
BEAAquaLogic®

Service Bus

User’s Guide

Version 3.0
Revised: February 2008

AquaLogic Service Bus User Guide iii

Contents

Introduction to ALSB
Document Scope and Audience . 1-2

Document Organization . 1-2

Configuring Proxy Services and Business Services
ALSB Proxy Services . 2-2

ALSB Business Services . 2-2

How WSDL is Used in ALSB . 2-2

About Effective WSDLs and Generated WSDLs. 2-2

WSDL Overview . 2-4

Using a WSDL to Define a Service . 2-8

SOAP Document Wrapped Web Services . 2-9

SOAP Document Style Web Services. 2-9

SOAP RPC Web Services . 2-11

Basing Services on WSDL Ports and on WSDL Bindings . 2-15

Characteristics of Effective WSDLs Generated for Proxy Services 2-15

Characteristics of Effective WSDLs Generated for Non-Transport-Type Business
Services. 2-17

Characteristics of Effective WSDLs Generated for Transport-Type Business
Services. 2-18

Generating Effective WSDLs in Clustered Domains . 2-18

Examples of Proxy Services Based on a Port and on a Binding 2-18

Using Any SOAP or Any XML Service Types . 2-21

iv AquaLogic Service Bus User Guide

Using the Messaging Service Type . 2-21

Configuring Proxy Services . 2-21

Proxy Service Types and Transports . 2-22

Transport and Security Configuration for Proxy Services . 2-23

Configuration Settings For Each Proxy Service Type . 2-24

Configuring Message Flow . 2-27

Security-Related Validation for Proxy Services. 2-28

Configuring Business Services . 2-28

Business Service Types and Transport. 2-29

Configuration Settings for All Business Service Types. 2-31

Configuration Settings For Each Business Service Type. 2-33

Viewing Resource Details . 2-35

Modeling Message Flow in ALSB
Message Flow Components . 3-2

Building a Message Flow. 3-4

Message Execution . 3-5

Branching in Message Flows . 3-5

Operational Branching . 3-5

Conditional Branching . 3-6

Configuring Actions in Stages and Route Nodes . 3-7

Communication Actions . 3-7

Flow Control Actions. 3-8

Message Processing Actions . 3-9

Reporting Actions . 3-11

Configuring Transport Headers in Message Flows . 3-11

Configuring Global Pass Through and Header-Specific Copy Options for Transport
Headers . 3-11

AquaLogic Service Bus User Guide v

Understanding How the Run Time Uses the Transport Headers Settings. 3-12

Performing Transformations in Message Flows . 3-17

Transformations and Publish Actions. 3-18

Transformations and Route Nodes . 3-18

Constructing Service Callout Messages . 3-19

SOAP Document Style Services . 3-19

SOAP RPC Style Services . 3-22

XML Services. 3-25

Messaging Services . 3-26

Handling Errors as the Result of a Service Callout . 3-26

Transport Errors . 3-26

SOAP Faults . 3-28

Unexpected Responses . 3-30

Handling Errors in Message Flows . 3-31

Generating the Error Message, Reporting, and Replying. 3-32

Example of Action Configuration in Error Handlers . 3-33

Using Dynamic Routing . 3-35

Implementing Dynamic Routing . 3-36

Sample XML File . 3-36

Creating an XQuery Resource From the Sample XML 3-37

Creating and Configuring the Proxy Service to Implement Dynamic Routing 3-37

Accessing Databases Using XQuery . 3-39

Understanding Message Context . 3-41

Message Context Components . 3-41

Guidelines for Viewing and Altering Message Context. 3-43

Copying JMS Properties From Inbound to Outbound . 3-44

Working with Variable Structures . 3-44

Using the Inline XQuery Expression Editor. 3-45

vi AquaLogic Service Bus User Guide

Inline XQueries. 3-45

Uses of the Inline XQuery Expression Editor . 3-46

Using Variable Structures. 3-47

Creating Variable Structure Mappings . 3-48

Sample WSDL . 3-48

Creating the Resources You Need for the Examples . 3-50

Example 1: Selecting a Predefined Variable Structure 3-53

Example 2: Creating a Variable Structure That Maps a Variable to a Type . . . 3-54

Example 3: Creating a Variable Structure that Maps a Variable to an Element 3-55

Example 4: Creating a Variable Structure That Maps a Variable to a Child Element
3-56

Example 5: Creating a Variable Structure that Maps a Variable
to a Business Service . 3-57

Example 6: Creating a Variable Structure That Maps a Child Element to Another
Child Element . 3-59

Quality of Service . 3-61

Delivery Guarantees. 3-61

Overriding the Default Element Attribute . 3-64

Delivery Guarantee Rules . 3-64

Threading Model. 3-66

Splitting Proxy Services . 3-67

Outbound Message Retries . 3-67

Content Types, JMS Type, and Encoding. 3-68

Throttling Pattern . 3-68

WS-I Compliance . 3-68

WS-I Compliance Checks . 3-70

Converting Between SOAP 1.1 and SOAP 1.2. 3-73

AquaLogic Service Bus User Guide vii

Improving Service Performance with Split-Join
Introduction to Split-Join. 4-1

Static Split-Join . 4-2

Static Split-Join – Sample Scenario . 4-2

Dynamic Split-Join. 4-3

Dynamic Split-Join – Sample Scenario. 4-3

Split-Join Framework . 4-4

Developing Split-Joins. 4-5

Split-Join Resource Type and Environment Variable. 4-5

Message Context
The Message Context Model . 5-2

Predefined Context Variables . 5-2

Message-Related Variables . 5-3

Header Variable . 5-4

Body Variable . 5-4

Attachments Variable . 5-4

Binary Content in the body and attachments Variables . 5-6

Java Content in the body Variable . 5-7

Streaming body Content . 5-8

Best Practices for Using Content Streaming . 5-8

Inbound and Outbound Variables . 5-10

Sub-Elements of the inbound and outbound Variables. 5-11

service . 5-11

transport. 5-12

security . 5-18

Operation Variable. 5-19

Fault Variable . 5-19

viii AquaLogic Service Bus User Guide

Initializing Context Variables . 5-21

Initializing the attachments Context Variable . 5-23

Initializing the header and body Context Variables . 5-23

SOAP Services . 5-23

XML Services (Non SOAP) . 5-23

Messaging Services. 5-24

Performing Operations on Context Variables . 5-24

Constructing Messages to Dispatch . 5-26

SOAP Services . 5-26

XML Services (Non SOAP) . 5-26

Messaging Services . 5-27

About Sending Binary Content in Email Messages . 5-28

Message Context Schema . 5-29

Using the Test Console
Features . 6-1

Prerequisites . 6-2

Testing Proxy Services . 6-2

Direct Calls . 6-3

Indirect Calls . 6-4

HTTP Requests . 6-5

Testing Business Services . 6-5

Recommended Approaches to Testing Proxy and Business Services. 6-6

Tracing Proxy Services Using the Test Console. 6-7

Example: Testing and Tracing a Proxy Service . 6-8

Testing Resources . 6-11

MFL . 6-11

XSLT . 6-13

AquaLogic Service Bus User Guide ix

XQuery . 6-13

Performing XQuery Testing . 6-15

Testing Services With Web Service Security . 6-15

Test Console Transport Settings . 6-20

About Security and Transports . 6-21

UDDI
UDDI, UDDI Registries, and Web Services . 7-2

Basic Concepts of the UDDI Specification . 7-3

Benefits of Using a UDDI Registry with ALSB . 7-3

Introduction to UDDI Entities . 7-4

Sample Business Scenarios for ALSB and UDDI. 7-5

Basic Proxy Service Communication with a UDDI Registry 7-5

Cross-Domain Deployment in ALSB . 7-6

Using ALSB and UDDI. 7-7

A UDDI Workflow . 7-7

Configuring a Registry . 7-8

Publishing a Proxy Service to a UDDI Registry . 7-9

Publishing Local Proxy Services to UDDI. 7-10

Using Auto-Publish . 7-10

Importing a Service from a Registry . 7-11

Using Auto-Import. 7-12

Auto-Synchronization of Services With UDDI. 7-14

Mapping ALSB Proxy Services to UDDI Entities . 7-15

UDDI Mapping Details for an ALSB Proxy Service . 7-17

Transport Attributes . 7-20

Service Type Attributes . 7-23

Canonical tModels Supporting ALSB Services . 7-23

x AquaLogic Service Bus User Guide

Example. 7-25

Extensibility Using Java Callouts and POJOs
Usage Guidelines. 8-1

Best Practices . 8-2

XQuery Implementation
Supported Function Extensions from AquaLogic Data Services Platform. 9-2

Function Extensions from ALSB . 9-2

fn-bea:lookupBasicCredentials . 9-3

fn-bea: uuid() . 9-4

fn-bea:execute-sql() . 9-4

Example 1: Retrieving the URI from a Database for Dynamic Routing 9-5

Example 2: Getting XMLType Data from a Database . 9-7

fn-bea:serialize() . 9-9

XQuery-SQL Mapping Reference
IBM DB2/NT 8 . A-2

Microsoft SQL Server . A-3

Oracle 8.1.x . A-4

Oracle 9.x, 10.x . A-6

Sybase 12.5.2 (and higher) . A-7

Pointbase 4.4 (and higher). A-9

Base (Generic) RDBMS Data Type Mapping. A-10

Related Topics . A-11

Debugging ALSB

ALSB APIs
Resource Update and Customization . C-1

AquaLogic Service Bus User Guide xi

Management and Monitoring . C-2

Deployment . C-2

xii AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 1-1

C H A P T E R 1

Introduction to ALSB

ALSB is part of the BEA AquaLogic® family of Service Infrastructure Products. ALSB manages
the routing and transformation of messages in an enterprise system. Combining these functions
with its monitoring and administration capability, ALSB provides a unified software product for
implementing and deploying your Service-Oriented Architecture (SOA).

ALSB is a configuration-based, policy-driven Enterprise Service Bus (ESB). From the ALSB
Console, you can monitor your services, servers, and operational tasks. Using the Web-based
ALSB Console or the Eclipse-based ALSB Plug-in for WorkSpace Studio, you configure proxy
and business services, set up security, manage resources, and capture data for tracking or
regulatory auditing. ALSB enables you to respond rapidly and effectively to changes in your
service-oriented environment.

ALSB relies on WebLogic Server run-time facilities. It leverages WebLogic Server capabilities
to deliver functionality that is highly available, scalable, and reliable.

The following sections describe the contents, audience for, and organization of this document—
AquaLogic Service Bus User Guide.

“Document Scope and Audience” on page 1-2

“Document Organization” on page 1-2

I n t roduct i on to ALSB

1-2 AquaLogic Service Bus User Guide

Document Scope and Audience
This guide provides information on using and configuring ALSB. It is intended for those
responsible for messaging and SOA, specifically enterprise architects, application architects and
developers.

ALSB concepts, along with an architectural overview, are discussed in AquaLogic Service Bus
Concepts and Architecture.

Information for operations specialists such as monitoring, reporting, and tracing is presented in
the AquaLogic Service Bus Operations Guide.

Information for security architects and developers is presented in the AquaLogic Service Bus
Security Guide.

Information for deployment specialists resides in the AquaLogic Service Bus Deployment Guide.

While sometimes providing procedural information, this guide does not provide detailed
information on how to configure resources using the Web-based ALSB Console or the
Eclipse-based ALSB Plug-in for WorkSpace Studio. For information on using the ALSB
Console, see Using the AquaLogic Service Bus Console. For information on using the ALSB
Plug-in for WorkSpace Studio, see Using the AquaLogic Service Bus Plug-in for WorkSpace
Studio.

For information about ALSB transport providers for configuring proxy and business services
based on various transport protocols, see the AquaLogic Service Bus Transports page.

Document Organization
This document includes the following sections:

Configuring Proxy Services and Business Services: Information about creating and
managing ALSB proxy services and business services.

Modeling Message Flow in ALSB: Guidelines for modeling message flows in ALSB. A
message flow defines the implementation of a proxy service. In ALSB, service clients
exchange messages with an intermediary proxy service rather than directly with a business
service.

Message Context: Describes the ALSB message context model and the predefined context
variables that are used in message flows.

http://e-docs.bea.com/alsb/docs30/consolehelp/index.html
http://e-docs.bea.com/alsb/docs30/consolehelp/index.html
http://e-docs.bea.com/alsb/docs30/operations/index.html
http://e-docs.bea.com/alsb/docs30/security/index.html
http://e-docs.bea.com/alsb/docs30/security/index.html
http://e-docs.bea.com/alsb/docs30/deploy/index.html
http://e-docs.bea.com/alsb/docs30/concepts/index.html
http://e-docs.bea.com/alsb/docs30/concepts/index.html
http://e-docs.bea.com/alsb/docs30/consolehelp/index.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/index.html
http://e-docs.bea.com/alsb/docs30/concepts/index.html
http://e-docs.bea.com/alsb/docs30/concepts/index.html
http://e-docs.bea.com/alsb/docs30/operations/index.html
http://e-docs.bea.com/alsb/docs30/security/index.html
http://e-docs.bea.com/alsb/docs30/security/index.html
http://e-docs.bea.com/alsb/docs30/deploy/index.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/index.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/index.html
http://e-docs.bea.com/alsb/docs30/transports.html

Document O rgan i zat i on

AquaLogic Service Bus User Guide 1-3

Using the Test Console: Describes using the test console (available in theALSB Console
only) to test proxy services, business services, and some of the resources created and used
in ALSB.

UDDI: Describes using Universal Description, Discovery and Integration (UDDI) registries
with ALSB. The UDDI protocol is one of the major building blocks required for successful
Web Services. UDDI provides a standard interoperable platform that enables enterprises
and applications to find and use Web Services over the Internet.

Extensibility Using Java Callouts and POJOs: Provides guidelines for using the Java
callout action with Plain Old Java Objects (POJOs).

XQuery Implementation: ALSB uses the BEA AquaLogic Data Services Platform
implementation. This section describes valid extensions of the AquaLogic Data Services
Platform for BEA ALSB and ALSB-specific XQuery functions.

XQuery-SQL Mapping Reference: Provides information about the native RDBMS Data
Type support and XQuery mappings that the BEA XQuery engine generates or supports.

Debugging ALSB: Describes enabling debugging in ALSB modules.

ALSB APIs: Describes available APIs for customizing resources and for external access to
monitoring data and deployment.

http://edocs.bea.com/aldsp/docs30/index.html

I n t roduct i on to ALSB

1-4 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 2-1

C H A P T E R 2

Configuring Proxy Services and
Business Services

ALSB proxy services and business services provide the means for managing services,
transforming messages, and routing messages through the enterprise.

