
Cover PageCover Page
Working with Content Server Components
10g Release 3 (10.1.3.3.0)

March 2007

Working with Components, 10g Release 3 (10.1.3.3.0)
Copyright © 2007, Oracle. All rights reserved.

Contributing Authors: Jean Wilson

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected by
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other independently
created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may
be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf
of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical
data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted
Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other
measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim
liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all
risks associated with the use of such content. If you choose to purchase any products or services from a third party,
the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-
party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

T a b l e o f C o n t e n t s

Chapter 1: About This Guide
What’s New .1-1

Audience .1-2

Document Organization .1-2

Conventions .1-3

Chapter 2: Component Overview
Component Wizard .2-1

Component Manager .2-2

Component Files Overview .2-3

Enabling and Disabling a Component .2-4

Chapter 3: Directories and Files
HDA Files .3-1

Elements in HDA files .3-2
The components.hda File .3-5
Glue Files. .3-6

Custom Resource Files .3-7

DataBinder .3-8
LocalData. .3-9
Active or Non-active ResultSets .3-9
Environment. .3-9

Manifest File. .3-9

Other Files .3-11
Customized Site Files .3-11
Component Zip File .3-11
Custom Installation Parameter Files .3-12
Working with Components iii

Table of Contents
Typical Directory Structure. .3-12

Chapter 4: Development Recommendations
Creating a Component .4-1

Working with Component Files .4-2

Using a Development Instance .4-2

Component File Organization .4-3

Naming Conventions .4-4

Chapter 5: Using the Component Wizard
Overview .5-1

Working with Java Code .5-2
Editing the Readme File .5-3

Creating a Custom Component .5-3

Additional Component Wizard Tasks .5-15
Building a Component Zip File. .5-15
Working With Installation Parameters .5-16
Enabling and Disabling a Component .5-18
Removing a Component .5-19
Opening a Component. .5-19
Configuring the Default HTML Editor. .5-20
Unpackaging a Component .5-20
Adding an Existing Component .5-21

Chapter 6: Using the Component Manager
Component Manager Main Page .6-1

Component Manager Tasks. .6-3
Enabling and Disabling a Component .6-3
Uploading a Component .6-4
Downloading a Component .6-5

Chapter 7: Component File Details
The components.hda file .7-1

Components ResultSet .7-2
Component Definition (Glue) File. .7-3

ResourceDefinition ResultSet .7-5
MergeRules ResultSet. .7-6
iv Working with Components

Table of Contents
Filters ResultSet .7-8
ClassAliases ResultSet .7-8

Chapter 8: Resources Detail
HTML Include. .8-2

The Super Tag. .8-2
Editing an HTML Include Resource .8-3

String .8-4
String Parameters .8-6
Editing a String Resource .8-8

Dynamic Tables .8-8
Editing a Dynamic Table Resource .8-8

Static Tables .8-9
Editing a Static Table Resource .8-9

Query .8-9
Editing a Query Resource .8-11

Service .8-12
Service Example .8-16
Editing a Service Resource .8-23

Templates .8-23
Template and Report Pages .8-26
Editing a Template Resource .8-32

Environment .8-32
Environment Example .8-33
Editing an Environment Resource .8-34

Chapter 9: Component Interface Screens
Options Menu .9-5
Build Menu. .9-5
Help Menu .9-6

Component Creation Screens .9-6

Build Screens .9-41
Working with Components v

C h a p t e r

1.ABOUT THIS GUIDE
Components are modular programs that are designed to interact with the Content Server at
runtime. Custom components enable you to customize Content Server without affecting
the core functionality of the software.

This document describes the details of component architecture, which is the use of
modular components to customize standard content server functionality.

This chapter discusses these topics:

What’s New (page 1-1)

Audience (page 1-2)

Document Organization (page 1-2)

Conventions (page 1-3)

WHAT’S NEW
A new online tool is available to view details about services which can be used in new
components. See Creating a Custom Component (page 5-3) for information about using
the Preview Information for Service screen. See Preview Information for Service Screen
(page 9-34) and Preview Action Information Screen (page 9-35) for screen shots and a
description of this screen’s use.
Working with Components 1-1

About This Guide
AUDIENCE
This guide is intended for developers who need to customize the Content Server software
to suit content management needs specific to a particular business or organization. You
should be familiar with content server architecture and have a working knowledge of
adding custom services and resources into your current environment.

DOCUMENT ORGANIZATION
This manual contains reference information as well as a tutorial to assist you in learning
about creating custom components. It includes the following chapters:

Chapter 1 (About This Guide) outlines the audience, organization, and conventions for
this guide, and describes content management product distinctions.

Chapter 2 (Component Overview) provides an overview of the building blocks you’ll
need to create a custom component.

Chapter 3 (Directories and Files) describes the types of files and data you will work
with when you create a custom component.

Chapter 4 (Development Recommendations) provides an overview of the development
process and tips on getting started with component development.

Chapter 5 (Using the Component Wizard) describes the process of creating
components and provides a tutorial for component creation.

Chapter 6 (Using the Component Manager) provides details of tasks you can perform
with the Component Manager interface.

Chapter 7 (Component File Details) describes the files that define and implement the
actual customizations you make to the content server.

Chapter 8 (Resources Detail) describes the custom resources that are created when
components are created.

Chapter 9 (Component Interface Screens) provides copies of the interface screens
used to create components and a description of the options on those screens.

An index is provided at the end of this guide.
1-2 Working with Components

About This Guide
CONVENTIONS
The following conventions are used throughout this guide:

The notation <install_dir>/ is used throughout this guide to refer to the location on
your system where the Content Server product is installed.

Forward slashes (/) are used to separate the directory levels in a path name. A forward
slash will always appear after the end of a directory name.

Notes, technical tips, important notices, and cautions use these conventions:

 Symbol Description

This is a note. It brings special attention to information.

This is a tech tip. It identifies information that can be used to
make your tasks easier.

This is an important notice. It identifies a required step or
critical information.

This is a caution. It identifies information that might cause
loss of data or serious system problems.

This is a notice that the information is new for this release.
Working with Components 1-3

About This Guide
1-4 Working with Components

C h a p t e r

2.COMPONENT OVERVIEW
This chapter provides an overview of component management and the files and directory
structure associated with components. It discusses these topics:

Component Wizard (page 2-1)

Component Manager (page 2-2)

Component Files Overview (page 2-3)

Enabling and Disabling a Component (page 2-4)

COMPONENT WIZARD
The Component Wizard is a development tool that automates the process of creating
custom components. You can use the Component Wizard to create new components,
modify existing components, and package components for use on other Content Server
instances.

To access the Component Wizard in a Windows environment, click Start—
<install_dir>—Utilities—Component Wizard. The Component Wizard main page is
displayed. To access the Wizard in a UNIX environment, run ComponentWizard.exe,
stored in <install_dir>/bin.
Working with Components 2-1

Component Overview
Figure 2-1 Component Wizard main screen

The Component Wizard is discussed in more detail in Chapter 5 (Using the Component
Wizard) and Chapter 9 (Component Interface Screens).

COMPONENT MANAGER
The Component Manager provides a way to manage custom components in the Content
Server. By using the Component Manager, you can easily enable or disable components,
or add new components to the Content Server. You can also access and edit some of the
files used in components.

To use the Component Manager, click Admin Server on the Application menu in your
Content Server. Click on the server name. The Options page for that server appears. Click
Component Manager to display the Component Manager page.
2-2 Working with Components

Component Overview
Figure 2-2 Component Manager page

The Component Manager is discussed in more detail in Chapter 6 (Using the Component
Manager).

COMPONENT FILES OVERVIEW
When you define a custom component, you’ll create or make changes to the following
files:

The component.hda file, which tells the Content Server what components are enabled
and where to find each “glue” file.

The component “glue” file, which tells the Content Server where to find the resources
for the custom component.

Different custom resource files, which define your customizations to standard Content
Server resources.
Working with Components 2-3

Component Overview
Template files, which define custom template pages.

Other files which contain customizations to Content Server graphics, Java code, help
files, and so forth.

These files are all discussed in more detail in Chapter 3 (Directories and Files).

Any type of file can be included in a component, but the following file formats are used
most often:

HDA

HTM

CFG

Java CLASS

If you build or unpackage components in the Component Wizard, or upload and download
components in the Component Manager, you will work with the following files:

A compressed zip file used to deploy a component on other Content Servers.

A manifest.hda file that tells the Content Server where to place the files that are
unpackaged or uploaded from a component zip file.

ENABLING AND DISABLING A COMPONENT
By definition, a component is enabled when it is properly defined in the Components
ResultSet in the components.hda file. A component is disabled if there is no entry or the
entry is not formatted correctly.

There are three ways to enable or disable a component:

Manual editing—Open the components.hda file in a text editor and add or delete the
two-line entry for the component.

Component Wizard—Select Enable or Disable from the Options menu. See Chapter
5 (Using the Component Wizard) for details.

Component Manager—Select Enable or Disable from the Component Manager
Instance screen. See Chapter 6 (Using the Component Manager) for details.

Note: You must restart the Content Server after changing enabling or disabling a
component.
2-4 Working with Components

C h a p t e r

3.DIRECTORIES AND FILES
This chapter provides information about the files used in component creation and the
directory structure used to store those files. It discusses the following topics:

HDA Files (page 3-1)

Custom Resource Files (page 3-7)

DataBinder (page 3-8)

Manifest File (page 3-9)

Other Files (page 3-11)

Typical Directory Structure (page 3-12)

HDA FILES
A HyperData File (HDA) is used to define properties and tabular data in a simple,
structured ASCII file format. It is a text file that is used by the Content Server to determine
which components are enabled and disabled and where to find the glue files for that
component.

The HDA file format is useful for data that changes frequently because the compact size
and simple format make data communication faster and easier for the Content Server.

The HDA file type is used to define the following component files:

components.hda file

Component definition (glue) file

Manifest file
Working with Components 3-1

Directories and Files
Dynamic table resource file

Template resource file

The following example file is a components.hda file that points to a component called
customhelp.

Figure 3-3 Sample components.hda file

Elements in HDA files
Each HDA file contains a header line and one or more sections. The header line identifies
the Content Server version, character set, and Java encoding for the HDA file. If an HDA
file contains double-byte (Asian language) characters, the correct character set and
encoding must be specified so the Content Server can read the file properly. The header
line is not required for single-byte characters, but it is a good practice to include it in your
HDA files. See the Content Server Installation Guide for Windows or the Content Server
Installation Guide for UNIX for more information on locales.

The Properties Section and ResultSet Section are the two section types that are relevant to
component development. These are used to define the Properties of the file (name,
location, and so on) and the ResultSet which defines a table or columns and rows of data.
ResultSets often represent the results of a query. All other sections tags are for internal
application use only.

Comments are not allowed within a section of an HDA file. However, you can place
comments in the HDA file before the first section, between sections, or after the last
section. Blank lines within a section of an HDA file are interpreted as a NULL value.
Blank lines before the first section, between sections, or after the last section are ignored.
None of the section types are mandatory in an HDA file, so unused sections can be
deleted.

<?hda version="5.1.1 ALPHA-011029" jcharset=Cp1252 encoding=iso-8859-1?>

@Properties LocalData

blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM

@end

@ResultSet Components

2

name

location

customhelp

custom/customhelp/customhelp.hda

@end
3-2 Working with Components

Directories and Files
The Properties section contains a group of name/value pairs. For a custom component,
the most common name for a Properties section is LocalData, which means that the
name/value pairs are valid only for the current HDA file.

You can also define global name/value pairs in a Properties section called
Environment, but this section type is rarely used. The recommended practice is to
define global environment variables in a configuration file in an Environment
resource.

The following is an example of a Properties section in an HDA file.

Figure 3-4 Properties in HDA file

The ResultSet section of an HDA file defines a table, or columns and rows of data. A
ResultSet can be used to pass information to a database or to represent the results of a
database query. A ResultSet section has the following structure:

• The first line defines the name of the ResultSet table using the format @ResultSet
resultset_name.

• The second line defines the number of columns.

• The next n lines define the column names.

• The remaining lines define the values in each cell of the table.

• The last line of the section ends the table using the format @end.

@Properties LocalData
PageLastChanged=952094472723
LocationInfo=Directory,Public,
IsJava=1
refreshSubMonikers=
PageUrl=/intradoc/groups/public/pages/index.htm
LastChanged=-1
TemplatePage=DIRECTORY_PAGE
IdcService=PAGE_HANDLER
LinkSelectedIndex=0
PageName=index
HeaderText=This is a sample page. The Page Name must remain index. The Page
Properties for this index page should be customized.
PageFunction=SavePage
dSecurityGroup=Public
restrictByGroup=1
PageType=Directory
PageTitle=Stellent Content Server Index Page
@end
Working with Components 3-3

Directories and Files
The following example shows a ResultSet called Scores that has 4columns and 3rows.

Figure 3-5 Sample ResultSet

The following table shows the ResultSet data in a columnar form. A ResultSet can be
given any name.

The Content Server uses some predefined ResultSets, so the following names should
not be used for custom component tables:

@ResultSet Scores
4
name
match1
match2
match3
Margaret
68
67
72
Sylvia
70
66
70
Barb
72
71
69
@end

name match1 match2 match3

Margaret 68 67 72

Sylvia 70 66 70

Barb 72 71 69

ResultSet Name Location Purpose

Components <install_dir>/config/components.hda Defines the name and location of
any custom components you have
created.
3-4 Working with Components

Directories and Files
The components.hda File
The components.hda file is a text file that tells the Content Server which components are
enabled and where to find the “glue” file for each component.

The components.hda file is always stored in the <install_dir>/config/ directory. The
Component Wizard and Component Manager can be used to make changes to this file if
needed.

The following is an example of a components.hda file, listing several enabled components
such as schema, configuration migration, and SOAP.

IntradocReports <install_dir>/shared/config/reports/
reports.hda

Specifies the default report
templates for the Content Server.

IntradocTemplates <install_dir>/shared/config/templates/
templates.hda

Specifies all of the default
templates for the Content Server
(except for search results and
report templates).

ResourceDefinition <install_dir>/custom/component_name/
component_name.hda

Defines resources for a custom
component.

SearchResultTemplates <install_dir>/shared/config/templates/
templates.hda

Specifies the default search
results templates for the Content
Server.

ResultSet Name Location Purpose
Working with Components 3-5

Directories and Files
Figure 3-6 Coponents.hda file with enabled components

Glue Files
A component definition file points to the custom resources that you have defined. This file
specifies information about custom resources, ResultSets, and merge rules. Because it
serves as the “glue” that holds a component together, the component definition file is also
called the glue file.

The glue file for a component is typically named component_name.hda, and is located in
the <install_dir>/custom/component_name/ directory. The Component Wizard can be
used to create and make changes to a glue file.

The following example of a glue file points to an environment resource file called
customhelp_environment.cfg.

@properties LocalData
blDateFormat=M/d/yy
@end
@ResultSet Components
2
name
location
SchemaDCL
custom/SchemaDCL/SchemaDCL.hda
ConfigMigrationUtility
custom/ConfigMigrationUtility/Cmu.hda
Soap
custom/Soap/Soap.hda
@end

Note: Do not confuse the components.hda file with the component_name.hda file. The
components.hda file is used to track all installed components. The component_name.hda
file contains information that is specific to a single component.
3-6 Working with Components

Directories and Files
Figure 3-7 Sample glue file

CUSTOM RESOURCE FILES
Custom resource files define your Content Server customizations. They are usually HDA
files but some are HTM files.

The custom resource files for a component are typically located in the
<install_dir>/custom/component_name/ directory. Some resource files may be placed in
subdirectories such as /resources or /templates.

The following table describes these resources:

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
environment
customhelp_environment.cfg
null
1
@end

Resource Type File Type Contents

HTML include HTM “Include” definitions

String HTM Localized string definitions

Dynamic table HDA Tables for data that changes often

Static table HTM Tables for data that seldom changes

Query HTM Tables that define queries
Working with Components 3-7

Directories and Files
These files are all discussed in detail in Chapter 8 (Resources Detail).

In addition, a template.htm page is used by the Content Server to assemble web pages. See
Templates (page 8-23) for details about the template.hdm file.

A ResultSet HTM table file is used by other resources. A ResultSet table in an HTM file is
similar to the The ResultSet section of an HDA file defines a table, or columns and rows
of data. A ResultSet can be used to pass information to a database or to represent the
results of a database query. A ResultSet section has the following structure: (page 3-3) of
an HDA file, except that it uses HTML table tags to lay out the data. Static table resources,
service resources, and query resources all use this table format.

A ResultSet table in an HTM file begins with <@table table_name@> and ends with
<@end@>. The markup between the start and end tags is an HTML table. Unlike a ResultSet
in an HDA file, the number of columns is implied by the table tags.

Any HTML syntax that does not define the data structure is ignored when the table is
loaded. Therefore, HTML comments are allowed within tables in an HTM file, and
HTML style attributes can be used to improve the presentation of the data in a web
browser.

DATABINDER
The Content Server caches data (such as variable values and lookup keys) internally in a
DataBinder. All data in the DataBinder is categorized according to where it came from and
how it was created. When a value is required to fulfill a service request, the data in the
DataBinder is evaluated in the following default order:

1. LocalData (page 3-9)

2. Active or Non-active ResultSets (page 3-9)

3. Environment (page 3-9)

Service HTM Tables that define service scripts

Template HDA Tables that specify location and file name for template
pages

Environment CFG Configuration variable name/value pairs

Resource Type File Type Contents
3-8 Working with Components

Directories and Files
This precedence can be changed using Idoc Script functions. See the Idoc Script Reference
Guide for details.

LocalData
The @Properties LocalData section in an HDA file maps to the LocalData of the
DataBinder. The LocalData consists of name/value pairs.

The LocalData information is maintained only during the lifetime of the Content Server
request and response. Unlike information about the server environment, which rarely
changes, the LocalData information for each request is dynamic.

From the point of view of an HTTP request, the initial LocalData is collected from the
REQUEST_METHOD, CONTENT_LENGTH, and QUERY_STRING HTTP
environment variables. As the service request is processed, the LocalData values can be
added and changed.

Active or Non-active ResultSets
Each @ResultSet section of an HDA file maps to a named result in the DataBinder. A
ResultSet becomes active when the ResultSet is looped on during page assembly. The
active ResultSet take precedence over any other ResultSets during a value search of the
DataBinder. When a service request requires data and the value is not found in the
LocalData or an active ResultSet, the non-active ResultSet values are searched next.

Environment
Environment values are placed in the DataBinder as name/value pairs, which are defined
in configuration files such as <install_dir>/config/config.cfg,
<install_dir>/bin/intradoc.cfg, and environment-type resource files.

MANIFEST FILE
Manifest files are used to upload or unpackage a component zip file on the Content Server.
This file tells the Content Server where to place the individual files that are included in the
component zip file. A manifest file is created automatically when you build a component
in the Component Wizard, or when you download a component using the Admin Server
Component Manager.
Working with Components 3-9

Directories and Files
All manifest files must be called manifest.hda. The manifest.hda file is included in the
component zip file along with the other component files. It must be at the top level of the
zip file directory structure.

The manifest.hda file contains a ResultSet table called Manifest, which consists of two
columns:

The entryType column defines the type of entry in the manifest file.

The location column defines the directory where the files associated with the entry
will be installed, and specifies the file name for some entry types.

• For a Component entry type, the location is the path and file name for the glue file.
The glue file then tells the Content Server which resource files are included in the
component.

• For other entry types, the location can be a path (to specify all files in a particular
sub-directory) or a path and file name (to specify an individual file).

• The location should be a path relative to the <install_dir>/custom/ directory. You
can use an absolute path, but then the component can only be installed on Content
Servers with the same installation directory path.

Entry Type Description Default Path

Classes Java class files <install_dir>/classes

Common Common files <install_dir>/weblayout/common

Component Component resource files <install_dir>/custom

ComponentExtra Associated files, such as a readme <install_dir>/custom

Help Online help files <install_dir>/weblayout/help

Images Graphics files <install_dir>/weblayout/images

Jsp Java Server Pages <install_dir>/weblayout/jsp
3-10 Working with Components

Directories and Files
The following is an example of a manifest.hda file.

Figure 3-8 Example manifest.hda file

OTHER FILES
Your custom components can include any type of file that the Content Server uses for
functionality or to generate look-and-feel.

Customized Site Files
You can add customized files for your site in order to change the look or actions of the
Content Server. For example, the following types of files are often referenced in custom
resources:

Graphics—Replace the icons, backgrounds, and logos that make up the standard
Content Server interface.

