
BEAAquaLogic®
Enterprise
Repository

Configuring and
Managing Advanced
Registration Flows

Version 3.0
Revised: October 2007

Configuring and Managing Advanced Repository Flows iii

Contents

1. Overview of Advanced Registration Flows
What Are Advanced Registration Flows? . 1-2

Example “Community Flow” Use Case. 1-2

Software Components . 1-3

ALER Event Manager . 1-3

Subscription Manager . 1-3

JMS Server. 1-3

Event Monitor . 1-3

Advanced Registration Flows. 1-4

Event Management Tools . 1-4

Web-based Process Administrator . 1-5

Log Viewer . 1-5

Flow Email Notification Templates. 1-5

Flow Configuration Tools . 1-5

Generating a New Config File. 1-5

Refreshing an Existing Config File . 1-5

Encrypting Config File Passwords . 1-5

2. Getting Started with Advanced Registration Flows
Overview . 2-2

Steps to Configure the ALER Event Manager. 2-2

Use Cases . 2-3

iv Configuring and Managing Advanced Repository Flows

Configuring the Event Manager. 2-3

Triggering an Asset Event . 2-4

Steps to Configure and Run the ALBPM Process Engine . 2-5

Use Cases . 2-6

Configuring the Advanced Registration Flows to Process a Submission Event 2-6

Triggering an Asset Submission Event . 2-7

3. Configuring the ALER Event Manager
What Is the ALER Event Manager . 3-2

Configuring the Event Manager’s System Settings . 3-3

Enabling the Event Manager . 3-3

Configuring Optional Event Manager Settings . 3-3

Eventing Manager Notifier Thread Sleep (seconds). 3-3

Eventing Manager Store Thread Sleep (seconds) . 3-4

Eventing Manager Store Delivery Sleep (seconds) . 3-4

Batch Size for Event Manager Deliveries. 3-4

Configuring the Subscription Manager . 3-4

Configuring Web Service Endpoints . 3-5

Setting the Expression to Filter Events . 3-5

Delivering all Events to an Endpoint . 3-5

Delivering Events to an Endpoint Filtered by Event Type 3-6

Delivering Events to an Endpoint Filtered Using a JMS Message Selector. . . . 3-6

JMS Message Selector Examples . 3-7

Configuring Logging of Event Manager Events . 3-8

4. Administrating ALBPM Processes
Overview . 4-2

Administering ALBPM Web Applications . 4-2

Configuring and Managing Advanced Repository Flows v

Starting the ALBPM Admin Center . 4-2

Starting the ALBPM Process Engine . 4-3

Defining the ALBPM Participants . 4-4

ALBPM Administrators . 4-4

Advanced Registration Flow Participant. 4-4

Tuning the ALBPM Process Engine . 4-6

Advanced Properties. 4-6

Database Runtime Properties . 4-6

Memory and Execution Thread Properties. 4-6

Configuring a Standalone Process Engine for Failover. 4-7

Using The ALBPM Log Viewer . 4-7

Filtering Event Log Messages for ALER Flows . 4-7

5. Configuring Advanced Registration Flows
Overview of Advanced Registration Flows. 5-2

Creating and Customizing a Workflow Configuration File . 5-2

Generating a Workflow Configuration File . 5-2

Defining the ALER Connection and Registrar. 5-3

Encrypting the Registrar User Password . 5-3

Wiring Asset Events to Flows . 5-4

Automatic Asset Registration Flows . 5-6

Configuring Community Flows . 5-6

Setting the Community for an ALER Project . 5-9

Setting the Community for an Asset Type . 5-9

Configuring a Community to Automatically Accept an Asset 5-9

Configuring a Community to Assign Assets for Tab Approval 5-9

Configuring a Community to Assign Assets for Tab Approval Using Multi-tier5-10

Configuring a Community to Automatically Register an Asset 5-10

vi Configuring and Managing Advanced Repository Flows

Configuring a Community to Have a Dedicated Registrar. 5-10

Configuring Automated Acceptance and Automated Registration Flows. 5-10

Asset Type. 5-11

Categorization Settings . 5-11

Submitter Role . 5-11

Conflict Resolution and Precedence . 5-12

Multi-tier Automatic Assignment Flows. 5-13

Use Cases . 5-13

Using an <alerid> for Tab Approvals . 5-14

Setting Up a Community for Multi-tier Tab Approval . 5-15

Setting Up an Asset Type for Multi-tier Tab Approval . 5-16

Metadata Change Flows . 5-18

Use Cases . 5-18

Configuring Metadata Change Flows . 5-18

Available Metadata Change Events/States . 5-18

Available Flows That Can Be Wired to Actions. 5-19

Example Metadata Change Configuration . 5-20

Example Metadata Change Configuration That Checks for Metadata Value . . 5-21

ChangeClassification . 5-21

ChangeCAS . 5-21

ChangeAssetLifecycle . 5-22

ApproveTabAction . 5-22

UnapproveTabAction . 5-22

AutoApproveTabAction . 5-23

UnapproveChangeManagementTab . 5-23

ResetChangeManagementTab. 5-24

NotifyCustomUser . 5-24

Invoking Flows Based on Approval of Named Tabs . 5-24

Configuring and Managing Advanced Repository Flows vii

Time-based Escalation Flows . 5-25

Tracking Unsubmitted Assets. 5-26

Tracking Unaccepted Assets . 5-27

Tracking Unapproved Assets . 5-27

Tracking Unregistered Assets. 5-28

Validation Expiration Flows . 5-28

Asset Expiration Warning Notification . 5-30

Unregister Assets After Expiration . 5-31

Inactivate After Expiration . 5-31

Delete Assets After Expiration. 5-31

Customizing Flow Notification Email Templates . 5-32

6. Configuring JMS Servers for ALER
Overview of JMS for the Event Manager . 6-2

Configuring Connectivity Properties for External JMS Servers . 6-2

Enabling and Configuring an External JMS Server . 6-2

Configuring JMS Message Header Properties . 6-3

Miscellaneous JMS Properties . 6-4

Configuring External JMS Jar Files . 6-4

Configuring the Embedded ActiveMQ JMS Server to Use a Database 6-4

Configuring JMS Durable Subscribers for Web Service Endpoints 6-5

Configuring JMS Servers In an ALER Cluster . 6-6

Enabling JMS Clustering Mode . 6-6

Configuring Embedded JMS Servers for Clustering . 6-6

Configuring External JMS Servers for Clustering . 6-7

Configuring a JMS Provider In WebSphere 6.1.0.5 . 6-8

viii Configuring and Managing Advanced Repository Flows

7. Monitoring and Managing Events
Overview . 7-2

Monitoring Events. 7-3

Prerequisites . 7-3

Usage . 7-3

Cleaning Up Stored Events . 7-5

Prerequisites . 7-5

Usage . 7-5

Sample Event Cleanup . 7-6

Generating the Workflow Config File . 7-6

Refreshing the Workflow Config File. 7-7

Encrypting Your Passwords . 7-8

8. Extending the Event Manager for Web Service Endpoints
Overview . 8-1

Developing a Web Service Endpoint . 8-2

Web Service Operations . 8-4

Available Web Service Operations. 8-4

newEventRequestResponse . 8-4

newEventRequestResponseString. 8-4

newEventRequest . 8-4

newEventRequestString . 8-4

newEvent . 8-4

Selecting a Web Service Operation . 8-5

Developing a Notifier Plug-in . 8-6

Developing an Endpoint With an Incompatible Contract . 8-7

Configuring and Managing Advanced Registration Flows 1-1

C H A P T E R 1

Overview of Advanced Registration
Flows

This section contains information on the following subjects:

“What Are Advanced Registration Flows?” on page 1-2

“Example “Community Flow” Use Case” on page 1-2

“Software Components” on page 1-3

Overv iew o f Advanced Reg is t ra t ion F lows

1-2 Configuring and Managing Advanced Registration Flows

What Are Advanced Registration Flows?
In previous releases of ALER, the asset registration process required the registrar or advanced
submitter to manually initiate and monitor the registration process. The required information was
gathered and entered on the appropriate tabs in the Asset Editor. The registrar examined each tab
and monitored the workflow. When information for a specific stage of the workflow was
acceptable, the registrar approved the data on the appropriate tab. The registrar also had the
option to edit any of the information for any stage of the process.

The introduction of Advanced Registration Flows in ALER 3.0, Advanced Edition, attempts to
automate the manual asset registration process by providing a set of predefined flows designed
to automate a set of common ALER asset registration tasks, such as asset submission, acceptance,
registration, and other governance processes.

To accomplish this ALER 3.0 includes an embedded, JMS-based event engine that manages the
flow of ALER asset registration events, in the form of Web Service events. These events trigger
the pre-defined flows. Once installed, the Advanced Registration Flows can be run out-of-the box
or can be tailored to suit your environment.

Note: The flows do not have their own user interface, but will automate certain asset metadata
and state changes in the background based on particular ALER events.

For ease of use, you can use the predefined ALPBM endpoint or create your own Web Service
endpoints to subscribe to ALER events. There are also event monitoring and logging tools for
troubleshooting and tuning purposes.

Example “Community Flow” Use Case
In previous releases, the asset acceptance, assignment, registration processes required multiple
registrars to manually initiate and monitor the process from end-to-end via numerous emails. In
some cases, there was only one registrar that was notified about the newly submitted assets, and
as a result, the registrar could be overloaded with emails about new assets.

The Community flow provides a way to automate the asset acceptance, assignment, and
registration process by allowing the configuration of automated assignment rules and also
introduces the notion of federated registrars among different authorities. Rather than spamming
many registrars across all communities (through the system registrar notification), you can limit
the system registrar to one or a few individuals, and let the Automatic Acceptance flow accept
assets on behalf of a registrar-of-record for the community. The Community flow feature can
distribute asset submissions to those with the authority to approve them for the community.

So f tware Components

Configuring and Managing Advanced Registration Flows 1-3

For example, you can add two communities and configure two different registrars responsible for
each community. Then, depending on the producing projects or asset types, certain assets can
belong to a community. The Community flow automatically accepts such assets in the same way
it would be manually accepted by a registrar.

Software Components
Advanced Registration Flows includes the following software components:

ALER Event Manager
The Event Manager emits asset registration events in the form of Web Service messages. These
events trigger pre-built flows that automate ALER asset submission, acceptance, registration, and
other governance processes. See Chapter 3, “Configuring the ALER Event Manager.”

Subscription Manager
The Subscription Manager is XML-based configuration file that is responsible for managing the
event subscriptions by the Web Service endpoints (either the predefined ALPBM endpoint or
user-defined endpoints) where matched events will be delivered. The Event Manager uses the
EndPointEventSubscription.xml file to load information about the endpoints where events
need to be delivered. See Chapter 3, “Configuring the ALER Event Manager.”

JMS Server
The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS server is configured to run out-of-the-box without any additional
configuration. However, you can also configure the Event Manager to use an external JMS
server, such as Weblogic Server JMS or IBM MQSeries. See Chapter 6, “Configuring JMS
Servers for ALER.”

Event Monitor
A tool to monitor the events that are generated by the Event Manager. The Event Monitor peeks
into the event traffic and prints information, such as the event body and event properties. See
Chapter 7, “Monitoring and Managing Events.”

Overv iew o f Advanced Reg is t ra t ion F lows

1-4 Configuring and Managing Advanced Registration Flows

Advanced Registration Flows
The Advanced Registration Flows can be run out-of-the box or can be tailored to suit your
environment. See Chapter 5, “Configuring Advanced Registration Flows.”

Community Assignment Flow – provides a way to automate the asset acceptance,
assignment, and registration process by allowing the configuration of automated
assignment rules and also provides the notion of federated registrars among different
authorities. See “Configuring Community Flows” on page 5-6.

Automated Acceptance and Automated Registration Flow – in addition to using the
Community Flows to automatically accept and register the assets, a number of user roles
can be used to accept and register assets. See “Configuring Automated Acceptance and
Automated Registration Flows” on page 5-10.

Multi-tier Approval Flow – structures the tab approval process in multiple steps called
tiers. Asset approval tabs can be grouped in tiers, and the Mult-tier Approval flow tracks
each tier to verify whether all the tabs are approved by the designated approvers. As soon
as the last tab in a tier is approved, the flow starts the next tier by assigning the asset to the
next level of designated approvers. See “Multi-tier Automatic Assignment Flows” on
page 5-13.

Metadata Change Flow – exposes a flexible framework where state changes or metadata
changes can be wired to actions. The Metadata Change flows come with the a set of
pre-bundled actions. New actions can be developed in the form of ALER flows and can be
plugged in. See “Metadata Change Flows” on page 5-18.

Time-based Escalation Flow –track assets in various states and notifies all interested
parties. There are four different kinds of Time-based Escalation flows and each one can be
configured individually. See “Time-based Escalation Flows” on page 5-25.

Validation Expiration Flow – tracks expired assets prior to the specified expiration date, as
well as at the day of expiration, and sends warning notifications to all interested parties.
See “Validation Expiration Flows” on page 5-28.

Event Management Tools
There are event monitoring and logging tools for troubleshooting and tuning purposes.

So f tware Components

Configuring and Managing Advanced Registration Flows 1-5

Web-based Process Administrator
The ALBPM Process Execution Administrator actively manages the orchestration of asset
registration events in the form of Web Service messages. For more information, see
“Administering ALBPM Web Applications.”

Log Viewer
The ALBPM Log Viewer enables you to read information logged by the Process Execution
Engine. A set of log files is created for each project you define. The Studio Log Viewer reads the
files and displays them to help you monitor and trace Engine execution. For more information,
see “Using The ALBPM Log Viewer.”