You can create and configure proxy services and business services using either the ALSB
Console or the ALSB Plug-in for WorkSpace Studio. You can base proxy services or business
services on existing WSDL resources, including those imported from a UDDI registry such as the
AquaLogic Service Registry, and then further configure them in the console or the plug-in.

The following sections describe services and their configuration:

ALSB Proxy Services

ALSB Business Services

How WSDL is Used in ALSB

Using a WSDL to Define a Service

Basing Services on WSDL Ports and on WSDL Bindings

Configuring Proxy Services

Configuring Business Services

Viewing Resource Details

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-2 AquaLogic Service Bus User Guide

ALSB Proxy Services
ALSB proxy services are definitions of intermediary Web Services that ALSB implements and
hosts locally. ALSB uses proxy services to route messages between business services (such as
enterprise Web Services and databases) and service clients (such as presentation applications or
other business services).

A proxy service configuration includes its interface, transport settings, security settings, and a
message flow definition. The message flow definition defines the logic that determines how
messages are handled as they flow through the proxy service. If a proxy service is based on a Web
Services Description Language (WSDL) document, the configuration also includes a WSDL port
or a WSDL binding. (See Using a WSDL to Define a Service.)

ALSB Business Services
ALSB business services are definitions of enterprise Web Services to which ALSB is a client.
Those external Web Services are implemented in and hosted by external systems, so ALSB must
know what to call, how to call, and what to expect as a result of a call. ALSB business services
model those interfaces so that ALSB can invoke the external services.

A business service configuration includes its interface, transport settings, and security settings.
(It does not include a message flow definition.) If the business service is based on a WSDL, the
configuration also includes a WSDL port or a WSDL binding. (See Using a WSDL to Define a
Service.)

How WSDL is Used in ALSB
ALSB defines some types of business services and proxy services using WSDL, an XML-based
specification for describing Web services. A WSDL document describes service operations, input
and output parameters, and how a client application connects to the service. For the WSDL 1.1
specification, see the W3C Note, W3C Web Services Description Language (WSDL) 1.1.

About Effective WSDLs and Generated WSDLs
In ALSB, you can base a new proxy service or a new business service on an existing WSDL
(called a “WSDL resource”) and then override or add configuration properties in the console or
the plug-in. You can also create new services that are not based on pre-existing WSDLs and then
configure them completely in the console or the plug-in.

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

How WSDL is Used in ALSB

AquaLogic Service Bus User Guide 2-3

Effective WSDLs
An effective WSDL represents a services’s WSDL properties as configured in ALSB.

When you create a service based on a WSDL resource, ALSB generates an effective WSDL by
combining settings from the original WSDL plus any transport configurations you set in the
console or the plug-in, plus any other configuration settings you add or change from the original
WSDL. Settings from the original WSDL resource that are not used in the new configuration are
omitted from the effective WSDL.

ALSB can generate effective WSDLs for these types of proxy services and business services:

SOAP services created from a WSDL

XML services created from a WSDL

Effective WSDLs can be generated for those types of services using any transport that supports
WSDL-based services, including HTTP, JMS, SB, etc.

ALSB cannot generate effective WSDLs for these types of proxy services and business services:

Any SOAP

Any XML

Messaging type services

Effective WSDLs have different characteristics for proxy services and business services and for
services based on WSDL ports and services based on WSDL bindings. Those characteristics are
discussed throughout this documentation. In particular, see Basing Services on WSDL Ports and
on WSDL Bindings.

Generated WSDLs
A generated WSDL is an effective WSDL that ALSB generates for transport-type services that
were not created from a WSDL resource but which can be described using a WSDL. For example,
a WSDL generated from an EJB-based service is a generated WSDL.

Accessing Effective WSDLs
There are three ways to access an effective WSDL:

In a Web browser, enter the URL for an HTTP-based proxy service, appended with ?WSDL.

This works only for HTTP-transport-based services for which ALSB can generate effective
WSDLs.)

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-4 AquaLogic Service Bus User Guide

In a Web browser, enter the fixed HTTP URL, for example:

http://host:port/sbresource?PROXY/project/folder/proxyname

or

http://host:port/sbresource?BIZ/project/folder/businessservicename

This works for all services for which ALSB can generate effective WSDLs.

Export the WSDL from the console or from the plug-in. See:

– Exporting a WSDL in Using the AquaLogic Service Bus Console

– Generating an Effective WSDL in Using the AquaLogic Service Bus Plug-in for
WorkSpace Studio

Exporting the WSDL generates a Zip file that contains the effective WSDL along with
associated dependencies, including schemas and WS-Policies. ALSB evaluates the
dependencies, and the appropriate location is added to the location attribute of the
WSDL import element.

There is no import element for WS-policies. For WS-policies, the policy reference is
retained, and the policy resource is included in the export.

You cannot export a generated WSDL.

See also Viewing Resource Details.

WSDL Overview
A WSDL document describes a service, its location, its operations, and the way in which clients
can communicate with it. This section provides a very brief introduction to WSDL, to provide
context for discussing ALSB features.

Table 2-1 summarizes the main elements used to define WSDL services.

Table 2-1 High-level WSDL Elements

Element Description

<types> Type definitions for message content.

<message> Abstract definition of the data being exchanged. A message consists of parts, which
describe the logical, abstract content of the message.

<portType> Abstract collection of operations supported by the service.

http://e-docs.bea.com/alsb/docs30/consolehelp/projectexplorer.html#projectexplorerExportWSDL
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#ExportingAWSDL

How WSDL is Used in ALSB

AquaLogic Service Bus User Guide 2-5

WSDL specifies SOAP, HTTP, MIME, and ALSB-specific binding extensions, which extend the
WSDL binding mechanism to support protocol-specific or message format-specific features.
ALSB supports SOAP,

Types
The <types> element is a container for data type definitions. It uses a type system, such as XML
Schema (XSD), to define the vocabulary of messages handled by this service. For example, a
service that provides stock quotes might define an XML vocabulary, with the terms
TradePriceRequest and TradePrice, as shown in Listing 2-1.

Listing 2-1 WSDL Types Example

<types>

<schema targetNamespace="http://example.com/stockquote.xsd"

xmlns="http://www.w3.org/2001/XMLSchema">

<element name="TradePriceRequest">

<complexType>

<all>

<element name="tickerSymbol" type="string"/>

</all>

</complexType>

</element>

<element name="TradePrice">

<complexType>

<all>

<element name="price" type="float"/>

</all>

<operation> Abstract description of an action supported by the service.

<binding> Concrete protocol and data format specification for a port type.

<port> A single endpoint, consisting of a network address and a binding.

<service> Collection of related ports, or endpoints.

Table 2-1 High-level WSDL Elements

Element Description

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-6 AquaLogic Service Bus User Guide

</complexType>

</element>

</schema>

</types>

Message
The <message> element provides an abstract, typed definition of the data being communicated.
A message consists of parts, each of which describes one logical, abstract unit of the message. A
WSDL can define one or more messages, each of which may have one or more parts. For
example, the WSDL fragment in Listing 2-2 defines four message types, sellerInfoMessage,
buyerInfoMessage, response, and negotiationMessage, each of which has one or more
parts.

Listing 2-2 WSDL Message Example

<message name="sellerInfoMessage">

<part name="inventoryItem" type="xsd:string"/>

<part name="askingPrice" type="xsd:integer"/>

</message>

<message name="buyerInfoMessage">

<part name="item" type="xsd:string"/>

<part name="offer" type="xsd:integer"/>

</message>

<message name="response">

<part name="result" type="xsd:string"/>

</message>

<message name="negotiationMessage">

<part name="item" type="xsd:string"/>

<part name="price" type="xsd:integer"/>

<part name="outcome" type="xsd:string"/>

</message>

How WSDL is Used in ALSB

AquaLogic Service Bus User Guide 2-7

Port Type
The <portType> element defines a set of operations supported by one or more endpoints (which
are defined in the <port> element). The port type provides the public interface for the operations
provided by the service. Each operation is defined in an <operation> element, each of which is
an abstract description of an action supported by the service.

For example, the fragment in Listing 2-3 defines a port type with one operation,
GetLastTradePrice, which can handle an input message, GetLastTradePriceInput, and an
output message, GetLastTradePriceOuput. The concrete descriptions of these messages are
defined in the WSDL binding, as shown in the <soap:operation> subelement in Listing 2-4.

Listing 2-3 WSDL Port Type and Operation Example

<portType name="StockQuotePortType">

<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePriceInput"/>

<output message="tns:GetLastTradePriceOutput"/>

</operation>

</portType>

Binding
The <binding> element specifies a concrete data format specification and a concrete transport
protocol for a port type.

The fragment in Listing 2-4 specifies the binding for the StockQuotePortType port type, which
is provided as the value for the type attribute. The <soap:binding> subelement signifies that
the binding is bound to the SOAP protocol format. In that subelement, the style attribute
specifies that the data format is SOAP document style, and the transport attribute specifies that
the transport protocol is HTTP.

Listing 2-4 WSDL Binding Example

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetLastTradePrice">

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-8 AquaLogic Service Bus User Guide

<soap:operation
soapAction="http://example.com/GetLastTradePrice"/>
<input>

<soap:body use="literal"/>
</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
</binding>

Service and Port
The <service> element defines a collection of related endpoints, each of which is defined in a
child <port> element. A port is defined as a binding associated with a network address. For
example, the fragment shown in Listing 2-5 defines two ports, StockQuotePort, and
StockQuotePortUK. They both use the same binding, tns:StockQuoteSoapBinding, (which
is concretely defined in <binding>) but have different network addresses:
http://example.com/stockquote vs. http://example.uk/stockquote. These are
alternative ports available for this service.

Listing 2-5 WSDL service and port Example

<service name="StockQuoteService">

 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">

 <soap:address location="http://example.com:9999/stockquote"/>

 </port>

 <port name="StockQuotePortUK" binding="tns:StockQuoteSoapBinding">

 <soap:address location="http://example.uk:9999/stockquote"/>

 </port>

</service>

Using a WSDL to Define a Service
If a service has a well defined WSDL interface, it is recommended, although not required, that
you use the WSDL to define the service.

Using a WSDL to Def ine a Serv i ce

AquaLogic Service Bus User Guide 2-9

There are three types of WSDLs you can define. They are:

SOAP Document Wrapped Web Services

SOAP Document Style Web Services

SOAP RPC Web Services

SOAP Document Wrapped Web Services
A document wrapped Web Service is described in a WSDL as a Document Style Service.
However, it follows some additional conventions. Standard document-oriented Web Service
operations take only one parameter or message part, typically an XML document. This means that
the methods that implement the operations must also have only one parameter.
Document-wrapped Web Service operations, however, can take any number of parameters,
although the parameter values will be wrapped into one complex data type in a SOAP message.
This wrapped complex data type will be described in the WSDL as the single document for the
operation.

SOAP Document Style Web Services
You can configure proxy services as SOAP style proxy services and configure business services
as SOAP style business services.

Listing 2-6 provides an example of a WSDL for a sample document style Web Service using
SOAP 1.1.

Listing 2-6 WSDL for a Sample Document Style Web Service

<definitions name="Lookup"
targetNamespace="http://example.com/lookup/service/defs"
xmlns:tns="http://example.com/lookup/service/defs"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:docs="http://example.com/lookup/docs"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<xs:schema targetNamespace="http://example.com/lookup/docs"

elementFormDefault="qualified">
<xs:element name="PurchaseOrg" type="xs:string"/>
<xs:element name="LegacyBoolean" type="xs:boolean"/>

</xs:schema>

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-10 AquaLogic Service Bus User Guide

</types>
<message name="lookupReq">
<part name="request" element="docs:purchaseorg"/>

</message>
<message name="lookupResp">
<part name="result" element="docs:legacyboolean"/>

</message>
<portType name="LookupPortType">
<operation name="lookup">

<input message="tns:lookupReq"/>
<output message="tns:lookupResp"/>

</operation>
</portType>
<binding name="LookupBinding" type="tns:lookupPortType">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="lookup">

<soap:operation/>
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
</binding>

</definitions>

The service has an operation (equivalent to a method in a Java class) called lookup. The binding
indicates that this is a SOAP 1.1 document style Web Service.

When the WSDL shown in the preceding listing is used for a request, the value of the body
variable ($body) that the document style proxy service obtains is displayed in Listing 2-7.

Note: Namespace declarations have been removed from the XML in the listings that follow for
the sake of clarity.

Listing 2-7 Body Variable Value

<soap-env:body>

<req:purchaseorg>BEA Systems</req:purchaseorg>

</soap-env:body>

Using a WSDL to Def ine a Serv i ce

AquaLogic Service Bus User Guide 2-11

In Listing 2-7, soap-env is the predefined SOAP 1.1 namespace and req is the namespace of the
PurchaseOrg element (http://example.com/lookup/docs).

If the business service to which the proxy service is routing uses the above WSDL, the value for
the body variable ($body) given above is the value of the body variable ($body) from the proxy
service.

The value of the body variable ($body) for the response from the invoked business service that
the proxy service receives is displayed in Listing 2-8.

Note: Namespace declarations have been removed from the XML in the listings that follow for
the sake of clarity.

Listing 2-8 Body Variable Value

<soap-env:body>

<req:legacyboolean>true</req:legacyboolean>

</soap-env:body>

This is also the value of the body variable ($body) for the response returned by the proxy service
using this WSDL.

There are many tools available (including BEA WebLogic Workshop tools) that take the WSDL
of a proxy service (obtained by adding the ?WSDL suffix to the URL of the proxy service in the
browser) and generate a Java class with the appropriate request and response parameters to
invoke the operations of the service. This Java class can be used to invoke the proxy service that
uses this WSDL.

SOAP RPC Web Services
You can configure proxy services as RPC style proxy services and configure business services as
RPC style business services.

Listing 2-9 provides an example of a WSDL for a sample RPC style Web Service using SOAP
1.1.

