Oracle® Retail Store Inventory Management
Operations Guide
Release 12.0.0.1IN

November 2008

ORACLE



Oracle® Store Inventory Management Operations Guide, Release 12.0.0.1IN

Copyright © 1998, 2008, Oracle. All rights reserved.
Primary Author: Uma Shankar

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third

party.



Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server — Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning and Oracle Retail Demand Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by Business Objects Software Limited (“Business Objects”) and imbedded in
Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.






Contents

Preface ... —————— ix
AUAIEIICE ..o ix
Related DOCUMENLS..........coiviiiiiiiniiiiiiiiii e ix
CUSLOMET SUPPOTL...oiviiiiiiiiiiiiiic e X
Review Patch Documentation ... X
Oracle Retail Documentation on the Oracle Technology Network..........c.ccccccciiiinncne. X
CONVENEIONS ...ttt e st s X

T INtrOAUCTION ... 1
OVEIVIEW ..ottt 1
Technical Architecture OVEIVIEW ..o 2
SIM'’s Integration Points into the Retail Enterprise...........cccoooovocueiiiiiiiiiniiiciicee 3

2 Backend System Configuration .........cccccciiiiiscmniniisnninnssnss s 5
Configuring SIM Across Time ZONES...........cccciiiviiinininiriniiiiiiiiiiiinee s 5
Supported Oracle Retail Products/Environments...........ccccoooioiiiiiiiiiiiccieeeae 5
Configuration FAles ..........couiiiiii 6

batch_db.cfg — Database connection info for batch programs.............ccooeeoeeiennnne. 6
bofactory.cfg — Business Object Factory implementation..............cccoovorieveieininiennns 6
cache.cfg — Server side business object cache settings ............c.cocoevverniinieiiicinnnnnn, 6
config.cfg — Configuration cache timeouts...........c.ccoeevvieieiiciiiicec e, 6
currency.cfg — Default currency code for SIM ..........cccccciiiiinnnnnncccccccceene 6
dao.cfg — Data access object implementations ............cccccocievvvnncccceciireenene 7
integration.cfg — Integration (RIB and RSL) settings..........cccccceevvrvrrcciciciicincncnnes 7
jdbc.cfg — Database configuration.............ococeieieiiieiiiiiec e, 7
jndi.cfg — INDI SEtHNES ....cocvviiiiiiiiiiciciccc e 7
ldap.cfg — Configuration for connecting to an LDAP server ..........cccccccciiiiincnnne. 8
LOGA]XINL ... s 8
1OZEING.CEG oo s 8
MNESSAZING.CEG 1.oneeiviiiiictct e 8
POSMOASIlePArSer.CEG .....ourviiiiiiiicicc e 8
Pricechange.cfg........oiuiiiiiii e 8
PINHNG.CEG oo 8
reporting.cfg — Configuration for printing reports ..........c.cccevvvveccccciinnnenenes 8
RIMIS.CEG et 8
FINSUPLOAA.CEG ...t 9
SEQUEINCING.CE ..t s 9
server_master.cfg — Server initialization configuration...........c.cceceeeiiiiiinnnnne 9
services.cfg — Service implementation classes ..o 9
sim_batch.cfg — Batch configuration parameters............ccccoooeeiiiiiiiiii 9
telephone.cfg — Telephone format configuration ...........cccoeeiiiiii 9
wireless_client_master.cfg — Wireless Server Configuration............cccccceviiiiinnnne 9



WiTElESS_SETVICES.CEG... vt 9

retek/jndi_providers.xml - JNDI Configuration File.........ccccccovniiiiiiinnnnnne. 9
retek /rules_sim.xml — Business Rules configuration .............cccccceeivvnnninicennes 10
retek /rib/injectors.xml — RIB subscriber configuration.............cccocovveerirninnnnnn. 10
Logging INformation ..o 10
Default Location of Log Files ... 10
Changing Logging Levels..........cccooviiiiiiiiiiiiiiiiccces 11
3 Technical Architecture............ s 13
OVEIVIEW ..ottt 13
SIM Technology StACK ........c.cciuiiiiiriiicccccccc e 13
Advantages of the Architecture..........ccoooeoiiiiiii e 13
SIM Technical Architecture Diagrams and Description...........ccoocoeeveiiniccicneieieieicnnes 14
CLENE TIET .ttt 14
MIAAIE TIET ..ot 14
Database TIer ... 16
Distributed TOPOLOZY ..o 16
A Word About Activity LOCKING ......cccoviviiiiiiiiiiiiiii s 18
4 SIM Integration — TEChNICAl ......ccccceriiiiiiinrirr s s 19
RIB-based INteGration..........cccccueuiuiiiiiiiiiiiiiicccc e 19
The XML Message Format.........cccccocoiviniiiiiiiiiiiiiincccccccccneeenes 20
SIM Message Subscription Processing...........ccocoeeueveiviicieeiiininccceeeeeccenennes 21
RIB Message Publication Processing...........cccccoceueueieiiimcicicieiciicccieeeeecce s 21
RIB HOSPItal.....cuiuiiiii e 21
Subscribers Mapping Table ...........ccoooiiiiiii e 21
Publishers Mapping Table.............cccooiiiiiiiiniiec 24
RSL-based INteration ............ccceueirieiieiiiiesci s 25
Web Service-based Integration............cocoeeueieieioiiiiicicicc e 26
File-based INteGration............cccoiimiuiiiiiiiiniiiicc e 26
5 SIM Integration — Functional...........ccccciriiiiinininninsss s 27
OVEIVIEW ..ottt 27
System to System SIM Dataflow ...........ccoooiiiiiiiiiiic 28
Functional Descriptions of RIB MeSSages.........ccccceueivieurumieieieiniiiicieieieeeecicie e 29
From SIM to the Warehouse Management System (WMS) .........cccccoovvriiiinininnnn. 32
From the WMS t0 SIM......ccoiiiiiiiiiiiiiiiisss s 32
From a Point of Sale System to SIM ..........cccooouviiiiiiniiiiic 32
From the Merchandising System t0 SIM ........c.ccccccciinnnnnnnicccccccereeeennes 32
From SIM to the Merchandising System ... 33
From SIM to the Merchandising System via the Stock Upload Module in the
Merchandising SYStemML.........cccovviviiiiiiiiiiiii s 34
From SIM to the Reporting System .........cccccoviiiiiiiiniiiiiiiis 34
From SIM to a Price Management System (such as RPM) ..o 34

From a Price Management System (such as RPM) to SIM ........c.ccccccevevinnninnnnes 34



Multiple Maximum Retail Price (MMRP)........cccccoiiiiiicccccccceenreeeeees 34

Tax India LOCaliZation ........ccovviiuimiiiiiiiiiiccc e 35
6 BatCh ProCesses........coiiinsscssrstntnt s 37
Batch Processing OVEeIVIEW ...t 37
Running a Batch Process .........ccccvruiiieiiiiiciicic s 37
Summary of Executable Shell Scripts, Batch Files, Java Packages ............cccccocovuriurnnnes 38
Scheduler and the Command Line.........ccoooevvviiiiiniiiiies 39
Return Value Batch Standards ..o 39
BatCh IOZGINE .....vvuiiiiiiiic e 39
Functional Descriptions and Dependencies............c.ccocuirnnnniniccccicicinnrrneenes 40
Batch Process SCheduling............ccocciiiiiiniiiinincas 44
BatCh DIEtails .....veuiieiiiiiiciieiciece et 44
Activate PriceChanges Batch............ccocoviiiiiiiiiiiiiicccccces 44
CleanUpPPIcKLiSt ......c.oviiiicicieiee e 45
CloseProdGroupSchedule Batch............coooiiiiiie 46
DataSeedTaxpayerType Batch ... 46
DataSeedTaxRegion Batch.........c.coooiiiiiiiiii e, 46
DeactivateltemLocMRP Batch..........ccccooviiiiiiiii 46
DexnexFileParser Batch...........ccooiiiiiniiiiiiiiii 47
ExtractStockCount Batch ..........ccccoiiiiiiiiiiiii 47
IemMREQUESE ..o 48
LateSalesInventory AdjustmentPublishJob...........ccccccoviiiiiiiiiiiiiines 48
ProblemLineStockCount Batch ...........coviviiiiiiiiiiiiiiiiiiiicccccas 48
PurgelnactiveMRP Batch .........c.ccooiiiiiiiiiiiiiiiiiiicccccce 49
ResaFileParser Batch...........cccccciiiiiiiiiiiiiiiiicccce 49
ResaOpenStkCnt Batch ..........oouoiii e 52
ReturnNotAfterDateAlert Batch...........ccocooviiiiiii, 53
ThirdPartyStockCountParser Batch ...........coooiiiii 53
ThirdPartyStockCount Integration Assumptions ..........c.ccocevvieiniceniicieiiciccnnn, 54
UpdateItemLOCMRP.........coooiiiiiiiieie s 55
Wastagelnventory Adjustments Batch ..........ccooooiiii 55
Wastagelnventory AdjustmentPublishJob ... 55
SIM Purge Batch ProcessOVErVIEW ..........cccccuciiiininininnrieeicccccecccecseeeeeennes 55
PurgeAll BatCh .......c.ooiiiiiiiicc e 56
PurgeAdHocStockCount Batch..........couiveiiiiiiiiicces 56
PUrGEAUAILS. ... 57
PurgeDSDreceivings Batch............cccooiiiiiiiiiiiiiccca 57
Purgelnventory Adjustments Batch.............ooooiii 57
PurgeltemRequests Batch ..o 58
PurgeltemTickets Batch ..........cooooiiiii e 58
PurgeLocking Batch...........coooviiiiiiiiiii 58
PurgePickList BatCh..........coooiiiiiiiicc 58

vii



viii

PurgePriceChanges Batch...........cocooooiiiiiiiiiiiirrecccccccc e 59

PurgePriceHistories BatCh ..o 59
PurgeReceivedTransfers Batch ...........ccocooiiiiiiiiiiiicccccs 59
PurgeStockCounts Batch............ccooiiiiiiiiiiiiiiiiice 60
PurgeStockReturns Batch...........cccccoiiiiiiiniiiiiiiiicccs 60
PurgeWHDReceivings Batch...........cccccooiiiiii, 60
Supporting Files Created or Modified for the Batches ..., 60

A Note About Multi-Threading and Multiple Processes ............cccccoeeiiinnininnnnnns 62
Batch Programs that Create Threads...........cccoovvviviiiiiiiniica 62

A Appendix: Stock Count File Layout Specification ..........ccccccemminsnmnnnsnninnsscennnns 63
rmsupload.cfg Configuration File ... 63
Stock Count Results Flat File Specification.............cccoovieiiniiiiciiecccee 63

B Appendix: Batch File Layout Specifications........c.ccccuveniiismnnsmnnscssnsninsnssesssssees 65
Flat File Used in the ResaFileParser Batch Process ........ccccceevevvevievieniecenieeeeeeeeveeenenns 65
Flat File Used in the DexnexFileParser Batch Process ..........cccoevveveniieieneereeeereeveeenenns 66
File Structure — 894 DeLiVery ..o 66

Flat File Used in the ThirdPartyStockCountParser Batch Process ..........cccccccevururrunnnes 69
RGIS File Layout Definition ..........ccoeviiiiiiiiiiiiinrneeccccccccceeceeeeeenenes 69

RGIS Sample File Data .......ccccciiiiiiiiiiiiicciccee e 70



Audience

Preface

Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:

= Key system administration configuration settings
= Technical architecture

= Functional integration dataflow across the enterprise

Anyone who has an interest in better understanding the inner workings of the Oracle
Retail Store Inventory Management (SIM) system can find valuable information in this
guide. There are three audiences in general for whom this guide is written:
= System analysts and system operation personnel:
= who are looking for information about SIM’s processes internally or in relation to
the systems across the enterprise.
=  who operate SIM on a regular basis.
= Integrators and implementation staff who have the overall responsibility for
implementing SIM into their enterprise.

* Business analysts who are looking for information about processes and interfaces to
validate the support for business scenarios within SIM and other systems across the
enterprise.

Related Documents

For more information, see the following documents in the Oracle Retail Store Inventory
Management Release 12.0.0.1 documentation set:

=  Oracle Retail Store Inventory Management Release Notes

=  Oracle Retail Store Inventory Management Installation Guide

= Oracle Retail Store Inventory Management Implementation Guide
=  Oracle Retail Store Inventory Management Data Model

= Oracle Retail Store Inventory Management Licensing Information
*  Oracle Retail Store Inventory Management Online Help

*  Oracle Retail Store Inventory Management User Guide

=  Oracle Retail Store Inventory Management Handheld Terminal Quick Reference
Guide

= Oracle Retail Store Inventory Management Data Migration Guide

Operations Guide ix



Customer Support

Customer Support

https:/ /metalink.oracle.com

When contacting Customer Support, please provide the following:

Product version and program/module name

Functional and technical description of the problem (include business impact)
Detailed step-by-step instructions to re-create

Exact error message received

Screen shots of each step you take

Review Patch Documentation

For a base release (".0" release, such as 12.0), Oracle Retail strongly recommends that you
read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on new
information and code changes that have been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network

In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site:

http:/ /www.oracle.com/technology /documentation/oracle_retail.html

Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions

a. Navigate: This is a navigate statement. It tells you how to get to the start of
the procedure and ends with a screen shot of the starting point and the
statement “the Window Name window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample

It is used to display examples of code

A hyperlink appears like this.

x Oracle Retail Store Inventory Management


https://metalink.oracle.com/�
http://www.oracle.com/technology/documentation/oracle_retail.html�

1

Overview

Introduction

This operations guide serves as an Oracle Retail Store Inventory Management (SIM)
reference to explain ‘backend’ processes. SIM is designed as a standalone application that
can be customized to work with any merchandising system.

SIM empowers store personnel to sell, service, and personalize customer interactions by
providing users the ability to perform typical back office functionality on the store sales
floor. The results are greatly enhanced customer conversion rates, improved customer
service, lower inventory carrying costs, and fewer markdowns. SIM delivers the
information and flexible capabilities that store employees need to maintain optimal
inventory levels and to convert shoppers into buyers.

The SIM solution performs the following:

Improves perpetual inventory levels by enabling floor-based inventory management
through handheld devices and store PCs.

Minimizes the time to process receipt and check-in of incoming merchandise.
Receives, tracks, and transfers merchandise accurately, efficiently, and easily.
Reduces technology costs by centralizing hardware requirements.

Guides users through required transactions.

Allows customizations to the product through an extensible technology platform.
The retailer’s modifications are isolated during product upgrades, lowering the total
cost of ownership.

Operations Guide 1



Technical Architecture Overview

Technical Architecture Overview

SIM’s robust distributed computing platform enables enhanced performance and allows
for scalability.

SIM has a client tier, a server tier, and a data tier. The n-tier architecture of SIM allows
for the encapsulation of business logic, shielding the client from the complexity of the
back-end system. The separation of presentation, business logic, and data makes the
software cleaner, more maintainable, and easier to modify. Any given tier need not be
concerned with the internal functional tasks of any other tier.

One of SIM’s most significant advantages is its flexible distributed topology. SIM offers
complete location transparency because the location of data and/or services is based
upon the retailer’s business requirements, not upon technical limitations. The server is

not deployed within the store. The application’s clients talk to the server across the wire
in almost real time.

The following diagram offers a high-level conceptual view of the main components and
integration points of the SIM architecture. For a detailed description of this diagram, see
“Chapter 4 — Technical Architecture”.