Flow Email Notification Templates
The Automated Registration Flows automatically send email notifications under many
circumstances. There are five new email templates for the new flows. Administrators can
customize the email subject, body, etc., the same way as other email templates. See “Customizing
Flow Notification Email Templates”.

Flow Configuration Tools
There are flow configuration tools for generating new configuration file, refreshing exisiting
files, and encrypting passwords. For more information, see Chapter 7, “Monitoring and
Managing Events.”

Generating a New Config File
ALER administrators may need to configure and customize flows because there will be new asset
types, projects, categorizations, etc. The Generate Config XML tool connects to ALER and
creates a new file that can be customized.

Refreshing an Existing Config File
The Refresh Config XML tool lets you to refresh a Config XML file without restarting the Event
Manager.

Encrypting Config File Passwords
The security Encrypt Password tool lets you to encrypt the passwords for security reasons.

Overv iew o f Advanced Reg is t ra t ion F lows

1-6 Configuring and Managing Advanced Registration Flows

Configuring and Managing Advanced Registration Flows 2-1

C H A P T E R 2

Getting Started with Advanced
Registration Flows

This section contains information on the following subjects:

“Overview”

“Steps to Configure the ALER Event Manager”

“Steps to Configure and Run the ALBPM Process Engine”

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows

2-2 Configuring and Managing Advanced Registration Flows

Overview
This section will help you to quickly get started using the Advanced Registration Flow feature
using the bundled ALPBM Web Service endpoint that is configured to work with the ALBPM
Process Engine. However, this feature is highly extensible and can be tailored to suit your
environment.

Steps to Configure the ALER Event Manager
The Event Manager is a component embedded within ALER that manages event subscriptions,
event persistence, event filtering, and event delivery. Web Service endpoints can subscribe to the
Event Manager’s Subscription Manager and the asset registration events that are generated within
ALER are delivered to the Web Service endpoints.

The following diagram shows the different components that are involved.

Figure 2-1 Advanced Registration Flow Components

The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS server is configured to run out-of-the-box without any additional
configuration. However, you can also configure the Event Manager to use an external Java-based
message broker, such as Weblogic Server JMS or IBM MQSeries.

For more information on configuring the Event Manager, see Chapter 3, “Configuring the ALER
Event Manager.”

Steps to Conf igure the ALER Event Manager

Configuring and Managing Advanced Registration Flows 2-3

Use Cases
ALER 3.0 features pre-bundled ALBPM flows and a Web Service endpoint that is by
default registered with the Event Manager’s Subscription Manager. All the triggered events
are delivered to this ALBPM endpoint, which then attempts to automate ALER processes,
such as the asset registration process, tracking metadata changes, and taking pre-defined
actions.

You can also write your own Web Service endpoints, subscribe them with the Event
Manager, and start getting the events to solve your specific business needs.

Configuring the Event Manager
After ALER is installed, configure the Event Manager as follows.

1. The Event Manager needs to be enabled in ALER to allow the Event Manager to send events
to external Web Service endpoints. You can either:

– Enable the cmee.eventframework.enabled=true property in the
eventing.properties file in the <ALER Domain>\WEB-INF\classes directory.

or

– This property can also be enabled using the ALER Web-based console’s System
Settings, as explained in “Configuring the Event Manager’s System Settings.”

2. The default Eventing cmee.eventframework.delivery.sleep and
cmee.eventframework.store.sleep property values can also be tuned to control the
overall performance of ALER and the Web Service endpoints. These properties directly
impact the number of events that get triggered per second by the Event Manager. For
example, If a faster response is required for testing purposes, the default
cmee.eventframework.store.sleep value of 7200 seconds should be changed to a
reasonable testing amount.

3. The Event Manager uses the same logging framework as ALER. By default, logging is
enabled to go to a file, but you direct the debug statements to go to the console by appending
the following categories to the log4fl.properties file in the <ALER
Domain>\WEB-INF\classes directory.

eventing subsystem

log4j.category.com.bea.infra.event.core= debug,eventingLog,stdout

log4j.category.com.bea.infra.event.dm= debug,eventingLog,stdout

log4j.category.com.bea.infra.event.facade= debug,eventingLog,stdout

log4j.category.com.bea.infra.event.notifier= debug,eventingLog,stdout

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows

2-4 Configuring and Managing Advanced Registration Flows

log4j.category.com.bea.infra.event.store= debug,eventingLog,stdout

log4j.category.com.bea.infra.event.sub= debug,eventingLog,stdout

4. Configure the Web Service subscriptions with the Event Manager’s Subscription Manager.

Note: By default the Subscription Manager is configured to work out-of-the-box with the
ALBPM Process Engine if the ALBPM Process Engine is running on the same
machine as ALER. You can skip this step if this is the case because the default
settings are ready to run.

As shown below, the following information may need to be changed within the
EndPointEventSubscription.xml file under <ALER Domain>\WEB-INF\classes
directory, depending on the requirement:

– Host – If the Web Service Endpoint is running in a host other than ALER. If it'’ the
same host, leave the default unchanged

– Port – Specify the port of the Web Service Endpoint. If ALBPM is used as the Process
Engine, leave the default unchanged.

– URI – Specify the URI of the Web Service. If ALBPM is used as the Process Engine,
leave the default unchanged.

– Operation Name – If ALBPM is used as the Process Engine, leave the default
unchanged. Please refer to the WSDL within the eventNotifier.jar located in
<aler Webapp path>/WEB-INF/lib for the available operations.

– User Name/Password – Used only if ALBPM is used as the Process Engine. Default
user name and password are “admin” and “admin”.

– Expression – Default is empty, which means all the events are delivered.

5. Restart ALER for the configuration changes to take effect.

Triggering an Asset Event
Follow these steps to make sure that events are triggered after the configuring the Event Manager.

1. Launch the ALER Asset Editor from the Web-based console.

For information on using the ALER Asset Editor, refer to the ALER Registrar Guide.

2. Create a new asset, as shown here.

Steps to Conf igure and Run the ALBPM Process Engine

Configuring and Managing Advanced Registration Flows 2-5

Figure 2-2 ALER Asset Editor - Create New Asset

Note: The Asset Type should be Service.

3. Click OK to submit the asset.

4. After the asset is submitted, switch to the ALER console to verify the following logging
statements printed to the console.

Figure 2-3 Event Monitoring Console

5. The Event Monitoring tool can be used to view the payload of the event that will be delivered.
For more information about monitoring events, see “Monitoring Events.”

Steps to Configure and Run the ALBPM Process Engine
After the Event Manager is ready to send events, the ALBPM Process Engine needs to be
configured and be ready to process the events. When ALER is installed, it provides an option to
install and configure the Process Engine. This section assumes that the Process Engine was
successfully installed before following these steps.

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows

2-6 Configuring and Managing Advanced Registration Flows

To launch the ALBPM Admin Center, double-click the albpmadmcenter.exe file in the <ALBPM
Enterprise Home>\bin directory.

Use Cases
ALER features pre-bundled Advanced Registration Flows that are deployed to the Process
Engine. When events are triggered within ALER, they are delivered to the Process Engine and
execute the Advanced Registration Flows that attempt to automate ALER processes, such as asset
submission, acceptance, registration, and other governance process.

For more information about the available Advanced Registration Flows, see Chapter 5,
“Configuring Advanced Registration Flows.”

Configuring the Advanced Registration Flows to Process a
Submission Event
Follow these steps after the ALBPM Process Engine is installed.

1. Generate the Workflow Configuration (workflow.xml) file using the Generate Workflow
Config tool (config_gen.bat). This tool connects to ALER and creates a bootstrapping file
that can be customized. For more information about generating the workflow.xml file, see
“Generating the Workflow Config File.”

2. Copy the newly generated workflow.xml file to the <ALBPM Enterprise
Edition>/enterprise/server/aler_engine directory.

3. Open the workflow.xml file using the XML editor of choice.

4. Make sure that the ALER Connection information, such as the URI and the registrar user
name/password, are configured correctly as shown here.

 <alerconnection>

<uri>http://server01.amer.bea.com:7005/aler/services/FlashlineRegistry

</uri>

 <registrar>

 <user>admin</user>

 <password>admin</password>

 </registrar>

 </alerconnection>

Steps to Conf igure and Run the ALBPM Process Engine

Configuring and Managing Advanced Registration Flows 2-7

The URI must use the following format:
http://<host>:<port>/<aler web app name>/services/FlashlineRegistry

5. Within the workflow.xml file, locate the assetType settings for the “Service” asset type, as
shown here.

 <assetType name=”Service” community=”_CHANGE_COMMUNITY_” id=”154”>

 <allTabs>

 <allTabs>

 <tab name=”Oveview”/>

 <tab name=”UDDI: Business Entity”/>

 <tab name=”Taxonomy”/>

 <tab name=”Architecture”/>

 </allTabs>

6. Add the autoAccept attribute and set the value to true, as shown here.
 <assetType name=”Application” community=”_CHANGE_COMMUNITY_” id=”154”

autoAccept=”true”>

 <allTabs>

 <allTabs>

 <tab name=”Oveview”/>

 <tab name=”UDDI: Business Entity”/>

 <tab name=”Taxonomy”/>

 <tab name=”Architecture”/>

 </allTabs>

Now the ALBPM Process Engine is configured to automatically accept any asset of type
“Service.”

7. If the ALBPM Process Engine is running, stop it and then restart it to load the latest
workflow.xml changes.

8. The Refresh Workflow Configuration tool can be used to refresh the workflow.xml file
without restarting the ALBPM Process Engine. For more information about refreshing the
workflow.xml file, see “Refreshing the Workflow Config File.”

Triggering an Asset Submission Event
Once the ALBPM Process Engine is configured and running, follow these steps to process an
asset submission event.

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows

2-8 Configuring and Managing Advanced Registration Flows

1. Launch the ALER Asset Editor from the Web console.

For information on using the ALER Asset Editor, refer to the ALER Registrar Guide.

2. Create a new asset from File ->New as shown below.

Figure 2-4 ALER Asset Editor - Create New Asset

Note: The Asset Type should be Service.

3. Click OK to submit the asset.

4. After the asset is submitted, switch to the ALBPM Log Viewer to make sure that the event is
processed. To launch the Log Viewer, double-click the albpmlogviewer.exe file in the
<ALBPM Enterprise Home>\bin directory.

5. Turn on the “Debug” level on the Log page of the Process Engine using the Process
Administrator preference settings. By default, the level is set to “Warning.”

Figure 2-5 ALBPM Process Administrator - Logging Preferences

Steps to Conf igure and Run the ALBPM Process Engine

Configuring and Managing Advanced Registration Flows 2-9

6. When you turn on the Debug level though you will notice that the Process Engine prints a lot
of information, not just for the ALER Advanced Registration Flows, but other Process Engine
information as well. To filter the ALER logging, follow these steps:

a. Within the Log viewer, select Message in the left-most list box.

b. Select Begins With in the next list box.

c. Type ALER: in the text box

d. Click the Apply Filter button.

Figure 2-6 ALBPM Log Viewer

7. After the “ALER: Done accepting the asset” message is displayed in the Log Viewer, switch
back to the Asset Editor, and then refresh the Administration tab using the View -> Refresh
Tree command

8. Verify that the “Accepted” section is updated with the latest data, as shown here.

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows

2-10 Configuring and Managing Advanced Registration Flows

Figure 2-7 ALER Asset Editor - Administration Tab

9. Also verify that the Audit Log on the Administration tab is updated, as shown here.

Figure 2-8 ALER Asset Editor - Audit Log

Configuring and Managing Advanced Registration Flows 3-1

C H A P T E R 3

Configuring the ALER Event Manager

This section discusses the Event Manager configuration that needs to be completed before using
the Advanced Registration Flows. It contains information on the following subjects:

“What Is the ALER Event Manager” on page 3-2

“Configuring the Event Manager’s System Settings” on page 3-3

“Configuring the Subscription Manager” on page 3-4

“Configuring Logging of Event Manager Events” on page 3-8

Conf igur ing the ALER Event Manager

3-2 Configuring and Managing Advanced Registration Flows

What Is the ALER Event Manager
The Event Manager is a component embedded within ALER that manages event subscriptions,
event persistence, event filtering, and event delivery. Web Service endpoints can subscribe to the
Event Manager’s Subscription Manager and the asset registration events that are generated within
ALER are delivered to the Web Service endpoints.

The following diagram shows the different components that are involved.

Figure 3-1 Advanced Registration Flow Components

Figure 3-2 Advanced Registration Flow Components

The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS server is configured to run out-of-the-box without any additional
configuration. However, you can also configure the Event Manager to use an external JMS
server, such as Weblogic Server JMS or IBM WebSphere.

This section discusses the Event Manager configuration that needs to be completed before using
the Advanced Registration Flows. For information on configuring the Advanced Registration
Flows, see Chapter 5, “Configuring Advanced Registration Flows.”

Conf igur ing the Event Manager ’s Sys tem Set t ings

Configuring and Managing Advanced Registration Flows 3-3

Configuring the Event Manager’s System Settings
ALER’s System Settings section allows administrators to configure the basic ALER operation
and to enable/disable specific features. The Event Manager-related settings are under the
“Eventing” group under the main “External Integrations” category. For more information about
System Settings, see the ALER Administration Guide.

Additional “Eventing” properties are available for configuring an external JMS server, such
WebLogic Server and IMB WebSphere, and are described in Chapter 6, “Configuring JMS
Servers for ALER.”