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-12 AquaLogic Service Bus User Guide

Listing 2-9 WSDL for a Sample RPC Style Web Service

<definitions name="Lookup"
targetNamespace="http://example.com/lookup/service/defs"
xmlns:tns="http://example.com/lookup/service/defs"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:docs="http://example.com/lookup/docs"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<xs:schema targetNamespace="http://example.com/lookup/docs"

elementFormDefault="qualified">
<xs:complexType name="RequestDoc">

<xs:sequence>
<xs:element name="PurchaseOrg" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="ResponseDoc">

<xs:sequence>
<xs:element name="LegacyBoolean" type="xs:boolean"/>

</xs:sequence>
</xs:complexType>

</xs:schema>
</types>
<message name="lookupReq">
<part name="request" type="docs: RequestDoc"/>

</message>
<message name="lookupResp">
<part name="result" type="docs: ResponseDoc"/>

</message>
<portType name="LookupPortType">
<operation name="lookup">

<input message="tns:lookupReq"/>
<output message="tns:lookupResp"/>

</operation>
</portType>
<binding name="LookupBinding" type="tns:lookupPortType">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="lookup">

<soap:operation/>
<input>

<soap:body use="literal"
namespace="http://example.com/lookup/service"/>

</input>
<output>

<soap:body use="literal"
namespace="http://example.com/lookup/service"/>

Using a WSDL to Def ine a Serv i ce

AquaLogic Service Bus User Guide 2-13

</output>
</operation>

</binding>
</definitions>

The service described in the preceding listing includes an operation (equivalent to a method in a
Java class) called lookup. The binding indicates that this is a SOAP RPC Web Service. In other
words, the Web Service’s operation receives a set of request parameters and returns a set of
response parameters. The lookup operation has a parameter called request and a return
parameter called result. The namespace of the operation in the binding is:

http://example.com/lookup/service/defs

When the WSDL shown in Listing 2-9 is used for a request, the value of the body variable
($body) that the SOAP RPC proxy service obtains is displayed in Listing 2-10.

Note: Namespace declarations have been removed from the XML in the listings that follow for
the sake of clarity.

Listing 2-10 Body Variable Value

<soap-env:body>

<ns:lookup>

<request>

<req:purchaseorg>BEA Systems</req:purchaseorg>

</request>

</ns:lookup>

<soap-env:body>

Where soap-env is the predefined SOAP 1.1 name space, ns is the operation namespace
(<http://example.com/lookup/service>) and, req is the namespace of the PurchaseOrg
element (http://example.com/lookup/docs).

If the business service to which the proxy service routes the messages uses the WSDL shown in
Listing 2-10, the value for the body variable ($body), shown in Listing 2-11, is the value of the
body variable ($body) from the proxy service.

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-14 AquaLogic Service Bus User Guide

When this WSDL is used for a request, the value of the body variable ($body) for the response
from the invoked business service that the proxy service receives is displayed in Listing 2-10.

Listing 2-11 Body Variable Value

<soap-env:body>

<ns:lookupResponse>

<result>

<req:legacyboolean>true</req:legacyboolean>

</result>

</ns:lookupResponse>

<soap-env:body>

This is also the value of the body variable ($body) for the response returned by the proxy service
using this WSDL.

There are many tools available (including BEA WebLogic Workshop tools) that take the WSDL
of a proxy service (obtained by adding the ?WSDL suffix to the URL of the proxy in the browser)
and generate a Java class with the appropriate request and response parameters to invoke the
operations of that service. You can use such Java classes to invoke the proxy services that use this
WSDL.

The benefits of using a WSDL include the following:

The system can provide metrics for each operation in a WSDL.

Operational branching is possible in the pipeline. For more information, see “Branching in
Message Flows” on page 3-5.

For SOAP 1.1 services, the SOAPAction header is automatically populated for services
invoked by a proxy service. For SOAP 1.2 services, the action parameter of the
Content-Type header is automatically populated for services invoked by a proxy service.

A WSDL is required for services using WS-Security. WS-Policies are attached to WSDLs.

The system supports the <url>?WSDL syntax, which allows you to dynamically obtain the
WSDL of a HTTP proxy service. This is useful for a number of SOAP client generation
tools, including BEA WebLogic Workshop.

Bas ing Serv ices on WSDL Po r ts and on WSDL B ind ings

AquaLogic Service Bus User Guide 2-15

In the XQuery and XPath editors and condition builders, it is easy to manipulate the body
content variable ($body) because the editor provides a default mapping of $body to the
request message in the WSDL of a proxy service. See “Message Context” on page 5-1.

The run-time contents of $body for a specific action can be different from the default
mapping displayed in the editor. This is because ALSB is not a programming language in
which typed variables are declared and used. Instead, variables are untyped and are created
dynamically at run time when a value is assigned. In addition, the type of the variable is
the type that is implied by its contents at any point in the message flow. To enable you to
easily create XQuery and XPath expressions, the design time editor allows you to map the
type for a given variable by mapping the variable to the type in the editor. To learn about
using the XQuery and XPath editor to create expressions, see “Working with Variable
Structures” on page 3-44.

Basing Services on WSDL Ports and on WSDL Bindings
When you create a service based on a WSDL resource, you must base the service on a WSDL
port or on a WSDL binding:

When you create a new service based on a binding in a WSDL resource, you are choosing
the protocol and data format defined in the selected <binding> element in the WSDL
resource.

When you create a new service based on a port in a WSDL resource, you are choosing the
binding and the network address defined in the <port> element.

When creating or modifying the service, you can change the transport, but you cannot override
the data format.

The port and binding definitions from the original WSDL resource are modified in the effective
WSDL depending on a number of factors, as described below.

Characteristics of Effective WSDLs Generated for Proxy Services
The following characteristics apply to effective WSDLs generated for proxy services:

The effective WSDL has one and only one wsdl:service section.

The wsdl:service section has one and only one wsdl:port section.

For SOAP services, any existing <wsdl:service> definition is removed, and a new
service definition containing a single <wsdl:port> is created.

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-16 AquaLogic Service Bus User Guide

For SOAP binding over any of the supported transports the wsdl:binding section
contains the standard WSDL SOAP binding elements along with a unique transport URI
that identifies the transport.

For XML binding over HTTP, the wsdl:binding section uses the standard binding
elements specified in the WSDL 1.1 specification.

For XML binding over any of the other supported transports the wsdl:binding section
uses BEA (ALSB) proprietary WSDL XML binding elements.

If the service is based on a binding:

– If the service is generated from binding Y in the WSDL resource, the effective WSDL
defines a new service and port (<bindingname>QSService and
<bindingname>QSPort). None of the ports defined in the WSDL resource are
included in the effective WSDL.

– There may be multiple ports in that WSDL associated with that binding. Each port can
use a different URL. Therefore, the effective WSDL uses the binding but generates an
artificial port from the configuration on the service for that binding. All other ports will
be removed.

If the service is based on a port:

– If the service is generated from port X in the WSDL resource, then port X is also
defined in the effective WSDL. Any other ports defined in the WSDL resource are not
included. Furthermore, if you base the proxy service on a WSDL port, the effective
WSDL uses that port name. The binding is determined from the port, and in turn, the
port type is determined from the binding.

– The effective WSDL preserves any WS-Policies associated with the port defined in the
resource WSDL.

– The transport address specified in the port definition in the resource WSDL is never
used as the address for a proxy service in the effective WSDL:

For HTTP services, you must specify a transport address when configuring the
transport in the console or the plug-in. That address is used in the port definition in the
effective WSDL.

The URL specified as the transport address for a proxy service is always relative to a
path in an ALSB domain, because ALSB always hosts proxy services.

– For SOAP-protocol-based WSDL services, the transport URI in the SOAP binding
depends on the transport implementation. For standard transports (like HTTP and JMS),
this value is as per the SOAP specification or another universally accepted value. For

Bas ing Serv ices on WSDL Po r ts and on WSDL B ind ings

AquaLogic Service Bus User Guide 2-17

transports for which SOAP does not define a standard value, ALSB sets one consisting
of a predefined namespace with the transport ID appended at the end:
http://www.bea.com/transport/2007/05/.

– There is one service element in the effective WSDL, and the port address contains a
URL whose syntax and semantic is defined by the transport selected in the binding.

Characteristics of Effective WSDLs Generated for Non-Transport-Type
Business Services
The following characteristics apply to effective WSDLs generated for non-transport-type
business services:

The effective WSDL has one and only one wsdl:service section.

The wsdl:service section may have more than one wsdl:port sections. This is
generally true when load balancing is used and there are multiple end point addresses that
can be used using one of the load-balance algorithms supported.

For SOAP binding over any of the supported transports, the wsdl:binding section
contains the standard WSDL SOAP binding elements along with a unique transport URI
that identifies the transport.

For XML binding over any of the supported transports, the wsdl:binding section
contains the BEA WSDL XML binding elements.

The URL specified as the transport address is a remote location where the remote service is
hosted.

If the service is based on a port:

– The effective WSDL defines a port with the same name as the port in the template on
which the new service is based. If multiple endpoint addresses are configured for the
business service, the effective WSDL generated from it defines ports for all the
endpoints, with the names <portname_in_template>_1,
<portname_in_template>_2,...

– The binding for the new service is determined from the port, and the port type is in turn
determined from the binding.

– The transport address URL is a remote location where the remote service is hosted.

If the service is based on a binding:

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-18 AquaLogic Service Bus User Guide

– The effective WSDL defines a new service and port, based on the port in the WSDL
resource. None of the ports defined in the WSDL resource are included in the effective
WSDL.

– A binding in the WSDL resource may be associated with multiple ports. Each port can
use a different URL and have a different WS-Policy attached to it. Therefore, the
generated WSDL uses the binding but generates an artificial port for that binding with
no WS-Policy.

– For XML-based WSDL services, standard HTTP binding is used only if the service
uses HTTP transport. For all other services created from an XML-based WSDL, the
effective WSDL uses BEA binding.

Characteristics of Effective WSDLs Generated for Transport-Type Business
Services
ALSB does not guarantee one and only one wsdl:service section in effective WSDLs
generated for transport-type business services. Because the WSDL is generated by the transport,
ALSB does not generate nor does it clean up extra service-port sections. ALSB does, however,
evaluate dependencies and sets their references during export.

Generating Effective WSDLs in Clustered Domains
When generating the effective WSDL in a clustered domain, ALSB rewrites the endpoint URL
based on the server or cluster configuration. If a front-end HTTP host/port (or a front-end HTTPS
host/port for HTTPS endpoints) has been specified, it will be used; otherwise, the Managed
Server host or port will be used. It is strongly advised that a front-end HTTP or HTTPS host/port
is assigned in clustered domains.

Examples of Proxy Services Based on a Port and on a Binding
Listing 2-12 shows fragments of port and binding definitions in a WSDL resource.

Listing 2-12 WSDL resource

<portType name=”StockQuotePortType”>

...

</portType>

<binding name=”StockQuoteSoapBinding” type=”tns:StockQuotePortType”>

<soap:binding style=”document”

Bas ing Serv ices on WSDL Po r ts and on WSDL B ind ings

AquaLogic Service Bus User Guide 2-19

transport=”http://schemas.xmlsoap.org/soap/http”/>

...

</binding>

<service name=”StockQuoteService”>

<port name=”StockQuotePort” binding=”tns:StockQuoteSoapBinding”>

<soap:address location=”http://example.com:9999/stockquote”/>

</port>

 <port name="StockQuotePortUK" binding="tns:StockQuoteSoapBinding">

 <soap:address location="http://example.uk:9999/stockquote"/>

 </port>

</service>

Basing the Service on a Port
If you create a proxy service based on the StockQuotePort port in Listing 2-12, the effective
WSDL will look something like the fragment in Listing 2-13.

Listing 2-13 Effective WSDL for a Proxy Service Based on a Port

<binding name=”StockQuoteSoapBinding” type=”ns:StockQuotePortType”>

<soap:binding style=”document”

transport=”http://schemas.xmlsoap.org/soap/http”/>

...

</binding>

<service name=”StockQuoteService”>

<port name=”StockQuotePort” binding=”ns:StockQuoteSoapBinding”>

<soap:address location=”http://host:port/project/proxyname”/>

</port>

</service>

Notice the following about the above example:

The service name, StockQuoteService, is the same in both the template and the effective
WSDL.

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-20 AquaLogic Service Bus User Guide

The binding is the same in both the template and the effective WSDL. In this example, it
specifies that the service will use the HTTP transport protocol for SOAP document style
messages. (The binding also specifies the same binding operation in both the template and
the effective WSDL, but that is not shown in this example.)

The second port defined in the WSDL resource, StockQuotePortUK, is not defined in the
effective WSDL.

The transport address (URI) defined in the WSDL resource’s port,
http://example.com:9999/stockquote, is different from the address generated in the
effective WSDL’s port, http://host:port/project/proxyname. The effective WSDL
uses the address specified for the transport configuration in the ALSB Console or the
ALSB Plug-in for WorkSpace Studio.

Basing the Service on a Binding
If you create a proxy service based on the StockQuoteBinding binding in Listing 2-12, the
effective WSDL will look something like the fragment in Listing 2-14.

Listing 2-14 Effective WSDL for a Proxy Service Based on a Binding

<binding name=”StockQuoteSoapBinding” type=”ns:StockQuotePortType”>

<soap:binding style=”document”

transport=”http://schemas.xmlsoap.org/soap/http”/>

...

</binding>

<wsdl:service name=”StockQuoteSoapBindingQSService”

<wsdl:port name=”StockQuoteSoapBindingQSPort”

binding=”ns:StockQuoteSoapBinding”>

<soap:address location=”http:/host:port/project/proxyname”/>

</wsdl:port>

</wsdl:service>

Notice the following about the above example:

The service and the port in the WSDL resource are different from the service and the port
generated in the effective WSDL.

Conf igur ing Proxy Se rv ices

AquaLogic Service Bus User Guide 2-21

The service name in the WSDL resource and the effective WSDL are different:
StockQuoteService in the template and StockQuoteSoapBindingQSService in the
effective WSDL.

The binding is the same in both the WSDL resource and effective WSDL. In this example,
it specifies that the service will use the HTTP transport protocol for SOAP document style
messages.

The binding also specifies the same binding operation in both the template and the
effective WSDL, but that is not shown in this example.

The transport address (URI) defined in the WSDL resource’s port,
http://example.com:9999/stockquote, is different from the address generated in the
effective WSDL’s port, http://host:port/project/stockquote.

Using Any SOAP or Any XML Service Types
If you want to expose one port to clients for a variety of enterprise applications, use Any SOAP
or Any XML service types. For Any SOAP, you must specify if it is SOAP 1.1 or SOAP 1.2.

Using the Messaging Service Type
If one of the request or response messages is non-XML, you must use the messaging service type.

ALSB does not automatically perform “misunderstand” SOAP header checking. However, you
can use XQuery conditional expressions and validate actions to explicitly perform this type of
check. For more information on the validate action, see Adding Validate Actions in Using the
AquaLogic Service Bus Console or Validate Action Properties in Using the AquaLogic Service
Bus Plug-in for WorkSpace Studio. For more information on conditional XQuery expressions, see
Proxy Services: Editors in Using the AquaLogic Service Bus Console or Condition Editor in
Using the AquaLogic Service Bus Plug-in for WorkSpace Studio.

You can use ALSB to configure a validate action and use XQuery conditional expressions to
perform validation checks explicitly in the message flow.

