0?7,

r
S’ 7
L/

BEAAqualogic-
Enterprise
Repository

Configuring and
Managing Advanced
Registration Flows

Version 3.0
Revised: October 2007

Contents

1. Overview of Advanced Registration Flows

What Are Advanced Registration FIOwS? i, 1-2
Example “Community FIow” Use Case.vvv it inens 1-2
Software ComMPONENTSttt e 1-3
ALER Event Managero e 1-3
SUbSCHPtioN Managerot 1-3

JMIS SBIVEL. . . 1-3

EVENt MONItOro 1-3
Advanced Registration FIOWS. oo 1-4
Event Management TOOISottt e 1-4
Web-based Process Administrator., 1-5

LOg VW ottt 1-5

Flow Email Notification Templates. 1-5

Flow Configuration ToOIS. o e e 1-5
GeneratingaNew Config File. i i, 1-5
Refreshing an Existing ConfigFile.............. 1-5
Encrypting Config File Passwords, 1-5

2. Getting Started with Advanced Registration Flows

OV VI W &\ttt e e e e 2-2
Steps to Configure the ALER Event Manager. ..o, 2-2
USE CaSS . ottt ettt et 2-3

Configuring and Managing Advanced Repository Flows iii

Configuring the Event Manager.t
Triggering an ASSet EVENtot
Steps to Configure and Run the ALBPM Process Engine
USE 8BS . v ot ittt e e
Configuring the Advanced Registration Flows to Process a Submission Event

Triggering an Asset Submission Event i

3. Configuring the ALER Event Manager

What Isthe ALER Event Managerttt
Configuring the Event Manager’s System Settings
Enabling the Event Managero
Configuring Optional Event Manager Settings,
Eventing Manager Notifier Thread Sleep (seconds).
Eventing Manager Store Thread Sleep (seconds).
Eventing Manager Store Delivery Sleep (seconds)

Batch Size for Event Manager Deliveries.
Configuring the Subscription Manager. i
Configuring Web Service Endpoints
Setting the Expression to Filter Events i
Delivering all Eventstoan Endpoint
Delivering Events to an Endpoint Filtered by Event Type.................
Delivering Events to an Endpoint Filtered Using a JMS Message Selector. . . .

JMS Message Selector Examples.
Configuring Logging of Event Manager Events.

4. Administrating ALBPM Processes

OV IV W . . ottt e e

Administering ALBPM Web Applications. i

iv Configuring and Managing Advanced Repository Flows

Starting the ALBPM Admin Center.t 4-2

Starting the ALBPM ProcessEngine.t 4-3
Defining the ALBPM Participants. 4-4
ALBPM AdmInistratorst 4-4
Advanced Registration Flow Participant., 4-4

Tuning the ALBPM Process ENQiNeot 4-6
Advanced Properties.ot 4-6
Database Runtime Properties 4-6
Memory and Execution Thread Properties., 4-6
Configuring a Standalone Process Engine for Failover. 4-7
Using The ALBPM LOG VIBWETot 4-7
Filtering Event Log Messages for ALER Flowst 4-7

5. Configuring Advanced Registration Flows

Overview of Advanced Registration Flows. i .. 5-2
Creating and Customizing a Workflow Configuration File 5-2
Generating a Workflow Configuration File, 5-2
Defining the ALER Connection and Registrar. oo, 5-3
Encrypting the Registrar User Password 5-3
Wiring Asset EVeNntS to FIOWSo 5-4
Automatic Asset Registration FIOWS 5-6
Configuring Community FIOWS 5-6
Setting the Community for an ALER Project. 5-9

Setting the Community foran Asset Type 5-9
Configuring a Community to Automatically Acceptan Asset.............. 5-9
Configuring a Community to Assign Assets for Tab Approval 5-9

Configuring a Community to Assign Assets for Tab Approval Using Multi-tier5-10

Configuring a Community to Automatically Register an Asset............ 5-10

Configuring and Managing Advanced Repository Flows v

Configuring a Community to Have a Dedicated Registrar. 5-10

Configuring Automated Acceptance and Automated Registration Flows. 5-10
ASSBE TYPE. . o 5-11
Categorization Settings. 5-11
Submitter Role 5-11
Conflict Resolution and Precedence. 5-12

Multi-tier Automatic Assignment Flows. i i 5-13

USE CaSBS . . o v o ettt ettt e e 5-13

Using an <alerid>for Tab Approvals 5-14

Setting Up a Community for Multi-tier Tab Approval 5-15

Setting Up an Asset Type for Multi-tier Tab Approval 5-16

Metadata Change FIOWSo 5-18

USE CaS8S . - o v o ettt ettt e e 5-18

Configuring Metadata Change FIows i, 5-18
Available Metadata Change Events/Statest 5-18
Available Flows That Can Be Wired to Actions. 5-19
Example Metadata Change Configuration 5-20
Example Metadata Change Configuration That Checks for Metadata Value. . 5-21
ChangeClassificationc i 5-21
ChangeC AS . . 5-21
ChangeAssetLifecycle 5-22
ApProveTabACtioN o 5-22
UnapproveTabACtion 5-22
AUtoApPProveTabACtIoN 5-23
UnapproveChangeManagementTab 5-23
ResetChangeManagementTab. 5-24
NOtifyCUStOMUSEr 5-24
Invoking Flows Based on Approval of Named Tabs 5-24

Configuring and Managing Advanced Repository Flows

Time-based Escalation FIOWS e 5-25

Tracking Unsubmitted ASSetS.ot 5-26
Tracking Unaccepted ASSEtS oot 5-27
Tracking Unapproved ASSetSot tea 5-27
Tracking Unregistered ASSetS.ot e 5-28
Validation Expiration FIows 5-28
Asset Expiration Warning Notification 5-30
Unregister Assets After Expiration i 5-31
Inactivate After Expiration. 5-31
Delete Assets After Expiration.c i 5-31
Customizing Flow Notification Email Templates., 5-32

6. Configuring JMS Servers for ALER

Overview of JMS for the Event Manager . ..o e 6-2
Configuring Connectivity Properties for External IMS Servers. 6-2
Enabling and Configuring an External IMS Server. 6-2
Configuring JMS Message Header Properties.t 6-3
Miscellaneous JMS Propertieso 6-4
Configuring External IMS Jar Files. o 6-4
Configuring the Embedded ActiveMQ JMS Server to Use a Database 6-4
Configuring JMS Durable Subscribers for Web Service Endpoints 6-5
Configuring JMS Servers Inan ALER Cluster. i, 6-6
Enabling IMS Clustering Modeot 6-6
Configuring Embedded JMS Servers for Clustering 6-6
Configuring External IMS Servers for Clusteringt 6-7
Configuring a JMS Provider In WebSphere 6.1.0.5 6-8

Configuring and Managing Advanced Repository Flows vii

/. Monitoring and Managing Events

OVBIVIBW . . o et e 7-2
Monitoring EVENtS. o 7-3
PrerEqUISITES . . . o . ot 7-3
USO8 . ottt e 7-3
Cleaning Up Stored EVENtS.ot 7-5
PrereqUISITES . . . o .ot 7-5
USO8 .« . ottt 7-5
Sample Event Cleanup.o 7-6
Generating the Workflow Config File i, 7-6
Refreshing the Workflow Config File. 7-7
Encrypting Your Passwordst 7-8

8. Extending the Event Manager for Web Service Endpoints

OVBIVIBW . . o et 8-1
Developing a Web Service Endpoint i 8-2
Web Service Operationst e 8-4
Available Web Service Operations. i 8-4
NeWEVeNtReqUEStRESPONSEot 8-4
newEventRequestResponseString. 8-4
NEWEVENTREQUESE . . . oo 8-4
NeWEVENtReqUESESIIINGo 8-4
NEWEVENT . 8-4
Selecting a Web Service Operation 8-5
Developing a Notifier Plug-in. e 8-6
Developing an Endpoint With an Incompatible Contract. 8-7

viii Configuring and Managing Advanced Repository Flows

CHAPTERa

Overview of Advanced Registration
Flows

This section contains information on the following subjects:
e “What Are Advanced Registration Flows?” on page 1-2
e “Example “Community Flow” Use Case” on page 1-2

e “Software Components” on page 1-3

Configuring and Managing Advanced Registration Flows 1-1

Overview of Advanced Registration Flows

What Are Advanced Registration Flows?

In previous releases of ALER, the asset registration process required the registrar or advanced
submitter to manually initiate and monitor the registration process. The required information was
gathered and entered on the appropriate tabs in the Asset Editor. The registrar examined each tab
and monitored the workflow. When information for a specific stage of the workflow was
acceptable, the registrar approved the data on the appropriate tab. The registrar also had the
option to edit any of the information for any stage of the process.

The introduction of Advanced Registration Flows in ALER 3.0, Advanced Edition, attempts to
automate the manual asset registration process by providing a set of predefined flows designed
to automate a set of common ALER asset registration tasks, such as asset submission, acceptance,
registration, and other governance processes.

To accomplish this ALER 3.0 includes an embedded, JMS-based event engine that manages the
flow of ALER asset registration events, in the form of Web Service events. These events trigger
the pre-defined flows. Once installed, the Advanced Registration Flows can be run out-of-the box
or can be tailored to suit your environment.

Note: The flows do not have their own user interface, but will automate certain asset metadata
and state changes in the background based on particular ALER events.

For ease of use, you can use the predefined ALPBM endpoint or create your own Web Service
endpoints to subscribe to ALER events. There are also event monitoring and logging tools for
troubleshooting and tuning purposes.

Example “Community Flow” Use Case

1-2

In previous releases, the asset acceptance, assignment, registration processes required multiple
registrars to manually initiate and monitor the process from end-to-end via numerous emails. In
some cases, there was only one registrar that was notified about the newly submitted assets, and
as a result, the registrar could be overloaded with emails about new assets.

The Community flow provides a way to automate the asset acceptance, assignment, and
registration process by allowing the configuration of automated assignment rules and also
introduces the notion of federated registrars among different authorities. Rather than spamming
many registrars across all communities (through the system registrar notification), you can limit
the system registrar to one or a few individuals, and let the Automatic Acceptance flow accept
assets on behalf of a registrar-of-record for the community. The Community flow feature can
distribute asset submissions to those with the authority to approve them for the community.

Configuring and Managing Advanced Registration Flows

Software Components

For example, you can add two communities and configure two different registrars responsible for
each community. Then, depending on the producing projects or asset types, certain assets can
belong to a community. The Community flow automatically accepts such assets in the same way
it would be manually accepted by a registrar.

Software Components

Advanced Registration Flows includes the following software components:

ALER Event Manager

The Event Manager emits asset registration events in the form of Web Service messages. These
events trigger pre-built flows that automate ALER asset submission, acceptance, registration, and
other governance processes. See Chapter 3, “Configuring the ALER Event Manager.”

Subscription Manager

The Subscription Manager is XML-based configuration file that is responsible for managing the
event subscriptions by the Web Service endpoints (either the predefined ALPBM endpoint or
user-defined endpoints) where matched events will be delivered. The Event Manager uses the
EndPointEventSubscription.xml file to load information about the endpoints where events
need to be delivered. See Chapter 3, “Configuring the ALER Event Manager.”

JMS Server

The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS server is configured to run out-of-the-box without any additional
configuration. However, you can also configure the Event Manager to use an external JIMS
server, such as Weblogic Server JMS or IBM MQSeries. See Chapter 6, “Configuring JMS
Servers for ALER.”

Event Monitor

A tool to monitor the events that are generated by the Event Manager. The Event Monitor peeks
into the event traffic and prints information, such as the event body and event properties. See
Chapter 7, “Monitoring and Managing Events.”

Configuring and Managing Advanced Registration Flows 1-3

Overview of Advanced Registration Flows

1-4

Advanced Registration Flows

The Advanced Registration Flows can be run out-of-the box or can be tailored to suit your
environment. See Chapter 5, “Configuring Advanced Registration Flows.”

e Community Assignment Flow — provides a way to automate the asset acceptance,
assignment, and registration process by allowing the configuration of automated
assignment rules and also provides the notion of federated registrars among different
authorities. See “Configuring Community Flows” on page 5-6.

e Automated Acceptance and Automated Registration Flow — in addition to using the
Community Flows to automatically accept and register the assets, a number of user roles
can be used to accept and register assets. See “Configuring Automated Acceptance and
Automated Registration Flows” on page 5-10.

e Multi-tier Approval Flow — structures the tab approval process in multiple steps called
tiers. Asset approval tabs can be grouped in tiers, and the Mult-tier Approval flow tracks
each tier to verify whether all the tabs are approved by the designated approvers. As soon
as the last tab in a tier is approved, the flow starts the next tier by assigning the asset to the
next level of designated approvers. See “Multi-tier Automatic Assignment Flows” on
page 5-13.

e Metadata Change Flow — exposes a flexible framework where state changes or metadata
changes can be wired to actions. The Metadata Change flows come with the a set of
pre-bundled actions. New actions can be developed in the form of ALER flows and can be
plugged in. See “Metadata Change Flows” on page 5-18.

e Time-based Escalation Flow —track assets in various states and notifies all interested
parties. There are four different kinds of Time-based Escalation flows and each one can be
configured individually. See “Time-based Escalation Flows” on page 5-25.

e Validation Expiration Flow — tracks expired assets prior to the specified expiration date, as
well as at the day of expiration, and sends warning notifications to all interested parties.
See “Validation Expiration Flows” on page 5-28.

Event Management Tools

There are event monitoring and logging tools for troubleshooting and tuning purposes.

Configuring and Managing Advanced Registration Flows

Software Components

Weh-based Process Administrator

The ALBPM Process Execution Administrator actively manages the orchestration of asset
registration events in the form of Web Service messages. For more information, see
“Administering ALBPM Web Applications.”

Log Viewer

The ALBPM Log Viewer enables you to read information logged by the Process Execution
Engine. A set of log files is created for each project you define. The Studio Log Viewer reads the
files and displays them to help you monitor and trace Engine execution. For more information,
see “Using The ALBPM Log Viewer.”

Flow Email Notification Templates

The Automated Registration Flows automatically send email naotifications under many
circumstances. There are five new email templates for the new flows. Administrators can
customize the email subject, body, etc., the same way as other email templates. See “Customizing
Flow Notification Email Templates”.

Flow Configuration Tools

There are flow configuration tools for generating new configuration file, refreshing exisiting
files, and encrypting passwords. For more information, see Chapter 7, “Monitoring and
Managing Events.”

Generating a New Config File

ALER administrators may need to configure and customize flows because there will be new asset
types, projects, categorizations, etc. The Generate Config XML tool connects to ALER and
creates a new file that can be customized.

Refreshing an Existing Config File

The Refresh Config XML tool lets you to refresh a Config XML file without restarting the Event
Manager.

Encrypting Config File Passwords

The security Encrypt Password tool lets you to encrypt the passwords for security reasons.

Configuring and Managing Advanced Registration Flows 1-5

Overview of Advanced Registration Flows

1-6 Configuring and Managing Advanced Registration Flows

CHAPTERa

Getting Started with Advanced
Registration Flows

This section contains information on the following subjects:
e “Overview”
e “Steps to Configure the ALER Event Manager”

e “Steps to Configure and Run the ALBPM Process Engine”

Configuring and Managing Advanced Registration Flows 2-1

Getting Started with Advanced Registration Flows

Overview

This section will help you to quickly get started using the Advanced Registration Flow feature
using the bundled ALPBM Web Service endpoint that is configured to work with the ALBPM
Process Engine. However, this feature is highly extensible and can be tailored to suit your
environment.

Steps to Configure the ALER Event Manager

2-2

The Event Manager is a component embedded within ALER that manages event subscriptions,
event persistence, event filtering, and event delivery. Web Service endpoints can subscribe to the
Event Manager’s Subscription Manager and the asset registration events that are generated within
ALER are delivered to the Web Service endpoints.

The following diagram shows the different components that are involved.