Enabling the Event Manager
The Event Manager needs to be enabled in ALER to allow the Event Manager to send events to
external Web Service endpoints.

1. Click System Settings in the sidebar on the ALER Admin screen.

2. Enter Event in the System Settings Search box to view all the Event Manager related settings.

3. Click True next to the Enable Event Manager property.

4. Click Save.

5. Restart ALER for the configuration changes to take effect.

Configuring Optional Event Manager Settings
There are some optional “Eventing” properties that you can use to tune the Event Manager
performance.

Note: You must restart ALER after changing any Eventing property in order for the changes to
take effect.

Eventing Manager Notifier Thread Sleep (seconds)
If an endpoint is not unavailable when one or more events should be delivered to that endpoint,
the Event Manager notifier will retry delivering the event until the endpoint is available. The
cmee.eventframework.notifier.sleep property configures in seconds how long the notifier
should wait before trying to redeliver an event.

Conf igur ing the ALER Event Manager

3-4 Configuring and Managing Advanced Registration Flows

Eventing Manager Store Thread Sleep (seconds)
As soon as an event is triggered, the Event Manager stores the event in memory before pushing
it to the JMS server so that the ALER thread is not blocked. The
cmee.eventframework.store.sleep property specifies how long the Event Manager’s Store
Manager thread should sleep before polling for the next event stored in memory. The default
polling delay is 60 seconds.

Eventing Manager Store Delivery Sleep (seconds)
By default, the Event Manager delivers events in batches. The
cmee.eventframework.delivery.sleep property specifies how long the Event Manager’s
Delivery Manager thread should sleep before selecting the next available batch of events from
the JMS server. The default delay between each batch is 7200 seconds (two hours).

Tip: The default cmee.eventframework.store.sleep and
cmee.eventframework.delivery.sleep property values can be tuned to control the
overall performance of ALER and the Web Service endpoints. These properties directly
impact the number of events that get triggered per second by the Event Manager. For
example, If a faster response is required for testing purposes, the default
cmee.eventframework.delivery.sleep value of 7200 seconds should be changed to
a reasonable testing amount.

Batch Size for Event Manager Deliveries
When the Event Manager delivers events in batches, the delivered batch size can be configured
using the cmee.eventframework.delivery.batch.size property. The default batch size is
100 events. If the Event Manager finds less number of events to deliver, it will deliver the
available events and then sleep for the time configured in the
cmee.eventframework.delivery.sleep property.

Configuring the Subscription Manager
The Subscription Manager is responsible for managing the event subscriptions by the Web
Service endpoints where the matched events will be delivered.

The Subscription Manager configuration file is located in <aler webapp
name>\WEB-INF\classes\EndPointEventSubscription.xml.

Conf igur ing the Subscr ip t i on Manager

Configuring and Managing Advanced Registration Flows 3-5

Configuring Web Service Endpoints
The Event Manager uses the EndPointEventSubscription.xml file to load information about
the Web Service endpoints where events need to be delivered. The host, port, URI, user and
password of the predefined ALPBM endpoint, or user-defined Web Service endpoint, need to be
configured, as shown in this example snippet:

<sub:EventSubscriptionData
xmlns:sub=”http://www.bea.com/infra/events/subscription” xmlns:xsi=???
 <sub:eventSubscription>
 <sub:endPoint name=”ALBPMEndpoint”>
 <sub:host>maplanis01.amer.bea.com</sub:host>
 <sub:port>9000</sub:port>
 <sub:uri>fuegoServices/ws/StatusChangeEnpointServiceListener</sub:uri>
 <sub:targetNamespace>StatusChangeEndpoint</sub:targetNamespace>
 <sub:operationName>newEvent</sub:operationName>
 <sub:authenticationData>
 <sub:basicAuthentication>
 <sub:username>aler_workflow_user</sub:username>
 <sub:username>aler_workflow_user</sub:username>
 </sub:basicAuthentication>
 </sub:authenticationData>
 </sub:endPoint>
 <sub:notifierClass>com.bea.infra.event.notifier.help.AlbpmHTTPEventNotifier
</sub:notifierClass>
 <sub:expression>id > 500</sub:expression>
 </sub:eventSubscription>
</sub:EventSubscriptionData>

As many endpoints can be added as desired and the endpoints can be located in different hosts or
ports and the events can be load balanced. The pre-defined Advanced Registration Flow has just
one endpoint called “StatusChangeEndpoint”.

Setting the Expression to Filter Events
Events can be filtered based on the value entered in the expression element.

Delivering all Events to an Endpoint
The default setting is to deliver all events to an endpoint. All the events that are triggered within
ALER are delivered to the OOTB endpoint when the expression element is empty.
 <sub:expression></sub:expression>

Conf igur ing the ALER Event Manager

3-6 Configuring and Managing Advanced Registration Flows

Delivering Events to an Endpoint Filtered by Event Type
The following XML snippet shows how to deliver an event of type AssetSubmission to an
endpoint:
<sub:expression> eventdata_name
=”urn:com:bea.aler:events:type:AssetSubmission”</sub:expression>

You can also use the “OR” operator to filter more than one event type:
eventdata_name =”urn:com:bea.aler:events:type:AssetSubmission” OR
eventdata_name =”urn:com:bea.aler:events:type:AssetAccepted”

These are the event types that are supported:

urn:com:bea:aler:events:type:AssetSubmission

urn:com:bea:aler:events:type:AssetAccepted

urn:com:bea:aler:events:type:AssetTabApproved

urn:com:bea:aler:events:type:AssetAllTabApproved

urn:com:bea:aler:events:type:AssetRegister

urn:com:bea:aler:events:type:PolicyAssertionChanged

urn:com:bea:aler:events:type:MetaDataChange:name

urn:com:bea:aler:events:type:AssetUnSubmission

urn:com:bea:aler:events:type:AssetUnAccept

urn:com:bea:aler:events:type:AssetUnregister

urn:com:bea:aler:events:type:AssetStatusChanged

urn:com:bea:aler:events:type:MetaDataChange:version

urn:com:bea:aler:events:type:MetaDataChange:description

urn:com:bea:aler:events:type:CategorizationChanged:assetLifecycleStage

urn:com:bea:aler:events:type:CategorizationChanged:classification

urn:com:bea:aler:events:type:MetaDataChange:supported

urn:com:bea:aler:events:type:MetaDataChange:organizational ownership

urn:com:bea:aler:events:type:MetaDataChange:usagefee

Delivering Events to an Endpoint Filtered Using a JMS Message Selector
Selectors are a way of attaching a filter to a subscription to perform content-based routing.
Selectors are defined using SQL 92 syntax. The following is a complete list of fields that can be

Conf igur ing the Subscr ip t i on Manager

Configuring and Managing Advanced Registration Flows 3-7

used to write a filter expression to filter the events. These fields are added to the JMS message as
properties by the Event Manager and a JMS Message Selector that accesses the fields can be
written to filter the events.

submittedby_emailaddress = mrsmith@bea.com

asset_description = Test Asset

submittedby_name = aler_workflow_user

submittedby_id = 99

asset_community = Java

eventdata_description = new aler event

eventsource_componentname = Aqualogic ALER

asset_name = TestAsset

eventsource_componenttype = ALER3.0

asset_typeid = 154

eventdata_eventid = d0cdac55-c78f-4a29-8aec-6ea9ba8d31f1

eventdata_name = urn:com:bea:aler:events:type:MetaDataChange:name

asset_activestatus = ACTIVE

eventsource_location = ALERCore

asset_id = 50100

eventdata_version = ver1.0

asset_version = 1

For more information about JMS Message Selectors, refer to the following web sites:

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

http://activemq.apache.org/selectors.html

JMS Message Selector Examples
Here are some sample usages of JMS message selectors:

asset_id BETWEEN 50000 AND 50100

eventdata_name = 'urn:com:bea:aler:events:type:AssetSubmission' AND
asset_id BETWEEN 50000 AND 50100

asset_name LIKE 'Inventory'

asset_id > 500

Tip: Symbols, such as “< >” used for less than/greater than, are not valid XML content. This
is because the expression is written in an XML file and parsed by the Event Manager, the

Conf igur ing the ALER Event Manager

3-8 Configuring and Managing Advanced Registration Flows

XML unfriendly characters need to be mangled using the XML Rules. For example, you
must use “id > 500”, which is equivalent to “asset_id > 500”.

Configuring Logging of Event Manager Events
The Event Manager uses the same logging framework as ALER. By default, logging is enabled
to go to a file, but you direct the debug statements to go to the console by appending the following
categories to the log4fl.properties file in the <ALER Domain>\WEB-INF\classes
directory.

eventing subsystem

log4j.category.com.bea.infra.event.core= debug,eventingLog,stdout

log4j.category.com.bea.infra.event.dm= debug,eventingLog,stdout

log4j.category.com.bea.infra.event.facade= debug,eventingLog,stdout

log4j.category.com.bea.infra.event.notifier= debug,eventingLog,stdout

log4j.category.com.bea.infra.event.store= debug,eventingLog,stdout

log4j.category.com.bea.infra.event.sub= debug,eventingLog,stdout

Configuring and Managing Advanced Registration Flows 4-1

C H A P T E R 4

Administrating ALBPM Processes

This section contains information on the following subjects:

Overview

Administering ALBPM Web Applications

Tuning the ALBPM Process Engine

Configuring a Standalone Process Engine for Failover

Using The ALBPM Log Viewer

Admin is t ra t ing ALBPM Processes

4-2 Configuring and Managing Advanced Registration Flows

Overview
After the Event Manager is ready to send events, the Process Engine needs to be configured in
order to be ready to process the Events. When ALER is installed, it provides an option to install
and configure the ALBPM Process Engine. This section assumes that the ALBPM Process
Engine was successfully installed.

Administering ALBPM Web Applications
To start the ALBPM Process engine and define the participants, you must launch the ALBPM
Admin Center.

Starting the ALBPM Admin Center
Follow these steps to launch the ALBPM Admin Center:

1. Navigate to the <BEA_HOME>\albpm57\enterprise\bin directory and double-click one of
the following files:

– albpmadmcenter.exe (Windows or UNIX GUI-based)

– ./startwebconsole.sh (UNIX console-based). Then point your browser to
http://<host>:8585/webconsole (e.g., http://localhost:8585/webconsole).

2. On the Admin Center page, click the Start BPM Web Applications option.

Admin is te r ing ALBPM Web App l i cat i ons

Configuring and Managing Advanced Registration Flows 4-3

Figure 4-1 ALBPM Admin Center

3. When it becomes available, click the Launch Process Administrator option to launch the
Process Administrator.

4. When prompted to enter the required credentials, enter the BPM admin user name and
password that was used on the FDI User Credentials panel during the installation process. The
recommended example for these credentials is bpm_admin for the user name and password.

Starting the ALBPM Process Engine
Follow these steps to start the ALBPM Process Engine.

1. On the ALBPM Process Administrator page, open the aler_engine Process Engine by
clicking the Engine link on the left side of the page.

Admin is t ra t ing ALBPM Processes

4-4 Configuring and Managing Advanced Registration Flows

Figure 4-2 ALBPM Process Administrator - Start / Stop

2. Start the aler_engine by clicking the Start icon under Engine Actions on the right side of
the page. Starting the engine may take several minutes to complete. Make sure that the status
of the engine is Ready.

Once you the ALBPM Process Engine is running, you can stop it and then restart it to load your
latest workflow.xml changes.

Defining the ALBPM Participants
This section explains how to define the ALPBM Process Engine participants.

ALBPM Administrators
Using the FDI User Credentials, ALBPM Process Administrator can log into the Process
Administrator, start/stop the process engine, and create other users.

Advanced Registration Flow Participant
When the ALBPM Process Engine is installed by the BEA Products installer, it creates
aler_workflow_user as the Advanced Registration Flow user. By default, the password is also
set as aler_workflow_user, but the password can be changed in the Process Administrator, as
shown here.

Admin is te r ing ALBPM Web App l i cat i ons

Configuring and Managing Advanced Registration Flows 4-5

Figure 4-3 ALBPM Process Administrator - Change Password

A new participant can also be created for the role of “administrator” and this new participant can
be configured in the Event Manager’s Subscription Manager file. For more information, see
“Configuring the Subscription Manager”.

Admin is t ra t ing ALBPM Processes

4-6 Configuring and Managing Advanced Registration Flows

Tuning the ALBPM Process Engine
The following parameters need to be tuned using the ALBPM Process Administrator.

Advanced Properties
Go to the Engines > <Engine Name> > Engine Nodes > Advanced Properties page.

Figure 4-4 ALBPM Process Administrator - Advanced Properties

Database Runtime Properties
Go to the Engines > <Engine Name> > Edit Engine Database Configuration page.

Figure 4-5 ALBPM Process Administrator - Database Runtime

Memory and Execution Thread Properties
Go to the Engines > <Engine Name> > Execution page.

Conf igur ing a S tanda lone P rocess Eng ine fo r Fa i l ove r

Configuring and Managing Advanced Registration Flows 4-7

Figure 4-6 ALBPM Process Administrator - Memory and Threads

Configuring a Standalone Process Engine for Failover
To support failover of ALBPM standalone process engines, you can configure a backup engine(s)
in your environment. One of the engines in this federation is marked as PRIMARY and the
others assume to be backups for this primary engine. Multiple engines can be configured to serve
as backups. Any of these backup engines will take the role of the primary if the designated
primary fails. When the server that has failed comes back online, it will join in as a backup to the
one acting as primary.

