

Customizing and
Extending Oracle Siebel
ePayment Manager

Version 4.7

May 31, 2007

Copyright © 1996, 2007 Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to
the extent required to obtain interoperability with other independently created software or as
specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

If the Programs are delivered to the United States Government or anyone licensing or using
the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software"
or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification,
and adaptation of the Programs, including documentation and technical data, shall be subject
to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer
Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood
City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any
damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services
from third parties. Oracle is not responsible for the availability of, or any content provided on,
third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between
you and the third party. Oracle is not responsible for: (a) the quality of third-party products or
services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

3

Contents

1 Preface

About Customer Self Service and eaSuite™ 9
About This Guide 10
Related Documentation 10

2 Introduction

Architecture of ePayment Manager 11

What’s in the ePayment Manager Package 12

Major ePayment Manager Beans 13

3 ePayment Manager Enrollment

Overview 19
Default ePayment Manager Enrollment Models 19

Single-DDN Model 20

Multiple-DDN Model 20

Choosing an Enrollment Model 21
ePayment Manager Enrollment Architecture 21

ePayment Manager Enrollment API 23
Major Enrollment Objects and Relationships 24

IAccount 24

IPaymentAccountManager 25

IPayUserAccount 26

IUserAccountAccessor 28

IPaymentAccountAccessor 30

IPayUserAccountAccessor 30

Payment Servlet 33

Contents

4 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

Customizing ePayment Manager Enrollment 33

Customizing ePayment Manager Enrollment JSP Pages 34

Integrating ePayment Manager with Other User Account Enrollment Databases 37

Integrating ePayment Manager with Other Payment Account Enrollment
Databases 37

4 Recurring Payments

Overview 39
Recurring Payment UI 41

Insert Recurring Payment 42

Update Recurring Payment 45

Recurring Payment Attached Accounts 48

Deleting a Recurring Payment 48
Recurring Payment Back End Job 48
Recurring Payment Scheduling 55
Recurring Payment FAQ 60

5 Sample User Interface

Customizing the ePayment Manager Front-End 65
Customizing web.xml 65
Customizing the ePayment Manager JSPs 66

6 ePayment Manager Plug-ins

Plug-In Customization 69
ACH Check Submit Plug-in 69
VeriSign Credit Card ePayment Manager Plug-in 71
ePayment Manager Reminder Plug-in 73
Recurring Payment Plug-in 74

Recurring Payment Synchronizer Task Plug-in 76

Recurring Payment Scheduler Task Plug-in 79

7 Customizing ePayment Manager Template Files

Contents

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

5

Overview 81
Customizing Email Templates 81

Payment Pre Due Reminder Template 82

Payment Fixed Reminder Template 87

Enrollment Notification Template 89

Recurring Payment Notification Templates 95

Payment Notification Template 101

Credit Card Expiration Notification Template 112
Understanding the Payment Template Engine 114
Customizing ACH Templates 116

Matching a Check in the ACH Return to the Database 119

Customizing the ACH Prenote File 125

Upper Case in an ACH File 125
Customizing CheckFree CDP Files 125

8 Generating Accounts Receivables (A/R) Files

Overview 129
Customizing arQuery.xml 129

Query Case Study 131
Customizing arFlat_template.txt 133
Customizing arXML_template.xml 133

Customize arXML_template.xml and Use XSLT to Generate XML/Flat AR File 133
Re-implement IARPaymentIntegrator 134
Select Only Check or Credit Card Payments 135
Compiling and Packaging a Custom IARIntegrator 135
A/R Filenames 135
Single Payment Type 136

9 Packaging ePayment Manager Custom Code

Overview 137

Contents

6 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

10 Debugging ePayment Manager

Overview 139
Viewing WebLogic Logs 139
View logs from eStatement Manager Command Center 139
Turning On the ePayment Manager Debug Flag 139

11 Terminology

Table of Terms 141

12 Plug-in Sample Code

AchCheckSubmitPlugIn.java 143
PaymentReminderPlugIn.java 145
RecurringPaymentPlugIn.java 146
VerisignCreditCardSubmitPlugIn.java 148
AddendaCheckSubmitPlugIn.java 149
SampleRecurringPlugIn.java 151

13 Auditing

Jobs Audited 157
UI Actions Audited 158

Example of UI Audit Flow 159
Query Files 164
Running Audit Queries 165
Query Setup 166

Windows Configuration 167

UNIX Configuration 167
Running the Queries in Windows 168

MSSQL 168

Oracle 169

DB2 170
Running the Queries in UNIX 171

Oracle 171

Contents

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

7

DB2 172
Audit Database 173

Modified Tables 173

New Tables 173

Audit Table Constants 175

Job Name Entries 175

14 Implementing a Custom ePayment Manager Cartridge

Demonstration Cartridge 177

Implementing Custom Credit Card Cartridge 177

15 Miscellaneous Customization

Avoiding Paying a Bill More Than Once 181
Handling Multiple Payee ACH Accounts 181

Index

Contents

8 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

9

 1 Preface

About Customer Self Service and
eaSuite™
Oracle has developed the industry's most comprehensive software and services for deploying
Customer Self-Service solutions. eaSuite™ combines electronic presentment and payment (EPP),
order management, knowledge management, personalization and application integration technologies
to create an integrated, natural starting point for all customer service issues. eaSuite's unique
architecture leverages and preserves existing infrastructure and data, and offers unparalleled
scalability for the most demanding applications. With deployments across the healthcare, financial
services, energy, retail, and communications industries, and the public sector, eaSuite powers some of
the world's largest and most demanding customer self-service applications. eaSuite is a standards-
based, feature rich, and highly scalable platform, that delivers the lowest total cost of ownership of
any self-service solution available.

eaSuite consists of four product families:

 Electronic Presentment and Payment (EPP) Applications

 Advanced Interactivity Applications

 Enterprise Productivity Applications

 Development Tools

Electronic Presentment and Payment (EPP) Applications are the foundation of Oracle’s
Customer Self-Service solution. They provide the core integration infrastructure between
organizations’ backend transactional systems and end users, as well as rich e-billing, e-invoicing and
e-statement functionality. Designed to meet the rigorous demands of the most technologically
advanced organizations, these applications power Customer Self-Service by managing transactional
data and by enabling payments and account distribution.

 eStatement Manager™ is the core infrastructure of enterprise Customer Self-Service solutions
for organizations large and small with special emphasis on meeting the needs of organizations
with large numbers of customers, high data volumes and extensive integration with systems and
business processes across the enterprise. Organizations use eStatement Manager with its data
access layer, composition engine, and security, enrollment and logging framework to power
complex Customer Self-Service applications.

 ePayment Manager™ is the electronic payment solution that decreases payment processing
costs, accelerates receivables and improves operational efficiency. ePayment Manager is a
complete payment scheduling and warehousing system with real-time and batch connections to
payment gateways for Automated Clearing House (ACH) and credit card payments, and payments
via various payment processing service providers.

Oracle’s Development Tools are visual development environments for designing and configuring
Oracle’s Customer Self-Service solutions. The Configuration Tools encompass data and rules

Preface About This Guide

10 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

management, workflow authoring, systems integration, and a software development kit that makes it
easy to create customer and employee-facing self-service applications leveraging eaSuite.

About This Guide
This document provides information about customizing and extending the features provided by
ePayment Manager.

The ePayment Manager SDK module consists of:

 This document, installed when you install the SDK

 JavaDoc for the ePayment Manager APIs, installed when you install the SDK

 java code for the ePayment Manager plug-in samples, provided in this document

 The sample application: paymentComplex.ear, installed when you installed ePayment Manager

Related Documentation
This guide is part of the ePayment Manager documentation set. For more information about
implementing your ePayment Manager application, see one of the following guides:

Print Document Description

Installation Guide for Oracle Siebel
ePayment Manager

How to install and configure ePayment Manager
on your system.

Administration Guide for Oracle
Siebel ePayment Manager

How to configure and operate the production
environment. It describes configuration tasks
done after installation.

Administration Guide for Oracle
Siebel eStatement Manager

How to set up and run a live eStatement
Manager application in a J2EE environment.

Deploying and Customizing J2EE
Applications Guide for Oracle Siebel
eStatement Manager

How to customize J2EE Web applications for
deployment with the eaSuite.

SDK Guide for Oracle Siebel
eStatement Manager

How to use the Oracle Software Developers Kit
to write custom code against Oracle
applications.

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

11

2 Introduction

Architecture of ePayment Manager
ePayment Manager is based on the J2EE platform. It uses Servlets and JSPs for the presentation layer
and uses enterprise java beans (EJB) for the business logic layer. It offers the following sets of
functions:

 Enrollment functions: to enroll users for both viewing bills (eStatement Manager) and paying
bills (ePayment Manager). Examples of user information include account numbers and email
addresses, and examples of payment account information include bank account numbers and
credit card accounts.

 ePayment Manager functions: to make payments, set up payment reminders and recurring
payments, etc.

 Administration functions: to set up payment jobs, view payment reports and configure
ePayment Manager Settings.

The following diagram shows an overview of the J2EE architecture of ePayment Manager:

Introduction Architecture of ePayment Manager

12 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

In this architecture, the servlet is responsible for user authentication. After authentication, the servlet
forwards the request to JSP pages, which do the bulk of the actual work. The ePayment Manager user
JSP pages can be categorized into two groups:

 Enrollment JSP pages are responsible for ePayment Manager user enrollment

 ePayment Manager JSP pages are responsible for core ePayment Manager functionality: schedule
payment, set up recurring payment, etc.

All ePayment Manager database access is done through EJB objects. The JSPs and servlets do not
access the database directly.

There are also ePayment Manager batch jobs that run inside the eStatement Manager Command
Center. For a list and description of ePayment Manager jobs, refer to the Administration Guide for
Oracle ePayment Manager.

What’s in the ePayment Manager Package
The ePayment Manager package contains an ePayment Manager user application called ear-payment-
complex.ear.

ear-payment-complex.ear allows each user ID to enroll with multiple billers, with multiple user
accounts for each biller.

The following table describes the contents of the EAR file:

File Description

META-INF/MANIFEST.MF The manifest file of this EAR file.

META-INF/application.xml Lists the J2EE components (EJB JARs and WARs) in
this EAR file.

war-payment-complex.war The WAR files include ePayment Manager servlet and
JSP pages for enrollment and payment functionality.

ejb-payment-payserver.jar ePayment Manager EJB JAR file containing the
IPayServer EJB bean.

ejb-payment-acctmgr.jar ePayment Manager EJB JAR file containing the
IPaymentAccountManager EJB bean.

ejb-payment-query.jar ePayment Manager EJB JAR file containing the
IPaymentQuery EJB bean.

ejb-payment-pscustom.jar ePayment Manager EJB JAR file reserved for Payment
internal use.

lib/edx_common.jar JAR file containing the eStatement Manager’s support
and utility classes that can be used both by the EJB
clients and the EJBs.

lib/payment_client.jar JAR file containing the ePayment Manager’s support
and utility classes that an EJB client may find useful.

Introduction Architecture of ePayment Manager

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

13

▪

File Description

lib/payment_common.jar JAR file containing the eStatement Manager’s support
and utility classes that can be used both by the EJB
clients and the EJBs.

lib/payment_custom.jar JAR file containing all the ePayment Manager
customization classes, such as plug-ins etc. done outside
core ePayment Manager.

lib/Verisign.jar JAR file for Verisign cartridge.

All other JAR files not listed in the table come from eStatement Manager.

In addition to the EAR files listed previously, there is a second EAR file, ear-payment.ear, which is
provided by the ePayment Manager installation. This EAR file includes the EJB JAR files and WAR file
for the ePayment Manager functionality of the Command Center. This EAR cannot be deployed
independently, and so it must be merged into ear-eStatement.ear. For details about merging these
files, see the Installation Guide for Oracle Siebel ePayment Manager. Also see the Deploying and
Customizing J2EE Applications Guide for Oracle Siebel eStatement Manager.

Major ePayment Manager Beans
The following tables describe the major ePayment Manager beans defined in both user EAR and
Command Center EAR (ear-payment.ear).

Introduction Architecture of ePayment Manager

14 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Name PayServer

Remote Interface Com.edocs.payment.remote.IPayServer

Home Interface Com.edocs.payment.remote.IPayServerHome

Bean Type State-less

Jar file ejb-payment-payserver.jar

Description This is the main EJB bean for user application to access the
ePayment Manager database.

Name PayAdmin Server

Remote Interface Com.edocs.payment.remote.IPayAdminServer

Home Interface Com.edocs.payment.remote.IPayAdminServerHome

Bean Type State-less

Jar file ejb-payment-admin.jar

Description This is the main EJB bean for Command Center to configure
ePayment Manager Settings and view payment reports.

Introduction Architecture of ePayment Manager

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

15

▪

Name IPaymentAccount Manager

Remote Interface Com.edocs.payment.remote.PaymentAccountManager

Home Interface com.edocs.payment.remote.
IPaymentAccountManagerHome

Bean Type Stateful

Jar file ejb-payment-acctmgr.jar

Description This is the main EJB bean for user application to access
payment account information inside ePayment Manager
database.

Name CreditCardSubmit

Remote Interface Com.edocs.pwc.tasks.ITask

Home Interface Com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-payment-ccsubmit.jar

Description Credit card submit task.

Name ChkSubmit

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-payment-chksubmit.jar

Description Check submit task.

Introduction Architecture of ePayment Manager

16 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Name ChkUpdate

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-payment-chkupdate.jar

Description Check update task.

Name ConfirmEnroll

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-payment-confirm-enroll.jar

Description Confirm enroll task.

Name NotifyEnroll

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-payment-notify-enroll.jar

Description Notify enroll task.

Introduction Architecture of ePayment Manager

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

17

▪

Name RecurPayment

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-payment-recur-pmt_scheduler.jar
and ejb-payment-recur-pmt_synchronizer.jar

Description Recurring payment task.

Name PaymentReminder

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-payment-reminder.jar

Description Payment reminder task.

Name SubmitEnroll

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

Bean Type Stateful

Jar file ejb-payment-submit-enroll.jar

Description Submit enroll task.

Introduction Architecture of ePayment Manager

18 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

19

3 ePayment Manager Enrollment

Overview
After installing ePayment Manager, you must design and choose the method of enrolling a user.
ePayment Manager enrollment is a very important and complex part of ePayment Manager, which this
chapter explains in detail.

ePayment Manager enrollment enables a user to enroll with the ePayment Manager system to view
and pay bills. Since ePayment Manager includes the ability to view bills, you must use ePayment
Manager to login when you have both eStatement Manager and ePayment Manager installed in your
system.

ePayment Manager enrollment information consists of two parts:

 User account information - includes user name, password, account number, email address,
etc., which is used for authentication and bill presentment

 ePayment Manager account information - includes check account number and credit card
number, which is used to make a payment

These two groups of information can be in the same database or can be in different databases.

Planning your enrollment model can be complicated, especially the user account part. There are two
enrollment models that come with ePayment Manager, which can serve as a starting point in
implementing your own enrollment model.

Default ePayment Manager Enrollment
Models
The ePayment Manager sample application paymentComplex, save payment account information in
the payment_accounts table of the ePayment Manager database. Note that users can enroll an
arbitrary number of payment accounts (of either check or credit card account).

The following diagram depicts a user "john" with two payment accounts (one check account and one
credit card account).

uid =john

account_type=checking
account_number=123456
routing_transit=000000000

account_type=visa
account_number=0000000000000000
expiration_date=03/03/08

ePayment Manager Enrollment Default ePayment Manager Enrollment Models

20 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

User account enrollment is more complicated and is further explained in the following section.

Single-DDN Model
In this model, a single user can have only one account number per DDN. This model is compatible
with the eStatement Manager Sample application. Therefore, a user who enrolls through Sample
should be able to login a payment front-end application which uses this model, and vice versa.

There are different ways to implement this enrollment model. One implementation is based on a JNDI-
compatible directory like eStatement Manager CDA and has following directory schema:

o = edocs.com

cn = users

uid =john
password =
accountNumber = 1234
email = support@edocs.com

In preceding example, user “john” can have only one account with the biller. The biller name is passed
in through URL as “ddn”.

Multiple-DDN Model
This model is demonstrated by the paymentComplex sample application, which is packaged as ear-
payment-complex.ear. It can be accessed using
http://host:port/paymentComplex/Payment?app=Payment.

In this model, a single user can enroll with multiple billers, and can have more than one account with
each biller. This essentially implements a hierarchy of user accounts.

There are different ways to implement this enrollment model. The paymentComplex implementation is
based on a JNDI-compatible directory (such as eStatement Manager CDA) and has following directory
schema:

ePayment Manager Enrollment ePayment Manager Enrollment Architecture

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

21

▪

ddn = BostonEdison ddn = ATT

accountNumber = elec1234
accountDescription = first floor

accountNumber = gas2
accountDescription =
 second floor

accountNumber = phone1
accountDescription =
gas account

o = edocs.com

cn = users

uid =john
password =
accountNumber = 1234
email = sales@edocs.com

In the preceding example, the user “john” has two accounts with Boston Edison: one for gas and
another for electricity, plus one account with ATT for phone service.

Choosing an Enrollment Model
Use the following guidelines to choose which enrollment model to use. You are not restricted to these
enrollment models; you or Oracle Professional Services can implement a customized enrollment
model.

Depending on how the user account is structured, choose the single-DDN or multiple-DDN model. If a
single user can have multiple DDNs (accounts) per biller, then use the multiple-DDN model. If a single
user can have only one DDN (account) per biller, then use the single-DDN model. However, since the
multiple-DDN model also supports single-DDN, it is safe to use the multiple-DDN application for the
single-DDN model. Use the multiple-DDN model even if the current requirement is for single-DDN, if
multiple-DDN may be required in the future. Upgrading from single-DDN to multiple-DDN requires
custom work because these two schemas are not compatible.

ePayment Manager Enrollment
Architecture
ePayment Manager enrollment is considered as an independent part of ePayment, separate from the
rest of the core ePayment Manager functionality, because of its complexity and flexibility.

The enrollment information required by ePayment Manager includes user accounts and payment
accounts, which may come from different databases. ePayment Manager enrollment consists of the
following enrollment functions:

ePayment Manager Enrollment ePayment Manager Enrollment Architecture

22 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Enrollment Management: Adding, updating, and deleting ePayment Manager users, for
example, enrolling a new user to ePayment Manager, adding a new bank account, etc. The
ePayment manager JSP pages perform these functions, and are under
payment/user/jsp/enroll/user in the WAR file. This function is not part of core ePayment Manager,
but is important to the overall ePayment Manager application. Because the type of information
required to manage enrolled users can vary greatly from deployment to deployment, this
functionality is very flexible.

 Enrollment Access: Core ePayment Manager functionality, from the user interface to back end
batch jobs, needs to access enrollment information, for example, to get a user email address or
account number. Unlike the user enrollment information, ePayment Manager enrollment
information is specific and well-defined.

The ePayment Manager enrollment architecture is shown in the following diagram:

Note that the enrollment database for User and ePayment Manager enrollment accounts may be the
same database.

Three items are required to support enrollment:

 The front-end enrollment JSP pages

 The core ePayment Manager JSP pages

 The back-end ePayment Manager jobs

The ePayment Manager JSP pages are divided into two categories, the:

ePayment Manager Enrollment ePayment Manager Enrollment Architecture

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

23

▪

 Enrollment management JSP pages, under payment/user/jsp/enroll in the WAR file, add,
update, and delete enrollment information

 Core ePayment Manager JSP pages, under payment/user/jsp in the WAR file, only reads
enrollment information

To ensure maximum flexibility in managing enrollment, the enrollment JSP pages use IAccount from
eStatement Manager to access user account information, and use IPaymentAccountManager to
access payment account information. These pages are normally heavily customized during deployment
in order to meet different enrollment requirements. The user accounts and payment accounts may or
may not be in the same database.

However, since the core ePayment Manager JSP pages and the ePayment Manager engine both use
the EJB interface IAccount from eStatement Manager to access user information, it does not matter
where the user information is stored. It can be in eStatement Manager CDA table, a directory service
accessible by JNDI, or in an external biller database. To minimize the impact of enrollment changes on
the core ePayment Manager functionality, IPayUserAccount is defined as a wrapper class of
IAccount and IPaymentAccountManager. Note that IPayUserAccount is a local object, not an
EJB object. From IPayUserAccount, you can get both the user account information and the payment
account information required for payment functionality. IPayUserAccount is also cached into the
eStatement Manager ISession object after user login, so all the JSP pages can easily access it.

At the front end, the core ePayment Manager JSP pages only need to “view” enrollment information,
so IPayUserAccount is sufficient for that purpose. At the back end, the payment jobs need to “view”
enrollment information and to update payment account information. View and update is done through
the adaptor interface, IPaymentAccountAccessor.

ePayment Manager Enrollment API
By default, we must use IAccount to access enrollment information. IAccount is very generic and
difficult to use. By contrast, ePayment Manager enrollment information is very specific: we know we
need account number, email address, check account number, etc. So ePayment Manager encapsulates
IAccount to simplify and better store payment account enrollment data. The encapsulated IAccount
also caches enrollment information in the session.

The following classes represent the enrollment models that ePayment Manager supports:

 IPayUserAccount: Defines a payment user enrollment. From this object, you can access all
payment enrollment information: user info and payment account info. This interface represents
uid node, DDN node and account number node. From this interface, you can walk down to DDN
node and account number node. The essential information at the uid node is uid, password and
email address. All other information is not required by ePayment Manager and is put into extended
attributes of the object. For example, if you want to add user name to this node, it will be stored
in extended attributes of IPayUserAccount.

 IUserAccount: Represents the information at the uid node. Each IPayUserAccount object
includes one IUserAccount. However, you can't access IUserAccount from IPayUserAccount
directly: IPayUserAccount has methods to help you access IUserAccount information.

 BillerAccountInfo: Represents DDN node. From this node, you can walk down to the account
number node. The information required at this node is DDN name. Any other information is stored
in extended attributes. For example, you can add a DDN description in the extended attributes.

ePayment Manager Enrollment Major Enrollment Objects and Relationships

24 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 AccountInfo: Represents user account number node. The information required is account
number and account description. Any other information is stored in extended attributes. For
example, you can add an account name in the extended attributes.

 Payment: This is the main Servlet. Access to it requires login.

 PaymentNoLogin: This servlet does not require login. By default, you must login before you can
enroll a payment account. But you can use PaymentNoLogin instead of Payment to enroll a
payment account when first creating a new user login (For example, from “Enroll Now” in the
sample application).

 IPaymentAccountManager: Accesses the payment_accounts table for the Hybrid enrollment
model. In the Hybrid model, user info is accessed through IAccount.

For Single-DDN, there is no DDN node or account number node. So the DDN is passed in through
URL, and the account number is part of the uid node. To support this with the Payment classes, a
BillerAccountInfo object is created based on the DDN passed in from URL, and an AccountInfo object is
created based on the account number that was saved into uid node.

Major Enrollment Objects and
Relationships
This section describes the major objects mentioned in the enrollment architecture.

IAccount
IAccount is used directly by the enrollment JSP pages to add, update and delete user information.
The JSP pages also use the adaptor interface, IUserAccountAccessor, to construct an
IPayUserAccount object. None of the core JSP pages and core ePayment Manager code use
IAccount, which ensures maximum portability to different enrollment databases.

The following interaction graph illustrates how IAccount is used to enroll a new user account:

ePayment Manager Enrollment Major Enrollment Objects and Relationships

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

25

▪

User Add User Account
JSP

PaymentNoLogin
Servlet

IAccount User Account
DB

submit request to

 forward request to

call createSubcontext()

insert into

IPaymentAccountManager
IPaymentAccountManager is an EJB, similar to IAccount, and is used directly by enrollment JSP
pages to add, update, and delete payment account information. (Actually, it is used through the
wrapper class PaymentAccountManager, see the ePayment Manager JavaDoc for more information).
IPaymentAccountManager is also used by the adaptor interface, IPaymentAccountAccessor, to
construct an IPayUserAccount object. None of the core JSP pages or core ePayment Manager code
use IPaymentAccountManager directly, which ensures maximum portability to different enrollment
databases.

The following interaction graph illustrates how IPaymentAccountManager is used to add a new
check payment account:

ePayment Manager Enrollment Major Enrollment Objects and Relationships

26 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

User Payment
Servlet

Add Check
Account JSP

ICheckAccount IPayment
AccountManager

Payment
Account DB

submit request to

forward request to

new

insert(ICheckAccount)

insert into

IPayUserAccount
This interface represents an ePayment Manager user. It is a container class containing one
IUserAccount object and a list of IPaymentAccount objects. The following diagram displays the
object model for them:

IPaymentAccount
<<Interface>>

IPayUserAccount
<<Interface>>

IUserAccount
<<Interface>>

1

1

1
0..n

ICheckAccount
<<Interface>>

ICreditCardAccount
<<Interface>>

IUserAccount
<<Interface>> BillerAccountInfo AccountInfo

1 1..n 1 1..n

In the preceding diagram:

 IUserAccount: represents user account information.

 BillerAccountInfo: represents all the user’s accounts with a biller. A user may enroll with
multiple billers. In addition, for each biller, a user may enroll multiple accounts. This object
includes a biller name, and a list of user accounts represented by an AccountInfo object.

ePayment Manager Enrollment Major Enrollment Objects and Relationships

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

27

▪

 AccountInfo: Represents a single user account enrolled with a biller. It includes the account
number and account description.

All the previously listed interfaces are local objects, and each of them is implemented by a class whose
name is the same as the interface name omitting the leading letter “I”. For example,
IPayUserAccount is implemented by PayUserAccount. See the ePayment Manager JavaDoc for
more details.

How the IPayUserAccount gets created and retrieved:

IPayUserAccount is the central object used in payment enrollment. It is easier to use than IAccount. It
is also cached in ISession, which also means you can’t get this object from ISession until you have
logged in. There are two static functions defined in ePayment Manager (actually in its super class, but
you should use ePayment Manager to access it because the super class will be removed in the future
release).

Payment.getPayUserAccountFromSession() gets the IPayUserAccount object from the ISession. If it is
not there (ISession has just logged in), ePayment Manager creates an IPayUserAccount from
IAccount.

Payment.putPayUserAccountToSession() puts the IPayUserAccount object into ISession. You can use it
to update the object in the session.

Since there are several different enrollment models, and accessing them requires different code,
ePayment Manager provides an interface called IUserAccountAccessor to access user information, and
IPaymentAccountAccessor to access payment account information.

Currently there are three implementation classes for IUserAccountAccessor:

 JNDISingleDDNUserAccountAccessor - Accesses user information through JNDI/CDA for the
single DDN model.

 JNDIMultipleDDNUserAccountAccessor - Accesses user information through JNDI/CDA for the
multiple DDN model.

 EdocsUserAccountAccessor - Accesses user information for the flat enrollment model.

The implementation is chosen by modifying web.xml and the payment settings.

Currently there are three implementations of IPaymentAccountAccessor:

 SSOPaymentAccountAccessor- Accesses payment account information saved in the
payment_accounts table for the Hybrid enrollment model.

 JNDIPaymentAccountAccessor- Accesses payment account information saved using JNDI/CDA
for the Integrated enrollment model.

 EdocsPaymentAccountAccessor- Accesses payment account information saved using the flat
enrollment model.

The implementation is chosen by modifying web.xml and the payment settings.

The implementation class of IPayUserAccountAccessor, PayUserAccountAccessor, reads web.xml or
payment settings to get the correct implementation of IUserAccountAccessor and
IPaymentAccountAccessor and the correct user and payment account information for different
enrollment models.

The following interaction graph shows how IPayUserAccount is created:

ePayment Manager Enrollment Major Enrollment Objects and Relationships

28 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Payment
Servlet

IAccountUser JSP IPayment
AccountAccessor

IUserAccount
Accessor

IPayUser
AccountAccessor

ISession

login

IPayUserAccount getPayUserAccount(IAccount)

IUserAccount getUserAccount(IAccount)

List getPaymentAccounts(IAccount)

getAt tributes()

putPayUserAccountInfoSession()

Payment.getPayUserAccountFromSession()

IUserAccountAccessor
This adaptor class hides the complexity of the user account enrollment databases. It does that by
defining the necessary user account information required by ePayment Manager. All core ePayment
Manager JSP pages and java code use this adaptor class to access user account information. You can
re-implement this interface for your own enrollment database if the default implementation offered by
ePayment Manager does not satisfy your requirements.

IUserAccountAccessor wraps IAccount to get the information required by ePayment Manager,
such as account number and email address. The method you choose to retrieve that information
depends on the directory schema of IAccount.

By default, ePayment Manager offers two implementations for IUserAccountAccessor:

 JNDISingleDDNUserAccountAccessor: Provides access to user information in JNDI/CDA for the
single DDN model.

 JNDIMultipleDDNUserAccountAccessor: Provides access to user information through JNDI for
the multiple DDN model.

You choose which implementation to use by modifying the Payment Settings in the Command Center.

The following is an IAccount schema:

ePayment Manager Enrollment Major Enrollment Objects and Relationships

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

29

▪

o = edocs.com

cn = users

uid =john
password =
accountNumber = 1234
email = support@edocs.com

IUserAccountAccessor retrieves information from this schema using
com.edocs.payment.payenroll.usracct.JNDISingleDDNUserAccountAccessor. When IAccount's context
is set to: "uid=..., cn=Users, o=edocs.com" node, IUserAccountAccessor should be able to get the
account and email information from that node by calling IAccount.getAttributes();

If IAccount is implemented to support preceding schema, then you should be able to use
JNDISingleDDNUserAccountAccessor without modification. It does not matter if the schema is
based on CDA, LDAP or SSO.