Help—With the assistance of Consulting Services, help files can be customized for
your content management system.

Classes—Java code can change or extend the functionality of the Content Server. Java
class files must be packaged into directories before placing them in the
<install_dir>/classes/ directory.

Component Zip File
A component zip file contains all files that define a Content Server component. It can be
unpackaged to deploy the component on otherContent Servers.

@ResultSet Manifest
2
entryType
location
component
MyComponent/MyComponent.hda
componentExtra
MyComponent/readme.txt
images
MyComponent/
@end
Working with Components 3-11

Directories and Files
Custom Installation Parameter Files
When you define one or more custom installation parameters, several additional files are
created in addition to the files that compose the basic component file structure.

If installation parameters are created for the component, then during the component
installation process the component installer automatically places two files in the
component directory within the data/components directory. These files hold the preference
data as follows:

config.cfg: Contains the parameters that can be reconfigured after installation.

install.cfg: Contains the preference data definitions and prompt answers.

Backup zip file: A backup file that is created if the component is already installed and
is being reinstalled.

TYPICAL DIRECTORY STRUCTURE
If you use the Component Wizard to create custom components, your files will be stored
in the appropriate directory.

The component.hda file is always stored in the <install_dir>/config/ directory.

Different component directories are established for each custom component in the
<install_dir>/custom directory. Within each component directory, separate subdirectories
are established for reports, templates, and resources, all named appropriately (for example,
/Resources). The component_name.hda file (the ‘glue’ file) is stored in the
/component_name directory.
3-12 Working with Components

C h a p t e r

4.DEVELOPMENT
RECOMMENDATIONS

This chapter provides some guidelines to assist you in developing custom components. It
covers these topics:

Creating a Component (page 4-1)

Working with Component Files (page 4-2)

Using a Development Instance (page 4-2)

Component File Organization (page 4-3)

Naming Conventions (page 4-4)

See Chapter 5 (Using the Component Wizard) for detailed instructions on creating or
modifying components.

CREATING A COMPONENT
To create and enable a custom component, follow this basic procedure:

1. Create a glue file.

2. Add a reference to the glue file in the components.hda file to enable the component.

3. Restart the Content Server to apply the component.

4. Create resources and other files to define your customizations. A good approach is to
copy, rename, and modify standard Content Server files to create your custom
resource files.
Working with Components 4-1

Development Recommendations
5. Test and revise your customizations as necessary. You may need to restart the Content
Server to apply your changes.

6. If you want to package the component for later use or for deployment on other
Content Servers, build the component and create a component zip file.

WORKING WITH COMPONENT FILES
There are two ways to work with component files:

Component Wizard—The Component Wizard is a Content Server utility that helps
you create and edit component files. You can also use the Component Wizard to
package, unpackage, enable, and disable components. See Chapter 5 (Using the
Component Wizard) for more information.

Text editor—Because most component files are plain text files, you can create and
edit the files in your favorite text editor.

You should use the Component Wizard as much as possible when working with
custom components.

The Component Wizard does a number of tasks for you and minimizes the amount of
work you need to do in a text editor. Using the Component Wizard will help you follow
the recommended file structure and naming conventions. The Component Wizard
automatically adds a readme text file when you build a component, thus helping you to
document your customizations. You should also include comments within your
component files.

For instructions on using the Component Wizard to create components, see Chapter 5
(Using the Component Wizard).

USING A DEVELOPMENT INSTANCE
Whenever you are customizing the Content Server, you should isolate your development
efforts from your production system. Remember to include the same custom metadata
fields on your development instance as you have defined for your production instance.

When you have successfully tested your modifications on a development instance, use the
Component Wizard to build a component zip file and then unpackage the component on
your production system.

Remember to restart the Content Server after enabling or disabling a component.
4-2 Working with Components

Development Recommendations
If you are having problems with your Content Server after you have installed a custom
component, disable the component and restart the Content Server. If this fixes the
problem, you probably need to troubleshoot your component. If the problem is not fixed,
you may need to remove the component completely using the Component Wizard to see if
there is a problem with the component or with the Content Server.

COMPONENT FILE ORGANIZATION
To keep your custom components organized, follow these file structure guidelines. See
Typical Directory Structure (page 3-12) for more information.

Place each custom component in its own directory within a directory called
<install_dir>/custom/. If your custom component includes resource- and/or template-type
resources, the component directory should have subdirectories that follow the structure of
the <install_dir>/shared/config/ directory:

• resources/ to hold HTML include and table resource files

• resources/lang/ to hold string resource files

• templates/ to hold template files

• reports/ to hold report files

Keep the following points in mind when considering files and their organization:

Place the glue file for each custom component at the top level of the component’s
directory.

When referring to other files within a component, use relative path names instead of
absolute path names. This enables you to move the component to a different location
without having to edit all of the files in the component.

The Content Server is a Java-based application, so forward slashes must be used in all
path names.

Custom components do not have to be stored on the same machine as the Content
Server, but all component files must be accessible to the Content Server.

Images and other objects that are referenced by Content Server web pages must reside
somewhere in the <install_dir>/weblayout/ directory (so they can be accessed by the
web server).

Note: If you use the Component Wizard, it creates component directories for you and
places the component files in the correct directories.
Working with Components 4-3

Development Recommendations
NAMING CONVENTIONS
To keep your component files organized and make sure that the files work properly in the
Content Server, follow these naming conventions for directories, individual files, and file
contents.

You should give all of your component directories and files unique and meaningful
names. Keep in mind that as each component is loaded in the Content Server, it
overrides any resources with the same file names, so you should use duplicate file
names only if you want certain components to take precedence.

If you are copying a standard Content Server file, a common practice is to place the
prefix custom_ in front of the original file name. This ensures that you do not
overwrite any default templates, and your customizations are easy to identify.

HTM file types should have a .htm extension, and HDA file types should have a .hda
extension.

If you are creating a new component file with a text editor like WordPad, place the file
name within quotation marks in the Save dialog box so the proper file extension will
be assigned to it (for example, "myfile.hda"). Failure to use quotation marks to define
the file name may result in a file name such as myfile.hda.txt.

The Content Server is case sensitive even if your file system is not. For example,
when a file is named My_Template, the Content Server does not recognize case
variations such as my_template or MY_TEMPLATE.

For localized string resources, you must follow the standard file naming conventions
for the Content Server to recognize the strings. You should also use the standard two-
character prefix (cs, sy, ap, or ww) when naming your custom strings. See Resolving
Localized Strings in Customizing Content Server for more information.
4-4 Working with Components

C h a p t e r

5.USING THE COMPONENT WIZARD
This chapter describes how to use the Component Wizard to create new components. It
also contains a tutorial on the creation of custom components. It contains the following
major sections:

Overview (page 5-1)

Creating a Custom Component (page 5-3)

Additional Component Wizard Tasks (page 5-15)

OVERVIEW
Use the following procedure to create a new component using the Component Wizard:

1. Start the Component Wizard by selecting Start—<install_dir>—Utilities—
Component Wizard.

2. The Component List screen is displayed, showing all components and their status
(enabled or disabled).

Note: When using the Component Wizard with Red Hat Linux ES 3, set
UseCustomModaling=FALSE in your <install_dir>/bin/intradoc.cfg file. This variable
allows a modal dialog to lock only one frame, instead of all frames. Setting the varaible in
the intradoc.cfg file ensures that other applets are unaffected by this action. See the Idoc
Script Reference Guide for details on its usage.
Working with Components 5-1

Using the Component Wizard
3. If the Component List screen is displayed, select Add. If not, select Add from the
Options menu on the Component Wizard main screen.

The Add Component screen is displayed.

4. Enter a name for the new component in the Name field.

5. Accept the default directory (custom), or enter a new location for the component. This
can be either an absolute path or can be a path relative to the Content Server install
directory.

6. To use an existing component as a starting point, select the Copy Existing check box,
click Browse, and navigate to and select the glue file (component_name.hda) for the
component.

7. Click OK.

A new component glue file is created. If you copied an existing component, the
resource files are renamed with the new component name and copied to the new
component directory.

8. Add and edit custom resources and other files as necessary as described in these
sections:

• Creating an Environment Resource (page 5-4)

• Creating a Template Resource (page 5-5)

• Creating a Query Resource (page 5-7)

• Creating a Service Resource (page 5-8)

• Creating an HTML Include (page 5-10)

• Creating a String Resource (page 5-11)

• Creating a Dynamic Table Resource (page 5-13)

• Creating a Static Table Resource (page 5-14)

See Chapter 8 (Resources Detail) for details about editing custom resources.

Working with Java Code
If your custom component includes Java code, you can use the Java Code tab of the
Component Wizard to view the contents of the ClassAliases table and the Filters table.

Note: If no components are installed, this screen does not appear.
5-2 Working with Components

Using the Component Wizard
You can also remove classes and filters from the component glue file, although the file that
is associated with the class or filter will not be deleted from your system. Select the class
or filter and click the associated Remove button to remove it from the list.

Editing the Readme File
The Component Wizard provides a convenient way to create a “Readme” file for your
custom component. Use the following procedure to edit a Readme file:

1. Open the component in the Component Wizard.

2. Select Options—Edit Readme File.

The text editor opens a readme.txt file, with the name of the component entered on the
first line.

3. Enter text to document your component.

4. Save and close the file.

The readme.txt file is saved in the same directory as the component definition file, and
will be included as a “ComponentExtra” entry if you use the Component Wizard to
build a component zip file.

CREATING A CUSTOM COMPONENT
The following steps provide a general overview on using the Component Wizard to create
a custom component.The screens used to create this component are described in detail in
Chapter 9 (Component Interface Screens) and are referenced throughout the text. See
Chapter 8 (Resources Detail) for information about editing any of these custom
components.

1. Launch the Component Wizard.

The Component Wizard main screen is displayed or the Component List screen is
displayed if other components are already available (Component List Screen
(page 9-2).

2. Click Add on the Component List screen.

The Add Component screen is displayed (Add Component Screen (page 9-6)).

3. Make sure the Create New Component option is selected and enter the name of the
new component.
Working with Components 5-3

Using the Component Wizard
4. Click OK.

A confirmation screen is displayed.

5. Click OK.

The Component List screen closes, and the new component is opened in the
Component Wizard screen, as indicated by its name in the Location field.

Creating an Environment Resource
An environment resource defines configuration variables, either by creating new variables
or replacing the value in existing variables.

Follow these steps to create an environment resource:

6. Make sure that the Resource Definition tab is selected on the Component Wizard main
screen. Click Add.

The Add Resource screen is displayed (Add Resource Screen (page 9-29)).

7. Select the Environment option.

8. Enter the file name for the resource file. The default file name is
componentname_templates.hda.

If a resource file has been created, you can add to the file by selecting the file
name. Any changes you make to the load order at this time will apply to the entire
resource file.

To create a new resource file with a different file name, enter the file name.

9. If you want the new resource file to be loaded in a particular order, enter the number in
the Load Order field.

10. Click Finish.

A dialog box asks if you want to launch the text editor to continue editing.

11. Click Yes to open the resource file in the text editor. Click No to return to the
Component Wizard.

The file now appears in the Custom Resource Definition list.

Note: Unless you have a particular reason for the resource file to be loaded after other
resources, you should leave the load order set to 1.
5-4 Working with Components

Using the Component Wizard
After saving, the new environment resource is displayed on the Component Wizard
screen.

Creating a Template Resource
A template resource file defines names, types, and locations of custom templates to be
loaded for the component. Follow these steps to add a template page:

12. Make sure that the Resource Definition tab is selected on the Component Wizard main
screen. Click Add.

The Add Resource screen is displayed (Add Resource Screen (page 9-29)).

13. Select the Template option. The Add Template Table Information screen is displayed
(Add Template Table Information Screen (page 9-23)).

14. Enter the file name for the resource file. The default file name is
componentname_templates.hda.

You can enter templates/ before the file name to create a new /templates directory
in your component directory.

If a template resource file has been created, you can append a new template table
to the existing file by selecting the file name. Any changes you make to the load
order at this time will apply to the entire resource file.

To create a new resource file with a different file name, enter the file name.

15. If you want the new resource file to be loaded in a particular order, enter the number in
the Load Order field.

16. Click Next.

The Add Template Table Information Screen (page 9-23) is displayed.

17. Enter a name for the template table.

It is a good idea to leave the name of the component as a prefix.

Note: If an HTML editor is not defined, select Options—Configuration from the
Component Wizard main menu and enter the path and file name of the desired editor, or
click Browse and navigate to the executable of the desired editor (for example,
C:/Program Files/Windows NT/Accessories/wordpad.exe). See Configuring the Default
HTML Editor (page 5-20) for details.

Note: Unless you have a particular reason for the resource file to be loaded after other
resources, you should leave the load order set to 1.
Working with Components 5-5

Using the Component Wizard
Each template table in a component must have a unique name, even if the tables
are in different resource files.

18. Select which standard table to merge the new template table into: either
IntradocTemplates or SearchResultTemplates.

19. Click Next.

The Add IntradocTemplate screen is displayed (Add/Edit Intradoc Template Screen
(page 9-38)).

20. To start with an existing template definition:

a. Click Select.

A list of commonly used templates is displayed.

b. Select the Show All check box to show the entire list of predefined templates.

c. Select a template from the list.

d. Click OK.

The template parameters are filled in.

21. Edit the template parameters as necessary.

22. Click Finish.

A dialog box asks if you want to launch the text editor to continue editing.

23. Click Yes to open the resource file in the text editor. Click No to return to the
Component Wizard.

The file now appears in the Custom Resource Definition list, and the template table
appears in the Table Name list in the right pane.

Note: You can also use an existing custom template file as a starting point. Select the
Copy From check box, and navigate to and select the template file. The template
parameters will not be filled in automatically, but you could select a standard template to
fill in the fields before selecting the template file.

Note: If you do not change the name of the template and this component is loaded last, the
custom template will override the standard template and any other custom templates with
the same name.
5-6 Working with Components

Using the Component Wizard
Creating a Query Resource
A query resource defines SQL queries, which are used to manage information in the
database. Queries are used with services to perform tasks such as adding, deleting, or
retrieving data from the database.

Follow these steps to add a query:

24. On the Component Wizard main screen, click Add in the Resource Definition pane.

The Add Resource screen is displayed (Add Resource Screen (page 9-29)).

25. Select the Query option.

26. Enter the file name for the resource file. The default file name is
resources/componentname_query.htm.

If a query resource file has been created with the default file name, the new
default file name will have a number (1, 2, etc.) appended to it. You cannot append
a query table to the existing default file unless you edit the resource file manually.

If a query resource file has been created with a file name other than the default,
you can append a new query table to the existing file.

To create a new resource file with a different file name, enter the file name.

27. If you want the new resource file to be loaded in a particular order, enter the number in
the Load Order field.

28. Click Next.

The Add Query Table Information screen is displayed (Add Query Table Information
Screen (page 9-16)).

29. Enter a name for the query table. It is a good idea to leave the name of the component
as a prefix.

If you are appending to an existing query resource file, you must enter a new table
name. You cannot append a query definition to the existing table unless you edit
the resource file manually.

30. Click Next.

The Add Query screen is displayed (Add/Edit Query Screen (page 9-27)).

31. To start with an existing query definition:

a. Click Select.

Note: Unless you have a particular reason for the resource file to be loaded after other
resources, you should leave the load order set to 1.
Working with Components 5-7

Using the Component Wizard
A list of predefined queries is displayed.

b. Select a query from the list.

c. Click OK.

The query expression and parameters are displayed and the Name field is filled in.

32. Edit the query expression and parameters as necessary.

Parameters must appear in the Parameters list in the order they appear in the query
expression. Use the Up and Down buttons to move the selected parameter.

To add a parameter, click Add. Enter a parameter Name, select the parameter
Type, and click OK.

To edit a parameter type, select the parameter and click Edit. Select the parameter
Type, and click OK.

To remove a parameter, select the parameter and click Delete.

33. Click Finish.

A dialog box asks if you want to launch the text editor to continue editing.

34. Click Yes to open the resource file in the text editor. Click No to return to the
Component Wizard.

The query resource file now appears in the Custom Resource Definition list, and the
query table appears in the Table Name list in the right pane.

Creating a Service Resource
A service resource defines a function or procedure that is performed by the Content
Server.

Use the following procedure to create a service resource using the Component Wizard.

35. In the Component Wizard, open the component the resource will be created for.

36. On the Resource Definition tab, click Add.

The Add Resource Screen (page 9-29) is displayed.

37. Select the Service option.

38. Enter the file name for the resource file. The default file name is
resources/componentname_service.htm.

Note: If you do not change the name of the query and this component is loaded last, the
custom query will override the standard query and any other custom queries with the same
name.
5-8 Working with Components

Using the Component Wizard
If a resource file has been created for services, you can append the new service
table to the existing file by selecting the file name. Any changes you make to the
load order at this time will apply to the entire resource file.

To create a new resource file with a different file name, enter the file name.

39. If you want the new resource file to be loaded in a particular order, enter the number in
the Load Order field.

40. Click Next.

The Add Service Table Information screen is displayed (Add Service Table
Information Screen (page 9-17)).

41. Enter a name for the service table.

It is a good idea to leave the name of the component as a prefix.

Each service table in a component must have a unique name, even if the tables are
in different resource files.

42. Click Next.

The Add/Edit Service Screen (page 9-31) is displayed.

43. To start with an existing service definition:

a. Click Select.

A list of commonly used services is displayed.

b. Select the Show All check box to show the entire list of predefined services.

c. Select a service from the list.

To view a service’s details, click Preview. The Preview Information for Service
Screen (page 9-34) is displayed. Use this screen to view information about the
service and the service actions.

d. Click OK.

The service attributes and actions are filled in.

44. Edit the service attributes and actions as necessary.

Note: Unless you have a particular reason for the resource file to be loaded after other
resources, you should leave the load order set to 1.

Note: If you do not change the name of the service and this component is loaded last, the
custom service will override the standard service and any other custom services with the
same name.
Working with Components 5-9

Using the Component Wizard
Actions must appear in the Actions list in order of execution. Use the Up and
Down buttons to move the selected action.

To add an action, click Add. The Add Action screen is displayed (Add/Edit
Action Screen (page 9-10)). Enter the action definition and click OK.

To edit an action, select the action and click Edit. Modify the action definition and
click OK.

To remove an action, select the action and click Delete.

45. Click Finish.

A dialog box asks if you want to launch the text editor to continue editing.

46. Click Yes to open the resource file in the text editor. Click No to return to the
Component Wizard.

The service resource file now appears in the Custom Resource Definition list, and the
service table appears in the Table Name list in the right pane.

Creating an HTML Include
An HTML include is a piece of reusable code that is referenced from a placeholder in
another file or from another location in the same file. An include resource defines pieces
of code that are used to build the Content Server web pages. Includes are resolved by the
Content Server each time a web page is assembled. For this reason, includes are
sometimes called dynamic content resources.

Follow these steps to add an HTML include resource:

47. On the Component Wizard main screen in the Resource Definition section, click Add.

The Add Resource screen is displayed (Add Resource Screen (page 9-29)).

48. Select the Resource - HTML Include/String option.

49. Enter the file name for the resource file. The default file name is
componentname_resource.htm.

If a resource file has been created for includes, strings, and/or static tables, you
can append the include to the existing file by selecting the file name. Any changes
you make to the load order at this time will apply to the entire resource file.

To create a new resource file with a different file name, enter the file name.
5-10 Working with Components

Using the Component Wizard
50. If you want the new resource file to be loaded in a particular order, enter the number in
the Load Order field.

51. Click Next.

The Add HTML Resource Include/String screen is displayed (Add/Edit HTML
Resource Include/String Screen (page 9-25)).

52. Select the Include option.

53. To start with the code from an existing HTML include:

a. Click Select.

A list of commonly used includes is displayed.

b. Select the Show All check box to show the entire list of predefined includes.

c. Select an include from the list.

d. Click OK.

The include code is displayed and the Name field is filled in.

54. Edit the include code as necessary.

55. Click Finish.

A dialog box asks if you want to launch the text editor to continue editing.

56. Click Yes to open the resource file in the text editor. Click No to return to the
Component Wizard.

The resource file now appears in the Custom Resource Definition list, and the include
appears in the Custom HTML Includes list.

Creating a String Resource
A string resource defines locale-sensitive text strings that are used in error messages and
on Content Server web pages and applets.

Use the following procedure to create a string resource using the Component Wizard.

Note: Unless you have a particular reason for the resource file to be loaded after other
resources, you should leave the load order set to 1.

Note: If you do not change the name of the include and this component is loaded last, the
custom include will override the standard include and any other custom includes with the
same name.
Working with Components 5-11

Using the Component Wizard
57. In the Component Wizard, open the component the resource will be created for.