For detailed instructions on configuring backup engines, see
http://edocs.bea.com/albsi/docs55/pdfs/Fuego5-EngineFailover.pdf.

Using The ALBPM Log Viewer
The ALBPM Log Viewer enables you to read information logged by the Process Execution
Engine. A set of log files is created for each project you define. The Studio Log Viewer reads the
files and displays them to help you monitor and trace Engine execution.

To launch the Log Viewer, double-click the albpmlogviewer.exe file in the <ALBPM
Enterprise Home>\bin directory.

Filtering Event Log Messages for ALER Flows
You can filter log messages so that the Advanced Registration Flows log Info, Debug, and Fatal
messages.

Admin is t ra t ing ALBPM Processes

4-8 Configuring and Managing Advanced Registration Flows

Turn on the “Debug” level on the Log page of the Process Engine using the Process Administrator
preference settings. By default, the level is set to “Warning”.

Go to the Engines > <Engine Name> > Log page.

Figure 4-7 ALBPM Process Administrator - Logging Preferences

When you turn on the Debug level though you will notice that the Process Engine prints a lot of
information, not just for the ALER Advanced Registration Flows, but other Process Engine
information as well. To filter the debug logging to show only the ALER flow-related information,
follow these steps:

1. Within the Log viewer, select Message in the left-most list box.

2. Select Begins With in the next list box.

3. Type ALER: in the text box

4. Click the Apply Filter button.

The ALER Event Logging prints a prefix of ALER: for all logged event messages, as shown here.

Us ing The ALBPM Log V i ewer

Configuring and Managing Advanced Registration Flows 4-9

Figure 4-8 Log Viewer With ALER Filter

Admin is t ra t ing ALBPM Processes

4-10 Configuring and Managing Advanced Registration Flows

Configuring and Managing Advanced Registration Flows 5-1

C H A P T E R 5

Configuring Advanced Registration
Flows

This section contains information on the following subjects:

Overview of Advanced Registration Flows

Creating and Customizing a Workflow Configuration File

Wiring Asset Events to Flows

Automatic Asset Registration Flows

Multi-tier Automatic Assignment Flows

Metadata Change Flows

Time-based Escalation Flows

Validation Expiration Flows

Customizing Flow Notification Email Templates

Conf igur ing Advanced Reg is t ra t ion F l ows

5-2 Configuring and Managing Advanced Registration Flows

Overview of Advanced Registration Flows
Tip: Before you begin, you should read Chapter 2, “Getting Started with Advanced

Registration Flows” to quickly get started using the Advanced Registration Flow feature
using the bundled ALPBM Web Service endpoint that is configured to work with the
ALBPM Process Engine.

ALER bundles pre-built ALBPM flows that attempt to automate ALER asset submission,
acceptance, registration and other governance process. This section discusses the configuration
that is required before starting the ALBPM Process Engine to process the asset events that are
triggered by ALER. For more information about configuring the Process Engine to trigger flows,
see Chapter 3, “Configuring the ALER Event Manager.”

The flows are also designed to be flexible and can be customized using the Workflow
Configuration file (workflow.xml). This section also discusses each flow in detail and gives
examples of how to tailored to suit your environment.

Creating and Customizing a Workflow Configuration File
This section explains how to create and customize a Workflow Configuration XML file.

Generating a Workflow Configuration File
Generate the workflow.xml file using the Generate Workflow Config tool (config_gen.bat).
This tool connects to ALER and creates a bootstrapping file that can be customized. For more
information about generating the workflow.xml file, see “Generating the Workflow Config
File.”

1. From a command prompt, run the Generate Workflow Config tool as follows:

 > config_gen.bat URI User Password ConfigDir

where:

– URI = ALER URI, using the following format:
http://<host>:<port>/<aler web app name>/services/FlashlineRegistry
For example: http://localhost:7001/alerbuild/services/FlashlineRegistry

– User = ALER user name

– Password = ALER password

Creat ing and Customiz ing a Work f l ow Conf igurat i on F i l e

Configuring and Managing Advanced Registration Flows 5-3

– ConfigDir = the directory where the workflow.xml file will be created

Note: If a file already exists, it will be renamed to workflow.xml.bak.

2. Copy the newly generated workflow.xml file to the <ALBPM Enterprise
Edition>/enterprise/server/aler_engine directory.

3. Open the workflow.xml file using the XML editor of choice.

Defining the ALER Connection and Registrar
The Workflow Configuration file will load the ALER connection and registrar information from
the following XML data.

<alerconnection>

 <uri>http://localhost.7001/aler/services/FlashlineRegistry</uri>

 <registrar>

 <user>admin</user>

 <password>n0pa55w0rd</password>

 </registrar>

</alerconnection>

Encrypting the Registrar User Password
The Security Encrypt Password tool (runWfSecurity.bat) allows you to encrypt the registrar
passwords that are stored in the Workflow Config file. The tool recursively scans the file and
encrypts all the password elements it encounters.

For more information see “Encrypting Your Passwords.”

Conf igur ing Advanced Reg is t ra t ion F l ows

5-4 Configuring and Managing Advanced Registration Flows

Wiring Asset Events to Flows
The Advanced Registration Flows are designed with a flexible framework where asset events can
be wired to one or more flows that will be executed when an event is triggered, as illustrated in
Figure 5-1.

Figure 5-1 Wiring Asset Events to Flows

Note: All the events are wired to pre-defined flows out-of-the-box. The wirings only need to be
changed if customizations or new flows are designed.

The wiring of asset events to flows is configured within the Workflow Configuration file. For
example, the following configuration snippet shows that when an “Asset Submitted” event is
triggered, it in turn triggers a flow to automatically accept the asset based on rules that are
configured in the Workflow Configuration file.

 <!--Community Flows-->

 <state name="urn:com:bea:aler:events:type:AssetSubmission">

Wir ing Asse t Events to F l ows

Configuring and Managing Advanced Registration Flows 5-5

 <action>CommunityAccept</action>

 </state>

 <!--The Multi_tier Flows-->

 <state name="urn:com:bea:aler:events:type:AssetAccepted">

 <action>MultiTier_Tier1_Assign</action>

 </state>

 <state name="urn:com:bea:aler:events:type:AssetTabApproved">

 <action>MultiTier_NextTier_Assign</action>

 </state>

 <!--Asset Registration Status Flows-->

 <state name="urn:com:bea:aler:events:type:AssetAllTabApproved">

 <action>AllTabApproved_Register</action>

 </state>

This example configuration wires the following events to various flows. The <action> element
contains the name of the flow that will be executed.

1. When an asset “submitted” event is triggered, execute the Community Accept flow.

2. When an asset “accepted” event is triggered, execute the MultiTier1 flow.

3. When a tab “approved” event is triggered, execute the Multi-Tier Next Tier flow.

4. When “all the tabs approved” event is triggered, execute the Automatic Registration flow.

Some of the flows take parameters that are needed as input. Different parameters are passed to
different flows. For example, the ChangeCAS (Change Custom Access Settings) flow takes
<customAccessSettings> as a parameter. Here is a sample wiring when an asset is registered,
where the flow automatically assigns MyCAS and MyCAS2 custom access settings.

 <state name="urn:com:bea:aler:events:type:AssetRegister">

 <action>ChangeCAS</action>

 <customAccessSettings>

 <customAccessSetting>MyCAS</customAccessSetting>

 <customAccessSetting>MyCAS2</customAccessSetting>

 </customAccessSettings>

 </state>

Conf igur ing Advanced Reg is t ra t ion F l ows

5-6 Configuring and Managing Advanced Registration Flows

Automatic Asset Registration Flows
This section describes how the Advanced Registration flows can automate the manual asset
acceptance and registration process done using the ALER Asset Editor. For information on using
the ALER Asset Editor and the asset registration process, refer to the ALER Registrar Guide.

Note: Do not enable the “Community Acceptance” or the “Automated Acceptance” flows if
repository users submit assets via the “Submit an Asset” link. This configuration is not
currently supported in ALER.

Configuring Community Flows
The Community flow provides a way to automate the asset acceptance, assignment, and
registration process by allowing the configuration of automated assignment rules and also
introduces the notion of federated registrars among different authorities. Rather than spamming
many registrars across all communities (through the system registrar notification), you could
limit the system registrar to one or a few individuals, and let the Automatic Acceptance flow
accept assets on behalf of a registrar-of-record for the community. The Community flow feature
can distribute asset submissions to those with the authority to approve them for the community.

The Community flow can be used to address the following scenarios:

Automatic federated registrars support for acceptance as opposed to a single registrar
getting many notifications about newly submitted assets.

Even if asset acceptance is manual, the Community flow can be used to automate the
assignment of the asset approvals to pre-defined approvers. Creating pre-defined approvers
can be achieved in two ways:

– Creating a list of pre-defined approvers for all the tabs in that asset.

– Using multi-tier assignment (this is the same as the Multi-Tier flow but it operates
within the Community).

Automation of the registration process. The flows will automatically register the assets if
the following conditions happen:

a. When all the tabs approved

b. When the last tier in a Multi-tier process is completed

c. Or whichever happens first.

Automat ic Asset Reg is t ra t i on F lows

Configuring and Managing Advanced Registration Flows 5-7

The Communities are configured within the flow configuration and Asset Types, Producing
Projects, etc., can point to a Community.

The following flowchart demonstrates how a Community for an asset is located by the flow, as
well as how the rules for automatic acceptance are located by the flow.

Conf igur ing Advanced Reg is t ra t ion F l ows

5-8 Configuring and Managing Advanced Registration Flows

Figure 5-2 Automatic Asset Acceptance Flowchart

Note: The same flowchart applies for automatic Registration. Simply substitute autoRegister
for autoAccept.

Automat ic Asset Reg is t ra t i on F lows

Configuring and Managing Advanced Registration Flows 5-9

Setting the Community for an ALER Project
Define the community for a project using the <producingProjectSettings> element. The
following example demonstrates creating a project named “Registry” for the “SOA Center of
Excellence” community, and with an ID of “40000”.

<producingProjectSettings>

 <producingProject name=”Registry” community=”SOA Center of Excellence

 id=”40000”/>

</producingProjectSettings>

Setting the Community for an Asset Type
Define the community for an Asset Type using the <assetType> element. The following
example demonstrates creating an asset type named “Application” for the “SOA Center of
Excellence” community, and with an ID of “158”.

 <assetType name=”Application” community=”SOA Center of Excellence

 id=”158”>

 <allTabs>

Configuring a Community to Automatically Accept an Asset
The following example demonstrates how to set the “SOA Center of Excellence” community to
automatically accept assets.

 <communities name=”SOA Center of Excellence autoAccept=”true”>

Note: Do not enable the “Community Acceptance” or the “Automated Acceptance” flows if
repository users submit assets via the “Submit an Asset” link. This configuration is not
currently supported in ALER.

Configuring a Community to Assign Assets for Tab Approval
If the AssetSubmitted event is wired to the Community flow, then the <approvers> element lists
the approvers that will be assigned by the Community flow automatically.

 <communities name=”Java” autoAccept=”true”>

 <approvers>

 <alerid>5003</alerid>

 <alerid>5004</alerid>

 </approvers>

Conf igur ing Advanced Reg is t ra t ion F l ows

5-10 Configuring and Managing Advanced Registration Flows

For instructions on using the <alerid> in Tab Approval flows, see “Using an <alerid> for Tab
Approvals.”

Configuring a Community to Assign Assets for Tab Approval Using Multi-tier
Multi-tier assignment is the same as the Multi-Tier flow but it operates within the Community.
For more information on the Multi-tier flow, see “Multi-tier Automatic Assignment Flows” on
page 5-13.

Note: The tabs that are provided within the Multi-tier configuration of a community should be
the common tabs that exist in all the asset types.

Configuring a Community to Automatically Register an Asset
The following example demonstrates how to set the “SOA Center of Excellence” community to
automatically accept and register assets.

 <communities name=”SOA Center of Excellence autoAccept=”true”

 autoRegister=”true”>

Configuring a Community to Have a Dedicated Registrar
The Registrar user name and password is required to accept, assign, and register assets. The
Community flow will load the registrar information from the Community that the asset belongs
to. If an asset does not belong to a community or if the registrar information is not found in the
community, then the global registrar will be used by the Community flow.

The following is the order of precedence in getting the Community tag by the Community flows,
as illustrated in Figure 5-1:

Community Tag in the incoming event

Community Tag in the Asset Type that the incoming asset belongs to

Community Tag in the Producing Project that the incoming asset belongs to

Configuring Automated Acceptance and Automated
Registration Flows
Besides using the Community flows to automatically accept and register assets, the following
rules can be used to accept and register assets, as illustrated in Figure 5-1.

Automat ic Asset Reg is t ra t i on F lows

Configuring and Managing Advanced Registration Flows 5-11

Note: Do not enable the “Community Acceptance” or the “Automated Acceptance” flows if
repository users submit assets via the “Submit an Asset” link. This configuration is not
currently supported in ALER.

Asset Type
The autoAccept and autoRegister flag within the AssetType element can be used to
automatically accept or register assets.

 <assetType name=”Application” autoAccept=”true” autoRegister=”true”

 id=”158”>

 <allTabs>

 <tab name=”Oveview”/>

 <tab name=”Application Lifecycle”/>

 </allTabs>

Categorization Settings
By default the flows do not look for the autoAccept and autoRegister flags, since the look-up
may affect performance. However, this can be enabled by using the <action> flag.

As shown in this example, the <action> flag must be set to true if the flows should use the
Categorization settings. If not, the Categorization settings will be ignored.