The same rule applies to JNDIMultipleDDNUserAccountAccessor, which uses a schema similar
to:

ddn = BostonEdison ddn = ATT

accountNumber = elec1234
accountDescription = first floor

accountNumber = gas2
accountDescription =
 second floor

accountNumber = phone1
accountDescription =
gas account

o = edocs.com

cn = users

uid =john
password =
accountNumber = 1234
email = sales@edocs.com

As long as your IAccount implementation supports a hierarchy similar to the preceding diagram,
you can use the accessor class JNDIMultipleDDNUserAccountAccessor without modification.

ePayment Manager Enrollment Major Enrollment Objects and Relationships

30 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

IPaymentAccountAccessor
This adaptor class hides the complexity of payment account enrollment databases. It does that by
defining the necessary payment account information required by ePayment Manager. All core
ePayment Manager JSP pages and java code use this adaptor class to access user account
information. You can re-implement this interface for your own enrollment database if the default
implementation offered by ePayment Manager does not satisfy your requirements.

IPaymentAccountAccessor has one implementation class:

 SSOPaymentAccountAccessor: Provides access to payment account information saved in the
payment_accounts table.

IPayUserAccountAccessor
This class gets an IPayUserAccount object. It depends on IUserAccountAccessor to access user
account information and IPaymentAccountAccessor to access payment account information.

The following diagram shows the object model for accessor objects:

IPayUserAccountAccessor
<<Interface>>

IUserAccountAccessor
<<Interface>>

IPaymentAccontAccessor
<<Interface>>

1
1

1
1

IUserAccount
<<Interface>>1 1

IPaymentAccount
<<Interface>>1 0..n

The following interaction graphs demonstrate how IPayUserAccount is created for ePayment
Manager JSP pages:

ePayment Manager Enrollment Major Enrollment Objects and Relationships

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

31

▪

JSP Page Payment
Servlet

IPayUserAccount
AccessorFactory

IPayUserAccount
Accessor

IPayUser
Account

Create(): IPayUserAcountAccessor

getUserAccount():IUserAccount

IUserAccount
Accessor

IPayment Account
Accessor

ISession

getPayUserAccount():IPayUserAccount

new instance of IPayUserAccount

getPaymentAccounts():List

put IPayUserAccount inti ISession

getPayUserAccountFromSession()

ePayment Manager Enrollment Major Enrollment Objects and Relationships

32 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

IPayUserAccount
Accessor

IUserAccount
Accessor IUserAccount IPayment

AccountAccessor
IPayment
Account IAccount

IPayment Account
Manager

getPaymentAccounts():List

getUserAccount()

get attributes of

getPaymentAccounts():List

new instance of

new instance of

The following diagram shows how IPayUserAccount is saved into the ISession object, and can be
used by all ePayment Manager JSP pages (including enrollment JSPs).

ePayment Manager Enrollment Customizing ePayment Manager Enrollment

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

33

▪

JSP Page Payment
Servlet

IPayUserAccount
AccessorFactory

IPayUserAccount
Accessor

IPayUser
Account

Create(): IPayUserAcountAccessor

getUserAccount():IUserAccount

IUserAccount
Accessor

IPayment Account
Accessor

ISession

getPayUserAccount():IPayUserAccount

new instance of IPayUserAccount

getPaymentAccounts():List

put IPayUserAccount inti ISession

getPayUserAccountFromSession()

Payment Servlet
The Payment servlet defines two static functions:

 Payment.getPayUserAccountFromSession() gets IPayUserAccount from eStatement Manager's
ISession. If IPayUserAccount is not there (which is the case if you just logged in), Payment
creates an IPayUserAccount from IAccount.

 Payment.putPayUserAccountToSession() puts IPayUserAccount into ISession. You can use
this method to update the object in the session.

Customizing ePayment Manager
Enrollment
eStatement Manager provides two sample applications that use different user enrollment methods:
Sample and UMFSample. Sample uses CDA to store user information in a user directory schema based
on LDAP.

ePayment Manager Enrollment Customizing ePayment Manager Enrollment

34 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

See the SDK Guide for Oracle Siebel eStatement Manager for more information about the eStatement
Manager sample applications and how to implement and modify them.

 ePayment Manager provides the paymentComplex sample application, which shows how to
support multiple DDNs per user. This sample application supports the multiple-DDN model; it
doesn’t correspond to any current eStatement Manager samples.

The Payment Complex application requires that the user login (pass authentication) before accessing
payment functions. The login is defined by the eStatement Manager UMF implementation.

Customizing ePayment Manager Enrollment JSP Pages
All ePayment Manager enrollment is done through JSP pages. The servlet only forwards enrollment
requests to the JSP pages. The URL looks something like:

Payment?app=Payment&form=forward&jsp=jsp_name

 The URL instructs the servlet to forward this http request to jsp_name after the user passes

authentication.

 This method requires the user to login in order to access this JSP page. If you don’t want to login,
replace Payment with PaymentNoLogin.

The following table lists the payment enrollment JSP pages, which are all under
<WebRoot>/payment/user/jsp/enroll. There are two sets of JSPs, one for user account info and
another for payment account info.

JSP Name Description

User JSP for multiple DDN
in user/multiple_ddn

All pages under this directory are for multiple-DDN
enrollment model only. They are the pages for
enrolling a user account.

user_enroll.jsp Enroll a new multiple-DDN user.

user_enroll_summary.jsp Summary of user enrollment information, includes
both user account and payment accounts.

add_update_delete_biller
_account.jsp

Add/Update/Delete a user’s account with a biller.

UserLogin.jsp User login page for multiple-DDN.

UserLogout.jsp User logout page for multiple-DDN.

Payment Account JSP The payment accounts are saved into the
payment_accounts table of the ePayment Manager
database and being accessed by
IPaymentAccountManager.

add_update_ccard.jsp Add/Update a credit card account.

delete_payment_account.jsp Delete a check/credit card account.

add_update_check.jsp Add/Update a check account.

ePayment Manager Enrollment Customizing ePayment Manager Enrollment

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

35

▪

The following table provides special notes about each type of payment account during enrollment:

Account Note

check account When a check account is created, if you decide to use an ACH prenote
to validate that account, you can choose whether or not to associate a
DDN with that check account. If there is no DDN, then any DDN’s
pmtSubmitEnroll job picks up this check account. Otherwise, the
check account will only be processed by the pmtSubmitEnroll job with
the matching DDN.

credit card account When a credit card account is created or updated, you can decide
whether to authorize this credit card during enrollment time. You must
choose a DDN which is configured with a Credit Card cartridge to use
authorization. The authorization amount is $1, which will not be
settled (it has a status of "auth-only"). It will be eventually be
discarded by the payment processor.

Changing Web Context

The default Web context is paymentComplex for multiple DDN. To change the Web context, update
application.xml in ear-payment-complex.ear, depending on which application you plan to use.

Enrolling payment account and user account number (for multiple DDNs) when enrolling a
new user

Using the default JSP pages, when enrolling a new user, you won’t be able to enroll a payment
account. In the multiple-DDN case, you won’t be able to enroll the user account either. To allow
payment accounts to enroll during user enrollment time, use the create payment account URL and
create user account URL in the “Edit Profile” page. Just replace the "app=Payment" with
"app=PaymentNoLogin". This way, creating a payment account and user account number won’t
require login.

To add custom fields to user account information

Sometimes you want to add and retrieve more information to and from the enrollment database.
Since this information is not essential to ePayment Manager, it is stored in the extended attributes of
IUserAccount, BillerAccountInfo or AccountInfo.

The default implementation of IAccount is based on the eStatement Manager CDA database and we
need to define a schema for each enrollment model (see the preceding enrollment models for single-
DDN and multiple-DDN). To add a new field to one of the uid, DDN or accountNumber nodes, treat it
as an extended attribute of IUserAccount, BillerAccountInfo or AccountInfo, respectively.

For example, to add “first name” as part of the uid attributes. The following steps describe how it is
implemented. You can create your own new attribute by following similar steps.

1 Add a "firstname" attribute to the CDA schema table, as described in the SDK: Implementing a

User Management Framework document.

ePayment Manager Enrollment Customizing ePayment Manager Enrollment

36 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

2 Edit payment/user/jsp/enroll/user/<multiple_ddn or single_ddn>/user_enroll.jsp and add "First

Name" as a table element, using the name attribute firstname on the HTML input element.

<input type=”text” name=”firstname” value=””>

3 Open payment/user/jsp/enroll/user/user_enroll.inc, and find the insertUserInfoCDA()

method. This method actually already does the work for you: extract “firstname” from request and

insert it into CDA by using IAccount. It also updates the IPayUserAccount to add this new

extended attribute. The updated IPayUserAccount will be put into ISession.

4 Also, find the updateUserInfoCDA() method in user_enroll.inc. This method actually already

does the work for you: extract “firstname” from request and update it into CDA by using

IAccount. You should also update the IPayUserAccount with this new extended attribute. The

updated IPayUserAccount will be put into ISession.

5 In other JSP pages, you should be able to get IPayUserAccount from ISession, which includes

the new extended attribute:

IPayUserAccount ipua =
Payment.getPayUserAccountFromSession(…);

String firstName=ipua.getExtendedAttribute(“firstname”);

6 Note that the IPayUserAccount object retrieved by the back end (Command Center) jobs also

includes the extended attributes.

Adding custom fields to check or credit card accounts

You cannot add an arbitrary number of custom fields to a check or credit card account. Instead,
ePayment Manager provides a number of flexible fields for this purpose.

For each payment account, there are two flexible string fields and one flexible date field that can be
used for customization. These custom fields are accessed as extended attributes of the
ICheckAccount and ICreditCardAccount objects.

In the payment_accounts table, these three fields, flex_field_1, flex_field_2 and flex_date_1 are the
extended attributes. The name of the attribute must be the name of the flexible field column in the
payment_accounts table, such as flex_field_1, flex_field_2 and flex_date_1.

For example, you can use flex_field_1 as the name of the financial institution:

To insert it:

IPaymentAccount pa = new PaymentAccount();

ps.addExtendedAttribtue(“flex_field_1”, “Fleet Boston
Financial Corp”);

…//call set methods to set other fields

PaymentAccountManager pam = new PaymentAccountManager();

ePayment Manager Enrollment Customizing ePayment Manager Enrollment

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

37

▪

pam.insert(pa);
To retrieve it:

;

String bankName = pua.getExtendedAttribute(“flex_field_1”);

ment the
ent accounts are still saved into

payment_acc table of ePayment Manager database.

se,
Accessor. Otherwise, you must re-

implement it. To implement :

anager to learn how to implement IAccount. Make sure you implement all the methods
of IAccount.

s you inherited to get user information
from the database. You must implement all three methods.

 Deploying and Customizing J2EE Applications Guide for Oracle Siebel
eStatement Manager.

hange the
IUserAccountAccessor field in Payment Settings to point to your implementation class.

must customize the JSP pages to make them work properly with your new enrollment database.

6. Re-deploy the EAR files.

atabase. This default implementation should be sufficient to meet the needs of

yment account information may come from an existing customer database,
using the following steps:

IPayUserAccount pua = Payment.getPayUserAccountFromSession(…)

Integrating ePayment Manager with Other User Account
Enrollment Databases
Sometimes user account information comes from an existing customer database instead of from
JNDI/CDA. In this case, you need to re-implement IAccount. You may also need to re-imple
IUserAccountAccessor interface. In this case, the paym

ounts

If your IAccount implementation has a similar enrollment schema as
JNDISingleDDNUserAccountAccessor or JNDIMultipleDDNUserAccountAccessor, the default
implementation may be able to work with IAccount to get the information it needs. In this ca
there is no need for you to re-implement IUserAccount

IUserAccountAccessor

1. Implement the eStatement Manager interface IAccount first. See the SDK Guide for Oracle Siebel
eStatement M

2. Write your own implementation class of IUserAccountAccessor. You should extend your class from
the UserAccountAccessorImpl class. Overwrite all the method

3. Package your class into payment_custom.jar of each ePayment Manager ear file. For details about
how to do that, see the

4. Change user_account_accessor in web.xml to point your implementation class, and c

5. Customize the enrollment JSP pages, if necessary. If IAccount is implemented properly and has a
schema similar to the default ones, you may not need to customize the JSP pages. Otherwise, you

Integrating ePayment Manager with Other Payment Account
Enrollment Databases
We strongly recommend that all payment accounts be saved into the payment_accounts table of
ePayment Manager d
most deployments.

However, in rare cases, pa

ePayment Manager Enrollment Customizing ePayment Manager Enrollment

38 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

1. Re-implement the IPaymentAccountAccessor interface to communicate with the custom
payment account database. Extend your class from the PaymentAccountAccessorImpl class.
Overwrite the methods you inherited to get payment account information from the database.

2. Package your class into payment_custom.jar of each ePayment Manager EAR file. For more
information about how to do that, see the Deploying and Customizing J2EE Applications Guide for
Oracle Siebel eStatement Manager.

3. Change payment_account_accessor in web.xml to point your implementation class, and change the
IPaymentAccountAccessor field in Payment Settings to point to your implementation class.

4. Customize the payment account enrollment JSP pages to use the new database to add, update, and
delete payment accounts. Do not use IPaymentAccountManager, because it uses the ePayment
Manager database.

5. Re-deploy the EAR files.

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

39

4 Recurring Payments

Overview
ePayment Manager's recurring payment feature is a very complicated process that involves a great
deal of business logic. This section discusses the recurring payment processing in detail.

Recurring payments consist of actions at the front-end (UI) and back end (Command Center jobs).
The UI allows a user to insert/update/delete a recurring payment, and the back end pmtRecurPayment
job actually makes the payment.

To understand how recurring payment works, we need to track the changes to the information in the
recurring_payments table:

Column Name Comment

AMOUNT_TYPE and AMOUNT These two columns record how the payment amount is
generated. They are only updated through the UI and are used
by back-end jobs to calculate how much to pay. The valid
values of AMOUNT_TYPE are:
• “fixed amount”: pay a fixed amount and the amount value

is specified by AMOUNT column.
• “amount due”: pay amount due on the bill and, AMOUNT

column is not used (null).
• “minimal due”: pay minimuml amount due on the bill and

AMOUNT column is not used (null).
• “less due”: means pay the amount due if it is less than the

value of the AMOUNT column; otherwise, pay nothing
and send email notification.

• “upto amount”: payD the amount due if it is less than the
value of the AMOUNT column; otherwise, pay the value
of AMOUNT and send email notification.

Recurring Payments Overview

40 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Column Name Comment

PAY_INTERVAL
DAY_OF_PAY_INTERVAL
MONTH_OF_PAY_INTERVAL

These three columns record how the payment date is generated.
They are only updated through the UI, and are used by back-
end jobs to calculate when to pay. The valid values of
PAY_INTERVAL are:
• “weekly”: user specified to make payments weekly. The

day of week is specified by DAY_OF_PAY_INTERVAL.
The MONTH_OF_PAY_INTERVAL is irrelevant.

• “monthly”: user specified to make payments monthly. The
day of month is specified by DAY_OF_PAY_INTERVAL.
The MONTH_OF_PAY_INTERVAL is irrelevant.

• “quarterly”: user specified to make payments quarterly.
The day of month is specified by
DAY_OF_PAY_INTERVAL. The month of quarter is
specified by MONTH_OF_PAY_INTERVAL (one of 1,2
or 3) .

START_DATE
END_DATE
CURR_NUM_PAYMENTS
MAX_NUM_PAYMENTS
STATUS

These four columns determine when to start the recurring
payment and when to stop it. START_DATE, END_DATE and
MAX_NUM_PAYMENTS can only be updated through the
UI.
START_DATE is required, but you set only one of the
END_DATE (end by that date) or MAX_NUM_PAYMENTS
(end when this number of payments is made).
The recurring payment STATUS is "active" when it is created
and it has not reached either END_DATE or
MAX_NUM_PAYMENTS. When one of them is reached, the
STATUS is changed to "inactive" and the recurring payment
will never take effect again.
If END_DATE is chosen, NEXT_PAY_DATE (the pay date
for the next bill needs to be paid) is >= START_DATE and <=
END_DATE, the bill will be paid. The STATUS is set to
inactive if NEXT_PAY_DATE > END_DATE.
If MAX_NUM_PAYMENTS is chosen, the STATUS is
changed to inactive when CURR_NUM_PAYMENTS reaches
MAX_NUM_PAYMENTS.

LAST_PAY_DATE This is the pay date of last bill. It is set to 01/07/1970 when
recurring payment is created to indicate that there is valid
information.

NEXT_PAY_DATE This is the pay date of next bill. When the recurring payment
job runs, it schedules a payment with a pay date of
NEXT_PAY_DATE. Note: NEXT_PAY_DATE is calculated
based on LAST_PAY_DATE and PAY_INTERNAL. For
details, see below.

Recurring Payments Recurring Payment UI

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

41

▪

Column Name Comment

LAST_PROCESS_TIME Records the date of the last time the recurring payment job ran.
During the recurring job synchronization process, ePayment
Manager retrieves bills between LAST_PROCESS_TIME and
current time to avoid retrieving duplicated bills and so, improve
the performance.
Note: Previous versions of ePayment Manager recorded both
date and time information in LAST_PROCESS_TIME. It was
found that a bill could be lost if the bill was indexed the second
time on the same date because the DOC_DATEs of bills don’t
include time information. Currently, the
LAST_PROCESS_TIME only includes date info.

BILL_SCHEDULED
BILL_ID

BILL_SCHEDULED indicates whether the latest bill identified
by BILL_ID has been paid or not.
BILL_ID decides whether a recurring payment needs to
synchronize with eStatement Manager.

PAYER_ACCT_NUM If multiple biller accounts are not present, this field is used to
store the biller account number. If multiple biller accounts are
present, this field is populated with an ID generated from the
PAYMENT_RECURRING_ID_SEQ sequence.

PAYEE_BANK_ACCOUNT_ID For check payments, this field is used to store the ID of the
payee bank account.

When multiple biller accounts are present RECURRING_ATTACHED_ACCOUNTS table is populated with
the biller accounts (attached accounts). This table consists of five fields as follows.

PAYER_ID Equals to the PAYER_ID of the corresponding record in

RECURRING_PAYMENTS table.

PAYEE_ID Equals to the PAYEE_ID of the corresponding record in
RECURRING_PAYMENTS table.

RECURRING_ID Equals to the PAYER_ACCT_NUM of the corresponding
record in RECURRING_PAYMENTS table.

ACCOUNT_NUMBER The biller account number.

INDEXER_DDN Name of the corresponding indexer DDN.

Recurring Payment UI
The UI sets up a recurring payment. The UI allows you to insert, update, and delete a recurring
payment and get back the list of recurring payments.

The following UML diagram illustrates the objects involved in the process:

Recurring Payments Recurring Payment UI

42 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Retrieving and deleting recurring payments from the database is straightforward, so the next sections
discuss what happens when a recurring payment is inserted or updated.

Insert Recurring Payment
The following sequence diagram demonstrates what happens when a recurring payment is inserted
into database using the UI in B2C scenario. In B2C scenario, a recurring payment can have only one
biller account):

Recurring Payments Recurring Payment UI

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

43

▪

In B2B scenario a recurring payment can have one or more biller accounts (attached accounts).The
sequence diagram for inserting a recurring payment from UI in B2B scenario is as follows:

The next section explains RecurringPaymentUtil.calculateInternal(). This method calculates the
next_pay_date and status of the recurring payment before it is being inserted into database.

This method calculates the internal states of recurring payment differently for insert and update. For
the insert operation, this method does these things:

Recurring Payments Recurring Payment UI

44 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

1. Call init() method: This method sets some of the recurring payment fields.

 If user chooses to end recurring payment by maximum number of payments, set end_date to
01/01/3000 00:00:00.

 If user chooses to end recurring payments by a fixed date, set max_num_payments it
java.lang.Integer.MAX_VALUE.

 Set last_pay_date to 01/01/1970 00:00:00; this means no bill has been paid.

 Set bill_scheduled to "Y" if the recurring payment is fixed amount and fixed date. Note: In this
case, the flag should be always true because whenever a payment is made, the next
payment is calculated. It has the same effect as making the next bill available
immediately.

 Set last_process_time to start_date, which by default must be tomorrow or later. This means
that any bills indexed through today (inclusive) won’t be picked up by recurring payment.

Note: The recurring payment UI checks whether there are unpaid bills when a recurring
payment is setup, and reminds the user to make a one-time payment to pay the outstanding
bill.

2. Call the checkSynchornization method: Checks whether any required information is missing
from recurring payment before inserting it into the database.

3. Check whether the recurring payment has expired by checking the current number of payments
against maximum number of payments. Note: This check always return false for insert case.

4. Calculate the next_pay_date by calling one of calculateMonthly(), calculateQuarterly(),
calculateWeekly() or calculateBeforeDue() depending on whether pay_interval is “monthly”,
“quarterly” or “weekly” or “before_due” respectively.

 Call calculateMonthly() when pay_interval is “monthly”

This method calculates the next pay date, which is based on last_pay_date, start_date
and day_of_pay_internal. Since last_pay_date is 01/01/1970, the next_pay_date is
the nearest date with day_of_pay_internal after the start_date. If
date_of_pay_internal is 29, 30 or 31 and there is no such date in that month, the last
day of that month is used. After next_pay_date is calculated, it is checked against the
end_date. If next_pay_date passes the end_date, the status of the recurring payment
is set to “inactive”.

The following table displays some examples of how next_pay_date is calculated:

Day_of_pay_interval Start_date Next_pay_date

1 Sep 10 Oct 1

10 Sep 10 Sep 10

15 Sep 10 Oct 15

31 Sep 10 Sep 30
 Call calculateQuarterly() when pay_interval is “quarterly”: works similar to “monthly”

 Call calculateWeekly() when pay_interval is “weekly”: works similar to “weekly”.

Recurring Payments Recurring Payment UI

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

45

▪

 Call calculateBeforeDue() when pay_interval is “before due”: since there is no bill yet
(bill due date is null), the recurring payment status is set to "active" and the
next_pay_date is set to 01/01/3000.

Update Recurring Payment
This section assumes that the UI prevents a user from updating a recurring payment from fixed date
to before due date or vise versa. If the UI is changed to allow a user to do so, the behavior of
recurring payment is not tested.

The following sequence diagram demonstrates what happens when a recurring payment is updated
using the UI into the database in B2C scenario.

Recurring Payments Recurring Payment UI

46 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

In B2B scenario, the sequence diagram is as follows.

The next section explains RecurringPaymentUtil.calculateInternal(). This method
calculates the next_pay_date and the status of the recurring payment before it is inserted into
database. This example starts from IRecurringPaymentLog.update(). Note that this method is
also used for update by the back end job.

1. Call IRecurringPaymentLog.update()

2. Call RecurringPaymentUtil.calculateInternal()

3. Call checkSynchronization() method to check whether the information required for recurring
payment is present.

4. If checkSynchronization() throws an exception indicating missed information, then:

 Call synchronize() method to read the missed information from the database and populate
the missing information into the recurring payment object.

 Call checkSynchronization() again to make sure the required information has been
populated.

 Call init() method: unlike the insert operation, this method checks whether the recurring
payment has started or not by checking the last_pay_date (01/01/1970 means not started
yet) and then sets the last process time to the start_date of the recurring payment if the
recurring payment has not been started. The last process time won’t be updated if
recurring payment has been started.

Recurring Payments Recurring Payment UI

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

47

▪

5. Check whether the recurring payment has expired by checking the current number of payments
against maximum number of payments. If true, set the recurring payment as inactive and return.

6. Calculate next_pay_date and recurring payment status by calling one of calculateMonthly(),
calculateQuarterly() or calculateWeekly() based on pay_interval of “monthly”, “quarterly”
or “weekly”.

 Call calculateMonthly() when pay_interval is “monthly”, to calculate the next pay date.

If the last_pay_date is 01/01/1970, then the next_pay_date is calculated based on the
start_date and day_of_pay_interval. It is set to the nearest date with
day_of_pay_interval as day of month after the start_date. This is the same as the
insert case. See previous section for details.

If the last_pay_date is not 01/01/1970, that means that recurring payment has
started, so the next_pay_date is calculated based on the last_pay_date and
day_of_pay_interval. It is set to the date one month after the last_pay_date. Note:
Here, the calculation doesn’t depend on the current date. For example, if the recurring
payment job runs today on Oct 1, the last_pay_date is Aug 30 and
day_of_pay_interval is 30, the next_pay_date will be Sep 30 (not Oct 30 as you may
think) even though this date is in the past. In the case of fixed date and pay amount
due, this can pose a problem if there is no bill for a certain month: the pay date will be
in the past. To fix the problem, the recurring payment job will move the last_pay_date
ahead by one month if there is no bill for that month. See following discussion for
more details about the recurring payment job.

If day_of_pay_interval is 29, 30 or 31 and there is no such date in that month, the
last day of that month is used.

After next_pay_date is calculated, it is checked against the end_date and if it passes
the end_date, the status of the recurring payment is set to “inactive”.

 Call calculateQuarterly() when pay_interval is “quarterly”: works similar to “monthly”

 Call calculateWeekly() when pay_interval is “weekly”: works similar to “weekly”.

 Call calculateBeforeDue() when pay_interval is “before_due”:

First, check whether the recurring payment has been synchronized (bill due date not
null) and if so, set status to active and next pays date to 01/01/3000 and return.

Calculate the proposed next pay date by current bill due date and day_of_internal.

If the proposed next_pay_date is before start_date, set the status of recurring
payment to "active" and next_pay_date to 01/01/3000 and return: the bill won’t be
paid in this case because it falls outside the effective period of the recurring payment.

If the proposed next pay date is after end_date, set the status of recurring payment to
inactive and set the next_pay_date to 01/01/3000 and return.

Otherwise, set the status of the recurring payment to "active" and set its
next_pay_date to the proposed next pay date.

Recurring Payments Recurring Payment Back End Job

48 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Recurring Payment Attached Accounts
It is possible to update the attached accounts after setting up a recurring payment. But in this case
recurring payment can behave differently in different conditions, such as:

 If the recurring payment has already synchronized the bills for the accounts, but hasn’t scheduled
a payment, then the new changes will take effect from the next billing cycle.

 If the recurring payment hasn’t synchronized the bills, or a payment has been made for the
synchronized bills for the previous accounts, then the new changes will take effect from the next
billing cycle.

The only difference in the above two cases is that at the first instance a payment is made for the bills
from the old accounts even after the user has updated the accounts. So this can be confusing to the
user. To overcome this situation, if the user changes the attached accounts an appropriate message
can be displayed to the user. The getBillScheduled() method in the recurring payment object can be
used to determine whether a payment is scheduled or not.

The main difference between a recurring payment for B2C and B2B is the availability of multiple billing
accounts in B2B case. Inherently, the recurring payment object has a payer account number field
which is the billing account a recurring payment supposed to handle. In the B2B scenario this field
does not take the same meaning as in B2C, rather it becomes a reserved field for the payment core.
The new field called attached accounts becomes more significant in the B2B case. This field accepts a
set of IRecurringAttachedAccount objects the recurring payment has to handle. In the payment core, if
the attached accounts are available, the payer account number field is populated with an internally
generated ID. The payee ID field of the recurring payment object represents the payee DDN of the
recurring payment. Other fields in the recurring payment object carry their usual meaning. Refer to
the IRecurringPayment API for details.

The IRecurringAttachedAccount has the fields to represent the payer accounts attached to the
recurring payment, including the account number and the corresponding Indexer DDN. Other fields in
the recurring attached account object carry their usual meaning.

There is no difference in the PayServer API to be used to setup the recurring payment in B2C and B2B
other than the getRecurringAttachedAccounts method.

When a recurring payment with multiple accounts is setup, the multiple accounts are inserted to the
RECURRING_ATTACHED_ACCOUNTS table.

Deleting a Recurring Payment
When a recurring payment is deleted, if the recurring payment has synchronized the bills but it still
hasn’t scheduled a payment, then the synchronized bill details are deleted from the
PAYMENT_BILL_SUMMARIES & PAYMENT_ATTCHED_BILL_SUMMARIES tables.

Recurring Payment Back End Job
The pmtRecurringPayment job gets bills from eStatement Manager and then schedules payments. The
first process is called “synchronization” and the second process is called “scheduling”. In ePayment
Manager version 4.2, these two processes are split into two separate tasks.

Recurring Payments Recurring Payment Back End Job

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

49

▪

Recurring Payment Synchronization

During the synchronization process, the job retrieves a list of recurring payments to be synchronized,
and then tries to get the bills for the recurring payments from eStatement Manager. The following UML
diagram illustrates this process:

The following diagram shows the synchronization:

Recurring Payments Recurring Payment Back End Job

50 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

The following steps explain synchronization in B2C scenario:

1. RecurPaymentSynchronizerTask.executeTask() is called when the job runs, which calls
RecurPaymentSynchronizerTask.synchronizeSummary().

2. RecurPaymentSynchronizerTask.synchronizeSummary() is called. This method does the real work of
synchronization and following are the actions taken in this method.

3. IRecurringPaymentLog.getRecurringPaymentsToBeSynchronized() is called to get a list of recurring
payments to be synchronized. The query result is affected by the recurring payment job configuration
parameter “When to synchronize recurring payment with eStatement Manager”. When this
configuration is “whenever job runs”, all the recurring payments are retrieved from the
recurring_payments table with payee_id as the job DDN and status as “active”. If “only after current
bill is scheduled” is selected, then all the payments with the payee_id as job DDN and status as
“active” and bill_scheduled as “Y” will be retrieved from the recurring_payments table.

4. For each recurring payment, IRecurringPaymentPlugIn.preGetLatestSummary() is called. This
method allows the recurring payment plug-in code to decide whether to retrieve bills for a particular
recurring payment based on biller-specific business rules.

5. Call RecurPaymentSynchronizerTask.updateRecuringPaymentOnly() if the plug-in rejects this
recurring payment by returning PRE_GET_LATEST_SUMMARY_REJECT. This method does these things:

 Update last_process_time to the current time.

