Oracle® Retail Point-of-Service
Operations Guide

Release 12.0.3

July 2008

ORACLE

Oracle Retail Point-of-Service Operations Guide, Release 12.0.3

Copyright © 2007, 2008 Oracle. All rights reserved.
Primary Author: ~Graham Fredrickson

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies Inc. of
Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive Application Server -
Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item Planning, Oracle Retail
Merchandise Financial Planning, Oracle Retail Advanced Inventory Planning and Oracle Retail Demand
Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa Clara,
California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports Professional
licensed by Business Objects Software Limited ("Business Objects") and imbedded in Oracle Retail Store

Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft Technology
Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(ix) the software component known as i-net Crystal-Clear™ developed and licensed by I-NET Software Inc.
of Berlin, Germany, to Oracle and imbedded in the Oracle Retail Central Office and Oracle Retail Back Office
applications.

(x) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc. of San Jose,
California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration application.

(xi) the software component known as DataBeacon™ developed and licensed by Cognos Incorporated of
Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

Contents

PrEFACE ...t xxiii
N B o § <) g T RS URPTRUR xxiii
Related DOCUIMIENESocviiiiiieieeie ettt ettt ettt et ettt e vt e teets e beera e beessesbeessenseereeseersensesasennas xXiii
CUSLOMET SUPPOTL ...vviiiiiiiiiiiiic e XXiii
Review Patch DOCUMENTATIONccviiiieieiieiiceeiece ettt ettt et ae e eae s e eaesteessesseessesseessassessnessas XXiv
Oracle Retail Documentation on the Oracle Technology Networkcccoocoviviiiiiininicnenne. XXiv
CONVEINTIONS ..evvevieiieiieiestieteeetetestetesstestestesesseessesseesesssessesssesesssessesssessesssensesssensesssensesseessesssensessenses XXiv

1 Backend System Administration and Configuration

Defining Security with Roles ... 1-1
MOdifying @ ROIE........cooiiuiiiiiicicit 1-1
AddIng @ ROLe ... 1-2
Secured FEAtUIEScoiviiiiiieiicicicc s 1-4
Security Implementation -- Warnings and AdViICeccceeueiiirieiiiniieiiicieec 1-5
PasSWOId POLICYcocoiuiiiiiiiiiiiiiic s 1-6
PasSWOId RESEt.......ccuiviiiiiiiiiiiicii s 1-6
Viewing or Modifying the Password in the Database...........cccccoooeiieiiiiiiiii 1-7
Password Policy and Password Change..............cooeeeiieeiniicieiicec e 1-8
ReaS0N COAES ..ottt s 1-8
Configuring Transaction ID Lengths.............c.ccccccooiiiiiiiiii 1-11
Understanding Transaction IDs..........ccccccciiiiiiiiiiiiiccieeeeees 1-12
Changing Transaction ID Lengths.........c.ccccccciiiiiiiiiiiiicccceeeeeeeeeeeeeeeeeeeenees 1-12
Configuring the Purchase Date Field for Returns and Voids...........ccccccevvininiinnnnnn 1-13
Configuring RMI Timeout Intervals ... 1-13
Setting the RMI Timeout Interval for the JVM Under LinuxX.......cccccceeueuvrvvivnnnnnnrnccne. 1-13
Modifying the TCP Connection Timeout on LinUxXcccooeioiiiiiiniiiiciiccec 1-13
Setting the RMI Timeout Interval for All Manager and Technician Calls...........ccccccouevunenn.. 1-14
Setting the RMI Timeout Interval for a Specific Technician ..o, 1-14

Configuring Third-party Tender Authorization ... 1-14
Enabling the Financial Network Technician ... 1-15
Setting the Merchant NUMDeTccccccoiiiiiiiiiccece s 1-15

System Settings.........ccooviiiiiiiii s 1-15

Adding or Changing Language Bundlesc.ccccocoiiiiiinininnnccs 1-15
Naming Convention for Language Bundlesccccocoeiirniiiininiirrnnccneeeeeeeeenes 1-16

vi

Creating a New Language Bundle ... 1-16
Configuring the System to Use a New Language Bundle.............cccccooviniiiiinnnninnnn, 1-16
Configuring LOGZINGccooiiiiiiiiiiiiii s 1-16

Technical Architecture

Point-0f-Service ArChiteCtUTe...........ccoooiiviiiiiiieie ettt st se e e s e e e seessenseensenseenes 2-2
FIAME@WOTKSoouviiiiiiiieicceecee ettt ettt ettt et e e ee et e s e e seesaesbeesbesbeessassaessesseessesseessesssessesssensenseans 2-4
Manager/TeChNICIANccccviiiiiiiiii s 2-4
USET INEEITACEcvvevieeieeietietietieet ettt ettt e et et te st e b ess et essesteseeseeseesesse s essessessessesseseessasenss 2-5
BUSINESS ODJECtvviiiiiiiiciic s 2-7
Data PerSISTENCE. .. .icuviiiii ettt ettt ettt et e st e s be e ste e s sbeesbe e st e sabaesssassseesssaenseessseesseenseeans 2-8
TOUT .ttt ettt ettt et et e e e e et e e st ees e e s sesaeessesseensesse e seestenseense s e entenseenseeseensenneensennean 2-10
Design Patterns............ccoviiiiiiiiiiiiiii s 2-10
IMVIC PatEOIT c.eviiiieeiieie ettt ettt ettt s e e ste e s et e s be et aeebeesabessseessasssaesseesssasnseanssesnseenseennses 2-10
Factory Pattern.........ccoooiiiiiiiii s 2-11
[@e30'30 0 0¥ VaTe B =1 avY 4 PR PTRRRP 2-12
SINGleton Patterm........c.ouoviii 2-13

Extracting Source Code

Customization

Parameters.............coooii s 4-1
Parameter HIerarchy ... 4-1
Parameter GIOUPccoiiiiiiiiiiiiiieic s 4-2
Parameter PIOPerties ... 4-2

DIEVICES ...ttt e 4-3
Set UpP the DevViCecouiiiiiiiiiiiiiiiiicc s 4-3
Test the DEVICE. ..o 4-4
Create a Session and ACHONGIOUP ... 4-4
Simulate the DEVICEcoviiiiiiiiiiiiiicc s 4-6

HELP FILES ... 4-6
Modifying Help FIles.......ccociiiiiiiiiecceceecceee et 4-7

Development Environment

Preparation......c.coccooiiiiiiiiniiiiee ettt 5-1
SEUUP .o s 5-1
INStall POINE-Of-SEIVICE ...ooviiiirieiiieticieeteecee ettt ettt ettt et et et ereeae e beeabeereebeereesseseennesreennas 5-1
BUild the Databasecccccveieieiiiiiiieieieieieteteteteese st te e s essessessesseseesessessassessessessessassessssessensens 5-2
Create @ SANADOXccvieieiieiieieeieste ettt ettt e e et e st e e saesteeseesbeesaesseessesseessesseessassaessenseessesseenes 5-2
Configure the IDE ... 5-3
Update Java Security and Policy Files.........cccooiiiniiiicccccceeeccceeenes 5-4
Configure the Version Control Systemccccoevviiiiiiiiiiiiiiiiicc, 5-4
RUN POINE-0f-S@IVICE.......ccviiiieeieiieteeeteceeeteete ettt ettt ettt et e et eaeeeteereeeseesaesbeessebeeaseeseensenseenns 5-4

General Development Standards

37153 Lol TP 6-1

Java D0S aNd DION TS .. .ccuiiiiiiiieietetetee ettt ettt sttt ettt be b 6-1

Avoiding Common Java Bugs........c.ccouiii 6-2
FOrmattingcooiviiiiiiiiiiiiic e 6-2
JAVAAOC -ttt ettt b bbb bbbttt et et s et b e b b e 6-3
Naming CONVENTIONS.coiiuiiiiiiitititcictttc ettt 6-3
SQL GUIAEIINES ...ttt ettt ettt ettt ev e ettt e et e eae et eebeeaeeseers e seeaseteesseseesseeseensenseennes 6-4
DIB2 s 6-5
OFaCle ... 6-6
POStEIeSQL ... s 6-6
SYDASE .ot 6-6
Uit TESHNE . covveveitiiii s 6-7
Architecture and Design Guidelines............ccccoviiiiiiiiiiiiiiies 6-7
ANHPAEEINS .o s 6-7
Designing for EXtENSIONc.cooiiuiiiiiiie 6-9
Common FrameWOTKSccoiiiiiiiiccccccccct sttt 6-10
LOZZING ...ttt s 6-10
GUATdING COde ...t 6-10
WREN 10 L0ttt 6-11
WIiting LOg MESSAZEScuoviviviiiiiiiiiiiiiiititiiittiit s 6-11
EXCePtion MeSSagesccueiiiiiiiiiieiieici s 6-11
Heartbeat or Life Cycle MESSAZESc.cceurueuiuriiuiieiiieiiieieieieieieereieeeee et 6-12
DEDUZ MESSAZES.......cocvviiiecieiiiicicie ittt 6-12
Exception Handling ...t 6-13
Types Of EXCEPHIONSc.cuuiiiiiiiciiicicieicccee et 6-13
Avoid java.lang. EXCePHion ..o 6-14
Avoid Custom EXCEPHONSociiiiiiiiiicc s 6-14
Catching EXCEPHONSc.cuouiuiiiiiiiiiiiciicccccc s 6-14
Keep the Try Block ShOTt ... 6-14

Avoid Throwing New EXCeptions. ..ot 6-15
Catching Specific EXCEPHIONSc.c.cueueuimiuiuiiiiiiciiicieicicicceceeee s 6-16

Favor a Switch over Code Duplication..........cccoevvveiiiiiniiniiiii 6-16

7 Point-of-Service Development Standards

Screen Design and User Interface Guidelines..............c.cccoooooiiiiiiiiiini 7-1
TOUT FLAMEWOTK......coiiiiiiiiiiiceeee ettt ettt st eta e beeaa et e eta e beeasesseeasesseensesssensesssensesseens 7-1
Tour Architectural GUIAEIINESc.ccueieiierierieieieieeetee ettt e et e te st eseesaesessessessessessessessesensens 7-1
General TOUT GUIAEIINES........ccuieieriiiieie ettt ettt e e steeeeesse s aesbeesaesseesseseesaessesssessesssessenses 7-1
FOUNAATION ...ttt ettt ettt eteeaeere e b e e ta e beebaeaseessenseessenseesseseersenseeneas 7-3
TOUIS ANA SEIVICES ...cuvveniieeieiieeieie ettt sttt et e st et e s seeaesseesesseesessaensesssenseansensenssessesnsensennes 7-3
b 11 <1< U TSRS 7-4
Managers and TeChNICIANScccceviiiiiiiiiiiiiiiii e 7-4
0 Y- Vo LT U UU U U USRI 7-4
AATSIES ..ttt ettt et et et e et et e et e ea e e b e bt et et e e st e st enteareenseeseenseereensennes 7-5
SIGNALS ... 7-5
Choosing Among Sites, Aisles, and SIgNals.........cccccccceeeiiiiiiiiieeeeeeee e 7-6
Renaming Letters ... 7-6
SRULELES ...ttt ettt et et e et e et e be e e e ebe et e ebeesaeeasesbeeseenbeebaeateessenteeseenseeteeteeraenreeneas 7-6

vii

Log Entry Format ... 7-7
Log Entry DeSCIIPHIONc.oviiiiiiiiiiiiiiiciiceet s 7-7
Fixed Length Header ..o 7-7
Additional Logging INfO ... 7-8
Example LOG ENEIY ..o 7-9

Extension Guidelines

COMVEILIONS.oooeiiieeiieieeieeeteteete st et e steete st estesseessesseessesseessesssanseessassesssensesssessesseessesssessesssensennsensennes 8-1
TOTIIIS ettt ettt ettt ettt e et e stt e e be e bt e st e e sbae st b e e aaesab e e baessbe e b e easbeebe e ste s bae e st eeabeessaeenseenbaesnaeensaenns 8-1
FAlename CONVENTIONS.........cviriieieeiiceiieeteete et eieetesteesaesteessesteeaesteesaesseesaesseessesseessesseessesseessesseenses 8-1
IMLOAULES ..ottt ettt ettt ettt ettt et e e s e b e s e b e s bessessessessessessaseaseaseasassessesessessaseaseasensensens 8-2
Directory Paths ... 8-2

POS PaCKAGe.........c.ouiiimiiiiiiiiiiiie bbb 8-3
0 PR RST 8-3

TOUL VAP ..ottt 8-3
TOUL SCIIPES .ottt 8-4
St eutettetiettetet et ettt et ettt et ettt et e b b e bt e st esbes b estes e e Rt et e e Rt e st et e b e sebessestentestensesteneeseesensearans 8-4
Lane—R0OAd OF AISIE......ccuiiieiiriieieeeeee ettt ettt et et e sreesbesseessesssessesssessesssessanseenes 8-5
SIUELLE .ttt ettt s st ae et e b e s be st e be st et et et et et eaeebeeaeeaea 8-5
SIGNAL ... 8-6
CATZ0. ettt 8-6
UL FLAmEWOTKcvviiieiiirieieete ettt ettt ettt etesteestesteessesseesseeseesseesaesseessessesssessesssensesssesesssasesssesseenees 8-7
Default UL CONFIG......cceuiiiiiiiiiiiiiiicceiceeecce et 8-7
ULSCIIPE ottt 8-8
Bean Model and Beam..........ccooviiiiiiiiiieceeceecee ettt 8-8
L 11 0 1<) TP UU U SUUSUTUPURRPUN 8-9
INterNatioNaliZAtIONc.ccceeciiiicicieteeeeee ettt e sb e s e b beere et e seenes 8-9
CoNAUIt SCIIPS ...t 8-10
PLAF oottt ettt ettt et et ettt s et b st e st ettt et e es et e bebesbesbestestesteseeseeseerensenrens 8-10
RECEIPES ...ttt s 8-10
REPOTES .. 8-11

Domain Package ... s 8-11

Retail DOMIAINveiieeieiieieiieteteete ettt sttt e st e st e ete et e sseessesseessesssessesssessasssessenssessesseessensens 8-12
DomainObjectFactOory ..o 8-12
Retail Domain Object (RDO)cccccceiuiiiiiiiiiiiiiiiiicccieiciceee e 8-12

DIAtADASE ...c.veevieiieieieceetete ettt et b et e be et e sh e e s b e be et e ere e st ente et e ereenaeereenaenneas 8-13
Data Manager and Technician SCriptscccoeeioiriieiniiiinicce 8-13
Data Actions and OPerations..........cccccccucucueuririciiiiieiieieieieeeeeeeeeee e eaenees 8-13
Data TranSaCtIONS. ...cecveerieeiierteeieeie ettt st et estesbeesabe st e e saessbaeseesasesnsaasssesnsaensnesnses 8-14

9 Tour Framework

viii

Tour COMPONENLES ...t 9-1
TOUL MEtaPRor......cociiiiiiiiiiic e 9-1
Service and Service REGIOMccoiiiuiiiiiiiiiiiieccceee et 9-3
BUS o s 9-3
TOUIINAP ..ttt 9-4

SIEES tteuteeitieete ettt et ettt et e et e et e et e et e et e et e et e e et b e e bt e ate e bt e abeenbee st e enbeebae e beeateeasbe e saeenseensaeenaeenseean 9-6
SYSTEIMN SItES...oviiiiiiicic e 9-6
LTS ettt ettt ettt et st e st be et e e s h e e et e e be e et e et b eeabe e stenabe e baessbaeaee e 9-7
ROAAS. .. ettt ettt e e et e et e e ta e ae e ra e b e et a e beera e teesb e beereenreeseeteeraenseenean 9-7
COMIMON ROAAS ...vvevvevieiieiieiietietitit ettt ettt s te st sttt e et esaesaeseesaesessesseesassessessessessassassnsassensens 9-8
N 1] U TSRS 9-8
StatioNs aNd SHULLIES........ccuiciiiieieeteceee ettt ettt s ae e e be s re e b e beesbenbeeraenseennas 9-9
SIGNALS ... 9-10
EXception ReGION........coouiiiiiiiiiiiiii s 9-11
ROILE Of JAVA CLASSESc.eoueuiriiiiiiieiiieicteiereet sttt ettt sttt ettt et ettt b et besae e saesenaenen 9-12
B 0 o = 1 s I TR 9-12
AEEIDULES ...ttt ettt et e et e et e b e e s besseessesseessesbeesseseesbeeseessenseenaesreensennean 9-13
Letter PrOCESSINGcvoveveieieiiieicie s 9-16
Cargo ResStOration.........cccuviiiiiiiiiiiiiicc s 9-16
Tender TOUT REfEIENCE.ocveiiiiieieiieecteetetee et ettt et ae e b e te e b e sseessessaesseeseensessaensenses 9-17

10 Ul Framework

SCI@EIIScviiiiiii e 10-2
BRANS ..o 10-4
PromptANdRESPONSEBEANc.cuiuiiiiiiiiiiccccc s 10-4
Bean Properties and Text Bundle ..o 10-4

TOUL COAE ..o 10-6
DataInputBean.........ccccoiiiiiiiiiiiiiiiii s 10-7
Bean Properties and Text Bundle ..o 10-7

TOUL COAE ..o 10-8
NavigationButtonBean ..o 10-9
Bean Properties and Text Bundle ... 10-9
LocalNavigationPanel...........c..coiiiiiiii e 10-9
GlobalNavigationPanel...........cccccccoceiiiiiiiiicieerrrer s 10-10

TOUL COE ..o 10-11
DHaloBEAN ... 10-12
Bean Properties and Text Bundle ... 10-12

TOUL COE ..o 10-12

FIELd TYPES ...ttt 10-14
CONNECHONS ...t 10-15
Clear ACtioNLIStENeTccvviiiiiiiiiiiii 10-15
DocumentLISTENETc.coviiiiiiiiiiccccc s 10-15
Validate ACtiONLISTENETcoiiiiiiiiicccccecee e 10-15
Text BUNALES ..o s 10-16
TECEIPTTOXE ot 10-16
parameterTeXt......coiiiiiiiiii s 10-17

11 Manager/Technician Framework

New Manager/Techniciancccooiiiiiiiiiii s 11-3
MaNAGEr CLASSouiveiiiiieciie ettt 11-4

12

13

Manager Configuration............coeurieiiiiiiii 11-4

TeChNICIAN ClaSSvviiiiiiiciicc e s 11-5
Technician CONfIGUIAIONc.c.cuiuiuimiiiiiiiiicccccee e eees 11-5
Valet CLaSSooiiiiiiiiiic s 11-6
SAMPLE COAE .. 11-6
CONFIGUIATION ..ottt 11-7
TOUL COE .. 11-7
IMANAZET ...ttt s 11-7
VAlEt .o 11-8
TEChNICIAN ... 11-9
Manager/Technician Reference ... 11-10
Parameter Manager/TechnicCianc.ccccccccueiiiiciiiiiiniiiicrreecreecer s 11-10
UI Manager/Technician.........cccoovviiiiiniiiiiiii s 11-12
Journal Manager/TechniCiancccccoviiiiiiiiiiiiiii e 11-13

Retail Domain

New Domain ODbjJect ..o 12-2
Domain Object in Tour Code ... 12-3
Domain Object Reference.............ccccoiiiiiiiiiiiiiiiii s 12-4
COAELISIIMAP ..ottt 12-4
CUITEIICY v b st 12-6
TTANSACHION ..ottt 12-8

Store Database

ARTS COMPIIAIICE ...t 13-1
Understanding Data Managers and Techniciansccccocoviiiniininnn 13-1
How Data Transactions WOrk................cocoooiiiii s 13-3
Creating or Updating Database Tablesccccoooiiiiiiiiiiiii e 13-5
Example of Saving Data: Storing Tender Information...............cccocooiiiiiiiiin, 13-7
Research Table Requirements and Standards............cccccoeeciiiiiiiiiiiiiccccecceeeees 13-7
Saving Data from Site Code........oomiiiiiiiiiiiiii 13-8
Locate Data Operation..........ccoeiiiiiiiiiiiiiiiiccc s 13-9
Modify Data OPeration ..ot 13-13
TSt COAE .. 13-15
VETifY Data ..o s 13-15
Updating Flat File Configurations ... 13-15
Data Technician SCIipt........ccccoiiiiiiiiiiiii e 13-16
Flat File Engine Configuration SCript........cccccceiiiiiiiiiiiiiiiiiiiiiciccicssnsseeaes 13-17
Implementing FlatFileDataOperationsccooeeiiiniiiiniiiiciciicccceececesceeeeenenes 13-18
Other QUETY TYPES ..ottt 13-21
Complex QUETY EXPIeSSIONScccviiiiiiiiiiiiiiiiiiiiniicn e 13-21

Appendix: Intra Store Data Distribution Infrastructure

Spring Configuration ... A-1
Application Configuration ..o A-6
Integration Considerations..............cccccooiiiiiiiiniiiiiii s A-7

DataSet Compressed File Structure ... A-8

DataSet Compressed File Example..........ccccooiiiiiiiiiiic s A-8
Manifest File Structure............ccccoovoviioiiiiii s A-9
Manifest File EXampPlecccoociiiiiiiiiiiiiiiiiicc s A-9
DataSet Flat File Structure..............ccccocoviiiiiiiiiiiii s A-9
DataSet Flat File EXamMPLEcccciiiiiiiiiiiiciceeeeecee e A-9
EXtENSIDILIEY ...coovivieiiiii A-9
Adding New Table To Existing Datasetcccooeuiiiiiiiiiiiic A-10
Adding More Tables To Existing Dataset TYPes........ccccovvuvrirrriiirvrrecrrreceeeees A-10
Adding a New DataSetcoirieiiiiiiiiicc A-11
Configuring Schedule for DataSet Producer and Consumerccoooovoiirininiicieiecccncnen, A-11
Configure DataSet PrOAUCETc.cccccciiiiiiiiiiiiiiiicccccceeeeeee s A-11
Configure DataSet CONSUMETc.coiiuriiiiiiciiecce s A-12
Adding New DataSet TYPe.......coocuruiiiiiiieiiccie e A-13
Changing Oracle Retail Point-of-Service Client Database vendor............ccccoceevvvivvvncnnene. A-18
PIRUZADILLY .o A-18

B Appendix: Value-Added Tax

VAT calctlation.........ccoviiiiiiiiiiiiiiiiiiic s B-1
Inclusive Tax Flag At Tax Group Rule Level ... B-1
Inclusive Tax Rate Calculator...........ccovviiiiiiiiiiiiii s B-1
Enhancing PLU Item LOOK UP ... s B-2
Enhancing Internal Tax ENGINe..........ccoouiiiiiiiiiiiiicc e B-2
VAT Tax Rule Seed Data..........cccviuiiiiimiiiiiiiiiic e B-2
Calculate VAT For Unknown Items, Invalid Or Blank Tax Groups.........cccceveeviveeinriienennnnn B-3
Calculate VAT for Returns Transactions ... B-3
Calculate VAT for Reverse Transactions Other Than Returns............cccooovvvveviriiniicincnnnnen B-3
Calculate VAT for Shipping Charges..........ccoceuoiiriiiiiciciecc s B-4

Enhance Shipping Method Table and Domain Interface/Classcccocoeueiiirireininnnen. B-4
Add/Update Send Packages to/in a Sale Return Transactionc.ccccccccucucucvueucuenenene. B-4
Enhance Internal Tax ENGINecccoooiiiiiiiiiiiic B-4
Negate VAT for Shipping Charges for a Post Void Transactionc.cccccccevuvvvirininnenes B-4
Enhance Overlay Lane Action Class SendMethodSelectedRoad...........ccccccvuvuruvirivinunnnne. B-4
Calculate VAT for Send Transactionscceeeeieiiiiieiiiiiiiiiniieieceeeeeee s B-5

Transaction Persistence fOr VAT ...ttt B-5
Persist INCIUSIVE taX «.vovoviiiiiiiiiiciiicc s B-5
Persist Shipping Charge TaX ..o s B-6

Tracking VAT Financial Totals ..o B-6
Accumulate INCIUSIVE TaX ..o B-7
Accumulate Shipping Charge TaX........ccceiieieiiiiciic s B-8

Transaction Retrieval in COccccociiiiiiiiiiiiccr ettt B-9
Enhancing Transaction Entity Beans...........cccccccociiiiiiiiiiiiiceecceeeeeeceeeeeeeeeeees B-9
Enhancing Transaction Service Bean...........ccooiiiiiiiii s B-9
Enhancing Transaction Manager Beanccccccociiiiiiiiiiiiiiiicccceeees B-10

Enhancing POSLOG ... B-10

Seed Data POPULAtIONccoouiiiiriiiieiicircercere ettt sttt st B-12
VAT Tax Rule Seed Data........cccccieiiieiiiiriiciiiiiccreceee ettt B-12

xi

Xii

Point-of-Service Department Seed Datac.ccooviiiiiiiiiiiiiiiiccs B-13

TEEIMN SEEA DIALA....cuviticiiieeieiectececee ettt et ettt sbe e be s be e b e e re et e e re e b e ereeraeereenaeerean B-13
Shipping Method Seed Data...........ccccciiiiiiiiiiiiicceecceee e B-13
Sales Return Transaction S€ed Dataccccvieeeviiiieiieiesieeieeee ettt sre e saeeneneas B-14
New or Changed Classes/Servicescocoviiiiiiiiiiiiniiiiiiiii s B-14
Adding Tax Inclusive Flag To Tax Group Rule.........ccccccccciiiiiiiiiiiiiicicceceeeenees B-14
BUSINeSs ODJECEScuviviviiiiiiiicicic s B-14
PerSiSENCE SEIVICES ...uvieuviiiiieiieiteeie ettt ettt e e te et e st e e ste e st e ebeesseessbeesssassbaesssesssennses B-14
IMPOTE SEIVICES ...t s B-15
Internal Tax Engine Classes.........c.ccviiueiiiiiiiicieiiicci i B-15
Tax Rate CalCUIAtOISccvecvieiiiieiieeeeeceee ettt ettt et e et te st beees e beera e seessesesseessesenas B-15
BUSINESS ODJECES ...ttt B-15
Domain Object FACTOrY SeIVICe.......couiiuiiiiiiicieieccie s B-15
Enhancing Domain Tax Interfaces/Classes ... B-16
Tax Information INterface/Classccevveeveieieieiiirieeseiet ettt eeee e se s ss et s s essesaesens B-16
Tax Information Container Interface /Class........ccovviiiiiiiiiieeeieceeeeeeee e B-16
Enhancing Transaction & Line Item Tax Interfaces/Classes........cccccoovvvvnvvnnnnnnninnnnns B-17
Transaction Totals INterface/ Class........ccuververieriecieieieiee ettt esee e eseeressesressessesseseas B-17
Ttem Tax INtErface / Class.oouuviiieeeeeiee ettt e e s eaaee s saaessneeeenes B-17
Ttem Price INterface /CLaSSooouviiieee ettt ettt e st e e saae e s saaessaneeeenns B-18
Tax Line Item Information INtEIfaceccccvivriririirierieieieeeie st ere e ene s B-18
Sale Return Line Item Class......ccociecieriieieiieeiesieeieteteste et sre et sre s e e e e essesseenes B-18
Enhancing Financial Totals Interfaces/Classescccccovvviiininininiiiiiiiiiiis B-18
Financial Tax Totals INterface /Class........ccocuevirireririerierierieieieceeeeeeesesressessesaeseeseseesessens B-18
Financial Totals INterface /CLassooviouiiiiiiiiieeeeeeeee ettt ettt B-19
Add Support for INClUSIVe TaXccuevirieiiicicieici e B-19

Add Support for Shipping Charges TaX.......cccccccccciieiiiieieiceeeeeeeeeeeeeeees B-19
Shipping Method Interface/Class ... B-20
Send Package Line Item Interface/Class ... B-20
Enhancing Sale Return Transaction Interface/Classcccccccoeeueuerniicrnnnnnrncereeecnes B-23
Enhancing POSLog Interface/Class ... B-24
Log Retail Transaction Class ... B-24
Log Sale Return Line Item Classc.ccccceueueuiiiiiiiiiiiiiiciiceeiccceeieeeeeeeeee e B-24
IXRetail Constants V21 IfC ClasS......ccocueveieieierieiniieieieieieeesteeereeteete e ssessessessessessesseseesens B-24
Retail Transaction Delivery 360 Ifc Interface/Classc.ccccoovuvvviiiiiivivniinniiciine, B-25
Schema Types Factory Ifc Interface /Classcccoeciiiiciiiciecccceeeceeeeeeenenens B-25
Retail Transaction Line Item Ifc Interface /Class......cocoovvivieiviiiieiieiceceeeeee e B-25
XmIToSqlTaxHistoryInsert Classcccoceeuiieiiieiiiniiiiiiiiiniiinrccnsseeees B-25
XmlToSqlFinancialTotalsCommon Class.........cccccvevvririrnriiniinreerereeeceeeeenes B-25
XmlToSqlDeliveryTax Class..........ceiieieiiiiricieiiieie e B-25
JdbcSavelXRetailRetail Transaction CIassS.........ccecveeeeeereriinierieieieieeeeeeeeeese e seeseens B-25
360POSLOGLADIATY.XSA ...ovviiiiiiiciieiiicicieiee s B-25
Commerce Service Transaction DTO ClasSESceccverviereeriieierieeierieereesieeresreeeesseesesseessessesses B-26
Retail Transaction DTOcoiiiioiieiieieceeceeeeete ettt ettt et s be e be b re s reens B-26
Transaction Group Rule Tax DTO......c.cccccceuiiiiiiiiiiiiicccreeeeeeeereeee s B-26
Sale Return Line Item TaxX DTOccooiiiiiiceeeeeeeeeeeee sttt B-27
Sale Return Line Item DTOc.oooiiiiiiceeeeeeeeteeeteet ettt B-27

Shipping Record Tax DTO........ccccoiiiiiiiiiiiiiniic s B-27

Shipping Record DTO ... B-27
Web Modules Transaction View Bean Classescccccoveieiriinierienieieieieieeeise e sesesesseseenns B-28
Database Design / Changes -- Tables /VIeWScccccccovviniiiiiiiiiiiiiiccs B-28
Tax Group Rule Table RU_TX_GP ..o B-28
Retail Transaction Table TRURTL ..ottt ettt ee et et e seaeeeesaeeeeeaeesesaeeesenseessneesennes B-28
Tax Line Item Table TR_LTIM_TX .. .uvoiieieieieeeeeeeeeeee ettt ettt s e s e s eneeesennees B-28
Sales Return Line Item Table TR_LTM_SLS RTNooiiiiiiiiiiieiee et e B-29
Sales Return Tax Line Item Table TR_LTM_SLS RTN_TX ..ooooottieieeeeeeeeeeeeeeeeeeeeeeeeree s e B-29
Order Item Table OR_LTM......oooiiiieieeeee ettt e st eave s saaesssareesenneeesnnees B-29
Point-of-Service Department History Table LE_HST PS_DPT.........ccccccccevvnninnnnnnnninne B-29
Till History Table LE_HST _TL.....ccccocoiiiiiieiereeerree e B-29
Register History Table LE_HST_WS.......ccccccooiiiiiiiiiiiiccs B-30
Store History Table LE_HST_STRcccccooiiiiiiiiiiiicenns B-30
Tax History Table HST_TX.....cccoiiiiiiiiceeieeeieeieeieeeneteeeie e seneaesnes B-30
Shipping Methods Table CO_SHP_MTH.........c.ccccoiiiiiiiiiiiiccieceees B-30
Shipping Record Table SHP_RDS_SLS_RTNcccccecoviiiiiiiniiiiiiiiiiiss B-30
Shipping Record Tax Table SHP_RDS_SLS_RTN_TX......cccceceviiirrririrrrrrerrrreeeeereenes B-31

C Appendix: Changing Currency

xiii

Xiv

List of Figures

1 |
= 2 OO NODOOPAWON—=-000P~WN =

|
o

—"—"CO'\)'\)'\)NI\)II\)I\)I\)I\)I\)—L_L_L_L_L_L

Set ACCESS SCIEEMN.......vvieiiitceccc et 1-2
Add ROIE SCIEEN ...ttt 1-3
Set ACCESS SCIEEMN.......vtieiiitce s 1-4
Reason Code GIoup SCIEEM ...ttt 1-9
Reason Code List SCIeemn ... 1-10
Edit Reason Code SCIeeM ...ttt s 1-11
Oracle Retail ArchiteCtureooooioiiiiiiie e 2-1
Point-of-Service Architecture Layers ... 2-3
Manager/Technician Framework ... 2-5
ULFramewWoIKcccooviviiiiiiiiiiiiiiiii s 2-6
Business Object Frameworkoooii e 2-8
Data Persistence FrameworkK...........cooocioiiiiiiiiiiiic e 2-9
MVC PAtteIT ..ottt 2-10
Factory Pattern ... 2-11
Command PatterN.........ccccoiiiiiiiiiiii s 2-12
Singleton Pattern...........o.oviiii s 2-13
Workflow Example: Tender with Credit Card Option...........coceeveiiiiieiiiiii 9-18
Manager, Technician and Valetccoooo 11-1
CodeListMap Class Diagrams...........ccoceueueiirieiniiicicie et 12-6
Currency Class DIiagrami...........ooocueiiiiiiiiiiiicie et 12-7
Data Managers and Data Technicianscccoooiiiiiiiiiccccce 13-2
Updating the Database: Simplified Runtime View..........ccocooiiii 13-4
Tender Tour to Point-of-Service Tour Workflowccoooeiiiiii 13-9
Diagram: Saving a Transaction..........cccoviiiiiiiiiiiiii 13-10
FlatFileQuUery CIaSSesceueiieiicieiiiecicie ettt 13-19

XV

List of Tables

XVi

|
= N =000 WON=N=

N

|
w

6-1

Security AcCess POINEScccueuiiiieiiici e 1-4
Sample Bundle Names ... 1-16
Oracle Retail Architecture COMPONENtS.........ccoviiiiiiiiiiiiiiii e 2-2
Point-of-Service Architecture Layers ... 2-4
Manager/Technician Framework Components............ccocooeeiiiinniciiiinicnceeeeeeeennns 2-5
UI Framework COMPONENtS.........ccoiiiiiiiiieiiiiiicieee s 2-6
Business Object Framework Components...........cocovviiiiiiiiiiiiiiiiceeceeeeeeeenan 2-8
Data Persistence Framework COmponents..........c.ccceveeveeiniiiieiiiiniciicieeeeeeeeens 2-9
Parameter Directories, Files, and Descriptions..........ccccoeiiviviiiiiinniiiininicicinncceens 4-1
Validator TYPEScucvvieeieiiecet e 4-3
Point-of-Service Installation Options...........ccocvviieviiiiiiiiiiiii, 5-2
BUild Path.....ccoiiiiiii s 5-3
Launch Properties ... 5-4
Common Java BUugs.......c.ouiriiiiii e 6-2
Naming CONVENIONSccocueiiiiiiiieiiicicte e 6-4
DB2 SQL COdE PrODIEIMSceevieeiiiieieiieeieceetesteeteste et ste et s e etesseesaesseesaesseessasssessassesssenseenes 6-5
Oracle SQL COde ProbIEIMScccviiieiieiirieeiecieetesteetesteeteseeessesreesaesseessesseesessaessessesssessesssenns 6-6
Common ANtiPAtternscociiiiiiiii s 6-8
Tour Naming ConVeNtioNS.........ccccueioiiiurieiiicie et 7-2
Log MeSsage LevVel........ciii e 7-7
Time Stamp Fieldscoooiiiiiiiii 7-8
Required Modules in Dependency Order ... 8-2
Metaphor COMPONENEScccoveiiiiiiiiiciiii s 9-2
Component Identification Strategiescccceiieieiiiiiiice 9-2
System-called Methodsc.oiiiiii s 9-12
Road Tag Element Attributes..........cooeiviieiiiiiei s 9-14
Forward TourCam Settingsccocuouiiiiiiiiiiiei s 9-15
Backup Tour Cam Settingsc.cceueiiiiiiiiiieie 9-15
Tender Package COMPONENLES..........covuiviiiiiiiiiiiiiiiieiie s 9-17
UI Framework FEatures ... 10-1
UI Framework COMPONENtS.........ccciiviiiiiiiiiiiiiiiceceiee s 10-2
DiSPIAY TYPES ..eviiiiit s 10-2
Template TYPESccvuiviiiiiiiiiiiicc s 10-3
Default SCreen TYPESc.cvrueiiueiiieiiie s 10-3
PromptAndResponseBean Property Names and Values...........cccccoeviviiniinnnnnnn 10-5
PromptAndResponseModel Important Methods ..o, 10-6
DatalnputBean Property Names and Values...........ccccooveniiiininiiiicniiicecen 10-7
DatalnputBeanModel Important Methods ..o 10-8
GlobalNavigationButtonBean Property Names and Valuesccccocovvnnnnnnn 10-10
NavigationButtonBeanModel Important Methods..........ccooiiiiiiiiii 10-11
DialogBeanModel Important Methods...........ccouoiiiiiiiii 10-12
DHAlOg TYPES ..evviieeiciict s 10-13
BUtton TYPeS...cvveiiiii s 10-13
Field Types and Descriptions...........ccceeiiiiiiiiiieiiiiiiiiiinicicccscc s 10-14
Manager/Technician Type Examples..........ccooouoiiiiiiiiiii 11-2
Manager Names and Descriptionsc.coueeueiiiiicieiiiicec s 11-3
ManagerIfc Methods............ccovriiiiiiiiiiicc s 11-4
TechnicianIfc Methods ..o 11-5
Valetlfc Method........cociviiiiiiiiiiiii s 11-6
Important ParameterManagerIfc Methodsccccocvvvininiiini 11-11
Important POSUIManagerIfc Methodscccovviiiiiiniiices 11-13
Important JournalManagerIfc Methods...........ccccoviiiiiniiiiii 11-14
CodeListMap Object Classes and Interfaces..........ccccvviivviiiiiiniiiniiicnns 12-5

Currency Object Classes and Interfaces............c.ooueueieiiiiiioiiicccce, 12-7

Transaction Object Classes and Interfacescccccvevviniiiniiiiniiiii 12-8
Database Tables Used in Credit Card Tender Option.........cccccevvvviiiiiiiiiiniinicnn, 13-8
FlatFileEngine QUeTry TYPeS......cccceuiiiuiieieiiiiicieieiiceie s 13-21
Spring Framework Configuration Options..........ccccouoiriiiiiiiiieiicce e, A-2
Point-of-Service Dataset Table ... A-7
Rule 1: Tax Authority Id8888600coccueiiiiirieiiiiiiieici s B-12
Rule 2: Tax Authority Id8888601occueiiiieieiiiiciec s B-13

xvii

xviii

List of Examples

1-1
4—1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
6—1
62
6-3
6—4
6-5
6-6
6-7
6-8
6-9
6-10
6—11
6-12
6-13
8—1
82
8-3

8-5
8-6
8—7
8-8
8-9
8-10
8—11
8-12
8-13
8-14
8-15

11 Iclocloclo
A OWON =

(D(DCO(DCOCOCIOCOCOCOCOCO
_ —a A A A a0 NO O]
ar~rhowND-—=-O0O

Changing Transaction ID Length ..o 1-12
Default Parameter Settings ..o 4-2
Definition of Tender GIOUP ...t e 4-2
Parameter Definitions From application.xmlcccooiiiiiiiiicce 4-2
ActionGroup Configuration...........c.oeiieiiiicicic s 4-4
Session CONFIGUIAtIONcceuiiiiiieieicce e 4-4
Example of Device CONNECHION.........coiuiiiiiiiiiiiiiiiiiiic e 4-5
ActionGroup in ToUr COde........cooviiiiiiiiiniiiiiiii s 4-5
Simulated Device Configuration ..o 4-6
JavaHelp—helpscreens.properties ...t 4-7
JavaHelp—toC. XM ..o 4-7
Header Sample ... e 6-2
SQL Code Before PostgresqlDataFilter Conversion ..o, 6-6
SQL Code After PostgresqlDataFilter CONVerSion........cccccovuvviiiiiiiiniiiniiiiiniiiiciiiieinnns 6-6
Wrapping Code in a Code Guard...........cccoviiiiiiiiiiiiiiis 6-10
Switching Graphics Contexts via a Logging Level Test...........ccoooeiiiiiiiiiiic 6-11
JUIE ettt ettt e ettt e teeteeteeteeteete et et et et et e st easeaserseaseteeteeteeteeteereaes 6-12
INEEWOTK TOSE ettt ettt ettt e e vt e et e et e e beeeteeebeeeteseabeeaeeenssesseeseeennas 6-14
Network Test with Shortened Try Block..........ccccooviiiiniiiiiiiiiiiicen 6-15
Wrapped EXCEPLIONccccoviiiiiiiiiiiiiiiicc s 6-15
Declaring an EXCEPHIONcccciiiiiiiiiiiiiicicc s 6-15
Clean Up First, then Rethrow EXCeption..........cccccovuviiiinniiiiiiiiiiicccccccens 6-16
Using a Switch to Execute Code Specific to an Exceptionccccceeviiiicniininnne, 6-16
Using Multiple Catch Blocks Causes Duplicate Code..........cccccovuiiiiiiiniiiiiiiiiiiinnen, 6-16
MBStourmap_CA .xml: Sample initial tourmap file for Canadian localec.cccocuc.e. 8-3
posfoundation.properties: Adding new Tour Mapsccccoovreieiiiiciiiniicccec 8-4
tourmap_CA .xml: Replacing one tour SCript ..o 8-4
tourmap_CA.xml: Replacing a siteaction............ococoeuoioiiiriiiicie 8-4
tourmap_CA.xml: Replacing a laneaction............ccccouorurieiiiiiciiiiicc e 8-5
tourmap_CA .xml: Replacing or Extending a shuttle.............ccooooiiiii 8-5
MBStender.xml: Tender tour script with customized signal...........cccccoovviiiiininnnn. 8-6
tourmap_CA.xml: Replacing @ Cargo........cooeueueiiurieieiiicicie s 8-7
ClientConduit.xml: Conduit script modified to use custom Ul configuration file............ 8-8
MBSdefaultuicfg.xml: Customized Default UI Configuration Filecccccooiinni 8-8
MBStenderuicfg.xml: Tender Ul Configuration with Customized Bean Reference.......... 8-9
MBSDefaultDataTechnician.xml: Customizing a Data Operationccccccceuvururunnnee. 8-13
CollapsedConduitFF.xml: Customizing the Data Technicianccccccecevvviinnnncne. 8-13
MBSDataTransactionKeys.java: Adding Strings ..o 8-14
domain.properties: Sample Modified and New Data Transactions.............ccccceeueueunnnee. 8-14
tender.xml: Definition of Service and Service Regioncccccceuviiiiiiiiniiiiiiiiininiiiininnns 9-3
GetCheckInfoSite. java: Retrieving Cargo from Bus.........ccoovoviiiiinniiice 9-3
Sample TOUIMNAP ..o 9-5
tender.xml: Definition of Cargo........cccccccceiiiiiiiiiiiiiiiicc 9-5
tourmap.xml: Example of Overriding Cargo Classccccccceuiuiiiiiiciiiiiiiieiiiicieenns 9-6
tender.xml: Definition Of Sit€ CLasSS.......cuuiieuiieieeiriieeeeeeeectee ettt et e eee e e eeeeaeeereean 9-6
tender.xml: Mapping of Site to SIteACHONcoeiiiiiiiiiiiccs 9-6
tourmap.xml: Overriding Siteaction With Tourmapc.cccocooveniiiniiniiiecee 9-6
tender.xml: Definition of System Sites.............cccoiviiiiiiiiiiiiiics 9-6
tender. xml: Definition Of Letteroouivriioiieiecee ettt et e eaee e ens 9-7
tender.xml: Definition of ROAA ClasScovievieeiiiiiieeieeeee ettt eeve e eeaeeeaeeens 9-7
tourmap.xml: Example of Overriding Site Laneaction.............cccccccecueiiiniiiiiiinininnnns 9-8
Example of Common RoOad.........cccciiiiiiiiiiiiiiisee e 9-8
tender.xml: Definition Of AISIE CLaSScouiierieeeiierieeeeeeree ettt et ereeeereeeraeereeeseeens 9-8
tender.xml: Mapping of Aisle to Site ... 9-9

Xix

XX

9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
9-26
10-1
10-2
10-3
104
10-5

10-6

10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28
10-29
10-30
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
1111
11-12

tourmap.xml: Example of Overriding Aisle Laneaction...........ccccoooeeeiiiiiiiiiniccnene, 9-9

tender.xml: Definition of Shuttle Class..........ccccoovvvviiiiiiiii, 9-9
tender.xml: Mapping of Station to Service and Shuttle Classes..........cccccoviriiiiiiriininnnns 9-9
tourmap.xml: Example of Mapping Servicenamecccocooeeeeeieiiieeieieeieeennens 9-10
tourmap.xml: Example of Overriding Shuttle Nameccooooeiiiiiiiiii 9-10
tender.xml: Definition of Traffic Signal..........cccooiiiiiiiiii 9-10
tender.xml: Signal Processing With Negate Tagc.ccooeuiiiiiininiiiiiiiic 9-11
tender.xml: Definition of tOUICamcccoeviiiiiiiiiiiii e 9-13
tender.xml: Definition of Road With TourCam Attributes............ccccocevviiiiiinnnnnnn 9-13
GiftReceiptCargo.java: TourCamlfc Implementation...........ccccceeviiiiiiiiiiiiiiinnnn, 9-16
Sample Backupshuttle Definition............ccccevviiiiiiiiiiiiiiiccs 9-17
alterationsuicfg.xml: Overlay Screen Definitionccccccevveiiiiiininniii 10-4
defaultuicfg.xml: Bean Specification Using PromptAndResponseBean 10-5
tenderuicfg.xml: PromptAndResponseBean Property Definition..........cccccevevivevnnnnnnn. 10-6
tenderText_en_US.properties: PromptAndResponseBean Text Bundle Example......... 10-6

GetPurchaseOrderAmountSite. java: Creating and Displaying PromptAndResponseModel.
10-6

PurchaseOrderNumberEnteredRoad java: Retrieving Data From
PromptAndResponseModel 10-7

manageruicfg.xml: Bean Specification Using DatalnputBean.............cccccoceeiviririnnnnnnnn. 10-8
managerText_en_US.properties: DataInputBean Text Bundle Example......................... 10-8
SelectParamStoreSite. java: Creating and Displaying DatalnputBeanModel.................. 10-9
StoreParamGroupAisle.java: Retrieving Data from DatalnputBeanModel.................... 10-9
customeruicfg.xml: Bean Specification Using NavigationButtonBean 10-10
customerText_en_US.properties: NavigationButtonBean Text Bundle Example......... 10-10
defaultuicfg.xml: Bean Specification Using GlobalNavigationButtonBean 10-10
tenderuicfg.xml: GlobalNavigationButtonBean Property Definitions............cc.cccce..c.... 10-11
PricingOptionsSite java: Creating and Displaying NavigationButtonBeanModel 10-11
commonuicfg.xml: Bean Specification Using DialogBeanc.cccoccvviiiininnininns 10-12
InquirySlipPrintAislejava: DialogBean Label Definition...........cccccovevviniiiiiiiiiniines 10-12
dialogText_en_US.properties: DialogBean Text Bundle Exampleccccccovvvnvninnne 10-12
LookupStoreCreditSite java: Creating and Displaying DialogBeanModel.................... 10-13
tender.xml: ClearActionListener XML tagccccocovviviiniinnniiiii 10-15
tender.xml: DocumentListener XML tag........cccccocoviviniiniiiniiiiiiiiccccccncnanns 10-15
tender.xml: ValidateActionListener XML tag..........cococoviiviniiiininiiicccccnnnes 10-16
tenderuicfg.xml: ValidateActionListener Required Fieldsccccccovvvvivniiniinnnnn 10-16
BundleConstantslfc java: String Constant for receiptText ... 10-16
GiftCardInquirySlip.java: Tour Code to Print Receipt.........cccocovvvivvninnnnnnnnn 10-17
receiptText_en_US.properties: Text Bundle...........cccccoovviiiiiiinii, 10-17
parameteruicfg.xml: Overlay Specification Using parameterTextcccccoevvrrrunncnee 10-17
GiftCardUtility java: Tour Code to Retrieve Parameter...........coooviiiiiiiiinicinnna 10-17
parameterText_en_US.properties: Text Bundle ..., 10-18
application.xml: Definition of Parameterc.ccoocoeevmieiiiiiieiccce 10-18
CollapsedConduitFF.xml: Data Manager Configuration............ccccooeeveinicieicniicicinnnnes 11-5
CollapsedConduitFF.xml: Tax Technician Configuration...........ccccocoevoeueiiiiiicciicniennnnns 11-6
ParameterManager.java: Valet Passed By Managerccccccovvviiicceinccciecnnen, 11-6
Sample Manager and Technician Configurationcccccevieviniiiiniinins 11-7
Sample Manager in Tour Code.........ooviiiiiiiiii s 11-7
Sample Manager Class ... s 11-8
Sample Valet Class.........ooiiiiiiiiiiiiiiiicicc s 11-9
Sample Technician Class...........ccccviieiiiiiiiiiii s 11-10
ClientConduit.xml: Code to Configure Parameter Managerccccceveivvivcininninines 11-11
ClientConduit.xml: Code to Configure Parameter Technician..........ccccccccovvvviviinnnnne 11-11
BrowserControlSite.java: Tour Code Using ParameterManagerIfccccccevvinnnnne 11-12
ClientConduit.xml: Code to Configure Ul Manager ... 11-12

11-13
11-14
11-15
11-16
11-17
121
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
131
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
A-1

A-3
A-4
A-5

ClientConduit.xml: Code to Configure Ul Technician.............cooooeveiininiiiciinne, 11-12

GetCheckInfoSite.java: Tour Code Using POSUIManagerlfcccooeveiireiiiinnnnen 11-13
CollapsedConduitFF.xml: Code to Configure Journal Managerccccceueiiuruennne. 11-14
CollapsedConduitFF.xml: Code to Configure Journal Technician.............cccceveirnnene 11-14
GetCheckInfoSite.java: Tour Code Using JournalManagerlIfc ..o 11-14
TenderPurchaseOrderlfcjava: Class Header ..., 12-2
TenderPurchaseOrder.java: Class Headercccoooveveiiiiiiiiiiiiincccc 12-2
DomainObjectFactorylfc.java: Method For Instantiating TenderPurchaseOrder-.......... 12-3
DomainObjectFactory.java: Method For Instantiating TenderPurchaseOrder............... 12-3
GetCheckInfoSite.java: Instantiating Check from DomainObjectFactory 12-4
GetCheckInfoSite.java: Setting Attributes of Check ..o 12-4
ItemInfoEntered Aisle.java: CodeListlfc in Tour Code ..o, 12-6
PurchaseOrderAmountEnteredAisle.java: Currencylfc in Tour Code............ccoeuneee 12-8
JdbcSaveTenderLineltems.java: SaleReturnTransactionIfc in Tour Code....................... 12-9
CreateTableCreditDebitCardTenderLineltem.sql.........ccccccoeeviiiiiniiiniiiin 13-5
InsertTableTenderLineltem.sql........c.cccoooiiiiiiiiiiiiiiiiiiiiiiii s 13-6
String Constant in ARTSDatabaselfc.javacoooeueiiiiiiiiii 13-6
mysql_builddb.bat: Changes to Implement Foreign Key Checkingcc.cccooceocvenii 13-7
ValidCreditInfoEnteredRoad.java: Transaction Object..........cccccovviiiiiiiiiiiiiniinnn, 13-8
SaveRetailTransactionAisle.java: Save Transaction..........ccccocevvvviiiiiiiiicninnn, 13-8
UtilityManager.java: Save Data Transaction............ccccceuvicieieiiiiciciiicccceee 13-11
TransactionWriteDataTransaction.java: Save Transactionc.cccocovvivnninnnnnnnn 13-11
DefaultDataTechnician.xml: Define Data Transaction Classccccovvviiiiiiiinnnnnn 13-11
TransactionWriteDataTransaction: DataAction ..., 13-12
SaveTenderLineltemsAction: Set Data Operation Name...........cccooovviiiiiiiiiiinnnnes 13-12
DefaultDataTechnician.xml: Define Data Operation Classccooocvviviiiiiniininininns 13-13
JdbcSaveTenderLineltems: Saving Tender Line Itemcccoooevoiiiiiiiiiie, 13-13
JdbcSaveTenderLineltems.java: SQL Factory Methods ..o 13-14
PosLFFDataTechnician.xml: Sample Data Technician Script for Flat Files................... 13-16
FFTableDefs.xml: Sample FlatFileEngine Configuration Filecccccooooviiiinnnn 13-17
Item Retrieve Sample Code........coiiiiiiiiiiiiiii s 13-20
Adding Table Assiociation To Employee Datasetcccccoooviiiiiiiiiiii A-10
Adding New DataSet ..o A-13
Adding Table association to New DataSet...........ccccccovviiiiiiiniiiiicc, A-14
DataSetProducer Code..........oiiiiiiiiiiiiiiiii s A-14
DataSetConsumer COde..........uiiiiiiiiiiiiiiiiiii s A-15

XXi

XXii

Preface

Oracle Retail Operations Guides contain the requirements and procedures that are
necessary for the retailer to configure Point-of-Service, and extend code for a
Point-of-Service implementation.

Audience

The audience for this document is developers who develop code for Oracle Retail
Point-of-Service. Knowledge of the following techniques is required:

Java Programming Language

Object-Oriented Design Methodology (OOD)
Extensible Markup Language (XML)

Related Documents

For more information, see the following documents in the Oracle Retail
Point-of-Service documentation set:

Oracle Retail Point-of-Service Release Notes
Oracle Retail Point-of-Service Installation Guide

Oracle Retail Point-of-Service User Guide

Customer Support

https://metalink.oracle.com

When contacting Customer Support, please provide:

Product version and program/module name

Functional and technical description of the problem (include business impact)
Detailed step-by-step instructions to recreate

Exact error message received

Screen shots of each step you take

xXiii

https://metalink.oracle.com/

Review Patch Documentation

For a base release (".0" release, such as 12.0), Oracle Retail strongly recommends that
you read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on
new information and code changes that have been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network

In addition to being packaged with each product release (on the base or patch level),
all Oracle Retail documentation is available on the following Web site:

http://www.oracle.com/technology/documentation/oracle_
retail.html

Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions

XXiv

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/technology/documentation/oracle_retail.html
http://www.oracle.com/technology/documentation/oracle_retail.html
http://www.oracle.com/technology/documentation/oracle_retail.html

1

Backend System Administration and
Configuration

This chapter covers options for configuring Point-of-Service normally carried out by
an administrator before the system goes into general use. It covers the following
topics:

s "Defining Security with Roles"

s "Password Policy"

= "Reason Codes"

s "Configuring Transaction ID Lengths"

s "Configuring RMI Timeout Intervals"

s "Configuring Third-party Tender Authorization"
= "System Settings"

s "Adding or Changing Language Bundles"

s "Configuring Logging"

Defining Security with Roles

In Point-of-Service, you specify user access to the application by assigning a role to
each user. Each role contains a list of the security access points of the application,
specifying which access points that role is allowed to use. You can create as many roles
as you need.

Roles are typically named for job titles; by creating a manager role and a clerk role, for
example, you define two classes of employees with different access to Point-of-Service
functions. All clerks, however, would have the same access rights.

The procedures in this section describe how to modify existing roles or add new ones.
For a list of security access points, see "Secured Features".

Modifying a Role
To modify a role:

1. From the Main Options screen, choose F4/Administration, F4/Security, F3/Roles,
and F2/Find.

2. Select a role name from the list and choose Enter/Next.

The Edit Role screen appears with the selected role displayed.