For more information on service types, see “General Configuration page” in Creating and
Configuring Proxy Services in Using the AquaLogic Service Bus Console.

Configuring Proxy Services
The following sections provide an overview of proxy service configuration. For specific
instructions for configuring proxy services, see:

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html#proxyactionsValidateAction
http://e-docs.bea.com/alsb/docs30/eclipsehelp/ui_ref.html#uiMsgFlowPropertiesViewValidateActionPage
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyeditors.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/ui_ref.html#uiConditionEditor

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-22 AquaLogic Service Bus User Guide

Proxy Services: Creating and Managing in Using the AquaLogic Service Bus Console

Working with Proxy Services in Using the AquaLogic Service Bus Plug-in for WorkSpace
Studio

Proxy Service Types and Transports
Each proxy service is of a certain type, and each can be used with the transport protocols
appropriate for that type. ALSB supports several standard transports plus custom transports. The
service types are described in Table 2-2, including the standard transports available for each type.

Table 2-2 Proxy Service Types and Transports Supported by ALSB

Service Type Description Standard Transport Protocols
Supported for this Service Type

WSDL Web Service A SOAP or XML proxy service
whose interface is described by a
WSDL document.

HTTP
JMS
Local
SB
WS

Any SOAP service

(no WSDL)

A SOAP service that does not
have an explicitly defined,
concrete interface.

HTTP

JMS

Local

SB

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#WorkingWithProxyServices

Conf igur ing Proxy Se rv ices

AquaLogic Service Bus User Guide 2-23

Note: All service types can send and receive attachments using MIME.

Transport and Security Configuration for Proxy Services
You must configure transport settings for all proxy service types in the ALSB Console or the
ALSB Plug-in for WorkSpace Studio. Configuration details vary, depending on the transport
type. For specific configuration settings, see:

Proxy service Transport Configuration page and Protocol-Specific Configuration pages in
Using the AquaLogic Service Bus Console.

Any XML service

(non-SOAP, no WSDL)

An XML service that does not
have an explicitly defined,
concrete interface.

E-mail

File

FTP

HTTP

JMS

Local

MQ

SB

SFTP

Tuxedo

Messaging service

(no WSDL)

A messaging service where the
request message and the response
message can be of different data
types, including binary, text,
MFL, and XML.

E-mail

File

FTP

HTTP

JMS

Local

MQ

Tuxedo

Table 2-2 Proxy Service Types and Transports Supported by ALSB

Service Type Description Standard Transport Protocols
Supported for this Service Type

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html#transport_configuration_page
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html#protocol_specific_configuration_pages

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-24 AquaLogic Service Bus User Guide

Proxy Service Transport Configuration page and Protocol-Specific Transport Configuration
pages in Using the AquaLogic Service Bus Plug-in for WorkSpace Studio.

The transport you select should support the transport mode (request/response, one-way, or both)
required by the binding definition, and it should be configured accordingly.

For services exchanging messages in both modes, you must configure the binding layer to choose
the transport mode accordingly (for any transport implementing the request/response as two
asynchronous calls, for example, JMS). This occurs automatically when the service is a concrete
type, as it is described in the binding definition. When it is not a concrete type, to configure the
binding layer, you must set the mode in the $outbound variable.

Based on the transport and WSDL, the transport mode is automatically selected, but you can
overwrite it in $inbound or $outbound.

You can specify security for proxy services, using service providers. A service provider is
required if the proxy service routes messages to HTTPS services that require client-certificate
authentication and may be required in some message-level security scenarios.

A service account can be created to provide authentication when connecting to a business service.
It acts as an alias resource for the required username and password pair.

WebLogic Server can be used to directly manage security credentials for a business service
requiring credential-level validation.

For more information, see Service Key Providers in Using the AquaLogic Service Bus Console.
See also Security-Related Validation for Proxy Services.

Configuration Settings For Each Proxy Service Type
Each proxy service type is modeled following the same pattern. Each service type must define
these configurations:

Binding definition

Run-time configuration

Run-time variables ($operation, $body, $header, $attachments)

http://e-docs.bea.com/alsb/docs30/eclipsehelp/ui_ref.html#uiProxyServiceTransportConfig
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/ui_ref.html#ttpProtocolSpecificConfigurationPages
http://e-docs.bea.com/alsb/docs30/eclipsehelp/ui_ref.html#ttpProtocolSpecificConfigurationPages

Conf igur ing Proxy Se rv ices

AquaLogic Service Bus User Guide 2-25

Configuration properties specific to individual proxy service types are described in Table 2-3:

Table 2-3 Configuration Properties for Different Proxy Service Types

Proxy Service Type Configuration Properties

WSDL Web Service Binding Definition: See Using a WSDL to Define a Service.

Run-Time Variables:
• For SOAP-based WSDL services, the variables are similar to Any SOAP service

except that $operation is initialized based on the Operation Selection algorithm
(See Operation Selection Configuration page in Using the AquaLogic Service Bus
Console.

• For XML-based WSDL services, the variables are similar to Any XML service
except that the $operation will be initialized based on the Operation Selection
algorithm.

Any SOAP service Binding Definition: The only information this service type defines is that the service is
receiving or sending SOAP messages—regardless of their WSDL binding definition.
Therefore the binding configuration for this type is empty.

In addition, as there is no binding configuration, the combination of this type and the
content-type of the message is sufficient to determine whether or not there are
attachments to the message.

As per their definition, “any” services (SOAP or XML) do not have any WSDL
definition. It is not possible to generate or view a WSDL document for those services.

Run-Time Variables:

The $body and $header variables respectively hold the <soap:Body> and
<soap:Header> of the incoming SOAP message. (For SOAP 1.1 proxies, $body and
$header use SOAP 1.1 namespace Body and namespace; for SOAP 1.2 proxies, they
use SOAP 1.2 namespace Body and namespace.)

The $attachments variable contains the SOAP message attachments, if any.

The $operation variable is not applicable to this service type as you do not define a
port type.

To learn more about the message context variables, see Message-Related Variables and
Constructing Messages to Dispatch.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-26 AquaLogic Service Bus User Guide

Any XML service Binding Definition: The only information this service type defines is that the service is
receiving/sending XML messages—regardless of their WSDL binding definition.
Therefore, the binding configuration for this type is empty.

In addition, as there is no binding configuration, the combination of this type and the
content-type of the message is sufficient to determine whether or not there are
attachments to the message.

As per their definition, “any” services (SOAP or XML) do not have any WSDL
definition. It is not possible to request a WSDL document for those services.

Run-Time Variables:

The $body variable holds the incoming XML message wrapped in a <soap:Body>
element. (For SOAP 1.1 proxies, $body and $header use SOAP 1.1 namespace Body
and namespace; for SOAP 1.2 proxies, they use SOAP 1.2 namespace Body and
namespace.)

The $attachments variable contains message attachments, if there are any.

The $header variable is not applicable to this service type and is set to its default
value.

The $operation variable is not applicable to this service type as you do not define a
port type.

To learn more about the message context variables, see Message-Related Variables and
Constructing Messages to Dispatch.

Table 2-3 Configuration Properties for Different Proxy Service Types

Proxy Service Type Configuration Properties

Conf igur ing Proxy Se rv ices

AquaLogic Service Bus User Guide 2-27

Configuring Message Flow
A proxy service’s message flow definition defines the logic that determines how messages are
handled as they flow through the proxy service. A message flow definition transforms messages,
as needed, to map the message data to the format required by a business service (for outbound
messages) or the originating client (for inbound messages). They then route the messages to the
appropriate location. For information about configuring message flows, see Modeling Message
Flow in ALSB.

Messaging service Binding Definition: The binding definition for messaging services consists of
configuring the content-type of the messages that are exchanged. The content-type for
the response does not need to be the same as for the request; therefore, the response is
configured separately (for example, the service could accept an MFL message and
return an XML acknowledgment receipt) and could also be set to None.

As per their definition, messaging-based services do not have any WSDL definition. It
is not possible to request a WSDL document for those services.

There are four available content types to choose from for the request (and response):
• Binary
• Text
• XML
• MFL

Run-Time Variables:

This service type is message-based. There is no concept of multiple “operations” as for
Web Services. Therefore, the $operation variable is left empty.

The $body variable holds the incoming message wrapped in a <soap:Body> element.
(For SOAP 1.1 proxies, $body uses the SOAP 1.1 namespace Body; for SOAP 1.2
proxies, it uses SOAP 1.2 namespace Body.)

The $header variable is not applicable to this service type, and is set to its default
value.

The $attachments variable contains message attachments if there are any.

To learn more about the message context variables, see Message-Related Variables and
Constructing Messages to Dispatch.

Table 2-3 Configuration Properties for Different Proxy Service Types

Proxy Service Type Configuration Properties

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-28 AquaLogic Service Bus User Guide

Security-Related Validation for Proxy Services
When you activate a session that contains changes to an active proxy service, ALSB validates the
changes to ensure that you have created all of the credentials that the proxy service’s static
endpoints require. For example, if you configured a proxy service to have a Web Service as a
static endpoint and the Web Service requires a digital signature, ALSB verifies that you have
associated a service key provider with the proxy service and that the service key provider contains
a key-pair binding that can be used as a digital signature.

If a session contains a change to the key-pair bindings of a service key provider, ALSB validates
the change against all of the proxy services that use the service key provider. For example, if you
remove the encryption key-pair, ALSB reports a validation error for any proxy service that
references the service key provider and whose endpoint requires encryption.

The following criteria determine when ALSB performs this security-related validation and the
actions that it takes during validation:

If a proxy service specifies a static route and operation, ALSB determines which
credentials the static route and operation require. If the proxy service is missing the
required credentials, ALSB will not commit the session until you add the missing
credentials.

If a proxy service specifies a static route but the operation is passed through from the
inbound request, ALSB determines which credentials the static route and each of the
route’s operations require. If the proxy service is missing the required credentials, ALSB
issues a validation warning but allows you to commit the session.

If a proxy service specifies a dynamic route and operation, ALSB cannot validate the
security requirements and you risk the possibility of runtime errors. For information about
dynamic routing, see “Dynamic Routing” in Modeling Message Flow in ALSB.

Configuring Business Services
The following sections provide an overview of business service configuration. For specific
instructions for configuring business services, see:

Business Services in Using the AquaLogic Service Bus Console

Working with Business Services in Using the AquaLogic Service Bus Plug-in for
WorkSpace Studio

http://e-docs.bea.com/alsb/docs30/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#WorkingWithBusinessServices

Conf igur ing Bus iness Se rv ices

AquaLogic Service Bus User Guide 2-29

Business Service Types and Transport
Each business service is of a certain type, and each can be used with the transport protocols
appropriate for that type. ALSB supports several standard transports plus custom transports. The
service types are described in Table 2-4, including the standard transports available for each type.

Table 2-4 Business Service Types and Transports Supported by ALSB

Service Type Description Transport Protocols

WSDL Web Service A SOAP or XML business service
whose interface is described by a
WSDL document.

DSP
HTTP
JMS
JPD

Local1

SB
WS

Any SOAP Service

(no WSDL)

A SOAP service that does not
have an explicitly defined,
concrete interface.

DSP

HTTP

JMS

JPD

Local

SB

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-30 AquaLogic Service Bus User Guide

Any XML Service

(no WSDL)

An XML service that does not
have an explicitly defined,
concrete interface.

Only HTTP GET is supported for
XML with no WSDL.

DSP

E-mail

File

FTP

HTTP GET

JMS

JPD

Local

MQ

SB

SFTP

Tuxedo2

Transport Typed Service

(no WSDL)

 A service that uses an EJB
transport.

EJB

Flow

Messaging Type Service

(no WSDL)

A messaging service where the
request message and the response
message can be of different data
types, including binary, text,
MFL, and XML.

E-mail

File

FTP

HTTP GET

JMS

Local

MQ

SFTP

Tuxedo

1. BEA recommends using the local transport for communication between two proxy
services. For more information on local transport, see the Local Transport User’s
Guide..
2. For a Tuxedo transport-based service, if the service type is XML, an FML32 buffer with an
FLD_MBSTRING field from a Tuxedo client will not be transformed to XML.

For information about configuring proxy and business services based on various transport
protocols, see the AquaLogic Service Bus Transports page.

Table 2-4 Business Service Types and Transports Supported by ALSB (Continued)

Service Type Description Transport Protocols

http://e-docs.bea.com/alsb/docs30/localtransport/index.html
http://e-docs.bea.com/alsb/docs30/localtransport/index.html
http://e-docs.bea.com/alsb/docs30/transports.html

Conf igur ing Bus iness Se rv ices

AquaLogic Service Bus User Guide 2-31

Configuration Settings for All Business Service Types
Each business service type is modeled following the same pattern. Each service type must define
these configurations:

Binding definition

Run-time configuration

Run-time variables ($operation, $body, $header, $attachments)

The business service configuration properties described in Table 2-5, below, are common to all
service types. Properties specific to individual service types are described in Configuration
Settings For Each Business Service Type.

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-32 AquaLogic Service Bus User Guide

Table 2-5 Common Configuration Properties for Business Services

Property Description

Resource Definition The resource definition consists of:
• The service name (that is, project, path, and local name)
• An optional description for the service
• The service type

Transport Configuration You can configure the following parameters for each business service:
• List of <string URI, integer weight> pairs—for example,

<http://www.bea.com, 100>. For a random-weighted list, the
list should contain at least one element.

• Load-balancing algorithm—enumeration, one of round-robin, random,
or random-weighted. If you select random-weighted, the weights are
applicable for each URI.

• Retry Count
• Retry Iteration Interval
• Retry Application Errors

The transport you select must be able to support the transport mode (that is,
request/response, one-way or both) required by the binding definition, and
be configured accordingly.

For services exchanging messages in both modes (i.e., request/response
and one-way), you must configure the binding layer so that it can select the
transport mode accordingly. This occurs automatically when the service is
a concrete type, as it is described in the binding definition. When it is not a
concrete type, to configure the binding layer, you must use the routing
options action in the message flow to set the mode for a route or publish.

Based on the transport and WSDL or interface, the transport mode is
automatically selected, but you can overwrite it using the routing options
action for a route or publish action.

Conf igur ing Bus iness Se rv ices

AquaLogic Service Bus User Guide 2-33

Configuration Settings For Each Business Service Type
Configuration properties specific to individual business service types are described in Table 2-6:

Table 2-6 Configuration Properties for Different Business Service Types

Property Description

WSDL Web
Service

See Using a WSDL to Define a Service.

Any SOAP Service Binding Definition: The only information this service type defines is that the service is
receiving or sending SOAP messages—regardless of their WSDL binding definition.
Therefore the binding configuration for this type is empty.