Figure 2-1 Advanced Registration Flow Components

ALEP M Pmeess Engine
ALER SO8FHTTP

EEEEEE llllllm —_— imé

pa—

SIS Cler ster

The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS server is configured to run out-of-the-box without any additional
configuration. However, you can also configure the Event Manager to use an external Java-based
message broker, such as Weblogic Server JMS or IBM MQSeries.

For more information on configuring the Event Manager, see Chapter 3, “Configuring the ALER
Event Manager.”

Configuring and Managing Advanced Registration Flows

Steps to Configure the ALER Event Manager

Use Cases

e ALER 3.0 features pre-bundled ALBPM flows and a Web Service endpoint that is by
default registered with the Event Manager’s Subscription Manager. All the triggered events
are delivered to this ALBPM endpoint, which then attempts to automate ALER processes,
such as the asset registration process, tracking metadata changes, and taking pre-defined
actions.

e You can also write your own Web Service endpoints, subscribe them with the Event
Manager, and start getting the events to solve your specific business needs.

Configuring the Event Manager

After ALER is installed, configure the Event Manager as follows.

1. The Event Manager needs to be enabled in ALER to allow the Event Manager to send events
to external Web Service endpoints. You can either:

— Enable the cmee .eventframework.enabled=true property in the
eventing.properties file in the <ALER Domain>\WEB-INF\classes directory.

or

— This property can also be enabled using the ALER Web-based console’s System
Settings, as explained in “Configuring the Event Manager’s System Settings.”

2. The default Eventing cmee . eventframework.delivery.sleep and
cmee .eventframework.store.sleep property values can also be tuned to control the
overall performance of ALER and the Web Service endpoints. These properties directly
impact the number of events that get triggered per second by the Event Manager. For
example, If a faster response is required for testing purposes, the default
cmee.eventframework.store.sleep value of 7200 seconds should be changed to a
reasonable testing amount.

3. The Event Manager uses the same logging framework as ALER. By default, logging is
enabled to go to a file, but you direct the debug statements to go to the console by appending
the following categories to the log4fl .properties file in the <ALER
Domain>\WEB-INF\classes directory.

eventing subsystem

log4j .category.com.bea. infra.event.core= debug,eventinglLog,stdout
log4j .category.com._bea. infra.event.dm= debug,eventingLog,stdout

log4j -category.com._bea. infra.event.facade= debug,eventinglLog,stdout
log4j .category.com.bea. infra.event.notifier= debug,eventinglLog,stdout

Configuring and Managing Advanced Registration Flows 2-3

Getting Started with Advanced Registration Flows

2-4

log4j .category.com._bea. infra.event.store= debug,eventinglLog,stdout
log4j .category.com.bea. infra.event.sub= debug,eventinglLog,stdout
4. Configure the Web Service subscriptions with the Event Manager’s Subscription Manager.

Note: By default the Subscription Manager is configured to work out-of-the-box with the
ALBPM Process Engine if the ALBPM Process Engine is running on the same
machine as ALER. You can skip this step if this is the case because the default
settings are ready to run.

As shown below, the following information may need to be changed within the
EndPointEventSubscription.xml file under <ALER Domain>\WEB-INF\classes
directory, depending on the requirement:

— Host — If the Web Service Endpoint is running in a host other than ALER. If it” the
same host, leave the default unchanged

— Port — Specify the port of the Web Service Endpoint. If ALBPM is used as the Process
Engine, leave the default unchanged.

— URI - Specify the URI of the Web Service. If ALBPM is used as the Process Engine,
leave the default unchanged.

— Operation Name — If ALBPM is used as the Process Engine, leave the default
unchanged. Please refer to the WSDL within the eventNotifier.jar located in
<aler Webapp path>/WEB-INF/Iib for the available operations.

— User Name/Password — Used only if ALBPM is used as the Process Engine. Default
user name and password are “admin” and “admin”.

— Expression — Default is empty, which means all the events are delivered.

5. Restart ALER for the configuration changes to take effect.

Triggering an Asset Event

Follow these steps to make sure that events are triggered after the configuring the Event Manager.

1. Launch the ALER Asset Editor from the Web-based console.
For information on using the ALER Asset Editor, refer to the ALER Registrar Guide.

2. Create a new asset, as shown here.

Configuring and Managing Advanced Registration Flows

Steps to Configure and Run the ALBPM Process Engine

Figure 2-2 ALER Asset Editor - Create New Asset

- ~

Create a Mew Asset x
_?/1 Tame TestAsset Yersion | 15
Type Service w
Initial State | SjEmitted Pending Revien w

Note: The Asset Type should be Service.
3. Click OK to submit the asset.

4. After the asset is submitted, switch to the ALER console to verify the following logging
statements printed to the console.

Figure 2-3 Event Monitoring Console

B C:\WINDOWS\system32icmd. exe -|a ﬂ

3365858 [Thread-271 INFO com.bea.infra.event.store.plugin.jms.JHSEventStore - I:

Successfully published the message

38065874 [Thread-29]1 INFO com.bea.infra.event.dm.plugin.jms.JMSDeliveryManager

— Got a message with MessagelD _ID:MPALANISB1- 3418—1182529556128 BA:=B:1:1:=1

306508978 [Thread—-291 INFO com.bea.infra.event.dm.plugin.jms.JM8DeliveryManager

—1delluerNextEuent' Found event [ID: 67872Bef-2cla—47dB8-292b—h82848bBAc7e2] for d|

eliver

3865898 [Thread-22]1 INFO com.bea.infra.event.notifier.plugin.http.DefaultHTTPEw

entNotifier - Performing notification for event L[ID: 67892Bef-2cla—47dB—992bh-h8

2848hHAcYe2 1.

3065898 [Thread-27]1 INFO com.bea.infra.event.store.plugin.jms.JHSEventStore -

Successfully published the message

3366483 [Thread 291 INFO com.bea.infra.event.notifier.plugin.http.DefaultHTTPEy
— Endpoint localhost:?888-fuegoServices ussStatusChangeEndpointServ

iceListener down...retrying in 6BBAA milliseconds

5. The Event Monitoring tool can be used to view the payload of the event that will be delivered.
For more information about monitoring events, see “Monitoring Events.”

Steps to Configure and Run the ALBPM Process Engine

After the Event Manager is ready to send events, the ALBPM Process Engine needs to be
configured and be ready to process the events. When ALER is installed, it provides an option to
install and configure the Process Engine. This section assumes that the Process Engine was
successfully installed before following these steps.

Configuring and Managing Advanced Registration Flows 2-5

Getting Started with Advanced Registration Flows

To launch the ALBPM Admin Center, double-click the albpmadmcenter.exe file in the <ALBPM
Enterprise Home>\bin directory.

Use Cases

ALER features pre-bundled Advanced Registration Flows that are deployed to the Process
Engine. When events are triggered within ALER, they are delivered to the Process Engine and
execute the Advanced Registration Flows that attempt to automate ALER processes, such as asset
submission, acceptance, registration, and other governance process.

For more information about the available Advanced Registration Flows, see Chapter 5,
“Configuring Advanced Registration Flows.”

Configuring the Advanced Registration Flows to Process a
Submission Event

Follow these steps after the ALBPM Process Engine is installed.

1. Generate the Workflow Configuration (workflow.xml) file using the Generate Workflow
Config tool (config_gen.bat). This tool connects to ALER and creates a bootstrapping file
that can be customized. For more information about generating the workflow.xml file, see
“Generating the Workflow Config File.”

2. Copy the newly generated workflow.xml file to the <ALBPM Enterprise
Edition>/enterprise/server/aler_engine directory

3. Open the workflow.xml file using the XML editor of choice.

4. Make sure that the ALER Connection information, such as the URI and the registrar user
name/password, are configured correctly as shown here.

<alerconnection>

<uri>http://server0l.amer.bea.com:7005/aler/services/FlashlineRegistry
</uri>
<registrar>
<user>admin</user>
<password>admin</password>
</registrar>
</alerconnection>

2-6 Configuring and Managing Advanced Registration Flows

Steps to Configure and Run the ALBPM Process Engine

The URI must use the following format:
http://<host>:<port>/<aler web app name>/services/FlashlineRegistry

5. Within the workflow.xml file, locate the assetType settings for the “Service” asset type, as
shown here.
<assetType name="Service” community="_CHANGE_COMMUNITY_” id="154">
<allTabs>
<allTabs>
<tab name="Oveview”’/>
<tab name="UDDI: Business Entity”/>
<tab name=""Taxonomy’/>
<tab name="Architecture”/>
</allTabs>

6. Add the autoAccept attribute and set the value to true, as shown here.

<assetType name="Application” community="_CHANGE_COMMUNITY_” id="154"
autoAccept=""true”’>

<allTabs>

<allTabs>
<tab name="Oveview”’/>
<tab name="UDDI: Business Entity’/>
<tab name="Taxonomy”/>
<tab name="Architecture”/>

</allTabs>

Now the ALBPM Process Engine is configured to automatically accept any asset of type
“Service.”

7. If the ALBPM Process Engine is running, stop it and then restart it to load the latest
workflow.xml changes.

8. The Refresh Workflow Configuration tool can be used to refresh the workflow.xml file
without restarting the ALBPM Process Engine. For more information about refreshing the
workFlow.xml file, see “Refreshing the Workflow Config File.”

Triggering an Asset Submission Event

Once the ALBPM Process Engine is configured and running, follow these steps to process an
asset submission event.

Configuring and Managing Advanced Registration Flows 2-1

Getting Started with Advanced Registration Flows

1. Launch the ALER Asset Editor from the Web console.
For information on using the ALER Asset Editor, refer to the ALER Registrar Guide.

2. Create a new asset from File ->New as shown below.

Figure 2-4 ALER Asset Editor - Create New Asset

- =

Create a New Asset
,\‘;:) Tame TestAsset Yersion | 15
Type | Service [v]
Initial State |Submitted ' Pending Review [v]

Note: The Asset Type should be Service.
3. Click OK to submit the asset.

4. After the asset is submitted, switch to the ALBPM Log Viewer to make sure that the event is
processed. To launch the Log Viewer, double-click the albpmlogviewer.exe file in the
<ALBPM Enterprise Home>\bin directory.

5. Turn on the “Debug” level on the Log page of the Process Engine using the Process
Administrator preference settings. By default, the level is set to “Warning.”

Figure 2-5 ALBPM Process Administrator - Logging Preferences

T TOUOUOCOT FUWArTIm Iimotr ot

Edit Eng_'inzv aler_workflows

Edit the Engine information

Basic Configuration | Log | Execution | Services | Networking | Others

Properties

Messages Logged from Server | pebug [v]
Messages Logged from BP-Methods [pebug [~
Messages Sent by Email | nane [
Maximum Size of Log File 2000 kb

Maximum Number of Log Files [5

2-8 Configuring and Managing Advanced Registration Flows

Steps to Configure and Run the ALBPM Process Engine

6. When you turn on the Debug level though you will notice that the Process Engine prints a lot
of information, not just for the ALER Advanced Registration Flows, but other Process Engine
information as well. To filter the ALER logging, follow these steps:

a. Within the Log viewer, select Message in the left-most list box.

b. Select Begins With in the next list box.

c. Type ALER: in the text box

d. Click the Apply Filter button.

Figure 2-6 ALBPM Log Viewer

{H Log Viewer - D:\beatalbpm5. 7\enterpriselserverialer_workflowsiloghaler_workflows. log

M=%

File ‘“iew Help

% % €§3 Filker: | j £ Clear Filker @
|Message j |Begins with j |ALER | S Apply Filker |
Severity Message Date Time E3
\@/UGUUQ ALER., DSIN Lie Qo ar rei=erar T g LIV O e [+
Debug ALER: Got the Global registrar and password admin nOpaSSword Jun 22,...|11:22:47.., .
Debug ALER: Got URI and User Infohttp: fimpalanis0l.amer,bea,com: 7001 falerbuild2 fservices/FlashlineRegistr... |Jun 22,...|11:22:47...
Debug ALER: Got AssetTypeld154 Jun 22,...|11:22:47..,
Debug ALER: starting the autoaccept 50500 154 Jun 22,...|11:22:49,,,
Debug ALER: checking the AssetType Jun 22,...|11:22:49,., —
Debug ALER: AutoAccept attribute is found For the AssetType For the asset with id 50500 AutoAcceptStr is brue Jun 22,.../11:22:49,., =
Debug ALER: Auto Accept is set for asset with id 50500 The value set is true Jun 22,...|11:22:49.., -
Debug ALER: Accepting the asset with name = Testasset id = 50500 Jun 22,...|11:22:49,., T
Debug ALER: Done accepting the asset Jun 22,...(11:22:50.. 0 | |on |

(3 1: Bookmarks Ckg: Find 3: Item Properties

7. After the “ALER: Done accepting the asset” message is displayed in the Log Viewer, switch
back to the Asset Editor, and then refresh the Administration tab using the View -> Refresh
Tree command

8. Verify that the “Accepted” section is updated with the latest data, as shown here.

Configuring and Managing Advanced Registration Flows

2-9

Getting Started with Advanced Registration Flows

Figure 2-7 ALER Asset Editor - Administration Tabh

‘e Asset Editor - BEA Aqual ogic Enterprise Repository - TestAsset (1) E]@
File Wew Ackions Help
g Testasset (1)
'ﬁ] Assats a3 Asset Type : Service
+% Search Results Owerview | UDDL: Business Entity | Taxonorry | Architecture | Documentation |
#--L]| Unsubmitted Relationships | Tests | Suppart | Metrics | Miscellaneous || Administration
=] submitted
A
=55 Pending Revisw Created
+ ff]] Service vZ (1) _ :
‘ﬁ] Lnder Review Created By: Admin, Reposi.., i Created Date: 2007-06-22 10:16...
= 'ﬁ] Service (0+)
= 3] Overview (1) Submitted
ﬁ TestAsset (
+ff|] UDDI: Business Submitted By: Ad... B=] Submitked Date: 2007-0...
F G] Taxonomy (1)
+ Eﬁ] Architecture (1)
+ ﬁ] Documentation © Accepted
£ Eﬁ] Relationships (1
fccepted By Ad... b= Accepted Date: 2007-0..,
+ ff]] Tests (13
F G] Support (1)
* Eﬁ] Metrics (1) Assign Users
+ ﬁ] Miscellaneous (1
L9 Sepvire w2 (40 s i i
r 5 Assigned To Assigned Date | l Add l =
ame: TestAsset Yersion:l ID:S0500 Asset Type:Service UUID; Sead3alf-Z0e4-11dc-9523-2106fbb59a3c

9. Also verify that the Audit Log on the Administration tab is updated, as shown here.

Figure 2-8 ALER Asset Editor - Audit Log

Logs

Motes Revies
User Dake Type SUmmaky

Adrin, Repository B [2007-06-22 10:16:5,.. [Audit Log Asset [Testhsset (10,

Admin, Repository B [2007-06-22 10:16:5... |Audit Log Submitted

Adrin, Repository B [2007-06-22 11:22:5... |Audit Log Accepted

2-10

Configuring and Managing Advanced Registration Flows

CHAPTERa

Configuring the ALER Event Manager

This section discusses the Event Manager configuration that needs to be completed before using
the Advanced Registration Flows. It contains information on the following subjects:

“What Is the ALER Event Manager” on page 3-2
“Configuring the Event Manager’s System Settings” on page 3-3
“Configuring the Subscription Manager” on page 3-4

“Configuring Logging of Event Manager Events” on page 3-8

Configuring and Managing Advanced Registration Flows 3-1

Configuring the ALER Event Manager

What Is the ALER Event Manager

3-2

The Event Manager is a component embedded within ALER that manages event subscriptions,

event persistence, event filtering, and event delivery. Web Service endpoints can subscribe to the
Event Manager’s Subscription Manager and the asset registration events that are generated within
ALER are delivered to the Web Service endpoints.

The following diagram shows the different components that are involved.