Backend System Administration and Configuration 1-1

Defining Security with Roles

3. Choose Enter/Next to display the Set Access screen for the selected role.

Figure 1-1 Set Access Screen

Oracle Retail Point-of-Service

Select a function to toggle access, then press Yes/No. Press Done when F2
complete. W
- o F3
o . . . Function . Access Done

AL TETIP EMMPIUYEE [0}
(AT dnur [X'18)
[=2-1H AW][] W} [X'18)
EidErik UERUSIL [X'18)

Ldrice uraer [X'18) :
dAlee] [rdrisduuart [X'18)
LUK T L [X'18)
LIUsSE mEQISLIED [X'18)

LAuse T [X'18) P e
LLSLIUTTIET - AQLIE TG [X'18)
LUSLIUITIED LRI [X'18)

LUSLIUITIETD LISUuunL [X'18) L S

Ly UPRrEUOn S Rl AT
LHSLULTIL FUE - ALOHUIY [X'18)

> ;]

E-midil U] G
EMPIUYEE - AQE T [X'18)
EMMIUYEE TITE WEITHerdrce [X'18)

EMu Ul Uy Rl j _

Y
129 Guest User Guest User

/607 1:25 PM Set Access Orling
F1 F12 Esc g

4. To edit the role, scroll through the list of functions. While a function is selected,
choose F2/Yes/No to toggle the access for that function.

5. When you are finished, choose F3/Done to save the settings.

Adding a Role
To add a role:

1. From the Main Options screen, choose F4/Administration, F4/Security, F3/Roles,
and F3/Add.

1-2 Oracle Retail Point-of-Service Operations Guide

Defining Security with Roles

The Add Role screen appears.

Figure 1-2 Add Role Screen

= Oracle Retail Point-of-Service

Enter a role name, then press Next, -
) .

Role Name: District Manager | -
ps A
ra ™
| #Required Fields |
" o
"l 129 Glest Lser Glest Lser ‘
a/6/07 124 PM £dd Role Online |

F1 F12 g

Help Cancel ORACLE

Backend System Administration and Configuration 1-3

Defining Security with Roles

2. Enter the new role name and choose Enter/Next. The Set Access screen appears.
Initially, access for all functions is set to No.

Figure 1-3 Set Access Screen

£ Oracle Retail Point-of-Service

Select a function to toggle access, then press Yes/No. Press Done when
complete.
Function Access
. Done
Ty
[=E=TH I TH =
gErk LEpUsIL (1]
[SETITHETRWIR T My :
LdANUED Trdresdeuurn (1]
LAULKE T UL (1]
LIUse REYISIET (1]
LAuse i (1] f—‘\
LALSLUTTIET = ALLIEITI (1]
LUSLUITIET UEIELE (1]
LAUSLUTTIET LEsUUUriL (1] \ 4
Ly WHETEUUNS My AT
LHSUUUTIL FRUIE - AL gy (1]
LISLUUniL mule - ernua (1]
EIELIIUINIL JULTTIE] ¥ . @@= 7
- iy ‘T
ETMPIUyEE - AQLEINg (1]
ETTIRIUYEE LTI MEITIETErnee (1]
U Ul Ly My j _
‘S
129 Guest User Guest User
a/af07 1:26 M Set Access Oriline
F1 F12 Esc .

3. Select the functions that need to be enabled or disabled for the role and choose
F2/Yes/No to toggle to between Yes and No.

4. Continue selecting all functions that need to be changed. When finished, choose
F3/Done to save the settings.

5. Choose Esc/Undo or F12/Cancel to return to the Security Options screen.

Secured Features

The following table lists all of the functions within Point-of-Service for which security
access points exist. When a user attempts to use a function protected by one of these
security access points, the system checks whether the user’s role allows that function.

Table 1-1 identifies Point-of-Service security access points.

Table 1-1 Security Access Points

Access Point Access Point Access Point Access Point
Accept Invalid DL Format Administration Override of Soft Back Office
Declined Check
Bank Deposit Call Referral Accept for Cancel Special Order Cancel Transaction
check, credit, or gift card
Close Register Close Till Reprint Gift Receipt Customer - Add/Find

1-4 Oracle Retail Point-of-Service Operations Guide

Defining Security with Roles

Table 1-1

Security Access Points

Access Point

Access Point

Access Point

Access Point

Customer Delete Daily Operations Reprint Receipt Discount Rule Add/Modify

Discount rule End Electronic Journal E-mail Employee - Add/Find

Employee Time Maintenance End of Day Training Mode - [tem Maintenance
Enter/Exit

Item/Transaction Discounts Item/Transaction Gift Item /Transaction Item /Transaction Tax

Registry Sales Associate Modifications
Job Queue Kit Maintenance Layaway Delete Modify Layaway Fees
Modify Markdowns No Sale Open Register Open Till
Orders Override Declined Check Override Declined = Override Restocking Fee

Credit

Override Tender Limits

Parameters Add/Modify

Customer Discount

Point-of-Service

Price Change Price Override Price Promotion Queue Management
Reason Codes Receiving Transaction Details ~ Register Reports
Reset Hard Totals Return Role - Add/Find Schedule Jobs
Service Alert Start of Day Parameter Groups Store Operations

Access

Till Pay-in Till Pay-out Till Pickup/Loan Till Reconcile
Transfer Void Web Store Add Temp Employee
Cancel Order Clock In Out Customer Discount Money Order
Redeem Reentry On/Off

Security Implementation -- Warnings and Advice

Oracle Retail is committed to providing our customers software, that when combined
with overall system security, is capable of meeting or exceeding industry standards for
securing sensitive data. By maintaining solutions based on standards, Oracle Retail
provides the flexibility for retailers to choose the level and implementation of security
without being tied to any specific solution.

Each retailer should carefully review the standards that apply to them with special
emphasis on the Payment Card Industry (PCI) best practices. The Oracle Retail
applications represent one portion of the entire system that must be secured; therefore,
it is important to evaluate the entire system including operating system, network, and
physical access.

The following recommendations are required by Visa:

1. Don’t use database or operating systems administrative accounts for application
accounts. Administrative accounts and any account that has access to sensitive
data should require complex passwords as described below. Always disable
default accounts before use in production.

2. Assign a unique account to each user. Never allow users to share accounts. Users
that have access to more than one customer record should use complex passwords.

3. Complex passwords should have a minimum length of 7 characters, contain both
numeric and alphabetic characters, be changed at least every 90 days, and not
repeat for at least 4 cycles.

Backend System Administration and Configuration

1-5

Password Policy

4. Unused accounts should be disabled. Accounts should be temporarily disabled for
at least 15 minutes after six invalid authentication attempts.

5. If sensitive data is transmitted over a wireless network, the network must be
adequately secure, usually through use of WPA, 802.11i, or VPN.

6. Never store sensitive data on machines connected to the internet. Always limit
access using a DMZ and/or firewall.

7. For remote support, be sure to use secure access methods such as two-factor
authentication, SSH, SFIP, and so forth. Use the security settings provided by
third-party remote access products.

8. When transmitting sensitive data, always use network encryption such as SSL.

Following these recommendations does not necessarily ensure a secure
implementation of the Oracle Retail products. Oracle recommends a periodic security
audit by a third-party. Please review the PCI standards for additional information.

Password Policy

One of the most efficient ways to manage user access to a system is through the use of
a password policy. The policy can be defined in the database. One policy is defined
and applied to all users for Oracle Retail Point-of-Service. The Password Policy
consists of the following set of out-of-the-box criteria. For this release, customizing the
password policy criteria is permitted through enabling status code system settings and
updating password policy system settings to the desired setting.

In order to be PCI compliant the Password Policy needs to be set to the following:
» Force user to change password after 90 days.

= Warn user of password expiration 5 days before password expires.

= Lockout user 3 days after password expires or password is reset.

= Lockout user after 6 consecutive invalid login attempts.

= Password must be at least 7 characters in length.

= Password must not exceed 22 characters in length.

= Password must not match any of the 4 previous passwords.

» Password must include at least 1 alphabetic character(s).

s Password must include at least 1 numeric character(s).

Once the desired password policy has been defined, it is applied to all authorized
users of the Oracle Retail Point-of-Service, Oracle Retail Mobile Point-of-Service,
Oracle Retail Back Office, Oracle Retail Labels and Tags, and Oracle Retail Central
Office application once per database.

Password Reset

Users locked out of the system must request the assistance of an administrator to have
his/her password reset. The administrator resets the password by selecting the reset
password option in Oracle Retail Central Office, Oracle Retail Back Office or Oracle
Retail Point-Of-Service, when applicable. When a user password is reset the system
generates a temporary random password. The reset password status is immediately
set to ‘expired’ prompting the user to change the temporary password at the next
successful login.

1-6 Oracle Retail Point-of-Service Operations Guide

Password Policy

Each time a password is changed, the previous password is stored according to the
‘Passwords must not match any of the N previous passwords’ criteria set for the policy
associated with the assigned user role. Temporary passwords may not comply with
the password policy and are not stored in the password list.

Do the following to change the password of another user:

1. Click Administration.

2. Login.

3. Click Security.

4. Click Employee.

5. Click Find.

6. Search for the user whose password you are resetting. You can search by user ID,

name or role. For example, to search by name, click Emp. Name, then enter the
user’s first name and last name.

7. Review the user’s information.
8. Click Reset Password.

You will see a message asking if you are sure you want to reset the password.
Click Yes.

9. A screen with the user’s new temporary password is shown.

Note: This temporary password is provided on this screen only.
Record this temporary password. The password is not recorded or
logged, and is not provided by email. Administrators must provide
this temporary password to the user.

10. Click Enter.

Viewing or Modifying the Password in the Database

To reset the password in the database, modify the following tables to disable password
criteria:

» SELECTID_PLCY, SC_PLCY, NM_PLCY, DE_PLCY FROM CO_PLCY_PW

s SELECTID_CRTR, CD_CRTR, QY_VL_CFG_DFLT, DE_CRTR FROM CO_CRTR_
PW

s SELECTID_PLCY, ID_CRTR, SC_PLCY_CRTR, QY_VL_CFG FROM CO_CRTR_
PLCY_PW

The following is an example of how to disable the criteria:

UPDATE CO_CRTR_PLCY_PW SET SC_PLCY_CRTR = 'O' WHERE ID_CRTR = 1 AND ID_PLCY = 1

Note that 0 is used for disabling the criteria. You can disable as many criterias as you
want.

Backend System Administration and Configuration 1-7

Reason Codes

Password Policy and Password Change
Do the following to change your password:
1. Click Administration.
2, Click Change Password.
3. Provide the following:
= Your user ID
= Your current password
4. Enter a new password.
5. Enter the new password again.
6. You will see a confirmation screen.
7. Click Enter.
Do the following to add a user:
1. Click Administration.
Log in.
Click Security.
Click Employee.
Click Add.
Click Standard or Temp.

N o a Db

Enter the following:

n First name

s Lastname

= Employee ID

8. Select arole, for example, Administrator.

9. Select a status, for example, Active.

10. Select a Preferred Language, for example, English (United States).
11. Click Enter.

12. A screen with the new user’s temporary password is shown.

Note: This temporary password is provided on this screen only.
Record this temporary password. The password is not recorded or
logged, and is not provided by email. Administrators must provide
this temporary password to the user.

Reason Codes

Reason codes are items offered to the end user as choices in lists, for example, the set
of possible reasons for a price override. These choices normally vary for each
corporation, and they must be configured to suit your local requirements and policies.
The system comes with a predetermined set of reason code groups; within each group,
you can add, remove, and modify the list of codes, all from within Point-of-Service
interface.

1-8 Oracle Retail Point-of-Service Operations Guide

Reason Codes

For a complete list of available reason code groups, contact Oracle Retail for a copy of

the Reason Codes Functional Requirements.

To modify reason codes:

1. From the Main Options screen, choose F4/Administration, F4/Security, and

F5/Reason Codes.

Figure 1-4 Reason Code Group Screen

£ Oracle Retail Point-of-Service

Choose a reason code group and press Next.

Markdown Percent Reason Codes
Mo Sale Reason Codes
OMJOFF ReasonCordes
PATCustomerIDTypes

Post Woid Reason Codes

Price Override Reason Codes
Return Reason Codes

Tay Exempt Reason Cores

Till Pay-In Reason Codes
TilPayOutapnrovalCorles

Till Pay-Out Reason Cordes
TillPayrolRayOutapprovaCordes
TillPayrolPayCutReasonCordes

| Tirmekeeping Reason Codes

Transaction Discount By Amaount

Transaction Discount By Percentage
Transaction Suspend Reason Codes

Transaction Tax Amount Overtide Reason Codes
Transaction Tax Rate Cverride Reason Cores
Unit Of MeasLre

Reason Code Group

al

A

129 Guest User
gi6f07 121 A

Guest User
Reason Code Group

F1 F12

Help Cancel

Online

Enter
Next

-

ORACLE’

Backend System Administration and Configuration 1-9

Reason Codes

2. From the Reason Code Groups screen, select the group you want to view or edit.

The Reason Code List screen appears.

Note: If the Edit Reason Codes parameter is set to No, the reason
codes are for viewing only and the ability to set default, edit, add,
delete, or change a reason code is not offered.

Figure 1-5 Reason Code List Screen

£ Oracle Retail Point-of-Service

Select a reason code and choose an option or choose Add or Delete to
add or delete a reason code in the group.

Default:
Reason Code:

Start of Day

Reason Code Group: Timekeeping Reason Codes

Start of Day
Break In
Break Out

Lunch In

s

129 Glest User
a/a/07 1:21 PM

Glest User
Reason Code List

Online

=OX
Make Default

F3
Edit
F4
Add

FS
F&
e
F7
F8
9

Mo Default
F
Done

p
Wi

3. Select one of the following;:

s To delete a code, select it, then choose F5/Delete.

= To change the position of a code in the list, select it, then choose F6/Move Up

or F7/Move Down.

» Toadd a code, choose F4/Add. The Add Reason Code screen appears. Enter a
name and database ID, then choose Enter/Next.

= To change the name or database ID of a code, select the code in the list and

choose F3/Edit.

1-10 Oracle Retail Point-of-Service Operations Guide

Configuring Transaction ID Lengths

The system displays the Edit Reason Code screen. Edit the values shown, then
choose Enter/Next.

Figure 1-6 Edit Reason Code Screen

£ Oracle Retail Paint-of-Service

Modify the reason code value and press Next,
Reason Code Group: Timekeeping Reason Codes
Reason Code Name: SEtasiie *
- . @@= 7
Database ID: * Pr—
R —
. @@/
-
@@=
s#Required Fields —_—
129 Guest User Guest User
2f/07 1123 PM Edit Reason Code Cinlire
F1 F11 F12 Esc Enter .

4. Press F2/Make Default to save your changes and make the selected settings the
new default.

5. Choose Enter/Next. The changes are saved, and the system displays the Reason
Code Group screen.

Configuring Transaction ID Lengths

You can change the lengths of some of the most common data values associated with
transactions. These changes affect every aspect of the software and should not be
undertaken lightly. Changes should only be performed before Point-of-Service is
installed. Changes to these settings can require substantial testing to establish that no
problems result from the change.

Backend System Administration and Configuration 1-11

Configuring Transaction ID Lengths

Understanding Transaction IDs

A transaction ID is a composite key made from the store number, register number, and
sequence number. When combined, these attributes create a unique number for each
transaction. Transaction IDs can also include an eight-digit date to ensure that they are
unique. For example, if you restart your sequence numbers on a daily basis, the date
value prevents transaction ID repetition.

Key points about the transaction ID and related properties:

You can change the length of the store, register, and sequence numbers which
contribute to the Transaction ID. You cannot directly configure the length of the
transaction ID itself.

System-generated unique Layaway numbers, Special Order numbers, and Web
Order numbers are not affected by changes to the transaction ID rules.

A maximum of 20 digits of transaction ID can be printed on receipts using
Point-of-Service current barcode format.

If the value of a store, register, or sequence number has fewer than the specified
number of digits, Point-of-Service uses leading zeroes to pad the number to the
required number of digits; a four-digit sequence number whose value is 22 shows
up within the transaction ID as 0022.

Dates can be used in transaction IDs to help ensure unique IDs. If they are used,
they are expressed as an 8-digit number; this is set by the
TransactionIDBarcodeDateFormat property in the domain.properties
file. The only valid values for this property are no value and yyyyMMdd. The date
format does not vary from one locale to another.

You can set the transaction sequence start number in the database.

When you enter a transaction ID manually, the trailing date is optional.

Changing Transaction ID Lengths

To change ID lengths, edit the values in the Transaction ID section of the
\OracleRetailStore\domain\config\domain.properties file in your source
code control system. See "Understanding Transaction IDs" for more information on
what these properties mean.

Example 1-1 Changing Transaction ID Length

Transaction ID
TransactionIDStoreIDLength=5
TransactionIDWorkstationIDLength=3
TransactionIDSequenceNumberLength=4
#TransactionIDBarcodeDateFormat=yyyyMMdd
TransactionIDBarcodeDateFormat=
TransactionIDSequenceNumberSkipZero=false
TransactionIDSequenceNumberMaximum=9999

1-12 Oracle Retail Point-of-Service Operations Guide

Configuring RMI Timeout Intervals

Configuring the Purchase Date Field for Returns and Voids

You must configure Point-of-Service to display the Purchase Date field in the Receipt
Info screen when conducting a return or a void.

To do this, you must modify the domain.properties file in the
OracleRetailStore\<Client or Server>\pos\config folder. Uncomment
the following field:

TransactionIDBarcodeDateFormat=yyyyMMdd

By default, this field in domain.properties contains no defined date format. This
prevents the Purchase Date field from being displayed in the Receipt Info screen.

Configuring RMI Timeout Intervals
You can configure remote method invocation (RMI) timeout intervals at two levels:
s The JVM level (Linux installs only)
s The level of managers and technicians

If you are performing a Linux installation, configure the JVM as described in "Setting
the RMI Timeout Interval for the JVM Under Linux", below. If you determine that RMI
connections are timing out, you can use one of the other procedures in this section,
"Setting the RMI Timeout Interval for All Manager and Technician Calls" or "Setting
the RMI Timeout Interval for a Specific Technician".

Setting the RMI Timeout Interval for the JVM Under Linux

Oracle Retail has found it useful to change the RMI timeout interval for the JVM under
Linux. To do this, change the command that launches the JVM, adding the JVM flag:
Dsun.rmi.transport.connectionTimeout=<X> where <X> represents the
time-out period in milliseconds.

This tells the JVM to time out socket connections used by RMI after X milliseconds of
inactivity. Linux quickly notifies the JVM when a socket connection cannot be
established. Linux is slow, however, to notify the JVM when an open socket connection
has been broken. By setting the connection time-out low, you can cause the sockets to
disconnect quickly after each RMI call, thereby requiring a connect for each
subsequent RMI call.

Modifying the TCP Connection Timeout on Linux

Sometimes, Linux keeps the tcp connection active even after Point-of-Service
determines that the socket has timed out. There are three OS level settings that work
together to determine how long to keep the tcp connection open, which affects the
observed system performance. To modify these level settings, at a Linux command
line, enter:

sysctl -w net.ipvd.tcp_keepalive_time=<value>
sysctl -w net.ipvéd.tcp_keepalive_intvl=<value>
sysctl -w net.ipvéd.tcp_keepalive_probes=<value>

where <value> is an interval you specify.

Backend System Administration and Configuration 1-13

Configuring Third-party Tender Authorization

Setting the RMI Timeout Interval for All Manager and Technician Calls

You can change the RMI timeout interval values for connections and reads in the
\OracleRetailStore\<Client or Server>\pos\bin\comm.properties
file. The value for the following properties apply to all manager and technician calls,
unless overridden by a communication scheme for a specific call.

comm. socket . connectTimeout - Specifies how long to wait for a socket
connection to succeed. The value is in milliseconds.

comm. socket . readTimeout - Specifies how long to wait before a read times
out. The value is in milliseconds. This property causes the read to time out even if
the socket is alive and well and transmitting data.

Setting the RMI Timeout Interval for a Specific Technician

To set the time-out for a specific technician, edit the
\OracleRetailStore\<Client or Server>\pos\bin\comm.properties file
and the conduit script as follows:

1.

Add a new communication scheme to the \OracleRetailStore\<Client or
Server>\pos\bin\comm.properties file. The following lines provide an
example:

comm. rmi_Jlongread.readTimeout=120000
comm.rmi_longread.connectTimeout=1000

These lines establish a new communication scheme called rmi_longread with a
read time-out of 120 seconds and a connect time-out of one second (since the
values are in milliseconds).

Add the following property to the appropriate technician definition in the conduit
script:

<PROPERTY propname="commScheme" propvalue="rmi_longread"/>

This sets the communication time-outs for all managers that connect to this
technician. A manager who is sending a valet to this technician times out if the
valet fails to complete within 120 seconds. It only attempts to connect to the
technician for 1 second before giving up.

Configuring Third-party Tender Authorization

Initially, Point-of-Service system simulates tender authorization. You can connect
Point-of-Service to a third-party tender authorization service to verify tenders. Setting
up this connection requires two configuration steps:

"Enabling the Financial Network Technician"

"Setting the Merchant Number"

1-14 Oracle Retail Point-of-Service Operations Guide

Adding or Changing Language Bundles

Enabling the Financial Network Technician

In your conduit script, locate a technician tag with the name
FinancialNetworkTechnician and replace it with the tag shown in the following
example.

<TECHNICIAN name="FinancialNetworkTechnician"
class="ISDTechnician"
package="com.extendyourstore.domain.manager.tenderauth.isd"
export="Y">
<PROPERTY
propname="hostName"
propvalue="<enter a URL here>"

/>

<PROPERTY
propname="hostPort"
propvalue="<enter a port number here>"
proptype="INTEGER"

/>

<PROPERTY
propname="reversalFile"
propvalue="testRev.ser"

/>

<PROPERTY
propname="logFile"
propvalue="isd.log"

/>

</TECHNICIAN>

Setting the Merchant Number

Set the Merchant Number parameter to the appropriate value for the authorization
service you are using. Merchant Number is an XML parameter in the Tender
Authorization group. For information on changing the parameter, see the Oracle Retail
Strategic Store Solutions Configuration Guide.

System Settings

System settings are values set in the Oracle Retail database. Changes to these settings
must be made in the database by a database administrator or an application developer.

System settings can have significant effects on Point-of-Service system; do not make
changes unless you are confident that you understand the effects. For a description of
all available system settings, refer to the Oracle Retail Strategic Store Solutions
Configuration Guide.

Adding or Changing Language Bundles

Point-of-Service supports additional languages when the appropriate strings are
provided, bundled in a. jar file. The procedures in this section describe how to create
new bundles and make them available to the application.

Backend System Administration and Configuration 1-15

Configuring Logging

Naming Convention for Language Bundles

Use the following syntax to name language bundles:

<lowercase two-letter language abbreviation>_<uppercase two-letter country
abbreviation>

The following table shows some sample uses of the convention.

Table 1-2 identifies sample language bundle names.

Table 1-2 Sample Bundle Names

Language Bundle Directory .Jjar file

United States English en_US en_US.jar

Creating a New Language Bundle

To create a new language bundle:

1. Create a new source code directory in \OracleRetailStore\<Client or
Server>\pos\locales for the language bundle, starting with a copy of the en_
US directory.

2. Replace the English text in the properties files and help files in your new directory
with translated text.

3. Generate a. jar file using the naming convention described in the preceding
section.

Configuring the System to Use a New Language Bundle

To add a new language and change the default language:

1. Store the new. jar filein \OracleRetailStore\<Client or
Server>\pos\lib\locales.

2. Editthe \OracleRetailStore\<Client or
Server>\pos\config\application.properties file.

a. If you want the new locale to be the default locale, replace the value of the
default_locale property with your new locale name.

b. Add your new locale name to the list in the supported_locales property.
default_locale=en_US

supported_locales=en_US

3. If the standard installation script is not used, then include the new jar in the
classpath ahead of pos. jar.

Configuring Logging

Point-of-Service logging uses the Log4] tool. Configure Log4] by editing
\OracleRetailStore\<Client or Server>\pos\config\log4j.xml.See the
Apache documentation for Log4] at http://logging.apache.org/log4j for
more information; a how-to can be found at
http://wiki.apache.org/logging-log4j/Log4jXmlFormat.

1-16 Oracle Retail Point-of-Service Operations Guide

http://logging.apache.org/log4j
http://wiki.apache.org/logging-log4j/Log4jXmlFormat

2

Technical Architecture

This chapter contains information about the Oracle Retail Point-of-Service architecture.
It begins with a general overview of the Oracle Retail architecture. Then it describes
the layers of the Point-of-Service architecture, its frameworks, and design patterns.

Retailers have an increasing demand for enterprise information and customer service
capabilities at a variety of points of service, including the Internet, kiosks and
handheld devices. The retail environment requires that new and existing applications
can be changed quickly in order to support rapidly changing business requirements.
Oracle Retail Platform and Commerce Services enable application developers to
quickly build modifiable, scalable, and flexible applications to collect and deliver
enterprise information to all points of service.

The following image shows a high level view of the Oracle Retail architecture and
components.

Figure 2—1 Oracle Retail Architecture

£

New_r Re_lail Oracle Retail Stores: Cash Registe
Applications
Point-of-Service
Back Office

Oracle Retail Enterprise;

Central Office
Kiosk
Oracle Retail Platform Web Interfac

.
£

o

Data Enterprise Other

Technical Architecture 2-1

Point-of-Service Architecture

Table 2-1 describes the components in the diagram.

Table 2-1 Oracle Retail Architecture Components

Component

Description

Oracle Retail Platform

Oracle Retail Platform provides services to all Oracle Retail applications.
It contains the tour framework, Ul framework, and
Manager/Technician frameworks. Oracle Retail Platform is not
retail-specific.

Commerce Services

Commerce Services implement business logic. Commerce Services
define data and behavior for retail applications. This component is
referred to as Retail Domain in Point-of-Service.

Oracle Retail Applications

All Oracle Retail applications leverage the frameworks and services
provided by Oracle Retail Platform and Commerce Services.

External Interfaces

Using frameworks and services, the applications are able to interface to
other applications and resources.

Advantages of the Oracle Retail architecture include its object-oriented design and
scalability. The system is designed to support existing systems and customer
extensions. Oracle Retail Platform frameworks support integration by adhering to
retail and technology standards. The multi-tier design of the architecture allows the
application to support numerous types of infrastructure.

Point-of-Service Architecture

Oracle Retail Platform contains reusable, highly customizable components for building
and integrating retail applications with user interfaces, devices, databases, legacy
systems, and third-party applications. Oracle Retail Platform also contains integration
points for communicating with external resources.

2-2 Oracle Retail Point-of-Service Operations Guide

Point-of-Service Architecture

The following diagram shows how the Tour engine controls the Point-of-Service
system. This diagram is a more detailed view of the components that form the
Commerce Services and Oracle Retail Platform tiers in the previous diagram.

Figure 2-2 Point-of-Service Architecture Layers

Jzer hnterface

Tour Engine

Condg
Sonpts

Corfiguration
htegration

bpplication Services

Technicians Retail Domain Objects Custorm

£

3E0F [atfomn Contaimer

Beginning with configuration of the UI and Managers/Technicians, events at the user
interface are handled by the tour engine, which interacts with tour code (Application
Services) and Managers/Technicians (foundation services) as necessary, capturing and
modifying the data stored in Retail Domain objects. Any communication with an
integration point is handled by the Oracle Retail Platform container.

Technical Architecture 2-3

Frameworks

Table 2-2 describes the layers of the Point-of-Service architecture.

Table 2-2 Point-of-Service Architecture Layers

Component Description

Configuration Application and system XML scripts configure the layers of the application.
User Interface This layer provides client presentation and device interaction.

Tour Engine This mechanism handles the workflow in the application. The tour engine is the

controller for Point-of-Service.

Application Services This layer provides application-specific business processes. A tour is an
application service for Point-of-Service.

Foundation Services This layer provides stateless, application-independent technical services.
Combined with the Retail Domain objects, it forms the Commerce Services layer.
Technicians provide location-transparent services in Point-of-Service.

Retail Domain Objects Pure retail-specific business objects that contain application data.

Oracle Retail Platform This is an execution platform and application environment. The Tier Loader is
Container the Oracle Retail Platform container for Point-of-Service.

Integration This layer provides an integration framework for building standard and custom

interfaces using standard integration protocols.

Frameworks

The Oracle Retail architecture uses a combination of technologies that make it flexible
and extensible, and allow it to communicate with other hardware and software
systems. The frameworks that drive the application are implemented by the Java
programming language, distributed objects, and XML scripting. Described below, the
User Interface, Business Object, Manager/Technician, Data Persistence, and
Navigation frameworks interact to provide a powerful, flexible application
framework.

Manager/Technician

The Manager/Technician framework is the component of Oracle Retail Platform that
implements the distribution of data across a network. A Manager provides an API for
the application and communicates with its Technician, which implements the interface
to the external resource. The Manager is always on the same tier, or machine, as the
application, while the Technician is usually on the same tier as the external resource.

2-4 Oracle Retail Point-of-Service Operations Guide

Frameworks

The following figure shows an example of the Manager/Technician framework
distributed on two different tiers.

Figure 2-3 Manager/Technician Framework

Application Tier

Application §

Manager

Resource Tier
RMI/JMS . . External
Technician §===-
Resource
Database
Valet

Table 2-3 describes the component of the Point-of-Service architecture.

Table 2-3 Manager/Technician Framework Components

Component Description

Manager Managers provide a set of local calls to the application. There are various types of
managers to handle various types of activity. For example, the Data Manager receives
the request to save data from Point-of-Service. It locates the appropriate Technician
that should perform the work and insulates the application from the process of
getting the work accomplished. The Manager is available only on the local tier.

Valet The valet is the object that receives the instructions from the Manager and delivers
them to the Technician. The valet handles data transfer across machines with RMI or
JMS.

Technician The Technician is responsible for communicating with the external resource. When a

Technician receives a valet, it can handle it immediately or queue it for later action.
The Technician can be remote from the Manager or on the local tier.

User Interface

The UI framework includes all the classes and interfaces in Oracle Retail Platform to
support the rapid development of Ul screens. In the application code, the developer
creates a model that is handled by the UI Manager in the application code. The Ul
Manager communicates with the UI Technician, which accesses the Ul Subsystem.

Technical Architecture 2-5

Frameworks

The following figure illustrates components of the Ul framework.

Figure 2—-4 Ul Framework

Ul Manager
API

Ul Technician
| | Swing
Ul Subsystem I
2 % JavaPOS
Model o |a
Configurator
Catalog
Beans Resource
I Files
Specification
Loader
Specs

Table 2—4 describes the components of the UI framework.

Table 2—-4 Ul Framework Components

Component

Description

Resource Files

Resourece files are text bundles that provide the labels for a screen. They are
implemented as properties files. Text bundles are used for localizing the application.

Bean

Beans are reusable Java program building blocks that can be combined with other
components to form an application. They typically provide the screen components
and data for the workpanel area of the screen.

Specs

Specifications define the components of a screen. Display specifications define the
width, height, and title of a window. Template specifications divide displays into
areas. Bean specifications define classes and configurators and additional screen
elements for a component. Default screen specifications map beans to the commonly
used areas and define listeners to the beans. Overlay screen specifications define
additional mappings of beans and listeners to default screens.

Specification Loader

Loaders find external specifications and interpret them. The loader instantiates screen
specifications such as overlays, templates, and displays, and places the objects into a
spec catalog.

Catalog

A Catalog provides the bean specifications by name. The UI Technician requests the
catalog from the loader to simplify configurations.

2-6 Oracle Retail Point-of-Service Operations Guide

Frameworks

Table 2-4 Ul Framework Components

Component

Description

Configurator

The UI framework interfaces with beans through bean configurator classes, which
control interactions with beans. A configurator is instantiated for each bean
specification. They apply properties from the specifications to the bean, configure a
bean when initialized, reset the text on a bean when the locale changes, set the bean
component data from a model, update a model from the bean component data, and
set the filename of the resource bundle.

Model

The business logic communicates with beans through screen models. Each bean
configurator contains a screen model, and the configurator must determine if any
action is to be taken on the model. Classes exist for each model.

Ul Manager

The UI Manager provides the API for application code to access and manipulate user
interface components. The Ul Manager uses different methods to call the Ul
Technician.

Ul Technician

The UI Technician controls the main application window or display. The Ul
Technician receives calls from Point-of-Service tours, locates the appropriate screen,
and handles the setup of the screens through the UI Subsystem.

UI Subsystem

The UI Subsystem provides UI components for displaying and editing
Point-of-Service screens. The Ul subsystem enables application logic to be completely
isolated from the UI components. This component is specific to the technology used,
such as Swing or JSP.

Adapters

Adapters are used to provide a specialized response to bean events. Adapters can
handle the events, or the event can cause the adapter to manipulate a target bean.

Adapters implement listener interfaces to handle events on the Ul. Adapters come
from the Swing API of controls and support JavaPOS-compliant devices.

Listeners

Listeners provide a mechanism for reacting to user interface events. Listeners come
from the Swing API of controls and support JavaPOS-compliant devices.

Business Object

The Commerce Services layer of the architecture contains the Business Object
framework that implements the instantiation of business objects. The Business Object
framework is used to create new business objects for use by Point-of-Service. The
business objects contain data and logic that determine the path or option used by an
application.

Technical Architecture 2-7

Frameworks

Figure 2-5 Business Object Framework

Gateway Configures _| Properties interface
4 Domain
Object
Factory
Request
Request Return business
factory interface logic
Return
interface Interface
Application Business
Uses »| Object

Table 2-5 describes the components in the Business Object framework.

Table 2-5 Business Object Framework Components

Component Description

DomainGateway The DomainGateway class provides a common access point for all business object
classes. It also configures dates, times, decimals, percentages, currency, and numbers.

Domain Object Factory The Domain Object Factory returns instances of business object classes. The
application requests a Factory from the DomainGateway.

Business Object Business objects define the attributes for application data. New instances are created
using the Domain Object Factory.

Data Persistence

A specific Manager/Technician pair is the Data Manager and Data Technician used for
data persistence. The Data Persistence framework illustrates how data gets saved to a
persistent resource, such as the database or flat files on the register.

2-8 Oracle Retail Point-of-Service Operations Guide

Frameworks

Figure 2—-6 Data Persistence Framework

Data Data
Manager Technician Flat
Configuration Configuration File
Script Script
" Data Technici
o L., ata Technician
Application Manager L
9 . Data Technician
¢ P
T . Loca
ransaction Database

Queue

Table 2-6 describes the components in the Data Persistence framework.

Table 2-6 Data Persistence Framework Components

Component

Description

Data Manager

The Data Manager defines the application entry point into the Data Persistence
Framework. Its primary responsibility is to contact the Data Technician and transport
any requests to the Data Technician.

Data Manager
Configuration Script

The Data Manager processes data actions from the application based on the
configuration information set in the Data Manager Configuration Script. The
Configuration Script defines transactions available to the application.

Data Technician

The Data Technician provides the interface to the database or flat file. This class is
part of the Oracle Retail Platform framework. It provides entry points for application
transactions sent by the Data Manager and caches the set of supported data store
operations. It also contains a pool of physical data connections used by the supported
data operations.

Data Technician
Configuration Script

The Data Technician Configuration Script specifies the types of connections to be
pooled, the set of operations available to the application, and the mapping of an
application data action to a specific data operation.

Transaction Queue

The Transaction Queue holds data transactions and offers asynchronous data
persistence and offline processing for Point-of-Service. When the database is offline,
the data is held in the queue and posted to the database when it comes back online.
When the application is online, the Data Manager gets the information from the
Transaction Queue to send to the database.

Technical Architecture 2-9

Design Patterns

Tour

The Tour framework establishes the workflow for the application. It models
application behavior as states, events and transitions. The Oracle Retail Platform
engine is modeled on finite state machine behavior. A finite state machine has a
limited number of possible states. A state machine stores the status of something at a
given time and, based on input, changes the status or causes an action or output to
occur. The Tour framework provides a formal method for defining these nested state
machines as a traceable way to handle flow through an application.

Design Patterns

MVC Pattern

Design patterns describe solutions to problems that occur repeatedly in object-oriented
software development. A pattern is a repeatable, documented method that can be
applied to a particular problem. This section describes four patterns used in the
architecture of Point-of-Service: MVC, Factory, Command, and Singleton.

The MVC Pattern divides the functionality of an application into three layers: model,
view, and controller. Different functionality is separated to manage the design of the
application. A model represents business objects and the rules of how they are
accessed and updated. The model informs views when data changes and contains
methods for the views to determine its current state. A view displays the contents of a
model to the user. It is responsible for how the data is presented. Views also forward
user actions to the controller. A controller directs the actions within the application.
The controller is responsible for interpreting user input and triggering the appropriate
model actions. The following diagram illustrates the MVC Pattern.

Figure 2-7 MVC Pattern

2-10 Oracle Retail Point-of-Service Operations Guide

Design Patterns

Factory Pattern

Another design pattern used in Point-of-Service code is the Factory pattern. The intent
of the Factory pattern is to provide an interface for creating families of related or
dependent objects without specifying their concrete classes. The application requests
an object from the factory, and the factory keeps track of which object is used. Since the
application does not know which concrete classes are used, those classes can be
changed at the factory level without impacting the rest of the application. The
following diagram illustrates this pattern.

Figure 2-8 Factory Pattern

|

requests

L

Client
Code

Factory

bject Typa)

Info

Client
Code
regquests
returns ('D
creates
Object A |=—r

creates

returns

Object A

Technical Architecture 2-11

Design Patterns

Command Pattern

Sometimes it is necessary to issue requests to objects without knowing anything about
the operation being requested or the receiver of the request. The Command pattern
encapsulates a request as an object. The design abstracts the receiver of the Command
from the invoker. The command is issued by the invoker and executed on the receiver.
The following diagram illustrates the Command pattern. It is used in the design of the
Manager/Technician framework.

Figure 2-9 Command Pattern

Command
Createsg=————» i —E xocutes

Invoker Receiver
Sends command *
reference

2-12 Oracle Retail Point-of-Service Operations Guide

Design Patterns

Singleton Pattern

The Singleton pattern ensures a class only has one instance and provides a single,
global point of access. It allows extensibility through subclassing. Singletons allow
retailers to access the subclass without changing application code. If a system only
needs one instance of a class across the system, and that instance needs to be accessible
in many different parts of a system, making that class a Singleton controls both
instantiation and access. The following patterns illustrates the Singleton pattern:

Figure 2-10 Singleton Pattern

Application ¢
code
Reference to
Requests object Object A

SingletonFactory

Creates

v

Object A

Technical Architecture 2-13

Design Patterns

2-14 Oracle Retail Point-of-Service Operations Guide

3

Extracting Source Code

Much of this guide deals with the structure and function of Oracle Retail
Point-of-Service code, and how you can modify and extend it to serve the needs of
your organization. It is assumed that you have been given access to the
Point-of-Service source code, present on Oracle’s ARU site.

The source code is downloadable in a single .zip file. See the Oracle Retail
Point-of-Service Installation Guide for the name of the source code .zip file.

This .zip file contains the following:

File Name

Comments

cmnotes.txt

Configuration Management notes. Describe how to set up
and build the source.

ORPOS-<release_number>_source.zip The Point-of-Service source
ORSSS-<release_number>_data_model.zip Data Model (database schema) documentation
README .html

Using pkzip, WinZip or similar utilities, you can extract ORPOS-<release_number> onto
your local hard disk. Choose the option to preserve the directory structure when you
extract. Then all the source files will be placed under some directory like the following:

<Path to disk root>/ORPOS-<release number>_source

From this point on, this directory is referred to as:

<POS_SRC_ROOT>

The following is the first-level directory structure under <POS_SRC_ROOT>:

Directory Comments

applications This has one sub-directory centraloffice, which contains
Point-of-Service-specific code. Other directories contain
code that might be common to Oracle Retail Strategic Store
Solutions applications like Back Office, or Central Office.

build Files used to compile, assemble and run functional tests

clientinterfaces Interface definitions, between different code modules

commerceservices Commerce Services code

modules A collection of various code modules some of which are

the foundation for Commerce Services. The utility module
contains SQL files used for database creation and
pre-loading.

Extracting Source Code 3-1

Directory Comments

thirdparty Executable (mostly .jar files) from third-party providers.
webapp Web-based user interface code. Also contains the
Application Managers.

In subsequent chapters, all pathnames of a code file are made relative to one of these
directories. You must prepend <POS_SRC_ROOT> to the file path, to get its actual

location on disk.

3-2 Oracle Retail Point-of-Service Operations Guide

4

Customization

This chapter covers additional customization options. Frequently, it is necessary to
customize Point-of-Service to integrate with existing systems and environments.

Parameters

Parameters are used to control flow, set minimums and maximums for data, and allow
flexibility without recompiling code. A user can modify parameter values from the Ul
without changing code. Parameter values can be modified by Point-of-Service, and the
changes can be distributed by other Oracle Retail applications. For example, the
maximum cash refund allowed and the credit card types accepted are parameters that
can be defined by Point-of-Service. To configure parameters, you need to understand
the parameter hierarchy, define the group that the parameter belongs to, and define
the parameter and its properties.

Parameter Hierarchy

Parameters are defined in XML files that are organized in a hierarchy. Different XML
files represent different levels in a retail setting at which parameters may be defined.
Understanding the parameter hierarchy helps you define parameters at the
appropriate level.

Table 4-1 lists the parameter directories, XML filenames, and file descriptions.

Table 4-1 Parameter Directories, Files, and Descriptions

Directory Parameter-Related XML File Description

application application.xml Default parameter information provided by
the base product

corporate corporate.xml Company information

store store.xml Local store information

register workstation.xml Register-level information

user role operator.xml User-level information

Higher-level parameters by default are overridden by lower-level parameter settings.
For example, store-level configuration parameters override application-level
parameters. The FINAL element in a parameter definition signifies whether the
parameter can be overridden. The following is an excerpt from
config\manager\PosParameterTechnican.xml, showing the order of
precedence from highest level to lowest level.

Customization 4-1

Parameters

Example 4-1 Default Parameter Settings

<SELECTOR name="defaultParameters">
<SOURCE categoryname="application" alternativename="application">
<SOURCE categoryname="corporate" alternativename="corporate">
<SOURCE categoryname="store" alternativename="store">
<SOURCE categoryname="service" alternativename="NO_OP">
<SOURCE categoryname="uidata" alternativename="NO_OP">
<SOURCE categoryname="register" alternativename="workstation" >
<SOURCE categoryname="userrole" alternativename="operator" >

</SELECTOR

The categoryname specifies the directory name and the alternativename
specifies the name of the XML file. All parameter subdirectories reside in
config\parameter.

Parameter Group

Each parameter belongs to a group, which is a collection of related parameters. The
groups are used when modifying parameters within the UI. The user selects the group
first, then has the option to modify the related parameters that belong to that group.
Examples of groups are Browser, Customer, Discount, and Employee.

Adding a parameter requires adding it to the proper group. The following excerpt
from application.xml shows the Tender group and a parameter definition inside the
group. The “hidden” attribute indicates whether or not the group is displayed in the
UL

Example 4-2 Definition of Tender Group

<GROUP name="Tender"
hidden="N">
<PARAMETER name="MaximumCashChange"

<PARAMETER>
<GROUP>

Parameter Properties

Each parameter file contains parameter definitions organized by group. The following
shows an example of two parameter definitions from
config/parameters/application/application.xml.

Example 4-3 Parameter Definitions From application.xml

<PARAMETER name="CashAccepted"

type="LIST"

default="USD"

final="N"

hidden="N">

<VALIDATOR class="EnumeratedListValidator"
package="com.extendyourstore. foundation.manager.parameter">
<!-- Use ISO 3 letter currency code -->
<PROPERTY propname="member" propvalue="None" />
<PROPERTY propname="member" propvalue="USD" />
<PROPERTY propname="member" propvalue="CAD" />

</VALIDATOR>

4-2 Oracle Retail Point-of-Service Operations Guide

Devices

<VALUE value="USD"/>
<VALUE value="CAD"/>

<PARAMETER name="MaximumCashChange"

type="CURRENCY"

final="N"

hidden="N">

<VALIDATOR class="FloatRangeValidator"
package="com.extendyourstore. foundation.manager.parameter">
<PROPERTY propname="minimum" propvalue="0.00" />
<PROPERTY propname="maximum" propvalue="99999.99" />

</VALIDATOR>

<VALUE value="25.00"/>

</PARAMETER>

The FINAL attribute indicates whether the property definition is final, meaning it
cannot be overridden by lower-level parameter file settings. The VALUE element is the
current setting of the parameter. If multiple values are set, that means the value of the
parameter is a list of values. The three types of VALIDATOR classes are listed in the
following table.

Table 4-2 lists the three types of VALIDATOR classes.

Table 4-2 Validator Types

Validator Description
EnumeratedListValidator Determines whether a value supplied is one of an allowable set of values
FloatRangeValidator Ensures that the value lies within the specified minimum and maximum float
range
IntegerRangeValidator Ensures that the value of a parameter lies within the specified minimum and
maximum integer range
Devices
Point-of-Service devices are configured with the posdevices.xml file, device-specific
property files, and other JavaPOS configuration files. The device vendor typically
provides a JavaPOS configuration file to support the JavaPOS standards. If necessary,
you can create your own configuration file to meet your device requirements.
Interaction of the Point-of-Service application with devices is managed by the Device
Manager and Device Technician.
Set Up the Device

To configure a device to work with Point-of-Service, first consult the user manual for
that device for specific setup requirements. Set up the device drivers and configuration
file so the device is available to applications.

Customization 4-3

Devices

Test the Device

Use the POStest application available internally or at http:www.javapos.com to
determine if a device adheres to existing JavaPOS standards. POStest is a GUI-based
utility for exercising Point-of-Service devices using JavaPOS. Currently it supports the
following devices: POSPrinter, MICR, MSR, Scanner, Cash Drawer, Line Display,
Signature Capture, and PIN Pad. Perform the following steps to use POStest. See
http:www.javapos.com for more details.

1. Configure the classpath for JavaPOS. This means that the classpath should include
the location of POStest, jpos.jar, jcljar and the JavaPOS services for the devices.

2. To build POStest, compile the classes in <location of
POStest>\upos\com\jpos\POStest.

3. To run POStest, enter the following at a command line:

java com.jpos.POStest.POStest

Sometimes, the hardware vendor provides test utilities that come with the JavaPOS
implementation. You should test with these tools as well.

Create a Session and ActionGroup

In Point-of-Service code, devices require a Session and an ActionGroup. If you need to
interact with a new JavaPOS device, you must create a new Session and ActionGroup.

Sessions capture input for the application. In Ul scripts, device connections are defined
that allow the application code to receive input from a device by connecting the
Session with the screen specification. The Session listens to JavaPOS controls on the
device.

ActionGroups provide the commands that can be used to control the device.
ActionGroups are instantiated by Tour code. When a method on an ActionGroup is
called in Tour code, the DeviceTechnician talks to JavaPOS controls on the device.

To create or modify a Session and ActionGroup, perform the following steps.
1. Configure the Session and ActionGroup in config\pos\posdevices.xml.

To do this, enter the name of the Session and ActionGroup in posdevices.xml. You
must specify the name of the object, its class and its package. In addition, you can
set some attributes available in the corresponding class in posdevices.xml. This file
creates a hash table of ActionGroups and Sessions, which are part of the
DeviceTechnician. Below is a definition of an ActionGroup and Session from
posdevices.xml.

Example 4-4 ActionGroup Configuration

<ACTIONGROUP name="LineDisplayActionGroupIfc"
class="LineDisplayActionGroup"
package="com.extendyourstore.pos.device" />

Example 4-5 Session Configuration

<SESSION name="ScannerSession"
devicename = "defaultScanner"
class="ScannerSession"
package="com.extendyourstore. foundation.manager.device"
defaultmode = "MODE_RELEASED"
/>

4-4 Oracle Retail Point-of-Service Operations Guide

http:www.javapos.com
http:www.javapos.com
http:www.javapos.com
http:www.javapos.com

Devices

2. Define a Session class to get input that extends InputDeviceSession or
DeviceSession.

Each type of device has a Session class defined in
src\com\extendyourstore\foundation\manager\device. A device
session like CashDrawerSession would extend DeviceSession, whereas an input
device session like a ScannerSession would extend InputDeviceSession.

Sessions are not instantiated in Tour code but are accessed by Ul scripts in device
connections.

3. Define an ActionGrouplfc interface that extends DeviceActionGrouplfc.

This class should also be located in src\com\extendyourstore\pos\device.
The following line of code shows the header of the CashDrawerActionGrouplfc
class.

public interface CashDrawerActionGroupIlfc extends DeviceActionGroupIfc

4. Create the ActionGroup class. This class should be located in
src\com\extendyourstore\pos\device, and its purpose is to define specific
device operations available to Point-of-Service. The following line of code shows
the header of the CashDrawerActionGroup class.

public interface CashDrawerActionGroup extends CashDrawerActionGroupIfc

5. If one does not already exist, create a device connection in the Ul Subsystem file.
Device connections in the UI Subsystem files allow the application to receive input
data from the Session.

The DeviceSession class is referenced in the device connections for the relevant
screen specifications. For example, the following code is an excerpt from
src\com\extendyourstore\pos\services\tender\tenderuicfg.xml.

Example 4-6 Example of Device Connection

<DEVICECONNECTION
deviceSessionName="ScannerSession"
targetBeanSpecName="PromptAndResponsePanel Spec"
listenerPackage="java.beans"
listenerInterfaceName="PropertyChangeListener"
adapterPackage="com.extendyourstore. foundation.manager.gui"
adapterClassName="InputDataAdapter"
adapterParameter="setScannerData"
activateMode="MODE_SINGLESCAN">

6. Access the device manager and input from the Session in the application code.

Using the bean model, data from the Session can be accessed with methods in the
device’s ActionGrouplfc. Other devices such as the printer are accessed through a
device manager as in the following code from
src\com\extendyourstore\pos\services\tender\CompleteTenderSit
e.java.

Example 4-7 ActionGroup in Tour code

POSDeviceActions pda = new POSDeviceActions((SessionBusIfc) bus);
pda.clearText () ;
pda.displayTextAt (1,0,displayLine2);

Customization 4-5

Help Files

Simulate the Device

It is often practical to simulate devices for development purposes until the hardware is
available or the software is testable. Switching to a simulated device is easily
accomplished by editing config\pos\posdevices.xml. In fact, when you install
Point-of-Service and choose the option to run in Simulated mode, posdevices.xml is
modified accordingly. By default, unselected devices are set up as simulated. The
following code sample shows the configuration of SimulatedPrinterSession.

Example 4-8 Simulated Device Configuration

<SESSION name="SimulatedPrinterSession"
devicename = "defaultPrinter"
class="SimulatedPrinterSession"
package="com.extendyourstore. foundation.manager.device"
defaultmode = "MODE_RELEASED"
/>

Help Files

The Oracle Retail Point-of-Service application includes help files to provide
information to assist the end-user. When the user chooses Help or F1 from the global
navigation panel, a help browser appears in Point-of-Service to describe the current
screen. An index is provided on the left so the user may choose additional topics to
view. The help is implemented as JavaHelp and includes these components:

s One HTML help file for each screen. The product help files are Microsoft Word
files saved as HTML. They can be edited with Word, an HTML editor or a text
editor.

= A Table Of Contents file that defines the index that displays on the left.

= A properties file that associates overlay screen names with the corresponding
HTML filenames.

Refer to http://www. java.sun.com for more information on JavaHelp.

Note: If the base product help files are modified, upgrades for help
files will not be available, and you will not be able to take advantage
of updates provided with future maintenance releases of the
application.

4-6 Oracle Retail Point-of-Service Operations Guide

http://www.java.sun.com

Help Files

Modifying Help Files
1. Locate the name of the help file associated with the overlay screen name that

needs to be modified. The help file names are defined in helpscreens.properties
located in config\ui\help.

Example 4-9 JavaHelp—helpscreens.properties
REFUND_OPTIONS refundoptionshelp.htm

2. Locate the help file in the locales\en_US\config\ui\help directory. Open
the file in Microsoft Word or an HTML editor and edit the content. If you are using
Word to edit, be sure to save the file as HTML when the edits are complete.

3. Make identical modifications to the help file for each of the supported languages.
For example, the base product also has help files in locales\en_
US\config\ui\help.

4. If the index location or text descriptions needs to be modified, change toc.xml
located in locales\en_US\config\ui\help. The order of the items in the index is
also defined by this file.

Example 4-10 JavaHelp—toc.xml
<tocitem target="REFUND_OPTIONS" text="Refund Options" />

Customization 4-7

Help Files

4-8 Oracle Retail Point-of-Service Operations Guide

O

Preparation

Setup

Development Environment

A development environment for Point-of-Service includes all files, tools and resources
necessary to build and run the Point-of-Service application. While development
environments may vary depending on the choice of IDE, database, and version control
system, configuration of the development environment involves some common steps.
This document addresses components that various development environments have in
common.

The following software resources must be installed and configured before the
Point-of-Service development environment can be set up. Ensure that the following are
in place:

Version control system
The Point-of-Service source code must be available from a source control system.

OracleRetailStore database
The OracleRetailStore database should be installed.

Eclipse version 3.0 or another IDE
If installing Eclipse, downloads and instructions are available from
http://www.eclipse.org/downloads/.

JDK 1.4
Downloads and instructions are available at http://java.sun.com/downloads/

Setting up the development environment requires installing the Point-of-Service
application, populating the database, creating a sandbox, configuring the IDE, and
configuring the version control system.

Install Point-of-Service

Install Point-of-Service using the installation script. While running the Point-of-Service
installation script, accept the default options even when nothing is selected, except for
the options discussed in the following table.

Development Environment 5-1

http://www.eclipse.org/downloads/
http://java.sun.com/downloads/

Setup

Table 5-1 lists some Point-of-Service installation options.

Table 5-1 Point-of-Service Installation Options

Option Instruction
Tier Type Choose the Tier Type from the following options.
Stand-alone—Choose this option to run the Point-of-Service client and server
functions in one JVM.
N-Tier Client and N-Tier Store Server—Choose both of these options to run client and
server components on the same machine in separate JVMs.
Database Information Specify the database type and its location. The default is Oracle 10g and DB2 v8.2
JRE Location 3rd Party Jars
Build the Database

The tables should be populated with the item, employee, coupon and other retail data
that the store needs. If a database is being built from scratch, it needs to be populated
with data. The following command can be executed to build the tables and insert a
minimal data set.

C:\>OracleRetailStore\pos\bin\dbbuild.bat

To run the dbbuild.bat, it is necessary to pass an input parameter:

dbbuild.bat [data level]

[data level] can be base_data, seed_data, test_data, demo_data.
base_data contains just enough to get the build running.
seed_data should contain enough to build and run unit/functional tests.

test_data will contain the rest of the data that you expect from previous builds.

Create a Sandbox

If you plan to retrieve all the source code with the version control system, create a local
sandbox with only one directory such as the following.

C:\mySandbox\

Otherwise, create a local working directory with src, config, and locales\en_US
subdirectories. This allows the application code to find all the top-level directories. The
following lists the directories that should be created.

C:\mySandbox\
C:\mySandbox\src
C:\mySandbox\config
C:\mySandbox\locales\en_US

5-2 Oracle Retail Point-of-Service Operations Guide

Setup

Configure the IDE

The following configuration enables your IDE to build and run the Point-of-Service
application.

1.

Set the JRE System Library. In the IDE preferences, point to the JRE included in the
JDK installed earlier.

Point to the root of the Java directory in which JDK 1.4 was installed, not the JRE
directory in the Point-of-Service installation directory. For example, if the JDK
directory is named C:\jdk1. 4.1, the JRE Home Directory would be
C:\jdkl.4.1.