Handheld dients EI PC clients Web Semvice
clients

socket

communication EJ clls Wieh service

irterface
Oracle Application
Server
RIB
Wireless Y —

Setver ElB SIM server "]

—¥

(stamdalone [ | calls application
|
Java process) L RSL
Flatfile
JBC inport
JDBC LDap
Flatfile
/ \ export
R SiM LDAP
database thtabase directory

a. SIM’s Technical Architecture

2 Oracle Retail Store Inventory Management



SIM’s Integration Points into the Retail Enterprise

SIM’s Integration Points into the Retail Enterprise

The following high-level diagram shows the overall direction of the data among systems
and products across the enterprise. For a detailed description of this diagram, see

“Chapter 6 — Functional Integration Interface Dataflows”.

=

b. SIM-related dataflow across the enterprise

Operations Guide 3






2

Backend System Configuration

This chapter of the operations guide is intended for administrators who provide support
and monitor the running system.

The content in this chapter is not procedural, but is meant to provide descriptive
overviews of key system parameters, logging settings, and exception handling.

Check RK_CONFIG table for the existence of values ENABLE_INDIA_LOCALIZATION
and ENABLE_TAX_LOCALIZATION.These should have got populated as part of the
installation.

Configuring SIM Across Time Zones

For many SIM retailers, a corporate server is located in a different time zone than the
stores connected to that corporate server. When a transaction is processed at these
respective locations, there is timestamp information associated with these transactions.
SIM has the ability to reconcile these time zone differences.

System administration options allow you to specify the time zone to use when
timestamps are published to or received from the Oracle Retail Integration Bus (RIB). The
system options are called ‘Enable GMT for...”, with options for Inventory Adjustments,
Price Changes, Store Orders, Store Transfers, Warehouse Transfers, Receiving, Direct
Deliveries, Vendor ASN, RTV, Item Requests, Sales Data, Foundation Data, Dex/Nex,
Stock Counts, and Third Party Stock Counts.

= If Enable GMT is set to ‘yes,” timestamps are published to the RIB in GMT, and
incoming timestamps in RIB messages will be read as GMT.

= If Enable GMT is set to 'no,” timestamps are published to the RIB in the store time
zone, and incoming timestamps in RIB messages will be read as the store time zone.

The PA_RTL_STR table contains the field RK_TIMEZONE, which holds the time zones
for each store. An administrator (or DBA) should determine the correct time zone, and
enter this information into the table. As stated above, once retailers have specified the
local (store) time, they can specify which time zone, GMT or store, to use for timestamp
publication to the RIB.

Note: A complete list of time zones has been compiled and is
packaged with the release of this version of SIM, and can
also be found in the SIM database view
TIME_ZONE_NAMES_V.

Supported Oracle Retail Products/Environments

SIM is compatible with RMS and RPM. This functionality is described in greater detail in
the integration chapters.

For information about requirements for SIM’s client, server(s), and database, see the SIM
Installation Guide.

Operations Guide 5



Configuration Files

Configuration Files

Key client-defined configurations for SIM are described in this section. The system
parameters contained in these file are also detailed. Many parameters have been omitted
from this section because retailers should not have to change them.

Note that within these files (and thus in some of the examples from those files below), a #
sign that precedes a value in the file signifies that what follows is a comment and is not
being utilized as a setting.

Some settings in the files are configurable. Thus, when retailers install SIM into an
environment, they must update these values to their specific settings.

batch_db.cfg — Database connection info for batch programs
This file is no longer used.

bofactory.cfg — Business Object Factory implementation

This file contains a property that defines the implementation of the BOFactory interface.
This implementation is responsible for instantiating new Business Objects in the SIM
code. A retailer may need to change this value if customizing SIM. This file contains the

following keys:
= FACTORY_IMPL - the fully-qualified class name of the class implementing the
BOFactory interface

cache.cfg — Server side business object cache settings

This file contains settings for server-side caches of business objects. Currently there is

only one cache defined: merchandise hierarchy. The value in this file determines how

many milliseconds the cache will hold objects before refreshing itself. Setting this value

to zero will disable the cache. This file contains the following keys:

=  MDSE_HIERARCHY_CACHE - the number of milliseconds before the cache of
merchandise hierarchy objects needs to refresh itself

config.cfg — Configuration cache timeouts

This file contains times for the client to refresh its configuration cache. All settings are
given in milliseconds. When a client needs to read configuration settings, it will first look
in this cache. If the cache is empty or expired, the client will call the server to find the
current configuration settings. Otherwise the cached settings are used. This file contains
the following keys:

= CONFIG_REFRESH_RATE - timeout for system configuration parameters

= STORE_CONFIG_REFRESH_RATE - timeout for store-specific configuration
parameters

= TRANSLATION_REFRESH_RATE - timeout for holding translations on the server.
Translations displayed on the wireless client are held in this cache.

= WIRELESS_ITEM_REFRESH_RATE - timeout for storing differentiators for items on
stock counts displayed on the wireless client.

currency.cfg — Default currency code for SIM

This configuration file defines what the default currency code for SIM is. This currency
code will only be used when currency information is not available for something in SIM,
which is a rare situation. This file contains the following key:

6 Oracle Retail Store Inventory Management



Configuration Files

= BASE_CURRENCY_TYPE - The currency code for the default currency. If none is
given, the base currency defaults to “USD”.

dao.cfg — Data access object implementations

This file defines the implementation classes for all data access objects in SIM. Each value
is the fully-qualified class name of the implementation class for that key. If a retailer
customizes SIM, they may need to change some of the class names in this file.

integration.cfg — Integration (RIB and RSL) settings

This file contains settings related to SIM integration via RIB and RSL. This file contains
the following keys:

= ribMessagePublishEnabled - if set to “true”, SIM will actually publish messages to
the RIB during processing. If set to “false”, SIM will not publish messages to the RIB,
but will instead log the messages to the SIM server log file. This is intended to be
used only for troubleshooting purposes. For an integrated production environment,
the value should be “true”.

= rslCallsEnabled - if set to “true”, SIM will actually make RSL calls during processing.
If set to “false”, SIM will not allow the user to access areas of the application that call
RSL. This is intended to be used only for troubleshooting purposes. For an
integrated production environment, the value should be “true”.

= *_PUB - the various keys that end in “_PUB” are the class names of classes that
implement interfaces to publish messages to the RIB. If a retailer customizes SIM,
they may need to change some of the class names in this file.

jdbc.cfg — Database configuration

This file currently contains only one parameter, LOCK_WAIT. The value of
LOCK_WAIT is the number of seconds that SIM should wait when trying to acquire a
database lock.

delineates how the system uses the persistence layer. Key RPOS-related values within the
file are shown below. Note that some values in the file may be intended for development
purposes only or be related to another product (SIM, for example).

Note: in versions of SIM prior to 11, database connection information for the SIM server
were stored in this file. As of SIM 12 this is no longer the case. Database connection
information is contained in the data source configured in the Oracle Application Server.

jndi.cfg — JNDI settings
This file contains JNDI configuration settings. In the SIM server, the only key used is:
= DB_JNDI_NAME - the name of the data source SIM will use to get database
connections

However, java processes that are clients to the SIM server (the wireless server and the

java batch programs), the other keys are used to determine the JNDI information for

looking up the SIM server’s E]Bs:

= INITIAL_CONTEXT_FACTORY - the name of the factory used to get an initial JNDI
context. This should not be changed.

* OBJECT_FACTORY_PACKAGES - the java packages containing object factories.
This should not be changed.

Operations Guide 7



Configuration Files

= NAMING_SERVER_URL - the JNDI URL for the naming server. This should be
configured to point at the SIM server’s JNDI URL. This should have been set by the
SIM installer.

= SECURITY_PRINCIPAL - the username to connect to the Oracle Application
Server’s JNDI context. This should have been set by the SIM installer.

= SECURITY_CREDENTIALS — the password to connect to the Oracle Application
Server’s JNDI context. This should have been set by the SIM installer.

Idap.cfg — Configuration for connecting to an LDAP server

This file contains various configuration parameters for connecting to an LDAP server.
All values should have been set by the SIM installer.

log4j.xml
This contains configuration about what information gets logged and where it gets logged
to. See the Logging section in this chapter for more information.

logging.cfg

This file is no longer used.

messaging.cfg

This file is no longer used.

posmodfileparser.cfg
This file is no longer used.

pricechange.cfg

This file contains user information for connecting to Oracle Retail Price Management
(RPM). This information does not need to correspond to actual RPM users; it is used
only for logging. The file contains the following keys:

=  RPM_USER_NAME - the user name to connect to RPM with
= RPM_USER_FIRST_NAME - the first name of the user connecting to RPM
= RPM_USER_LAST_NAME - the last name of the user connecting to RPM

printing.cfg

This file is no longer used.

reporting.cfg — Configuration for printing reports

See the Reporting chapter for more information about this file.

RMS.cfg

The RMS DB schema credentials settings should be present in the RMS configuration.
The right hand side values should reflect what you entered at the time of installation.
This file will be used when Calculate Tax is performed. This is when a JDBC call is made
to RMS for which the credentials are looked up from this config file.

8 Oracle Retail Store Inventory Management



Configuration Files

rmsupload.cfg
This file is no longer used.

sequencing.cfg
This file is no longer used.

server_master.cfg — Server initialization configuration
This file contains information used by the server upon startup. It contains the following
key:
= INITIALIZE - a comma-delimited list of classes that implement

oracle.retail.sim.closed.common.Initializer. These classes are run when the SIM
server is started.

services.cfg — Service implementation classes

This file contains entries for every service in SIM that define the client-side, downtime,
and server-side implementations of a given service interface. If a retailer customizes
SIM, they may need to modify this file.

sim_batch.cfg — Batch configuration parameters

This file contains various parameters that control aspects of SIM’s batch processes. See
the Batch Processing chapter for more information.

telephone.cfg — Telephone format configuration

This file contains various formatting styles for phone numbers in the United States,
Germany, and the United Kingdom. There are many different formats included for each
country. A retailer could modify this file to add their own format if desired. See the file
itself for more detailed documentation.

wireless_client_master.cfg - Wireless Server Configuration
This file contains configuration used by the Wireless Server. The only key used is:

= INITIALIZE - a comma-delimited list of classes that implement
oracle.retail.sim.closed.common.Initializer. These classes are run when the Wireless
server is started.

wireless_services.cfg

This file is no longer used.

retek/jndi_providers.xml - JNDI Configuration File

SIM uses this file as part of its RSL-based integration with the Oracle Retail Price
Management (RPM) and Oracle Retail Merchandising System (RMS) applications, and
for connecting to the Retail Integration Bus (RIB). For more information about this
integration, see the integration chapters of this document. The JNDI providers file
contains JNDI naming URL information for the other Oracle Retail applications to which
SIM makes remote calls.

Operations Guide 9



Logging Information

retek/rules_sim.xml - Business Rules configuration

This file defines business rules that are run in SIM. If a retailer customizes SIM, this file
may need to be modified.

retek/rib/injectors.xml — RIB subscriber configuration

This file defines the classes that are used in SIM to handle messages coming in over the
RIB. A class is defined for each family type/message type combination that is supported
by SIM. If a retailer customizes SIM, this file may need to be modified. For more
information see the Integration chapters of this document, and the RIB documentation.

Logging Information

One of the first places to look for information concerning a problem in SIM is in the log
files. Stack traces and debugging information can be found within the log files.

The log files are configured to roll over once they reach a certain size (currently 10 MB).
Once a log file reaches the configured size, it will be renamed (e.g. sim.log will be
renamed to sim.log.1) and new log messages will be written to a new file (e.g. sim.log). If
there are already rolled-over logs, they will be also be renamed (e.g. sim.log.1 becomes
sim.log.2, sim.log.2 becomes sim.log.3, etc). Only ten files are kept — if ten files already
exist and the current file rolls over, the oldest log file is deleted.

For information about logging related to the DexnexFileParser batch process, see
“Chapter 6 — Batch Processes.”

Default Location of Log Files

Server Log Files

The log file for the server is located at:

<sim-oc4j-instance>/sim-home/log/sim. log

It can be changed by changing the value of the “File” param in the “sim.appender”
appender in sim-home/files/prod/config/log4j.xml.

The log file for the java batch programs is located at:
<sim-oc4j-instance>/sim-home/log/sim-batch. log

It can be changed by changing the value of the “File” param in the “sim.appender”
appender in sim-home/batch-config/log4j.xml.

Client Log Files

Client-side log files are put in a directory called "log", which is put wherever "user.dir" is
defined in your system. For example, if you launched the web start client with Firefox,
"user.dir" is the directory where Firefox is installed. This means (depending on where
you have Firefox installed) your logs could be in: C:\Program Files\Mozilla
Firefox\log\sim.log.

To find the location of “user.dir”, double-click on the status bar at the bottom of the SIM
PC client to bring up the “Client Information” dialog. Click on the “Version” tab; one of
the entries in the table is for the System Property “user.dir”. The value in the “Version”
column shows the location of “user.dir” on the current client’s system.

10 Oracle Retail Store Inventory Management



Logging Information

Changing Logging Levels
Sometimes it is useful to change the amount of information that the SIM server logs.
There are two ways to change logging levels — editing the log4j.xml file, or using the
Oracle Enterprise Manager Application Server Control user interface.

Editing log4j.xml

log4j.xml is in the SIM OC4] instance, in sim-home/files/prod/config/log.xml. It is
possible to change the level of any logger in the file. It is also possible to add new loggers
if you want a certain SIM class to log more information. For more detail about loggers
and logging levels, see Log4] documentation

(http:/ /logging.apache.org/log4j/docs/documentation.html).

Note: After changing a log level in log4j.xml the SIM server
must be bounced before the change will take effect.

Using Oracle Enterprise Manager Application Server Control

Sometimes it is useful to change a logging level without bouncing the SIM server. This
can be done by using the Oracle Enterprise Manager Ul. There is an MBean defined in
the SIM application that lists all currently defined loggers and allows you to type in a
new value for those loggers. This MBean also allows you to create new loggers.

To find this MBean, launch the Oracle Enterprise Manager Application Server Control
and log in. The list of OC4] instances on this server should be displayed. Click on the
OC4] instance for SIM. Now click on the Applications tab. This should show you the
SIM and SIM-CLIENT applications. Click on the “Application Defined MBeans” icon for
the SIM application. This will display the Application MBeans defined by SIM. Click on
the “LogLevelMBean” in the left frame.

Operations Guide 11


http://logging.apache.org/log4j/docs/documentation.html�




3

Technical Architecture

This chapter describes the overall software architecture for SIM, offering a high-level
discussion of the general structure of the system, including the various layers of Java
code. This information is valuable when the retailer wishes to take advantage of SIM’s
extensible capabilities and write its own code to fit into the SIM system.

Overview

SIM Technology Stack

SIM has an n-tier architecture consisting of a client tier, a server tier, and a data tier. The
client tier contains a PC client (a Java desktop application) and handheld devices. The
server tier contains the SIM server (deployed as a J2EE application inside the Oracle
Application Server) and the Wavelink server (a standalone server for the handheld
devices). The data tier consists of an Oracle 10g database and an LDAP directory.

Advantages of the Architecture

SIM’s robust distributed computing platform enables enhanced performance and allows
for scalability.

The n-tier architecture of SIM allows for the encapsulation of business logic, shielding the
client from the complexity of the back-end system. Any given tier need not be concerned
with the internal functional tasks of any other tier.

The following list is a summary of the advantages that accompany SIM’s use of an n-tier
architectural design.

= Scalability: Hardware and software can be added to meet retailer requirements for
each of the tiers.

* Maintainability: The separation of presentation, business logic, and data makes the
software cleaner, more maintainable, and easier to modify.

= Platform independence: The code is written once but can run anywhere that Java can
run.

= Cost effectiveness: Open source market-proven technology is utilized, while object-
oriented design increases reusability for faster development and deployment.