Figure 3-1 Advanced Registration Flow Components

ALEP M Pmioess Engine
ALER SO0PMHTTR

[T ‘-ﬁ—w il i

pram—_1

SIS Clusher

Evert Motifier

Figure 3-2 Advanced Registration Flow Components

The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS server is configured to run out-of-the-box without any additional
configuration. However, you can also configure the Event Manager to use an external JIMS
server, such as Weblogic Server JMS or IBM WebSphere.

This section discusses the Event Manager configuration that needs to be completed before using
the Advanced Registration Flows. For information on configuring the Advanced Registration
Flows, see Chapter 5, “Configuring Advanced Registration Flows.”

Configuring and Managing Advanced Registration Flows

Configuring the Event Manager’s System Settings

Configuring the Event Manager’s System Settings

ALER’s System Settings section allows administrators to configure the basic ALER operation
and to enable/disable specific features. The Event Manager-related settings are under the
“Eventing” group under the main “External Integrations” category. For more information about
System Settings, see the ALER Administration Guide.

Additional “Eventing” properties are available for configuring an external JMS server, such
WebLogic Server and IMB WebSphere, and are described in Chapter 6, “Configuring JIMS
Servers for ALER.”

Enabling the Event Manager

The Event Manager needs to be enabled in ALER to allow the Event Manager to send events to
external Web Service endpoints.

1. Click System Settings in the sidebar on the ALER Admin screen.

Enter Event in the System Settings Search box to view all the Event Manager related settings.
Click True next to the Enable Event Manager property.

Click Save.

o &~ w D

Restart ALER for the configuration changes to take effect.

Configuring Optional Event Manager Settings

There are some optional “Eventing” properties that you can use to tune the Event Manager
performance.

Note: You must restart ALER after changing any Eventing property in order for the changes to
take effect.

Eventing Manager Notifier Thread Sleep (seconds)

If an endpoint is not unavailable when one or more events should be delivered to that endpoint,
the Event Manager notifier will retry delivering the event until the endpoint is available. The
cmee.eventframework.notifier.sleep property configures in seconds how long the notifier
should wait before trying to redeliver an event.

Configuring and Managing Advanced Registration Flows 3-3

Configuring the ALER Event Manager

Eventing Manager Store Thread Sleep (seconds)

As soon as an event is triggered, the Event Manager stores the event in memory before pushing
it to the JMS server so that the ALER thread is not blocked. The

cmee . eventframework.store.sleep property specifies how long the Event Manager’s Store
Manager thread should sleep before polling for the next event stored in memory. The default
polling delay is 60 seconds.

Eventing Manager Store Delivery Sleep (seconds)

By default, the Event Manager delivers events in batches. The

cmee .eventframework.delivery.sleep property specifies how long the Event Manager’s
Delivery Manager thread should sleep before selecting the next available batch of events from
the JMS server. The default delay between each batch is 7200 seconds (two hours).

Tip: The default cmee.eventframework.store.sleep and
cmee .eventframework.delivery.sleep property values can be tuned to control the
overall performance of ALER and the Web Service endpoints. These properties directly
impact the number of events that get triggered per second by the Event Manager. For
example, If a faster response is required for testing purposes, the default
cmee .eventframework.delivery.sleep value of 7200 seconds should be changed to
a reasonable testing amount.

Batch Size for Event Manager Deliveries

When the Event Manager delivers events in batches, the delivered batch size can be configured
using the cmee .eventframework.delivery.batch.size property. The default batch size is
100 events. If the Event Manager finds less number of events to deliver, it will deliver the
available events and then sleep for the time configured in the
cmee.eventframework.delivery.sleep property.

Configuring the Subscription Manager

3-4

The Subscription Manager is responsible for managing the event subscriptions by the Web
Service endpoints where the matched events will be delivered.

The Subscription Manager configuration file is located in <aler webapp
name>\WEB- INF\classes\EndPointEventSubscription.xml.

Configuring and Managing Advanced Registration Flows

Configuring the Subscription Manager

Configuring Web Service Endpoints

The Event Manager uses the EndPointEventSubscription.xml file to load information about
the Web Service endpoints where events need to be delivered. The host, port, URI, user and
password of the predefined ALPBM endpoint, or user-defined Web Service endpoint, need to be
configured, as shown in this example snippet:

<sub:EventSubscriptionData
xmIns:sub="http://www.bea.com/infra/events/subscription” xmlns:xsi=???
<sub:eventSubscription>
<sub:endPoint name="ALBPMEndpoint”>
<sub:host>maplanisOl.amer.bea.com</sub:host>
<sub:port>9000</sub:port>
<sub:uri>fuegoServices/ws/StatusChangeEnpointServicelListener</sub:uri>
<sub:targetNamespace>StatusChangeEndpoint</sub:targetNamespace>
<sub:operationName>newEvent</sub:operationName>
<sub:authenticationData>
<sub:basicAuthentication>
<sub:username>aler_workflow_user</sub:username>
<sub:username>aler_workflow_user</sub:username>
</sub:basicAuthentication>
</sub:authenticationData>
</sub:endPoint>
<sub:notifierClass>com.bea. infra.event.notifier._help.AlbpmHTTPEventNotifier
</sub:notifierClass>
<sub:expression>id > 500</sub:expression>
</sub:eventSubscription>
</sub:EventSubscriptionData>

As many endpoints can be added as desired and the endpoints can be located in different hosts or
ports and the events can be load balanced. The pre-defined Advanced Registration Flow has just
one endpoint called “StatusChangeEndpoint”.

Setting the Expression to Filter Events

Events can be filtered based on the value entered in the expression element.

Delivering all Events to an Endpoint

The default setting is to deliver all events to an endpoint. All the events that are triggered within
ALER are delivered to the OOTB endpoint when the expression element is empty.

<sub:expression></sub:expression>

Configuring and Managing Advanced Registration Flows 3-5

Configuring the ALER Event Manager

Delivering Events to an Endpoint Filtered by Event Type

The following XML snippet shows how to deliver an event of type AssetSubmission to an
endpoint:

<sub:expression> eventdata_name
="urn:com:bea.aler:events:type:AssetSubmission”</sub:expression>

You can also use the “OR” operator to filter more than one event type:

eventdata_name ="urn:com:bea.aler:events:type:AssetSubmission” OR
eventdata_name ="urn:com:bea.aler:events:type:AssetAccepted”

These are the event types that are supported:

urn:

urn:

urn:

urn:

urn

urn:

urn:

urn:

urn:

urn:

urn

urn:

urn:

urn:

urn:

urn:

urn

urn:

com:bea:
com:bea:
com:bea:
com:bea:
com:bea:

com:bea:

com:bea

com:bea

com:bea:
com:bea:
scom:bea:
com:bea:
com:bea:

com:bea:

com:bea

com:bea

zcom:bea:

com:bea:

aler:events:type:AssetSubmission
aler:events:type:AssetAccepted
aler:events:type:AssetTabApproved
aler:events:type:AssetAl ITabApproved
aler:events:type:AssetRegister

aler:events:type:PolicyAssertionChanged

:aler:events: type:MetaDataChange :name

raler:events:type:AssetUnSubmission

aler:events:type:AssetUnAccept
aler:events:type:AssetUnregister
aler:events:type:AssetStatusChanged
aler:events:type:MetaDataChange:version
aler:events:type:MetaDataChange:description

aler:events:type:CategorizationChanged:assetLifecycleStage

caler:events:type:CategorizationChanged:classification

taler:events:type:MetaDataChange: supported

aler:events:type:MetaDataChange:organizational ownership

aler:events:type:MetaDataChange:usagefee

Delivering Events to an Endpoint Filtered Using a JMS Message Selector

Selectors are a way of attaching a filter to a subscription to perform content-based routing.
Selectors are defined using SQL 92 syntax. The following is a complete list of fields that can be

3-6

Configuring and Managing Advanced Registration Flows

Configuring the Subscription Manager

used to write a filter expression to filter the events. These fields are added to the JMS message as
properties by the Event Manager and a JMS Message Selector that accesses the fields can be
written to filter the events.

submittedby_emailaddress = mrsmith@bea.com
asset_description = Test Asset

submittedby name = aler_workflow_user

submittedby _id = 99

asset_community = Java

eventdata_description = new aler event
eventsource_componentname = Aqualogic ALER

asset_name = TestAsset

eventsource_componenttype = ALER3.0

asset_typeid = 154

eventdata_eventid = dOcdac55-c78f-4a29-8aec-6ea9ba8d31f1l
eventdata_name = urn:com:bea:aler:events:type:MetaDataChange:name
asset_activestatus = ACTIVE

eventsource_location = ALERCore

asset_id = 50100

eventdata_version = verl.0

asset_version = 1

For more information about JMS Message Selectors, refer to the following web sites:
e http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

e http://activemq.apache.org/selectors.html

JMS Message Selector Examples
Here are some sample usages of JIMS message selectors:
e asset_id BETWEEN 50000 AND 50100

e eventdata_name = "urn:com:bea:aler:events:type:AssetSubmission®™ AND
asset_id BETWEEN 50000 AND 50100

e asset_name LIKE "Inventory"

e asset_id > 500

Tip: Symbols, such as “< >" used for less than/greater than, are not valid XML content. This
is because the expression is written in an XML file and parsed by the Event Manager, the

Configuring and Managing Advanced Registration Flows 3-7

Configuring the ALER Event Manager

XML unfriendly characters need to be mangled using the XML Rules. For example, you
must use “id > 5007, which is equivalent to “asset_id > 500”.

Configuring Logging of Event Manager Events

The Event Manager uses the same logging framework as ALER. By default, logging is enabled
to go to a file, but you direct the debug statements to go to the console by appending the following
categories to the log4fl _properties file in the <ALER Domain>\WEB-INF\classes

directory.

3-8

eventing subsystem

log4j
log4j
log4j
log4j
log4j
log4j

.category.
.category.
.category.
.category.
.category.
.category.

com.

com

com.
com.
com.
com.

bea.
.bea.
bea.
bea.
bea.
bea.

infra.
infra.
infra.
infra.
infra.
infra.

event.
event.
event.
event.
event.
event.

core= debug,eventinglLog,stdout

dm= debug,eventinglLog,stdout
facade= debug,eventinglLog,stdout
notifier= debug,eventinglLog,stdout
store= debug,eventinglLog,stdout
sub= debug,eventinglLog,stdout

Configuring and Managing Advanced Registration Flows

CHAPTERa

Administrating ALBPM Processes

This section contains information on the following subjects:

o Overview

Administering ALBPM Web Applications

Tuning the ALBPM Process Engine

Configuring a Standalone Process Engine for Failover

Using The ALBPM Log Viewer

Configuring and Managing Advanced Registration Flows 4-1

Administrating ALBPM Processes

Overview

After the Event Manager is ready to send events, the Process Engine needs to be configured in
order to be ready to process the Events. When ALER is installed, it provides an option to install
and configure the ALBPM Process Engine. This section assumes that the ALBPM Process
Engine was successfully installed.

Administering ALBPM Web Applications

42

To start the ALBPM Process engine and define the participants, you must launch the ALBPM
Admin Center.

Starting the ALBPM Admin Center

Follow these steps to launch the ALBPM Admin Center:

1. Navigate to the <BEA_HOME>\albpm57\enterprise\bin directory and double-click one of
the following files:

— albpmadmcenter.exe (Windows or UNIX GUI-based)

— .Istartwebconsole.sh (UNIX console-based). Then point your browser to
http://<host>:8585/webconsole (e.g., http://localhost:8585/webconsole).

2. On the Admin Center page, click the Start BPM Web Applications option.

Configuring and Managing Advanced Registration Flows

Administering ALBPM Web Applications

Figure 4-1 ALBPM Admin Center
{ZBEA AqualLogic™BPM Admin Center E]@

w v 2 %
b /év BEA Aqualogic™ BPM Admin Cegjfihe'a

Y

B Start BPM Web Applications

|

@]
@]
@]
@)

[# Configuration ~

wSerglel Eoning B a8 —

3. When it becomes available, click the Launch Process Administrator option to launch the
Process Administrator.

4. When prompted to enter the required credentials, enter the BPM admin user name and
password that was used on the FDI User Credentials panel during the installation process. The
recommended example for these credentials is bpm_admin for the user name and password.

Starting the ALBPM Process Engine

Follow these steps to start the ALBPM Process Engine.

1. Onthe ALBPM Process Administrator page, open the aler_engine Process Engine by
clicking the Engine link on the left side of the page.

Configuring and Managing Advanced Registration Flows 4-3

Ad

ministrating ALBPM Processes

Figure 4-2 ALBPM Process Administrator - Start / Stop

TR

< Business Parameters

& Extarnal Processes

a

EI Calendar Rules + Add N Delete Refresh Status Re-load Information from the Directary

B Haliday Rules
~#Engines [1 Name « Status Type Engine Actions
g Projects
Bl 5 ervica Endpaints O aler workflowl Mot running enterprize g @0 i 5
@ Wariables ¥ el e Mot running enterprise &> 80 W IS

44

2. Start the aler_engine by clicking the Start icon under Engine Actions on the right side of
the page. Starting the engine may take several minutes to complete. Make sure that the status
of the engine is Ready.

Once you the ALBPM Process Engine is running, you can stop it and then restart it to load your
latest workflow.xml changes.

Defining the ALBPM Participants

This section explains how to define the ALPBM Process Engine participants.

ALBPM Administrators

Using the FDI User Credentials, ALBPM Process Administrator can log into the Process
Administrator, start/stop the process engine, and create other users.

Advanced Registration Flow Participant

When the ALBPM Process Engine is installed by the BEA Products installer, it creates
aler_workflow_user as the Advanced Registration Flow user. By default, the password is also
set as aler_workflow_user, but the password can be changed in the Process Administrator, as
shown here.

Configuring and Managing Advanced Registration Flows

Administering ALBPM Web Applications

Figure 4-3 ALBPM Process Administrator - Change Password

About Pracess Adrainistratar
L—_| {# Organizational Settings

& Participants

~B Rolez

~IH Organizational Units
"@Groups

~@ Calendar Rules

~E Holiday Rules
""Engines

23 Projects

-l Service Endpoints

@ Wariables

-y Business Parameters

""" & External Processes

- Iq,,\:-"""'-' _-""""I
RFA Aaual oadic™ RPM Pracess Administrator / . hea

w

Organization adrinistrators

Phate
Enable User Adrninistration

Adrninistratar

|Saue| | Cancel | | Resetl

Advanced Properties

Change the password. ﬁ

Azsigned Ral /
ssigne ales =

A new participant can also be created for the role of “administrator” and this new participant can
be configured in the Event Manager’s Subscription Manager file. For more information, see
“Configuring the Subscription Manager”.

Configuring and Managing Advanced Registration Flows 4-5

Administrating ALBPM Processes

Tuning the ALBPM Process Engine

46

The following parameters need to be tuned using the ALBPM Process Administrator.

Advanced Properties

Go to the Engines > <Engine Name> > Engine Nodes > Advanced Properties page.

Figure 4-4 ALBPM Process Administrator - Advanced Properties

£ - S S
Engines > Edit Engine aler_workflows > Engine Engine Modes >

Edit the Engine engine nods infarmation

Basic Configuration | Advanced Properties

Properties

Maximurn nurnber of connections per server s00
Maxirnurm number of connections per external agent 50
Handshake Tirmeout &0

Additional Protocol Parameters

Seconds

Database Runtime Properties

Go to the Engines > <Engine Name> > Edit Engine Database Configuration page.

Figure 4-5 ALBPM Process Administrator - Database Runtime

Runtime

Maximurn Pool Size 100
Connection Idle Time (rmins). s0
Maximurn Opened Cursors 500
|Saue| | Cancel | | Resetl

Memory and Execution Thread Properties

Go to the Engines > <Engine Name> > Execution page.

