-UX is a registered trademark of Hewlett-Packard Company.

IBM, Informix, and DB2 are registered trademarks of IBM Corporation.

Jaws PDF Library is a registered trademark of Global Graphics Software Ltd.

Kofax is a registered trademark, and Ascent and Ascent Capture are trademarks of Kofax Image

Products.

Linux is a registered trademark of Linus Torvalds.

Mac is a registered trademark, and Safari is a trademark of Apple Computer, Inc.

Microsoft, Windows, and Internet Explorer are registered trademarks of Microsoft Corporation.

MrSID is property of LizardTech, Inc. It is protected by U.S. Patent No. 5,710,835. Foreign Patents

Pending.

Oracle is a registered trademark of Oracle Corporation.

Portions Copyright © 1994-1997 LEAD Technologies, Inc. All rights reserved.

Portions Copyright © 1990-1998 Handmade Software, Inc. All rights reserved.

Portions Copyright © 1988, 1997 Aladdin Enterprises. All rights reserved.

Portions Copyright © 1997 Soft Horizons. All rights reserved.

Portions Copyright © 1995-1999 LizardTech, Inc. All rights reserved.

Red Hat is a registered trademark of Red Hat, Inc.

Sun is a registered trademark, and Sun ONE, Solaris, iPlanet and Java are trademarks of Sun

Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

UNIX is a registered trademark of The Open Group.

Verity is a registered trademark of Autonomy Corporation plc
Idc Command Reference Guide A-7

Third Party Licenses
A-8 Idc Command Reference Guide

#
-c connection_mode

auto, 2-6
server, 2-6
standalone, 2-6

A
AboutBox, 4-19
Active Server Page

Calling IdcCommandX, 3-4
ActiveX command utility, See methods, 3-16
ASP

Calling IdcCommandX, 3-4
Attributes

ClientControlledContextValue, 4-34
HostCgiUrl, 4-34
Password, 4-35
UseBrowserLoginPrompt, 4-35
UseProgressDialog, 4-35
UserName, 4-35
WorkingDir, 4-36

B
Back, 4-19

C
Calling IdcCommandX from an Active Server Page, 3-4
calling services remotely, 2-7
CancelRequest, 4-20
ClientControlledContextValue, 4-34
closeServerConnection(), 3-17
command file syntax, 2-2

precedence, 2-4
special characters

, 2-4
#, 2-4
EOD, 2-4

special tags
IdcService=, 2-4

command line options, 2-2
computeNativeFilePath(Data As String) as string, 3-18
computeURL(Data As String, IsAsolute As Boolean) as

string, 3-19
computeWebFilePath(Data As String) as string, 3-22
ConnectToServer() as boolean

returns, 3-23
connectToServer() as boolean, 3-23

creating and executing IdcCommand parameters, 2-7,
2-7

D
DoCheckoutLatestRev, 4-20
DownloadFile, 4-21
DownloadNativeFile, 4-21
Drag, 4-22

E
EditDocInfoLatestRev, 4-23
EOD, 2-4
Events

IntradocBeforeDownload, 4-17
IntradocBrowserPost, 4-17
IntradocBrowserStateChange, 4-17
IntradocRequestProgress, 4-18
IntradocServerResponse, 4-18

executeCommand (Data As String), 3-24
parameters

Data, 3-24
returns, 3-24

F
Forward, 4-23

G
GoCheckinPage, 4-24

H
HostCgiUrl, 4-34

I
IdcClient ActiveX Control, 4-5
IdcClient Events, 4-16
IdcClient Methods, 4-18
IdcClient OCX Component, 4-1
IdcClient Properties, 4-34
IdcCommand

repository server Command Utility, 2-7
calling services remotely, 2-7
command file syntax, 2-2
command line options, 2-2
using the launcher, 2-17
Idc Command Reference Guide Index-1

Index
IdcCommandX and ASP, 3-4
IdcCommandX-repository server ActiveX Command

Utility
methods, 3-16

IdcService= (command file syntax tag), 2-4
init as boolean (IntradocDir As String)

parameters
UserName, 3-27

init as boolean (StellentDir As String)
parameters

StellentDir, 3-27
InitiateFileDownload, 4-25
InitiatePostCommand, 4-26
IntradocBeforeDownload, 4-17
IntradocBrowserPost, 4-17
IntradocBrowserStateChange, 4-17
IntradocDir As String (init as boolean), 3-27
IntradocRequestProgress, 4-18
IntradocServerResponse, 4-18

