

Oracle® Retail Store Inventory Management

Operations Guide
Release 12.0.10IN

July 2009

Oracle® Retail Store Inventory Management Operations Guide, Release 12.0.10IN

Copyright © 2009, Oracle. All rights reserved.

Primary Author: Uma Shankar

Contributors: Divya Begur, Tejasvi Raghunath

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including
applications which may create a risk of personal injury. If you use this software in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy,
and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

iii

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications
The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server – Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning, Oracle Retail Demand Forecasting, Oracle Retail Regular Price Optimization, Oracle
Retail Size Profile Optimization, Oracle Retail Replenishment Optimization applications.

 (ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by SAP and imbedded in Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you.
Notwithstanding any other term or condition of the agreement and this ordering document, you
shall not cause or permit alteration of any VAR Applications. For purposes of this section,
“alteration” refers to all alterations, translations, upgrades, enhancements, customizations or
modifications of all or any portion of the VAR Applications including all reconfigurations,
reassembly or reverse assembly, re-engineering or reverse engineering and recompilations or
reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or
confidential information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle’s licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

v

Contents
Preface .. ix

Audience .. ix
Related Documents... ix
Customer Support...x
Review Patch Documentation ...x
Oracle Retail Documentation on the Oracle Technology Network..................................x
Conventions...x

1 Introduction .. 1
Overview..1
Technical Architecture Overview ...2
SIM’s Integration Points into the Retail Enterprise ..3

2 Backend System Configuration ... 5
Configuring SIM Across Time Zones...5
Supported Oracle Retail Products/Environments ...5
Configuration Files ...6

batch_db.cfg – Database connection info for batch programs...................................6
bofactory.cfg – Business Object Factory implementation...6
cache.cfg – Server side business object cache settings ..6
config.cfg – Configuration cache timeouts ...6
currency.cfg – Default currency code for SIM ...6
dao.cfg – Data access object implementations ...7
integration.cfg – Integration (RIB and RSL) settings...7
jdbc.cfg – Database configuration..7
jndi.cfg – JNDI settings ...7
ldap.cfg – Configuration for connecting to an LDAP server8
log4j.xml..8
logging.cfg ..8
messaging.cfg ...8
posmodfileparser.cfg...8
pricechange.cfg...8
printing.cfg ...8
reporting.cfg – Configuration for printing reports ...8
RMS.cfg ...8
rmsupload.cfg...9
sequencing.cfg ..9
server_master.cfg – Server initialization configuration..9
services.cfg – Service implementation classes ...9
sim_batch.cfg – Batch configuration parameters...9
telephone.cfg – Telephone format configuration ..9
wireless_client_master.cfg – Wireless Server Configuration.....................................9

vi

wireless_services.cfg..9
retek/jndi_providers.xml - JNDI Configuration File..9
retek/rules_sim.xml – Business Rules configuration ...10
retek/rib/injectors.xml – RIB subscriber configuration...10

Logging Information ..10
Default Location of Log Files ...10
Changing Logging Levels...11

3 Technical Architecture .. 13
Overview..13

SIM Technology Stack ...13
Advantages of the Architecture ...13

SIM Technical Architecture Diagrams and Description ..14
Client Tier ...14
Middle Tier ...14
Database Tier ..16

Distributed Topology ...16
A Word About Activity Locking ..18

4 SIM Integration – Technical .. 19
RIB-based Integration...19

The XML Message Format..20
SIM Message Subscription Processing..21
RIB Message Publication Processing...21
RIB Hospital..21
Subscribers Mapping Table ..21
Publishers Mapping Table..24

RSL-based Integration ..25
Web Service-based Integration..26
File-based Integration...26

5 SIM Integration – Functional... 27
Overview..27
System to System SIM Dataflow...28
Functional Descriptions of RIB Messages..29

From SIM to the Warehouse Management System (WMS)32
From the WMS to SIM...32
From a Point of Sale System to SIM ..32
From the Merchandising System to SIM ..32
From SIM to the Merchandising System ..33
From SIM to the Merchandising System via the Stock Upload Module in the
Merchandising System..34
From SIM to the Reporting System ...34
From SIM to a Price Management System (such as RPM)34
From a Price Management System (such as RPM) to SIM34

vii

Multiple Maximum Retail Price (MMRP)..34
Tax India Localization ..35

6 Batch Processes.. 37
Batch Processing Overview ...37
Running a Batch Process ..37
Summary of Executable Shell Scripts, Batch Files, Java Packages38
Scheduler and the Command Line ...39
Return Value Batch Standards ..39
Batch logging ...39
Functional Descriptions and Dependencies ..40
Batch Process Scheduling...44
Batch Details ..44

Activate PriceChanges Batch..44
CleanupPickList ...45
CloseProdGroupSchedule Batch..46
DataSeedTaxpayerType Batch ...46
DataSeedTaxRegion Batch..46
DeactivateItemLocMRP Batch..46
DexnexFileParser Batch...47
ExtractStockCount Batch ..47
ItemRequest ..48
LateSalesInventoryAdjustmentPublishJob...48
ProblemLineStockCount Batch ..48
PurgeInactiveMRP Batch ..49
ResaFileParser Batch..49
ResaOpenStkCnt Batch ...52
ReturnNotAfterDateAlert Batch ..53
ThirdPartyStockCountParser Batch ..53
ThirdPartyStockCount Integration Assumptions ...54
UpdateItemLocMRP..55
WastageInventoryAdjustments Batch ..55
WastageInventoryAdjustmentPublishJob..55
SIM Purge Batch ProcessOverview ...55
PurgeAll Batch ...56
PurgeAdHocStockCount Batch..56
PurgeAudits..57
PurgeDSDreceivings Batch...57
PurgeInventoryAdjustments Batch ...57
PurgeItemRequests Batch ...58
PurgeItemTickets Batch ..58
PurgeLocking Batch...58
PurgePickList Batch...58

viii

PurgePriceChanges Batch...59
PurgePriceHistories Batch ..59
PurgeReceivedTransfers Batch ..59
PurgeStockCounts Batch...60
PurgeStockReturns Batch..60
PurgeWHDReceivings Batch..60
Supporting Files Created or Modified for the Batches ...60

A Note About Multi-Threading and Multiple Processes ..62
Batch Programs that Create Threads...62

A Appendix: Stock Count File Layout Specification ... 63
rmsupload.cfg Configuration File ..63
Stock Count Results Flat File Specification..63

B Appendix: Batch File Layout Specifications... 65
Flat File Used in the ResaFileParser Batch Process ..65
Flat File Used in the DexnexFileParser Batch Process ...66

File Structure – 894 Delivery ..66
Flat File Used in the ThirdPartyStockCountParser Batch Process69

RGIS File Layout Definition ...69
RGIS Sample File Data ..70

Operations Guide ix

Preface
Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:
 Key system administration configuration settings
 Technical architecture
 Functional integration dataflow across the enterprise

Audience
Anyone who has an interest in better understanding the inner workings of the Oracle
Retail Store Inventory Management (SIM) system can find valuable information in this
guide. There are three audiences in general for whom this guide is written:
 System analysts and system operation personnel:

 who are looking for information about SIM’s processes internally or in relation to
the systems across the enterprise.

 who operate SIM on a regular basis.
 Integrators and implementation staff who have the overall responsibility for

implementing SIM into their enterprise.
 Business analysts who are looking for information about processes and interfaces to

validate the support for business scenarios within SIM and other systems across the
enterprise.

Related Documents
For more information, see the following documents in the Oracle Retail Store Inventory
Management Release 12.0.10IN documentation set:
 Oracle Retail Store Inventory Management Release Notes
 Oracle Retail Store Inventory Management Installation Guide
 Oracle Retail Store Inventory Management Data Model
 Oracle Retail Store Inventory Management Online Help
 Oracle Retail Store Inventory Management User Guide Addendum

See also:
 Oracle Retail Merchandising System 12.0.10IN documentation
 Oracle Retail Integration Bus 12.0.9IN documentation
 Oracle Retail Price Management 12.0.10IN documentation
 Oracle Retail Invoice Matching 12.0.8.4 IN documentation
 Oracle Retail Point-of-Service 12.0.9IN documentation
 Oracle Retail Back Office 12.0.9IN documentation
 Oracle Retail Central Office 12.0.9IN documentation
 Oracle Retail Strategic Store Solutions 12.0.9IN documentation
 Oracle Retail Security Manager 12.0.4 documentation

Customer Support

x Oracle Retail Store Inventory Management

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:
https://metalink.oracle.com
When contacting Customer Support, please provide the following:
 Product version and program/module name
 Functional and technical description of the problem (include business impact)
 Detailed step-by-step instructions to re-create
 Exact error message received
 Screen shots of each step you take

Review Patch Documentation
If you are installing the application for the first time, you install either a base release (for
example, 12.0) or a later patch release (for example, 12.0.11). If you are installing a
software version other than the base release, be sure to read the documentation for each
patch release (since the base release) before you begin installation. Patch documentation
can contain critical information related to the base release and code changes that have
been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network
In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site:
http://www.oracle.com/technology/documentation/oracle_retail.html
Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions
a. Navigate: This is a navigate statement. It tells you how to get to the start of

the procedure and ends with a screen shot of the starting point and the
statement “the Window Name window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

https://metalink.oracle.com/�
http://www.oracle.com/technology/documentation/oracle_retail.html�

Operations Guide 1

1
Introduction

This operations guide serves as an Oracle Retail Store Inventory Management (SIM)
reference to explain ‘backend’ processes. SIM is designed as a standalone application that
can be customized to work with any merchandising system.

Overview
SIM empowers store personnel to sell, service, and personalize customer interactions by
providing users the ability to perform typical back office functionality on the store sales
floor. The results are greatly enhanced customer conversion rates, improved customer
service, lower inventory carrying costs, and fewer markdowns. SIM delivers the
information and flexible capabilities that store employees need to maintain optimal
inventory levels and to convert shoppers into buyers.
The SIM solution performs the following:
 Improves perpetual inventory levels by enabling floor-based inventory management

through handheld devices and store PCs.
 Minimizes the time to process receipt and check-in of incoming merchandise.
 Receives, tracks, and transfers merchandise accurately, efficiently, and easily.
 Reduces technology costs by centralizing hardware requirements.
 Guides users through required transactions.
 Allows customizations to the product through an extensible technology platform.

The retailer’s modifications are isolated during product upgrades, lowering the total
cost of ownership.

Technical Architecture Overview

2 Oracle Retail Store Inventory Management

Technical Architecture Overview
SIM’s robust distributed computing platform enables enhanced performance and allows
for scalability.
SIM has a client tier, a server tier, and a data tier. The n-tier architecture of SIM allows
for the encapsulation of business logic, shielding the client from the complexity of the
back-end system. The separation of presentation, business logic, and data makes the
software cleaner, more maintainable, and easier to modify. Any given tier need not be
concerned with the internal functional tasks of any other tier.
One of SIM’s most significant advantages is its flexible distributed topology. SIM offers
complete location transparency because the location of data and/or services is based
upon the retailer’s business requirements, not upon technical limitations. The server is
not deployed within the store. The application’s clients talk to the server across the wire
in almost real time.
The following diagram offers a high-level conceptual view of the main components and
integration points of the SIM architecture. For a detailed description of this diagram, see
“Chapter 4 – Technical Architecture”.

a. SIM’s Technical Architecture

SIM’s Integration Points into the Retail Enterprise

Operations Guide 3

SIM’s Integration Points into the Retail Enterprise
The following high-level diagram shows the overall direction of the data among systems
and products across the enterprise. For a detailed description of this diagram, see
“Chapter 6 – Functional Integration Interface Dataflows”.

b. SIM-related dataflow across the enterprise

Operations Guide 5

2
Backend System Configuration

This chapter of the operations guide is intended for administrators who provide support
and monitor the running system.
The content in this chapter is not procedural, but is meant to provide descriptive
overviews of key system parameters, logging settings, and exception handling.

Check RK_CONFIG table for the existence of values ENABLE_INDIA_LOCALIZATION
and ENABLE_TAX_LOCALIZATION.These should have got populated as part of the
installation.

Configuring SIM Across Time Zones
For many SIM retailers, a corporate server is located in a different time zone than the
stores connected to that corporate server. When a transaction is processed at these
respective locations, there is timestamp information associated with these transactions.
SIM has the ability to reconcile these time zone differences.
System administration options allow you to specify the time zone to use when
timestamps are published to or received from the Oracle Retail Integration Bus (RIB). The
system options are called ‘Enable GMT for…’, with options for Inventory Adjustments,
Price Changes, Store Orders, Store Transfers, Warehouse Transfers, Receiving, Direct
Deliveries, Vendor ASN, RTV, Item Requests, Sales Data, Foundation Data, Dex/Nex,
Stock Counts, and Third Party Stock Counts.
 If Enable GMT is set to ‘yes,’ timestamps are published to the RIB in GMT, and

incoming timestamps in RIB messages will be read as GMT.
 If Enable GMT is set to ‘no,’ timestamps are published to the RIB in the store time

zone, and incoming timestamps in RIB messages will be read as the store time zone.
The PA_RTL_STR table contains the field RK_TIMEZONE, which holds the time zones
for each store. An administrator (or DBA) should determine the correct time zone, and
enter this information into the table. As stated above, once retailers have specified the
local (store) time, they can specify which time zone, GMT or store, to use for timestamp
publication to the RIB.

Note: A complete list of time zones has been compiled and is
packaged with the release of this version of SIM, and can
also be found in the SIM database view
TIME_ZONE_NAMES_V.

Supported Oracle Retail Products/Environments
SIM is compatible with RMS and RPM. This functionality is described in greater detail in
the integration chapters.
For information about requirements for SIM’s client, server(s), and database, see the SIM
Installation Guide.

Configuration Files

6 Oracle Retail Store Inventory Management

Configuration Files
Key client-defined configurations for SIM are described in this section. The system
parameters contained in these file are also detailed. Many parameters have been omitted
from this section because retailers should not have to change them.
Note that within these files (and thus in some of the examples from those files below), a #
sign that precedes a value in the file signifies that what follows is a comment and is not
being utilized as a setting.
Some settings in the files are configurable. Thus, when retailers install SIM into an
environment, they must update these values to their specific settings.

batch_db.cfg – Database connection info for batch programs
This file is no longer used.

bofactory.cfg – Business Object Factory implementation
This file contains a property that defines the implementation of the BOFactory interface.
This implementation is responsible for instantiating new Business Objects in the SIM
code. A retailer may need to change this value if customizing SIM. This file contains the
following keys:
 FACTORY_IMPL – the fully-qualified class name of the class implementing the

BOFactory interface

cache.cfg – Server side business object cache settings
This file contains settings for server-side caches of business objects. Currently there is
only one cache defined: merchandise hierarchy. The value in this file determines how
many milliseconds the cache will hold objects before refreshing itself. Setting this value
to zero will disable the cache. This file contains the following keys:
 MDSE_HIERARCHY_CACHE – the number of milliseconds before the cache of

merchandise hierarchy objects needs to refresh itself

config.cfg – Configuration cache timeouts
This file contains times for the client to refresh its configuration cache. All settings are
given in milliseconds. When a client needs to read configuration settings, it will first look
in this cache. If the cache is empty or expired, the client will call the server to find the
current configuration settings. Otherwise the cached settings are used. This file contains
the following keys:
 CONFIG_REFRESH_RATE – timeout for system configuration parameters
 STORE_CONFIG_REFRESH_RATE – timeout for store-specific configuration

parameters
 TRANSLATION_REFRESH_RATE – timeout for holding translations on the server.