 If the recurring payment pay date is fixed date (monthly/quarterly/weekly) and pay amount is
based on (minimum) amount due, and no bill arrives for this pay period (bill_scheduled is

Recurring Payments Recurring Payment Back End Job

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

51

▪

"Y" and current time is after the current next_pay_date), the last_pay_date is updated to
current next_pay_date. This ensures that if no bill arrives for this pay period; the next bill
will be paid on the correct date.

 Call IRecurringPayment.update(): this method calculates the next_pay_date based on
the current last_pay_date. See the preceding section for more information about how this
update () operation works.

6. Call IBillDepot.getNewBillSummary(). This interface is implemented by
com.edocs.payment.imported.eadirect.BillDepot. The BillDepot class retrieves the latest bill
summary for the specified account.

 BillDepot.getNewBillSummary() is called, which then calls BillDepot.getSummary()

 BillDepot.getSummary() is called. This method calls IDataSource.getDocumentSummary() to
get all the bills indexed for this account between the last_process_time of the recurring
payment and the current job run time.

 The returned bills are in the format of name value pairs with value of string. They are
interpreted to retrieve due date, amount due and/or minimum amount due.

a For each bill, if minimum amount due is not null, call

BillDepot.preParseMinAmountDue() to give a child class of BillDepot (via the

plug-in) a chance to manipulate the minimum amount due string before it is parsed, then

it parses min amount due.

b If the bill’s amount due is not null, call BillDepot.preParseAmountDue() to give child

class of BillDepot (via the plug-in) a chance to manipulate the amount due string before it

is parsed, then it parses the amount due. If the amount due fails to parse, the bill is

ignored.

c If the bill has no amount due, or its amount due is set to null by preParseAmountDue(),

or the amount due failed parsing, then the bill is ignored.

d If the bill’s due date is not null, call BillDepot.preParseDueDate() to give child class

of BillDepot (via the plug-in) a chance to manipulate the due date string before it is

parsed, then it parses the due date.

e If the bill has no due date, or its due date is set to null by preParseAmountDue(), or the

due date failed parsing, then the bill is ignored.

 All the successfully parsed bills are compared with the bill summary associated with the
current recurring payment, if the summary is not null. The following business rules are
used to decide which bill is the latest one:

The due dates of the bill summaries retrieved are compared and the one with latest
due date is chosen.

For re-bill, multiple bills with the same due date may be retrieved. In this case, a re-
bill is chosen based on the following rules: the one with latest doc date and in case of
the same doc date, the one with the larger IVN number. This assumes that a re-bill is

Recurring Payments Recurring Payment Back End Job

52 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

indexed after its original bill. A re-bill will be ignored if its original bill has been paid
(the bill_scheduled flag of recurring payment is "Y").

 BillDepot.Summary() returns the latest bill if there is one found, otherwise, it returns null.

For B2B scenario, follow these steps to synchronize recurring payment:

1. RecurPaymentSynchronizerTask.executeTask() is called when the job runs, which calls

RecurPaymentSynchronizerTask.synchronizeSummary().

2. RecurPaymentSynchronizerTask.synchronizeSummary() is called. This method does the

real work of synchronization and following are the actions taken in this method.

3. IRecurringPaymentLog.getRecurringPaymentsToBeSynchronized() is called to get a list

of recurring payments to be synchronized. The query result is affected by the recurring payment job

configuration parameter “When to synchronize recurring payment with eStatement Manager”. When

this configuration is “whenever job runs”, all the recurring payments are retrieved from the

recurring_payments table with payee_id as the job DDN and status as “active”. If “only after current

bill is scheduled” is selected, then all the payments with the payee_id as job DDN and status as

“active” and bill_scheduled as “Y” will be retrieved from the recurring_payments table.

4. For each recurring payment, get the set of attached accounts and iterate through attached

accounts. For each attached account IRecurringPaymentPlugIn.preGetLatestSummary() is

called. This method allows the recurring payment plug-in code to decide whether to retrieve bills for a

particular recurring payment based on biller-specific business rules.

5. Call RecurPaymentSynchronizerTask.updateRecuringPaymentOnly() if the plug-in rejects

this recurring payment by returning PRE_GET_LATEST_SUMMARY_REJECT. This method does these

things:

 Update last_process_time to the current time.

 If the recurring payment pay date is fixed date (monthly/quarterly/weekly) and pay amount is
based on (minimum) amount due, and no bill arrives for this pay period (bill_scheduled is
"Y" and current time is after the current next_pay_date), the last_pay_date is updated to
current next_pay_date. This ensures that if no bill arrives for this pay period; the next bill
will be paid on the correct date.

 Call IRecurringPayment.update(): this method calculates the next_pay_date based on
the current last_pay_date. See the preceding section for more information about how this
update () operation works.

6. Call IBillDepot.getNewBillSummary() to get the bill summary for the attached account. This

interface is implemented by com.edocs.payment.imported.eadirect.BillDepot. The BillDepot class

retrieves the latest bill summary for the attached account.

Recurring Payments Recurring Payment Back End Job

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

53

▪

 BillDepot.getNewBillSummary() is called, which then calls BillDepot.getSummary()

 BillDepot.getSummary() is called. This method calls IDataSource.getDocumentSummary() to
get all the bills indexed for this account between the last_process_time of the recurring
payment and the current job run time.

 The returned bills are in the format of name value pairs with value of string. They are
interpreted to retrieve due date, amount due and/or minimum amount due.

A. For each bill, if minimum amount due is not null, call
BillDepot.preParseMinAmountDue() to give a child class of BillDepot (via the
plug-in) a chance to manipulate the minimum amount due string before it is parsed,
then it parses min amount due.

B. If the bill’s amount due is not null, call BillDepot.preParseAmountDue() to
give child class of BillDepot (via the plug-in) a chance to manipulate the amount due
string before it is parsed, then it parses the amount due. If the amount due fails to
parse, the bill is ignored.

C. If the bill has no amount due, or its amount due is set to null by
preParseAmountDue(), or the amount due failed parsing, then the bill is ignored.

D. If the bill’s due date is not null, call BillDepot.preParseDueDate() to give
child class of BillDepot (via the plug-in) a chance to manipulate the due date string
before it is parsed, then it parses the due date.

E. If the bill has no due date, or its due date is set to null by preParseAmountDue(),
or the due date failed parsing, then the bill is ignored.

 All the successfully parsed bills are compared with the bill summary associated with the
current recurring payment, if the summary is not null. The following business rules are
used to decide which bill is the latest one:

 The due dates of the bill summaries retrieved are compared and the one with latest due date
is chosen.

 For re-bill, multiple bills with the same due date may be retrieved. In this case, a re-bill is
chosen based on the following rules: the one with latest doc date and in case of the same
doc date, the one with the larger IVN number. This assumes that a re-bill is indexed after
its original bill. A re-bill will be ignored if its original bill has been paid (the bill_scheduled
flag of recurring payment is "Y").

 BillDepot.Summary() returns the latest bill if there is one found, otherwise, it returns null.

The above steps 4, 5 and 6 are repeated for each attached account of the recurring payment.
For each recurring payment, the attached bill summaries are stored to a list. A new bill
summary object is created for consolidated bill summary of the recurring payment. The
attached bill summaries list is assigned to the consolidated bill summary object by calling
BillSummary.setAttachedBillSummaries(List attachedBillSummaries) method.

The following steps are executed for both B2C and B2B scenarios:

1. Call RecurPaymentTask.isValidBillSummary() to validate the latest retrieved bill summary.

The latest bill summary could be ignored if it has no bill due date, or if the recurring payment is based

Recurring Payments Recurring Payment Back End Job

54 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

on minimum amount due but the bill summary has no minimum amount due, or the recurring

payment is based on amount due but the bill summary has no amount due.

2. Now we have a valid bill summary. If the payment to the previous bill summary is still in
"scheduled" status, do following:

 Call RecurPaymentSynchronizerTask.cancelScheduledPayment() to cancel this
payment. The reason to cancel it is that the new bill summary just retrieved should
include the balance of this scheduled bill, and we need to cancel the payment so that we
won’t pay the same bill twice.

 Call RecurPaymentSynchronizerTask.modifyLastPayDate(): If a recurring payment
has a fixed pay date, but the amount is based on amount due or minimum amount due,
we need to back date the last pay date because the previous bill payment has been
cancelled. Failing to do so will cause the current new bill being paid in next pay interval,
not the current one. For example, assume that current bill cycle is October, the previous
bill was retrieved on Oct 10 and is scheduled to pay on Oct 15. As a result, the
last_pay_date and next_pay_date of the recurring payment are updated to Oct 15 and
Nov 15, respectively. On Oct 11, a new bill is retrieved and the payment is scheduled. If
we don’t back up the last_pay_date, the new bill will be scheduled to pay on Nov 15. But
in this case, we do want to pay the bill on Oct 15 because we are still in the Oct billing
cycle. To fulfill this goal, we are going to back date the last_pay_date to Sep 15 so the
next_pay_date will be calculated as Oct 15, which will be used as the pay date for the new
bill.

 Call RecurPaymentSynchronizerTask.insertNewBillAndUpdateRecurring(), which
inserts the retrieved new bill and updates recurring payment accordingly.

 Call IRecurringPaymentPlugIn.preInsertLatestSummary() before inserting the bill
summary in the payment_bill_summaries table.

 If PRE_INSERT_LATEST_SUMMARY_REJECT is returned from the plug-in, call
RecurPaymentSynchronizerTask.updateRecurringPaymentOnly() and return.
See step 5 for details about what this method does.

 Call IBillSummaryLog.insert() to insert this new bill summary.

 If IBillSummaryLog.insert() throws DuplicateKeyException indicating that this bill is
already in the database, so call
RecurPaymentSynchronizerTask.updateRecurringPaymentOnly(). See step 5 for
details about what this method does.

 Set the bill_scheduled flag to "N" if the payment amount is not negative, or "Y" if it is
negative. This means that no credit/reversal will be issued from recurring payment; the
credit should show up as part of the next bill.

 Set the bill_id of the recurring payment to the one of the new bill summary.

 Call IRecurringPaymentPlugIn.preUpdateSynchronizedRecurring().

 If PRE_UPDATE_SYNCHRONIZED_RECURRING_REJECT is returned from the plug-in, call
RecurPaymenTask.updateRecurringPaymentOnly() and return. See step 5 for details about
what this method does.

 Call IRecurringPaymentLog.update() to update the recurring payment. The following
table lists the information being updated:

Recurring Payments Recurring Payment Scheduling

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

55

▪

Column Value

last_pay_date In the case where the pay date is fixed, but amount is based on amount
due, last_pay_date could be moved one pay_interval back if a scheduled
payment is cancelled because a new bill arrives. Otherwise, last_pay_date
will stay the same.

Next_pay_date will be updated in
RecurringPaymentUtil.calculateInternal(). In the case of
fixed pay date, it will be updated based on last_pay_date; in case of before
due, it will be updated based on the due date of the new bill. See the
previous section, Update Recurring Payment from the UI on page 45 for
more information.

next_pay_date

status Since next_pay_date is changed, the status could be changed to “inactive”
if next_pay_date falls after end_date.

bill_id It is set to the bill_id (doc ID) of the bill being inserted into the
payment_bill_summaries table.

bill_scheduled The bill_scheduled flag is set to "N" if the payment amount is not negative,
"Y" if it is negative.

last_process_time Set to the current time.

Recurring Payment Scheduling
During scheduling processing, the recurring payment job retrieves a list of recurring payments to be
scheduled, and then schedules them. The following UML diagram shows the objects involved in this
process.

The following diagram shows the action sequence:

Recurring Payments Recurring Payment Scheduling

56 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

The following steps describe the details of the actions that occur during recurring payment scheduling
process:

1. RecurPaymentSchedulerTask.execute() is called when the job starts.

2. RecurPaymentSchedulerTask.schedulePayments() is called to do the actual scheduling
work.

3. IRecurringPaymentLog.getRecurringPaymentsToBeScheduled() is called to get a list of
recurring payments to be scheduled. The result is affected by the recurring payment job configuration
parameter “Number of days before pay date to schedule the payment”, which is a number, N. The
SQK query finds all the recurring payments where the payee_id is the job’s DDN reference,
bill_scheduled is “N” and next_pay_date is <= today + N.

4. IPayUserAccountAccessor.getPaymentAccount() is called to get the current payment
account information associated with this recurring payment. A sanity check is done on the retrieved
payment account and different actions can be taken based on the result:

 If no payment account has been retrieved, which means it has been deleted from database,
then the current recurring payment setup will be de-activated
(IRecurringPaymentLog.update() is called to update status to inactive) and no
payment is scheduled.

 If the payment account is a check account, it’s status is cancelled, and the job configuration
parameter “Cancel recurring payment if payment account is canceled?” is true, then the
current recurring payment setup is de- activated (IRecurringPaymentLog.update() is called
to update status to inactive) and no payment is scheduled.

 If the payment account is a credit card account, it has expired, and the job configuration
parameter “Cancel recurring payment if payment account is canceled?” is true, then the
current recurring payment setup is de-activated (IRecurringPaymentLog.update() is
called to update status to inactive) and no payment is scheduled.

5. RecurPaymentSchedulerTask.createPaymentTransaction() is called to create a new
payment transaction (either a check or a credit card) with status as scheduled and pay date and
amount as specified by recurring payment setup.

Recurring Payments Recurring Payment Scheduling

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

57

▪

6. IRecurringPaymentPlugin.preSchedulePayment() is called, which provides a way to
customize the payment transaction before it is inserted into the database. If this method returns
PRE_SCHEDUE_PAYMENT_REJECT, the payment won’t be scheduled and the program returns to
process next recurring payment; if not, the program goes to next step to schedule the payment.

7. Call ICheckPaymentLog.insert() to insert a check or ICreditCardPaymentLog.insert()
to insert a credit card if the amount of the payment is not negative (Actually it will never be negative
because the bill_scheduled won’t be "N" if amount is negative. See job synchronization part for detail).
Following table lists part of the payment information inserted into the payment tables:

Recurring Payments Recurring Payment Scheduling

58 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Column Value

status 6

pay_date Should be the next_pay_date (calculated during synchronization process)
of the current recurring payment. Since recurring payment will be updated
after this insert operation, this value should actually be the same value as
last_pay_date of the updated recurring payment.

Amount This value is decided by amount_type and the amount of the recurring
payment. It is calculated when
RecurPaymentTask.createPaymentTransaction() is called. It should be the
same as the amount column of the recurring payment if amount_type is
“fixed”. It should be the same as the amount_due or min_amount_due of
the bill associated with current recurring payment if amount_type is
“amount due” or “minimal due”, respectively. If amount_type is “less
due”, the payment amount is the amount due of the bill if amount due is
less than or equal to the amount column value of the recurring payment.
Otherwise, the payment amount value is 0. If amount_type is “upto
amount”, then the payment amount is the amount due of the bill if amount
due is less than or equal to the amount column value of the recurring
payment. Otherwise, the payment amount is the amount column value of
the recurring payment.

bill_id Same as the one from recurring payment

Pid Same as the one from recurring_payment

payer_id Same as the one from recurring_payment

payer_acct_number Same as the one from recurring_payment

8. IRecurringPaymentLog.update() is called to update the recurring payment. The following
information of the recurring payment will be updated:

Column Value

Curr_num_payments Increased by 1.

Bill_scheduled “N” if pay date is on fixed date (monthly, quarterly or weekly) and pay
amount is fixed amount; “Y” otherwise.

Last_pay_date The last_pay_date is set to the current next_pay_date of the recurring
payment.

Next_pay_date After last_pay_date is set to the current next_pay_date, the
next_pay_date is calculated again by
RecurringPaymentUtil.calculateInternal(). If the payment is using a
fixed pay date (weekly, quarterly or weekly), then next_pay_date is
calculated and moved to the next pay date in the next pay interval. In
case of before due date, the next pay date will be calculated based on the
current due date (whose bill has been paid), so this next_pay_date has no
meaning until the next bill is synchronized.

Recurring Payments Recurring Payment Scheduling

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

59

▪

Column Value

Status Status is re-calculated and will be changed to “inactive” if
next_pay_date is after end_date, or curr_num_payments is greater than
max_num_payments. See the previous section about UI update for
details.

9. IRecurringPaymentPlugIn.preSendEmail() is called so that the plug-in can customize the
email being sent out. The email won’t be sent out if this method returns PRE_SEND_EMAIL_REJECT.

10. Template.parse() is called to parse the email template and generate the content of email.

11. An email notification is sent to the user.

Important points about recurring payment scheduling:

 Payments are scheduled to the corresponding payment DDN (payee).

 The recurring payment object provides a convenient method isAttchedAcountsAvailable() to
determine the nature of the recurring payment in both B2B and B2C. If the recurring payment is
B2B, then isAttchedAcountsAvailable() method returns true and getAttachedAccounts method can
be used to get the set RecurringAttachedAccount instances. Each of these
RecurringAttachedAccount instances contains information such as the account number and the
corresponding Indexer DDN. In B2C, isAttchedAcountsAvailable() method returns false and
getPayerAcctNum() method can be used to get the account number. In B2C, the payee DDN is
used as the Indexer DDN as well.

 When billing accounts from different billing cycles (bills are uploaded in different cycles) are added
to a recurring payment, behavior of the recurring payment can be unpredictable depending on the
recurring payment rules and the billing cycles. Common observations include:

 The final schedule payment includes only a subset of accounts attached to the recurring
payment.

 Payments are scheduled late.

 Some bills are skipped.

It is highly recommended that accounts attached to a recurring payment belong to the same
billing cycle. If it is needed to handle accounts from different billing cycles, then it should be
tested properly to find the matching parameter combinations

 In the recurring payment scheduler task, when a payment is scheduled for multiple bills, individual
bill details are inserted to the payment invoices table as invoices. The AmountToBePaid field of the
Invoice object is populated for each type of recurring payment:

 IRecurringPayment.AMOUNT_DUE

AmountToBePaid = Bill Amount Due

 IRecurringPayment.MINIMAL_DUE

AmountToBePaid = Bill Min Amount Due

Recurring Payments Recurring Payment FAQ

60 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 IRecurringPayment.LESS_DUE

If the payment transaction amount is “0”

AmountToBePaid = “0”

Else

AmountToBePaid = Bill Amount Due

 IRecurringPayment.UPTO_AMOUNT

In this case, the AmountToBePaid field is set to the bill amount due for each bill up to
the amount specified in the recurring payment, and zero amount is set to the invoices
corresponding to the remaining bills.

For example, if there are four invoices at $40, $50, $30, and $20, and the up-to
amount is $100, then it is distributed among the invoices as follows: $40, $50, $10,
and $0. Note the last two invoices do not pay the total amount of the bill.

 IRecurringPayment.FIXED_AMOUNT

This means to pay a fixed amount for the account regardless of the bill amount. If the
payment is to be made before the due date of the bill, then invoices inserted would be
only for the synchronized bills, else invoices would be inserted for each attached
account. In either case the fixed amount would be equally distributed among the
invoices and the last invoice amount would be adjusted for round-off errors.

Recurring Payment FAQ
This section answers a few common questions about recurring payment.

 Why is my current bill not paid by recurring payment after I set up my recurring payment?

The recurring payment start date can only start from tomorrow, so the last_process_date is
set to start from tomorrow. This means all the bills indexed before today won’t be processed
by the recurring payment. The reason is that, currently, there is no reliable way for recurring
payment to know whether the current bill has been paid or not. The user may have paid it
through a one time payment or through paper check. To avoid paying the bill twice, recurring
payment will only start processing bills indexed since tomorrow.

When a recurring payment is created, the JSP page checks whether there are any indexed bills
for the account. If so, ePayment Manager retrieves the latest bill for the account. ePayment
Manager also checks whether the latest bill has been paid by checking its doc ID against the
bill_id of payment tables. If there is no match, we can reasonably assume that the bill has not
been paid, so we prompt the user to make a one-time payment to pay that bill.

 What assumptions does recurring payment make about the bill system?

Recurring payment assumes that the bill balances are accumulative; that is, the bill of this
billing cycle includes the balance of the bill from previous billing cycle, and the later bill has a
due date after that of the previous bill (the only case the same due date can happen is for re-
bill, see below).

Recurring Payments Recurring Payment FAQ

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

61

▪

Recurring payment also assumes that each bill has a date indicating the chronological order of
bills; this is usually the date when the bill arrives in the billing system. For example, in the
case of eStatement Manager, doc date can be used to indicate the chronological order of bills
arriving eStatement Manager. In the case of non-eStatement Manager billing system, other
dates like statement date can be used for this purpose. When recurring payment synchronizes
with eStatement Manager or other billing systems, it needs to retrieve the latest bill issued
between the last_process_time and current time. This chronological date of bills (doc date or
statement date) should be used to guarantee that functionality.

 Can recurring payment work with a billing system other than eStatement Manager?

Yes. Recurring payment assumes nothing specific to eStatement Manager and the only thing
you need to do is to re-implement the IBillDepot API. Of course, the billing system should
meet assumptions stated in item 2.

 Do the bills need to have due dates?

Yes, if the recurring payment is not fixed date and fixed amount. The due date is used to
decide which bill is the latest one to pay. For eStatement Manager, you must index the due
date or some date equivalent to use as the due date.

 What is rebill? How do I enable it?

Re-bill means the same bill can be issued multiple times during one billing cycle to handle
adjustments. All the re-bills must have the same due dates. To decide which re-bill is the
latest bill to pay, the current IBillDepot implementation considers the one the latest with
latest doc date. If there is more than one bill with same doc date, the bill with highest IVN
number is chosen. Note: This implementation assumes that a later re-bill is always indexed
after a previous re-bill, and no re-bills will be put together in one data file (which cause them
have same doc date and IVN number). If you want to consider other factor such as amount for
making the decision, you must re-implement IBillDepot.

Re-bill is enabled by job configuration parameter “When to synchronize with eStatement
Manager?” To use re-bill, you must choose “Whenever the job runs”. If you don’t have re-bill,
you can choose either “whenever the job runs” or “only after current bill is scheduled”.

Technically, there is not much difference between a regular bill and re-bill. The major
difference is the logic required to decide which re-bill is the latest bill, which goes beyond
checking bill due date. You can think about non re-bill as a special case of re-bill: re-bill allows
the same bill to appear more than once in a single billing period, but non re-bill appears only
once. The code and programming logic actually doesn’t distinguish between these two cases.

 When re-bill is not involved, is there any difference between the job configuration options for the
job configuration parameter" when to synchronize with eStatement?”

It should not affect functionality, and you can choose either of them. But you should consider
these two things:

First, performance may be deteriorated by choosing “whenever the job runs” because instead
of waiting until current bill is scheduled, the job will try to synchronize with eStatement for
each recurring payment. This can be especially true if you are talking with a billing system
other than eStatement Manager that may have a slow connection.

Second, a scheduled payment may be cancelled because of an “unexpected” early-arrival of
next bill. Because we only want to pay the latest bill, the scheduled payment will be cancelled
and the new bill will be scheduled.

Recurring Payments Recurring Payment FAQ

62 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Why and when can a scheduled payment be cancelled by recurring payment job?

The cancellation of a scheduled payment can only happen when the job configuration, “when
to synchronize with eStatement” is set to “whenever job runs”.

It can happen because of two reasons:

The first case is: (for re-bill) after the original bill is scheduled, but before it is processed, the
re-bill arrives. In this case, the original payment will be cancelled, and the re-bill will be
scheduled.

Second, the bill of this billing cycle is still scheduled, but before it is processed, the bill of next
billing cycle arrives (early). In this case, this bill’s payment is cancelled and the next bill is
scheduled.

In case of fixed pay date and pay amount due, if a scheduled payment is cancelled, the
last_pay_date and next_pay_date should all be move back by the pay_interval before the next
bill is scheduled. This ensures that the next bill is paid with the same pay date as the previous
bill.

 In the case of fixed pay date and pay amount due, what happens if there is no bill for this billing
cycle?

Recurring payment can never be triggered for a billing cycle if there is no bill, or if the bill’s
balance is negative (recurring payment doesn’t issue credit). For example, a user sets to pay
the bill's amount due on the 15th of each month, and current month is Oct. The
next_pay_date will be set to Oct 15. However, if no bill arrives before Oct 15, then after Oct
15, the next_pay_date will be changed to Nov 15 to ensure that the bill arrives it will be paid
in the next pay period. Otherwise, the user may end up paying the Nov bill with Oct pay date.

 Will recurring payment make a pay if the balance is negative?

No. Instead, recurring payment assumes that this credit will roll into the balance of next bill.
However, a zero dollar payment will be made if the balance is zero.

 Can I set up a recurring payment to pay from multiple payment accounts?

Yes, in B2B scenario, you can set up a recurring payment for multiple billing accounts. The
biller accounts (attached accounts) will be stored in recurring_attached_accounts table.

 Why does the default recurring payment update UI limit some options after the recurring payment
is started? For example, it is not possible to switch from "pay on fixed date" to "pay before due".

The logic to calculate next pay date becomes extremely complicated, so it is disallowed. If a
custom UI does allow such update, the behavior is undefined.

 What happens if my credit card account expires?

The recurring payment won’t schedule a payment. It is then be de-activated and an email is
sent to the user to indicate that he/she needs to update their credit card account info. In this
case, the user must log on to cancel the inactive recurring payment and create a new one.

 Why wasn't my bill scheduled?

This is the most often asked question, but there can be many causes. So here are offer a few
hints to debug this problem. To start, review the recurring payment logic steps described
previously.

Recurring Payments Recurring Payment FAQ

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

63

▪

First, check whether this is a false alarm. A bill can be synchronized, but yet scheduled. Also
check the next_pay_date to see whether it reflects the correct pay date for the bill.

If the bill is not even synchronized, check whether it has been indexed;

If indexed, check whether it falls into the synchronization period. Only bills whose doc date fall
between last_process_time and the current time will be considered.

Check whether this bill has valid information, for example, whether its due date, amount due
are valid parse-able strings. A bill with invalid bill info or a negative balance won’t be paid.

Even though this is a valid bill, it may not still be paid because its due date is before the due
date of the current bill associated with the recurring payment.

Custom plug-ins may be a factor. The custom code may not have been thoroughly tested, so
check the plug-in the code carefully, especially if the custom plug-in is manipulating the bill’s
due date, amount due, or recurring payment information directly.

The bill may not be scheduled because the payment account has been cancelled or deleted or
de-activated.

 Will a single recurring payment failure fail the whole recurring payment job?

It should not, otherwise it’s a bug. If this happens, contact Oracle Technical Support.

 What is bill ID?

It’s a unique ID used to identify each bill. In eStatement Manager, it is the doc ID.

 What is last process time? What is it used for?

It is the time when the last recurring payment job ran. It is used to ensure that a bill is only
retrieved once from eStatement Manager. ePayment Manager only retrieves bills indexed
between the last process time and the current time. That is, bills whose doc date >= last
process time and <= current time. Previous versions of ePayment Manager also had time
information as part of the last process time, but as of ePayment Manager 4.0, the last process
time only contains date information (because the doc date only contains date information).

 What happens if a bill is indexed twice?

This is similar to re-bill. The two bills have the same due dates, but the second indexing
produces a later doc date, or a larger IVN, if they are indexed in the same day.

If “when to synchronize with eStatement” is set to “whenever job runs”, this is a true re-bill
case, and will be treated as a re-bill.

If “when to synchronize with eStatement” is set to “after current bill is scheduled”, the second
indexed bill will be ignored during next round of synchronization.

Recurring Payments Recurring Payment FAQ

64 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

65

5 Sample User Interface

Customizing the ePayment Manager
Front-End
If you choose the multiple DDN enrollment model you can start customizing war-payment-
complex.war of ear-payment-complex.ear file. war-payment.war of ear-payment.ear includes the
ePayment Manager Command Center JSP pages, which you usually don’t need to change.

Customizing web.xml
Each WAR file includes a WEB-INF/web.xml file, which customizes the behavior of the WAR file. The
following table lists some of the initialization parameters that you may want to change in web.xml.
The PaymentServlet is used as an example:

Name Value Description

ServletRoot com.edocs.payment.app Package name of the payment
servlet.

UserJspPath /payment/user/jsp/enroll/user/single_DDN for
single DDN
 or /paymentuser//jsp/enroll/user/multiple_DDN
for multiple DDN

Specifies where to get user
enrollment JSP pages.

user_account_accessor com.edocs.payment.
payenroll.usracct
JNDISingleDDNUserAccountAccessor for
single DDN
com.edocs.payment.payenroll.usracct.
JNDIMultipleDDNUserAccountAccessor
for multiple DDN

Implementation class of
IUserAccountAccessor. This
interface defines how to access
user account information such as
account number and email
addresses. This value is
configurable in the Payment
Settings.

payment_account_
accessor

com.edocs.payment.payenroll.payacct.
SSOPaymentAccountAccessor

Implementation class of
IPaymentAccountAccessor,
which defines how to access
payment account information.
This value is configurable in the
Payment Settings.

ErrorPage /payment/user/jsp/error.jsp Error page used when an error
occurs.

Sample User Interface Customizing the ePayment Manager JSPs

66 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

Name

▪

Value Description

LoginRoot com.edocs.app.enrollment Login root (where the Login class
sit).

LoginPage /paymentuser//jsp/enroll/user/single_DDN/
UserLogin.jsp for single-DDN
/payment/user/jsp/enroll/user/multiple_DDN/
UserLogin.jsp for multiple-DDN,

Login page used for a particular
enrollment model.

Account.name edx/paymentComplex/ejb/CDAAccount IAccount bean name.

TimeZone Set this value if the Web server of
the JSP pages is sitting on a
different time zone other than the
app server.

com.edocs.payment.
payenroll.cache

True Determines whether to cache
IPayUserAccount into
session. Currently, this value
must be true.