Specify the path for the source directories on the build path to be the same as the
directory or directories created for the sandbox.

Specify the following jars on the build path in the order described in the following
table. These directories are the same as the directories in
C:\OracleRetailStore\pos\logs\classpath.log.

Table 5-2 lists Point-of-Service build path orders.

Table 5-2 Build Path

Order Directory

1 C:\OracleRetailStore\pos\lib

2 C:\OracleRetailStore\pos\lib\locales

3 C:\OracleRetailStore\pos\3rdparty\lib

4 C:\OracleRetailStore\pos\3rdparty\lib\ibm\surepos750
5 C:\OracleRetailStore\360common\lib

Note: 3rd Party folders specified during installation should also be
added here.

Set the launch properties listed in the table below.

The program arguments differ depending on the Server Tier type chosen during
the Point-of-Service installation. This option is determined by the Server Tier Type
selected.

Development Environment 5-3

Run Point-of-Service

Table 5-3 lists Point-of-Service launch properties.

Table 5-3 Launch Properties

Property

Value

main class

com.extendyourstore.foundation.config.TierLoader

program arguments

If the Tier type is Stand-alone, the program argument is
classpath:\\config\ conduit\CollapsedConduitFF.xml.

If the Tier type is N-Tier Client and N-Tier Server, there are two sets of launch
properties. The Store Server launch setting has its program argument set to
classpath:\\config\conduit\StoreServerConduit.xml. The Client launch setting has
its program argument set to classpath:\\config\conduit\ClientConduit.xml. Wait for
the StoreServerConduit to finish starting before launching the ClientConduit.

classpath

Add the database runtime directory to the classpath. To find this path, open
C:\OracleRetailStore\pos\logs\classpath.log and search for the local
database directory.

Also, add the installation config directory. Choose
C:\OracleRetailStore\pos\config.

Update Java Security and Policy Files

Copy the java.security and java.policy files dropped by the Point-of-Service
installation, located in C: \OracleRetailStore\jre\lib\security. Paste these
files in the java\jre\lib\security directory for the JDK that the IDE is referencing.

Configure the Version Control System

Each file from the source code repository should be retrieved to the proper location in
your sandbox. To do this, set the workfile location of the root of each of the product
components displayed in the version control system, such as 360common. Each
workfile location should be set to the local sandbox. For example, if your sandbox is
named C:\mySandbox, the root of the product components should point to
C:\mySandbox.

Run Point-of-Service

To verify the setup, run the Point-of-Service application using the following steps:

1.
2.
3.

Start the OracleRetailStore Database.
Build the project.

Run Point-of-Service from the IDE.

5-4 Oracle Retail Point-of-Service Operations Guide

6

General Development Standards

The following standards have been adopted by Oracle Retail product and service
development teams. These standards are intended to reduce bugs and increase the
quality of the code. The chapter covers basic standards, architectural issues, and
common frameworks. These guidelines apply to all Oracle Retail applications.

Basics

The guidelines in this section cover common coding issues and standards.

Java Dos and Don’ts

The following dos and don’ts are guidelines for what to avoid when writing Java code.

DO use polymorphism

DO have only one return statement per function or method; make it the last
statement.

DO use constants instead of literal values when possible.
DO import only the classes necessary instead of using wildcards.
DO define constants at the top of the class instead of inside a method.

DO keep methods small, so that they can be viewed on a single screen without
scrolling.

DON'T have an empty catch block. This destroys an exception from further down
the line that might include information necessary for debugging.

DON'T concatenate strings. Oracle Retail products tend to be string-intensive and
string concatenation is an expensive operation. Use StringBuffer instead.

DON'T use function calls inside looping conditionals (for example, while (i
<=name.len())). This calls the function with each iteration of the loop and can
affect performance.

DON'T use a static array of strings.
DON'T use public attributes.
DON'T use a switch to make a call based on the object type.

General Development Standards 6-1

Basics

Avoiding Common Java Bugs

The following fatal Java bugs are not found at compile time and are not easily found at
runtime. These bugs can be avoided by following the recommendations in the
following table.

Table 6-1 lists some fatal Java bugs and their preventative measures.

Table 6-1 Common Java Bugs

Bug Preventative Measure
null pointer exception Check for null before using an object returned by another method.
boundary checking Check the validity of values returned by other methods before using them.

array index out of bounds When using a value as a subscript to access an array element directly, first verify that

the value is within the bounds of the array.

incorrect cast

When casting an object, use instanceof to ensure that the object is of that type before
attempting the cast.

Formatting

Follow these formatting standards to ensure consistency with existing code.

» Indenting/braces—Indent all code blocks with four spaces (not tabs). Put the
opening brace on its own line following the control statement and in the same
column. Statements within the block are indented. Closing brace is on its own line
and in same column as the opening brace. Follow control statements (if, while,
etc.) with a code block with braces, even when the code block is only one line long.

» Line wrapping—If line breaks are in a parameter list, line up the beginning of the
second line with the first parameter on the first line. Lines should not exceed 120
characters.

= Spacing—Include a space on both sides of binary operators. Do not use a space
with unary operators. Do not use spaces around parenthesis. Include a blank line
before a code block.

= Deprecation—Whenever you deprecate a method or class from an existing release
is deprecated, mark it as deprecated, noting the release in which it was deprecated,
and what methods or classes should be used in place of the deprecated items;
these records facilitate later code cleanup.

s Header—The file header should include the PVCS tag for revision and log history.

Example 6—1 Header Sample

/‘k***~k*****‘k****‘k**‘k****‘k****‘k****‘k****‘k

Copyright (c) 1998-2003 Oracle Retail, Inc. All Rights Reserved.

SLog$

*********~k*~k**~k**‘k****‘k****‘k**‘k*‘k**‘k***/

package com._360commerce.samples;
// Import only what is used and organize from lowest layer to highest.

import com.ibm.math.BigDecimal;
import com._360commerce.common.utility.Util;

/**

6-2 Oracle Retail Point-of-Service Operations Guide

Basics

Javadoc

This class is a sample class. Its purpose is to illustrate proper
formatting.
@version $Revision$

public class Sample extends AbstractSample
implements SampleIfc

Make code comments conform to Javadoc standards.

Include a comment for every code block.

Document every method’s parameters and return codes, and include a brief

statement as to the method’s purpose.

Naming Conventions

{
// revision number supplied by configuration management tool
public static String revisionNumber = "$SRevision$";
// This is a sample data member.
// Use protected access since someone may need to extend your code.
// Initializing the data is encouraged.
protected String sampleData = "";
[=
/**
Constructs Sample object.
Include the name of the parameter and its type in the javadoc.
@param initialData String used to initialize the Sample.
*'k/
[=
public Sample(String initialData)
{
sampleData = initialData;
// Declare variables outside the loop
int length = sampleData.length();
BigDecimal[] numberList = new BigDecimal[length];
// Precede code blocks with blank line and pertinent comment
for (int i = 0; 1 < length; i++)
{
// Sample wrapping line.
numberList[i] = someInheritedMethodWithALongName (Util.I_BIG_DECIMAL_
ONE,
sampleData,
length - 1);
}
}
}

Names should not use abbreviations except when they are widely accepted within the
domain (such as the customer abbreviation, which is used extensively to distinguish
customized code from product code).

General Development Standards 6-3

Basics

Table 6-2 lists some additional naming conventions.

Table 6—2 Naming Conventions

Element

Description

Example

Package Names

Package names are entirely lower
case and should conform to the

documented packaging standards.

com.extendyourstore.packagename

com.mbs.packagname

Class Names

Mixed case, starting with a capital
letter.

Exception classes end in
Exception; interface classes end in
Ifc; unit tests append Test to the
name of the tested class.

DatabaseException
DatabaseExceptionTest

FoundationScreenlfc

File Names File names are the same as the DatabaseException.java
name of the class.
Method Names Method names are mixed case, isEmpty()
starting with a lowercase letter. .
Method names are an action verb, hasChildren()
where possible. Boolean-valued getAttempt()
methods should read like a setName()
question, with the verb first.
Accessor functions use the
prefixes get or set.
Attribute Names Attribute names are mixed case, lineltemCount
starting with a lowercase letter.
Constants Constants (static final variables) final static int NORMAL_SIZE = 400

are named using all uppercase
letters and underscores.

E]Bs -- entity

Use these conventions for entity
beans, where “Transaction’ is a
name that describes the entity.

TransactionBean
TransactionlIfc
TransactionLocal

TransactionLocalHome

TransactionRemote
TransactionHome
EJBs — session Use these conventions for session TransactionService
beans, where “Transaction’ is a .
. . TransactionAdapter
name that describes the session.
TransactionManager

SQL Guidelines

The following general guidelines apply when creating SQL code:

s Keep SQL code out of client/UI modules. Such components should not interact
with the database directly.

s Table and column names must be no longer than 18 characters.

s Comply with ARTS specifications for new tables and columns. If you are creating
something not currently specified by ARTS, strive to follow the ARTS naming
conventions and guidelines.

= Document and describe every object, providing both descriptions and default
values so that we can maintain an up-to-date data model.

6-4 Oracle Retail Point-of-Service Operations Guide

Basics

s Consult your data architect when designing new tables and columns.

= Whenever possible, avoid vendor-specific extensions and strive for SQL-92
compliance with your SQL.

= While Sybase-specific extensions are common in the code base, do not introduce
currently unused extensions, because they must be ported to the DataFilters and
JdbcHelpers for other databases.

= All SQL commands should be uppercase because the DataFilters currently only
handle uppercase.

» If database-specific code is used in the source, move it into the JdbcHelpers.

= AllJDBC operations classes must be thread-safe.

Do the following to avoid errors:

= Pay close attention when cutting and pasting SQL.

= Always place a carriage return at the end of the file.

s Test your SQL before committing.

The subsections that follow describe guidelines for specific database environments.

DB2

Table 6-3 shows examples of potential problems in DB2 SQL code.

Table 6-3 DB2 SQL Code Problems

Problem

Problem Code

Corrected Code

Don’t use quoted integers or

unquoted char and varchar values;
these cause DB2 to produce errors.

CREATE TABLE BLAH

(

FIELD1 INTEGER,

FIELD2 CHAR(4)

)i

INSERT INTO BLAH (FIELDI,
FIELD2) VALUES ('5', 1020);

CREATE TABLE BLAH

(

FIELD1 INTEGER,

FIELD2 CHAR(4)

)i

INSERT INTO BLAH (FIELDI,
VALUES (5, '1020');

FIELD2)

Don’t try to declare a field default

as NULL.

CREATE TABLE BLAH

(

FIELDl INTEGER NULL,
FIELD2 CHAR(4) NOT NULL
)i

CREATE TABLE BLAH

(

FIELDl INTEGER,

FIELD2 CHAR(4) NOT NULL
)i

General Development Standards 6-5

Basics

Oracle

Table 64 provides some examples of common syntax problems which cause Oracle
to produce errors.

Table 6—-4 Oracle SQL Code Problems

Problem Problem Code Corrected Code
Blank line in code block CREATE TABLE BLAH CREATE TABLE BLAH
causes error. ((
FIELD1 INTEGER, FIELD1 INTEGER,
FIELD2 VARCHAR (20) FIELD2 VARCHAR (20)
)i
)i
When using NOT NULL ~ CREATE TABLE BLAH CREATE TABLE BLAH
with a default value, NOT (
NULL must follow the FIELD] INTEGER NOT NULL DEFAULT FIELDl INTEGER DEFAULT 0 NOT NULL,
DEFAULT statement. 0, FIELD2 VARCHAR (20)
FIELD2 VARCHAR (20));
)i
In a CREATE or INSERT, CREATE TABLE BLAH CREATE TABLE BLAH
do not place a comma after ((
the last item. FIELD] INTEGER, FIELD] INTEGER,
FIELD2 VARCHAR (20), FIELD2 VARCHAR (20)
)i)i
PostgreSQL

PostgreSQL does not currently support the command ALTER TABLE BLAH ADD
PRIMARY KEY. However, it does support the standard CREATE TABLE command
with a PRIMARY KEY specified. For this reason, the PostgresqlDataFilter converts
SQL of the form shown in the first code sample, below, into the standard form shown
in the second code example, below.

Example 6-2 SQL Code Before PostgresqlDataFilter Conversion

CREATE TABLE BLAH

(

COL1 INTEGER NOT NULL,
COL2 INTEGER NOT NULL,
COL3 INTEGER,

)i

ALTER TABLE ADD PRIMARY KEY (COL1l, COL2)

Example 6-3 SQL Code After PostgresqlDataFilter Conversion

CREATE TABLE BLAH(COL1 INTEGER NOT NULL,
COL2 INTEGER NOT NULL,

COL3 INTEGER,

PRIMARY KEY (COL1l, COL2));

Sybase

Sybase does not throw errors if a table element is too large; it truncates the value. If
using a VARCHAR(40), use less than 40 characters.

6-6 Oracle Retail Point-of-Service Operations Guide

Architecture and Design Guidelines

Unit Testing

For details on how to implement unit testing, see separate guidelines on the topic.
Some general notes apply:

= Break large methods into smaller, testable units.

= Although unit testing may be difficult for tour scripts, apply it for Java
components within Point-of-Service code.

= If you add a new item to the codebase, make sure your unit tests prove that the
new item can be extended.

= In unit tests, directly create the data/preconditions necessary for the test (in a
setup() method) and remove them afterwards (in a teardown() method). JUnit
expects to use these standard methods in running tests.

Architecture and Design Guidelines

This section provides guidelines for making design decisions which are intended to
promote a robust architecture.

AntiPatterns

An AntiPattern is a common solution to a problem which results in negative
consequences. The name contrasts with the concept of a pattern, a successful solution
to a common problem.

General Development Standards 6-7

Architecture and Design Guidelines

Table 6-5 identifies AntiPatterns which introduce bugs and reduce the quality of code.

Table 6-5 Common AntiPatterns

Pattern Description

Solution

Reinvent the Wheel Sometimes code is developed in
an unnecessarily unique way
that leads to errors, prolonged
debugging time and more
difficult maintenance.

The analysis process for new features
provides awareness of existing solutions
for similar functionality so that you can
determine the best solution.

There must be a compelling reason to
choose a new design when a proven design
exists. During development, a similar
pattern should be followed in which
existing, proven solutions are implemented
before new solutions.

Copy-and-paste Programming, When code needs to be reused, it

classes is sometimes copied and pasted
instead of using a better method.
For example, when a whole class
is copied to a new class when the
new class could have extended
the original class. Another
example is when a method is
being overridden and the code
from the super class is copied
and pasted instead of calling the
method in the super class.

Use object-oriented techniques when
available instead of copying code.

6-8 Oracle Retail Point-of-Service Operations Guide

Architecture and Design Guidelines

Table 6-5 Common AntiPatterns

Pattern Description Solution

Copy-and-paste Programming, A new element (such as a Site If you copy an existing element to create a

XML class or an Overlay XML tag) can new element, manually verify each piece of
be started by copying and the element to ensure that it is correct for
pasting a similar existing the new element.

element. Bugs are created when
one or more pieces are not
updated for the new element.
For example, a new screen might
have the screen name or prompt
text for the old screen.

Project Mismanagement/ A lack of common Read the Functional Requirement before

Common Understanding understanding between you code. If there is disagreement with
managers, Business Analysts, content, raise an issue with the Product
Quality Assurance and Manager. Before you consider code for the
developers can lead to missed requirement finished, all issues must be
functionality, incorrect resolved and the code must match the
functionality and a requirements.

larger-than-necessary number of
defects. An example of this is
when code does not match
Functional Requirements,
including details like maximum
length of fields and dialog
message text.

Stovepipe Multiple systems within an Coordinate technologies across
enterprise are designed applications at several levels. Define basic
independently. The lack of standards in infrastructures for the suite of

commonality prevents reuse and products. Only mission-specific functions
inhibits interoperability between should be created independently of the
systems. For example, a change other applications within the suite.

to till reconcile in Back Office

may not consider the impact on

Point-of-Service. Another

example is a making change to a

field in the Oracle Retail

database for a Back Office

feature without handling

Point-of-Service effects.

Designing for Extension

This section defines how to code product features so that they may be easily extended.
It is important that developers on customer projects whose code may be rolled back
into the base product follow these standards as well as the guidelines in Chapter 8,
"Extension Guidelines".

= Separate external constants such as database table and column names, JMS queue
names, port numbers from the rest of the code. Store them in (in order of
preference):

— Configuration files
- Deployment descriptors
— “Constant” classes/interfaces

= Make sure the SQL code included in a component does not touch tables not
directly owned by that component.

General Development Standards 6-9

Common Frameworks

= Make sure there is some separation from DTO and ViewBean type classes so we
have abstraction between the service and the presentation.

= Consider designing so that any fine grained operation within the larger context of
a coarse grain operation can be factored out in a separate “algorithm” class, so that
it can be replaced without reworking the entire activity flow of the larger
operation.

Common Frameworks

Logging

This section provides guidelines which are common to the Oracle Retail Strategic Store
Solutions applications.

Oracle Retail Strategic Store Solutions systems use Log4] for logging. When writing
log commands, use the following guidelines:

= Use calls to Log4] rather than System.out from the beginning of your
development. Unlike System.out, Log4] calls are naturally written to a file, and can
be suppressed when desired.

= Log exceptions where you catch them, unless you are going to rethrow them. This
is preserves the context of the exceptions and helps reduce duplicate exception
reporting.

» Logging uses few CPU cycles, so use debugging statements freely.
s Use the correct logging level:
- FATAL—crashing exceptions
- ERROR—nonfatal, unhandled exceptions (there should be few of these)
- INFO—life cycle/heartbeat information
- DEBUG—information for debugging purposes

The following sections provide additional information on guarding code, when to log,
and how to write log messages.

Guarding Code

Testing shows that logging takes up very little of a system’s CPU resources. However,
if a single call to your formatter is abnormally expensive (stack traces, database access,
network IO, large data manipulations, etc.), you can use Boolean methods provided in
the Logger class for each level to determine whether you have that level (or better)
currently enabled; Jakarta calls this a code guard:

Example 6—-4 Wrapping Code in a Code Guard

if (log.isDebugEnabled()) {
log.debug (MassiveSlowStringGenerator () .message()) ;

}

An interesting use of code guards, however, is to enable debug-only code, instead of
using a DEBUG flag. Using Log4] to maintain this functionality lets you adjust it at
runtime by manipulating Log4] configurations.

For instance, you can use code guards to simply switch graphics contexts in your
custom swing component:

6-10 Oracle Retail Point-of-Service Operations Guide

Common Frameworks

Example 6-5 Switching Graphics Contexts via a Logging Level Test

protected void paintComponent (Graphics g) {

if (log.isDebugEnabled()) {
g = new DebugGraphics(g, this);
}

g.drawString("foo", 0, 0);

When to Log

There are three main cases for logging:
» Exceptions—Should be logged at an error or fatal level.

» Heartbeat/Life cycle—For monitoring the application; helps to make unseen
events clear. Use the info level for these events.

s Debug—Code is usually littered with these when you are first trying to get a class
to run. If you use System.out, you have to go back later and remove them to keep.
With Log4], you can simply raise the log level. Furthermore, if problems pop up in
the field, you can lower the logging level and access them.

Writing Log Messages

When Log4] is being used, any log message might be seen by a user, so the messages
should be written with users in mind. Cute, cryptic, or rude messages are
inappropriate. The following sections provide additional guidelines for specific types
of log messages.

Exception Messages

A log message should have enough information to give the user a good shot at
understanding and fixing the problem. Poor logging messages say something opaque
like “load failed.”

Take this piece of code:

try {
File file = new File(fileName) ;
Document doc = builder.parse(file);

NodeList nl = doc.getElementsByTagName ("molecule");
for (int i = 0; 1 < nl.getLength(); i++) {

Node node = nl.item(1i);

// something here
}

} catch {
// see below

}

and these two ways of logging exceptions:

} catch (Exception e){
log.debug("Could not load XML");

}

General Development Standards 6-11

Common Frameworks

} catch (IOException e){

log.error ("Problem reading file " + fileName, e);
} catch (DOMException e){

log.error ("Error parsing XML in file " + fileName, e);
} catch (SAXException e) {

log.error ("Error parsing XML in file " + fileName, e);

}

In the first case, you'll get an error that just tells you something went wrong. In the
second case, you're given slightly more context around the error, in that you know if
you can't find it, load it, or parse it, and you're given that key piece of data: the file
name.

The log lets you augment the message in the exception itself. Ideally, with the
messages, the stack trace, and type of exception, you'll have enough to be able to
reproduce the problem at debug time. Given that, the message can be reasonably
verbose.

For instance, the fail() method in JUnit really just throws an exception, and whatever
message you pass to it is in effect logging. It’s useful to construct messages that
contain a great deal of information about what you are looking for:

Example 6-6 JUnit
if (! list.contains(testObj)) {

StringBuffer buf = new StringBuffer();
buf.append("Could not find object " + testObj + " in list.\n");
buf.append("List contains: ");
for (int 1 = 0; 1 < list.size(); i++) {
if (1 > 0) {
buf.append(",");

}
buf.append(list.get(i));

}
fail (buf.toString());

Heartbeat or Life Cycle Messages

The log message here should succinctly display what portion of the life cycle is
occurring (login, request, loading, etc.) and what apparatus is doing it (is it a particular
EJB are there multiple servers running, etc.)

These message should be fairly terse, since you expect them to be running all the time.

Debug Messages

Debug statements are going to be your first insight into a problem with the running
code, so having enough, of the right kind, is important.

6-12 Oracle Retail Point-of-Service Operations Guide

Common Frameworks

These statements are usually either of an intra-method-life cycle variety:

log.debug ("Loading file");

File file = new File(fileName);
log.debug("loaded. Parsing...");
Document doc = builder.parse(file);
log.debug ("Creating objects");

for (int 1 ...

or of the variable-inspection variety:

log.debug("File name is " + fileName);

log.debug("root is null: " + (root == null));
log.debug("object is at index " + list.indexOf (obj));

Exception Handling

The key guidelines for exception handling are:
= Handle the exceptions that you can (File Not Found, etc.)
= Fail fast if you can’t handle an exception

= Log every exception with Log4], even when first writing the class, unless you are
rethrowing the exception

s Include enough information in the log message to give the user or developer a
fighting chance at knowing what went wrong

= Nest the original exception if you rethrow one

Types of Exceptions
The EJB specification divides exceptions into the following categories:

JVM Exceptions

You cannot recover from these; when one is thrown, it’s because the JVM has entered a
kernel panic state that the application cannot be expected to recover from. A common
example is an Out of Memory error.

System Exceptions

Similar to JVM exceptions, these are generally, though not always, “non-recoverable”
exceptions. In the commons-logging parlance, these are “unexpected” exceptions. The
canonical example here is NullPointerException. The idea is that if a value is null,
often you don't know what you should do. If you can simply report back to your
calling method that you got a null value, do that. If you cannot gracefully recover, say
from an IndexOutOfBoundsException, treat as a system exception and fail fast.

Application Exceptions

These are the expected exceptions, usually defined by specific application domains. It
is useful to think of these in terms of recoverability. A FileNotFoundException is
sometimes easy to rectify by simply asking the user for another file name. But
something that's application specific, like [JDOMException, may still not be
recoverable. The application can recognize that the XML it is receiving is malformed,
but it may still not be able to do anything about it.

General Development Standards 6-13

Common Frameworks

Avoid java.lang.Exception

Avoid throwing the generic Exception; choose a more specific (but standard)
exception.

Avoid Custom Exceptions

Custom exceptions are rarely needed. The specific type of exception thrown is rarely
important; don’t create a custom exception if there is a problem with the formatting of
a string (ApplicationFormatttingException) instead of reusing

Illegal ArgumentException.

The best case for writing a custom exception is if you can provide additional
information to the caller which is useful for recovering from the exception or fixing the
problem. For example, the JPOSExceptions can report problems with the physical
device. An XML exception could have line number information embedded in it,
allowing the user to easily detect where the problem is. Or, you could subclass
NullPointer with a little debugging magic to tell the user what method of variable is
null.

Catching Exceptions
The following sections provide guidelines on catching exceptions.

Keep the Try Block Short The following example, from a networking testing application,
shows a loop that was expected to require approximately 30 seconds to execute (since
it calls sleep(3000) ten times):

Example 6-7 Network Test
for (int 1 = 0; 1 < 10; i++) {
try {
System.out.println("Thread " + Thread.currentThread().getName() + "
requesting number " + 1i);
URLConnection con = myUrl.openConnection();
con.getContent () ;
Thread.sleep(3000);
} catch (Exception e) ({
log.error ("Error getting connection or content", e);
}
}

The initial expectation was for this loop to take approximately 30 seconds, since the
sleep(3000) would be called ten times. Suppose, however, that con.getContent() throws
an IOException. The loop then skips the sleep() call entirely, finishing in 6 seconds. A
better way to write this is to move the sleep() call outside of the try block, ensuring
that it is executed:

6-14 Oracle Retail Point-of-Service Operations Guide

Common Frameworks

Example 6-8 Network Test with Shortened Try Block

for (int 1 = 0; 1 < 10; i++) {

try {
System.out.println("Thread " + Thread.currentThread().getName() + "
requesting number " + 1i);
URLConnection con = myUrl.openConnection();
con.getContent () ;
} catch (Exception e) {
log.error ("Error getting connection or content", e);
}
Thread.sleep(3000);

Avoid Throwing New Exceptions When you catch an exception, then throw a new one in
its place, you replace the context of where it was thrown with the context of where it
was caught.

A slightly better way is to throw a wrapped exception:

Example 6-9 Wrapped Exception

1 try {

2 Class k1l = Class.forName(firstClass);
3 Class k2 = Class.forName (secondClass) ;
4: Object ol = kl.newInstance();

5: Object 02 = k2.newInstance();

6

7 } catch (Exception e) {

8 throw new MyApplicationException(e);

9 }

However, the onus is still on the user to call getCause() to see what the real cause was.
This makes most sense in an RMI type environment, where you need to tunnel an
exception back to the calling methods.

The better way than throwing a wrapped exception is to simply declare that your
method throws the exception, and let the caller figure it out:

Example 6-10 Declaring an Exception

public void buildClasses(String firstName, String secondName)
throws InstantiationException, ... {

Class k1l = Class.forName(firstClass);
Class k2 = Class.forName (secondClass) ;
Object ol = kl.newInstance();
Object 02 = k2.newInstance();

}

However, there may be times when you want to deal with some cleanup code and
then rethrow an exception:

General Development Standards 6-15

Common Frameworks

Example 6-11 Clean Up First, then Rethrow Exception

try {
someOperation() ;
} catch (Exception e) {
someCleanUp () ;
throw e;

}

Catching Specific Exceptions There are various exceptions for a reason: so you can
precisely identify what happened by the type of exception thrown. If you just catch
Exception (rather than, say, ClassCastException), you hide information from the user.
On the other hand, methods should not generally try to catch every type of exception.
The rule of thumb is the related to the fail-fast/recover rule: catch as many different
exceptions as you are going to handle.

Favor a Switch over Code Duplication The syntax of try and catch makes code reuse
difficult, especially if you try to catch at a granular level. If you want to execute some
code specific to a certain exception, and some code in common, you're left with either
duplicating the code in two catch blocks, or using a switch-like procedure. The
switch-like procedure, shown below, is preferred because it avoids code duplication:

Example 6-12 Using a Switch to Execute Code Specific to an Exception

try{
// some code here that throws Exceptions...
} catch (Exception e) ({
if (e instanceof LegalException) {
callPolice((LegalException) e);
} else if (e instanceof ReactorException) {
shutdownReactor () ;
}
logException(e) ;
mailException(e);
haltPlant (e);
}

This example is preferred, in these relatively rare cases, to using multiple catch blocks:

Example 6-13 Using Multiple Catch Blocks Causes Duplicate Code

tryf{
// some code here that throws Exceptions...

} catch (LegalException e) {
callPolice(e);
logException(e) ;
mailException(e);
haltPlant (e);

} catch (ReactorException e) {
shutdownReactor () ;
logException(e);
mailException(e);
haltPlant (e);

}

Exceptions tend to be the backwater of the code; requiring a maintenance developer,
even yourself, to remember to update the duplicate sections of separate catch blocks is
a recipe for future errors.

6-16 Oracle Retail Point-of-Service Operations Guide

7

Point-of-Service Development Standards

The following standards specific to the Point-of-Service architecture have been
adopted by Oracle Retail product and service development teams. These standards are
intended to reduce bugs and increase the quality of the code.

Screen Design and User Interface Guidelines

= Avoid creating new screen beans and screen models for every new screen. Look
for ways to reuse existing or generic beans, such as the Data Input Bean, to avoid
complicating the code base.

Tour Framework

This section includes general guidelines as well as subsections on specific tour
components.

Tour Architectural Guidelines

Consult these guidelines when making architecture decisions in tour framework
designs.

= Services—When designing services, consider their size and reusability. Services
that are overlarge create additional work when a portion must be extended.

» Utility Manager—Put methods used by multiple services in this manager so they
can be easily extended.

» If the reusable behavior contains flow-dependent behavior, then it is best
implemented as a Site and the Site action can be reused within a Service or across
Services.

= Large bodies of reusable behavior can be implemented as Managers and
Technicians. This pattern is especially useful if the user might offload the
processing to a separate CPU.

General Tour Guidelines

= Code that uses bus resources must reside in a Site action, Lane action, Signal or
Shuttle.

= Never mail a letter from a Road. This causes unpredictable results.

= Never define local data in a Site, Aisle, Road or Signal. Local data is not
guaranteed when processing across multiple tiers. Sites and Lanes must be
stateless. This is the purpose of Cargo.

Point-of-Service Development Standards 7-1

Tour Framework

s Traffic Signals should not modify Cargo. Signals should only be used to evaluate a
condition as true or false. Anything else is a side effect, reducing the
maintainability of the system.

= Never implement just one Signal. Always implement Signals when there is more
than one Road that responds to the same letter, or when there is an Aisle and a
Road that respond to the same letter. See "Signals" on page 11-5.

= Send letters at the end of methods. If the choice of which letter to send depends on
conditions which occur during the method, store the method name and mail it at
the end of the method.

s Do not mail letters from depart() and undo() in Sites, backup() and traverse() in
Roads, roadClear() in Signals, and load() and unload() in Shuttles. Letters can be
mailed from traverse() in Aisles.

= Define Shuttles in the calling Service package. If they are reusable Shuttles, define
them in a common package.

Table 7-1 provides naming conventions for Tour components.

Table 7-1 Tour Naming Conventions

Element

Description Example

Service

description of the related functionality Login

Site element

VerbNoun—indicating the action taking place EnterID

at the Site
Site class The same as the Site name, with Site as a suffix EnterIDSite java
Road element NounVerb—indicating the event that caused = IDEntered
the Road to be taken
Road class The same as the Road name, with Road as a IDEnteredRoad.java
suffix
Aisle element NounVerb- indicating the event that caused PasswordEntered

the Aisle to be taken

Aisle class

The same as the Aisle name, with Aisle as a
suffix

PasswordEntered Aisle.java

Cargo

ServiceNameCargo

LoginCargo.java

Letter

One word action name indicating the event;
see list defined in commonLetterIfc.java

Success
Failure
Continue
Next
Cancel
OK
Retry
Invalid
Add
Yes

No
Undo

Done

7-2 Oracle Retail Point-of-Service Operations Guide

Tour Framework

Table 7-1 Tour Naming Conventions

Element Description Example
Transfer Station element =~ NestedServiceNameStation FindCustomerStation
Shuttle class NestedServiceNameLaunchShuttle FindCustomerLaunchShuttle java
NestedServiceNameReturnShuttle FindCustomerReturnShuttle. java
Traffic Signal class IsCondition.java-indicating the condition IsAuthRequiredSignal.java
being tested

Foundation

The best reuse in the Foundation engine takes place at the Service level. Sites
require extra thought because they can affect flow. Lane actions can be reused
without flow implications. Signals and Shuttles are very well suited to reuse
especially when interfaces are developed for accessing Cargo.

If validation and database lookup are coded in Aisles, they may be good
candidates for reuse in several Sites as well as in multiple Services.

All component pieces need to be designed with care for reuse: they must be
context insensitive or must do a lot of checking to make sure that the managers
they access exist for the bus that is active, the Cargo contains the data they need,
etc.

Trying to maximize reuse can result in confusing code with too many discrete
parts. If the reusable unit consists of one or two lines of code, consider whether
there is sufficient payoff in reusing the unit of code. If the code contains a complex
calculation that is subject to change over time, then isolating this logic in one place
may be well worth the effort.

Tours and Services

There is often a one-to-one mapping between a Use Case and a Service. The
Service should provide the best opportunity for reuse. If you design for reuse, it
should be focused at the Service level. This is where you get your best return on
investment.

Maintenance is a matter of choosing a style and implementing it consistently
within a Service and sometimes within an entire application. When you are
comfortable with how TourCam works, maintaining TourCam Services is easy.
Maintenance is more difficult in general for TourCam Services, since these Services
are more complex.

Aisles help reduce the total number of Sites in a Service, but they may be harder to
see because they are contained within a Site.

When making choices, give making an application as consistent and easy to
maintain as possible the top priority.

Consider the performance costs of using TourCam or creating additional Sites
when designing a Service.

A Service can often be simplified by reducing the number of individual Sites. You
can do this by using Aisles to replace Sites; Sites with one exit Road can be good
candidates, and Aisles are good candidates for reuse. However, Aisles are less
visible than Roads.

Point-of-Service Development Standards 7-3

Tour Framework

Sites

= Reusing a Site has flow implications. Site classes can be reused whenever the exit
conditions are identical. Reusable Sites should be packaged in a common package
as opposed to one of the packages that use them. A reusable Site must refer to a
reusable Cargo or a common Cargo interface.

s Treat the sending of a letter like a return code: put it at the end of your arrive() or
traverse() method. Sending letters in the middle of the arrive() method may cause
duplicate letters (with unpredictable results), or no letters (with no results).

= Do not try to store state information in instance variables. Pass in state information
through arguments.

= Do not put a lot of functionality in arrive(), traverse() methods. Decompose them
into logical methods that each have one job. For methods not called from outside
the package, protect the methods.

Managers and Technicians

Roads

s Thereis a high degree of reuse of Managers and Technicians across the
applications. For example, the DataTransactions and DataActions are reusable. By
design, it is the DataOperations that change with different database
implementations. The UIManager and UlTechnician expect a lot of reuse of beans,
adapters, and specification objects. In fact, the UISubsystem looks in the UI Script
for most of the configuration information that effects changes in screen layout,
bean interactions and even bean composition.

s Utility methods can be useful for capturing behavior that is used by many
Services, but does not lend itself to Site or Aisle behavior. Put Utility methods in a
UtilityManager so they can be easily extended. The Point-of-Service application
contains an example of this called the POSUtilityManager. Service developers can
access these methods through the POSUtilityManagerlfc. The UtilityManager and
UtilityManagerlfc classes can be extended and the new class is specified through
the Conduit Script. For general-purpose behavior that can be called from a Site,
Lane, or even from a Signal, use utility methods to capture the common reusable
behavior rather than extending a common Site.

s Large bodies of reusable behavior can be implemented as Managers and
Technicians. This pattern is especially useful if the user might off-load the
processing to a separate CPU.

It is sometimes useful to define multiple Roads from an origin Site to the same
destination if they capture different Road traversal conditions.

Do not trap and change the name of a letter just to reduce the number of Roads in a
Service. This is a poor use of system resources and also hides useful information from
the reader of the Tour Script. Do not rename letters except as noted in "Renaming
Letters" page 12-8.

For example, the Return Transaction Service has two Roads with the same origin
(LookuplItem) and the same destination (EnterReturnltemInformation), but the letters
that invoke these two Roads are different.

The use of Road actions is dependent on a number of factors: use of TourCam,
developer conventions for an application, number of classes generated, and
maintainability.

7-4 Oracle Retail Point-of-Service Operations Guide

Tour Framework

Aisles

Signals

Use Road actions for outcome-specific behavior. If you need to store some data in
Cargo on the sending of a specific letter, do the Cargo storage in the traverse() method
of the Road that is associated with that letter. If the data must be stored in Cargo
before leaving a Site, put the logic in the Site’s depart() method. Code in a Site or
Aisle’s depart() method should not check to see what letter was sent before taking an
action; use a Road in that case.

Aisles are used to implement behavior that occurs within a Site. When there is
interaction with an external source (e.g. user, database) use a Site. When you are doing
business validation which may keep you in the same screen, use an Aisle.

While it makes sense to create Roads without corresponding Road actions, Aisles are
useless without an Aisle action. The important thing about an Aisle is that it is not part
of a transition from one Site to another, so the only code that gets executed in an Aisle
is the traverse() method. The arrive() and depart() methods are never executed on a
Site when an Aisle is processed. The Aisle can initiate an action that causes a transition
to another Site, but it cannot transition itself.

Aisle actions can be used to validate data, compute values, provide looping behavior,
and do database lookups. Aisle actions are useful for capturing repeatable behavior
that can occur while the bus is still in a Site.

For example, suppose you define a Site that gathers data from the user. The data
validation is implemented as an Aisle. Because it is an Aisle, the user can repeat the
process of entering data, validating, and re-entering until the data is correct, with little
system overhead. The Aisle behavior can be triggered over and over without calling
the arrive() method on the Site (a Road back to the Site calls the arrive() method).

Aisles are also useful for looping through a list of items when each item may require
error handling. This is done by placing the loop index in the Cargo.

You cannot use a signal alone; they must be used in groups of two or more. If there is
more than one Lane that responds to the same letter, each Lane must implement a
Signal. The logic in the Signals must be mutually exclusive; there should be only one
valid Road that can be traversed at any time; otherwise, unexpected (and difficult to
debug) behavior could occur.

When there are more than two Signals, each of the Signals should evaluate in such a
way that only one Signal is green at any given time. But the presence of more than two
Signals should raise a red flag. Track down the source of the following issues;
determine if the Ul or other letter generator needs to be sending more unique letters.

= Why are there so many Signals?
= What are they checking?
= Is the same letter being sent for many different conditions?

Use a Signal only to decide which road to take when you could go to two different
places (such as Sites) with the same Letter, based on Cargo information. It should not
be used to update cargo. The road you take after making a decision at the Signal
should do the updating

Point-of-Service Development Standards 7-5

Tour Framework

Choosing Among Sites, Aisles, and Signals

There are many times when an Aisle can do the same work as a Site. Sometimes a
Signal can contain behavior that could be implemented in an Aisle. Sometimes a
separate Service does the work that was once a Site if the Site needs to be reused or
becomes too complicated. Consult the guidelines for your application development
team in order to be consistent with the rest of your team.

If you have the following customer requirement:

= Display a Ul screen that gathers search criteria to be used in a database lookup (for
example, customer lookup). After the user enters the data, validate the data. Once
the data has been validated, do the database lookup.

you have the following design choices:

= Implement as separate Sites and take advantage of TourCam to back up when the
data is invalid or database lookup results are not correct.

= Implement as one Site with Aisles that do the validation and lookup.

The database lookup may result in a success or failure letter whether it is coded as a
Site or an Aisle. When using an Aisle for database lookup, the failure letter triggers
another Aisle that could display an error message but allow the user to re-enter the
data and retry the lookup. This can occur without exiting the original Site. When using
a Site, the failure condition can trigger a flow change to back up through the lookup
Site back to the data entry Site.

If the validation and database lookup are coded in Aisles, they may be good
candidates for reuse in several Sites as well as in multiple Services. Reusing the Site is
also possible, especially if the TourCam's ability to back up to the last indexed Site is
used. But there may be more considerations involving flow when trying to reuse a Site.

Renaming Letters

Shuttles

Use the following guidelines when deciding whether to rename letters:

= Do rename Letters when the application developer does not have power over the
Letter that is mailed and there is more than one event associated with a single
Letter.

For example: a single Letter is sent from a button on the Ul (such as dialog box
OK)), but the content of the retrieved data associated with the Ul signals a different
event notification (such as error message notification).

s Do rename Letters when a common exit Letter from a nested Service is needed.

s Don’t rename Letters to reduce the number of Roads in a Service.

If you are creating a sub-tour (i.e. a tour called from other tours via a Station) from
scratch, use only the following final letters:

s Success

s Failure
s Cancel
] Undo

7-6 Oracle Retail Point-of-Service Operations Guide

Log Entry Format

If you need to provide a reason for a Failure or need to return data to the calling
service on a Success, use the Return Shuttle to update the calling service's cargo. Do
not use letters to reflect sub-tour results.

Shuttle Type Launch Shuttle Return Shuttle

Description Used to send parameter data to a Used to return data to the parent service.
sub-service

Methods load()—can only see the parent load()—can only see the sub-service's Cargo

Service's Cargo unload()—can only see the parent service's

unload()—can only see the Cargo
sub-service's Cargo

Within the Tour Framework, Shuttles are used to transfer data in and out of Services.
Shuttles are good candidates for reuse given a common Cargo interface.

Cargo

All Cargo classes should implement the Cargolfc interface.

Log Entry Format

This section describes the format and layout of log entries for the Point-of-Service
application.

Log Entry Description

Log entries adhere to the following format:

LLLLL yyyyy-mm-dd hh:mm:ss, ttt bbbbbbb (<classname>):
[<classname>.<methodname> (<filename>:<linenumber>)]
<Log entry content>

Fixed Length Header

The entry begins with a fixed length record header (38 bytes) that adheres to the
following layout:

LLLLL yyyyy-mm-dd hh:mm:ss,ttt bbbbbbb
12345678901234567890123456789012345678

LLLLL is the log message level and consists of one of the substrings in the following
table:

Table 7-2 provides log message levels and their descriptions.

Table 7-2 Log Message Level

Log Message Level Description

ERROR Highest severity entry; critical

WARN Application warning; serious

INFO For information only

DEBUG For developer use (not displayed by default application
configuration

Point-of-Service Development Standards 7-7

Log Entry Format

vyyy-mm-dd is the date.

hh:mm:ss, ttt bbbbbbb is the time stamp of the entry, comprised of the sub-fields
described in the following table:

Table 7-3 provides time stamp fields and their descriptions.

Table 7-3 Time Stamp Fields

Field Description

hh Time of entry in hours, in 24-hour format

mm Minutes past the full hour

ss Seconds past the last full minute

ttt Milliseconds past the last full second

bbbbbbb Milliseconds since the application was started. Left justified

and blank filled on the right, out to 7 places

Additional Logging Info

The fixed length record header is followed by a blank space followed by the
parenthesized, fully qualified class name of the logging entity followed by a colon
followed by a carriage return/line feed pair.

(<classname>) :<cr><1f>

The next line in a log entry begins with 6 blank spaces and a square-bracketed
sequence containing the following information:

<classname>.<methodname> (<filename>:<linenumber>)

Parentheses are included in the sequence. This sequence reflects the fully qualified

name of the method invoking the logging action and the source line number in the file
where the logging call was made.

The next line(s) in a log entry are the log entry content. The content is comprised of
freeform text supplied by the calling routine. The content reflected in the freeform text
may be multiple lines in length.

The next log entry is delineated with another 38 byte fixed length header beginning in
column one of the text log file.

7-8 Oracle Retail Point-of-Service Operations Guide

Log Entry Format

Example Log Entry

INFO 2004-09-02 11:12:41,253 23697
(main:com.extendyourstore. foundation.manager.gui.DefaultBeanConfigurator) :

[com.extendyourstore. foundation.manager.gui.DefaultBeanConfigurator.applyPropertie
s (DefaultBeanConfigurator.java:198)]

Applying property cachingScheme to Class: DialogBean (Revision 1.9)
@12076742

Point-of-Service Development Standards 7-9

Log Entry Format

7-10 Oracle Retail Point-of-Service Operations Guide

8

Extension Guidelines

Customers who purchase Point-of-Service extend the product to meet their particular
needs. These guidelines speed implementation and simplify the upgrade path for
future work.

Developers on customer projects should also refer to the Development Standards. The
Development Standards address how to code product features to make them less
error-prone and more easily maintained. They are especially important if code from
the customer implementation may be rolled back into the base product.

Conventions

This section describes conventions used throughout this chapter.

Terms

The following definitions are used throughout the chapter:

Product source tree — A directory tree that contains the Oracle Retail product
code. The contents of this tree do not change, with the exception of product
patches. In production code, these files are accessed as external jar files.

Customer source tree — A directory tree separate from the product code that
contains customer-specific files. Some of these files are new files for
customer-specific features; others are extensions or replacements of files from the
product source tree. The customer tree should not contain packages from the
product tree.

Customer abbreviation — A short name that represents the customer. For example,
a company named My Bike Store might use MBS as their customer abbreviation.
The MBS example is used throughout this chapter; replace MBS with the customer
abbreviation for your own project when writing code. The customer abbreviation
is added to filenames to clarify that the file is part of the customized code, and is
used as part of the package name in the customer source tree.

Filename Conventions

Filenames in the customer source tree usually include the customer abbreviation.
Name files according to the following rules:

If a class in the customer source tree extends or replaces a class in the product
source tree, use the customer abbreviation followed by the original filename as the
new filename (for example, SaleReceipt.java becomes MBSSaleReceipt.java).

New Java classes should also begin with the customer abbreviation.

Extension Guidelines 8-1

Conventions

Modules

Script or properties file names that are hard-coded in Foundation classes must use
the same filename in the customer source tree as was used in the product source
tree (for example, posfoundation.properties).

The Point-of-Service system is divided into a number of different modules, and each
module corresponds to a project in an integrated development environment (IDE).
When setting up a development environment for modifying code, building
Point-of-Service, and testing changes, you must configure your system to make
MBSpos dependent on all the other modules.

To set up your development environment:

1.
2.
3.

Check out each of the required customer modules as shown in the following table.
Reference each of the standard modules as external jar files.

Add the required modules to your CLASSPATH environment variable in the order
shown in the following table, with all of the customer modules preceding the set
of standard modules.

Table 8-1 identifies required customer and standard modules in their respective
dependency orders.

Table 8—-1 Required Modules in Dependency Order

Customer Modules

Standard Modules

MBS pos (root, src, locales_US and other pos (root, src, locales_US and other language directories)

language directories)’
MBS domain (root and src)

MBS commerce services

MBS common
MBS 3rd-party

domain (root and src)
360common
commerce services
foundation

3rd party

! Directory names in parentheses must be specified individually in the classpath.

Directory Paths

Paths given in this chapter are relative, starting either with the module or with the
source code, as follows:

8-2

Paths beginning with a module name start from the module location. pos\config
refers to the config directory within the pos module, wherever that module is
located on your system.

Paths beginning with com refer to source code. Source code paths are nested
within modules, in \src directories. Multiple \src\com file hierarchies are built
together into one file structure during compilation. For example, a reference to
com_360commerce\pos\services\tender can be found in the pos module’s
src directory. If your pos module is in ¢ : \workspace\OracleRetailStore,
then the full path is:

C:\workspace\OracleRetailStore\pos\src\com_360commerce\pos\services\tender

Oracle Retail Point-of-Service Operations Guide

POS Package

POS Package

Tour

This section addresses extension of files in the pos package.

Note: The pos module may be nested within a OracleRetailStore
directory in the source code control system.

You extend tours mainly by editing proprietary XML scripts developed by Oracle
Retail. This section describes how to customize tours, beginning with replacing the
Tour Map, and continuing with customization of individual tours or parts of tours.

Tour Map

The product code references tours at transfer stations by logical names, so that you can
change a single tour without having to update references to that tour in various tour
scripts. Tour maps tell the system the specific tour files to use for each logical name.

The tour map also enables overlays of tour classes. If a tour script does not need to be
customized, but some of the Java classes do, the tour map can specify individual
classes to customize. Note that any class files must still use their own unique names
(such as MBScashSelected Aisle.java for a new Aisle used in place of
CashSelectedAisle.java).

Typically, the base product Tour Map file, tourmap.xml, does not change. Instead, you
create a custom Tour Map for your project, and an additional one for each supported
locale beyond your default locale. Each of these Tour Map files contains only the
differences it adds to the base Tour Map.

Follow these steps to add new Tour Map files:

1. Create one custom Tour Map file for each supported country in the pos\config
directory of the customer source tree. Initially, these Tour Map files may be empty;
as you customize tour components, you can add tags. The following sample shows
the initial state of the file:

Example 8-1 MBStourmap_CA.xml: Sample initial tourmap file for Canadian locale
<?xml version="1.0" encoding="UTF-8"?>
<tourmap

country="CA"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xs1 :noNamespaceSchemaLocation="com/extendyourstore/foundation/tour/dtd/tourmap.xsd
N

...Tour tags can be added here...
</tourmap>

2. Copy the pos\config\posfoundation.properties file to the customer source tree.
Modify the tourmap.files property in this file, adding the names of the new Tour
Map files. Do not rename the posfoundation.properties file, since this filename is
referenced by Foundation classes. It is important to keep the customized tour map
files after the product tour map file in the list, since the files listed later override
earlier files.

Extension Guidelines 8-3

POS Package

Example 8-2 posfoundation.properties: Adding new Tour Maps

comma delimited list of tourmap files to overlay
tourmap.files=tourmap.xml, MBStourmap.xml, MBStourmap_CA.xml

3. Refer to the procedures that follow to modify tour scripts and Java components of
a tour.

Tour Scripts

If you need to change the workflow of a tour, you must replace the tour script; you
cannot extend a tour script. To replace a tour script, follow these steps:

1. Create a new XML tour script in the customer source tree.

2. Modify the tour map in the customer source tree to specify the correct package
and filename for the new tour script. The logical tour name must stay the same.

Example 8-3 tourmap_CA.xml: Replacing one tour script

<tour name="tender">
<file>classpath://com/mbs/pos/services/tender/tender.xml</file>
</tour>

3. Copy and modify sites, roads, aisles, shuttles and signals.

Site

Extending siteactions in the traditional object-oriented sense is not recommended;
letters mailed in the original arrive method would conflict with the arrive method in
the extended class. Since siteactions represent relatively small units of code, they
should be replaced instead of extended. Follow these steps:

1. Create a new siteaction class in the customer source tree, such as
MBScashSelectedSite.java.

2. If you are overlaying a siteaction class, but not modifying the tour script, then all
letters that were mailed from the product version of the siteaction class should also
be mailed from the new version. Do not mail new letters that are not handled by
the product code, unless the tour script and related Java classes are also modified.

3. Edit the appropriate Tour Map for the locale, using the replacewith property in the
<SITEACTION> tag to define the new package and filename for the siteaction
class.

Example 8-4 tourmap_CA.xml: Replacing a siteaction

<tour name="tender">

<file>classpath://com/mbs/pos/services/tender</file>

<SITE
name="cashSelected"
useaction="com.extendyourstore.pos.services.tender.cashSelectedSite" />

<SITEACTION
class="cashSelectedSite"
replacewith="com.mbs.pos.services.tender.MBScashSelectedSite" />

</tour>

8-4 Oracle Retail Point-of-Service Operations Guide

POS Package

Lane—Road or Aisle

As with siteactions, extending laneactions in the traditional object-oriented sense is not
recommended, as letters from the original and extended classes could conflict. Replace
laneactions instead of extending them, using the following steps:

1. Create a new laneaction class in the customer source tree, such as
MBSOpenCashDrawerAisle java.

2. If you are overlaying a siteaction class, but not modifying the tour script, then all
letters that were mailed from the product version of the laneaction class should
also be mailed from the new version. Do not mail new letters that are not handled
by the product code, unless the tour script and related Java classes are also
modified.

3. Edit the appropriate Tour Map for the locale, using the replacewith property in the
<LANEACTION> tag to define the new package and filename for the laneaction.

Example 8-5 tourmap_CA.xml: Replacing a laneaction

<tour name="tender”>

<file>classpath://com/mbs/pos/services/tender</file>

<SITE
name="RefundDueUI"
useaction="com.mbs.pos.services.tender.refundDueUISite">"/>

<LANEACTION
class="OpenCashDrawerAisle"
replacewith="com.mbs.pos.services.tender.MBSOpenCashDrawerAisle" />

</tour>

Shuttle

Since shuttles do not mail letters, they may be extended or replaced; however
extending them is recommended. Follow these steps in either case:

1. Modify the shuttle class.

Create a new class in the customer source tree. If it extends or replaces the product
bean class, add the customer abbreviation to the filename. For example,
TenderAuthorizationLaunchShuttle java becomes
MBSTenderAuthorizationLaunchShuttle java.

2. Edit the appropriate Tour Map for the locale, using the replacewith property in the
<SHUTTLE> tag to define the new package and filename for the shuttle.

Example 8-6 tourmap_CA.xml: Replacing or Extending a shuttle

<tour name="tender”>
<file>classpath://com/mbs/pos/services/tender</file>
<SITE
name="RefundDueUI"
useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
<SHUTTLE
class="TenderAuthorizationLaunchShuttle"

replacewith="com.mbs.pos.services. tender.MBSTenderAuthorizationLaunchShuttle"/>
</tour>

3. Modify the calling and nested tour scripts as necessary to adjust to the change.

Extension Guidelines 8-5

POS Package

Signal

Extending signals in the traditional object-oriented sense is not recommended. This is
because signals are typically so small that extending an original signal class makes
them overly complex.

The REPLACEWITH tag of the TourMap does not work for Signals. The tour script
must be customized to refer to the package and filename of the new signal. Follow
these steps:

1. Create a new signal class in the customer source tree. For example, create a
replacement for IsAuthRequiredSignal.java in the Tender service by creating a
class file com\mbs\pos\services\tender \MBSIsAuthRequiredSignal.java.

2. Customize the appropriate tour script.

Example 8-7 MBStender.xml: Tender tour script with customized signal

<SERVICECODE>
. non-signal declarations omitted...
<SIGNAL class="IsReturnTransactionSignal" />
<SIGNAL class="IsSaleTransactionSignal" />
<SIGNAL class="IsNotVoidTransactionSignal" />
<SIGNAL class="IsAuthNotRequiredSignal" />
<SIGNAL class="MBSIsAuthRequiredSignal" package="com.mbs.pos.services.tender"
/>
<SIGNAL class="IsRemoveTenderSignal" />
<SIGNAL class="IsNoRemoveTenderSignal" />
<SIGNAL class="IsValidDriverLicenseSignal" />
<SIGNAL class="IsInvalidDriverLicenseSignal" />
. more declarations omitted...
</SERVICECODE>
. code omitted...
<ROAD name="AuthorizationRequested"
letter="Next"
destination="AuthorizationStation"
tape="ADVANCE"
record="OFF"
index="0FF">
<LIGHT signal="MBSIsAuthRequiredSignal"/>

Cargo

Since cargos do not mail letters, they may be extended or replaced. Cargo classes are
typically part of a hierarchy of classes. Follow these steps:

1. Modify the cargo class by doing one of the following:

= To extend the cargo, create a new class in the customer source tree that extends
the cargo in the product source tree. Be sure to extend from the lowest-level
subclass. Add the customer abbreviation to the beginning of the filename.

s Toreplace the cargo, create a new cargo class in the customer source tree.

2, Edit the appropriate Tour Map for the locale, using the replacewith property in the
<CARGO> tag to define the new package and filename for the cargo.

8-6 Oracle Retail Point-of-Service Operations Guide

POS Package

Example 8-8 tourmap_CA.xml: Replacing a Cargo
<tour name="tender”>
<file>classpath://com/mbs/pos/services/tender</file>
<SITE
name="RefundDueUI"
useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
<CARGO
class="TenderCargo"
replacewith="com.mbs.pos.services.tender.MBSTenderCargo" />

</tour>
3. Modify the tour map and/or tour scripts and shuttles of the calling and nested
tours to adapt to the cargo modifications. Be sure to address:
» Classes in the same tour as the modified cargo
= All tours for which this tour is a nested tour

= All tours which are called by this tour

Ul Framework

The UIManager and UlTechnician classes are provided by Foundation. They are
configurable through the Conduit Script and should not be modified directly. This
section describes customization to the default Ul configuration and individual screens.