Configuring and Managing Advanced Registration Flows

Configuring a Standalone Process Engine for Failover

Figure 4-6 ALBPM Process Administrator - Memory and Threads

= —
Memory

Maxinmum J¥M Heap Size 51z ME
Maxinum Instance Size 1600 KB
Participant Cache s0oo0

Instances Cache S00000

Execution Threads

Maximum number of execution threads used for interactive executions s00

Maximum number of execution threads used for automatic tasks =0

Priority of Automatic Execution Threads 5

Configuring a Standalone Process Engine for Failover

To support failover of ALBPM standalone process engines, you can configure a backup engine(s)
in your environment. One of the engines in this federation is marked as PRIMARY and the
others assume to be backups for this primary engine. Multiple engines can be configured to serve
as backups. Any of these backup engines will take the role of the primary if the designated
primary fails. When the server that has failed comes back online, it will join in as a backup to the
one acting as primary.

For detailed instructions on configuring backup engines, see
http://edocs.bea.com/albsi/docs55/pdfs/Fuego5-EngineFailover.pdf.

Using The ALBPM Log Viewer

The ALBPM Log Viewer enables you to read information logged by the Process Execution
Engine. A set of log files is created for each project you define. The Studio Log Viewer reads the
files and displays them to help you monitor and trace Engine execution.

To launch the Log Viewer, double-click the alopmlogviewer.exe file in the <ALBPM
Enterprise Home>\bin directory.

Filtering Event Log Messages for ALER Flows

You can filter log messages so that the Advanced Registration Flows log Info, Debug, and Fatal
messages.

Configuring and Managing Advanced Registration Flows 4-1

Administrating ALBPM Processes

4-8

Turn on the “Debug” level on the Log page of the Process Engine using the Process Administrator
preference settings. By default, the level is set to “Warning”.

Go to the Engines > <Engine Name> > Log page.

Figure 4-7 ALBPM Process Administrator - Logging Preferences

TT TOoooT T Var T T I AT

Edit Engine aler workflows

Edit the Engine infarmation

Basic Configuration | Log | Execution | Services | Networking | Others

Properties
Messages Logged from Server | pebug [+]
Messages Logged from BP-Methods ! Dehug __fj
Messages Sent by Email [Mane 8]
Maximum Size of Log File 2000 kb

Maximum Number of Log Files I=

When you turn on the Debug level though you will notice that the Process Engine prints a lot of
information, not just for the ALER Advanced Registration Flows, but other Process Engine
information as well. To filter the debug logging to show only the ALER flow-related information,
follow these steps:

1.
2.
3.
4.

Within the Log viewer, select Message in the left-most list box.
Select Begins With in the next list box.

Type ALER: in the text box

Click the Apply Filter button.

The ALER Event Logging prints a prefix of ALER: for all logged event messages, as shown here.

Configuring and Managing Advanced Registration Flows

Using The ALBPM Log Viewer

Figure 4-8 Log Viewer With ALER Filter

{d Log Viewer - D:\beaalbpm5. 7Aenterpriseiserverialer_workflowsiloghaler_workflows. log E]@
File Wiew Help
é % - €§3 Filter: | j i Clear Filker @
|Message ﬂ ‘Begins with j |ALER | N\ Apply Filker |
Severity Message Dake Timne: E3
v Lrenog ALER. TSI LT Lol TEdsLrdr T g [DLV Ha L=TTY "
@ Debug ALER: Gok the Global registrar and password admin n0pasSwird Jun 22,...|11:22:47 1%
@ Debug ALER: Got URI and User Infohttp:/fmpalanis0l .amer, bea, com: 7001 falerbuild2fservices/FlashlineReqgistr... |Jun 22,...|11:22:47.., -
@ Debug ALER: Got AssetTypeld154 Jun 22,...[11:22:47..,
@ Debug ALER: starting the autoaccept 50500 154 Jun 22,...(11:22:49
@ Debug ALER: checking the AssetType Jun 22,...[11:22:49... _
@ Debug ALER: Autodccept attribute is Found For the AssetType For the asset with id 50500 AutofcceptStr is true |Jun 22,...(11:22:49,., =
@ Debug ALER: Auto Accept is set For asset with id 50500 The value set is true Jun 22,...|11:22:49 AES
@ Debug ALER: Accepting the asset with name = Testasset id = 50500 Jun 22,...[11:22:49,., . T
@ Debug ALER: Done accepting the asset Jun 22,... [11:22:50.. | | || g
(3 1: Bookmarks QO : Find 3: Item Properties
Configuring and Managing Advanced Registration Flows 4-9

Administrating ALBPM Processes

4-10 Configuring and Managing Advanced Registration Flows

CHAPTERa

Configuring Advanced Registration
Flows

This section contains information on the following subjects:
e Overview of Advanced Registration Flows

e Creating and Customizing a Workflow Configuration File

Wiring Asset Events to Flows

Automatic Asset Registration Flows

Multi-tier Automatic Assignment Flows

Metadata Change Flows

Time-based Escalation Flows

Validation Expiration Flows

Customizing Flow Notification Email Templates

Configuring and Managing Advanced Registration Flows 5-1

Configuring Advanced Registration Flows

Overview of Advanced Registration Flows

Tip: Before you begin, you should read Chapter 2, “Getting Started with Advanced
Registration Flows” to quickly get started using the Advanced Registration Flow feature
using the bundled ALPBM Web Service endpoint that is configured to work with the
ALBPM Process Engine.

ALER bundles pre-built ALBPM flows that attempt to automate ALER asset submission,
acceptance, registration and other governance process. This section discusses the configuration
that is required before starting the ALBPM Process Engine to process the asset events that are
triggered by ALER. For more information about configuring the Process Engine to trigger flows,
see Chapter 3, “Configuring the ALER Event Manager.”

The flows are also designed to be flexible and can be customized using the Workflow
Configuration file (workflow.xml). This section also discusses each flow in detail and gives
examples of how to tailored to suit your environment.

Creating and Customizing a Workflow Configuration File

5-2

This section explains how to create and customize a Workflow Configuration XML file.

Generating a Workflow Configuration File

Generate the workflow.xml file using the Generate Workflow Config tool (config_gen.bat).
This tool connects to ALER and creates a bootstrapping file that can be customized. For more
information about generating the workflow.xml file, see “Generating the Workflow Config
File.”
1. From a command prompt, run the Generate Workflow Config tool as follows:

> config_gen.bat URI User Password ConfigDir

where:

— URI = ALER URI, using the following format:
http://<host>:<port>/<aler web app name>/services/FlashlineRegistry
For example: http://localhost:7001/alerbuild/services/FlashlineRegistry

— User = ALER user name

— Password = ALER password

Configuring and Managing Advanced Registration Flows

Creating and Customizing a Workflow Configuration File

— ConfigDir = the directory where the workflow.xml file will be created

Note: If a file already exists, it will be renamed to workflow.xml . bak.

2. Copy the newly generated workflow.xml file to the <ALBPM Enterprise
Edition>/enterprise/server/aler_engine directory.

3. Open the workflow.xml file using the XML editor of choice.

Defining the ALER Connection and Registrar

The Workflow Configuration file will load the ALER connection and registrar information from
the following XML data.

<alerconnection>
<uri>http://localhost.7001/aler/services/FlashlineRegistry</uri>
<registrar>
<user>admin</user>
<password>n0pa55w0rd</password>
</registrar>
</alerconnection>

Encrypting the Registrar User Password

The Security Encrypt Password tool (runWfSecurity.bat) allows you to encrypt the registrar
passwords that are stored in the Workflow Config file. The tool recursively scans the file and
encrypts all the password elements it encounters.

For more information see “Encrypting Your Passwords.”

Configuring and Managing Advanced Registration Flows 5-3

Configuring Advanced Registration Flows

Wiring Asset Events to Flows

5-4

The Advanced Registration Flows are designed with a flexible framework where asset events can
be wired to one or more flows that will be executed when an event is triggered, as illustrated in
Figure 5-1.

Figure 5-1 Wiring Asset Events to Flows

Community
Community MUulti-Ti

Note: All the events are wired to pre-defined flows out-of-the-box. The wirings only need to be
changed if customizations or new flows are designed.

The wiring of asset events to flows is configured within the Workflow Configuration file. For
example, the following configuration snippet shows that when an “Asset Submitted” event is
triggered, it in turn triggers a flow to automatically accept the asset based on rules that are
configured in the Workflow Configuration file.

<!--Community Flows-->
<state name="urn:com:bea:aler:events:type:AssetSubmission'>

Configuring and Managing Advanced Registration Flows

Wiring Asset Events to Flows

<action>CommunityAccept</action>
</state>

<I--The Multi_tier Flows-->

<state name="urn:com:bea:aler:events:type:AssetAccepted'>
<action>MultiTier_Tierl_Assign</action>

</state>

<state name="'urn:com:bea:aler:events:type:AssetTabApproved">
<action>MultiTier_NextTier_Assign</action>

</state>

<I--Asset Registration Status Flows-->

<state name="urn:com:bea:aler:events:type:AssetAllTabApproved'>
<action>AllTabApproved_Register</action>

</state>

This example configuration wires the following events to various flows. The <action> element
contains the name of the flow that will be executed.

1.
2.
3.
4.

When an asset “submitted” event is triggered, execute the Community Accept flow.
When an asset “accepted” event is triggered, execute the MultiTierl flow.
When a tab “approved” event is triggered, execute the Multi-Tier Next Tier flow.

When “all the tabs approved” event is triggered, execute the Automatic Registration flow.

Some of the flows take parameters that are needed as input. Different parameters are passed to
different flows. For example, the ChangeCAS (Change Custom Access Settings) flow takes
<customAccessSettings> as a parameter. Here is a sample wiring when an asset is registered,
where the flow automatically assigns MyCAS and MyCAS2 custom access settings.

<state name="'urn:com:bea:aler:events:type:AssetRegister'>
<action>ChangeCAS</action>

<customAccessSettings>
<customAccessSetting>MyCAS</customAccessSetting>
<customAccessSetting>MyCAS2</customAccessSetting>

</customAccessSettings>

</state>

Configuring and Managing Advanced Registration Flows 5-5

Configuring Advanced Registration Flows

Automatic Asset Registration Flows

5-6

This section describes how the Advanced Registration flows can automate the manual asset
acceptance and registration process done using the ALER Asset Editor. For information on using
the ALER Asset Editor and the asset registration process, refer to the ALER Registrar Guide.

Note: Do not enable the “Community Acceptance” or the “Automated Acceptance” flows if
repository users submit assets via the “Submit an Asset” link. This configuration is not
currently supported in ALER.

Configuring Community Flows

The Community flow provides a way to automate the asset acceptance, assignment, and
registration process by allowing the configuration of automated assignment rules and also
introduces the notion of federated registrars among different authorities. Rather than spamming
many registrars across all communities (through the system registrar notification), you could
limit the system registrar to one or a few individuals, and let the Automatic Acceptance flow
accept assets on behalf of a registrar-of-record for the community. The Community flow feature
can distribute asset submissions to those with the authority to approve them for the community.

The Community flow can be used to address the following scenarios:

e Automatic federated registrars support for acceptance as opposed to a single registrar
getting many notifications about newly submitted assets.

e Even if asset acceptance is manual, the Community flow can be used to automate the
assignment of the asset approvals to pre-defined approvers. Creating pre-defined approvers
can be achieved in two ways:

— Creating a list of pre-defined approvers for all the tabs in that asset.

— Using multi-tier assignment (this is the same as the Multi-Tier flow but it operates
within the Community).

e Automation of the registration process. The flows will automatically register the assets if
the following conditions happen:

a. When all the tabs approved
b. When the last tier in a Multi-tier process is completed

c. Or whichever happens first.

Configuring and Managing Advanced Registration Flows

Automatic Asset Registration Flows

The Communities are configured within the flow configuration and Asset Types, Producing
Projects, etc., can point to a Community.

The following flowchart demonstrates how a Community for an asset is located by the flow, as
well as how the rules for automatic acceptance are located by the flow.

Configuring and Managing Advanced Registration Flows 5-7

Configuring Advanced Registration Flows

Figure 5-2 Automatic Asset Acceptance Flowchart

Find the Community of the Asset @k at "autoAccept' In AsselType Se“i@

subflow tofind how the workflows arrive at the autoAcoept missing?

Community of the Asset

Please look at "Find the Community of the Asset” ﬁ
yes

(Get the Community from EvenD

-— — — — — — — — —(Find the Community of the F\SSBD

Community missing?

yes 14] yes

Community empty?
no

A
@et the Community from AsselType Sattlnga @d‘ at"autofccept’ in Community CU""QWQHDD

autodccept missing?
¥es Lommunity missing?

no

Gook at "autoAccept’ in Categorization Sertings)

(Gst the Community from ProducingProject Seninga

autoAccept missing?
no

Community missing? yes
no

Gampane the submitter role with the roles in <aut0ROIQsa

Return the Community |

Roles match?
¢ no

Accept if autoAccept = true

Note: The same flowchart applies for automatic Registration. Simply substitute autoRegister
for autoAccept.

5-8 Configuring and Managing Advanced Registration Flows

Automatic Asset Registration Flows

Setting the Community for an ALER Project

Define the community for a project using the <producingProjectSettings> element. The
following example demonstrates creating a project named “Registry” for the “SOA Center of
Excellence” community, and with an 1D of “40000”.

<producingProjectSettings>
<producingProject name="Registry” community="SOA Center of Excellence
id=""40000"/>

</producingProjectSettings>

Setting the Community for an Asset Type

Define the community for an Asset Type using the <assetType> element. The following
example demonstrates creating an asset type named “Application” for the “SOA Center of
Excellence” community, and with an ID of “158”.

<assetType name="Application” community="SOA Center of Excellence
id="158">
<allTabs>

Configuring a Community to Automatically Accept an Asset

The following example demonstrates how to set the “SOA Center of Excellence” community to
automatically accept assets.

<communities name="SOA Center of Excellence autoAccept="true”>

Note: Do not enable the “Community Acceptance” or the “Automated Acceptance” flows if
repository users submit assets via the “Submit an Asset” link. This configuration is not
currently supported in ALER.

Configuring a Community to Assign Assets for Tab Approval

If the AssetSubmitted event is wired to the Community flow, then the <approvers> element lists
the approvers that will be assigned by the Community flow automatically.

<communities name="Java” autoAccept="true”>
<approvers>
<alerid>5003</alerid>
<alerid>5004</alerid>
</approvers>

Configuring and Managing Advanced Registration Flows 5-9

Configuring Advanced Registration Flows

5-10

For instructions on using the <alerid> in Tab Approval flows, see “Using an <alerid> for Tab
Approvals.”

Configuring a Community to Assign Assets for Tab Approval Using Multi-tier

Multi-tier assignment is the same as the Multi-Tier flow but it operates within the Community.
For more information on the Multi-tier flow, see “Multi-tier Automatic Assignment Flows” on
page 5-13.

Note: The tabs that are provided within the Multi-tier configuration of a community should be
the common tabs that exist in all the asset types.

Configuring a Community to Automatically Register an Asset

The following example demonstrates how to set the “SOA Center of Excellence” community to
automatically accept and register assets.

<communities name="SOA Center of Excellence autoAccept="true”
autoRegister="true”>

Configuring a Community to Have a Dedicated Registrar

The Registrar user name and password is required to accept, assign, and register assets. The
Community flow will load the registrar information from the Community that the asset belongs
to. If an asset does not belong to a community or if the registrar information is not found in the
community, then the global registrar will be used by the Community flow.

The following is the order of precedence in getting the Community tag by the Community flows,
as illustrated in Figure 5-1:

e Community Tag in the incoming event
e Community Tag in the Asset Type that the incoming asset belongs to

e Community Tag in the Producing Project that the incoming asset belongs to

Configuring Automated Acceptance and Automated
Registration Flows

Besides using the Community flows to automatically accept and register assets, the following
rules can be used to accept and register assets, as illustrated in Figure 5-1.

Configuring and Managing Advanced Registration Flows

Automatic Asset Registration Flows

Note: Do not enable the “Community Acceptance” or the “Automated Acceptance” flows if
repository users submit assets via the “Submit an Asset” link. This configuration is not
currently supported in ALER.

Asset Type

The autoAccept and autoRegister flag within the AssetType element can be used to
automatically accept or register assets.