Translations displayed on the wireless client are held in this cache.
 WIRELESS_ITEM_REFRESH_RATE – timeout for storing differentiators for items on

stock counts displayed on the wireless client.

currency.cfg – Default currency code for SIM
This configuration file defines what the default currency code for SIM is. This currency
code will only be used when currency information is not available for something in SIM,
which is a rare situation. This file contains the following key:

Configuration Files

Operations Guide 7

 BASE_CURRENCY_TYPE – The currency code for the default currency. If none is
given, the base currency defaults to “USD”.

dao.cfg – Data access object implementations
This file defines the implementation classes for all data access objects in SIM. Each value
is the fully-qualified class name of the implementation class for that key. If a retailer
customizes SIM, they may need to change some of the class names in this file.

integration.cfg – Integration (RIB and RSL) settings
This file contains settings related to SIM integration via RIB and RSL. This file contains
the following keys:
 ribMessagePublishEnabled – if set to “true”, SIM will actually publish messages to

the RIB during processing. If set to “false”, SIM will not publish messages to the RIB,
but will instead log the messages to the SIM server log file. This is intended to be
used only for troubleshooting purposes. For an integrated production environment,
the value should be “true”.

 rslCallsEnabled – if set to “true”, SIM will actually make RSL calls during processing.
If set to “false”, SIM will not allow the user to access areas of the application that call
RSL. This is intended to be used only for troubleshooting purposes. For an
integrated production environment, the value should be “true”.

 *_PUB – the various keys that end in “_PUB” are the class names of classes that
implement interfaces to publish messages to the RIB. If a retailer customizes SIM,
they may need to change some of the class names in this file.

jdbc.cfg – Database configuration
This file currently contains only one parameter, LOCK_WAIT. The value of
LOCK_WAIT is the number of seconds that SIM should wait when trying to acquire a
database lock.
delineates how the system uses the persistence layer. Key RPOS-related values within the
file are shown below. Note that some values in the file may be intended for development
purposes only or be related to another product (SIM, for example).
Note: in versions of SIM prior to 11, database connection information for the SIM server
were stored in this file. As of SIM 12 this is no longer the case. Database connection
information is contained in the data source configured in the Oracle Application Server.

jndi.cfg – JNDI settings
This file contains JNDI configuration settings. In the SIM server, the only key used is:
 DB_JNDI_NAME – the name of the data source SIM will use to get database

connections
However, java processes that are clients to the SIM server (the wireless server and the
java batch programs), the other keys are used to determine the JNDI information for
looking up the SIM server’s EJBs:
 INITIAL_CONTEXT_FACTORY – the name of the factory used to get an initial JNDI

context. This should not be changed.
 OBJECT_FACTORY_PACKAGES – the java packages containing object factories.

This should not be changed.

Configuration Files

8 Oracle Retail Store Inventory Management

 NAMING_SERVER_URL – the JNDI URL for the naming server. This should be
configured to point at the SIM server’s JNDI URL. This should have been set by the
SIM installer.

 SECURITY_PRINCIPAL – the username to connect to the Oracle Application
Server’s JNDI context. This should have been set by the SIM installer.

 SECURITY_CREDENTIALS – the password to connect to the Oracle Application
Server’s JNDI context. This should have been set by the SIM installer.

ldap.cfg – Configuration for connecting to an LDAP server
This file contains various configuration parameters for connecting to an LDAP server.
All values should have been set by the SIM installer.

log4j.xml
This contains configuration about what information gets logged and where it gets logged
to. See the Logging section in this chapter for more information.

logging.cfg
This file is no longer used.

messaging.cfg
This file is no longer used.

posmodfileparser.cfg
This file is no longer used.

pricechange.cfg
This file contains user information for connecting to Oracle Retail Price Management
(RPM). This information does not need to correspond to actual RPM users; it is used
only for logging. The file contains the following keys:
 RPM_USER_NAME – the user name to connect to RPM with
 RPM_USER_FIRST_NAME – the first name of the user connecting to RPM
 RPM_USER_LAST_NAME – the last name of the user connecting to RPM

printing.cfg
This file is no longer used.

reporting.cfg – Configuration for printing reports
See the Reporting chapter for more information about this file.

RMS.cfg
The RMS DB schema credentials settings should be present in the RMS configuration.
The right hand side values should reflect what you entered at the time of installation.
This file will be used when Calculate Tax is performed. This is when a JDBC call is made
to RMS for which the credentials are looked up from this config file.

Configuration Files

Operations Guide 9

rmsupload.cfg
This file is no longer used.

sequencing.cfg
This file is no longer used.

server_master.cfg – Server initialization configuration
This file contains information used by the server upon startup. It contains the following
key:
 INITIALIZE – a comma-delimited list of classes that implement

oracle.retail.sim.closed.common.Initializer. These classes are run when the SIM
server is started.

services.cfg – Service implementation classes
This file contains entries for every service in SIM that define the client-side, downtime,
and server-side implementations of a given service interface. If a retailer customizes
SIM, they may need to modify this file.

sim_batch.cfg – Batch configuration parameters
This file contains various parameters that control aspects of SIM’s batch processes. See
the Batch Processing chapter for more information.

telephone.cfg – Telephone format configuration
This file contains various formatting styles for phone numbers in the United States,
Germany, and the United Kingdom. There are many different formats included for each
country. A retailer could modify this file to add their own format if desired. See the file
itself for more detailed documentation.

wireless_client_master.cfg – Wireless Server Configuration
This file contains configuration used by the Wireless Server. The only key used is:
 INITIALIZE – a comma-delimited list of classes that implement

oracle.retail.sim.closed.common.Initializer. These classes are run when the Wireless
server is started.

wireless_services.cfg
This file is no longer used.

retek/jndi_providers.xml - JNDI Configuration File
SIM uses this file as part of its RSL-based integration with the Oracle Retail Price
Management (RPM) and Oracle Retail Merchandising System (RMS) applications, and
for connecting to the Retail Integration Bus (RIB). For more information about this
integration, see the integration chapters of this document. The JNDI providers file
contains JNDI naming URL information for the other Oracle Retail applications to which
SIM makes remote calls.

Logging Information

10 Oracle Retail Store Inventory Management

retek/rules_sim.xml – Business Rules configuration
This file defines business rules that are run in SIM. If a retailer customizes SIM, this file
may need to be modified.

retek/rib/injectors.xml – RIB subscriber configuration
This file defines the classes that are used in SIM to handle messages coming in over the
RIB. A class is defined for each family type/message type combination that is supported
by SIM. If a retailer customizes SIM, this file may need to be modified. For more
information see the Integration chapters of this document, and the RIB documentation.

Logging Information
One of the first places to look for information concerning a problem in SIM is in the log
files. Stack traces and debugging information can be found within the log files.
The log files are configured to roll over once they reach a certain size (currently 10 MB).
Once a log file reaches the configured size, it will be renamed (e.g. sim.log will be
renamed to sim.log.1) and new log messages will be written to a new file (e.g. sim.log). If
there are already rolled-over logs, they will be also be renamed (e.g. sim.log.1 becomes
sim.log.2, sim.log.2 becomes sim.log.3, etc). Only ten files are kept – if ten files already
exist and the current file rolls over, the oldest log file is deleted.
For information about logging related to the DexnexFileParser batch process, see
“Chapter 6 – Batch Processes.”

Default Location of Log Files

Server Log Files
The log file for the server is located at:
<sim-oc4j-instance>/sim-home/log/sim.log

It can be changed by changing the value of the “File” param in the “sim.appender”
appender in sim-home/files/prod/config/log4j.xml.
The log file for the java batch programs is located at:
<sim-oc4j-instance>/sim-home/log/sim-batch.log

It can be changed by changing the value of the “File” param in the “sim.appender”
appender in sim-home/batch-config/log4j.xml.

Client Log Files
Client-side log files are put in a directory called "log", which is put wherever "user.dir" is
defined in your system. For example, if you launched the web start client with Firefox,
"user.dir" is the directory where Firefox is installed. This means (depending on where
you have Firefox installed) your logs could be in: C:\Program Files\Mozilla
Firefox\log\sim.log.
To find the location of “user.dir”, double-click on the status bar at the bottom of the SIM
PC client to bring up the “Client Information” dialog. Click on the “Version” tab; one of
the entries in the table is for the System Property “user.dir”. The value in the “Version”
column shows the location of “user.dir” on the current client’s system.

Logging Information

Operations Guide 11

Changing Logging Levels
Sometimes it is useful to change the amount of information that the SIM server logs.
There are two ways to change logging levels – editing the log4j.xml file, or using the
Oracle Enterprise Manager Application Server Control user interface.

Editing log4j.xml
log4j.xml is in the SIM OC4J instance, in sim-home/files/prod/config/log.xml. It is
possible to change the level of any logger in the file. It is also possible to add new loggers
if you want a certain SIM class to log more information. For more detail about loggers
and logging levels, see Log4J documentation
(http://logging.apache.org/log4j/docs/documentation.html).

Note: After changing a log level in log4j.xml the SIM server
must be bounced before the change will take effect.

Using Oracle Enterprise Manager Application Server Control
Sometimes it is useful to change a logging level without bouncing the SIM server. This
can be done by using the Oracle Enterprise Manager UI. There is an MBean defined in
the SIM application that lists all currently defined loggers and allows you to type in a
new value for those loggers. This MBean also allows you to create new loggers.
To find this MBean, launch the Oracle Enterprise Manager Application Server Control
and log in. The list of OC4J instances on this server should be displayed. Click on the
OC4J instance for SIM. Now click on the Applications tab. This should show you the
SIM and SIM-CLIENT applications. Click on the “Application Defined MBeans” icon for
the SIM application. This will display the Application MBeans defined by SIM. Click on
the “LogLevelMBean” in the left frame.

http://logging.apache.org/log4j/docs/documentation.html�

Operations Guide 13

3
Technical Architecture

This chapter describes the overall software architecture for SIM, offering a high-level
discussion of the general structure of the system, including the various layers of Java
code. This information is valuable when the retailer wishes to take advantage of SIM’s
extensible capabilities and write its own code to fit into the SIM system.

Overview

SIM Technology Stack
SIM has an n-tier architecture consisting of a client tier, a server tier, and a data tier. The
client tier contains a PC client (a Java desktop application) and handheld devices. The
server tier contains the SIM server (deployed as a J2EE application inside the Oracle
Application Server) and the Wavelink server (a standalone server for the handheld
devices). The data tier consists of an Oracle 10g database and an LDAP directory.

Advantages of the Architecture
SIM’s robust distributed computing platform enables enhanced performance and allows
for scalability.
The n-tier architecture of SIM allows for the encapsulation of business logic, shielding the
client from the complexity of the back-end system. Any given tier need not be concerned
with the internal functional tasks of any other tier.
The following list is a summary of the advantages that accompany SIM’s use of an n-tier
architectural design.
 Scalability: Hardware and software can be added to meet retailer requirements for

each of the tiers.
 Maintainability: The separation of presentation, business logic, and data makes the

software cleaner, more maintainable, and easier to modify.
 Platform independence: The code is written once but can run anywhere that Java can

run.
 Cost effectiveness: Open source market-proven technology is utilized, while object-

oriented design increases reusability for faster development and deployment.
 Ease of integration: The reuse of business objects and function allows for faster

integration to enterprise subsystems. N-tier architecture has become an industry
standard.

 High availability: Middleware is designed to run in a clustered environment or on a
low-cost blade server.

 Endurance: Multi-tiered physically distributed architecture extends the life of the
system.

 Flexibility: The system allocates resources dynamically based on the workload.

SIM Technical Architecture Diagrams and Description

14 Oracle Retail Store Inventory Management

SIM Technical Architecture Diagrams and Description
This section provides a high-level overview of SIM’s technical architecture. The diagrams
below illustrate the major pieces of the typical three-tiered SIM implementation.
Descriptions follow both diagrams for the numbered items.

c. SIM’s technical architecture

Client Tier
SIM can be deployed on a wide variety of clients, including a desktop computer, a hand-
held wireless device, and so on. The GUI is responsible for presenting data to the user
and for receiving data directly from the user through the ‘front end’. The presentation
tier only interacts with the middle tier (as opposed to the database tier). To optimize
performance, the SIM PC front end facilitates robust client-side processing.
The PC side of SIM is built upon a fat client architecture, which was developed using
Swing, a toolkit for creating rich graphical user interfaces (GUIs) in Java applications.
The handheld communication infrastructure piece, known as the Oracle Retail Wireless
Foundation Server, enables the handheld devices to communicate with the SIM server.
The handheld devices ‘talk’ to the Oracle Retail Wireless Foundation Server, which in
turn makes calls as a client to the SIM server.

Middle Tier
By providing the link between the SIM client and the database, the middle tier handles
virtually all of the business logic processing that occurs within SIM’s multi-tiered
architecture. The middle tier is comprised of services, most of which are related to
business functionality. For example, an item service gets items, and so on. Within SIM,
business objects are beans (that is, Java classes that have one or more attributes and
corresponding set / get methods) that represent a functional entity. Most business objects

SIM Technical Architecture Diagrams and Description

Operations Guide 15

have very few operations; in other words, business objects can be thought of as data
containers, which by themselves have almost no business functionality.
Although the PC client and the handheld client use the middle tier’s functionality
differently, the middle tier is the same for both clients. For example, the handheld device,
used ‘on the fly’, performs frequent commits to the database, while the PC performs
more infrequent commits. The application is flexible in that it accommodates the different
styles of client-driven processing.
The middle tier is designed to operate in a ‘stateless’ manner, meaning it receives
whatever instruction it needs to access the database from the client and does not retain
any information between client calls. Further, SIM has failover abilities; if a specific
middle tier server fails, processing can roll over to another SIM server for continued
processing.
If the workload warrants, SIM can be vertically scaled by adding additional application
servers. Because SIM servers are running on multiple application servers in a stateless
system, work can be seamlessly distributed among the servers. The result of this feature
is that SIM clients do not need to know that additional application servers have been
added to help with the workload. SIM application servers can contain multiple
containers, each of which is related to a unique Java Virtual Machine (JVM). Each
container corresponds to a specific SIM instance. Introducing multiple instances of a
container allows SIM retailers to more effectively distribute the processing among several
containers and thereby horizontally scale the platform. As the request load for a service
increases, additional instances of the service are automatically created to handle the
increased workload.
The middle tier consists of the following core components, which allow it to make
efficient and reliable calls to the SIM database:
 Server services contain the pertinent business logic.
 DAO objects handle database interaction.
 Databeans contain the SQL necessary to retrieve data from and save data to the

database.

Note: There is at least one databean for every table and view
in the database, but there may be more, used for different
specific purposes.