58. On the Resource Definition tab, click Add.

The Add Resource Screen (page 9-29) is displayed.

59. Select the Resource - HTML Include/String option.

60. Enter the file name for the resource file. The default file name is
componentname_resource.htm.

• If a resource file has been created for includes, strings, and/or static tables, you
can append the include to the existing file by selecting the file name. Any changes
you make to the load order at this time will apply to the entire resource file.

• To create a new resource file with a different file name, enter the file name.

61. If you want the new resource file to be loaded in a particular order, enter the number in
the Load Order field.

62. Click Next.

The Add/Edit HTML Resource Include/String Screen (page 9-25) screen is displayed.

63. Select the String option.

64. Enter the name of the string in the Name field (for example, myString.)

65. Edit the string code as necessary (for example, This is my string text.)

66. Click Finish.

A dialog box asks if you want to launch the text editor to continue editing.

67. Click Yes to open the resource file in the text editor. Click No to return to the
Component Wizard.

The resource file now appears in the Custom Resource Definition list, and the string
appears in the Custom Strings list.

Note: Unless you have a particular reason for the resource file to be loaded after other
resources, you should leave the load order set to 1.

Note: If you enter the name of an existing string and this component is loaded last, the
custom string will override the standard string and any other custom strings with the same
name.
5-12 Working with Components

Using the Component Wizard
Creating a Dynamic Table Resource
A dynamic table provides dynamic (often changed) content in table format to the Content
Server.

Use the following procedure to create a dynamic table resource using the Component
Wizard.

68. In the Component Wizard, open the component the resource will be created for.

69. On the Resource Definition tab, click Add.

The Add Resource Screen (page 9-29) is displayed.

70. Select the Resource - Dynamic Table (Hda Format) option.

71. Enter the file name for the resource file. The default path and file name is
resources/componentname_resource.hda.

If a resource file has been created for dynamic tables, you can append the new
table code to the existing file by selecting the file name. Any changes you make to
the load order at this time will apply to the entire resource file.

To create a new resource file with a different file name, enter the file name.

72. If you want the new resource file to be loaded in a particular order, enter the number in
the Load Order field.

73. Click Next.

The Add Dynamic Resource Table Information Screen (page 9-18) is displayed.

74. Enter a name for the dynamic table. It is a good idea to leave the name of the
component as a prefix.

75. To merge the new table with an existing table, select the Merge To check box and
select a table from the list.

76. Click Finish.

If you selected a table to merge to, a dialog box asks if you want to launch the text
editor to continue editing.

If you did not select a table to merge to, the Column Information Screen (page
9-37) is displayed.
a. Enter a column name in the Column Name field.

Note: Unless you have a particular reason for the resource file to be loaded after other
resources, you should leave the load order set to 1.
Working with Components 5-13

Using the Component Wizard
b. Click Insert. Repeat these steps until all of the table columns have been
entered.

c. Click OK.

A dialog box asks if you want to launch the text editor to continue editing.

77. Click Yes to open the resource file in the text editor. Click No to return to the
Component Wizard.

The resource file now appears in the Custom Resource Definition list, and the table
appears in the right pane of the Resource Definition tab.

Creating a Static Table Resource
Use the following procedure to create a static table resource using the Component Wizard.

78. In the Component Wizard, open the component the resource will be created for.

79. On the Resource Definition tab, click Add.

The Add Resource Screen (page 9-29) is displayed.

80. Select the Resource - Static Table (HTML Format) option.

81. Enter the file name for the resource file. The default file name is
componentname_resource.htm.

If a resource file has been created for static tables, includes, and/or strings, you
can append the static table code to the existing file by selecting the file name. Any
changes you make to the load order at this time will apply to the entire resource
file.

To create a new resource file with a different file name, enter the file name.

82. If you want the new resource file to be loaded in a particular order, enter the number in
the Load Order field.

83. Click Next.

The Add Static Resource Table Information Screen (page 9-20) is displayed.

84. Enter a name for the static table. It is a good idea to leave the name of the component
as a prefix.

85. To merge the new table with an existing table, select the Merge To check box and
select a table from the list.

Note: Unless you have a particular reason for the resource file to be loaded after other
resources, you should leave the load order set to 1.
5-14 Working with Components

Using the Component Wizard
86. Click Finish.

If you selected a table to merge to, a dialog box asks if you want to launch the text
editor to continue editing.

If you did not select a table to merge to, the Column Information Screen
(page 9-37) is displayed.
a. Enter a column name in the Column Name field.
b. Click Insert.
c. Repeat steps a and b until all of the table columns have been entered.
d. Click OK.

A dialog box asks if you want to launch the text editor to continue editing.

87. Click Yes to open the resource file in the text editor. Click No to return to the
Component Wizard.

The resource file now appears in the Custom Resource Definition list, and the table
appears in the Resource Tables list.

Enabling the Component
After creating a component, you should enable it and test it.

From the Component Wizard main screen, select Options—Enable.

Restart the Content Server.

Test the newly created component.

ADDITIONAL COMPONENT WIZARD TASKS
In addition to creating custom components, you can use the Component Wizard to build
zip files of your components and create custom installation parameters.

Building a Component Zip File
The Build function of the Component Wizard enables you to build a component zip file
(or ‘package’), which can then be saved as a backup or unpackaged to deploy the
component on other Content Servers.

Use the following procedure to build a component zip file:

1. Open the component in the Component Wizard.
Working with Components 5-15

Using the Component Wizard
2. Select Build—Build Settings.

The Build Settings screen is displayed (Build Settings Screen (page 9-47)).

A Component entry for the glue file and a ComponentExtra entry for a readme.txt file
are created automatically. You should not remove the glue file entry, but you can
delete the readme.txt entry.

3. Click Add.

The Add screen is displayed (Add Screen (page 9-14)).

4. Select an Entry Type. See Manifest File (page 3-9) for more information.

5. In the Sub Directory or File field, enter the location of the files for the selected entry
type.

For the Component entry type, this setting is the file name for the glue file.

For other entry types, enter a path to select all files in a particular sub-directory, or
enter a path and file name to select an individual file.

The location should be a path relative to the <install_dir>/custom/ directory. You
can use an absolute path (such as C:/stellent/custom/my_component/), but then the
component can only be installed on Content Servers with the same installation
directory path.

6. Continue adding entry types and specifying the subdirectories until all of the files of
your component are included.

7. Click OK.

8. Select Build—Build.

The Build screen is displayed (Main Build Screen (page 9-44)).

9. Click OK.

The Component Wizard builds the component zip file in the
<install_dir>/custom/component_name/ directory.

Working With Installation Parameters
The Install/Uninstall Settings tab is used to create customized installation components that
can include preference data parameters. These parameters can be user prompts and

Note: Always use forward slashes in the path.
5-16 Working with Components

Using the Component Wizard
messages. Depending on how they are defined, the prompts and messages are displayed
during the installation processes. These custom installation parameters allow the
component author to ask for information from users before the component is installed.

To define custom installation parameters for a component:

1. In the Component List screen (Component List Screen (page 9-2)), select the
component that will have custom installation parameters defined.

2. Click Open.

3. Select the Install/Uninstall Settings tab (Add/Edit Preference Screen (page 9-40)) and
select the appropriate check boxes:

Has Install/Uninstall Filter

Has Install Strings

Generally, both options will be used to create the desired installation parameters.

4. Click the Launch Editor for the Install/Uninstall Filter option to open a Java code
template file. Edit the existing code and include additional Java code to the template
as necessary to create the filter procedures.

Each filter procedure will run once during the component installation and/or uninstall
procedure. The values of user responses are saved in the installation configuration
(install.cfg and config.cfg) files. See Custom Installation Parameter Files (page 3-12)
for details.

5. Save and close the Install/Uninstall Filter Java code file.

6. Click the Add button on the Preference Data Setup pane to open the Add Preference
screen (Add/Edit Preference Screen (page 9-40)).

7. Click the Launch Editor for the Install Strings option to open a Java code template
file. Edit the existing code and include additional Java code to the template as
necessary to define the set up prompts or messages.

Keep both the Add Preference screen and the Install Strings HTML template open to
use simultaneously. Complete the fields on the Add Preference screen as necessary.
Add the actual message or prompt text to the Install Strings HTML.

8. Save and close the Install Strings Java code file.

9. Open the Build Settings screen (Build Settings Screen (page 9-47)) by selecting
Build—Build Settings.

10. Complete the fields on the Build Settings screen as necessary.
Working with Components 5-17

Using the Component Wizard
11. If components have been specified to be included in the component zip file, they will
need to be added as component extras using the Add screen (Add Screen (page 9-14)).

Click the Add button to open the Add screen. Add each component individually.

12. Click OK.

13. If necessary, add more components to the zip file as component extras.

14. On the Build Settings screen, click OK to create the component zip file.

The zip file can be shipped to clients and can be installed using either the Component
Wizard or the Component Manager within the Content Server.

Enabling and Disabling a Component
Use one of the following procedures to enable or disable a component from the
Component Wizard:

Option 1
1. Open the component in the Component Wizard.

2. From the The Component Wizard Main Screen (page 9-3), select Options—Enable
or Options—Disable.

3. Restart the Content Server.

The component is now enabled or disabled.

4. Navigate to the pages affected by the component to ensure that the addition or removal
of the customizations is working as you expected.

Option 2
1. Use either of the following methods to display the Component List Screen (page 9-2):

• Start the Component Wizard.

• From the The Component Wizard Main Screen (page 9-3), select Options—
Open.

2. Select the component to be enabled or disabled.

3. Click Enable or Disable.

Tech Tip: Components can also be enabled and disabled using the Component Manager.
See Enabling and Disabling a Component (page 6-3).
5-18 Working with Components

Using the Component Wizard
4. Restart the Content Server.

The component is now enabled or disabled.

5. Navigate to the pages affected by the component to ensure that the addition or removal
of the customizations is working as you expected.

Removing a Component
Use the following procedure to remove a component from the Content Server:

1. Disable the component you want to remove.

2. If the component to be removed is open in the Component Wizard, open a different
component or close and restart the Component Wizard. (A component cannot be
removed if it is open.)

3. Use either of the following methods to display the Component List Screen (page 9-2):

• Launch the Component Wizard.

• From the The Component Wizard Main Screen (page 9-3), select Options—
Open.

4. Select the component to be removed.

5. Click Remove.

A confirmation screen is displayed.

6. Click Yes.

The component no longer appears in the Component List.

Opening a Component
Use the following procedure to open a component that has already been added to the
Content Server:

1. Use either of the following methods to display the Component List Screen (page 9-2):

• Start the Component Wizard. See The Component Wizard Main Screen
(page 9-3).

Note: Removing a component means that the Content Server no longer recognizes the
component, but the component files are not deleted from the file system.
Working with Components 5-19

Using the Component Wizard
• From the The Component Wizard Main Screen (page 9-3), select Options—
Open.

2. Select the component to be opened.

3. Click Open.

The component resources are shown in the Custom Resource Definition list on the
Component Wizard main screen.

Configuring the Default HTML Editor
You can edit text-based component files directly from the Component Wizard by
launching the HTML editor.

For Windows, Microsoft WordPad (wordpad.exe) is the default.

For UNIX, vi is the default.

Use the following procedure to define the default HTML editor:

1. Display the The Component Wizard Main Screen (page 9-3).

2. Select Options—Configuration.

The Component Configuration Screen (page 9-8) is displayed.

3. Click Browse.

4. Navigate to and select the executable file for the HTML editor you want to use.

5. Click Open.

6. Click OK.

When you click any Launch Editor button in the Component Wizard, the file will open
in the selected program.

Unpackaging a Component
Use the following procedure to unpackage a component Zip file:

Important: Specify a text editor (such as WordPad) rather than a graphical HTML editor
(such as FrontPage). Graphical editors can insert or change HTML tags and might cause
Idoc Script tags to be converted into a string of characters that will not be recognized by
the Content Server.
5-20 Working with Components

Using the Component Wizard
1. Use either of the following methods to display the Unpackage Screen (page 9-8):

• From the The Component Wizard Main Screen (page 9-3), select Options—
Install.

• From the Component List Screen (page 9-2), click Install.

2. Click Select.

The Zip File Path screen is displayed.

3. Navigate to and select the component zip file.

4. Click Open.

The contents of the component zip file are listed on the Unpackage screen.

5. Click OK.

The component files are copied to the correct locations (there might be a short delay
while the files are unzipped), the Unpackage screen closes, and the component
resources are shown in the Custom Resource Definition list on the Component Wizard
main screen. The component is also added to the Component List.

Adding an Existing Component
Use the following procedure to add an existing unpackaged component to the Content
Server:

1. Use either of the following methods to display the Add Component Screen (page 9-6):

• From the The Component Wizard Main Screen (page 9-3), select Options—Add.

• From the Component List Screen (page 9-2), click Add.

2. Select the Use Existing Component option.

3. Click Browse.

4. Navigate to and select the component definition (hda) file (components.hda).

Note: If you unpackage a component with the same name as an existing component on the
Content Server, the older component will be zipped and copied to the <install_dir>/bin/
directory, with a filename beginning with “backup” and ending with a time stamp (such as
backup1008968718221.zip).

Note: Unpackaging a component does not enable it. See Enabling and Disabling a
Component (page 5-18).
Working with Components 5-21

Using the Component Wizard
5. Click Open.

The path and file name are displayed in the FilePath field.

6. Click OK.

The component resources are shown in the Custom Resource Definition list on the
Component Wizard main screen. The component is also added to the Component List.

Note: Adding an existing component does not enable it. See Enabling and Disabling a
Component (page 5-18).
5-22 Working with Components

C h a p t e r

6.USING THE COMPONENT MANAGER
This chapter discusses using the Component Manager to upload, install, and enable
components. It has the following sections:

Component Manager Main Page (page 6-1)

Component Manager Tasks (page 6-3)

COMPONENT MANAGER MAIN PAGE
The Component Manager page is used to enable, disable, upload, and download
components. Use the following procedure to access the Component Manager page of the
Admin Server.

1. Log into the Content Server as the system administrator.

2. Click the Administration link in the portal navigation bar.

3. Scroll down, and click the Admin Server link.

4. Click the <instance_name> button to display the options for the Content Server.

5. Click the Component Manager link in the left sidebar.
Working with Components 6-1

Using the Component Manager
Figure 6-9 Component Manager screen

Feature Description

Enabled
Components list

Shows the components that are currently enabled. Components will
be loaded in the order shown in this list.

Disabled
Components list

Shows the components that are installed but currently disabled.

Enable button
Moves the selected component from the Disabled Components list to
the Enabled Components list.

Disable button
Moves the selected component from the Enabled Components list to
the Disabled Components list.

Install New
Component field

Enter the path of the component Zip file to be installed to the
Content Server or use the corresponding Browse button.
6-2 Working with Components

Using the Component Manager
COMPONENT MANAGER TASKS
This section describes the following tasks you can perform with the Component Manager:

Enabling and Disabling a Component (page 6-3)

Uploading a Component (page 6-4)

Downloading a Component (page 6-5)

Enabling and Disabling a Component
Use the following procedure to enable or disable a component from the Component
Manager:

1. Display the Component Manager page.

Browse button Used to navigate to and select an existing component Zip file.

Install button
Installs the component Zip file specified in the Install New
Component field.

Reset button Clears the Install New Component field.

Download
Component field

Select a component to be downloaded to a component Zip file.

Download button
Displays a File Download screen, which is used to save the selected
component as a component Zip file.

Uninstall
Component field

Select a component to be uninstalled from the Content Server. The
listed components are derived from the Disabled Components list.

Uninstall button Uninstalls the component listed in the Uninstall Component field.

Update
Component
Configuration
field

Select the component to update component configuration
parameters. The listed parameters are those that are defined as being
editable after the component is installed. This does not require a
Content Server restart

Update button Displays the Update Component Configuration page

Feature Description
Working with Components 6-3

Using the Component Manager
2. Select the component to enable or disable.

3. Click the Enable or Disable button.

The selected component moves to the other list, and a reminder to restart the Content
Server is displayed.

4. Click the Start/Stop Content Server link in the left sidebar.

The Specific Instance Page is displayed.

5. Click the Restart icon.

The Content Server restarts, and the component is now enabled or disabled.

6. Navigate to the pages affected by the component to ensure that the addition or removal
of the customizations is working as you expected.

Uploading a Component
Use the following procedure to upload a component zip file using the Component
Manager:

1. Display the Component Manager page.

2. Click the Browse button next to the Upload New Component field.

3. Navigate to and select the component zip file.

4. Click Open.

The path and file name appears in the Upload New Component field.

5. Click Upload.

The component files are unpackaged on the Content Server, and the name of the
component appears in the Disabled Components list.

Note: When the Content Server is started, enabled components are loaded in the order
shown in the Enabled Components list.

Tech Tip: Components can also be uploaded (unpackaged) using the Component Wizard.
See Chapter 5 (Using the Component Wizard) for details.

Note: Uploading a component does not enable it. See Enabling and Disabling a
Component (page 6-3) for details.
6-4 Working with Components

Using the Component Manager
6. If you are having difficulty uploading the component, check the Content Server output
messages by clicking the View Server Output link in the left sidebar. The Content
Server Output Page is displayed where you can verify the recent actions.

Downloading a Component
Use the following procedure to package a component as a component zip file:

1. Display the Component Manager page.

2. Select the component to be packaged from the Download Component list.

3. Click Download.

The File Download screen is displayed.

4. Select the Save this file to disk option and click OK.

The Save As screen is displayed.

5. Navigate to the directory where you want to save the component zip file.

6. Change the name of the component zip file as necessary.

7. Click Save.

The component is saved as a component zip file.
Working with Components 6-5

C h a p t e r

7.COMPONENT FILE DETAILS
This chapter discusses the HDA file type and the Component Definition (glue) file in more
details. The following topics are discussed:

The components.hda file (page 7-1)

Component Definition (Glue) File (page 7-3)

The information in this chapter is intended as reference material and should not be used to
create files manually. You should always use the Component Wizard to create your
component files.

You may want to refer to the files that were created during the tutorial (Creating a Custom
Component (page 5-3)) as you read through this information.

THE COMPONENTS.HDA FILE
The components.hda file tells the Content Server which components are enabled and
where to find the component definition (“glue”) file for each component. It is always
stored in the <install_dir>/config/ directory.

The file always includes a ResultSet called Components that defines the name and file
path of each glue file. You can use the Component Wizard or the Component Manager to
make changes to the components HDA file. See Enabling and Disabling a Component
(page 2-4) for more information.

In the following example of a components.hda file, two components called “My
Component” and “CustomHelp” are enabled.
Working with Components 7-1

Component File Details
Figure 7-10 Component.hda with enabled components

Components ResultSet
The order that components are listed in the Components ResultSet determines the order
that components are loaded when you start the Content Server. If a component listed later
in the ResultSet has a resource with the same name as an earlier component, the resource
in the later component will take precedence.

A Components ResultSet has two columns:

The name column provides a descriptive name for each component, which is used in
the Component Wizard, Component Manager, and Content Server error messages.

The location column defines the location of the glue file for each component. The
location can be an absolute path or can be a path relative to the Content Server install
directory.

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet Components
2
name
location
MyComponent
custom/MultiCheckin/my_component.hda
CustomHelp
custom/customhelp/customhelp.hda
@end

Note: Always use forward slashes in the location path.
7-2 Working with Components

Component File Details
COMPONENT DEFINITION (GLUE) FILE
A component definition file, or glue file, points to the custom resources that you have
defined. The glue file for a component is named component_name.hda, and is typically
located in the <install_dir>/custom/component_name/ directory. The Component Wizard
can be used to create and make changes to a glue file.

A glue file includes a ResourceDefinition ResultSet (page 7-5), and may contain a
MergeRules ResultSet (page 7-6), a Filters ResultSet (page 7-8), and/or a ClassAliases
ResultSet (page 7-8).

The following example shows a typical component glue file.
Working with Components 7-3

Component File Details
Figure 7-11 Typical component glue file

@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null
1
resource
dcl_upper_clmns_map.htm
DCLColumnTranslationTable
1
resource
dcl_data_sources.htm
dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end

@ResultSet MergeRules
3
fromTable
toTable
column
DCLCustomTemplates
IntradocTemplates
name
DCLColumnTranslationTable
ColumnTranslation
alias
DCLDataSources
DataSources
name
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
@end

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end
7-4 Working with Components

Component File Details
ResourceDefinition ResultSet
The ResourceDefinition ResultSet table defines the type, file name, table names, and load
order of custom resources. The following example shows the structure of a
ResourceDefinition ResultSet.