<assetType name=""Application” autoAccept="true” autoRegister="true”
i1d="158">
<allTabs>
<tab name="Oveview’/>
<tab name="Application Lifecycle”/>
</allTabs>

Categorization Settings

By default the flows do not look for the autoAccept and autoRegister flags, since the look-up
may affect performance. However, this can be enabled by using the <action> flag.

As shown in this example, the <action> flag must be set to true if the flows should use the
Categorization settings. If not, the Categorization settings will be ignored.

<catgorizationTypeSettings action="true”>
<catgorizationType name="AssetFunction” type “100>
<catgorizations name="Application Adapters” autoAccept="false”/>
<catgorizations name="Customer Information Acquisition”
autoAccept="false”/>
<catgorizations name="eCommerce Frameworks” autoAccept="false”/>
</catgorizationType>

Submitter Role

The submitter role can be used to automatically accept or register the asset. If the role specified
in the following configuration matches the submitter role, then the asset will be automatically
accepted.

<automation>
<autoRoles>
<role>admin</role>
<role>accesAdminstrator</role>

Configuring and Managing Advanced Registration Flows 5-11

Configuring Advanced Registration Flows

5-12

</autoRoles>
<autoApprovalTabs>
<tab name="Documentation”/>
</autoApprovalTabs>
</automation>

Conflict Resolution and Precedence

In some cases, there will be more than one rule that matches for a given event trigger, so there is
a hierarchy for how each rule is evaluated by the Automated Acceptance and Automated
Registration flows for acceptance, registration, etc., as illustrated in Figure 5-1. The flow will
scan for the following piece of metadata and as soon as it encounters the one in the following
precedence, it will break and use the settings in that metadata.

e AssetType settings in the Flow configuration file

e Community Tag found in the incoming asset

e Community Tag found in the AssetType settings in the Flow configuration file

e Community Tag found in the ProducingProject settings in the Flow configuration file
e Categorization settings in the Flow configuration file

e SubmitterRole settings in the Flow configuration file

Configuring and Managing Advanced Registration Flows

Multi-tier Automatic Assignment Flows

Multi-tier Automatic Assignment Flows

Multi-tier flows structure the asset tab approval process in multiple steps called tiers. Asset
approval tabs can be grouped in tiers, and the Mult-tier flow tracks each tier to verify whether all
the tabs are approved by the designated approvers. As soon as the last tab in a tier is approved,
the Mult-tier flow starts the next tier by assigning the asset to the next level of designated

approvers.

Use Cases

e In some cases, it may be desired to assign tabs for Tab Approval in multiple steps called
Tiers. For example, it may be desirable to approve the Architecture tab first before
approving the Documentation tab. This is because any architectural issue needs to be
corrected first before it comes to the attention of the Documentation expert.

e In previous releases, Tab Approval was done manually by the registrar by manually
tracking the status of each tab approval and then assigning the tabs for the next tier level
approvals. With the Multi-tier flows, this process is automated by the flows.

The following flowchart demonstrates the flow of the Mult-tier process.

Configuring and Managing Advanced Registration Flows 5-13

Configuring Advanced Registration Flows

Figure 5-3 Multi-tier Automatic Assignment Flowchart

@

Starting Multi-Tier Tier1

:

Ggsel Accepted Event is raoeivaD

Start First Tier Assignment

Gmk for Multi-Tier Config In the Asset Typ9

no Faund Tiers 7

Gﬂok for Multi-Tier Config in the Cun’lrlsunihD

Found Tiers 7
yes

Gssign First Tier approvers for the Asset

Starting Multi-Tier Next Tier

¢

Cl'ab Approved Event is lecei\re[D

Start MexiTier Assignment

Gnnk for Multi-Tier Config In the Asset T@

ka for Multi-Tier Config in the Cornrnuni‘.a

Found Tiers. ?

|
q-'rom the name of the Tab approved, find the cumrent 'I':;D

y

Grum ALER, find the status of all the tabs in the current Tl@

All Tabs approved in current Tier?|
yes

Community of the Asset

Please look at "Find the Community of the Assat"
subflow to find how the workflows arrive at the

Load Next Tier

Assian spprovers for the Asset

Using an <alerid> for Tab Approvals

When the workflow.xml file is generated, the following XML section is created under the
<al IAssetSettings> section. These are all the users that are created in ALER.

5-14 Configuring and Managing Advanced Registration Flows

Multi-tier Automatic Assignment Flows

<alerUsers>
<user name="admin" alerid="99"/>
<user name="allpriv" alerid="50000"/>
<user name="nopriv" alerid="50001"/>
<user name="tierl" alerid="50002"/>
<user name="tier2" alerid="50003"/>
<user name="mrsmith" alerid="50004"/>

</alerUsers>

As the Workflow Administrator, you need to identify the user(s) by name that you want to use
for approving the asset tabs and use the corresponding <alerid>. Then you can use that
<alerid> in the Workflow XML, such as in the following Multi-tier approval flow:

<tiers>
<tier name="Tierl">
<approvers>
<alerid>50001</alerid>
</approvers>
<tabs>
<tab name="Overview'/>
<tab name="Technical'/>
<tab name="Documentation"/>
</tabs>
</tier>

Setting Up a Community for Multi-tier Tab Approval

The following example demonstrates how the Multi-tier flow is configured for tab approvers in
the “SOA Center of Excellence” community to automatically accept tabs.

<communities name="SOA Center of Excellence autoAccept="true”>
<tiers>
<tier name="Tierl”>

<approvers>
<alerid>5002</alerid>

</approvers>

<tabs>
<tab name="Overview’>
<tab name="Taxonomy”>

</tabs>

Configuring and Managing Advanced Registration Flows 5-15

Configuring Advanced Registration Flows

</tier>
<tier name="Tier2”>
<approvers>
<alerid>5003</alerid>
</approvers>
<tabs>
<tab name="Architecture”>
</tabs>
</tier>
</tiers>
</communities>

Note: Tabs that are provided within the Multi-tier configuration of a Community should be the

common tabs that exist in all the Asset Types.

Setting Up an Asset Type for Multi-tier Tab Approval

The following example demonstrates how the tabs of an asset type of “Application” are

configured for multi-tier approval.

<assetType name="Application” id="158">
<allTabs>
<tab name="Oveview’/>
<tab name="Application Lifecycle”/>
<tab name="License Information”/>
<tab name="Certification Tracking”/>
<tab name=""Taxonomy”/>
<tab name="Documentation”/>
<tab name="Relationships”/>
<tab name=""Support’/>
<tab name="Cost Categories™/>
<tab name="Ownership”/>
<tab name="Technology Stack”/>
<tab name="Operational Information”/>
<tab name="Miscel laneous”/>
</allTabs>
<tiers>

<I--Please change “ _CHANGE_TIER1_NAME_ to the name of the Tier-->

<l--Example:- “Tierl”-->

5-16 Configuring and Managing Advanced Registration Flows

Multi-tier Automatic Assignment Flows

<tier name="Tierl”>
<approvers>
<alerid>99</alerid>
</approvers>
<tabs>
<I--Please change “_CHANGE_TABNAME_” to the name of the Tab-->
<I--Example:- “Documentation”-->
<tab name="Overview’>
<tab name="Taxonomy’’>
</tabs>
</tier>
</tiers>

Configuring and Managing Advanced Registration Flows 5-11

Configuring Advanced Registration Flows

Metadata Change Flows

Metadata flows are a group of flows that take one or more actions when a metadata element of an
asset changes. The Metadata element that changes will trigger an event that is wired to one or
more flows. For instructions on how to wire an event to a flow, see “Wiring Asset Events to
Flows.”

Use Cases

These are some of the use cases where Metadata Change Flows may apply:

e When the “Asset Lifecycle Stage” metadata element of an asset changes from “Build” to
“Release,”, you may want to change Custom Access Settings to have more restricted
access control to the asset.

e When the “Name” of an asset changes, you may want to notify the subscribers.

e When any metadata element of an element changes, you may want the asset to go through
a “Change Management” approval process. The “Change Management” will involve the
following:

— Unapprove a tab named “Change Management”
— Assign the asset to the registrar

— Append the kind of change to a field called “Reason for reassignment” to assist the
registrar

Configuring Metadata Change Flows
Available Metadata Change Events/States

Following are the states that are available that can be wired to Metadata Change flows.

Note: Besides these events, any categorization changes can be wired, including the custom
categorization.

<state name="urn:com:bea:aler:events:type:MetaDataChange:name”>

<state name="urn:com:bea:aler:events:type:MetaDataChange:version”>

<state name="urn:com:bea:aler:events:type:MetaDataChange:description”>

<state name="urn:com:bea:aler:events:type:CategorizationChanged:

assetLifecycleStage”/>

<state
name=""urn:com:bea:aler:events:type:CategorizationChanged:classification”>

<state name="urn:com:bea:aler:events:type:MetaDataChange:supported”>

5-18 Configuring and Managing Advanced Registration Flows

Metadata Change Flows

<state
name=""urn:com:bea:aler:events:type:MetaDataChange:organizationalOwnership”>
<state name="urn:com:bea:aler:events:type:MetaDataChange:usageFee”>

Availahle Flows That Can Be Wired to Actions

These are the pre-defined flows that can be wired to actions. These flow names should appear as
content inside the <action> element to indicate that this is the action that should take place when
the event occurs. Note that any element other than <action> are parameters used by specific
flows.

ChangeCAS — applies one or more Custom Access settings to an asset
ChangeAssetLifecycle — sets the Asset Lifecycle Stage of an asset
ChangeClassification — sets the classification of an asset
ReAssignAssetToRegistrar — assigns the asset to Registrar
AddCommunityTag — saves the “Community” of an asset to ALER
NotifySubscriber — notifies the Subscribers about the Metadata Change

NotifyRegistrationActors — notifies the Registrar, Subscribers, Owners, etc., about
the Metadata Change

NotifyCustomUser — notifies configured custom users about the Metadata Change
UnapproveChangeManagementTab — triggers the Change Management process

ResetChangeManagementTab — resets the “Reason for reassignment” field in the Change
Management tab as soon as the Change Management tab is approved

CommunityAccept — invokes the Community Accept Flow used when an asset is
submitted

CommunityAssign — invokes the Community Assign Flow used when an asset is accepted
MultiTier_Tierl_Assign — invokes the Multi-Tier Flow used when an asset is accepted

MultiTier_NextTier_ Assign — invokes the Multi-Tier Flow used when a tab is
approved

ApproveTabAction — approves one or more tab

UnapproveTabAction — unapproves one or more tab

Configuring and Managing Advanced Registration Flows 5-19

Configuring Advanced Registration Flows

5-20

e AutoApproveTabAction — approves one or more configured tab based on the role of the
submitter

e AllTabsApproval_Register — invokes the flow to register the asset when all the tabs are
approved

e ReAssignAssetToRegistrar — Assigns the asset to the Registrar for approval. The flow
uses the Community Registrar if one is configured. If not, it uses the Global Registrar.

e ResetFlowState — Resets the State information used by the Timer based flows. This is
useful in cases where a Timer flow is tracking the Unsubmitted assets and when the state
changes from Unsubmitted to submitted, so the State information can be reset. If not reset,
then if the asset goes back to Unsubmitted, the workflows use the same state that was
previously set. This is not always desirable and the ResetFlowState action can be used in
appropriate events or states to reset the state information.

e UnRegisterAssetAction — Unregisters the Asset if the asset is in registered state.

Example Metadata Change Configuration

This sample configuration specifies that when an asset is registered, it invokes two flows by the
names of “NotifySubscriber” and “ChangeCAS.” Note that the element
<customAccessSettings> is a parameter to the flow ChangeCAS, which tells the flows the
names of the CAS that should be applied.

<state name="urn:com:bea:aler:events:type:AssetRegister’>
<action>NotifySubscriber</action>
<action>ChangeCAS</action>
<customAccessSettings>
<customAccessSetting>MyCAS</customAccessSetting>
<customAccessSetting>MyCAS2</customAccessSetting>
</customAccessSettings>
</state>
<state name="urn:com:bea:aler:events:type:AssetUnAccept’>
<action>NotifySubscriber</action>
<action>ChangeClassification</action>
<classification>Approved</classification>
</state>

Configuring and Managing Advanced Registration Flows

Metadata Change Flows

Example Metadata Change Configuration That Checks for Metadata Value

It is also possible to invoke a flow not only when a metadata element changes, but also when it
takes a specific value. For example, when the “Asset Lifecycle Stage” metadata element of an
asset changes from “Build” to “Release,” you may want to apply one set of Custom Access
Settings, where as when the value changes from “Plan” to “Build,” you may want to apply a
different set. Here is an example:

<state
name="urn:com:bea:aler:events:type:CategorizationChanged:AssetLifecycleSta
ge” value="Stage 4 - Release”>
<action>ChangeCAS</action>
<customAccessSettings>
<customAccessSetting>MyCAS</customAccessSetting>
</customAccessSettings>
</state>
<state
name="urn:com:bea:aler:events:type:CategorizationChanged:AssetLifecycleSta
ge” value="Stage 3 - Build”™>
<action>ChangeCAS</action>
<customAccessSettings>
<customAccessSetting>MyCAS2</customAccessSetting>
</customAccessSettings>
</state>

ChangeClassification

Sets the classification of an asset. ChangeClassification uses the following element to set the
classification.

<state name="urn:com:bea:aler:events:type:AssetRegister’>
<action>ChangeClassification</action>
<classification>Approved</classification>

</state>

ChangeCAS

Applies one or more Custom Access Settings to an asset. ChangeCAS uses the following element
to set the custom access settings.

Configuring and Managing Advanced Registration Flows 5-21

Configuring Advanced Registration Flows

5-22

<state name="urn:com:bea:aler:events:type:AssetRegister’>
<action>ChangeCAS</action>
<customAccessSettings>
<customAccessSetting>MyCAS</customAccessSetting>
<customAccessSetting>MyCAS2</customAccessSetting>
</customAccessSettings>
</state>

ChangeAssetLifecycle

Sets the Asset Lifecycle stage of an asset. ChangeAssetLifeCycle uses the following element to
set the asset life cycle.

<state name="urn:com:bea:aler:events:type:AssetRegister”>
<action>ChangeAssetLifeCycle</action>
<assetLifeCycle>Stage 3 - Build</assetLifeCycle>
</state>

ApproveTabAction

The ApproveTabAction flow approves one or more tabs of an asset. The following configuration,
approves the “Overview” and “Taxonomy” tabs.

<state name=?urn:com:bea:aler:events:type:MetaDataChange:name?>
<action>ApproveTabAction</action>
<approveTabs>
<tab name=?0verview?>
<tab name=?Taxonomy?>
</approveTabs>
</state>

UnapproveTabAction

The following element configures the list of tabs to be unapproved by the UnapproveTabAction
flow.

<state name="urn:com:bea:aler:events:type:MetaDataChange:name”>
<action>UnApproveTabAction</action>
<unapproveTabs>
<Tab name=""Overview”’>
<Tab name=""Taxonomy’>

Configuring and Managing Advanced Registration Flows

Metadata Change Flows

</unapproveTabs>
</state>

AutoApproveTabAction

The AutoApproveTabAction flow approves tabs based on the role of the submitter. For example,
the following element under <al 1AssetSettings> configures the list of tabs that need to be
automatically approved based on the role of the submitter. The roles that are acceptable are also
configured.

<automation>
<autoRoles>
<role>admin</role>
<role>accesAdminstrator</role>
</autoRoles>
<autoApprovalTabs>
<tab name="Documentation”/>
</autoApprovalTabs>
</automation>

Here is the configuration for invoking the flow:

<state name="urn:com:bea:aler:events:type:AssetRegister’>
<action>AutoApproveTabAction</action>
</state>

UnapproveChangeManagementTab

When any metadata element of an element changes, you may want the asset to go through a
“Change Management” approval process, which involves following.

e Unapprove a tab by name “Change Management”
e Assign the asset to the registrar.

e Append the kind of change to a field called “Reason for reassignment” to assist the
registrar
<state name=urn:com:bea:aler:events:type:MetaDataChange:name’>
<action>UnApproveChangeManagementTab</action>
</state>

Configuring and Managing Advanced Registration Flows 5-23

Configuring Advanced Registration Flows

ResetChangeManagementTah

This flow resets the “Reason for reassignment” field in the Change Management tab as soon as
the Change Management tab is approved.