Data Access Objects (DAO)
DAOs are classes that contain the logic necessary to find and persist data. They are used
by services when database interaction is required.

Java Database Connectivity (JDBC)
DAOs communicate with the database via the industry standard Java database
connectivity (JDBC) protocol. In order for the SIM client to retrieve the desired data from
the database, a JDBC connection must exist between the middle tier and the database.
JDBC facilitates the communication between a Java application and a relational database.
In essence, JDBC is a set of application programming interfaces (API)s that offer a
database-independent means of extracting and/or inserting data to or from a database.
To perform those insertions and extractions, SQL code also resides in this tier facilitating
create, read, update, and delete actions.

Distributed Topology

16 Oracle Retail Store Inventory Management

Database Tier

Note: The SIM data model includes some tables and
columns that are SIM-specific and some that derive their
names from the Association for Retail Technology Standards
(ARTS) data model. Note, though, that SIM uses but does
not fully conform to the ARTS standard.

The database tier is the application’s storage platform, containing the physical data used
throughout the application. The database houses data in tables and views; the data is
used by the SIM server and then passed to the client. The database also houses stored
procedures to do data manipulation in the database itself.

Distributed Topology
One of SIM’s most significant advantages is its flexible distributed topology. SIM offers
complete location transparency because the location of data and/or services is based
upon the retailer’s business requirements, not upon technical limitations. SIM’s client
server communication is an EJB call (which uses RMI). Because the server does not have
to be in the same store as the in-store clients, the clients log onto the server ‘over the
wire’.
SIM’s client code makes use of helper and framework classes that contain the logic to
look up remote references to EJBs on the server and make calls to them. These helper
and framework contain no business logic but contain only enough code to communicate
with the server.
For example, if a helper class is called by the client to perform the method ‘update
shipment’, the helper class appears to have that capability, though in reality it only
behaves as a passage to the EJB remote reference, which is looked up from the server.
The EJB remote reference communicates across the network with the server to complete
the business-logic driven processing. The server performs the actual ‘update shipment’
business logic and returns any return values or errors to the client.
Connectivity between the SIM client and the middle tier is achieved via the Java Naming
and Directory Interface (JNDI), which the SIM client accesses with the necessary IP
address and port. JNDI contains the means for the client to look up services available on
the application server.
The following diagram illustrates SIM’s deployment.

Distributed Topology

Operations Guide 17

Application Server

Application Server

Application Server

Application Server

Headquarters

Handheld
device

In-Store
Clients

PC

Data store

Network

d. SIM’s deployment

A Word About Activity Locking

18 Oracle Retail Store Inventory Management

A Word About Activity Locking
Activity locking has been designed to be controlled from within SIM. The following
example illustrates the logic of activity locking.
A user becomes involved with a warehouse delivery that includes containers with
multiple items in containers; that is, a significant amount of back and forth processing
between screen and server is occurring. From the GUI, a call is made to the activity lock
that instructs the system that the user is working with the warehouse delivery. If some
other user has the lock, the system asks the user whether he or she wishes to break it and
take over. A ‘yes’ response to the prompt implies that former owner of the lock left the
lock dangling without a good reason (left to get lunch and so on). A ‘no’ response to the
prompt implies that the former owner of the lock continues to legitimately need it in
place in order to finish processing.

Operations Guide 19

4
SIM Integration – Technical

This chapter is divided into the following four sections that address SIM’s methods of
integration:
 Oracle Retail Integration Bus (RIB)-based integration
 Oracle Retail Service Layer (RSL)-based integration
 Web Service-based integration
 File-based integration

Each section includes information concerning the architecture of the integration method
and the data that is being passed back and forth. For additional functional descriptions of
the dataflow, see “Chapter 5 – SIM Integration – Functional.”

The base version of SIM does not make any direct JDBC call to RMS, but it communicates
with the external systems like RMS and RPM via RIB or RSL. The Shipping and
Receiving functionality captures the tax amount from RMS to SIM as per India
localization. The actual tax calculation logic sits in the RMS application because it
depends on many parameters like region, location, and so on. These parameters are
available only from RMS side, so SIM passes the line items to RMS to calculate the tax
amount and return the same to SIM.
Java classes are created for the newly created database Types (DB Objects). These class
files will be added under %OC4J_SERVER_HOME%/jdbc/lib during installation. The
OC4J server uses this jar file when it creates the objects through the server side
classloader when the Calculate Tax button is hit.

RIB-based Integration
SIM can integrate with Other Retail products (such as RMS, RWMS) through Oracle
Retail Integration Bus (RIB). RIB utilizes publish and subscribe (pub/sub) messaging
paradigm with some guarantee of delivery for a message. In a pub/sub messaging
system, an adapter publishes a message to the integration bus that is then forwarded to
one or more subscribers. The publishing adapter does not know, nor care, how many
subscribers are waiting for the message, what types of adapters the subscribers are, what
the subscribers’ current states are (running/down), or where the subscribers are located.
Delivering the message to all subscribing adapters is the responsibility of the integration
bus.
See the latest Oracle Retail Integration Guide and other RIB-related documentation for
additional information.

RIB-based Integration

20 Oracle Retail Store Inventory Management

RIB-SIM

subscribe

publish

SIM publisher

Middle tier
(Business logic tier)

publisher
class

Injector class

Middle tier
(Business logic tier)

SIM Injector

RIB-RMS

RIB-RPM

RIB’s JMS

RPM

RMS

subscribe

publish

publish

subscribe

publish

subscribe

Injectors.xml

e. SIM/RIB Integration Diagram

The XML Message Format
As shown by the diagram below, the messages to which SIM subscribes are in an XML
format and have their data structure defined by document type definitions (DTDs) or
XML schema documents.

Oracle Retail Integration Bus

Application

D
ata in X

M
L

form
at

Oracle Retail Store Inventory Management (SIM)

D
ata in X

M
L

form
at

f. Data across the RIB in XML format

RIB-based Integration

Operations Guide 21

SIM Message Subscription Processing
SIM application subscribes to the JMS topics published by other Oracle Retail
Application published to RIB JMS. For each J2EE based integrated Oracle Retail
Application (such SIM, RPM, etc …), RIB and its corresponding RIB-<app> component
are running on the application server (e.g. Oracle Application Server) to handle the
publishing and subscribing messages through RIB.
On a subscribe operation, the MDB is responsible for taking the XML message from the
JMS and calling the appropriate RIB binding code for processing each XML message.
The RIB Binding code is responsible for calling the Subscribing Java application, the
corresponding Injector class in the subscribing J2EE application is specified in
injectors.xml file. The subscribing application component applies the application specific
business logic and injected into the application. If an exception is returned from the
subscribing application, the transaction is rolled back and the XML message is sent to the
RIB Error Hospital. RIB application utilize container manages the transaction and both
the JMS and database resources are included in a two-phase commit XA compliant
transaction.
See the latest Oracle Retail Integration Guide and other RIB-related documentation for
additional information on message subscription process.

RIB Message Publication Processing
SIM publishes message (payload) to RIB’s JMS through RIB-SIM component, RIB Binding
subsystem converts the payload object into an XML string. The object on the Binding
subsystem is put into a RIB envelope called RibMessage. The data within RibMessage
eventually becomes a message on the RIB. A Publisher class in the Binding subsystem is
called to write the data to the RIB’s JMS queue. On a regular basis, the RIB engages in
polling the JMS queue, searching for the existence of a message. A publishable message
that appears on the JMS queue is processed.
See the latest Oracle Retail Integration Guide and other RIB-related documentation for
additional information on message publishing process.

RIB Hospital
The RIB error hospital is a set of Java classes and database tables located within the SIM
application but ‘owned’ by the RIB. The RIB error hospital is designed to segregate and
trigger re-processing for messages that had some error with their initial processing. The
intent is to provide a means to halt processing for messages that cause errors while
allowing continued processing for the ‘good’ messages. The RIB hospital references
tables within SIM (for example, RIB_MESSAGE, RIB_MESSAGE_FAILURE,
RIB_MESSAGE_ROUTING_INFO). For more information about the RIB hospital, see the
latest RIB Technical Architecture Guide, RIB Operations Guide, or RIB Hospital
Administration online help.

Subscribers Mapping Table
The following table lists the message family and message type name, the document type
definition (DTD) that describes the XML message, and the subscribing classes that
facilitate the data’s entry into the application’s middle tier. These classes are described in
the code as ‘injectors’. For additional information, see the latest Oracle Retail Integration
Guide and other RIB documentation.

RIB-based Integration

22 Oracle Retail Store Inventory Management

Family Type Payload Subscribing class (‘injector’)

ASNIN ASNOUTCRE ASNInDesc ASNInCreateInjector

ASNIN ASNINDEL ASNInRef ASNInRemoveInjector

ASNIN ASNINMOD ASNInDesc ASNInModifyInjector

ASNOUT ASNOUTCRE ASNOutDesc ASNOutCreateInjector

CLRPRCCHG CLRPRCCHGCRE ClrPrcChgDesc ClrPrcChgCreateInjector

CLRPRCCHG CLRPRCCHGMOD ClrPrcChgDesc ClrPrcChgModifyInjector

CLRPRCCHG CLRPRCCHGDEL ClrPrcChgRef ClrPrcChgRemoveInjector

DIFFS DIFFCRE DiffDesc DifferentiatorCreateInjector

DIFFS DIFFDEL DiffRef DifferentiatorRemoveInjector

DIFFS DIFFMOD DiffDesc DifferentiatorModifyInjector

ITEMS ITEMBOMCRE ItemBOMDesc ItemBOMCreateInjector

ITEMS ITEMBOMDEL ItemBOMRef ItemBOMRemoveInjector

ITEMS ITEMBOMMOD ItemBOMDesc ItemBOMModifyInjector

ITEMS ITEMCRE ItemDesc ItemCreateInjector

ITEMS ITEMDEL ItemRef ItemRemoveInjector

ITEMS ITEMHDRMOD ItemHdrDesc ItemModifyInjector

ITEMS ITEMSUPCRE ItemSupCtyDesc ItemSupCreateInjector

ITEMS ITEMSUPCTYCRE ItemSupCtyRef ItemSupCtyCreateInjector

ITEMS ITEMSUPCTYDEL ItemSupCtyRef ItemSupCtyRemoveInjector

ITEMS ITEMSUPCTYMOD ItemSupCtyDesc ItemSupCtyModifyInjector

ITEMS ITEMSUPDEL ItemSupRef ItemSupRemoveInjector

ITEMS ITEMSUPMOD ItemSupDesc ItemSupModifyInjector

ITEMS ITEMUPCCRE ItemUPCDesc ItemUPCCreateInjector

ITEMS ITEMUPCDEL ItemUPCRef ItemUPCRemoveInjector

ITEMS ITEMUPCMOD ItemUPCDesc ItemUPCModifyInjector

ORDER POCRE PODesc PurchaseOrderCreateInjector

ORDER PODEL PORef PurchaseOrderRemoveInjector

ORDER PODTLCRE PODesc PurchaseOrderDetailCreateInjector

ORDER PODTLDEL PORef PurchaseOrderDetailRemoveInjector

ORDER PODTLMOD PODesc PurchaseOrderDetailModifyInjector

ORDER POHDRMOD PODesc PurchaseOrderModifyInjector

PRCCHGCONF PRCCHGCONFCRE PrcChgConfDesc PrcChgConfCreateInjector

PRMPRCCHG PRMPRCCHGCRE PrmPrcChgDesc PrmPrcChgCreateInjector

PRMPRCCHG PRMPRCCHGMOD PrmPrcChgDesc PrmPrcChgModifyInjector

PRMPRCCHG PRMPRCCHGDEL PrmPrcChgRef PrmPrcChgRemoveInjector

REGPRCCHG REGPRCCHGCRE RegPrcChgDesc RegPrcChgCreateInjector

RIB-based Integration

Operations Guide 23

Family Type Payload Subscribing class (‘injector’)

REGPRCCHG REGPRCCHGMOD RegPrcChgDesc RegPrcChgModifyInjector

REGPRCCHG REGPRCCHGDEL RegPrcChgRef RegPrcChgRemoveInjector

RCVUNITADJMOD RCVUNITADJDTL RcvUnitAdjDesc RcvUnitAdjModInjector

RTVREQ RTVREQCRE RTVReqDesc RTVReqCreateInjector

RTVREQ RTVREQMOD RTVReqDesc RTVReqModifyInjector

RTVREQ RTVREQDEL RTVReqRef RTVReqRemoveInjector

RTVREQ RTVREQDTLCRE RTVReqDesc RTVReqDetailCreateInjector

RTVREQ RTVREQDTLDEL RTVReqRef RTVReqDetailRemoveInjector

RTVREQ RTVREQDTLMOD RTVReqDesc RTVReqDetailModifyInjector

SEEDDATA DIFFTYPECRE DiffTypeDesc DifferentiatorTypeCreateInjector

SEEDDATA DIFFTYPEDEL DiffTypeRef DifferentiatorTypeRemoveInjector

SEEDDATA DIFFTYPEMOD DiffTypeDesc DifferentiatorTypeModifyInjector

STOCKORDER SOCRE SODesc StockOrderCreateInjector

STOCKORDER SODTLCRE SODesc StockOrderCreateInjector

STOCKORDER SODTLDEL SORef StockOrderRemoveInjector

STOCKORDER SODTLMOD SODesc StockOrderModifyInjector

STOCKORDER SOHDRDEL SORef StockOrderRemoveInjector

STOCKORDER SOHDRMOD SODesc StockOrderModifyInjector

STORES STORECRE StoresDesc StoreCreateInjector

STORES STOREDEL StoresRef StoreRemoveInjector

STORES STOREMOD StoresDesc StoreModifyInjector

VENDOR VENDORADDRCRE VendorAddrDesc SupplierAddrCreateInjector

VENDOR VENDORADDRDEL VendorAddrRef SupplierAddrRemoveInjector

VENDOR VENDORADDRMOD VendorAddrDesc SupplierAddrModifyInjector

VENDOR VENDORCRE VendorDesc SupplierCreateInjector

VENDOR VENDORDEL VendorRef SupplierRemoveInjector

VENDOR VENDORHDRMOD VendorHdrDesc SupplierModifyInjector

WH WHCRE WHDesc WareHouseCreateInjector

WH WHDEL WHRef WareHouseRemoveInjector

WH WHMOD WHDesc WareHouseModifyInjector

RIB-based Integration

24 Oracle Retail Store Inventory Management

Publishers Mapping Table
This table illustrates the relationship among the message family, message type and the
DTD/payload object that the application creates. For additional information, see the
latest Oracle Retail Integration Guide and other RIB documentation.