Default Ul Config

The product file pos\config\defaults\ defaultuicfg.xml contains the building blocks
for the UI (displays, templates and specs) and references to all tour-specific uicfg.xml
files. If you change any Ul script in the customer implementation, the defaultuicfg.xml
file must be replaced. It also needs to be replaced if the displays, templates, and basic
bean specs need to be replaced. Follow these steps to replace the file:

1. Copy the file defaultuicfg.xml to the pos\config\defaults directory in the
customer source tree, and rename it (for example, to MBSdefaultuicfg.xml).

2. Modify the displays, templates, default screens, and specs as necessary to
represent the customer’s user interface.

3. Verify that the conduit script for the client tier has been customized and is located
in the customer source tree.

4. Modify the client conduit script to include the new filename and package name for
the MBSdefaultuicfg.xml file, in the configFilename property value in the
UlSubsystem section of the UlTechnician tag.

Extension Guidelines 8-7

POS Package

Example 8-9 ClientConduit.xml: Conduit script modified to use custom Ul configuration
file
<TECHNICIAN

name="UITechnician"

class="UITechnician"

package="com.extendyourstore. foundation.manager.gui" export="Y">

<CLASS
name="UISubsystem"
package="com.extendyourstore.pos.ui"
class="POSJFCUISubsystem">

<CLASSPROPERTY
propname="configFilename"

propvalue="classpath://com/mbs/pos/config/defaults/MBSdefaultuicfg.xml"
proptype="STRING" />

...additional class properties omitted...

</CLASS>

</TECHNICIAN>

Ul Script

A Ul script changes if the overlays or unique bean specifications of one or more
screens in a tour need to be modified. Follow these steps:

1. Create a new Ul script in the customer source tree. For example, copy the
tenderuicfg.xml file from the product source tree to the customer source tree and
rename it MBStenderuicfg.xml.

2. Modify the MBSdefaultuicfg.xml file in the customer source tree to refer to the
new filename and package for the Ul script.

Example 8-10 MBSdefaultuicfg.xml: Customized Default Ul Configuration File

. other include statements omitted...
<INCLUDE filename="classpath://com/_360commerce/pos/services/sale/saleuicfg.xml"/>
<INCLUDE
filename="classpath://com/mbs/pos/services/tender/MBStenderuicfg.xml" />
<INCLUDE filename="classpath://com/_
360commerce/pos/services/tender/capturecustomerinfo/capturecustomerinfouicfg.xml"/
>
<INCLUDE
filename="classpath://com/extendyourstore/pos/services/inquiry/inquiryoptionsuicfg
xml"/>
. other include statements omitted...

Bean Model and Bean

The Point-of-Service product code provides generalized beans that are designed to be
reused as-is, such as GlobalNavigationButtonBean.java for the global navigation
button bar and DatalnputBean.java for the work area of form layout screens. These
classes are not intended to be extended for a specific implementation, though they
may be extended if the general behavior or data must change in all cases.

8-8 Oracle Retail Point-of-Service Operations Guide

POS Package

Other

The classes can be used for different screens within the application without changing
to Java code by modifying parameter values and calling methods on the bean. Use the
generalized beans whenever possible and avoid beans specialized for only one screen.
However, bean and bean model classes in the product code that are specific to an
individual screen, such as CheckEntryBean java and CheckEntryBeanModel java, may
be customized. Follow these steps to modify a bean model:

1. Create a new bean model class.

Create a new class in the customer source tree, and add the customer abbreviation
to the filename.

2. Copy tour files that need to reference the new bean model into the customer
source tree. Modify them to create and manipulate data for the new bean model.

Follow these steps to modify the bean:
1. Create a new bean class.

Create a new class in the customer source tree, and add the customer abbreviation
to the filename.

2. Modify the Ul config scripts that reference the bean class in the customer source
tree to refer to the new bean class filename and package.

Example 8-11 MBStenderuicfg.xml: Tender Ul Configuration with Customized Bean
Reference

<UICFG>

<BEAN
specName="TenderOptionsButtonSpec"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="com.mbs.pos.ui.beans"
beanClassName="MBSNavigationButtonBean">

<BUTTON
actionName="Cash"
enabled="true"
keyName="F2"
labelTag="Cash"/>
...other buttons omitted...
</BEAN>
...other UI objects omitted. ..
</UICFG>

This section covers customization of components other than the tour and the Ul
framework, including internationalization and localization changes as well as conduit
scripts, PLAF, receipts, and reports.

Internationalization

The process of internationalization includes modifications to the code so that a single
code base can support multiple languages. The base product supports US English. If
additional languages need to be supported, additional internationalization steps need
to be completed by the customer.

For additional internationalization support of Oracle Retail Point-of-Service, please
contact Oracle Retail Services.

Extension Guidelines 8-9

POS Package

Conduit Scripts

The conduit scripts provided with Oracle Retail applications define a typical tier
configuration and are usually replaced with customer conduit scripts for a given
implementation. Conduit scripts include an XML file and a .bat and .sh file to execute
the XML; both .bat and .sh versions of the batch file are provided to support Windows
and Linux.

Follow these steps to set up customer conduit scripts:
1. Copy the conduit scripts (client, server, and collapsed) to the customer source tree.

Copy the XML and .bat and .sh files for each type of conduit script. Rename the
scripts using the customer abbreviation (ClientConduit.xml becomes
MBSClientConduit.xml).

2. Edit each XML file to include only the managers and technicians that should be
loaded on the given tier.

3. Modify the class and package names for any managers, technicians and
configuration scripts that have been customized.

MBSClientConduit.xml: Customized with New Data Manager
<MANAGER name="DataManager" class="MBSDataManager"
package="com.mbs.foundation.manager.data">
<PROPERTY propname="configScript"
propvalue="classpath://config/manager/PosDataManager.xml" />
</MANAGER>

4. Modify your development environment to pass in the new conduit XML file as a
parameter to the TierLoader.

5. Edit the .bat and .sh files to pass the correct conduit XML files to the Java
environment.

PLAF

Point-of-Service implements a pluggable look-and-feel (PLAF) so that customers may
modify the look of the application including screen colors and images. To modify the
PLAF, follow these steps:

1. Create a new properties file that is a copy of one of the following files. Place the
file in the com\mbs\pos\config directory in the customer source tree.

» tigerplaf.properties — yellow-and-purple, text-based LAF
» imagePlaf.properties — blue and gold image-based LAF

2. Update the conduit scripts in the customer source tree to specify the package and
filename for the new LAF file in the UI Technician tag.

3. Have new Ul beans call uiFactory.configureUIComponent(this, UL_PREFIX) in the
initialize() method to set the look-and-feel.

Receipts
Receipts are composed of two levels:

= A base receipt that manages data and behavior for all receipts
= Specific receipt types such as Layaway and Return

The receipt class names are specified in the tour code and there is no factory for
creating receipts. Therefore, modifications to the tour code that accesses the receipts
are required.

8-10 Oracle Retail Point-of-Service Operations Guide

Domain Package

If the base receipt and specific receipt classes are both going to be extended, typical
inheritance is not sufficient since Java does not support multiple inheritance. For
example, the MBSLayawayReceipt.java class cannot extend both
MBSPrintableDocument.java and MBSLayawayReceipt.java. The recommended
approach is to extend both classes, and have MBSLayawayReceipt.java extend
LayawayReceipt.java. MBSLayawayReceipt.java then includes an instance of
MBSPrintableDocument.java and methods can be called on the extended class.

Follow these steps to customize receipts:

1. If modifications are required to the base receipt, create a class in the customer
source tree named MBSPrintableDocumentUltilityjava. This class is a utility class
since the receipt classes delegate common functionality to it.

2. For each receipt type that needs to be customized, do one of the following;:

s To modify an existing receipt type, create a Java class in the customer source
tree that extends the receipt class in the product code. Add the customer
abbreviation to the beginning of the filename.

= To create a new receipt type, create a Java class in the customer source tree that
extends MBSPrintableDocument.java.

3. For extended classes, include an instance of the
MBSPrintableDocumentUtility;java class. Call methods on the utility class when a
customized method is required.

4. Modify tours in the customer source tree as necessary to call new() for the
customized receipt types.

5. Modify parameters for the receipt header and footer as necessary.

Reports

Point-of-Service has a set of reports that print on the slip printer. These reports are in a
proprietary format and do not use a reporting engine. The report class names are
specified in the tour code and there is no factory for creating reports. Therefore,
modifications to tours that access the reports are required.

To modify existing Point-of-Service reports, the report Java files can be extended.
Follow these steps:

1. For each report, do one of the following;:

= To modify an existing report, create a Java class in the customer source tree
that extends the reports class in the product code (found in
pos\trunk\srb\com\extendyourstore\ pos\reports).

» To create a new report, create a Java class in the customer source tree that
extends the abstract RegisterReport class in the product code. Use the
customer abbreviation in the filename.

2. Create, modify or override data and methods as necessary to modify the report.

3. Modify the tour code that creates the report object to call new() for the new report
class.

Domain Package

This section addresses customization of files in the domain package. The domain
package can be found in the \OracleRetailStore\domain directory in your
source control system.

Extension Guidelines 8-11

Domain Package

Retail Domain

The Retail Domain provides a retail-specific implementation of business objects. These
objects are easily extended to meet customer’s requirements.

DomainObjectFactory

If any Retail Domain Objects (RDOs) are added or extended, the DomainObject
Factory must be extended. This needs to be done only one time for the application. The
extended class must include getXinstance() methods for all new and extended RDOs,
where X is the name of the RDO. Follow these steps:

1. Create a new Java class that extends DomainObjectFactoryjava. It should be
named with the customer abbreviation in the filename
MBSDomainObjectFactory;java and be located in the customer source tree.

2. Copy the domain.properties file to the domain\config directory of the customer
source tree. Modify the setting for the DomainObjectFactory to refer to the new
package and class name created in the previous step.

DomainObjectFactory=com.acmebrick.domain. factory.MBSDomainObjectFactory;
3. Add getXInstance() methods as necessary for new Retail Domain Objects.

Retail Domain Object (RDO)

Follow these steps to create or extend an RDO:
1. Complete one of the following steps:

» To create a new RDO, create a Java class in the customer source tree in the
appropriate subdirectory of domain\src\com\mbs\domain. Extend an
appropriate superclass from the product code. At a minimum, the new class
must extend EYSDomainlfc.java.

s Tomodify an existing RDO, create a Java class in the customer source tree that
extends an RDO in the product code.

Include the customer abbreviation in the filename; for example, you might name
your class file MBSCustomer.java.

2. Add data attributes and methods required by the customer-specific functionality.

3. Create setCloneAttributes(), equals() and toString() methods to address the new
data attributes and then reference the corresponding superclass method.

4. Complete one of the following steps:

s For anew RDO, add a new getXInstance() method to
MBSDomainObjectFactory;java for the new RDO.

= For an extended RDO, override the existing getXInstance() method in
MBSDomainObjectFactoryjava to return an object of the new class type.

5. Access the new RDO data and methods from tours located in the customer source
tree. If product tours need to access the new RDO data and methods, the tours
must be modified.

6. If the RDO data is represented on a screen, modify the Ul script, bean and bean
model classes to reflect the change.

7. If the RDO is saved to the database, modify the data operation to save the new
data attributes.

8-12 Oracle Retail Point-of-Service Operations Guide

Domain Package

Database

This section details how to extend database behavior through changes to the data
operations. The architecture of the Data Technician simplifies this somewhat, because
changes to data operations can be implemented without changes to the
Point-of-Service application code.

Data Manager and Technician Scripts

The Data Manager and Data Technician Scripts, DefaultDataManager.xml and
DefaultDataTechnician.xml, are routinely customized when transactions, data actions,
and data operations are customized. See the next section for details.

Data Actions and Operations

When a new or modified RDO contains data that need to be saved to the database, a
data operation class must be created or extended. A Data Action must be modified if a
unit of database work is changed.

1. Create class files.

Create new class files for each new or modified item in the customer source tree. If
an item extends a product class, add the customer abbreviation to the filename.

2. If a customized version of POSDataManager.xml does not already exist, copy it to
the customer source tree and give it a new name, such as
MBSPOSDataManager.xml.

3. For customized transactions with new filenames, modify the transaction name.

4. If a customized version of DefaultDataTechnician.xml does not already exist, copy
it to the customer source tree and give it a new name, such as
MBSDefaultDataTechnician.xml.

5. Edit the customized MBSDefaultDataTechnician.xml file, updating package and
class names for data actions and data operations that have been modified.

Example 8-12 MBSDefaultDataTechnician.xml: Customizing a Data Operation

<OPERATION class="JdbcSaveTenderLineltems"

package="com.mbs.domain.arts"

name="MBSSaveTenderLineltems">

<COMMENT>
This operation saves all tender line items associated
with the transaction.

</COMMENT>

</OPERATION>

6. Modify the conduit scripts to reference the new package and/or filename of the
technician script.

Example 8-13 CollapsedConduitFF.xml: Customizing the Data Technician

<TECHNICIAN name="LocalDT" class="DataTechnician"
package="com.mbs. foundation.manager.data"
export="Y">
<PROPERTY
propname="dataScript"
propvalue="classpath://config/manager/MBSDefautlDataTechnician.xml"
/>
</TECHNICIAN>

Extension Guidelines 8-13

Domain Package

Data Transactions

Data transactions are the valet classes that carry requests from the client to the server.
A data transaction factory implements the factory pattern for data transaction classes.
The application code asks the factory for a transaction object and the factory
determines which Java class is used to create the object. To create or extend a data
transaction class, follow these steps:

1. Create new or modified data transactions.

Create a Java class in the customer source tree and prepend the customer
abbreviation to the filename. If you are modifying an existing transaction, have the
class extend the transaction class in the product code, and overwrite the methods
you are modifying.

Copy POSDataManager.xml to the customer source tree.
For customized transactions with new filenames, modify the transaction name.

Copy DefaultDataTechnician.xml to the customer source tree.

a0 DN

Modify package and class names for data actions and data operations that have
been modified.

6. If not already done, modify the conduit scripts to reference the new package
and/or filename of the technician script.

7. Extend DataTransactionKeys.java as MBSDataTransactionKeys.java in the
customer source tree to add or modify the static final String for each transaction
(the file serves as a list of string constants).

Example 8-14 MBSDataTransactionKeys.java: Adding Strings

public static final String DATA_MAINTENANCE_TRANSACTION="data.transaction.DATA_
MAINTENANCE_TRANSACTION

public static final String PLU_RETURN_TRANSACTION” =data.transaction.PLU_RETURN_
TRANSACTION”

8. Update domain.properties in the customer source tree to add or modify the
name/value pairs for each transaction.

Example 8—-15 domain.properties: Sample Modified and New Data Transactions

Registry of DataTransactionIfc implementations
(try to keep in alphabetical order)
#

data.transaction.ADVANCED PRICING_DATA
TRANSACTION=com.extendyourstore.domain.arts.AdvancedPricingDataTransaction
...code omitted here...

data.transaction.REGISTER_STATUS_
TRANSACTION=com.MBS.domain.data.transactions.RegisterStatusTransaction
data.transaction.REGISTRY DATA_
TRANSACTION=com.extendyourstore.domain.arts.RegistryDataTransaction
data.transaction.STORE_LOOKUP_DATA_
TRANSACTION=com.MBS.domain.data.transactions.StoreLookupDataTransaction

MBSdata.transaction.DATA MAINTENANCE
TRANSACTION=com.MBS.domain.data.transactions.DataMaintenanceTransaction
MBSdata.transaction.PLU_RETURN_
TRANSACTION=com.MBS.domain.data.transactions.ReturnPluTransaction

8-14 Oracle Retail Point-of-Service Operations Guide

9

Tour Framework

The Tour framework is a component of the Oracle Retail Platform layer of the
Point-of-Service architecture. The Tour framework implements a state engine that
controls the workflow of the application. Tour scripts are a part of this framework;
they define the states and transitions that provide instructions for the state engine that
controls the workflow. Java classes are also part of this framework; they implement the
behavior that is accessed by the tour engine, based on instructions in the tour scripts.

Tour Components

The tour metaphor helps the user visualize how the Oracle Retail Platform engine
interacts with application code. In the following description of the metaphor, the
words in italics are part of a simple tour script language that Oracle Retail Platform
uses to represent the application elements.

Tour Metaphor

For a moment, imagine that you are a traveler about to embark on a journey. You have
the itinerary of a business traveler (changeable at any time), your luggage, and
transportation. In addition, you have a video camera (TourCam) to record your tour so
you can remember it later.

You leave on your journey with a specific goal to achieve. Your itinerary shows a list of
tours that you can choose from to help you accomplish your task. Each tour provides a
tour bus with a cargo compartment and a driver. Each driver has a map that shows the
various service regions that you can visit. These regions are made up of sites (like
cities) and transfer stations (bus stations, airports, etc.). The maps show a finite
number of lanes, which are either roads joining one site to another or aisles within one
site. To notify the driver to start the bus and drive, you must send a letter to the driver.
The driver reads the name on the letter and looks for a lane that matches the letter.

When a matching letter is found, the driver looks for a traffic signal on the road. If
there is no signal, the driver can traverse the road. If there is a signal, the driver can
traverse the road only if the signal is green. If the signal is red, the driver attempts to
traverse the next alternative road that matches the letter. If the driver cannot find any
passable road, he or she returns to the garage. When you arrive at a site or traverse a
lane, you may perform an action to achieve your goal, like take a picture of the
countryside.

Tour Framework 9-1

Tour Components

Upon arriving at a transfer station, you immediately transfer to another service, and
you load a portion of your cargo onto a shuttle and board the shuttle. The shuttle takes
you and your cargo to the bus that runs in the map of the other tour. Upon arrival at
the new bus, you unload the shuttle and load the new bus. Then the new driver starts
the bus and your journey begins in the new tour. When the transfer tour itinerary is
complete, you load whatever cargo you want to keep onto a shuttle and return to the
original tour bus. At that time, you unload the shuttle and continue your tour.

These tour script components map to terms in the metaphor. The tour metaphor
provides labels and descriptions of these components that improve understanding of
the system as a whole.

Table 9-1 includes a metaphor description and a technical description for the basic
metaphor components.

Table 9-1 Metaphor Components

Name Metaphor Description Technical Description

Service A group of related cities, for An implementation of workflow and

example “A Mediterranean Tour” behavior for a set of functionality

Bus The vehicle that provides The entity that follows the workflow

transportation from city to city between the sites

Cargo The baggage that the traveler The data that follows the workflow,

takes with him/her from city to modified as necessary
city

Site A city A function point in the workflow

Road A path the bus takes to get from A transition that takes place based on an

one city to another event that changes the state

Aisle A path the traveler takes while An action that takes place based on an

staying on the same bus in the event, without leaving the current state
same city

Letter A message the bus driver receives A message that causes a road or aisle to

instructing him/her to perform an be taken

action
When given a use case, create a tour script by identifying components for the tour
metaphor. Strategies for identifying components are listed in the table below. The
following sections describe each component in more detail.
Table 9-2 includes strategies for identifying components.
Table 9-2 Component Identification Strategies

Component How to Identify

Service A service generally corresponds to a set of related functionality.

Site Sites generally correspond to points in the workflow that need input from outside the
tour. Outside input sources include the user interface, the database, and devices
among others.

Road At a site, look at the ways control can be moved to another site. There is one road for
each of these cases.

Aisle At a site, there might be a task that you want to handle in a separate module and then
return to the site when the task is complete. There is one aisle for each of these cases.

Letter Letters generally correspond to buttons on a Ul screen and responses from the

database and devices. Look for the events that move control from one site to another
or prompt additional behavior within a site to help identify letters.

9-2 Oracle Retail Point-of-Service Operations Guide

Tour Components

Follow the naming conventions in the Development Standards when deciding the
names for the components. It is important to understand that the tour metaphor is not
only used to describe the interaction of the components, but the component’s names
are used in the code. By convention, a site named GetTender has a Java class in the
package named GetTenderSite java that performs the work done at the site.

Service and Service Region

Bus

Tourmap

Tours provide a way of grouping related functionality to minimize maintenance and
increase reusability. All tours provide a bus to maintain state and cargo for data
storage. All sites, lanes, and stations contained within a tour have access to these
resources. Furthermore, in the Point-of-Service source code, the tours are found in the
src\com \extendyourstore\pos\services directory. Generally, this chapter uses the
word tour to refer to a tour. The word service and phrase service region are used in
this section because they are elements in the XML code.

The service region contains all functionality related to running the application when
no exceptions are encountered. The following code sample from

src\com \extendyourstore\pos\services\tender\tender.xml shows the definition of a
service and service region in a tour script.

Example 9—1 tender.xml: Definition of Service and Service Region

<SERVICE name="Tender" package="com.extendyourstore.pos.services.tender"
tourcam="ON">

<SERVICECODE>

...definition of letters, siteaction classes, and laneaction classes...
</SERVICECODE>

<MAP>

<REGION region="SERVICE" startsite="GetTender">

...definition of sites, stations, and lanes...

</REGION>

</MAP>

</SERVICE>

As shown in the code sample, there are two main sections of a tour script. The
SERVICECODE element defines the Java classes in the tour and the letters that may be
sent in the tour code or by the user. The MAP element links the classes and letters to
the sites and lanes. In the following sections, code samples are shown from both
sections of the tour script.

The bus object is passed as a parameter to all tour methods called by the tour engine.
Methods can be called on the bus to get access to the cargo, managers and other state
information. The following code sample from
src\com\extendyourstore\pos\services\tender\GetCheckInfoSite.java shows a
reference to the bus.

Example 9-2 GetCheckinfoSite.java: Retrieving Cargo from Bus

TenderCargo cargo = (TenderCargo) bus.getCargo();

One problem of tour scripts is that they can be difficult to customize for a particular
retailer’s installation. The new tourmap feature allows customizations to be made
more easily on existing tour scripts. Tour components and tour scripts can be

Tour Framework 9-3

Tour Components

referenced by logical names in the tour script and mapped to physical names in a
tourmap file, making it easier to use the product tour and just change the pieces that
need to be changed for a customer implementation. In addition, with tourmaps,
components and scripts can be overridden based on a country, so files specific to a
locale are implemented when appropriate.

The tourmap does not allow you to modify the structure of the tour, specifically the
following:

= does not allow you to add or remove sites
= does not allow you to add or remove roads and aisles

= does not allow you to specify a tour spanning multiple files (i.e. “tour
inheritance”)

Of particular note is the last bullet: the tourmap does not allow you to assemble
fragments of xml into one cohesive tour script. After the application is loaded, there is
only be one tour script that maps to any logical name.

The functionality of tourmapping is implemented via one or more tourmap files.
Multiple tourmap files can be specified via the config\tourmap.files properties.
tourmap.files is a comma delimited list of tourmap files. As each file is loaded, the
application checks the country property of the tourmap file. The order of files is
significant because later files override any values specified in previous files. A file that
overrides a similarly-named file is called an overlay.

Each tourmap file begins with a root element, tourmap, which has an optional country
attribute. The tourmap elements contains multiple tour elements, each one of which
describes a tour's logical name, its physical file, and any overlays to apply. For
instance, a simple tourmap might look like the following:

9-4 Oracle Retail Point-of-Service Operations Guide

Tour Components

Cargo

Example 9-3 Sample Tourmap

<?xml version="1.0" encoding="UTF-8"?>

<tourmap
country="CA"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xs1 :noNamespaceSchemaLocation="com/extendyourstore/foundation/tour/dtd/tourmap.xsd
N

<tour name="testService">

<file>classpath://com/extendyourstore/foundation/tour/engine/tourmap.testservice.x
ml</file>
<SITE
name="siteWithoutAction"

useaction="com.extendyourstore.foundation.tour.engine.actions.overlay.OverlaySiteA
ction"/>
<SITEACTION
class="SampleSiteAction"

replacewith="com.extendyourstore.foundation.tour.engine.actions.overlay.OverlaySit
eAction"/>

</tour>
</tourmap>

In this instance, the tour with the logical name testService references the file
com\extendyourstore\foundation\tour\engine \tourmap.testservice.xml.
Additionally, the values for SITE and SITEACTION are replaced.

Note: Because of the country in the tourmap element, this only
happens when the default locale of the application is a Canadian
locale.

Tourmaps are used not only to override XML attributes, but they are used also when
the workflow needs to be changed.

Cargo is data that exists for the length of the tour in which it is used. Any data that
needs to be used at different tour components such as sites and aisles needs to be
stored on the cargo. Cargo always has a Java class. The following code sample from
tender.xml defines the Tender cargo.

Example 9-4 tender.xml: Definition of Cargo

<CARGO class="TenderCargo">
</CARGO>

With the concept of a tourmap, a cargo class can be overridden with another class. This
allows you to override the class name for a customer implementation yet still keep the
same workflow for the customer as in the product. The following tourmap definition
specifies the class to override and the new class to use in place of the original class.

Note that replacewith is a fully qualified classname, with both package and classname
specified, unlike the class attribute.

Tour Framework 9-5

Tour Components

Sites

System Sites

Example 9-5 tourmap.xml: Example of Overriding Cargo Class

<CARGO class="TenderCargo"
replacewith="com.extendyourstore.cargo.SomeCargo" />

Sites correspond to nodes in a finite state machine and cities in the tour metaphor. Sites
are usually used as stopping places within the workflow. Arrival at a site usually
triggers access to an external interface, such as a graphical user interface, a database,
or a device. Sites always have a corresponding siteaction class.

The tender.xml code sample below contains the site information from the two main
parts of a tour script: the XML elements SERVICECODE and MAP, respectively.

Example 9-6 tender.xml: Definition of Site Class
<SITEACTION class="GetTenderSite"/>

Example 9-7 tender.xml: Mapping of Site to SiteAction

<SITE name="GetTender" siteaction="GetTenderSite">
. definition of lanes ...
</SITE>

With the concept of Tourmap, a site’s siteaction can be overridden with another class.
This allows you to override the class name for a customer implementation yet still
keep the same workflow for the customer as in the product. The following tourmap
definition specifies the class to override and the new class to use in place of the
original class. Note that replacewith is a fully qualified classname, with both package
and classname specified, unlike the class attribute.

Example 9-8 tourmap.xml: Overriding Siteaction With Tourmap

<SITEACTION
class="GetTenderSite"replacewith="com.extendyourstore.actions.SomeOtherSiteAction"
/>

System sites are defined by the Oracle Retail Platform engine but can be referenced
within a tour script. For example, a road defined by a tour script can have a system site
as its destination. Each system site must have a unique name in the tour script file. The
following code from tender.xml shows the definition of two system sites. The Final
system site stops a bus and returns it to the parent bus, and LastIndexed resumes the
normal bus operation after an exception.

Example 9-9 tender.xml: Definition of System Sites

<REGION>

<MAP>

...definition of sites, lanes, and stations...
<SYSTEMSITE name="Final" action="RETURN" />
<SYSTEMSITE name="LastIndexed" action="BACKUP" />
</MAP>

</REGION>

9-6 Oracle Retail Point-of-Service Operations Guide

Tour Components

Letters

Roads

Letters are messages that get sent from the application code or the user interface to the
tour engine. Letters indicate that some event has occurred. Typically, letters are sent by
the external interfaces, such as the graphical user interface, database, or device to
indicate completion of a task.

Lanes are defined as roads and aisles. When the system receives a letter, it checks all
lanes defined within the current site or station to see if the letter matches the letter for
a lane. If no matching lane is found, the letter is ignored. Letters do not have a Java
class associated with them.

Standard letter names are used in the application, such as Success, Failure, Undo, and
Cancel. The following code sample shows tender.xml code that defines letters. The
definition is added to the SERVICECODE XML element.

Example 9-10 tender.xml: Definition of Letter
<LETTER name="Credit"/>

Roads provide a way for the bus to move between sites and stations. Each road has a
name, destination, and letter that activates the road. A road may have a laneaction
class, depending on whether the road has behavior; only roads that have behavior
require a class. Roads are defined within site definitions because they handle letters
received at the site.

Following is tender.xml code that shows the definition of a road. The definition is
added to the SERVICECODE XML element. After the first code sample is another
sample that maps the road to a site and letter, which is contained in the MAP section of
the tour script.

Example 9-11 tender.xml: Definition of Road Class

<LANEACTION class="ValidCreditInfoEnteredRoad"/>
tender.xml: Mapping of Road to Site
<SITE name="GetCreditInfo" siteaction="GetCreditInfoSite">
<ROAD
name="ValidCreditInfoEntered"
letter="valid"
laneaction="ValidCreditInfoEnteredRoad"
destination="GetTender"
tape="ADVANCE"
record="OFF"
index="QFF">
</ROAD>
...other lanes defined...
</SITE>

With the concept of Tourmap, a road’s laneaction can be overridden with another
class. This allows you to override the class name for a customer implementation yet
still keep the same workflow for the customer as in the product. The following
tourmap definition specifies the class to override and the new class to use in place of
the original class. Note that replacewith is a fully qualified classname, with both
package and classname specified, unlike the class attribute.

Tour Framework 9-7

Tour Components

Example 9-12 tourmap.xml: Example of Overriding Site Laneaction

<LANEACTION class="ValidCreditInfoEnteredRoad"
replacewith="com.extendyourstore.actions.SomeOtherLaneAction"/>

Common Roads

The COMMON element is defined in the REGION element of the tour script. The
COMMON element can contain roads that are available to all sites and stations in a
tour. Common roads have the same attributes as roads defined within a site, but they
are defined outside of a site so they can be accessed by all sites. If a common road and
a tour road are both activated by the same letter, the site road is taken. The following is
an example that differentiates common roads from tour roads.

Example 9-13 Example of Common Road

<MAP>
<REGION region="SERVICE" startsite="Example">
<COMMON>
<ROAD name="QuitSelected" letter="exit"
destination="NamedIndex"
tape="REWIND" />
<COMMENT>
</COMMENT>
</ROAD>
</COMMON>
<SITE name="RequestExample" siteaction="RequestExampleSite">
<ROAD name="ExampleSelected" letter="next"
laneaction="ExampleSelectedRoad"
destination="ShowExample"
tape="ADVANCE"
record="OFF"
index="ON"/>
<COMMENT>
</COMMENT>
</ROAD>
</REGION>
</MAP>

Aisles

Aisles provide a means for moving within a site and executing code. Aisles are used
when a change is required but there is no reason to leave the current site or station.
Each aisle contains a name, a letter, and a laneaction. Aisles always require a Java class
because they must have behavior since they do not lead to a different site or station
like roads.

Following is the tender.xml code that shows the definition of an aisle. The definition is
added to the SERVICECODE XML element. The second code sample from the same
tour script maps an aisle to the site and letter, which is contained in the MAP section.

Example 9-14 tender.xml: Definition of Aisle Class

<LANEACTION class="CardInfoEnteredAisle"/>

9-8 Oracle Retail Point-of-Service Operations Guide

Tour Components

Example 9-15 tender.xml: Mapping of Aisle to Site
<SITE name="GetCreditInfo" siteaction="GetCreditInfoSite">
<AISLE
name="CardInfoEntered"
letter="Next"
laneaction="CardInfoEnteredAisle">
</AISLE>
...other lanes defined...
</SITE>

With the concept of Tourmap, an aisle’s laneaction can be overridden with another
class. This allows you to override the class name for a customer implementation yet
still keep the same workflow for the customer as in the product. The following
tourmap definition specifies the class to override and the new class to use in place of
the original class. Note that replacewith is a fully qualified classname, with both
package and classname specified, unlike the class attribute.

Example 9-16 tourmap.xml: Example of Overriding Aisle Laneaction

<LANEACTION class="CardInfoEnteredAisle"
replacewith="com.extendyourstore.actions.SomeOtherLaneAction"/>

Stations and Shuttles

Transfer stations are used to transfer workflow to another tour and return once the
tour workflow has completed. A transfer station describes a location where another
tour is started and the passenger exits one bus and enters the bus for another tour.

Transfer stations specify the name of the nested tour and define data transport
mechanisms called shuttles. Shuttles are used to transfer cargo to and from the nested
tour. These shuttles are either launch shuttles or return shuttles. Launch shuttles
transfer cargo to the nested tour and the return shuttles transfer newly acquired cargo
from the nested tour to the calling tour. Shuttles have Java classes associated with
them, but stations do not.

The following code samples from

src\com\extendyourstore\pos\services \tender\tender.xml contain the station and
shuttle information from the SERVICECODE and MAP elements in the tour script,
respectively.

Example 9—17 tender.xml: Definition of Shuttle Class
<SHUTTLE class="TenderAuthorizationLaunchShuttle"/>

Example 9-18 tender.xmli: Mapping of Station to Service and Shuttle Classes

<STATION
name="AuthorizationStation"

servicename="classpath://com/extendyourstore/pos/services/tender/authorization/Aut
horization.xml"
targettier="APPLICATIONTIER"
launchshuttle="TenderAuthorizationLaunchShuttle"
returnshuttle="TenderAuthorizationReturnShuttle">
...lane definitions to handle exit letter from nested service..
</STATION>

Tour Framework 9-9

Tour Components

Signals

The servicename can be defined as a logical name like “authorizationService” and
mapped to a filename is the tourmap file. The shuttle names can also be overridden in
the tourmap file. This allows you to override the class name for a customer
implementation yet still keep the same workflow for the customer as in the product.
The code samples below illustrate this.

Example 9-19 tourmap.xml: Example of Mapping Servicename

<tour name="authorizationService”>
<file>classpath://com/extendyourstore/pos/services/tender/authorization/Authorizat
ion.xml</file>

</tour>

Example 9-20 tourmap.xml: Example of Overriding Shuttle Name

<SHUTTLE class="TenderAuthorizationLaunchShuttle"
replacewith="com.extendyourstore.shuttles.NewShuttle"/>

Nested tours operate independently, with their own XML script and Java classes.
Stations and shuttles simply provide the functionality to transfer control and data
between two independent tours.

Signals direct the tour to the correct lane when two or more lanes from the same site or
station are activated by the same letter. The lane that has a signal that evaluates to true
is the one that is traversed. Each signal has an associated Java class. Signal classes
evaluate the contents of the cargo and do not modify data.

The following code sample lists the tender.xml code that relates to the definition of
two roads with Light signals defined. The definition is added to the SERVICECODE
XML element, whereas the road description is added to the MAP XML element. The
negate tag negates the Boolean value returned by the specified signal class.

Example 9-21 tender.xml: Definition of Traffic Signal
<SIGNAL class="IsAuthRequiredSignal"/>

9-10 Oracle Retail Point-of-Service Operations Guide

Tour Components

Example 9-22 tender.xml: Signal Processing With Negate Tag

<STATION>
name="AuthorizationStation”
<ROAD
name="AuthorizationRequested"
letter="Next"
destination="AuthorizationStation"
tape="ADVANCE"
record="0OFF"
index="0FF">
<LIGHT signal="IsAuthRequiredSignal"/>
</ROAD>
<ROAD
name="BalancePaid"
letter="Next"
destination="CompleteTender"
tape="ADVANCE"
record="OFF"
index="0FF">
<LIGHT signal="IsAuthRequiredSignal" negate="Y"/>
</ROAD>
...additional lane definitions...
</STATION>

Exception Region

Continuing the tour metaphor, the bus could break down at any time. If the bus driver
detects that the bus has broken down, the bus driver takes the bus to the nearest
Garage system site. Once the bus is in the garage, the mechanic assumes control of and
diagnoses the breakdown.

» If the mechanic is able to restore the cargo to a valid state, the mechanic informs
the bus driver by traversing to the Resume system site. The bus driver
subsequently resumes driving by resetting the bus at the site where the
breakdown occurred.

» If the mechanic is not successful in repairing the bus, the mechanic stops the bus,
and mails the parent tour a letter informing it of the breakdown.

» If there is no mechanic within the tour, the bus driver stops the bus, and mails the
parent tour a letter informing it of the breakdown. The bus completes its tour
when it arrives at the final site.

The exception region includes the functionality for handling exceptions. It can contain
sites, roads, and stations just like the service region. There are two ways to exit the
exception region: at the Return system site or the Resume system site. Return shuts
down the application, and Resume starts the application at the last visited site or
station in the service region.

The mechanic operates within the exception region of the tour. Any exception that
occurs within the tour region where the bus driver operates is converted to an
Exception letter and is passed to the mechanic. When the exception is being processed,
the mechanic assumes control of the bus and processes all incoming letters. If the
application developer has created an exception region for the mechanic, the Exception
letter is processed using application-specific actions and traffic lights. However, if the
exception region does not exist, the mechanic stops the bus and informs the parent bus
of the problem.

Depending on the application definition, recovery from exceptions can result in a
rollback, resumption, or a restart of the bus.

Tour Framework 9-11

Role of Java Classes

Role of Java

Classes

All the code samples in this chapter have been from tour scripts. Tour scripts exist in
the form of one XML file per tour. The tour script refers to Java classes that implement
specific behavior, such as the siteaction and laneaction attributes. A tour has the
following Java classes:

= One for the cargo

= One for each site

» One for each aisle

= One for each road that implements behavior

= One for each shuttle

= One for each signal

Table 9-3 lists methods that the tour engine looks for when it arrives at a specified

place in the tour.

Table 9-3 System-called Methods

Class Method(s)

Site arrive(), depart()
Road (if behavior) traverse()

Aisle traverse()
Shuttle load(), unload()
Signal roadClear()
Cargo <none>

Tour Cam

9-12 Oracle Retai

TourCam allows you to navigate backward through your application in a controlled
manner while requiring minimal programming to accomplish the navigation. It
provides the ability to back up from a tour or process by tracking the state of the cargo
and the location of the tours. TourCam is turned on or off at the tour level. If there is
no reason to back up, TourCam should not be turned on.

The ability to backup or restore data to a previous state is accomplished using
TourCam. TourCam is used to record the bus path through the map, as well as the
associated cargo changes. TourCam is described using the TourCam metaphor. The
words in italics in the following paragraphs are the TourCam-specific terms.

A bus driver records the progress along the bus route using TourCam. The bus driver
records snapshots of the passenger cargo immediately before traversing a road. Each
snapshot is mounted in a frame within the current tape. The frame is stamped with the
current road. Using this method, the bus driver can retrace steps through the map. If
the frame is indexed, the driver stops at that index when retracing his steps.

The bus driver may adjust the TourCam tape while the bus traverses a road between
sites.

s The bus driver can advance the current TourCam tape, and add the next road and
snapshot of the cargo as a frame in the tape.

s The bus driver can discard the current TourCam tape, and replace it with a blank
tape.

| Point-of-Service Operations Guide

Tour Cam

Attributes

s The bus driver can rewind the current tape to restore the cargo to be consistent
with a previously visited site.

s The bus driver can splice the current TourCam tape by removing all frames that
were recorded since a previously visited site.

When the passenger wants to back up, they instruct the bus driver to traverse a road
whose destination is the Backup system site. The backup road can inform the bus
driver to rewind or splice the TourCam tape while retracing its path along the last
recorded road. Similarly, the passenger can instruct the bus driver to traverse a road to
a specific, previously visited site. That road effectively backs up the bus when it
instructs the bus driver to rewind or splice the TourCam tape.

When the passenger wants to end the trip, they instruct the bus driver to travel down
a road whose destination is the Return system site. The final road may advance or
discard the TourCam tape. A passenger may return to the tour if they back into the
parent transfer station. If the TourCam tape is advanced, a return visit retraces the path
through the map in reverse order. If the TourCam tape is discarded, all return visits
start at the start site, as if the passenger were visiting the tour for the first time.

The TourCam processing model places all undo actions on roads and treats sites and
stations as black boxes. The tour attribute that turns TourCam on or off is tourcam. The
following code from tender.xml shows the location in the tour script where the
tourcam is set. The default value is OFF.

Example 9-23 tender.xml: Definition of tourcam

<SERVICE
name="Tender"
package="com.extendyourstore.pos.services.tender"
tourcam="ON">

The rest of the TourCam attributes are set on the road element in the MAP section of
the tour script. The following code from tender.xml shows a road definition with these
attributes set.

Example 9-24 tender.xml: Definition of Road With TourCam Attributes

<SITE name="GetGiftCertificateInfo" siteaction="GetGiftCertificateInfoSite">
<ROAD name="GiftCertificateInfoEntered"

letter="Next"
laneaction="GiftCertificateInfoEnteredRoad"
destination="GetTender"
tape="ADVANCE"
record="OFF"
index="0FF">

...definitions of lanes...

</SITE>

Tour Framework 9-13

Tour Cam

Table 9—4 lists TourCam attributes and their values.

Table 9-4 Road Tag Element Attributes

Tag Description Values Default
tape Indicates what tour ADVANCE - Adds a ADVANCE
action to take when frame representing this
traversing the road. road to the tourcam
tape
DISCARD - Discards
the entire tour cam tape
REWIND - Back up to
the site specified by the
‘destination” while
calling the backup
method on all roads
SPLICE - Back up to
the site specified by the
‘destination” without
calling the backup
method on any roads
record Indicates that a snapshot ON — Record a ON
of the cargo should be snapshot
recorded and saved on OFF - Do not record a
the tourcam tape
snapshot
index Indicates that an index ON - Place an index on ON
should be placed on the the tape
tourcgm tape when this OFF - Do not place an
road is traversed .
index on the tape
namedIndex Indicates that a named Any string value is None
index should be placed allowed
on the tourcam tape
when this road is
traversed
destination Used when the tape hasa <SITENAME> — The None
value of REWIND or name of a site to back

SPLICE to indicate where
the tourcam should back
the bus up to

up to. The site must be
in the current tour.

LastIndexed — The
backup should end at
the site that is the origin
of the first road found
with an unnamed
index.

NamedIndex — The
backup should end at
the at the site that is the
origin of the first road
found with the named
index specified by the

named Index.

Each of the following combinations describes a combination of settings and how it is
useful in different situations. The following tables describe the forward and backward
TourCam settings:

9-14 Oracle Retail Point-of-Service Operations Guide

Tour Cam

Table 9-5 describes the forward TourCam settings.

Table 9-5 Forward TourCam Settings

Settings Behavior
ADVANCE This combination permits you to return to the site without specifying it as a
index=ON destination and storing the state of the cargo. Use this combination if you are entering
B data and making decisions. The UI provides a method for backing up to the previous
record=ON step.
tape=ADVANCE This combination allows you to track visited sites, and allows you to attach undo
index=OFF behavior. However, you cannot back up to this site. A common scenario for use
B would be for performing external lookups and the user must backup to the site that
record=ON started the lookup. This combination is used, rather than the following combination,

when changes made to the cargo that must be reversible.

tape=ADVANCE

This combination is useful for sites that require external setup from another site, but
do not result in a significant change in cargo. You cannot back up to a site that uses

index=OFF these settings and you cannot restore cargo at this site. As with the previous
record=OFF combination, these settings are used for sites that perform external lookups.
tape=ADVANCE This combination is used when a site does not do anything of significance to cargo.
. You would use this setting if a site prompts to choose an option from a list and there
index=ON . .

is a default, or to respond to a yes/no dialog and you want to ensure the data
record=OFF collected at the site is reset.

tape=ADVANCE

namedIndex=LOGIN

This combination is used when you want the application to be able to return to a
specific index, even if the backup begins in a child tour.

tape=DISCARD

This combination is used when you want the application flow only to go forward
from this site. For example, after a user tenders a credit card for a sale, the user cannot
backup to enter, delete or modify items. This setting does not permit you to backup or
restore cargo to a previously recorded site.

Table 9-6 describes the backup TourCam settings.

Table 9-6 Backup Tour Cam Settings

Settings

Behavior

destination=BACKUP

tape=REWIND

This combination returns the application to the previously marked site and makes the
snapshot available for undo. This is the preferred method of performing a full backup
with restore.

destination=site
tape=REWIND

This combination backs up the application until it reaches the specified site. It is only
used if the site to which you want to backup does not directly precede the current site
or you know that you always want to backup to the specified site. These settings
could produce unpredictable results if new sites are later inserted in the map between
the current site and the target backup site.

Tour Framework 9-15

Tour Cam

Table 9-6 Backup Tour Cam Settings

Settings

Behavior

destination=LastIndexed = This combination returns the application to the previously marked site without

tape=SPLICE

restoring the cargo. These settings are used in scenarios when the cargo is
inconsequential.

destination=site
tape=SPLICE

This combination backs up the application to the specified site without restoring the
cargo. It is used when the cargo is inconsequential, or when you want to loop back to
a base site in a tour without permitting backup or undoing cargo after returning to
the base site.

For example, the application starts from a menu and permits the user to back up until
a series of steps are complete, but not afterward. In this case, the final road from the
last site returns to the menu. The need to use this combination might indicate a design
flaw in the tour. The developer should question whether the series of sites that branch
from the menu should be a separate tour. If the answer is no, this combination is the
solution.

destination=NamedIndex This combination backs up the application to the origin of the road with the specified
namedIndex=LOGIN named index. This is used to back up to a specific index, even if it was set in a parent

tour.

Letter Processing

In the absence of TourCam, processing of letters is straightforward. If the letter triggers
a lane, the bus simply traverses the lane. With TourCam enabled, the processing of
letters must consider the actions required to retrace the path of the bus. If the letter
triggers an aisle, the bus traverses the aisle. There is no backup over an aisle. If the
letter triggers a road, tape=advance or tape=discard indicate a forward direction, and
tape=rewind or tape=splice indicate a backward direction. The destination of the road
element is used to indicate the backup destination when tape=rewind or tape=splice. It
can be one of the following values: “LastIndexed”, “NamedIndex”, or <sitename>.

Cargo Restoration

One of the primary strengths of TourCam is the ability to restore the bus’ cargo to a
previous state. TourCamlfc provides a mechanism for the bus driver to make and
subsequently restore a copy of the cargo when specified by road attributes. Classes
that implement TourCamlIfc must implement the makeSnapshot() and
restoreSnapshot() methods. An example of this is
src\com\extendyourstore\pos\services\inquiry \ giftreceipt\ GiftReceiptCargo.java.

Example 9-25 GiftReceiptCargo.java: TourCamlfc Implementation

public class GiftReceiptCargo implements CargoIfc, TourCamIfc
{
...body of GiftReceiptCargo class...
public SnapshotIfc makeSnapshot ()

{

return new TourCamSnapshot (this);

}
public void restoreSnapshot (SnapshotIfc snapshot) throws ObjectRestoreException
{
GiftReceiptCargo savedCargo = (GiftReceiptCargo) snapshot.restoreObject();
this.setPriceCode (savedCargo.getPriceCode());
this.setPrice(savedCargo.getPrice());

}
}

9-16 Oracle Retail Point-of-Service Operations Guide

Tender Tour Reference

Snapshotlfc provides a mechanism to create a copy of the cargo. The class that
implements Snapshotlfc is responsible for storing information about the cargo and

restoring it later, by calling restoreObject().

A shuttle allows the optional transfer of cargo from the calling tour to the nested tour
during backups. If defined, this shuttle is used during rewind and splice backup
procedures. The classname for the shuttle is specified in the tour script via the

backupshuttle attribute of the station element.

Example 9-26 Sample Backupshuttle Definition

<STATION servicename="foo.xml"

launchshuttle="MyLaunchShuttle"
backupshuttle="MyBackupShuttle"\/>

Tender Tour Reference

The files in the Tender package can be found in
src\com\extendyourstore\pos\services\tender.

Table 9-7 describes resources in the Tender package that are common to all tours.

Table 9-7 Tender Package Components

Resource

Filename

Description

Tour script

tender.xml

This file defines the components (sites,
letters, roads, etc.) of the Tender tour and
the map of the Tender tour.

Tour screens

tenderuicfg.xml

This configuration file contains bean
specifications and overlay screen
specifications for the Tender tour.

Starting site

GetTenderSite.java

Tender types are displayed from this site. If
the selected tender requires input, it is
entered via another site, which then returns
control to this site. When the balance due is
paid, control is returned to the calling
service.

Cargo

TenderCargo.java

This class represents the cargo for the
Tender tour.

Stations

Names (stations do not have
classes):

AuthorizationStation
PINPadStation
AddCustomer
AddBusinessCustomer
FindCustomer
SecurityOverrideStation

LinkCustomerStation

These stations provide access to other
tours. Each of these stations define one or
more shuttle classes which are part of the
Tender package. The workflows are
defined in other packages, but can be called
from the Tender tour. For example,
AuthFailedRoad is defined in the Tender
tour because it handles the exit letter from
the Authorization tour. However,
Authorization.xml, the workflow for the
Authorization tour, is located in
src\com\extendyourstore\ pos\services\te
nder\authorization.

Tour Framework 9-17

Tender Tour Reference

The Tender package is unique in that the workflow is generally similar for all the
tender type options available from the main site. For example, if the user chooses to
pay by check or credit card, the workflow is similar. When the user cancels the form of
payment, the Oracle Retail Platform engine is directed to the
ReverseAuthorizedTenders site. When the user decides to undo the operation, the
engine is directed back to the GetTender site. The workflow for the credit card tender
option is shown in the following figure.

Figure 9-1 Workflow Example: Tender with Credit Card Option

CreditSelect[Credit] +
ValidCreditinfoEntered[Valid] GetCreditinfo
GetTender
InvalidCreditinfoEntered[Invalid] CardinfoEntered
UndoCreditSelected[Undo] l

(ReverseAuthorizedTenders)q
CancelCreditSelected[Cancel]

_ y(CompleteTender
BalancePaid[Next]

Final
Point

9-18 Oracle Retail Point-of-Service Operations Guide

10

Ul Framework

This chapter describes the User Interface (UI) Framework that is part of the Oracle
Retail Platform architecture. The UI Framework encompasses all classes and interfaces
included in Oracle Retail Platform to support rapid development of Ul screens. It
enables the building of custom screens using existing components. Overview

For ease of development, the UI Framework hides many of the implementation details
of Java Ul classes and containment hierarchies by moving some of the Ul specification
from Java code into XML. This eases screen manipulation and layout changes affecting
the look and feel of the entire screen, subsets of screens, and portions of a screen.

Table 10-1 provides a general description of features of the UI Framework.

Table 10-1 Ul Framework Features

Feature

Description

Common Design

All UT implementations share code and extend or implement base Ul classes that are
provided as part of Oracle Retail Platform. The UI Framework provides basic
functionality that does not need to be duplicated within each application.

Reuse The UI Framework allows bean classes to be independent, thereby supporting their
reuse. A Ul Technician can be used with multiple applications and UI Framework
components can be used across multiple features in an application.

Externally Configurable The UI Framework enables you to configure screens outside the code to accommodate

Screens applications that change frequently. The external screen configurations can be
updated to use new Oracle Retail Platform or application-specific components as they
are developed.

Support for The UI Framework provides hooks for implementing internationalization, including

Internationalization language and locale independence.

Extensibility and Additional formats for specifications can be defined without affecting the internal Ul

Flexibility Framework classes. Portability is achieved through the use of the Java language and

flexible layout managers.

The Ul Framework is the set of classes and interfaces that define the elements and
behavior of a window-based UI Subsystem. It defines a structure for defining user
interfaces.

Ul Framework 10-1

Screens

Table 10-2 briefly describes the components of the framework. This chapter discusses
these components in more detail.

Table 10-2 Ul Framework Components

Name

Description

Display

A display is the root container for the Ul application window. Displays are any
subclass of java.awt.Container that implement EYSRootPaneContainer.

Screen

A screen is a user-level snapshot of a Ul window as it relates to an application. The
screen is composed of displays, template areas, assignment beans, and listeners. Each
of these parts can be individually configured and reassembled to compose the screen.

Template

A template divides the display into areas that contain the layout information used to
place the information on the display. Templates can be interchanged to define screen
layouts within an application. Each screen specifies the template that is associated
with the screen.

Area

An area is a layout placeholder for UI components that operate together to perform a
function. Each area contains a layout constraint that dictates how the area is placed on
the display.

Bean

A bean is a user interface component or group of components that operate together to
provide some useful functionality. For example, a bean could be an input form or
group of navigation buttons.

Connection

A connection captures relationships between beans, or between devices and beans.
When a bean or device generates an event, another bean responds with a change in
behavior or visual display.

Listener

A listener provides a mechanism for reacting to user interface events.

Screens

Generally, for each package in an application, one Ul script in the form of an XML file
is created to define the screens for the given package. However, because many screens
share basic components, certain components are defined in a default UI script. These
basic screen components, including displays, templates, and default screens, are
defined in src\com\extendyourstore\pos\config\defaults\defaultuicfg.xml. Overlay
screens are then defined in the Ul script for the given package. This section describes
the components that are used to build Point-of-Service screens, except for beans which
are described in the next section.

Displays define window properties. They are basic containers with dimensions and a
title defined. In Point-of-Service, only two types of windows can be displayed at the
same time—the main application window and a window displaying the Help browser.

Table 10-3 describes the two types of displays.

Table 10-3 Display Types

Name

Description

EYSPOSDisplaySpec

A 600x800 container for all application screens

HelpDialogDisplaySpec

A 600x800 container for Point-of-Service Help screens

Templates divide displays into geographical areas. The GridBagLayout is used to
define the attributes of each area.

10-2 Oracle Retail Point-of-Service Operations Guide

Screens

Table 104 describes the typical use of each template.

Table 10-4 Template Types

Name Typical Use
BrowserTemplateSpec Back Office screens within Point-of-Service application
EYSPOSTemplateSpec Point-of-Service screens without required fields
HelpBrowserTemplateSpec Point-of-Service help screens
ValidatingTemplateSpec Point-of-Service screens with required fields that display an information panel
below the work area
Default screens are partially-defined screens that represent elements common to
multiple screens. Default screens are based on one display and one template. Default
screens map beans to the commonly used areas of the template and define listeners for
the bean. These screens are used by overlay specifications that define more specific
screen components. For example, almost all screens in the Point-of-Service application
display a status area region. The text displayed in the status region changes, but the
StatusPanelSpec bean is the same from screen to screen, so a default screen would
assign this bean to the StatusPanel area defined by a template.
Table 10-5 lists the areas of the template to which beans are assigned, and the display
and template used by each of the six types of default screens.
Table 10-5 Default Screen Types
Name Typical Use Display Template
BrowserDefaultSpec Back Office screens EYSPOSDisplaySpec BrowserTemplateSpec
within Point-of-Service
application
DefaultHelpSpec Point-of-Service help HelpDialogDisplaySpec = HelpBrowserTemplateSpec
screens
DefaultValidatingSpec Point-of-Service screens EYSPOSDisplaySpec Validating TemplateSpec
with required fields that
display an information
panel below the work
area
EYSPOSDefaultSpec Point-of-Service screens ~ EYSPOSDisplaySpec EYSPOSTemplateSpec

without required fields

ResponseEntryScreenSpec Point-of-Service screens EYSPOSDisplaySpec EYSPOSTemplateSpec

with information
captured in the response
area at the top of the
screen

Each screen in Point-of-Service has an overlay screen defined in a Ul script in the
package to which it belongs or in a package higher in the hierarchy. For example, the
Authorization tour script is found in
src\com\extendyourstore\pos\services\tender\authorization but the Ul script is
located in src\com\extendyourstore\pos\services\tender. This overlay screen is
based on a default screen and defines additional properties for the beans on the areas
of the screen. The overlay screen may also specify connections, which are described in
"Connections” in next chapter (XREF). The following code sample shows the definition
of the ALTERATION_TYPE screen defined in
src\com\extendyourstore\pos\services\alterations\alterationsuict
g.xml.