In addition, as there is no binding configuration, the combination of this type and the
content-type of the message is sufficient to determine whether or not there are attachments
to the message.

As per their definition, any services (SOAP or XML) do not have any WSDL definition.

Run-Time Variables:

The $body and $header variables respectively hold the <soap:Body> and
<soap:Header> of the SOAP message to the business service being routed to or
published. (For SOAP 1.1 proxies, $body and $header use SOAP 1.1 namespace Body
and namespace; for SOAP 1.2 proxies, they use SOAP 1.2 namespace Body and
namespace.)

The $attachments variable contains the SOAP message attachments if any.

To learn more about the message context variables, see Message-Related Variables.

Transport-Typed Transport-typed services have an empty binding definition and only apply to EJB business
services. A WSDL is not specified. Instead the transport automatically defines the WSDL
for the service. A zip containing this WSDL can be exported from the ALSB Console or
the ALSB Plug-in for WorkSpace Studio. This WSDL will not have a port defined.

The EJB Transport-Typed Service is an outbound transport to access EJBs from ALSB. It
is a self-described transport that generates a WSDL to describe its service interface. The
EJB transport features transaction and security context propagation.

Business services built using an EJB transport can be used for publish, service callout, and
service invocation.

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-34 AquaLogic Service Bus User Guide

Any XML Services Binding Definition: The only information this service type defines is that the service is
receiving/sending XML messages—regardless of their WSDL binding definition.
Therefore, the binding configuration for this type is empty.

In addition, as there is no binding configuration, the combination of this type and the
content-type of the message is sufficient to determine whether or not there are attachments
to the message.

As per their definition, any services (SOAP or XML) do not have any WSDL definition.

Run-Time Variables:

The $body variable holds the incoming XML message wrapped in a <soap:Body>
element. (For SOAP 1.1 proxies, $body uses SOAP 1.1 namespace Body; for SOAP 1.2
proxies, it uses SOAP 1.2 namespace Body.)

The $attachments variable contains message attachments if there are any.

The $header variable is not applicable to this service type and is set to its default value.

To learn more about the message context variables, see Message-Related Variables.

Table 2-6 Configuration Properties for Different Business Service Types

Property Description

V iewing Resource Deta i l s

AquaLogic Service Bus User Guide 2-35

If a business service requires Web Service security, make sure the WSDL you specify has the
necessary WS-Policies attached when you create the business service. Furthermore, if the
WS-Policy of the business service requires encryption, make sure the public certificate of the
business service is embedded in the WSDL. If the business service is a WebLogic Server 9.0 or
later Web Service, you can retrieve its WSDL using the http://<host>:<port>/<service
url>?WSDL URL, the public certificate will be automatically embedded for you if necessary.

Viewing Resource Details
ALSB provides a resource servlet that is used to expose the resources registered in ALSB. The
resources registered with ALSB include:

Messaging
Services

Binding Definition: The binding definition for messaging services consists of configuring
the content-type of the messages that are exchanged. The content-type for the response
does not need to be the same as for the request; therefore, the response is configured
separately (for example, the service could accept an MFL message and return an XML
acknowledgment receipt).

By definition, messaging-based services do not have any WSDL definition. It is not
possible to request a WSDL document for those services.

The following content types are available for the request (and response):
• Binary
• Text
• XML
• MFL
• None

Run-Time Variables:

This service type is message based.

The $body variable holds the incoming message wrapped in a <soap:Body> element.
(For SOAP 1.1 proxies, $body uses SOAP 1.1 namespace Body; for SOAP 1.2 proxies, it
uses SOAP 1.2 namespace Body.)

The $header variable is not applicable to this service type, and is set to its default value.

The $attachments variable contains message attachments if there are any.

To learn more about the message context variables, see Message-Related Variables.

Table 2-6 Configuration Properties for Different Business Service Types

Property Description

Conf igur ing Proxy Se rv ices and Bus iness Serv ices

2-36 AquaLogic Service Bus User Guide

The format of the URLs used to expose the resources is as follows:

WSDL (a WSDL registered as a resource in ALSB)

Schema

MFL

WS-Policy

WSDL (an effective WSDL with resolved policies and port information for a service—this
derived WSDL is available if the service was created using a WSDL).

You can use the following URL formats to expose the resource details:

http://host:port/sbresource?WSDL/project/...wsdlname

http://host:port/sbresource?POLICY/project/...policyname

http://host:port/sbresource?MFL/project/...mflname

http://host:port/sbresource?SCHEMA/project/...schemaname

http://host:port/sbresource?PROXY/project/...proxyname

http://host:port/sbresource?BIZ/project/...business_service_name

Note: The URLs used to expose the resources in ALSB must be encoded in UTF-8 in order to
escape special characters.

AquaLogic Service Bus User Guide 3-1

C H A P T E R 3

Modeling Message Flow in ALSB

In ALSB, a message flow defines the implementation of a proxy service. You can create and
configure ALSB proxy services in the ALSB Console or the ALSB Plug-in for WorkSpace
Studio. This section describes message flows and presents guidelines for designing them.

The following sections describe message flows in ALSB:

Message Flow Components

Branching in Message Flows

Configuring Actions in Stages and Route Nodes

Performing Transformations in Message Flows

Constructing Service Callout Messages

Handling Errors in Message Flows

Using Dynamic Routing

Accessing Databases Using XQuery

Understanding Message Context

Working with Variable Structures

Quality of Service

Content Types, JMS Type, and Encoding

Mode l ing Message F l ow in ALSB

3-2 AquaLogic Service Bus User Guide

Throttling Pattern

WS-I Compliance

Converting Between SOAP 1.1 and SOAP 1.2

For instructions on creating and configuring message flows in the ALSB Console, see:

Proxy Services: Message Flows in Using the AquaLogic Service Bus Console

Proxy Services: Actions in Using the AquaLogic Service Bus Console

Proxy Services: Error Handlers in Using the AquaLogic Service Bus Console.

For instructions on creating and configuring message flows in the ALSB Plug-in for WorkSpace
Studio, see:

Working with Proxy Services in Using the AquaLogic Service Bus Plug-in for WorkSpace
Studio

Working with Proxy Service Message Flows in Using the AquaLogic Service Bus Plug-in
for WorkSpace Studio

Message Flow Components
A message flow is composed of components that define the logic for routing and manipulating
messages as they flow through a proxy service. Nodes are configured to route messages through
the message flow, and stages and actions contain rules for processing and transforming messages.

Most of the processing logic in a message flow is handled in pipelines. A pipeline is a named
sequence of stages representing a non-branching one-way processing path. Pipelines belong to
one of the following categories:

Request pipelines process the request path of the message flow.

Response pipelines process the response path of the message flow.

Error pipelines handle errors for stages and nodes in a message flow as well as errors at the
level of the message flow (service).

To implement the processing logic of a proxy service, request and response pipelines are paired
together in pipeline pair nodes. These pipeline pair nodes can be combined with other nodes into
a single-rooted tree structure to control overall flow.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyerrors.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#WorkingWithProxyServices
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#WorkingWithProxyServiceMessageFlows

Message F low Components

AquaLogic Service Bus User Guide 3-3

Table 3-1 describes the components available for defining message flows.

Table 3-1 Message Flow Components

Component Type Summary

Start node Every message flow begins with a start node. All messages enter the message
flow through the start node, and all response messages are returned to the client
through the start node. There is nothing to configure in a start node.

Pipeline pair node A pipeline pair node combines a single request pipeline and a single response
pipeline in one top-level element. A pipeline pair node can have only one direct
descendant in the message flow. During request processing, only the request
pipeline is executed when ALSB processes a pipeline pair node. The execution
path is reversed when ALSB processes the response pipeline.

Stage Request pipelines, response pipelines, and error handlers can contain stages,
where you configure actions to manipulate messages passing through the
pipeline.

See also Configuring Actions in Stages and Route Nodes.

Error handler An error handler can be attached to any node or stage, to handle potential errors
at that location.

See also Handling Errors in Message Flows.

Branch node A branch node allows processing to proceed along exactly one of several possible
paths. Operational branching is supported for WSDL-based services, where the
branching is based on operations defined in the WSDL. Conditional branching is
supported for conditions defined in an XPath-based switch table.

See also Branching in Message Flows.

Route node A route node performs request/response communication with another service. It
represents the boundary between request and response processing for the proxy
service. When the route node dispatches a request message, the request
processing is considered complete. When the route node receives a response
message, the response processing begins. The route node supports conditional
routing as well as request and response transformations.

Because a route node represents the boundary between request and response
processing, it cannot have any descendants in the message flow.

See also Configuring Actions in Stages and Route Nodes.

Mode l ing Message F l ow in ALSB

3-4 AquaLogic Service Bus User Guide

Figure 3-1 shows a high level view of components in a message flow definition.

Figure 3-1 Components of Message Flow

Building a Message Flow
The only components required in a message flow are a start node and a route node. No restrictions
exist on what other components can be chained together in the message flow. You could create a
single route node that contained all the logic for the flow. Or, you could link two pipeline pair
nodes without a branch node in between. If you use branch nodes, each branch node could start
with a different element. One branch could terminate with a route node, another could be
followed by a pipeline pair, and yet another could have no descendant. (When a branch with no
descendants is executed at run time, response processing begins immediately.)

However, in general, a message flow is likely to be designed in one of the following ways:

For non-operational services (services that are not based on WSDLs with operations), the
flow consists of a single pipeline pair at the root followed by a route node.

For operational services, the flow consists of a single pipeline pair at the root, followed by
a branch node based on an operation, with each branch consisting of a pipeline pair
followed by a route node.

Branching in Message F lows

AquaLogic Service Bus User Guide 3-5

Message Execution
Table 3-2 briefly describes how messages are processed in a typical message flow.

Branching in Message Flows
Two kinds of branching are supported in message flows: operational branching, configured in an
operational branch node, and conditional branching, configured in a conditional branch node.

Operational Branching
When message flows define WSDL-based proxy services, operation-specific processing is
required. When you create an operational branch node in a message flow, you can build
branching logic based on the operations defined in the WSDL.

Table 3-2 Path of a Message During a Message Flow

Message Flow Node What Happens During Message Processing?

Request Processing

Start node Request processing begins at the start node.

Pipeline pair node Executes the request pipeline only.

Branch node Evaluates the branch table and proceeds down the relevant branch.

Route node Performs the route along with any request transformations.

In the message flow, regardless of whether routing takes place or not, the route
node represents the transition from processing a request to processing a
response. At the route node, the direction of the message flow is reversed. If a
request path does not have a route node, the response processing is initiated in
the reverse direction without waiting for any response.

Response Processing Skips any branch nodes and continues with the node that preceded the branch.

Route node Executes any response transformations.

Branch node Skips any branch nodes and continues with the node that preceded the branch.

Pipeline pair node Executes the response pipeline.

Start node Sends the response back to the client.

Mode l ing Message F l ow in ALSB

3-6 AquaLogic Service Bus User Guide

You must use operational branching when a proxy service is based on a WSDL with multiple
operations. You can consider using an operational branch node to handle messages separately for
each operation.

Conditional Branching
Use conditional branching to branch based on a specified condition, for example the document
type of a message.

Conditional branching is driven by a lookup table with each branch tagged with simple, unique
string values, for example, QuantityEqualToOrLessThan150 and QuantityMoreThan150.

You can configure a conditional branch to branch based on the value of a variable in the message
context (declared, for example, in a stage earlier in the message flow), or you can configure the
condition to branch based on the results of an XPath expression defined in the branch itself.

At run time, the variable or the expression is evaluated, and the resulting value is used to
determine which branch to follow. If no branch matches the value, the default branch is followed.
A branch node may have several descendants in the message flow: one for each branch, including
the default branch. You should always define a default branch. You should design the proxy
service in such a way that the value of a lookup variable is set before reaching the branch node.

For example, consider the following case using a lookup variable. A proxy service is of type any
SOAP or any XML, and you need to determine the type of the message so you can perform
conditional branching. You can design a stage action to identify the message type and then design
a conditional branching node later in the flow to separate processing based on the message type.

Now consider the following case using an XPath expression in the conditional branch node. You
want to branch based on the quantity in an order. That quantity is passed via a variable that can
be retrieved from a known location in $body. You could define the following XPath expression
to retrieve the quantity:

declare namespace openuri="http://www.openuri.org/";

declare namespace com="bea.com/demo/orders/cmnCust";

./openuri:processCust/com:cmnCust/com:Order_Items/com:Item/com:Quantity

The condition (for example, <500) is then evaluated in order down the message flow against the
expression. Whichever condition is satisfied first determines which branch is followed. If no
branch condition is satisfied, then the default branch is followed.

You can use conditional branching to expose the routing alternatives for the message flow at the
top level flow view. For example, consider a situation where you want to invoke service A or

Conf igur ing Ac t i ons in S tages and Route Nodes

AquaLogic Service Bus User Guide 3-7

service B based on a condition known early in the message flow (for example, the message type).
You could configure the conditional branching in a routing table in the route node. However, that
makes the branching somewhat more difficult to follow if you are just looking at the top level of
the flow. Instead, you could use a conditional branch node to expose this branching in the
message flow itself and use simple route nodes as the subflows for each of the branches.

Consider your business scenario before deciding whether you configure branching in the message
flow or in a stage or route node. When making your decision, remember that configuring
branches in the message flow can be awkward in the design interface if a large number of
branches extend from the branch node.

Configuring Actions in Stages and Route Nodes
Actions provide instructions for handling messages in pipeline stages, error handler stages, and
route nodes. The context determines which actions are available in the ALSB Console or in the
ALSB Plug-in for WorkSpace Studio, as described in the following sections:

Communication Actions

Flow Control Actions

Message Processing Actions

Reporting Actions

See Also

Proxy Services: Actions in Using the AquaLogic Service Bus Console

Working with Proxy Service Message Flows in Using the AquaLogic Service Bus Plug-in
for WorkSpace Studio

Communication Actions
Communication actions control message flow. Table 3-3 describes the communication actions.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#WorkingWithProxyServiceMessageFlows

Mode l ing Message F l ow in ALSB

3-8 AquaLogic Service Bus User Guide

Flow Control Actions
Flow controls actions implement conditional routing, conditional looping, and error handling.
You can also use them to notify the invoker of success or to skip the rest of the actions in the
stage. Table 3-4 describes the flow control actions.

Table 3-3 Communication Actions

Action Use to... Available in

Dynamic publish Publish a message to a service specified by an
XQuery expression.

• Pipeline stage
• Error handler stage
• Route node

Publish Identify a statically specified target service for a
message and to configure how the message is
packaged and sent to that service.

• Pipeline stage
• Error handler stage

Publish table Publish a message to zero or more statically specified
services. Switch-style condition logic is used to
determine at run time which services will be used for
the publish.