M
Methods

AboutBox, 4-19
Back, 4-19
CancelRequest, 4-20
DoCheckoutLatestRev, 4-20
DownloadFile, 4-21
DownloadNativeFile, 4-21
Drag, 4-22
EditDocInfoLatestRev, 4-23
Forward, 4-23
GoCheckinPage, 4-24
InitiateFileDownload, 4-25
InitiatePostCommand, 4-26
Move, 4-26
Navigate, 4-27
NavigateCgiPage, 4-27
RefreshBrowser, 4-28
SendCommand, 4-28
SendPostCommand, 4-28
SetFocus, 4-29
ShowDocInfoLatestRev, 4-30
ShowWhatsThis, 4-30
StartSearch, 4-31
Stop, 4-31
UndoCheckout, 4-32
ViewDocInfo, 4-32
ViewDocInfoLatestRev, 4-33
Zorder, 4-33

methods (ActiveX command utility), 3-16
closeServerConnection(), 3-17

computeNativeFilePath(Data As String) as
string, 3-18

computeURL(Data As String, IsAsolute As Boolean)
as string, 3-19

computeWebFilePath(Data As String) as string, 3-22
connectToServer() as boolean, 3-23
executeCommand (Data As String), 3-24
init as boolean (IntradocDir As String), 3-27

Microsoft Visual Basic, 4-5, 4-5
Move, 4-26

N
Navigate, 4-27
NavigateCgiPage, 4-27

O
OCX Component, 4-1
Overview

Audience, 1-2
Conventions, 1-2

P
Password, 4-35
precedence, 2-4

R
RefreshBrowser, 4-28

S
SendCommand, 4-28
SendPostCommand, 4-28
SetFocus, 4-29
ShowDocInfoLatestRev, 4-30
ShowWhatsThis, 4-30
StartSearch, 4-31
Stop, 4-31

U
UndoCheckout, 4-32
UseBrowserLoginPrompt, 4-35
UseProgressDialog, 4-35
UserName, 4-35
using the Launcher, 2-17
Index -2 Idc Command Reference Guide

Index
V
ViewDocInfo, 4-32
ViewDocInfoLatestRev, 4-33
Visual Basic, 4-5, 4-5

W
WorkingDir, 4-36

Z
ZOrder, 4-33
Idc Command Reference Guide Index-3

	Cover Page
	Table of Contents
	1. Overview
	Introduction
	About This Guide
	Audience
	Conventions

	2. IdcCommand: Java Command Utility
	Introduction
	IdcCommand Setup and Execution
	Command File
	Command File Syntax
	Precedence
	Special Tags and Characters

	Configuration Options
	Command File
	User
	Log File
	Connection Mode

	Running IdcCommand
	Using the Launcher
	Quoting
	Computed Settings
	Launcher Environment Variables
	User Interface
	Configuring the Launcher
	Configuration File Example

	Calling Services Remotely

	3. IdcCommandX and IdcCommandUX: ActiveX Command Utilities
	Introduction
	IdcCommandUX Overview
	Setup
	Calling Procedures
	Visual Basic
	Visual C++

	Executing Services

	Calling IdcCommandUX from an Active Server Page
	HDA example
	Creating a COM Object
	Initializing the Connection
	Defining the Service and Parameters
	Referencing Custom Resources
	Executing the Service
	Retrieving Results

	SOAP Example

	Formatting Content with a Resource Include
	Connecting to Content Server from a Remote Machine
	Coding the ASP Page
	Creating Variables
	Creating a COM Object
	Initializing the Connection
	Returning Connection Status
	Defining the Service and Parameters
	Executing the Service
	Retrieving Results

	IdcCommandUX Methods
	addExtraHeadersForCommand
	closeServerConnection
	computeNativeFilePath
	computeURL
	computeWebFilePath
	connectToServer
	executeCommand
	executeFileCommand
	forwardRequest
	getLastErrorMessage
	init (deprecated)
	initRemote

	4. IdcClient OCX Component
	Introduction
	IdcClient OCX Description
	General Description
	Events, Methods, and Properties
	OCX Events
	OCX Methods
	OCX Properties

	IdcClient OCX Interface

	IdcClient OCX Control Setup
	Component Setup
	Creating a Visual Interface

	IdcClient Events
	IntradocBeforeDownload
	IntradocBrowserPost
	IntradocBrowserStateChange
	IntradocRequestProgress
	IntradocServerResponse

	IdcClient Methods
	AboutBox
	Back
	CancelRequest
	DoCheckoutLatestRev
	DownloadFile
	DownloadNativeFile
	Drag
	EditDocInfoLatestRev
	Forward
	GoCheckinPage
	Home
	InitiateFileDownload
	InitiatePostCommand
	Move
	Navigate
	NavigateCgiPage
	RefreshBrowser
	SendCommand
	SendPostCommand
	SetFocus
	ShowDMS
	ShowDocInfoLatestRev
	ShowWhatsThis
	StartSearch
	Stop
	UndoCheckout
	ViewDocInfo
	ViewDocInfoLatestRev
	ZOrder

	IdcClient Properties
	ClientControlledContextValue
	HostCgiUrl
	Password
	UseBrowserLoginPrompt
	UseProgressDialog
	UserName
	WorkingDir

	A. Third Party Licenses
	Overview
	Apache Software License
	W3C® Software Notice and License
	Zlib License
	General BSD License
	General MIT License
	Unicode License
	Miscellaneous Attributions