Family Type Payload

ASNOUT ASNOUTCRE ASNOutDesc

DSDRECEIPT DSDRECEIPTCRE DSDReceiptDesc

INVADJUST INVADJUSTCRE InvAdjustDesc

INVREQ INVREQCRE InvReqDesc

PRCCHGREQ PRCCHGREQCRE PrcChgReqDesc

RECEIVING RECEIPTCRE ReceiptDesc

RECEIVING RECEIPTMOD ReceiptDesc

RTV RTVCRE RTVDesc

SOSTATUS SOSTATUSCRE SOStatusDesc

STKCOUNTSCH STKCOUNTSCHCRE StkCountSchDesc

STKCOUNTSCH STKCOUNTSCHDEL StkCountSchRef

STKCOUNTSCH STKCOUNTSCHMOD StkCountSchDesc

RSL-based Integration

Operations Guide 25

 RSL-based Integration
RSL handles the interface between a client application and a server application. The client
application typically runs on a different host than the service. However, RSL allows for
the service to be called internally in the same program or Java Virtual Machines the client
without the need for code modification. All services are defined using the same basic
paradigm -- the input and output to the service, if any, is a single set of values. Errors are
communicated via Java Exceptions that are thrown by the services. The normal behavior
when a service throws an exception is for all database work performed in the service call
being rolled back’s works within the J2EE framework. All services are contained within
an interface offered by a Stateless Session Bean. To a client application, each service
appears to be merely a method call.
 RSL is used to integrate SIM with RPM for future retail price inquiry and price

change requests. RSL for RPM runs within the RPM application.
 RSL is used to integrate SIM with RMS for store order inquiry and creation. RSL for

RMS runs as a standalone service which is part of the Retail Integration application.
For more information on RSL, see the Service Layer Programmer’s Guide and Service
Layer Installation Guide which is part of Oracle Retail Integration application.

RSL services used by SIM:

Service name Description

PriceInquiryService This service, provided by RPM, allows an inquiring
system to request the effective retail for an item at a
specified location on a given date. RPM provides the
retail value and indicates whether the value is
promotional, clearance or regular.

PriceChangeService This service allows for the creation of a price change in
RPM for a permanent, clearance or promotion.

StoreOrderServices SIM makes a call to RMS for the store order creation and
inquiry. In addition to queries, there are requests/replies
for the creation, modification, and deletion of store
orders.

Payloads used in RSL services:

RSL Service Payload

StoreOrderServices LocPODesc

StoreOrderServices LocPODtl

StoreOrderServices LocPOHdrsRsp

StoreOrderServices LocPOHdrsRspDtl

PriceInquiryService PrcInqReq

PriceInquiryService PrcInqReqDtl

PriceChangeService PrcChgDesc

PriceChangeService RegPrcChgDtl

PriceChangeService PrmPrcChgSmp

Web Service-based Integration

26 Oracle Retail Store Inventory Management

RSL Service Payload

PriceChangeService PrmPrcChgDtl

PriceChangeService ClrPrcChgDtl

For specific information about the request and response processing associated with the
services below, see the latest Message Families and Types Report, which is part of Oracle
Retail Integration documentation.

Web Service-based Integration
SIM web service is deployed as a separate web-module within the SIM application. The
document literal type (Doc-Lit) message format is used to define the messages. The SIM
web service provides the external application exchange information with SIM. Currently
SIM web service only provides one operation; Store Inventory Lookup.

File-based Integration
Currently SIM has three file-based integrations:
 Sales data: SIM imports sales data through flat file from Sales Audit System.
 Third Party Stock Count: SIM import third party stock count file and upload the files

to RMS for future processing
 Direct EXchange (DEX) and Network Exchange (NEX) Receiving

See Chapter 6 – Batch Processes for additional details on SIM file-based integrations.

Operations Guide 27

5
SIM Integration – Functional

This chapter provides a functional overview of how SIM integrates with other systems
(including other Oracle Retail systems).

Overview
The first section in this chapter provides you with a diagram illustrating the various
Oracle Retail products and databases that SIM interfaces with as well as the overall
dataflow among the products. The accompanying explanations are written from a
system-to-system perspective, illustrating the movement of data.

System to System SIM Dataflow

28 Oracle Retail Store Inventory Management

System to System SIM Dataflow

For information about the technical means through which the interfaces pass data, see
“Chapter 3 – Technical Architecture,” “Chapter 4 – SIM Integration – Technical,” and
“Chapter 6 – Batch Processes.”

Functional Descriptions of RIB Messages

Operations Guide 29

Functional Descriptions of RIB Messages
The table below briefly describes the functional role that messages play with regard to
SIM functionality. The table also illustrates whether SIM is publishing the message to the
RIB or subscribing to the message from the RIB. For additional information, see the latest
Oracle Retail Integration Guide and other RIB documentation.

Functional area Subscription/
publication

Integration to
Products

Description

ASN in Subscription RWMS, Vendor
(external)

These messages contain
inbound shipment
notifications from both
vendors (PO shipments) and
warehouses (transfer and
allocation shipments).

ASN out Publication RMS, RWMS These messages are used by
SIM to communicate store-
to-warehouse transfers
(returns to warehouse) to
both RMS and RWMS. These
messages are also used to
communicate store-to-store
transfers to RMS.

Diff IDs Subscription RMS These messages are used to
communicate differentiator
IDs from RMS to SIM.

DSD receipts Publication RMS These messages are used by
SIM to communicate the
receipt of a supplier delivery
for which no RMS purchase
order had previously existed.

Items Subscription RMS These are messages
communicated by RMS that
contain all approved items
records, including header
information, item/supplier,
and item/supp/country
details, and item/ticket
information.

Item/location Subscription RMS These are messages
communicated by RMS that
contain item/location data
used for ranging of items at
locations and
communicating select
item/location level
parameters used in store
orders.

Inventory
adjustments

Publication RMS These messages are used by
SIM to communicate
inventory adjustments. RMS
uses these messages to adjust
inventory accordingly.

Functional Descriptions of RIB Messages

30 Oracle Retail Store Inventory Management

Functional area Subscription/
publication

Integration to
Products

Description

Inventory
request

Publication RMS These messages are used by
SIM to communicate the
request for inventory of a
particular item. RMS uses
this data to fulfill the
requested inventory through
either auto-replenishment or
by creating a one-off
purchase order/transfer.

Price change Subscription RPM These messages facilitate
price changes for permanent,
clearance and promotions.

Price Inquiry RSL calls RPM This service, provided by
RPM, allows an inquiring
system to request the
effective retail for an item at
a specified location on a
given date. RPM provides
the retail value and indicates
whether the value is
promotional, clearance or
regular.

Purchase orders Subscription RMS These messages contain
approved, direct to store
purchase orders. SIM uses
these to receive direct
deliveries against.

Receipts Publication RMS These messages are used by
SIM to communicate the
receipt of an RMS purchase
order, a transfer, or an
allocation.

Receiver unit
adjustments

Publication RMS These messages are used by
SIM to communicate any
adjustments to the receipts of
purchase orders, transfers,
and allocations. These
messages are part of the
RECEIVING message family
(receiving unit adjustments
only use the RECEIPTMOD
message type).

Return to
vendor

Publication RMS These messages are used by
SIM to communicate the
shipment of a return to
vendor from the store.

RTV request Subscription RMS These are messages
communicated by RMS that
contain a request to return
inventory to a vendor.

Functional Descriptions of RIB Messages

Operations Guide 31

Functional area Subscription/
publication

Integration to
Products

Description

Seed data Subscription RMS These messages
communicated by RMS
contain differentiator type
values.

Stock count
schedules

Publication RMS These messages are used by
SIM to communicate unit
and value stock count
schedules to RMS. RMS uses
this schedule to take an
inventory snapshot of the
date of a scheduled count.

Stock order
status

Publication RMS These messages are used by
SIM to communicate the
cancellation of any requested
transfer quantities. For
example, the merchandising
system can create a transfer
request for 90 units from a
store. If the sending store
only ships 75, a cancellation
message is sent for the
remaining 15 requested
items.

Stores Subscription RMS These are messages
communicated by RMS that
contain stores set up in the
system (RMS).

Store ordering Publication RMS These messages are used by
SIM to communicate the
request for inventory of a
particular item.

Transfer request Subscription RMS These messages are
communicated by RMS and
contain a request to transfer
inventory out of a store.
Upon shipment of the
requested transfer, SIM uses
the ASN Out message to
communicate what was
actually shipped. In addition,
SIM uses the stock order
status message to cancel any
requested quantity that was
not shipped.

Warehouses Subscription RMS These are messages that are
communicated by RMS that
contain warehouses set up in
the system (RMS). SIM only
gets physical warehouse
records.

Functional Descriptions of RIB Messages

32 Oracle Retail Store Inventory Management

Functional area Subscription/
publication

Integration to
Products

Description

Vendor Subscription RMS, external
(financial)

These are messages
communicated by RMS
containing vendors set up in
the system (RMS or external
financial system).

From SIM to the Warehouse Management System (WMS)
Returns to warehouse via the RIB, SIM sends outbound ASN data to facilitate the
communication of store-to-warehouse shipment data to the WMS.

From the WMS to SIM
The following WMS data is published via the RIB for SIM subscription:

Outbound advance shipping notice (ASN) data converted to inbound ASN data
to facilitate warehouse-to-store shipments, the WMS provides SIM outbound ASN
data. ASNs are associated with shipments and include information such as to and
from locations, container quantities, and so on. Note that outbound ASN data is
converted to inbound ASN data by the RIB for SIM’s subscription purposes. The data
is the same, but the format is slightly different. The conversion takes place so that
ASN inbound data can be the same among applications.

From a Point of Sale System to SIM
The following data is sent from a point of sale (POS) system through ReSA (optional) to
SIM:

Sales and returns data
SIM uses the data to update the SOH for store/item combinations. In other words,
SIM learns about inventory movement (what is sold and what is returned).

From the Merchandising System to SIM
The following merchandising system data is published via the RIB for SIM subscription:
 PO data

SIM allows the user to receive against direct store delivery (DSD)-related PO data.
DSD occurs when the supplier drops off merchandise directly in the retailer’s store.

 External store orders
SIM is able to create purchase orders directly in RMS through the SIM GUI.

 Item data (sellable and non-sellable items)
SIM processes only transaction-level items (SKUs) and below (such as UPC), so there
is no interface for parent (or style) level items. See the RMS documentation for more
information about its three-level item structure. In addition to approved items
records, the item data includes including header information, item/supplier, and
item/supp/country details. Merchandise hierarchy data is an attribute of the item
data to which SIM subscribes.

 Location data (updated store and warehouse location information)
 Item-location data

SIM uses this data for ordering parameters (for example, allowing the user to
determine whether an item is a store order type item).

 Diff data

Functional Descriptions of RIB Messages

Operations Guide 33

 Supplier and supplier address data
 Transfer request data

Corporate users can move inventory across stores via RMS transfer requests.
 Return requests

The merchandise system sends return requests from a store to a warehouse (RTW)
and/or to a vendor (RTV). The store itself ships the goods.

From SIM to the Merchandising System
The following SIM data is published via the RIB for the subscription of the
merchandising system:
 Receipt data

By sending the receipt data, SIM notifies the merchandising system of what SIM
received. Types of receipt data are related to the following:
 Transfers
 Existing (merchandising system) POs associated with DSDs
 New POs associated with DSDs
 Merchandising system (such as RMS) purchase orders

 RTV and RTW data
SIM notifies the merchandising system about returns to vendors and returns to
warehouses.

 Return to warehouse data
SIM uses ASN out data to notify the merchandising system about returns to
warehouses.

 Store ordering data
SIM sends this data to communicate a request for inventory of a particular item. The
merchandising system can use this data to calculate a ‘store order’ replenishment
type item’s recommended order quantity (ROQ).

 Stock count schedule data
The merchandising system uses this data to help maintain the synchronicity of the
inventory levels in SIM and the merchandising system. Once the merchandising
system has the stock count schedule data, SIM and the merchandising system
perform a snapshot count at the same time. The store does a physical count and
uploads the results, and the merchandising system compares the discrepancies.

 Price change request data
A SIM user is able to request price changes, along with effective dates, from the price
management system.

Multiple Maximum Retail Price (MMRP)

34 Oracle Retail Store Inventory Management

From SIM to the Merchandising System via the Stock Upload Module in the
Merchandising System

Stock count results
Once a stock count is authorized and completed, SIM creates a flat file and stages it to a
directory. Using the flat file generated by SIM, the merchandising system’s stock upload
module retrieves and uploads the physical stock count data. The merchandising system
uses this data to help maintain the synchronicity of the inventory levels in SIM and the
merchandising system.

From SIM to the Reporting System
Data for reports
SIM has the ability to produce reports which retailers can customize to reflect the unique
requirements of their business. To facilitate reporting functionality, the report tool used
by SIM is Oracle BI Publisher.

From SIM to a Price Management System (such as RPM)
Request for approval of price change data
Regular, clearance, and simple fixed price promotion price change data are sent to RPM.
RPM performs a conflict check and returns a validation status (successful or not
successful). If the validation was successful, the price change is returned immediately to
SIM and persisted.

From a Price Management System (such as RPM) to SIM
Price change data:
RPM sends price change data to SIM. This type of price change data can originate at a
corporate level or at the store level.

Multiple Maximum Retail Price (MMRP)
The MMRP indicator determines whether SIM is enabled for MMRP localization. It also
defines the number of days to hold the inactive multiple MRPs before they are purged by
a batch file.
Item master is enhanced to capture three new attributes: Multiple MRP Indicator, MRP-
based cost indicator, and Retail Less than MRP, all of which would have been interfaced
by RMS during item creation.
Item-Loc creation/modification in RMS will publish the primary MRP and
corresponding unit retail to SIM. However, SIM will capture any new Item-Loc MRPs
and corresponding unit retail as part of price change updates from RPM.
SIM supports capturing of new/existing MRP during the DSD receipt process for new
purchase orders as well as RMS-created purchase orders. In both cases, the receipt
message publishes the MRP captured at line item level to RMS.

SIM also supports the capture of MRP during RTV for all return line items. This should
be interfaced to RMS as part of RTV message. However, RTW will not capture MRP at
return line item and will continue to work as base.

Tax India Localization

Operations Guide 35

Tax India Localization
The System Admin option in SIM determines if SIM is enabled for localization around
tax. If this is not enabled, the application will work as base.
Tax-related setup data from RMS, like tax regions and taxpayer type, are downloaded
and are used to validate the tax region and taxpayer type entry on the Shipping and
Receiving Screens (DSD receiving and Return-to-Vendor).
Tax is calculated for all shipping and receiving transactions using an online call to RMS
tax calculation function. An error message is displayed if the network access to RMS is
unavailable.
Supplier’s tax region and taxpayer type are captured during the DSD receipt process for
SIM-created purchase orders. It also calculates and displays the tax component at line
level and receipt total level. This information is interfaced to RMS as part of receipt
message and also printed on DSD reports.

For purchase orders created in RMS, it interfaces the supplier’s tax region and taxpayer
type to SIM. SIM calculates and displays the tax component at line level and receipt total
level. This information is printed on DSD reports and also interfaced to RMS as part of
the receipt message.