• Pipeline stage
• Error handler stage

Routing options Modify any or all of the following properties in the
outbound request: URI, Quality of Service, Mode,
Retry parameters, Message Priority.

• Pipeline stage

Service callout Configure a synchronous (blocking) callout to an
ALSB-registered proxy or business service. See
Constructing Service Callout Messages.

• Pipeline stage
• Error handler stage

Transport headers Set the header values in messages. See Configuring
Transport Headers in Message Flows.

• Pipeline stage
• Error handler stage

Conf igur ing Ac t i ons in S tages and Route Nodes

AquaLogic Service Bus User Guide 3-9

Message Processing Actions
The actions in this category process the message flow. Table 3-5 describes the message
processing actions.

Table 3-4 Flow Control Actions

Action Use to... Available in

For each Iterate over a sequence of values and execute a block
of actions

• Pipeline stage
• Error handler stage

If... then... Perform an action or set of actions conditionally,
based on the Boolean result of an XQuery expression.

• Pipeline stage
• Route node
• Error handler stage

Raise error Raise an exception with a specified error code (a
string) and description.

• Pipeline stage
• Error handler stage

Reply Specify that an immediate reply be sent to the invoker.

The reply action can be used in the request, response
or error pipeline. You can configure it to result in a
reply with success or failure. In the case of reply with
failure where the inbound transport is HTTP, the reply
action specifies that an immediate reply is sent to the
invoker.

• Pipeline stage
• Error handler stage

Resume Resume message flow after an error is handled by an
error handler. This action has no parameters and can
only be used in error handlers.

• Error handler stage

Skip Specify that at run time, the execution of this stage is
skipped and the processing proceeds to the next stage
in the message flow. This action has no parameters
and can be used in the request, response or error
pipelines.

• Pipeline stage
• Error handler stage

Mode l ing Message F l ow in ALSB

3-10 AquaLogic Service Bus User Guide

Table 3-5 Message Processing Actions

Action Use to... Available in

Assign Assign the result of an XQuery expression to a context
variable.

• Pipeline stage
• Error handler stage

Delete Delete a context variable or a set of nodes specified by an
XPath expression.

• Pipeline stage
• Error handler stage

Insert Insert the result of an XQuery expression at an identified
place relative to nodes selected by an XPath expression.

• Pipeline stage
• Error handler stage

Java callout Invoke a Java method, or EJB business service, from within
the message flow.

• Pipeline stage
• Error handler stage

MFL transform Convert message content from XML to non-XML, or vice
versa, in the message pipeline. An MFL is a specialized
XML document used to describe the layout of binary data.
It is a BEA proprietary language used to define rules to
transform formatted binary data into XML data, or vice
versa.

• Pipeline stage
• Error handler stage

Rename Rename elements selected by an XPath expression without
modifying the contents of the element.

• Pipeline stage
• Error handler stage

Replace Replace a node or the contents of a node specified by an
XPath expression. The node or its contents are replaced
with the value returned by an XQuery expression.

A replace action can be used to replace simple values,
elements and even attributes. An XQuery expression that
returns nothing is equivalent to deleting the identified
nodes or making them empty, depending upon whether the
action is replacing entire nodes or just node contents.

The replace action is one of a set of Update actions.

• Pipeline stage
• Error handler stage

Validate Validate elements selected by an XPath expression against
an XML schema element or a WSDL resource. You can
validate global elements only; ALSB does not support
validation against local elements.

• Pipeline stage
• Error handler stage

Conf igur ing Ac t i ons in S tages and Route Nodes

AquaLogic Service Bus User Guide 3-11

Reporting Actions
You use the actions in this category to log or report errors and generate alerts if required in a
message flow within a stage. Table 3-4 describes the reporting actions.

Configuring Transport Headers in Message Flows
The transport header action is a communication type action, and it is available in pipeline stages
and error handler stages.

Configuring Global Pass Through and Header-Specific Copy Options for
Transport Headers
The following options are available when you configure a transport headers action:

The Pass all Headers through Pipeline option specifies that at run time, the transport
headers action passes all headers through from the inbound message to the outbound

Table 3-6 Reporting Actions

Action Use to... Available in

Alert Generate alerts based on message context in a
pipeline, to send to an alert destination. Unlike SLA
alerts, notifications generated by the alert action are
primarily intended for business purposes, or to report
errors, and not for monitoring system health. Alert
destination should be configured and chosen with this
in mind.

If pipeline alerting is not enabled for the service or
enabled at the domain level, the configured alert
action is bypassed during message processing.

• Pipeline stage
• Error handler stage

Log Construct a message to be logged and to define a set
of attributes with which the message is logged.

• Pipeline stage
• Error handler stage

Report Enable message reporting for a proxy service. • Pipeline stage
• Error handler stage

Mode l ing Message F l ow in ALSB

3-12 AquaLogic Service Bus User Guide

message or vice versa. Every header in the source set of headers is copied to the target
header set, overwriting any existing values in the target header set.

The Copy Header from Inbound Request option and the Copy Header from Outbound
Response options specifies that at run time, the transport headers action copies the specific
header with which this option is associated from the inbound message to the outbound
message or vice versa.

Use the options in a way that best suits your scenario. Both options result in the headers in the
source header set being copied to the target header set, overwriting any existing value in the target
set. Note that the Pass all Headers through Pipeline option is executed before the
header-specific Copy Header options. In other words, for a given transport headers action
configuration, if you select Pass all Headers through Pipeline, there is no need to select the
Copy Header option for given headers.

However, you can select Pass all Headers through Pipeline to copy all headers, and
subsequently configure the action such that individual headers are deleted by selecting Delete
Header for specific headers.

WARNING: Because transport headers are specific to the transport types, it is recommended
that the pass-through (or copy) options only be used to copy headers between
services of the same transport type. Passing (or copying) headers between
services of different transport types can result in an error if the header being
passed is not accepted by the target transport. For the same reasons, be careful
when you specify a header name using the Set Header option.

Understanding How the Run Time Uses the Transport Headers Settings
As described above, you can use transport header actions to configure the values of the transport
headers for outbound requests (the messages sent out by a proxy service in route, publish, or
service callout actions) and inbound responses (the response messages a proxy service sends back
to clients). In general, the header values can be:

Specified using an XQuery expression

Passed through from the source to the target service

Deleted while going from the source to the target service

The transport headers action allows you to set, delete, or pass-through the headers in $inbound
or $outbound. If you set or delete these headers and then log $inbound or $outbound, you can
see the effects of your changes. However, when the message is sent out, the ALSB binding layer
may modify or remove some headers in $inbound or $outbound and the underlying transport

Conf igur ing Ac t i ons in S tages and Route Nodes

AquaLogic Service Bus User Guide 3-13

may in turn, ignore some of these headers and use its own values. An important distinction is that
any modifications done by the binding layer on a header are done directly to $inbound and
$outbound, whereas modifications done by the transport affects only the message's wire format.
For example, although you can specify a value for the outbound Content-Length header, the
binding layer deletes it from $outbound when sending the message. Consequently, the
modification is visible in the response path (for example, you can see the modified value if you
log $outbound). If you set the User-Agent header in $outbound, the HTTP transport ignores
it and use its own value—however, the value in $outbound is not changed.

Table 3-7 describes the transport headers that are ignored or overwritten at run time and other
limitations that exist for specific transport headers.

Table 3-7 Limitations to Transport Header Values You Specify in Transport Header Actions

Transport Description of Limitation... Transport Headers Affected By Limitation...

Outbound Request Inbound Response

HTTP ALSB run time may
overwrite these headers in
the binding layer when
preparing the message for
dispatch. If these headers are
modified, $inbound and
$outbound are updated
accordingly.

• Content-Type • Content-Type

The underlying transport
may ignore these headers
and use different values
when sending the message.
Any changes done by the
transport will not be
reflected in $inbound or
$outbound.

• Accept
• Content-Length
• Connection
• Host
• User-Agent

• Content-Length
• Date
• Transfer-Encoding

Mode l ing Message F l ow in ALSB

3-14 AquaLogic Service Bus User Guide

JMS Can only be set when the
request is with respect to a
one-way service or a
request/response service
based on JMSMessageID
correlation.

If sending to a
request/response service
based on
JMSCorrelationID
correlation, these headers are
overwritten at run time.

• JMSCorrelationID • JMSCorrelationID

Should be set to the message
time-to-live in milliseconds.
The resulting value in the
message received is the sum
of the time-to-live value
specified by the client and
the GMT at the time of the
send or publish1.

• JMSExpiration • JMSExpiration

The ALSB run time sets
these headers. In other
words, any specifications
you make for these headers
at design time are
overwritten at run time.

• JMSMessageID
• JMSRedelivered
• JMSTimestamp
• JMSXDeliveryCount
• JMSXUserID

• JMS_IBM_PutDate2

• JMS_IBM_PutTime 2

• JMS_IBM_PutApplType 2

• JMS_IBM_Encoding 2

• JMS_IBM_Character_Set 2

• JMSMessageID
• JMSRedelivered
• JMSTimestamp
• JMSXDeliveryCount
• JMSXUserID

• JMS_IBM_PutDate 2

• JMS_IBM_PutTime 2

• JMS_IBM_PutApplType 2

• JMS_IBM_Encoding 2

• JMS_IBM_Character_Set 2

Table 3-7 Limitations to Transport Header Values You Specify in Transport Header Actions

Transport Description of Limitation... Transport Headers Affected By Limitation...

Outbound Request Inbound Response

Conf igur ing Ac t i ons in S tages and Route Nodes

AquaLogic Service Bus User Guide 3-15

Because IBM MQ does not
allow certain properties to be
set by a client application, if
you set these headers with
respect to an IBM MQ
destination, a run-time
exception is raised.

• JMSXDeliveryCount
• JMSXUserID
• JMSXAppID

• JMSXDeliveryCount
• JMSXUserID
• JMSXAppID

Table 3-7 Limitations to Transport Header Values You Specify in Transport Header Actions

Transport Description of Limitation... Transport Headers Affected By Limitation...

Outbound Request Inbound Response

Mode l ing Message F l ow in ALSB

3-16 AquaLogic Service Bus User Guide

These headers cannot be
deleted when the Pass all
Headers through
Pipeline option is also
specified.

• JMSDeliveryMode
• JMSExpiration
• JMSMessageID
• JMSRedelivered
• JMSTimestamp
• JMSXDeliveryCount

• JMSDeliveryMode
• JMSExpiration
• JMSMessageID
• JMSRedelivered
• JMSTimestamp
• JMSXDeliveryCount
• JMSCorelationID—if the

inbound message has the
correlation ID set. For
example, if the inbound
response comes from a
registered JMS business
service

FTP No limitations. In other
words you can set or delete
the header(s)3 for File and
FTP transports and your
specifications are honored
by the ALSB run time.

File

E-mail The ALSB run time sets
these headers. In other
words, any specifications
you make for these headers
at design time are
overwritten at run time.

• Content-Type • Content-Type

Table 3-7 Limitations to Transport Header Values You Specify in Transport Header Actions

Transport Description of Limitation... Transport Headers Affected By Limitation...

Outbound Request Inbound Response

Per fo rming T rans fo rmat i ons in Message F lows

AquaLogic Service Bus User Guide 3-17

Note: The same limitations around setting certain transport headers and metadata are true when
you set the inbound and outbound context variables, and when you use the ALSB Test
Console to test your proxy or business services.

Performing Transformations in Message Flows
Transformation maps describe the mapping between two data types. ALSB supports data
mapping that uses the XQuery and the eXtensible Stylesheet Language Transformation (XSLT)
standards. XSLT maps describe XML-to-XML mappings. XQuery maps can describe
XML-to-XML, XML to non-XML, and non-XML to XML mappings.

These headers have no
meaning for outbound
requests. If they are set
dynamically (that is, if they
are set in the $outbound
headers section), they are
ignored.4

These headers are received
in $inbound. Date is the
time the mail was sent by the
sender. From is retrieved
from incoming mail headers.

• From
• Date

1. For example, if you set the JMSExpiration header to 1000, and at the time of the send, GMT is
1,000,000 (as a result of System.currentTimeMillis()), the resulting value of the JMSExpiration property
in the JMS message is 1,000,1000
2. Header names with the JMS_IBM prefix are to be used with respect to destinations hosted by an IBM
MQ server
3. For FTP and file proxies, there is an transport request header 'fileName'. The value of this request header
is the name of the file being polled.
4. From and Date headers are also not applicable for $outbound request headers for e-mail business
services. So there is no point in setting these headers for e-mail business services.

Table 3-7 Limitations to Transport Header Values You Specify in Transport Header Actions

Transport Description of Limitation... Transport Headers Affected By Limitation...

Outbound Request Inbound Response

Mode l ing Message F l ow in ALSB

3-18 AquaLogic Service Bus User Guide

The point in a message flow at which you specify a transformation depends on whether:

The message format relies on target services—that is, the message format must be in a
format acceptable by the route destination. This applies when the transformation is
performed in a route node or in one of the publish actions.

Publish actions identify a target service for a message and configure how the message is
packaged and sent to that service. ALSB also provides publish table actions. A publish
table action consists of a set of routes wrapped in a switch-style condition table. It is a
shorthand construct that allows different routes to be selected, based upon the results of a
single XQuery expression.

You perform the transformation on the response or request message regardless of the route
destination. In this case, you can configure the transformations in the request or response
pipeline stages.

Transformations and Publish Actions
When transformations are designed in publish actions, the transformations have a local copy of
the $outbound variable and message-related variables ($header, $body, and $attachments).
Any changes you make to an outbound message in a publish action affect only the published
message. In other words, the changes you make in the publish action are rolled back before the
message flow proceeds to any actions that follow the publish action in your message flow.

For example, consider a message flow that deals with a large purchase order, and you have to send
the summary of the purchase order, through e-mail, to the manager. The summary of the of the
purchase order is created in the SOAP body of the incoming message when you include a publish
action in the request pipeline. In the publish action, the purchase order data is transformed into a
summary of the purchase order—for example, all the attachments in $attachments can be
deleted because they are not required in the summary of the purchase order.

Transformations and Route Nodes
You may need to route messages to one of two destinations, based on a WS-addressing header.
In that case, content-based routing and the second destination require the newer version of the
document in the SOAP body. In this situation, you can configure the route node to conditionally
route to one of the two destinations. You can configure a transformation in the route node to
transform the document for the second destination.

You can also set the control elements in the outbound context variable ($outbound) to influence
the behavior of the system for the outbound message (for example, you can set the Quality of
Service).

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 3-19

See Inbound and Outbound Variables and Constructing Messages to Dispatch for information
about the sub-elements of the inbound and outbound variables and how the content of messages
is constructed using the values of the variables in the message context.