Ul Framework 10-3

Beans

Beans

Example 10-1 alterationsuicfg.xml: Overlay Screen Definition

<OVERLAYSCREEN
defaultScreenSpecName="EYSPOSDefaultSpec"
resourceBundleFilename="alterationsText"
specName="ALTERATION_TYPE">

<ASSIGNMENT
areaName="StatusPanel"
beanSpecName="StatusPanelSpec">
<BEANPROPERTY

propName="screenNameTag" propValue="AlterationTypeScreenName"/>

</ASSIGNMENT>

<ASSIGNMENT
areaName="PromptAndResponsePanel"
beanSpecName="PromptAndResponsePanel Spec">
<BEANPROPERTY

propName="promptTextTag" propValue="AlterationTypePrompt"/>

</ASSIGNMENT>

<ASSIGNMENT
areaName="LocalNavigationPanel"
beanSpecName="AlterationsOptionsButtonSpec">
</ASSIGNMENT>

</OVERLAYSCREEN>

A screen is composed of beans mapped to specific areas on the screen. All beans are
defined in src/com/extendyourstore/pos/ui/beans. The beans described in
this section are commonly used in screen definitions. Each description provides bean
properties that can be defined in assignments of beans to areas. By the Java reflection
utility, properties defined in XML files invoke set() or create() methods in the bean

class that accept a single string parameter or multiple string parameters.

The following section covers the PromptAndResponseBean, DatalnputBean,
NavigationButtonBean, and DialogBean.

PromptAndResponseBean

The PromptAndResponseBean configures and displays the text in the top areas of a
Point-of-Service screen called the prompt region and the response region. This bean is

implemented by

src\com\extendyourstore\pos\ui\beans\PromptAndResponseBean.java and its

corresponding model PromptAndResponseModel.java.

Bean Properties and Text Bundle

PromptAndResponsePanelSpec is the name of a bean specification that defines the
implementation of the PromptAndResponseBean class. The following code sample

shows the bean specification available to all screens, defined in
src\com \extendyourstore\pos\config\defaults\defaultuicfg.xml.

10-4 Oracle Retail Point-of-Service Operations Guide

Beans

Example 10-2 defaultuicfg.xml: Bean Specification Using PromptAndResponseBean

<BEAN

specName="PromptAndResponsePanelSpec"
beanClassName="PromptAndResponseBean"
beanPackage="com.extendyourstore.pos.ui.beans"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="P0OSBeanConfigurator"
cachingScheme="0ONE">

</BEAN>

Table 10-6 lists property names and values that can be defined in overlay
specifications when specifying attributes of a PromptAndResponseBean.

Table 10-6 PromptAndResponseBean Property Names and Values

Item Description Example
enterData Indicates whether data can be entered in the response true
area
promptTextTag The label tag that corresponds to the text bundle GiftCardPrompt
responseField The type of field expected in the response area (see com.extendyourstore.pos.
Field Type section for available types) ui.beans.AlphaNumericTe
xtField
maxLength Maximum length of response area input 15
minLength Minimum length of response area input 2
zeroAllowed Indicates whether a zero value is allowed in the true
response area
negativeAllowed Indicates whether a negative value is allowed in the false
response area
grabFocus Indicates whether focus should be grabbed when the true

screen is first displayed

These properties can be defined in Ul scripts. The following code sample defines an
overlay specification that assigns the PromptAndResponsePanelSpec defined above to
the PromptAndResponsePanel. This example from
src\com\extendyourstore\pos\services\tender\tenderuicfg.xml defines the
COUPON_AMOUNT overlay screen for the Tender service. The property that
retrieves text from a text bundle is highlighted.

Ul Framework 10-5

Beans

Example 10-3 tenderuicfg.xml: PromptAndResponseBean Property Definition

<OVERLAYSCREEN>
defaultScreenSpecName="ResponseEntryScreenSpec"
resourceBundleFilename="tenderText"
specName="COUPON_AMOUNT" >
<ASSIGNMENT
areaName="PromptAndResponsePanel"
beanSpecName="PromptAndResponsePanelSpec">
<BEANPROPERTY
propName="promptTextTag" propValue="CouponAmountPrompt" />
<BEANPROPERTY
propName="responseField"
propValue="com.extendyourstore.pos.ui.beans.CurrencyTextField" />
<BEANPROPERTY
propName="maxLength" propvValue="9"/>
</ASSIGNMENT>

</OVERLAYSCREEN>

The string that should be displayed as the prompt text is defined in a resource bundle.
In the resource bundle for the Tender service, which for the en_US locale is defined in
locales\en_US\config\ui\bundles\tenderText_en_US.properties, the following
includes a line that defines the CouponAmountPrompt.

Example 10-4 tenderText_en_US.properties: PromptAndResponseBean Text Bundle
Example

PromptAndResponsePanel Spec.CouponAmountPrompt=Enter coupon amount and press Next.

Tour Code
In the Tour code, bean models are created to hold the data on the bean components.

Table 10-7 lists some of the important methods in the PromptAndResponseModel
class.

Table 10-7 PromptAndResponseModel Important Methods

Method Description

boolean isSwiped() Returns the flag indicating whether a card is swiped

void setsScanned(boolean) Sets the flag indicating whether a code is scanned

boolean isResponseEditable() Returns the flag indicating whether the response area is editable

void setGrabFocus(boolean) Sets the flag indicating whether focus should stay on the response field

The following sample from

src\com \extendyourstore\pos\services\tender\ GetPurchaseOrder AmountSite.java
shows creation of a PromptAndResponseModel, prefilling of data in the model, and
display of the model on which the PromptAndResponseModel is set.

Example 10-5 GetPurchaseOrderAmountSite.java: Creating and Displaying
PromptAndResponseModel

PromptAndResponseModel responseModel = new PromptAndResponseModel () ;
Locale locale = LocaleMap.getLocale(LocaleConstantsIfc.USER_INTERFACE) ;
responseModel . setResponseText (balance.toFormattedString (locale));
POSBaseBeanModel baseModel = new POSBaseBeanModel () ;

baseModel . setPromptAndResponseModel (responseModel) ;

ui.showScreen (POSUIManagerIfc.PURCHASE ORDER_AMOUNT, baseModel) ;

10-6 Oracle Retail Point-of-Service Operations Guide

Beans

DatalnputBean

For internationalization, Point-of-Service can use multiple locales at any given time at
a register. There is one default locale, one Ul locale based on employee-specific locale,
and one customer display and customer receipt locale based on customer-specific
locale.

The screen constant, PURCHASE_ORDER_AMOUNT, is mapped to an overlay screen
name found in the Ul script for the package. The screen constants are defined in
src\com\extendyourstore\pos\ui\POSUIManagerlfc java.

The following sample from PurchaseOrderNumberEnteredRoad.java in the same
directory shows how to retrieve data from the PromptAndResponseModel in a
previous screen. To arrive at this code, a purchase order number is entered and the
user presses Next. This line of code gets the purchase order number from the previous
screen.

Example 10-6 PurchaseOrderNumberEnteredRoad.java: Retrieving Data From
PromptAndResponseModel

POSUIManagerIfc ui = (POSUIManagerIfc) bus.getManager (UIManagerIfc.TYPE);
String poNumber = ui.getInput();

The DatalnputBean is a standard bean that displays a form layout containing data
input components and labels. This bean is implemented by

src\com \extendyourstore\ pos\ui\beans\DatalnputBean.java and its corresponding
model DatalnputBeanModel.java. Field components are commonly defined with the
FIELD element when defining a bean with the DatalnputBean, as shown in the code
sample below.

Bean Properties and Text Bundle

The DatalnputBean has two properties that can be defined in Ul scripts, which
override the settings in the field specifications.

Table 10-8 lists DatalnputBean property names and values.

Table 10-8 DatalnputBean Property Names and Values

ltem Description Example

labelTags Sets the property bundle tags for the NameLabel, AddressLabel,StateLabel
component labels

labelTexts Sets the text on the component labels Name,Address,State

The label tag is used for internationalization purposes, so the application can look for
the correct text bundle in each language. The label tag overrides the value of the
labelText field. The following code from manageruicfg.xml shows a field specification
defined in a DatalnputBean bean specification.

Ul Framework 10-7

Beans

Example 10-7 manageruicfg.xml: Bean Specification Using DatalnputBean

<BEAN
specName="RegisterStatusPanelSpec"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="com. extendyourstore.pos.ui.beans"
beanClassName="DataInputBean">

<FIELD fieldName="storeID"
fieldType="displayField"
labelText="Store ID:"
labelTag="StoreIDLabel"
paramList="storeNumberField"/>

</BEAN>
The strings that should be displayed as labels on the screen are defined in a resource
bundle. In the resource bundle for the Manager service, which for the en_US locale is

defined in locales\en_US\config\ui\bundles\managerText_en_US.properties, the
following line of code defines the StoreIDLabel.

Example 10-8 managerText_en_US.properties: DatalnputBean Text Bundle Example

RegisterStatusPanelSpec.StoreIDLabel=Store ID:

Fields do not have to be defined in the Ul script. They can be defined in the beans and
models instead. In the overlay screen specification, two bean properties that can be set
are OptionalValidatingFields and RequiredValidatingFields. If the fields are optional
and the user enters information in them, then they are validated. If the user does not
enter any information, the fields are not validated. On the other hand, required fields
are always validated.

Tour Code

Bean models are created to hold the data managed by the bean. This protects the bean
from being changed. A bean can only be accessed by a model in the Tour code.

Table 10-9 lists some of the important methods in the DatalnputBeanModel class.

Table 10-9 DatalnputBeanModel Important Methods

Method Description

String getValueAsString(String) Returns the value of the specified field as a string

int getValueAsInt(String) Returns the value of the specified field as an integer

void setSelectionValue(String, Object) Seis the value of the specified field in a vector to the specified
value

void setSelectionChoices(String, Vector) Sets the value of the specified field to the specified vector of
choices

void clearAllValues() Clears the values of all the fields

The following sample from
src\com \extendyourstore\ pos\services\admin\ parametermanager\SelectParamStor
eSite java shows creation of a DatalnputBeanModel and prefilling of data in the model.

10-8 Oracle Retail Point-of-Service Operations Guide

Beans

Example 10-9 SelectParamStoreSite.java: Creating and Displaying DatalnputBeanModel
DataInputBeanModel beanModel = new DatalInputBeanModel () ;

beanModel .setSelectionChoices ("choiceList", vChoices);
beanModel.setSelectionValue ("choiceList", (String)vChoices.firstElement());

The following sample from Tour code shows how to retrieve data from the
DatalnputBeanModel. In this example from
src\com\extendyourstore\pos\services \admin\ parametermanager\StoreParamGrou
pAisle.java, after the model is created and displayed by the code from the previous
code sample, the model is retrieved from the Ul Manager, and data is retrieved from
the model.

Example 10-10 StoreParamGroupAisle.java: Retrieving Data from DatalnputBeanModel

DataInputBeanModel model =

(DataInputBeanModel)ui.getModel (POSUIManagerIfc.PARAM SELECT_GROUP) ;
ParameterCargo cargo = (ParameterCargo)bus.getCargo();

String val = (String)model.getSelectionValue("choiceList");
cargo.setParameterGroup (val) ;

NavigationButtonBean

The NavigationButtonBean represents a collection of push buttons and associated key
stroke equivalents. This bean is implemented by

src\com \extendyourstore\pos\ui\beans\NavigationButtonBean.java and its
corresponding model NavigationButtonBeanModel.java. The global navigation area
and the local navigation area both use the NavigationButtonBean.

Bean Properties and Text Bundle

The LocalNavigationPanel and GlobalNavigationPanel bean specifications both use
the NavigationButtonBean. Bean properties are described only for the
GlobalNavigationPanelSpec because the LocalNavigationPanelSpec typically sets its
properties in the bean specification and not the overlay specification.

LocalNavigationPanel The only property available to the NavigationButtonBean in XML
is used to enable and disable buttons. When setting the states of buttons on a
LocalNavigationPanel, the buttons are usually defined with the BUTTON element in
the bean specification as in the following code sample. In fact, any bean that extends
NavigationButtonBean, such as ValidateNavigationButtonBean, can define its buttons
in the bean specification.

This example from

src\com \extendyourstore\ pos\services\customer\customeruicfg.xml, defining the
CustomerOptionsButtonSpec bean specification for the Customer service, shows how
button text on a NavigationButtonBean is defined in a Ul script.

Ul Framework 10-9

Beans

Example 10-11 customeruicfg.xml: Bean Specification Using NavigationButtonBean

<BEAN
specName="CustomerOptionsButtonSpec"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="com. extendyourstore.pos.ui.beans"
beanClassName="NavigationButtonBean">

<BUTTON
actionName="AddBusiness"
enabled="true"
keyName="F4"
labelTag="AddBusiness" />

;}ﬁEAN>
The string that should be displayed on the buttons on the GlobalNavigationPanel is

defined in a resource bundle. In the resource bundle customerText_en_US.properties,
the following entry defines the label for the AddBusiness button.

Example 10-12 customerText_en_US.properties: NavigationButtonBean Text Bundie
Example

CustomerOptionsButtonSpec.AddBusiness= Add Business

GlobalNavigationPanel The GlobalNavigationButtonBean extends the
NavigationButtonBean. The following code sample shows the GlobalNavigationPanel
bean specification defined in
src\com\extendyourstore\pos\config\defaults\defaultuicfg.xml. The bean class is a
subclass of NavigationButtonBean.

Example 10-13 defaultuicfg.xml: Bean Specification Using GlobalNavigationButtonBean

<BEAN
specName="GlobalNavigationPanelSpec"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="P0SBeanConfigurator"
beanPackage="com.extendyourstore.pos.ui.beans"
beanClassName="GlobalNavigationButtonBean"
cachingScheme="ONE">

;}éEAN>
Table 10-10 lists property names and valuesthat can be defined in Ul scripts when

specifying attributes of a GlobalNavigationButtonBean.

Table 10-10 GlobalNavigationButtonBean Property Names and Values

ltem Description Example
manageNextButton Indicates whether the bean should manage the true

enable property of the Next button
buttonStates Sets the buttons with the action names listed ~ Help[true],Clear[false],Ca

to the specified state ncel[false],Undo[true],Nex
t[false]

These properties can be defined in overlay specifications, as in the following code
sample from tenderuicfg.xml.

10-10 Oracle Retail Point-of-Service Operations Guide

Beans

Example 10-14 tenderuicfg.xml: GlobalNavigationButtonBean Property Definitions
<OVERLAYSCREEN>

defaultScreenSpecName="EYSPOSDefaultSpec"
resourceBundleFilename="tenderText"
specName="TENDER_OPTIONS">
<ASSIGNMENT
areaName="GlobalNavigationPanel"
beanSpecName="GlobalNavigationPanelSpec">
<BEANPROPERTY
propName="manageNextButton"
propValue="false"/>
<BEANPROPERTY
propName="buttonStates"

propValue="Help[true],Clear[false],Cancel[false],Undo[true], Next[false]"/>
</ASSIGNMENT>

</OVERLAYSCREEN>

Tour Code
In the Tour code, bean models are created to hold the data on the bean components.

Table 10-11 lists some of the important methods in the NavigationButtonBeanModel
class.

Table 10-11 NavigationButtonBeanModel Important Methods

Method Description

ButtonSpec[] getNewButtons() Returns an array of new buttons

void setButtonEnabled(String, Sets the state of the specified action name of the button (the name of the
boolean) letter the button mails)

void setButtonLabel(String, String) Sets the label of the button using the specified action name of the button

(the name of the letter the button mails)

The following sample from
src\com\extendyourstore\pos\services\tender\PricingOptionsSite.java shows
creation of a NavigationButtonBeanModel, prefilling of data in the model, and display
of the model on which the NavigationButtonBeanModel is set.

Example 10-15 PricingOptionsSite.java: Creating and Displaying
NavigationButtonBeanModel

NavigationButtonBeanModel navModel = new NavigationButtonBeanModel () ;
navModel . setButtonEnabled ("TransDiscAmt", true) ;
navModel.setButtonEnabled ("TransDiscPer", true) ;
model.setLocalButtonBeanModel (navModel) ;

ui.showScreen (POSUIManagerIfc.PRICING_OPTIONS, model);

The screen constant, PRICING_OPTIONS, is mapped to an overlay screen name found
in the Ul script for the package. The screen constants are defined in
src\com\extendyourstore\pos\ui\POSUIManagerlfc java.

Ul Framework 10-11

Beans

DialogBean

The DialogBean provides dynamic creation of dialog screens. This bean is
implemented by src\com\extendyourstore\pos\ui\bundles\DialogBean.java and its
corresponding model DialogBeanModel.java.

Bean Properties and Text Bundle

DialogSpec is the name of a bean specification that defines an implementation of the
DialogBean class. The following code sample shows the bean specification defined in
src\com\extendyourstore\ pos\services\common\commonuicfg.xml.

Example 10-16 commonuicfg.xml: Bean Specification Using DialogBean

<BEAN

specName="DialogSpec"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="P0SBeanConfigurator"
beanPackage="com.extendyourstore.pos.ui.beans"
beanClassName="DialogBean">

<BEANPROPERTY propName="cachingScheme" propValue="none"/>
</BEAN>

The DialogBean does not have any properties that can be defined in Ul scripts.
Therefore, all its properties are defined in Tour code discussed in the next section. The
following code sample defines the message displayed in the dialog. This example from
src\com\extendyourstore\pos\services\inquiry\giftcardinquiry \InquirySlipPrintAis
le java shows how text on a DialogBean is defined in Java code.

Example 10-17 InquirySlipPrintAisle.java: DialogBean Label Definition

DialogBeanModel model = new DialogBeanModel () ;
model .setResourceID("Retry");

The resourcelD corresponds to the name of the text bundle. For all dialog screens in
the en_US locale, dialogText_en_US.properties contains the bundles that define the
text on the screen, as shown in the following code.

Example 10-18 dialogText_en_US.properties: DialogBean Text Bundle Example

DialogSpec.Retry.title=Device is offline

DialogSpec.Retry.description=Device offline

DialogSpec.Retry.line2=<ARG>

DialogSpec.Retry.line5=Press the Retry button to attempt to use the device again.

Tour Code
In the Tour code, bean models are created to hold the data on the bean components.

Table 10-12 lists some of the important methods in the DialogBeanModel class.

Table 10-12 DialogBeanModel Important Methods

Method Description

setResourceID(String) Used to locate screen text in the text bundle

setArgs(String []) Sets a string of arguments to replace <ARG> tags in the text bundle
setButtonLetter(int, String) Sets the specified letter to be sent when the specified button is pressed
setType(int) Sets the flag indicating whether focus should stay on the response field

10-12 Oracle Retail Point-of-Service Operations Guide

Beans

The following sample from
src\com\extendyourstore\pos\services\tender\LookupStoreCreditSit
e . java shows creation of a DialogBeanModel, prefilling of data in the model, and
display of the model on which the DialogBeanModel is set.

Example 10-19 LookupStoreCreditSite.java: Creating and Displaying DialogBeanModel

DialogBeanModel dialogModel = new DialogBeanModel () ;
DialogModel.setResourceID(“InvalidCashAmount”) ;
dialogModel.setArgs (new String[] ={cashAmt});
dialogModel.setType (DialogScreensIfc.ACKNOWLEDGEMENT) ;
dialogModel.setButtonLetter (BUTTON_OK, "Failure");
ui.showScreen (POSUIManagerIfc.DIALOG_TEMPLATE, dialogModel);

The screen constant, DIALOG_TEMPLATE, is mapped to an overlay screen name
found in the Ul script for the package. The screen constants are defined in
src\com\extendyourstore\ pos\ui\POSUIManagerlfc.java.

When setting the dialog type, refer to the following table. For each dialog type, the
buttons on the dialog are specified. In most cases, the letter sent by the button has the
same name as the button, except for the two types noted.

Table 10-13 lists the available dialog types as defined by constants in
src\com \extendyourstore\pos\ui\DialogScreenslfc.java.

Table 10-13 Dialog Types

Dialog Type Button(s) Details

ACKNOWLEDGEMENT Enter Button sends OK letter

CONFIRMATION Yes, No

CONTINUE_CANCEL Continue, Cancel

ERROR Enter Button sends OK letter, Screen displays red

in the title bar

RETRY Retry

RETRY_CANCEL Retry, Cancel

RETRY_CONTINUE Retry, Continue

SIGNATURE Places a signature panel to capture the

customer’s signature

When setting a letter to a button, refer to the following table that lists the available
button types also defined in DialogScreenslfc.java. These constants are used as
arguments to DialogBean methods that modify button behavior.
Table 10-14 lists the available button types also defined in DialogScreenslfc.java.
Table 10-14 Button Types

Button ButtonID

Enter, OK BUTTON_OK

Yes BUTTON_YES

No BUTTON_NO

Continue BUTTON_CONTINUE

Retry BUTTON_RETRY

Cancel BUTTON_CANCEL

Ul Framework 10-13

Beans

Field Types
This section defines field types available to all beans. The following field types may be
used by all the beans, but DataInputBean is the only bean that understands the FIELD
element. In other words, DatalnputBean is the only bean that defines fields in bean
specifications.
These field types correspond to create() methods in UIFactory.java, such as
createCurrencyField() and createDisplayField(). The application framework uses
reflection to create the fields. Therefore, the field names in the following table can be
set as the fieldType attribute in an XML bean specification using the DatalnputBean
class. The corresponding parameter list is a list of strings that can be set as the
paramlList attribute.
Table 10-15 lists field types and their descriptions.
Table 10-15 Field Types and Descriptions
Parameter List Strings (no
Name Description spaces allowed)
alphaNumericField Allows letters and/or numbers, name,minLength,maxLength
no spaces or characters
constrainedPasswordField Text where the view indicates name,minLength,maxLength
something was typed, but does
not show the original characters
constrained TextAreaField Multi-line area that allows plain name,minLength,maxLength,colum
text, with restrictions on length ns,wrapStyle lineWrap
constrainedField Allows letters, numbers, special name,minLength,maxLength
characters, and punctuation,
with restrictions on length
currencyField Allows decimal numbers only, name,zeroAllowed,negativeAllowe
representing currency, with two d,emptyAllowed
spaces to the right of the decimal
decimalField Allows decimal numbers only name,maxLength,negativeAllowed,
emptyAllowed
displayField Display area that allows a short name
text string or an image, or both
driversLicenseField Allows alphanumeric text that ~ name
can contain " or *
EYSDateField Allows only whole numbers and name
the special character/ —the
formatis MM /DD/YYYY
EYSTimeField Allows only whole numbers and name
the special character:—the
format is HH:MM
nonZeroDecimalField Allows non-zero decimal name,maxLength
numbers only
numericField Allows integers only, no special name,maxLength,minLength
characters or letters
nonZeroNumericField Allows non-zero integers only ~ name,maxLength,minLength
textField Allows letters, numbers, special name
characters, and punctuation
validatingTextField Line of text that can be validated name

by length requirements

10-14 Oracle Retail Point-of-Service Operations Guide

Connections

Connections

Connections configure the handling of an event in the Ul Framework. They are used to
define inter-bean dependencies and behavior and to tie the bean event responses back
to the business logic. When one bean generates an event, another bean can be notified
of the event. Connections have a source bean, a Listener Type for the target, and a
target bean.

Connections attach a source bean to a target bean, which receives event notifications
from the source bean. The Listener Type specifies which type of events can be received.
The XML in the following sections are found in
com\extendyourstore\pos\services\tender\tenderuicfg.xml. Other listeners used in
Point-of-Service include ConfirmCancelAction, HelpAction, and CloseDialogAction.

ClearActionListener

ClearActionListener is an interface that extends ActionListener in Swing to make it
unique for its use in Point-of-Service. The following code shows how this listener is
used in an overlay specification. Adding the ClearActionListener allows the Clear
button to erase the text in the selected field in the work area when the Clear button on
the GlobalNavigationPanelSpec is clicked.

Example 10-20 tender.xml: ClearActionListener XML tag

<CONNECTION
listenerInterfaceName="ClearActionListener"
listenerPackage="com.extendyourstore.pos.ui.behavior"
sourceBeanSpecName="GlobalNavigationPanelSpec"
targetBeanSpecName="CreditCardSpec" />

DocumentListener

DocumentListener is an interface defined in Swing. The following code shows how
this listener is used in an overlay specification. Adding the DocumentListener allows
the Clear button on the GlobalNavigationPanelSpec to be disabled until input is
entered in the selected field on the work area.

Example 10-21 tender.xml: DocumentListener XML tag

<CONNECTION
listenerInterfaceName="DocumentListener"
listenerPackage="javax.swing.event"
sourceBeanSpecName="CreditCardSpec"
targetBeanSpecName="GlobalNavigationPanelSpec" />

ValidateActionListener

ValidateActionListener is an interface that extends ActionListener in Swing to make it
unique for its use in Point-of-Service. The following code shows how this listener is
defined in an overlay specification. Adding the ValidateActionListener allows the
CreditCardSpec to recognize when the Next button on the GlobalNavigationPanelSpec
is clicked, resulting in the validation of the required fields on the work area. If the
required fields are empty, an error dialog appears stating that the required field(s)
must have data.

Ul Framework 10-15

Text Bundles

Example 10-22 tender.xml: ValidateActionListener XML tag

<CONNECTION
listenerInterfaceName="ValidateActionListener"
listenerPackage="com.extendyourstore.pos.ui.behavior"
sourceBeanSpecName="GlobalNavigationPanelSpec"
targetBeanSpecName="CreditCardSpec" />

The fields that are required must be specified for this listener in the overlay
specification for the target bean, as in the following XML from tenderuicfg.xml.

Example 10-23 tenderuicfg.xml: ValidateActionListener Required Fields

<ASSIGNMENT
areaName="WorkPanel"
beanSpecName="CreditCardSpec">
<BEANPROPERTY
propName="RequiredValidatingFields"
propValue="CreditCardField, ExpirationDateField" />
</ASSIGNMENT>

Text Bundles

receiptText

Currently, over forty text bundles exist for the Point-of-Service application. Many of
these bundles are service-specific. A properties file with the same name exists for
every language, located in locales\ <locale name>\config\ui\bundles with the locale
name appended to the filename. For example, the Customer service would have its
text defined in the customerText_en_US.properties file in English.

A similarly named properties file would exist for each locale. Because they are
discussed earlier in the chapter, service-specific bundles and the dialogText bundle are
not described in this section.

From src\com\extendyourstore\pos\config \bundles\BundleConstantslfc.java, the
following code sets a string constant for the receiptText bundle.

Example 10-24 BundleConstantslifc.java: String Constant for receiptText
public static String RECEIPT_BUNDLE_NAME = "receiptText";

In Tour Code, methods to print the receipt exist which call methods on the Utility
Manager to get specified text. The following code is from the printDocument() method
in src\com\extendyourstore\pos\receipt\GiftCardInquirySlip.java.

10-16 Oracle Retail Point-of-Service Operations Guide

Text Bundles

Example 10-25 GiftCardInquirySlip.java: Tour Code to Print Receipt
UtilityManager utility = (UtilityManager)
Gateway.getDispatcher () .getManager (UtilityManagerIfc.TYPE);
Properties slipProps = utility.getBundleProperties (BundleConstantsIfc.RECEIPT
BUNDLE_NAME,

UtilityManagerIfc.RECEIPT_BUNDLES,

LocaleMap.getLocale (LocaleConstantsIfc.RECEIPT));

String title = slipProps.getProperty("GiftCardTitle", "Gift Card
Inquiry").toString();

String giftCardNumber = slipProps.getProperty ("
GiftCardAccount", "Gift Card #").toString();

...define additional properties...

printLineCentered(title);

printLine("");

printLine (blockLine (new StringBuffer (" " + giftCardNumber), new
StringBuffer (cardNumber))) ;

In the receiptText_<locale>.properties file, the corresponding text is defined.

Example 10-26 receiptText_en_US.properties: Text Bundle

Receipt.GiftCardTitle=BALANCE INQUIRY
Receipt.GiftCardAccount=Account #

parameterText

In overlay specifications, the parameterText bundle is specified to define the text for
particular screens. For example, the following code from

src\com \extendyourstore\pos\services\admin\ parametermanager\ parameteruicfg.
xml defines text for the PARAM_SELECT_PARAMETER overlay screen. On this
screen, the names of the parameters found in the parameterText properties file are
displayed.

Example 10-27 parameteruicfg.xml: Overlay Specification Using parameterText
<OVERLAYSCREEN
defaultScreenSpecName="EYSPOSDefaultSpec"
resourceBundleFilename="parameterText"
specName="PARAM_SELECT_PARAMETER">

In the utility package, the ParameterManager is used to retrieve parameter values. The
following code from src\com \extendyourstore\pos\utility \GiftCardUtility.java
shows how a parameter is retrieved from the ParameterManager. The handle to the
ParameterManager, pm, is passed into the method but originally retrieved by the code
ParameterManagerlfc pm =
(ParameterManagerlfc)bus.getManager(ParameterManagerlfc. TYPE);

Example 10-28 GiftCardUtility.java: Tour Code to Retrieve Parameter

public static final String DAYS_TO_EXPIRATION_PARAMETER =
"GiftCardDaysToExpiration";
daysToExpiration = pm.getIntegerValue (DAYS_TO_EXPIRATION_PARAMETER) ;

In the parameterText_<locale>.properties file, the corresponding text is defined. This

text is displayed on the Parameter List screen when viewing Security options and
choosing the Tender parameter group.

Ul Framework 10-17

Text Bundles

Example 10-29 parameterText_en_US.properties: Text Bundle

Common .GiftCardDaysToExpiration=Days To Giftcard Expiration

The value of the parameter is defined in
config\parameter\application\application.xml by the code sample below. Each
parameters belongs to a group, a collection of related parameters.

Example 10-30 application.xml: Definition of Parameter

<PARAMETER name="GiftCardDaysToExpiration"
type="INTEGER"
final="N"
hidden="N">
<VALIDATOR class="IntegerRangeValidator"
package="com.extendyourstore. foundation.manager.parameter">
<PROPERTY propname="minimum" propvalue="1" />
<PROPERTY propname="maximum" propvalue="9999" />
</VALIDATOR>
<VALUE value="365"/>
</PARAMETER>

10-18 Oracle Retail Point-of-Service Operations Guide

11

Manager/Technician Framework

This chapter describes the Manager/Technician pair relationship and how it is used to
provide business and system services to the application. It also describes how to build
a Manager and Technician and provides sample implementation and sample code.

Oracle Retail Platform provides the technology for distributing business and system
processes across the enterprise through plug-in modules called Managers and
Technicians. Manager and Technician classes come in pairs. A Manager is responsible
for communicating with its paired Technician on the same or different tiers. The
Technician is responsible for performing the work on its tier. By design, Managers
know how to communicate with Technicians through a pass-through remote interface
called a valet. The valet is the component that handles data transfer. The valet can
travel across networks. It receives the instructions from the Manager and delivers
them to the Technician. A valet follows the Command design pattern, described in the
Architecture chapter.

Figure 11-1 Manager, Technician and Valet

Application Tier Resource Tier
Application § - =} Manager RMIJMS Technician f===- RE::s:::L
F
Database
Valet

There is a M:N relationship between instances of Managers and Technicians. Multiple
Managers may communicate with a Technician, or one Manager may communicate
with multiple Technicians. While most Managers have a corresponding Technician,
there are cases such as the Utility Manager where no corresponding Technician exists.

Manager/Technician Framework 11-1

There are three Manager /Technician categories. These types have different usages and
are started differently. The three types are:

= Global—These Managers and Technicians are shared by all tours. They provide
global services to applications.

s Session—These Managers and Technicians perform services for a single tour. They
are started by each tour and exist for the length of the tour.

= Embedded—Thread Manager is embedded inside the Oracle Retail Platform
engine. It is essential to the operation of the engine. This is currently the only
embedded Manager.

Table 11-1 lists each of the three Manager/Technician categories, along with examples.

Table 11-1 Manager/Technician Type Examples

Manager/Technician Type Examples

Global Data
Journal
Log
Resource
Tax
Timer
Tier
Trace
XML

Session Device
Parameter
Session
Ul
Web
DomainInterface
TenderAuth

Embedded Thread

Session Managers are started up by the tour bus when a tour is invoked and can only
be accessed by the bus in the tour code. Global Managers, on the other hand, can be
used at any time and are not specific to any tour. Each type of Manager has a specific
responsibility. This table lists the functions of some of the Managers.

11-2 Oracle Retail Point-of-Service Operations Guide

New Manager/Technician

Table 11-2 lists the functions of some of the Managers.

Table 11-2 Manager Names and Descriptions

Manager Name

Description

Data

The Data Manager is the system-wide resource through which the application can
obtain access to persistent resources. The Data Manager tracks all data stores for the
system, and is the mechanism by which application threads obtain logical connections
to those resources for persistence operations.

Device

The Device Manager defines the Java interfaces that are available to an application or
class for accessing hardware devices, like printers and scanners.

Journal

The Journal Manager is the interface that is used to write audit trail information, such
as start transaction, end transaction, and other interesting register events.

Log

The Log Manager is the interface that places diagnostic output in a common location
on one tier for an application, regardless of where the actual tours run.

Parameter

The Parameter Manager is the interface that provides access to parameters used for
customization and runtime configuration of applications.

Thread

The Thread Manager is a subsystem that provides system threads as a pooled
resource to the system.

Tier

The Tier Manager interface starts a tour session and mails letters to existing tour
sessions. The Tier Manager enables the engine to start a tour on any tier specified in a
transfer station, regardless of where that tier runs. In addition, the Tier Manager
enables a bus to mail a letter to any other existing Bus in the system on any tier.

Timer

The Timer Manager provides timer resources to applications that require them. It
does not have a Technician because all timers are local on the tier where they are
used.

User Interface

The UI Manager is a mechanism for accessing and manipulating user interface
components. The user interface subsystem within a state machine application must
also maintain a parallel state of screens, so the appropriate screens can be matched
with the application state at all times. The user interface subsystem within a
distributed environment must enable application logic to be completely isolated from
the user interface components.

XML

The XML Manager locates a specified XML file, parses the file, and returns an XML
parse tree.

New Manager/Technician

When creating a new Manager and Technician pair, you must create a Manager and
Technician class, a Valet class, and interfaces for each class. Managers are the
application client to a Technician service, Technicians do the work, and the valet tells
the Technicians what work to do. Managers can be considered proxies for the services
provided by the Technicians. Technicians can serve as the interfaces to resources.
Managers communicate with Technicians indirectly using valets. Valets can be thought
of as commands to be executed remotely by the Technician. Samples for the new
classes that need to be created are organized together in the next section.

Requesting services from the Managers only requires familiarity with the interface
provided by Managers. However, building a new Manager/Technician pair requires
implementing the interfaces for both the new Manager and Technician, as well as
creating a Valet class.

Manager/Technician Framework 11-3

New Manager/Technician

Manager Class

A Manager merely provides an API to tour code. It behaves like any other method
except that the work it performs may be completed remotely. The input to a Manager
is usually passed on to the valet that in turn, passes it on to the Technician, which
actually performs the work.

The Manager class provides methods for sending valets to the Technician. The
sendValet() method makes a single attempt to send a valet to the Manager’s
Technician. The sendValetWithRetry() method attempts to send the valet to the
Manager’s Technician, and if there is an error, reset the connection to the Technician
and then try again.

Managers must implement the Managerlfc, which requires the methods in the
follwing table.

Table 11-3 lists Managerlfc methods.

Table 11-3 Managerlfc Methods

Method Description

MailboxAddress Gets address of Manager
getAddress()

Boolean getExport() Returns if this Manager is exportable
String getName() Gets name of Manager

void setExport(Boolean) Sets whether the Manager is exportable

void setName(Strin,

g) Sets name of Manager

void shutdown()

Shuts this Manager down

void startUp() Starts this Manager
Often, a subclass of Manager can use these methods exactly as written. Unlike the
Technicians, Managers seldom require special startup and shutdown methods, because
most Managers have no special resources associated with them.

Manager Configuration

11-4 Oracle Retai

You can provide runtime configuration settings for each Manager using a conduit
script. The Dispatcher that loads Back Office configures the Managers by reading
properties from the conduit script and calling the corresponding set() method using
the Java reflection utility. All properties are set by the Dispatcher before the Dispatcher
calls startUp() on the Manager.

Every Manager should have the following:

= Name—Tour code typically locates a Manager using its name. Often this name is
the same as the name of the class and may be defined as a constant within the
Manager. This is what the getName() method returns.

» Class—This is the name of the class, minus its package.
= Package—This is the Java package where the class resides.

Managers may have an additional property file defined that specifies additional
information such as the definition of transaction mappings. If a separate configuration
script is defined, the startup() method must read and interpret the configuration script.
The following sample from config\conduit\CollapsedConduitFF.xml shows this.

| Point-of-Service Operations Guide

New Manager/Technician

Example 11-1 CollapsedConduitFF.xml: Data Manager Configuration

<MANAGER name="DataManager" class="DataManager"
package="com.extendyourstore.foundation.manager.data">
<PROPERTY propname="configScript"
propvalue="classpath://config/manager/PosDataManager.xml" />
</MANAGER>

Technician Class

Technicians implement functions needed by Back Office to communicate with external
or internal resources, such as the Ul or the store database. Technicians must implement
the Technicianlfc, which requires the following methods:

Table 114 lists TechnicianIfc methods.

Table 11-4 Technicianlfc Methods

Method Description

MailboxAddress Gets address of Technician
getAddress()

Boolean getExport() Checks if this Technician is exportable
String getName() Gets name of Technician

void shutdown()

Shuts this Technician down

void startUp()

Starts up Technician process

Often, a subclass of Technician can use these methods exactly as written. The most
likely methods to require additional implementation are startUp() and shutdowny(),
which needs to handle connections with external systems.

Technician Configuration

The Technician is configured within the conduit script. Each Technician should have
the following:

Name

A Manager typically locates its Technician using its name. Often this name is the same
as the name of the class and may be defined as a constant within the Technician. This
is what Technician.getName() returns.

Class
The name of the class, minus its package.

Package
The Java package where the class resides.

Export

This should be Y if the Technician may be accessed by an external Java process; N
otherwise. The value returned by Technician.getExport() is based on this. In
Technicians, it indicates whether the Technician can be remotely accessed from another
tier.

commScheme (optional)
Specifies the communication scheme used to communicate with the Technician. The
default is RML

Manager/Technician Framework 11-5

New Manager/Technician

Valet Class

encryptValets (optional)
Specifies whether the valets should be encrypted during network transmission. The
default is N.

compressValets (optional)
Specifies whether the valets should be compressed during network transmission. The
default is N.

Some Technicians may require complex configuration. In cases like this, it may be
preferable to define an XML configuration script specific to the Technician, rather than
to rely on the generic property mechanism. Therefore, Technicians may have an
additional property defined that specifies additional information such as log formats
or parameter validators. If a separate configuration script is defined, the startup()
method must read and interpret the configuration script. The following sample from
config\conduit\CollapsedConduitFF.xml shows an additional script defined in the
configuration of the Tax Technician.

Example 11-2 CollapsedConduitFF.xml: Tax Technician Configuration

<TECHNICIAN name="TaxTechnician" class = "TaxTechnician"
package = "com.extendyourstore.domain.manager.tax"
export = "Y" >

<PROPERTY

propname="taxSpecScript"
propvalue="classpath://config/tax/TaxTechnicianRates.xml"
/>
</TECHNICIAN>

The valet is the intermediary between the Manager and Technician. Valets act as
commands and transport information back and forth between the Manager and
Technician. Valets must implement Valetlfc, which contains a single method.

Table 11-5 lists the ValetIfc method.

Table 11-5 Valetifc Method

Method

Description

Serializable
execute(Object)

Executes the valet-specific processing on the object

Sample Code

The execute method is called by the Technician after the valet arrives at its destination
as a result of the Manager’s sendValet() or sendValetWithRetry() methods, as in the
following example from
src\com\extendyourstore\foundation\manager\ parameter \ParameterManager.java.

Example 11-3 ParameterManager.java: Valet Passed By Manager

MailboxAddress techAddress = getParameterTechnicianAddress();
retVal = sendValetWithRetry(valet, techAddress);

The examples below illustrate the primary changes that need to be made to create a
Manager/Technician pair. Note that interfaces also need to be created for the new
Manager, Technician, and Valet classes.

11-6 Oracle Retail Point-of-Service Operations Guide

New Manager/Technician

Configuration

The conduit script needs to define the location of the Manager and Technician. This
code would be found in a conduit script such as config\conduit\ClientConduit.xml.
These code samples would typically be in different files on separate machines. It
would include snippets like the following.

Example 11-4 Sample Manager and Technician Configuration

<MANAGER name="MyNewManager"

class="MyNewManager"

package="com.extendyourstore. foundation.manager.mynew">
</MANAGER>

<TECHNICIAN name="MyNewTechnician"
class="MyNewTechnician"
package="com.extendyourstore. foundation.manager .mynew"
export="Y" >
<PROPERTY propname="techField" propvalue="importantVal"/>
<PROPERTY propname="configScript"

propvalue="classpath://com/extendyourstore/pos/config/myconfigscript.xml"/>
</TECHNICIAN>

Tour Code

Tour code might include a snippet like the following, which might be located in
src\com\extendyourstore\pos\services.

Example 11-5 Sample Manager in Tour Code

try
{
MyNewManagerIfc myManager =
(MyNewManagerIfc)bus.getManager ("MyNewManager") ;
myManager .doSomeClientWork ("From site code ");
catch (Exception e)

{

logger.info (bus.getServiceName (), e.toString());

Manager

This is a minimal Manager class to illustrate how to create a new Manager. A new
Manager interface also needs to be created for this class. Note that this class references
the sample MyNewTechnician class shown in a later code sample.

Manager/Technician Framework 11-7

New Manager/Technician

Example 11-6 Sample Manager Class

package com.extendyourstore.foundation.manager.mynew;

import com.extendyourstore.foundation.manager.log.LogMessageConstants;
import com.extendyourstore.foundation.tour.manager.Manager;

import com.extendyourstore.foundation.tour.manager.ValetIfc;

public class MyNewManager extends Manager implements MyNewManagerIfc

{
[=
/**
Constructs MyNewManager object, establishes the manager's address, and
identifies the associated technician.
*/
[=
public MyNewManager ()
{
getAddressDispatcherOptional () ;
setTechnicianName ("MyNewTechnician") ;
}
[=== m e ———— oo
/’k*
This method processes the input argument (via its technician).
@param input a String to illustrate argument passing.
@return a transformed String
**/
[=== m e oo
public String doSomeClientWork (String input)
{
String result = null;
ValetIfc valet = new MyNewValet (input) ;
try
{
result = (String)sendValetWithRetry(valet);
}
catch (Exception e) // usually ValetException or CommException
{
logger.error (LogMessageConstants.SCOPE_SYSTEM,
"MyNewManager .doSomeClientWork, " +
"could not sendValetWithRetry: Exception = {0}", e);
}
logger .debug (LogMessageConstants.SCOPE_SYSTEM,
"MyNewManager .doSomeClientWork, returns {0}", result);
return result;
}
}
Valet

The following code defines a valet to send input to MyNewTechnician.

11-8 Oracle Retail Point-of-Service Operations Guide

New Manager/Technician

Example 11-7 Sample Valet Class

package com.extendyourstore.foundation.manager.mynew;

import com.extendyourstore.foundation.tour.manager.ValetIfc;
import java.io.Serializable;

public class MyNewValet implements ValetIfc

{
/** An input used by the Technician. **/
protected String input = null;

ittt
/'k*
The constructor stores the input for later use by the Technician.
@param input the input to be stored.
**/
[= m e oo

public MyNewValet (String input)

{

this.input = input;
}
ittt bt b
/'k*

This method causes the MyNewTechnician to "doSomething" with the input

and returns the results.

@param techIn the technician that will do the work

@return the results of "MyNewTechnician.doSomething"
**/
et

public Serializable execute(Object techIn) throws Exception

{
if (! (techIn instanceof MyNewTechnician))
{
throw new Exception("MyNewTechnician must passed into execute.");
}
MyNewTechnician tech = (MyNewTechnician)techIn;
String result = tech.doSomething (input) ;
return result;
}
}
Technician

The following code provides an example of a minimal Technician class. A new
Technician interface also needs to be created for this class.

Manager/Technician Framework 11-9

Manager/Technician Reference

Example 11-8 Sample Technician Class

package com.extendyourstore.foundation.manager.mynew;

import com.extendyourstore.foundation.manager.log.LogMessageConstants;
import com.extendyourstore.foundation.tour.manager.Technician;
import com.extendyourstore.foundation.tour.manager.ValetIfc;

public class MyNewTechnician extends Technician implements MyNewTechnicianIfc

{
/** A value obtained from the config script. **/
protected String techField = null;

public void setTechField(String value)
{

techField = value;

public void setConfigScript (String value)
{

// Complicated configuration could go here

/*‘k
This method processes the input argument (via its Technician).
@param input a String to illustrate argument passing.
@return a transformed String

public String doSomething(String input)
{
String result = null;
result = "MyNewTechnician processed " + input + " using " + techField;
logger.debug (LogMessageConstants.SCOPE_SYSTEM,
"MyNewTechnician.doSomething, returns {0}", result);
return result;

Manager/Technician Reference

The following sections describe a Manager /Technician pair, important methods on the
Manager, and an example of using the Manager in the application code.

Parameter Manager/Technician

The Parameter Manager is the interface that allows parameters to be used for
customization and runtime configuration of applications. The following code from
config\conduit\ClientConduit.xml specifies the location and properties of the
Parameter Manager and Technician. Note that the Parameter Manager is a Session
Manager because it is defined with a PROPERTY element inside the APPLICATION
tag. This means it can only be accessed via a tour bus.

11-10 Oracle Retail Point-of-Service Operations Guide

Manager/Technician Reference

Example 11-9 ClientConduit.xml: Code to Configure Parameter Manager

<APPLICATION name="APPLICATION"
class="TierTechnician"
package="com.extendyourstore. foundation.manager.tier"

startservice="classpath://com/extendyourstore/pos/services/main/main.xml">
<PROPERTY propname="managerData"
propvalue="name=ParameterManager,managerpropname=className, managerpropvalue=com.ex
tendyourstore. foundation.manager.parameter.ParameterManager" />

<PROPERTY propname="managerData"

propvalue="name=ParameterManager ,managerpropname=useDefaults, managerpropvalue=Y"/>

</APPLICATION>

Example 11-10 ClientConduit.xml: Code to Configure Parameter Technician

<TECHNICIAN name="ParameterTechnician" class = "ParameterTechnician"
package = "com.extendyourstore.foundation.manager.parameter"
export = "Y" >

<PROPERTY propname="paramScript"

propvalue="classpath://config/manager/PosParameterTechnician.xml"/>
</TECHNICIAN>

The Parameter Manager classes contain methods to retrieve parameter values. The
Customization chapter describes details about where and how parameters are defined.
A list of parameters can be found in the Parameter Names and Values Addendum.

Table 11-6 lists the important ParameterManagerlfc methods, implemented in
src\com\extendyourstore\foundation\manager\ parameter \ ParameterManager.java.

Table 11-6 Important ParameterManagerlfc Methods

Method

Description

Serializable[]

Returns the values of the specified parameter

getParameterValues(String

paramName)

String[]

Returns as an array of Strings the values of the specified parameter

getStringValues(String

parameterName)

String

Returns as a String the value of the specified parameter

getStringValue(String

parameterName)

Integer

Returns as an Integer the value of the specified parameter

getIntegerValue(String

parameterName)

Double

Returns as a Double the value of the specified parameter

getDoubleValue(String

parameterName)

The following code sample from
src\com\extendyourstore\ pos\services \browser\BrowserControlSite.java illustrates
the use of the Parameter Manager to retrieve parameter values.

Manager/Technician Framework 11-11

Manager/Technician Reference

Example 11-11 BrowserControlSite.java: Tour Code Using ParameterManagerlfc

ParameterManagerIfc pm =

(ParameterManagerIfc)bus.getManager (ParameterManagerIfc.TYPE) ;
Serializable homeUrl|[] = pm.getParameterValues ("BrowserHomeUrl");
String cookieString = pm.getStringValue ("CookiesEnabled");

Ul Manager/Technician

The Ul Manager/Technician is used to abstract the Ul implementation. User events
captured by the screen are sent to the Ul Manager. The Ul Manager communicates
with a Ul Technician, which updates the screen for a client running the UL The Ul
Technician provides access to the application UI Subsystem. There is one UlTechnician
per application.

The model is an object that is used to transport information between the screen and the
Ul Manager via the Ul Technician. Models and screens have a one-to-one relationship.
The UI Manager allows you to set the model for a screen and retrieve a model for a
screen; it knows which screen to show and which model is associated with the screen.
The model has data members that map to the entry fields on the given screen. It can
also contain data that dictates screen behavior, such as the field that has the starting
focus or the state of a specific field.

The following code samples from config\conduit\ClientConduit.xml specify the Ul
Manager and Technician properties. Like the Parameter Manager, the Ul Manager can
only be accessed via a tour bus.

Example 11-12 ClientConduit.xml: Code to Configure Ul Manager

<APPLICATION name="APPLICATION"
class="TierTechnician"
package="com.extendyourstore. foundation.manager.tier"

startservice="classpath://com/extendyourstore/pos/services/main/main.xml">
<PROPERTY propname="managerData"

propvalue="name=UIManager, managerpropname=className, managerpropvalue=com.extendyou
rstore.pos.ui.POSUIManager" />

...configuration of other Managers...

</APPLICATION>

Example 11-13 ClientConduit.xml: Code to Configure Ul Technician

<TECHNICIAN
name="UITechnician"
class="UITechnician"
package="com.extendyourstore. foundation.manager.gui" export="Y">

<CLASS
name="UISubsystem"
package="com.extendyourstore.pos.ui"

class="POSJFCUISubsystem">

<CLASSPROPERTY
propname="configFilename"

propvalue="classpath://com/extendyourstore/pos/config/defaults/defaultuicfg.xml"
proptype="STRING" />

</TECHNICIAN>

11-12 Oracle Retail Point-of-Service Operations Guide

Manager/Technician Reference

The Ul is configured in XML scripts. Each tour has its own uicfg file in which screen
specifications are defined. The screen constants that bind to screen specification names
are defined in src\com\extendyourstore\ pos\ui\POSUIManagerlfc.java. The Ul
Framework chapter discusses screen configuration in more detail.

POSUIManager is the Ul Manager for the Back Office application. One is started for
each tour that is created.

Table 11-7 lists important POSUIManagerlfc methods, implemented in
src\com\extendyourstore\pos\ui\POSUIManager.java.

Table 11-7 Important POSUIManagerifc Methods

Method Description

void showScreen(String Displays the specified screen using the specified model
screenld, UIModellfc

beanModel)

UIModellfc Gets the model from the specified screen

getModel(String screenld)

String getInput() Gets the contents of the most recent Response area as a string
void setModel(String Sets the model for the specified screen

screenld, UIModellfc

beanModel)

These methods are used in tour code to display a screen, as in the following code from
src\com\extendyourstore\ pos\services\GetCheckInfoSite.java.

Example 11-14 GetCheckinfoSite.java: Tour Code Using POSUIManagerlfc

POSUIManagerIfc ui = (POSUIManagerIfc) bus.getManager (UIManagerIfc.TYPE);
CheckEntryBeanModel model = new CheckEntryBeanModel () ;
model.setCountryIndex (countryIndex) ;

...set additional attributes...

ui.showScreen (POSUIManagerIfc.CHECK_ENTRY, model);

Journal Manager/Technician

The Journal Manager provides location abstraction for journal facilities by
implementing the JournalManagerlfc interface. By communicating with a
JournalTechnicianlfc, the Journal Manager removes your need to know the location of
resources. The Journal Technician is responsible for providing journal facilities to other
tiers. The Journal Manager must be started on each tier that uses it. There must be a
LocalJournalTechnician running on the local tier or an exported JournalTechnician
running on a remote tier, or both. Transactions should be written to E-journal only
when completed.

The following code samples from config\conduit\CollapsedConduitFF.xml specify
the Journal Manager and Technician properties. Note that this Manager is a Session
Manager; it is defined outside of the APPLICATION element in which the Ul Manager
and Parameter Manager were defined. This allows the Journal Manager to be accessed
outside of the bus, meaning it is more accessible and flexible.

Manager/Technician Framework 11-13

Manager/Technician Reference

Example 11-15 CollapsedConduitFF.xml: Code to Configure Journal Manager

<MANAGER name="JournalManager"
class="JournalManager"
package="com.extendyourstore. foundation.manager.journal"
export="N">

</MANAGER>

Example 11-16 CollapsedConduitFF.xml: Code to Configure Journal Technician

<TECHNICIAN name="LocalJournalTechnician"
class="JournalTechnician"
package="com.extendyourstore. foundation.manager.journal"
export="Y">

</TECHNICIAN>

The Journal Manager must be started on each tier that uses it. The Journal Manager
sends journal entries in the following order: (1) Console if consolePrintable is set, (2)
LocalJournalTechnician if defined, (3) JournalTechnician if defined.

Table 11-8 lists important JournalManagerlfc methods, implemented in
src\com\extendyourstore\foundation\manager\journal\JournalManagerjava.

Table 11-8 Important JournalManagerifc Methods

Method Description

void journal(String user, ~ Adds a new entry to the journal
String transaction, String

text)

void Sets whether journal entries are sent to the console
setConsolePrintable(String

printable)

void index(String Adds a new entry to the index to provide search capabilities to the transaction

transaction, String key)

void setRegisterID(String Sets a register ID associated with the journal entry
registerID)

These methods are used in tour code to configure the E-journal. This code is from
src\com\extendyourstore\ pos\services\GetCheckInfoSite.java.

Example 11-17 GetCheckinfoSite.java: Tour Code Using JournalManagerlfc

JournalManagerIfc journal =
(JournalManagerIfc) Gateway.getDispatcher () .getManager (JournalManagerIfc.TYPE);
journal.journal (trans.getCashier () .getLoginID(),
trans.getTransactionID(),
purchaseOrder.toJournalString()) ;

11-14 Oracle Retail Point-of-Service Operations Guide

12

Retail Domain

This chapter contains an overview of the Oracle Retail business objects, including
steps to create, extend, and use them. The Retail Domain is the set of classes that
represent the business objects used by Point-of-Service, which are contained in the
Commerce Services layer of the architecture. Typical domain classes are Customer,
Transaction, and Tender.

The Retail Domain is a set of business logic components that implement retail-oriented
business functionality in Point-of-Service. The Retail Domain is the part of the
Commerce Services layer of the Oracle Retail architecture that is retail-specific. The
Retail Domain provides a common vocabulary that enables the expression of retail
functionality as processes that can be executed by the Oracle Retail Platform engine.

The Retail Domain is a set of retail-oriented objects that have a set of attributes. They
do not implement work flow or a user interface. The Tour scripts executed by Oracle
Retail Platform provide the work flow, and the Ul subsystem provides the user
interface. The Retail Domain objects simply define the attributes and logic for
application data.

A significant advantage of Retail Domain objects is that they can be easily used as-is or
can be extended to include attributes and logic that are specific to a retailer’s business
requirements. The Domain objects could be used as a basis for many different types of
retail applications. The objects serve as containers for the transient data used by the
applications. Domain objects do not persist themselves, but they are persisted via the
OracleRetailStore Data Manager interface.

Retail Domain is packaged as domain.jar and domainconfig jar, which are installed
with the Point-of-Service application. The Data Managers and Technicians, along with
the related Data Transactions and Data Operations classes that they require, are also
packaged within the Retail Domain jars.

All Retail Domain classes extend EYSDomainlfc. This interface ensures the following
interfaces are implemented:

Serializable
This communicates Java's ability to flatten an object to a data stream and, conversely,
reconstruct the object from a data stream, when using RMI.

Cloneable
This communicates that it is legal to make a field-for-field copy of instances of this
class.

The EYSDomainlfc interface also requires that the following methods be implemented:

Retail Domain 12-1

http://www.microsoft.com

New Domain Object

equals()
This method accepts an object as a parameter. If the object passed has data attributes
equal to this object, the method returns true, otherwise it returns false.

clone()
This method creates a new instance of the class of this object and initializes all its fields
with exactly the contents of the corresponding fields of this object.

toString()
This method returns a String version of the object contents for debugging and logging
purposes.