Figure 7-12 ResultSet structure

ResourceDefinition ResultSet Columns
A ResourceDefinition ResultSet consists of four columns:

@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null
1
resource
dcl_upper_clmns_map.htm
DCLColumnTranslationTable
1
resource
dcl_data_sources.htm
dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end
Working with Components 7-5

Component File Details
The type column defines the resource type, which must be one of the following
values:

• resource, which points to an HTML include (HTM), string (HTM), dynamic table
(HDA), or static table (HTM) resource file.

• environment, which points to an environment resource (CFG) file.

• template, which points to a template resource (HDA) file.

• query, which points to a query resource (HTM) file.

• service, which points to a service resource (HTM) file.

The filename column defines the path and file name of the custom resource file. This
can be an absolute path or a relative path. Relative paths are relative to the
<install_dir>/custom/component_name/ directory.

The tables column defines the ResultSet tables to be loaded from the resource file.
ResultSet names are separated with a comma. If the resource file does not include
ResultSets, this value is null. For example, HTML include resources do not include
table definitions, so the value for the tables column will always be null for an HTML
include file.

The loadOrder column defines the order in which the resource is loaded. Resources
are loaded in ascending order, starting with resources that have a loadOrder of 1. If
more than one resource has the same loadOrder, the resources are loaded in the order
they are listed in the ResourceDefinition ResultSet. If there is more than one resource
with the same name, the last resource loaded is the one used by the system. Normally,
you should set the loadOrder to 1, unless there is a particular reason to always load
one resource after the others.

MergeRules ResultSet
The MergeRules ResultSet table identifies new tables that are defined in a custom
component, and specifies which existing tables the new data will be loaded into.
MergeRules are required for custom template resources but are optional for custom
dynamic table and static table resources. MergeRules are not required for custom service,
query, HTML include, string, and environment resources.
7-6 Working with Components

Component File Details
The following example shows a MergeRules ResultSet.

Figure 7-13 MergeRules ResultSet

MergeRules Columns
A MergeRules ResultSet consists of three columns:

The fromTable column specifies a table that was loaded by a custom resource and
contains new data to be merged with the existing data. To properly perform a merge,
the fromTable must have the same number of columns and the same column names as
the toTable.

The toTable column specifies the name of the existing table into which the new data
will be merged. Usually, the toTable value is one of the standard Content Server
tables, such as IntradocTemplates or QueryTable.

The column column is the name of the table column that the Content Server uses to
compare and update data.

• The Content Server compares the values of the specified column in the fromTable
and toTable. For each fromTable value that is identical to a value already in the
toTable, the row in the toTable is replaced by the row in the fromTable. For each

@ResultSet MergeRules
4
fromTable
toTable
column
loadOrder
DCLCustomTemplates
IntradocTemplates
name
1
DCLColumnTranslationTable
ColumnTranslation
alias
1
DCLDataSources
DataSources
name
1
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
1
@end
Working with Components 7-7

Component File Details
fromTable value that is not identical to a value already in the toTable, a new row
is added to the toTable and populated with the data from the row of fromTable.

• The column value will usually be name. Setting this value to null defaults to the
first column, which is generally a name column.

Filters ResultSet
The Filters ResultSet table defines filters, which are used to execute custom Java code
when certain Content Server events are triggered, such as when new content is checked in
or when the server first starts up. The following example shows a typical Filters ResultSet.

Figure 7-14 Filters ResultSet

ClassAliases ResultSet
The ClassAliases ResultSet table points to custom Java class files, which are used to
extend the functionality of an entire Content Server Java class. The following example
shows a typical ClassAliases ResultSet.

Figure 7-15 ClassAliases ResultSet

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end

@ResultSet ClassAliases
2
classname
location
WorkflowDocImplementor
WorkflowCheck.CriteriaWorkflowImplementor
@end
7-8 Working with Components

Component File Details
Working with Components 7-9

C h a p t e r

8.RESOURCES DETAIL
Resources are the files that define and implement the actual customizations you make to
the Content Server. Resources can be snippets of HTML code, dynamic page elements,
queries that gather data from the database, services that carry out Content Server actions,
or special code to conditionally format information.

The information in this chapter is intended as reference material and should not be used to
create any resource files manually. You should always use the Component Wizard to
create your resource files.

This chapter discusses the following resource categories:

HTML Include (page 8-2)

String (page 8-4)

Dynamic Tables (page 8-8)

Static Tables (page 8-9)

Query (page 8-9)

Service (page 8-12)

Templates (page 8-23)

Environment (page 8-32)

The custom resource files for a component are typically located in the
<install_dir>/custom/component_name/ directory. If your component has more than a
few resources, it is easier to maintain the files if you place them in sub-directories (such as
/resources or /templates) within the component directory.
Working with Components 8-1

Resources Detail
There are two ways to create and edit a resource file:

Manual editing—Open the resource file in a text editor and edit the code manually.
This is not recommended.

Component Wizard—You can add, edit, or remove a resource file from a component
using the Component Wizard. The Component Wizard provides code for predefined
resources that you can use as a starting point for creating custom resources. You can
also open resource files in a text editor from within the Component Wizard. Each
resource type described in this section includes step-by-step instructions for using the
Component Wizard to create and edit that type of resource.

See Creating a Custom Component (page 5-3) for details about using these resources.

HTML INCLUDE
An include is defined within <@dynamichtml name@> and <@end@> tags in an HTM
resource file. The include is then called using the syntax <$include name$>.

Includes can contain Idoc Script and valid HTML code, including JavaScript, Java
applets, cascading style sheets, and comments. Includes can be defined in the same file as
they are called from, or they can be defined in a separate HTM file. Standard HTML
includes are defined in the <install_dir>/shared/config/resources/std_page.htm file.

HTML includes, strings, and static tables can be present in the same HTM file. An HTML
include resource does not require merge rules.

The Super Tag
The super tag is used to define exceptions to an existing HTML include. The super tag
tells the include to start with an existing include and then add to it or modify using the
specified code.

The super tag is particularly useful when making small customizations to large includes or
when you customize standard code that is likely to change from one software version to
the next. When you upgrade to a new version of Content Server, the super tag ensures that
your components are using the most recent version of the include, modifying only the
specific code you need to customize your instance.

Note: You must restart the Content Server after changing a resource file.
8-2 Working with Components

Resources Detail
The super tag uses the following syntax:
<@dynamichtml my_resource@>

<$include super.my_resource$>
exception code

<@end@>

You can use the super tag to refer to a standard include or a custom include. The super tag
incorporates the include that was loaded last. You can also specify multiple super tags to
call an include that was loaded earlier than the last version.

Super Tag Example
In this example, a component defines the my_resource include as follows:

<@dynamichtml my_resource@>
<$a = 1, b = 2$>

<@end@>

Another component that is loaded later enhances the my_resource include using the super
tag. The result of the following enhancement is that “a” is assigned the value 1 and “b” is
assigned the value 3:

<@dynamichtml my_resource@>
<$include super.my_resource$>
<!--Change "b" but not "a" -->
<$b = 3$>

<@end@>

Editing an HTML Include Resource
Use the following procedure to edit an existing HTML include resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If the resource file contains more than one type of resource, select the Includes tab in
the right pane.

4. Modify the includes in the Custom HTML Includes list.

Caution: If you use multiple super tags in one include, make sure that you know where
the resources are loaded from and the order they are loaded in.
Working with Components 8-3

Resources Detail
To edit an existing include, select the include and click Edit. Modify the code and
click OK.

To add an include to the resource file, click Add.

To remove an include, select the include and click Delete. Click Yes to confirm.

STRING
A string resource defines locale-sensitive text strings that are used in error messages and
on Content Server web pages and applets. Strings are resolved by the Content Server each
time a web page is assembled, an applet is started, or an error message is displayed.

A string is defined in an HTM file using the following format:
<@stringID=Text string@>

A string is called from an HTM template file using the following Idoc Script format:
<$lc("wwStringID")$>

Standard English strings are defined in the <install_dir>/shared/config/resources/lang/
directory. Strings for supported languages are located in subdirectories of the /lang/
directory.

HTML includes, strings, and static tables can be present in the same HTM file. A string
resource does not require merge rules.

You must use HTML escape encoding to include the following special characters in a
string value:

Note: On Content Server web pages, you should use only the strings in the
ww_strings.htm file.

Escape Sequence Character

&at; @

\&lf; line feed (ASCII 10)

\&cr; carriage return (ASCII 13)

\&tab; tab (ASCII 9)

\&eatws; Eats white space until the next non-white space character.
8-4 Working with Components

Resources Detail
You can specify strings for more than one language in the same resource file using the
language identifier prefix, as long as the languages are all single-byte or all multi-byte. For
example:

<@myString=Thank you@>
<@es.myString=Gracias@>
<@fr.myString=Merci@>
<@de.myString=Danke@>

If you are specifying multi-byte strings in your custom string resource, you must change
the character set specification on your HTML pages to the appropriate encoding. The
easiest way to do this is to change the default character set from “iso-8859-1” to “UTF-8”
in the std_html_head_definition_declarations include in the
<install_dir>/shared/config/resources/std_page.htm file:

<@dynamichtml std_html_head_definition_declarations@>
<$if not noHeadDefinitionDeclarations$>
<$if PageCharset$><$charset = PageCharset$>
<$else$><$charset = "iso-8859-1"$><$endif$>
<$if PageTitle$><$pageTitle = eval(PageTitle)$>
<$else$><$pageTitle = defaultPageTitle$><$endif$>
<meta http-equiv="Content-Type" content="text/html;charset=<$charset$>">
<meta name="GENERATOR" content="Idc Content 4.0">
<title><$pageTitle$></title>
<$endif$>

<@end@>

\< < (less than)

\> > (greater than)

\&sp; space (ASCII 32)

\&#xxx; ASCII character represented by decimal number xxx

Escape Sequence Character

Caution: Do not specify single-byte strings and multi-byte strings in the same resource
file. You should create separate resource files for single-byte and multi-byte strings.
Working with Components 8-5

Resources Detail
String Parameters
Text strings can contain variable parameters, which are specified by placing the parameter
argument inside curly braces (for example, {1}). When a string is localized, the arguments
are passed along with the string ID and the ExecutionContext that contains the locale
information. The following table describes the syntax for parameterized strings:

Syntax Meaning Examples

{{} Opening curly brace. (Note that
only the opening curly brace needs
to be expressed as a literal.)

{{}Text in braces}

{n} Substitute the nth argument. Content ID {1} not found

{ni} Substitute the nth argument,
formatted as an integer.

dID {1i} does not exist

{nd} Substitute the nth argument,
formatted as a date.

The release date is {1d}

{nD} Substitute the nth argument,
formatted as a date. The argument
should be ODBC-formatted.

The release date is {1D}

{nt} Substitute the nth argument,
formatted as a date and time.

The release date is {1t}

{nT} Substitute the nth argument,
formatted as a date and time. The
argument should be ODBC-
formatted.

The release date is {1T}

{nfm} Substitute the nth argument,
formatted as a float with m decimal
places.

The distance is {1f3}
miles.

{nk} Substitute a localized string using
the nth argument as the string ID.

Unable to find {1k}
revision of {2}
8-6 Working with Components

Resources Detail
{nm} Localize the nth argument as if it
were a string-stack message. (For
example, the argument could
include concatenated text strings
and localized string IDs.)

Indexing internal error:
{1m}

{nl} Substitute the nth argument as a
list. The argument must be a list
with commas (,) and carets (^) as
the separators.

Add-ons: {1l}

{nq} If the nth argument is non-null and
non-zero in length, substitute the
argument in quotation marks.
Otherwise, substitute the string
“syUndefined”.

Content item {1q} was
not successfully checked
in

{n?text} If the value of the nth argument is
not 1, substitute the text.

{1} file{1?s} deleted

{n?text1:text2} If the value of the nth argument
is not 1, substitute text1.

If the value of the nth argument
is 1, substitute text2.

There {1?are:is} currently
{1} active search{1?es}.

{n?text1:text2:text3} If the value of the nth argument
is not 1 or 2, substitute text1.

If the value of the nth argument
is 2, substitute text2.

If the value of the nth argument
is 1, substitute text3.

Contact {1?their:her:his}
supervisor.

Note: The (n?) function can be extended with as many substitution variables as
required. The last variable in the list always corresponds to a value of 1.

Syntax Meaning Examples
Working with Components 8-7

Resources Detail
Editing a String Resource
Use the following procedure to edit an existing string resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If the resource file contains more than one type of resource, select the Strings tab in
the right pane.

4. Modify the strings in the Custom Strings list.
To edit an existing string, select the string and click Edit. Modify the string text
and click OK.
To add a string to the resource file, click Add.
To remove a string, select the string and click Delete. Click Yes to confirm.

DYNAMIC TABLES
Dynamic table resources are defined in the HDA file format. See Elements in HDA files
(page 3-2) for more information and an example of an HDA ResultSet table. Merge rules
are required for a dynamic table resource if data from the custom resource replaces data in
an existing table. Merge rules are not required if data from the custom resource is to be
placed in a new table.

Editing a Dynamic Table Resource
Use the following procedure to edit an existing dynamic table resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource file in the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the table in the text editor.

5. Save and close the resource file.

Changes are reflected in the right pane of the Resource Definition tab.
8-8 Working with Components

Resources Detail
STATIC TABLES
Static tables, HTML includes, and strings can be present in the same HTM file. Merge
rules are required for a static table resource if data from the custom resource replaces data
in an existing table. Merge rules are not required if data from the custom resource is to be
placed in a new table.

Editing a Static Table Resource
Use the following procedure to edit an existing static table resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource file in the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the table in the text editor.

5. Save and close the resource file.

Changes are reflected in the Resource Tables list.

QUERY
A query resource defines SQL queries, which are used to manage information in the
Content Server database. Queries are used in conjunction with service scripts to perform
tasks such as adding to, deleting, and retrieving data from the database.

The standard Content Server queries are defined in the QueryTable table in the
<install_dir>/config/shared/resources/query.htm file. You will also find special-purpose
queries in the indexer.htm and workflow.htm files that are stored in the
<install_dir>/config/shared/resources/ directory. Merge rules are not required for a query
resource.

A query resource is defined in an HTM file using a ResultSet table with three columns:
name, queryStr, and parameters.

The name column defines the name for each query. To override an existing query, use
the same name for your custom query. To add a new query, use a unique query name.
When naming a new query, identify the type of query by starting the name with one of
the following characters:
Working with Components 8-9

Resources Detail
The queryStr column defines the query expression. Query expressions are in standard
SQL syntax. If there are any parameter values to pass to the database, their place is
held with a question mark (?) as an escape character.

The parameters column defines the parameters that are passed to the query from a
service. A request from a web browser calls a service, which in turn calls the query. It
is the responsibility of the web browser to provide the values for the query parameters,
which are standard HTTP parameters The browser can pass query parameters from the
URL or from FORM elements in the web page. For example, the QdocInfo query
requires the dID (revision ID) to be passed as a parameter, so the value is obtained
from the service request URL.

The following example shows the standard QdocInfo query as defined in the
<install_dir>/shared/config/resources/query.htm file. This query obtains the metadata
information to display on the DOC_INFO template page, which is the page displayed
when a user clicks the information icon on a search results page.

The parameter passed from the web browser URL is the dID, which is the unique
identification number for the content item revision. The query expression selects the data
for the primary revision from the Revisions, Documents, and DocMeta database tables that
matches the dID, as long as the revision does not have “Deleted” status.

Figure 8-16 Standard QDocInfo query

First Character Query Type

D Delete

I Insert

Q Select

U Update
8-10 Working with Components

Resources Detail
Editing a Query Resource
Use the following procedure to edit a query resource using the Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If there is more than one table in the resource, select the query table to edit from the
Table Name list.

4. Modify the selected query table.

To add a query to the table, click Add.

To edit an existing query, select the query and click Edit. Modify the query
expression and/or parameters and click OK.

To remove a query, select the query and click Delete. Click Yes to confirm.

<HTML>
<HEAD>
<META HTTP-EQUIV='Content-Type' content='text/html; charset=iso-8859-1'>
<TITLE>Query Definition Resources</TITLE>
</HEAD>
<BODY>
<@table QueryTable@>
<table border=1><caption>Query Definition Table</caption>
<tr>

<td>name</td>
<td>queryStr</td>
<td>parameters</td>

</tr>
<tr>

<td>QdocInfo</td>
<td>SELECT Revisions.*, Documents.*, DocMeta.*
FROM Revisions, Documents, DocMeta
WHERE Revisions.dID=? AND Revisions.dID=Documents.dID AND DocMeta.dID = Documents.dID AND
Revisions.dStatus<>'DELETED' AND Documents.dIsPrimary<>0</td>
<td>dID int</td>

</tr>
</table>
<@end@>
</BODY>
</HTML>
Working with Components 8-11

Resources Detail
SERVICE
A service resource defines a function or procedure that is performed by the Content
Server. A service call can be performed from either the client or server side, so services
can be performed on behalf of the web browser client or within the system itself. For
example:

Client-side request—When you click a “Search” link on a Content Server web page,
the standard search page is delivered to your web browser by the GET_DOC_PAGE
service using the following URL segment:
IdcService=GET_DOC_PAGE&Action=GetTemplatePage&Page=
STANDARD_QUERY_PAGE

Server-side request—You can use the START_SEARCH_INDEX service to update
or rebuild the search index automatically in a background thread.

Services are the only way a client can communicate with the server or access the database.
Any program or HTML page can use services to request information from the Content
Server or perform a specified function.

The standard Content Server services are defined in the StandardServices table in the
<install_dir>/config/shared/resources/std_services.htm file. You will also find special-
purpose services in the workflow.htm file in the <install_dir>/config/shared/resources/
directory.

Services depend on other resource definitions to perform their functions. Any service that
returns HTML requires a template to be specified. A common exception is the
PING_SERVER service, which does not return a page to the browser.

Most services use a query. A common exception is the SEARCH service, which sends a
request directly to the search collection. Merge rules are not required for a service
resource.

Important: This section provides an overview of custom service resources. See the
Services Reference Guide for comprehensive information on Content Server services.
8-12 Working with Components

Resources Detail
The following table row is an example of a service definition.

Figure 8-17 Service definition example

A service resource is defined in an HTM file using a ResultSet table with the following
three columns:

The Name column defines the name for each service. For client-side service requests,
this is the name called in the URL. To override an existing service, use the same name
for your custom service. To add a new service, use a unique service name.

The Attributes column defines the following attributes for each service:

Attribute Description
Example
(attributes from the DELETE_DOC service)

Service
class

Determines, in part, what actions can
be performed by the service.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Access
level

Assigns a user access level to the
service. This number is the sum of the
following possible bit flags:
READ_PRIVILEGE = 1
WRITE_PRIVILEGE = 2
DELETE_PRIVILEGE = 4
ADMIN_PRIVILEGE = 8
GLOBAL_PRIVILEGE = 16
SCRIPTABLE_SERVICE=32

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Template
page

Specifies the template that presents the
results of the service. If the results of
the service do not require presentation,
this attribute is null.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)
Working with Components 8-13

Resources Detail
The Actions column defines the actions for each service. An action is an operation to
be performed as part of a service script. Actions can execute an SQL statement,
perform a query, run code, cache the results of a query, or load an option list. Each
service includes one or more actions, which specify what happens upon execution.

The
 tags in the Actions column are for browser display purposes only, so they
are optional. However, the </td> tag must occur immediately after the actions,
without a line break in between. An action is defined using the following format:
type:name:parameters:control mask:error message

Service
type

If the service is to be executed inside
another service, this attribute is
SubService; otherwise, this attribute is
null.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Subjects
notified

Specifies the subjects (subsystems) to
be notified by the service. If no
subjects are notified, this attribute is
null.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Error
message

Defines the error message returned by
the service if no action error message
overrides it. This can be either an
actual text string or a reference to a
locale-sensitive string (see Resolving
Localized Strings in Customizing
Content Server for more information).

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Attribute Description
Example
(attributes from the DELETE_DOC service)
8-14 Working with Components

Resources Detail
Section Description
Example (first action from the
DELETE_DOC service)

Type Defines the type of action:
QUERY_TYPE = 1
EXECUTE_TYPE = 2
CODE_TYPE = 3
OPTION_TYPE = 4
CACHE_RESULT_TYPE = 5

5:QdocInfo:DOC_INFO:6:
!csUnableToDeleteItem(dDocName)!csRevision
NoLongerExists

Name Specifies the name of the action. 5:QdocInfo:DOC_INFO:6:
!csUnableToDeleteItem(dDocName)!csRevision
NoLongerExist

Parameters Specifies parameters required by the
action. If no parameters are required, leave
this part empty (two colons will appear in
a row).