<state name="urn:com:bea:aler:events:type:AssetTabApproved”>
<action>MultiTier_NextTier_Assign</action>
<action>ResetChangeManagementTab</action>

</state>

NotifyCustomUser

Notifies configured custom users about the metadata change. The email addresses of the users are
configured inside the <customNoti fication> element under <al IAssetSettings>, as shown
below:

<allAssetSettings>
<notification timerinterval="id”>
<customNotification>
<emai lAddress>smith@bea.com</emai lAddress>
</customNotification>
</notification>

Invoking Flows Based on Approval of Named Tabs
A metadata change flow can be executed based on the approval of a specific tabs, as follows:

<state name="'urn:com:bea:aler:events:type:AssetTabApproved" value
="Overview'>
<action>MultiTier_NextTier_Assign</action>
<action>ChangeAssetLifecycle</action>
<assetLifecycle>Stage 3 - Build</assetLifecycle>
</state>

5-24 Configuring and Managing Advanced Registration Flows

Time-based Escalation Flows

Time-based Escalation Flows

The Time-based Escalation flows track assets in various states and notifies all interested parties.
The following section explains how to configure the Time-based Escalation flows. There are four
different kinds of Time-based Escalation flows and each one can be configured individually, as
described in the following sections.

Open the workflow.xml configuration file and locate the <notification> element.

<notification timerinterval="1d">
<numT imesNotify>10</numTimesNotify>
<daysBeforeNextNotification>2</daysBeforeNextNotification>

e The timeriInterval element specifies the time interval after which the flows will be
triggered. In a production environment, this should be set to *1d'*, which means the flows
will be triggered once a day. However for testing purposes, you can set it to **1m™ or **5m"
to trigger the flows every minute or every five minutes. Also, each time this field is
changed, the Event Engine needs to be restarted, unlike the other field changes that can be
refreshed using the refresh tool.

e The numTimesNotify element specifies how many times the notifications should be sent
by the Time-based Escalation flows.

e The daysBeforeNextNotification element specifies how many days need to elapse in
between the notifications.

Note: If the timerlInterval element is configured in minutes to trigger flows in minute
intervals for testing purposes, then the specified interval for
daysBeforeNextNotification will also be interpreted in minutes.

The following flowchart demonstrates the flow of the Time-based Escalation flows.

Configuring and Managing Advanced Registration Flows 5-25

Configuring Advanced Registration Flows

Figure 5-4 Time-based Escalation Flowchart

G}o Unapproved Assets aniﬁcalloq) (}o Pending Assals NatiﬁcalioD (}o Unsubmitted Assels anlﬁcalloD (}o Unregistered Na{iflr_-alioD
Flow Flow

Flow Flow
Enabled? |+ Enabled? Enablad? Enabled?

no ’ yes ng ’ yes no ’ yes no ’ yes
Query for Unapproved Assets Query for Pending Assets Query for Unsubmitted Assets Quary far Unregistered Assels

Exceeded the Exceeded the Exceeded the Exceeded the
notification notification natification notification
no . limit? limit? lirmit? limit?

Motify the Approvers Matify the Registrar
Save the stale lo Assel Save the stale to Assel

Unaccept the Assat Unsubmil the Asset Delete the Asset Unaccept the Asset

@+

®

Tracking Unsubmitted Assets

This flow tracks assets that are in an “unsubmitted” status and sends notification to the owners to
take action.

<owner_resubmit action="false” days="0" regressOnlnaction="true”
queryOperator="eq”/>

5-26 Configuring and Managing Advanced Registration Flows

Time-based Escalation Flows

e action=""true" enables the flow and action="false" disables the flow.

e days=""10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flows use the current date and subtracts the value from this attribute.

e regressOnlnaction=""true" regresses the asset on inaction. For example, unsubmitted
assets may be deleted.

e gueryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are ""Ite™, ""gte", etc.

Tracking Unaccepted Assets

This flow tracks assets that are in an “unaccepted” status and sends notification to the registrar to
take action.

<registrar_accept action="false” days="0" regressOnlnaction="true”
queryOperator="eq”/>

e action=""true" enables the flow and action="Ffalse" disables the flow.

e days=""10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flow use the current date and subtracts the value from this attribute.

e regressOnlnaction=""true" regresses the asset on inaction. For example, submitted
assets may be unsubmitted.

e queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "Ite", ""gte", etc.

Tracking Unapproved Assets

This flow tracks assets that are in an “unapproved” status and sends notification to the approvers
to take action.

<assignees_approve action="false” days="0" regressOnlnaction="true”
queryOperator="eq”/>

e action=""true" enables the flow and action="false" disables the flow.

e days=""10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flow use the current date and subtracts the value from this attribute.

e regressOnlnaction=""true" regresses the asset on inaction. For example, accepted
assets may be unaccepted.

Configuring and Managing Advanced Registration Flows 5-21

Configuring Advanced Registration Flows

e gueryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are ""Ite™, ""gte", etc.

Tracking Unregistered Assets

This flow tracks the assets that are in an “unregistered” status and sends notification to the
approvers to take action.

<registrar_register action="false” days="0" regressOnlnaction="true”
queryOperator="eq”/>

e action=""true" enables the flow and action="false" disables the flow.

e days=""10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flow use the current date and subtracts the value from this attribute.

e regressOnlnaction=""true" regresses the asset on inaction. For example, accepted
assets may be unaccepted.

e queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "I1te", "gte™, etc.

Validation Expiration Flows

The Validation Expiration flows track the expired assets prior to the expiration date, as well as
on the date of expiration, and sends warning notifications to all interested parties. After X number
of days of expiration, the flows unregister the assets. After Y number of days of expiration, the
flows deactivate the assets. After Z number of days of expiration, the flows delete the assets.

<notification timerinterval="1d">
<numTimesNoti fy>10</numTimesNotify>
<daysBeforeNextNotification>2</daysBeforeNextNotification>

e The timerlInterval attribute configure the time interval that the flows will be triggered.
This should be set to "1d", which means the interval is one day. However for testing, this
can be set to ""am™ or "'5m™ to trigger every minute or every 5 minutes. Also, every time
this field is changed, the Event Engine needs to be restarted, unlike the other field changes
that can be refreshed using the refresh tool.

e The numTimesNotify element specifies how many times the notifications should be sent
by the Validation Expiration flow.

5-28 Configuring and Managing Advanced Registration Flows

Validation Expiration Flows

e The daysBeforeNextNotification element specifies how many days need to elapse in
between the notifications.

<expiration>
<expiration_warning action="false” days="10" owner="false”
subscriber="false” contact="99"/>
<unregister_after_expire action="true” days="10" queryOperator="eq”/>
<inactive_after_expire action="true” days="710" queryOperator="eq”/>
<delete_after_expire action="true” days="10" queryOperator="eq”/>
</expiration>

The following flowchart demonstrates the flow of the Time-based Escalation flows.

Configuring and Managing Advanced Registration Flows 5-29

Configuring Advanced Registration Flows

Figure 5-5 Validation Expiration Flowchart

Do prior Expiry warning

Flow
Enabled?

no
Q=
@ueiy for "about to Expire” Ass39
Query for Expired Assels

Exceadad the
natification
limit?

no

Motify the Actors
Save the state to Asset

Do Inactivate Expired Assets

Flow
Enabied?

no, ’

yes

Query for Expired Assets

Inactivate the Asset

Matify the Actors

O [

®

Do Urregister Expired Assets

Flow
Enabled?

Unreglster the Asset

Matify the Actars

Do Delete Expired Assels

Flow
Enabled?

=
7 yes
Query for Expired Assets
Dalata the Assat

Motify the Actors

1) Subscribers
2) Dwners
3) Contact

Asset Expiration Warning Notification

The following line enables the warning notification and determines who should receive the

notifications.

<expiration_warning action="false” days="10" owner="false”
subscriber="false” contact="99"/

5-30 Configuring and Managing Advanced Registration Flows

Validation Expiration Flows

Note: The days element configures the number of days prior to the expiration that the warning
should be sent.

Unregister Assets After Expiration

The following line enables the Metadata Change flow to unregister the asset after 10 days of
expiration.

<unregister_after_expire action="true” days="10" queryOperator="eq”/>

Inactivate After Expiration

The following line enables the Metadata Change flow to inactivate the asset after 10 days of
expiration

<inactive_after_expire action="true” days="10" queryOperator="eq”/>

Delete Assets After Expiration

The following line enables the Metadata Change flow to delete the asset after 10 days of
expiration:

<delete_after_expire action="true” days="10" queryOperator="eq”/>

Configuring and Managing Advanced Registration Flows 5-31

Configuring Advanced Registration Flows

Customizing Flow Notification Email Templates

The Automated Registration Flows automatically send email notifications under many
circumstances. There are five new email templates for the new flows. The email templates are
stored within ALER and the flows invoke an ALER API by passing name/value pairs that are then
substituted by ALER.

Administrators can customize the email subject, body, etc., the same way as other email
templates. The following are the templates that are used by the Advanced Registration Flows:

e Metadata of asset has changed — Notifies the registrar and the users assigned to the asset
that the metadata has changed.

e Registration status unchanged — Notifies the registrar and the users assigned to the asset
that the registration status <¥asset. reg.status%> has remained unchanged for more
than <%action.pending.days%> days.

e Status of expired asset has changed — Notifies the registrar and the users assigned to the
expired asset that the status has changed.

e Prior to expiration — Notifies the registrar and the users assigned to the asset that it is due
for expiration.

e Asset has been expired — Notifies the registrar and the users assigned to the asset that it has
been expired.

For more information about email templates, refer to the ALER Administration Guide.

5-32 Configuring and Managing Advanced Registration Flows

CHAPTERa

Configuring JMS Servers for ALER

This section contains information on the following subjects:

e Overview of JMS for the Event Manager

Configuring Connectivity Properties for External JIMS Servers

Configuring the Embedded ActiveMQ JMS Server to Use a Database

Configuring JMS Durable Subscribers for Web Service Endpoints

Configuring JMS Servers In an ALER Cluster

Configuring a JMS Provider In WebSphere 6.1.0.5

Configuring and Managing Advanced Repository Flows 6-1

Configuring JMS Servers for ALER

Overview of JMS for the Event Manager

The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS Server is configured to run out-of-the-box without any additional
configuration. However, if an external JIMS server is preferred, such as BEA Weblogic Server
JMS or IBM WebSphere Application Server, then a number of ALER system settings must be
configured.

Note: When ALER is deployed on WebSphere 6.x, the embedded Apache ActiveMQ JMS
Server cannot be used due to conflicts in the classes used by ActiveMQ and ALER.
Therefore, WebSphere 6.x customers should use the default IMS implementation that
comes with WebSphere 6.x. See Configuring a JMS Provider In WebSphere 6.1.0.5.

Configuring Connectivity Properties for External JMS
Servers

6-2

ALER’s System Settings section allows administrators to configure the basic ALER operation
and to enable/disable specific features. The Event Manager’s JMS-related settings are under the
“Eventing” group under the main “External Integrations” category. For more information about
System Settings, see the ALER Administration Guide. Additional “Eventing” properties are
described in Configuring the ALER Event Manager.

Enabling and Configuring an External JMS Server

The internal Apache ActiveMQ JMS Server needs to be disabled in order to configure an external
JMS product. You must also configure JNDI and JMS properties for the external JMS.

Note: These steps are for configuring a single external JMS server. For instructions on
configuring multiple JMS servers in a cluster, see Configuring JMS Servers In an ALER
Cluster.

1. Click System Settings in the sidebar on the ALER Admin screen.
2. Enter Event in the System Settings Search box to view all the Event Manager related settings.

3. Disable the internal JMS server by clicking False next to the Event Manager Embedded
JMS Enable property. This forces the Event Manager to use an external JMS server.

4. Configure the required JNDI properties:
— JNDI URL - Specifies the INDI URL. For example, t3://1ocalhost:7001.

Configuring and Managing Advanced Repository Flows

Configuring Connectivity Properties for External JMS Servers

— JNDI User Name — Specifies the JNDI user name.
— JNDI Password — Specifies the password for the JINDI User Name.

— JNDI Context Factory — Specifies the JNDI initial context factory. For example,
weblogic.jndi._WLInitialContextFactory.

5. Configure the following JMS properties:

— JMS Connection Factory — Specifies the JMS connection factory to enable JMS
clients to create JMS connections. For example,
weblogic.examples.jms.TopicConnectionFactory.

— JMS Topic — Specifies the JMS topic, which is a publish/subscribe destination type for
a JMS server. For example, weblogic.examples. jms.TopicConnectionFactory.

6. Click Save.

7. Restart ALER for the configuration changes to take effect.

Configuring JMS Message Header Properties

Every JMS message contains a standard set of header fields that is included by default and
available to message consumers. The Message Expiration and Delivery Mode headers can be
configured using the ALER System Settings.

1. Access the “Eventing” System Settings, as described in “Enabling and Configuring an
External JMS Server” on page 6-2.

2. Configure the JMS message header properties:

— JMS Message Expiration — Sets the JMS message expiration time in seconds. If set,
unprocessed events will expire in the specified number of seconds. The default is 0
seconds, which means that messages will never expire. However, some environments
have policies that require that JMS messages cannot be stored forever if they are not
selected for some reason.

— JMS Delivery Mode — Sets the JIMS message delivery mode to either PERSISTENT or
NON-PERSISTENT values. If set to PERSISTENT, the JMS server will write the
events to the underlying store. Although more reliable, persisting events to a store can
affect performance. The default is PERSISTENT.

3. Click Save.

4. Restart ALER for the configuration changes to take effect.

Configuring and Managing Advanced Repository Flows 6-3

Configuring JMS Servers for ALER

Miscellaneous JMS Properties

Note: You must restart ALER after changing any Eventing property in order for the changes to
take effect.

The following miscellaneous System Settings can also be configured.
e Event Manager JMS Subscribers Enabled — If set to False, then the internal JMS
subscribers will not be enabled. This is to make sure that the embedded JMS server is

started, but an external tool can be used to connect to the embedded server using the given
durable subscriber name and the stored events can be cleaned up.

e JMS Subscribers Client ID — Specifies the JMS durable subscriber ID.
For example, ALER_JmsSubscriber.

e JMS Producers Client ID - Specifies the JMS producer’s client ID.
For example, ALER_DeliveryManager.

e L azy Initialize Event Engine — When enabled, the Event Manager will be initialized
when an event is produced for the first time. This property should be enabled for either of
the following reasons:

— If there is a large number of events stored by the JMS server and if it is required that
these events should not be processed as soon as ALER is started.

— There are startup issues that occur because of the timing of initializing the embedded
JMS server.

Configuring External JMS Jar Files

If an external JMS server is being used, then the external JMS server-related JAR files should be
copied to the WEB- INF\Iib directory.

Configuring the Embedded ActiveMQ JMS Server to Use a
Database

By default, the ActiveMQ JMS server uses a file-based store to store events. However, you can
specify to have events stored in a database. Simply, configure the activemq.xml file in the
WEB- INF\classes directory to use your database parameters.