SIM supports capture of vendor’s tax region and taxpayer type for SIM created Return-
to-Vendor (RTV) and calculates and displays the tax component at line and header level.
This information is interfaced to RMS as part of Return-to-Vendor message and also
printed on RTV report.
For RMS created RTV, RMS interfaces vendor’s tax region and taxpayer type as part of
RTV message. SIM calculates and displays the tax component at line and header level
and prints the same. It also interfaces to RMS as part of RTV message.
SIM calculates and display the tax component at each line level and header level for all
Return to Warehouse (RTW)/Transfer dispatches. The same will be printed on
RTW/Transfer reports and interfaced to RMS. This is true for both RMS created and SIM
created RTW/Transfer.

Operations Guide 37

6
Batch Processes

This chapter provides the following:
 An overview of SIM’s batch processing
 A description of how to run batch processes, along with key parameters
 A functional summary of each batch process, along with its dependencies
 A description of some of the features of the batch processes (batch return values,

restart and recovery)

Batch Processing Overview
SIM batches are executed as java batch processes. Most of the java batch processes
engage in some primary processing of their own. However, the majority of work is done
by services running on the SIM server; the java batch processes make remote calls to the
server to access these services.
Note the following characteristics of SIM’s Java batch processes:
 They are not accessible through a graphical user interface (GUI).
 They are scheduled by the retailer.
 They are designed to process large volumes of data, depending upon the

circumstances and process.

Running a Batch Process
SIM batch programs are installed under $ORACLE_HOME/j2ee/<sim-oc4j-
instance>/sim-home/bin, SIM batch processes are run from this location through
executable shell scripts (.sh) files.
Oracle Retail provides the shell scripts (.sh files). They perform the following internally:
 Set up the Java runtime environment before the Java process is run.
 Start the Java batch process.

For more information about batch usage, see batch design and usage sections in this
chapter.

Summary of Executable Shell Scripts, Batch Files, Java Packages

38 Oracle Retail Store Inventory Management

Summary of Executable Shell Scripts, Batch Files, Java Packages
The following table describes the executable shell scripts, batch files, Java packages

Executable shell script Batch program executed

ActivatePriceChanges.sh oracle.retail.sim.closed.batchjob.ActivatePriceChangeJob

CleanupPickList.sh oracle.retail.sim.closed.batchjob.CleanupPickListJob

CloseProdGroupSchedule.sh oracle.retail.sim.closed.batchjob.ProductGroupScheduleCleanupJ
ob

DexnexParser.sh oracle.retail.sim.closed.batchjob.DexnexFileParserJob

ExtractStockCount.sh oracle.retail.sim.closed.batchjob.GenerateUnitCountJob

oracle.retail.sim.closed.batchjob.GenerateUnitAmountCountJob

ItemRequest.sh oracle.retail.sim.closed.batchjob.GenerateItemRequestJob

LateSalesInventoryAdjustmentPublis
hJob.sh

oracle.retail.sim.closed.batchjob.InventoryAdjustmentPublishJob

ProblemLineStockCount.sh oracle.retail.sim.closed.batchjob.GenerateproblemLineCountJob

PurgeAdHocStockCount.sh oracle.retail.sim.closed.batchjob.PurgeAdhocStockCountJob

PurgeAll.sh oracle.retail.sim.closed.batchjob.PurgeAllJob

PurgeAudits.sh oracle.retail.sim.closed.batchjob.PurgeAuditsJob

PurgeDSDReceivings.sh oracle.retail.sim.closed.batchjob.PurgeDSDReceivingsJob

PurgeInventoryAdjustments.sh oracle.retail.sim.closed.batchjob.PurgeInventoryAdjustmentsJob

PurgeItemRequests.sh oracle.retail.sim.closed.batchjob.PurgeItemRequestsJob

PurgeItemTickets.sh oracle.retail.sim.closed.batchjob.PurgeItemTicketsJob

PurgeLockings.sh oracle.retail.sim.closed.batchjob.PurgeLockingsJob

PurgePickList.sh oracle.retail.sim.closed.batchjob.PurgePickListsJob

PurgePriceChanges.sh oracle.retail.sim.closed.batchjob.PurgePriceChangesJob

PurgePriceHistories.sh oracle.retail.sim.closed.batchjob.PurgePriceHistoriesJob

PurgeReceivedTransfers.sh oracle.retail.sim.closed.batchjob.PurgeReceivedTransfersJob

PurgeStockCounts.sh oracle.retail.sim.closed.batchjob.PurgeStockCountsJob

PurgeStockReturns.sh oracle.retail.sim.closed.batchjob.PurgeStockReturnsJob

PurgeWHDReceivings.sh oracle.retail.sim.closed.batchjob.PurgeWHDReceivingsJob

ResaFileParser.sh oracle.retail.sim.closed.batchjob.ResaFileParserJob

ResaOpenStkCnt oracle.retail.sim.closed.batchjob.ResaOpenStockCountJob

ReturnNotAfterDateAlert.sh oracle.retail.sim.closed.batchjob.ReturnNotAfterDateAlertJob

ThirdPartyStockCountParser.sh oracle.retail.sim.closed.batchjob.ThirdPartyStockCountParserJob

WastageInventoryAdjustments.sh oracle.retail.sim.closed.batchjob.GenerateInventoryWastageJob

WastageInventoryAdjustmentPublis
hJob.sh

oracle.retail.sim.closed.batchjob.InventoryAdjustmentPublishJob

Scheduler and the Command Line

Operations Guide 39

Scheduler and the Command Line
If the retailer uses a scheduler, arguments are placed into the scheduler.
If the retailer does not use a scheduler, arguments must be passed in at the command
line.

Return Value Batch Standards
The following guidelines describe the function return values and the program return
values that SIM’s batch processes utilize:
 0 - The function completed without error, and processing should continue normally.
 1 - A non-fatal error occurred (such as validation of an input record failed), and the

calling function should either pass this error up another level or handle the
exception.

Batch logging
Relevant progress messages are logged with regard to batch program runtime
information. The location of sim batch log and logging levels can be configured in
log4j.xml file which is located in sim-home/batch-config.
For more information, see the section, “Logging Information” in “Chapter 2 – Backend
System Configuration”.

Note: Some batch programs evoke Oracle stored procedure
which runs on the Oracle database server, the log generated
by the Oracle process may exist in different location which
can be accessed by the Oracle database process. The log
location is specified in batch detail section if it is different
from the default batch log location.

Functional Descriptions and Dependencies

40 Oracle Retail Store Inventory Management

Functional Descriptions and Dependencies
The following table summarizes SIM’s batch processes and includes both a description of
each batch process’s business functionality and its batch dependencies.

Batch process Description Batch dependencies

ActivatePriceChanges

This batch process activates price
changes which are effective today or
on the user specified date.

No dependencies

CleanupPickList The end of day batch process runs at
the end of each day to reset the
delivery bay and close any open
pending pick lists.

No dependencies

CloseProdGroupSchedule This batch process closes the product
group schedule.

No dependencies

DataSeedAll This batch has been modified to add
entries for the newly created data
seeding scripts viz.
DataSeedRkItmLocMrp.sh,
DataSeedTaxpayerType.sh and
DataSeedTaxRegion.sh

No dependencies

DataSeedItemLoc This batch has been modified to fetch
MRP from the ITEM_LOC table and
insert into the corresponding table in
SIM.

No dependencies

DataSeedRkItmLocMrp This batch is used to download all the
item details (primary MRP) from item
location table from RMS.

No dependencies

DataSeedSqlload This batch has been modified to add
entries for the newly created ctl files.

No dependencies

DataSeedTaxpayerType This batch is used to populate the
RK_TAXPAYER_TYPE table with the
Tax Payer type, Tax Payer description
and the country from the
TAXPAYER_TYPE table in RMS.

No dependencies

DataSeedTaxRegion This batch is used to populate the
RK_TAX_REGION table with the Tax
Region, Tax Region name, Tax Region
type and the country from the
VAT_REGION table in RMS.

No dependencies

DeactivateItemLocMRP This batch is used to download non-
primary MRPs from RPM.

No dependencies

DexnexFileParser This batch imports the direct delivery
shipment records (PO, shipment and
receipt) from dex/nex files in the
DEX/NEX directory into SIM, the
process creates a ‘DEX/NEX direct
delivery’ in SIM.

No dependencies

Functional Descriptions and Dependencies

Operations Guide 41

Batch process Description Batch dependencies

ExtractStockCount The Extract Stock Count Batch
program generates Unit stock counts
or Unit and Amount stock counts.

No dependencies

ItemRequest The batch process generates item
requests in pending or worksheet
status for ‘item request’ product
group schedule which was scheduled
for current date.

No dependencies

LateSalesInventoryAdjustment
PublishJob

LateSalesInventoryAdjustmentPublis
hJob process publishes the late sale
inventory adjustments records to
Retail Merchandise System (RMS)
through the Retail Integration Bus
(RIB).

This batch program
must be run in the
sequence below:

1) ResaFileParser
2) ResaOpenStkCnt
3)
LateSalesInventoryAdju
stmentPublishJob

ProblemLineStockCount

The problem line batch process goes
through the list of items in the
problem line group, determining
which fall within the user specified
parameters (negative SOH, negative
available, etc …). The system
automatically creates a stock count
from those items that do fall within
the parameters.

No dependencies

PurgeAdHocStockCount This batch process deletes ad hoc
stock counts with a status of “in
progress”.

No dependencies

PurgeAll This process deletes records from the
SIM application that meet certain
business criteria.

No dependencies

PurgeAudits This batch process deletes audits. No dependencies

PurgeDSDReceivings This batch process deletes the Direct
Store Delivery receivings.

No dependencies

PurgeInactiveMRP This batch is used to purge inactive
MRPs from the RK_ITM_LOC_MRP
table.

No dependencies

PurgeInventoryAdjustments This batch process deletes inventory
adjustments.

No dependencies

PurgeItemRequests This batch process deletes item
requests.

No dependencies

PurgeItemTickets This batch process deletes item
tickets.

No dependencies

PurgeLockings This batch process deletes lockings. No dependencies

PurgePickList This batch process deletes pick lists. No dependencies

Functional Descriptions and Dependencies

42 Oracle Retail Store Inventory Management

Batch process Description Batch dependencies

PurgePriceChanges This batch process deletes price
changes.

No dependencies

PurgePriceHistories This batch process deletes price
histories.

No dependencies

PurgeReceivedTransfers This batch process deletes received
transfers.

No dependencies

PurgeStockCounts This batch process deletes stock
counts.

No dependencies

PurgeStockReturns This batch process deletes stock
returns.

No dependencies

PurgeWHDReceivings This batch process deletes the
Warehouse delivery receivings.

No dependencies

ResaFileParser This batch process imports sales and
returns data that originates in a point
of sale (POS) system. SIM uses the
data to update the SOH for the
store/items combinations in each file.

This batch program
must be run in the
sequence below:

1) ResaFileParser
2) ResaOpenStkCnt
3)
LateSalesInventoryAdju
stmentPublishJob

ResaOpenStkCnt ResaOpenStkCnt batch processes the
ReSA (Retail Sales Audit) open stock
count items which are generated by
the ResaFileParser process. This batch
updates the snapshot or stock on
hand quantities.

This batch program
must be run in the
sequence below:

1) ResaFileParser
2) ResaOpenStkCnt
3)
LateSalesInventoryAdju
stmentPublishJob

ReturnNotAfterDateAlert This batch process warns users ‘x’
number of days in advance that the
RTV/RTW is about to reach the Not
After Date and must be dispatched.
Note that the ‘x’ value is configurable
via the system’s administration GUI
screens.

No dependencies

ThirdPartyStockCountParser This batch process imports stock
count file from a third-party counting
system (such as RGIS), the stock on
hand quantities are updated for the
existing unit and amount stock count
records in SIM.

No dependencies

UpdateItemLocMRP This batch is used to download unit
retail from RPM.

No dependencies

WastageInventoryAdjustments This batch process looks for wastage
product groups that are scheduled for
today and creates an inventory
adjustment for each item in the
product group.

No dependencies

Functional Descriptions and Dependencies

Operations Guide 43

Batch process Description Batch dependencies

WastageInventoryAdjustment
PublishJob

The batch process picks up all items
that were flagged for publishing to
the merchandising system. After an
item is published, the flag is reset.

No dependencies

Batch Process Scheduling

44 Oracle Retail Store Inventory Management

Batch Process Scheduling
Before setting up an SIM batch process schedule, familiarize yourself with the scheduling
dependencies:

Job Sequence Batch Name

1 ResaFileParser

2 ResaOpenStkCnt

3 LateSalesInventoryAdjustmentPublishJob

For more details on the batch, see the Batch Details section in this chapter.

Batch Details
In order to run the SIM batches/data seeding scripts, please ensure that the following
environment variables are assigned correct values.

1. RMS_USER: Assign the RMS user
2. RMS_PWD: Assign the RMS password
3. RMS_DB: Assign the RMS host
4. SIM_USER: Assign the SIM user
5. SIM_PWD: Assign the SIM password
6. SIM_DB: Assign the SIM host

The following section summarizes SIM’s batch processes and includes both an overview
of each batch process’s business functionality, assumptions, and scheduling notes for
each batch.

Activate PriceChanges Batch

Overview
This batch process scan the price changes with pending or ticket list status, if price
changes effective date matches the user specified batch date, the process activate the
price changes (the price change status is changed to active) or mark the price change as
completed.

Usage
The following command runs the ActivatePriceChanges batch job:

ActivatePriceChanges.sh <activate_date>

Where the activate_date is optional, date format must be in dd/mm/yyyy if date is
specified.
If user does not specify the date, the current server date in GMT time will be used to find
the matching price changes.
If user passes a date string, then the batch process use that date as the store local time to
find the matching price changes for each store.

Batch Details

Operations Guide 45

CleanupPickList

Overview
The end of day batch process runs at the end of each day to reset the delivery bay and
close any open pending pick lists. The system takes the entire inventory from the
delivery bay and moves it to the back room. Any pending or in-progress pick lists are
changed to a cancelled state. Users who are actioning a pick list are ‘kicked out’ of the
system. That is, the system takes over their database lock, so that it cannot be saved.
After the batch process are run, all pick lists are either completed or cancelled, and the
delivery bay has zero inventory.

Batch Details

46 Oracle Retail Store Inventory Management

Usage
The following command runs the CleanupPickList batch job:

CleanupPickList.sh

CloseProdGroupSchedule Batch

Overview
This batch program searches for all open product group schedules that have ended date
before today (or user specified date), and change product group schedule status to
closed.

Usage
The following command runs the CloseProdGroupSchedule batch:

CloseProdGroupSchedule.sh <close_date>

Where the close_date is optional and if a date is not entered, then the server date is used.

DataSeedTaxpayerType Batch
This batch is used to populate the RK_TAXPAYER_TYPE table with the Tax Payer type,
Tax Payer description and the country from the TAXPAYER_TYPE table in RMS. This is
executed as part of the data seeding which would be done only once during data seeding.

Usage
The following command runs the DataSeedTaxpayerType batch:
DataSeedTaxpayerType.sh

DataSeedTaxRegion Batch

Overview
This batch is used to populate the RK_TAX_REGION table with the Tax Region, Tax
Region name, Tax Region type and the country from the VAT_REGION table in RMS.
This is executed as part of the data seeding which would be done only once during data
seeding.