5:QdocInfo:DOC_INFO:6:
!csUnableToDeleteItem(dDocName)!csRevision
NoLongerExist

Control
mask

Controls the results of queries to the
database. This number is the sum of the
following possible bit flags:
No control mask = 0
CONTROL_IGNORE_ERROR = 1
CONTROL_MUST_EXIST = 2
CONTROL_BEGIN_TRAN = 4
CONTROL_COMMIT_TRAN = 8
CONTROL_MUST_NOT_EXIST = 16

5:QdocInfo:DOC_INFO:6:
!csUnableToDeleteItem(dDocName)!csRevision
NoLongerExist

Error
message

Defines the error message to be displayed
by this action. This error message
overrides the error message provided as an
attribute of the service. This can be either
an actual text string or a reference to a
locale-sensitive string (see Resolving
Localized Strings in Customizing Content
Server for more information).

5:QdocInfo:DOC_INFO:6:
!csUnableToDeleteItem(dDocName)!cs
RevisionNoLongerExist
Working with Components 8-15

Resources Detail
Service Example
The DOC_INFO service provides a good example of how services, queries, and templates
work together. The following figures show the DOC_INFO service definition from the
<install_dir>/config/resources/std_services.htm file.

Figure 8-18 DOC_INFO service

<HTML>
<HEAD>
<META HTTP-EQUIV='Content-Type' content='text/html; charset=iso-8859-1'>
<TITLE>Standard Scripted Services</TITLE>
</HEAD>
<BODY>
<@table StandardServices@>
<table border=1><caption>Scripts For Standard Services</caption>
<tr>

<td>Name</td><td>Attributes</td><td>Actions</td>
</tr>
<tr>

<td>DOC_INFO</td>
<td>DocService

33
DOC_INFO
null
null

!csUnableToGetRevInfo</td>

<td>5:QdocInfo:DOC_INFO:2:!csItemNoLongerExists2
3:mapNamedResultSetValues:DOC_INFO,dStatus,dStatus,dDocTitle,dDocTitle:0:null
3:checkSecurity:DOC_INFO:0:!csUnableToGetRevInfo2(dDocName)
3:getDocFormats:QdocFormats:0:null
3:getURLAbsolute::0:null
3:getUserMailAddress:dDocAuthor,AuthorAddress:0:null
3:getUserMailAddress:dCheckoutUser,CheckoutUserAddress:0:null
3:getWorkflowInfo:WF_INFO:0:null
3:getDocSubscriptionInfo:QisSubscribed:0:null
5:QrevHistory:REVISION_HISTORY:0:!csUnableToGetRevHistory(dDocName)</td>

</tr>
</table>
<@end@>
</BODY>
</HTML>
8-16 Working with Components

Resources Detail
Attributes
The following table describes the attributes of the DOC_INFO service shown previously.

Attribute Value Description

Service class DocService This service is providing information about a content
item.

Access level 33 32 = This service can be executed with the
executeService Idoc Script function.
1 = The user requesting the service must have Read
privilege on the content item.

Template page DOC_INFO This service uses the DOC_INFO template (doc_info.htm
file). The results from the actions will be merged with
this template and presented to the user.

Service type null This service is not a subservice.

Subjects notified null No subjects are affected by this service.

Error Message !csUnableToGetRevInfo If this service fails on an English Content Server system,
it returns the error message string:
Unable to retrieve information about the revision
Working with Components 8-17

Resources Detail
Actions
The DOC_INFO service executes the following actions:

Action Definition Description

Action 1
5:QdocInfo:DOC_INFO:2:!csItemNoLongerExists2

5
 Cached query action that retrieves information from the
database using a query.

QDocInfo
This action retrieves content item information using the
QDocInfo query in the query.htm file.

DOC_INFO
The result of the query is assigned to the parameter
DOC_INFO and stored for later use.

2
The CONTROL_MUST_EXIST control mask specifies that
the query must return a record, or the action fails.

!csItemNoLongerExists2
If this action fails on an English Content Server system, it
returns the error message string:
This content item no longer exists

Action 2
3:mapNamedResultSetValues:DOC_INFO,dStatus,dStatus,dDocTitle,dDocTitle:0:null

3
Java method action specifying a module that is a part of the
Java class implementing the service.

mapNamedResultSetValues

This action retrieves the values of dStatus and dDocTitle
from the first row of the DOC_INFO ResultSet and stores
them in the local data. (This increases speed and ensures that
the correct values are used.)

DOC_INFO,dStatus,dStatus,
dDocTitle,dDocTitle

Parameters required for the mapNamedResultSetValues
action.

0 No control mask is specified.

null No error message is specified.
8-18 Working with Components

Resources Detail
Action 3
3:checkSecurity:DOC_INFO:0:!csUnableToGetRevInfo2(dDocName)

3
Java method action specifying a module that is a part of the
Java class implementing the service.

checkSecurity
This action retrieves the data assigned to the DOC_INFO
parameter and evaluates the assigned security level to verify
that the user is authorized to perform this action.

DOC_INFO
Parameter that contains the security information to be
evaluated by the checkSecurity action.

0 No control mask is specified.

!csUnableToGetRevInfo2(dDocName)
If this action fails on an English Content Server system, it
returns the error message string:
Unable to retrieve information for ''{dDocName}.”

Action 4
3:getDocFormats:QdocFormats:0:null

3
Java method action specifying a module that is a part of the
Java class implementing the service.

getDocFormats

This action retrieves the file formats for the content item
using the QdocFormats query in the query.htm file. A
comma-separated list of the file formats is stored in the local
data as dDocFormats.

QdocFormats Specifies the query used to retrieve the file formats.

0 No control mask is specified.

null No error message is specified.

Action Definition Description
Working with Components 8-19

Resources Detail
Action 5
3:getURLAbsolute::0:null

3
Java method action specifying a module that is a part of the
Java class implementing the service.

getURLAbsolute
This action resolves the URL of the content item and stores
it in the local data as DocUrl.

blank This action takes no parameters.

0 No control mask is specified.

null No error message is specified.

Action 6
3:getUserMailAddress:dDocAuthor,AuthorAddress:0:null

3
Java method action specifying a module that is a part of the
Java class implementing the service.

getUserMailAddress
This action resolves the e-mail address of the content item
author.

dDocAuthor,AuthorAddress
This action passes dDocAuthor and AuthorAddress as
parameters.

0 No control mask is specified.

null No error message is specified.

Action Definition Description
8-20 Working with Components

Resources Detail
Action 7
3:getUserMailAddress:dCheckoutUser,CheckoutUserAddress:0:null

3
Java method action specifying a module that is a part of the
Java class implementing the service.

getUserMailAddress
This action resolves the e-mail address of the user who has
the content item checked out.

dCheckoutUser,
CheckoutUserAddress

This action passes dCheckoutUser and
CheckoutUserAddress as parameters.

0 No control mask is specified.

null No error message is specified.

Action 8
3:getWorkflowInfo:WF_INFO:0:null

3
Java method action specifying a module that is a part of the
Java class implementing the service.

getWorkflowInfo
This action evaluates whether the content item is part of a
workflow. If the WF_INFO ResultSet exists, then workflow
information is merged into the DOC_INFO template.

WF_INFO This action passes WF_INFO as a parameter.

0 No control mask is specified.

null No error message is specified.

Action Definition Description
Working with Components 8-21

Resources Detail
Action 9
3:getDocSubscriptionInfo:QisSubscribed:0:null

3
Java method action specifying a module that is a part of the
Java class implementing the service.

getDocSubscriptionInfo

This action evaluates if the current user has subscribed to the
content item:

If the user is subscribed, an Unsubscribe button is
displayed.
If the user is not subscribed, a Subscribe button is
displayed.

QisSubscribed
Specifies the query used to retrieve the subscription
information.

0 No control mask is specified.

null No error message is specified.

Action 10
5:QrevHistory:REVISION_HISTORY:0:!csUnableToGetRevHistory(dDocName)

5
Cached query action that retrieves information from the
database using a query.

QrevHistory
This action retrieves revision history information using the
QrevHistory query in the query.htm file.

REVISION_HISTORY

The result the query is assigned to the parameter
REVISION_HISTORY. The DOC_INFO template uses this
parameter in a loop to present information about each
revision.

0 No control mask is specified.

!csUnableToGetRevHistory
(dDocName)

If this action fails on an English Content Server system, it
returns the error message string:
Unable to retrieve revision history for ''{dDocName}.''

Action Definition Description
8-22 Working with Components

Resources Detail
Editing a Service Resource
Use the following procedure to edit a service resource using the Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If there is more than one table in the resource, select the service table to edit from the
Table Name list.

4. Modify the selected service table.

To add a service to the table, click Add.

To edit an existing service, select the service and click Edit. Modify the service
attributes and/or actions and click OK.

To remove a service, select the service and click Delete. Click Yes to confirm.

TEMPLATES
A template resource defines the names, types, and locations of custom template files to be
loaded for the component.

The actual template pages (.htm files) are separate files that are referenced in the template
resource file. Template HTM files contain the code that the Content Server uses to
assemble web pages. HTML markup in a template file defines the basic layout of the page,
while Idoc Script in a template file generates additional HTML code for the web page at
the time of the page request. Because HTM template files contain a large amount of script
that is not resolved by the Content Server until the final page is assembled, these files are
not viewable web pages.

The template type of HTM file is used to define the following component files:

Template pages—Standard template pages are located in the
<install_dir>/shared/config/templates/ directory.

Report pages—Standard report pages are located in the
<install_dir>/shared/config/reports/ directory.

A template resource (templates.hda) is defined in the HDA file format. See Elements in
HDA files (page 3-2) for more information and an example of an HDA ResultSet table.
The standard templates are defined in the
<install_dir>/shared/config/templates/templates.hda file.
Working with Components 8-23

Resources Detail
Merge rules are required to merge the new template definition into the IntradocTemplates
table or the SearchResultTemplates table. Typically, the merge will be on the name
column. The following is an example of a MergeRules ResultSet for a template.

Figure 8-19 MergeRules ResultSet for a template

The standard templates.hda file defines three ResultSet tables:

The IntradocTemplates ResultSet table defines the template pages for all Content
Server web pages except search results pages. This table consists of five columns:

• The name column defines the name for each template page. This name is how the
template is referenced in the Content Server CGI URLs and in code.

• The class column defines the general category of the template. The most
common class type is Document.

• The formtype column defines the specific type of functionality the page is
intended to achieve. The formtype is typically the same as the name of the form,
except in lowercase characters.

• The filename column defines the path and file name of the template file. The
location can be an absolute path or can be relative to the template resource file
when the template page is in the same directory as the template resource file.

• The description column defines a description of the template.

The Verify Template. The Content Server no longer uses the VerityTemplates
ResultSet table. However, this table remains in the templates.hda file as legacy code
for reverse compatibility.

The SearchResultTemplates table defines the template pages for search results pages.
SearchResultTemplates define how query results are displayed on the search results

@ResultSet MergeRules
4
fromTable
toTable
column
loadOrder
MultiCheckinTemplates
IntradocTemplates
name
1
@end
8-24 Working with Components

Resources Detail
pages in the Library. Query result pages are a special type of search results page. This
table consists of six columns:

• The name column defines the name for each template page. This name is how the
template is referenced in the Content Server CGI URLs, in code, and in the Web
Layout Editor utility.

• The formtype column defines the specific type of functionality the page is
intended to achieve. ResultsPage is the only form type currently supported for
search results pages.

• The filename column defines the path and file name of the template file. The
location can be an absolute path or can be relative to the template resource file
when the template page is in the same directory as the template resource file.

• The outfilename column is for future use; the value is always null.

• The flexdata column defines the metadata to be displayed for each row on the
search results page. The format of text in the flexdata column is:
Text1 “text 1 contents”%<Tab>Text2 “text 2 contents”%

where Text1 contents appear on the first line, and Text2 contents appear on the
second line in each search results row. <Tab> represents a literal tab character.

Idoc Script can be used to define the contents in the flexdata field. You can also
change the flexdata of the StandardResults template through the Web Layout
Editor, but these changes are saved in a separate file
(<install_dir>/data/results/custom_results.hda) rather than in the
SearchResultTemplates table in the templates.hda file.

• The description column defines a description of the template.

The following example shows a custom template resource file that points to a custom
Content Management page (multicheckin_doc_man.htm) and a custom search results page
(MultiCheckin_search_results.htm).

Note: The StandardResults template (search_results.htm file) is typically used as the
global template for standard search results pages and the query results pages in the Library.
You can create a new template or change the “flexdata” of the StandardResults template
through the Web Layout Editor, but these changes are saved in a separate file
(<install_dir>/data/results/custom_results.hda) rather than in the SearchResultTemplates
table in the templates.hda file.
Working with Components 8-25

Resources Detail
Figure 8-20 Custom template resource file

Template and Report Pages
Template pages and report pages are also called “presentation” pages, because the Content
Server uses them to assemble, format, and present the results of a web page request.

The standard template pages are located in the <install_dir>/shared/config/templates
directory. The standard report pages are located in the <install_dir>/shared/config/reports
directory.

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet MultiCheckinTemplates
5
name
class
formtype
filename
description
DOC_MANAGEMENT_LINKS
DocManagement
DocManagementLinks
multicheckin_doc_man.htm
Page containing links to various document management functions
@end
@ResultSet MultiCheckin_2
6
name
formtype
filename
outfilename
flexdata
description
StandardResults
SearchResultsPage
MultiCheckin_search_results.htm
null
Text2 <$dDocTitle$> <$dInDate$>%Text1 <$dDocName$>%
apStandardResultsDesc
@end
8-26 Working with Components

Resources Detail
Tech Tip: The <install_dir>/samples directory contains a component called Custom
Reports, which shows you how to create custom reports. It also provides two custom
reports that display the security groups permissions and accounts that users belong to.
Working with Components 8-27

Resources Detail
Template Page Example
The following example shows the template file for the standard Content Management
page (doc_man.htm).

Figure 8-21 Template page example
8-28 Working with Components

Resources Detail
Report Page Example
The following example shows the template file for the standard Document Types report
page (doc_types.htm).

��������	
���

���
��
�����	�������
���
��	���
������
������

������ ����!��"���#�$%�&&�'(��(��!���)��
��"($� ��
��+����+����+��$��,��"'(��

�������

��"($� ��
-'�.+�����

��"($� ��
*��+/�!�+-�!"(��

��"($� ��
*��+�����,��

���-��
-',��,#�0�
$���/���"(!#�1�
$���*/�$"(!#�1�
&"���#�230��

��"($� ��
��+�'$+��(+/�!���

����-���

���-��

$���/���"(!#�4�
$���*/�$"(!#�4��
��"�
*�'&5 "$6���/��
��,�������',��������
�./�#� ��'(
'(��"$6#�5 "$6���/%7��!�����/��!�%�5�+�'$��(�)��78

75�+�'$��(7)�
9�� �#����$%�&&5 "$6���/�)�������',����������,�
���(�"���
����-���

��"($� ��
*��+/�!�+�(���

��-'�.�
�������

��������	�
�������
������
��������������������������	���
��������������
�����
��������������	
�����	
����������

������������	��
��
���
��
	���
������	��������������	
�����������	���������
��������������������������������
�����
���������
�����
��������������	
�����	
����������

���	�������	��������������������������
��	�
�����������
�
�����
������
���������������

�����
��������������
������������	��������	��������������������
���������
�����
��������������	
�����	
����������

�

�

�

�

�

�

�

�

����������������	�������������������������
�
����
�����������	����
���	��������	�������
����
����
�������������
������������
��
��
��������������	
�����	
����������
Working with Components 8-29

Resources Detail
Figure 8-22 Report page example

�

�

�
�

�

�

�

�

	

8-30 Working with Components

Resources Detail
��������	
���

���
��
�����	�������
���
��	���
������
��������	
���

���
��
�����	�������
���
��	���
������

������
�����
���/��: "9#��'(��(���./��
$'(��(�#���;������<
$��,*��#"*'�==3>�?��
�����
(���#�@	�	AB��A�
$'(��(�#��(�,�C�'$�
2C0��
��"($� ��
��+����+����+��$��,��"'(��
��"�������$%�&&�'$ ��(��./�*�)�����"����

��"($� ��
-'�.+�����

��"($� ��
*��+/�!�+-�!"(��

��"($� ��
*��+�����,��

�����",�$�',.
�"�������
���-��
-',��,#�0�
$���/���"(!#�0�
$���*/�$"(!#�0��
��,�

���
&"���#�43����"�
��!���,�(�����
�,��#�����!���,�(�����
��*�,�,"�D*%"($%�'/�(+�'���,+"��!��))������
���(�"��������

���
$'�*/�(#�1�
&"���#�E>0���*/�(
$��**#�"��������!��"�������*/�(������
���,�
����-���

��"�
�*F�9��5 �,.��
�������,�����,*
�',
�"*�',"$��
,�/',�*���
���-��
-',��,#�0�
$���/���"(!#�0�
$���*/�$"(!#�0��
��,�

���
&"���#�43�
��"!��#�23��G(-*/<�����������(��(����
�����*�,'(!��*/�(
$��**#�"!��"!���"�������$%�&&A�/',��,������)����*/�(�
��A�/',��,���"'(��������*�,'(!������

���,�
����-���
���(�"���

�����",�$�',.
�����,����
���-��

-',��,#�0�
$���*/�$"(!#�0��
��,�

���
&"���#�43�
��"!��#�23��G(-*/<�����������(��(����
���
$'�*/�(#�1�
&"���#�E>0���������,��;��������

���,�
����-���

������'$
�./�*
,�/',����
���-��
-',��,#0
$���/���"(!#0
$���*/�$"(!#0�
��,�

���
&"���#3H3
��"!(#$�(��,���2
$��**#/�!��"�������$%�&&�'$ ��(��./�*�)�����2�
�����

���,�

��"�
�*� ��"��!���
�������9"!��"'(
��,���
��,�

���
&"���#3H3
��"!(#�$�(��,����"($� ��
*��+/�!�+(�9+-�,�������
���,�
���(�"���

��,�
����
���-��
-',��,#?
&"���#��F����!�D"������

��,�
���
&"���#?1I������
���
&"���#1>I��*/�(
$��**#,�/',��'� �(F������ ����$%�&&�'$ ��(��./��)���� �
��*/�(������
���
&"���#2>I��*/�(
$��**#,�/',��'� �(F������ ����$%�&&��*$,"/�"'(�)���� �
��*/�(������
���
&"���#?1I��*/�(
$��**#,�/',��'� �(F������ ����$%�&&���!��"�������)���� �
��*/�(������

���,�
���''/
�'$�./�*��
��,�

�����'$ ��(�
�./�*
�,�
�'$��"J��
�'
��$�
"(*��($�8
*'
&�
� *�
 *�
�",�$�
/���
�'
"��!�*
�",�$�',.C���
���
&"���#?1I��"�!
,$#������/D�-A''���"��!���'$!"�*����@"����
-',��,#0������
���
&"���#1>I��*/�(
$��**#��-��	(�,.�����'$�./�����*/�(������
���
&"���#2>I��*/�(
$��**#��-��	(�,.������*$,"/�"'(����*/�(������
���
&"���#?1I��*/�(
$��**#��-��	(�,.����@"�����*/�(������

���,�
���(��''/��
����-���

�����
���,�
����-���

��"($� ��
*��+/�!�+�(���

��-'�.�
�������

��	��� 	�����
�����
�����������
����	�����
���������������������
��	��� 	����������������

������������	��
��
���
��
	���
������	��������������	
�����������	���������
��������������������������������
�����
���������
�����
��������������	
�����	
����������

��	��� 	�����
��������!���
������
������	�
���������
���

��	��� 	��������
�����	������
��

��
���������
����
�����������	����
���	��������	���
��������
����
�������������
������������
��
��
��������������	
�����	
����������

�

�

�

�

��	��� 	�����������������

"������	�
���������
�����!����	��
��
�����
������������	���	��� 	����
�������������
������

#

�	�
�������
�������� ��	��

������������
�	�
���������
���������

��	��� 	����������
�
�����������	�

�����
��������������
������������	��������	��������������������
���������
�����
��������������	
�����	
����������

�

�

�

�

	

Working with Components 8-31

Resources Detail
Editing a Template Resource
Use the following procedure to edit an existing template resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. To remove a template definition table or edit a template definition manually, click
Launch Editor in the Custom Resource Definition pane.

4. If there is more than one table in the resource, select the template table to edit from the
Table Name list.

5. Modify the selected template table.

To add a template definition to the table, click Add.

