
BEAWebLogic
Server®

Monitoring and
Managing with the
Java EE Management
APIs

Version 10.0
Revised: March 30, 2007

Monitoring and Managing with the Java EE Management APIs iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to This Document . 1-2

Related Documentation . 1-2

2. Using the Java EE Management APIs on WebLogic Server
Understanding the Java EE Management Model and APIs . 2-1

JMO Hierarchy . 2-2

JMO Object Names. 2-2

Optional Features of JMOs . 2-2

Accessing JMOs . 2-3

The Java EE Management Model on WebLogic Server . 2-3

Accessing the MEJB on WebLogic Server . 2-3

Example: Querying Names of JMOs . 2-4

iv Monitoring and Managing with the Java EE Management APIs

Monitoring and Managing with the Java EE Management APIs 1-1

C H A P T E R 1

Introduction and Roadmap

The Java EE Management specification describes a standard data model for monitoring and
managing the runtime state of any Java EE Web application server and its resources. It includes
standard mappings of the model through a Java EE Management EJB Component (MEJB).

The following sections describe the contents and organization of this guide—Monitoring and
Managing with the J2EE Management APIs:

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-2

Document Scope and Audience
This document is a resource for software developers who develop management services for Java
EE applications and for software vendors who develop JMX-compatible management systems. It
also contains information that is useful for business analysts and system architects who are
evaluating WebLogic Server or considering the use of JMX for a particular application.

The information in this document is relevant during the design and development phases of a
software project. The document does not address production phase administration, monitoring,
or performance tuning topics. For links to WebLogic Server documentation and resources for
these topics, see “Related Documentation” on page 1-2.

It is assumed that the reader is familiar with Java EE and general application management
concepts. This document emphasizes a hands-on approach to developing a limited but useful set

I n t roduct i on and Roadmap

1-2 Monitoring and Managing with the Java EE Management APIs

of JMX management services. For information on applying JMX to a broader set of management
problems, refer to the JMX specification or other documents listed in “Related Documentation”
on page 1-2.

Guide to This Document
This document is organized as follows:

This chapter, Introduction and Roadmap, describes the scope and organization of this
guide.

Chapter 2, “Using the Java EE Management APIs on WebLogic Server,” introduces JMX
and describes common ways to use it in conjunction with other WebLogic Server
management features.

Related Documentation
The Sun Developer Network includes a Web site that provides links to books, white papers, and
additional information on JMX: http://java.sun.com/products/JavaManagement/.

To view the JMX 1.2 specification and API documentation, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html.

To view the JMX Remote API 1.0 specification and API documentation, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html.

For guidelines on developing other types of management services for WebLogic Server
applications, see the following documents:

Using WebLogic Logging Services for Application Logging describes WebLogic support for
internationalization and localization of log messages, and shows you how to use the
templates and tools provided with WebLogic Server to create or edit message catalogs that
are locale-specific.

Configuring and Using the WebLogic Diagnostic Framework describes how system
administrators can collect application monitoring data that has not been exposed through
JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see the following
documents:

Developing WebLogic Server Applications is a guide to developing WebLogic Server
applications.

Rela ted Documentat ion

Monitoring and Managing with the Java EE Management APIs 1-3

Developing Manageable Applications with JMX describes how to create and register
custom MBeans.

I n t roduct i on and Roadmap

1-4 Monitoring and Managing with the Java EE Management APIs

Monitoring and Managing with the Java EE Management APIs 2-1

C H A P T E R 2

Using the Java EE Management APIs on
WebLogic Server

The Java EE Management APIs enable a software developer to create a single Java program that
can discover and browse resources, such as JDBC connection pools and deployed applications,
on any Java EE Web application server. The APIs are part of the Java EE Management
Specification, which requires all Java EE Web application servers to describe their resources in
a standard data model.

The following sections describe how to use the Java EE Management APIs on WebLogic
Server®:

“Understanding the Java EE Management Model and APIs” on page 2-1

“The Java EE Management Model on WebLogic Server” on page 2-3

“Accessing the MEJB on WebLogic Server” on page 2-3

Understanding the Java EE Management Model and APIs
In the Java EE Management data model, each instance of a Web application server resource type
is represented by a Java EE Managed Object (JMO). The Java EE Management Specification
describes exactly which types of resources must be represented by a JMO. JMOs themselves
contain only a limited set of attributes, which are used to describe the location of the object in the
data model.

Download the Java EE Management Specification from
http://jcp.org/aboutJava/communityprocess/final/jsr077/index.html.

Using the Java EE Management AP Is on WebLogic Se rver

2-2 Monitoring and Managing with the Java EE Management APIs

JMO Hierarchy
The data model organizes JMOs hierarchically in a tree structure. The root JMO is J2EEDomain,
which represents a collection of Web application server instances that are logically related.
J2EEDomain contains the object names for all instances of the J2EEServer JMO, each of which
represents a server instance in the collection.

Java applications can browse the hierarchy of JMOs, recursively querying for object names and
looking up the JMOs that are named by the query results.