New Domain Object

When an existing Retail Domain object contains attributes and methods that are a
subset of those required, a new Retail Domain object can extend the existing object. For
example, if a new Domain object is necessary for the Tender service, the
AbstractTenderLineltem class can be extended. This class implements
TenderLineltemlfc, which extends the generic EYSDomainlfc interface. If no similar
Domain object exists in the application, create a new Domain object. The usual coding
standards apply; reference the Development Standards document.

1. Create a new interface extending EYSDomainlfc.

All Retail Domain objects extend EYSDomainlfc, but existing Services have an
interface available for Domain objects related to that Service. For example,
TenderLineltemlfc, which extends EYSDomainlfc, is the interface implemented by
each Retail Domain object interface in the Tender service. The following code
sample shows the header of TenderPurchaseOrderlfc, found in
src\com\extendyourstore\domain\tender\ TenderPurchaseOrderlfc.java.

Example 12-1 TenderPurchaseOrderlfc.java: Class Header

public interface TenderPurchaseOrderIfc extends TenderLineltemIfc
{

public static final String revisionNumber = "$Revision: 1.0 §$";
// begin TenderPurchaseOrderIfc

}

2. Create a new Java class that implements the interface created in the previous step.
The class of a brand new object that does not fit an existing pattern should extend
AbstractRoutable, which defines a “luggage tag” for EYS domain classes;
otherwise, the class should extend the existing class that represents a similar type
of object.

The following code sample shows the header for the TenderPurchaseOrder
Domain object from
src\com\extendyourstore\domain\tender\TenderPurchaseOrder.java.

Example 12-2 TenderPurchaseOrder.java: Class Header

public class TenderPurchaseOrder extends AbstractTenderLineltem implements
TenderPurchaseOrderIfc

{

public static final String revisionNumber = "S$Revision: 1.0 s$";

//begin TenderPurchaseOrder

}

12-2 Oracle Retail Point-of-Service Operations Guide

Domain Object in Tour Code

In the implementation of the class, make sure to do the following;:
= Define attributes for the class.

Check the superclass to see if an attribute has already been defined. For
example, the AbstractTenderLineltem class defines the amountTender
attribute, so amountTender should not be redefined in a new Tender Domain
object.

If the new domain object has numerous constants, you might consider
defining ObjectNameConstantslfc.java

= Define get and set methods for the attributes as necessary.

= Implement methods required by EYSDomainlfc: equals(), clone(), toString(),
and getRevisionNumber(). Reference the superclass as appropriate. toString|()
should indicate the class name and revision number.

3. To return a new instance of the Domain object, add a method to
src\com \extendyourstore\domain \factory \DomainObjectFactorylfc.java called
getObjectNamelnstance().

Domain objects should always be instantiated by the factory. The following code
sample shows the method interface to return an instance of the
TenderPurchaseOrder object.

Example 12-3 DomainObjectFactoryifc.java: Method For Instantiating
TenderPurchaseOrder

public TenderPurchaseOrderIfc getTenderPurchaseOrderInstance();

4. To return a new instance of the Domain object, implement the method
src\com\extendyourstore\domain\factory \ DomainObjectFactory;java called
getObjectNamelnstance().

The following code sample shows the method definition to return an instance of
the TenderPurchaseOrder object.

Example 12-4 DomainObjectFactory.java: Method For Instantiating
TenderPurchaseOrder

public TenderPurchaseOrderIfc getTenderPurchaseOrderInstance ()

{

return (new TenderPurchaseOrder());

}

Domain Object in Tour Code

Once a Retail Domain class is identified for use, the Java code needs to be written to
instantiate the object and call the object’s methods. This code is typically located in
site, road and aisle classes of application tours. There are two very important things to
keep in mind when using Domain objects in Tour code:

= Retail Domain objects cannot be instantiated directly. They must be generated by
the factory.

= Allinteraction with Domain objects take place through the object’s interface, even
interaction between objects.

Retail Domain 12-3

Domain Object Reference

The steps to use the object involve the following:

1. Get an instance of the DomainObjectFactory and request the instance of the object
from the factory.

The factory class is instantiated once for the application and returns instances of
Retail Domain objects. Since different implementations use different classes to
implement the objects, the factory keeps track of which class implements the
requested object.

The following line of code from
src\com\extendyourstore\services\tender \GetCheckInfoSite.java gets an
instance of a Check object.

Example 12-5 GetCheckinfoSite.java: Instantiating Check from DomainObjectFactory

check = DomainGateway.getFactory().getTenderCheckInstance();

2. Call methods on the object.

Now that an instance of the object exists, methods of the class can be called. The
following lines of code from GetCheckInfoSite.java sets attributes on the Check
object.

Example 12-6 GetCheckinfoSite.java: Setting Attributes of Check

check.setTenderLimits (cargo.getTenderLimits ()) ;
check. setAmountTender (amount) ;

Domain Object Reference

The Domain Objects discussed below include a description of the purpose of the
object, classes and interfaces involved in its construction, a class diagram, and
examples in Tour code.

CodeListMap

To implement Point-of-Service metadata such as reasons for return, shipping methods,
and departments, the CodeList objects are used. This data is referred to as “reason
codes” from the UL Codes are read in from the database at application startup. They
are available from the Utility Manager.

12-4 Oracle Retail Point-of-Service Operations Guide

Domain Object Reference

Table 12-1 lists files are involved in the formation of CodeLists. All are found in

src\com\extendyourstore\domain\utility.

Table 12-1 CodeListMap Object Classes and Interfaces

Class or Interface

Description

Important Methods

This class handles the functions
associated with an entry in a list

void setText (String)
void setCode (int)
void setEnabled(boolean)

CodeEntry of codes. String getCodeString()
CodelList This class is used for handling lists ~ CodeEntryIfc[] getEntries()
of codes which map to strings, such void setEntries(CodeEntryIfc[])
as reason codes. void addEntry (CodeEntryIfc)
CodeEntryIfc findListEntry (String)
CodeListMap This class is used for the collection =~ CodeListIfc[] getLists()
of code lists used in applications. CodeListIfc
getCodeListInstance(String)
CodeListIfc add(CodeListIfc)
CodeConstantslfc This class defines constants used for This class does not contain methods.

the implementation of CodeList and
CodeEntry. It includes the constants
for the lists currently defined, such
as
TimekeepingManagerEditReasonCo
des and TillPayOutReasonCodes.

Retail Domain 12-5

Domain Object Reference

Currency

The following class diagram illustrates the relationship between these classes.

Figure 12-1 CodeListMap Class Diagrams

EYSDomainlfc CodeConstantslfc

(from utility) (from utility)

<<interface>> <<interface>> <<interface>>

CodeListMaplfc CodeListlfc CodeEntrylfc

(from utility) (from utility)

X :

CodeListMap CodeList CodeEntry
—> Ko—>

(from utility) (from utility) (from utility)

(from utility)

To use the CodeListMap, the Utility Manager provides two methods:
s CodeListMaplfc getCodeListMap()
s void setCodeListMap(CodeListMaplfc)

Tour code that requires a code entry would retrieve it as in the following code from
src\com\extendyourstore\ pos\services\common\ItemInfoEntered Aisle java.

Example 12-7 IteminfoEnteredAisle.java: CodelListlfc in Tour Code

CodeListIfc list = utility.getCodeListMap().get (CodeConstantsIfc.CODE_LIST_UNIT_
OF_MEASURE) ;

CodeEntryIfc uomCodeEntry = list.findListEntry(uomString);

String uomCode = uomCodeEntry.getCodeString();

All currency representation and behavior is abstracted, so any currency can be
implemented. Currency is a Domain Object that handles the behaviors and attributes
of money used as a medium of exchange. It is important to use Currency objects and
methods to compare and manipulate numbers instead of primitive types. Currency is
implemented by the following classes. They can be found in
src\com\extendyourstore\domain\currency.

12-6 Oracle Retail Point-of-Service Operations Guide

Domain Object Reference

Table 12-2 lists Currency Object Classes a

nd Interfaces.

Table 12-2 Currency Object Classes and Interfaces

Class or Interface

Description

Important Methods

Currencylfc This interface defines a common CurrencyIfc add(CurrencyIfc)
interface for currency objects. CurrencyIfc negate()
String getCountryCode ()
AbstractCurrency This abstract class contains the BigDecimal getBaseConversionRate ()
behaviors and attributes common to void setNationality(String)
all currency. String getNationality()
CurrencyDecimal This class contains the behaviors CurrencyIfc add(CurrencylIfc)

and attributes common to all
decimal-based currency.

CurrencyIfc negate()
String getCountryCode ()

All Currency types extend AbstractCurrency and implement Currencylfc. For

example, if creating a class to support Canadian currency, the class should extend

CurrencyDecimal and implement Currencylfc.

Figure 12-2 Currency Class Diagram

=<inte

(from c

Currencylfc

rface>>

urrency)

:

(from c

AbstractCurrency

urrency)

CurrencyDecimal
(from currency)

CurrencylUsD
(from currency)

CurrencyUSD()
CurrencyUsD()
CurrencyUSD()

Clone()
setCloneAttributes()
getDenominationNames()
getDenominationValues()
getDenominationValue()
getCountryCode()
getScale()
getRevisionNumber()
main()

Retail Domain

12-7

Domain Object Reference

Transaction

The following code is an example of the Currency object used in
src\com \extendryourstore\ pos\services\tender \ PurchaseOrderAmountEntered Aisl
ejava.

Example 12-8 PurchaseOrderAmountEnteredAisle.java: Currencyilfc in Tour Code

Currencylfc balanceDue = totals.getBalanceDue();

CurrencyIfc amount = DomainGateway.getBaseCurrencyInstance (poAmount) ;
if (! (amount.compareTo (balanceDue) == Currencylfc.EQUALS)) {
...display invalid PO Amount message. ..

}

A Transaction is a record of business activity that involves a financial and/or
merchandise unit exchange or the granting of access to conduct business with an
external device. There are various types of Transactions found in
src\com\extendyourstore\domain\transaction such as LayawayTransaction,
StoreOpenCloseTransaction, and BankDepositTransaction. SaleReturnTransaction is a
commonly used Domain Object that extends AbstractTenderableTransaction. The
classes involved in the implementation of a SaleReturnTransaction and its behaviors
are described in the following table.

Table 12-3 lists classes involved in the implementation of a SaleReturnTransaction and
its behaviors.

Table 12-3 Transaction Object Classes and Interfaces

Class or Interface Description Important Methods
SaleReturnTransaction This class is a sale or return void addTender (TenderLineltemIfc)
transaction. CustomerIfc getCustomer ()

TransactionTotalsIfc
getTenderTransactionTotals ()

AbstractTenderableTransaction This class contains the behavior void
associated with a transaction that addLineItem(SaleReturnLineItemIfc)
involves the tendering of money. void linkCustomer (CustomerIfc)
void
addLineItem(AbstractTransactionLinelt
emIfc)
Transaction This class represents a record of CustomerInfoIfc getCustomerInfo()
business activity that involves a String getTillID()

financial and/or merchandise unit void setCashier (EmployeeIfc)
exchange or the granting of access

to conduct business at a specific

device, at a specific point in time for

a specific employee.

12-8 Oracle Retail Point-of-Service Operations Guide

Domain Object Reference

Table 12-3 Transaction Object Classes and Interfaces

Class or Interface Description Important Methods
TenderableTransactionlfc This is the interface for all void addTender (TenderLineltemIfc)
transactions that involve the TenderLineItemIfc[]
tendering of money. getTenderLineltems ()
void
setTransactionTotals (TransactionTotal
sIfc)
SaleReturnTransactionlfc This is the interface for all void addTender (TenderLineltemIfc)
sale/return transactions. CustomerIfc getCustomer ()

TransactionTotalsIfc
getTenderTransactionTotals ()

RetailTransactionlIfc This is the interface for all retail EmployeeIfc getSalesAssociate()
transactions. AbstractTransactionLineItemIfc[]
getLineltems ()

String getOrderID()

The following code sample from
src\com\extendyourstore\domain\arts\JdbcSaveTenderLineltems.java shows how
SaleReturnTransaction is used in Tour code.

Example 12-9 JdbcSaveTenderLineltems.java: SaleReturnTransactionlfc in Tour Code

public void saveTenderLineItems (JdbcDataConnection dataConnection,
TenderableTransactionIfc transaction) throws
DataException
{
if (transaction instanceof SaleReturnTransactionIfc)

{

SaleReturnTransactionIfc srt = (SaleReturnTransactionIfc)
transaction;

int numDiscounts = 0;

if (srt.getTransactionDiscounts() != null)

{

numDiscounts = srt.getTransactionDiscounts().length;

}

lineItemSequenceNumber = srt.getLineltems().length + 1 +
numDiscounts;

}

...code to handle different transaction types...

}

Retail Domain 12-9

Domain Object Reference

12-10 Oracle Retail Point-of-Service Operations Guide

13

Store Database

This chapter describes the database used with Point-of-Service and how to interface
with it, including:

» Updating tables

= Rebuilding the database

» Creating new tables

= Updating flat file configurations

The chapter includes an example of writing code to store new data in the database
using the Tender function.

ARTS Compliance

The Oracle Retail Point-of-Service system uses an Association of Retail Technology
Standards (ARTS)-compliant database to store transactions and settings. The ARTS
standard (see http://www.nrf-arts.org/) is a key element in maintaining
compatibility with other hardware and software systems.

Although the Point-of-Service system complies with the ARTS guidelines, it does not
implement the entire standard, and contains some tables which are not specified by
ARTS. For example, ARTS tables for store equipment and recipe are not included,
while tables for tender types and reporting have been added.

The ARTSDatabaselfc.java file defines the mapping of ARTS names to constants in
application code.

Understanding Data Managers and Technicians

The following diagram shows how Data Managers and Data Technicians handle
communication with the database in the Point-of-Service application.

Store Database 13-1

http://www.nrf-arts.org/

Understanding Data Managers and Technicians

Figure 13-1 Data Managers and Data Technicians

Data Data
Manager Technician Flat
Configuration Configuration File

Script Script

w

P
o S » Data Technician |
Application ;—» Manager L ;
g Data Technician |
¢ P
T . Local
ransaction Database

Queue

The Point-of-Service system uses the following components to write to the database:

The Data Manager’s primary responsibilities are to provide an API to the
application code and to contact the Data Technician and pass it data store requests.
Typically, there are multiple Data Manager instances (one per register).

The Data Manager Configuration Script is an XML file that specifies the properties
of the Data Manager.

The Data Technician handles the database connection. Configure the Data
Technician with an XML script. The Data Transaction class is the valet from the
manager to the technician. The Data Transaction class has the add, find, and
update methods to the database. Typically, there is one Data Technician that
communicates with the local database and one that communicates with flat files.

Note: Most managers create valets when they need talk to
technicians. Data Manager works a little differently: the Data
Transaction class calls the Data Manager and passes itself as a valet.
The valet finds the data operation class, then the valet knows which
technician it is associated with and calls its execute method.

The Data Technician configuration script is an XML file that specifies the
properties of the Data Technician.

The Transaction Queue collects data transactions and guarantees delivery.
Flat Files are local register files that are used when the register is offline.

The Local Database is the store database.

13-2 Oracle Retail Point-of-Service Operations Guide

How Data Transactions Work

How Data Transactions Work

This section gives an overview of how Oracle Retail Platform, Data Manager, and Data
Technician components work together to store data in the database.

Note: The notation TXN refers to a data transaction, which can be
any guaranteed transmission of data, not necessarily a sales
transaction in the retail sense.

Oracle Retail Platform is responsible for configuring the system so that the Data
Manager, Data Technician, configuration scripts, and conduit scripts work together to
provide the mechanism to update, store, and retrieve data from a database.

1.

The client conduit script defines the name and package for the Data Manager and
Data Manager configuration script, POSDataManager.xml.

The server conduit script defines the name and package for the Data Technician
and Data Technician configuration script, DefaultDataTechnician.xml.

At runtime, the tour code requests a data transaction object from the Data
Transaction Factory.

The Data Transaction Factory verifies that the transaction is defined in
POSDataManager.xml and the transaction object is returned to the tour code.

The tour code calls a method on the transaction object that creates a vector of data
actions. A data action corresponds to a set of SQL commands that are executed as
a unit. (Data actions are reused by different transactions.)

The method in the transaction object gets a handle to the Data Manager and calls
execute(), sending itself as a parameter. This instructs the Data Manager to send
the Transaction object (a valet) across the network to the Data Technician.

Note: Most Manager/Technician pairs work differently. The
standard pattern is for the tour code to get a handle to the Manager,
then call a method on the manager that will create the valet object and
send it to the technician. For the Data Manager/Technician pair, the
transaction object (the valet class), gets the handle to the Data
Manager. The tour code is only responsible for getting a transaction
object from the factory and calling the appropriate method.

On the server side, the Data Technician configuration script,
DefaultDataTechnician.xml, lists all available transactions. It also defines an
operation class for each data action. Each data action is then processed by the
appropriate data operation class.

Store Database 13-3

How Data Transactions Work

Figure 13-2 Updating the Database: Simplified Runtime View

Application
Site Code:

Get a dominant object do =
Get from Domain Object
Factory.

Get values from input screen,

Conduits

DefaultDataTechnician.xml
All Data TXNs
p [Data TXN]

Set domain object

with values.

DataTXN dt 2 Get from
Data Transaction Factory.
dt.saveData(do)

DataTXN Object:

XXX saveData(Object)
{
setDataCommand("NAME"
return(XxXXx)

)
l

R

1L

All Data Commands -
- [saveData
NAME= JDBCSaveData)

Data Connection

JDBC Pool
[connections
JOBCDriver = Sybase]

!

Data Storage

JOBCSaveData

{
JOBC Action #1
{
execute()
SetObject()

SOL statements

Sybase
JOBC Driver
S DB2Z N
\, JDBC Driver ¢

eenmwewen’
S DB2 %\
', JDBC Driver

y y

:

Valet

13-4 Oracle Retail Point-of-Service Operations Guide

Creating or Updating Database Tables

Creating or Updating Data

base Tables

Use this procedure when creating a new database table or updating an existing one.
Refer to the ARTS standards when designing tables.

Note: When you add or change a table, you need to rebuild the
database for your local copy of Point-of-Service before you can test
your changes. The Point-of-Service system includes scripts for
building the database; the main script, dbbuild.bat, runs multiple
subordinate scripts to create all the necessary tables and populate
them with initial data. The script automatically includes all files in the
sql directory, so the build scripts do not have to be modified in order
to build your files. However, you may have to edit a build script in
order to test foreign key constraints; see step 6.

1. Edit the appropriate database script, or write a new one.

Database scripts can be found in the source directory

commerceservices\trunk\db\sql. In a Point-of-Service installation, see

C:\OracleRe

tailStore\360common\db\sqgl.

Start a new file (or edit the appropriate existing file) in the db/sql source directory
file to store SQL commands for creating the new table. Example 13-1 shows the
SQL commands for creating the table that stores the credit card data.

Example 13-1 CreateTableCreditDebitCardTenderLineltem.sql

DROP TABLE TR_LTM_(

CREATE TABLE TR_LT
(
ID_STR_RT
ID_WS
DC_DY_BSN
AI_TRN
AT LN _ITM
TY TND
ID_ISSR_TND_MD
TY_CRD
...additional
)i

ALTER TABLE TR_LTM_CRDB_CRD_TN ADD PRIMARY KEY (ID_STR_RT,

TRN,
AI_LN_ITM);

CRDB_CRD_TN;
M_CRDB_CRD_TN

char (5) NOT NULL,
char(3) NOT NULL,

char (10) NOT NULL,
integer NOT NULL,
smallint NOT NULL,
varchar (20),

varchar (20),

VARCHAR (40),

column lines omitted here...

ID_WS, DC_DY BSN, AI_

COMMENT ON TABLE TR_LTM_CRDB_CRD_TN IS 'Credit/Debit Card Tender Line Item';

COMMENT ON COLUMN
COMMENT ON COLUMN
COMMENT ON COLUMN
COMMENT ON COLUMN
Number' ;

COMMENT ON COLUMN
Line Item
Sequence Number';
COMMENT ON COLUMN
ID';

TR_LTM_CRDB_CRD_TN.ID_STR_RT IS
TR_LTM_CRDB_CRD_TN.ID_WS IS
TR_LTM_CRDB_CRD_TN.DC_DY BSN IS
TR_LTM_CRDB_CRD_TN.AI_TRN IS

TR_LTM_CRDB_CRD_TN.AI_LN_ITM IS

TR_LTM_CRDB_CRD_TN.ID_ISSR_TND_MD IS

'Retail Store ID';
'Workstation ID';
'Business Day Date';
'Transaction Sequence

'Retail Transaction

'Tender Media Issuer

Store Database 13-5

Creating or Updating Database Tables

COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.TY_TND IS TenderTypeCode';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.TY_CRD IS 'Card Type';
...additional comment lines omitted...

2.

Create or edit the insert files (also in the db/sql source directory) for inserting
initial data into the new database table.

This step is used only to insert data into the database table for purposes of initially
logging on, testing, and so on. Example 13-2 contains three inserts from the
db/sgl/InsertTableTenderLineltem. sql file.

Example 13-2 InsertTableTenderLineltem.sql

INSERT INTO TR_LTM_TND

(ID_STR_RT, ID WS, AI_TRN, AI_LN_ITM, DC_DY BSN, TY_TND, MO_ITM_LN_TND,
TS_CRT RCRD, TS_MDF_RCRD)

VALUES ('04241', '149', 1000, 2, '1999-09-23', 'CASH', 54.11,

TIMESTAMP('1999-09-05 12:53:06.536"'), TIMESTAMP('1999-09-05

12:53:06.536")) ;

INSERT INTO TR_LTM_TND

(ID_STR_RT, ID_WS, AI_TRN, AI_LN_ITM, DC_DY_BSN, TY_TND, MO_ITM_LN_TND,
TS_CRT_RCRD, TS_MDF_RCRD)

VALUES ('04241', '149', 1000, 2, '1999-09-30', 'CASH',6 4.32,

TIMESTAMP ('1999-09-05 12:53:06.536"'), TIMESTAMP('1999-09-05

12:53:06.536"')) ;

INSERT INTO TR_LTM_TND

(ID_STR_RT, ID WS, AI_TRN, AI_LN_ITM, DC_DY BSN, TY_TND, MO_ITM_LN_TND,
TS_CRT_RCRD, TS_MDF_RCRD)

VALUES ('04241', '129', 1, 2, '1999-09-05', 'CASH',6 54.11,

TIMESTAMP('1999-09-05 12:53:06.536"'), TIMESTAMP('1999-09-05

12:53:06.536"')) ;

3.
4.

Make updates to foreign keys in CreateForeignKeys.sql.

If you are creating a new table, add a string constant to the src/com/_
360commerce/domain/arts/ARTSDatabaseIfc. java file. Use a string
constant with a meaningful name to store the official ARTS name of the database
table.

Example 13-3 shows two examples of meaningful String constants found in
ARTSDatabaselfc.java.

Example 13-3 String Constant in ARTSDatabaselfc.java

public static final String TABLE_TENDER_LINE_ITEM = "tr_ltm_tnd";
public static final String TABLE_CREDIT_DEBIT CARD_TENDER_LINE_ITEM = "tr_ltm_
crdb_crd_tn";

5.

Update the flat file configuration XML files, if needed.

If you are creating a new table, consult functional specifications to determine
whether the table needs to be represented in the flat files.

For existing tables, you can inspect the file
pos/config/manager/FFTableDefs.xml to determine whether the table is
represented in the flat files.

See “Updating Flat File Configurations” on page 13-15 for information on
updating the configuration files.

13-6 Oracle Retail Point-of-Service Operations Guide

Example of Saving Data: Storing Tender Information

6. Check foreign key constraints.

For performance reasons, the database build scripts do not turn on foreign key
constraints until late. If you make inserts which break foreign key constraints, you
will not be notified. To check this, test all inserts with foreign key constraints in
place, by editing the appropriate database build script. In the following example,
the locations of the CreateK.sql and InsertD.sql scripts have been swapped:

Example 13-4 mysql_builddb.bat: Changes to Implement Foreign Key Checking

COPY /B %_360COMMON_MYSQL_PATH%\mysqgl_prologue.sqgl + %_360COMMON_LOGS_
PATH%\CreateS.sqgl + %$_360COMMON_LOGS_PATHS\
CreateK.sql
+ %$_360COMMON_LOGS_PATH%\
InsertD.sql
+ %_360COMMON_DB2_PATH%\mysqgl_epilogue.sqgl %_360COMMON_LOGS_PATH%\FinalSQL.sqg

7. Runc:\OracleRetailStore\pos\bin\dbbuild.bat to rebuild the
database.

dbbuild.bat [data level]
[data level] can be base_data, seed_data, test_data, demo_data.

= base_data contains just enough to get the build running

= seed_data should contain enough to build and run unit/functional tests.

= test_data will contain the rest of the data that you expect from previous builds
The dbbuild.bat script performs the following operations:

= Executes CreateTable*.sql scripts

» Performs inserts and adds keys

s Creates flat files in C: \OracleRetailStore\pos\bin*.dat

8. After you verify that the table builds successfully and the code referencing the
table works, check your updates into source control.

Example of Saving Data: Storing Tender Information

This section describes how to save data to the database, using credit card tender
information as an example.

When completing a retail transaction, a customer can offer multiple forms of payment
for a purchase. Each form of payment is a different tender, and the system stores each
one as a tender line item. For example, the customer may pay for a $100 purchase with
a $50 gift card payment, a $20 store credit payment, and a $30 credit card payment.
There are three forms of payment and three tender line items, each potentially
requiring different types of data. The following subsections describe how to store the
credit card tender data.

Research Table Requirements and Standards

To plan your database code, refer to functional requirements documents to determine
what data must be stored. For example, the Credit Functional Requirements specify
that the credit card number and expiration date be stored.

Next, review the ARTS database standards for tables and columns. Determine whether
you need to create a new table. If you need to create a table defined by ARTS but not

Store Database 13-7

Example of Saving Data: Storing Tender Information

currently used in the Store database, follow the ARTS standard. For instructions on
creating a new table, see “Creating or Updating Database Tables”.

For the credit card tender transaction, there are two tables that need to be addressed:
the tender line item table and the credit/debit card transaction table.

Table 13-1 lists database tables used in a credit card tender option.

Table 13-1 Database Tables Used in Credit Card Tender Option

ARTS Table Name Description
tr_ltm_tnd Tender line item
tr_ltm_crdb_crd_tn Credit/debit card transactions

Saving Data from Site Code

To save data to the database from a site:
1. Create and populate the domain object to be saved.
2. Save the data to the cargo’s transaction.

For the credit card tender option, the TenderCargo contains a retail transaction
object that keeps track of all the data for each tender line item, as well as other
pertinent data. TenderCargo is the cargo for the Tender Tour.

In Example 13-5, credit is a domain object that stores the credit card data such as
number, expiration date, type of card, and so on. Credit was already stored in the
cargo as a pending line item in GetCreditInfoSite. java. In the following code, credit
is retrieved from the cargo and added to the cargo’s retail transaction as a tender
line item.

Example 13-5 ValidCreditinfoEnteredRoad.java: Transaction Object

public void traverse(BusIfc bus)

{
// Get the pending line item
TenderCargo cargo = (TenderCargo) bus.getCargo();
TenderChargeIfc credit = (TenderChargeIfc) cargo.getPendingLineItem();
TenderableTransactionIfc trans = cargo.getTransaction();

// Add the credit line item to the transaction
trans.addTender (credit) ;

3. Call a method to save the transaction object.

After the credit object is added to the Tender Cargo transaction, the collected data
is saved to the database. In Example 136, the
com/extendyourstore/pos/services/common/SaveRetailTransaction
Aisle. java file uses the Utility Manager to call the saveTransaction() method.

Example 13-6 SaveRetailTransactionAisle.java: Save Transaction

public void traverse(BusIfc bus)

{

UtilityManagerIfc utility =(UtilityManagerIfc)
bus.getManager (UtilityManagerIfc.TYPE) ;

13-8 Oracle Retail Point-of-Service Operations Guide

Example of Saving Data: Storing Tender Information

utility.saveTransaction(trans, totals, till, register);

Locate Data Operation

The Data Manager and Data Technician work together to provide access to the
database from the application. The developer rarely modifies these. Typically, the site
code and the JDBC code are updated. To identify which JDBC class should be used,
trace through the site code until the DataAction sets the operation name.

As an example, the following figure shows the tour workflow that occurs when a

tender is complete and the data is ready to be saved.

Tender Tour

(validt:reditlnfoEnteredRoad)

v

(CompleteTenderSite)

Point-of-Service
Tour

Y
(WriteTransactionSite)

v

(SaveRetailTransactionAisle)

18igure
Tend
er
Tour
to
Point
-of-S
ervic
e
Tour
Work
flow

After the Tender Tour has completed, the program returns to Point-of-Service Tour via

the WriteTransactionSite to the SaveRetailTransactionAisle. The
SaveRetailTransactionAisle initiates the save process.

Store Database 13-9

Example of Saving Data: Storing Tender Information

The conceptual diagram in the following figure illustrates the basic communication
path from the SaveRetailTransactionAisle to the database. For more detail, refer to the
source code.

Figure 13-4 Diagram: Saving a Transaction

Application Configuration Script
SaveRetailTransactionAisle DefaultData Technician.xml
Scope: Point-of-Service Scope: Point-of-Service

UtilityManagerlfc utility
Utility saveTransaction(..) Data Transaction
‘ TransactionWriteDataTransaction

Data Command

|utilityManageriic

:) SaveRetailTransaction
Scope: Point-of-Service '

- JdbcSaveRetailTransaction
caveTrarsaction SaveRetailTransactionLineltems

. . . >
new TransactionWriteDataTransaction
JdbcSaveRetailTransactionLineltems
SaveTenderLingltems
- JdbcSaveTenderLineltems

@ i / SaveStoreCredit *

TransactionWriteDataTransaction
Scope: Domain

dbTrans.saveTransaction(..)

©

Data Storage 9

L
(D JdbcSaveTenderLineltems
DataAction - SaveRetailTransaction A
DataAction = SaveRetaiITransactionLin%ﬂs"
DataAction = SaveTenderLineltems ¢
DataAction = SaveStoreCredit
Execute(this) ,
JOBC Driver

The following descriptions explain the labels in the figure. When creating the credit
card tender option, only the site and road classes for the Tender Tour and the
JdbcSaveTenderLineltems class were changed.

1. SaveRetailTransactionAisle uses the Utility Manager to call the saveTransaction()
method as shown in Example 13-6. The utility.saveTransaction() method uses the

data transaction class TransactionWriteDataTransaction to save the retail
transaction.

The following code samples show details for the previous figure.

13-10 Oracle Retail Point-of-Service Operations Guide

Example of Saving Data: Storing Tender Information

Example 13-7 UtilityManager.java: Save Data Transaction

TransactionWriteDataTransaction dbTrans new
TransactionWriteDataTransaction (tranName) ;

)
dbTrans.saveTransaction(trans, totals, till, register);

Example 13-8 TransactionWriteDataTransaction.java: Save Transaction

public void saveTransaction(TransactionIfc transaction,
FinancialTotalsIfc totals,
TillIfc till,
RegisterIfc register)
throws DataException

int transactionType = transaction.getTransactionType();

switch (transactionType)
{ // begin add actions based on type
case TransactionIfc.TYPE_SALE:
case TransactionIfc.TYPE_RETURN:
addSaveSaleReturnTransactionActions ((SaleReturnTransactionIfc)
transaction, totals,till,
register) ;
break;

2. The com/extendyourstore/domain/arts/DefaultDataTechnician.xml
file is the configuration file for the Data Technician and is used to configure the
links between the application and the JDBC class that performs the work. All Data
Transaction classes must be defined in this file, including
TransactionWriteDataTransaction.

Example 13-9 DefaultDataTechnician.xml: Define Data Transaction Class

<DATATECHNICIAN
package="com.extendyourstore.domain.arts">

<TRANSACTION name="TransactionWriteDataTransaction" command="7jdbccommand"/>
3. The TransactionWriteDataTransaction class instantiates the DataAction object and
sets the data operation name to SaveTenderLineltems. Other data actions occurred

before these tender data actions. Data Actions are added in the specific order in
which they should occur.

Store Database 13-11

Example of Saving Data: Storing Tender Information

Example 13-10 TransactionWriteDataTransaction: DataAction

protected void addSaveSaleReturnTransactionActions(SaleReturnTransactionIfc
transaction,
FinancialTotalsIfc totals,
TillIfc till,
RegisterIfc register)

artsTransaction = new ARTSTransaction(transaction);

// Add a DataAction to save the SaleReturnTransactionIfc
DataAction dataAction = new DataAction();
dataAction.setDataOperationName ("SaveRetailTransaction") ;
dataAction.setDataObject (artsTransaction) ;
actionVector.addElement (dataAction) ;

// Add a DataAction to save all the line items in the Transaction
dataAction = new DataAction();

dataAction.setDataOperationName ("SaveRetailTransactionLineltems") ;
dataAction.setDataObject (artsTransaction) ;

actionVector.addElement (dataAction) ;

// Add a DataAction to save all the tender line items in the Transaction
DataActionIfc da = new SaveTenderLineItemsAction(this, artsTransaction);
actionVector.addElement (da) ;

//Add a DataAction to save store credit in the Transaction
dataAction = createDataAction(artsTransaction, "SaveStoreCredit");
actionVector.addElement (dataAction) ;

Example 13-11 SaveTenderLineltemsAction: Set Data Operation Name

protected static final String OPERATION_NAME = "SaveTenderLineltems";
4. The DefaultDataTechnician uses the data command to list several data operation

names. The data operation name SaveTenderLineltems points to the name of the
JDBC class, which is JdbcSaveTenderLineltems.

13-12 Oracle Retail Point-of-Service Operations Guide

Example of Saving Data: Storing Tender Information

Example 13-12 DefaultDataTechnician.xml: Define Data Operation Class

<DATATECHNICIAN
package="com.extendyourstore.domain.arts">

<TRANSACTION name="TransactionWriteDataTransaction" command="jdbccommand"/>

<COMMAND name="jdbccommand"
class="DataCommand"
package="com.extendyourstore. foundation.manager.data"

<COMMENT>
This command contains all operations supported on a JDBC
database connection.

</COMMENT>

<POOLREF pool="jdbcpool"/>

<OPERATION class="JdbcSaveTenderLineltems"
package="com.extendyourstore.domain.arts"
name="SaveTenderLineIltems">
<COMMENT>
This operation saves all tender line items associated with the transaction.
</COMMENT>
</OPERATION>

</DATATECHNICIAN>

5. The JdbcSaveTenderLineltems class is used to write the credit card data to the
database table. See the next section.

Modify Data Operation

Use this procedure to modify the data operation class to access the database.
1. Add a save method to the data operation class.

The
com/extendyourstore/domain/arts/JdbcSaveTenderLineltems. java
file creates the JDBC code that saves the tender line items to the database via the
saveTenderLineltem() method, shown in Example 13-13. This code checks the type
of a line item. If the tender line item is an instance of the TenderChargelfc, then it
calls the insertCreditDebitCard TenderLineltem() method.

Example 13-13 JdbcSaveTenderLineltems: Saving Tender Line ltem

public void saveTenderLineItem(JdbcDataConnection dataConnection,
TenderableTransactionIfc transaction,
int lineItemSequenceNumber,
TenderLineItemIfc lineItem) throws
DataException

{
if (lineItem instanceof TenderCashIfc)

insertTenderLineItem(dataConnection,
transaction,
lineItemSequenceNumber,
lineItem);
}
else if (lineItem instanceof TenderGiftCardIfc)

{

Store Database 13-13

Example of Saving Data: Storing Tender Information

insertGiftCardTenderLineltem(dataConnection,
transaction,
lineItemSequenceNumber,
(TenderGiftCardIfc) lineItem);
}
else if (lineItem instanceof TenderChargeIfc)
{
/~k
* Charge tender updates the Credit/Debit Card Tender Line Item,
* Tender Line Item, and Retail Transaction Line Item tables.
*/
insertCreditDebitCardTenderLineltem(dataConnection,
transaction,
lineItemSequenceNumber,
(TenderChargeIfc)lineltem) ;

2. Write an implementation for methods written for the data operation class.

Example 13-14 lists the source code for the

insertCreditDebitCard TenderLineltem(), called in Example 13-13. First, the tender
line item must be saved to the tender table using the insertTenderLineltem()
method. This code already existed for the other tender options.

Second, the credit data must be saved to the new database table using SQL factory
methods.

Example 13-14 JdbcSaveTenderLineltems.java: SQL Factory Methods

public class JdbcSaveTenderLineIltems extends JdbcSaveRetailTransactionLineIltems
implements ARTSDatabaseIfc

public void insertCreditDebitCardTenderLineltem(JdbcDataConnection
dataConnection,
TenderableTransactionIfc
transaction,
int lineItemSequenceNumber,
TenderChargeIfc lineItem)
throws DataException
{
/*
* Update the Tender Line Item table first.
*/
insertTenderLineItem(dataConnection,
transaction,
lineItemSequenceNumber,
lineltem);

SQLInsertStatement sgl = new SQLInsertStatement();

// Table

sqgl.setTable (TABLE_CREDIT_DEBIT CARD_TENDER_LINE_ITEM) ;

// Fields

sql.addColumn (FIELD_RETAIL_STORE_ID, getStoreID(transaction));

sqgl.addColumn (FIELD_WORKSTATION_ID, getWorkstationID(transaction));

sqgl.addColumn (FIELD_BUSINESS_DAY DATE, getBusinessDayString(transaction));

sqgl.addColumn (FIELD_TENDER_AUTHORIZATION_DEBIT_CREDIT_CARD_ACCOUNT_ NUMBER,
getCardNumber (lineltem)) ;

sqgl.addColumn (FIELD_TENDER_AUTHORIZATION_CARD_NUMBER_SWIPED_OR_KEYED_CODE,

13-14 Oracle Retail Point-of-Service Operations Guide

Updating Flat File Configurations

Test Code

Verify Data

getEntryMethod (lineItem)) ;
sql.addColumn (FIELD_TENDER_AUTHORIZATION_DEBIT CREDIT CARD_EXPIRATION_DATE,
getExpirationDate(lineItem));

To test the new code:

1. Run Point-of-Service.

2. Select the path to the screen.
3. Enter the data.
4

Complete the retail transaction.

To verify that the correct data exists in the database table, use a database access
program to view the table that should contain the new information. Verify that the
data in the database table matches the data entered. The following example shows a
sample SQL statement you can use to retrieve the data.

select * from tr_ltm_crdb_crd_tn

Updating Flat File Configurations

A Point-of-Service flat file is a simple database system in which each table is contained
in one file. The Point-of-Service system uses flat files created by the Store Server to
provide access to minimal data when the network or server is down. With the help of
the flat files, the Point-of-Service system can continue to process transactions without
access to the network.

The information provided in flat files includes:
» Item data, such as price, tax group, SKU

s Tax rules for the local store

= User logon and role information

= Reason codes

When a register is opened at the start of a new business day, the system updates the
flat files on the register. The files can also be updated periodically during the business
day if an optional parameter is set.

The Oracle Retail Platform FlatFileEngine provides access to flat file tables. The
FlatFileEngine integrates with the Data Technician using the DataConnectionlfc and
DataOperationlfc interfaces. A wrapper class, FlatFileDataConnection, implements the
DataConnectionlfc interface. The application developer must provide the classes
implementing the DataOperationlfc interface for the application-specific operations.
Two configuration scripts are required, the Data Technician configuration script and
the FlatFileEngine configuration script.

Store Database 13-15

Updating Flat File Configurations

Data Technician Script

13-16

The Data Technician script specifies the data connection class and the data operation
mappings. Two sections of the XML script are highlighted, the first containing the
OPERATION tags and the second containing the CONNECTION and
CONNECTIONPROPERTY tags.

s The first section specifies the mapping of the data actions to data operations. For
the FlatFileEngine, the FlatFilePLUOperation and
FlatFileEmployeeLookupOperation are classes that implement the
DataOperationlfc interface.

= The second section declares the use of the FlatFileConnection class for the data
connection and specifies the configSource property for the connection.
Specification of the configSource provides the location of the FlatFileEngine
configuration script and is required for the FlatFileEngine to operate.

Example 13-15 PosLFFDataTechnician.xml: Sample Data Technician Script for Flat Files

<!DOCTYPE DATATECHNICIAN SYSTEM
"classpath://com/extendyourstore/foundation/toru/dtd/datascript.dtd">

<DATATECHNICIAN
package="com.extendyourstore.domain.arts">

<TRANSACTION name="PLU" command="flatfilecommand"/>
<TRANSACTION name="employee" command="flatfilecommand"/>

<COMMAND name="flatfilecommand"
class="DataCommand"

package="com.extendyourstore. foundation.manager.data" >
<COMMENT>

This command contains all operations supported

on a flat file database connection.
</COMMENT>
<POOLREF pool="flatfilepool"/>

<OPERATION class="FlatFilePLUOperation" package="flatfileops"
name="PLULookup">
<COMMENT>
This operation retrieves a priced item from a
flat file database, given a string lookup key.
</COMMENT>
</OPERATION>
...operation omitted here...
</COMMAND>
<POOL name="flatfilepool"
class="DataConnectionPool"
package="com.extendyourstore. foundation.manager.data" >
<COMMENT>
This pool defines a FlatFile connection to the gift registry database.
</COMMENT>
<POOLPROPERTY propname="numConnections"
propvalue="1" proptype="INTEGER"/>
<CONNECTION class="FlatFileDataConnection"
package="com.extendyourstore. foundation.manager.data.flatfile">
<CONNECTIONPROPERTY propname="configSource"
propvalue="classpath://datafiles/TableDefs.xml" />
</CONNECTION>
</POOL>
</DATATECHNICIAN>

Oracle Retail Point-of-Service Operations Guide

Updating Flat File Configurations

Flat File Engine Configuration Script

The FlatFileEngine configuration script is required for Oracle Retail applications to
access the FlatFileEngine. This script specifies the files where the information is stored,
the physical schema of the file, and the supported indexes on the files. Example 13-16
is a sample FlatFileEngine configuration script that specifies two tables with associated
fields and indexes.

The XML blocks beginning with the tag FWTABLE declare two fixed-width tables with
table names Item and Employees. The example configuration in FWFIELDS provides
the definitions of the fields within the tables. The field definitions use one base
indexing for the starting positions.

After the fields are declared, the following script defines two indexes for the table
(indexes are optional). The index names are ItemID_Index and ItemName_Index. The
files to store the index information are specified along with the index. Within the
individual index specifications, the fields used to generate the index are specified by
field name. During configuration, the FlatFileEngine validates the index files and
rebuilds the index files if necessary.

Example 13-16 FFTableDefs.xml: Sample FlatFileEngine Configuration File

<?xml version='1.0"' ?>
<!DOCTYPE FFENGINE SYSTEM
"classpath://com/extendyourstore/foundation/tour/dtd/flatfile.dtd">

<!—Configuration Script for FlatFileEngine -—>

<FFENGINE>
<FWTABLE>
<TABLE tablename="Items"
datasource="datafiles/Items.txt"
/>

<FWFIELDS>
<FWFIELD fieldname="ItemID"
startpos="1" width="10" />
<FWFIELD fieldname="Name"
startpos="11" width="80" />
<FWFIELD fieldname="SupplierID"
startpos="91" width="10" />
<FWFIELD fieldname="CategoryID"
startpos="101" width="10" />
..additional fields omitted...
</FWFIELDS>

<INDEXES>
<INDEX indexname="ItemID_Index"
indexfile="datafiles/item id.idx" >
<INDEXFIELD fieldname="ItemID"/>
</INDEX>
<INDEX indexname="ItemName_Index"
indexfile="datafiles/item name.idx" >
<INDEXFIELD fieldname="Name"/>
</INDEX>
</INDEXES>
</FWTABLE>

<FWTABLE>

Store Database 13-17

Updating Flat File Configurations

<TABLE tablename="Employees" datasource="datafiles/Employees.txt"/>
<FWFIELDS>
<FWFIELD fieldname="EmployeeID"
startpos="1" width="10" />
<FWFIELD fieldname="LastName"
startpos="11" width="20" />
<FWFIELD fieldname="FirstName"
startpos="31" width="10" />
<FWFIELD fieldname="Title"
startpos="61" width="10" />
...additional fields omitted...
</FWFIELDS>

<INDEXES>
<INDEX indexname="Employee_Name"
indexfile="datafiles/emp_name.idx" >
<INDEXFIELD fieldname="LastName"/>
<INDEXFIELD fieldname="FirstName"/>
</INDEX>
<INDEX indexname="Employee_HireDate"
indexfile="datafiles/emp_hire.idx">
<INDEXFIELD fieldname="HireDate"/>
</INDEX>
</INDEXES>
</FWTABLE>
</FFENGINE>

Implementing FlatFileDataOperations

To create a FlatFileDataOperation, you create a class that extends the
FlatFileDataOperation class and implements the execute method. You must create a
FlatFileQuery to communicate with the FlatFileEngine via the
FlatFileDataConnection.execute() method.

13-18 Oracle Retail Point-of-Service Operations Guide

Updating Flat File Configurations

The following diagram shows the class relationships.

Figure 13-5 FlatFileQuery Classes

FlatFileQuery
(from flatfile)

1
SelectorClause

1

Expressions <<interface>>
QueryExpressionlfc
0. (from flatfile)

t

CompleteQueryExpression CompleteQueryExpression
(from flatfile) (from flatfile)

The types of FlatFileQueries are:

s Insert
= Update
s Delete

s Retrieve
m Clear table
s Rebuild indexes

The query type and the target table are specified in the constructor for the
FlatFileQuery. Some of the query types (update, delete, and retrieve) require the
creation of a selection clause to identify the set of records on which the operation is to
be performed. The sample code shown below creates a retrieve query, the most
common of the queries that you implement. Differences for other query types are
shown following the sample code (see “Other Query Types”).

The sample code shown below is an implementation for an item retrieve operation:

1. The first lines of the method simply cast the connection and get the relevant
selection criteria from the dataTransaction object.

Store Database 13-19

Updating Flat File Configurations

2. The major work of the method occurs within the try-catch block. Refer to the
comments within the sample code. The input to the FlatFileEngine is a
FlatFileQuery. The FlatFileQuery(Instance) is created in the statements
immediately following the try. First, a new FlatFileQuery instance is created, and
then the target data table is specified. Lastly, the selection clause is set to create a
new SimpleQueryExpression using the target data fields and the item number
supplied in the Data Transaction.

3. Calling the connection.execute() method with the FlatFileQuery as a parameter
returns a FlatFileResultSet or throws a FlatFileException. If an exception is thrown,
it is translated to a DataException by the parent class. If a result set is returned, the
set is iterated record by record and the field values within the records are
translated to appropriate domain objects.

Example 13-17 Item Retrieve Sample Code

public void execute(DataTransactionIfc dataTransaction,
DataConnectionIfc dataConnection,
DataActionIfc action)
throws DataException

FlatFileDataConnection connection =
(FlatFileDataConnection)dataConnection;

String prodId = (String)action.getDataObject();
PLUItems[] plultems = null;

try
{
// Create a new query of type retrieve for table Items
FlatFileQuery query =
new FlatFileQuery(FlatFileQuery.QUERY_RETRIEVE,
"Ttems");
query.setSelectionClause (
new SimpleQueryExpression("ItemID",
QueryExpressionIfc.EQ, itemId));

connection.execute (query) ;

FlatFileResultSet rs =
(FlatFileResultSet)connection.getResult();

int recCount = rs.getRecordCount () ;

if (recCount == 0)
{
throw new DataException (DataException.NO_DATA,
"No PLU was found proccessing the result "
+ set in FlatFilePLUOperation.");

items = new PLUItem[recCount];

FlatFileRecord record = rs.getFirstRecord();
for (int 1 = 0; 1 < recCount; i++)
{
/*
* Grab the fields selected from the database
*/
// Sting fldvalue = record.getFieldValue ("FIELDNAME") ;

13-20 Oracle Retail Point-of-Service Operations Guide

Updating Flat File Configurations

Other Query Types

Table 13-2 provides additional information for creating the query types supported by
the FlatFileEngine.

// TRANSFER ATTRIBUTES HERE
record = rs.getNextRecord() ;
}
catch (FlatFileException eff)
{
throw translateToDataException (eff);

}

dataTransaction.setResult ((Serializable)items);

Table 13-2 FlatFileEngine Query Types

Query Type

Definition

Update

The update query allows the application to update field values within a table. The
table name is specified and a selection clause is created to identify the record(s) to
apply the updated field values. The field values are placed in a hash table, keyed by
field name that contains the new field values. The FlatFileQuery.setValues() method is
called and passes the values hashtable as a parameter. The query is passed as a
parameter to the execute method of the collection. The number of records updated is
returned via the getUpdated() method.

Insert

The insert query inserts a new record into the flat file table. The table name and the
values are specified in the query. Values are transmitted using a hashtable keyed by
field name. Not all fields require values. A confirmation of the insertion is accessed
using the getInserted() method.

Delete

The delete query marks the records matching the selection clause for deletion. The
table name and a selection clause must be specified in this query. After executing the
query, the number of records deleted is available using the getDeleted() method.
Deleting records invalidates the indexes. To rebuild the indexes, a rebuild query must
be executed.

Clear Table

A clear table query removes all the records in a specified table. Only the table name is
required. Completion status is available from the FlatFileResultSet.getCleared ()
method.

Rebuild

The rebuild query type removes records marked for deletion from the table and
rebuilds the associated indexes. Only the table name is required.

Complex Query Expressions

Complex Query Expressions allow the creation of selection clauses with multiple
criteria. To select an employee based on last name and first name, create a
ComplexQueryExpression. The logical operation joining the associated expressions is
set using the constants AND and OR from the QueryExpressionlfc class as the
parameter in the setJoinCondition() method. Two SimpleQueryExpression objects are
created, one for the last name criteria and one for the first name criteria. These two
SimpleQueryExpressions are added to the expressions vector in the
ComplexQueryEpression. The selection clause association of the FlatFileQuery is set to
the ComplexQueryExpression. The ComplexQueryExpression can contain both Simple
and Complex expressions, and supports nested conditions.

Store Database 13-21

Updating Flat File Configurations

13-22 Oracle Retail Point-of-Service Operations Guide

A

Appendix: Intra Store Data Distribution

Infrastructure

Oracle Retail Point-of-Service client needs Employee, Item, Advanced pricing, Tax and
Currency datasets to support offline functionality. Intra Store Data Distribution
Infrastructure (IDDI) automates the following:

dataset file generation at the Oracle Retail Point-of-Service server

dataset file transfer from Oracle Retail Point-of-Service Server to Oracle Retail
Point-of-Service Client

importing dataset files to Oracle Retail Point-of-Service client database

Spring Configuration

The system has been designed to support a pluggable model. The following are all
designed to be configurable at deployment time:

DataSetProducer]Job
ClientDataSetController
DataSetService

ClientDataSetService
DataSetProducers

- EmployeeDataSetProducer

- CurrencyDataSetProducer

— TaxDataSetProducer

- ItemDataSetProducer

- AdvancedPricingDataSetProducer
DataSetConsumers

- EmployeeDataSetConsumer

— CurrencyDataSetConsumer

— ItemDataSetConsumer

- AdvancedPricingDataSetConsumer
— TaxDataSetConsumer

DerbyDataFormatter

Appendix: Intra Store Data Distribution Infrastructure A-1

Spring Configuration

This configuration is accomplished through the use of the Spring Framework as a
configuration framework.

Table A-1 includes the set of Spring bean IDs used for each of the pluggable
components.

Table A-1 Spring Framework Configuration Options

Spring bean ID

Purpose

Provided implementation

Configurable Options

service_DataSetService

Configuration for
DataSetService.

Contains the list of all

com.extendyourstore.

foundation.iddi.DataSetServi
ce

None

To add a new DataSet type,
add one more service_config

the DataSetKeys. <<DataSetType>_KEY
service_ Configuration for com.extendyourstore. None
ClientDataSetService ClientDataSetService. foundation.iddi.ClientDataSet To add a new DataSet type,
Contains the list of all Service add one more service_config_
the DataSetKeys. <<DataSetType>_KEY
datalmportFilePath(service_
config_DatalmportFilePath)
service_ Producer Job thatruns org.springframework. To add a new DataSet type,
FrequentProducer]ob frequently. scheduling.quartz.JobDetailB add one more service_config_
. eanservice_DataSetService <<DataSetType>_KEY
Configured to run
once every 15 minutes
by default.
service_ Producer Job org.springframework. To add a new DataSet type,
InfrequentProducerJob configured to run scheduling.quartz.JobDetailB add one more service_config
once a day by default. eanservice_DataSetService <<DataSetType>_KEY
service_ Cron Job Trigger class org.springframework. service_FrequentProducerJob
TriggerFrequentProducer ’{:hat runs service_ scheduling.quartz.CronTrigge Cron Expression Value
requentProducerfob rBean

configuration. Cron
Expression value can
be modified to
configure the job
frequency.Cron
Expression
format.value="0
0,15,30,45 * ** 2"

Value parameters
from left to right
separated by
spaceSecondsMinutes
HoursDaysWeeksYear
s

To configure more
than one value to any
of the value
parameter, configure
values separated by
commas (,)

* Indicates any value

service_
TriggerInfrequentProducer

Trigger class that runs
service_
InfrequentProducerJo
b configuration

org.springframework.
scheduling.quartz.CronTrigge
rBean

service_
InfrequentProducerJobCron
Expression Value

A-2 Oracle Retail Point-of-Service Operations Guide

Spring Configuration

Table A-1 Spring Framework Configuration Options

Spring bean ID

Purpose

Provided implementation

Configurable Options

service_
ProducerSchedulerFactory
Registers the services,
service_
TriggerFrequentProducerserv
ice
TriggerInfrequentProducer
with the Quartz
SchedulerFactoryBean
org.springframework.
scheduling.quartz.SchedulerF
actoryBeanservice_
TriggerFrequentProducerserv
ice
TriggerInfrequentProducer

service_CurrencyProducer DataSet Key

definition for

com.extendyourstore.domain.
iddi.CurrencyDataSetProduce

dataSetKey (service_config_
CUR_

Currency r KEY)dataExportFilePath
DataSetProducer (service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)
service_TaxProducer DataSet Key com.extendyourstore. dataSetKey(service_config_
definition for Tax domain.iddi.TaxDataSetProd TAX_
DataSetProducer ucer KEY)dataExportFilePath
(service_config
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)
service_ DataSet Key com.extendyourstore. dataSetKey(service_config_
EmployeeProducer definition for domain.iddi.EmployeeDataSe EMP_
Employee Producer tProducer KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)
service_ DataSet Key com.extendyourstore. dataSetKey(service_config_
AdvancedPricingProducer definition for domain.iddi.PricingDataSetPr PRC_
Advanced Pricing oducer KEY)dataExportFilePath
DataSetProducer (service_config
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)
service_ltemProducer DataSet Key com.extendyourstore. dataSetKey(service_config_
definition for Item domain.iddi.ItemDataSetProd ITM_KEY)dataExportFilePath
DataSetProducer ucer (service_config

DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

Appendix: Intra Store Data Distribution Infrastructure A-3

Spring Configuration

Table A-1 Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options
service_ DataSet Key com.extendyourstore. dataSetKey/(service_config_
CurrencyConsumer definition for domain.iddi.CurrencyDataSet CUR_
Currency Consumer KEY)dataImportFilePath(serv
DataSetConsumer ice_config_
DatalmportFilePath)importH
elper(service_
OfflineDBHelper)
service_TaxConsumer DataSet Key com.extendyourstore. dataSetKey/(service_config_
definition for Tax domain.iddi.TaxDataSetCons TAX_
DataSetConsumer umer KEY)datalmportFilePath(serv
ice_config_
DatalmportFilePath)importH
elper(service_
OfflineDBHelper)
service_ DataSet Key com.extendyourstore. dataSetKey(service_config_
EmployeeConsumer definition for domain.iddi.EmployeeDataSe EMP_
Employee tConsumer KEY)dataImportFilePath(serv
DataSetConsumer ice_config_
DatalmportFilePath)importH
elper(service_
OfflineDBHelper)
service_ DataSet Key com.extendyourstore. dataSetKey(service_config_
AdvancedPricingConsume definition for domain.iddi.AdvancedPricin PRC_
r Advanced Pricing gDataSetConsumer KEY)datalmportFilePath(serv
DataSetConsumer ice_config_
DatalmportFilePath)importH
elper(service_
OfflineDBHelper)
service_ItemConsumer DataSet Key com.extendyourstore. dataSetKey(service_config_
definition for Item domain.iddi.ltemDataSetCon ITM_
DataSetConsumer sumer KEY)datalmportFilePath(serv
ice_config_
DatalmportFilePath)importH
elper(service_
OfflineDBHelper)
service_ Consumer Job that org.springframework.schedul dataSets
FrequentConsumerJob rCuns frequently. ing.quartz.JobDetailBean To add a new DataSet type,
onfigured to run dd : !
every 15mins by a DomeS m%re ser\;écEe?con ig_
default <<DatasetType>_
service_ Consumer Job org.springframework.schedul dataSets
InfrequentConsumerJob configured to run ing.quartz.JobDetailBean To add a new DataSet type,
once a day by default. . 4
add one more service_config
<<DataSetType>_KEY
service_ Cron Job Trigger class org.springframework. service_
TriggerFrequentConsumer that runs service_ scheduling.quartz.CronTrigge FrequentConsumerJobcronEx
FrequentConsumer rBean pression Value
configuration.
service_ Cron Job Trigger class org.springframework.schedul service_
TriggerInfrequentConsum that runs service_ ing.quartz.CronTriggerBean InfrequentConsumerJobcronE
er InfrequentConsumer xpression Value
configuration.