Usage
The following command runs the DataSeedTaxRegion batch.
 DataSeedTaxRegion.sh

DeactivateItemLocMRP Batch

Overview
This batch is used to download non-primary MRPs from RPM. If an item in
RK_ITM_LOC_MRP for a given store and unit MRP exists, then the active MRP status
indicator is updated along with the last update date and the primary MRP indicator is set
to ‘N’. If there is no matching record found, a new record is inserted in the
RK_ITM_LOC_MRP table with the primary MRP indicator set to ‘N’

Usage
The following command runs the DeactivateItemLocMRP batch job:

Batch Details

Operations Guide 47

 DeactivateItemLocMRP.sh

DexnexFileParser Batch

Overview
This batch imports the direct delivery shipment records (PO, shipment and receipt) from
dex/nex files in the DEX/NEX directory into SIM.
With the uploaded data, SIM processing creates a ‘DEX/NEX direct delivery’, allowing
the store user to view, edit, and confirm the information contained in the DEX/NEX file
before approving it so that it can become an ‘in progress’ direct delivery.

Usage
The following command runs the DexnexFileParser batch:

DexnexFileParser.sh file_name

Where file_name is the DEX/NEXT file name resides at location specified in
sim_batch.cfg file under DEXNEX_INPUT_DIR, errors are written to location specified
by DEXNEX_ERRORS_DIR in the same sim_batch.cfg file.

ExtractStockCount Batch

Overview
The Extract Stock Count Batch program generates Unit stock counts or Unit and Amount
stock counts.
On a daily basis, the batch process creates the stock counts that are scheduled for the
current day or future date which matches the next scheduled date. The system looks at
all the scheduled stock count records and determines whether any are scheduled for
today or the user specified future date. The process creates the stock counts for each
individual store. If a scheduled count includes a list of 5 stores, 5 separate stock count
records are created.
For Unit stock counts, if the system is configured to use unguided stock counts, the batch
process does not generate multiple counts even if the item is located at multiple locations
within the store.
For unit and amount stock counts, if an all location stock count is being run, the batch
processing generates individual counts for every macro sequence location.
The date parameter is optional when running the Extract Stock Counts batch. If no date is
provided, today’s date is used. The date format is dd/mm/yyyy.

Usage
The following command runs the ExtractStockCount batch:

ExtractStockCount.sh <extract_date>

Where the extract_date is optional, if specified, it must be in format of dd/mm/yyyy.

Note: If date is not passed in when run the batch, today’s
date on the server is used.

Batch Details

48 Oracle Retail Store Inventory Management

ItemRequest

Overview
The batch process looks for those product groups that are set up as ‘item request type’
that are scheduled for current date, generates the item request (with items and quantities)
in a pending or worksheet status. The user (for example, a manager) can then add items,
delete items, change quantities, and so on before submitting the data to the
merchandising system. The merchandising system can generate PO(s) or warehouse to
store transfer(s) as applicable.

Usage
The following command runs the ItemRequest batch:

ItemRequest.sh

LateSalesInventoryAdjustmentPublishJob

Overview
LateSalesInventoryAdjustmentPublishJob process publishes the late sale inventory
adjustments records to Retail Merchandise System (RMS) through the Retail Integration
Bus (RIB). Late sale inventory adjustment could be the results of processing late sale
records in Resa sale data file by ResaFileParser batch or ResaOpenStockCnt batch.
Operationally, LateSalesInventoryAdjustmentPublishJob should be run every time
ResaFileParser batch and ResaOpenStk complete.

Usage
The following command runs the LateSalesInventoryAdjustmentPublishJob.sh

LateSalesInventoryAdjustmentPublishJob.sh

Assumptions and Scheduling Notes
This batch must run after following batch programs:
 ResaFileParser
 ResaOpenStkCnt

Following batches must be run in the sequence as below:
 ResaFileParser

 ResaOpenStkCnt
 LateSalesInventoryAdjustmentPublishJob

ProblemLineStockCount Batch

Overview
Before the batch process runs, the retailer establishes a group of items and item
hierarchies (by associating them to the problem line group type) and selects applicable
parameters (negative SOH, negative available, and so on). The problem line batch
process goes through the list of items in the group, determining which fall within the
parameters. The system automatically creates a stock count from those items that do fall
within the parameters.
If an item is a problem line item (negative inventory for example) on a stock count, and
the user does not get the chance to perform the stock count on it that day, the next day

i.

Batch Details

Operations Guide 49

the item may no longer be a problem line (positive inventory). However, the system
continues to create a stock count for that item because a problem existed at one time.

Usage
The following command runs ProblemLineStockCount batch:

problemLineStockCount.sh

PurgeInactiveMRP Batch

Overview
This batch is used to purge inactive MRPs from the RK_ITM_LOC_MRP table. The
program takes a date as an input parameter. The program fetches the value from the
system option DAYS_TO_HOLD_MULTIPLE_MRP that specifies the number of days to
hold inactive MRP. All the records with active MRP status indicator as ‘N’, and older
than (input date – value of DAYS_TO_HOLD_MULTIPLE_MRP) are deleted from the
table. In case no date is specified as an input to this program, the sysdate is used as a
default.

Usage
The following command runs the PurgeInactiveMRP batch:
PurgeInactiveMRP.sh / PurgeInactiveMRP.bat

ResaFileParser Batch

Overview
This batch program imports sales that originate in a point of sale system. SIM uses the
sales data to update the stock on hand for the store/items combinations in the sale file. In
other words, from the batch program, SIM learns about inventory movement (what is
sold and what is returned). Once SIM attains the data, it assumes that sales should be
taken from the store’s shelf-related inventory bucket. This assumption is important to
SIM’s shelf replenishment processing. Similarly, SIM assumes that returns should go first
to the backroom bucket; the system’s logic is that returns must be inspected.
In addition to handling the regular sales items, the ResaFileParser batch process handles
Non-ranged items, REF items, late sales, and open stock count items.
For item type ITM (the item type in ReSA file is marked as ‘ITM’):
 If an item in the ReSA file has an item level below the transaction level (e.g. item

level =3, transaction level = 2) and no stock on hand record, then it is an invalid item,
and will be written to the rerun file.

 If an item in the ReSA file has an item level equal to the transaction level and no
stock on hand record, then a new ranged item record is created for the item/store,
and stock on hand is updated.

For item type REF (the item type in ReSA file is marked as ‘REF’):
 If an item in the ReSA file has an item level below the transaction level (e.g. item

level =3, transaction level = 2), then the parent item for this ref item is looked up.
 If the parent item’s item level equals the transaction level, and it is ranged, then the

stock on hand of the parent item is updated.
 If the parent item is a transaction level item, but is not ranged for the store, then a

new ranged item is created for that store, and the stock on hand for the parent item is
updated.

Batch Details

50 Oracle Retail Store Inventory Management

Note: For any item in the ReSA file that has an item level
ABOVE the transaction level (for example, item level = 2,
transaction level = 3), that item is invalid and is written to
the rerun file. In the merchandise hierarchy, level-2 is
“above” level-3 and level-1 is “above” level-2 and so on.

For late sale items:
 A late sale is a sales transaction that took place before a stock count was completed

and the sale data file is processed after the count has started.
 A late sale is identified according to the ‘Timestamp Processing’ or ‘Daily Sales

Processing’ stock count sales processing system parameters. For daily sales
processing stock count, the ‘Before Store Open’ or ‘After Store Close’ stock count
time frame parameters are used.

 Timestamp Processing: indicates that sale data in the Sales Audit uploaded file has
the timestamp for the transaction date. The sales data transaction timestamp is
compared against the timestamps taken during the stock count to decide if the
transaction is a late sale.

 Daily Sales Processing: indicates sale data in the ReSA upload file does not have the
timestamp for the transaction date. For daily sales processing, the ‘Before Store
Open’ or ‘After Store Close’ stock count time frame parameters are used to determine
whether the stock count occurred before or after business hours so that SIM knows
how to handle late sales. Only the date is used to determine if a sale is late or not.
 ‘Before Store Open,’ indicates the stock count will be performed before the

opening of the store.
 ‘After Store Close,’ indicates the stock count will be performed after the close of

the store.
 Late sales should only be performed if the stock count was done after the store closed

and if the sales transaction was for the same day when the stock count was
performed.

 For the late sale record, the late sale process decrements or increments the stock on
hand depending on the sales transaction. In addition, a stock count inventory
adjustment transaction within SIM is recorded to offset the sales transaction. The
stock count inventory adjustment is published to RMS by running the
LateSalesInventoryAdjustmentPublishJob batch if the count is a unit or an ad hoc
count. The inventory adjustment is not sent to RMS if it is a unit and amount count
since RMS has its own late sales process for unit and amount counts.

For open stock count items:

 An open stock count item is the in-progress stock count item
 If an open stock count exists, ResaFileParser updates the tock on hand and writes the

record into rk_resa_open_stk_cnt_item table. The ReSA open stock count item
records are processed by ResaOpenStkCnt batch after the ResaFileParser batch.

Usage
The ReSA File Parser batch processes ReSA data files through the Oracle database stored
procedure. The stored procedure locates the file location through database directory
objects: RESA_DIR and RESA_ORIGINAL_DIR which are created during installation of
SIM. The read and write privileges on these directory objects should be granted to the
schema owner. The ReSA data file needs to reside on the database server or locations that
can be accessed by oracle database process. The oracle process should have full access to
the directories specified by RESA_DIR and RESA_ORIGINAL_DIR, and the ReSA data

Batch Details

Operations Guide 51

file permissions need to be changed to allow the oracle process to read and write
(remove) the file.
The corresponding operating system directories for the file storage must be created. The
system or database administrator must ensure that the operation system directory had
the correct read and write permissions for the Oracle database processes.
The following command runs the ResaFileParser batch:

ResaFileParser.sh <file_name> <starting_line_num> <block_snapshot_ind>

Note: Resa data file need to be put at the location specified
by the RESA_DIR Oracle directory object on the database
server (or the location specified in sim_batch.cfg file for key
RESA_DIR if Oracle directory object is not used, and the
location must be accessible by oracle database process). The
oracle database process must have full access to the resa data
file. Use chmod 777 to change the resa data file before start
the batch. The actual file location on the database server can
be found by executing following queries: select
directory_name, directory_path from dba_directories where
directory_name in (‘RESA_DIR’, ‘RESA_ORIGINAL_DIR’);

Where:
 file_name (required) is the name of the ReSA file containing the sales data from one

store.
 starting_line_num (required) is the line number at which to start within the POSU

file, starts with line 1 to start process a new data file. If the ReSA parser process
terminates due to failure, and some of the records have already been processed, start
the ReSA process with a line number from the failing point.

 block_snapshot_ind (required) is the flag indicating if a snapshot is allowed during
the ReSA process. Valid values are: ‘Y’ and ‘N’. ’Y’ does not allow the snapshot to be
taken until ResaOpenStkCnt.sh completes, and should always be used to ensure
accurate SOH.

Resa batch process controls transactions at pre-defined transaction blocks size, this value
can be changed by changing the parameter RESA_TRANS_SIZE in sim_batch.cfg file,
default value is 100.
The batch process deletes the data file if it completes successfully. If the batch program
encounters bad record(s) or a failure occurs during the parsing process, the batch process
creates a rerun file in the same directory as the file being processed and the original ReSA
data file is moved to resaOriginal directory.

Note: The re-run file contains the bad records (or all
uncommitted records within the transaction block on the
event of fatal errors, the batch process terminates on event of
the fatal error).

Batch Details

52 Oracle Retail Store Inventory Management

Assumptions and Scheduling Notes
Following batches must be run after this batch process:
 ResaOpenStkCnt
 LateSalesInventoryAdjustmentPublishJob

The following batches must be run in the sequence as below:
 ResaFileParser

 ResaOpenStkCnt
 LateSalesInventoryAdjustmentPublishJob

ResaOpenStkCnt Batch

Overview
ResaOpenStkCnt batch processes the ReSA open stock count items which are generated
by the ResaFileParser batch. It updates the snapshot or stock on hand records as
appropriate based on the current stock count. Operationally, ResaOpenStkCnt should be
run every time ResaFilePaser batch completes.
ResaOpenStkcCnt batch processes open stock count items as follow:
 Each open stock count item in the RESA open stock count item table. The process

checks if the item is still an open stock count item by looking at the open stock count
flag in rk_store_item_soh table.

 If an open stock count still exists and there is no timestamp taken for the physical
count, then the snapshot is updated with the sales qty. (the SOH is updated for the
open stock count item in ResaFileParser process).

 For items whose stock count has been confirmed, the process decides if this sale is a
late sale by comparing the timestamp on the sales data and the timestamp of the
item’s physical count.

 If the timestamp of the sale is before the physical count and the count has not been
completed yet, then the snapshot is updated (the SOH is updated for the open stock
count item in the ResaFileParser process).

 If the sales timestamp is before the Authorization timestamp, late sales processing
takes place. (For late sale details, see the ResaFileParser late sale section.)

 If the sales timestamp is after the physical count but before the confirmation of an
authorized quantity that was saved, then late sales is also processed for that item.
(For late sale details, see the ResaFileParser late sale section).

Note: In case stock count processing is set to daily stock
count processing, the above rules still apply, but instead of
comparing the timestamp, the batch program will compare
the sales date with the stock count date. In addition, it will
determine a possible adjustment based on when the stock
count was taken before store open or after store close.

Usage
ResaOpenStkCnt.sh <store_id>

Where store_id (optional) only processes records for a given store. If store_id is not
passed in, ResaOpenStkCnt processes records for all stores.

ii.

Batch Details

Operations Guide 53

Assumptions and Scheduling Notes
The following batch must run before this batch process:
 ResaFileParser

This batch must run before this batch process:
 LateSalesInventoryAdjustmentPublishJob

Following batches must be run in the sequence as below:
 ResaFileParser
 ResaOpenStkCnt
 LateSalesInventoryAdjustmentPublishJob

ReturnNotAfterDateAlert Batch

Overview
This batch process warns users ‘x’ number of days in advance that the RTV/RTW is
about to reach the ‘Not after date’ and must be dispatched. Note that the ‘x’ value is
configurable via the system’s administration GUI screens.
Usage
Following command runs the ReturnNotAfterDateAlert batch:

ReturnNotAfterDateAlert.sh

ThirdPartyStockCountParser Batch

Overview
This batch process imports stock count file from a third-party counting system (such as
RGIS), the stock on hand quantities are updated for the existing unit and amount stock
count records in SIM.
If the auto authorize admin flag is set to ‘no’, the following is true:
 The import file contains item and quantity counted information. SIM populates the

count quantity on the stock count records and sets the authorize quantity equal to the
count quantity. Once the file has been imported from the RGIS system, the stock
count records type is set to ‘authorize’ and the status is set to ‘in progress’.

 If any items are sent from RGIS that were not already ranged to the store, SIM adds
the item to the appropriate stock count record (based on department), and sets the
snapshot SOH amount to 0.

 During the import process from RGIS to SIM, any ‘unknown’ item data is written to
the Not On File table.