JMO Object Names
Each JMO instance is identified by a unique object name of type
javax.management.ObjectName. The names follow this pattern:

domain:name=j2eeType=value,name=value,parent-j2eeType[,property=value]*

For example, mydomain:J2EEtype=J2EEDomain,name=mydomain

The Java EE Management Specification describes exactly which name/value pairs must be in the
object names for each JMO type.

The object name for each child JMO contains name/value pairs from its parent JMO’s object
name. For example, if the JMO for a server instance is named
mydomain:j2eeType=J2EEServer,name=myserver

then the JMO for a servlet that is part of an application deployed on that server instance would be
named:

mydomain:J2EEApplication=myapplication,J2EEServer=myserver,WebModule=myapp

_mywebmodule,j2eeType=Servlet,name=myservlet_name

The name/value pairs can appear in any order.

Optional Features of JMOs
The Java EE Management Specification, version 1.0, requires only that Web application servers
implement JMOs and provide API access to the JMOs.

Optionally, you can implement the JMOs to provide performance statistics, management
operations, and to emit notifications when specified events occur.

The Java EE Management Mode l on WebLog ic Se rve r

Monitoring and Managing with the Java EE Management APIs 2-3

Accessing JMOs
A Java application accesses the JMOs through javax.management.j2ee.Management, which
is the remote interface for the Management Enterprise Java Bean (MEJB).

The Java EE Management Specification requires that the MEJB’s home interface be registered in
a server’s JNIDI tree as ejb.mgmt.MEJB.

See the API Reference for the javax.management.j2ee package:
http://java.sun.com/j2ee/1.4/docs/api/javax/management/j2ee/package-summary.html.

The Java EE Management Model on WebLogic Server
WebLogic Server 9.0 implements only the required features of the Java EE Management
Specification, version 1.0. Therefore, the following limitations are in place:

None of the JMOs provide performance statistics, management operations, or emit
notifications.

There are no mappings to the Common Information Model (CIM).

There are no mappings to an SNMP Management Information Base (MIB).

The MEJB and JMOs are available only on the Administration Server. This is consistent with the
Java EE Management Model, which assumes that most Java EE Web servers exist within some
logically connected collection and that there is a central point within the collection for accessing
or managing the server instances. From the Administration Server, a Java application can browse
to the JMO that represents any resource on any server instance in the WebLogic Server domain.

Because WebLogic Server implements its JMOs as a wrapper for its MBeans, any changes in a
WebLogic Server MBean that corresponds to a JMO is immediately available through the Java
EE Management APIs.

For all JMO object names on WebLogic Server, the domain: portion of the object name
corresponds to the name of the WebLogic Server domain.

Accessing the MEJB on WebLogic Server
To retrieve monitoring data through the MEJB:

1. Look up the javax.management.j2ee.ManagementHome interface through the
Administration Servers JNDI tree under the name ejb.mgmt.MEJB.

Using the Java EE Management AP Is on WebLogic Se rver

2-4 Monitoring and Managing with the Java EE Management APIs

2. Use ManagementHome to construct an instance of javax.management.j2ee.Management,
which is the MEJB’s remote interface.

Example: Querying Names of JMOs
The example class in accesses the MEJB for a WebLogic Server domain and invokes
javax.management.j2ee.Management.queryNames method. This method returns the object
name for all JMOs in the domain.

Listing 2-1 Querying Names of JMOs

import java.io.IOException;

import java.net.MalformedURLException;

import java.util.Iterator;

import java.util.Set;

import java.util.Properties;

import javax.management.j2ee.Management;

import javax.management.j2ee.ManagementHome;

import javax.management.AttributeNotFoundException;

import javax.management.InstanceNotFoundException;

import javax.management.ObjectName;

import javax.management.QueryExp;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.ejb.CreateException;

public class GetJMONames {

static String url = "t3://localhost:7001";

static String user = "weblogic";

static String password = "weblogic";

public static void main(String[] args) {

try {

getAllJMONames();

}catch(Exception e){

System.out.println(e);

Access ing the MEJB on WebLog ic Se rve r

Monitoring and Managing with the Java EE Management APIs 2-5

}

}

public static Management getMEJBRemote()

 throws IOException, MalformedURLException,

NamingException,CreateException

{

Context context = getInitialContext();

ManagementHome home = (ManagementHome)

context.lookup("ejb.mgmt.MEJB");

Management bean = home.create();

return bean;

}

public static Context getInitialContext()

throws NamingException

{

Properties p = new Properties();

p.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

p.put(Context.PROVIDER_URL, url);

if (user != null) {

p.put(Context.SECURITY_PRINCIPAL, user);

if (password == null)

password = "";

p.put(Context.SECURITY_CREDENTIALS, password);

}

return new InitialContext(p);

}

public static void getAllJMONames()

{

try {

Management rhome = getMEJBRemote();

String string = "";

ObjectName name = new ObjectName(string);

QueryExp query = null;

Set allNames = rhome.queryNames(name, query);

Iterator nameIterator = allNames.iterator();

Using the Java EE Management AP Is on WebLogic Se rver

2-6 Monitoring and Managing with the Java EE Management APIs

while(nameIterator.hasNext()) {

ObjectName on = (ObjectName)nameIterator.next();

System.out.println(on.getCanonicalName() + "\n");

}

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