A-4 Oracle Retail Point-of-Service Operations Guide

Spring Configuration

Table A-1 Spring Framework Configuration Options

Spring bean ID

Purpose

Provided implementation Configurable Options

service_
clientSchedulerFactory

Registers the services,
service_
TriggerFrequentCons
umerservice_
TriggerInfrequentCon
sumer with the
Quartz
SchedulerFactoryBean

org.springframework.schedul service_

ing.quartz.SchedulerFactoryB TriggerFrequentConsumerser

ean vice_
TriggerInfrequentConsumer

service_config
DataExportFilePath

Configuration for
Data Export File Path.
This is the relative
path. Application
takes the application
running path and
appends the path
given in this
configuration.

java.lang.String

value

service_config
DataExportZipFilePath

Configuration for
Data Export Zip File
Path. This is the
relative path.
Application takes the
application running
path and appends the
path given in this
configuration.Note:
The service_config_
DataExportFilePath
should not contain
DataSetKey names
(eg: EMPLOYEE,
ITEM, CURRENCY,
ADVANCED_
PRICING, TAX)

java.lang.String value

service_config
DatalmportFilePath

Configuration for
Data Import File Path
where the dataset files
will be downloaded
from Oracle Retail
Point-of-Service
Server and cached.

java.lang.String value

service_config_

OfflineSchemaSQLFilePat

h

Folder configuration
where the Offline
database schema SQL
File.

java.lang.String value

service_config

OfflineSchemaLogFilePath

Folder configuration
for storing the Offline
database schema SQL
File import log file.

java.lang.String value

service_

OfflineRepositoryDataSou

rce

Oracle Retail

org.apache.commons.dbcp.Ba url

Point-of-Service Client sicDataSource

Database user
credentials
configuration.

username

password

Appendix: Intra Store Data Distribution Infrastructure A-5

Application Configuration

Table A-1 Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options
service_OfflineDBHelper Oracle Retail com.extendyourstore.foundat SchemaName
Point-of-Service Client ion.iddi.OfflineDerbyHelper .
. offlineDataSource
offline Database
Helper Class datalmportFilePath
configuration
service_ Application Version com.extendyourstore.pos.Pos None
ApplicationVersion retreival class Version
configuration.
service_DataFormatter Data Formatter com.extendyourstore.foundat None
Helper to format ion.iddi.DerbyDataFormatter
Oracle Retail
Point-of-Service
Server data to Derby
data import format
specifications.
service_config EMP_KEY DataSet key java.lang.String None
Configuration
service_config_ CUR_KEY DataSet key java.lang.String None
Configuration
service_config TAX_KEY DataSet key java.lang.String None
Configuration
service_config_ITM_KEY DataSet key java.lang.String None
Configuration
service_config PRC_KEY DataSet key java.lang.String None
Configuration

For POS, the ServiceContext.xml is under <install dir>/pos/config/context.

Application Configuration

The Timeout interval to start data consumption is configured in the Application.xml
file. The IDDITimeoutInterval parameter value is set to 15 minutes by default and is
configurable.

The IDDIOfflineSupport parameter has been renamed to
IDDIOfflineSupportRequired, and the values are reversed. Basically, this parameter
allows the end-user to decide if the client should come up without offline data. If
IDDIOfflineSupportRequired is Y, then the client does not start if no offline data is
available (offline data is required for the client to start). If
IDDIOfflineSupportRequired is N, then the client starts without offline data (offline
data is not required for the client to start).

The batch size of the records to write data to flat file is set in domain.properties with
the property IDDIBatchSize.

A-6 Oracle Retail Point-of-Service Operations Guide

Integration Considerations

Integration Considerations

IDDI integrates with both the Oracle Retail Point-of-Service server and the Oracle
Retail Point-of-Service Client application. IDDI integration with Oracle Retail
Point-of-Service server produces dataset files on a scheduled basis. IDDI integration
with Oracle Retail Point-of-Service client downloads the dataset files from Oracle
Retail Point-of-Service server on a scheduled basis, and the client can then comsume
those files. IDDI server and client integration is pluggable and configurable.

Oracle Retail Point-of-Service client should be online when it is run the first time to
download the data from Oracle Retail Point-of-Service server. If there is no offline data
available, Oracle Retail Point-of-Service client doesn’t function in offline mode.

The client-side database schema must be in synch with server-side database schema.

Table A-2 has been used in Derby Database at the Oracle Retail Point-of-Service client.
The database schema for the following tables must mach the Oracle Retail
Point-of-Service server database schema.

Table A-2 Point-of-Service Dataset Table

Dataset Name

Dataset Tables

Items

AS_ITM

ID_IDN_PS
AS_ITM_I8

PA_MF

AS_POG
AS_ITM_ASCTN_POG
AS_ITM_STK
AS_ITM_RTL_STR
CO_UOM
ID_DPT_PS
CO_ASC_RLTD_ITM
CO_CLN_ITM

Employees

PA_EM
CO_GP_WRK
CO_ACS_GP_RS
PA_RS

Appendix: Intra Store Data Distribution Infrastructure A-7

DataSet Compressed File Structure

Table A-2 Point-of-Service Dataset Table

ID Dataset Name

Dataset Tables

3. Advanced Pricing

RU_PRDV
CO_PRDV_ITM
RU_PRDVC_MXMH
TR_ITM_MXMH_PRDV
CO_EL_PRDV_ITM
CO_EL_PRDV_ITM_SC
CO_EL_PRDV_DPT
CO_EL_CTAF_PRDV
CO_EL_MRST_PRDV
CO_EL_TM_PRDV

4. Tax

RU_TX_GP
RU_TX_RT
PA_ATHY_TX

PA_TY_TX

GEO_TX_JUR

CD_GEO
CO_GP_TX_ITM
PA_STR_RTL
CO_TX_JUR_ATHY_LNK

5. Currency

CO_CNY
CO_RT_EXC
CO_CNY_DNM

DataSet Compressed File Structure

The dataset compressed file contains all the dataset flat files of the tables associated
with the dataset and metadata information (for example, the Manifest file).

Here is the structure of the dataset compressed file:

<DataSet Flat file>
<DataSet Flat file>
<DataSet Flat file>
META-INF\MANIFEST.MF

DataSet Compressed File Example

Contents of a Currency Dataset compressed file (CURRENCY_<<BATCHID>>.ZIP)

META-INF\MANIFEST.MF
CO_ACS_GP_RS.TXT
CO_GP_WRK.TXT
PA_RS.TXT

A-8 Oracle Retail Point-of-Service Operations Guide

Extensibility

Manifest File Structure

The Manifest file compressed in the DataSet compressed files contains dataset
metadata information in the following format:

DataSetName: <<DataSetName>>

DataSetID: <<DataSetID>>

ApplicationVersion: <<Oracle Retail Point-of-Service Version>>
StoreID: <<StorelID>>

BatchID: <<DataSetBatchID>>

#Add all the Tables Names as shown in the format below
DataFile-<<TableName>>: <<Table File Name>>

TableSequence: <<Table Names separated by comma in the order of tables to be
imported to Derby>>

Manifest File Example
The following is the Manifest file example for Currency Dataset:

DataSetName: CURRENCY

DataSetID: 5

ApplicationVersion: pos

StoreID: 04241

BatchID: 20070606084600

DataFile-CO_CNY: CO_CNY.TXT
DataFile-CO_RT_EXC: CO_RT EXC.TXT
DataFile-CO_CNY_DNM: CO_CNY_DNM.TXT
TableSequence: CO_CNY,CO_RT_EXC,CO_CNY_DNM

DataSet Flat File Structure
The following is the format of the DataSet flat file:

<<Table Row Data with the column information separated by comma (,) and enclosed
within double quotes (") if the information is not of numeric data type. The table
row data is followed by New line character>>

DataSet Flat File Example
The following is the DataSet flat file example for CO_CNY table:

1,"Us","UsSD", "USD","US","1",2,0
2,"CA", "CAD","CAD","CA","0",2,1
3, "MX", "MXN", "MXN", "MX","0",2,3
4,"GB","GBP","GBP", "GB","0",2,4
5,"EU", "EUR", "EUR", "EU","0",2,5
6,"Jp","JPY", "JPY","JP","0",0,6

Note: All the data type values except number type must be within
double quotes.

Extensibility

Extensibility is supported through the interface-based design and the use of the Spring
Framework. From an extensibility stand point, an alternate implementation of any of
the exposed interfaces could inherit from one of the out-of-the-box implementation
classes and be injected into the system through Spring.

Appendix: Intra Store Data Distribution Infrastructure A-9

Extensibility

Additionally, the schema has been designed to enable the addition of datasets and
dataset tables.

Adding New Table To Existing Dataset

Adding a new dataset table to the data model is as simple as adding a new row to the
table CO_DT_ST_TB_IDDI and creating table script in CreateSchema.sql.

Adding More Tables To Existing Dataset Types

The following example walks through the process of adding more tables to the existing
DataSet in IDDL

1. Insert the tables to be associated with the existing DataSet by adding records to
CO_DT_ST_TB_IDDI using SQL.

Run the following queries to insert the table association to DataSet.

Example A-1 Adding Table Assiociation To Employee Dataset

insert into CO_DT_ST_TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)

values

(<<Employee DataSet ID>>, <<’Store ID’>>,<<’'Tablel’>>,<<'Tablel.txt’>>,1);

TableName: CO_DT_ST_TB_IDDI

Column Description

ID DT ST : DataSet ID

ID_STR_RT: Store ID

NM_TB : Table Name

NM_FL : File Name of the Flat file to be generated

AI_LD_SEQ: Table Order in which the data to be exported and imported

eg: Get the Employee DataSet ID from CO_DT_ST_IDDI table

insert into CO_DT ST TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI LD SEQ)
values

(1,704241", "TABLE1l’, 'TABLE1.TXT',1);

insert into CO_DT ST TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values

(1,704241", "TABLE2’, 'TABLE2.TXT',2);

2. Add CREATE TABLE scripts in CreateSchema.sql.

CREATE TABLE "offlinedb"."TABLELl"
("COLUMN1” <<TYPE>> <<Constraint>>,
"COLUMN2, <<TYPE>> <<Constraint>>)

CREATE TABLE "offlinedb"."TABLE2"
("COLUMNL1” <<TYPE>> <<Constraint>>,
"COLUMN2, <<TYPE>> <<Constraint>>)

A-10 Oracle Retail Point-of-Service Operations Guide

Extensibility

Adding a New DataSet

Do the following to add new DataSet:

1.
2.
3.

Add DataSet information in CO_DT_ST _IDDI.
Add DataSet tables to CO_DT_ST_TB_IDDI.

Create <DataSetKey>Producer and <DataSetKey>Consumer classes
extending from AbstractDataSetProducer and AbstractDataSetConsumer
respectively.

Define service_config <<DataSetKey>> in ServiceContext.xml

Define service_<<DataSetKey>>Producer with
class=<DataSetKey>Producer and service_<<DataSetKey>>Consumer
with class=<DataSetKey>Consumer in ServiceContext.xml

Add to service_<<DataSetKey>>Producer and service_
<<DataSetKey>>Consumer to service_DataSetService and service_
ClientDataSetService respectively in ServiceContext.xml

Add DataSet key to service_FrequentProducerJob/service_
InfrequentProducerJob and service_FrequentConsumerJob/service_
InfrequentConsumerJob in ServiceContext.xml

Add create table scripts and insert script for newly added DataSet in
CreateSchema.sql.

Configuring Schedule for DataSet Producer and Consumer

Any existing Dataset Producer and Consumer can be individually configured to run
on scheduled basis.

Configure DataSet Producer
Follow the steps below to configure DataSet Producer:

1.

Add JobDetailBean bean configuration service_<<DataSet>>Producer]ob.

<bean id="service_<<DataSet>>ProducerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
<property name="jobClass">

<value>com.extendyourstore. foundation.iddi.DataSetProducerJob</value>
</property>
<property name="jobDataAsMap">
<map>
<entry key="producer" value-ref="service_DataSetService"/>
<entry key="dataSets">
<list>
<ref local="service_config_<<DataSetKey>>"/>
</list>
</entry>
</map>
</property>
</bean>

Note: service_config_<<DataSetKey>> should have been configured
with the DataSetKey

Appendix: Intra Store Data Distribution Infrastructure A-11

Extensibility

2. Add CronTriggerBean bean configuration service_Trigger<<DataSet>>Producer

<bean id="service_Trigger<<DataSet>>Producer" class =
"org.springframework.scheduling.quartz.CronTriggerBean">

<property name = "jobDetail">
<ref local="service_<<DataSet>>ProducerJob"/>
</property>
<property name="cronExpression" value="0 0,15,30,45 0 * * ?"/>
</bean>

The above DataSet is configured to run once every 15 minutes.

Note: For more information about configuring using Quartz, go to
http://www.opensymphony.com/quartz/wikidocs/CronTrig
gers%20Tutorial .html.

3. Add service_Trigger<<DataSet>>Producer to the SchedulerFactoryBean
bean configuration:

<bean id="service_ProducerSchedulerFactory"
class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
<property name="triggers">
<list>
<ref local="service_TriggerFrequentProducer" />
<ref local="service TriggerInfrequentProducer"/>
<ref local="service_ Trigger<<DataSet>>Producer"/>
</list>
</property>
</bean>

Configure DataSet Consumer
Do the following to configure DataSet Consumer:

1. Add JobDetailBean bean configuration service_<<DataSet>>ConsumerJob:

<bean id="service_<<DataSet>>ConsumerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
<property name="jobClass">

<value>com.extendyourstore. foundation.iddi.ClientDataSetController</value>
</property>
<property name="jobDataAsMap">
<map>
<entry key="dataSets">
<list>
<ref local="service_config_<< DataSetKey>>"/>
</list>
</entry>
</map>
</property>
</bean>

Note: service_config_<<DataSetKey>> should have been
configured with the DataSetKey:.

A-12 Oracle Retail Point-of-Service Operations Guide

Extensibility

2. Add CronTriggerBean bean configuration service_
Trigger<<DataSet>>Consumer:

<bean id="service_Trigger<<DataSet>>Consumer" class =
"org.springframework.scheduling.quartz.CronTriggerBean">

<property name = "jobDetail">
<ref local="service_<<DataSet>>ConsumerJob"/>
</property>
<property name="cronExpression" value="0 0,15,30,45 0 * * ?"/>
</bean>

The DataSet is configured to run once every 15 minutes.

3. Add service_Trigger<<DataSet>>Consumer to the SchedulerFactoryBean
bean configuration:

<bean id=" service_clientSchedulerFactory"
class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
<property name="triggers">
<list>
<ref local="service_TriggerFrequentConsumer"></ref>
<ref local="service_TriggerInfrequentConsumer"></ref>
<ref local="service_Trigger<<DataSet>>Consumer" />
</list>
</property>
</bean>

Adding New DataSet Type

The following example walks through the process of adding a new DataSet to the

existing IDDL

» Insert the new DataSet information in into the databaset table CO_DT_ST IDDI
using SQL:

= Insert the tables associated with the DataSet added to CO_DT_ST_TB_IDDI using
SQL.

1. Run the following queries to insert new DataSet information and table association
to DataSet.

Example A-2 Adding New DataSet

insert into CO_DT_ST_IDDI

(ID_DT_ST, ID_STR_RT, NM_DT_ ST)

values

(maxid+1,<<’StoreID’>> ,<<’DataSetName’>>);

TableName: CO_DT_ST_IDDI

Column Description
ID DT ST : DataSet ID
ID_STR_RT: Store ID
NM_DT_ ST : DataSet Name

eg:

insert into CO_DT_ST IDDI
(ID_DT_ST, ID_STR_RT, NM_DT_ST)
values

(6,704241",'NEW’) ;

Appendix: Intra Store Data Distribution Infrastructure A-13

Extensibility

Example A-3 Adding Table association to New DataSet

insert into CO_DT ST TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)

values

(<<New DataSet ID>>, <<’Store ID’'>>,<<’'Tablel’>>,<<’'Tablel.txt’>>,1);

eg:
insert into CO_DT ST TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI LD SEQ)
values

(6,'04241", "TABLE1l’, 'TABLE1.TXT',1);

insert into CO_DT_ST TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values

(6,'04241", "TABLE2’, 'TABLE2.TXT',2);

2. Create <DataSetKey>Producer and <DataSetKey>Consumer classes
extending from AbstractDataSetProducer and AbstractDataSetConsumer
respectively.

Example A—4 DataSetProducer Code

package com.extendyourstore.domain.iddi;

import com.extendyourstore.foundation.iddi.AbstractDataSetProducer;
import com.extendyourstore.foundation.iddi.DataSetMetaData;

import com.extendyourstore.foundation.iddi.TableQueryInfo;

import com.extendyourstore.foundation.iddi.ifc.DataSetMetaDatalfc;

public class NewDataSetProducer extends AbstractDataSetProducer

{

private final String[] TABLE_FIELDS={"*"};

/*'k

* NewDataSetProducer constructor
*/

public NewDataSetProducer ()
{

}

/**

* Get DataSetMetatIfc reference

*

*/

public DataSetMetaDataIfc getDataSetMetaData ()
{

// Get the table names for the Key

return dataSetMetaData;

}

/**

* Initialize the MetaData for the DataSetProducer
*/

public void initializeDataSet ()

A-14 Oracle Retail Point-of-Service Operations Guide

Extensibility

{

dataSetMetaData = new DataSetMetaData (dataSetKey) ;

}

/**

* Create TableQueryInfo object with the column names to fetch
* @param TableName

* @return TableQueryInfo Object

*/

public TableQueryInfo getTableQueryInfo(String tableName)

{

TableQueryInfo tableQueryInfo = new TableQueryInfo (tableName) ;
tableQueryInfo.setTableFields (TABLE_FIELDS) ;

return tableQueryInfo;

}

/*'k

* Finalize DataSet Method

*
*/
public void finalizeDataSet ()

{

Example A-5 DataSetConsumer Code

package com.extendyourstore.domain.iddi;
import com.extendyourstore.foundation.iddi.AbstractDataSetConsumer;
/**

The NewDataSetConsumer defines methods that the

application calls to import Employee dataset files into

offline database.
@version S$Revision: $

public class NewDataSetConsumer extends AbstractDataSetConsumer
{ /** Dataset key name for currency dataset.

*/ private String dataSetKey = null;

public String getDataSetKey ()
{

return dataSetKey;

}

Appendix: Intra Store Data Distribution Infrastructure

Extensibility

/**

@param dataSetKey The DataSetKey to set
**/

public void setDataSetKey(String dataSetKey)
{

this.dataSetKey = dataSetKey;

3. Define service_config <<DataSetKey>> in ServiceContext.xml:

<bean id="service_config_<<datasetKey>> " class="java.lang.String">
<constructor-arg type="java.lang.String" value="<<DataSetKey>>"/>

</bean>eg: <bean id="service_config NEW_KEY" class="java.lang.String">
<constructor-arg type="java.lang.String" value="NEW"/>
</bean>

4. Define service_<<DataSetKey>>Producer with
class=<DataSetKey>Producer and service_<<DataSetKey>>Consumer
with class=<DataSetKey>Consumer in ServiceContext.xml:

<bean id="service_NewProducer"
class="com.extendyourstore.domain.iddi.NewDataSetProducer" lazy-init="true"
singleton="true”>
<property name="dataSetKey" ref="service_config NEW_KEY"/>
<property name="dataExportFilePath" ref="service_config_
DataExportFilePath"/>
<property name="dataExportZipFilePath" ref="service_config_
DataExportZipFilePath"/>
</bean>
<bean id="service_NewConsumer"
class="com.extendyourstore.domain.iddi.NewDataSetConsumer"
lazy-init="true"
singleton="true">
<property name="dataSetKey" ref="service_config_NEW_KEY"/>
<property name="dataImportFilePath" ref="service_config_
DataImportFilePath"/>
</bean>

5. Addto service_<<DataSetKey>>Producer and service_
<<DataSetKey>>Consumer to service_DataSetService and service_
ClientDataSetService respectively in ServiceContext.xml

<bean id="service_DataSetService"
class="com.extendyourstore.foundation.iddi.DataSetService" singleton="true">
<property name="producers">
<map>
<entry key-ref="service_config_ EMP_KEY" value-ref="service_
EmployeeProducer" />
<entry key-ref="service_config_ ITM_KEY" value-ref="service_
ItemProducer"/>
<entry key-ref="service_config PRC_KEY" value-ref="service_
AdvancedPricingProducer" />
<entry key-ref="service_config TAX_KEY" value-ref="service_
TaxProducer" />
<entry key-ref="service_config_CUR_KEY" value-ref="service_
CurrencyProducer" />

A-16 Oracle Retail Point-of-Service Operations Guide

Extensibility

<entry key-ref="service_config NEW_KEY" value-ref="service_
NewProducer" />
</map>
</property>
</bean>
<bean id="service_ClientDataSetService"
class="com.extendyourstore. foundation.iddi.ClientDataSetService"
singleton="true">
<property name="consumers">
<map>
<entry key-ref="service_config_ EMP_KEY" value-ref="service_
EmployeeConsumer" />
<entry key-ref="service_config_CUR_KEY" value-ref="service_
CurrencyConsumer" />
<entry key-ref="service_config_TAX KEY" value-ref="service_
TaxConsumer" />
<entry key-ref="service_config ITM KEY" value-ref="service_
ItemConsumer" />
<entry key-ref="service_config_PRC_KEY" value-ref="service_
AdvancedPricingConsumer" />
<entry key-ref="service_config NEW _KEY" value-ref="service_
NewConsumer" />
</map>
</property>
<property name="dataImportFilePath" ref="service_config_
DataImportFilePath"/>
</bean>

Add DataSet key to service_FrequentProducerJob/service_
InfrequentProducerJob and service_FrequentConsumerJob/service_
InfrequentConsumerJob in ServiceContext.xml

<bean id="service_FrequentProducerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
<property name="jobClass">

<value>com.extendyourstore. foundation.iddi.DataSetProducerJob</value>
</property>
<property name="jobDataAsMap">
<map>
<entry key="producer" value-ref="service_DataSetService"/>
<entry key="dataSets">
<list>
<ref local="service_config_ EMP_KEY"/>
<ref local="service_config PRC_KEY"/>
<ref local="service_config TAX KEY"/>
<ref local="service_config NEW_KEY"/>
</list>
</entry>
</map>
</property>
</bean>

<bean id="service_FrequentConsumerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
<property name="jobClass">

<value>com.extendyourstore. foundation.iddi.ClientDataSetController</value>

</property>
<property name="jobDataAsMap">

Appendix: Intra Store Data Distribution Infrastructure A-17

Extensibility

<map>
<entry key="dataSets">
<list>
<ref local="service_config_EMP_KEY"/>
<ref local="service_config_ PRC_KEY"/>
<ref local="service_config_TAX_KEY"/>
<ref local="service_config NEW_KEY"/>
</list>
</entry>
</map>
</property>
</bean>

Add CREATE TABLE scripts and insert scripts to newly added DataSet in
CreateSchema.sql.

CREATE TABLE "offlinedb"."TABLEL"
("COLUMN1” <<TYPE>> <<Constraint>>,
"COLUMN2, <<TYPE>> <<Constraint>>)
CREATE TABLE "offlinedb"."TABLE2"
("COLUMNL1” <<TYPE>> <<Constraint>>,
"COLUMN2, <<TYPE>> <<Constraint>>)
insert into CO_DT_ST IDDI(ID DT ST, ID _STR RT, NM DT ST)
values(6,'04241", 'NEW') ;

Changing Oracle Retail Point-of-Service Client Database vendor

Currently the Oracle Retail Point-of-Service client uses Derby Database. However, the
modifications to the code are minimal for replacing the Oracle Retail Point-of-Service
client database from Derby to another database. Do the following to change the Oracle
Retail Point-of-Service client database:

1.

Plugability

Add offline<<DBName>>Helper class which implements
offlineDBHelperIfc.

Change the installer to have new database driver jar file paths.

Update the "<POOL name="jdbcpool class="DataConnectionPool"
package="com.extendyourstore. foundation.manager.data">" section
of PosLFFDataTechnician.xml file with the driver, databaseUrl, userid, password.

The plug points have been identified as follows:

DataSetService
ClientDataSetService
ClientDataSetController
DataSetProducers

- EmployeeDataSetProducer
- ItemDataSetProducer

- TaxDataSetProducer

— CurrencyDataSetProducer
- PricingDataSetProducer

DataSetConsumers

A-18 Oracle Retail Point-of-Service Operations Guide

Extensibility

- EmployeeDataSetConsumer

- ItemDataSetConsumer

- TaxDataSetConsumer

- CurrencyDataSetConsumer

- AdvancedPricingDataSetConsumer
s Data Formatter
» Offline DB Helper
s Offline Data Source

Any and all of these implementations can be replaced with custom implementations
by updating the ServiceContext.xml file to point to custom implementations.

Appendix: Intra Store Data Distribution Infrastructure A-19

Extensibility

A-20 Oracle Retail Point-of-Service Operations Guide

Appendix: Value-Added Tax

The value-added tax (VAT) is a consumption tax that is levied at each stage of
production based on the value added to the product at that stage. VAT is used across
the European Union, as well as other locales, but different rates of VAT can be applied
in different regions. Point-of-Service currently supports various tax rules, as well as
Canadian taxes (GST/PST/HST), a type of VAT, but additional support for VAT is
required to support an EU deployment.

One difference between a sales tax and a VAT is that with a sales tax, the tax is added
to the retail price of an item; whereas with a VAT the retail price includes the tax
amount (there are exceptions in some types of Canadian VAT). This project addresses
the price inclusive VAT only. If the associate overrides the default price, the overridden
price is assumed to include VAT, so the VAT calculation is based on the price entered
by the user.

VAT tax will still need to be considered part of customer localization as VAT can vary
from country to country, might need to be configured differently and many customers
might want to modify receipt formats, reports, and so forth.

VAT calculation

Inclusive Tax Flag At Tax Group Rule Level

At tax group rule level, a boolean-inclusive tax flag is added to indicate if the tax
amount is already included in the item price. For details on this enhancement, see
"Adding Tax Inclusive Flag To Tax Group Rule" for class/service API changes, and
"Tax Group Rule Table RU_TX_GP" for DB schema enhancement.

Inclusive Tax Rate Calculator

A new inclusive tax rate calculator class is added to support VAT calculation. For
details on this new calculator, see "Tax Rate Calculators" for class level APIs.

Appendix: Value-Added Tax B-1

VAT calculation

Enhancing PLU Item Look Up

A tax calculator is instantiated during PLU item look up for a sales transaction. When
it comes to instantiate a rate calculator, the logic in member function NewTaxRulelfc[]
retrieveltemTaxRules(ArrayList ffTaxVOs) in JDBC class
com.extendyourstore.domain.arts.JdbcReadNewTaxRules must be enhanced to create
either an inclusive tax rate calculator or an exclusive tax rate calculator based on the
inclusive tax flag at the tax group rule level. Instead of calling the existing domain
factory API TaxRateCalculatorlfc getTaxRateCalculatorInstance(), it is changed to
invoke the following new API to create the correct tax rate calculator (inclusive versus
exclusive).

public TaxRateCalculatorIfc getTaxRateCalculatorInstance(boolean inclusiveTax) ;

For details on this API, see "Domain Object Factory Service".

Enhancing Internal Tax Engine

Various tax classes are used by the internal tax engine to hold tax amounts during tax
calculation process. These classes must be enhanced to hold inclusive and exclusive
(add on) tax separately. For details, see "Enhancing Domain Tax Interfaces/Classes"
and "Enhancing Transaction & Line Item Tax Interfaces/Classes".

For the internal tax engine class com.extendyourstore.domain.tax.InternalTaxEngine, it
must be enhanced in the post tax calculation phase to roll up inclusive and exclusive
tax to line items and transaction totals. The following member functions will be
modified for this purpose.

public void postTaxCalculation(TaxLineItemInformationIfc item);
public void postTaxCalculation(TransactionTotalsIfc totals);

Our internal tax engine today does not support tax on shipping charge. For details on
the enhancement to support tax on shipping charges, see "Calculate VAT for Shipping
Charges".

VAT Tax Rule Seed Data

To provide out-of-box VAT calculation support, tax rule seed data will be populated
into tax tables using the tax import utility. The seed data is created based on UK VAT.
A complete xml definition of the tax rule seed data is included in the appendix.

As we can see from the xml definition, the out-of-box VAT rule will take the following
attribute values:

= Rounding digits: 4

s Inclusive tax flag: TRUE. This is a new flag introduced for this project. The tax
import utility is enhanced to handle this extra boolean flag.

s Compound sequence number: 0 for no compound tax.
= Tax on gross amount flag: false for calculating tax based on price after discount.

= Calculation method code: Lineltem for calculating tax by line item, not by
transaction.

s Tax rate rule usage code: PercentageOrAmount for simple tax, no tax table lookup
or threshold tax.

= Rate tax type: Percentage for calculating tax based on a tax rate.

B-2 Oracle Retail Central Office Operations Guide

VAT calculation

Calculate VAT For Unknown Items, Invalid Or Blank Tax Groups

For an unknown item, the tax group ID of its Point-of-Service department will be used
to calculate VAT. This is consistent with our current approach for sales tax.

For a blank tax group, tax group ID of 0 will be used to calculate VAT. This is
consistent with our current approach for sales tax.

For an invalid tax group, use the following mechanism to determine tax:

If item's tax group is valid, use it

else if item's department tax group is valid, use it

else if a default tax rule (tax group id = -1 & tax authority id = -1) is
configured, use it with the tax rate parameter

else use the tax rate parameter with hard coded tax rule name.

Calculate VAT for Returns Transactions

For a returns transaction with receipt, its VAT will not be recalculated. Instead, reverse
item tax rules are created to negate the original sales transaction’s VAT. This is
consistent with our current approach of handling sales tax for returns with receipt.

The following member function in sale return line item class
com.extendyourstore.domain.lineitem.SaleReturnLineltem is responsible for creating
and returning an array of reverse item tax rules for returns transactions. The tax rules
are created based on the tax information saved in the original transaction’s sales return
tax line items.

protected ReverseIltemTaxRuleIfc[] getRetrievedReturnTaxRules();

This function must be enhanced to populate a reverse item tax rule’s inclusive tax flag
from the sales return tax line item of the original transaction.

For a returns transaction without receipt, the transaction VAT will be recalculated. The
function goes through the same logic to calculate VAT as a sales transaction. Therefore,
no additional work is required in this case.

Calculate VAT for Reverse Transactions Other Than Returns

For a reverse transaction other than returns (such as a Post Void transaction), its VAT
will not be recalculated as well. Reverse item tax rules are created to negate the
original transaction’s VAT. This is consistent with our current approach of handling
sales tax for reverse transactions.

The following member function in sale return line item class
com.extendyourstore.domain.lineitem.SaleReturnLineltem is responsible of creating
and returning an array of reverse item tax rules for reverse transactions other than
returns. The tax rules are created based on the tax information saved in the original
transaction’s sales return tax line items.

protected ReverseltemTaxRuleIfc[] getReverseTaxRules ();

This function must be enhanced to populate a reverse item tax rule’s inclusive tax flag
from the sales return tax line item of the original transaction.

For a post void transaction, the following function in class
com.extendyourstore.domain.transaction.Void Transaction must be enhanced to negate
the inclusive tax total of the original transaction.

protected void setVoidTransactionTotals (TransactionTotalsIfc origTotals);

Appendix: Value-Added Tax B-3

VAT calculation

The same function must be enhanced to negate shipping charge tax as well (see
"Calculate VAT for Shipping Charges" for details).

Calculate VAT for Shipping Charges

Enhance Shipping Method Table and Domain Interface/Class

Each shipping method will take a boolean-taxable flag and a tax group ID. These two
combined define how VAT is calculated for the shipping charges. For details on the db
schema enhancements on shipping method table CO_SHP_MTH, see "Shipping
Methods Table CO_SHP_MTH". For details on enhancements on the domain shipping
method interface/class, see "Shipping Method Interface/Class". The following JDBC
class will be enhanced to read the taxable flag and tax group ID from the table and
populate the tax rules into domain object instance of interface
com.extendyourstore.domain.financial.ShippingMethodlfc:

com. extendyourstore.domain.arts.JdbcReadShippingMethod

Add/Update Send Packages to/in a Sale Return Transaction

To support VAT for shipping charges, a new send package line item interface and class
will be added. The class implements the tax line item interface and therefore provides
all the necessary information the internal tax engine needs to calculation tax on
shipping charges. For details on the send package line item interface/class, see "Send
Package Line Item Interface/Class".

New methods addSendPackagelnfo and updateSendPackagelnfo are added in sales
return transaction interface and class to support adding and updating of send
(shipping) packages. See "Enhancing Sale Return Transaction Interface/Class" for
more details on the functions added.

The following Ul site and road will be updated to call the above new methods to add
or update send packages.

com. extendyourstore.pos.services.send.displaysendmethod.AssignTransactionLevelInfo
Site
com.extendyourstore.pos.services.send.displaysendmethod.SendMethodSelectedRoad

Enhance Internal Tax Engine

The internal tax engine will be enhanced to calculate tax for shipping charges. See
"Internal Tax Engine Classes" for details.

Negate VAT for Shipping Charges for a Post Void Transaction

For a post void transaction, the following function in class
com.extendyourstore.domain.transaction.Void Transaction must be enhanced to negate
the shipping charges tax of the original transaction.

protected void setVoidTransactionTotals (TransactionTotalsIfc origTotals);

Enhance Overlay Lane Action Class SendMethodSelectedRoad

The lane action class for road DisplaySendMethodNext in tour script
com.extendyourstore.pos.services.send.displaysendmethod.displaysendmethod.xml is
com.extendyourstore.pos.services.send.displaysendmethod.SendMethodSelectedRoad
. This action class is invoked when a send method is selected. We will overlay this class
with the following one for VAT.

com. extendyourstore.pos.services.send.displaysendmethod.VatSendMethodSelectedRoad

B-4 Oracle Retail Central Office Operations Guide

Transaction Persistence for VAT

The lane action class
com.extendyourstore.pos.service.send.displaysendmethod.SendMethodSelectedRoad
is invoked when a send method is selected in Point-of-Service UI.

Since shipping charges can be taxable, it will be enhanced to call the sales return
transaction API updateTransactionTotals() to force tax recalculation after the shipping
method is added /updated to the transaction.

Calculate VAT for Send Transactions

For a send transaction, its VAT will be calculated based on local tax rules, not the
destination tax rules. The tax rules of a send transaction are retrieved in GetTaxRules
site in tour script
com.extendyourstore.pos.services.send.displaysendmethod.displaysendmethod.xml.
Its site class
com.extendyourstore.pos.services.send.displaysendmethod.GetTaxRulesSite retrieves
the send tax rules based on the postal code of the shipping address. We will overlay
this site class with the following one for VAT.

com.extendyourstore.pos.services.send.displaysendmethod.GetVatRulesSite

This new site class will retrieve local tax rules for the send transaction.

Transaction Persistence for VAT

Persist Inclusive tax

For a retail transaction, inclusive tax information must be saved at transaction and line
item level.

s For schema enhancement of a retail transaction, see "Retail Transaction Table TR_
RTL".

s For schema enhancement of a transaction tax line item, see "Tax Line Item Table
TR_LTM_TX".

s For schema enhancement of a sales return line item, see "Sales Return Line Item
Table TR_LTM_SLS_RTN".

s For schema enhancements of a sales return tax line item, see "Sales Return Tax
Line Item Table TR_LTM_SLS_RTN_TX".

The following is a list of domain persistence classes that need to be enhanced to load
or save the additional inclusive tax information of a retail transaction.

= com.extendyourstore.domain.arts.JdbcReadTransaction

= com.extendyourstore.domain.arts.JdbcReadTransactionHistory

= com.extendyourstore.domain.arts.JdbcSaveRetailTransaction

= com.extendyourstore.domain.arts.JdbcSaveRetailTransactionLineltems

» com.extendyourstore.domain.arts.JdbcUpdatePriceAdjustedLineltems

For an order transaction, inclusive tax amount must be saved at order item level.
For schema enhancement of an order item, see "Order Item Table OR_LTM".

The following is a list of domain persistence classes that need to be enhanced to load
or save the additional inclusive tax amount of an order item.

Appendix: Value-Added Tax B-5

Tracking VAT Financial Totals

= com.extendyourstore.domain.arts.JdbcCreateOrder
= com.extendyourstore.domain.arts.JdbcRetrieveOrder
= com.extendyourstore.domain.arts.JdbcSaveOrderLineltems

= com.extendyourstore.domain.arts.JdbcUpdateOrder

Persist Shipping Charge Tax

For a send transaction, all its shipping information (including the tax on shipping
charges) must be saved to the shipping record table SHP_RDS_SLS_RTN and the new
shipping record tax table SHP_RDS_SLS_RTN_TX.

For schema enhancements of the shipping record table, see "Shipping Record Table
SHP_RDS_SLS_RTN".

For schema of the new shipping record tax table, see "Shipping Record Tax Table SHP_
RDS_SLS_RTN_TX".

The following new functions will be added to class
com.extendyourstore.domain.arts.JdbcReadTransaction to read tax information of a
send package from the shipping record tax table SHP_RDS_SLS_RTN_TX.

protected TaxInformationIfc[]
readTransactionShippingTaxInformation (JdbcDataConnection dataConnection,
SaleReturnTransactionIfc transaction, int sendLabelCount);

The existing read TransactionShippings will be enhanced to read all the shipping
information from the db and create send packages for the transaction. It will invoke
the above new function to read tax information of a send package. It must also set each
send package’s from transaction flag to true.

The following new functions will be added to class
com.extendyourstore.domain.arts.JdbcSaveRetail Transaction to save a send package to
the shipping record table SHP_RDS_SLS_RTN and its tax table SHP_RDS_SLS_RTN_

TX.
protected void saveTransactionShippingInformation (JdbcDataConnection
dataConnection,

TenderableTransactionIfc transaction, SendPackagelLineIltemIfc
sendPackage) ;
protected void saveTransactionShippingTaxInformation (JdbcDataConnection
dataConnection,

TenderableTransactionIfc transaction, SendPackageLineItemIfc sendPackage,
TaxInformationIfc taxInformation);

The existing function saveTransactionShippings will be enhanced to save all shipping
information in the transaction’s send packages into db. It will invoke the above new
functions to do so.

Tracking VAT Financial Totals

For schema enhancement of Point-of-Service department history table, see
"Point-of-Service Department History Table LE_HST_PS_DPT".

For schema enhancement of till history table, see "Till History Table LE_HST_TL".

For schema enhancement of register history table, see "Register History Table LE_
HST_WS".

For schema enhancement of store history table, see "Store History Table LE_HST_STR".

B-6 Oracle Retail Central Office Operations Guide

Tracking VAT Financial Totals

For schema enhancement of tax history table, see "Tax History Table HST_TX".

Accumulate Inclusive Tax

For a retail transaction, its inclusive tax amount must be accumulated in financial
totals, and added to store, register, till, and Point-of-Service department history tables.
A detail break down of its inclusive tax collected for each tax group rule must be
accumulated in financial totals, and added to tax history table.

Financial totals classes must be enhanced to hold inclusive tax information. For details,
see "Enhancing Financial Totals Interfaces/Classes".

The following existing member function in sales return line item class
com.extendyourstore.domain.lineitem.SaleReturnLineltem will be enhanced to
populate its financial totals’ inclusive tax amounts.

public FinancialTotalsIfc getFinancialTotals (boolean isSale);
The following existing member function in layaway transaction class

com.extendyourstore.domain.transaction. LayawayTransaction will be enhanced to
populate its financial totals” inclusive tax amounts.

protected FinancialTotalsIfc getLayawayFinancialTotals();
The following existing member function in order transaction class

com.extendyourstore.domain.transaction.OrderTransaction will be enhanced to
populate its financial totals” inclusive tax amounts.

protected FinancialTotalsIfc getOrderFinancialTotals();
The following existing member function in sales return transaction class

com.extendyourstore.domain.transaction.SaleReturnTransaction will be enhanced to
populate its financial totals’ inclusive tax amounts.

protected FinancialTotalsIfc getSaleReturnFinancialTotals();
The following existing member functions in post voided transaction class

com.extendyourstore.domain.transaction.Void Transaction will be enhanced to
populate its financial totals” inclusive tax amounts.

protected void getLayawayFinancialTotals (FinancialTotalsIfc financialTotals,
LayawayTransactionIfc layawayTransaction);

protected void getOrderFinancialTotals(FinancialTotalsIfc financialTotals,
OrderTransactionIfc orderTransaction);

protected void getSaleReturnFinancialTotals (FinancialTotalsIfc financialTotals);

The following is a list of domain persistence classes that need to be enhanced to load
or save the additional inclusive tax information of the history tables.

= com.extendyourstore.domain.arts.JdbcReadDepartment

= com.extendyourstore.domain.arts.JdbcSaveDepartment

= com.extendyourstore.domain.arts.JdbcReadTill

= com.extendyourstore.domain.arts.JdbcSaveTill

= com.extendyourstore.domain.arts.JdbcReadRegister

= com.extendyourstore.domain.arts.JdbcReadStoreRegisters
= com.extendyourstore.domain.arts.JdbcSaveRegister

= com.extendyourstore.domain.arts.JdbcReadStoreTotals

Appendix: Value-Added Tax B-7

Tracking VAT Financial Totals

= com.extendyourstore.domain.arts.JdbcSaveStore
= com.extendyourstore.domain.arts.JdbcReadTaxHistory

= com.extendyourstore.domain.arts.JdbcSaveTaxHistory

Accumulate Shipping Charge Tax

For a send transaction, its shipping charge tax must be accumulated in financial totals,
and added to store, register, and till history tables. A detail break down of the tax
collected for each tax group rule must be accumulated in financial totals, and added to
tax history table.

Note that shipping charges are not tracked in Point-of-Service department history
table, since a shipping method is not associated with a department id.

Financial totals classes must be enhanced to hold shipping charges tax. For details, see
"Enhancing Financial Totals Interfaces/Classes".

The following API of a send package line item is responsible of returning a financial
totals object populated with shipping charges and its tax information. See "Send
Package Line Item Interface/Class" for more details.

public FinancialTotalsIfc getFinancialTotals (boolean isNotVoid);

The following existing member function in sales return transaction class
com.extendyourstore.domain.transaction.SaleReturnTransaction will be modified to
collect financial totals of all send packages and add them up. It will retrieve the
financial totals of a send package line item by calling its getFinancialTotals function
listed above.

protected FinancialTotalsIfc getSaleReturnFinancialTotals();

The following existing member function in post void transaction class
com.extendyourstore.domain.transaction.Void Transaction will be modified to collect
financial totals of all send packages and add them up. It will retrieve the financial

totals of a send package line item by calling its getFinancialTotals function listed
above.

public FinancialTotalsIfc getFinancialTotals()

The following is a list of domain persistence classes that need to be enhanced to load
or save the additional shipping charge tax information of the history tables.

= com.extendyourstore.domain.arts.JdbcReadTill

= com.extendyourstore.domain.arts.JdbcSaveTill

= com.extendyourstore.domain.arts.JdbcReadRegister

= com.extendyourstore.domain.arts.JdbcReadStoreRegisters
= com.extendyourstore.domain.arts.JdbcSaveRegister

= com.extendyourstore.domain.arts.JdbcReadStoreTotals

= com.extendyourstore.domain.arts.JdbcSaveStore

B-8 Oracle Retail Central Office Operations Guide

Transaction Retrieval in CO

Transaction Retrieval in CO

Enhancing Transaction Entity Beans

The following is a list of entity beans that will be enhanced to accommodate the

Entity Bean Name: RetailTransactionBean

Table: TR_RTL (see "Retail Transaction Table TR_RTL")

Bean/DTO Classes: com._360commerce.commerceservices.transaction.retail.*
com._360commerce.commerceservices.transaction.retail.ejb.*

Entity Bean Name: SaleReturnLineltemBean

Table: TR_LTM_SLS_RTN (see "Sales Return Line Item Table TR_LTM_SLS_
RTN")

Bean/DTO Classes: com._360commerce.commerceservices.transaction.salereturn. *
com._360commerce.commerceservices.transaction.salereturn.ejb.*

Entity Bean Name: SaleReturnShippingRecordBean

Table: SHP_RDS_SLS_RTN (see "Shipping Record Table SHP_RDS_SLS_RTN")

Bean/DTO Classes: com._360commerce.commerceservices.transaction.shipping.*

com._360commerce.commerceservices.transaction.shipping.ejb.*

The following are new entity beans that will be created.

Entity Bean Name: SaleReturnLineltemTaxBean

Table: TR_LTM_SLS_RTN_TX (see "Sales Return Tax Line Item Table TR_LTM_
SLS_RTN_TX")

Bean/DTO Classes: com._360commerce.commerceservices.transaction.salereturn.*
com._360commerce.commerceservices.transaction.salereturn.ejb.*

Entity Bean Name: SaleReturnShippingRecordTaxBean

Table: SHP_RDS_SLS_RTN_TX (see "Shipping Record Tax Table SHP_RDS_
SLS_RTN_TX")

Bean/DTO Classes: com._360commerce.commerceservices.transaction.shipping.*

com._360commerce.commerceservices.transaction.shipping.ejb.*

For details of the DTO (data transfer object) class enhancements, see "Commerce
Service Transaction DTO Classes".

The toDTO() method in all the above bean classes must be enhanced or created to
populate the DTO objects.

Enhancing Transaction Service Bean

The transaction retrieval logic in transaction service bean class com._
360commerce.commerceservices.transaction.ejb.TransactionServiceBean must be
enhanced to retrieve the line item and shipping record tax information. The following
methods will be enhanced to do so.

Appendix: Value-Added Tax B-9

Enhancing POSLog

private List getItemsForTransaction(TransactionKey key) ;

This function retrieves all the sales return line items of a sales return, order, or layaway
transaction. It must be enhanced to call entity bean SaleReturnLineltemTaxBean to get
a collection of SaleReturnLineltenTaxDTO objects for each sale return line item, and set
them to the SaleReturnLineltemDTO object. For details of the DTO classes, see
"Commerce Service Transaction DTO Classes".

private List getShippingRecordsForTransaction(TransactionKey key);

This function retrieves all the shipping records of a sales return transaction. It must be
enhanced to call entity bean SaleReturnShippingRecordTaxBean to get a collection of
SaleReturnShippingRecordTaxDTO objects for each shipping record, and set them to
the SaleReturnShippingRecordDTO object. For details of the DTO classes, see
"Commerce Service Transaction DTO Classes".

Enhancing Transaction Manager Bean

The following function in transaction manager bean class com._
360commerce.webmodules.transaction.app.ejb.EJournalManagerBean will be
enhanced to populate the inclusive summary tax information into the
TransactionDetail ViewDTO (see "Web Modules Transaction View Bean Classes" for the
view DTO) object returned from the api. The enhancement is for sale return
transactions only.

public TransactionDetailViewDTO retrieveTransactionDetails(String keyString,
String dateString);

This function will collect all the group rule level tax information from each sales return
line item and shipping record by calling getTaxInformation api on
SaleReturnLineltemDTO and SaleReturnShippingRecordDTO (see "Commerce Service
Transaction DTO Classes"), and summarize the taxable amount and tax amount for
each unique tax group rule. A tax group rule is uniquely identified by tax authority ID,
tax group ID, and tax type combined. It will then create an array of class com._
360commerce.commerceservices.transaction.tax.GroupRuleTaxDTO (see "Commerce
Service Transaction DTO Classes") containing tax summary information of each tax
group rule for inclusive tax, and populate them to the TransactionDetailViewDTO
object by calling its API setInclusiveTaxSummaryInformation.

Enhancing POSLog

For a retail transaction, all new elements created in the Database Schema such as VAT
information, Shipping Tax information must also be included in the POSLog. Listed
below are the new elements that need to be sent as part of the generated POSLog xml
content.

= TR RTL
- MO_TX_INC_TOT

com.extendyourstore.domain.ixretail transaction.v21.LogRetail Transaction class needs
to be enhanced to include the above element in the addBaseElements(Transactionlfc
transaction) method. See "Log Retail Transaction Class".

» TR_LTM_TX
- MO_TX_INC

B-10 Oracle Retail Central Office Operations Guide

Enhancing POSLog

com.extendyourstore.domain.ixretail transaction.v21.LogRetail Transaction class needs
to be enhanced to include the above element in the
makeTaxLineltems(SaleReturnTransactionlfc retailTrans) method

= TR_LTM_SLS _RTN
— MO_VAT_INC_LN_ITM_RTN

com.extendyourstore.domain.ixretail lineitem.v21. LogSaleReturnLineltem class needs
to be enhanced to include the above element in the
createElement(SaleReturnLineltemlIfc srli,

TransactionlIfc transaction,
Document doc,
Element el,
boolean voidFlag,
int sequenceNumber) method.
s TR_LTM_SLS_RTN_TX
- MO_TX_INC_RTN_SLS_TOT (ELEMENT_TOTAL_INCLUSIVE_TAX_360)

- FL_TX_NC (ATTRIBUTE_TAX_INCLUDED_IN_TAXABLE_AMOUNT._
FLAG)

com.extendyourstore.domain.ixretail lineitem.v21.LogSaleReturnLineltem class needs
to be enhanced to include the previous two elements in the

createRetail TransactionTaxElements(SaleReturnLineltemlfc srli,
RetailTransactionltemlIfc el)

JdbcReadTransaction (selectSaleReturnLineltemTaxInformation(JdbcDataConnection
dataConnection,

SaleReturnTransactionlfc transaction,
int lineltemSequenceNumber)) method needs to be modified to add two new columns
= ORLTM
- MO_TAX_INC_LN_ITM_RTN
= SHP_RDS SLS RTN
- ID_GP_TX(ELEMENT_TAX_GROUP_ID_360)
- MO_TX(ELEMENT_AMOUNT)
- MO_TX_INC(ELEMENT_TAX_INCLUSIVE)

com.extendyourstore.domain.ixretail lineitem.v21. LogSaleReturnLineltem class needs
to be enhanced to include the above three elements in the
addShippingDetails(SaleReturnLineltemlIfc srli) method.

s SHP_RDS_SLS_RTN_TX
- ID_ATHY_TX (ELEMENT_TAX_AUTHORITY)

- ID GP_TX (ELEMENT_TAX_GROUP_ID_360)
- TY_TX (ELEMENT_TAX_TYPE_360)

- FLG_TX_HDY (ELEMENT_TAX_HOLIDAY_360)

- TX_MOD (ELEMENT_TAX_MODE_360)

- MO_TXBL_RTN_SLS (ELEMENT_TAXABLE_AMOUNT)

Appendix: Value-Added Tax B-11

Seed Data Population

- FL_TX_INC (ATTRIBUTE_TAX_INCLUDED_IN_TAXABLE_
AMOUNT_FLAG)

— MO_TX_RTN_SLS (ELEMENT_AMOUNT)
— MO_TX_RTN_SLS TOT (ELEMENT_TOTAL_TAX_360)
— MO_TX_INC_RTN_SLS TOT (ELEMENT_TOTAL_INCLUSIVE_TAX_ 360)
- NM_RU_TX (ELEMENT_TAX_RULE_ID_360)
- PE_TX (ELEMENT_TAX_PERCENTAGE_RATE)
= Till/Workstation/Store History Fields

- MO_RFD_INC_TX_TOT (ELEMENT_AMOUNT_INCLUSIVE_TAX_
ITEM_SALES_360)

- MO_RTN_INC_TX_TOT (ELEMENT_AMOUNT_INCLUSIVE_TAX_
ITEM_RETURNS_360)

- CP_SLS_ITM_INC_TX (ELEMENT_AMOUNT_INCLUSIVE_TAX_
TRANSACTION_SALES_360)

- CP_TRN_SLS_INC_TX (ELEMENT_AMOUNT_INCLUSIVE_TAX_
TRANSACTION_SALES_360)

- MO_SHP_CHR_TX_TOT (ELEMENT_AMOUNT_TAX_SHIPPING_
CHARGES_360)

- MO_SHP_CHR_INC_TX_TOT (ELEMENT_AMOUNT_INCLUSIVE_
TAX_SHIPPING_CHARGES_360)

s Tax History Fields
- FL_TX_INC (ELEMENT_INCLUSIVE_TAX_FLAG_360)

Seed Data Population

We will reuse the existing stores 04241 and 01291. The following seed data will be
populated to facilitate VAT dev testing.

The db.properties tax.enableTaxInclusive flag is used to determine which rules are
used by 04241 and 01291. When the flag is true, the stores will use the geo codes of the
VAT seed data. If the flag is not defined (or false), stores 04241 and 01291 will use the
existing tax rules geo codes.

VAT Tax Rule Seed Data

Two vat rules are created. Both of them will be associated with store 04241 and 01291.
The following is a brief description of the rules.

Table B-1 describes Rule 1: Tax Authority 1d8888600.

Table B-1 Rule 1: Tax Authority 1d8888600

Tax Group ID Name Rate
8888640 S 17.5%
8888650 R 5%
8888660 4 0%

B-12 Oracle Retail Central Office Operations Guide

Seed Data Population

Table B-2 describes Rule 2: Tax Authority 1d8888601.

Table B-2 Rule 2: Tax Authority 1d8888601

Tax Group ID Name Rate
8888670 S+ 12.5%
8888680 R+ 3%
8888690 Z+ 0%

Point-of-Service Department Seed Data
The following Point-of-Service departments will be created. They will be associated

with both stores.