= Ease of integration: The reuse of business objects and function allows for faster
integration to enterprise subsystems. N-tier architecture has become an industry
standard.

* High availability: Middleware is designed to run in a clustered environment or on a
low-cost blade server.

* Endurance: Multi-tiered physically distributed architecture extends the life of the
system.

*  Flexibility: The system allocates resources dynamically based on the workload.

Operations Guide 13



SIM Technical Architecture Diagrams and Description

SIM Technical Architecture Diagrams and Description

This section provides a high-level overview of SIM’s technical architecture. The diagrams
below illustrate the major pieces of the typical three-tiered SIM implementation.
Descriptions follow both diagrams for the numbered items.

Java process)

Handheld clients PC clients Weh_Service . .
clients Client Tier
socket b ]
comm unication eh zervice
E.JB callz interface
Oracle Application
- Server
| RIB
Wireless ¥
Server EJB SIM server
(standalone callz application

] RSL Server Tier

Flatfile
import
Flat file
export

JDEC  DBAC

\

|-

i
U B D Data Tier
BMS SIM

database database directory

LDAP

Client Tier

Middle Tier

c. SIM’s technical architecture

SIM can be deployed on a wide variety of clients, including a desktop computer, a hand-
held wireless device, and so on. The GUI is responsible for presenting data to the user
and for receiving data directly from the user through the ‘front end’. The presentation
tier only interacts with the middle tier (as opposed to the database tier). To optimize
performance, the SIM PC front end facilitates robust client-side processing.

The PC side of SIM is built upon a fat client architecture, which was developed using
Swing, a toolkit for creating rich graphical user interfaces (GUIs) in Java applications.

The handheld communication infrastructure piece, known as the Oracle Retail Wireless
Foundation Server, enables the handheld devices to communicate with the SIM server.
The handheld devices “talk’ to the Oracle Retail Wireless Foundation Server, which in
turn makes calls as a client to the SIM server.

By providing the link between the SIM client and the database, the middle tier handles
virtually all of the business logic processing that occurs within SIM’s multi-tiered
architecture. The middle tier is comprised of services, most of which are related to
business functionality. For example, an item service gets items, and so on. Within SIM,
business objects are beans (that is, Java classes that have one or more attributes and
corresponding set / get methods) that represent a functional entity. Most business objects

14 Oracle Retail Store Inventory Management



SIM Technical Architecture Diagrams and Description

have very few operations; in other words, business objects can be thought of as data
containers, which by themselves have almost no business functionality.

Although the PC client and the handheld client use the middle tier’s functionality
differently, the middle tier is the same for both clients. For example, the handheld device,
used ‘on the fly’, performs frequent commits to the database, while the PC performs
more infrequent commits. The application is flexible in that it accommodates the different
styles of client-driven processing.

The middle tier is designed to operate in a ‘stateless’ manner, meaning it receives
whatever instruction it needs to access the database from the client and does not retain
any information between client calls. Further, SIM has failover abilities; if a specific
middle tier server fails, processing can roll over to another SIM server for continued
processing.

If the workload warrants, SIM can be vertically scaled by adding additional application
servers. Because SIM servers are running on multiple application servers in a stateless
system, work can be seamlessly distributed among the servers. The result of this feature
is that SIM clients do not need to know that additional application servers have been
added to help with the workload. SIM application servers can contain multiple
containers, each of which is related to a unique Java Virtual Machine (JVM). Each
container corresponds to a specific SIM instance. Introducing multiple instances of a
container allows SIM retailers to more effectively distribute the processing among several
containers and thereby horizontally scale the platform. As the request load for a service
increases, additional instances of the service are automatically created to handle the
increased workload.

The middle tier consists of the following core components, which allow it to make
efficient and reliable calls to the SIM database:

» Server services contain the pertinent business logic.
= DAO objects handle database interaction.

= Databeans contain the SQL necessary to retrieve data from and save data to the
database.

Note: There is at least one databean for every table and view
in the database, but there may be more, used for different
specific purposes.

Data Access Objects (DAO)

DAO:s are classes that contain the logic necessary to find and persist data. They are used
by services when database interaction is required.

Java Database Connectivity (JDBC)

DAOs communicate with the database via the industry standard Java database
connectivity (JDBC) protocol. In order for the SIM client to retrieve the desired data from
the database, a JDBC connection must exist between the middle tier and the database.
JDBC facilitates the communication between a Java application and a relational database.
In essence, JDBC is a set of application programming interfaces (API)s that offer a
database-independent means of extracting and/or inserting data to or from a database.
To perform those insertions and extractions, SQL code also resides in this tier facilitating
create, read, update, and delete actions.

Operations Guide 15



Distributed Topology

Database Tier

Note: The SIM data model includes some tables and
columns that are SIM-specific and some that derive their
names from the Association for Retail Technology Standards
(ARTS) data model. Note, though, that SIM uses but does
not fully conform to the ARTS standard.

The database tier is the application’s storage platform, containing the physical data used
throughout the application. The database houses data in tables and views; the data is
used by the SIM server and then passed to the client. The database also houses stored
procedures to do data manipulation in the database itself.

Distributed Topology

One of SIM’s most significant advantages is its flexible distributed topology. SIM offers
complete location transparency because the location of data and/or services is based
upon the retailer’s business requirements, not upon technical limitations. SIM’s client
server communication is an EJB call (which uses RMI). Because the server does not have
to be in the same store as the in-store clients, the clients log onto the server ‘over the
wire’.

SIM’s client code makes use of helper and framework classes that contain the logic to
look up remote references to EJBs on the server and make calls to them. These helper
and framework contain no business logic but contain only enough code to communicate
with the server.

For example, if a helper class is called by the client to perform the method ‘update
shipment’, the helper class appears to have that capability, though in reality it only
behaves as a passage to the EJB remote reference, which is looked up from the server.
The EJB remote reference communicates across the network with the server to complete
the business-logic driven processing. The server performs the actual ‘update shipment’
business logic and returns any return values or errors to the client.

Connectivity between the SIM client and the middle tier is achieved via the Java Naming
and Directory Interface (JNDI), which the SIM client accesses with the necessary IP
address and port. JNDI contains the means for the client to look up services available on
the application server.

The following diagram illustrates SIM’s deployment.

16 Oracle Retail Store Inventory Management



Distributed Topology

Headquarters

In-Store
Clients

Handheld
device

d. SIM’s deployment

Operations Guide 17



A Word About Activity Locking

A Word About Activity Locking

Activity locking has been designed to be controlled from within SIM. The following
example illustrates the logic of activity locking.

A user becomes involved with a warehouse delivery that includes containers with
multiple items in containers; that is, a significant amount of back and forth processing
between screen and server is occurring. From the GUI, a call is made to the activity lock
that instructs the system that the user is working with the warehouse delivery. If some
other user has the lock, the system asks the user whether he or she wishes to break it and
take over. A “yes’ response to the prompt implies that former owner of the lock left the
lock dangling without a good reason (left to get lunch and so on). A ‘no’ response to the
prompt implies that the former owner of the lock continues to legitimately need it in
place in order to finish processing.

18 Oracle Retail Store Inventory Management



4

SIM Integration — Technical

This chapter is divided into the following four sections that address SIM’s methods of
integration:

*  Oracle Retail Integration Bus (RIB)-based integration
* Oracle Retail Service Layer (RSL)-based integration

=  Web Service-based integration

* File-based integration

Each section includes information concerning the architecture of the integration method
and the data that is being passed back and forth. For additional functional descriptions of
the dataflow, see “Chapter 5 — SIM Integration — Functional.”

The base version of SIM does not make any direct JDBC call to RMS, but it communicates
with the external systems like RMS and RPM via RIB or RSL. The Shipping and
Receiving functionality captures the tax amount from RMS to SIM as per India
localization. The actual tax calculation logic sits in the RMS application because it
depends on many parameters like region, location, and so on. These parameters are
available only from RMS side, so SIM passes the line items to RMS to calculate the tax
amount and return the same to SIM.

Java classes are created for the newly created database Types (DB Objects). These class
files will be added under %OC4]_SERVER_HOME %/jdbc/lib during installation. The
OC4] server uses this jar file when it creates the objects through the server side
classloader when the Calculate Tax button is hit.

RIB-based Integration

SIM can integrate with Other Retail products (such as RMS, RWMS) through Oracle
Retail Integration Bus (RIB). RIB utilizes publish and subscribe (pub/sub) messaging
paradigm with some guarantee of delivery for a message. In a pub/sub messaging
system, an adapter publishes a message to the integration bus that is then forwarded to
one or more subscribers. The publishing adapter does not know, nor care, how many
subscribers are waiting for the message, what types of adapters the subscribers are, what
the subscribers’ current states are (running/down), or where the subscribers are located.
Delivering the message to all subscribing adapters is the responsibility of the integration
bus.

See the latest Oracle Retail Integration Guide and other RIB-related documentation for
additional information.

Operations Guide 19



RIB-based Integration

SIM
SIM Injector
RIB-RPM RPM
Injectors.xml
publish
Injector class |« subscribe v subscribe
RIB-SIM RIB’s JMS
Middle tier
Business logic tier; > subscribe 7y subscribe
A
SIM publisher : RIB-RMS RMS
publish
ublish -
Middle tier P
(Business logic tier)
publisher
class

e. SIM/RIB Integration Diagram

The XML Message Format

As shown by the diagram below, the messages to which SIM subscribes are in an XML
format and have their data structure defined by document type definitions (DTDs) or
XML schema documents.

Application

I
Y

@ Oracle Retail Integration Bus >

1eW.0}

TAX Ul eled

18W.0}

TAX Ul eled

I
\

Oracle Retail Store Inventory Management (SIM)

f. Data across the RIB in XML format

20 Oracle Retail Store Inventory Management



RIB-based Integration

SIM Message Subscription Processing

SIM application subscribes to the JMS topics published by other Oracle Retail
Application published to RIB JMS. For each J2EE based integrated Oracle Retail
Application (such SIM, RPM, etc ...), RIB and its corresponding RIB-<app> component
are running on the application server (e.g. Oracle Application Server) to handle the
publishing and subscribing messages through RIB.

On a subscribe operation, the MDB is responsible for taking the XML message from the
JMS and calling the appropriate RIB binding code for processing each XML message.

The RIB Binding code is responsible for calling the Subscribing Java application, the
corresponding Injector class in the subscribing J2EE application is specified in
injectors.xml file. The subscribing application component applies the application specific
business logic and injected into the application. If an exception is returned from the
subscribing application, the transaction is rolled back and the XML message is sent to the
RIB Error Hospital. RIB application utilize container manages the transaction and both
the JMS and database resources are included in a two-phase commit XA compliant
transaction.

See the latest Oracle Retail Integration Guide and other RIB-related documentation for
additional information on message subscription process.

RIB Message Publication Processing

RIB Hospital

SIM publishes message (payload) to RIB’s JMS through RIB-SIM component, RIB Binding
subsystem converts the payload object into an XML string. The object on the Binding
subsystem is put into a RIB envelope called RibMessage. The data within RibMessage
eventually becomes a message on the RIB. A Publisher class in the Binding subsystem is
called to write the data to the RIB’s J]MS queue. On a regular basis, the RIB engages in
polling the JMS queue, searching for the existence of a message. A publishable message
that appears on the JMS queue is processed.

See the latest Oracle Retail Integration Guide and other RIB-related documentation for
additional information on message publishing process.

The RIB error hospital is a set of Java classes and database tables located within the SIM
application but ‘owned’ by the RIB. The RIB error hospital is designed to segregate and
trigger re-processing for messages that had some error with their initial processing. The
intent is to provide a means to halt processing for messages that cause errors while
allowing continued processing for the ‘good” messages. The RIB hospital references
tables within SIM (for example, RIB_MESSAGE, RIB_MESSAGE_FAILURE,
RIB_MESSAGE_ROUTING_INFO). For more information about the RIB hospital, see the
latest RIB Technical Architecture Guide, RIB Operations Guide, or RIB Hospital
Administration online help.

Subscribers Mapping Table

The following table lists the message family and message type name, the document type
definition (DTD) that describes the XML message, and the subscribing classes that
facilitate the data’s entry into the application’s middle tier. These classes are described in
the code as ‘injectors’. For additional information, see the latest Oracle Retail Integration
Guide and other RIB documentation.

Operations Guide 21



RIB-based Integration

Family Type Payload Subscribing class (‘injector’)
ASNIN ASNOUTCRE ASNInDesc ASNInCreatelnjector

ASNIN ASNINDEL ASNInRef ASNInRemovelnjector

ASNIN ASNINMOD ASNInDesc ASNInModifyInjector
ASNOUT ASNOUTCRE ASNOutDesc ASNOutCreatelnjector
CLRPRCCHG CLRPRCCHGCRE ClrPrcChgDesc ClrPrcChgCreatelnjector
CLRPRCCHG CLRPRCCHGMOD ClrPrcChgDesc ClrPrcChgModifyInjector
CLRPRCCHG CLRPRCCHGDEL ClrPrcChgRef ClrPrcChgRemovelnjector
DIFFS DIFFCRE DiffDesc DifferentiatorCreatelnjector
DIFFS DIFFDEL DiffRef DifferentiatorRemovelnjector
DIFFS DIFFMOD DiffDesc DifferentiatorModifyInjector
ITEMS ITEMBOMCRE ItemBOMDesc ItemBOMCreatelnjector
ITEMS ITEMBOMDEL ItemBOMRef ItemBOMRemovelnjector
ITEMS ITEMBOMMOD ItemBOMDesc ItemBOMModifyInjector
ITEMS ITEMCRE ItemDesc ItemCreatelnjector

ITEMS ITEMDEL ItemRef ItemRemovelnjector

ITEMS ITEMHDRMOD ItemHdrDesc ItemModifyInjector

ITEMS ITEMSUPCRE ItemSupCtyDesc ItemSupCreatelnjector

ITEMS ITEMSUPCTYCRE ItemSupCtyRef ItemSupCtyCreatelnjector
ITEMS ITEMSUPCTYDEL ItemSupCtyRef ItemSupCtyRemovelnjector
ITEMS ITEMSUPCTYMOD ItemSupCtyDesc ItemSupCtyModifyInjector
ITEMS ITEMSUPDEL ItemSupRef ItemSupRemovelnjector
ITEMS ITEMSUPMOD ItemSupDesc ItemSupModifylInjector

ITEMS ITEMUPCCRE ItemUPCDesc ItemUPCCreatelnjector

ITEMS ITEMUPCDEL ItemUPCRef ItemUPCRemovelnjector
ITEMS ITEMUPCMOD ItemUPCDesc ItemUPCModifyInjector
ORDER POCRE PODesc PurchaseOrderCreatelnjector
ORDER PODEL PORef PurchaseOrderRemovelnjector
ORDER PODTLCRE PODesc PurchaseOrderDetailCreatelnjector
ORDER PODTLDEL PORef PurchaseOrderDetailRemovelnjector
ORDER PODTLMOD PODesc PurchaseOrderDetailModifyInjector
ORDER POHDRMOD PODesc PurchaseOrderModifyInjector
PRCCHGCONF PRCCHGCONFCRE  PrcChgConfDesc ~ PrcChgConfCreatelnjector
PRMPRCCHG PRMPRCCHGCRE PrmPrcChgDesc PrmPrcChgCreatelnjector
PRMPRCCHG PRMPRCCHGMOD PrmPrcChgDesc PrmPrcChgModifyInjector
PRMPRCCHG PRMPRCCHGDEL PrmPrcChgRef PrmPrcChgRemovelnjector
REGPRCCHG REGPRCCHGCRE RegPrcChgDesc RegPrcChgCreatelnjector