If the auto authorize admin flag is set to ‘yes’, the following is true:
 The import file contains item and quantity counted information. SIM populates the

count quantity on the stock count records, and sets the authorize quantity equal to
the count quantity. Once the file has been imported from the RGIS system, the stock
count records type is set to ‘authorize’ and the status is set to ‘completed’.

 If any items are sent from RGIS that were not already ranged to the store, SIM adds
the item to the appropriate stock count record (based on department), and sets the
snapshot SOH amount to 0.

 During the import process from RGIS to SIM, any ‘unknown’ item data is written to
the Not On File table.

Batch Details

54 Oracle Retail Store Inventory Management

 Once the import process is complete, SIM automatically authorizes the unit and
amount stock counts and exports the stock count data to RMS. Under normal
operating circumstances, this manual process is triggered by a SIM user through the
front end. If the store admin flag for auto authorizing a third-party stock count is set
to ‘y’, this process occurs as part of the import of the 3rd party file. Note that in this
case, any items that are considered ‘Not On File’ are not assigned to an existing item.
This business process assumes the retailer has resolved all discrepancies and data
conflicts prior to exporting the count data from the third-party system. An
assumption is also made that no data will be reviewed or changed using SIM. This
process merely updates SIM with the stock count data. SIM, in turn, updates RMS
with the same stock count data. No user intervention is required within SIM for this
process to occur.

ThirdPartyStockCount Integration Assumptions
 RMS provides an ‘item export’ file to RGIS prior to the count in order for RGIS to

validate the items that are scanned.
 The items coming from RGIS are identified based on an RMS item number (for

example, an RIN, UPC, or other number set up in RMS).
 All quantities passed back from RGIS are assumed to be in the item’s standard unit

of measure (UOM) as established by RMS (for example, units, KG, and so on).
 The RGIS file sends back the total quantity counted for each item, regardless of

whether the item was counted in several areas of the store (rolled up total by item).
 For items that exist in the SIM stock count records but do not have a counted

quantity sent back from the RGIS system, SIM assumes a count quantity of ‘0’, and
enters this value on the stock count record.

 For items that have a SOH quantity in SIM but have a RGIS count of 0, the
discrepancy check uses the variance units (not the variance %) value to determine
whether the item is discrepant and should be displayed through the front end.

Usage
The ThirdPartyStockCountParser batch processes stock count import files through the
Oracle database stored procedure. The stored procedure locates the file location through
database directory objects: STOCK_COUNT_DIR and STOCK_COUNT_UPLOAD_DIR,
the read and write privileges on these directory objects should be granted to the schema
owner. The stock count import data file needs to reside on the database server or
locations that can be accessed by oracle database process. The oracle process should have
full access to the directories specified by STOCK_COUNT_DIR and
STOCK_COUNT_UPLOAD_DIR, and the stock count import data file permissions need
to be changed to allow the oracle process to read and write (remove) the file.
The corresponding operating system directories for the file storage must be created. The
system or database administrator must ensure that the operation system directory add
the correct read and write permissions for the Oracle database processes.

Note: The Oracle database directory objects
STOCK_COUNT_DIR and STOCK_COUNT_UPLOAD_DIR
are created when the SIM application is installed.

Following command runs ThirdPartyStockCountParser batch:
ThirdPartyStockCountParser.sh <file_name>

Where the file_name is the import file data from one store; the stock count import data
file need to be put at the location specified by the STOCK_COUNT_DIR Oracle directory.

Batch Details

Operations Guide 55

The upload file is in STOCK_COUNT_UPLOAD_DIR. This upload file is an export file to
RMS. The oracle database process must have full access to the stock count data file. Use
chmod 777 to change the stock count import data file before start the batch.

UpdateItemLocMRP
This batch is used to download unit retail from RPM. If an item in RK_ITM_LOC_MRP
for a given store and unit MRP exists, then the selling retail is updated. If there is no
matching record found, a new record is inserted in the RK_ITM_LOC_MRP table with
the selling retail, primary MRP indicator set to ‘N’ and active MRP status indicator set to
‘Y’.

Usage
The following command runs the UpdateItemLocMRP batch.
 UpdateItemLocMRP.sh

WastageInventoryAdjustments Batch

Overview
This batch process looks for wastage product groups that are scheduled for today and
creates an inventory adjustment for each item in the product group. The batch process
uses amounts based on percentage/units. Note that if both a percentage and unit exist,
the batch process applies the least amount of the two. For example, consider an item with
a stock on hand value of 100. If the two values are 10% and 5 units, the batch process
would create an inventory adjustment of 5 units for the item.
The batch process creates a completed inventory adjustment record using the adjustment
reason of ‘Shrinkage’ (code = 1) for each item that is published to the merchandising
system.

Usage
Following command runs the WastageInventoryAdjustments batch:

WastageInventoryAdjustments.sh

After the batch process complete, the retailer needs to run another batch
WastageInventoryAdjustmentPublishJob.sh to publish the inventory adjustment
generated by the above batch to the merchandising system.

WastageInventoryAdjustmentPublishJob

Overview
The batch process picks up all items that were flagged for publishing to the
merchandising system. After an item is published, the flag is reset.

Usage
Following command runs the WastageInventoryAdjustmentPublishJob batch:

WastageInventoryAdjustmentPublishJob.sh

SIM Purge Batch ProcessOverview
Transactional and historical records in SIM can be purged as below:
 PurgeAll batch: trigger all pre-defined purge batch processes and delete records

which matches the purging criteria.

Batch Details

56 Oracle Retail Store Inventory Management

 Run each individual batches to purge particular data.
For details on how to run the purge batch, see the batch program overview and usage
section listed below.

PurgeAll Batch

Overview
This process deletes records from the SIM application that meet certain business criteria
(for example, records that are marked for deletion by the application user, records that
linger in the system beyond certain number of days, and so on).
Following is the list of transactions whose records get purged by the PurgeAll.sh batch
 Received transfers
 Stock Counts
 Inventory Adjustments
 Warehouse Receivings
 DSD/DSDASN Receivings
 Stock Returns
 Price Changes
 Price Histories
 Pick Lists
 Item Requests
 Item Tickets
 Audits
 Lockings
 Adhoc Stock Counts

Usage
PurgeAll.sh <purge_date>

Where purge_date is optional, date format must be in dd/mm/yyyy if purge_date is
specified.

PurgeAdHocStockCount Batch

Overview
This batch program deletes ad hoc stock counts with a status of “in progress”. Any ad
hoc stock count with a creation date/time stamp older than the ‘Days to Hold In Progress
Ad Hoc Counts’ parameter value will be deleted. For example, the default value is 1. If
the batch program is run with the default value, the batch program would delete all in
progress counts more than 24 hours old.

Usage
PurgeAdHocStockCount.sh

Batch Details

Operations Guide 57

PurgeAudits

Overview
This batch process deletes audit records. Any audit record with a create date/timestamp
older than the ‘Days To Hold Audit Records’ parameter value is deleted. For example, if
the default value is 30 and the batch program is run with the default value, the batch
program would delete all the audit records that are more than 30 days old.

Usage
PurgeAudits.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeDSDreceivings Batch

Overview
This batch process deletes the Direct Store Delivery receivings.
Any DSD record which is in ‘Closed’/’Cancelled status and which has a complete date
older than ‘Days to Hold Received Shipments’ is an eligible record for purge.
However, before a DSD record is purged, checks are made to ensure that the purchase
order associated with a particular DSD is also completed and is older than ‘Days to Hold
Purchase Orders’.
Another check is made to identify the DSDASN’s associated with a DSD record. If the
DSDASN is cancelled/completed and is older than ‘Days to Hold Received Shipments’,
only then it can get purged.
In effect a DSD record can be purged only if its associated PO and DSDASN records can
be purged.

Usage
PurgeDSDReceivings.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeInventoryAdjustments Batch

Overview
This batch process deletes inventory adjustments. Any inventory adjustment record with
a create date/timestamp older than ‘Days To Hold Completed Inventory Adjustments’
parameter value will be deleted. For example, the default value is 30.If the batch program
is run with the default value, the batch program would delete all the inventory
adjustment records, which are more than 30 days old.

Usage
PurgeInventoryAdjustments.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

Batch Details

58 Oracle Retail Store Inventory Management

PurgeItemRequests Batch

Overview
This batch process deletes item requests which are in ‘Cancelled’/ ‘Completed’ status.
Any item request record with a process date/timestamp older than ‘Days To Hold Item
Requests’ parameter value will be deleted. For example, the default value is 30.If the
batch program is run with the default value, the batch program would delete all the item
request records, which are more than 30 days old.

Usage
PurgeItemRequests.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeItemTickets Batch

Overview
This batch process deletes item tickets which are in ‘Printed’/ ‘Completed’ status. Any
item tickets record with a status date/timestamp older than ‘Days To Hold Item Tickets’
parameter value will be deleted. For example, the default value is 30.If the batch program
is run with the default value, the batch program would delete all the item ticket records,
which are more than 30 days old.

Usage
PurgeItemTickets.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeLocking Batch

Overview
This batch process deletes lockings records from RK_LOCK_RECORD table. Any lock
record with a lock date/timestamp older than ‘Days To Hold Locking Records’
parameter value will be deleted. For example, the default value is 30.If the batch program
is run with the default value, the batch program would delete all the lock records, which
are more than 30 days old.
Usage
PurgeLockings.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgePickList Batch

Overview
This batch process deletes pick lists which are in ‘Completed’/ ‘Cancelled’ state. Any
pick list record with a post date/timestamp older than ‘Days To Hold Pick Lists’
parameter value will be deleted. For example, the default value is 30.If the batch program
is run with the default value, the batch program would delete all the pick list records,
which are more than 30 days old.

Batch Details

Operations Guide 59

Usage
PurgePickList.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgePriceChanges Batch

Overview
This batch process deletes price changes which are in ‘Approved’/ ‘Rejected’/
‘Completed’ status. Any price change record with an effective date/timestamp older
than ‘Days To Hold Price Changes’ parameter value will be deleted. For example, the
default value is 30.If the batch program is run with the default value, the batch program
would delete all the price change records, which are more than 30 days old

Usage
PurgePriceChanges.sh <batch_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgePriceHistories Batch

Overview
This batch process deletes price histories. At least a minimum of 4 historical prices are
maintained for an item/store. ‘Days To Hold Price History’ will determine the number of
days that price histories can be kept for in the database.

Usage
PurgePriceHistories.sh <batch_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeReceivedTransfers Batch

Overview
This batch process deletes received transfers. The transfer in and transfer out transactions
will be purged from the database. The transfer out transactions which are in ‘Received’/
‘Auto Received’/ ‘Complete Approved’/ ‘Complete Reject’/ ‘Cancelled’ / ‘Cancelled
Request’ will be purged if the records are older than ‘Days To Hold Received Transfer
Records’ parameter. Also, the ‘Purge Received Transfers’ parameter must be set to ‘Yes’
in the admin screen to enable purging of the received transfers.

Usage
PurgeReceivedTransfers.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

Batch Details

60 Oracle Retail Store Inventory Management

PurgeStockCounts Batch

Overview
This batch process deletes stock counts which are in ‘Completed’/ ‘Cancelled’ status.
Any stock count with a schedule date/timestamp older than ‘Days To Hold Completed
Stock Counts’ parameter value will get deleted. For example, the default value is 30.If the
batch program is run with the default value, the batch program would delete all the stock
return records, which are more than 30 days old

Usage
PurgeStockCounts.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeStockReturns Batch

Overview
This batch process deletes stock returns which are in ‘Dispatched/ ‘Cancelled’ status.
Any stock return record with a completed date/timestamp older than ‘Days To Hold
Returns’ parameter value will be deleted. For example, the default value is 30.If the batch
program is run with the default value, the batch program would delete all the stock
return records, which are more than 30 days old

Usage
PurgeStockReturns.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

PurgeWHDReceivings Batch

Overview
This batch process deletes the Warehouse delivery receivings which are in ‘completed’ /
‘cancelled’ status. The warehouse receivings records which are older than the ‘Days To
Hold Received Shipments’ will get purged, based on the value set for this parameter.

Usage
PurgeWHDReceivings.sh <purge_date>

Where purge_date is optional and the date format must be in dd/mm/yyyy if
purge_date is specified.

Supporting Files Created or Modified for the Batches
The following are the supporting files created or modified for the batches:

DataSeedAll.sh (Modified)
This batch has been modified to add entries for the newly created dataseeding scripts viz.
DataSeedRkItmLocMrp.sh, DataSeedTaxpayerType.sh and DataSeedTaxRegion.sh.

DataSeedItemLoc.sh (Modified)
This batch has been modified to fetch MRP from the ITEM_LOC table and insert into the
corresponding table in SIM.

Batch Details

Operations Guide 61

DataSeedRkItmLocMrp.sh (New)
This batch is used to download all the item details (primary MRP) from item location
table from RMS. The active MRP indicator and the primary MRP indicator are set to ‘Y’.
This is executed as part of the data seeding which would be done only once during
dataseeding.

DataSeedSqlload.sh (Modified)
This batch has been modified to add entries for the newly created ctl files.

DataSeedTaxRegion.ctl (Batch: DataSeedTaxRegion.sh)
The data from the VAT_REGION table is written to the DataSeedTaxRegion.dat file.
DataSeedTaxRegion.ctl uses this as an input to insert the data in RK_TAX_REGION
table.

DataSeedTaxpayerType.ctl (Batch: DataSeedTaxpayerType.sh)
The data from the TAXPAYER_TYPE table is written to the DataSeedTaxRegion.dat file.
DataSeedTaxRegion.ctl uses this as an input to insert the data in RK_TAXPAYER_TYPE
table.

Purge_datas.pls and purge_datab.pls (Batch: PurgeInactiveMRP.sh/
PurgeInactiveMRP.bat)
A new function delete_mrp_data () is added to the base package to delete all inactive
MRPs from the RK_ITM_LOC_MRP table. This function takes date as an input
parameter.

PurgeMultipleMrpJob.java pls (Batch: PurgeInactiveMRP.sh/ PurgeInactiveMRP.bat)
This class is called from the PurgeInactiveMRP.sh/PurgeInactiveMRP.bat program. This
validates the input parameter. In case no parameter is specified, it defaults the sysdate
and invokes the process for deleting the inactive records.

PurgeMultipleMrpProcedure.java pls (Batch: PurgeInactiveMRP.sh/
PurgeInactiveMRP.bat)
This class invokes the pl/sql procedure PURGE_DATA.DELETE_MRP_DATA () to
delete the inactive MRPs.

RkItemMrpDetails.ctl (Batch: DeactivateItemLocMRP.sh)
The data from the RPM_ITEM_MRP_DETAILS table is written to the
RkItemMrpDetails.dat file. RkItemMrpDetails.ctl file takes this as an input file and
inserts the data in the RK_ITEM_MRP_DETAILS table. The records in
RK_ITEM_MRP_DETAILS are merged with RK_ITM_LOC_MRP table. Once the merge
is complete, the records are deleted from the RK_ITEM_MRP_DETAILS table.