To edit an existing template definition, select the definition and click Edit.
Modify the parameters and click OK.

To remove a template definition, select the definition and click Delete. Click Yes
to confirm.

ENVIRONMENT
An environment resource defines configuration variables, either by creating new variable
values or replacing existing values. Because custom resources are loaded after the
standard config.cfg file is loaded, the variable values defined in the custom environment
resource replace the original variable values.

An environment resource is defined in a CFG file using a name/value pair format:
variable_name=value

After defining a variable value, you can reference the variable in templates and other
resource files with the following Idoc Script tag:

<$variable_name$>

Environment resource files can include comment lines, which are designated with a #
symbol:

#Set this variable to true to enable the function.
8-32 Working with Components

Resources Detail
Environment Example
The following is an example of an environment resource file.

Figure 8-23 Environment resource file

Use this to turn on or off alternate row coloring
nsUseColoredRows=0

These are the nested search field definitions.

nsFld1Caption=Document Text
nsFld1Name=
nsFld1Type=FullText
nsFld1OptionKey=
#
nsFld2Caption=Text
nsFld2Name=xtext
nsFld2Type=Text
nsFld2OptionKey=
#
nsFld3Caption=Date
nsFld3Name=xdate
nsFld3Type=Date
nsFld3OptionKey=
#
nsFld4Caption=Integer
nsFld4Name=xinteger
nsFld4Type=Int
nsFld4OptionKey=
#
nsFld5Caption=Option List
nsFld5Name=xoptionlist
nsFld5Type=OptionList
nsFld5OptionKey=optionlistList
#
nsFld6Caption=Info Topic
nsFld6Name=xwfsInfoTopic
nsFld6Type=OptionList
nsFld6OptionKey=wfsInfoTopicList
Working with Components 8-33

Resources Detail
The colored_search_resource.htm template resource file in the Nested Search component
references the nsUseColoredRows variable as follows:

Standard configuration variables are defined in the <install_dir>/config/config.cfg file.
See the Idoc Script Reference Guide for a complete list of configuration variables.

Editing an Environment Resource
Use the following procedure to edit an existing environment resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource file in the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the configuration variables in the text editor.

5. Save and close the resource file.

Changes are reflected in the Custom Environment Parameters list.

<$if isTrue(#active.nsUseColoredRows)$>
<$useColoredRows=1, bkgHighlight=1$>

<$endif$>

Note: The configuration settings might not appear in the Custom Environment Parameters
list in the order they actually appear in the resource file. It is recommended that you launch
the text editor for easier viewing.
8-34 Working with Components

Resources Detail
Working with Components 8-35

C h a p t e r

9.COMPONENT INTERFACE SCREENS
This section contains screen representations and explanations of the options used to create
custom components. It covers these topics:

Component List Screen (page 9-2)

The Component Wizard Main Screen (page 9-3)

Component Creation Screens (page 9-6)

Build Screens (page 9-41)

To display the Component Wizard:

Windows: Select Start—Programs—Content Server—<instance_name>—
Tools—Component Wizard.

Unix: Change to the <install_dir>/bin/ directory and run the ComponentWizard
program.

The Component List Screen (page 9-2) and the The Component Wizard Main Screen
(page 9-3) are displayed.
Working with Components 9-1

Component Interface Screens
COMPONENT LIST SCREEN

The Component List appears when you first access the Component Wizard. It lists all
currently installed components.

To access this screen, do one of the following:

Start the Component Wizard.

Select Options—Open from the The Component Wizard Main Screen (page 9-3).

Feature Function

Custom
Components list

Shows the name, status (enabled or disabled), and location of the
component definition file for each component that has been
installed in the Content Server.

Add button Displays the Add Component Screen (page 9-6).

Open button Opens the selected component in the Component Wizard.

Install button Displays the Unpackage Screen (page 9-8).

Uninstall button
Removes the selected component from the Content Server. (The
component files remain in the file system, but the component no
longer appears on the list of components.)
9-2 Working with Components

Component Interface Screens
THE COMPONENT WIZARD MAIN SCREEN

Enable button Enables the selected component.

Disable button Disables the selected component.

Help button Displays a help page for the Component List screen.

Feature Function
Working with Components 9-3

Component Interface Screens
Feature Description

Options Menu
(page 9-5)

Provides options for working with components and settings.

Build Menu
(page 9-5)

Used to package component files into a Zip file.

Help Menu
(page 9-6)

Provides links to online documentation.

Summary fields
Show the name of the component, the location and file name of the
component definition file, and the status of the component (enabled
or disabled).

Launch Editor
button (top right)

Displays the component definition file (“glue” file) in the default
text editor.

Custom
Resource
Definition list

Lists the custom resources that have been defined for the component.

Add button
Displays the Add Resource screen, which is used to add a new
resource file to the component.

Remove button Removes the selected resource from the component.

Launch Editor
button
(Resource
Definition tab)

Displays the selected resource file in the default text editor.

Reload button Reloads the component definition file for the selected resource.

Custom resource
parameters list

Shows the custom parameters for the resource selected in the
Custom Resource Definition list. This pane is different for each type
of resource.

Java Code tab
Displays any custom Java code that has been defined for the
component.
9-4 Working with Components

Component Interface Screens
Options Menu
The Options menu provides options for working with components and settings.

Build Menu
The Build menu is used to package component files into a zip file.

Install/Uninstall
Settings tab

Displays custom installation parameters.

Menu Item Description

Add Displays the Add Component Screen (page 9-6).

Open Displays the Component List Screen (page 9-2).

Close Closes the open component.

Install Displays the Unpackage Screen (page 9-8).

Enable Enables the component that is open in the Component Wizard.

Disable Disables the component that is open in the Component Wizard.

Configuration Displays the Component Configuration Screen (page 9-8).

Edit Readme File
Displays the readme.txt file for the open component in the default
text editor. If a readme.txt file does not exist for the component, a
blank readme.txt file is created.

Exit Closes the Component Wizard.

Feature Description
Working with Components 9-5

Component Interface Screens
Help Menu
This screen provides links to online documentation.

COMPONENT CREATION SCREENS
The following screens are all used to build custom components.

Add Component Screen

Menu Item Description

Build Settings
Displays the Build Settings screen, which is used to build a
component Zip file.

Build
Displays the Build screen, which is used to build a component Zip
file.

Menu Item Description

Contents Displays the online help for system administrators.

About Content
Server

Displays version, build, and copyright information for the Content
Server.
9-6 Working with Components

Component Interface Screens
The Add Component screen is used to add a new component to the Content Server. To
access this screen, do one of the following:

Select Options—Add from the The Component Wizard Main Screen (page 9-3).

Click Add on the Component List Screen (page 9-2).

Feature Function

Create New
Component
option

Select this option to create a new custom component in the Content
Server.

Name field
Assign a descriptive component name. The name cannot contain
spaces.

Directory field
Enter the directory where the component definition file will be
located, relative to Content Server install directory. Typically,
components are located in the custom directory.

Copy Existing
check box

Selected = The new component will be a copy of an existing
component, including all resources and other component files. Enter
the path and file name of an existing component definition file (.hda).
The new component must have a unique name.
Clear = The new component will be created without any resource
files.

Browse button Used to navigate to and select an existing component definition file.

Use Existing
Component
option

Select this option to add an existing component to the Content Server.

File Path field The path and file name of the existing component.

Browse button Used to navigate to and select an existing component definition file.

OK button Adds the component to the Content Server.

Cancel button Closes the screen without adding a component.

Help button Displays a help page for the Add Component screen.
Working with Components 9-7

Component Interface Screens
Unpackage Screen

The Unpackage screen is used to install a component zip file on the Content Server. To
access this screen, do one of the following:

Select Options—Install from the The Component Wizard Main Screen (page 9-3).

Click Install on the Component List Screen (page 9-2).

Component Configuration Screen

Feature Description

Select button Used to navigate to and select the Zip file to be unpackaged.

Entry Type
column

Lists the items that are included in the component Zip file.

Current Root
Prefix column

The root directory where the related component files will be
installed.

Location column The subdirectory and/or the file name of the component file.

OK button Unpackages the component onto the Content Server.

Cancel button Closes the screen without unpackaging the component.

Help button Displays a help page for the Unpackage screen.
9-8 Working with Components

Component Interface Screens
The Component Configuration screen is used to specify which program to use to edit
component files from within the Component Wizard. To access this screen, select
Options—Configuration from the Component Wizard application.

Specify a text editor (such as WordPad) rather than a graphical HTML editor (such as
FrontPage). Graphical editors can insert or change HTML tags and might cause Idoc
Script tags to be converted into a string of characters that will not be recognized by the
Content Server.

Feature Description

HTML Editor
Path field

The path and file name of the executable file for the editing
program. For example,
c:/Program Files/Windows NT/accessories/wordpad.exe.

Browse button Used to navigate to and select the file.

OK button Sets the specified file as the editing program.

Cancel button Closes the screen without changing the editing program.

Help button Displays a help page for the Component Configuration screen.
Working with Components 9-9

Component Interface Screens
Add/Edit Action Screen

This screen is used to specify the actions that are associated with your newly defined
component service.

Feature Description

Type list Select the type of action. See Predefined Action Types (page 9-11).

Action list
Select an action from the list or enter a custom action. The option list
shows the predefined actions that are associated with the option
selected from the Type list.
9-10 Working with Components

Component Interface Screens
Predefined Action Types

The following action types can be specified for a service:

Parameters
field

If the action takes parameters, enter the parameters as a comma-
separated list.

• For the Select Query and Select Cache Query action types, the
first parameter is the name that the action assigns to the ResultSet
returned from the query. This ResultSet can then be referenced in
the template page.

• For the Load Option List action type, the parameters are optional.
However, if parameters are given, the first parameter is the key
under which the option list is loaded, and the second parameter is
the selected value for display on an HTML page.

Control Mask
check boxes

The control mask controls the results of queries to the database.

Error Message
field

Enter the error message to be displayed by this action. This action
error message overrides the error message provided as an attribute of
the service.

• If the action error message is not empty, it becomes the active
error message.

• If the action error message is empty, the error message remains
unchanged from the previous action.

OK button Saves the action in the Actions list on the Add/Edit Service screen.

Cancel button Closes the Add/Edit Action screen without creating a service action.

Help button Displays this help page for the Add/Edit Action screen.

Feature Description

Note: See the query.htm, workflow.htm, and indexer.htm files in the
<install_dir>/shared/config/resources/ directory for more information on predefined
queries.
Working with Components 9-11

Component Interface Screens
Select Query: This action type is used to select a query and then discard it
immediately.

Execute Query: This action type is used to execute a query.

Java Method: This action type is used to apply a method that is part of the Java class
implementing the service. The following Java Method actions can be selected from
the Action list:

Name Description

checkSecurity

This method is used for validating security for actions on a
particular document, such as check in, check out, and delete.
It checks the logged in user’s security group and account
permissions against the service's access level for performing
the specified action.
Takes zero or one parameter, which is the name of a
ResultSet.

createResultSetSQL

This method executes a query with parameters taken from the
Data Binder (dataSource and whereClause local data) rather
than from given parameters. It also places the results in the
local data using the ResultSet name found in the Data Binder
(resultName).
Takes no parameters.

doSubService
This method executes a subservice.
Takes one parameter, which is the name of a subservice.

loadDefaultInfo

This method is used for creating checkin and update pages. It
first executes the loadDefaultInfo filter, and then loads
environment information, content types, formats, and
accounts.
Takes no parameters.

loadMetaOptionsLists

This method first executes the loadMetaOptionsLists filter,
and the loads all options lists referred to in the
DocMetaDefinition table.
Takes no parameters.
9-12 Working with Components

Component Interface Screens
loadSharedTable

This method is used to make a server-cached table available
for a template. Use this method instead of executing a query
when the data is already cached in the server.
Takes two parameters. The first parameter is the name of the
table to look up in the server’s cached tables. The second is
the name the table will be given when it is added to the data.

loadSharedTableRow

This method is used to retrieve cached information, such as
data about a specific user. The value for the key in the request
data is used to find the row in the cached table. The values of
the row are mapped to the local data using the names of the
columns as keys.
Takes two parameters. The first parameter is the name of the
table to look up in the server’s cached tables. The second
parameter is an argument specifying a column in the database
and a lookup key into the request data.

mapResultSet

This method is used to replace a Type 5 action when the
service requires only a part of the first row of a ResultSet to
be stored. It executes the specified query and maps the
specified columns of the first row of the ResultSet to the local
data.
Takes at least three parameters. The first parameter is the
name of a select query; the parameters that follow must
appear in comma-separated pairs. The first member of the
pair is the column name, and the second member is the key
that is used to put the row value into local data.

refreshCache

This method performs a refresh on the specified Subjects
(page 9-33).
Takes one or more parameters, as a comma-separated list of
subjects.

Name Description
Working with Components 9-13

Component Interface Screens
Load Option List: This action type is used to load an option list stored in the system.

Select Cache Query: This action type is used to select a query and then cache the
query results.

Add Screen

renameValues

This method assigns the value from one variable to another
variable.
Takes one or more sets of parameters that must appear in
comma-separated pairs. The first member of a pair is the
variable name that is looked up in the Data Binder, and the
second member is the variable name that stores the found
value in the local data.

setConditionVars

This method sets condition variables to true (1) or false (0).
These values can be tested only in HTM template pages. They
are not put into local data.
Takes one or more sets of parameters that must appear in
comma-separated pairs. The first member of a pair is the
name of the condition variable, and the second member is the
value (1 or 0).

setLocalValues

This method places name/value pairs into the local data.
Takes one or more sets of parameters that must appear in
comma-separated pairs. The first member of a pair is the
variable name, and the second member is the value.

Name Description
9-14 Working with Components

Component Interface Screens
The Add Screen is used during the build process to specify what should be included in the
component zip file.

Feature Description

Entry Type list

Select the type of item to be included in the component Zip file.
Each entry type has a default location (Current Root Prefix) that
cannot be changed. The Component Class option ensures that the
components and related files are placed in the 'component' directory.

Note: If your component must work with earlier versions of
Content Server (pre-7.0), the following Entry Type options
are not compatible: Component Class, Component Library,
Bin, Data, Weblayout, and Resources.

Current Root
Prefix field

Shows the directory where the specified files will be copied when
the component Zip file is unpackaged.

Sub Directory or
File field

Enter the sub-directory that contains the component files of the
selected type, or enter an individual file name. If an individual file is
contained in a sub-directory of the current root prefix, enter the sub-
directory along with the file name. For example,
new_custom/new_component.htm.

Make Jar check
box

Selected = A Jar file is created and included in the manifest file.
Selecting this option enables the Include Java Source option.
Clear = A Jar file is not created.

Include Java
Source check box

Selected = Source files are included which allows the Java source
code to be shipped with the component. This option is only available
if the Make Jar check box is selected.
Clear = Source files are not included.

OK button Adds the specified item to the component Zip file list.

Cancel button
Closes the Add screen without adding an item to the component Zip
file list.

Help button Displays this help page for the Add screen.
Working with Components 9-15

Component Interface Screens
Add Query Table Information Screen

This screen is used to specify the database table to be used with a component’s query.

Feature Description

Table Name
field

Enter the name of the query table that will be created for the new
resource. The default is the name of the component followed by an
underscore and the string Queries.

Back button Displays the Add Resource screen.

Next button Displays the Add Query screen.

Finish button
Creates the new query resource. This button is unavailable if the
minimum specifications have not been defined for the resource.

Cancel button
Closes the Add Query Table Information screen without creating a
new resource.
9-16 Working with Components

Component Interface Screens
Add Service Table Information Screen

This screen is used to specify the database to be used by the service in the component.

Help button Displays this help page for the Add Query Table Information screen.

Feature Description

Table Name
field

Enter the name of the service table that will be created for the new
resource. The default is the name of the component followed by an
underscore and the string Services.

Back button Displays the Add Resource screen.

Next button Displays the Add Service screen.

Feature Description
Working with Components 9-17

Component Interface Screens
Add Dynamic Resource Table Information
Screen

This screen is used to create dynamic tables to be used in a custom component.

Finish button
Creates the new service resource. This button is unavailable if the
minimum specifications have not been defined for the resource.

Cancel button
Closes the Add Service Table Information screen without creating a
new resource.

Help button Displays this help page for the Add Service Table Information screen.

Feature Description

Table Name
field

Enter the name of the dynamic table that will be created for the new
resource. The default is the name of the component followed by an
underscore.

Merge To check
box and field

Used to create a merge rule for the new dynamic table. Select this
check box and either select the target table from the list of Predefined
Dynamic Tables (page 9-19) or enter the name of a custom table.

Feature Description
9-18 Working with Components

Component Interface Screens
Predefined Dynamic Tables
The following dynamic resource table is predefined in the Content Server:

Back button Displays the Add Resource screen.

Next button
Inactive (there are no more screens for defining a dynamic resource
table).

Finish button
Displays the Column Information screen. This button is unavailable if
the minimum specifications have not been defined for the resource.

Cancel button
Closes the Add Dynamic Resource Table Information screen without
creating a new resource.

Help button
Displays this help page for the Add Dynamic Resource Table
Information screen.

Table Name mergeColumns Description

IgnoredFlexFields
templatename,
flexareaname, fields

Used to exclude any custom metadata
fields from specific template pages.
Wildcards are supported for both the
templatename and flexareaname columns.

Feature Description
Working with Components 9-19

Component Interface Screens
Add Static Resource Table Information Screen

This screen is used to specify a static resource in your component.

Feature Description

Table Name
field

Enter the name of the static table that will be created for the new
resource. The default is the name of the component followed by an
underscore.

Merge To check
box and field

Creates a merge rule for the new static table. Select this check box and
either select the target table from the list of Predefined Static Tables
(page 9-21) or enter the name of a custom table.

Back button Displays the Add Resource screen.

Next button
Inactive (there are no more screens for defining a static resource
table).

Finish button
Displays the Column Information screen. This button is unavailable if
the minimum specifications have not been defined for the resource.

Cancel button Closes the Add Static Resource Table Information screen.
9-20 Working with Components

Component Interface Screens
Predefined Static Tables
The following static resource tables are predefined in the Content Server:

Help button
Displays this help page for the Add Static Resource Table Information
screen.

Feature Description

Table Name mergeColumns
Table Location (in
<install_dir>/shared/
config/)

Description

ColumnTranslation column, alias
/resources/
upper_clmns_map.htm

Contains uppercase database
fields with their translated field
names. This table is required for
databases that use all uppercase
(such as Oracle).

DataSources
name, dataSource,
useMaxRows

/resources/
std_resources.htm

Contains the queries that are
executed to create reports in the
Web Layout Editor.

IntradocReports
name, datasource,
filename, description

/reports/reports.hda
Contains the list of report
templates.

IdocScriptExtensions
name, class,
loadOrder

/resources/
std_resources.htm

Contains specializations of the
ScriptExtensionsAdaptor. Used
to create new Idoc Script
functions and variables.

ServiceHandlers
serviceName,
handler, searchOrder

/resources/
std_resources.htm

Contains specializations of the
ServiceHandler base class.
Defines Java methods for
handling service script Java
functions.
Working with Components 9-21

Component Interface Screens
SubscriptionTypes
type, fields,
description

/resources/
std_resources.htm

Contains document subscription
types. Default subscription is by
document name. Document
criteria subscriptions can be
defined in this table.

UserMetaDefinition

umdName,
umdType,
umdCaption,
umdIsOptionList,
umdOptionListType,
umdOptionListKey,
umdIsAdminEdit,
umdOverrideBitFlag

/resources/
std_resources.htm

Contains the definitions of the
auxiliary user metadata fields.
Values for umdOverrideBitFlag
should start at 16 (0x10) or
higher. See the design of the
DocMetaDefinition database
table for a description of the
appropriate contents of these
fields.

Table Name mergeColumns
Table Location (in
<install_dir>/shared/
config/)

Description
9-22 Working with Components

Component Interface Screens
Add Template Table Information Screen

This screen is used to specify the table that will be accessed for the template used in the
component.

Feature Description

Table Name
field

Enter the name of the template table that will be created for the new
resource. The default is the name of the component followed by an
underscore.

Merge Table
list

Creates a merge rule for the new dynamic table. Select a target table
from the list of Predefined Template Tables (page 9-24).

Back button Displays the Add Resource screen.

Next button
Depending on which Merge Table is selected, displays the Add
Intradoc Template screen or Add SearchResults Template screen.
Working with Components 9-23

Component Interface Screens
Predefined Template Tables
The following template tables are predefined in the Content Server:

Finish button
Creates the new template resource. This button is unavailable if the
minimum specifications have not been defined for the resource.