See also:

Message Context

XQuery Transformations and XSL Transformations in Using the AquaLogic Service Bus
Console.

Creating XQuery Transformations and Creating XSL Transformations in Using the
AquaLogic Service Bus Plug-in for WorkSpace Studio.

Transforming Data Using the XQuery Mapper in Transforming Data Using the XQuery
Mapper.

Constructing Service Callout Messages
When ALSB makes a call to a service via a service callout action, the content of the message is
constructed using the values of variables in the message context. The message content for
outbound messages is handled differently depending upon the type of the target service. How the
message content is created depends on the type of the target service and whether you choose to
configure the SOAP body or the payload (parameters or document), as described in the following
topics:

“SOAP Document Style Services” on page 3-19

“SOAP RPC Style Services” on page 3-22

“XML Services” on page 3-25

“Messaging Services” on page 3-26

SOAP Document Style Services
Messages for SOAP Document Style services (including EJB document and document-wrapped
services), can be constructed as follows:

The variable assigned for the request document contains the SOAP body.

The variable assigned for the SOAP request header contains the SOAP header.

http://e-docs.bea.com/alsb/docs30/consolehelp/xquerytransforms.html
http://e-docs.bea.com/alsb/docs30/consolehelp/xslttransforms.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#taskCreatingXQueryTransformations
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#taskCreatingXSLTransformations
http://edocs.bea.com/bea/integration/docs102/dtguide/index.html

Mode l ing Message F l ow in ALSB

3-20 AquaLogic Service Bus User Guide

The response must be a single XML document—it is the content of the SOAP body plus
the SOAP header (if specified)

To illustrate how messages are constructed during callouts to SOAP Document Style services,
consider a service callout action configured as follows:

Request Document Variable: myreq

Response Document Variable: myresp

SOAP Request Header: reqheader

SOAP Response Header: respheader

Assume also that at run time, the request document variable, myreq, is bound to the following
XML.

Listing 3-1 Content of Request Variable (myreq)

<sayHello xmlns="http://www.openuri.org/">

<intVal>100</intVal>

<string>Hello AquaLogic</string>

</sayHello>

At run time, the SOAP request header variable, reqheader, is bound to the following SOAP
header.

Listing 3-2 Content of SOAP Request Header Variable (reqheader)

<soap:Header xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<wsa:Action>...</wsa:Action>

<wsa:To>...</wsa:To>

<wsa:From>...</wsa:From>

<wsa:ReplyTo>...</wsa:ReplyTo>

<wsa:FaultTo>...</wsa:FaultTo>

</soap:Header>

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 3-21

In this example scenario, the full body of the message sent to the external service is shown in
Listing 3-3 (the contents of the myreq and reqheader variables are shown in bold).

Listing 3-3 Message Sent to the Service as a Result of Service Callout Action

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<wsa:Action>...</wsa:Action>

<wsa:To>...</wsa:To>

<wsa:From>...</wsa:From>

<wsa:ReplyTo>...</wsa:ReplyTo>

<wsa:FaultTo>...</wsa:FaultTo>

</soap:Header>

<soapenv:Body>

<sayHello xmlns="http://www.openuri.org/">

<intVal>100</intVal>

<string>Hello AquaLogic</string>

</sayHello>

</soapenv:Body>

</soapenv:Envelope>

Based on the configuration of the service callout action described above, the response from the
service is assigned to the myresp variable. The full response from the external service is shown
in Listing 3-4.

Listing 3-4 Response Message From the Service as a Result of Service Callout Action

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:soapenc="http://schemas.xmlsoap.

org/soap/encoding/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Mode l ing Message F l ow in ALSB

3-22 AquaLogic Service Bus User Guide

<env:Header/>

<env:Body

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<m:sayHelloResponse xmlns:m="http://www.openuri.org/">

<result xsi:type="xsd:string">This message brought to you by

Hello AquaLogic and the number 100

</result>

</m:sayHelloResponse>

</env:Body>

</env:Envelope>

In this scenario, the myresp variable is assigned the value shown in Listing 3-5.

Listing 3-5 Content of Response Variable (myresp) as a Result of Service Callout Action

<m:sayHelloResponse xmlns:m="http://www.openuri.org/">

<result ns0:type="xsd:string"

xmlns:ns0="http://www.w3.org/2001/XMLSchema-instance">

This message brought to you by Hello AquaLogic and the number 100

</result>

</m:sayHelloResponse>

SOAP RPC Style Services
Messages for SOAP RPC Style services (including EJB RPC services) can be constructed as
follows:

Request messages are assembled from message context variables.

– The SOAP body is built based on the SOAP RPC format (operation wrapper, parameter
wrappers, and so on).

– The SOAP header is the content of the variable specified for the SOAP request header,
if one is specified.

– Part as element—the parameter value is the variable content.

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 3-23

– Part as simple type—the parameter value is the string representation of the variable
content.

– Part as complex type—the parameter corresponds to renaming the root of the variable
content after the parameter name.

Response messages are assembled as follows:

– The output content is the content of SOAP header, if a SOAP header is specified.

– Part as element—the output content is the child element of the parameter; there is at
most one child element.

– Part as simple/complex type—the output content is the parameter itself.

To illustrate how messages are constructed during callouts to SOAP RPC Style services, look at
this example with the following configuration:

A message context variable input1 is bound to a value 100.

A message context variable input2 is bound to a string value: Hello AquaLogic.

A service callout action configured as follows:

– Request Parameter intval: input1

– Request Parameter string: input2

– Response Parameter result: output1

In this scenario, the body of the outbound message to the service is shown in Listing 3-6.

Listing 3-6 Content of Outbound Message

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<sayHello2 xmlns="http://www.openuri.org/">

<intVal>100</intVal>

<string >Hello AquaLogic</string>

</sayHello2>

</soapenv:Body>

</soapenv:Envelope>

Mode l ing Message F l ow in ALSB

3-24 AquaLogic Service Bus User Guide

The response returned by the service to which the call was made is shown in Listing 3-7.

Listing 3-7 Content of Response Message From the helloWorld Service

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<env:Header/>

<env:Body

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<m:sayHello2Response xmlns:m="http://www.openuri.org/">

<result xsi:type="n1:HelloWorldResult" xmlns:n1="java:">

<message xsi:type="xsd:string">

This message brought to you by Hello AquaLogic and the

number 100

</message>

</result>

</m:sayHello2Response>

</env:Body>

</env:Envelope>

The message context variable output1 is assigned the value shown in Listing 3-8.

Listing 3-8 Content of Output Variable (output1)

<message ns0:type="xsd:string"

xmlns:ns0="http://www.w3.org/2001/XMLSchema-intance">

This message brought to you by Hello AquaLogic and the number 100</message>

Cons t ruc t ing Se rv ice Ca l lout Messages

AquaLogic Service Bus User Guide 3-25

XML Services
Messages for XML services can be constructed as follows:

The request message is the content of the variable assigned for the request document.

The content of the request variable must be a single XML document.

The output document is the response message.

To illustrate how messages are constructed during callouts to XML services, take for example a
service callout action configured as follows:

Request Document Variable: myreq

Response Document Variable: myresp

Assume also that at run time, the request document variable, myreq, is bound to the following
XML.

Listing 3-9 Content of myreq Variable

<sayHello xmlns="http://www.openuri.org/">

<intVal>100</intVal>

<string>Hello AquaLogic</string>

</sayHello>

In this scenario:

The outbound message payload is the value of the myreq variable, as shown in Table 3-9.

The response and the value assigned to the message context variable, myresp, is shown in
Listing 3-10.

Listing 3-10 Content of myresp Variable

<m:sayHelloResponse xmlns:m="http://www.openuri.org/">

<result xsi:type="xsd:string">This message brought to you by Hello

AquaLogic and the number 100

Mode l ing Message F l ow in ALSB

3-26 AquaLogic Service Bus User Guide

</result>

</m:sayHelloResponse>

Messaging Services
In the case of Messaging services:

The request message is the content of the request variable. The content can be simple text,
XML, or binary data represented by an instance of <binary-content ref=.../>
reference XML.

Response messages are treated as binary, so the response variable will contain an instance
of <binary-content ref= ... /> reference XML, regardless of the actual content
received.

For example, if the request message context variable myreq is bound to an XML document of the
following format: <hello>there</hello>, the outbound message contains exactly this
payload. The response message context variable (myresp) is bound to a reference element similar
to the following:

<binary-content ref=" cid:1850733759955566502-2ca29e5c.1079b180f61.-7fd8"/>

Handling Errors as the Result of a Service Callout
You can configure error handling at the message flow, pipeline, route node, and stage level. The
types of errors that are received from an external service as the result of a service callout include
transport errors, SOAP faults, responses that do not conform to an expected response, and so on.

The fault context variable is set differently for each type of error returned. You can build your
business and error handling logic based on the content of the fault variable. To learn more about
$fault, see “Fault Variable” on page 5-19.

Transport Errors
When a transport error is received from an external service and there is no error response payload
returned to ALSB by the transport provider (for example, in the case that an HTTP 403 error code
is returned), the service callout action throws an exception, which in turn causes the pipeline to
raise an error. The fault variable in a user-configured error handler is bound to a message
formatted similarly to that shown in Listing 3-11.

Handl ing E r ro rs as the Resu l t o f a Se rv ice Ca l l out

AquaLogic Service Bus User Guide 3-27

Listing 3-11 Contents of the ALSB fault Variable—Transport Error, no Error Response Payload

<con:fault xmlns:con="http://www.bea.com/wli/sb/context">

<con:errorCode>BEA-380000</con:errorCode>

<con:reason>Not Found</con:reason>

<con:details>

.......

</con:details>

<con:location>

<con:node>PipelinePairNode1</con:node>

<con:Pipeline>PipelinePairNode1_request</con:Pipeline>

<con:Stage>Stage1</con:Stage>

</con:location>

</con:fault>

In the case that there is a payload associated with the transport error—for example, when an
HTTP 500 error code is received from the business service and there is XML payload in the
response—a message context fault is generated with the custom error code: BEA-382502.

The following conditions must be met for a BEA-382502 error response code to be triggered as
the result of a response from a service—when that service uses an HTTP or JMS transport:

(HTTP) The response code must be any code other than 200 or 202.

(JMS) The response must have a property set to indicate that it is an error response—the
transport metadata status code set to1 indicates an error.

The content type must be text/xml.

If the service is AnySoap or WSDL-based SOAP, then it must have a SOAP envelope. The
body inside the SOAP envelope must be XML format; it cannot be text.

If the service type is AnyXML, or a messaging service of type text returns XML content
with a non-successful response code (any code other than 200 or 202).

If the transport is HTTP, the ErrorResponseDetail element will also contain the HTTP error
code returned with the response. The ErrorResponseDetail element in the fault contains error
response payload received from the service. Listing 3-12 shows an example of the
ErrorResponseDetail element.

Mode l ing Message F l ow in ALSB

3-28 AquaLogic Service Bus User Guide

Listing 3-12 Contents of the ALSB fault Variable—Transport Error, with Error Response Payload

<ctx:Fault xmlns:ctx="http://www.bea.com/wli/sb/context">

<ctx:errorCode>BEA-382502<ctx:errorCode>

<ctx:reason> Service callout has received an error response from the

server</ctx:reason>

<ctx:details>

<alsb:ErrorResponseDetail xmlns:alsb="http://www.bea.com/...">

<alsb:detail> <![CDATA[

. . .

]]>

</alsb:detail>

<alsb:http-response-code>500</alsb:http-response-code>

</alsb:ErrorResponseDetail>

</ctx:details>

<ctx:location>. . .</ctx:location>

</ctx:Fault>

Note: The XML schema for the service callout-generated fault is shown in “XML Schema for
the Service Callout-Generated Fault Details” on page 3-30.

SOAP Faults
In case an external service returns a SOAP fault, the ALSB run time sets up the context variable
$fault with a custom error code and description with the details of the fault. To do so, the
contents of the 3 elements under the <SOAP-ENV:Fault> element in the SOAP fault are extracted
and used to construct an ALSB fault element.

Take for example a scenario in which a service returns the following error.

Listing 3-13 SOAP Fault Returned From Service Callout

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Client</faultcode>

Handl ing E r ro rs as the Resu l t o f a Se rv ice Ca l l out

AquaLogic Service Bus User Guide 3-29

<faultstring>Application Error</faultstring>

<detail>

<message>That’s an Error!</message>

<errorcode>1006</errorcode>

</detail>

</SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The <faultcode>, <faultstring>, and <detail> elements are extracted and wrapped in an
<alsb:ReceivedFault> element. Note that the faultcode element in Listing 3-15 contains a
QName—any related namespace declarations are preserved. If the transport is HTTP, the
ReceivedFault element will also contain the HTTP error code returned with the fault response.

The generated <alsb:ReceivedFault> element, along with the custom error code and the error
string are used to construct the contents of the fault context variable, which in this example
takes a format similar to that shown in Listing 3-14.

Listing 3-14 Contents of the ALSB Fault Variable—SOAP Fault

<ctx:Fault xmlns:ctx="http://www.bea.com/wli/sb/context">
<ctx:errorCode>BEA-382500<ctx:errorCode>
<ctx:reason> service callout received a soap Fault

response</ctx:reason>
<ctx:details>

<alsb:ReceivedFault xmlns:alsb="http://www.bea.com/...">
<alsb:faultcode

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">SOAP-ENV:Clien
</alsb:faultcode>
<alsb:faultstring>Application Error</alsb:faultstring>
<alsb:detail>

<message>That’s an Error!</message>
<errorcode>1006</errorcode>

</alsb:detail>

<alsb:http-response-code>500</alsb:http-response-code>
</alsb:ReceivedFault>

</ctx:details>
<ctx:location> </ctx:location>

</ctx:Fault>

Mode l ing Message F l ow in ALSB

3-30 AquaLogic Service Bus User Guide

Note: The unique error code BEA-382500 is reserved for the case when service callout actions
receive SOAP fault responses.

Unexpected Responses
When a service returns a response message that is not what the proxy service run time expects, a
message context fault will be generated and initialized with the custom error code BEA-382501.
The details of the fault include the contents of the SOAP-Body element of the response. If the
transport is HTTP, the ReceivedFault element will also contain the HTTP error code returned
with the fault response.

The XML schema definition of the service callout-generated fault details is shown in
Listing 3-15.