22 Oracle Retail Store Inventory Management



RIB-based Integration

Family Type Payload Subscribing class (‘injector’)
REGPRCCHG REGPRCCHGMOD RegPrcChgDesc RegPrcChgModifylInjector
REGPRCCHG REGPRCCHGDEL RegPrcChgRef RegPrcChgRemovelnjector
RCVUNITADJMOD RCVUNITADJDTL RevUnitAdjDesc RevUnitAdjModInjector
RTVREQ RTVREQCRE RTVReqgDesc RTVReqCreatelnjector
RTVREQ RTVREQMOD RTVReqgDesc RTVReqModifyInjector
RTVREQ RTVREQDEL RTVReqRef RTVReqRemovelnjector
RTVREQ RTVREQDTLCRE RTVReqgDesc RTVReqgDetailCreateInjector
RTVREQ RTVREQDTLDEL RTVReqRef RTVReqDetailRemovelnjector
RTVREQ RTVREQDTLMOD RTVReqgDesc RTVReqDetailModifyInjector
SEEDDATA DIFFTYPECRE DiffTypeDesc DifferentiatorTypeCreatelnjector
SEEDDATA DIFFTYPEDEL DiffTypeRef DifferentiatorTypeRemovelnjector
SEEDDATA DIFFTYPEMOD DiffTypeDesc DifferentiatorTypeModifyInjector
STOCKORDER SOCRE SODesc StockOrderCreatelnjector
STOCKORDER SODTLCRE SODesc StockOrderCreatelnjector
STOCKORDER SODTLDEL SORef StockOrderRemovelnjector
STOCKORDER SODTLMOD SODesc StockOrderModifyInjector
STOCKORDER SOHDRDEL SORef StockOrderRemovelnjector
STOCKORDER SOHDRMOD SODesc StockOrderModifyInjector
STORES STORECRE StoresDesc StoreCreatelnjector

STORES STOREDEL StoresRef StoreRemovelnjector

STORES STOREMOD StoresDesc StoreModifyInjector

VENDOR VENDORADDRCRE  VendorAddrDesc  SupplierAddrCreatelnjector
VENDOR VENDORADDRDEL  VendorAddrRef SupplierAddrRemovelnjector
VENDOR VENDORADDRMOD VendorAddrDesc  SupplierAddrModifyInjector
VENDOR VENDORCRE VendorDesc SupplierCreatelnjector
VENDOR VENDORDEL VendorRef SupplierRemovelnjector
VENDOR VENDORHDRMOD  VendorHdrDesc SupplierModifyInjector

WH WHCRE WHDesc WareHouseCreatelnjector

WH WHDEL WHRef WareHouseRemovelnjector
WH WHMOD WHDesc WareHouseModifylInjector

Operations Guide 23



RIB-based Integration

Publishers Mapping Table

This table illustrates the relationship among the message family, message type and the
DTD/payload object that the application creates. For additional information, see the
latest Oracle Retail Integration Guide and other RIB documentation.

Family Type Payload
ASNOUT ASNOUTCRE ASNOutDesc
DSDRECEIPT DSDRECEIPTCRE DSDReceiptDesc
INVADJUST INVADJUSTCRE InvAdjustDesc
INVREQ INVREQCRE InvRegDesc
PRCCHGREQ PRCCHGREQCRE PrcChgReqDesc
RECEIVING RECEIPTCRE ReceiptDesc
RECEIVING RECEIPTMOD ReceiptDesc

RTV RTVCRE RTVDesc
SOSTATUS SOSTATUSCRE SOStatusDesc
STKCOUNTSCH STKCOUNTSCHCRE StkCountSchDesc
STKCOUNTSCH STKCOUNTSCHDEL StkCountSchRef
STKCOUNTSCH STKCOUNTSCHMOD StkCountSchDesc

24 Oracle Retail Store Inventory Management



RSL-based Integration

RSL-based Integration

RSL handles the interface between a client application and a server application. The client
application typically runs on a different host than the service. However, RSL allows for
the service to be called internally in the same program or Java Virtual Machines the client
without the need for code modification. All services are defined using the same basic
paradigm -- the input and output to the service, if any, is a single set of values. Errors are
communicated via Java Exceptions that are thrown by the services. The normal behavior
when a service throws an exception is for all database work performed in the service call
being rolled back’s works within the J2EE framework. All services are contained within
an interface offered by a Stateless Session Bean. To a client application, each service
appears to be merely a method call.

= RSLis used to integrate SIM with RPM for future retail price inquiry and price
change requests. RSL for RPM runs within the RPM application.

= RSLis used to integrate SIM with RMS for store order inquiry and creation. RSL for
RMS runs as a standalone service which is part of the Retail Integration application.

For more information on RSL, see the Service Layer Programmer’s Guide and Service
Layer Installation Guide which is part of Oracle Retail Integration application.

RSL services used by SIM:

Service name Description

PriceInquiryService This service, provided by RPM, allows an inquiring
system to request the effective retail for an item at a
specified location on a given date. RPM provides the
retail value and indicates whether the value is
promotional, clearance or regular.

PriceChangeService This service allows for the creation of a price change in
RPM for a permanent, clearance or promotion.

StoreOrderServices SIM makes a call to RMS for the store order creation and

inquiry. In addition to queries, there are requests/replies
for the creation, modification, and deletion of store

orders.

Payloads used in RSL services:

RSL Service Payload
StoreOrderServices LocPODesc
StoreOrderServices LocPODtl
StoreOrderServices LocPOHdrsRsp
StoreOrderServices LocPOHdrsRspDtl
PriceInquiryService PrcInqReq
PricelnquiryService PrcInqReqDtl
PriceChangeService PrcChgDesc
PriceChangeService RegPrcChgDtl
PriceChangeService PrmPrcChgSmp

Operations Guide 25



Web Service-based Integration

RSL Service Payload
PriceChangeService PrmPrcChgDtl
PriceChangeService ClrPrcChgDtl

For specific information about the request and response processing associated with the
services below, see the latest Message Families and Types Report, which is part of Oracle
Retail Integration documentation.

Web Service-based Integration

SIM web service is deployed as a separate web-module within the SIM application. The
document literal type (Doc-Lit) message format is used to define the messages. The SIM
web service provides the external application exchange information with SIM. Currently
SIM web service only provides one operation; Store Inventory Lookup.

File-based Integration
Currently SIM has three file-based integrations:
= Sales data: SIM imports sales data through flat file from Sales Audit System.

= Third Party Stock Count: SIM import third party stock count file and upload the files
to RMS for future processing

= Direct EXchange (DEX) and Network Exchange (NEX) Receiving
See Chapter 6 — Batch Processes for additional details on SIM file-based integrations.

26 Oracle Retail Store Inventory Management



9

SIM Integration — Functional

This chapter provides a functional overview of how SIM integrates with other systems
(including other Oracle Retail systems).

Overview

The first section in this chapter provides you with a diagram illustrating the various
Oracle Retail products and databases that SIM interfaces with as well as the overall
dataflow among the products. The accompanying explanations are written from a
system-to-system perspective, illustrating the movement of data.

Operations Guide 27



System to System SIM Dataflow

System to System SIM Dataflow

B — DEXNEX

> SIM

RWMS  «+—p—"—> RIB %— ] RPM

RWMS
i
,,,,,,,,,,,,,,,,,, -
Allocation |« > RMS - ReSA
i
i
\ Y
RelM RDW ORPOS
Legend

— Write
<+—> Read/Write
- » Flat File
<«—» RSL

For information about the technical means through which the interfaces pass data, see
“Chapter 3 — Technical Architecture,” “Chapter 4 — SIM Integration — Technical,” and

“Chapter 6 — Batch Processes.”

28 Oracle Retail Store Inventory Management



Functional Descriptions of RIB Messages

Functional Descriptions of RIB Messages

The table below briefly describes the functional role that messages play with regard to
SIM functionality. The table also illustrates whether SIM is publishing the message to the
RIB or subscribing to the message from the RIB. For additional information, see the latest
Oracle Retail Integration Guide and other RIB documentation.

Functional area Subscription/

publication

Integration to
Products

Description

ASN in

ASN out

Diff IDs

DSD receipts

Items

Item/location

Inventory
adjustments

Subscription

Publication

Subscription

Publication

Subscription

Subscription

Publication

RWMS, Vendor

(external)

RMS, RWMS

RMS

RMS

RMS

RMS

RMS

These messages contain
inbound shipment
notifications from both
vendors (PO shipments) and
warehouses (transfer and
allocation shipments).

These messages are used by
SIM to communicate store-
to-warehouse transfers
(returns to warehouse) to
both RMS and RWMS. These
messages are also used to
communicate store-to-store
transfers to RMS.

These messages are used to
communicate differentiator
IDs from RMS to SIM.

These messages are used by
SIM to communicate the
receipt of a supplier delivery
for which no RMS purchase
order had previously existed.

These are messages
communicated by RMS that
contain all approved items
records, including header
information, item/supplier,
and item/supp/country
details, and item/ticket
information.

These are messages
communicated by RMS that
contain item/location data
used for ranging of items at
locations and
communicating select
item/location level
parameters used in store
orders.

These messages are used by
SIM to communicate
inventory adjustments. RMS
uses these messages to adjust
inventory accordingly.

Operations Guide 29



Functional Descriptions of RIB Messages

Functional area Subscription/
publication

Integration to
Products

Description

Inventory Publication
request

Price change Subscription

Price Inquiry RSL calls

Purchase orders ~ Subscription

Receipts Publication

Receiver unit Publication

adjustments

Return to Publication
vendor

RTV request Subscription

30 Oracle Retail Store Inventory Management

RMS

RPM

RPM

RMS

RMS

RMS

RMS

RMS

These messages are used by
SIM to communicate the
request for inventory of a
particular item. RMS uses
this data to fulfill the
requested inventory through
either auto-replenishment or
by creating a one-off
purchase order/transfer.

These messages facilitate
price changes for permanent,
clearance and promotions.

This service, provided by
RPM, allows an inquiring
system to request the
effective retail for an item at
a specified location on a
given date. RPM provides
the retail value and indicates
whether the value is
promotional, clearance or
regular.

These messages contain
approved, direct to store
purchase orders. SIM uses
these to receive direct
deliveries against.

These messages are used by
SIM to communicate the
receipt of an RMS purchase
order, a transfer, or an
allocation.

These messages are used by
SIM to communicate any
adjustments to the receipts of
purchase orders, transfers,
and allocations. These
messages are part of the
RECEIVING message family
(receiving unit adjustments
only use the RECEIPTMOD
message type).

These messages are used by
SIM to communicate the
shipment of a return to
vendor from the store.

These are messages
communicated by RMS that
contain a request to return
inventory to a vendor.



Functional Descriptions of RIB Messages

Functional area Subscription/
publication

Integration to
Products

Description

Seed data Subscription

Stock count Publication
schedules

Stock order Publication
status

Stores Subscription

Store ordering Publication

Transfer request Subscription

Warehouses Subscription

RMS

RMS

RMS

RMS

RMS

RMS

RMS

These messages
communicated by RMS
contain differentiator type
values.

These messages are used by
SIM to communicate unit
and value stock count
schedules to RMS. RMS uses
this schedule to take an
inventory snapshot of the
date of a scheduled count.

These messages are used by
SIM to communicate the
cancellation of any requested
transfer quantities. For
example, the merchandising
system can create a transfer
request for 90 units from a
store. If the sending store
only ships 75, a cancellation
message is sent for the
remaining 15 requested
items.

These are messages
communicated by RMS that
contain stores set up in the
system (RMS).

These messages are used by
SIM to communicate the
request for inventory of a
particular item.

These messages are
communicated by RMS and
contain a request to transfer
inventory out of a store.
Upon shipment of the
requested transfer, SIM uses
the ASN Out message to
communicate what was
actually shipped. In addition,
SIM uses the stock order
status message to cancel any
requested quantity that was
not shipped.

These are messages that are
communicated by RMS that
contain warehouses set up in
the system (RMS). SIM only
gets physical warehouse
records.

Operations Guide 31



Functional Descriptions of RIB Messages

Functional area Subscription/ Integration to Description
publication Products
Vendor Subscription RMS, external These are messages
(financial) communicated by RMS

containing vendors set up in
the system (RMS or external
financial system).

From SIM to the Warehouse Management System (WMS)

Returns to warehouse via the RIB, SIM sends outbound ASN data to facilitate the
communication of store-to-warehouse shipment data to the WMS.

From the WMS to SIM
The following WMS data is published via the RIB for SIM subscription:

Outbound advance shipping notice (ASN) data converted to inbound ASN data

to facilitate warehouse-to-store shipments, the WMS provides SIM outbound ASN
data. ASNs are associated with shipments and include information such as to and
from locations, container quantities, and so on. Note that outbound ASN data is
converted to inbound ASN data by the RIB for SIM’s subscription purposes. The data
is the same, but the format is slightly different. The conversion takes place so that
ASN inbound data can be the same among applications.

From a Point of Sale System to SIM

The following data is sent from a point of sale (POS) system through ReSA (optional) to
SIM:

Sales and returns data
SIM uses the data to update the SOH for store/item combinations. In other words,
SIM learns about inventory movement (what is sold and what is returned).

From the Merchandising System to SIM
The following merchandising system data is published via the RIB for SIM subscription:

PO data
SIM allows the user to receive against direct store delivery (DSD)-related PO data.
DSD occurs when the supplier drops off merchandise directly in the retailer’s store.

External store orders
SIM is able to create purchase orders directly in RMS through the SIM GUI.

Item data (sellable and non-sellable items)

SIM processes only transaction-level items (SKUs) and below (such as UPC), so there
is no interface for parent (or style) level items. See the RMS documentation for more
information about its three-level item structure. In addition to approved items
records, the item data includes including header information, item/supplier, and
item/supp/country details. Merchandise hierarchy data is an attribute of the item
data to which SIM subscribes.

Location data (updated store and warehouse location information)

Item-location data
SIM uses this data for ordering parameters (for example, allowing the user to
determine whether an item is a store order type item).

Diff data

32 Oracle Retail Store Inventory Management



Functional Descriptions of RIB Messages

Supplier and supplier address data

Transfer request data
Corporate users can move inventory across stores via RMS transfer requests.

Return requests
The merchandise system sends return requests from a store to a warehouse (RTW)
and/or to a vendor (RTV). The store itself ships the goods.

From SIM to the Merchandising System

The following SIM data is published via the RIB for the subscription of the
merchandising system:

Receipt data
By sending the receipt data, SIM notifies the merchandising system of what SIM
received. Types of receipt data are related to the following:

= Transfers

= Existing (merchandising system) POs associated with DSDs
= New POs associated with DSDs

* Merchandising system (such as RMS) purchase orders

RTV and RTW data
SIM notifies the merchandising system about returns to vendors and returns to
warehouses.

Return to warehouse data
SIM uses ASN out data to notify the merchandising system about returns to
warehouses.

Store ordering data

SIM sends this data to communicate a request for inventory of a particular item. The
merchandising system can use this data to calculate a ‘store order’ replenishment
type item’s recommended order quantity (ROQ).

Stock count schedule data

The merchandising system uses this data to help maintain the synchronicity of the
inventory levels in SIM and the merchandising system. Once the merchandising
system has the stock count schedule data, SIM and the merchandising system
perform a snapshot count at the same time. The store does a physical count and
uploads the results, and the merchandising system compares the discrepancies.

Price change request data
A SIM user is able to request price changes, along with effective dates, from the price
management system.