Cancel button
Closes the Add Template Table Information screen without creating a
new resource.

Help button
Displays this help page for the Add Template Table Information
screen.

Table Name mergeColumns Description

IntradocTemplates
name, class,
formtype, filename,
description

This is a ResultSet table that defines
the templates used in the Content
Server.

SearchResultTemplates

name, formtype,
filename,
outfilename,
flexdata,
description

This table is used to create result
templates in memory for use with
results that are returned from the
search engine.

Feature Description
9-24 Working with Components

Component Interface Screens
Add/Edit HTML Resource Include/String Screen

This screen is used to specify a customized HTML resource or a customized string
resource in a component.

Feature Description

Resource type
options

Include = The resource defines an HTML include.
String = The resource defines a locale-sensitive string.

Name field

Enter the name of the include or string that will be created, or click
Select to start with a predefined include.
For string names, use the following prefix conventions:
syStringName: System-level messages and errors.
csStringName: Content Server messages and log messages (this is the
most common type of string).
wwStringName: Strings used on Web pages.
apStringName: Strings used in applets.

Select button
Displays the Resource Selection Dialog screen, which lists the
predefined includes. This button is available only when the Include
option is selected.
Working with Components 9-25

Component Interface Screens
Add/Edit Parameter Screen

This screen is used to define the parameters that will be passed to your defined resources.

Code field
Shows the code for the include or string, which can be edited directly in
this field. If a predefined include is selected, the code is automatically
added to this field.

Back button Displays the Add Resource screen.

Next button Inactive (there are no more screens for defining an include or string).

Finish
button/OK
button

Saves the include or string resource and asks if you want to open the
text file for editing.

Cancel button
Closes the Add/Edit HTML Resource Include/String screen without
saving the include or string.

Help button
Displays this help page for the Add/Edit HTML Resource
Include/String screen.

Feature Description

Name field
Enter a name for the parameter. A parameter name cannot contain
spaces.

Type field Select the type of parameter:

OK button Saves the parameter in the query.

Feature Description
9-26 Working with Components

Component Interface Screens
Add/Edit Query Screen

This screen is used to specify the SQL query for the query resource defined in the
component.

Cancel button
Closes the Add/Edit Parameter screen without creating or changing the
parameter.

Help button Displays this help page for the Add/Edit Parameter screen.

Feature Description

Name field
Enter the name of the query that will be created for the resource, or
click Select to start with a predefined query.

Feature Description
Working with Components 9-27

Component Interface Screens
Select button

Displays the Resource Selection Dialog screen, which lists the
predefined queries.

Note: See the query.htm, workflow.htm, and indexer.htm files
in the <install_dir>/shared/config/resources/ directory for
more information on predefined queries.

Query field
Shows the SQL query expression, which can be edited directly in this
field. If an existing query is selected, the query expression is
automatically added to this field.

Parameters list
Lists the name and type for each parameter defined for the query.
Parameters must be listed in the order they appear in the query
expression.

Up and Down
buttons

Move the selected parameter up or down in the Parameters list.

Add button Displays the Add Parameter screen.

Edit button Displays the Edit Parameter screen for the selected parameter.

Delete button Deletes the selected parameter from the Parameters list.

Back button Displays the Add Query Table Information screen.

Next button Inactive (there are no more screens for defining a query).

Finish
button/OK
button

Saves the query in the query resource. The Finish button is
unavailable if the minimum specifications have not been defined for
the resource.

Cancel button
Closes the Add/Edit Query screen without creating or changing the
query resource.

Help button Displays this help page for the Add/Edit Query screen.

Feature Description
9-28 Working with Components

Component Interface Screens
Add Resource Screen

The Add Resource screen is used to select the type of resource you will use in your
component. It is used to select a variety of resources.

Feature Description

Resource Type
options

Select an option from the Resource Type list.

File Name field Select or enter the path and file name for the new resource.

Load Order field
Enter a load order number for the resource. Lower values are loaded
first. Resources that have the same load order number are loaded in
the order they appear in the component definition (“glue”) file.

Back button
Displays the previous page of the resource definition screens (if
any).
Working with Components 9-29

Component Interface Screens
Resource Selection Dialog Screen

This screen is used to select an existing resource for use or to edit for your component.

Next button Displays the next page of the resource definition screens (if any).

Finish button
Creates the new resource. This button is unavailable if the minimum
specifications have not been defined for the resource.

Cancel button Closes the Add Resource screen without creating a new resource.

Help button Displays this help page for the Add Resource screen.

Feature Description

Show All check
box

Selected = All predefined items are displayed.
Clear = The most commonly used predefined items are displayed.

Name column Lists the predefined items.

Feature Description
9-30 Working with Components

Component Interface Screens
Add/Edit Service Screen

This screen is used to enter the information for the service being created by the
component.

Description
column

Describes each predefined item.

OK button
Selects the selected option and fills in fields on the associated
“Add” screen.

Cancel button
Closes the Resource Selection Dialog screen without selecting a
resource item.

Help button Displays this help page for the Resource Selection Dialog screen.

Feature Description

Name field
Enter the name of the service that will be created, or click Select to
start with a predefined service.

Select button
Displays the Resource Selection Dialog screen, which lists the
predefined services.

Feature Description
Working with Components 9-31

Component Interface Screens
Service Class
field

Select a service class from the list or enter a name for a custom service
class. The service class determines what actions can be performed by
the service. There are actions that all services share, while other
actions are specific to the service class.

Template field

Select a template to present the results of service. If the results of the
service do not require page presentation, leave this field blank. For
example, the PageHandlerService, which is called from an applet,
does not specify a template page.

Service Type
field

If the service is to be executed inside another service, select
SubService.

Access Level
check boxes

Select one or more check boxes to assign a user access level to the
service.

Subjects
Notified field

Enter the Subjects (page 9-33) (subsystems) to be notified by the
service as a comma-separated string. If a service changes one or more
subjects, it must notify the affected subjects of changes. For example,
the ADD_USER service adds a new user to the system and informs
the system that the userlist subject has changed.

Error Message
field

Enter the error message to be displayed by this service. This error
message is returned by the service if no action error message overrides
it.
The error message can be a plain text string, or it can be a parameter to
be looked up in the Content Server language strings (for example,
!csUnableToBuildCheckInForm).

Actions list

Lists the name and type for each action defined for the service.
Actions are used to execute an SQL statement, perform a query, run
code, cache the results of a query, or load an option list. The order of
the list specifies the order in which the actions are performed.

Up and Down
buttons

Move the selected action up or down in the Actions list.

Add button Displays the Add Action screen.

Feature Description
9-32 Working with Components

Component Interface Screens
Subjects
Subjects are subsystems within the Content Server. When a service makes a change (such
as add, edit, or delete) to one of the following subjects, the subject must be notified:

accounts

aliases

collections

docformats

doctypes

documents

dynamicqueries

indexerwork

metadata

metaoptlists

subscriptiontypes

Edit button
Displays the Edit Action screen for the action selected in the Actions
list.

Delete button Deletes the selected action from the Actions list.

Back button Displays the Add Service Table Information screen.

Next button Inactive (there are no more screens for defining a service).

Finish
button/OK
button

Saves the service in the service resource. The Finish button is
unavailable if the minimum specifications have not been defined for
the resource.

Cancel button
Closes the Add/Edit Service screen without creating or changing the
service.

Help button Displays this help page for the Add/Edit Service screen.

Feature Description
Working with Components 9-33

Component Interface Screens
templates

userlist

usermetaoptlists

wfscripts

wftemplates

workflows

Preview Information for Service Screen

This screen is used to view details about a service before selecting it for use as a service
resource. To access this screen, highlight a service on the Add/Edit Service Screen
(page 9-31) and click Preview.

To view details about the actions used in the service, highlight an action and click
Preview. The Preview Action Information Screen (page 9-35) is displayed.

When you finish viewing service information, click Close.

For complete information about services and actions, see the Services Reference Guide.
9-34 Working with Components

Component Interface Screens
Preview Action Information Screen

This screen is used to view the details of service actions. To access this screen, highlight
an action on the Preview Information for Service Screen (page 9-34) and click Preview.
When done viewing action details, click Close.

For complete information about services and actions, see the Services Reference Guide.

Add/Edit SearchResults Template Screen
Working with Components 9-35

Component Interface Screens
This screen is used to find a template to use for your component.

Feature Description

Name field
Enter the name of the template that will be created for the resource, or
click Select to start with a predefined template.

Select button
Displays the Resource Selection Dialog screen, which lists the
predefined StandardResults template.

Copy From
check box and
field

Selected = The new template resource will be a copy of an existing
template. Enter the complete path and file name of the existing
template file (.htm).
Clear = A new template resource file will be created.

Browse button Used to navigate to and select the desired template file.

View button Displays the template file in a read-only text window.

Form Type field
Select the template form type, which is the specific type of
functionality the page is trying to achieve.

File name field
The file name of the template resource. This can be either an absolute
path or a relative path, relative to the location of the
component_template.hda resource file.

Out File Name
field

For future use. Leave this field blank.

Flex Data field
Defines the metadata to be displayed for each row on the search
results page.

Description
field

Enter a description of the template file.

Back button Displays the Add Template Table Information screen.

Next button Inactive (there are no more screens for defining a template).

Finish
button/OK
button

Saves the template file in the template resource. The Finish button is
unavailable if the minimum specifications have not been defined for
the resource.
9-36 Working with Components

Component Interface Screens
Column Information Screen

This screen appears only when you create a new table. To edit the table, you will need to
open the file in a text editor.

Cancel button
Closes the Add/Edit SearchResults Template screen without creating
or changing the template resource.

Help button
Displays this help page for the Add/Edit SearchResults Template
screen.

Feature Description

Column Name
field

Enter a column name to be added to the bottom of the Columns list.

Insert button Adds the Column Name entry to the bottom of the Columns list.

Delete button Deletes the column selected in the Columns list.

Columns list Lists the columns that are defined for the table.

OK button Saves the column list.

Cancel button Closes the Column Information screen without saving the column list.

Help button Displays this help page for the Column Information screen.

Feature Description
Working with Components 9-37

Component Interface Screens
Add/Edit Intradoc Template Screen

This screen is used to begin building a template for your component.

Feature Description

Name field

Enter the name of the template that will be created for the resource, or
click Select to start with a predefined template.
The unique template name is how the template is referenced in the
Content Server CGI URLs and in code. When merging custom
template file entries into the Templates table, the Name is used as the
merge key.

Select button
Displays the Resource Selection Dialog screen, which lists the
predefined templates.

Copy From
check box and
field

Selected = The new template resource will be a copy of an existing
template. Enter the complete path and file name of the existing
template file (.htm).
Clear = A new template resource file will be created.

Browse button Used to navigate to and select the desired template file.

View button Displays the template file in a read-only text window.
9-38 Working with Components

Component Interface Screens
Class field

Select the template class type, which is the general category of the
template. The template class is not used for standard Content Server
functionality, but it can be used in a component to create functions
specific to a particular class of templates.

Form Type field
Select the template form type, which is the specific type of
functionality the page is trying to achieve.

File name field
The file name of the template resource. This can be either an absolute
path or a relative path, relative to the location of the
component_template.hda resource file.

Description
field

Enter a description of the template file.

Back button Displays the Add Template Table Information screen.

Next button Inactive (there are no more screens for defining a template).

Finish
button/OK
button

Saves the template file in the template resource. The Finish button is
unavailable if the minimum specifications have not been defined for
the resource.

Cancel button
Closes the Add/Edit Intradoc Template screen without creating or
changing the template resource.

Help button Displays this help page for the Add/Edit Intradoc Template screen.

Feature Description
Working with Components 9-39

Component Interface Screens
Add/Edit Preference Screen

This screen is used to specify custom installation parameters.

Feature Description

Name field Name of the custom installation parameter.

Message Type
field

Select a message type.

Prompt Type
field

Select the prompt type. This field is only enabled if Prompt is selected
as the Message Type.

Option List
Name field

Enter the result set name from the Content Server. This field is
enabled when Option List is selected in the Prompt Type field.

Option List
Display
Column field

Enter the field name from the result set specified in the Option List
Name field. This field is used for building a choice list. This field is
enabled when Option List is selected in the Prompt Type field.
9-40 Working with Components

Component Interface Screens
BUILD SCREENS
The screens depicted in this section are used to package and build a custom component:

Main Build Screen (page 9-44)

Message field

Enter the prompt or message text or, preferably, enter the key
associated with the prompt or message (created using the code
template file corresponding to the Has Install Strings check box on the
Install/Uninstall Settings tab). Entering the key references the
installation strings file to obtain the actual text (which can be edited
for localization requirements).

Default Value
field

Enter the default value for the prompt.

Is Editable
check box

Selected = Makes the installation parameter configurable after the
component is installed.

Clear = The installation parameter is not reconfigurable.

OK button Adds the installation parameter to the component.

Cancel button
Closes the screen without adding the installation parameter to the
component.

Help button Displays a help page for the Add Preference screen.

Feature Description
Working with Components 9-41

Component Interface Screens
Install/Uninstall Settings Tab

The Install/Uninstall Settings tab is used to create customized installation components that
can include preference data parameters. These parameters can be user prompts and
messages. The user prompts and messages created for specific components are displayed
to users only during the installation process.

Feature Description

Has
Install/Uninstall
Filter check box

Selected = Includes additional custom installation or uninstall filters
in the component resource definition file. Checking this option also
creates the template java source if the file doesn't already exist. The
<component_name>InstallFilter.java file is created in the
<component_name>/classes/<component_name> directory.
Clear = Additional custom installation procedures are not included.
9-42 Working with Components

Component Interface Screens
Launch Editor
button

Displays a code template file in the default text editor. Edit the
template Java source to define custom initialization or uninstall
procedures for the component (such as creating meta fields, executing
service scripts, etc.)

Has Install
Strings check
box

Selected = Includes prompts or messages during the component
installation process. These prompts or messages are stored in an
installation strings file and can be edited for localization requirements.
Checking this option also creates the install_strings.htm file if the file
doesn't already exist in the <component_name> directory.
Clear = Prompts or messages are not included.

Launch Editor
button

Displays a code template file in the default text editor. Edit the
template to define prompts or messages for the component.

Preference Data
Setup list

Shows the name, type and prompt fields of the custom installation
parameters. If one or more custom installation parameters are defined
and included, the preference.hda file will be created in the component
directory.

Add button
Displays the Add Preference screen, which is used to define the
settings for custom installation parameters.

Edit button
Displays the Edit Preference screen, which is used to edit the settings
for custom installation parameters.

Delete button Removes the selected parameter from the component.

Feature Description
Working with Components 9-43

Component Interface Screens
Main Build Screen

This screen is used during the build process, when creating a zip file of a custom
component. It shows the files that will be included in the zip file.

Feature Description

Manifest Path
Shows the path and file name of the manifest.hda file, which
contains the instructions for how to unpackage the component zip
file.

Version field
Supports component versioning. By default, the date is listed with a
build number in parenthesis, but this value can be overridden. It is
used for reference purposes only, and it is not validated.
9-44 Working with Components

Component Interface Screens
Advanced Build Settings Review Screen

Include
Preference
Prompts check
box

Selected = The parameter option settings (preference data) that were
established using the Install/Uninstall Settings tab are included in
the component manifest file. By selecting this, the preference.hda
file, which holds preference data settings, will be included.
Clear = The preference data is not included in the component
manifest file.

View Advanced
Build Settings /
Advanced button

Displays the Advanced Build Settings Review Screen (page 9-45)
which lists the field values configured using the Advanced Build
Settings Screen (page 9-49).

Entry Type
column

Lists the items that will be included in the component Zip file.

Current Root
Prefix column

The root directory where the component files are located.

Location column The sub-directory and/or and the file name of the component file.

OK button Builds the component Zip file.

Cancel button Closes the screen without building the component Zip file.

Help button Displays the help page for this screen.

Feature Description
Working with Components 9-45

Component Interface Screens
This screen is accessed by clicking the OK button on the Advanced Build Settings Screen
(page 9-49). It shows those options which have been specified.

Feature Description

Install ID field
Stores the user’s preference settings that are specified during the
component installation.

Custom Class
Path field

Lists the class paths of additional classes or jar files that are included
in the classpath that is required for the component to function.

Custom Library
Path field

Lists the paths of library or other executable files required for the
component.

Feature
Extensions field

Lists the specific types of features or functions that the component
provides.

Additional
Components field

Lists the additional components that need to be installed along with
the component.

OK button Accepts the field values and closes the screen.

Cancel button Closes the screen.

Help button Displays the help page for this screen.
9-46 Working with Components

Component Interface Screens
Build Settings Screen

The Build Settings screen defines installation settings and what files to include in the
component Zip file. The list of files included in the component Zip file is saved in the
component build file (manifest.hda) and the installation settings are saved in the
component definition file (<component_name>.hda). See Additional Component Wizard
Tasks (page 5-15) for an example of usage.

Feature Description

Version field
Supports component versioning. By default, the date is listed with a
build number in parenthesis, but this value can be overridden. It is
used for reference purposes only, and it is not validated.

Include
Preference
Prompts check
box

Selected = The parameter option settings (preference data) that were
established using the Install/Uninstall Settings tab are included in
the component manifest file. By selecting this, the preference.hda
file, which holds preference data settings, will be included.
Clear = The preference data is not included in the component
manifest file.

Configure
Advanced Build
Settings /
Advanced button

Displays the Advanced Build Settings Screen (page 9-49) which is
used to enter values for the advanced build settings fields. The
configured values are viewed using the Advanced Build Settings
Review Screen (page 9-45).
Working with Components 9-47

Component Interface Screens
Entry Type
column

Lists the items that will be included in the component Zip file.

Current Root
Prefix column

The root directory where the component files are located.

Location column The sub-directory and/or and the file name of the component file.

Add button Displays the Add Screen (page 9-14).

Remove button Removes the selected item from the list.

OK button Saves the build settings.

Cancel button Closes the screen without changing the build settings.

Help button Displays the help page for this screen.

Feature Description
9-48 Working with Components

Component Interface Screens
Advanced Build Settings Screen
Working with Components 9-49

Component Interface Screens
This screen is used to specify additional build settings for the component zip file. It is
accessed by selecting the Advanced button on the Main Build Screen (page 9-44).

Feature Description

Content Server
Compatible Build
field

The minimal build number of the Content Server, for which the
component must be compatible. Use this field if the component is
not compatible with other Content Server versions.The build
number is displayed on the application About screens and on the
Configuration Information page.
The component will not be installed for a Content Server build
number that is older than the value specified in this field. If a build
number is not specified, then the component will be installed
without checking the Content Server build number.
For versions of Content Server older than 7.5.1, the build number
was not as readily available. It was aligned with the product version
as noted below:
Display Value Build number
6.2 6.2
7.0 7.0.1.145
7.1 7.0.1.149
7.1.1 7.0.3.158
7.5 7.1.2.166
7.5.1 7.1.2.169

The build number is composed of four, decimal-separated numbers.
If you specify a build number, during validation, if a version is missing
any values, these values are padded with zeros. This means that 7.0
becomes 7.0.0.0. For example, if a component has the compatible build
number set to 7.0, and it is installed against a 7.5.1 Content Server, the
server would check that 7.1.2.169 > 7.0.0.0, and load the component
without complaint.
9-50 Working with Components

Component Interface Screens
Install ID field

Required if preference data is defined using the Install/Uninstall
Settings tab. This field value is used during the component
installation process to access the preference data stored in
configuration files. Two configuration files hold the preference data:
config.cfg (contains the parameters that can be reconfigured after
installation) and install.cfg (contains the preference data definitions
and prompt answers).

Custom Class
Path field

Add class paths to additional classes or jar files that need to be
included in the classpath that are required for the component to
function. It is recommended that you use the relative path to the
Content Server and place any component-related class files or jar
files in the <component_name>/classes directory.

Custom Library
Path field

Enter the paths of library or other executable files required for the
component. It is recommended that you use the relative path to the
Content Server and place any component-related library or
executable files in the <component_name>/classes directory.

Feature
Extensions field

Enter the specific types of features or functions that the component
provides. Separate multiple entries with commas. This field is
optional (not required).

Feature Description
Working with Components 9-51

Component Interface Screens
Additional
Components field

This field allows installation components to install individual add-
on components or to generate a grouping of multiple components
into a single installation package. Enter any additional components
that need to be installed along with this component using the
following format:

<component_name>:<component.zip>:<preference_data_para
meter_name>

The <preference_data_parameter_name> is optional. If a
parameter name is not specified, the component will be installed by
default. The preference data parameter must be defined in the
Preference Data Setup section of the Install/Uninstall Settings tab.
You must include a colon (:) after <component.zip> even if you are
not including a <preference_data_parameter_name>. If excluding
<preference_data_parameter_name>, the format is:

<component_name>:component.zip>:
Separate multiple entries with commas, as in the following:

<component_name>:<component.zip>:,<component_name>
:<component.zip>:

OK button Returns to the previous screen.