Customizing the ePayment Manager JSPs
The ePayment Manager JSPs can be customized. The following table lists the ePayment Manager JSPs
for ePayment Manager, along with a simple description. Most of the JSPs are under
web/payment/user/jsp.

JSP Name Description

cancelPayment.jsp Displays the check or credit card payment to be
cancelled.

cancelPaymentResponse.jsp Response page when a check or credit card is
cancelled.

confirmInvoice.jsp viewInvoice.jsp is submitted to this page, which
confirms the invoices to be paid.

error.jsp Error page when there is a Payment error.

issueCredit.jsp Issues credit to check account or reversal to credit
card account

instantPayment.jsp Creates and submits an instant payment.

schedulePayment.jsp Schedules a payment, for either check or credit card.
Collects payment information, such as amount and
pay date.

schedulePaymentResponse.jsp Response page after submitting
schedulePayment.jsp.

Sample User Interface Customizing the ePayment Manager JSPs

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

67

▪

JSP Name Description

paymentHistory.jsp Displays a list of
processed/paid/returned/failed/cancelled check/credit
card payments.

paymentReminder.jsp Payment reminder setup page; collects payment
reminder information.

paymentReminderReponse.jsp Response page when paymentReminder.jsp page is
submitted.

paymentReminderSummary.jsp Lists all the reminders for the current user.

recurringPaymentCreate.jsp Create a new recurring payment.

recurringPaymentUpdateDelete.jsp Update an existing recurring payment.

recurringPaymentResponse.jsp Response page when creating or updating a recurring
payment.

recurringPaymentSummary.jsp Lists all the recurring payments for the current user.

viewInvoice.jsp Provides a list of invoices for testing the invoice
feature. To use invoices, you must generate a page
equivalent to viewInvoice.jsp with all the http form
information in it. Note: This page transfers invoice
data as an http form field array to
confirmInvoice.jsp.

viewInvoice2.jsp A simplified version of viewInvoice.jsp, which
displays the minimum, required information for an
invoice.

unknowForm.jsp Displayed when the Payment servlet cannot process
the request.

futurePayment.jsp Displays a list of scheduled payments.

viewAchReturnError.jsp Views ACH return pages.

viewInvoiceForPayment.jsp Displays the invoices associated with a payment.

Detail.jsp Equivalent to eStatement Detail.jsp with a few minor
changes. Displays bill detail.

HistoryList.jsp Equivalent to eStatement HistoryList.jsp with a few
minor changes. Displays bill summary.

cancelExternalPayment.jsp Displays the external payment to be cancelled.

cancelExternalPaymentResponse.jsp Displays the external payment to be cancelled.

externalPayeeForm.jsp External payee setup page; collects external payee
information.

externalPayeeResponse.jsp Schedules an external payment, for either check or
credit card. Collects external payment information.

externalPaymentForm.jsp Displays a list of
scheduled/processed/paid/returned/failed/cancelled
check/credit card external payments.

Sample User Interface Customizing the ePayment Manager JSPs

68 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

JSP Name Description

externalPaymentHistory.jsp Displays a list of
scheduled/processed/paid/returned/failed/cancelled
check/credit card external payments.

externalPaymentResponse.jsp Response page after submitting
externalPaymentForm.jsp.

externalPaymentSummary.jsp Displays a list of external payees and provides
links to manage external payees and to make
external payments.

All payment JSP pages can only be accessed after login.

Zero amount check

By default, the JavaScript in payCheck.jsp prevents a zero dollar check from being created. To allow a
zero amount check, change the JavaScript in this page to allow zero amount checks. A zero amount
check will not be actually submitted to the payment gateway. Zero amount checks are used as
records, and their statuses are changed to "processed" when pmtCheckSubmit runs.

Customized checks

There are five fields in the check_payments table which are customizable: txn_timestamp_1,
txn_time_stamp_2, flexible_field_1, flexible_field_2, and flexible_field_3. They can be set using
payCheck.jsp. See payCheck.jsp for details.

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

69

6 ePayment Manager Plug-ins

Plug-In Customization
The ePayment Manager plug-in is a callback, which allows you to add code to extend the functionality
of ePayment Manager. ePayment Manager can use the following plug-ins:

 IAchCheckSubmitPlugIn for the ACH cartridge when submitting checks to ACH.

 IVerisignCreditCardSubmitPlugIn for the VeriSign cartridge when submitting credit cards
to VeriSign.

 IPaymentReminderPlugIn for the job pmtPaymentReminder

 IRecurringPaymentPlugIn for the job pmtRecurPayment

 IRecurPaymentSyncPlugIn for the pmtRecurPayment job Synchronizer task

 IRecurPaymentSchedulePlugIn for the pmtRecurPayment job Scheduler task

For each plug-in, ePayment Manager provides a default implementation. We recommend that you
derive your plug-in from the default implementation to ensure that future updates to the plug-in will
not break your code. The plug-ins and sample code are provided in Plug-in Sample Code.

ACH Check Submit Plug-in

Overview

The ACH cartridge supports a plug-in to modify ACH file generation. When the pmtCheckSubmit job
runs for ACH, it calls the methods of the implementation of IAchCheckSubmitPlugIn (defined in
Payment Settings) during numerous events. The default implementation is AchCheckSubmitPlugIn,
which does nothing.

The following diagram shows the workflow for the pmtCheckSubmit job plug-in:

ePayment Manager Plug-ins ACH Check Submit Plug-in

70 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

pmtCheckSubmit runs

ACH cartridge invoked

Get a list of checks to
be submitted from the

database

Write ACH file header

Write ACH batch header

Write a check

IAchCheckSubmitPlugIn.
begin

IAchCheckSubmitPlugIn.
preWriteFileHeader

IAchCheckSubmitPlugIn.
preWriteBatchHeader

IAchCheckSubmitPlugIn.
preWriteCheck

IAchCheckSubmitPlugIn.
postWriteCheck

IAchCheckSubmitPlugIn.
preWriteBatchTrailer

Write ACH batch trailer

Write ACH file trailer

Return to
pmtCheckSubmit

IAchCheckSubmitPlugIn.
preWriteFileTrailer

IAchCheckSubmitPlugIn.
finish

Writing a Plug-in

You can use the pmtCheckSubmit plug-in to change the default name of the ACH file, create a
remittance file in addition to the standard ACH file, deny a check or change the default information put
into the ACH file. You need to create your own implementation to accomplish these tasks. Refer to the
ePayment Manager SDK JavaDoc for information about writing an implementation of
IAchCheckSubmitPlugIn. To create your own implementation:

1. Derive your implementation from the default implementation AchCheckSubmitPlugIn.

2. Overwrite the methods whose behavior you wish to change.

3. When compiling, include payment_common.jar and payment_client.jar into your java classpath.

ePayment Manager Plug-ins VeriSign Credit Card ePayment Manager Plug-in

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

71

▪

ile. See Packaging payment Custom Code
on page 137 for information about redeploying EAR files.

 class.

AddendaCheckSubmitPlugIn tes them out
as addenda records. Check this class in the JavaDoc for its implementation details, and then follow the

 Credit Card ePayment Manager
Plug-in

uns). This plug-in allows
HTTP

k the API IVerisignCreditCardSubmitPlugIn for details.

The following diagram shows the workflow of the plug-in when an instant credit card payment is
submitted:

4. Package this class into payment_custom.jar of each EAR f

5. Change the Payment Settings to point to your new

Using a Plug-in to Write ACH Addenda Records

You can use the pmtCheckSubmit plug-in to write addenda records for ACH. The implementation
called gets the invoice information of a payment and wri

steps in Writing a Plug-in on page 70 to write your own implementation.

VeriSign

CreditCardSubmit Plug-in Overview

Unlike the ACH plug-in, the VeriSign credit card plug-in is invoked from both the front end (when an
instant credit card is made) and the back end (when credit card submit job r
you to audit the credit card payment, deny it, or even changes the HTTP request sent to Verisign
server. Chec

User submits an
instant credit card

payment

Contact Verisign

Display
authorization

result

IVerisignCreditCardSubmitPlugin
.preAuthorize

IVerisignCreditCardSubmitPlugin
.postAuthorize

ePayment Manager Plug-ins VeriSign Credit Card ePayment Manager Plug-in

72 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

The following diagram shows the workflow of the plug-in when the pmtCreditCardSubmit job runs for
VeriSign:

pmtCreditCardSubmit runs

Invoke Verisign cartridge

Get a list of credit cards to be
sumbitted, and for each one:

Send the credit card payment to
Verisign

Return the payment to the
pmtCreditCardSubmit job

IVerisignCreditCardSubmitPlugin.
begin

IVerisignCreditCardSubmitPlugin.
PreAuthorize

IVerisignCreditCardSubmitPlugin.
PostAuthorize

IVerisignCreditCardSubmitPlugin.
finish

Next
payment

Writing a Credit Card Plug-in

The default implementation of IVerisignCreditCardSubmitPlugIn,
VerisignCreditCardSubmitPlugIn, just does nothing. To write you own implementation, you
should:

1. Derive your implementation from VerisignCreditCardSubmitPlugIn.

2. Overwrite the methods for which you wish to change the default behavior.

3. When compiling, include payment_common.jar and payment_client.jar in your javac class path.

4. Package this class into payment_custom.jar of each ear file. For details about how to do that, see
the Deploying and Customizing J2EE Applications Guide for Oracle Siebel eStatement Manager.

5. Change the Payment Settings of that DDN to use the new plug-in implementation.

ePayment Manager Plug-ins ePayment Manager Reminder Plug-in

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

73

▪

ePayment Manager Reminder Plug-in

ePayment Manager Reminder Plug-in Overview

The ePayment Manager reminder plug-in is invoked when the pmtPaymentReminder job runs.
pmtPaymentReminder does three things:

 Regular payment reminders

 Check status notification

 Credit card status notification

There are corresponding plug-ins for the preceding tasks. Refer to
com.edocs.payment.tasks.reminder.IPaymentReminderPlugIn for details.

The following diagram shows the workflow for the plug-in of the pmtPaymentReminder job:

pmtPaymentReminder
job runs

get list of payment reminders
to be sent

send email for one reminder

get list of check payments to
be notified

send email for one check

get list of credit card payments
to be notified

send email for one credit card

finish

IPaymentReminder.
preSendEmailCheck

IPaymentReminder.
preSendEmailCreditCard

IPaymentReminder.
preSendEmailReminder

ePayment Manager Plug-ins Recurring Payment Plug-in

74 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Creating a pmtPaymentReminder Plug-in

The default plug-in implementation,
com.edocs.payment.tasks.reminder.PaymentReminderPlugIn, actually does nothing. To
implement your own plug-in:

1. Derive your implementation class from PaymentReminderPlugIn.

2. Overwrite the methods for you wish to change behavior.

3. When compiling, include payment_common.jar and payment_client.jar in your javac class path.

4. Package this class into payment_custom.jar of each ear file. See Deploying and Customizing J2EE
Applications Guide for Oracle Siebel eStatement Manager.

5. Update the pmtPaymentReminder job configuration to use the new class.

Recurring Payment Plug-in

Recurring Payment Overview

The recurring payment plug-in is called when the pmtRecurPayment job runs. You can use this plug-in
to prevent a recurring payment from being scheduled based on business rules. Or, you can extract
some indexed fields from the index table and put them into the payment being scheduled. The
implementations: com.edocs.tasks.payment.recur_payment.RecurringPaymentPlugIn, is
the default one and it does nothing.

The file SampleRecurringPlugin.java provides an example implementation.

The following diagram shows the workflow of recurring payment and how the plug-in works:

ePayment Manager Plug-ins Recurring Payment Plug-in

 Oracle ePayment Manager Version 4.7

75

▪

Customizing and Extending Siebel

ePayment Manager Plug-ins Recurring Payment Plug-in

76 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Writing a Plug-in

The default plug-in implementation,
com.edocs.payment.tasks.recur_payment.RecurringPaymentPlugIn, does nothing. To
implement your own plug-in:

1. Derive your implementation class from RecurringPaymentPlugIn.

2. Overwrite the method that you want to change behavior of.

3. When compiling, include payment_common.jar and payment_client.jar in your javac class path.

4. Package this class into payment_custom.jar of each EAR file. For more information, see the
Deploying and Customizing J2EE Applications Guide for Oracle Siebel eStatement Manager.

5. Update the pmtRecurPayment job configuration to use the new class.

Populating Index Fields into Payment Flexible Fields

com.edocs.paymenttasks.recur_payment.SampleRecurringPlugIn demonstrates how to use
a plug-in to populate the flexible fields of the payment database (ICheck or ICreditCard) with the
indexed information from the indexer table.

Recurring Payment Synchronizer Task Plug-in
The IRecurPaymentSyncPlugIn can be used to customize the synchronizer task. This plug-in interface
provides the following methods:

public int preGetLatestSummary(SynchronizeRecurringPlugInParams p)
public int preInsertLatestSummary(SynchronizeRecurringPlugInParams p)
public int preUpdateSynchronizedRecurring(SynchronizeRecurringPlugInParams p)

The instance of SynchronizeRecurringPlugInParams, which is passed to these methods, contains
information such as the RecurringPayment instance, the BillSummary instance, and the
PaymentConfig instance as before. The following method was introduced to the
SynchronizeRecurringPlugInParams to allow developers to get the indexer configuration for a given
DDN:

public IPaymentConfig getIndexerConfig(String ddn)

Note: This method retrieves Indexer configurations from a cache. If the Indexer configuration of the
requested DDN is not cached yet, this method returns null.

When attached accounts are available (in B2B), preGetLatestSummary method is called before
retrieving the bill summary of each attached account. Plug-in developers can use
p.getRecurringPayment().getCurrentAttachedAccount() inside the preGetLatestSummary
method to get the currently processing recurring attached account, when p is the
SynchronizeRecurringPlugInParams instance passed to the preGetLatestSummary method. The
recurring attached account instance contains information such as the account number and the Indexer
DDN.

In a B2C system, p.getRecurringPayment().getPayerAcctNum() method can be used to get
the account number. In this case, the Indexer DDN and payee DDN are always same.

ePayment Manager Plug-ins Recurring Payment Plug-in

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

77

▪

In B2B, a bill is synchronized for each attached account (the account number and the indexer DDN of
the attached account are used to retrieve the bill). In this case, as the bills can have different due
dates, it is important to select a bill for evaluating the recurring payment rules, which depends on the
bill due date. By default the payment module selects the bill with the minimum due date (earliest due
date). This behavior can be modified in the preInsertLatestSummary() method. In this method
one can get the list of bills synchronized and set the appropriate bill due date to the recurring
payment object. This method can also be used to modify the default consolidated bill details set to the
recurring payment object.

The following diagram shows the flow of the recurring payment synchronizer task:

ePayment Manager Plug-ins Recurring Payment Plug-in

78 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

ePayment Manager Plug-ins Recurring Payment Plug-in

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

79

▪

Recurring Payment Scheduler Task Plug-in

The role of the scheduler task is to schedule payments for the synchronized bills depending on the
recurring payment rules (which amount to pay and when to pay). In a B2B system, this task uses the
consolidated bill details as the basis for evaluating the recurring payment rules. When a payment is
scheduled, the consolidate payment information is inserted to the appropriate payment table
(CHECK_PAYMENTS or CREDITCARD_PAYMENTS). The individual bill details are inserted to the
PAYMENT_INVOICES table as invoices attached to the payment. The
IRecurPaymentSchedulePlugIn can be used to customize this behavior to some extent. This plug-
in interface provides the following methods:

public int preSchedulePayment(SchedulePaymentPlugInParams params)
public int preSendEmail(SchedulePaymentPlugInParams params)

The task invokes the preSchedulePayment method of the plug-in before scheduling a payment and
invokes the preSendEmail method before sending the notification. In the preSchedulePayment()
method, the list of invoices can be accessed and additional details inserted into these invoices. Both of
those methods receive an instance of SchedulePaymentPlugInParams as a parameter. Plug-in
developers can use the following getter methods available on this parameter to access the
corresponding domain objects:

public IPaymentConfig getPaymentConfig()
public IPaymentTransaction getPayment()
public IRecurringPayment getRecurringPayment()
public IPaymentAccount getPaymentAccount()|
public List getPaymentInvoices()
public HashMap getPropertyMap()

ePayment Manager Plug-ins Recurring Payment Plug-in

80 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

81

7 Customizing ePayment Manager
Tem

plate Files

Overview
All the ePayment Manager email notifications are sent through IPaymentNotificationService. The
default implementation of IPaymentNotificationService uses the XMA based notification module
provided by eStatement Manager for sending email notifications. The eStatement Manager notification
module uses Velocity (http://jakarta.apache.org/velocity/) as the template engine.

ePayment Manager provides another template engine to generate ePayment Manager-wide text
messages, ACH files, and A/R files. This chapter describes how to customize both the Velocity based
payment email templates and ePayment Manager templates provided by payment template engine.

Customizing Email Templates
ePayment Manager uses Velocity template files to generate customized text that will be sent in a
notification email. The email templates can be customized for you by Oracle Professional Services, or
you can customize them yourself. This appendix describes how email template variables and how they
can be customized.

Please refer the Velocity User Guide (http://velocity.apache.org/) for more information on velocity
templates. The Velocity template syntax is beyond the scope of this document.

Separate email notification templates are used for:

Type of notification Job that Specifies Template File

Reminder to pay bills and the status
of the checks

pmtPaymentReminder payment_reminder_predue.xml.vm

Fixed reminder setup by the user pmtPaymentReminder payment_reminder_fixed.xml.vm

Enrollment status pmtNotifyEnroll payment_account_status.xml.vm

Recurring payment was scheduled pmtRecurPayment payment_recurring_scheduled.xml.vm

Recurring payment was not
scheduled

pmtRecurPayment payment_recurring_notscheduled.xml.vm

Payment Command Center job status All Payment jobs payment_job_notification.xml.vm

Credit card expiration payment_ccaccount_ccexpired.xml.vm pmtCreditCardExpNotify

For UNIX, the default path to the email template files is $EDX_HOME/template
For Windows, it is:
%EDX_HOME%\template.

The Velocity template language includes a list of placeholders that refer to Java objects, which are
hosted by Payment. It also includes some simple logic control directives such as if and foreach.

Customizing ePayment Manager Template Files Customizing Email Templates

82 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Payment Pre Due Reminder Template
Payment pre-due reminder messages are generated based on payment_reminder_predue.xml.vm
which resides in $EDX_HOME/template (%EDX_HOME%\ template for Windows).

This template is used for regular payment reminder and email notifications for processed, returned or
failed payments:

<?xml version="1.0" encoding="iso-8859-1"?>

<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Usha (edocs) -
->

<message-config xmlns="http://www.edocs.com/messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.edocs.com/messaging

content.xsd">

 <header>

 <subject>Payment Reminder</subject>

 </header>

 <content>

 <no>123</no>

 <type>html</type>

 <body><![CDATA[<html>

 #if($isCheck)

 Dear user $check.getPayerId():

 #if($isPaid)

 #if($isAmtNegative)

 A credit of $$check.getAmount().substring(1) has been issued to
your check account on
$messagingTemplateUtil.getFormattedDate($check.getPayDate(),"MMM dd yyyy").

 #else

 Your check of $$check.getAmount() has been paid on
$messagingTemplateUtil.getFormattedDate($check.getPayDate(),"MMM dd yyyy").

 #end

 #end

 #if($isReturned)

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

83

▪

 #if($isAmtNegative)

 Your request to issue $$check.getAmount().substring(1) credit
to your check account has been rejected. The error message is:
$AchReturnCode.get($check.getTxnErrMsg()).

 #else

 Your check of $$check.getAmount() has been returned. The error
message is: $AchReturnCode.get($check.getTxnErrMsg())

 #end

 #end

 #if($isFailed)

 There is a problem to process your check. The error message is:
$check.getTxnErrMsg()

 #end

 #if($isCanceled)

 #if($isAmtNegative)

 Your request to issue $$check.getAmount().substring(1) credit
to your check account has been canceled by the payment system because the
check account is not valid. Please check your enrollment information.

 #else

 Your check of $$check.getAmount() has been canceled by the
payment system because the check account is not valid. Please check your
enrollment information.

 #end

 #end

 #if($isProcessed)

Customizing ePayment Manager Template Files Customizing Email Templates

84 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 #if($isAmtNegative)

 Your request to issue $$check.getAmount().substring(1) credit
to your check account has been sent to bank for clearing.

 #else

 Your check of $$check.getAmount() has been sent to bank for
clearing.

 #end

 #end

 #end

 #if($isCCard)

 Dear user $creditcard.getPayerId():

 #if($isSettled)

 #if($isAmtNegative)

 Your request to reverse $$creditcard.getAmount().substring(1)
to your credit card has been authorized successfully.

 #else

 Your credit card payment of $$creditcard.getAmount() has been
authorized successfully.

 #end

 #end

 #if($isFailed)

 #if($isAmtNegative)

 Your request to reverse $$creditcard.getAmount().substring(1)
to your credit card failed authorization.

 The error message is: $creditcard.getTxnErrMsg()

 #else

 Your credit card payment of $$creditcard.getAmount() failed
authorization.

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

85

▪

 The error message is: $creditcard.getTxnErrMsg()

 #end

 #end

 #if($isSystemFailure)

 #if($isAmtNegative)

 Your request to reverse $$creditcard.getAmount().substring(1)
to your credit card failed.

 The error message is: $creditcard.getTxnErrMsg()

 #else

 Your credit card payment of $$creditcard.getAmount()
failed.

 The error message is: $creditcard.getTxnErrMsg()

 #end

 #end

 #if($isCanceled)

 #if($isAmtNegative)

 Your request to reverse $$creditcard.getAmount().substring(1)
to your credit card has been canceled by the payment system because the
account is invalid. Please check your enrollment information.

 #else

 Your credit card payment $$creditcard.getAmount() has been
canceled by the payment system because the account is invalid. Please check
your enrollment information.

 #end

 #end

 #end

 </html>

Customizing ePayment Manager Template Files Customizing Email Templates

86 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

]]></body>

 <part>

 <part_name>doc</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 <part>

 <part_name>pdf</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 </content>

 <footer/>

</message-config>

The following table describes the payment pre due reminder template variables:

Variable Type Description

accountNumber String Biller account number

AchReturnCode AchReturnCode A new AchReturnCode Object

check ICheck The ICheck object being notified, valid only when
isCheck is true.

creditcard ICreditCard The ICreditCard object being notified, valid only
when isCCard is true.

isCCard Boolean True means this is for credit card status notification.

isCheck Boolean True means this is for check status notification.

isFailed Boolean True means the payment has failed to process.

isPaid Boolean True means the check has been paid or cleared.

isProcessed Boolean True means the check has been processed.

isReminded Boolean True means this is for regular payment reminders.

isReturned Boolean True means the check has been returned.

isSettled Boolean True means the credit card has been settled.

isSystemFailure Boolean True means there has been a system error. For
example, a network failure.

payeeId String Payee ID

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

87

▪

Variable Type Description

payerId String Payer ID

paymentId String Payment ID

reminder IPaymentReminder The IPaymentReminder object being reminded,
valid only when isReminded is true.

Payment Fixed Reminder Template
Payment fixed reminder messages are generated based on payment_reminder_fixed.xml.vm which
resides in $EDX_HOME/template (%EDX_HOME%\ template for Windows).

This template is used for regular payment reminder and email notifications for processed, returned or
failed payments:

<?xml version="1.0" encoding="iso-8859-1"?>

<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Usha (edocs) -
->

<message-config xmlns="http://www.edocs.com/messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.edocs.com/messaging

content.xsd">

 <header>

 <subject>Payment Reminder</subject>

 </header>

 <content>

 <no>123</no>

 <type>html</type>

 <body><![CDATA[<html>

 #if($isRemind)

 Dear $reminder.getPayerId():

 This email is to remind you to pay your current
$reminder.getPayeeId()'s

 bill. Please refer to this url to pay your bill:

 http://www.oracle.com.

 Thanks,

Customizing ePayment Manager Template Files Customizing Email Templates

88 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 #end

 </html>

]]></body>

 <part>

 <part_name>doc</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 <part>

 <part_name>pdf</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 </content>

 <footer/>

</message-config>

The following table describes the payment fixed reminder template variables:

Variable Type Description

accountNumber String Biller account number

biller String Payee ID

billingURL String Billing URL

customerName String Payer ID

isCCard Boolean True means this is for credit card status notification.

isCheck Boolean True means this is for check status notification.

isRemind Boolean True means this is for regular payment reminders.

payeeId String Payee ID

payerId String Payer ID

reminder IPaymentReminder The IPaymentReminder object being reminded,
valid only when isReminded is true.

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

89

▪

Enrollment Notification Template
The enrollment notification template notifies customers about "active "and "bad-active" payment
accounts and NOC returns. Enrollment reminder messages are generated based on
payment_account_status.xml.vm:

<?xml version="1.0" encoding="iso-8859-1"?>

<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Usha (edocs) -
->

<message-config xmlns="http://www.edocs.com/messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.edocs.com/messaging

content.xsd">

 <header>

 <subject>Payment Account Notification</subject>

 </header>

 <content>

 <no>123</no>

 <type>html</type>

 <body><![CDATA[<html>

 Dear $checkAccount.getUserId():

 #if($isACH)

 #if($success)

 Your payment account $checkAccount.getAccountNumber() has been
succesfully activated.

 #else

 There has been a problem activating your payment account
$checkAccount.getAccountNumber().

 The return reason code is: $errCode

 #end

 #end

 #if($isNOC)

 #if($isC01)

 #if($isAutoUpdate)

Customizing ePayment Manager Template Files Customizing Email Templates

90 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Your Bank Account Number has been changed.

 New Bank Account Number is: $newPaymentAccount

 Old Bank Account Number was: $oldPaymentAccount

 #else

 Your current Bank Account Number is out of date.

 New Bank Account Number is: $newPaymentAccount

 Current Bank Account Number is: $oldPaymentAccount

 Please login to change your profile.

 #end

 #end

 #if($isC02)

 #if($isAutoUpdate)

 Your Bank Routing Number has been changed.

 New Bank Routing Number is: $newRouting

 Old Bank Routing Number was: $oldRouting

 #else

 Your current Bank Routing Number is out of date.

 New Bank Routing Number is: $newRouting

 Current Bank Routing Number is: $oldRouting

 Please login to change your profile.

 #end

 #end

 #if($isC03)

 #if($isAutoUpdate)

 Your Bank Account Information has been changed.

 New Bank Account Number is: $newPaymentAccount

 Old Bank Account Number was: $oldPaymentAccount

 New Bank Routing Number is: $newRouting

 Old Bank Routing Number was: $oldRouting

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

91

▪

 #else

 Your current Bank Account Information is out of date.

 New Bank Account Number is: $newPaymentAccount

 Current Bank Account Number was: $oldPaymentAccount

 New Bank Routing Number is: $newRouting

 Current Bank Routing Number is: $oldRouting

 Please login to change your profile.

 #end

 #end

 #if($isC05)

 #if($isAutoUpdate)

 Your Bank Account Information has been changed.

 Your new Bank Type is $newPaymentType

 Your old Bank Type was $oldPaymentType

 #else

 Your current Bank Account Type is out of date.

 Your new Bank Type is $newPaymentType

 Your current Bank Type is $oldPaymentType

 Please login to change your profile.

 #end

 #end

 #if($isC06)

 #if($isAutoUpdate)

 Your Bank Account Information has been changed.

 New Bank Account Number is: $newPaymentAccount

 Old Bank Account Number was: $oldPaymentAccount

 Your new Bank Type is $newPaymentType

 Your old Bank Type was $oldPaymentType

 #else

Customizing ePayment Manager Template Files Customizing Email Templates

92 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Your current Bank Account Information is out of date.

 New Bank Account Number is: $newPaymentAccount

 current Bank Account Number is: $oldPaymentAccount

 New Bank Type is $newPaymentType

 Current Bank Type is $oldPaymentType

 Please login to change your profile.

 #end

 #end

 #if($isC07)

 #if($isAutoUpdate)

 Your Bank Account Information has been changed.

 New Bank Account Number is: $newPaymentAccount

 Old Bank Account Number was: $oldPaymentAccount

 New Bank Routing Number is: $newRouting

 Old Bank Routing Number was: $oldRouting

 Your new Bank Type is $newPaymentType

 Your old Bank Type was $oldPaymentType

 #else

 Your current Bank Account Information is out of date.

 New Bank Account Number is: $newPaymentAccount

 Current Bank Account Number is: $oldPaymentAccount

 New Bank Routing Number is: $newRouting

 Current Bank Routing Number is: $oldRouting

 New Bank Type is $newPaymentType

 Current Bank Type is $oldPaymentType

 Please login to change your profile.

 #end

 #end

 #end

 #if($isCDP)

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

93

▪

 #if($success)

 Your payment account $checkAccount.getAccountNumber() has been
succesfully activated.

 #else

 There has been a problem activating your payment account
$checkAccount.getAccountNumber(). Please contact your customer service
representative for further assistance.

 #end

 #end

 </html>

]]></body>

 <part>

 <part_name>doc</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 <part>

 <part_name>pdf</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 </content>

 <footer/>

</message-config>

This template is used for both ACH and Checkfree CDP. The text between #if($isACH) and the
corresponding #end is for ACH. The text between #if($isCDP) and the corresponding #end is for
Checkfree. If there are no payment gateways for Checkfree or for ACH, you can remove that section
from the template file.

Each payment account will be sent an individual email. ePayment Manager supports multiple payment
accounts, so there may be more than one email sent out for each customer (if that customer has
multiple payment accounts).