Operations Guide 33



Multiple Maximum Retail Price (MMRP)

From SIM to the Merchandising System via the Stock Upload Module in the
Merchandising System

Stock count results

Once a stock count is authorized and completed, SIM creates a flat file and stages it to a
directory. Using the flat file generated by SIM, the merchandising system’s stock upload
module retrieves and uploads the physical stock count data. The merchandising system
uses this data to help maintain the synchronicity of the inventory levels in SIM and the
merchandising system.

From SIM to the Reporting System

Data for reports

SIM has the ability to produce reports which retailers can customize to reflect the unique
requirements of their business. To facilitate reporting functionality, the report tool used
by SIM is Oracle BI Publisher.

From SIM to a Price Management System (such as RPM)

Request for approval of price change data

Regular, clearance, and simple fixed price promotion price change data are sent to RPM.
RPM performs a conflict check and returns a validation status (successful or not
successful). If the validation was successful, the price change is returned immediately to
SIM and persisted.

From a Price Management System (such as RPM) to SIM

Price change data:
RPM sends price change data to SIM. This type of price change data can originate at a
corporate level or at the store level.

Multiple Maximum Retail Price (MMRP)

The MMRP indicator determines whether SIM is enabled for MMRP localization. It also
defines the number of days to hold the inactive multiple MRPs before they are purged by
a batch file.

Item master is enhanced to capture three new attributes: Multiple MRP Indicator, MRP-
based cost indicator, and Retail Less than MRP, all of which would have been interfaced
by RMS during item creation.

Item-Loc creation/modification in RMS will publish the primary MRP and
corresponding unit retail to SIM. However, SIM will capture any new Item-Loc MRPs
and corresponding unit retail as part of price change updates from RPM.

SIM supports capturing of new/existing MRP during the DSD receipt process for new
purchase orders as well as RMS-created purchase orders. In both cases, the receipt
message publishes the MRP captured at line item level to RMS.

SIM also supports the capture of MRP during RTV for all return line items. This should
be interfaced to RMS as part of RTV message. However, RTW will not capture MRP at
return line item and will continue to work as base.

34 Oracle Retail Store Inventory Management



Tax India Localization

Tax India Localization

The System Admin option in SIM determines if SIM is enabled for localization around
tax. If this is not enabled, the application will work as base.

Tax-related setup data from RMS, like tax regions and taxpayer type, are downloaded
and are used to validate the tax region and taxpayer type entry on the Shipping and
Receiving Screens (DSD receiving and Return-to-Vendor).

Tax is calculated for all shipping and receiving transactions using an online call to RMS
tax calculation function. An error message is displayed if the network access to RMS is
unavailable.

Supplier’s tax region and taxpayer type are captured during the DSD receipt process for
SIM-created purchase orders. It also calculates and displays the tax component at line
level and receipt total level. This information is interfaced to RMS as part of receipt
message and also printed on DSD reports.

For purchase orders created in RMS, it interfaces the supplier’s tax region and taxpayer
type to SIM. SIM calculates and displays the tax component at line level and receipt total
level. This information is printed on DSD reports and also interfaced to RMS as part of
the receipt message.

SIM supports capture of vendor’s tax region and taxpayer type for SIM created Return-
to-Vendor (RTV) and calculates and displays the tax component at line and header level.
This information is interfaced to RMS as part of Return-to-Vendor message and also
printed on RTV report.

For RMS created RTV, RMS interfaces vendor’s tax region and taxpayer type as part of
RTV message. SIM calculates and displays the tax component at line and header level
and prints the same. It also interfaces to RMS as part of RTV message.

SIM calculates and display the tax component at each line level and header level for all
Return to Warehouse (RTW)/Transfer dispatches. The same will be printed on

RTW /Transfer reports and interfaced to RMS. This is true for both RMS created and SIM
created RTW /Transfer.

Operations Guide 35






6
Batch Processes

This chapter provides the following:

= An overview of SIM’s batch processing

= A description of how to run batch processes, along with key parameters

= A functional summary of each batch process, along with its dependencies

= A description of some of the features of the batch processes (batch return values,
restart and recovery)

Batch Processing Overview

SIM batches are executed as java batch processes. Most of the java batch processes
engage in some primary processing of their own. However, the majority of work is done
by services running on the SIM server; the java batch processes make remote calls to the
server to access these services.

Note the following characteristics of SIM’s Java batch processes:
= They are not accessible through a graphical user interface (GUI).
= They are scheduled by the retailer.

= They are designed to process large volumes of data, depending upon the
circumstances and process.

Running a Batch Process

SIM batch programs are installed under SORACLE_HOME/j2ee/ <sim-oc4j-
instance>/sim-home/bin, SIM batch processes are run from this location through
executable shell scripts (.sh) files.

Oracle Retail provides the shell scripts (.sh files). They perform the following internally:
=  Set up the Java runtime environment before the Java process is run.
=  Start the Java batch process.

For more information about batch usage, see batch design and usage sections in this
chapter.

Operations Guide 37



Summary of Executable Shell Scripts, Batch Files, Java Packages

Summary of Executable Shell Scripts, Batch Files, Java Packages

The following table describes the executable shell scripts, batch files, Java packages

Executable shell script

Batch program executed

ActivatePriceChanges.sh
CleanupPickList.sh
CloseProdGroupSchedule.sh

DexnexParser.sh

ExtractStockCount.sh

ItemRequest.sh

LateSalesInventory AdjustmentPublis
hjob.sh

ProblemLineStockCount.sh
PurgeAdHocStockCount.sh
PurgeAll.sh

PurgeAudits.sh
PurgeDSDReceivings.sh
Purgelnventory Adjustments.sh
PurgeltemRequests.sh
PurgeltemTickets.sh
PurgeLockings.sh
PurgePickList.sh
PurgePriceChanges.sh
PurgePriceHistories.sh
PurgeReceivedTransfers.sh
PurgeStockCounts.sh
PurgeStockReturns.sh
PurgeWHDReceivings.sh
ResaFileParser.sh
ResaOpenStkCnt
ReturnNotAfterDateAlert.sh
ThirdPartyStockCountParser.sh
WastagelnventoryAdjustments.sh

WastagelnventoryAdjustmentPublis
hjob.sh

oracle.retail.sim.closed.batchjob.ActivatePriceChangeJob
oracle.retail.sim.closed.batchjob.CleanupPickListJob

oracle.retail.sim.closed.batchjob.ProductGroupScheduleCleanup]
ob

oracle.retail.sim.closed.batchjob.DexnexFileParserJob

oracle.retail.sim.closed.batchjob.GenerateUnitCountJob

oracle.retail.sim.closed.batchjob.GenerateUnitAmountCountJob
oracle.retail.sim.closed.batchjob.GenerateltemRequestJob

oracle.retail.sim.closed.batchjob.InventoryAdjustmentPublishjob

oracle.retail.sim.closed.batchjob.GenerateproblemLineCountjob
oracle.retail.sim.closed.batchjob.PurgeAdhocStockCountJob
oracle.retail.sim.closed.batchjob.PurgeAllJob
oracle.retail.sim.closed.batchjob.PurgeAuditsJob
oracle.retail.sim.closed.batchjob.PurgeDSDReceivingsJob
oracle.retail.sim.closed.batchjob.Purgelnventory AdjustmentsJob
oracle.retail.sim.closed.batchjob.PurgeltemRequestsJob
oracle.retail.sim.closed.batchjob.PurgeltemTicketsJob
oracle.retail.sim.closed.batchjob.PurgeLockingsJob
oracle.retail.sim.closed.batchjob.PurgePickListsJob
oracle.retail.sim.closed.batchjob.PurgePriceChangesJob
oracle.retail.sim.closed.batchjob.PurgePriceHistoriesJob
oracle.retail.sim.closed.batchjob.PurgeReceived TransfersJob
oracle.retail.sim.closed.batchjob.PurgeStockCountsJob
oracle.retail.sim.closed.batchjob.PurgeStockReturnsjob
oracle.retail.sim.closed.batchjob.PurgeWHDReceivingsJob
oracle.retail.sim.closed.batchjob.ResaFileParserJob
oracle.retail.sim.closed.batchjob.ResaOpenStockCountjob
oracle.retail.sim.closed.batchjob.ReturnNotAfterDateAlertJob
oracle.retail.sim.closed.batchjob.ThirdPartyStockCountParserJob
oracle.retail.sim.closed.batchjob.GenerateInventoryWastageJob

oracle.retail.sim.closed.batchjob.Inventory AdjustmentPublishJob

38 Oracle Retail Store Inventory Management



Scheduler and the Command Line

Scheduler and the Command Line

If the retailer uses a scheduler, arguments are placed into the scheduler.

If the retailer does not use a scheduler, arguments must be passed in at the command
line.

Return Value Batch Standards

The following guidelines describe the function return values and the program return

values that SIM’s batch processes utilize:

= (- The function completed without error, and processing should continue normally.

= 1- Anon-fatal error occurred (such as validation of an input record failed), and the
calling function should either pass this error up another level or handle the
exception.

Batch logging

Relevant progress messages are logged with regard to batch program runtime
information. The location of sim batch log and logging levels can be configured in
log4j.xml file which is located in sim-home/batch-config.

For more information, see the section, “Logging Information” in “Chapter 2 — Backend
System Configuration”.

Note: Some batch programs evoke Oracle stored procedure
which runs on the Oracle database server, the log generated
by the Oracle process may exist in different location which
can be accessed by the Oracle database process. The log
location is specified in batch detail section if it is different
from the default batch log location.

Operations Guide 39



Functional Descriptions and Dependencies

Functional Descriptions and Dependencies

The following table summarizes SIM’s batch processes and includes both a description of
each batch process’s business functionality and its batch dependencies.

Batch process

Description

Batch dependencies

ActivatePriceChanges

CleanupPickList

CloseProdGroupSchedule

DataSeed All

DataSeedItemLoc

DataSeedRkItmLocMrp

DataSeedSqlload

DataSeedTaxpayerType

DataSeedTaxRegion

DeactivateltemLocMRP

DexnexFileParser

40 Oracle Retail Store Inventory Management

This batch process activates price
changes which are effective today or
on the user specified date.

The end of day batch process runs at
the end of each day to reset the
delivery bay and close any open
pending pick lists.

This batch process closes the product
group schedule.

This batch has been modified to add
entries for the newly created data
seeding scripts viz.
DataSeedRkItmLocMrp.sh,
DataSeedTaxpayerType.sh and
DataSeedTaxRegion.sh

This batch has been modified to fetch
MRP from the ITEM_LOC table and
insert into the corresponding table in
SIM.

This batch is used to download all the
item details (primary MRP) from item
location table from RMS.

This batch has been modified to add
entries for the newly created ctl files.

This batch is used to populate the
RK_TAXPAYER_TYPE table with the
Tax Payer type, Tax Payer description
and the country from the
TAXPAYER_TYPE table in RMS.

This batch is used to populate the
RK_TAX_REGION table with the Tax
Region, Tax Region name, Tax Region
type and the country from the
VAT_REGION table in RMS.

This batch is used to download non-
primary MRPs from RPM.

This batch imports the direct delivery
shipment records (PO, shipment and
receipt) from dex/nex files in the
DEX/NEX directory into SIM, the
process creates a ‘DEX/NEX direct
delivery” in SIM.

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies



Functional Descriptions and Dependencies

Batch process

Description

Batch dependencies

ExtractStockCount

ItemRequest

LateSalesInventory Adjustment

PublishJob

ProblemLineStockCount

PurgeAdHocStockCount

PurgeAll

PurgeAudits
PurgeDSDReceivings

PurgelnactiveMRP

Purgelnventory Adjustments

PurgeltemRequests

PurgeltemTickets

PurgeLockings
PurgePickList

The Extract Stock Count Batch
program generates Unit stock counts
or Unit and Amount stock counts.

The batch process generates item
requests in pending or worksheet
status for ‘item request’ product
group schedule which was scheduled
for current date.

LateSalesInventory AdjustmentPublis
hJob process publishes the late sale
inventory adjustments records to
Retail Merchandise System (RMS)
through the Retail Integration Bus
(RIB).

The problem line batch process goes
through the list of items in the
problem line group, determining
which fall within the user specified
parameters (negative SOH, negative
available, etc ...). The system
automatically creates a stock count
from those items that do fall within
the parameters.

This batch process deletes ad hoc
stock counts with a status of “in
progress”.

This process deletes records from the
SIM application that meet certain
business criteria.

This batch process deletes audits.

This batch process deletes the Direct
Store Delivery receivings.

This batch is used to purge inactive
MRPs from the RK_ITM_LOC_MRP
table.

This batch process deletes inventory
adjustments.

This batch process deletes item
requests.

This batch process deletes item
tickets.

This batch process deletes lockings.
This batch process deletes pick lists.

No dependencies

No dependencies

This batch program
must be run in the
sequence below:

1) ResaFileParser

2) ResaOpenStkCnt

3)
LateSalesInventoryAdju
stmentPublishJob

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

Operations Guide 41



Functional Descriptions and Dependencies

Batch process

Description

Batch dependencies

PurgePriceChanges

PurgePriceHistories

PurgeReceivedTransfers

PurgeStockCounts

PurgeStockReturns

PurgeWHDReceivings

ResaFileParser

ResaOpenStkCnt

ReturnNotAfterDateAlert

ThirdPartyStockCountParser

UpdateltemLocMRP

WastagelnventoryAdjustments

42 Oracle Retail Store Inventory Management

This batch process deletes price
changes.

This batch process deletes price
histories.

This batch process deletes received
transfers.

This batch process deletes stock
counts.

This batch process deletes stock
returns.

This batch process deletes the
Warehouse delivery receivings.

This batch process imports sales and
returns data that originates in a point
of sale (POS) system. SIM uses the
data to update the SOH for the
store/items combinations in each file.

ResaOpenStkCnt batch processes the
ReSA (Retail Sales Audit) open stock
count items which are generated by
the ResaFileParser process. This batch
updates the snapshot or stock on
hand quantities.

This batch process warns users ‘x’
number of days in advance that the
RTV/RTW is about to reach the Not
After Date and must be dispatched.
Note that the ‘x” value is configurable
via the system’s administration GUI
screens.

This batch process imports stock
count file from a third-party counting
system (such as RGIS), the stock on
hand quantities are updated for the
existing unit and amount stock count
records in SIM.

This batch is used to download unit
retail from RPM.

This batch process looks for wastage
product groups that are scheduled for
today and creates an inventory
adjustment for each item in the
product group.

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

No dependencies

This batch program
must be run in the
sequence below:

1) ResaFileParser

2) ResaOpenStkCnt

3)
LateSalesInventory Adju
stmentPublishJob

This batch program
must be run in the
sequence below:

1) ResaFileParser

2) ResaOpenStkCnt

3)
LateSalesInventoryAdju
stmentPublishJob

No dependencies

No dependencies

No dependencies

No dependencies



Functional Descriptions and Dependencies

Batch process Description Batch dependencies

WastagelnventoryAdjustment ~ The batch process picks up all items ~ No dependencies
PublishJob that were flagged for publishing to

the merchandising system. After an

item is published, the flag is reset.

Operations Guide 43



Batch Process Scheduling

Batch Process Scheduling

Before setting up an SIM batch process schedule, familiarize yourself with the scheduling

dependencies:
Job Sequence Batch Name
1 ResaFileParser
2 ResaOpenStkCnt
3 LateSalesInventory AdjustmentPublishob

For more details on the batch, see the Batch Details section in this chapter.

Batch Details

In order to run the SIM batches/data seeding scripts, please ensure that the following
environment variables are assigned correct values.

RMS_USER: Assign the RMS user

RMS_PWD: Assign the RMS password

RMS_DB: Assign the RMS host

SIM_USER: Assign the SIM user

SIM_PWD: Assign the SIM password

SIM_DB: Assign the SIM host

o g RN

The following section summarizes SIM’s batch processes and includes both an overview
of each batch process’s business functionality, assumptions, and scheduling notes for
each batch.