Cancel button Closes the screen without building the component Zip file.

Help button Displays the help page for this screen.

Feature Description
9-52 Working with Components

A p p e n d i x

A
B.THIRD PARTY LICENSES

OVERVIEW

This appendix includes a description of the Third Party Licenses for all the third party
products included with this product.

Apache Software License (page B-1)

W3C® Software Notice and License (page B-2)

Zlib License (page B-3)

General BSD License (page B-4)

General MIT License (page B-5)

Unicode License (page B-5)

Miscellaneous Attributions (page B-7)

APACHE SOFTWARE LICENSE

* Copyright 1999-2004 The Apache Software Foundation.

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

* http://www.apache.org/licenses/LICENSE-2.0

*
Working with Components A-1

Third Party Licenses
* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

W3C® SOFTWARE NOTICE AND LICENSE

* Copyright © 1994-2000 World Wide Web Consortium,

* (Massachusetts Institute of Technology, Institut National de

* Recherche en Informatique et en Automatique, Keio University).

* All Rights Reserved. http://www.w3.org/Consortium/Legal/

*

* This W3C work (including software, documents, or other related items) is

* being provided by the copyright holders under the following license. By

* obtaining, using and/or copying this work, you (the licensee) agree that

* you have read, understood, and will comply with the following terms and

* conditions:

*

* Permission to use, copy, modify, and distribute this software and its

* documentation, with or without modification, for any purpose and without

* fee or royalty is hereby granted, provided that you include the following

* on ALL copies of the software and documentation or portions thereof,

* including modifications, that you make:

*

* 1. The full text of this NOTICE in a location viewable to users of the

* redistributed or derivative work.

*

* 2. Any pre-existing intellectual property disclaimers, notices, or terms

* and conditions. If none exist, a short notice of the following form

* (hypertext is preferred, text is permitted) should be used within the

* body of any redistributed or derivative code: "Copyright ©

* [$date-of-software] World Wide Web Consortium, (Massachusetts
A-2 Working with Components

Third Party Licenses
* Institute of Technology, Institut National de Recherche en

* Informatique et en Automatique, Keio University). All Rights

* Reserved. http://www.w3.org/Consortium/Legal/"

*

* 3. Notice of any changes or modifications to the W3C files, including the

* date changes were made. (We recommend you provide URIs to the location

* from which the code is derived.)

*

* THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS

* MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT

* NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

* PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE

* ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

*

* COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR

* CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR

* DOCUMENTATION.

*

* The name and trademarks of copyright holders may NOT be used in advertising

* or publicity pertaining to the software without specific, written prior

* permission. Title to copyright in this software and any associated

* documentation will at all times remain with copyright holders.

*

ZLIB LICENSE

* zlib.h -- interface of the 'zlib' general purpose compression library

 version 1.2.3, July 18th, 2005

Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages
Working with Components A-3

Third Party Licenses
 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly jloup@gzip.org

 Mark Adler madler@alumni.caltech.edu

GENERAL BSD LICENSE

Copyright (c) 1998, Regents of the University of California

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

"Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

"Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

"Neither the name of the <ORGANIZATION> nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.
A-4 Working with Components

Third Party Licenses
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

GENERAL MIT LICENSE

Copyright (c) 1998, Regents of the Massachusetts Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

UNICODE LICENSE

UNICODE, INC. LICENSE AGREEMENT - DATA FILES AND SOFTWARE

Unicode Data Files include all data files under the directories
http://www.unicode.org/Public/, http://www.unicode.org/reports/, and
http://www.unicode.org/cldr/data/ . Unicode Software includes any source code
published in the Unicode Standard or under the directories
http://www.unicode.org/Public/, http://www.unicode.org/reports/, and
http://www.unicode.org/cldr/data/.
Working with Components A-5

Third Party Licenses
A-6 Working with Components

NOTICE TO USER: Carefully read the following legal agreement. BY DOWNLOADING,
INSTALLING, COPYING OR OTHERWISE USING UNICODE INC.'S DATA FILES ("DATA FILES"),
AND/OR SOFTWARE ("SOFTWARE"), YOU UNEQUIVOCALLY ACCEPT, AND AGREE TO BE BOUND BY,
ALL OF THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE, DO NOT
DOWNLOAD, INSTALL, COPY, DISTRIBUTE OR USE THE DATA FILES OR SOFTWARE.

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1991-2006 Unicode, Inc. All rights reserved. Distributed under the
Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy of the
Unicode data files and any associated documentation (the "Data Files") or Unicode
software and any associated documentation (the "Software") to deal in the Data
Files or Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, and/or sell copies of the Data Files
or Software, and to permit persons to whom the Data Files or Software are furnished
to do so, provided that (a) the above copyright notice(s) and this permission notice
appear with all copies of the Data Files or Software, (b) both the above copyright
notice(s) and this permission notice appear in associated documentation, and (c)
there is clear notice in each modified Data File or in the Software as well as in
the documentation associated with the Data File(s) or Software that the data or
software has been modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO
EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in these Data
Files or Software without prior written authorization of the copyright holder.

__Unicode and the Unicode logo are trademarks
of Unicode, Inc., and may be registered in some jurisdictions. All other trademarks
and registered trademarks mentioned herein are the property of their respective
owners

Third Party Licenses
MISCELLANEOUS ATTRIBUTIONS

Adobe, Acrobat, and the Acrobat Logo are registered trademarks of Adobe Systems Incorporated.

FAST Instream is a trademark of Fast Search and Transfer ASA.

HP-UX is a registered trademark of Hewlett-Packard Company.

IBM, Informix, and DB2 are registered trademarks of IBM Corporation.

Jaws PDF Library is a registered trademark of Global Graphics Software Ltd.

Kofax is a registered trademark, and Ascent and Ascent Capture are trademarks of Kofax Image

Products.

Linux is a registered trademark of Linus Torvalds.

Mac is a registered trademark, and Safari is a trademark of Apple Computer, Inc.

Microsoft, Windows, and Internet Explorer are registered trademarks of Microsoft Corporation.

MrSID is property of LizardTech, Inc. It is protected by U.S. Patent No. 5,710,835. Foreign Patents

Pending.

Oracle is a registered trademark of Oracle Corporation.

Portions Copyright © 1994-1997 LEAD Technologies, Inc. All rights reserved.

Portions Copyright © 1990-1998 Handmade Software, Inc. All rights reserved.

Portions Copyright © 1988, 1997 Aladdin Enterprises. All rights reserved.

Portions Copyright © 1997 Soft Horizons. All rights reserved.

Portions Copyright © 1995-1999 LizardTech, Inc. All rights reserved.

Red Hat is a registered trademark of Red Hat, Inc.

Sun is a registered trademark, and Sun ONE, Solaris, iPlanet and Java are trademarks of Sun

Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

UNIX is a registered trademark of The Open Group.

Verity is a registered trademark of Autonomy Corporation plc
Working with Components A-7

I n d e x

A
access level attribute, 8-13
action format, 8-14
actions

control mask, 8-15
error message, 8-15
name, 8-15
parameters, 8-15
predefined, 9-11
service, 9-10
service resource, 8-18
type, 8-15

Actions column
service ResultSet, 8-14

Add Action screen, 9-10
Add Component screen, 9-6
Add Dynamic Resource Table Information screen, 9-18
Add HTML Resource Include/String screen, 9-25
Add Intradoc Template screen, 9-38
Add Parameter screen, 9-26
Add Query screen, 9-27
Add Query Table Information screen, 9-16
Add Resource Definition screen, 9-29
Add screen

Component Wizard, 9-14
Add SearchResults Template screen, 9-35
Add Service screen, 9-31
Add Service Table Information screen, 9-17
Add Static Resource Table Information screen, 9-20
Add Template Table Information screen, 9-23
adding

existing components, 5-21
Admin Server

enabling and disabling components, 6-3
uploading components, 6-4

Asian language, 3-2
attributes

service resources, 8-17

B
Build menu, 9-5
Build screen, 9-44
build settings, 5-15
build settings, component, 9-6
building, 9-44, 9-47

component Zip file, 5-15
components, 9-44, 9-47

C
CFG file, 8-32
ClassAliases ResultSet, 7-8
Column Information screen, 9-37
ColumnTranslation table, 9-21
component

creating with Component Wizard, 5-3
Component Configuration screen, 9-8
component definition file, 3-6
component directories, 3-1, 4-1
component files, 3-1, 4-1

overview, 2-3
Component List screen, 9-2
Component Manager, 2-2, 2-4, 6-1, 9-1

overview, 2-2
using, 6-3

Component Manager page, 6-1
component manager tasks, 6-3
component overview, 2-1
Component Wizard, 2-1, 2-4, 4-2, 5-15, 6-1, 9-1

Add Action screen, 9-10
Add Dynamic Resource Table Information

screen, 9-18
Add HTML Resource Include/String screen, 9-25
Add Intradoc Template screen, 9-38
Add Parameter screen, 9-26
Add Query screen, 9-27
Add Query Table Information screen, 9-16
Add Resource Definition screen, 9-29
Add screen, 9-14
Working with Components Index-1

Index
Add SearchResults Template screen, 9-35
Add Service screen, 9-31
Add Service Table Information screen, 9-17
Add Static Resource Table Information screen, 9-20
Add Template Table Information screen, 9-23
adding existing components, 5-21
Build menu, 9-5
Build screen, 9-44
Build Settings screen, 9-47
Column Information screen, 9-37
configuring default HTML editor, 5-20
creating a dynamic table, 8-8
creating a new component, 5-1
creating component example, 5-3
creating HTML includes, 5-11
creating static tables, 5-14
Edit Action screen, 9-10
Edit HTML Resource Include/String screen, 9-25
Edit Intradoc Template screen, 9-38
Edit Parameter screen, 9-26
Edit Query screen, 9-27
Edit SearchResults Template screen, 9-35
Edit Service screen, 9-31
editing dynamic tables, 8-8
editing environment resources, 8-34
editing HTML includes, 8-3, 8-8
editing service resources, 8-23
editing static tables, 8-9
editing template resources, 8-32
editing the Readme file., 5-3
enabling and disabling components, 5-18
Help menu, 9-6
Java code tab, 5-2
opening components, 5-19
Options menu, 9-5
overview, 2-1
removing components, 5-19
Resource Selection Dialog screens, 9-30
unpackaging components, 5-20
using, 5-1
working with resources, 5-2, 8-2

component Zip file, 3-11
building, 5-15

components, 6-1, 9-1
adding existing, 5-21
build settings, 9-6
building, 9-44, 9-47
creating, 4-1, 5-1
disabling, 5-18, 6-3
enabling, 5-18, 6-3
naming conventions, 4-4
opening, 5-19
removing, 5-19
unpackaging, 5-20

uploading, 6-4
working with files, 4-2

components HDA file, 3-11, 7-1
Components ResultSet, 3-4, 7-2
components.hda file, 3-11, 7-1
configuration files, 8-32
configuring

default HTML editor, 5-20
content server

development instance, 4-2
control mask, 8-15
conventions

naming, 4-4
creating

component, 4-1
dynamic tables, 8-8
HTML includes, 8-8
new component, 5-1
static table, 5-14

custom components
understanding, 3-1, 4-1

Custom Reports component, 8-27
custom resource files, 3-11
custom resources, 5-2

D
DataBinder, 3-8
DataSources table, 9-21
default HTML editor, configuring, 5-20
development

instance, 4-2
directories

naming conventions, 4-4
organization, 4-3

disabling
component, 5-18, 6-3

double-byte characters, 3-2
dynamic resource tables, 9-18, 9-19, 9-37
dynamic table resource, 8-8
dynamic tables

creating, 8-8
editing, 8-8

E
Edit Action screen, 9-10
Edit HTML Resource Include/String screen, 9-25
Edit Intradoc Template screen, 9-38
Edit Parameter screen, 9-26
Edit Query screen, 9-27
Edit SearchResults Template screen, 9-35
Index -2 Working with Components

Index
Edit Service screen, 9-31
editing

dynamic table, 8-8
environment resource, 8-34
HTML includes, 8-3, 8-8
Readme file, 5-3
service resource, 8-23
static table, 8-9
template resource, 8-32

enabling
components, 5-18, 6-3

environment, 3-8, 3-9
environment resources, 8-32

editing, 8-34
example, 8-33

error message, 8-15
error message attribute, 8-14
example

creating component, 5-3
examples

ClassAliases ResultSet, 7-8
component definition file, 3-6, 7-3
components HDA file, 7-1
environment resource, 8-33
Filters ResultSet, 7-8
glue file, 3-6, 7-3
HDA file, 3-2
HTML includes, 8-2
LocalData section, 3-3
MergeRules ResultSet, 7-7, 8-24
Properties section, 3-3
report page, 8-29
ResourceDefinition ResultSet, 7-5
ResultSet section, 3-4
service actions, 8-18
service attributes, 8-17
service resource, 8-13, 8-16
super tag, 8-3
template page, 8-28

existing component, adding, 5-21

F
file types, 2-4
files

component definition, 3-6
component Zip, 3-11
components HDA, 3-11, 7-1
configuration, 8-32
custom resource, 3-11
environment, 8-32
glue, 3-6
HDA, 3-1

manifest, 3-9
naming conventions, 4-4
organization, 4-3
Readme, 5-3
search_results.htm, 8-25
working with in components, 4-2

Filters ResultSet, 7-8
format

action, 8-14

G
glue file, 3-6

H
HDA files, 3-1

components HDA, 7-1
example, 3-2
ResultSet section, 3-3

Help menu, 9-6
HTML editor, configuring default, 5-20
HTML includes, 8-2

creating, 8-8
editing, 8-3, 8-8
example, 8-2
standard, 8-2, 8-4
super tag, 8-2, 8-2

I
IdocScriptExtensions table, 9-21
IgnoredFlexFields table, 9-19
include resources

adding, 9-25
editing, 9-25

Intradoc template, 9-38
IntradocReports ResultSet, 3-5
IntradocReports table, 9-21
IntradocTemplates ResultSet, 3-5
IntradocTemplates table, 9-24

J
Java code, 5-2

L
LocalData, 3-8, 3-9
LocalData section, 3-3
Working with Components Index-3

Index
M
manifest file, 3-9
manifest path, 9-44
Manifest ResultSet, 3-10
manifest.hda, 9-44
manifest.hda file, 3-10
MergeRules ResultSet, 7-6

template resource, 8-24
toTable column, 7-7

N
name/value pair, 8-32
naming conventions, 4-4
new component

creating, 5-1
non-active ResultSets, 3-8

O
opening

component, 5-19
organization

component files, 4-3
Overview

Conventions, 1-3

P
packaging, 9-44, 9-47
pages

report, 8-23, 8-26
template, 8-23, 8-26

parameters
action, 8-15
adding, 9-26, 9-27
editing, 9-26, 9-27

predefined dynamic tables, 9-19
predefined resources, 9-30
predefined ResultSets, 3-4
predefined service actions, 9-11
predefined static tables, 9-21
predefined template tables, 9-24

Q
query resources, 8-9

R
Readme file, 5-3
removing

component, 5-19
report pages, 8-23, 8-26

example, 8-29
reports

custom, 8-27
resource categories, 8-1
Resource Selection Dialog screens, 9-30
ResourceDefinition ResultSet, 3-5, 7-5

columns, 7-5
resources, 8-1

component, 9-29
custom, 3-11, 5-2
dynamic table, 8-8
environment, 8-32
predefined, 9-30
query, 8-9
service, 8-12
static table, 8-9
string, 8-4

ResultSet section, 3-3
ResultSets, 3-9

ClassAliases, 7-8
Components, 3-4, 7-2
Filters, 7-8
IntradocReports, 3-5
IntradocTemplates, 3-5
Manifest, 3-10
MergeRules, 7-6
non-active, 3-8
predefined, 3-4
ResourceDefinition, 3-5, 7-5
SearchResultTemplates, 3-5

S
search_results.htm file, 8-25
SearchResults template, 9-35
SearchResultTemplates ResultSet, 3-5
SearchResultTemplates table, 9-24
sections

LocalData, 3-3
ResultSet, 3-3

service attributes
access level, 8-13
error message, 8-14
service class, 8-13
service type, 8-14
subjects notified, 8-14
template page, 8-13
Index -4 Working with Components

Index
service class attribute, 8-13
service definition table, 8-13
service resource

attributes, 8-17
service resources, 8-12, 9-10, 9-17

action, 9-10
actions, 8-18
adding, 9-31
editing, 8-23, 9-31
example, 8-13, 8-16
subjects, 9-33

service ResultSet
Actions column, 8-14

service type attribute, 8-14
ServiceHandlers table, 9-21
services

actions, 8-14
special characters

in strings, 8-4
standard report pages, 8-26
standard template pages, 8-26
StandardResults template, 8-25
static resource tables, 9-20, 9-37
static tables, 8-9, 9-21

creating, 5-14
editing, 8-9

string resources
adding, 9-25
editing, 9-25

strings
resource files, 8-4
special characters, 8-4
structure, 8-4

structure
files and directories, 4-3

subjects, 9-33
subjects notified attribute, 8-14
SubscriptionTypes table, 9-22
super tag, 8-2
syntax

service action, 8-14

T
template page attribute, 8-13

template pages, 8-23, 8-26
example, 8-28

template resources, 8-23, 9-23
adding, 9-35, 9-38
editing, 8-32, 9-35, 9-38
MergeRules ResultSet, 8-24

template tables, 9-24
text editor, 4-2
toTable column, 7-7
tutorial

creating component, 5-3

U
understanding

custom components, 3-1, 4-1
Unpackage screen, 9-8
unpackaging a component, 5-20
uploading a component, 6-4
UserMetaDefinition table, 9-22
using

Component Manager, 6-3
Component Wizard, 5-1

V
variables

configuration, 8-32
environment, 8-32

W
Web Layout Editor, 8-25
working with

components, 6-1, 9-1
working with component files, 4-2
working with Java code, 5-2
working with resources, 5-2

Z
Zip file, 3-11, 5-15
Working with Components Index-5

	Cover Page
	Table of Contents
	1. About This Guide
	What’s New
	Audience
	Document Organization
	Conventions

	2. Component Overview
	Component Wizard
	Component Manager
	Component Files Overview
	Enabling and Disabling a Component

	3. Directories and Files
	HDA Files
	Elements in HDA files
	The components.hda File
	Glue Files

	Custom Resource Files
	DataBinder
	LocalData
	Active or Non-active ResultSets
	Environment

	Manifest File
	Other Files
	Customized Site Files
	Component Zip File
	Custom Installation Parameter Files

	Typical Directory Structure

	4. Development Recommendations
	Creating a Component
	Working with Component Files
	Using a Development Instance
	Component File Organization
	Naming Conventions

	5. Using the Component Wizard
	Overview
	Working with Java Code
	Editing the Readme File

	Creating a Custom Component
	Additional Component Wizard Tasks
	Building a Component Zip File
	Working With Installation Parameters
	Enabling and Disabling a Component
	Removing a Component
	Opening a Component
	Configuring the Default HTML Editor
	Unpackaging a Component
	Adding an Existing Component

	6. Using the Component Manager
	Component Manager Main Page
	Component Manager Tasks
	Enabling and Disabling a Component
	Uploading a Component
	Downloading a Component

	7. Component File Details
	The components.hda file
	Components ResultSet

	Component Definition (Glue) File
	ResourceDefinition ResultSet
	MergeRules ResultSet
	Filters ResultSet
	ClassAliases ResultSet

	8. Resources Detail
	HTML Include
	The Super Tag
	Editing an HTML Include Resource

	String
	String Parameters
	Editing a String Resource

	Dynamic Tables
	Editing a Dynamic Table Resource

	Static Tables
	Editing a Static Table Resource

	Query
	Editing a Query Resource

	Service
	Service Example
	Editing a Service Resource

	Templates
	Template and Report Pages
	Editing a Template Resource

	Environment
	Environment Example
	Editing an Environment Resource

	9. Component Interface Screens
	Options Menu
	Build Menu
	Help Menu
	Component Creation Screens
	Build Screens

	A. Third Party Licenses
	Overview
	Apache Software License
	W3C® Software Notice and License
	Zlib License
	General BSD License
	General MIT License
	Unicode License
	Miscellaneous Attributions

	Index