 <catgorizationTypeSettings action=”true”>

 <catgorizationType name=”AssetFunction” type “100”>

 <catgorizations name=”Application Adapters” autoAccept=”false”/>

 <catgorizations name=”Customer Information Acquisition”

autoAccept=”false”/>

 <catgorizations name=”eCommerce Frameworks” autoAccept=”false”/>

 </catgorizationType>

Submitter Role
The submitter role can be used to automatically accept or register the asset. If the role specified
in the following configuration matches the submitter role, then the asset will be automatically
accepted.

 <automation>

 <autoRoles>

 <role>admin</role>

 <role>accesAdminstrator</role>

Conf igur ing Advanced Reg is t ra t ion F l ows

5-12 Configuring and Managing Advanced Registration Flows

 </autoRoles>

 <autoApprovalTabs>

 <tab name=”Documentation”/>

 </autoApprovalTabs>

 </automation>

Conflict Resolution and Precedence
In some cases, there will be more than one rule that matches for a given event trigger, so there is
a hierarchy for how each rule is evaluated by the Automated Acceptance and Automated
Registration flows for acceptance, registration, etc., as illustrated in Figure 5-1. The flow will
scan for the following piece of metadata and as soon as it encounters the one in the following
precedence, it will break and use the settings in that metadata.

AssetType settings in the Flow configuration file

Community Tag found in the incoming asset

Community Tag found in the AssetType settings in the Flow configuration file

Community Tag found in the ProducingProject settings in the Flow configuration file

Categorization settings in the Flow configuration file

SubmitterRole settings in the Flow configuration file

Mul t i - t i e r Automat ic Ass ignment F lows

Configuring and Managing Advanced Registration Flows 5-13

Multi-tier Automatic Assignment Flows
Multi-tier flows structure the asset tab approval process in multiple steps called tiers. Asset
approval tabs can be grouped in tiers, and the Mult-tier flow tracks each tier to verify whether all
the tabs are approved by the designated approvers. As soon as the last tab in a tier is approved,
the Mult-tier flow starts the next tier by assigning the asset to the next level of designated
approvers.

Use Cases
In some cases, it may be desired to assign tabs for Tab Approval in multiple steps called
Tiers. For example, it may be desirable to approve the Architecture tab first before
approving the Documentation tab. This is because any architectural issue needs to be
corrected first before it comes to the attention of the Documentation expert.

In previous releases, Tab Approval was done manually by the registrar by manually
tracking the status of each tab approval and then assigning the tabs for the next tier level
approvals. With the Multi-tier flows, this process is automated by the flows.

The following flowchart demonstrates the flow of the Mult-tier process.

Conf igur ing Advanced Reg is t ra t ion F l ows

5-14 Configuring and Managing Advanced Registration Flows

Figure 5-3 Multi-tier Automatic Assignment Flowchart

Using an <alerid> for Tab Approvals
When the workflow.xml file is generated, the following XML section is created under the
<allAssetSettings> section. These are all the users that are created in ALER.

Mul t i - t i e r Automat ic Ass ignment F lows

Configuring and Managing Advanced Registration Flows 5-15

 <alerUsers>

 <user name="admin" alerid="99"/>

 <user name="allpriv" alerid="50000"/>

 <user name="nopriv" alerid="50001"/>

 <user name="tier1" alerid="50002"/>

 <user name="tier2" alerid="50003"/>

 <user name="mrsmith" alerid="50004"/>

 </alerUsers>

As the Workflow Administrator, you need to identify the user(s) by name that you want to use
for approving the asset tabs and use the corresponding <alerid>. Then you can use that
<alerid> in the Workflow XML, such as in the following Multi-tier approval flow:

 <tiers>

 <tier name="Tier1">

 <approvers>

 <alerid>50001</alerid>

 </approvers>

 <tabs>

 <tab name="Overview"/>

 <tab name="Technical"/>

 <tab name="Documentation"/>

 </tabs>

 </tier>

Setting Up a Community for Multi-tier Tab Approval
The following example demonstrates how the Multi-tier flow is configured for tab approvers in
the “SOA Center of Excellence” community to automatically accept tabs.

 <communities name=”SOA Center of Excellence autoAccept=”true”>

 <tiers>

 <tier name=”Tier1”>

 <approvers>

 <alerid>5002</alerid>

 </approvers>

 <tabs>

 <tab name=”Overview”>

 <tab name=”Taxonomy”>

 </tabs>

Conf igur ing Advanced Reg is t ra t ion F l ows

5-16 Configuring and Managing Advanced Registration Flows

 </tier>

 <tier name=”Tier2”>

 <approvers>

 <alerid>5003</alerid>

 </approvers>

 <tabs>

 <tab name=”Architecture”>

 </tabs>

 </tier>

 </tiers>

 </communities>

Note: Tabs that are provided within the Multi-tier configuration of a Community should be the
common tabs that exist in all the Asset Types.

Setting Up an Asset Type for Multi-tier Tab Approval
The following example demonstrates how the tabs of an asset type of “Application” are
configured for multi-tier approval.

 <assetType name=”Application” id=”158”>

 <allTabs>

 <tab name=”Oveview”/>

 <tab name=”Application Lifecycle”/>

 <tab name=”License Information”/>

 <tab name=”Certification Tracking”/>

 <tab name=”Taxonomy”/>

 <tab name=”Documentation”/>

 <tab name=”Relationships”/>

 <tab name=”Support”/>

 <tab name=”Cost Categories”/>

 <tab name=”Ownership”/>

 <tab name=”Technology Stack”/>

 <tab name=”Operational Information”/>

 <tab name=”Miscellaneous”/>

 </allTabs>

 <tiers>

 <!--Please change “_CHANGE_TIER1_NAME_” to the name of the Tier-->

 <!--Example:- “Tier1”-->

Mul t i - t i e r Automat ic Ass ignment F lows

Configuring and Managing Advanced Registration Flows 5-17

 <tier name=”Tier1”>

 <approvers>

 <alerid>99</alerid>

 </approvers>

 <tabs>

 <!--Please change “_CHANGE_TABNAME_” to the name of the Tab-->

 <!--Example:- “Documentation”-->

 <tab name=”Overview”>

 <tab name=”Taxonomy”>

 </tabs>

 </tier>

 </tiers>

Conf igur ing Advanced Reg is t ra t ion F l ows

5-18 Configuring and Managing Advanced Registration Flows

Metadata Change Flows
Metadata flows are a group of flows that take one or more actions when a metadata element of an
asset changes. The Metadata element that changes will trigger an event that is wired to one or
more flows. For instructions on how to wire an event to a flow, see “Wiring Asset Events to
Flows.”

Use Cases
These are some of the use cases where Metadata Change Flows may apply:

When the “Asset Lifecycle Stage” metadata element of an asset changes from “Build” to
“Release,”, you may want to change Custom Access Settings to have more restricted
access control to the asset.

When the “Name” of an asset changes, you may want to notify the subscribers.

When any metadata element of an element changes, you may want the asset to go through
a “Change Management” approval process. The “Change Management” will involve the
following:

– Unapprove a tab named “Change Management”

– Assign the asset to the registrar

– Append the kind of change to a field called “Reason for reassignment” to assist the
registrar

Configuring Metadata Change Flows

Available Metadata Change Events/States
Following are the states that are available that can be wired to Metadata Change flows.

Note: Besides these events, any categorization changes can be wired, including the custom
categorization.

 <state name=”urn:com:bea:aler:events:type:MetaDataChange:name”>
 <state name=”urn:com:bea:aler:events:type:MetaDataChange:version”>
 <state name=”urn:com:bea:aler:events:type:MetaDataChange:description”>
 <state name=”urn:com:bea:aler:events:type:CategorizationChanged:
 assetLifecycleStage”/>
 <state
name=”urn:com:bea:aler:events:type:CategorizationChanged:classification”>
 <state name=”urn:com:bea:aler:events:type:MetaDataChange:supported”>

Metadata Change F lows

Configuring and Managing Advanced Registration Flows 5-19

 <state
name=”urn:com:bea:aler:events:type:MetaDataChange:organizationalOwnership”>
 <state name=”urn:com:bea:aler:events:type:MetaDataChange:usageFee”>

Available Flows That Can Be Wired to Actions
These are the pre-defined flows that can be wired to actions. These flow names should appear as
content inside the <action> element to indicate that this is the action that should take place when
the event occurs. Note that any element other than <action> are parameters used by specific
flows.

ChangeCAS – applies one or more Custom Access settings to an asset

ChangeAssetLifecycle – sets the Asset Lifecycle Stage of an asset

ChangeClassification – sets the classification of an asset

ReAssignAssetToRegistrar – assigns the asset to Registrar

AddCommunityTag – saves the “Community” of an asset to ALER

NotifySubscriber – notifies the Subscribers about the Metadata Change

NotifyRegistrationActors – notifies the Registrar, Subscribers, Owners, etc., about
the Metadata Change

NotifyCustomUser – notifies configured custom users about the Metadata Change

UnapproveChangeManagementTab – triggers the Change Management process

ResetChangeManagementTab – resets the “Reason for reassignment” field in the Change
Management tab as soon as the Change Management tab is approved

CommunityAccept – invokes the Community Accept Flow used when an asset is
submitted

CommunityAssign – invokes the Community Assign Flow used when an asset is accepted

MultiTier_Tier1_Assign – invokes the Multi-Tier Flow used when an asset is accepted

MultiTier_NextTier_Assign – invokes the Multi-Tier Flow used when a tab is
approved

ApproveTabAction – approves one or more tab

UnapproveTabAction – unapproves one or more tab

Conf igur ing Advanced Reg is t ra t ion F l ows

5-20 Configuring and Managing Advanced Registration Flows

AutoApproveTabAction – approves one or more configured tab based on the role of the
submitter

AllTabsApproval_Register – invokes the flow to register the asset when all the tabs are
approved

ReAssignAssetToRegistrar – Assigns the asset to the Registrar for approval. The flow
uses the Community Registrar if one is configured. If not, it uses the Global Registrar.

ResetFlowState – Resets the State information used by the Timer based flows. This is
useful in cases where a Timer flow is tracking the Unsubmitted assets and when the state
changes from Unsubmitted to submitted, so the State information can be reset. If not reset,
then if the asset goes back to Unsubmitted, the workflows use the same state that was
previously set. This is not always desirable and the ResetFlowState action can be used in
appropriate events or states to reset the state information.

UnRegisterAssetAction – Unregisters the Asset if the asset is in registered state.

Example Metadata Change Configuration
This sample configuration specifies that when an asset is registered, it invokes two flows by the
names of “NotifySubscriber” and “ChangeCAS.” Note that the element
<customAccessSettings> is a parameter to the flow ChangeCAS, which tells the flows the
names of the CAS that should be applied.

 <state name=”urn:com:bea:aler:events:type:AssetRegister”>

 <action>NotifySubscriber</action>

 <action>ChangeCAS</action>

 <customAccessSettings>

 <customAccessSetting>MyCAS</customAccessSetting>

 <customAccessSetting>MyCAS2</customAccessSetting>

 </customAccessSettings>

 </state>

 <state name=”urn:com:bea:aler:events:type:AssetUnAccept”>

 <action>NotifySubscriber</action>

 <action>ChangeClassification</action>

 <classification>Approved</classification>

 </state>

Metadata Change F lows

Configuring and Managing Advanced Registration Flows 5-21

Example Metadata Change Configuration That Checks for Metadata Value
It is also possible to invoke a flow not only when a metadata element changes, but also when it
takes a specific value. For example, when the “Asset Lifecycle Stage” metadata element of an
asset changes from “Build” to “Release,” you may want to apply one set of Custom Access
Settings, where as when the value changes from “Plan” to “Build,” you may want to apply a
different set. Here is an example:

 <state

name=”urn:com:bea:aler:events:type:CategorizationChanged:AssetLifecycleSta

ge” value=”Stage 4 - Release”>

 <action>ChangeCAS</action>

 <customAccessSettings>

 <customAccessSetting>MyCAS</customAccessSetting>

 </customAccessSettings>

 </state>

 <state

name=”urn:com:bea:aler:events:type:CategorizationChanged:AssetLifecycleSta

ge” value=”Stage 3 - Build”>

 <action>ChangeCAS</action>

 <customAccessSettings>

 <customAccessSetting>MyCAS2</customAccessSetting>

 </customAccessSettings>

 </state>

ChangeClassification
Sets the classification of an asset. ChangeClassification uses the following element to set the
classification.

 <state name=”urn:com:bea:aler:events:type:AssetRegister”>

 <action>ChangeClassification</action>

 <classification>Approved</classification>

 </state>

ChangeCAS
Applies one or more Custom Access Settings to an asset. ChangeCAS uses the following element
to set the custom access settings.

Conf igur ing Advanced Reg is t ra t ion F l ows

5-22 Configuring and Managing Advanced Registration Flows

 <state name=”urn:com:bea:aler:events:type:AssetRegister”>

 <action>ChangeCAS</action>

 <customAccessSettings>

 <customAccessSetting>MyCAS</customAccessSetting>

 <customAccessSetting>MyCAS2</customAccessSetting>

 </customAccessSettings>

 </state>

ChangeAssetLifecycle
Sets the Asset Lifecycle stage of an asset. ChangeAssetLifeCycle uses the following element to
set the asset life cycle.