Activate PriceChanges Batch

Overview

This batch process scan the price changes with pending or ticket list status, if price
changes effective date matches the user specified batch date, the process activate the
price changes (the price change status is changed to active) or mark the price change as
completed.

Usage

The following command runs the ActivatePriceChanges batch job:
ActivatePriceChanges.sh <activate date>

Where the activate_date is optional, date format must be in dd/mm/yyyy if date is

specified.

If user does not specify the date, the current server date in GMT time will be used to find

the matching price changes.

If user passes a date string, then the batch process use that date as the store local time to
find the matching price changes for each store.

44 Oracle Retail Store Inventory Management



Batch Details

CleanupPickList

Overview

The end of day batch process runs at the end of each day to reset the delivery bay and
close any open pending pick lists. The system takes the entire inventory from the
delivery bay and moves it to the back room. Any pending or in-progress pick lists are
changed to a cancelled state. Users who are actioning a pick list are ‘kicked out’ of the
system. That is, the system takes over their database lock, so that it cannot be saved.
After the batch process are run, all pick lists are either completed or cancelled, and the
delivery bay has zero inventory.

Operations Guide 45



Batch Details

Usage
The following command runs the CleanupPickList batch job:
CleanupPickList.sh

CloseProdGroupSchedule Batch

Overview

This batch program searches for all open product group schedules that have ended date
before today (or user specified date), and change product group schedule status to
closed.

Usage

The following command runs the CloseProdGroupSchedule batch:
CloseProdGroupSchedule.sh <close_date>

Where the close_date is optional and if a date is not entered, then the server date is used.

DataSeedTaxpayerType Batch

This batch is used to populate the RK_TAXPAYER_TYPE table with the Tax Payer type,
Tax Payer description and the country from the TAXPAYER_TYPE table in RMS. This is
executed as part of the data seeding which would be done only once during data seeding.

Usage
The following command runs the DataSeedTaxpayerType batch:
DataSeedTaxpayerType.sh

DataSeedTaxRegion Batch

Overview

This batch is used to populate the RK_TAX_REGION table with the Tax Region, Tax
Region name, Tax Region type and the country from the VAT_REGION table in RMS.
This is executed as part of the data seeding which would be done only once during data
seeding.

Usage
The following command runs the DataSeedTaxRegion batch.
DataSeedTaxRegion.sh

DeactivateltemLocMRP Batch

Overview

This batch is used to download non-primary MRPs from RPM. If an item in
RK_ITM_LOC_MRP for a given store and unit MRP exists, then the active MRP status
indicator is updated along with the last update date and the primary MRP indicator is set
to ‘N’. If there is no matching record found, a new record is inserted in the
RK_ITM_LOC_MRP table with the primary MRP indicator set to ‘N’

Usage
The following command runs the DeactivateltemLocMRP batch job:

46 Oracle Retail Store Inventory Management



Batch Details

DeactivateltemLocMRP.sh

DexnexFileParser Batch

Overview
This batch imports the direct delivery shipment records (PO, shipment and receipt) from
dex/nex files in the DEX/NEX directory into SIM.

With the uploaded data, SIM processing creates a ‘DEX/NEX direct delivery’, allowing
the store user to view, edit, and confirm the information contained in the DEX/NEX file
before approving it so that it can become an ‘in progress’ direct delivery.

Usage
The following command runs the DexnexFileParser batch:

DexnexFileParser.sh file_name
Where file_name is the DEX/NEXT file name resides at location specified in
sim_batch.cfg file under DEXNEX_INPUT_DIR, errors are written to location specified
by DEXNEX_ERRORS_DIR in the same sim_batch.cfg file.

ExtractStockCount Batch

Overview

The Extract Stock Count Batch program generates Unit stock counts or Unit and Amount
stock counts.

On a daily basis, the batch process creates the stock counts that are scheduled for the
current day or future date which matches the next scheduled date. The system looks at
all the scheduled stock count records and determines whether any are scheduled for
today or the user specified future date. The process creates the stock counts for each
individual store. If a scheduled count includes a list of 5 stores, 5 separate stock count
records are created.

For Unit stock counts, if the system is configured to use unguided stock counts, the batch
process does not generate multiple counts even if the item is located at multiple locations
within the store.

For unit and amount stock counts, if an all location stock count is being run, the batch
processing generates individual counts for every macro sequence location.

The date parameter is optional when running the Extract Stock Counts batch. If no date is
provided, today’s date is used. The date format is dd/mm/yyyy.

Usage
The following command runs the ExtractStockCount batch:
ExtractStockCount.sh <extract date>

Where the extract_date is optional, if specified, it must be in format of dd/mm/yyyy.

Note: If date is not passed in when run the batch, today’s
date on the server is used.

Operations Guide 47



Batch Details

ltemRequest

Overview

The batch process looks for those product groups that are set up as ‘item request type’
that are scheduled for current date, generates the item request (with items and quantities)
in a pending or worksheet status. The user (for example, a manager) can then add items,
delete items, change quantities, and so on before submitting the data to the
merchandising system. The merchandising system can generate PO(s) or warehouse to
store transfer(s) as applicable.

Usage
The following command runs the ItemRequest batch:
ItemRequest.sh

LateSalesinventoryAdjustmentPublishJob

Overview

LateSalesInventory AdjustmentPublishJob process publishes the late sale inventory
adjustments records to Retail Merchandise System (RMS) through the Retail Integration
Bus (RIB). Late sale inventory adjustment could be the results of processing late sale
records in Resa sale data file by ResaFileParser batch or ResaOpenStockCnt batch.

Operationally, LateSalesInventory AdjustmentPublishJob should be run every time
ResaFileParser batch and ResaOpenStk complete.

Usage
The following command runs the LateSalesInventory AdjustmentPublishjob.sh
LateSalesInventoryAdjustmentPublishJob.sh

Assumptions and Scheduling Notes
This batch must run after following batch programs:
= ResaFileParser
= ResaOpenStkCnt
Following batches must be run in the sequence as below:
i. = ResaFileParser
= ResaOpenStkCnt
= LateSalesInventoryAdjustmentPublishJob

ProblemLineStockCount Batch

Overview

Before the batch process runs, the retailer establishes a group of items and item
hierarchies (by associating them to the problem line group type) and selects applicable
parameters (negative SOH, negative available, and so on). The problem line batch
process goes through the list of items in the group, determining which fall within the
parameters. The system automatically creates a stock count from those items that do fall
within the parameters.

If an item is a problem line item (negative inventory for example) on a stock count, and
the user does not get the chance to perform the stock count on it that day, the next day

48 Oracle Retail Store Inventory Management



Batch Details

the item may no longer be a problem line (positive inventory). However, the system
continues to create a stock count for that item because a problem existed at one time.

Usage
The following command runs ProblemLineStockCount batch:
problemLineStockCount.sh

PurgelnactiveMRP Batch

Overview

This batch is used to purge inactive MRPs from the RK_ITM_LOC_MRP table. The
program takes a date as an input parameter. The program fetches the value from the
system option DAYS_TO_HOLD_MULTIPLE_MRP that specifies the number of days to
hold inactive MRP. All the records with active MRP status indicator as ‘N’, and older
than (input date — value of DAYS_TO_HOLD_MULTIPLE_MRP) are deleted from the
table. In case no date is specified as an input to this program, the sysdate is used as a
default.

Usage
The following command runs the PurgelnactiveMRP batch:
PurgelnactiveMRP.sh / PurgelnactiveMRP.bat

ResaFileParser Batch

Overview

This batch program imports sales that originate in a point of sale system. SIM uses the
sales data to update the stock on hand for the store/items combinations in the sale file. In
other words, from the batch program, SIM learns about inventory movement (what is
sold and what is returned). Once SIM attains the data, it assumes that sales should be
taken from the store’s shelf-related inventory bucket. This assumption is important to
SIM'’s shelf replenishment processing. Similarly, SIM assumes that returns should go first
to the backroom bucket; the system’s logic is that returns must be inspected.

In addition to handling the regular sales items, the ResaFileParser batch process handles
Non-ranged items, REF items, late sales, and open stock count items.
For item type ITM (the item type in ReSA file is marked as ‘ITM’):

= If anitem in the ReSA file has an item level below the transaction level (e.g. item
level =3, transaction level = 2) and no stock on hand record, then it is an invalid item,
and will be written to the rerun file.

= If anitem in the ReSA file has an item level equal to the transaction level and no
stock on hand record, then a new ranged item record is created for the item/store,
and stock on hand is updated.

For item type REF (the item type in ReSA file is marked as ‘REF):

= If anitem in the ReSA file has an item level below the transaction level (e.g. item
level =3, transaction level = 2), then the parent item for this ref item is looked up.

= If the parent item’s item level equals the transaction level, and it is ranged, then the
stock on hand of the parent item is updated.

= If the parent item is a transaction level item, but is not ranged for the store, then a
new ranged item is created for that store, and the stock on hand for the parent item is
updated.

Operations Guide 49



Batch Details

Note: For any item in the ReSA file that has an item level
ABOVE the transaction level (for example, item level =2,
transaction level = 3), that item is invalid and is written to
the rerun file. In the merchandise hierarchy, level-2 is
“above” level-3 and level-1 is “above” level-2 and so on.

For late sale items:

* Alate sale is a sales transaction that took place before a stock count was completed
and the sale data file is processed after the count has started.

= A late sale is identified according to the “Timestamp Processing’ or ‘Daily Sales
Processing” stock count sales processing system parameters. For daily sales
processing stock count, the ‘Before Store Open’ or ‘After Store Close” stock count
time frame parameters are used.

= Timestamp Processing: indicates that sale data in the Sales Audit uploaded file has
the timestamp for the transaction date. The sales data transaction timestamp is
compared against the timestamps taken during the stock count to decide if the
transaction is a late sale.

= Daily Sales Processing: indicates sale data in the ReSA upload file does not have the
timestamp for the transaction date. For daily sales processing, the ‘Before Store
Open’ or ‘After Store Close’ stock count time frame parameters are used to determine
whether the stock count occurred before or after business hours so that SIM knows
how to handle late sales. Only the date is used to determine if a sale is late or not.

= ‘Before Store Open,” indicates the stock count will be performed before the
opening of the store.

= ‘After Store Close,” indicates the stock count will be performed after the close of
the store.

= Late sales should only be performed if the stock count was done after the store closed
and if the sales transaction was for the same day when the stock count was
performed.

* For the late sale record, the late sale process decrements or increments the stock on
hand depending on the sales transaction. In addition, a stock count inventory
adjustment transaction within SIM is recorded to offset the sales transaction. The
stock count inventory adjustment is published to RMS by running the
LateSalesInventory AdjustmentPublishJob batch if the count is a unit or an ad hoc
count. The inventory adjustment is not sent to RMS if it is a unit and amount count
since RMS has its own late sales process for unit and amount counts.

For open stock count items:
= An open stock count item is the in-progress stock count item
= If an open stock count exists, ResaFileParser updates the tock on hand and writes the

record into rk_resa_open_stk_cnt_item table. The ReSA open stock count item
records are processed by ResaOpenStkCnt batch after the ResaFileParser batch.

Usage

The ReSA File Parser batch processes ReSA data files through the Oracle database stored
procedure. The stored procedure locates the file location through database directory
objects: RESA_DIR and RESA_ORIGINAL_DIR which are created during installation of
SIM. The read and write privileges on these directory objects should be granted to the
schema owner. The ReSA data file needs to reside on the database server or locations that
can be accessed by oracle database process. The oracle process should have full access to
the directories specified by RESA_DIR and RESA_ORIGINAL_DIR, and the ReSA data

50 Oracle Retail Store Inventory Management



Batch Details

file permissions need to be changed to allow the oracle process to read and write
(remove) the file.
The corresponding operating system directories for the file storage must be created. The
system or database administrator must ensure that the operation system directory had
the correct read and write permissions for the Oracle database processes.
The following command runs the ResaFileParser batch:

ResaFileParser.sh <file_name> <starting_line_num> <block_snapshot ind>

Note: Resa data file need to be put at the location specified
by the RESA_DIR Oracle directory object on the database
server (or the location specified in sim_batch.cfg file for key
RESA_DIR if Oracle directory object is not used, and the
location must be accessible by oracle database process). The
oracle database process must have full access to the resa data
file. Use chmod 777 to change the resa data file before start
the batch. The actual file location on the database server can
be found by executing following queries: select
directory_name, directory_path from dba_directories where
directory_name in (‘'RESA_DIR’, ‘RESA_ORIGINAL_DIR’);

Where:
= file_name (required) is the name of the ReSA file containing the sales data from one
store.

= starting line_num (required) is the line number at which to start within the POSU
file, starts with line 1 to start process a new data file. If the ReSA parser process
terminates due to failure, and some of the records have already been processed, start
the ReSA process with a line number from the failing point.

* block_snapshot_ind (required) is the flag indicating if a snapshot is allowed during
the ReSA process. Valid values are: “Y” and ‘N’. "Y” does not allow the snapshot to be
taken until ResaOpenStkCnt.sh completes, and should always be used to ensure
accurate SOH.

Resa batch process controls transactions at pre-defined transaction blocks size, this value
can be changed by changing the parameter RESA_TRANS_SIZE in sim_batch.cfg file,
default value is 100.

The batch process deletes the data file if it completes successfully. If the batch program
encounters bad record(s) or a failure occurs during the parsing process, the batch process
creates a rerun file in the same directory as the file being processed and the original ReSA
data file is moved to resaOriginal directory.

Note: The re-run file contains the bad records (or all
uncommitted records within the transaction block on the
event of fatal errors, the batch process terminates on event of
the fatal error).

Operations Guide 51



Batch Details

Assumptions and Scheduling Notes
Following batches must be run after this batch process:
= ResaOpenStkCnt
= LateSalesInventoryAdjustmentPublishJob
The following batches must be run in the sequence as below:
ii. = ResaFileParser
= ResaOpenStkCnt
= LateSalesInventoryAdjustmentPublishJob

ResaOpenStkCnt Batch

Overview

ResaOpenStkCnt batch processes the ReSA open stock count items which are generated
by the ResaFileParser batch. It updates the snapshot or stock on hand records as
appropriate based on the current stock count. Operationally, ResaOpenStkCnt should be
run every time ResaFilePaser batch completes.

ResaOpenStkeCnt batch processes open stock count items as follow:

* Each open stock count item in the RESA open stock count item table. The process
checks if the item is still an open stock count item by looking at the open stock count
flag in rk_store_item_soh table.

= If an open stock count still exists and there is no timestamp taken for the physical
count, then the snapshot is updated with the sales qty. (the SOH is updated for the
open stock count item in ResaFileParser process).

= For items whose stock count has been confirmed, the process decides if this sale is a
late sale by comparing the timestamp on the sales data and the timestamp of the
item’s physical count.

= If the timestamp of the sale is before the physical count and the count has not been
completed yet, then the snapshot is updated (the SOH is updated for the open stock
count item in the ResaFileParser process).

= If the sales timestamp is before the Authorization timestamp, late sales processing
takes place. (For late sale details, see the ResaFileParser late sale section.)

= If the sales timestamp is after the physical count but before the confirmation of an
authorized quantity that was saved, then late sales is also processed for that item.
(For late sale details, see the ResaFileParser late sale section).

Note: In case stock count processing is set to daily stock
count processing, the above rules still apply, but instead of
comparing the timesamp, the batch program will compare
the sales date with the stock count date. In addition, it will
determine a possible adjustment based on when the stock
count was taken before store open or after store close.