The following tables list the variables available for use in the Enrollment Notification email template.
The first table is for ACH, the second table is for ACH NOC returns, and the third table is for Checkfree
CDP

The following variables apply to all the cases:

Customizing ePayment Manager Template Files Customizing Email Templates

94 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Variable Type Description
checkAccount ICheckAccount The current check account being notified

template Template The Payment template engine, which is
used to declare new variables for the
template.

config IPaymentConfig Payment setting information, which is
configured from the Command Center.

The following variables apply to ACH:

ACH Variable Type Description
isACH boolean True indicates this is an ACH notification.

success boolean Success means this account has been activated
successfully.

errCode String ACH return code, if the transaction failed.

The following variables apply to ACH NOC returns:

ACH NOC Variable Type Description
isNOC boolean True indicates this is an NOC return.

isC01, isC02,
isC03, isC05,
isC06, isC07

boolean True indicates the returned NOC code(s).

isAutoUpdate boolean Returns the state of the
com.edocs.payment.cassette
.ach.autoUpdatNOC flag, which is configured
on the Payment Settings page from the Command
Center.

newPaymentAccount String New payment account number.

oldPaymentAccount String Old payment account number.

newRouting String New payment routing number.

oldRouting String Old payment routing number.

newPaymentType String New payment account type.

oldPaymentType String Old payment account type.

The following variables apply to Checkfree CDP:

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

95

▪

CDP Variable Type Description
isCDP Boolean True indicate this is a Checkfree CDP notification.

success Boolean True indicates this account has been activated
successfully.

Recurring Payment Notification Templates
When recurring payment schedules a payment, email notification messages are generated from the
template file payment_recurring_scheduled.xml.vm whereas recurring payment not scheduled
notification messages are generated from payment_recurring_notscheduled.xml.vm template file. The
template file payment_recurring_scheduled.xml.vm is as follows.

<?xml version="1.0" encoding="iso-8859-1"?>

<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Usha (edocs) -
->

<message-config xmlns="http://www.edocs.com/messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.edocs.com/messaging

content.xsd">

 <header>

 <subject>Recurring Payment Scheduled</subject>

 </header>

 <content>

 <no>123</no>

 <type>html</type>

 <body><![CDATA[<html>

 Dear $recurringPayment.getPayerId(),

 #if($isPaymentScheduled)

 #if($isCheck)

 This email is to inform you a check payment has been
scheduled automatically for you.

 The check amount is $$payment.getAmount(). The pay date is
$messagingTemplateUtil.getFormattedDate($payment.getPayDate(),"MM/dd/yyyy").<
br>

 #end

 #if($isCCard)

Customizing ePayment Manager Template Files Customizing Email Templates

96 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 This email is to inform you a credit card payment has been
scheduled automatically for you.

 The credit card amount is $$payment.getAmount(). The pay date is
$messagingTemplateUtil.getFormattedDate($payment.getPayDate(),"MM/dd/yyyy").<
br>

 #end

 You can update or cancel this transaction following this
URL http://www.oracle.com.

 #end

 #if($isPaymentNotScheduled)

 This email is to inform you that your recurring payment
scheduled on
$messagingTemplateUtil.getFormattedDate($recurringPayment.getNextPayDate(),"M
M/dd/yyyy")

 is not made as requested.

 #if($isAmountNegative)

 #set($negativeAmount = $payment.getAmount() * -1)

 The bill showed an amount of -$$negativeAmount.

 #end

 Please contact your biller for details.

 #end

 #if($isLessPayment)

 This email is to inform you that the amount due
$$recurringPayment.getBillAmountDue() is

 more than the maximal amount, $$recurringPayment.getAmount(),
specified in the recurring payment.

 The bill is not paid by recurring payment.

 #end

 #if($isAlreadyPaid)

 The bill, due on
$messagingTemplateUtil.getFormattedDate($recurringPayment.getBillDueDate(),"M
M/dd/yyyy"), is not paid

 by recurring payment because it is already been paid.

 #end

 #if($isLastRecurringPayment)

 This is the last payment from the recurring payment.

 #end

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

97

▪

 #if($isRecurringPaymentCanceled)

 This email is to inform you that your recurring payment
schedule has been deactivated,

 due to your account status, and no payments have been
scheduled.

 Please contact your biller for details.

 #end

 #if($isUptoAmountExceeded)

 Also, the amount due $$recurringPayment.getBillAmountDue()
is more than the maximal amount, $$recurringPayment.getAmount(),

 specified in the recurring payment. You still have an unpaid
balance of $$unpaidBalance.

 #end

 Number of payments made until now is
$recurringPayment.getCurrNumPayment().

 </html>

]]></body>

 <part>

 <part_name>doc</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 <part>

 <part_name>pdf</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 </content>

 <footer/>

</message-config>

The recurring payment not-scheduled notification template is as follows:

<?xml version="1.0" encoding="iso-8859-1"?>

<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Usha (edocs) -
->

Customizing ePayment Manager Template Files Customizing Email Templates

98 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

<message-config xmlns="http://www.edocs.com/messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.edocs.com/messaging

content.xsd">

 <header>

 <subject>Recurring Payment Not Scheduled</subject>

 </header>

 <content>

 <no>123</no>

 <type>html</type>

 <body><![CDATA[<html>

 Dear $recurringPayment.getPayerId(),

 #if($isPaymentScheduled)

 #if($isCheck)

 This email is to inform you a check payment has been
scheduled automatically for you.

 The check amount is $$payment.getAmount(). The pay date is
$messagingTemplateUtil.getFormattedDate($payment.getPayDate(),"MM/dd/yyyy").<
br>

 #end

 #if($isCCard)

 This email is to inform you a credit card payment has been
scheduled automatically for you.

 The credit card amount is $$payment.getAmount(). The pay date is
$messagingTemplateUtil.getFormattedDate($payment.getPayDate(),"MM/dd/yyyy").<
br>

 #end

 You can update or cancel this transaction following this
URL http://www.oracle.com.

 #end

 #if($isPaymentNotScheduled)

 This email is to inform you that your recurring payment
scheduled on
$messagingTemplateUtil.getFormattedDate($recurringPayment.getNextPayDate(),"M
M/dd/yyyy")

 is not made as requested.

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

99

▪

 #if($isAmountNegative)

 #set($negativeAmount = $payment.getAmount() * -1)

 The bill showed an amount of -$$negativeAmount.

 #end

 Please contact your biller for details.

 #end

 #if($isLessPayment)

 This email is to inform you that the amount due
$$recurringPayment.getBillAmountDue() is

 more than the maximal amount, $$recurringPayment.getAmount(),
specified in the recurring payment.

 The bill is not paid by recurring payment.

 #end

 #if($isAlreadyPaid)

 The bill, due on
$messagingTemplateUtil.getFormattedDate($recurringPayment.getBillDueDate(),"M
M/dd/yyyy"), is not paid

 by recurring payment because it is already been paid.

 #end

 #if($isLastRecurringPayment)

 This is the last payment from the recurring payment.

 #end

 #if($isRecurringPaymentCanceled)

 This email is to inform you that your recurring payment
schedule has been deactivated,

 due to your account status, and no payments have been
scheduled.

 Please contact your biller for details.

 #end

 #if($isUptoAmountExceeded)

 Also, the amount due $$recurringPayment.getBillAmountDue()
is more than the maximal amount, $$recurringPayment.getAmount(),

 specified in the recurring payment. You still have an unpaid
balance of $$unpaidBalance.

 #end

Customizing ePayment Manager Template Files Customizing Email Templates

100 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Number of payments made until now is
$recurringPayment.getCurrNumPayment().

 </html>

]]></body>

 <part>

 <part_name>doc</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 <part>

 <part_name>pdf</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 </content>

 <footer/>

</message-config>

The following recurring notification template variables are used for both recurring payment scheduled
and recurring payment not-scheduled notifications:

Variable Name Type Description
recurringPayment IRecurringPayment Contains recurring payment

information and current bill
information paid by this
recurring payment, when
applicable. Bill information is
null if the amount and pay date
are both fixed.

isPaymentScheduled Boolean True if a payment has been
scheduled.

isCheck Boolean True if the payment scheduled
is a check.

isCCard Boolean True if the payment scheduled
is a credit card.

payment IPaymentTransaction ICheck if isCheck is true or
ICreditCard if isCCard
is true. This is the payment
being scheduled.

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

101

▪

Variable Name Type Description
isPaymentNotScheduled Boolean True if the payment is not

scheduled for some reason.
Usually this is because a
payment job plug-in rejected
the payment based on a
customer business rule.

isLessPayment Boolean True if the amount due is less
than a certain amount, but the
amount due is more than that.
Notify the customer to pay
manually.

isAlreadyPaid Boolean True when Payment finds a
DuplicateBillIdExcept
ion during the insertion of a
payment into database.

isLastRecurringPayment Boolean True if this is the last payment.

isRecurringPaymentCancelled Boolean True if the recurring payment is
cancelled. For example, if the
payment account is cancelled.
See the job configuration for
details.

Payment Notification Template
This template controls the format of emails that are sent to the administrator by each job. The
template file is payment_job_notification.xml.vm:

<?xml version="1.0" encoding="iso-8859-1"?>

<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Usha (edocs) -
->

<message-config xmlns="http://www.edocs.com/messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.edocs.com/messaging

content.xsd">

 <header>

 <subject>Payment Job Notification</subject>

 </header>

 <content>

 <no>123</no>

 <type>html</type>

 <body><![CDATA[<html>

Customizing ePayment Manager Template Files Customizing Email Templates

102 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 #if($isOK)

 $taskName was done without error at
$messagingTemplateUtil.getFormattedDate($currentTime,"MM/dd/yyyy
HH:mm:ss").

 #else

 $taskName was done with an error at
$messagingTemplateUtil.getFormattedDate($currentTime,"MM/dd/yyyy
HH:mm:ss").

 #end

 #if($skipSynchronization)

 As Skip SynchronizationTask setting is set to YES, The
Synchronization Task was skipped

 #end

 #if($recurringPmtSyncTask)

 #if($isDone)

 Job Name : $jobName

 Total Number of RecurringPayments to be synchronized :
$syncCount

 Total Number of RecurringPayments that are synchronized
Successfully : $syncSuccessCount

 Total Number of Recurring Payments that failed to
synchronize : $syncFailureCount

 #else

 Please look at the audit tables for detail.

 Job Name : $jobName

 Total Number of RecurringPayments to be synchronized :
$syncCount

 Total Number of RecurringPayments that are synchronized
Successfully : $syncSuccessCount

 Total Number of Recurring Payments that failed to
synchronize : $syncFailureCount

 #end

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

103

▪

 #end

 #if($recurringPmtSchedulerTask)

 #if($isDone)

 Job Name : $jobName

 Total Number of RecurringPayments to be scheduled :
$scheduleCount

 Total Number of RecurringPayments that are scheduled
Successfully : $scheduleSuccessCount

 Total Number of Recurring Payments that failed to be
scheduled : $scheduleFailureCount

 #if($isDecryptFailed)

 Total Number of Recurring Payments cancelled due to
decryption failure : $CancelCount

 #end

 #else

 Please look at the audit tables for detail.

 Job Name : $jobName

 Total Number of RecurringPayments to be scheduled :
$scheduleCount

 Total Number of RecurringPayments that are scheduled
Successfully : $scheduleSuccessCount

 Total Number of Recurring Payments that failed to be
scheduled : $scheduleFailureCount.

 #if($isDecryptFailed)

 Total Number of Recurring Payments cancelled due to
decryption failure : $CancelCount

 #end

 #end

Customizing ePayment Manager Template Files Customizing Email Templates

104 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 #end

 #if($paymentReminderTask)

 #if($isDone)

 Job Name : $jobName

 Total Number of Good Check Payment notifications :
$goodCheckPaymentsCount

 Total Number of Check Payment notifications failed due to
decryption failure : $badCheckPaymentsCount

 Total Number of Good CreditCard Payment notifications :
$goodCCPaymentsCount

 Total Number of CreditCard Payment notifications failed due
to decryption failure : $badCCPaymentsCount

 #end

 #end

 #if($CreditCardExpNotifyTask)

 #if($isDone)

 Job Name : $jobName

 Total Number of CreditCard expiration notifications to be
processed : $ccexpNotifyCount

 Total Number of CreditCard expiration notifications that
are processed Successfully : $ccexpNotifySuccessCount

 Total Number of CreditCard expiration notifications that
are failed : $ccexpNotifyFailureCount

 Total Number of Good CreditCard notifications :
$goodCCAccountCount

 Total Number of Bad CreditCard notifications :
$badCCAccountCount

 #end

 #end

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

105

▪

 #if($CheckSubmitTask)

 #if($isDone)

 Job Name : $jobName

 #if($isHoliday)

 This job was not run since today
($messagingTemplateUtil.getFormattedDate($todayDate,"MM/dd/yyyy")) is a
holiday.

 #else

 While running the job, there were account decryption
failures.

 #end

 #end

 #end

 #if($SubmitEnrollTask)

 #if($isDone)

 Job Name : $jobName

 #if($isHoliday)

 This job was not run since today
($messagingTemplateUtil.getFormattedDate($todayDate,"MM/dd/yyyy")) is a
holiday.

 #end

 #if($isDecryptFailed)

 While running the job, there were account decryption
failures.

 #end

 #end

 #end

 #if($CreditCardSubmitTask)

 #if($isDone)

Customizing ePayment Manager Template Files Customizing Email Templates

106 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Job Name : $jobName

 #if($isDecryptFailed)

 While running the job, there were account decryption
failures.

 #end

 #end

 #end

 </html>

]]></body>

 <part>

 <part_name>doc</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 <part>

 <part_name>pdf</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 </content>

 <footer/>

</message-config>

pmtRecurringPayment Variables

The recurring notification template variables for the synchronization task are:

Recurring Synch
Variable

Type Description

skipSynchronization Boolean (true or false) True enables the skip synchronization option.

recurringPmtSyncTask Boolean (true or false) True identifies this as the recurring payment
task.

isDone Boolean (true or false) True indicates that the job is done.

jobName String The job name.

syncCount int Total number of accounts to be synchronized.

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

107

▪

Recurring Synch
Variable

Type Description

syncSuccessCount int Successful number of synchronized accounts.

syncFailureCount int Number of failed of synchronized accounts.
Example:

#if($recurringPmtSyncTask)

 #if($isDone)

 Job Name : $jobName

 Total Number of RecurringPayments to be synchronized : $syncCount

 Total Number of RecurringPayments that are synchronized Successfully :
$syncSuccessCount

 Total Number of Recurring Payments that failed to synchronize :
$syncFailureCount

 #else

 Please look at the audit tables for detail.

 Job Name : $jobName

 Total Number of RecurringPayments to be synchronized : $syncCount

 Total Number of RecurringPayments that are synchronized Successfully :
$syncSuccessCount

 Total Number of Recurring Payments that failed to synchronize :
$syncFailureCount

 #end

#end

The recurring notification template variables for the scheduler task are:

Recurring Scheduler
Variable

Type Description

recurringPmtSchedulerTask String Identifies the scheduler task.

isDone Boolean (true or false) To identify the job had done.

jobName String To identify the job name.

scheduleCount Int Total number of accounts to be
scheduled

scheduleSuccessCount Int Successful number of scheduled
accounts

Customizing ePayment Manager Template Files Customizing Email Templates

108 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

Recurring Scheduler
Variable

▪

Type Description

scheduleFailureCount Int Failed number of scheduled accounts

CancelCount Int Cancelled number of scheduled
accounts

isDecryptFailed Boolean value (true or
false)

To identify whether there was/were
decryption failure/s

Example:

#if($recurringPmtSchedulerTask)

 #if($isDone)

 Job Name : $jobName

 Total Number of RecurringPayments to be scheduled : $scheduleCount

 Total Number of RecurringPayments that are scheduled Successfully :
$scheduleSuccessCount

 Total Number of Recurring Payments that failed to be scheduled :
$scheduleFailureCount

 #if($isDecryptFailed)

 Total Number of Recurring Payments cancelled due to decryption failure
: $CancelCount

 #end

 #else

 Please look at the audit tables for detail.

 Job Name : $jobName

 Total Number of RecurringPayments to be scheduled : $scheduleCount

 Total Number of RecurringPayments that are scheduled Successfully :
$scheduleSuccessCount

 Total Number of Recurring Payments that failed to be scheduled :
$scheduleFailureCount.

 #if($isDecryptFailed)

 Total Number of Recurring Payments cancelled due to decryption failure
: $CancelCount

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

109

▪

 #end

 #end

#end

pmtPaymentReminder Variables

Reminder Variable Type Description

paymentReminderTask String Identifies the payment reminder task.

isDone Boolean (true or false) Identifies the job is done.

jobName String Identifies the job name.

goodCheckPaymentsCount Int Number of successful check accounts.

badCheckPaymentsCount Int Number of failed check accounts

goodCCPaymentsCount Int Number of successful credit card accounts.

badCCPaymentsCount int Number of failed credit card accounts.
Example:

#if($paymentReminderTask)

 #if($isDone)

Job Name : $jobName

Total Number of Good Check Payment notifications :
$goodCheckPaymentsCount

Total Number of Check Payment notifications failed due to decryption failure
: $badCheckPaymentsCount

Total Number of Good CreditCard Payment notifications :
$goodCCPaymentsCount

Total Number of CreditCard Payment notifications failed due to decryption
failure : $badCCPaymentsCount

 #end

#end

Customizing ePayment Manager Template Files Customizing Email Templates

110 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

pmtCreditCardExpNotify Variables

CCExpNotify Variable Type Description

CreditCardExpNotifyTask String Identifies the credit card expiration
notification task.

isDone Boolean (true or false) Identifies the job is done.

jobName String Identifies the job name.

ccexpNotifyCount int Total number of notifications to be made

ccexpNotifySuccessCount int Number of successful accounts.

ccexpNotifyFailureCount int Number of failed accounts.

goodCCAccountCount int Number of good credit card accounts (due
to successful decryption).

badCCAccountCount int Number of bad credit card accounts (due to
unsuccessful decryption).

Example:

#if($CreditCardExpNotifyTask)

 #if($isDone)

 Job Name : $jobName

 Total Number of CreditCard expiration notifications to be processed : $ccexpNotifyCount

 Total Number of CreditCard expiration notifications that are processed Successfully :
$ccexpNotifySuccessCount

 Total Number of CreditCard expiration notifications that are failed :
$ccexpNotifyFailureCount

 Total Number of Good CreditCard notifications : $goodCCAccountCount

 Total Number of Bad CreditCard notifications : $badCCAccountCount

 #end

#end

pmtCheckSubmit Variables

Check Submit
Variable

Type Description

CheckSubmitTask Boolean value (true or
false)

Identifies the check submit task

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

111

▪

Check Submit
Variable

Type Description

isDone Boolean (true or false) Identifies the job had done.

jobName String Identifies the job name.

isHoliday Boolean value (true or
false)

Identifies a holiday.

dateUtil DateUtil object Format of the expiration date.

isDecryptFailed Boolean value (true or
false)

Identifies whether there was/were decryption
failure/s.

Example:

#if($CheckSubmitTask)

 #if($isDone)

 Job Name : $jobName

 #if($isHoliday)

 This job was not run since today
($messagingTemplateUtil.getFormattedDate($todayDate,"MM/dd/yyyy")) is a
holiday.

 #else

 While running the job, there were account decryption
failures.

 #end

 #end

#end

pmtSubmitEnroll

Submit Ernoll
Variable

Type Description

SubmitEnrollTask String Identifies the submit enroll task

isDone Boolean (true or false) Identifies the job had done.

jobName String Identifies the job name.

isHoliday Boolean value (true or
false)

Identifies a holiday.

isDecryptFailed Boolean value (true or
false)

Identifies whether there was/were decryption
failure/s.

todayDate Java.util.Date A Date object to identify today.

Customizing ePayment Manager Template Files Customizing Email Templates

112 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Example:

#if($SubmitEnrollTask)

 #if($isDone)

 Job Name : $jobName

 #if($isHoliday)

 This job was not run since today
($messagingTemplateUtil.getFormattedDate($todayDate,"MM/dd/yyyy")) is a
holiday.

 #end

 #if($isDecryptFailed)

 While running the job, there were account decryption failures.

 #end

 #end

#end

Credit Card Expiration Notification Template
When a credit card is about to expire, email notification messages are generated from the template
file payment_ccaccount_ccexpired.xml.vm:

<?xml version="1.0" encoding="iso-8859-1"?>

<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Usha (edocs) -
->

<message-config xmlns="http://www.edocs.com/messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.edocs.com/messaging

content.xsd">

 <header>

 <subject>Credit Card Expired</subject>

 </header>

 <content>

 <no>123</no>

 <type>html</type>

 <body><![CDATA[<html>

Customizing ePayment Manager Template Files Customizing Email Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

113

▪

 Dear $account.getUserId():

 This email is to remind you that your credit card which has the
account number $account.getShorttenedAccNumber(),

 #if($accExpired)

 has expired in
$messagingTemplateUtil.getFormattedDate($account.getExpireDate(),"MMM yyyy").

 #else

 is about to expire in
$messagingTemplateUtil.getFormattedDate($account.getExpireDate(),"MMM yyyy").

 #end

 #set($size = "C01")

 Please login to the edocs Payment system and update the credit
card information.

 Thanks

 </html>

]]></body>

 <part>

 <part_name>doc</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 <part>

 <part_name>pdf</part_name>

 <part_type>html</part_type>

 <part_body>Hello</part_body>

 </part>

 </content>

 <footer/>

</message-config>

Customizing ePayment Manager Template Files Understanding the Payment Template Engine

114 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

The credit card expiration notification template variables are:

variable Value type Description
accExpired Boolean value (true or

false)
Identify whether the account is expired or
not

account ICreditCardAccount object Object of ICreditCardAccount that has the
information about the account

accountNumber String The expired account number

Understanding the Payment Template
Engine
The payment templates provide a generic template mechanism based on Java reflection. The template
engine generates custom text output based on the templates. Similar to JSP, the template engine
replaces the special placeholders inserted into the text file with the values of Java objects. For more
detailed API documentation, see the ePayment Manager JavaDoc included with the SDK.

The Template engine hosts a pool of objects in its context in the form of a hash table. You can refer to
the variables in that context by their names. For example, there is a Check object whose name is
“check”. You can refer to that object as: %check%. This means replace %check% with the string
returned from check.toString(). This is true for all Java objects except java.util.Date, where
getTime() is called and inserts a long value that is the number of milliseconds since January 1,
1970, 00:00:00 GMT. If a method returns void, then nothing will be printed out.

The content of the message consists of text plus resolved placeholders. Placeholders are Java
variables, which are ePayment Manager hosted objects including their attributes and methods.

For more information about the Template class, see the ePayment Manager SDK JavaDoc.

All template variables must be enclosed by two %s. To escape '%', use '%%'. For example, "%%40"
means "%40"

In addition to referring to variables, you can also access an object’s public fields and methods. The
valid reference is: %name.field%, %name.method(param1, param2, ...)%, where each parameter to
a method can be either of name, name.field or name.method(param1, param2, ,,,). The number of
parameters is unlimited and an arbitrary level of method nesting is allowed (nesting means that a
method's return value is used as a parameter when calling another method). For example, suppose
there are two objects in contexts: "buf" which is a StringBuffer, and "str" which is a String. The
following references are valid: %buf%, %buf.append(str)%, %buf.append(str.toString())%.

A static field or method can be accessed directly without instantiating an object. For example,
java.lang.Integer has a static field called MIN_VALUE and a static method called parseInt. You can
refer to them as %java.lang.Integer.MIN_VALUE% or %java.lang.Integer.parseInt(“12.34”)%.

All variables must be preset by calling putToContext on the Template class. Some variables are
already set by ePayment Manager which you can use directly. But you can also put your own variables
into the context:

%template.putToContext(“buf”, new java.lang.StringBuffer())%

Customizing ePayment Manager Template Files Understanding the Payment Template Engine

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

115

▪

This means to put a new StringBuffer object called "buf" into the template context. You can then refer
to this object by its name:

%buf.append(“abc”)%
This appends “abc” to the end of the StringBuffer’s value.

The current ePayment Manager engine has some limitations. One is that it cannot do math operations,
for example: x + y. You must call a Java method to do math operations. Another limitation is that it
doesn’t allow you to concatenate method calls, for example: %variable.method().method() %. You
must write your own Java method to do method concatenation.

Included with the ePayment Manager package, there are a few utility classes to help you overcome
the weakness of payment template engine. These classes are:

com.edocs.payment.util.DecimalUtil
com.edocs.payment.util.DateUtil
com.edocs.payment.util.StringUtil.

One useful method in StringUtil is concat. It is declared and used as follows:

public static String concat(String s1, String s2, String s3)
%com.edocs.payment.util.StringUtil.concat(s1,s2,s3)%

Remember, you cannot do %s1.concat(s2).concat(s3)% inside a template, instead, you must call this
function from template:

%com.edocs.payment.util.StringUtil.concat(s1,s2,s3)%.
Another useful method is format() from DateUtil class. This method helps format a Date object into
different display formats. For example: %com.edocs.payment.util.DateUtil.format(“MMM dd, yyyy”,
check.getPayDate())% formats a check’s pay date to display as “Jan 01, 2000”. For a complete list of
possible date formats, please check the JDK document about java.text.SimpleDateFormat.

When writing customized Java code, we strongly recommend that you use static methods as
frequently as possible, so you can call them directly from a template without creating an instance of
that object first. For example, by default, the individual ID field of an ACH entry detail field is
populated with the customer’s account number using %check.getPayerAcctNumber()%. The
returned result is 16 bytes long, but the actual account number is 15 bytes, so you must truncate the
retrieved value. The following steps describe how to create a java class to do truncation, and enable it
in the Payment template engine:

1. Write a Java class:

package com.edocs.ps;
public class MyUtil {
 public static String truncate(String s){
 return s.substring(1);
 }
}

2. Compile the class and put it into payment_custom.jar of each EAR file, then re-deploy the EAR files.

3. You can now refer to this class in a template as follows:

%com.edocs.ps.MyUtil.truncate(check.getPayerAcctNumber())%

Customizing ePayment Manager Template Files Customizing ACH Templates

116 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Customizing ACH Templates
The ACH records of interest are in File Header, Batch Header, Entry Detail for PPD, Addenda and
return for PPD, Batch Trailer and File Trailer. ACH fields may be mandatory, required, or optional. The
contents of mandatory fields are fixed and should not be customized. Required fields are usually
defined by the receiving bank, and may be customized for different banks. Optional fields can be
customized, also.

By default, secCode is set to WEB to be compliant with the ACH 2001 format. However, you can
change the SEC code based on the requirements of a biller’s bank by editing the
batchHeader_template.xml file.

The following table is a list of some ACH fields. The ACH fields can be customized upon a billers’
request. The pmtCheckSubmit jobs running date is referred to as Today.

Field Name Where Description

Company Descriptive
Date

8th field in batch
header, optional

Default set to Today; the date that
pmtCheckSubmit is running.

Effective Entry Date 9th field in batch,
required

The date when checks in the batches need to be
cleared. This is a suggested date from ACH, but
the actual date that checks are cleared may vary.
All checks with the same pay date will be put into
one batch. The effective entry date may not
always be the pay date. The default setting for
effective entry date is: If the pay date is
tomorrow or earlier, then it is the earliest
business date after today. If the pay date is after
tomorrow, then it is the earliest business date
after the pay date (including the pay date).

Individual ID 7th field in PPD entry
detail, optional or
required

By default set to the customer’s account with the
biller. Since this field is 15 bytes, the length of
customer’s account must not exceed 15 bytes.
If the customer account is longer than 15 bytes,
either the field will not be populated, or you must
truncate this field using Java code or the Java
classes provided by ePayment Manager.

Individual Name 8th field in PPD entry
detail. Required

By default set to the check’s payment ID.
Payment ID is the primary key on the
check_payments table. It can be used to map a
returned check back to the one in Payment
database.

The templates for ACH are actually XML files, which describe the format of each ACH record, such as
the start position, length, etc. There are two sets of templates: one to generate ACH files, and another
to parse ACH return files.

The first set of templates is used to generate ACH files. They are fileHeader_template.xml,
batchHeader_template.xml, entryDetail_template.xml, batchTrailer_template.xml
andTrailer_template.xml. When an ACH file is generated, check information is pulled from the
database and then populated into the content of the XML files by replacing the template variables. The

Customizing ePayment Manager Template Files Customizing ACH Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

117

▪

resulting XML file is transferred into an ACH file according to the format specified by the XML tags. The
generic format of an XML tag is:

<amount pos="30" len="10" fmt="N" fract="2">%
Where:

amount is the name of the tag
pos is the start position
len is the length of the field
fmt is the format of the field
fract is the number of digits after decimal point if the fmt is “N” (numerical).

The tables below list the template variables that are predefined in the Payment template engine.
These variables are used to populate the content of the templates.

The following template variables are used by all templates:

Global Variable
Name

Type Description

template com.edocs.util.template.
Template

The template engine.

stringUtil com.edocs.payment.
util.StringUtil

Makes calling the static methods of
StringUtil easier. Instead of using:
%com.edocs.payment.util.
StringUtil.concat(“a”,”b”,”
c”)% use:
%stringUtil.concat(“a”,
“b”, “c”)%

decimalUtil com.edocs.payment.
util.DecimalUtil

Provides decimal number
manipulations.

dateUtil com.edocs.payment.
util.DateUtil

Provides date manipulation methods
Also a calendar, which includes all US
holidays.

batch com.edocs.payment.
IPaymentBatch

The payment summary report, which
you can view through the Command
Center.

config com.edocs.payment.
config.IPaymentConfig

Payment setting information.

attributeName com.edocs.payment.
config.AttributeName

Payment setting parameter names. Use it
with the variable config to get
payment setting information.