 <state name=”urn:com:bea:aler:events:type:AssetRegister”>

 <action>ChangeAssetLifeCycle</action>

 <assetLifeCycle>Stage 3 - Build</assetLifeCycle>

 </state>

ApproveTabAction
The ApproveTabAction flow approves one or more tabs of an asset. The following configuration,
approves the “Overview” and “Taxonomy” tabs.

 <state name=?urn:com:bea:aler:events:type:MetaDataChange:name?>

 <action>ApproveTabAction</action>

 <approveTabs>

 <tab name=?Overview?>

 <tab name=?Taxonomy?>

 </approveTabs>

 </state>

UnapproveTabAction
The following element configures the list of tabs to be unapproved by the UnapproveTabAction
flow.

 <state name=”urn:com:bea:aler:events:type:MetaDataChange:name”>

 <action>UnApproveTabAction</action>

 <unapproveTabs>

 <Tab name=”Overview”>

 <Tab name=”Taxonomy”>

Metadata Change F lows

Configuring and Managing Advanced Registration Flows 5-23

 </unapproveTabs>

 </state>

AutoApproveTabAction
The AutoApproveTabAction flow approves tabs based on the role of the submitter. For example,
the following element under <allAssetSettings> configures the list of tabs that need to be
automatically approved based on the role of the submitter. The roles that are acceptable are also
configured.

 <automation>

 <autoRoles>

 <role>admin</role>

 <role>accesAdminstrator</role>

 </autoRoles>

 <autoApprovalTabs>

 <tab name=”Documentation”/>

 </autoApprovalTabs>

 </automation>

Here is the configuration for invoking the flow:

 <state name=”urn:com:bea:aler:events:type:AssetRegister”>

 <action>AutoApproveTabAction</action>

 </state>

UnapproveChangeManagementTab
When any metadata element of an element changes, you may want the asset to go through a
“Change Management” approval process, which involves following.

Unapprove a tab by name “Change Management”

Assign the asset to the registrar.

Append the kind of change to a field called “Reason for reassignment” to assist the
registrar

 <state name=”urn:com:bea:aler:events:type:MetaDataChange:name”>

 <action>UnApproveChangeManagementTab</action>

 </state>

Conf igur ing Advanced Reg is t ra t ion F l ows

5-24 Configuring and Managing Advanced Registration Flows

ResetChangeManagementTab
This flow resets the “Reason for reassignment” field in the Change Management tab as soon as
the Change Management tab is approved.

 <state name=”urn:com:bea:aler:events:type:AssetTabApproved”>

 <action>MultiTier_NextTier_Assign</action>

 <action>ResetChangeManagementTab</action>

 </state>

NotifyCustomUser
Notifies configured custom users about the metadata change. The email addresses of the users are
configured inside the <customNotification> element under <allAssetSettings>, as shown
below:

 <allAssetSettings>

 <notification timerInterval=”id”>

 <customNotification>

 <emailAddress>smith@bea.com</emailAddress>

 </customNotification>

 </notification>

Invoking Flows Based on Approval of Named Tabs
A metadata change flow can be executed based on the approval of a specific tabs, as follows:

 <state name="urn:com:bea:aler:events:type:AssetTabApproved" value

="Overview">

 <action>MultiTier_NextTier_Assign</action>

 <action>ChangeAssetLifecycle</action>

 <assetLifecycle>Stage 3 - Build</assetLifecycle>

 </state>

T ime-based Esca lat i on F lows

Configuring and Managing Advanced Registration Flows 5-25

Time-based Escalation Flows
The Time-based Escalation flows track assets in various states and notifies all interested parties.
The following section explains how to configure the Time-based Escalation flows. There are four
different kinds of Time-based Escalation flows and each one can be configured individually, as
described in the following sections.

Open the workflow.xml configuration file and locate the <notification> element.

 <notification timerInterval=”1d”>

 <numTimesNotify>10</numTimesNotify>

 <daysBeforeNextNotification>2</daysBeforeNextNotification>

The timerInterval element specifies the time interval after which the flows will be
triggered. In a production environment, this should be set to "1d", which means the flows
will be triggered once a day. However for testing purposes, you can set it to "1m" or "5m"
to trigger the flows every minute or every five minutes. Also, each time this field is
changed, the Event Engine needs to be restarted, unlike the other field changes that can be
refreshed using the refresh tool.

The numTimesNotify element specifies how many times the notifications should be sent
by the Time-based Escalation flows.

The daysBeforeNextNotification element specifies how many days need to elapse in
between the notifications.

Note: If the timerInterval element is configured in minutes to trigger flows in minute
intervals for testing purposes, then the specified interval for
daysBeforeNextNotification will also be interpreted in minutes.

The following flowchart demonstrates the flow of the Time-based Escalation flows.

Conf igur ing Advanced Reg is t ra t ion F l ows

5-26 Configuring and Managing Advanced Registration Flows

Figure 5-4 Time-based Escalation Flowchart

Tracking Unsubmitted Assets
This flow tracks assets that are in an “unsubmitted” status and sends notification to the owners to
take action.

 <owner_resubmit action=”false” days=”0” regressOnInaction=”true”

queryOperator=”eq”/>

T ime-based Esca lat i on F lows

Configuring and Managing Advanced Registration Flows 5-27

action="true" enables the flow and action="false" disables the flow.

days="10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flows use the current date and subtracts the value from this attribute.

regressOnInaction="true" regresses the asset on inaction. For example, unsubmitted
assets may be deleted.

queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "lte", "gte", etc.

Tracking Unaccepted Assets
This flow tracks assets that are in an “unaccepted” status and sends notification to the registrar to
take action.

 <registrar_accept action=”false” days=”0” regressOnInaction=”true”

queryOperator=”eq”/>

action="true" enables the flow and action="false" disables the flow.

days="10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flow use the current date and subtracts the value from this attribute.

regressOnInaction="true" regresses the asset on inaction. For example, submitted
assets may be unsubmitted.

queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "lte", "gte", etc.

Tracking Unapproved Assets
This flow tracks assets that are in an “unapproved” status and sends notification to the approvers
to take action.

 <assignees_approve action=”false” days=”0” regressOnInaction=”true”
queryOperator=”eq”/>

action="true" enables the flow and action="false" disables the flow.

days="10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flow use the current date and subtracts the value from this attribute.

regressOnInaction="true" regresses the asset on inaction. For example, accepted
assets may be unaccepted.

Conf igur ing Advanced Reg is t ra t ion F l ows

5-28 Configuring and Managing Advanced Registration Flows

queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "lte", "gte", etc.

Tracking Unregistered Assets
This flow tracks the assets that are in an “unregistered” status and sends notification to the
approvers to take action.

 <registrar_register action=”false” days=”0” regressOnInaction=”true”
queryOperator=”eq”/>

action="true" enables the flow and action="false" disables the flow.

days="10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flow use the current date and subtracts the value from this attribute.

regressOnInaction="true" regresses the asset on inaction. For example, accepted
assets may be unaccepted.

queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "lte", "gte", etc.

Validation Expiration Flows
The Validation Expiration flows track the expired assets prior to the expiration date, as well as
on the date of expiration, and sends warning notifications to all interested parties. After X number
of days of expiration, the flows unregister the assets. After Y number of days of expiration, the
flows deactivate the assets. After Z number of days of expiration, the flows delete the assets.

 <notification timerInterval=”1d”>

 <numTimesNotify>10</numTimesNotify>

 <daysBeforeNextNotification>2</daysBeforeNextNotification>

The timerInterval attribute configure the time interval that the flows will be triggered.
This should be set to "1d", which means the interval is one day. However for testing, this
can be set to "1m" or "5m" to trigger every minute or every 5 minutes. Also, every time
this field is changed, the Event Engine needs to be restarted, unlike the other field changes
that can be refreshed using the refresh tool.

The numTimesNotify element specifies how many times the notifications should be sent
by the Validation Expiration flow.

Val ida t ion Exp i ra t i on F lows

Configuring and Managing Advanced Registration Flows 5-29

The daysBeforeNextNotification element specifies how many days need to elapse in
between the notifications.

 <expiration>

 <expiration_warning action=”false” days=”10” owner=”false”

subscriber=”false” contact=”99”/>

 <unregister_after_expire action=”true” days=”10” queryOperator=”eq”/>

 <inactive_after_expire action=”true” days=”10” queryOperator=”eq”/>

 <delete_after_expire action=”true” days=”10” queryOperator=”eq”/>

 </expiration>

The following flowchart demonstrates the flow of the Time-based Escalation flows.

Conf igur ing Advanced Reg is t ra t ion F l ows

5-30 Configuring and Managing Advanced Registration Flows

Figure 5-5 Validation Expiration Flowchart

Asset Expiration Warning Notification
The following line enables the warning notification and determines who should receive the
notifications.
 <expiration_warning action=”false” days=”10” owner=”false”
subscriber=”false” contact=”99”/

Val ida t ion Exp i ra t i on F lows

Configuring and Managing Advanced Registration Flows 5-31

Note: The days element configures the number of days prior to the expiration that the warning
should be sent.

Unregister Assets After Expiration
The following line enables the Metadata Change flow to unregister the asset after 10 days of
expiration.

 <unregister_after_expire action=”true” days=”10” queryOperator=”eq”/>

Inactivate After Expiration
The following line enables the Metadata Change flow to inactivate the asset after 10 days of
expiration

 <inactive_after_expire action=”true” days=”10” queryOperator=”eq”/>

Delete Assets After Expiration
The following line enables the Metadata Change flow to delete the asset after 10 days of
expiration:

 <delete_after_expire action=”true” days=”10” queryOperator=”eq”/>

Conf igur ing Advanced Reg is t ra t ion F l ows

5-32 Configuring and Managing Advanced Registration Flows

Customizing Flow Notification Email Templates
The Automated Registration Flows automatically send email notifications under many
circumstances. There are five new email templates for the new flows. The email templates are
stored within ALER and the flows invoke an ALER API by passing name/value pairs that are then
substituted by ALER.

Administrators can customize the email subject, body, etc., the same way as other email
templates. The following are the templates that are used by the Advanced Registration Flows:

Metadata of asset has changed – Notifies the registrar and the users assigned to the asset
that the metadata has changed.

Registration status unchanged – Notifies the registrar and the users assigned to the asset
that the registration status <%asset.reg.status%> has remained unchanged for more
than <%action.pending.days%> days.

Status of expired asset has changed – Notifies the registrar and the users assigned to the
expired asset that the status has changed.

Prior to expiration – Notifies the registrar and the users assigned to the asset that it is due
for expiration.

Asset has been expired – Notifies the registrar and the users assigned to the asset that it has
been expired.

For more information about email templates, refer to the ALER Administration Guide.

Configuring and Managing Advanced Repository Flows 6-1

C H A P T E R 6

Configuring JMS Servers for ALER

This section contains information on the following subjects:

Overview of JMS for the Event Manager

Configuring Connectivity Properties for External JMS Servers

Configuring the Embedded ActiveMQ JMS Server to Use a Database

Configuring JMS Durable Subscribers for Web Service Endpoints

Configuring JMS Servers In an ALER Cluster

Configuring a JMS Provider In WebSphere 6.1.0.5

Conf igur ing JMS Servers fo r ALER

6-2 Configuring and Managing Advanced Repository Flows

Overview of JMS for the Event Manager
The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS Server is configured to run out-of-the-box without any additional
configuration. However, if an external JMS server is preferred, such as BEA Weblogic Server
JMS or IBM WebSphere Application Server, then a number of ALER system settings must be
configured.

Note: When ALER is deployed on WebSphere 6.x, the embedded Apache ActiveMQ JMS
Server cannot be used due to conflicts in the classes used by ActiveMQ and ALER.
Therefore, WebSphere 6.x customers should use the default JMS implementation that
comes with WebSphere 6.x. See Configuring a JMS Provider In WebSphere 6.1.0.5.

Configuring Connectivity Properties for External JMS
Servers

ALER’s System Settings section allows administrators to configure the basic ALER operation
and to enable/disable specific features. The Event Manager’s JMS-related settings are under the
“Eventing” group under the main “External Integrations” category. For more information about
System Settings, see the ALER Administration Guide. Additional “Eventing” properties are
described in Configuring the ALER Event Manager.

Enabling and Configuring an External JMS Server
The internal Apache ActiveMQ JMS Server needs to be disabled in order to configure an external
JMS product. You must also configure JNDI and JMS properties for the external JMS.

Note: These steps are for configuring a single external JMS server. For instructions on
configuring multiple JMS servers in a cluster, see Configuring JMS Servers In an ALER
Cluster.

1. Click System Settings in the sidebar on the ALER Admin screen.

2. Enter Event in the System Settings Search box to view all the Event Manager related settings.

3. Disable the internal JMS server by clicking False next to the Event Manager Embedded
JMS Enable property. This forces the Event Manager to use an external JMS server.

4. Configure the required JNDI properties:

– JNDI URL – Specifies the JNDI URL. For example, t3://localhost:7001.

Conf igur ing Connect i v i t y P roper t i es fo r Ex te rna l JMS Se rve rs

Configuring and Managing Advanced Repository Flows 6-3

– JNDI User Name – Specifies the JNDI user name.

– JNDI Password – Specifies the password for the JNDI User Name.

– JNDI Context Factory – Specifies the JNDI initial context factory. For example,
weblogic.jndi.WLInitialContextFactory.

5. Configure the following JMS properties:

– JMS Connection Factory – Specifies the JMS connection factory to enable JMS
clients to create JMS connections. For example,
weblogic.examples.jms.TopicConnectionFactory.

– JMS Topic – Specifies the JMS topic, which is a publish/subscribe destination type for
a JMS server. For example, weblogic.examples.jms.TopicConnectionFactory.