Usage
ResaOpenStkCnt.sh <store_id>

Where store_id (optional) only processes records for a given store. If store_id is not
passed in, ResaOpenStkCnt processes records for all stores.

52 Oracle Retail Store Inventory Management



Batch Details

Assumptions and Scheduling Notes
The following batch must run before this batch process:
* ResaFileParser
This batch must run before this batch process:
* LateSalesInventory AdjustmentPublishjob
Following batches must be run in the sequence as below:
= ResaFileParser
= ResaOpenStkCnt
= LateSalesInventoryAdjustmentPublishJob

ReturnNotAfterDateAlert Batch

Overview
This batch process warns users ‘x” number of days in advance that the RTV/RTW is

about to reach the "Not after date’ and must be dispatched. Note that the ‘X’ value is
configurable via the system’s administration GUI screens.

Usage
Following command runs the ReturnNotAfterDateAlert batch:
ReturnNotAfterDateAlert.sh

ThirdPartyStockCountParser Batch

Overview

This batch process imports stock count file from a third-party counting system (such as
RGIS), the stock on hand quantities are updated for the existing unit and amount stock
count records in SIM.

If the auto authorize admin flag is set to 'no’, the following is true:

=  The import file contains item and quantity counted information. SIM populates the
count quantity on the stock count records and sets the authorize quantity equal to the
count quantity. Once the file has been imported from the RGIS system, the stock
count records type is set to ‘authorize’” and the status is set to ‘in progress’.

= If any items are sent from RGIS that were not already ranged to the store, SIM adds
the item to the appropriate stock count record (based on department), and sets the
snapshot SOH amount to 0.

*  During the import process from RGIS to SIM, any “‘unknown’ item data is written to
the Not On File table.

If the auto authorize admin flag is set to “yes’, the following is true:

* The import file contains item and quantity counted information. SIM populates the
count quantity on the stock count records, and sets the authorize quantity equal to
the count quantity. Once the file has been imported from the RGIS system, the stock
count records type is set to ‘authorize” and the status is set to ‘completed’.

= If any items are sent from RGIS that were not already ranged to the store, SIM adds
the item to the appropriate stock count record (based on department), and sets the
snapshot SOH amount to 0.

*  During the import process from RGIS to SIM, any “‘unknown’ item data is written to
the Not On File table.

Operations Guide 53



Batch Details

*  Once the import process is complete, SIM automatically authorizes the unit and
amount stock counts and exports the stock count data to RMS. Under normal
operating circumstances, this manual process is triggered by a SIM user through the
front end. If the store admin flag for auto authorizing a third-party stock count is set
to ‘y’, this process occurs as part of the import of the 3rd party file. Note that in this
case, any items that are considered ‘Not On File’ are not assigned to an existing item.
This business process assumes the retailer has resolved all discrepancies and data
conflicts prior to exporting the count data from the third-party system. An
assumption is also made that no data will be reviewed or changed using SIM. This
process merely updates SIM with the stock count data. SIM, in turn, updates RMS
with the same stock count data. No user intervention is required within SIM for this
process to occur.

ThirdPartyStockCount Integration Assumptions

* RMS provides an ‘item export’ file to RGIS prior to the count in order for RGIS to
validate the items that are scanned.

= The items coming from RGIS are identified based on an RMS item number (for
example, an RIN, UPC, or other number set up in RMS).

= All quantities passed back from RGIS are assumed to be in the item’s standard unit
of measure (UOM) as established by RMS (for example, units, KG, and so on).

= The RGIS file sends back the total quantity counted for each item, regardless of
whether the item was counted in several areas of the store (rolled up total by item).

=  For items that exist in the SIM stock count records but do not have a counted
quantity sent back from the RGIS system, SIM assumes a count quantity of ‘0", and
enters this value on the stock count record.

= For items that have a SOH quantity in SIM but have a RGIS count of 0, the
discrepancy check uses the variance units (not the variance %) value to determine
whether the item is discrepant and should be displayed through the front end.

Usage

The ThirdPartyStockCountParser batch processes stock count import files through the
Oracle database stored procedure. The stored procedure locates the file location through
database directory objects: STOCK_COUNT_DIR and STOCK_COUNT_UPLOAD_DIR,
the read and write privileges on these directory objects should be granted to the schema
owner. The stock count import data file needs to reside on the database server or
locations that can be accessed by oracle database process. The oracle process should have
full access to the directories specified by STOCK_COUNT_DIR and
STOCK_COUNT_UPLOAD_DIR, and the stock count import data file permissions need
to be changed to allow the oracle process to read and write (remove) the file.

The corresponding operating system directories for the file storage must be created. The
system or database administrator must ensure that the operation system directory add
the correct read and write permissions for the Oracle database processes.

Note: The Oracle database directory objects
STOCK_COUNT_DIR and STOCK_COUNT_UPLOAD_DIR
are created when the SIM application is installed.

Following command runs ThirdPartyStockCountParser batch:
ThirdPartyStockCountParser.sh <file_name>

Where the file_name is the import file data from one store; the stock count import data
file need to be put at the location specified by the STOCK_COUNT_DIR Oracle directory.

54 Oracle Retail Store Inventory Management



Batch Details

The upload file is in STOCK_COUNT_UPLOAD_DIR. This upload file is an export file to
RMS. The oracle database process must have full access to the stock count data file. Use
chmod 777 to change the stock count import data file before start the batch.

UpdateltemLocMRP

This batch is used to download unit retail from RPM. If an item in RK_ITM_LOC_MRP
for a given store and unit MRP exists, then the selling retail is updated. If there is no
matching record found, a new record is inserted in the RK_ITM_LOC_MRP table with
the selling retail, primary MRP indicator set to ‘N’ and active MRP status indicator set to
Y.

Usage

The following command runs the UpdateltemLocMRP batch.
UpdateltemLocMRP.sh

WastagelnventoryAdjustments Batch

Overview

This batch process looks for wastage product groups that are scheduled for today and
creates an inventory adjustment for each item in the product group. The batch process
uses amounts based on percentage/units. Note that if both a percentage and unit exist,
the batch process applies the least amount of the two. For example, consider an item with
a stock on hand value of 100. If the two values are 10% and 5 units, the batch process
would create an inventory adjustment of 5 units for the item.

The batch process creates a completed inventory adjustment record using the adjustment
reason of ‘Shrinkage’ (code = 1) for each item that is published to the merchandising
system.

Usage
Following command runs the WastagelnventoryAdjustments batch:
WastageInventoryAdjustments.sh

After the batch process complete, the retailer needs to run another batch
WastagelnventoryAdjustmentPublishJob.sh to publish the inventory adjustment
generated by the above batch to the merchandising system.

WastagelnventoryAdjustmentPublishJob

Overview

The batch process picks up all items that were flagged for publishing to the
merchandising system. After an item is published, the flag is reset.

Usage
Following command runs the WastageInventory AdjustmentPublishjob batch:
Wastage InventoryAdjustmentPublishJob.sh

SIM Purge Batch ProcessOverview
Transactional and historical records in SIM can be purged as below:

= PurgeAll batch: trigger all pre-defined purge batch processes and delete records
which matches the purging criteria.

Operations Guide 55



* Run each individual batches to purge particular data.

For details on how to run the purge batch, see the batch program overview and usage
section listed below.

PurgeAll Batch

Overview

This process deletes records from the SIM application that meet certain business criteria
(for example, records that are marked for deletion by the application user, records that
linger in the system beyond certain number of days, and so on).

Following is the list of transactions whose records get purged by the PurgeAll.sh batch
= Received transfers

=  Stock Counts

* Inventory Adjustments

=  Warehouse Receivings

= DSD/DSDASN Receivings
= Stock Returns

= Price Changes

=  Price Histories

= Pick Lists

= Item Requests

= Item Tickets

= Audits

= Lockings

= Adhoc Stock Counts

Usage
PurgeAll .sh <purge_date>

Where purge_date is optional, date format must be in dd/mm/yyyy if purge_date is
specified.

PurgeAdHocStockCount Batch

Overview

This batch program deletes ad hoc stock counts with a status of “in progress”. Any ad
hoc stock count with a creation date/time stamp older than the “Days to Hold In Progress
Ad Hoc Counts’ parameter value will be deleted. For example, the default value is 1. If
the batch program is run with the default value, the batch program would delete all in
progress counts more than 24 hours old.

Usage
PurgeAdHocStockCount.sh

56 Oracle Retail Store Inventory Management



Batch Details

PurgeAudits

Overview

This batch process deletes audit records. Any audit record with a create date/timestamp
older than the ‘Days To Hold Audit Records’ parameter value is deleted. For example, if
the default value is 30 and the batch program is run with the default value, the batch
program would delete all the audit records that are more than 30 days old.

Usage
PurgeAudits.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeDSDreceivings Batch

Overview

This batch process deletes the Direct Store Delivery receivings.

Any DSD record which is in “Closed’/’Cancelled status and which has a complete date
older than ‘Days to Hold Received Shipments’ is an eligible record for purge.

However, before a DSD record is purged, checks are made to ensure that the purchase
order associated with a particular DSD is also completed and is older than ‘Days to Hold
Purchase Orders’.

Another check is made to identify the DSDASN’s associated with a DSD record. If the
DSDASN is cancelled /completed and is older than ‘Days to Hold Received Shipments’,
only then it can get purged.

In effect a DSD record can be purged only if its associated PO and DSDASN records can
be purged.

Usage
PurgeDSDReceivings.sh <purge date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgelnventoryAdjustments Batch

Overview

This batch process deletes inventory adjustments. Any inventory adjustment record with
a create date/timestamp older than ‘Days To Hold Completed Inventory Adjustments’
parameter value will be deleted. For example, the default value is 30.1f the batch program
is run with the default value, the batch program would delete all the inventory
adjustment records, which are more than 30 days old.

Usage
PurgelnventoryAdjustments.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

Operations Guide 57



Batch Details

PurgeltemRequests Batch

Overview

This batch process deletes item requests which are in ‘Cancelled’/ ‘Completed’ status.
Any item request record with a process date/timestamp older than ‘Days To Hold Item
Requests’ parameter value will be deleted. For example, the default value is 30.1f the
batch program is run with the default value, the batch program would delete all the item
request records, which are more than 30 days old.

Usage
PurgeltemRequests.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeltemTickets Batch

Overview

This batch process deletes item tickets which are in ‘Printed’/ ‘Completed” status. Any
item tickets record with a status date/timestamp older than ‘Days To Hold Item Tickets’
parameter value will be deleted. For example, the default value is 30.If the batch program
is run with the default value, the batch program would delete all the item ticket records,
which are more than 30 days old.

Usage
PurgeltemTickets.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeLocking Batch

Overview

This batch process deletes lockings records from RK_LOCK_RECORD table. Any lock
record with a lock date/timestamp older than ‘Days To Hold Locking Records’
parameter value will be deleted. For example, the default value is 30.1f the batch program
is run with the default value, the batch program would delete all the lock records, which
are more than 30 days old.

Usage
PurgeLockings.sh <purge date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgePickList Batch

Overview

This batch process deletes pick lists which are in ‘Completed’/ ‘Cancelled’ state. Any
pick list record with a post date/timestamp older than “Days To Hold Pick Lists’
parameter value will be deleted. For example, the default value is 30.1f the batch program
is run with the default value, the batch program would delete all the pick list records,
which are more than 30 days old.

58 Oracle Retail Store Inventory Management



Batch Details

Usage
PurgePickList.sh <purge date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgePriceChanges Batch

Overview

This batch process deletes price changes which are in “Approved’/ ‘Rejected’/
‘Completed’ status. Any price change record with an effective date/timestamp older
than ‘Days To Hold Price Changes’ parameter value will be deleted. For example, the
default value is 30.If the batch program is run with the default value, the batch program
would delete all the price change records, which are more than 30 days old

Usage
PurgePriceChanges.sh <batch_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgePriceHistories Batch

Overview

This batch process deletes price histories. At least a minimum of 4 historical prices are
maintained for an item/store. ‘Days To Hold Price History” will determine the number of
days that price histories can be kept for in the database.

Usage
PurgePriceHistories.sh <batch date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeReceivedTransfers Batch

Overview

This batch process deletes received transfers. The transfer in and transfer out transactions
will be purged from the database. The transfer out transactions which are in ‘Received’/
‘Auto Received’/ ‘Complete Approved’/ ‘Complete Reject’/ ‘Cancelled” / ‘Cancelled
Request’” will be purged if the records are older than ‘Days To Hold Received Transfer
Records’ parameter. Also, the ‘Purge Received Transfers’ parameter must be set to “Yes’
in the admin screen to enable purging of the received transfers.

Usage
PurgeReceivedTransfers.sh <purge date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

Operations Guide 59



Batch Details

PurgeStockCounts Batch

Overview

This batch process deletes stock counts which are in ‘Completed’/ ‘Cancelled’ status.
Any stock count with a schedule date/timestamp older than ‘Days To Hold Completed
Stock Counts’ parameter value will get deleted. For example, the default value is 30.1f the
batch program is run with the default value, the batch program would delete all the stock
return records, which are more than 30 days old

Usage
PurgeStockCounts.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeStockReturns Batch

Overview

This batch process deletes stock returns which are in ‘Dispatched/ ‘Cancelled’ status.
Any stock return record with a completed date/timestamp older than ‘Days To Hold
Returns’ parameter value will be deleted. For example, the default value is 30.If the batch
program is run with the default value, the batch program would delete all the stock
return records, which are more than 30 days old

Usage
PurgeStockReturns.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeWHDReceivings Batch

Overview

This batch process deletes the Warehouse delivery receivings which are in ‘completed” /
‘cancelled’ status. The warehouse receivings records which are older than the “Days To
Hold Received Shipments’ will get purged, based on the value set for this parameter.

Usage
PurgeWHDReceivings.sh <purge date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

Supporting Files Created or Modified for the Batches

The following are the supporting files created or modified for the batches:

DataSeedAll.sh (Modified)

This batch has been modified to add entries for the newly created dataseeding scripts viz.
DataSeedRkItmLocMrp.sh, DataSeedTaxpayerType.sh and DataSeedTaxRegion.sh.

DataSeedltemLoc.sh (Modified)

This batch has been modified to fetch MRP from the ITEM_LOC table and insert into the
corresponding table in SIM.

60 Oracle Retail Store Inventory Management



Batch Details

DataSeedRkltmLocMrp.sh (New)

This batch is used to download all the item details (primary MRP) from item location
table from RMS. The active MRP indicator and the primary MRP indicator are set to Y’
This is executed as part of the data seeding which would be done only once during
dataseeding.

DataSeedSqlload.sh (Modified)

This batch has been modified to add entries for the newly created ctl files.

DataSeedTaxRegion.ctl (Batch: DataSeedTaxRegion.sh)
The data from the VAT_REGION table is written to the DataSeedTaxRegion.dat file.

DataSeedTaxRegion.ctl uses this as an input to insert the data in RK_TAX_REGION
table.

DataSeedTaxpayerType.ctl (Batch: DataSeedTaxpayerType.sh)

The data from the TAXPAYER_TYPE table is written to the DataSeedTaxRegion.dat file.
DataSeedTaxRegion.ctl uses this as an input to insert the data in RK_TAXPAYER_TYPE
table.

Purge_datas.pls and purge_datab.pls (Batch: PurgelnactiveMRP.sh/
PurgelnactiveMRP.bat)

A new function delete_mrp_data () is added to the base package to delete all inactive
MRPs from the RK_ITM_LOC_MRP table. This function takes date as an input
parameter.

PurgeMultipleMrpJob.java pls (Batch: PurgelnactiveMRP.sh/ PurgelnactiveMRP.bat)
This class is called from the PurgelnactiveMRP.sh /PurgelnactiveMRP.bat program. This

validates the input parameter. In case no parameter is specified, it defaults the sysdate
and invokes the process for deleting the inactive records.