For example:

6-4 Configuring and Managing Advanced Repository Flows

Configuring JMS Durable Subscribers for Web Service Endpoints

<persistenceAdapter>

<journaledJDBC journallLogFiles="5" dataDirectory="_./activemg-data"
dataSource="#oracle-ds" />

<I-- To use a different datasource, use the following syntax : -->

<I-- <journaledJDBC journalLogFiles="5" dataDirectory="._/activemg-data"
dataSource="#postgres-ds'/> -->

<I-- Oracle DataSource Sample Setup -->
- <bean id="oracle-ds" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method=""close">
<property name="driverClassName' value="oracle.jdbc.driver._OracleDriver" />
<property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB" />
<property name="username" value="scott" />
<property name="password" value="tiger" />
<property name="poolPreparedStatements” value="true" />
</bean>

Configuring JMS Durable Subscribers for Web Service
Endpoints

The Event Manager creates one durable subscriber for each Web Service endpoint it encounters
in the Subscription Manager XML file. This ensures that events are stored if the endpoints are not
online and that they can be reliably delivered once the endpoints are online again. As per the JIMS
Specification, the durable subscriber name should be unique across the JMS server. The Event
Manager gets the durable subscriber name from the name field found in the
EndPointEventSubscription.xml file, as shown in this example:

<sub:EventSubscriptionData
xmIns:sub="http://www.bea.com/infra/events/subscription”
<sub:eventSubscription>
<sub:endPoint name="ALBPMEndpoint”>

Note: JMS servers associate the durable subscriber name with the message selectors. Therefore,
if the message selector is changed, either a new durable subscriber name should be
provided or the existing one should be deleted. You can use the ALER “Event Cleanup”
tool, as described in “Cleaning Up Stored Events.” You can also use a JMS-specific tool
to accomplish this.

Configuring and Managing Advanced Repository Flows 6-5

Configuring JMS Servers for ALER

Configuring JMS Servers In an ALER Cluster

Note: Before you begin, refer to the ALER Clustering Guide for information on configuring
ALER in a clustered environment.

Enabling JMS Clustering Mode

If ALER is deployed on cluster mode, you must enable clustering on each ALER instance
regardless of which type of JMS server being used (embedded or external).

1. Click System Settings in the sidebar on the ALER Admin screen.

2. Enter cmee.eventframework.clustering.enabled in the Enable New System Setting box and
click Enable to reveal this hidden property.

3. Set the Clustering Enabled property to True.

4. Set other required properties based on the type of JMS server, as described in the following
sections.

Configuring Embedded JMS Servers for Clustering

In a clustered environment, each member ALER instance in the cluster will have one embedded
JMS server. For example, in case of two-node cluster, there will be two ALER instances, such as
server0l and server02, with each having one embedded JMS server. Once clustering is
enabled for the embedded JMS servers, you then need to specify the connection URL information
for the embedded JMS servers on server01 and server02.

1. Click System Settings in the sidebar on the ALER Admin screen.

2. Enter cmee.eventframework.embedded.jms.url in the Enable New System Setting box and
click Enable to reveal this hidden property.

3. Inthe Embedded JMS Server URL property, supply the connection URL for the embedded
JMS servers on the clustered ALER servers, using the following format.

failover:(tcp://
$SEVER_DNS_NAME_OR_1P$:61700,tcp://$SEVER_DNS_NAME_OR_IP$:61700, ..)

where:

$SEVER_DNS_NAME_OR_IP$ are replaced by actual server DNS name or IP address. The
entries should be repeated for each ALER server in a given cluster.

Configuring and Managing Advanced Repository Flows

Configuring JMS Servers In an ALER Cluster

Using the example above, this could be set to:
failover: (tcp://server01:61700, tcp://server02:61700)

Caution: Port 61700 is the default port for the embedded JMS server, and therefore should not
be used by any other application on the ALER server unless another port is
configured for the embedded JSM server.

4. Click Save.

5. Repeat steps 1-4 for each ALER instance in a given cluster. Using the example above, the
Embedded Broker URLs could be set to:
failover:(tcp://server01:61700,tcp://server02:61700)

Tip: Make sure that each embedded JMS server is enabled by setting the
cmee.eventframework.embedded.jms.enabled property to True.

Configuring External JMS Servers for Clustering

For external JIMS servers, no additional configuration is required. However, you must make sure
that the embedded JMS server is disabled, as follows:

1. Click System Settings in the sidebar on the ALER Admin screen.

2. Set the Event Manager Embedded JMS Enable property to False (i.e.,
cmee.eventframework.embedded.jms.enabled is False.

Configuring and Managing Advanced Repository Flows 6-7

Configuring JMS Servers for ALER

Configuring a JMS Provider In WebSphere 6.1.0.5

When ALER is deployed on WebSphere Application Server 6.1.0.5, the embedded Apache
ActiveMQ JMS server cannot be used. Therefore, WebSphere 6.1.0.5 implementations must use
the default JMS provider that comes with WebSphere 6.1.0.5.

To configure a JMS provider for ALER in WebSphere 6.1.0.5, complete the following steps in
the WebSphere administration console and in your ALER application.

1. Create a new Service Integration Bus:

a.
b.
C.
d.

e.

In the navigation pane, expand Service Integration, and then click Buses.
On the Buses page, click New.

On the Create a new bus page, enter alerbus as the name for the new bus.
Clear the Bus security check box.

Click Next, and then click Finish.

2. Add a Bus member to the newly created alerbus:

g.
h.

On the Buses page, click the alerbus link.
Under the Topology category, click Bus members.
On the Bus members page, click Add.

On the Add a new bus member > Select Server, Cluster or WebSphere MQ server page,
accept the default Server option and click Next.

On the Add a new bus member > Select the type of message store page, accept the default
File store option and click Next.

On the Add a new bus member > Provide the message store properties page, accept the
default values and click Next.

On the Add a new bus member > Confirmation page, click Finish.

On the Buses page, click Save.

3. Create a JMS Topic Connection Factory in the default message provider:

a.

6-8

In the navigation pane, expand JMS, and then click IMS providers.

Configuring and Managing Advanced Repository Flows

f.

Configuring a JMS Provider In WebSphere 6.1.0.5

Click the Default messaging provider option, with a Scope of Node=<nodename>,
server=serverl.

On the JMS providers > Default messaging provider page, click the Topic connection
factories option under Additional Properties.

On the JMS providers > Default messaging provider > Topic connection factories page,
click New.

On the Administration page, configure the topic connection factory as follows:
¢ Name — alerEventingTopicCFDefault

¢ JNDI name — jms.alerEventingTopicCFDefault

* Bus name —alerbus

» Client identifier — ALER_JmsProducer

 Durable subscription home — <nodename>.serverl-alerbus

Click Apply, and then click Save.

4. Create a JMS Topic in the default message provider:

a.

b.

e.

Re-navigate to the JMS providers > Default messaging provider page.

Click the Topics option under Additional Properties.

On the JMS providers > Default messaging provider > Topics page, click New.
On the Administration page, configure the topic as follows:

« Name — alerEventingTopicDefault

e JNDI name — jms.alerEventingTopicDefault

» Topic name — alerEventingTopicDefault

* Bus name —alerbus

» Topic space — Default.Topic.Space

Click Apply, and then click Save to save your changes.

5. Deploy the aler.ear application file, as follows:

a.

b.

In the navigation pane, expand Applications, and then click Enterprise Applications.

On the Enterprise Applications page, click Install.

Configuring and Managing Advanced Repository Flows 6-9

Configuring JMS Servers for ALER

J-

k.

On the Preparing for the application install page, click Browse, specify the aler.ear file
in the path, and then click Next.

Click Next on the Select installation options page.
Click Next on the Map modules to servers page.

On the Map resources to resource references page, click Browse in the Target Resource
JNDI Name column.

On the Enterprise application > Available resources page, select
alerEventingTopicCFDefault, and then click Apply.

Click Next on the ensuing Map resources to resource references page.

On the Map resource environment entry references to resources page, enter
jms/aler/alerEventingTopicDefault in Target Resource JINDI Name and then click
Next.

Click Finish on the Summary page.

After the application is installed, click Save to save it to the Master Configuration.

6. Follow the “Manually Installing the ALBPM Process Engine and Advanced Registration
Flows” steps in the ALER Installation Guide to deploy additional files in the
web-inf/classes directory and the database drivers required by the ALER application.

7. Configure the ALER eventing.properties file for the WebSphere settings:

a.

b.

C.

Navigate to the <ALER Domain>\WEB-INF\classes directory.

Use a text editor to modify the eventing.properties file as follows:

* cmee.eventframework. jms.topic=jms.alerEventingTopicDefault

* cmee.eventframework. jndi.provider.url=iiop\://localhost:2809
* cmee.eventframework.embedded. jms.enabled=false

* cmee.eventframework. jndi.context.factory=com. ibm.websphere._naming.W
sninitialContextFactory

* cmee.eventframework.jms.connection.factory=jms.alerEventingTopicCFD
efault

Save the file.

8. Restart the WebSphere application server to enable the modified settings.

6-10

Configuring and Managing Advanced Repository Flows

Configuring a JMS Provider In WebSphere 6.1.0.5

9. Check the WebSphere logs for possible errors:
\WebSphere\AppServer\profiles\AppSrv01l\logs\serverl

Configuring and Managing Advanced Repository Flows 6-11

Configuring JMS Servers for ALER

6-12 Configuring and Managing Advanced Repository Flows

CHAPTERa

Monitoring and Managing Events

This section contains information on the following subjects:
e “Overview”
e “Monitoring Events”
e “Cleaning Up Stored Events”
e “Generating the Workflow Config File”
o “Refreshing the Workflow Config File”

e “Encrypting Your Passwords”

Configuring and Managing Advanced Registration Flows 1-1

Monitoring and Managing Events

Overview

This document discusses how to use the administrative tools that are shipped as part of ALER3.0.
The Advanced Registration Flow administrative tools are used to

e Monitor events using a command-line interface

Clean up the events and unsubscribe the JMS durable subscriber

Generate the Workflow Configuration file

Refresh the ALBPM Engine with the latest Workflow Configuration file

Encrypt the passwords stored in the Workflow Configuration and Subscription Manager
files

The administrative tools are installed under the following directory:

<BEA Home>/repository30/core/workflow-tools

Figure 7-1 Location of Workflow Tools

E |1 Diibead 16 repository 30\ coreworkflow-tools
x Mame
= Ih beaBia | Ilib
|2 albpms? eventClean. jar
) ext_components eventMaon. jar
*) jdki4z_11 wrConfig.jar
+ | jdkis0_06 wiConfigRefresh, jar
(3 jrockitB1sps_142_10] whconfigschemas.jar
] logs wifSecurity jar
+ =) modules conFig_gen.bat
*) msa event_clean.bat
+ () repository26 event_mc-nitor.bat
=l (=1 repositary30 reFresh_wc-rkflows.bat
1 bin runWFSecuritv.bat
) common |i4] config_gen.sh
= | core |ﬂevent_clean.sh
+ |7 database-scripts |ﬂevent_mc-nitor.sh
|5 oss_licenses Iﬂrefresh_wc-rkﬂows.sh
| skins MrunWFSecuritv.sh
+ 12 sql_xml
=1 12 workFlow-kaols
) lib
it gl

1-2 Configuring and Managing Advanced Registration Flows

Monitoring Events

Monitoring Events

The Event Manager has a tool for monitoring the events that are generated by the Event Manager.
The tool peeks into the event traffic and prints information, such as the Event Body and Event
Properties, as shown in this section.

Prerequisites

The following prerequisites apply before starting the monitoring tool:

o If the default embedded JMS server is used, then ALER needs to be running with the
cmee.eventframework.enabled system setting set to true. This is to make sure that the
JMS broker that is embedded within ALER is running so that the monitoring tool can
connect to it and monitor the events.

o If an external JMS server is used, then the external JMS Server needs to be running and
the JNDI-related eventing.properties that are required to connect to the external JMS server
must be configured.

For more information, see “Configuring Connectivity Properties for External JMS Servers”.

Usage
From a command prompt, run the Event Monitoring tool as follows:
> event_monitor.bat <Path of WEB-INF\classes>

For example, if ALER is deployed to a domain named alerdomain under:
D:\bea816\user_projects\domains\alerdomain

Then the <Path of WEB-INF\classes> is:
D:\bea816\user_projects\domains\alerdomain\applications\aler\aler-app\WEB-
INF\classes

This path is needed to get the JMS configuration from the eventing.properties file so that
the tool can connect to the JMS server.

Configuring and Managing Advanced Registration Flows 1-3

Monitoring and Managing Events

7-4

Figure 7-2 Event Monitor Console

B C:\WINDOWS\system32\cmd._exe -|& ﬂ
K aml-fragment >

= ==Message Properties

submittedby_emailaddress = adminBexample.com{java.lang.String)
asset_description = (java.lang.String
parameters_1_name = name{java.lang.Stringl
submittedby_name = admin{java.lang.%tring>
zubmittedby_id = 99(java.lang.Long>
eventdata_description = new aler eventd{java.lang.String>
eventsource _componentname = Agualogic ALER(java.lang.String)

_ = TestAssetLl1?{java.lang_-String?>
parameters_A_value A = B.8(java.lang.8tring>
parameters_B_name = newvalue(java.lang.Stringl
eventsource_componenttype = ALER3_BA{java.lang.Stringl>
parameters_1_wvalue @ = usageFee(java.lang.Stringd
asset_typeid = 154¢java.lang.Long)
eventdata_eventid = 4a646%ac—BbBa-4273-%cad-b5a674d14643(java.lang. String)
guentdgta_name = urn:com:heazaler:events:type:MetaDataChange tusageFee(java.lang.
tring
asset_activestatus = ACTIVE{java.lang.String>
asszet_id = 58280(java.lang.Long?
eventsource_location = ALERCore(java.lang.Stringd

verl . B{java.lang.String>

Kxml—fragment xmlns:even="http:/swuw_bea_comn/infrarevents"

w3 .orgs2001 /EMLSchema-instance'>

{even:eventData’>
<even: nameurn:icom:heaialer:events:type:MetaDataChange iusageFee{/even:name>
{even:eventld>4ab46%ac—BhBa—-4273-%cad-h5a67?4di4643{ /even:eventld>
<even:description’new aler event<- even:description’
{even:versioniverl.B{/even:version>

{seven:eventData’>

{even:eventSource>
<even:location>ALERCore<{ even:location>
{even:componentMame >Aqualogic ALER< even:componentMame >

xmlns ixsi="http: " uuyl

Configuring and Managing Advanced Registration Flows

Cleaning Up Stored Events

Cleaning Up Stored Events

Sometimes it may be required to remove all the events that are stored by the Event Engine and
also unsubscribe the durable subscription. The Event Cleanup tool can be used for this purpose.

Prerequisites

The following prerequisites apply before starting this tool:

e Set the ALER cmee.eventframework. jms.subscribers.enabled system setting to
false so that the ALER Event Manager does not start the durable subscriber because this
will be unsubscribed by the Clean Event tool.

e Restart ALER with the cmee .eventframework. jms.subscribers_enabled property set
to false.

Usage
From a command prompt, run the Event Cleanup tool as follows:

> event_clean.bat <Path of WEB-INF\classes> <Name of Durable Subscriber>
<Message Selector>

For example, if ALER is deployed to a domain named alerdomain under:
D:\bea816\user_projects\domains\alerdomain

Then the <Path of WEB-INF\classes> is:
D:\bea816\user_projects\domains\alerdomain\applications\aler\aler-app\WEB-
INF\classes

This path is needed to get the JMS configuration from eventing.properties so that the tool can
connect to the JMS Server.

The <Name of Durable Subscriber> can be found in the name attribute inside the endpoint
that requires event cleanup within the EndPointEventSubscription.xml as follows:

<sub:eventSubscription>
<I--The name should be unique within this file since
<sub:endPoint name="ALBPMEndpoint”>

The <Message Selector> can be found in the expression attribute inside the endpoint that
requires cleanup within the EndPointEventSubscription.xml

Note: The parameter can be omitted if the Message selector is not set or empty.

Configuring and Managing Advanced Registration Flows 1-5

Monitoring and Managing Events

Sample Event Cleanup

Using the example above, navigate to the workflow-tools directory:

> cd D:\bea816\repository30\core\workflow-tools>

From the command prompt, type:

> event_clean.bat D:\aler\alerbuild2\aler-app\WEB-INF\classes
ALBPMEndpoint

The following is the output printed by the Event Cleanup tool to the console.