6. Click Save.

7. Restart ALER for the configuration changes to take effect.

Configuring JMS Message Header Properties
Every JMS message contains a standard set of header fields that is included by default and
available to message consumers. The Message Expiration and Delivery Mode headers can be
configured using the ALER System Settings.

1. Access the “Eventing” System Settings, as described in “Enabling and Configuring an
External JMS Server” on page 6-2.

2. Configure the JMS message header properties:

– JMS Message Expiration – Sets the JMS message expiration time in seconds. If set,
unprocessed events will expire in the specified number of seconds. The default is 0
seconds, which means that messages will never expire. However, some environments
have policies that require that JMS messages cannot be stored forever if they are not
selected for some reason.

– JMS Delivery Mode – Sets the JMS message delivery mode to either PERSISTENT or
NON-PERSISTENT values. If set to PERSISTENT, the JMS server will write the
events to the underlying store. Although more reliable, persisting events to a store can
affect performance. The default is PERSISTENT.

3. Click Save.

4. Restart ALER for the configuration changes to take effect.

Conf igur ing JMS Servers fo r ALER

6-4 Configuring and Managing Advanced Repository Flows

Miscellaneous JMS Properties
Note: You must restart ALER after changing any Eventing property in order for the changes to

take effect.

The following miscellaneous System Settings can also be configured.

Event Manager JMS Subscribers Enabled – If set to False, then the internal JMS
subscribers will not be enabled. This is to make sure that the embedded JMS server is
started, but an external tool can be used to connect to the embedded server using the given
durable subscriber name and the stored events can be cleaned up.

JMS Subscribers Client ID – Specifies the JMS durable subscriber ID.
For example, ALER_JmsSubscriber.

JMS Producers Client ID – Specifies the JMS producer’s client ID.
For example, ALER_DeliveryManager.

Lazy Initialize Event Engine – When enabled, the Event Manager will be initialized
when an event is produced for the first time. This property should be enabled for either of
the following reasons:

– If there is a large number of events stored by the JMS server and if it is required that
these events should not be processed as soon as ALER is started.

– There are startup issues that occur because of the timing of initializing the embedded
JMS server.

Configuring External JMS Jar Files
If an external JMS server is being used, then the external JMS server-related JAR files should be
copied to the WEB-INF\lib directory.

Configuring the Embedded ActiveMQ JMS Server to Use a
Database

By default, the ActiveMQ JMS server uses a file-based store to store events. However, you can
specify to have events stored in a database. Simply, configure the activemq.xml file in the
WEB-INF\classes directory to use your database parameters.

For example:

Conf igur ing JMS Durab le Subscr ibers f o r Web Serv ice Endpo ints

Configuring and Managing Advanced Repository Flows 6-5

 <persistenceAdapter>
 <journaledJDBC journalLogFiles="5" dataDirectory="../activemq-data"
dataSource="#oracle-ds" />
 <!-- To use a different datasource, use the following syntax : -->
 <!-- <journaledJDBC journalLogFiles="5" dataDirectory="../activemq-data"
dataSource="#postgres-ds"/> -->

 <!-- Oracle DataSource Sample Setup -->
- <bean id="oracle-ds" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver" />
 <property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB" />
 <property name="username" value="scott" />
 <property name="password" value="tiger" />
 <property name="poolPreparedStatements" value="true" />
 </bean>

Configuring JMS Durable Subscribers for Web Service
Endpoints

The Event Manager creates one durable subscriber for each Web Service endpoint it encounters
in the Subscription Manager XML file. This ensures that events are stored if the endpoints are not
online and that they can be reliably delivered once the endpoints are online again. As per the JMS
Specification, the durable subscriber name should be unique across the JMS server. The Event
Manager gets the durable subscriber name from the name field found in the
EndPointEventSubscription.xml file, as shown in this example:

<sub:EventSubscriptionData
xmlns:sub=”http://www.bea.com/infra/events/subscription”
 <sub:eventSubscription>

 <sub:endPoint name=”ALBPMEndpoint”>

Note: JMS servers associate the durable subscriber name with the message selectors. Therefore,
if the message selector is changed, either a new durable subscriber name should be
provided or the existing one should be deleted. You can use the ALER “Event Cleanup”
tool, as described in “Cleaning Up Stored Events.” You can also use a JMS-specific tool
to accomplish this.

Conf igur ing JMS Servers fo r ALER

6-6 Configuring and Managing Advanced Repository Flows

Configuring JMS Servers In an ALER Cluster
Note: Before you begin, refer to the ALER Clustering Guide for information on configuring

ALER in a clustered environment.

Enabling JMS Clustering Mode
If ALER is deployed on cluster mode, you must enable clustering on each ALER instance
regardless of which type of JMS server being used (embedded or external).

1. Click System Settings in the sidebar on the ALER Admin screen.

2. Enter cmee.eventframework.clustering.enabled in the Enable New System Setting box and
click Enable to reveal this hidden property.

3. Set the Clustering Enabled property to True.

4. Set other required properties based on the type of JMS server, as described in the following
sections.

Configuring Embedded JMS Servers for Clustering
In a clustered environment, each member ALER instance in the cluster will have one embedded
JMS server. For example, in case of two-node cluster, there will be two ALER instances, such as
server01 and server02, with each having one embedded JMS server. Once clustering is
enabled for the embedded JMS servers, you then need to specify the connection URL information
for the embedded JMS servers on server01 and server02.

1. Click System Settings in the sidebar on the ALER Admin screen.

2. Enter cmee.eventframework.embedded.jms.url in the Enable New System Setting box and
click Enable to reveal this hidden property.

3. In the Embedded JMS Server URL property, supply the connection URL for the embedded
JMS servers on the clustered ALER servers, using the following format.

failover:(tcp://
$SEVER_DNS_NAME_OR_IP$:61700,tcp://$SEVER_DNS_NAME_OR_IP$:61700, …)

where:

$SEVER_DNS_NAME_OR_IP$ are replaced by actual server DNS name or IP address. The
entries should be repeated for each ALER server in a given cluster.

Conf igu r ing JMS Serve rs In an ALER C lus te r

Configuring and Managing Advanced Repository Flows 6-7

Using the example above, this could be set to:
failover:(tcp://server01:61700,tcp://server02:61700)

Caution: Port 61700 is the default port for the embedded JMS server, and therefore should not
be used by any other application on the ALER server unless another port is
configured for the embedded JSM server.

4. Click Save.

5. Repeat steps 1-4 for each ALER instance in a given cluster. Using the example above, the
Embedded Broker URLs could be set to:
failover:(tcp://server01:61700,tcp://server02:61700)

Tip: Make sure that each embedded JMS server is enabled by setting the
cmee.eventframework.embedded.jms.enabled property to True.

Configuring External JMS Servers for Clustering
For external JMS servers, no additional configuration is required. However, you must make sure
that the embedded JMS server is disabled, as follows:

1. Click System Settings in the sidebar on the ALER Admin screen.

2. Set the Event Manager Embedded JMS Enable property to False (i.e.,
cmee.eventframework.embedded.jms.enabled is False.

Conf igur ing JMS Servers fo r ALER

6-8 Configuring and Managing Advanced Repository Flows

Configuring a JMS Provider In WebSphere 6.1.0.5
When ALER is deployed on WebSphere Application Server 6.1.0.5, the embedded Apache
ActiveMQ JMS server cannot be used. Therefore, WebSphere 6.1.0.5 implementations must use
the default JMS provider that comes with WebSphere 6.1.0.5.

To configure a JMS provider for ALER in WebSphere 6.1.0.5, complete the following steps in
the WebSphere administration console and in your ALER application.

1. Create a new Service Integration Bus:

a. In the navigation pane, expand Service Integration, and then click Buses.

b. On the Buses page, click New.

c. On the Create a new bus page, enter alerbus as the name for the new bus.

d. Clear the Bus security check box.

e. Click Next, and then click Finish.

2. Add a Bus member to the newly created alerbus:

a. On the Buses page, click the alerbus link.

b. Under the Topology category, click Bus members.

c. On the Bus members page, click Add.

d. On the Add a new bus member > Select Server, Cluster or WebSphere MQ server page,
accept the default Server option and click Next.

e. On the Add a new bus member > Select the type of message store page, accept the default
File store option and click Next.

f. On the Add a new bus member > Provide the message store properties page, accept the
default values and click Next.

g. On the Add a new bus member > Confirmation page, click Finish.

h. On the Buses page, click Save.

3. Create a JMS Topic Connection Factory in the default message provider:

a. In the navigation pane, expand JMS, and then click JMS providers.

Conf igur ing a JMS P rov ider In WebSphere 6 .1 .0 .5

Configuring and Managing Advanced Repository Flows 6-9

b. Click the Default messaging provider option, with a Scope of Node=<nodename>,
server=server1.

c. On the JMS providers > Default messaging provider page, click the Topic connection
factories option under Additional Properties.

d. On the JMS providers > Default messaging provider > Topic connection factories page,
click New.

e. On the Administration page, configure the topic connection factory as follows:

• Name – alerEventingTopicCFDefault

• JNDI name – jms.alerEventingTopicCFDefault

• Bus name – alerbus

• Client identifier – ALER_JmsProducer

• Durable subscription home – <nodename>.server1-alerbus

f. Click Apply, and then click Save.

4. Create a JMS Topic in the default message provider:

a. Re-navigate to the JMS providers > Default messaging provider page.

b. Click the Topics option under Additional Properties.

c. On the JMS providers > Default messaging provider > Topics page, click New.

d. On the Administration page, configure the topic as follows:

• Name – alerEventingTopicDefault

• JNDI name – jms.alerEventingTopicDefault

• Topic name – alerEventingTopicDefault

• Bus name – alerbus

• Topic space – Default.Topic.Space

e. Click Apply, and then click Save to save your changes.

5. Deploy the aler.ear application file, as follows:

a. In the navigation pane, expand Applications, and then click Enterprise Applications.

b. On the Enterprise Applications page, click Install.

Conf igur ing JMS Servers fo r ALER

6-10 Configuring and Managing Advanced Repository Flows

c. On the Preparing for the application install page, click Browse, specify the aler.ear file
in the path, and then click Next.

d. Click Next on the Select installation options page.

e. Click Next on the Map modules to servers page.

f. On the Map resources to resource references page, click Browse in the Target Resource
JNDI Name column.

g. On the Enterprise application > Available resources page, select
alerEventingTopicCFDefault, and then click Apply.

h. Click Next on the ensuing Map resources to resource references page.

i. On the Map resource environment entry references to resources page, enter
jms/aler/alerEventingTopicDefault in Target Resource JNDI Name and then click
Next.

j. Click Finish on the Summary page.

k. After the application is installed, click Save to save it to the Master Configuration.

6. Follow the “Manually Installing the ALBPM Process Engine and Advanced Registration
Flows” steps in the ALER Installation Guide to deploy additional files in the
web-inf/classes directory and the database drivers required by the ALER application.

7. Configure the ALER eventing.properties file for the WebSphere settings:

a. Navigate to the <ALER Domain>\WEB-INF\classes directory.

b. Use a text editor to modify the eventing.properties file as follows:

• cmee.eventframework.jms.topic=jms.alerEventingTopicDefault

• cmee.eventframework.jndi.provider.url=iiop\://localhost:2809

• cmee.eventframework.embedded.jms.enabled=false

• cmee.eventframework.jndi.context.factory=com.ibm.websphere.naming.W
snInitialContextFactory

• cmee.eventframework.jms.connection.factory=jms.alerEventingTopicCFD
efault

c. Save the file.

8. Restart the WebSphere application server to enable the modified settings.

Conf igur ing a JMS P rov ider In WebSphere 6 .1 .0 .5

Configuring and Managing Advanced Repository Flows 6-11

9. Check the WebSphere logs for possible errors:
\WebSphere\AppServer\profiles\AppSrv01\logs\server1

Conf igur ing JMS Servers fo r ALER

6-12 Configuring and Managing Advanced Repository Flows

Configuring and Managing Advanced Registration Flows 7-1

C H A P T E R 7

Monitoring and Managing Events

This section contains information on the following subjects:

“Overview”

“Monitoring Events”

“Cleaning Up Stored Events”

“Generating the Workflow Config File”

“Refreshing the Workflow Config File”

“Encrypting Your Passwords”

Moni to r ing and Manag ing Events

7-2 Configuring and Managing Advanced Registration Flows

Overview
This document discusses how to use the administrative tools that are shipped as part of ALER3.0.
The Advanced Registration Flow administrative tools are used to

Monitor events using a command-line interface

Clean up the events and unsubscribe the JMS durable subscriber

Generate the Workflow Configuration file

Refresh the ALBPM Engine with the latest Workflow Configuration file

Encrypt the passwords stored in the Workflow Configuration and Subscription Manager
files

The administrative tools are installed under the following directory:

<BEA Home>/repository30/core/workflow-tools

Figure 7-1 Location of Workflow Tools

Moni to r ing Events

Configuring and Managing Advanced Registration Flows 7-3

Monitoring Events
The Event Manager has a tool for monitoring the events that are generated by the Event Manager.
The tool peeks into the event traffic and prints information, such as the Event Body and Event
Properties, as shown in this section.

Prerequisites
The following prerequisites apply before starting the monitoring tool:

If the default embedded JMS server is used, then ALER needs to be running with the
cmee.eventframework.enabled system setting set to true. This is to make sure that the
JMS broker that is embedded within ALER is running so that the monitoring tool can
connect to it and monitor the events.