PurgeMultipleMrpProcedure.java pls (Batch: PurgelnactiveMRP.sh/
PurgelnactiveMRP.bat)

This class invokes the pl/sql procedure PURGE_DATA.DELETE_MRP_DATA () to
delete the inactive MRPs.

RkitemMrpDetails.ctl (Batch: DeactivateltemLocMRP.sh)

The data from the RPM_ITEM_MRP_DETAILS table is written to the
RkItemMrpDetails.dat file. RkItemMrpDetails.ctl file takes this as an input file and
inserts the data in the RK_ITEM_MRP_DETAILS table. The records in
RK_ITEM_MRP_DETAILS are merged with RK_ITM_LOC_MRP table. Once the merge
is complete, the records are deleted from the RK_ITEM_MRP_DETAILS table.

RkltemMrpDetails.ctl (Batch: UpdateltemLocMRP.sh)

The data from the RPM_ORPOS_MRP_PUBLISH table is written to the
RkItemMrpDetails.dat file. RkItemMrpDetails.ctl file takes this as an input file and
inserts the data in the RK_ITEM_MRP_DETAILS table. The records in
RK_ITEM_MRP_DETAILS are merged with RK_ITM_LOC_MRP table. Once the merge
is complete, the records are deleted from the RK_ITEM_MRP_DETAILS table.

Operations Guide 61



A Note About Multi-Threading and Multiple Processes

A Note About Multi-Threading and Multiple Processes

SIM’s batch processes are generally not set up to be multi-threaded or to undergo multi-
processing. However, for data file batch processing, if performance is a concern, then the
file can be break into smaller parts, each process can then consume one file and run
parallel with as many other files as there are resources to support this processing. The
recommended ratio is approximately 1-1.5 processes per available CPU.

Some batch programs do create multiple threads to call the server in order to do work
more efficiently. Those batch programs are listed below. They generally work in the
following pattern:

= Query the server to find a set of data that needs to be processed.

= Break the set of data into units of work that can be worked on independently in
separate threads.

= Create threads to work concurrently on the units of work.
=  Wait for all threads to finish.
* Report any errors and return.

The number of threads that will be created to work on the units of work is determined by
the configuration parameter NUM_THREADS_IN_POOL in sim_batch.cfg (located at
sim-home/files/prod/retek/sim_batch.cfg). If no value is specified, a default value of 4
is used.

Batch Programs that Create Threads
* WastagelnventoryAdjustments
= ItemRequest
=  ProblemLineStockCount
=  ExtractStockCount

62 Oracle Retail Store Inventory Management



A

Appendix: Stock Count File Layout

rmsupload.cfg Configuration File

The configuration file, rmsupload.cfg, specifies the location of the unit/amount stock
count output file that is to be uploaded into RMS. The default directory is the following:

\retek\sim\files\prod\upload\

Specification

This directory does not exist in the packaging but is automatically created upon the first
completed unit/amount stock count. The directory can also be created manually.

Stock Count Results Flat File Specification

Once a stock count is authorized and completed, the SIM server creates a flat file during
runtime and stages it to a directory that is configured during installation. Using the flat
file generated by SIM, the merchandising system’s stock upload module retrieves and
uploads the physical stock count data. The file is formatted as follows:

Record name Field name Field type Description
File Header file type record  Char(5) hardcode ‘FHEAD’
descriptor
file line identifier Number(10) Id of current line being processed., hardcode
000000001
file type Char(4) hardcode ‘STKU’
file create date Date(14) date written by convert program
YYYYMMDD
HHMISS
stocktake_date Date(14) stake_head.stocktake_date
YYYYMMDD
HHMISS
cycle count Number(8) stake_head.cycle_count
loc_type Char(1) hardcode ‘W’ or ‘S’
location Number(10)  stake_location.wh or stake_location.store
Transaction file type record Char(5) hardcode ‘FDETL’
record descriptor
file line identifier Number(10) Id of current line being processed, internally
incremented
item type Char(3) hardcode ‘ITM’
item value Char(25) item id
inventory Number(12,4) total units or total weight
quantity

Operations Guide 63



Stock Count Results Flat File Specification

Record name Field name Field type Description
location Char(30) Where in the location the item exists. Ex: Back
description Stockroom or Front Window Display
File trailer file type record Char(5) hardcode ‘FTAIL’
descriptor
file line identifier Number(10) Id of current line being processed, internally
incremented
file record count Number(10) Number of detail records.

64 Oracle Retail Store Inventory Management



B

Appendix: Batch File Layout Specifications

Flat File Used in the ResaFileParser Batch Process

This batch program imports sales that originate in a point of sale (POS) system. SIM uses
the sales data to update the stock on hand for the store/items combinations in the POS
file. For more information on the POS file format, see the POS Upload [posupld] section
of the Oracle Retail Merchandising System Operations Guide — Volume 1.

Operations Guide 65



Flat File Used in the DexnexFileParser Batch Process

Flat File Used in the DexnexFileParser Batch Process

File Structure — 894 Delivery

DEX/NEX uses the EDI Standard 894 Transaction Set to communicate with the direct
delivery receiving system. The basic format for the file is as follows:

Header

ST = Transaction Set Header
G82 = Delivery/Return Base Record
N9 = Reference Identification
Detail (repeating...)
LS = Loop Header
G83 = Line Item Detail DSD
G72 = Allowance or Charge at Detail Level
LE = Loop Trailer
Summary

G84 = Delivery /Return Record
Totals

G86 = Signature
G85 = Record Integrity Check

SE = Transaction Set Trailer

ST — Contains the transaction set number (for example, 894) and a control number.

G82 - Contains the type of delivery (Delivery or Return), supplier information, and
delivery date.

N9 - Contains additional supplier information (Canada only).

LS — Contains an ID for the details loops to follow.

G83 - Contains the item #, quantity, UOM, unit cost, and item description.

G72 - Contains allowance (e.g. 10% off) or charge (e.g. environmental levy) information.
LE - Contains the loop trailer.

G84 - Contains the total quantity and cost of the delivery.

G86 — Contains the suppliers UCC signature.

G85 — Contains an authentication identifier.

SE - Contains the number of transactions in the transmission.

66 Oracle Retail Store Inventory Management



Flat File Used in the DexnexFileParser Batch Process

File details:
Segment  Sub- Name Req? SIM value
Segment
ST Transaction Set Yes
Header
ST STO1 Transaction Set ID Yes 894 - identifies the EDI file type, use
Code to validate.
ST ST02 Transaction Set Yes Ignore
Control #
G82 Delivery/Return Yes
Base Record
G82 G8201 Credit/Debit Flag Yes D=Delivery, C=Return.
Code
G82 G8202 Supplier’s Yes Use as supplier's purchase order
Delivery /Return number.
Number
G82 G8203 DUNS Number Yes Ignore
G82 G8204 Receiver’s Location Yes Contains the Store #
Number
G82 G8205 DUNS Number Yes Supplier's DUNS Number - use to
determine supplier
G82 G8206 Supplier’s Location ~ Yes Supplier's DUNS Location - use
Number with DUNS Number to determine
supplier
G82 G8207 Delivery /Return Yes Delivery Date
Date
N9 Reference No
Identification
N9 N901 Reference Identifier ~ Yes Ignore
Qualifier
N9 N902 Reference Number Yes Use as SIM invoice number
N9 N903 Free-Form No Ignore
Description
LS LS01 Loop Header Yes Provides an ID for the loop to
follow in the file
G83 Line Item Detail Yes
G83 G8301 DSD Number Yes Ignore
G83 G8302 Quantity Yes Unit Quantity
G83 G8303 Unit of Measure Yes CA = Case, EA = Each
Code
G83 G8304 UPrC Item Number
G83 G8305 Product ID Qualifier
G83 G8306 Product ID Number
G83 G8307 UPC Case Code No Pack Number

Operations Guide 67



Flat File Used in the DexnexFileParser Batch Process

Segment  Sub- Name Req? SIM value
Segment
G83 G8308 Item List Cost No Unit Cost
G83 G8309 Pack No
G83 G8310 Cash Register No Ignore
Description
G72 Allowance or Charge No Ignore
at Detail Level
G72 G7201 Allowance or Charge Ignore
Code
G72 G7202 Allowance/Charge Ignore
Handling Code
G72 G7203 Allowance or Charge Ignore
Number
G72 G7205 Allowance/Charge Ignore
Rate
G72 G7206 Allowance/Charge Ignore
Quantity
G72 G7207 Unit of Measure Ignore
Code
G72 G7208 Allowance/Charge Ignore
Total Amount
G72 G7209 Allowance/Charge Ignore
Percent
G72 G7210 Dollar Basis for Ignore
Allow/Charge %
LE LEO1 Loop Identifier Loop Trailer, will contain same ID
as loop header
G84 Delivery/Return Yes
Record Totals
G84 G8401 Quantity Yes Sum of all G8302 values
G84 G8402 Total Invoice Yes Total Cost, inclusive of charges and
Amount net of allowances.
G86 G8601 Signature Yes Ignore
G85 G8501 Integrity Check Yes Ignore
Value
SE SEO01 Number of Included  Yes Total # of segments between ST and
Segments SE, used for validation
SE SE02 Transaction Set Yes Same as ST02, used for validation
Control #
GE GEO01 Number of Yes # of sets in functional group, used
transaction sets for validation
included
GE GE02 Group Control Yes Same as GS06, used for validation

Number

68 Oracle Retail Store Inventory Management



Flat File Used in the ThirdPartyStockCountParser Batch Process

Flat File Used in the ThirdPartyStockCountParser Batch Process

RGIS File Layout Definition

*  Number of Fields: 9
= Record Length: 80

Data name Field Description Dec Position Positionto  Field type
Length  from

DLSSTR STORE NUMBER 6 1 6 Character

DLSDAT DATE MMDDYY 6 7 12 Character

DLSRAN RGIS AREA 10 13 22 Character
NUMBER

DSLF12 12 CHARACTER 12 23 34 Character
FILLER

DSLF13 13 CHARACTER 13 35 47 Character
FILLER

DLSUPC UPC CODE 13 48 60 Character

DLSF12 12 ZERO FILLER 12 61 72 Character

DLSQTY COUNT 7 73 79 Character
QUANTITY

DLSF01 CONSTANTOFA 1 80 80 Character

non

+

Operations Guide 69



Flat File Used in the ThirdPartyStockCountParser Batch Process

RGIS Sample File Data

00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212
00030105010212

70 Oracle Retail Store Inventory Management

068853600204
024000010265
027000422380
024000010265
755566004718
074027062006
074027062006
074027062006
035549874270
074027075464
042600065492
070320801199
067703680038
030267300667
045700155001
755566004718

0000000000000000025
0000000000000000007
0000000000000000019
0000000000000000004
0000000000000000027
0000000000000000017
0000000000000000005



	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Overview
	Technical Architecture Overview
	SIM’s Integration Points into the Retail Enterprise

	Backend System Configuration
	Configuring SIM Across Time Zones
	Supported Oracle Retail Products/Environments
	Configuration Files
	batch_db.cfg – Database connection info for batch programs
	bofactory.cfg – Business Object Factory implementation
	cache.cfg – Server side business object cache settings
	config.cfg – Configuration cache timeouts
	currency.cfg – Default currency code for SIM
	dao.cfg – Data access object implementations
	integration.cfg – Integration (RIB and RSL) settings
	jdbc.cfg – Database configuration
	jndi.cfg – JNDI settings
	ldap.cfg – Configuration for connecting to an LDAP server
	log4j.xml
	logging.cfg
	messaging.cfg
	posmodfileparser.cfg
	pricechange.cfg
	printing.cfg
	reporting.cfg – Configuration for printing reports
	RMS.cfg
	rmsupload.cfg
	sequencing.cfg
	server_master.cfg – Server initialization configuration
	services.cfg – Service implementation classes
	sim_batch.cfg – Batch configuration parameters
	telephone.cfg – Telephone format configuration
	wireless_client_master.cfg – Wireless Server Configuration 
	wireless_services.cfg
	retek/jndi_providers.xml - JNDI Configuration File 
	retek/rules_sim.xml – Business Rules configuration
	retek/rib/injectors.xml – RIB subscriber configuration

	Logging Information
	Default Location of Log Files
	Changing Logging Levels


	Technical Architecture
	Overview
	SIM Technology Stack
	Advantages of the Architecture

	SIM Technical Architecture Diagrams and Description
	Client Tier
	Middle Tier
	Database Tier

	Distributed Topology
	A Word About Activity Locking

	SIM Integration – Technical
	RIB-based Integration
	The XML Message Format
	SIM Message Subscription Processing
	RIB Message Publication Processing
	RIB Hospital
	Subscribers Mapping Table
	Publishers Mapping Table

	 RSL-based Integration
	Web Service-based Integration
	File-based Integration

	SIM Integration – Functional
	Overview
	System to System SIM Dataflow
	Functional Descriptions of RIB Messages 
	From SIM to the Warehouse Management System (WMS)
	From the WMS to SIM
	From a Point of Sale System to SIM
	From the Merchandising System to SIM
	From SIM to the Merchandising System
	From SIM to the Merchandising System via the Stock Upload Module in the Merchandising System
	From SIM to the Reporting System 
	From SIM to a Price Management System (such as RPM)
	From a Price Management System (such as RPM) to SIM

	Multiple Maximum Retail Price (MMRP)
	Tax India Localization

	Batch Processes
	Batch Processing Overview
	Running a Batch Process
	Summary of Executable Shell Scripts, Batch Files, Java Packages
	Scheduler and the Command Line
	Return Value Batch Standards
	Batch logging
	Functional Descriptions and Dependencies
	Batch Process Scheduling
	Batch Details 
	Activate PriceChanges Batch
	CleanupPickList
	CloseProdGroupSchedule Batch
	DataSeedTaxpayerType Batch
	DataSeedTaxRegion Batch
	DeactivateItemLocMRP Batch
	DexnexFileParser Batch
	ExtractStockCount Batch
	ItemRequest
	LateSalesInventoryAdjustmentPublishJob
	ProblemLineStockCount Batch
	PurgeInactiveMRP Batch 
	ResaFileParser Batch
	ResaOpenStkCnt Batch
	ReturnNotAfterDateAlert Batch 
	ThirdPartyStockCountParser Batch
	ThirdPartyStockCount Integration Assumptions
	UpdateItemLocMRP
	WastageInventoryAdjustments Batch
	WastageInventoryAdjustmentPublishJob
	SIM Purge Batch ProcessOverview
	PurgeAll Batch
	PurgeAdHocStockCount Batch
	PurgeAudits
	PurgeDSDreceivings Batch
	PurgeInventoryAdjustments Batch
	PurgeItemRequests Batch
	PurgeItemTickets Batch
	PurgeLocking Batch
	PurgePickList Batch
	PurgePriceChanges Batch
	PurgePriceHistories Batch
	PurgeReceivedTransfers Batch
	PurgeStockCounts Batch
	PurgeStockReturns Batch
	PurgeWHDReceivings Batch
	Supporting Files Created or Modified for the Batches

	A Note About Multi-Threading and Multiple Processes
	Batch Programs that Create Threads


	Appendix: Stock Count File Layout Specification
	rmsupload.cfg Configuration File
	Stock Count Results Flat File Specification

	Appendix: Batch File Layout Specifications
	Flat File Used in the ResaFileParser Batch Process
	Flat File Used in the DexnexFileParser Batch Process
	File Structure – 894 Delivery

	Flat File Used in the ThirdPartyStockCountParser Batch Process
	RGIS File Layout Definition
	RGIS Sample File Data