Point-of-Service Department ID Tax Group ID
8888602 8888640

8888603 8888670

8888604 Invalid tax group ID

ltem Seed Data

A couple of items must be created for each tax group. The following table defines the
item number range for each tax group. Among them, at least one kit header item
containing a couple of kit components must be created for each group.

Tax Group ID Item Number Range
8888640 8888640 - 8888649
8888650 8888650 - 8888659
8888660 8888660 - 8888669
8888670 8888670 - 8888679
8888680 8888680 - 8888689
8888690 8888690 - 8888699
Blank tax group 8888610 - 8888619

Invalid tax group

8888620 - 8888624

Non taxable

8888630 - 8888639

Shipping Method Seed Data

One shipping method must be created for each tax group.

Tax Group ID Shipping Method ID
8888640 8888605
8888650 8888606
8888660 8888607
8888670 8888608
8888680 8888609
8888690 8888610

Appendix: Value-Added Tax B-13

New or Changed Classes/Services

Tax Group ID Shipping Method ID
Blank tax group 8888611
Invalid tax group 8888612
Non taxable 8888613

Sales Return Transaction Seed Data

A few sales return transactions with inclusive tax information must be created. At least
one of them must include shipping records and shipping charge tax information. This
is to facilitate CO transaction tracker development before CTR is enabled.

New or Changed Classes/Services

Only classes/modules which are either new, or contain modifications to existing
classes/modules are described below. In the case where the described class/module
exists, only changes to this class/module will be documented.

Adding Tax Inclusive Flag To Tax Group Rule

At tax group rule level, a Boolean flag will be added to indicate if the tax amount is
already included in the item price. For DB schema enhancement, see "Tax Group Rule
Table RU_TX_GP".

Business Objects
Two new member functions will be added to get/set the tax inclusive flag.

public boolean getTaxInclusiveFlag();// By default, it must return false
public void setTaxInclusiveFlag(boolean flag);

The following is a list of tax group rule interfaces/objects that will include the above
two new methods.

s Domain interface com.extendyourstore.domain.tax.RunTimeTaxRulelfc
» Domain object com.extendyourstore.domain.tax.AbstractTaxRule
= Domain object com.extendyourstore.domain.arts.FFTaxVO

s CommerceService object com._
360commerce.commerceservices.tax.TaxGroupRuleDTO

Persistence Services

The following is a list of persistence classes that must be modified to load/save the tax
inclusive flag from/to table RU_TX_GP.

s Member function NewTaxRulelfc[] retrieveltemTaxRules(JdbcDataConnection
dataConnection, int taxGrouplID, String geoCode) in domain JDBC class
com.extendyourstore.domain.arts.JdbcPLUOperation

s Member function NewTaxRulelfc[] retrieveltemTaxRules(ArrayList ffTaxVOs) in
domain JDBC class com.extendyourstore.domain.arts.JdbcReadNewTaxRules

s Member function buildFlatFile in domain JDBC class
com.extendyourstore.domain.arts.JdbcNewTaxRuleBuild FFOperation

= Entity bean com._360commerce.commerceservices.tax.ejb.TaxGroupRuleBean

B-14 Oracle Retail Central Office Operations Guide

New or Changed Classes/Services

s Tax group rule DAO object com._
360commerce.commerceservices.tax.dao.TaxGroupRuleDAO

Import Services

The tax group rule import handler com._
360commerce.commerceservices.tax.importdata. TaxGroupRuleHandler must be
updated to import the new tax inclusive flag.

Internal Tax Engine Classes

The following function will be added to
com.extendyourstore.domain.tax.InternalTaxEngine to collect all the taxable line items,
including the sales return line items and the send package line items.

protected TaxLineItemInformationIfc[]
collectTaxablelLineItems (TaxLineItemInformationIfc[] lineitems,
TransactionTotalsIfc totals);

The calculateTax function in the internal tax engine class
com.extendyourstore.domain.tax.InternalTaxEngine is responsible of calculating tax
for all the taxable line items. It will be modified to call the above
collectTaxableLineltems() to collect all the taxable line items.

public void calculateTax(TaxLineItemInformationIfc[] lineItems,
TransactionTotalsIfc totals
, TransactionTaxIfc transactionTax)

{

lineItems = collectTaxableLineItems (lineltems, totals);
TaxRuleItemContainerIfc|[] taxRuleItemContainer =
collectTaxRulesAddItems (lineltems, transactionTax) ;

}

Tax Rate Calculators

In addition to the exsiting com.extendyourstore.domain.tax.TaxRateCalculator class, a
new com.extendyourstore.domain.tax.InclusiveTaxRateCalculator class will be added
to perform rate based tax calculation for price inclusive tax. A new abstract base class

com.extendyourstore.domain.tax.AbstractTaxRateCalculator is added to be the parent
class.

Business Objects
Both TaxRateCalculator and InclusiveTaxRateCalculator classes will implement the
following API:

public CurrencyIfc calculateTaxAmount (CurrencyIfc amount);

All other API specified by Interface TaxRateCalculatorlfc will be implemented in
AbstractTaxRateCalculator class.

Domain Object Factory Service

The following two API will be added to domain object factory interface
com.extendyourstore.domain.factory. DomainObjectFactorylfc. The API will be
implemented in com.extendyourstore.domain.factory. DomainObjectFactory class to
return an (exclusive) tax or inclusive tax rate calculator based on the boolean flag
passed in.

Appendix: Value-Added Tax B-15

New or Changed Classes/Services

public TaxRateCalculatorIfc getTaxRateCalculatorInstance(boolean inclusiveTax) ;
public TaxRateCalculatorIfc getTaxRateCalculatorInstance(Locale locale, boolean
inclusiveTax) ;

Enhancing Domain Tax Interfaces/Classes

Tax Information Interface/Class

An instance of a domain tax information interface/class is used to hold tax amount for
a sales return tax line item. Each instance is meant to represent a row in sales return
tax line item table TR_LTM_SLS_RTN_TX. It must be enhanced to include an inclusive
tax flag.

The following two new member functions will be added to interface
com.extendyourstore.domain.tax.TaxInformationlIfc and class
com.extendyourstore.domain.tax.TaxInformation

public boolean getInclusiveTaxFlag();// by default, it is false
public void setInclusiveTaxFlag(boolean flag);

The following member function in abstract tax rule class
com.extendyourstore.domain.tax.AbstractTaxRule is invoked by internal tax engine to
create an instance of a tax information class. It populates the instance with attribute
values from the tax rule. It must be enhanced to populate the tax rule’s inclusive tax
flag to the tax information instance.

public TaxInformationIfc createTaxInformation (int mode) ;

Tax Information Container Interface/Class

An instance of a domain tax information container interface/class is used to hold tax
information generated during tax calculation process. It contains multiple instances of
the tax information class. Its member function getTaxAmount() returns total tax
amount of all the tax information instances added to the container. Since we are
introducing inclusive tax, it must be enhanced to return inclusive and exclusive (add
on) total tax amount respectively.

The following new member functions will be added to interface
com.extendyourstore.domain.tax.TaxInformationContainerlfc and class
com.extendyourstore.domain.tax. TaxInformationContainer to return inclusive tax total
amount.

public Currencylfc getInclusiveTaxAmount();

The following existing member function will be enhanced to add the given tax
information instance’s tax amount to inclusive tax total if the instance’s inclusive tax
flag is true; otherwise it adds the tax amount to the exclusive tax total.

public void addTaxInformation(TaxInformationIfc taxInformation);

The existing member function getTaxAmount()will return exclusive tax total only.

B-16 Oracle Retail Central Office Operations Guide

New or Changed Classes/Services

Enhancing Transaction & Line Item Tax Interfaces/Classes

Transaction Totals Interface/Class

The transaction total interface/class must be enhanced to hold inclusive total tax
amount. The following new access member functions will be added to transaction
totals interface com.extendyourstore.domain.transaction.TransactionTotalsIfc and class
com.extendyourstore.domain.transaction. TransactionTotals.

public CurrencyIfc getInclusiveTaxTotal();
public void setInclusiveTaxTotal (CurrencyIfc total);

To support VAT for shipping charges, this interface/class must also be enhanced to
hold a vector of send package line items (see "Send Package Line Item Interface/Class"
for its class definition), in stead of a vector of shipping methods and a different vector
of the send customers. A send package line item combines a shipping method and a
send customer into one data structure, and adds the additional support for shipping
charges tax calculation.

The following methods will be removed.

public void addSendPackageInfo (ShippingMethodIfc shippingMethodUsed,
CustomerIfc shippingToCustomer) ;

public Vector getShippingMethodAllSends();

public Vector getShippingToCustomerAllSends();

The following methods will be added.

public void addSendPackage (SendPackageLineltemIfc sendPackage) ;
public Vector getSendPackages(); //It returns a vector of send package line items

Item Tax Interface/Class

An instance of an item tax interface/class holds a transaction line item’s tax data. Two
enhancements will be made to the interface/class.

First of all, it must be enhanced to hold inclusive item tax amount. The following
member functions will be added to the item tax interface
com.extendyourstore.domain.lineitem.ItemTaxIfc and class
com.extendyourstore.domain.lineitem.ItemTax.

public CurrencyIfc getItemInclusiveTaxAmount () ;
public void setItemInclusiveTaxAmount (CurrencyIfc amount);

The implementation of the following member functions in the item tax class must be
enhanced to support the new inclusive item tax amount.

public ItemTax()// the constructor

public void clearTaxAmounts () ;

public void setCloneAttributes(ItemTax newClass);

public String toString();

public void translateFromElement (XMLConverterIfc converter);

Secondly, the following existing member function must be enhanced to create a default
tax rule based on an inclusive tax flag (InclusiveTaxEnabled) in domain.properties.

public NewTaxRuleIfc[] getDefaultTaxRules();

Appendix: Value-Added Tax B-17

New or Changed Classes/Services

If the default inclusive tax flag is true, a tax by line item rule is created with its
inclusive tax flag set to true, and is associated with an inclusive tax rate calculator (see
"Inclusive Tax Rate Calculator" for details on the inclusive tax rate calculator);
Otherwise, a tax by line item rule is create with its inclusive tax flag set to false, and is
associated with an (exclusive) tax rate calculator. The following new domain factory
api will be used to create the correct tax rate calculator.

public TaxRateCalculatorIfc getTaxRateCalculatorInstance(boolean inclusiveTax);

For details on this API, see "Domain Object Factory Service".

Item Price Interface/Class

An instance of an item price interface/class holds a transaction line item’s price data
(including tax data). It contains an instance of the item tax interface. It must be
enhanced to get/set inclusive item tax amount.

The following member functions will be added the item price interface
com.extendyourstore.domain.lineitem.ItemPricelfc and class
com.extendyourstore.domain.lineitem.ItemPrice.The implementation of these
functions must be delegated to the item tax object contained.

public CurrencyIfc getItemInclusiveTaxAmount () ;

public void setItemInclusiveTaxAmount (CurrencyIfc amount);

// This must call the recalculateItemTotal() to recalculate the item totals.

The implementation of the following member function in the item price class must be
enhanced to support the new inclusive item tax amount.

public void recalculateItemTotal ()

Tax Line Item Information Interface

This is an interface describing all the information the internal tax engine needs to
perform the tax calculation of a transaction line item. The following API must be
added to the interface
com.extendyourstore.domain.lineitem.TaxLineltemInformationlfc to set the item
inclusive tax amount.

public void setItemInclusiveTaxAmount (CurrencyIfc value);

Sale Return Line ltem Class

This class com.extendyourstore.domain.lineitem.SaleReturnLineltem implements the
tax line item information interface. It must implement the new api.

public CurrencyIfc getItemInclusiveTaxAmount () ;

public void setItemInclusiveTaxAmount (CurrencyIfc value);

It should delegate the task to the contained item price object.

Enhancing Financial Totals Interfaces/Classes

Financial Tax Totals Interface/Class

An instance of a domain financial tax totals interface/class is used to hold tax totals of
sales return tax line items of the same tax group rule. It must be enhanced to include
an inclusive tax flag.

The following new member functions will be added to interface
com.extendyourstore.domain.financial. TaxTotalslfc and class
com.extendyourstore.domain.financial. TaxTotals

B-18 Oracle Retail Central Office Operations Guide

New or Changed Classes/Services

public boolean getInclusiveTaxFlag();// by default, it is false
public void setInclusiveTaxFlag(boolean flag);

An instance of the financial tax totals interface/class is created from an instance of the
tax information interface/class (see "Tax Information Interface/Class") in the following
member function of the sales return line item class
com.extendyourstore.domain.lineitem.SaleReturnLineltem.

protected TaxTotalsIfc instantiateTaxTotalsIfc (TaxInformationIfc taxInfo);

This function must be enhanced to populate the tax information’s inclusive tax flag to
the financial tax totals.

Financial Totals Interface/Class

Add Support for Inclusive Tax The financial totals interface
com.extendyourstore.domain.financial.Financial TotalsIfc and class
com.extendyourstore.domain.financial FinancialTotals will be enhanced to hold
inclusive tax.

The following member functions will be added to access/collect inclusive tax amount
for items sold.

public CurrencyIfc getAmountInclusiveTaxItemSales();
public void setAmountInclusiveTaxItemSales (CurrencyIfc value);
public void addAmountInclusiveTaxItemSales (CurrencyIfc value);

The following member functions will be added to access/collect inclusive tax amount
for items returned.

public Currencylfc getAmountInclusiveTaxItemReturns();
public void setAmountInclusiveTaxItemReturns (CurrencyIfc value);
public void addAmountInclusiveTaxItemReturns (CurrencyIfc value);

The following member functions will be added to access/collect inclusive tax amount
on sales transactions.

public CurrencyIfc getAmountInclusiveTaxTransactionSales();
public void setAmountInclusiveTaxTransactionSales (CurrencyIfc value);
public void addAmountInclusiveTaxTransactionSales (Currencylfc value);

The following member functions will be added to access/collect inclusive tax amount
on returns transactions.

public CurrencyIfc getAmountInclusiveTaxTransactionReturns();
public void setAmountInclusiveTaxTransactionReturns (CurrencyIfc value);
public void addAmountInclusiveTaxTransactionReturns (CurrencyIfc value);

Add Support for Shipping Charges Tax The financial totals interface/class must also be

enhanced to track tax for shipping charges. The following member function will be
added.

public CurrencyIfc getAmountTaxShippingCharges();

public void setAmountTaxShippingCharges (CurrencyIlfc value);

public void addAmountTaxShippingCharges (CurrencyIfc value);

public CurrencyIfc getAmountInclusiveTaxShippingCharges();

public void setAmountInclusiveTaxShippingCharges (CurrencyIfc value);
public void addAmountInclusiveTaxShippingCharges (CurrencylIfc value);

Appendix: Value-Added Tax B-19

New or Changed Classes/Services

These functions will be used by the following api of the send package line item to
populate financial total information for shipping charges tax. See "Send Package Line
Item Interface/Class" for more details.

public FinancialTotalsIfc getFinancialTotals (boolean isNotVoid);

Shipping Method Interface/Class

The shipping method interface

com.extendyourstore.domain.financial. ShippingMethodlfc and class
com.extendyourstore.domain.financial. ShippingMethod will be enhanced to hold the
additional taxable flag, tax group id, and tax rules. For schema enhancement of the
ship method, see "Shipping Methods Table CO_SHP_MTH".

The following get/set member functions are added to the interface and class.

public boolean getTaxable();

public void setTaxable(boolean taxable);

public int getTaxGroupID();

public void setTaxGroupID(int taxGroupID);
public NewTaxRuleIfc[] getTaxRules() ;

public void setTaxRules (NewTaxRuleIfc[] rules);

Send Package Line Item Interface/Class

A new send package line item interface and class will be added to support tax
calculation for shipping charges.

The send package line item interface
com.extendyourstore.domain.lineitem.SendPackageLineltemlIfc extends from the tax
line item interface com.extendyourstore.domain.lineitem.TaxLineltemInformationlfc.
By extending the tax line item interface, it defines all the information the internal tax
engine needs to perform tax calculation on shipping charges. The following is a
complete description of the interface. It contains an instance of a shipping method, a
send customer, and an item tax. The shipping method instance (ShippingMethodlfc)
contains all the details of a shipping method, such as method id, carrier, and shipping
charges etc. The item tax instance contains all the tax information of shipping charges.

import com.extendyourstore.domain.financial.ShippingMethodIfc;

import com.extendyourstore.domain.customer.CustomerIfc;

import com.extendyourstore.domain.lineitem.ItemTaxIfc;

public interface SendPackageLineltemIfc extends TaxLineItemInformationIfc,
EYSDomainIfc

{

ShippingMethodLineItem(ShippingMethodIfc shippingMethod, CustomerIfc customer);//
item tax is null

ShippingMethodLineItem(ShippingMethodIfc shippingMethod, CustomerIfc customer,
ItemTaxIfc tax);

public ShippingMethodIfc getShippingMethod();

public void setShippingMethod (ShippingMethodIfc shippingMethod) ;

public CustomerIfc getCustomer();

public void setCustomer (CustomerIfc customer);

protected ItemTaxIfc getItemTax();

protected void setItemTax(ItemTaxIfc itemTax);

}

The send package line item class implements all the methods defined in send package
line item interface. The following is a complete list of its member functions.

B-20 Oracle Retail Central Office Operations Guide

New or Changed Classes/Services

This function initializes the line item by setting its shipping method, send
customer, and item tax instances.

public void initialize(ShippingMethodIfc shippingMethod, CustomerIfc customer,
ItemTaxIfc tax);

These two are the get/set functions for the shipping method.

public ShippingMethodIfc getShippingMethod() ;

public void setShippingMethod (ShippingMethodIfc shippingMethod) ;

These two are the get/set functions for the send customer.

public CustomerIfc getCustomer () ;

public void setCustomer (CustomerIfc customer);
These two are the get/set functions for the item tax.
public ItemTaxIfc getItemTax();

public void setItemTax(ItemTaxIfc itemTax);

This function returns the active tax rules. See "Enhancing Sale Return Transaction
Interface/Class" to see the logic in determining this shipping method line item’s
active tax rules.

public RunTimeTaxRuleIfc[] getActiveTaxRules();

This should always return false indicating that tax on shipping charges can never
be overridden by transaction level tax modifications.

public boolean canTransactionOverrideTaxRules();

This function is called before a tax calculation to clear all the tax amounts

previously saved. It should delegate the task by calling the clearTaxAmounts
function on item tax.

public void clearTaxAmounts () ;
This function returns the taxable amount when the tax rule is set up to use the
discounted amount. In this case, it is equivalent to the calculated shipping charges

of the shipping method. It should delegate the task by calling the
getCalculatedShippingCharge function on the shipping method.

public CurrencylIfc getExtendedDiscountedSellingPrice();
This function returns the taxable amount when the tax rule is set up to use the
pre-discounted amount. Since no discount is ever applied to shipping charges, this

function should just call the getExtendedDiscountedSellingPrice to return the
same calculated shipping charges.

public CurrencyIfc getExtendedSellingPrice();

This function retrieves the tax information container that the tax calculation results
are placed. It should delegate the task by calling getTaxInformationContainer
function on item tax.

public TaxInformationContainerIfc getTaxInformationContainer();

This function gets the exclusive (add on) tax amount for the shipping charges. It
should delegate the task by calling getltemTaxAmount function on item tax.

public CurrencyIfc getItemTaxAmount () ;

Appendix: Value-Added Tax B-21

New or Changed Classes/Services

= This function sets the exclusive (add on) tax amount for the shipping charges. It
should delegate the task by calling setltemTaxAmount function on item tax.

public void setItemTaxAmount (CurrencyIfc value);

= This function gets the inclusive tax amount for the shipping charges. It should
delegate the task by calling getltemInclusiveTaxAmount function on item tax.
public CurrencyIfc getItemInclusiveTaxAmount () ;

= This function sets the inclusive tax amount for the shipping charges. It should
delegate the task by calling setltemInclusiveTaxAmount function on item tax.
public void setItemInclusiveTaxAmount (CurrencyIfc value);

= This function returns the identifier that uniquely identifies this item. It should
delegate the task by calling getLineltemTaxIdentifier on item tax.
public int getLineItemTaxIdentifier();

s This function returns default tax rules when none can be found in the database. It
should delegate the task by calling getDefaultTaxRules() on item tax.
public NewTaxRulelIfc[] getDefaultTaxRules();

= This function gets the tax mode. It should delegate the task by calling getTaxMode
function on item tax.
public int getTaxMode () ;

= This function sets the tax mode. It should delegate the task by calling setTaxMode
function on item tax.

public void setTaxMode (int value);

s This function must always return false. Shipping charges are not treated as kit
header.

public boolean isKitHeader () ;

= This function sets the tax scope (transaction or item). It should delegate the task by
calling setTaxScope function on item tax.

public void setTaxScope (int scope);

= This function returns the tax scope (transaction or item). It should delegate the
task by calling getTaxScope function on item tax.

public int getTaxScope();

s This function returns a flag indicating if this send package line item came from an
already tendered transaction retrieved from the database.

public boolean isFromTransaction();

= This function set the from transaction flag indicating if this send package line item
came from an already tendered transaction retrieved from the database.

public void setFromTransaction(boolean val);

= This function returns the financial totals of a send package line item.

public FinancialTotalsIfc getFinancialTotals (boolean isNotVoid);

B-22 Oracle Retail Central Office Operations Guide

New or Changed Classes/Services

If isNotVoid flag is false, the financial data will be negated. It will add the
following information to the financial totals.

financialTotals.addAmountShippingCharges
financialTotals.addNumberShippingCharges
financialTotals.addAmountTaxShippingCharges
financialTotals.addAmountInclusiveTaxShippingCharges
financialTotals.addTaxes// This adds all the tax at the group rule level based
on // the information saved in the tax information container // of this line
item.

» This function returns a clone of this line item.

public Object clone();

= Determine if two objects are identical.

public boolean equals(Object obj);

= Method to default display string function

public String toString();

The following section depicts the logic in determining the active tax rules for the send
package line item.

If this line item is from a tendered transaction retrieved from db
(isFromTransaction() is true)

Then do not recalculate tax and return an array of reverse tax rules based on the
tax information saved in the line item. For an example on how to get reverse tax
rules, see protected function reverseItemTaxRuleIfc[] getReverseTaxRules() in
class com.extendyourstore.domain.lineitem.SaleReturnLineltem.

Else if the shipping method is not taxable (getShippingMethod().getTaxable() is
false)

Then return an array of tax rules of size 0

Else if this shipping method has at least one tax rules
(getShippingMethod () .getTaxRules () .size() > 0)

Then return the shipping method’s tax rules

Else call getDefaultTaxRules() to return an array of default tax rules.

Enhancing Sale Return Transaction Interface/Class

The following two methods will be added to the sale return transaction interface
com.extendyourstore.domain.transaction.SaleReturnTransactionlIfc and class
com.extendyourstore.domain.transaction.SaleReturnTransaction to support adding
and updating send (shipping) packages.

public void addSendPackageInfo (ShippingMethodIfc shippingMethodUsed,
CustomerIfc shippingToCustomer) ;

This function will create a send package line item based of the shipping method and

customer passed in, and adds the line item to the transaction totals. It will invoke the
addSendPackage method on the transaction totals to do the adding (see "Transaction
Totals Interface/Class" for more details on the transaction totals method).

public void updateSendPackagelInfo(int index, ShippingMethodIfc shippingMethodUsed,
CustomerIfc shippingToCustomer) ;

Appendix: Value-Added Tax B-23

New or Changed Classes/Services

This function will create a send package line item based of the shipping method and
customer passed in, and set the line item at the location specified by the index. The
index is an index to the send package line item vector returned by getSendPackages()
function in the transaction totals class (see "Transaction Totals Interface/Class" for
more details on the transaction totals method).

The following code illustrates how a send package line item is created from a shipping
method and customer in the sales return transaction class.

public void addSendPackageInfo (ShippingMethodIfc shippingMethodUsed,
CustomerIfc shippingToCustomer) ;

{

ItemTax itemTax =

itemProxy.initializeItemTax. (getTransactionTax () .getDefaultRate(),
shippingMethodUsed.getTaxable()) ;

SendPackagelLineltemIfclineltem=newSendPackagelLineIltem(shippingMethodUsed,

shippingToCustomer, itemTax);

}

Enhancing POSLog Interface/Class

Log Retail Transaction Class

The implementation of the following member functions in the LogRetail Transaction
class must be enhanced to support the new inclusive item tax amount.

protected void addBaseElements (TransactionIfc transaction)
getItemInclusiveTaxAmount ()
void makeTaxLineItems (SaleReturnTransactionIfc retailTrans)

Log Sale Return Line ltem Class

The implementation of the following member functions in the LogSaleReturnLineltem
class must be enhanced to support the new getInclusiveTaxFlag() and the
getltemInclusiveTaxAmount().

public Element createElement (SaleReturnLineItemIfc srli,

TransactionIfc transaction,

Document doc,

Element el,

boolean voidFlag,

int sequenceNumber)
protected createRetailTransactionTaxElements (SaleReturnLineItemIfc srli,
RetailTransactionItemIfc el)

The implementation of the following member functions in the LogSaleReturnLineltem
class must be enhanced to support the new shipping details.

RetailTransactionDelivery360Ifc addShippingDetails(SaleReturnLineItemIfc srli)

IXRetail Constants V21 Ifc Class

This is an interface describing all elements/attributes of a POSLog xml file as
constants to be used from other POSLog java classes.

B-24 Oracle Retail Central Office Operations Guide

New or Changed Classes/Services

Retail Transaction Delivery 360 Ifc Interface/Class

The implementation of the following member functions in the
RetailTransactionDelivery360lfc and class must be enhanced to support the new
shipping elements.

public Element createElementDetails()

New getter/setter methods must be added in the interface/class for all the new
elements of shipping information.

Public RetailTransactionTaxIfc [] getShippingTax()
Public void setShippingTax(RetailTransactionTaxIfc [])

Schema Types Factory Ifc Interface/Class

A new member function must be added in the SchemaTypesFactorylfc to return an
instance of the ShippingTax360 class.

Retail Transaction Line Item Ifc Interface/Class

New member functions must be added to RetailTransactionLineltem interface/class to
support the additional elements for the POSLog xml content.

For the Import POSLog, the following changes need to be made:

XmiToSqlTaxHistoryinsert Class The field_flag_tax_inclusive needs to inserted to the
HST_TX Table. This will retrieved from the POSLog xml file.

XmlToSqlFinancialTotalsCommon Class The six new till/store/workstation history fields
need to be added. Also logic for calculating the cp_inc_tx_tot column in the history
table needs to be added i.e. , getNetInclusiveTaxAmount.

The seven new fields are

» FIELD STORE_INCLUSIVE_TAX_TOTAL_AMOUNT

» FIELD STORE_REFUND_INCLUSIVE_TAX_TOTAL_AMOUNT

» FIELD STORE_RETURN_INCLUSIVE _TAX TOTAL_AMOUNT

» FIELD_STORE_ITEM_SALES_INCLUSIVE_TAX_AMOUNT

s FIELD_STORE_TRANSACTION_SALES_INCLUSIVE_TAX_AMOUNT
» FIELD_STORE_SHIPPING_CHARGE_TAX_AMOUNT

» FIELD_STORE_SHIPPING_CHARGE_INCLUSIVE_TAX_AMOUNT

XmIToSqlDeliveryTax Class New Class needs to be created to insert values from the
POSLog to the ShippingRecord Tax Table.

JdbcSavelXRetailRetailTransaction Class SaveTransactionDetail() method of this class
needs to be enhanced to make a call to a new method :
saveShippingRecordTax(dataConnection, transaction); - This method will make a call
to the XmlToSqlDeliveryTax to insert records into the SHP_RDS_SLS_RTN_TX table.

360POSLogLibrary.xsd Schema changes must be done to include all the new fields for
the various element types defined in the 360POSLogLibrary xsd file.

Appendix: Value-Added Tax B-25

New or Changed Classes/Services

Commerce Service Transaction DTO Classes

Retail Transaction DTO

The existing retail transaction DTO class com._
360commerce.commerceservices.transaction.RetailTransactionDTO will be modified to
have the following additional get/set methods for the newly added column to table
TR_RTL (see "Retail Transaction Table TR_RTL").

public BigDecimal getInclusiveTaxTotal();
public void setInclusiveTaxTotal (BigDecimal total);

Transaction Group Rule Tax DTO

The group rule tax DTO class com._
360commerce.commerceservices.transaction.tax.GroupRuleTaxDTO will be created to
hold a transaction’s tax information at the group rule level. It is the base class for sale
return line item tax dto and shipping record tax dto classes. It will contain the
following methods.

public String getStorelID();

public void setStoreID(String storied);

public String getWorkstationID();

public void setWorkstationID(String workstationId);
public Date getBusinessDate();

public void setBusinessDate(Date date);

public int getTransactionSequenceNumber () ;

public void setTransactionSequenceNumber (int number) ;
public int getTaxAuthorityId();

public void setTaxAuthorityId(int id);

public int getTaxGroupId();

public void setTaxGroupId(int id);

public int getTaxType();

public void setTaxType (int type);

public boolean getTaxHolidayFlag();

public void setTaxHolidayFlag (boolean flag);

public int getTaxMode() ;

public void setTaxMode (int mode) ;

public BigDecimal getTaxableAmount();

public void setTaxableAmount (BigDecimal amount);
public boolean getInclusiveTaxFlag();

public void setInclusiveTaxFlag(boolean flag);
public BigDecimal getTaxAmount () ;

public void setTaxAmount (BigDecimal amount) ;

public String getTaxRuleName() ;

public void setTaxRuleName (String name) ;

public BigDecimal getTaxPercentage();

public void setTaxPercentage (BigDecimal percentage) ;
public String getUniqueID();

public void setUniqueID(String id);

public Date getCreationTimeStamp () ;

void public setCreationTimeStamp (Date timestamp);
public Date getModificationTimeStamp();

void public setModificationTimeStamp (Date timestamp);

B-26 Oracle Retail Central Office Operations Guide

New or Changed Classes/Services

Sale Return Line Item Tax DTO

The sale return line item tax DTO class com._
360commerce.commerceservices.transaction.salereturn.SaleReturnLineltemTaxDTO
will be created to hold information for a row in sale return line item tax table TR_
LTM_SLS_RTN_TX (see "Sales Return Tax Line Item Table TR_LTM_SLS_RTN_TX"). It
will contain get/set methods for each column in the row. It extends the transaction
group rule tax dto class com._
360commerce.commerceservices.transaction.tax.GroupRuleTaxDTO. In addition to the
methods inherited from its base class, it will have the following additional methods.

public int getLineItemSequenceNumber () ;

public void setLineItemSequenceNumber (int number) ;

public BigDecimal getLineIltemTaxAmount () ;

public void setLineltemTaxAmount (BigDecimla amount) ;

public BigDecimal getLIneItemInclusiveTaxAmount () ;

public void setLineItemInclusiveTaxAmount (BigDecimal amount);

Sale Return Line Item DTO

This existing sale return line item DTO class com._
360commerce.commerceservices.transaction.salereturn.SaleReturnLineltemDTO will
be modified to have the additional methods to get/set line item tax for tax columns in
table TR_LTM_SLS_RTN (see "Sales Return Line Item Table TR_LTM_SLS_RTN").

public BigDecimal getTax(); // This one is missing from the class

public void setTax(BigDecimal tax); // This one is missing from the class
public BigDecimal getInclusiveTax();// add this one for the new column

public void setInclusiveTax (BigDecimal inclusiveTax);// add this one for the new
column

It will also be enhanced to take an array of sale return line item tax DTO objects. The
following methods will be added.

public SaleReturnLineItemTaxDTO[] getTaxInformation();
public void setTaxInformation(SaleReturnLineItemTaxDTO[] dtos);

Shipping Record Tax DTO

The shipping record tax DTO class com._
360commerce.commerceservices.transaction.shipping.SaleReturnShippingRecord TaxD
TO will be created to hold information for a row in shipping record tax table SHP_
RDS_SLS_RTN_TX (see "Shipping Record Tax Table SHP_RDS_SLS_RTN_TX"). It will
contain get/set methods for each column in the row. It extends the transaction group
rule tax dto class com._
360commerce.commerceservices.transaction.tax.GroupRuleTaxDTO. In addition to the
methods inherited from its base class, it will have the following additional methods.

public int getSendLabelCount () ;

public void setSendLabelCount (int count);

public BigDecimal getSendTaxAmount () ;

public void setSendTaxAmount (BigDecimla amount);

public BigDecimal getSendInclusiveTaxAmount () ;

public void setSendInclusiveTaxAmount (BigDecimal amount);

Shipping Record DTO
This existing shipping record DTO class com._
360commerce.commerceservices.transaction.shipping.SaleReturnShippingRecord DTO

will be modified to have the additional get/set methods for the newly added columns
in table SHP_RDS_SLS_RTN (see "Shipping Record Table SHP_RDS_SLS_RTN").

Appendix: Value-Added Tax B-27

Database Design / Changes -- Tables /Views

public int getTaxGroupId();

public void setTaxGroupId(int taxGroupId);

public BigDecimal getTax();

public void setTax(BigDecimal tax);

public BigDecimal getInclusiveTax();

public void setInclusiveTax (BigDecimal inclusiveTax) ;

It will also be enhanced to take an array of shipping record tax DTO objects. The
following methods will be added.

public SaleReturnShippingRecordTaxDTO[] getTaxInformation();
public void setTaxInformation(SaleReturnShippingRecordTaxDTO[] dtos);

Web Modules Transaction View Bean Classes

An instance of a transaction view bean class com._
360commerce.webmodules.transaction.app.TransactionDetail ViewDTO serves as a
bean for jsp pages to render transaction details display. It must be enhanced to hold
transaction summary tax information broken down by tax group rules. An array of
group rule tax DTO objects of class com._
360commerce.commerceservices.transaction.tax.GroupRuleTaxDTO will be added for
inclusive tax summary. The following api will be added to access the array.

public GroupRuleTaxDTO[] getInclusiveTaxSummaryInformation();

public void setInclusiveTaxSummaryInformation (GroupRuleTaxDTO[] taxInformation);

The array will be populated in transaction manager bean when a transaction is
retrieved (see "Enhancing Transaction Manager Bean").

Database Design / Changes -- Tables /Views

Tax Group Rule Table RU_TX_GP

For each tax group rule, A Boolean flag will be added to indicate if the tax amount is
already included in the item price. The following column is added to table RU_TX_GP
for this purpose. Its two possible values are ‘0" or 1’, with ‘0" being the default.

FL_TX_INC CHAR(1) DEFAULT '0'// InclusiveTaxFlag

Retail Transaction Table TR_RTL

In addition to the exclusive (add on) tax, this table must be enhanced to store inclusive
tax. A decimal column is added to store the inclusive tax amount at the transaction
level.

MO_TAX_INC_TOT DECIMAL(13,2) DEFAULT 0//
TransactionInclusiveTaxTotal

Tax Line Item Table TR_LTM_TX

In addition to the exclusive (add on) tax, this table must be enhanced to store inclusive
tax. A decimal column is added to store the inclusive tax amount at the transaction
level.

MO_TX_INC DECIMAL(13,2) DEFAULT 0// InclusiveTaxAmount

B-28 Oracle Retail Central Office Operations Guide

Database Design / Changes -- Tables /Views

Sales Return Line Item Table TR_LTM_SLS RTN

In addition to the exclusive (add on) tax, this table must be enhanced to store inclusive
tax. A decimal column is added to store the inclusive tax amount at the line item level.

MO_TAX_INC_LN_ITM_RTN DECIMAL(13,2) DEFAULT 0
//SaleReturnLineItemInclusiveTaxAmount

Sales Return Tax Line Item Table TR_LTM_SLS RTN TX

Each row of this table stores the tax information at the tax group rule level of a line
item. Two enhancements will be made to this table. First of all, a Boolean inclusive tax
flag will be added to indicate if the stored tax mount is inclusive or exclusive of the
item price. Second, a decimal column will be added to store the inclusive tax amount
at the line item level.

FL_TX_INC CHAR (1) DEFAULT '0'// InclusiveTaxFlag
MO_TX_INC_RTN_SLS_TOT DECIMAL(16,5) DEFAULT 0 NOT NULL
//InclusiveTaxAmountTotal

Order Item Table OR_LTM

In addition to the exclusive (add on) tax, this table must be enhanced to store inclusive
tax. A decimal column is added to store the inclusive tax amount at the order item
level.

MO_TAX_INC_LN_ITM_RTN DECIMAL(13,2) DEFAULT 0
// OrderLineItemInclusiveTaxAmount

Point-of-Service Department History Table LE_HST_PS_DPT

In addition to the exclusive (add on) tax, this table must be enhanced to store inclusive
tax. Three decimal columns are added to store the inclusive net tax, sales tax, and
returns tax at Point-of-Service department level.

CP_INC_TX_TOT DECIMAL(13,2) DEFAULT O,
CP_SLS_ITM_INC_TX DECIMAL(13,2) DEFAULT O,
CP_RTN_INC_TX_TOT DECIMAL(13,2) DEFAULT O,

Till History Table LE_HST_TL

In addition to the exclusive (add on) tax, this table must be enhanced to store inclusive
tax. Five decimal columns are added to store the inclusive net tax, refund tax, returns
tax, item sales tax, and transaction sales tax at the till level.

CP_INC_TX_TOT DECIMAL(13,2) DEFAULT O,
MO_RFD_INC_TX_TOT DECIMAL(13,2) DEFAULT O,
MO_RTN_INC_TX_TOT DECIMAL(13,2) DEFAULT O,
CP_SLS_ITM_INC_TX DECIMAL(13,2) DEFAULT O,
CP_TRN_SLS_INC_TX DECIMAL(13,2) DEFAULT O,

To support tax for shipping charges, two decimal columns must be added to store
inclusive and exclusive shipping charges tax totals.

MO_SHP_CHR_TX_TOT DECIMAL(13,2) DEFAULT O,
MO_SHP_CHR_INC_TX_TOT DECIMAL(13,2) DEFAULT 0

Appendix: Value-Added Tax B-29

Database Design / Changes -- Tables /Views

Register History Table LE_HST_WS

In addition to the exclusive (add on) tax, this table must be enhanced to store inclusive
tax. Five decimal columns are added to store the inclusive net tax, refund tax, returns
tax, item sales tax, and transaction sales tax at the register level.

CP_INC_TX_TOT DECIMAL (13,2) DEFAULT O,
MO_RFD_INC_TX_TOT DECIMAL (13,2) DEFAULT 0,
MO_RTN_INC_TX_TOT DECIMAL (13,2) DEFAULT 0,
CP_SLS_ITM_INC_TX DECIMAL (13,2) DEFAULT O,
CP_TRN_SLS_INC_TX DECIMAL(13,2) DEFAULT 0,

To support tax for shipping charges, two decimal columns must be added to store
inclusive and exclusive shipping charges tax totals.

MO_SHP_CHR_TX_TOT DECIMAL (13,2) DEFAULT 0,
MO_SHP_CHR_INC_TX_TOT DECIMAL (13,2) DEFAULT 0

Store History Table LE_HST_STR

In addition to the exclusive (add on) tax, this table must be enhanced to store inclusive
tax. Five decimal columns are added to store the inclusive net tax, refund tax, returns
tax, item sales tax, and transaction sales tax at the store level.

CP_INC_TX_TOT DECIMAL (13,2) DEFAULT O,
MO_RFD_INC_TX_TOT DECIMAL(13,2) DEFAULT 0,
MO_RTN_INC_TX_TOT DECIMAL (13,2) DEFAULT 0,
CP_SLS_ITM_INC_TX DECIMAL (13,2) DEFAULT 0,
CP_TRN_SLS_INC_TX DECIMAL (13,2) DEFAULT 0

To support tax for shipping charges, two decimal columns must be added to store
inclusive and exclusive shipping charges tax totals.

MO_SHP_CHR_TX_TOT DECIMAL(13,2) DEFAULT 0,
MO_SHP_CHR_INC_TX_TOT DECIMAL(13,2) DEFAULT 0

Tax History Table HST_TX

For each tax history row, A Boolean column will be added to indicate if the tax amount
is already included in the item price. Its two possible values are ‘0" or 1, with ‘0" being
the default.

FL_TX_INC CHAR (1) DEFAULT '0'

Shipping Methods Table CO_SHP_MTH

Since shipping charges are subject to VAT, a tax group id and taxable flag columns will
be added to each row in the shipping method table.

LU_EXM_TX VARCHAR (20) ,
ID_GP_TX INTEGER DEFAULT O,

Shipping Record Table SHP_RDS_SLS_RTN

Since shipping charges are subject to VAT, tax columns are added to the table to record
tax group id, inclusive and exclusive (add on) tax amounts.

ID_GP_TX INTEGER DEFAULT O,
MO_TX DECIMAL(13,2) DEFAULT O,
MO_TX_INC DECIMAL(13,2) DEFAULT O,

B-30 Oracle Retail Central Office Operations Guide

Database Design / Changes -- Tables /Views

Shipping Record Tax Table SHP_RDS_SLS_RTN_TX

This new table will be created to store detailed shipping charges tax information at the
tax group rule level of each shipping record.

ID_STR_RT VARCHAR (5) NOT NULL,// store id

ID_WS VARCHAR (3) NOT NULL,// register id

DC_DY_BSN VARCHAR (10) NOT NULL,// business date

AI_TRN INTEGER NOT NULL,// transaction sequence number
CNT_SND_LAB SMALLINT DEFAULT 0 NOT NULL,// send label count
ID_ATHY_TX INTEGER DEFAULT 0 NOT NULL, // tax authority id
ID_GP_TX INTEGER DEFAULT 0 NOT NULL,// tax group id
TY_TX INTEGER DEFAULT 0 NOT NULL,// tax type
FLG_TX_HDY CHAR (1) DEFAULT '0' NOT NULL,// tax holiday flag
TX_MOD INTEGER DEFAULT 0 NOT NULL,// tax mode
MO_TXBL_RTN_SLS DECIMAL (16,5) DEFAULT 0 NOT NULL,// taxable amount
FL_TX_INC CHAR (1) DEFAULT '0',// inclusive tax flag
MO_TX_RTN_SLS DECIMAL(16,5) DEFAULT 0 NOT NULL,// tax amount

MO_TX_RTN_SLS_TOT DECIMAL (16,5) DEFAULT 0 NOT NULL,
// total add on tax amount at shipping record level
MO_TX_INC_RTN_SLS_TOT DECIMAL(16,5) DEFAULT 0 NOT NULL
// total inclusive tax amount at shipping record level
NM_RU_TX VARCHAR (40) DEFAULT 'LOCAL TAX',// tax rule name
PE_TX DECIMAL(8,5) DEFAULT 8.25 NOT NULL,// tax percentage
ID_UNQ VARCHAR (35) DEFAULT '1001-0-0' NOT NULL,
//Unique Id which is authorityId-groupId-taxType
TS_CRT_RCRD TIMESTAMP, // creation time stamp
TS_MDF_RCRD TIMESTAMP// modification time stamp

The primary keys are:

ID_STR_RT
ID_WS
DC_DY_BSN
AI_TRN
CNT_SND_LAB
ID_ATHY TX
ID_GP_TX
TY_TX

Appendix: Value-Added Tax B-31

Database Design / Changes -- Tables /Views

B-32 Oracle Retail Central Office Operations Guide

C

Appendix: Changing Currency

In order to switch to another base and alternate currency, perform the following steps:

1.

Set the base currency flag in the primary currency of the currency table. For
example, if EUR is the base currency:

update co_cny set FL_CNY_BASE='l' where DE_CNY='EUR'

Remove the base currency flag from any other currencies in that table. For
example:

update co_cny set FL_CNY_BASE='0' where DE_CNY='USD'

Enforce ordering so that the primary currency is first and the alternate currency is
second for the AI_CNY_PRI column in the currency table. Other rows should be
ordered, but the specific order isn't important. For example if EUR is base currency
and GBP is the alternate:

update co_cny set AI_CNY_PRI=0 where DE_CNY='EUR'
update co_cny set AI_CNY_PRI=1 where DE_CNY='GBP'
update co_cny set AI_CNY_PRI=2 where DE_CNY='USD'
update co_cny set AI_CNY_PRI=3 where DE_CNY='CAD'
update co_cny set AI_CNY_PRI=4 where DE_CNY='MXN'
update co_cny set AI_CNY_PRI=5 where DE_CNY='JPY'

Update the country code for the money order record to reflect the country of base
currency. For example if EUR is base currency:

update le_tnd_str_sf set LU_CNY_ISSG_CY='EU' where ty_tnd='MNYO'

There are some application parameters that must be changed as well:
Tender Group:

— CashAccepted: For example, if EUR is base and GBP is alternate, make sure
that the CashAccepted parameter is changed so that EUR and GBP are
selected.

— TravelersChecksAccepted: For EUR as base and GBP as alternate, the
values for the TravelersChecksAccepted parameter should be EURCHK
and GBPCHK.

— ChecksAccepted: For EUR as base and GBP as alternate, the values for the
ChecksAccepted parameter should be EURCHK and GBPCHK.

Appendix: Changing Currency C-1

= Reconciliation Group:

— TendersToCountAtTillReconcile: For EUR as base and GBP as alternate,
the values for the TendersToCountAtTillReconcile parameter should

be:

* Cash

* Check

* ECheck

* Credit

* Debit

* TravelCheck
* GiftCert

* Coupon

* GiftCard

* StoreCredit
* MallCert

* PurchaseOrder

* MoneyOrder

* GBPCash
* GBPTravelCheck
* GBPCheck

* GBPGiftCert
* GBPStoreCredit

C-2 Oracle Retail Back Office Operations Guide

	Contents
	List of Figures
	List of Tables
	List of Examples
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Backend System Administration and Configuration
	Defining Security with Roles
	Modifying a Role
	Adding a Role
	Secured Features
	Security Implementation -- Warnings and Advice

	Password Policy
	Password Reset
	Viewing or Modifying the Password in the Database
	Password Policy and Password Change

	Reason Codes
	Configuring Transaction ID Lengths
	Understanding Transaction IDs
	Changing Transaction ID Lengths
	Configuring the Purchase Date Field for Returns and Voids

	Configuring RMI Timeout Intervals
	Setting the RMI Timeout Interval for the JVM Under Linux
	Modifying the TCP Connection Timeout on Linux

	Setting the RMI Timeout Interval for All Manager and Technician Calls
	Setting the RMI Timeout Interval for a Specific Technician

	Configuring Third-party Tender Authorization
	Enabling the Financial Network Technician
	Setting the Merchant Number

	System Settings
	Adding or Changing Language Bundles
	Naming Convention for Language Bundles
	Creating a New Language Bundle
	Configuring the System to Use a New Language Bundle

	Configuring Logging

	2 Technical Architecture
	Point-of-Service Architecture
	Frameworks
	Manager/Technician
	User Interface
	Business Object
	Data Persistence
	Tour

	Design Patterns
	MVC Pattern
	Factory Pattern
	Command Pattern
	Singleton Pattern

	3 Extracting Source Code
	4 Customization
	Parameters
	Parameter Hierarchy
	Parameter Group
	Parameter Properties

	Devices
	Set Up the Device
	Test the Device
	Create a Session and ActionGroup
	Simulate the Device

	Help Files
	Modifying Help Files

	5 Development Environment
	Preparation
	Setup
	Install Point-of-Service
	Build the Database
	Create a Sandbox
	Configure the IDE
	Update Java Security and Policy Files
	Configure the Version Control System

	Run Point-of-Service

	6 General Development Standards
	Basics
	Java Dos and Don’ts
	Avoiding Common Java Bugs
	Formatting
	Javadoc
	Naming Conventions
	SQL Guidelines
	DB2
	Oracle
	PostgreSQL
	Sybase

	Unit Testing

	Architecture and Design Guidelines
	AntiPatterns
	Designing for Extension

	Common Frameworks
	Logging
	Guarding Code
	When to Log
	Writing Log Messages
	Exception Messages
	Heartbeat or Life Cycle Messages
	Debug Messages

	Exception Handling
	Types of Exceptions
	Avoid java.lang.Exception
	Avoid Custom Exceptions
	Catching Exceptions
	Keep the Try Block Short
	Avoid Throwing New Exceptions
	Catching Specific Exceptions
	Favor a Switch over Code Duplication

	7 Point-of-Service Development Standards
	Screen Design and User Interface Guidelines
	Tour Framework
	Tour Architectural Guidelines
	General Tour Guidelines
	Foundation
	Tours and Services
	Sites
	Managers and Technicians
	Roads
	Aisles
	Signals
	Choosing Among Sites, Aisles, and Signals
	Renaming Letters
	Shuttles
	Cargo

	Log Entry Format
	Log Entry Description
	Fixed Length Header
	Additional Logging Info
	Example Log Entry

	8 Extension Guidelines
	Conventions
	Terms
	Filename Conventions
	Modules
	Directory Paths

	POS Package
	Tour
	Tour Map
	Tour Scripts
	Site
	Lane-Road or Aisle
	Shuttle
	Signal
	Cargo

	UI Framework
	Default UI Config
	UI Script
	Bean Model and Bean

	Other
	Internationalization
	Conduit Scripts
	PLAF
	Receipts
	Reports

	Domain Package
	Retail Domain
	DomainObjectFactory
	Retail Domain Object (RDO)

	Database
	Data Manager and Technician Scripts
	Data Actions and Operations
	Data Transactions

	9 Tour Framework
	Tour Components
	Tour Metaphor
	Service and Service Region
	Bus
	Tourmap
	Cargo
	Sites
	System Sites
	Letters
	Roads
	Common Roads
	Aisles
	Stations and Shuttles
	Signals
	Exception Region

	Role of Java Classes
	Tour Cam
	Attributes
	Letter Processing
	Cargo Restoration

	Tender Tour Reference

	10 UI Framework
	Screens
	Beans
	PromptAndResponseBean
	Bean Properties and Text Bundle
	Tour Code

	DataInputBean
	Bean Properties and Text Bundle
	Tour Code

	NavigationButtonBean
	Bean Properties and Text Bundle
	LocalNavigationPanel
	GlobalNavigationPanel

	Tour Code

	DialogBean
	Bean Properties and Text Bundle
	Tour Code

	Field Types

	Connections
	ClearActionListener
	DocumentListener
	ValidateActionListener

	Text Bundles
	receiptText
	parameterText

	11 Manager/Technician Framework
	New Manager/Technician
	Manager Class
	Manager Configuration
	Technician Class
	Technician Configuration
	Valet Class
	Sample Code
	Configuration
	Tour Code
	Manager
	Valet
	Technician

	Manager/Technician Reference
	Parameter Manager/Technician
	UI Manager/Technician
	Journal Manager/Technician

	12 Retail Domain
	New Domain Object
	Domain Object in Tour Code
	Domain Object Reference
	CodeListMap
	Currency
	Transaction

	13 Store Database
	ARTS Compliance
	Understanding Data Managers and Technicians
	How Data Transactions Work
	Creating or Updating Database Tables
	Example of Saving Data: Storing Tender Information
	Research Table Requirements and Standards
	Saving Data from Site Code
	Locate Data Operation
	Modify Data Operation
	Test Code
	Verify Data

	Updating Flat File Configurations
	Data Technician Script
	Flat File Engine Configuration Script
	Implementing FlatFileDataOperations
	Other Query Types
	Complex Query Expressions

	A Appendix: Intra Store Data Distribution Infrastructure
	Spring Configuration
	Application Configuration
	Integration Considerations
	DataSet Compressed File Structure
	DataSet Compressed File Example

	Manifest File Structure
	Manifest File Example

	DataSet Flat File Structure
	DataSet Flat File Example

	Extensibility
	Adding New Table To Existing Dataset
	Adding More Tables To Existing Dataset Types

	Adding a New DataSet
	Configuring Schedule for DataSet Producer and Consumer
	Configure DataSet Producer
	Configure DataSet Consumer

	Adding New DataSet Type
	Changing Oracle Retail Point-of-Service Client Database vendor
	Plugability

	B Appendix: Value-Added Tax
	VAT calculation
	Inclusive Tax Flag At Tax Group Rule Level
	Inclusive Tax Rate Calculator
	Enhancing PLU Item Look Up
	Enhancing Internal Tax Engine
	VAT Tax Rule Seed Data
	Calculate VAT For Unknown Items, Invalid Or Blank Tax Groups
	Calculate VAT for Returns Transactions
	Calculate VAT for Reverse Transactions Other Than Returns
	Calculate VAT for Shipping Charges
	Enhance Shipping Method Table and Domain Interface/Class
	Add/Update Send Packages to/in a Sale Return Transaction
	Enhance Internal Tax Engine
	Negate VAT for Shipping Charges for a Post Void Transaction
	Enhance Overlay Lane Action Class SendMethodSelectedRoad

	Calculate VAT for Send Transactions

	Transaction Persistence for VAT
	Persist Inclusive tax
	Persist Shipping Charge Tax

	Tracking VAT Financial Totals
	Accumulate Inclusive Tax
	Accumulate Shipping Charge Tax

	Transaction Retrieval in CO
	Enhancing Transaction Entity Beans
	Enhancing Transaction Service Bean
	Enhancing Transaction Manager Bean

	Enhancing POSLog
	Seed Data Population
	VAT Tax Rule Seed Data
	Point-of-Service Department Seed Data
	Item Seed Data
	Shipping Method Seed Data
	Sales Return Transaction Seed Data

	New or Changed Classes/Services
	Adding Tax Inclusive Flag To Tax Group Rule
	Business Objects
	Persistence Services
	Import Services

	Internal Tax Engine Classes
	Tax Rate Calculators
	Business Objects
	Domain Object Factory Service

	Enhancing Domain Tax Interfaces/Classes
	Tax Information Interface/Class
	Tax Information Container Interface/Class

	Enhancing Transaction & Line Item Tax Interfaces/Classes
	Transaction Totals Interface/Class
	Item Tax Interface/Class
	Item Price Interface/Class
	Tax Line Item Information Interface
	Sale Return Line Item Class

	Enhancing Financial Totals Interfaces/Classes
	Financial Tax Totals Interface/Class
	Financial Totals Interface/Class
	Add Support for Inclusive Tax
	Add Support for Shipping Charges Tax

	Shipping Method Interface/Class
	Send Package Line Item Interface/Class
	Enhancing Sale Return Transaction Interface/Class
	Enhancing POSLog Interface/Class
	Log Retail Transaction Class
	Log Sale Return Line Item Class
	IXRetail Constants V21 Ifc Class
	Retail Transaction Delivery 360 Ifc Interface/Class
	Schema Types Factory Ifc Interface/Class
	Retail Transaction Line Item Ifc Interface/Class
	XmlToSqlTaxHistoryInsert Class
	XmlToSqlFinancialTotalsCommon Class
	XmlToSqlDeliveryTax Class
	JdbcSaveIXRetailRetailTransaction Class
	360POSLogLibrary.xsd

	Commerce Service Transaction DTO Classes
	Retail Transaction DTO
	Transaction Group Rule Tax DTO
	Sale Return Line Item Tax DTO
	Sale Return Line Item DTO
	Shipping Record Tax DTO
	Shipping Record DTO

	Web Modules Transaction View Bean Classes

	Database Design / Changes -- Tables /Views
	Tax Group Rule Table RU_TX_GP
	Retail Transaction Table TR_RTL
	Tax Line Item Table TR_LTM_TX
	Sales Return Line Item Table TR_LTM_SLS_RTN
	Sales Return Tax Line Item Table TR_LTM_SLS_RTN_TX
	Order Item Table OR_LTM
	Point-of-Service Department History Table LE_HST_PS_DPT
	Till History Table LE_HST_TL
	Register History Table LE_HST_WS
	Store History Table LE_HST_STR
	Tax History Table HST_TX
	Shipping Methods Table CO_SHP_MTH
	Shipping Record Table SHP_RDS_SLS_RTN
	Shipping Record Tax Table SHP_RDS_SLS_RTN_TX

	C Appendix: Changing Currency