Figure 7-3 Event Cleanup Console

B C:\WINDOWSisystem32iemd. exe -8 ﬂ

D:=“bheaBlb repositoryd@score~workf low—tools>event_clean.bat D:salervalerbuildZsal
er—app“WEB—INF\classes ALBPMEndpoint

D:~bheaBlb repositorydBscore~workf low—tools>echo off
A1l the stored events for ALBPMEndpoint will he deleted. Do you want to continue
7 ¥Ys/N

iy
Deleting all the stuyed events..

I1D:MPA
ID ID:MPALANISA1-2377-11823A1 85595
ID ID:-MPALANISB1-2377-1182301085595—
Removed all the Events. Unsubscribing ALBPMEndpoint

D:=“bheaBlb“repositoryd@scoresworkf low—tools>_

Generating the Workflow Config File

1-6

The Generate Workflow Config tool is used to generate the Workflow Configuration file
(workflow.xml) by connecting to ALER. The tool populates the workflow.xml with
configuration for asset types, categorizations, etc. by reading these entities from ALER. The
Workflow Config file can then be customized as per your requirements. For example, you may
need to configure and customize flows to add new asset types, projects, categorizations, etc.

For more information about configuring Advanced Registration Flows, see Chapter 5,
“Configuring Advanced Registration Flows.”

From a command prompt, run the Generate Workflow Config tool as follows:
> config_gen.bat URI User Password ConfigDir

where:

Configuring and Managing Advanced Registration Flows

Refreshing the Workflow Config File

URI = ALER URI (for example: http://localhost:7001/alerbuild/services/FlashlineRegistry)
User = ALER user name
Password = ALER password
ConfigDir =the directory where the Config XML file will be created. If the file exists, it will
be renamed to workflow.xml . bak.

Figure 7-4 Generate Workflow Configuration Tool

B C:\WINDOWSsystem32cmd.exe

D:=“heaBlbo repository3d@scoresworkf low—toolsconfig_gen.bat http:- s mpalanisBl.amer
-hea.com:7801 alerbuild2/servicessFlashlineRegistry muthu muthu .

D:=“heaBlbo repository

Connecting to ALER .
Done ...

38~coresworkf low—tools>echo off

Getting Auth token from ALER ...

Done

Generééing the Workflow Configuration file ...

the AssetType
the fAssetType
the AssetType
the fAssetType
the fAssetType
the AssetType
the fAssetType
the AssetType

the fAssetType

Application

Application w2

Business Process
Business Process w2
Communication Adapter
Communication Adapter w2
Component

Component v2

Environment

BT

The workFflow.xml file needs to be generated to the following directory:

<ALER Enterprise Edition Path>/server/<ALER Workflows
Project>/workflow.xml

Refreshing the Workflow Config File

The Refresh Workflow Config XML tool lets you to refresh a Workflow Config file without
restarting the ALBPM Engine. For example, if the Workflow Config XML file is updated during
development, running this tool allows the ALBPM Engine to use the updated version without

restarting the engine.

Note: The ALBPM Engine must be running when running this tool.

From a command prompt, run the Refresh Workflow Configuration tool as follows:

Configuring and Managing Advanced Registration Flows

1-1

Monitoring and Managing Events

> refresh_workflows_bat URI User Password
where:

URI = ALBPM URI (for example,
http://1ocalhost:9000/fuegoServices/ws/RefreshConfigServicelListener)

User = ALBPM user name (for example, aler_workflow_user)

Password = ALBPM password (for example, aler_workflow_user)

Note: aler_workflow_user is created by the BEA Products Installer and is the default user
that can be used with this tool.

Figure 7-5 Refresh Workflow Configuration Tool

B C:\WINDOW Sisystem 32emd.exe - & ﬂ

D:=“heaBlt repositoryl@icoresworkf low—tools>refresh_workf lows.bat http:--localhos
t:92800fuegoServices/us /RefreshConf igServicelistener admin admin

D:=“heaBlt repositoryl@icoresworkf low—toolsecho off

Jun 268, 2087 18:37:17 AM org.apache . axis.utils_Javaltils isAttachmentSupported
LARNING: Unable to find required classes (javax.activation.DataHandler and javax|
.mail.internet.MimeMultipart>. Attachment support iz disabled.

D:~bheaBlbsrepositoryd@coresworkf low-tools>_

Encrypting Your Passwords

For enhanced security, the Security Encrypt Password tool (runWfSecurity.bat) allows you to
encrypt passwords that are stored in the Workflow Configuration and Subscription Service files.

From a command prompt, run the Security Encrypt Password tool as follows:
> runWfSecurity.bat srcFileName destFileName
where:
srcFileName = source config file with clear password.

destFileName = destination config file with decrypted password.

1-8 Configuring and Managing Advanced Registration Flows

Encrypting Your Passwords

Figure 7-6 Security Encrypt Password Tool

1 encrypt

codeDecode
encrypting
encrypted.
encrypting
encrypted.

B C:\WINDOWSisystem32\emd.exe

D:~bheaBlbsrepositoryd@ncoresworkf low—tools >runiifSecurity.bat . uf.xml .- wfenc.xm
D:>xheaBlbsrepositoryd@hcoresworkf low—tools>rem java com.bea.infra.event.core.uti]
1.EncodeDecode <{srcfile’ <{destfile’> "encryptidecrypt"
D:~heaBlbosrepository3dB@icoresworkf low-tools>szset CLASSPATH=_- uwfsecurity. jar;

D:=“heaBlt repository3ddscoresworkf low—tools>java com.bea.infra.event.core.util.En

_Auf .xml _swfenc.xml encrypt
nBApaSs5ufrd
2_1.16MCs4Mc8hf vRuUS UaEhQ==
nBpas5uBrd
2_1.16MCs4Mc8hf uRulUS UaEhQ==

encrypting. . .nBpas5uBrd
encrypted...v2_1.16MCs4Mc8hf vRulUS . HaEhQ==

D:~bheaBlbsrepositoryddncoresworkf low—tools>_

Configuring and Managing Advanced Registration Flows

1-9

Monitoring and Managing Events

1-10 Configuring and Managing Advanced Registration Flows

CHAPTERa

Extending the Event Manager for Web
Service Endpoints

This section contains information on the following subjects:

“Overview”

“Developing a Web Service Endpoint”
“Web Service Operations”
“Developing a Notifier Plug-in”

“Developing an Endpoint With an Incompatible Contract”

Overview

This document explains how to develop a new Web Service endpoint to consume the events that
are emitted by the Event Manager and also explains how to extend the Event Manager to use other
notifier plug-ins.

For information about configuring the Event Manager, see Chapter 3, “Configuring the ALER
Event Manager.”

Configuring and Managing Advanced Registration Flows 8-1

Extending the Event Manager for Web Service Endpoints

Developing a Web Service Endpoint

The following figure shows how a Web Service endpoint can be plugged-in to receive the Events
emitted by the ALER Event Manager.

Figure 8-1 Web Service Endpoint Plug-in

capplication:: W3DL Contract
ALER

zframewark: |
Evert Engine SOAP FHTTP g

awveh services

g Matifier 1 |— EventConsumer

ML File

Webszervice
Subscriptions

Following these steps to create a new Web Service endpoint and start getting events.

1. Pick up the WSDL contract defined by the Event Manager. This is bundled with the
eventNotifier.jar located in the <aler Webapp path>/WEB-INF/lib directory.

2. Open the jar file and locate a WSDL named “EventListener. WSDL” and extract the WSDL
to the file system. This WSDL is the abstract contract defined by the Event Manager and the
new Web Service endpoint needs to implement the operation defined in the WSDL.

Here is a snapshot of the WSDL file

8-2 Configuring and Managing Advanced Registration Flows

Developing a Web Service Endpoint

Figure 8-2 Sample WSDL File

<?eml version="1.0" encoding="UTF-&" 7=
l-- edited with EMLSpy w2007 =p2 (http://fuwv.altova.com) by X ¥ (XTI -
<wsdl:definitions smins:soap="http://schemas.xmlsoap.org/wsdl/soap/" =mins:tns="http://vevewe .bea.com/aler/events/alerf

smins:wedl="http:/ /schemas.xmlsoap.org/wsdl/" xmins:xsd="http:/ /www.w3.0rg/2001/XMLSchema" xmins: aler="http://w|
umlns:ns="http:/ /www . bea.com/finfrafevents" umins:ns1="http:/ /schemas.umlsoap.org/soap/encoding/"
smins:wfStatus="http:/ /www.bea.com/infra/events/workflow/status" name="AlerEventsListener"
targetMamespace="http:/ /www.bea.com/aler/events/alerEventsListenerwsdl /">
<wsdltypess
- zusischema targetMamespace="http:/ /www . bea.com/infra/events' xmins:commonEvents="http:/ /www . bea.com/infra/evy
wmlns:xs="http:/ fwvww.w3.0rg/ 2001/ XMLSchema" =mins="http:/ /vwww.w3.0rg/2001/XMLSchema" elementFormDefault=
attributeFormDefault="unqualified">
- «xstannotations
<xs:documentation>Defines the common events structure</xs: documentations
</ usiannotations
<xsielement name="Event" type="commonEvents:EventType" />
— wxsicomplexType name="EventType":=
- <NS!SEQUENCE®
<rsielement name="eventData" type="commonEvents:EventInfoType" minOccurs="1" marOccurs="1" />
<xs element name="eventSource" type="commonEvents:EventSourceType" minOccurs="1" maxOccurs="1" />
«ws:element ref="commonEvents:ExtendedData" minQOccurs="0" maxOccours="1" /=
/M SEqUEnCE>
<fusicomplerTypes
- zxsicomplexType name="EventInfoType">
- <HSiSEgUENnCE>
<xsielement name="name" type="xs:string" />
<xsielement name="eventId" type="«s:string" />
zxsielement name="description" type="xs:string" />
<xsielement name="version" type="xs:string" />
< /WS sequence>

3. Complete the Web Service endpoint development using the tool or technology, as per the
requirement. For example, you could develop a Proxy Service using AquaLogic Service Bus,
which provides a feature where you can create a Web Service-based proxy service by pointing
to a WSDL file. Make the Web Service running by completing the development of the Web
Service.

4. Configure the Event Manager so that the Web Service endpoint’s host, port, and URI, etc., are
entered in the Subscription Manager file. For more information about configuring the Event
Manager, see Chapter 3, “Configuring the ALER Event Manager.”

5. Start ALER and trigger events using the Asset Editor and the Web Service endpoint will start
getting the Events.

6. You can use the Event Monitoring tool that is bundled with ALER for debugging and
monitoring the Events that are generated by the Event Manager.

Configuring and Managing Advanced Registration Flows 8-3

Extending the Event Manager for Web Service Endpoints

Web Service Operations

8-4

This section describes the available operation for a new Web Service endpoint, and how to
specify operations in the Event Manager.

Available Weh Service Operations

The ALER Event Manager supports the following operations.

newEventRequestResponse

This operation takes the event object that is defined in the XML schema section as an input and
returns the status as the output. The status is defined as string type. Additionally, if the status
string starts with Failure, then the Event Manager will throw an exception and will try to
re-deliver the event until it succeeds. If not, it will log the response and will deliver the next event
unless there is a transport exception.

newEventRequestResponseString

This operation takes the event data in string form as an input and returns the status as the output.
The status is defined as string type. Additionally, if the status string starts with Failure, then the
Event Manager will throw an exception and will try to re-deliver the event until it succeeds. If

not, it will log the response and will deliver the next event unless there is a transport exception.

newEventRequest

This operation takes the event object that is defined in the XML schema section as an input and
is defined as a one-way operation.

newEventRequestString

This operation takes the event data in string form as an input and is defined as a one-way
operation.

newEvent

This operation should be used only if the Process Engine is ALBPM. This operation internally
invokes the startSession operation to start session to authenticate with ALBPM. It will also
call discardSession after the invocation.

Configuring and Managing Advanced Registration Flows

Web Service Operations

Selecting a Web Service Operation

The preferred Web Service operation can be selected by configuring the Event Manager’s
Subscription Manager the following way, as specified in the operationName element.

<sub:EventSubscriptionData
xmIns:sub="http://www.bea.com/infra/events/subscription”
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”>
<sub:eventSubscription>
<sub:endPoint name="ALBPMEndpoint3”>
<sub:host>localhostt>
<sub:port>9000</sub:port>
<sub:uri>fuegoServices/ws/StatusChangeEnpointServicelListener</sub:uri>
<sub:targetNamespace>http://www.bea.com/infra/events</sub:targetNamespace>
<sub:operationName>newEvent</sub:operationName>
<sub:authenticationData>
<sub:basicAuthentication>
<sub:username>admin</sub:username>
<sub:username>admin</sub:username>
</sub:basicAuthentication>
</sub:authenticationData>
</sub:endPoint>

<sub:notifierClass>com.bea. infra.event.notifier.plugin.http.Defaul tHTTPEventNo
tifier </sub:notifierClass>
<sub:expression></sub:expression>
</sub:eventSubscription>
</sub:EventSubscriptionData>

Configuring and Managing Advanced Registration Flows 8-5

Extending the Event Manager for Web Service Endpoints

Developing a Notifier Plug-in

The ALER Event Manager includes a default SOAP/HTTP notifier. A new plug-in can be
developed and plugged in if there are additional requirements, as illustrated here.

Figure 8-3 Notifier Plug-in

Event Engine

Default
HTTP
Motifier

Base Notifier

Custom
Motifier

Follow these steps to make the new plug-in work with the Event Manager.

1. Develop a new Notifier Plug-in by extending the Java Class AbstractEventNotifier that
is bundled with the ALER Event Manager. This class is bundled with the
eventNotifier.jar located in the <aler Webapp path>/WEB-INF/lib directory. The
init() and sendNotification() methods need to be overridden. Refer to the Javadoc for
more information about these methods. The handle() method passes the event data in an

XML Beans format, which can be used to send it to an external Web Service.

2. Configure the Subscription Manager file to point to the developed class. Modify the
notifierClass element as follows:

<sub:EventSubscriptionData
xmIns:sub="http://www._bea.com/infra/events/subscription”
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”>
<sub:eventSubscription>
<sub:endPoint name="ALBPMEndpoint3”>
<sub:host>localhost</sub:host>
<sub:port>9000</sub:port>

<sub:uri>fuegoServices/ws/StatusChangeEnpointServicelListener</sub:uri>

<sub:targetNamespace>StuatusChangeEndpoint</sub:targetNamespace>
<sub:operationName>newEvent</sub:operationName>
<sub:authenticationData>
<sub:basicAuthentication>
<sub:username>admin</sub:username>
<sub:username>admin</sub:username>

8-6 Configuring and Managing Advanced Registration Flows

Developing an Endpoint With an Incompatible Contract

</sub:basicAuthentication>
</sub:authenticationData>
</sub:endPoint>

<sub:notifierClass>com.bea. infra.event.notifier.plugin.http.DefaultHTTPEventNo
tifier</sub:notifierClass>
<sub:expression>id > 500</sub:expression>
</sub:eventSubscription>
</sub:EventSubscriptionData>

3. Bundle the classes in a JAR file and copy it to <aler Webapp path>/WEB-INF/lib
directory so that it is picked up by the classpath.

4. Restart the Event Manager and trigger an event using the Asset Editor.

5. The Event Manager will call the init() and handle() methods of the new notifier plug-in.

Developing an Endpoint With an Incompatible Contract

It is possible that there may be an endpoint with an Interface or Contract that is not compatible
with ALER Event Manager. This is because the tool that is used to develop the endpoint may have
restrictions to use the WSDL provided by ALER Event Manager, or there may be other
inter-operability issues. The following approach can be used under those circumstances:

e Develop an event notifier plug-in to receive the event XML data and register with the
Subscription Manager.

o Write the code in the new notifier plug-in that transforms the event data into the format
that the remote Web Service expects.

e Invoke the remote Web Service by whatever API is supported by the remote endpoint.

Configuring and Managing Advanced Registration Flows 8-7

Extending the Event Manager for Web Service Endpoints

8-8 Configuring and Managing Advanced Registration Flows