 If an external JMS server is used, then the external JMS Server needs to be running and
the JNDI-related eventing.properties that are required to connect to the external JMS server
must be configured.

For more information, see “Configuring Connectivity Properties for External JMS Servers”.

Usage
From a command prompt, run the Event Monitoring tool as follows:

 > event_monitor.bat <Path of WEB-INF\classes>

For example, if ALER is deployed to a domain named alerdomain under:
D:\bea816\user_projects\domains\alerdomain

Then the <Path of WEB-INF\classes> is:
D:\bea816\user_projects\domains\alerdomain\applications\aler\aler-app\WEB-

INF\classes

This path is needed to get the JMS configuration from the eventing.properties file so that
the tool can connect to the JMS server.

Moni to r ing and Manag ing Events

7-4 Configuring and Managing Advanced Registration Flows

Figure 7-2 Event Monitor Console

Clean ing Up Sto red Events

Configuring and Managing Advanced Registration Flows 7-5

Cleaning Up Stored Events
Sometimes it may be required to remove all the events that are stored by the Event Engine and
also unsubscribe the durable subscription. The Event Cleanup tool can be used for this purpose.

Prerequisites
The following prerequisites apply before starting this tool:

Set the ALER cmee.eventframework.jms.subscribers.enabled system setting to
false so that the ALER Event Manager does not start the durable subscriber because this
will be unsubscribed by the Clean Event tool.

Restart ALER with the cmee.eventframework.jms.subscribers.enabled property set
to false.

Usage
From a command prompt, run the Event Cleanup tool as follows:

 > event_clean.bat <Path of WEB-INF\classes> <Name of Durable Subscriber>

<Message Selector>

For example, if ALER is deployed to a domain named alerdomain under:
D:\bea816\user_projects\domains\alerdomain

Then the <Path of WEB-INF\classes> is:
D:\bea816\user_projects\domains\alerdomain\applications\aler\aler-app\WEB-

INF\classes

This path is needed to get the JMS configuration from eventing.properties so that the tool can
connect to the JMS Server.

The <Name of Durable Subscriber> can be found in the name attribute inside the endpoint
that requires event cleanup within the EndPointEventSubscription.xml as follows:

 <sub:eventSubscription>

 <!--The name should be unique within this file since

 <sub:endPoint name=”ALBPMEndpoint”>

The <Message Selector> can be found in the expression attribute inside the endpoint that
requires cleanup within the EndPointEventSubscription.xml

Note: The parameter can be omitted if the Message selector is not set or empty.

Moni to r ing and Manag ing Events

7-6 Configuring and Managing Advanced Registration Flows

Sample Event Cleanup
Using the example above, navigate to the workflow-tools directory:

 > cd D:\bea816\repository30\core\workflow-tools>

From the command prompt, type:

 > event_clean.bat D:\aler\alerbuild2\aler-app\WEB-INF\classes

ALBPMEndpoint

The following is the output printed by the Event Cleanup tool to the console.

Figure 7-3 Event Cleanup Console

Generating the Workflow Config File
The Generate Workflow Config tool is used to generate the Workflow Configuration file
(workflow.xml) by connecting to ALER. The tool populates the workflow.xml with
configuration for asset types, categorizations, etc. by reading these entities from ALER. The
Workflow Config file can then be customized as per your requirements. For example, you may
need to configure and customize flows to add new asset types, projects, categorizations, etc.

For more information about configuring Advanced Registration Flows, see Chapter 5,
“Configuring Advanced Registration Flows.”

From a command prompt, run the Generate Workflow Config tool as follows:

 > config_gen.bat URI User Password ConfigDir

where:

Ref resh ing the Work f low Conf ig F i l e

Configuring and Managing Advanced Registration Flows 7-7

 URI = ALER URI (for example: http://localhost:7001/alerbuild/services/FlashlineRegistry)
 User = ALER user name
 Password = ALER password
 ConfigDir = the directory where the Config XML file will be created. If the file exists, it will
be renamed to workflow.xml.bak.

Figure 7-4 Generate Workflow Configuration Tool

The workflow.xml file needs to be generated to the following directory:
 <ALER Enterprise Edition Path>/server/<ALER Workflows
Project>/workflow.xml

Refreshing the Workflow Config File
The Refresh Workflow Config XML tool lets you to refresh a Workflow Config file without
restarting the ALBPM Engine. For example, if the Workflow Config XML file is updated during
development, running this tool allows the ALBPM Engine to use the updated version without
restarting the engine.

Note: The ALBPM Engine must be running when running this tool.

From a command prompt, run the Refresh Workflow Configuration tool as follows:

Moni to r ing and Manag ing Events

7-8 Configuring and Managing Advanced Registration Flows

 > refresh_workflows.bat URI User Password

where:

 URI = ALBPM URI (for example,
http://localhost:9000/fuegoServices/ws/RefreshConfigServiceListener)
 User = ALBPM user name (for example, aler_workflow_user)
 Password = ALBPM password (for example, aler_workflow_user)

Note: aler_workflow_user is created by the BEA Products Installer and is the default user
that can be used with this tool.

Figure 7-5 Refresh Workflow Configuration Tool

Encrypting Your Passwords
For enhanced security, the Security Encrypt Password tool (runWfSecurity.bat) allows you to
encrypt passwords that are stored in the Workflow Configuration and Subscription Service files.

From a command prompt, run the Security Encrypt Password tool as follows:

 > runWfSecurity.bat srcFileName destFileName

where:

 srcFileName = source config file with clear password.

 destFileName = destination config file with decrypted password.

Encrypt ing Your Passwords

Configuring and Managing Advanced Registration Flows 7-9

Figure 7-6 Security Encrypt Password Tool

Moni to r ing and Manag ing Events

7-10 Configuring and Managing Advanced Registration Flows

Configuring and Managing Advanced Registration Flows 8-1

C H A P T E R 8

Extending the Event Manager for Web
Service Endpoints

This section contains information on the following subjects:

“Overview”

“Developing a Web Service Endpoint”

“Web Service Operations”

“Developing a Notifier Plug-in”

“Developing an Endpoint With an Incompatible Contract”

Overview
This document explains how to develop a new Web Service endpoint to consume the events that
are emitted by the Event Manager and also explains how to extend the Event Manager to use other
notifier plug-ins.

For information about configuring the Event Manager, see Chapter 3, “Configuring the ALER
Event Manager.”

Extending the Event Manage r f o r Web Se rv ice Endpo in ts

8-2 Configuring and Managing Advanced Registration Flows

Developing a Web Service Endpoint
The following figure shows how a Web Service endpoint can be plugged-in to receive the Events
emitted by the ALER Event Manager.

Figure 8-1 Web Service Endpoint Plug-in

Following these steps to create a new Web Service endpoint and start getting events.

1. Pick up the WSDL contract defined by the Event Manager. This is bundled with the
eventNotifier.jar located in the <aler Webapp path>/WEB-INF/lib directory.

2. Open the jar file and locate a WSDL named “EventListener.WSDL” and extract the WSDL
to the file system. This WSDL is the abstract contract defined by the Event Manager and the
new Web Service endpoint needs to implement the operation defined in the WSDL.

Here is a snapshot of the WSDL file

Deve lop ing a Web Serv ice Endpo int

Configuring and Managing Advanced Registration Flows 8-3

Figure 8-2 Sample WSDL File

3. Complete the Web Service endpoint development using the tool or technology, as per the
requirement. For example, you could develop a Proxy Service using AquaLogic Service Bus,
which provides a feature where you can create a Web Service-based proxy service by pointing
to a WSDL file. Make the Web Service running by completing the development of the Web
Service.

4. Configure the Event Manager so that the Web Service endpoint’s host, port, and URI, etc., are
entered in the Subscription Manager file. For more information about configuring the Event
Manager, see Chapter 3, “Configuring the ALER Event Manager.”

5. Start ALER and trigger events using the Asset Editor and the Web Service endpoint will start
getting the Events.

6. You can use the Event Monitoring tool that is bundled with ALER for debugging and
monitoring the Events that are generated by the Event Manager.

Extending the Event Manage r f o r Web Se rv ice Endpo in ts

8-4 Configuring and Managing Advanced Registration Flows

Web Service Operations
This section describes the available operation for a new Web Service endpoint, and how to
specify operations in the Event Manager.

Available Web Service Operations
The ALER Event Manager supports the following operations.

newEventRequestResponse
This operation takes the event object that is defined in the XML schema section as an input and
returns the status as the output. The status is defined as string type. Additionally, if the status
string starts with Failure, then the Event Manager will throw an exception and will try to
re-deliver the event until it succeeds. If not, it will log the response and will deliver the next event
unless there is a transport exception.

newEventRequestResponseString
This operation takes the event data in string form as an input and returns the status as the output.
The status is defined as string type. Additionally, if the status string starts with Failure, then the
Event Manager will throw an exception and will try to re-deliver the event until it succeeds. If
not, it will log the response and will deliver the next event unless there is a transport exception.

newEventRequest
This operation takes the event object that is defined in the XML schema section as an input and
is defined as a one-way operation.

newEventRequestString
This operation takes the event data in string form as an input and is defined as a one-way
operation.

newEvent
This operation should be used only if the Process Engine is ALBPM. This operation internally
invokes the startSession operation to start session to authenticate with ALBPM. It will also
call discardSession after the invocation.

Web Serv ice Operat ions

Configuring and Managing Advanced Registration Flows 8-5

Selecting a Web Service Operation
The preferred Web Service operation can be selected by configuring the Event Manager’s
Subscription Manager the following way, as specified in the operationName element.

<sub:EventSubscriptionData
xmlns:sub=”http://www.bea.com/infra/events/subscription”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <sub:eventSubscription>
 <sub:endPoint name=”ALBPMEndpoint3”>
 <sub:host>localhostt>
 <sub:port>9000</sub:port>
 <sub:uri>fuegoServices/ws/StatusChangeEnpointServiceListener</sub:uri>
 <sub:targetNamespace>http://www.bea.com/infra/events</sub:targetNamespace>
 <sub:operationName>newEvent</sub:operationName>
 <sub:authenticationData>
 <sub:basicAuthentication>
 <sub:username>admin</sub:username>
 <sub:username>admin</sub:username>
 </sub:basicAuthentication>
 </sub:authenticationData>
 </sub:endPoint>

<sub:notifierClass>com.bea.infra.event.notifier.plugin.http.DefaultHTTPEventNo
tifier </sub:notifierClass>
 <sub:expression></sub:expression>
 </sub:eventSubscription>
</sub:EventSubscriptionData>

Extending the Event Manage r f o r Web Se rv ice Endpo in ts

8-6 Configuring and Managing Advanced Registration Flows

Developing a Notifier Plug-in
The ALER Event Manager includes a default SOAP/HTTP notifier. A new plug-in can be
developed and plugged in if there are additional requirements, as illustrated here.

Figure 8-3 Notifier Plug-in

Follow these steps to make the new plug-in work with the Event Manager.

1. Develop a new Notifier Plug-in by extending the Java Class AbstractEventNotifier that
is bundled with the ALER Event Manager. This class is bundled with the
eventNotifier.jar located in the <aler Webapp path>/WEB-INF/lib directory. The
init() and sendNotification() methods need to be overridden. Refer to the Javadoc for
more information about these methods. The handle() method passes the event data in an
XML Beans format, which can be used to send it to an external Web Service.

2. Configure the Subscription Manager file to point to the developed class. Modify the
notifierClass element as follows:

<sub:EventSubscriptionData
xmlns:sub=”http://www.bea.com/infra/events/subscription”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <sub:eventSubscription>
 <sub:endPoint name=”ALBPMEndpoint3”>
 <sub:host>localhost</sub:host>
 <sub:port>9000</sub:port>
 <sub:uri>fuegoServices/ws/StatusChangeEnpointServiceListener</sub:uri>
 <sub:targetNamespace>StuatusChangeEndpoint</sub:targetNamespace>
 <sub:operationName>newEvent</sub:operationName>
 <sub:authenticationData>
 <sub:basicAuthentication>
 <sub:username>admin</sub:username>
 <sub:username>admin</sub:username>

Deve lop ing an Endpo in t Wi th an Incompat ib le Cont ract

Configuring and Managing Advanced Registration Flows 8-7

 </sub:basicAuthentication>
 </sub:authenticationData>
 </sub:endPoint>

<sub:notifierClass>com.bea.infra.event.notifier.plugin.http.DefaultHTTPEventNo
tifier</sub:notifierClass>
 <sub:expression>id > 500</sub:expression>
 </sub:eventSubscription>
</sub:EventSubscriptionData>

3. Bundle the classes in a JAR file and copy it to <aler Webapp path>/WEB-INF/lib
directory so that it is picked up by the classpath.

4. Restart the Event Manager and trigger an event using the Asset Editor.

5. The Event Manager will call the init() and handle() methods of the new notifier plug-in.

Developing an Endpoint With an Incompatible Contract
It is possible that there may be an endpoint with an Interface or Contract that is not compatible
with ALER Event Manager. This is because the tool that is used to develop the endpoint may have
restrictions to use the WSDL provided by ALER Event Manager, or there may be other
inter-operability issues. The following approach can be used under those circumstances:

Develop an event notifier plug-in to receive the event XML data and register with the
Subscription Manager.

Write the code in the new notifier plug-in that transforms the event data into the format
that the remote Web Service expects.

Invoke the remote Web Service by whatever API is supported by the remote endpoint.

Extending the Event Manage r f o r Web Se rv ice Endpo in ts

8-8 Configuring and Managing Advanced Registration Flows