The following template variables are used by File Header:

Customizing ePayment Manager Template Files Customizing ACH Templates

118 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Variable Name Type Description

fileCreateDate java.util.Date Creation date of the ACH file.

fileCreateTime java.util.Date Creation time of the ACH file.

fileIdModifier java.lang.String ACH file modifier, “A” to “Z” and “0” to “9”.

The following template variables are used by Batch Header:

Variable Name Type Description

curPayDate java.util.Date The pay date of checks in the batch. All the
checks in the same batch have the same pay
date.

companyDescData String From Payment Settings.

companyDescDate Date Defaults to Today. To use another date, you
must call a static Java method.

batchNumber int Starts from “1”; identifies the batches in the
ACH.

batchEffectiveEntryDate Date Identifies the batches in the ACH.

The following template variables are used by Entry Detail:

Variable Name Type Description

check com.edocs.
payment.ICheck

All check payment information, including
the trace number.

addenda
Record
Indicator

int Indicates whether there is addenda record
for entry detail. 0=No; 1=Yes.

The following template variables are used by Batch Trailer:

Variable Name Type Description

batchEntryHash String See the ACH documentation.

batchEntryAddendaCount int Number of entries in the batch.

batchDebitAmount String Total debit amount in the batch.

batchCreditAmount String Always “0”.

Template variables used by Batch Trailer:

Customizing ePayment Manager Template Files Customizing ACH Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

119

▪

Variable Name Type Description

batchCount int Number of batches in the file.

blockCount int See the ACH documentation.

totalEntryHash String See the ACH documentation.

totalEntryAddendaCount int Total number of entries in the file

totalDebitAmount String Total debit amount in the file.

Matching a Check in the ACH Return to the Database
Return files are parsed by the return templates, fileHeader_return_template.xml,
batchHeader_return_template.xml, entryDetail_return_template.xml, addenda_return_template.xml,
batchTrailer_return_template.xml and fileTrailer_return_template.xml. The format of these files is
similar to the format of the submit templates described previously. For example:

<individualName pos="55" len="22" fmt="AN"
target="%check.setPaymentId(?)%"></individualName>

retrieves the part of the text from positions 55 to 77, puts them into a variable called “?” and then
calls check.setPaymentId() to set payment_id for the check. The template executes the template
statement specified by XML tag “target” only.

When a check is returned from the ACH network, Payment matches it to that check in the database
and marks it as returned. ACH modifies several fields in the return file. Payment populates one or
more unchanged fields with identification information to help in matching them back to a check in the
database. Consult the ACH documentation for information about which fields are not changed.

The return template does two things. First, it retrieves the error return code from the addenda record,
and then tries to reconstruct the payment ID or gateway payment ID to match a check in the
database. If Payment cannot populate the payment ID into the ACH file, it uses the gateway payment
ID, which is a concatenation of a few check payment fields that can identify a check. The procedure is
described in the following steps:

By default, Payment populates the payment_id of the check into the individual name field to create
the ACH file. The following line in entryDetail_template.xml populates the payment ID into an
individual name:

<individualName pos="55" len="22"
fmt="AN">%check.getPaymentId()%</individualName>

The following line in entryDetail_return_template.xml extracts the payment ID:

< individualName pos="55" len="22" fmt="AN"
target="%check.setPaymentId(?)%"></individualName >

The following line in addenda_return_template.xml extracts the return error code:

<returnReasonCode pos="4" len="3"
target="%check.setTxnErrMsg(?)%"></returnReasonCode>

Payment then changes the status of the check to "returned" and updates this check in the database
using its payment_id.

Customizing ePayment Manager Template Files Customizing ACH Templates

120 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

If the individual name is required for something else, for example the check account name (which is
the first 22 bytes), then following these steps to use gateway payment ID:

1. Modify entryDetail_template.xml to populate individual name with account name. Change:

<individualName pos="55" len="22"
fmt="AN">%check.getPaymentId()%</individualName>

To:
<individualName pos="55" len="22"
fmt="AN">%stringUtil.substring(check.getAccountName(), 0,
22)%</individualName>

2. Modify entryDetail_return_template.xml so that payment ID won’t be set for a returned check.
Change:

<individualName pos="55" len="22" fmt="AN"
target='%check.setPaymenId(?)%'></individualName>

To:
<individualName pos="55" len="22" fmt="AN"></individualName>

3. Since payment ID cannot be used to match checks, we can use gateway payment ID instead.
Gateway payment ID is the ID generated by the template that submitted the ACH file to ACH. This
template generates a unique ID based on the information submitted to ACH. This ID must contain
information that won’t be changed by ACH in the return file. The Payment engine will use the gateway
payment ID to find a match in the database.

In very rare circumstances, more than one match may be found. In that case, the match with the
latest creation time is used. The following example discusses several ways to generate the gateway
payment ID.

ePayment Manager generates a trace number and puts that into the entry detail record. By default,
the trace number starts at 0000000 and increases by one for each check until it reaches 9999999.
After this point, the numbering restarts at 0000000. It’s possible to get a duplicate trace number
(after 10 million checks). However, since the ePayment Manager engine always chooses the payment
with the latest date, the correct check will be matched. You can use both the trace number and
individual ID (customer account number) to identify a payment and use them for the gateway
payment ID.

Example 1: Unchanged ACH trace number

In the following example, we assume that the ACH/Bank will return both original trace number and
individual ID to ePayment Manager. To do that:

1. At the start of entryDetail_template.xml, see the section:

<ACH_6>
%<*>%
%check.setGatewayPaymentId(com.edocs.payment.util.StringUtil.c
oncat(check.getPayerAcctNumber(), "_", check.getTxnNumber()))%

%</*>%
This statement is commented out in the template, using %<*>% and %</*>%. Removing
the comment tags enables the statement.

Customizing ePayment Manager Template Files Customizing ACH Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

121

▪

The trace number is stored as txnNumber in the check object. This statement concatenates
the customer account number, a “_”, and trace number as the gateway payment ID. The
setGatewayPaymentId method returns void, so nothing will print out. (If it did return a value,
then that would print, which would ruin the format of the XML file.) After running
pmtCheckSubmit, check the gateway payment ID in the check_payments table, which should
be the concatenation of the individual ID and the trace number that are written into the entry
detail record.

2. Next, ePayment Manager retrieves the original trace number from the return file, and sets it as the
gateway payment ID. In the addenda_return_template.xm, find this section:

<traceNumber pos="80" len="15" fmt="N"
target1='%check.setGatewayPaymentId(txnNumber)%'
target2='%check.setGatewayPaymentId(stringUtil.concat(payerAcc
tNumber, "_", txnNumber))%'></traceNumber>

Rename “target2” to “target”, which will reconstruct the gateway payment ID based on the
returned customer account number and trace number. Template variable payerAcctNumber
has been set in entryDetail_return_template.xml and txnNumber has been set before this line
in the addenda_return_template.xml by calling template.putToContext.

3. Now you are all set. You should test this setting using an actual return file and verify that the
check’s status has been updated to –4 in the check_payments table.

Example 2: Modified ACH trace number

If the individual ID is not returned as it was set, you can try to use other information, such as
individual name combined with trace number. If only the trace number can be used for gateway
payment ID, use that by:

1. At the start of entryDetail_template.xml, see the section:

 %<*/>%

%check.setGatewayPaymentId(check.getTxnNumber())%

%</*>%

Remove the comment tags to enable the statement.
2. In addenda_return_template.xml , see the section:

<traceNumber pos="80" len="15" fmt="N"
target1='%check.setGatewayPaymentId(txnNumber)%'
target2='%check.setGatewayPaymentId(stringUtil.concat(payerAcc
tNumber, "_", txnNumber))%'></traceNumber>

Rename “target1” to “target” to enable using trace number as gateway payment ID.

Using achReturn_wl

achReturn_wl.sh (on Windows, it is achReturn_wl.bat) generates ACH return files. You need to take a
look at this script and make necessary change to it based on your install environment.

First, edit the script and make sure EDX_HOME, PAYMENT_HOME, WL_HOME, WL_HOST and
WL_PORT are set correctly.

Second, to run achReturn_wl.sh:

Customizing ePayment Manager Template Files Customizing ACH Templates

122 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

achReturn_wl.sh -payeeId payee

 -returnParams payment_id return_reason(3 chars)

 -nocParams payment_id noc_code addenda_info

 -fileCreateDate(yyMMdd) date -fileIdModifier id
The arguments to achReturn_wl.sh are described in the following table:

Argument and Parameters Description

-payeeId payee The DDN name. Required.

-returnParams payment_id return_reason Generates returns for a check.payment_id is the
payment ID of a regular check or prenote check
for which you want to generate a
return.return_reason is a three-character string
starting with R. See the ACH specification for a
list of return codes.

-nocParams payment_id noc_code
addenda_info

Generates NOC for a check.payment_id is the
payment ID of a regular check or a prenote for
which you want to generate a NOC.noc_code is a
three-character string starting with
C.addenda_info is the correct payment account
data. It must satisfy the format required by the
corresponding NOC code.

-fileCreateDate date The date when the file was created by ACH. This
is optional and usually not required.

-fileIdModifier id id is the file ID modifier for the ACH file. This is
optional and usually not required.

The generated ACH return file is put into the file input directory defined in Payment Settings of the
Command Center.

addenda_info may include a space, and space is interpreted as a parameter separator instead of part
of the addenda info. For example, for C03, addenda_info contains:

“01100390 134985425”
There are three spaces between the routing number and the account number. In this case, you can
pass in “+” in place of “ “, for example, “01100390+++134985425”.

To generate a regular check return:

1. Make a new check payment from the UI with the pay date as today. Find the payment ID of this
check in the check_payments table.

2. Run pmtCheckSubmit to submit it. The check status will change to processed. If you are using
gateway payment ID, you will see that field is populated with the information as defined by the
template.

3. Run the achReturn_wl utility passing the –returnParams option to generate an ACH return file. Be
sure to run it from WebLogic installation directory.

Customizing ePayment Manager Template Files Customizing ACH Templates

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

123

▪

4. Run pmtCheckUpdate to read the return file. After processing, the file is moved to the history
directory, and the check status is changed to "returned".

5. View the exception report from Command Center.

6. If your check status has not changed, make sure the payee ID matches the DDN specified in the
pmtCheckUpdate job. Also make sure that the payment gateway ID is configured correctly (if you are
using the gateway payment ID).

To generate a prenote return:

1. Enroll a new customer from the UI. The customer status should be "pnd_active".

2. Run pmtSubmitEnroll to create a prenote file. A zero amount check will be inserted into
check_payments table with a status of "prenote_processed". Find the check and write down its
payment ID. If you are using the gateway payment ID, you will see that field is populated with the
information as defined by the template.

3. Run the achReturn_wl utility passing the –returnParams option to generate an ACH return file. Be
sure to run it from WebLogic installation directory.

4. Run pmtCheckUpdate to read that file, after processing, the file will be moved to the history
directory, and the prenote check status is changed to prenote_returned, and the account_status field
is changed to bad_active.

5. View the exception report from Command Center, where you can see the ACH prenote check.

If account status has not changed, make sure the payee ID matches the DDN specified by the
pmtCheckUpdate job. Also make sure the payment gateway ID is configured correctly (if you are using
the gateway payment ID).

To generate a NOC return:

1. Make a new check payment from the UI with a pay date of today. Find the payment ID of this check
in the check_payments table. Do not use an existing payment ID for NOC testing.

2. Run pmtCheckSubmit to submit the check. The check status changes to "processed".

3. Run the achReturn_wl utility passing –nocParams to generate an ACH return file. Be sure to run it
from the WebLogic installation directory.

You must calculate the addenda info so that it is formatted as the ACH spec requires. For example:

NOC code addenda info example

C01 134985425

C02 01100390

C03 01100390 134985425

C05(saving) 37

C05(checking) 26

C06 134985425 37

Customizing ePayment Manager Template Files Customizing ACH Templates

124 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

NOC code addenda info example

C07 01100390134985425 37
Pay careful attention to the number of spaces in the addenda info for C03, C06 and C07. Since there
are spaces in the addenda info, you need to escape them.

4. Run pmtCheckUpdate to read the return file. After processing, the return file is moved to the
history directory. A new check with zero amount and status of "noc_returned" is inserted into the
check_payments table. The payment account information in the payment_accounts table is updated to
the new account information, and the txn_message column records the NOC code, the new acct
information and the old account information. notify_status is updated to “N”.

5. View the exception report from the Command Center where you can see the new NOC check

6. If account information has not changed, make sure the payee ID matches the DDN of the
pmtCheckUpdate job. Also make sure the payment gateway ID is configured correctly (if you are using
a gateway payment ID).

To generate a return file with multiple check returns, prenote returns and/or NOC returns, repeat the
–returnParams and –nocParams options.

To split (break) an ACH file into lines of 94 bytes:

1. Set the classpath the same as the one set inside achReturn_wl.sh.

2. Run the following command from the directory where the ACH file is:

java com.edocs.payment.cassette.ach.test.AddNewLines –achFile achFileName >
new_file_name

The previous command is not tied to a particular application server, so it can be used for both
WebLogic and WebSphere.

To use achReturn_ws.sh for WebSphere:

On WebSphere, use achReturn_ws.sh to generate return files. The command line options are the same
as the achReturn_wl.sh, but the deployment process is different.

WebSphere requires that the client application be packaged as an EAR file, and cannot be directly
invoked. The EAR file is called ear-ach-return.ear, which you must assemble and deploy it before you
can use it.

1. Assemble ear-ach-return.ear. Remember to put payment_client.jar, payment_common.jar and
payment_custom.jar on the class path of the assembly tool.

2. Deploy ear-ach-return.ear on the same application server where ear-eStatement.ear is deployed.

3. Modify achReturn_ws.sh to reflect your application environment. For example, you may need to
modify PAYMENT_HOME.

4. Run the script to generate returns.

5. You can also use WebLogic to generate ACH return files even though you are working on
WebSphere. Points the WebLogic script to the same database used by WebSphere, then run
achReturn_wl.sh as described previously.

Customizing ePayment Manager Template Files Customizing CheckFree CDP Files

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

125

▪

Customizing the ACH Prenote File
To enroll a new customer with an ACH payment gateway, an ACH prenote file must be sent to the
payment gateway to verify the customer’s check account number and routing number. In most cases,
the ACH prenote file format does not need to be customized. This section describes how ePayment
Manager processes prenote files.

As of ePayment Manager 1.2, the prenote file is generated using the same set of template files that
are used for regular check submission. For each payment account that requires a prenote, a zero
amount check is inserted into the check_payments table, and information from that check is used to
create the entry detail records. When a prenote is returned, the prenote check is located in the
check_payments database using either payment ID or gateway payment ID, and the corresponding
payment account is located in the payment_accounts table using payer_id (user ID) and check
account number.

A prenote can also be returned.

Upper Case in an ACH File
The ACH specification is vague about whether lower case letters are allowed. If upper case is required,
lower case must be converted to upper case. You can do this by editing the templates, or customizing
the UI.

To support upper case, edit the templates to make sure the ACH payment setting parameter values
are all upper case. Then, convert the individual ID and individual name fields in the entry detail record
(entryDetail_template.xml). You can use the toUpperCase method from
com.edocs.payment.util.StringUtil to translate lower case to upper case. The case of the other fields in
the entry detail record does not matter.

To customize the enrollment UI, convert the information in the individual name and individual ID fields
to upper case before saving them in the database.

Customizing CheckFree CDP Files
Checkfree CDP files are well defined, and normally do not require customization. Checkfree does not
change the payment ID, so it is easy to match checks returned by Checkfree to the ePayment
Manager database.

To generating Checkfree response files for testing:

A Checkfree response file is generated based on a payment file sent to the check file. Response files
include confirm files and journal files.

cdpOut2In_wl.sh generates Checkfree CDP response files. You must run this script in the directory
where you installed WebLogic. You may also need to change the following environment variables:

 EDX_HOME, if eStatement Manager is not installed on /opt/eStatement

 PAYMENT_HOME, if Payment is not installed on /opt/ePayment

 WL_HOME, if WebLogic is not installed in /opt/bea/weblogic92

Customizing ePayment Manager Template Files Customizing CheckFree CDP Files

126 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 WL_HOST, if WebLogic is not running on the local host

 WL_PORT, if WebLogic is not running on port 7001.

To run cdpOut2In_wl.sh:

cdpOut2In_wl.sh -payeeId payeeId
-cdpFile originalCdpFile
-outputDir output_dir_for_the_generated_files
-confirmParams confirmFileStatus(ACCEPTED/REJECTED) errCode(5
digits) errMsg
-journalParams 4000_record_index(starts from 0) checkfreeId
transactionStatus(ACCEPTED/REJECTED) errCode(5 digits) errMsg

The arguments to cdpOut2In_wl.sh are described in the following table:

Argument and Parameters Description

-payeeId payeeId DDN name

-cdpFile originalCdpFile The name of CDP file sent to Checkfree. The confirm file
and journal file are based on this file.

-outputDir
output_dir_for_the_generated_files

The generated confirm file and journal file are put into this
directory.

-confirmParams
confirmFileStatus(ACCEPTED/REJECTED)
errCode(5 digits) errMsg

Specifies the parameters for confirm files, separated by
spaces. confirmFileStatus is either ACCEPTED or
REJECTED. errCode is the five-digit Checkfree error
code. errMsg is the error message. Enclose errMsg in
double quotes if it includes spaces.

-journalParams 4000_record_index(starts from
0) checkfreeId
transactionStatus(ACCEPTED/REJECTED)
errCode(5 digits)
errMsg

Specifies the parameters for journal files. A journal file is
generated based on the 4000 records in the submitted CDP
file. The first parameter specifies the index of the 4000
records in the submitted CDP file. The index starts from 0,
with the first 400 records as 0. checkfreeid is the
Checkfree ID, which can be anything, as long as the length
is within the ACH specification. transactionStatus
is either ACCEPTED or REJECTED. errCode is 5 digit
Checkfree error code. errMsg is the error message.

Repeat –journalParameters for any other 4000 records in the submitted CDP file, if you want to
generate responses for those records.

To generate Checkfree Return files for testing

A Checkfree return file is generated when a check is returned for various reasons.

cdpReturn_wl.sh generates Checkfree CDP return files. You must run this script in the directory where
you installed WebLogic. You may also need to change the following environment variables:

 EDX_HOME, if eStatement Manager is not installed on /opt/eStatement

 PAYMENT_HOME, if ePayment Manager is not installed on /opt/ePayment

 WL_HOME, if WebLogic is not installed in /opt/bea/wlserver6.0

Customizing ePayment Manager Template Files Customizing CheckFree CDP Files

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

127

▪

 WL_HOST, if WebLogic is not running on the local host

 WL_PORT, if WebLogic is not running on port 7001.

To run cdpReturn_wl.sh:

cdpReturn_wl.sh -payeeId payee

 -fileCreateDate YYYYMMDD

 -fileCreateTime HHMMSSmmmmmm

 -returnParams payment_id return_reason(3 chars)
debit_trace_number(7 digits)

 -debitEffectiveDate(MM/dd/yyyy) debit_effective_date -
debitReturnDate return_date

The arguments to cdpReturn_wl.sh are described in the following table:

Argument and Parameters Description

-payeeId
payee

The DDN name.

-fileCreateDate
 YYYYMMDD

Date when the return file will be marked as generated.

-fileCreateTime
 HHMMSSmmmmmm

Time when the return file will be marked as generated.

-returnParams
payment_id return_reason(3 chars)
debit_trace_number(7 digits)

Specifies the return parameters. payment_id return is the
check payment ID that you want to generate a return for.
return_reason is the 3 char ACH return code.
debit_trace_number is the ACH trace number for that
check.

-debitEffectiveDate
debit_effective_date (MM/dd/yyyy)

Debit effective date. Optional.

-debitReturnDate
 return_date

Debit return date. Optional.

Customizing ePayment Manager Template Files Customizing CheckFree CDP Files

128 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

129

8 Generating Accounts Receivables
(A/R) Files

Overview
It is often necessary to synchronize the ePayment Manager system with a biller’s A/R system.
ePayment Manager usually needs to periodically send A/R files to a biller’s A/R system, which includes
the payments being made through ePayment Manager. The format of the file varies among billers. To
support this function, ePayment Manager has the pmtARIntegrator job, which uses a template and
XML/XSLT to generate output in a variety of file formats.

The pmtARIntegrator job queries the ePayment Manager database to get proper payments, and then
writes the payments into a flat file or an XML file using the Payment Template engine. The XML file
can be further transformed into other format by using XSLT. The default implementation of this job
does following things:

1. Queries the Payment database to get a list of check and/or credit card payments. The query is
defined in arQuery.xml file, which finds all the check and credit card payments where the payee_id
matches the current job DDN , the status is 8 ("paid") and arflag is “N”.

2. Invokes the process() method of the default implementation of
com.edocs.payment.tasks.ar.IARPaymentIntegrator, which is
com.edocs.payment.tasks.ar.SampleARPaymentIntegrator. In this method, ARPaymentIntegrator
writes the payments into a flat file or XML file using the Payment Template engine. There are two
templates provided by Payment:

 arFlat_template.txt, which generates a flat A/R file

 arXML_template.xml, which generates an XML file

The output file name is: ar_yyyyMMddHHmmssSSS.extension, where extension matches the
extension of the template file.

3. Inside the process() method, if the output is an XML file, SampleARPaymentIntegrator can
optionally apply an XSLT file against the output file to transform it into another format. The
transformed file name is: ar_trans_yyyyMMddHHmmssSSS.extention, where extension is defined by
the pmtARIntegrator job configuration.

4. Inside the process() method, SampleARPaymentIntegrator updates arflag of both check and
credit card payments to “Y”, and writes that to database. This ensures these payments won’t be
processed again by the next run of pmtARIntegrator.

Customizing arQuery.xml
The SQL queries used by the pmtARIntegrator job are defined in an XML file, arQuery.xml, which is
provided by the default Payment installation. arQuery.xml is based on eStatement Manager XMLQuery
technology. For details about this definition, see the SDK Guide for Oracle Siebel eStatement Manager.

Generating Accounts Receivables (A/R) Files Customizing arQuery.xml

130 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

CAUTION: eStatement Manager XMLQuery supports paging, but this feature must not be used for
this job.

Most of the A/R file creation is done by an implementation class of the interface
com.edocs.payment.tasks.ar.IARPaymentIntegrator. This adaptor interface provides maximum
flexibility for customizing this job. The default implementation is
com.edocs.payment.tasks.ar.SampleARPaymentIntegrator.

Before the actual query is executed in the database, the job invokes the getMap() method of
IARPaymentIntegrator, which gets a list of objects that are used to replace the variables “?”
defined in the SQL query of arQuery.xml. See the ePayment Manager SDK JavaDoc about
IARPaymentIntegrator for more information.

The default IARPaymentIntegrator implementation, SampleARPaymentIntegrator, uses this
arQuery.xml for database query:

<?xml version="1.0" encoding="UTF-8"?>
<query-spec>
 <data_source_type>SQL</data_source_type>

<query name="checkQuery">
 <sql-stmt><![CDATA[select * from check_payments where
payee_id = ? and statu
s = 8]]></sql-stmt>
 <param name="payee_id" type="java.lang.Integer"
position="1"/>
 <!--param name="last_modify_time"
type="java.sql.Timestamp" position="2" /-->
 </query>

 <query name="creditCardQuery">
 <sql-stmt><![CDATA[select * from creditcard_payments where
payee_id = ? and st
atus = 8 and arflag = 'N']]></sql-stmt>
 <param name="payee_id" type="java.lang.Integer"
position="1"/>
 </query>

</query-spec>

Two queries are defined:

 checkQuery - Queries check payments

 creditCardQuery - Queries credit card payments

Both these queries get all the successful payments (status=8) of the current payee (biller or DDN of
current job) from the relevant ePayment Manager tables. They both use arflag as a flag to prevent a
payment from being sent to the A/R job twice. This flag is initially set to “N” when the payment is
created. After the A/R job runs, the SampleARPaymentIntegrator changes the flag to “Y”.

When using arflag as an A/R flag, you can create an index for it to increase performance. ePayment
Manager provides a script just for that purpose in ePayment/db/<DB_Type>/create_ar_index.sql. (DB
Type refers to Oracle, DB2, MSSQL, etc.) This script is not run when the ePayment Manager database
is created, so you must run it manually.

Generating Accounts Receivables (A/R) Files Customizing arQuery.xml

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

131

▪

Each of the queries in arQuery.xml has an SQL variable (‘?’) that must be resolved before the query
can be sent to the database. The A/R job calls the getMap() method of IARPaymentIntegrator to
get a Map of query variables, and uses their values to replace the ‘?’ variables in the query. The
names of the Map elements should match those defined in the "param" tags of the "query" tags.

For example, the default arQuery.xml has the "param" tag:

<param name="payee_id" type="java.lang.Integer" position="1"/>

To support this you should define a Map element whose name is "payee_id" and whose value (which
must be an Integer, and contains the DDN reference number) replaces the "?" mark with "payee_id"
in the query:

select * from check_payments where payee_id = ? and status = 8
and arflag = 'N'

The following query result set will be transferred to a list of checks (ICheck objects) for checkQuery,
and credit cards (ICreditCard objects) for creditCardQuery, and then pass that list to the
process() method of IARPaymentIntegrator.

CAUTION: The eStatement Manager XMLQuery object supports paging, but this feature must not be
used for A/R query.

You can modify this file to use different queries.

Query Case Study
The new requirement for this example is to retrieve all payments whose status is returned or paid
between 5:00PM today (the job run date) and 5:00PM yesterday (yesterday's job run date).

Step 1

Change arQuery.xml for checkQuery:

<query name="checkQuery">

<sql-stmt><![CDATA[select * from check_payments where
payee_id=? and status in (8,-4) and last_modify_time >= ? and
last_modify_time < ?]] </sql-stmt>

<param name="payee_id" type="java.lang.Integer" position="1"/>

<param name="min_last_modify_time" type="java.sql.Timestamp"
position="2"/>

<param name="max_last_modify_time" type="java.sql.Timestamp"
position="3"/>

</query>

TIP: Use java.sql.Timestamp instead of java.util.Date.

Generating Accounts Receivables (A/R) Files Customizing arQuery.xml

132 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Step 2

Do the same thing for creditCardQuery:

1. Since you are adding more “?”s to the query, you need to override the getMap() method of the
default ARPaymentIntegrator:

pacakge com.edocs.ps.ar;
import java.util.*;
import com.edocs.payment.util.DateUtil;

public class MyARIntegrator extends ARPaymentIntegrator

{

 /**Override this method to populate the SQL variables in
arQuery.xml

 */

public Map getMap(ARPaymentIntegratorParams
payIntegratorParam,
 String objectFlag) throws
Exception
{
 //call super class because we need to get the payee_id
value
 Map map = super.getMap(payIntegratorParam,
objectFlag);
 //no need to check objectFlag because we actually
populate the
 //same values for both checkQuery and creditCardQuery
 Date today = new Date();

 today = DateUtil.dayStart(today);//set to 00:00:00AM
 Date today5 = DateUtil.addHours(today, 17); //set to
05:00:00PM

 Date yesterday5 = DateUtil.addHours(today, -7) ;//set
to 05:00:00PM of yesterday
 map.put(“min_last_modify_time”,
DateUtil.toSqlTimestamp(yesterday5));

 map.put(“max_last_modify_time”,
DateUtil.toSqlTimestamp(today5));
}

}

2. If you wish to make the cutoff time configurable instead of fixed at 5:00PM, use the flexible
configuration fields of the A/R job, which are passed in as part of ARPaymentIntegratorParams.
For more information about ARPaymentIntegratorParams, see the ePayment Manager SDK
JavaDoc.

3. Compile your class using the payment_client.jar and payment_common.jar that comes with
Payment, package the compiled class into the ePayment Manager EAR files, and re-deploy the EAR
files.

Generating Accounts Receivables (A/R) Files Customizing arFlat_template.txt

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

133

▪

4. Login to the Command Center and change the configuration of the A/R job to use the new
implementation of the IARPaymentIntegrator, com.edocs.ps.ar.MyARIntegrator.

Customizing arFlat_template.txt
Payments returned by arQuery.xml are written to an A/R file using a Payment template file. Two
templates come with ePayment Manager:

arFlat_template.txt- generates a flat A/R file

arXML_template.xml - generates an XML A/R file

arFlat_template.txt generates a sample flat A/R file. If this file includes most of your required data,
but the format is not what you want, you can edit the template file to generate your own format. For
more information about using the Template class, see the ePayment Manager JavaDoc.

The A/R job using arFlat_template.txt does two things:

1. Loops through the list of check and credit card payments to print out their details.

2. Calculates the totals for check debits, check credits, credit card debits and credit card credits
(reversals).

Customizing arXML_template.xml
arXML_template.xml generates the same information as arFlat_template.txt, but in XML format. After
creating the XML file, you can use XSLT to transform it into another XML file or into a flat file. The
default arTransform.xsl transforms the original XML file into the same format as the one generated by
arFlat_template.txt. Using XSLT is the recommended way to do the customization, because it is easy
and powerful.

The A/R job using arXML_template.xml does two things:

1. Loops through the list of check and credit card payments to print out their details.

2. Calculates the totals for check debits, check credits, credit card debits and credit card credits
(reversals).

To generate different file formats, change arTransform.xsl. Or, customize the arXML_template.xml file
directly.

Customize arXML_template.xml and Use XSLT to Generate
XML/Flat AR File
The arXML_template.xml generates the same information as arFlat_template.txt, but in XML format.
After generating the XML file, you can use XSLT to transfer it into another XML file or into a flat file.
The default arTransform.xsl transforms the XML file into the same format as the one generated by
arFlat_template.txt. If you are familiar with XSLT, this is the recommended way to do the
customization because XSLT is easy to use and powerful.