RkItemMrpDetails.ctl (Batch: UpdateItemLocMRP.sh)
The data from the RPM_ORPOS_MRP_PUBLISH table is written to the
RkItemMrpDetails.dat file. RkItemMrpDetails.ctl file takes this as an input file and
inserts the data in the RK_ITEM_MRP_DETAILS table. The records in
RK_ITEM_MRP_DETAILS are merged with RK_ITM_LOC_MRP table. Once the merge
is complete, the records are deleted from the RK_ITEM_MRP_DETAILS table.

A Note About Multi-Threading and Multiple Processes

62 Oracle Retail Store Inventory Management

A Note About Multi-Threading and Multiple Processes
SIM’s batch processes are generally not set up to be multi-threaded or to undergo multi-
processing. However, for data file batch processing, if performance is a concern, then the
file can be break into smaller parts, each process can then consume one file and run
parallel with as many other files as there are resources to support this processing. The
recommended ratio is approximately 1-1.5 processes per available CPU.
Some batch programs do create multiple threads to call the server in order to do work
more efficiently. Those batch programs are listed below. They generally work in the
following pattern:

 Query the server to find a set of data that needs to be processed.
 Break the set of data into units of work that can be worked on independently in

separate threads.
 Create threads to work concurrently on the units of work.
 Wait for all threads to finish.
 Report any errors and return.

The number of threads that will be created to work on the units of work is determined by
the configuration parameter NUM_THREADS_IN_POOL in sim_batch.cfg (located at
sim-home/files/prod/retek/sim_batch.cfg). If no value is specified, a default value of 4
is used.

Batch Programs that Create Threads
 WastageInventoryAdjustments
 ItemRequest
 ProblemLineStockCount
 ExtractStockCount

Operations Guide 63

A
Appendix: Stock Count File Layout

Specification
rmsupload.cfg Configuration File

The configuration file, rmsupload.cfg, specifies the location of the unit/amount stock
count output file that is to be uploaded into RMS. The default directory is the following:
\retek\sim\files\prod\upload\

This directory does not exist in the packaging but is automatically created upon the first
completed unit/amount stock count. The directory can also be created manually.

Stock Count Results Flat File Specification
Once a stock count is authorized and completed, the SIM server creates a flat file during
runtime and stages it to a directory that is configured during installation. Using the flat
file generated by SIM, the merchandising system’s stock upload module retrieves and
uploads the physical stock count data. The file is formatted as follows:

Record name Field name Field type Description

File Header file type record
descriptor

Char(5) hardcode ‘FHEAD’

 file line identifier Number(10) Id of current line being processed., hardcode
‘000000001’

 file type Char(4) hardcode ‘STKU’

 file create date Date(14)

YYYYMMDD
HHMISS

date written by convert program

 stocktake_date Date(14)

YYYYMMDD
HHMISS

stake_head.stocktake_date

 cycle count Number(8) stake_head.cycle_count

 loc_type Char(1) hardcode ‘W’ or ‘S’

 location Number(10) stake_location.wh or stake_location.store

Transaction
record

file type record
descriptor

Char(5) hardcode ‘FDETL’

 file line identifier Number(10) Id of current line being processed, internally
incremented

 item type Char(3) hardcode ‘ITM’

 item value Char(25) item id

 inventory
quantity

Number(12,4) total units or total weight

Stock Count Results Flat File Specification

64 Oracle Retail Store Inventory Management

Record name Field name Field type Description

 location
description

Char(30) Where in the location the item exists. Ex: Back
Stockroom or Front Window Display

File trailer file type record
descriptor

Char(5) hardcode ‘FTAIL’

 file line identifier Number(10) Id of current line being processed, internally
incremented

 file record count Number(10) Number of detail records.

Operations Guide 65

B
Appendix: Batch File Layout Specifications

Flat File Used in the ResaFileParser Batch Process
This batch program imports sales that originate in a point of sale (POS) system. SIM uses
the sales data to update the stock on hand for the store/items combinations in the POS
file. For more information on the POS file format, see the POS Upload [posupld] section
of the Oracle Retail Merchandising System Operations Guide – Volume 1.

Flat File Used in the DexnexFileParser Batch Process

66 Oracle Retail Store Inventory Management

Flat File Used in the DexnexFileParser Batch Process

File Structure – 894 Delivery
DEX/NEX uses the EDI Standard 894 Transaction Set to communicate with the direct
delivery receiving system. The basic format for the file is as follows:

Header

ST = Transaction Set Header

G82 = Delivery/Return Base Record

N9 = Reference Identification

 Detail (repeating…)

 LS = Loop Header

 G83 = Line Item Detail DSD

 G72 = Allowance or Charge at Detail Level

 LE = Loop Trailer

Summary

G84 = Delivery/Return Record
Totals

G86 = Signature

G85 = Record Integrity Check

SE = Transaction Set Trailer

ST – Contains the transaction set number (for example, 894) and a control number.
G82 – Contains the type of delivery (Delivery or Return), supplier information, and
delivery date.
N9 – Contains additional supplier information (Canada only).
LS – Contains an ID for the details loops to follow.
G83 – Contains the item #, quantity, UOM, unit cost, and item description.
G72 – Contains allowance (e.g. 10% off) or charge (e.g. environmental levy) information.
LE – Contains the loop trailer.
G84 – Contains the total quantity and cost of the delivery.
G86 – Contains the suppliers UCC signature.
G85 – Contains an authentication identifier.
SE – Contains the number of transactions in the transmission.

 Flat File Used in the DexnexFileParser Batch Process

Operations Guide 67

File details:

Segment Sub-
Segment

Name Req? SIM value

ST Transaction Set
Header

Yes

ST ST01 Transaction Set ID
Code

Yes 894 - identifies the EDI file type, use
to validate.

ST ST02 Transaction Set
Control #

Yes Ignore

G82 Delivery/Return
Base Record

Yes

G82 G8201 Credit/Debit Flag
Code

Yes D=Delivery, C=Return.

G82 G8202 Supplier’s
Delivery/Return
Number

Yes Use as supplier's purchase order
number.

G82 G8203 DUNS Number Yes Ignore

G82 G8204 Receiver’s Location
Number

Yes Contains the Store #

G82 G8205 DUNS Number Yes Supplier's DUNS Number - use to
determine supplier

G82 G8206 Supplier’s Location
Number

Yes Supplier's DUNS Location - use
with DUNS Number to determine
supplier

G82 G8207 Delivery/Return
Date

Yes Delivery Date

N9 Reference
Identification

No

N9 N901 Reference Identifier
Qualifier

Yes Ignore

N9 N902 Reference Number Yes Use as SIM invoice number

N9 N903 Free-Form
Description

No Ignore

LS LS01 Loop Header Yes Provides an ID for the loop to
follow in the file

G83 Line Item Detail Yes

G83 G8301 DSD Number Yes Ignore

G83 G8302 Quantity Yes Unit Quantity

G83 G8303 Unit of Measure
Code

Yes CA = Case, EA = Each

G83 G8304 UPC Item Number

G83 G8305 Product ID Qualifier

G83 G8306 Product ID Number

G83 G8307 UPC Case Code No Pack Number

Flat File Used in the DexnexFileParser Batch Process

68 Oracle Retail Store Inventory Management

Segment Sub-
Segment

Name Req? SIM value

G83 G8308 Item List Cost No Unit Cost

G83 G8309 Pack No

G83 G8310 Cash Register
Description

No Ignore

G72 Allowance or Charge
at Detail Level

No Ignore

G72 G7201 Allowance or Charge
Code

 Ignore

G72 G7202 Allowance/Charge
Handling Code

 Ignore

G72 G7203 Allowance or Charge
Number

 Ignore

G72 G7205 Allowance/Charge
Rate

 Ignore

G72 G7206 Allowance/Charge
Quantity

 Ignore

G72 G7207 Unit of Measure
Code

 Ignore

G72 G7208 Allowance/Charge
Total Amount

 Ignore

G72 G7209 Allowance/Charge
Percent

 Ignore

G72 G7210 Dollar Basis for
Allow/Charge %

 Ignore

LE LE01 Loop Identifier Loop Trailer, will contain same ID
as loop header

G84 Delivery/Return
Record Totals

Yes

G84 G8401 Quantity Yes Sum of all G8302 values

G84 G8402 Total Invoice
Amount

Yes Total Cost, inclusive of charges and
net of allowances.

G86 G8601 Signature Yes Ignore

G85 G8501 Integrity Check
Value

Yes Ignore

SE SE01 Number of Included
Segments

Yes Total # of segments between ST and
SE, used for validation

SE SE02 Transaction Set
Control #

Yes Same as ST02, used for validation

GE GE01 Number of
transaction sets
included

Yes # of sets in functional group, used
for validation

GE GE02 Group Control
Number

Yes Same as GS06, used for validation

 Flat File Used in the ThirdPartyStockCountParser Batch Process

Operations Guide 69

Flat File Used in the ThirdPartyStockCountParser Batch Process

RGIS File Layout Definition
 Number of Fields: 9
 Record Length: 80

Data name Field Description Dec
Length

Position
from

Position to Field type

DLSSTR STORE NUMBER 6 1 6 Character

DLSDAT DATE MMDDYY 6 7 12 Character

DLSRAN RGIS AREA
NUMBER

10 13 22 Character

DSLF12 12 CHARACTER
FILLER

12 23 34 Character

DSLF13 13 CHARACTER
FILLER

13 35 47 Character

DLSUPC UPC CODE 13 48 60 Character

DLSF12 12 ZERO FILLER 12 61 72 Character

DLSQTY COUNT
QUANTITY

7 73 79 Character

DLSF01 CONSTANT OF A
"+"

1 80 80 Character

Flat File Used in the ThirdPartyStockCountParser Batch Process

70 Oracle Retail Store Inventory Management

RGIS Sample File Data
00030105010212 068853600204 0000000000000000025
00030105010212 024000010265 0000000000000000007
00030105010212 027000422380 0000000000000000019
00030105010212 024000010265 0000000000000000004
00030105010212 755566004718 0000000000000000027
00030105010212 074027062006 0000000000000000017
00030105010212 074027062006 0000000000000000005
00030105010212 074027062006 0000000000000000003
00030105010212 035549874270 0000000000000000012
00030105010212 074027075464 0000000000000000003
00030105010212 042600065492 0000000000000000006
00030105010212 070320801199 0000000000000000014
00030105010212 067703680038 0000000000000000005
00030105010212 030267300667 0000000000000000009
00030105010212 045700155001 0000000000000000001
00030105010212 755566004718 0000000000000000018

	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Overview
	Technical Architecture Overview
	SIM’s Integration Points into the Retail Enterprise

	Backend System Configuration
	Configuring SIM Across Time Zones
	Supported Oracle Retail Products/Environments
	Configuration Files
	batch_db.cfg – Database connection info for batch programs
	bofactory.cfg – Business Object Factory implementation
	cache.cfg – Server side business object cache settings
	config.cfg – Configuration cache timeouts
	currency.cfg – Default currency code for SIM
	dao.cfg – Data access object implementations
	integration.cfg – Integration (RIB and RSL) settings
	jdbc.cfg – Database configuration
	jndi.cfg – JNDI settings
	ldap.cfg – Configuration for connecting to an LDAP server
	log4j.xml
	logging.cfg
	messaging.cfg
	posmodfileparser.cfg
	pricechange.cfg
	printing.cfg
	reporting.cfg – Configuration for printing reports
	RMS.cfg
	rmsupload.cfg
	sequencing.cfg
	server_master.cfg – Server initialization configuration
	services.cfg – Service implementation classes
	sim_batch.cfg – Batch configuration parameters
	telephone.cfg – Telephone format configuration
	wireless_client_master.cfg – Wireless Server Configuration
	wireless_services.cfg
	retek/jndi_providers.xml - JNDI Configuration File
	retek/rules_sim.xml – Business Rules configuration
	retek/rib/injectors.xml – RIB subscriber configuration

	Logging Information
	Default Location of Log Files
	Changing Logging Levels

	Technical Architecture
	Overview
	SIM Technology Stack
	Advantages of the Architecture

	SIM Technical Architecture Diagrams and Description
	Client Tier
	Middle Tier
	Database Tier

	Distributed Topology
	A Word About Activity Locking

	SIM Integration – Technical
	RIB-based Integration
	The XML Message Format
	SIM Message Subscription Processing
	RIB Message Publication Processing
	RIB Hospital
	Subscribers Mapping Table
	Publishers Mapping Table

	 RSL-based Integration
	Web Service-based Integration
	File-based Integration

	SIM Integration – Functional
	Overview
	System to System SIM Dataflow
	Functional Descriptions of RIB Messages
	From SIM to the Warehouse Management System (WMS)
	From the WMS to SIM
	From a Point of Sale System to SIM
	From the Merchandising System to SIM
	From SIM to the Merchandising System
	From SIM to the Merchandising System via the Stock Upload Module in the Merchandising System
	From SIM to the Reporting System
	From SIM to a Price Management System (such as RPM)
	From a Price Management System (such as RPM) to SIM

	Multiple Maximum Retail Price (MMRP)
	Tax India Localization

	Batch Processes
	Batch Processing Overview
	Running a Batch Process
	Summary of Executable Shell Scripts, Batch Files, Java Packages
	Scheduler and the Command Line
	Return Value Batch Standards
	Batch logging
	Functional Descriptions and Dependencies
	Batch Process Scheduling
	Batch Details
	Activate PriceChanges Batch
	CleanupPickList
	CloseProdGroupSchedule Batch
	DataSeedTaxpayerType Batch
	DataSeedTaxRegion Batch
	DeactivateItemLocMRP Batch
	DexnexFileParser Batch
	ExtractStockCount Batch
	ItemRequest
	LateSalesInventoryAdjustmentPublishJob
	ProblemLineStockCount Batch
	PurgeInactiveMRP Batch
	ResaFileParser Batch
	ResaOpenStkCnt Batch
	ReturnNotAfterDateAlert Batch
	ThirdPartyStockCountParser Batch
	ThirdPartyStockCount Integration Assumptions
	UpdateItemLocMRP
	WastageInventoryAdjustments Batch
	WastageInventoryAdjustmentPublishJob
	SIM Purge Batch ProcessOverview
	PurgeAll Batch
	PurgeAdHocStockCount Batch
	PurgeAudits
	PurgeDSDreceivings Batch
	PurgeInventoryAdjustments Batch
	PurgeItemRequests Batch
	PurgeItemTickets Batch
	PurgeLocking Batch
	PurgePickList Batch
	PurgePriceChanges Batch
	PurgePriceHistories Batch
	PurgeReceivedTransfers Batch
	PurgeStockCounts Batch
	PurgeStockReturns Batch
	PurgeWHDReceivings Batch
	Supporting Files Created or Modified for the Batches

	A Note About Multi-Threading and Multiple Processes
	Batch Programs that Create Threads

	Appendix: Stock Count File Layout Specification
	rmsupload.cfg Configuration File
	Stock Count Results Flat File Specification

	Appendix: Batch File Layout Specifications
	Flat File Used in the ResaFileParser Batch Process
	Flat File Used in the DexnexFileParser Batch Process
	File Structure – 894 Delivery

	Flat File Used in the ThirdPartyStockCountParser Batch Process
	RGIS File Layout Definition
	RGIS Sample File Data