Generating Accounts Receivables (A/R) Files Re-implement IARPaymentIntegrator

134 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

This template does two things:

1. Loops through the list of check and credit card payments to print out their details.

2. Calculates the totals for check debits, check credits, credit card debits and credit card credits
(reversals).

To generate different file formats, change arTransform.xsl. If required, you can also customize the
arXML_template.xml file.

To rename the generated files:

To rename the files generated by these utilities you must write a simple implementation of
IARPaymentIntegrator. The following code demonstrates how to rename the XSLT output file to
another name:

import java.io.*;
public class MyARIntegrator extends ARPaymentIntegrator
{
protected void
getTransformedARFileName(ARPaymentIntegratorParams
 payIntegratorParam,) throws Exception
{
return ”newARName.txt”;
}
}

Re-implement IARPaymentIntegrator
You may want to re-implement the default SampleARPaymentIntegrator if you wish to add any of
the following features. The following steps describe how to do this:

1. Re-name the default AR files.

2. Change the SQL query to add more “?” variables and to set values for those variables in the
IARPaymentIntegrator implementation.

3. Add any additional steps, such as putting more objects into Template context before it is parsed.

4. Change the result of the template parsing. For example, because of limitations of Template engine,
sometimes unwanted empty new lines are added. You should remove those lines.

5. Modify the check or credit card objects before they are updated in the database. By default, only
arflag is updated from "N" to "Y". Another alternative is to update the check or credit card object in
the template, and all your updates will be updated in the database.

To add any of the preceding features, you must extend from SampleARPaymentIntegrator and
configure the pmtARIntegrator job to use your implementation.

You can overwrite following methods for your customization:

1. getARFileName(): overwrite to change the name of the AR flat file generated from
arFlat_template.txt.

Generating Accounts Receivables (A/R) Files Select Only Check or Credit Card Payments

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

135

▪

2. getMap(): overwrite

Select Only Check or Credit Card
Payments
A biller may support only one of check or credit card payments. In this case, you must configure the
pmtARIntegrator job to leave the “Credit card query name in XML query file” field blank. Also, you
may want to customize the template files (arFlat_template.txt or arXML_template.xml) to remove any
reference to the unavailable payment type, but this is optional.

Compiling and Packaging a Custom
IARIntegrator
If you re-implement IARIntegrator or you have some custom Java classes to call from the AR
template, you must re-compile and package your changes.

In most cases, you put your custom code into payment_custom.jar. Unfortunately, the
IARIntegrator and its related classes are packaged as part of ejb-payment-ar.jar, not
payment_custom.jar, so a different procedure is required.

To compile, you may need to put ejb-payment-ar.jar along with payment_common.jar,
payment_custom.jar and payment_client.jar in your class path to re-implement IARIntegrator.

To package, drop all your AR custom classes into the ejb-payment-ar.jar.

A/R Filenames
The generated A/R files have default names of ar_yyyyMMddHHmmssSSS.template_file_ext, where
the template_file_ext is the file extension of the template file. The XSLT transformed file has default
name of ar_trans_yyyyMMddHHmmssSSS.extension, where extension is defined by the
pmtARIntegrator job configuration. You may want to rename these files to a more meaningful name.

To rename the files, write a simple implementation of IARPaymentIntegrator. The following code
demonstrates how to rename the XSLT output file to another name:

package com.edocs.ps.ar;

import com.edocs.payment.tasks.ar.*;

public class MyARIntegrator extends ARPaymentIntegrator

{

/**Override this method to give a new name*/

protected void
getTransformedARFileName(ARPaymentIntegratorParams
 payIntegratorParam,) throws Exception
{

Generating Accounts Receivables (A/R) Files Single Payment Type

136 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

return ”newARName.txt”;

}

}

Single Payment Type
A biller may have only ACH and not credit card payments, or vice versa. In this case, you can
customize the template files (arFlat_template.txt or arXML_template.xml) to remove any references to
the unavailable payment type.

Or, when configuring the pmtARIntegrator job enter an empty value for the Check query name in
XML query file or Credit card query name in XML query file parameter.

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

137

9 Packaging ePayment Manager
Custom Code

Overview
You can package your custom code, both plug-in code and custom A/R jobs and templates, by adding
it to payment_custom.jar. The ePayment Manager EAR files will access this JAR, and find the custom
code. The ePayment Manager EAR files are merged into the eStatement Manager EAR file as part of
installation, so your custom code will also be seen by the eStatement Manager Command Center.

To make this JAR file accessible by all the ePayment Manager EJB, JAR and WAR files, place it in the
classpath of the MANIFEST file of each JAR and WAR file. For details of how the MANIFEST file works,
refer to the J2EE or EJB specifications or the Deploying and Customizing J2EE Applications Guide for
Oracle Siebel eStatement Manager. When the EJB JAR or WAR files are loaded, this JAR will be loaded
and can be accessed by the EJB jar files or war files.

CAUTION: Never put your custom EJB code into payment_custom.jar; put your EJB code in your own
JAR files.

To write a new plug-in for IAchCheckSubmitPlugIn:

1. Write and then compile your implementation class. You may want to use payment_common.jar and
payment_client.jar from Payment as part of your class path.

2. Create a JAR file called payment_custom.jar, or use the payment_custom.jar from any of the
Payment EAR files. Place your implementation class into that JAR file using the jar command.

3. Replace all the payment_custom.jar files under the lib directory of all the deployed ePayment
Manager EAR files with the new payment_custom.jar, using jar command.

4. Deploy the new ePayment Manager EAR files on your application server.

5. Go to Payment Settings in the Command Center, and configure the payment gateway(s) to use the
new class by replacing the default one, com.edocs.payment.cassette.ach.AchCheckSubmitPlugIn, with
your new plug-in.

6. Run the pmtCheckSubmit job, which will load the new class from payment_custom.jar, because you
added it to the classpath of the MANIFEST file of ejb-payment-chksubmit.jar.

Packaging ePayment Manager Custom Code Overview

138 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

139

 10 Debugging ePayment Manager

Overview
When installing ePayment Manager, follow the installation instructions carefully to set up ePayment
Manager correctly. After installation and initial configuration, if you still have problems, the next
sections describe a few things you can do to help narrow down the cause.

Viewing WebLogic Logs
From the WebLogic console, you can change the level of log messages. By default, only error
messages will be printed out to the console. You can change it to print more detailed information.

View logs from eStatement Manager
Command Center
If a ePayment Manager job fails, you can View Logs from the eStatement Manager Command Center
to see the details of the error message.

Turning On the ePayment Manager
Debug Flag
If you have problems with executing ePayment Manager operations, such as making a check payment
or running a payment job, you may want to turn on the com.edocs.payment.debug flag to see more
details.

Configure your app server so that it uses “-Dcom.edocs.payment.debug=true” as part of the JVM
starting option.

For example, for WebLogic on UNIX, change startWebLogic.sh to add another option to “java”
command:

java –Dcom.edocs.payment.debug=true …

Debugging ePayment Manager Turning On the ePayment Manager Debug Flag

140 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

141

11 Terminology

Table of Terms
ePayment Manager uses some special terminology, which you should be aware of:

Name Description

user ID or user login ID The unique ID that identifies a user in the
ePayment Manager system, across different
billers. The user must present this user ID in
order to login to ePayment Manager system.

payer or payer ID Same as the user ID.

biller The entities that issue bills and receive bill
payments.

payee or payee ID The entities that receive bill payments.

payee(ID) reference number This is a unique number generated internally
to identify a payee.

DDN, document definition_name DDN is a term from eStatement Manager,
which defines a bill data stream. A biller in
fact can have multiple DDNs. However,
currently it is used as the same notion of
biller. This may be changed in the future.

user account, user account number The user’s account (number) with the biller.

payer account, payer account number Same as user account (number).

payment account, payment account number The user’s account (number) with a bank or
credit card issuer, used to make payments.

payee account/payee bank account The payee’s account (number) with a bank.

Terminology Table of Terms

142 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

143

12 Plug-in Sample Code

This chapter shows sample code for the job plug-ins for:

Job Plug-in Code

pmtPaymentReminder PaymentReminderPlugIn.java on page 145

pmtCreditCardSubmit VerisignCreditCardSubmitPlugIn.java on page 148

AchCheckSubmitPlugIn.java on page 143
AddendaCheckSubmitPlugIn.java on page 149 shows an
example implementation.

pmtCheckSubmit

RecurringPaymentPlugIn.javaon page 146pmtRecurringPayment
SampleRecurringPlugIn.java on page 151 shows an example
implementation.

AchCheckSubmitPlugIn.java
package com.edocs.payment.cassette.ach;

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.cassette.CassetteException;

import com.edocs.payment.cassette.CheckSubmitParams;

/**A default implementation for IAchCheckSubmitPlugIn. It does nothing

 *in each method.

 *If you want to write your own implementation, your should derive

 *your implementation from this class and overwrite the

 *methods for which you want to change the behavior.

 */

public class AchCheckSubmitPlugIn implements IAchCheckSubmitPlugIn

{

 private static boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

 public void begin(AchCheckSubmitPlugInParams params) throws CassetteException

Plug-in Sample Code AchCheckSubmitPlugIn.java

144 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.begin()");

 }

 public int preWriteFileHeader(AchCheckSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteFileHeader()");

 return PRE_WRITE_FILE_HEADER_ACCEPT;

 }

 public int preWriteBatchHeader(AchCheckSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteBatchHeader()");

 return 0;

 }

 public int preWriteCheck(AchCheckSubmitPlugInParams params) throws CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteCheck().
params="+params);

 return PRE_WRITE_CHECK_ACCEPT;

 }

 public int postWriteCheck(AchCheckSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.postWriteCheck()");

 return POST_WRITE_CHECK_NOT_MODIFIED;

 }

 public void onWriteCheckException(AchCheckSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.onWriteCheckException");

 }

 public int preWriteBatchTrailer(AchCheckSubmitPlugInParams params) throws
CassetteException

Plug-in Sample Code PaymentReminderPlugIn.java

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

145

▪

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteBatchTrailer()");

 return 0;

 }

 public int preWriteFileTrailer(AchCheckSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteFileTrailer()");

 return 0;

 }

 public void finish(AchCheckSubmitPlugInParams params) throws CassetteException

 {

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.finish()");

 }

 public void abort(AchCheckSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In AChCheckSubmitPlugIn.abort()");

 }

}

PaymentReminderPlugIn.java
package com.edocs.payment.tasks.reminder;

/**This is a default implementation of IPaymentReminderPlugIn. This implementation

 *doesn't doesn nothing in the call back methods. To write your own plug-in,

 *derive your plug-in class from this implementation

 *and overwrite the methods for which you want to change the behavior.

 */

public class PaymentReminderPlugIn implements IPaymentReminderPlugIn

{

 private boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

 public int preSendEmailReminder(PaymentReminderPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("PaymentReminderPlugIn.preSendEmailReminder,
reminder="+params.getPaymentReminder());

Plug-in Sample Code RecurringPaymentPlugIn.java

146 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 return PRE_SEND_EMAIL_ACCEPT;

 }

 public int preSendEmailCheck(PaymentReminderPlugInParams params) throws Exception

{

 if(DEBUG) System.out.println("PaymentReminderPlugIn.preSendEmailCheck,
check="+params.getCheck());

 return PRE_SEND_EMAIL_ACCEPT;

}

 public int preSendEmailCreditCard(PaymentReminderPlugInParams params) throws
Exception

 {

 if(DEBUG) System.out.println("PaymentReminderPlugIn.preSendEmailCreditCard,
ccard="+params.getCreditCard());

 return PRE_SEND_EMAIL_ACCEPT;

 }

}

RecurringPaymentPlugIn.java
package com.edocs.payment.tasks.recur_payment;

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.payenroll.*;

/**This class implements IRecurringPaymentPlugIn. It does nothing in each method.

 *When you write your own plug-in, derive your plug-in

 *class from this class, and then overwrite the methods for which you want to

 *change the default behavior.

 */

public class RecurringPaymentPlugIn

 implements IRecurringPaymentPlugIn

{

 private static boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

 public int preGetLatestSummary(SynchronizeRecurringPlugInParams p) throws Exception

Plug-in Sample Code RecurringPaymentPlugIn.java

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

147

▪

 {

 if(DEBUG) System.out.println("RecurringPaymentPlugIn.preGetLatestSummary() is
called");

 return PRE_GET_LATEST_SUMMARY_ACCEPT;

 }

 public int preInsertLatestSummary(SynchronizeRecurringPlugInParams p) throws
Exception

 {

 if(DEBUG) System.out.println("RecurringPaymentPlugIn.preInsertLatestSummary() is
called");

 return PRE_INSERT_LATEST_SUMMARY_ACCEPT;

 }

 public int preUpdateSynchronizedRecurring(SynchronizeRecurringPlugInParams p) throws
Exception

 {

 if(DEBUG)
System.out.println("RecurringPaymentPlugIn.preUpdateSynchronizeRecurring() is
called");

 return PRE_UPDATE_SYNCHRONIZED_RECURRING_ACCEPT;

 }

 public int preSchedulePayment(SchedulePaymentPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("SchedulePaymentPlugIn.preSchedulePayment() is
called");

 return PRE_SCHEDULE_PAYMENT_ACCEPT;

 }

 public int preSendEmail(SchedulePaymentPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("SchedulePaymentPlugIn.preSendEmail() is called");

 return PRE_SEND_EMAIL_ACCEPT;

 }

}

Plug-in Sample Code VerisignCreditCardSubmitPlugIn.java

148 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

VerisignCreditCardSubmitPlugIn.java
package com.edocs.payment.cassette.verisign;

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.cassette.*;

/**This class offers a default implementation for
IVerisignCreditCardSubmitPlugIn.

 *Each method currently does nothing and return directly.

 *You should re-implement this interface if needed.

 *We strongly recommended that you derive your implementation class from
this

 *default implementation.

 */

public class VerisignCreditCardSubmitPlugIn implements
IVerisignCreditCardSubmitPlugIn

{

 private static boolean DEBUG =
Boolean.getBoolean("com.edocs.payment.debug");

 public void begin(VerisignCreditCardSubmitPlugInParams params) throws
CassetteException

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.begin()");

 }

 public int preAuthorize(VerisignCreditCardSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.preAuthorize. params="+params);

 return PRE_AUTH_ACCEPT;

 }

 public int postAuthorize(VerisignCreditCardSubmitPlugInParams params)

 {

Plug-in Sample Code AddendaCheckSubmitPlugIn.java

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

149

▪

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.postAuthorize");

 return POST_AUTH_NOT_MODIFIED;

 }

 public void onAuthorizeException(VerisignCreditCardSubmitPlugInParams
params)

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.onAuthorizeException");

 }

 public void finish(VerisignCreditCardSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.finish()");

 }

 public void abort(VerisignCreditCardSubmitPlugInParams params)

 {

 if(DEBUG) System.out.println("In
VerisignCreditCardSubmitPlugIn.abort()");

 }

}

AddendaCheckSubmitPlugIn.java
package com.edocs.payment.cassette.ach;

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.db.*;

import com.edocs.payment.cassette.CassetteException;

import java.util.*;

/**This plug-in demonstrates how to append a list of addenda records to

 *a check payment record in an ACH file. Addenda information is biller-specific.

 *You should write your own implementation to retrieve the addenda information

Plug-in Sample Code AddendaCheckSubmitPlugIn.java

150 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 *for a particular biller.

 */

public class AddendaCheckSubmitPlugIn extends AchCheckSubmitPlugIn implements
IAchCheckSubmitPlugIn

{

 private static boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

 /**This method calls Addenda.setAddendaNote() to set the addenda information

 *of a check payment. The addenda information actually comes from the

 *invoices of the check payment. This method first checks whether there are

 *invoices associated with this check. If so, it retrieves the invoices, and

 *for each invoice creates an Addenda record whose addenda note is set

 *to a format like "invoiceNumber=..., invoiceAmount=...".

 *@param params An AchCheckSubmitPlugInParams object.

 *@return IAchCheckSubmitPlugIn.PRE_WRITE_CHECK_ACCEPT

 */

 public int preWriteCheck(AchCheckSubmitPlugInParams params)

 {

 if(params.isPrenote())

 return PRE_WRITE_CHECK_ACCEPT;

 Invoice invoice;

 List invoices = null;

 if(DEBUG) System.out.println("In AchCheckSubmitPlugIn.preWriteCheck(),
check="+params.getCheck());

 // retrieve invoice info, put into params.

 //

 PaymentQueryParams query_param = new PaymentQueryParams();

 IPaymentInvoiceLog pilog = PaymentDBFactory.newPaymentInvoiceLog();

 query_param.setPaymentId(params.getCheck().getPaymentId());

 try {

 invoices = pilog.query(query_param);

 } catch (Throwable e) { }

Plug-in Sample Code SampleRecurringPlugIn.java

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

151

▪

 Iterator iter = invoices.iterator();

 List addendas = new LinkedList();

 while (iter.hasNext()) {

 invoice = (Invoice)iter.next();

 Addenda addenda = new Addenda();

addenda.setAddendaNote("invoiceNumber="+invoice.getInvoiceNumber()+",invoiceAmount="+i
nvoice.getInvoiceAmount());

 addendas.add(addenda);

 }

 params.setAddendas(addendas);

 return PRE_WRITE_CHECK_ACCEPT;

 }

}

SampleRecurringPlugIn.java
package com.edocs.payment.tasks.recur_payment;

import java.util.*;

import com.edocs.payment.*;

import com.edocs.payment.config.*;

import com.edocs.payment.payenroll.*;

import com.edocs.payment.util.template.*;

/**This sample recurring payment plug-in demonstrates how to fill in the

 *flexible fields of IPaymentTransaction (check or credit card) with the

 *information retrieved from IBillSummary.

 */

public class SampleRecurringPlugIn

 extends RecurringPaymentPlugIn implements IRecurringPaymentPlugIn

{

 private static boolean DEBUG = Boolean.getBoolean("com.edocs.payment.debug");

Plug-in Sample Code SampleRecurringPlugIn.java

152 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 /**Must have this default constructor.

 */

 public SampleRecurringPlugIn()

 {

 }

 /**This method is called before the pmtRecurPayment job tries to get the latest bill
summary

 *for a user account. This implementation is empty (does nothing).

 *@param p A SynchronizeRecurringPlugInParams object.

 *@return IRecurringPaymentPlugIn.PRE_GET_LATEST_SUMMARY_ACCEPT

 */

 public int preGetLatestSummary(SynchronizeRecurringPlugInParams p) throws Exception

 {

 if(DEBUG) System.out.println("RecurringPaymentPlugIn.preGetLatestSummary() is
called");

 if(p.getPaymentConfig() == null)

 throw new Exception("config is not set");

 return PRE_GET_LATEST_SUMMARY_ACCEPT;

 }

 /**This method is called before the pmtRecurPayment job inserts the latest summary

 *into the Payment table. The IBillSummary object has a list of extended attributes

 *which can hold any bill summary information not required by Payment.

 *However, these extended attributes won't be inserted into

 *Payment database. This method checks whether there are at least two extended
attributes

 *in the summary, and if so, fills the two flexible fields, 1 and 2, of IBillSummary

 *with the first and second extended attributes, respectively. The two flexible

 *fields are inserted into the Payment database by the pmtRecurPayment job.

 *@param p A SynchronizeRecurringPlugInParams object.

 *@return int; IRecurringPaymentPlugIn.PRE_INSERT_LATEST_SUMMARY_ACCEPT

 */

 public int preInsertLatestSummary(SynchronizeRecurringPlugInParams p) throws
Exception

 {

Plug-in Sample Code SampleRecurringPlugIn.java

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

153

▪

 if(DEBUG) System.out.println("RecurringPaymentPlugIn.preInsertLatestSummary() is
called");

 IBillSummary sum = p.getBillSummary();

 if(sum != null)

 {

 Map attrs = sum.getExtendedAttributes();

 if(attrs != null && attrs.size() >= 2){

 Object[] keys = attrs.keySet().toArray();

 sum.setFlexibleField1((String)attrs.get(keys[0]));

 sum.setFlexibleField2((String)attrs.get(keys[1]));

 if(DEBUG) System.out.println("RecurringPaymentPlugIn, summary flex fields set.
sum="+sum);

 }

 }

 return PRE_INSERT_LATEST_SUMMARY_ACCEPT;

 }

 /**This method is called before the pmtRecurPayment job writes the "synchronized"

 * recurring payment back to the database. A "synchronized" recurring payment

 * means that there is a new bill that needs to be paid. This method fills

 * the flexible fields 1 and 2 of current IRecurringPayment with the

 * flexible fields 1 and 2 of current IBillSummary, respectively. The recurring

 * job then updates the IRecurringPayment into the database.

 *@param p A SynchronizeRecurringPlugInParams object.

 *@return int; IRecurringPaymentSummary.PRE_UPDATE_SYNCHRONIZED_RECURRING_ACCEPT

 */

 public int preUpdateSynchronizedRecurring(SynchronizeRecurringPlugInParams p) throws
Exception

 {

 if(DEBUG)
System.out.println("RecurringPaymentPlugIn.preUpdateSynchronizeRecurring() is
called");

 IBillSummary sum = p.getBillSummary();

 IRecurringPayment rec = p.getRecurringPayment();

 if(sum != null && rec != null)

 {

 Map attrs = sum.getExtendedAttributes();

 if(attrs != null && attrs.size() >= 2){

 Object[] keys = attrs.keySet().toArray();

Plug-in Sample Code SampleRecurringPlugIn.java

154 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 rec.setFlexibleField1(sum.getFlexibleField1());

 rec.setFlexibleField2(sum.getFlexibleField2());

 if(DEBUG) System.out.println("RecurringPaymentPlugIn, recurring flex fields
set. rec="+rec);

 }

 }

 return PRE_UPDATE_SYNCHRONIZED_RECURRING_ACCEPT;

 }

 /**This method is called before the pmtRecurPayment job schedules (inserts) a new

 *payment into the Payment database. This method fills in the flexible

 *fields 1 and 2 of the payment(check or credit card) with the flexible

 *fields 1 and 2 of the IRecurringPayment, respectively. The job then

 *inserts the payment with the flexible fields into database.

 *@param params A SchedulePaymentPlugInParams object.

 *@return IRecurringPayment.PRE_SCHEDULE_PAYMENT_ACCEPT

 */

 public int preSchedulePayment(SchedulePaymentPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("SchedulePaymentPlugIn.preSchedulePayment() is
called");

 IPaymentTransaction tran = params.getPayment();

 IRecurringPayment rec = params.getRecurringPayment();

 if(rec != null && tran != null){

 if(tran instanceof ICheck){

 ((ICheck)tran).setFlexibleField1(rec.getFlexibleField1());

 ((ICheck)tran).setFlexibleField2(rec.getFlexibleField2());

 }else{

 ((ICreditCard)tran).setFlexibleField1(rec.getFlexibleField1());

 ((ICreditCard)tran).setFlexibleField2(rec.getFlexibleField2());

 }

 }

 return PRE_SCHEDULE_PAYMENT_ACCEPT;

 }

 /**This method is called before the pmtRecurPayment job sends an email to the user.

Plug-in Sample Code SampleRecurringPlugIn.java

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

155

▪

 * The passed in SchedulePaymentPlugInParams parameter includes the mail-to address
and subject.

 * You can use this method to check/change the mail-to addresses and subject.

 * The mail-to addresses and subject of SchedulePaymentPlugInParams

 * will be passed back to Payment and used by Payment to send out email.

 *@param params A SchedulePaymentPlugInParams object.

 *@return IRecurringPayment.PRE_SEND_EMAIL_ACCEPT

 */

 public int preSendEmail(SchedulePaymentPlugInParams params) throws Exception

 {

 if(DEBUG) System.out.println("SchedulePaymentPlugIn.preSendEmail() is called");

 params.setMailSubject("Hi, this subject is set by SampleRecurringPaymentPlugIn");

 return PRE_SEND_EMAIL_ACCEPT;

 }

}

Plug-in Sample Code SampleRecurringPlugIn.java

156 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

157

 13 Auditing

ePayment Manager audits some payment jobs to track a variety of transaction failures. Audits are
kept for actions taken through the UI, as well as jobs.

Jobs Audited
The jobs that write to the audit tables are listed below along with the information that is audited.

pmtCheckSubmit job

 Payments that failed during submission

 Encryption exceptions

pmtPaymentReminder

Payment reminders that were not sent, including:

 Regular payment reminders that failed to send, for any reason, such as bad email address.

 Check payment emails that failed to send, for any reason, such as encryption error, bad email
address.

 Credit card payment emails failed to send, for any reason, such as encryption error or bad email
address.

pmtCreditCardSubmit

Credit card payments failed to submit, for example, because of encryption errors, invalid credit card
information (such as invalid account) or network errors.

pmtIntegrator (AR) job

Check and credit card payments that were not written to the AR file. For example, because of
encryption errors or file write errors.

pmtRecurringPayment

Check and credit card payments that failed.

Auditing UI Actions Audited

158 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

pmtCheckSubmit and pmtCreditCardSubmit

UI Actions Audited
This audit lists successful and unsuccessful payments along with a reason code.

The UI actions that trigger an audit entry are:

 Create Recurring Payment

 Update Recurring Payment

 Delete Recurring Payment

 Create Schedule Payment

 Create Instant Payment

 Cancel Future Payment - Credit Card Payment

 Update Future Payment - Credit Card Payment

 Cancel Future Payment - Check Payment

 Update Future Payment - Check Payment

 Create Payment Reminder

 Update Payment Reminder

 Delete Payment Reminder

 Create Check Account

 Edit Check Account

 Delete Check Account

 Create Credit Card Account

 Edit Credit Card Account

 Delete Credit Card Account

 Initiating a Payment Refund in the UI

 Refund a payment using the Payment History page

 View an invoice using the Payment History page

 Create a new external payment on the External Payments page

 Update an existing payment using the External Payments History page

 Cancel a payment using the External Payments History page

Auditing UI Actions Audited

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

159

▪

Example of UI Audit Flow
1. The customer selects the Setup of recurring payment option, populates the information to
initially set up recurring payment, and submits it. The following information is recorded as the audit
data in the recurring_payments_history table in addition to the columns defined in the recurring
_payments table. (This history table contains all the columns defined in the recurring_payments
(regular table) table plus the additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
recurring_payment_const table.

audit_status 1 Status constant value successful operation. This constant value
for the status is explained in the recurring_payment_const
table.

audit_reason Description of the audit.

Job_id 0 Since this is an UI operation, job_id value is 0 (not a job).

Job_name NULL Since this is a UI operation, job_name is NULL.

Timestamp The current system time when an audit is taken place.

2. The customer selects Recurring Payment option, selects Update, and updates the recurring
payment information and submits it. The following information is recorded as the audit data in
recurring_payments_history table other than the columns defined in the regular recurring _payments
table. (This history table contains all the columns defined in the recurring_payments (regular table)
table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
recurring_payment_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
recurring_payment_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name is NULL.

Timestamp The current system time when an audit is taken place.

3. The customer selects Recurring Payment option, and then selects Delete, the following
information is recorded as the audit data in recurring_payments_history table other than the columns
defined in the regular recurring _payments table. (This history table contains all the columns defined
in the recurring_payments (regular table) table and additional following columns).

Auditing UI Actions Audited

160 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
recurring_payment_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
recurring_payment_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name is NULL.

Timestamp The current system time when an audit is taken place.

4. The customer selects Create Check account in the “User Profile” UI, and submits the new check
account information, the following audit data is recorded in payment_accounts_history table other
than the columns defined in the regular payment_accounts table. (This history table contains all the
columns defined in the payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name is NULL.

Timestamp The current system time when an audit is taken place.

5. The customer selects Update Check account in the “User Profile” UI, and submits the updated
check account information, the following audit data is recorded in payment_accounts_history table
other than the columns defined in the regular payment_accounts table. (This history table contains all
the columns defined in the payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Auditing UI Actions Audited

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

161

▪

Column Value Description

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name is NULL.

Timestamp The current system time when an audit is taken place.

6. The customer selects Delete Check account in the “User Profile” UI, and submits the delete
request, the following audit data is recorded in payment_accounts_history table other than the
columns defined in the regular payment_accounts table. (This history table contains all the columns
defined in the payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_account_const table).

audit_status 1 Status constant value for successful operation. (This constant
value for the status is explained in the
payment_account_const table.)

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name is NULL.

Timestamp The current system time when an audit is taken place.

7. The customer selects Create Credit Card account in the “User Profile” UI, and submits the new
credit card account information, the following audit data is recorded in payment_accounts_history
table other than the columns defined in the regular payment_accounts table. (This history table
contains all the columns defined in the payment_accounts (regular table) table and additional
following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name is NULL.

Timestamp The current system time when an audit is taken place.

Auditing UI Actions Audited

162 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

8. The customer selects Update Credit Card account in the “User Profile” UI, and submits the
updated credit card account information, the following audit data is recorded in
payment_accounts_history table other than the columns defined in the regular payment_accounts
table. (This history table contains all the columns defined in the payment_accounts (regular table)
table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name is NULL.

Timestamp The current system time when an audit is taken place.

9. The customer selects Delete Credit Card account in the “User Profile” UI, and submits the delete
request, the following audit data is recorded in payment_accounts_history table other than the
columns defined in the regular payment_accounts table. (This history table contains all the columns
defined in the payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_account_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value will be 0.

Job_name NULL Since this is a UI operation, job_name will be NULL.

Timestamp The current system time when an audit is taken place.

10. The customer selects Create payment reminder in the “User Profile” UI, and submits the new
payment reminder information, the following audit data is recorded in payment_reminders_history
table other than the columns defined in the regular payment_reminders table. (This history table
contains all the columns defined in the payment_reminders (regular table) table and additional
following columns).

Auditing UI Actions Audited

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

163

▪

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_reminder_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_reminder_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name is NULL.

Timestamp The current system time when an audit is taken place.

11. The customer selects Update payment reminder in the “User Profile” UI, and submits the
updated payment reminder information, the following audit data is recorded in
payment_reminders_history table other than the columns defined in the regular payment_reminders
table. (This history table contains all the columns defined in the payment_reminders (regular table)
table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_reminder_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_reminder_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name will be NULL.

Timestamp The current system time when an audit is taken place.

12. The customer selects Delete payment reminder in the “User Profile” UI, and submits the delete
request for the payment reminder, the following audit data is recorded in payment_reminders_history
table other than the columns defined in the regular payment_reminders table. (This history table
contains all the columns defined in the payment_reminders (regular table) table and additional
following columns).

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_reminder_const table.

Auditing Query Files

164 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Column Value Description

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_reminder_const table.

audit_reason Description of the audit.

Job_id 0 Since this is a UI operation, job_id value is 0.

Job_name NULL Since this is a UI operation, job_name will be NULL.

Timestamp The current system time when an audit is taken place.

Query Files
The following files are provided for each platform to support queries of the audit tables.

SQL2000

Windows

getAuditDataByPid.bat

getAuditDataByPaymentId.bat

getAuditDataByAccount.bat

ORACLE

Windows

getAuditDataByAccount.bat

getAuditDataByPaymentId.bat

getAuditDataByPid.bat

set_audit_isql_options.bat

getAuditDataByAccount.sql

getAuditDataByPaymentId.sql

getAuditDataByPid.sql

getAuditInfoByAccount.sql

getAuditInfoByPaymentId.sql

getAuditInfoByPid.sql

UNIX

getAuditInfoByAccount.sh

Auditing Running Audit Queries

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

165

▪

getAuditInfoByPaymentId.sh

getAuditInfoByPid.sh

getAuditDataByAccount.sql

getAuditDataByPaymentId.sql

getAuditDataByPid.sql

getAuditInfoByAccount.sql

getAuditInfoByPaymentId.sql

getAuditInfoByPid.sql

DB2

Windows

getAuditDataByAccount.bat

getAuditDataByPaymentId.bat

getAuditDataByPid.bat

set_audit_isql_options.bat

UNIX

getAuditDataByAccount.sh

getAuditDataByPaymentId.sh

getAuditDataByPid.sh

getAuditInfoByAccount.sh

getAuditInfoByPaymentId.sh

getAuditInfoByPid.sh

Running Audit Queries
Audit queries require on of the following arguments:

 Payment ID

 User Account Number

 PID

The audit queries are implemented in batch files, which require the user argument and date range.
The results are displayed on the console.

Before running the queries, you must preform setup. The description for each query describes the
setup.

Auditing Query Setup

166 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Query Audit data by Payment ID

Displays data from all history tables which have a payment ID column. This query performs a simple
select on each table where the Payment ID matches and the time_stamp is between “fromTime” and
“toTime”. The following tables are queried:

 check_payments_history

 creditcard_payments_history

 payment_bill_summaries_history

 payment_email_history

Query Audit data by User Account Number

Displays data from all history tables which have a payer ID column. This query performs a simple
select on each table where the payer ID matches “Account Number”, and whose time_stamp is
between “fromTime” and “toTime”. The AccountNumber is the account number with the biller
(payee_id column). The following tables are queried:

 check_payments_history

 creditcard_payments_history

 payment_bill_summaries_history

 recurring_payments_history

Query Audit data by PID

Displays data from all the history tables which have a PID column. This query performs a simple select
on each table where the PID matches and whose time_stamp is between “fromTime” and “toTime”.
The following tables are queried:

 check_payments_history

 creditcard_payments_history

 payment_accounts_history

 recurring_payments_history

Query Setup

Before running the queries, you must:

1. Set the database connection parameters

2. Configure TNS Listener for Oracle (Client/Server)

3. Configure DB2 Clients for windows platform

4. Check execution permissions for shell scripts

Auditing Query Setup

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

167

▪

5. Database connection parameters

Configuration for each platform is described below:

Windows Configuration
For Windows set_isql_options.bat must be edited before running the queries. The file constrains the
following line:

set ISQL_OPTIONS=-U <username> -P <password> -S <sqlsvr-
Servername> -d <database name>

Edit this file and enter your values for username, password, server name and database name. For
example:

set ISQL_OPTIONS=-U edx1 -P edx1 -S EDXSERVER -d edxDB

UNIX Configuration
For UNIX platforms, the database connection string is embedded in the file. You must edit the
connection parameters in each file before running the queries. The connection parameters are as
follows:

For DB2:

db2 connect to <database> user <username> using <password>

For example:
db2 connect to EDXDB41L user db2inst1 using db2admin

For Oracle:

sqlplus <username>/<password>@<TNS name>

For example:
sqlplus edx1/edxadmin@edxdb

TNS Listener for Oracle (Client/Server)

The TNS Listener has to be configured for Oracle DB in Windows and UNIX platforms for client /
server.

Permissions on UNIX platform

Execution permissions for shell scripts should be granted to run the shell scripts successfully. For
example:

$ chmod 755 *.sh

Auditing Running the Queries in Windows

168 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Running the Queries in Windows

MSSQL

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.bat. This file requires three parameters: Payment ID, From Timestamp, and
To Timestamp. The execution format is:

getAuditDataByPaymentId <Payment ID>,<from date>,<to date>
For example:

getAuditDataByPaymentId 123465564,'2003-01-01’,'2004-12-12'
Where:

Date format is YYYY-MM-DD

Payment ID is numeric

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From Timestamp,
and To Timestamp. The execution format is:

getAuditDataByAccount <account_number>,<from date>,<to date>

For example:
getAuditDataByAccount '123465564','2003-01-01’,'2004-12-12'

Where:

Date format is YYYY-MM-DD

Account Number is a string

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run getAuditDataByPid.bat.
This file requires three parameters: PID, From Timestamp, and To Timestamp. The execution format
is:

getAuditDataByPid <pid>,<from date>,<to date>
For example:

getAuditDataByPid '123465564','2003-01-01’,'2004-12-12'
Where:

Date format is YYYY-MM-DD

PID is a string

Auditing Running the Queries in Windows

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

169

▪

Oracle

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.bat. This file requires three parameters: Payment ID, From Timestamp, and
To Timestamp. The execution format is:

getAuditDataByPaymentId <Payment ID>,<from date>,<to date>
For example:

getAuditDataByPaymentId 123465564,'2003-01-01’,'2004-12-12'
Where:

Date format is YYYY-MM-DD.

Payment ID is numeric

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From Timestamp,
and To Timestamp. The execution format is:

getAuditDataByAccount <account_number>,<from date>,<to date>
For example:

getAuditDataByAccount '123465564','2003-01-01’,'2004-12-12'
Where:

Date format is YYYY-MM-DD

Account Number is a string

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run
“getAuditDataByPid.bat”. This file requires three parameters: PID, From Timestamp, and To
Timestamp. The execution format is:

getAuditDataByPid <pid>,<from date>,<to date>
For example:

getAuditDataByPid '123465564','2003-01-01’,'2004-12-12'
Where:

Date format is YYYY-MM-DD

PID is a string

Auditing Running the Queries in Windows

170 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

DB2

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.bat. This file requires three parameters: Payment ID, From Timestamp, and
To Timestamp. The execution format is:

getAuditDataByPaymentId <Payment ID>,<from date>,<to date>
For example:

getAuditDataByPaymentId 123465564,'2003-01-01’,'2004-12-12'
Where:

Date format is YYYY-MM-DD

Payment ID is not a string it is a numeric value

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From Timestamp,
and To Timestamp. The execution format is:

getAuditDataByAccount <account_number>,<from date>,<to date>
For example:

getAuditDataByAccount '123465564','2003-01-01’,'2004-12-12'
Where:

Date format is YYYY-MM-DD.

Account Number is a string.

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run getAuditDataByPid.bat.
This file requires three parameters: PID, From Timestamp, and To Timestamp. The execution format
is:

getAuditDataByPid <pid>,<from date>,<to date>
For example:

getAuditDataByPid '123465564','2003-01-01’,'2004-12-12'
Where:

Date format is YYYY-MM-DD

PID is a string

Auditing Running the Queries in UNIX

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

171

▪

Running the Queries in UNIX

Oracle

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditInfoByPaymentId.sh. This file requires three parameters: Payment ID, From Timestamp, and
To Timestamp. The execution format is:

$./getAuditInfoByPaymentId.sh <Payment ID> <from date> <to
date>

For example:

$./getAuditInfoByPaymentId.sh 123465564 '2003-01-01’ '2004-
12-12'

Where:

Date format is YYYY-MM-DD

Payment ID is numeric

Arguments are separated by spaces

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
getAuditInfoByAccount.sh. This file requires three parameters: Account Number, From Timestamp,
and To Timestamp. The execution format is:

$./getAuditInfoByAccount.sh <account_number> <from date> <to
date>

For example:

& ./getAuditInfoByAccount.sh '123465564' '2003-01-01’ '2004-
12-12'

Where:

Date format is YYYY-MM-DD

Account Number is a string

Arguments are separated by spaces

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run getAuditInfoByPid.sh.
This file requires three parameters: PID, From Timestamp, and To Timestamp. The execution format
is:

$./getAuditInfoByPid.sh <pid> <from date> <to date>
For example:

Auditing Running the Queries in UNIX

172 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

$./getAuditInfoByPid '123465564' '2003-01-01’ '2004-12-12'
Where:

Date format is YYYY-MM-DD

PID is a string

Arguments are separated by spaces

DB2

Q1: Query Audit data by Payment ID

Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.sh. This file requires three parameters: Payment ID, From Timestamp, and
To Timestamp. The execution format is:

$./getAuditDataByPaymentId.sh <Payment ID> <from date> <to
date>

For example:

$./getAuditDataByPaymentId.sh 123465564 '2003-01-01’ '2004-
12-12'

Where:

Date format is YYYY-MM-DD

Payment ID is not a string it is a numeric value

Arguments are separated by spaces

Q2: Query Audit data by Account

Change your working directory to the location of the query script files, and run
“getAuditDataByAccount.sh”. This file requires three parameters: Account Number, From Timestamp,
and To Timestamp. The execution format is:

$./getAuditDataByAccount.sh <account_number> <from date> <to
date>

For example:

$./getAuditDataByAccount.sh '123465564' '2003-01-01’ '2004-
12-12'

Where:

Date format is YYYY-MM-DD

The Account Number is a string

Arguments are separated by spaces

Auditing Audit Database

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

173

▪

Q3: Query Audit data by PID

Change your working directory to the location of the query script files, and run getAuditDataByPid.sh.
This file requires three parameters: PID, From Timestamp, and To Timestamp. The execution format
is:

$./getAuditDataByPid.sh <pid> <from date> <to date>
For example:

$./getAuditDataByPid.sh '123465564' '2003-01-01’ '2004-12-12'
Where:

Date format is YYYY-MM-DD

PID is a string

Arguments are separated by spaces

Audit Database
The eStatement Manager/Payment database has been updated to support auditing.

Modified Tables
The following tables have the new columns:

 check_payments_history

 creditcard_payments_history

The history tables have all the columns that the base table has (check_payments and
creditcard_payments), plus the following columns:

Column Name Comments

audit_operation Defined in corresponding constant tables

audit_status Defined in corresponding constant tables

audit_reason Description of the audit

job_id Pwc job ID

job_name User given job name (see Job Name Entries)

time_stamp The record insertion time. For example: 1/18/2004 11:47:38 AM

New Tables
All the following tables are based on the table name with "_history" at the end. They have all the
columns in the base table, plus the new columns listed in the preceding table (in the Modified Tables
section) to support audit.

Auditing Audit Database

174 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 payment_accounts_history

 payment_bill_summeries_history

 payment_reminder_history

 recurring_payments_history

payment_email_history

This table is new, and not based on a previous table. It has the following columns, plus the columns
listed in the preceding table (in the Modified Tables section) to support audit.

Column Name Comments

type This indicates the purpose of the email. Possible values are listed
in the table ‘Email Types’ below.

payee id DDN

payer_id User ID

account_numer Check or credit card number

payment_id Payment ID

to_address Receivers email address. If there are multiple addresses, they will
be in semicolon separated.

content Note: Actual length of the email content must be truncated based
on job configuration, “Email Content Audit Length”.

audit_operation Defined in corresponding constant tables

audit_status Defined in corresponding constant tables

audit_reason Description of the audit

job_id Pwc job ID

job_name User given job name (see Job Name Entries)

time_stamp The record insertion time. For example: 1/18/2004 11:47:38 AM
The following table lists the possible values for email types and description.

Email Type Description

0 Unknown email type.

1 A fixed date payment reminder email.

2 Before due date payment reminder email.

3 After due date payment reminder email.

4 Check status notification email.

5 Credit card status notification email.

6 Recurring payment cancelled email.

Auditing Audit Database

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

175

▪

Email Type Description

7 Recurring payment scheduled email.

8 Payment account status notification email.

9 Credit card expiration notification email.

Audit Table Constants
The following table lists the tables that have audit information, and the names of the corresponding
code tables that explain the numeric codes for audit columns. See the tables in your Payment
database for the latest descriptions for each code.

Constant Table name History table name

credit_card_const creditcard_payments_history

check_const check_payments_history

recurring_payment_const recurring_payment_history

payment_email_const payment_email_history

payment_bill_summaries_const payment_bill_summaries history

payment_account_const payment_accounts_history

payment_reminders_const payment_reminders_history

Job Name Entries
User job names are combined with a shortened version of the task name to keep database entries
manageable. The name of the job given by the user is combined with a shortened version of the task
name as follows:

<job name given by the Admin>-<shorten task name>
The following table shows the shortened name for each job.

Task name Shortened task name

CheckSubmitTask ChkSubTsk

CheckUpdateTask ChkUpdTsk

PaymentIntegratorTask PmtIntTsk

CreditCardExpNotifyTask CCExpNTsk

CreditCardSubmitTask CCSubTsk

CreditCardUpdateTask CCUpdTsk

ConfirmEnrollTask ConEnrTsk

Auditing Audit Database

176 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

Task name Shortened task name

NotifyEnrollTask NotEnrTsk

RecurPaymentSchedulerTask RcuSchTsk

RecurPaymentSynchronizerTask RcuSynTsk

PaymentReminderTask PmtRmdTsk

SubmitEnrollTask SubEnrTsk

CustomTask CustomTsk

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

177

14 Implementing a Custom ePayment
Manager Cartridge

Demonstration Cartridge
Payment provides an example cartridge that demonstrates how to implement a custom cartridge. The
code is in /vobs/payment/com/edocs/payment/cassette/demo. There are two cartridges:

demo_CheckCassette.java for check payments

demo_CreditCardCassette.java for credit card payments

The example cartridge delegates all API calls to demo_CheckProcessorProxy.java and
demo_CreditCardProcessorProxy.java to communicate with a dummy payment gateway.

If you configure a DDN to use the demonstration cartridge, then you can make payments against it
from the user interface.

Implementing Custom Credit Card Cartridge
The example cartridge is based on the interface com.edocs.payment.cassette.ICreditCardCassette,
which extends from com.edocs.payment.cassette.IPaymentCassette, which then extends from
com.edocs.payment.cassette.IEnrollmentCassette. In general, you don't need to modify
IEnrollmentCassette, since it defines how to verify a credit card when a user enrolls it through the
user interface.

To implement the cartridge, extend your cartridge implementation from PaymentCassette, and
implement ICreditCardCassette.

public class MyCreditCardCassette extends PaymentCassette
implements ICreditCardCassette

Use demo_CreditCardCassette.java to create your implementation. The three methods you should
consider implementing are:

IPaymentCassette.getDefaultConfigAttributes()

ICreditCardCassette.authorize()

ICreditCardCassette.batchAuthorize()
You must implement IPaymentCassette.getDefaultConfigAttributes() to return a list of
parameters (of type com.edocs.payment.config.Attribute), which are used to configure the cartridge.
Calling IPaymentCassette.getDefaultConfigAttributes() causes those parameters to be
displayed in the Payment Settings of the Command Center, where you can use them to configure the
cartridge. These parameters include the global ones, the ones shared by both credit card and check
types, and the ones specific to this credit card cartridge. Your implementation of
getDefaultConfigAttributes() must at least return the global and shared parameters in that
list. See demo_CreditCardCassette.getDefaultConfigAttributes() in the Payment
JavaDoc, and the file demo_CreditCardAttributes.java for more information.

Implementing a Custom ePayment Manager Cartridge Demonstration Cartridge

178 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

If you wish to support instant payments, then you must implement the
ICreditCardCassette.authorize() method. In this method, you must get the payment
information from the ICreditCard object that is passed in, then send it to the payment gateway.
The payment gateway will send back a response, which you will use to update the status of the
ICreditCard object, as described below:

1. If the payment is authorized, set the status to "settled" by calling:

ICreditCard.setStatus(CreditCardState.SETTLED);
2. If the payment failed authorization, set status to "failed-authorize" by calling:

ICreditCard.setStatus(CreditCardState.FAILED_AUTHORIZE);
You may also want to call ICreditCard.setTxnErrMsg() to log an error message.

3. If there is a system or network error (Payment failed to connect to payment gateway), set the
status to "failed" by calling:

ICreditCard.setStatus(CreditCardState.FAILED);
You may also want to call ICreditCard.setTxnErrMsg() to log an error message.

When you call these methods, Payment updates the credit card information in the database.
The ePayment Manager JSP pages get the credit card information from the user and pass the
information to the cartridge. After the card is processed, ePayment Manager updates
ePayment Manager database.

If your application will support scheduled payments, then you must implement
ICreditCardCassette.batchAuthorize(). This method is called by the
CreditCardSubmit job, which extracts all the scheduled payments from the database and
sends them to the payment gateway. Your cartridge should do the following things:

4. Get the scheduled payments from ePayment Manager database. There are examples of using the
APIs in demo_CreditCardCassette.batchSubmit().

5. Loop through the list of payments and send them to the payment gateway. The status of each
payment should be set the same way as for instant payments. After setting the status and other
information, call the ePayment Manager API to update this credit card back to ePayment Manager
database (note that this is different from Instant payments, because ePayment Manager does not
update the database).

6. Package your custom cartridge.

If you are using ePayment Manager 2.2 with WebSphere, you should package it into
payment_client.jar which is in the lib dir of each ePayment Manager EAR.

If you are using ePayment Manager 3.0 with WebLogic, you should package it into
payment_custom.jar which is in the lib directory of each ePayment Manager EAR.

7. Pre-populate ePayment Manager database.

Tell ePayment Manager about your cartridge implementation class by populating the
payment_gateway_configure table. If your cartridge class name is
com.edocs.ps.MyCreditCardCartridge, and you want to name it “customCCardCartridge”, use:

insert into
payment_gateway_configure(GATEWAY,PAYMENT_TYPE,CARTRIDGE_CLASS)values(‘customCC
ardCartridge’, ‘ccard’, ‘com.edocs.ps.MyCreditCardCartridge’);

Implementing a Custom ePayment Manager Cartridge Demonstration Cartridge

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

179

▪

8. When you go to payment settings of Command Center and configure a DNN for your credit card
cartridge, the JSP page will read the list of available cartridges from this table and allow you to select
one of them.

9. After you finish all the preceding steps, you should create a DDN, configure a cartridge for it and
then make the payments from UI.

Implementing a Custom ePayment Manager Cartridge Demonstration Cartridge

180 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

181

Avoiding Paying a Bill More Than Once

 15 Miscellaneous Customization

By default, ePayment Manager allows a bill to be paid more than once. If you want to ensure that a
bill can only be paid once, you need to add a unique key constraint on the bill_id field of the
check_payments table. You can run PAYMENT_HOME/db/set_unique_bill_id.sql to set the unique
constraint. Note: The bill_id in Payment is the same as the doc ID in eStatement Manager.

If a customer tries to pay a bill that has already been paid (either from the UI or by a previously
scheduled recurring payment) after the unique key constraint has been added, the customer will
receive an error message saying that the bill has been already paid. If the bill is paid from the UI and
a recurring payment tries to pay it again, the payment will fail and an email notification message will
be sent to the customer (if recurring payments are configured for that email notification).

Adding this constraint won’t prevent a customer from making a payment using a bill ID. For example,
a customer can still make a payment directly from the Make Check Payment link, which allows them
make a payment without specifying a bill.

The unique key constraint only informs a customer that the bill has been paid when they try to pay a
bill that has already been paid. If you want to provide additional features, such as disabling the
payment button when the bill has already been paid, you must query the database to get that
information. Be careful when adding extra functions, because performing additional database queries
can affect ePayment Manager performance. Make sure the proper index has been created if you plan
to create a new query.

Handling Multiple Payee ACH Accounts
By default, ePayment Manager only allows one payee (biller) ACH account per DDN, which is limited
by Payment Settings. However, some billers may have multiple ACH accounts and their users will
usually choose to pay to one of the ACH accounts when scheduling a payment. The way that the user
chooses the ACH account to pay with can be based on some business rules added to the JSP. The rest
of this section describes a solution to this problem.

The assumptions for this solution are:

 All ACH accounts are at the same bank, which means they have the same immediate origination
and immediate destination but different company name and company Id.

 The business logic elements required to route the payment transaction to one ACH account versus
another is available or can be made available in the Web application and in the execution context
of a payment plugin.

We also assume there are N ACH accounts and there is one DDN for this biller. We call this DDN the
“Real DDN”. Here are the steps you need to go through:

1. Create a real DDN. You use this real DDN to configure Payment Settings for one of the ACH
accounts.

Miscellaneous Customization Handling Multiple Payee ACH Accounts

182 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

2. Create virtual DDNs: Create N – 1 virtual DDNs, where each of their Payment Settings is configured
to one of the N – 1 ACH accounts, respectively. Make sure the immediate origination and immediate
destination are the same for all N DDNs but their company name and company ID are different.

Note: No indexer jobs run against these virtual DDNs; they are used solely for payment purposes.

3. Customize the UI: Your UI should employ some business logic to determine which DDN (effectively,
ACH account) the payment transaction is to be entered against and set the payee ID of the payment
to that DDN.

4. Run the pmtCheckSubmit Job: Configure a single pmtCheckSubmit job under the real DDN and
configure it to pull payments from the all the N –1 virtual DDNs in addition to the real DDN. The
payments from the same DDN will be under same batch.

5. Run the pmtCheckUpdate Job: pmtCheckUpdate processes the ACH return file. Since return files will
include returns from all DDNs and the pmtCheckUpdate job can process these returns, we only need
to create one pmtCheckUpdate job under the real DDN to process all the returned transactions (even
though the returns may belong to other virtual DDNs).

6. Run the ePayment Manager pmtRecurringPayment Job: A single recurring payment job configured
with the real DDN is required. A Recurring Payment plugin is required to execute the same logic as in
scheduled payment; that is, apply the business rules to determine which DDN (effectively, ACH
account) the recurring payment should be applied against. You should override the plug-ins
preSchedulePayment() method for this purpose.

7. Change the pmtPaymentReminder Job setting: Six payment reminders, one per DDN, must be
configured.

8. Run the pmtARIntegrator Job: The AR_Query.xml file is an XML definition of the database query
that queries the ePayment Manager tables to build the default A/R file. The default query must be
customized to include the virtual DDNs. Since the query is using the DDN reference numbers, you
must pass that info into the query through one of these:

 Directly hard code the DDN references numbers in the query, though this is risky in the sense that
if the DDN is re-created, your query will fail.

 Extend the SampleARIntegrator and overwrite the getMap() method and use
com.edocs.payment.util.DDNUtil to find out the DDN reference number of a DDN, then set it as a
“?” parameter used by the query. In this solution, the DDN names are hard coded but not the DDN
reference numbers.

 Pass in the names of virtual DDNs as a flexible job configuration parameter from the job UI. The
getMap() method can then parse the parameter to get the list of virtual DDNs. This method is
recommended.

9. Add support for the ACH Prenote: If you are using ACH prenote, then you must create
pmtSubmitEnroll, pmtConfirmEnroll and pmtNotifyEnroll jobs for each virtual DDN, which means you
will get N prenote ACH files. pmtSubmitEnroll cannot aggregate prenotes from different DDNs into
one.

 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

183

A
ACH

addenda records, 73
customizing, 118
individual ID, 117, 118, 127
individual name, 118
plugin, 71
return files, 121
templates, 118

addenda records, 73

C
Customer Self-Service, 9

E
enrollment

email template, 91
IAccount, 23
JSP pages, 34

I
IAccount

adding custom fields, 36
and external databases, 38
and

IUserAccountAccessor,
28

and web.xml, 68
details, 24
enrollment overview, 23

IPaymentAccountAccessor
and external databases, 39
details, 30
enrollment, 23
web.xml, 67

IUserAccountAccessor

and external databases, 38
and IAccount, 24
details, 28
implementing, 38
web.xml, 67

P
Payment EAR

beans, 13
contents, 12

payments reminders
template, 84, 89

plugin
creating for credit cards, 74
for recurring payments, 76
overview for credit cards,

73
overview for reminders, 75

plug-in
creating for ACH, 72
overview for ACH, 71

pmtCheckSubmit
bean, 15
job email template, 112
plugin, 71

pmtCheckUpdate
bean, 16

pmtConfirmEnroll
bean, 16

pmtCreditCardExpNotifiy
user email template, 116

pmtCreditCardExpNotify
job email template, 112

pmtCreditCardSubmit

Index

Index Handling Multiple Payee ACH Accounts

184 Customizing and Extending Oracle Siebel ePayment Manager Version 4.7

▪

bean, 15
pmtNotifyEnroll

bean, 16
pmtPaymentReminder

bean, 17
job email template, 111

pmtRecurPayment
bean, 17
email template, 97

pmtRecurringPayment
job email template, 109

jobemail template, 108
pmtSubmitEnroll

bean, 17
job email template, 113
matching DDNs, 36

R
recurring payments

email template, 97, 103
plugin, 76

reminders
plugin, 75

	Contents
	1 Preface
	About Customer Self Service and eaSuite™
	About This Guide
	Related Documentation

	2 Introduction
	Architecture of ePayment Manager
	What’s in the ePayment Manager Package
	Major ePayment Manager Beans

	3 ePayment Manager Enrollment
	Overview
	Default ePayment Manager Enrollment Models
	Single-DDN Model
	Multiple-DDN Model
	Choosing an Enrollment Model

	ePayment Manager Enrollment Architecture
	ePayment Manager Enrollment API

	Major Enrollment Objects and Relationships
	IAccount
	IPaymentAccountManager
	IPayUserAccount
	IUserAccountAccessor
	IPaymentAccountAccessor
	IPayUserAccountAccessor
	Payment Servlet

	Customizing ePayment Manager Enrollment
	Customizing ePayment Manager Enrollment JSP Pages
	Integrating ePayment Manager with Other User Account Enrollment Databases
	Integrating ePayment Manager with Other Payment Account Enrollment Databases

	4 Recurring Payments
	Overview
	Recurring Payment UI
	Insert Recurring Payment
	Update Recurring Payment
	Recurring Payment Attached Accounts
	Deleting a Recurring Payment

	Recurring Payment Back End Job
	Recurring Payment Scheduling
	Recurring Payment FAQ

	5 Sample User Interface
	Customizing the ePayment Manager Front-End
	Customizing web.xml
	Customizing the ePayment Manager JSPs

	6 ePayment Manager Plug-ins
	Plug-In Customization
	ACH Check Submit Plug-in
	VeriSign Credit Card ePayment Manager Plug-in
	ePayment Manager Reminder Plug-in
	Recurring Payment Plug-in
	Recurring Payment Synchronizer Task Plug-in
	Recurring Payment Scheduler Task Plug-in

	7 Customizing ePayment Manager Template Files
	Overview
	Customizing Email Templates
	Payment Pre Due Reminder Template
	Payment Fixed Reminder Template
	Enrollment Notification Template
	Recurring Payment Notification Templates
	Payment Notification Template
	Credit Card Expiration Notification Template

	Understanding the Payment Template Engine
	Customizing ACH Templates
	Matching a Check in the ACH Return to the Database
	Customizing the ACH Prenote File
	Upper Case in an ACH File

	Customizing CheckFree CDP Files

	8 Generating Accounts Receivables (A/R) Files
	Overview
	Customizing arQuery.xml
	Query Case Study

	Customizing arFlat_template.txt
	Customizing arXML_template.xml
	Customize arXML_template.xml and Use XSLT to Generate XML/Flat AR File

	Re-implement IARPaymentIntegrator
	Select Only Check or Credit Card Payments
	Compiling and Packaging a Custom IARIntegrator
	A/R Filenames
	Single Payment Type

	9 Packaging ePayment Manager Custom Code
	Overview

	10 Debugging ePayment Manager
	Overview
	Viewing WebLogic Logs
	View logs from eStatement Manager Command Center
	Turning On the ePayment Manager Debug Flag

	11 Terminology
	Table of Terms

	12 Plug-in Sample Code
	AchCheckSubmitPlugIn.java
	PaymentReminderPlugIn.java
	RecurringPaymentPlugIn.java
	VerisignCreditCardSubmitPlugIn.java
	AddendaCheckSubmitPlugIn.java
	SampleRecurringPlugIn.java

	13 Auditing
	Jobs Audited
	UI Actions Audited
	Example of UI Audit Flow

	Query Files
	Running Audit Queries
	Query Setup
	Windows Configuration
	UNIX Configuration

	Running the Queries in Windows
	MSSQL
	Oracle
	DB2

	Running the Queries in UNIX
	Oracle
	DB2

	Audit Database
	Modified Tables
	New Tables
	Audit Table Constants
	Job Name Entries

	14 Implementing a Custom ePayment Manager Cartridge
	Demonstration Cartridge
	Implementing Custom Credit Card Cartridge

	15 Miscellaneous Customization
	Avoiding Paying a Bill More Than Once
	Handling Multiple Payee ACH Accounts

	Index