Listing 3-15 XML Schema for the Service Callout-Generated Fault Details

<xs:complexType name="ReceivedFaultDetail">

<xs:sequence>

<xs:element name="faultcode" type="xs:QName"/>

<xs:element name="faultstring" type="xs:string"/>

<xs:element name="detail" minOccurs="0" >

 <xs:complexType>

<xs:sequence>

<xs:any namespace="##any" minOccurs="0"

maxOccurs="unbounded" processContents="lax" />

</xs:sequence>

<xs:anyAttribute namespace="##any" processContents="lax" />

 </xs:complexType>

</xs:element>

<xs:element name="http-response-code" type="xs:int"

minOccurs="0"/>\

type="xs:int" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

Hand l ing Er ro rs in Message F lows

AquaLogic Service Bus User Guide 3-31

<xs:complexType name="UnrecognizedResponseDetail">

<xs:sequence>

<xs:element name="detail" minOccurs="0" type="xs:string" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="ErrorResponseDetail">

<xs:sequence>

<xs:element name="detail" minOccurs="0" type="xs:string" />

</xs:sequence>

</xs:complexType>

Handling Errors in Message Flows
The process described in the next paragraph constitutes an error handling pipeline for the stage
of an error handler. In addition, an error pipeline can be defined for a pipeline (request or
response) or for an entire proxy service.

The error handler at the stage level is invoked for handling an error; If the stage-level error
handler is not able to handle a given type of error, the pipeline error handler is invoked. If the
pipeline-level error handler also fails to handle the error, the service-level error handler is
invoked. If the service-level error handler also fails, the error is handled by the system.The
following table summarizes the scope of the error handlers at various levels in the message flow.

Table 3-8 Scope of Error Handlers

Level Scope

Stage Handles all the errors within a stage.

Pipeline Handles all the errors in a pipeline, along with any unhandled errors from any stage
in a pipeline.

Service Handles all the errors in a proxy service, along with any unhandled errors in any
pipeline in a service.

Note: All WS-Security errors are handled at this level.

System Handles all the errors that are not handled any where else in a pipeline.

Mode l ing Message F l ow in ALSB

3-32 AquaLogic Service Bus User Guide

Note: There are exceptions to the scope of error handlers. For example, an exception thrown by
a non-XML transformation at the stage level is only caught by the service-level error
handler. Suppose a transformation occurs that transforms XML to MFL for an outgoing
proxy service response message, it always occurs in the binding layer. Therefore, for
example, if a non-XML output is missing a mandatory field at the stage level, only a
service-level error handler can catch this error.

For more information on error messages and error handling, see “Error Messages and Handling”
in Proxy Services: Error Handlers in Using the AquaLogic Service Bus Console.

You can handle errors by configuring a test that checks if an assertion is true and use the reply
action configured false. You can repeat this test at various levels. Also you can have an error
without an error handler at a lower level and handle it through an error handler at an higher level
in message flow. In general, it is easier to handle specific errors at a stage level of the message
flow and use error handlers at the higher level for more general default processing of errors that
are not handled at the lower levels. It is good practice to explicitly handle anticipated errors in the
pipelines and allow the service-level handler to handle unanticipated errors.

Note: You can only handle WS-Security related errors at the service level.

Generating the Error Message, Reporting, and Replying
A predefined context variable (the fault variable) is used to hold information about any error
that occurs during message processing. When an error occurs, this variable is populated with
information before the appropriate error handler is invoked. The fault variable is defined only
in error handler pipelines and is not set in request and response pipelines, or in route or branch
nodes. For additional information about $fault, see “Predefined Context Variables” on
page 5-2.

In the event of errors for request/response type inbound messages, it is often necessary to send a
message back to the originator outlining the reason why an error occurred. You can accomplish
this by using a Reply with Failure action after configuring the message context variables with the
response you want to send. For example, when an HTTP message fails, Reply with Failure
generates the HTTP 500 status. When a JMS message fails, Reply with Failure sets the
JMS_BEA_Error property to true. The ALSB error actions are discussed in “Error Messages and
Handling” in Proxy Services: Error Handlers in Using the AquaLogic Service Bus Console.

An error handling pipeline is invoked if a service invoked by a proxy service returns a SOAP fault
or transport error. Any received SOAP fault is stored in $body, so if a Reply with Failure is
executed without modifying $body, the original SOAP fault is returned to the client that invoked
the service. If a reply action is not configured, the system error handler generates a new SOAP

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyerrors.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyerrors.html

Hand l ing Er ro rs in Message F lows

AquaLogic Service Bus User Guide 3-33

fault message. The proxy service recognizes that a SOAP fault is returned because a HTTP error
status is set, or the JMS property SERVER_Error is set to true.

Some use cases require error reporting. You can use the report action in these situations. For
example, consider a scenario in which the request pipeline reports a message for tracking
purposes, but the service invoked by the route node fails after the reporting action. In this case,
the reporting system logged the message, but there is no guarantee that the message was
processed successfully, only that the message was successfully received.

You can use the ALSB Console to track the message to obtain an accurate picture of the message
flow. This allows you to view the original reported message indicating the message was
submitted for processing, and also the subsequent reported error indicating that the message was
not processed correctly. To learn how to configure a report action and use the data reported at run
time, see Proxy Services: Actions in Using the AquaLogic Service Bus Console.

Example of Action Configuration in Error Handlers
This example shows how you can configure the report and reply actions in error handlers. The
message flow shown in Figure 3-2 includes an error handler on the validate loan
application stage. The error handler in this case is a simple message flow with a single stage
configured—it is represented in the ALSB Console as shown in Figure 3-2.

Figure 3-2 Error Handler Message Flow

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html

Mode l ing Message F l ow in ALSB

3-34 AquaLogic Service Bus User Guide

The stage is, in turn, configured with actions (replace, report, and reply) as shown in Figure 3-3.

Figure 3-3 Actions in Stage Error Handler

The actions control the behavior of the stage in the pipeline error handler as follows:

Replace—The contents of a specified element of the body variable are replaced with the
contents of the fault context variable. The body variable element is specified by an XPath
expression. The contents are replaced with the value returned by an XQuery expression—
in this case $fault/ctx:reason/text()

Report— Messages from the reporting action are written to the ALSB Reporting Data
Stream if the error handler configured with this action is invoked. The JMS Reporting
Provider reports the messages on the ALSB Dashboard. ALSB provides the capability to
deliver message data to one or more reporting providers. Message data is captured from the
body of the message and from any other variables associated with the message, such as
header or inbound variables. You can use the message delivered to the reporting provider
for functions such as tracking messages or regulatory auditing.

When an error occurs, the contents of the fault context variable are reported. The key name
is errorCode, and the key value is extracted from the fault variable using the following
XPath expression: ./ctx:errorCode. Key/value pairs are the key identifiers that identify
these messages in the Dashboard at run time.

To configure a report action and use the data reported at run time, see Proxy Services:
Actions in Using the AquaLogic Service Bus Console.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html

Using Dynamic Rout ing

AquaLogic Service Bus User Guide 3-35

Reply— At run time, an immediate reply is sent to the invoker of the loanGateway3 proxy
service (see Figure 3-3) indicating that the message had a fault The reply is With
Failure.

For configuration information, see “Error Messages and Handling” in Proxy Services: Error
Handlers in Using the AquaLogic Service Bus Console.

Using Dynamic Routing
When you do not know the service you need to invoke from the proxy service you are creating,
you can use dynamic routing.

For any given proxy service, you can use one of the following techniques to dynamically route
messages:

In a message flow pipeline, design an XQuery expression to dynamically set the fully
qualified service name in ALSB and use the dynamic route or dynamic publish actions.

Note: Dynamic Routing can be achieved in a route node, whereas dynamic publishing can
achieved in a stage in a request pipeline or a response pipeline.

With this technique, the proxy service dynamically uses the service account of the endpoint
business service to send user names and passwords in its outbound requests. For example,
if a proxy service is routing a request to Business Service A, then the proxy service uses
the service account from Business Service A to send user names and passwords in its
outbound request. See “Implementing Dynamic Routing” on page 3-36.

Configure a proxy service to route or publish messages to a business service. Then, in the
request actions section for the route action or publish action, add a Routing Options action
that dynamically specifies the URI of a service.

With this technique, to send user names and passwords in its outbound requests, the proxy
service uses the service account of the statically defined business service, regardless of the
URI to which the request is actually sent.

For information on how to use this technique, see “Implementing Dynamic Routing” on
page 3-36.

Note: This technique is used when the overview of the interface is fixed. The overview of
the interface includes message types, port types, and binding, and excludes the
concrete interface. The concrete interface is the transport URL at which the service is
located.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyerrors.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyerrors.html

Mode l ing Message F l ow in ALSB

3-36 AquaLogic Service Bus User Guide

Implementing Dynamic Routing
You can use dynamic routing to determine the destination during the runtime of a proxy service.
To achieve this you can use a routing table in an XML file to create an XQuery resource.

Note: Instead of using the XQuery resource, you can also directly use the XML file from which
the resource is created.

An XML file or the Xquery resource can be maintained easily. At runtime you provide the entry
in the routing table that will determine the routing or publishing destination of the proxy
service.The XML file or the XQuery resource contains a routing table, which maps a logical
identifier to (such as the name of a company) to the physical identifier (the fully qualified name
of the service in ALSB). The logical identifier, which is extracted from the message, maps on to
the physical identifier, which is the name of the service you want to invoke.

Note: To use the dynamic route action, you need the fully qualified name of the service in
ALSB.

In a pipeline the logical identifier is obtained with an XPath into the message.You assign the
XML table in the XQuery resource to a variable. You implement a query against the variable in
the routing table to extract the physical identifier based on the corresponding logical identifier.
Using this variable you will be able to invoke the required service. The following sections
describe how to implement dynamic routing.

“Sample XML File” on page 3-36.

“Creating an XQuery Resource From the Sample XML” on page 3-37

“Creating and Configuring the Proxy Service to Implement Dynamic Routing” on
page 3-37

Sample XML File
You can create an XQuery resource from the following XML file. Save this as
sampleXquery.xml.

Listing 3-16 Sample XML File

<routing>

 <row>

 <logical>BEA Systems</logical>

Using Dynamic Rout ing

AquaLogic Service Bus User Guide 3-37

 <physical>default/goldservice</physical>

 </row>

 <row>

 <logical>ABC Corp</logical>

 <physical>default/silverservice</physical>

 </row>

</routing>

Creating an XQuery Resource From the Sample XML
1. In an active session, select Project Explorer from the left navigation panel. The Project

View page is displayed.

2. Select the project to which you want to add the XQuery resource.

3. In the Project View page, select the XQuery resource from the Select Resource Type
drop-down list. The Create XQuery page is displayed.

4. In the Resource Name field, enter the name of the resource. This is a mandatory.

5. In the Resource Description field, provide the a description for the resource. This is optional.

6. In the XQuery field, provide the path to the XML you are using as an XQuery resource. Click
on Browse to locate the file. Optionally, you can copy and paste the XML in the XQuery field.
This is mandatory.

7. Save the XQuery resource.

8. Activate the session.

Creating and Configuring the Proxy Service to Implement Dynamic Routing
1. In an active session, select Project Explorer from the left navigation panel. The Project

View page is displayed.

2. Select the project to which you want to add the proxy service.

3. In the Project View page, select the Proxy Service resource from the Select Resource Type
drop-down list. The General Configuration page is displayed.

Mode l ing Message F l ow in ALSB

3-38 AquaLogic Service Bus User Guide

4. In the Service Name field of the General Configuration page, enter the name of the proxy
service. This is mandatory.

5. Select the type of service by clicking on the button adjacent to various types of services
available under Service Type. For more information on selecting the service type, see Proxy
Services: Actions.

6. Click Finish. On the Summary page, click Save to save the proxy service.

7. On the Project View page, click the Edit Message Flow icon against the newly created proxy
service in the Resource table. The Edit Message Flow page is displayed.

8. Click on the message flow to add a pipeline pair to the message flow.

9. Click on Request Pipeline icon select Add Stage from the menu.

10. Click on the Stage1 icon to and select Edit Stage from the menu. The Edit Stage
Configuration page appears.

11. Click Add Action icon. Choose Add an Action item from the menu.

12. Choose the Assign action from Message Processing.

13. Click on Expression. The XQuery Expression Editor is displayed.

14. Click on XQuery Resources. The browser displays the page where you can import the
XQuery resource. Click on the Browse to locate the XQuery resource.

15. Click on Validate to validate the imported XQuery resource.

16. Save the imported XQuery resource on successful validation.

17. On the Edit Stage Configuration page, enter the name of the variable in the field.

This assigns the XQuery resource to this variable. The variable now contains the
externalized routing table.

18. Click on the Assign action icon to add another assign action.

Note: To do this repeat step 11 to step 13.

19. Enter the following Xquery:

<ctx: route>
<ctx: service isProxy=’false’>
{$routingtable/row[logical/text()=$logicalidentifier]/physical/text()}
</ctx: service>
</ctx: route>

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html

Access ing Databases Us ing XQue ry

AquaLogic Service Bus User Guide 3-39

In the above code, replace $logicalidentifier by the actual XPath to extract the logical
identifier from the message (example from $body).

20. Click on Validate to validate the Xquery.

21. Save the Xquery on successful validation.

22. On the Edit Stage Configuration page, enter the name of the variable (for example,
routeresult) in the field.

This extracts the XML used by the dynamic route action into this variable.

23. Click on the message flow to add a route node to the end of the message flow.

24. Click on the Route Node icon and select Edit from the menu.

25. Click the Add Action icon. Choose Add an Action item from the menu.

26. Choose the Dynamic Route action.

27. Click on Expression. The XQuery Expression Editor is displayed.

28. Enter the variable from step 22 (for example, $routeresult)

Accessing Databases Using XQuery
ALSB provides read-access to databases from proxy services without requiring you to write a
custom EJB or custom Java code and without the need for a separate database product like
AquaLogic Data Services Platform. You can use the execute-sql() function to make a simple
JDBC call to a database to perform simple database reads. Any SQL query is legal, from a query
that gets a single tax rate for the supplied location to a query that does a complex join to obtain
an order's current status from several underlying database tables.

A database query can be used to get data for message enrichment, for routing decisions, or for
customizing the behavior of a proxy service. Take for example a scenario in which an ALSB
proxy service receives “request for quote” messages. The proxy service can route the requests
based on the customer's priority to one of a number of quotation business services (say, standard,
gold, or platinum level services). The proxy service can then perform a SQL-based augmentation
of the results that those services return—for example, based on the selected ship method and the
weight of the order, the shipping cost can be looked up and that cost added to the request for quote
message.

Mode l ing Message F l ow in ALSB

3-40 AquaLogic Service Bus User Guide

“fn-bea:execute-sql()” on page 9-4 describes the syntax for the function and provides examples
of its use. The execute-sql() function returns typed data and automatically translates values
between SQL/JDBC and XQuery data models.

You can store the returned element in a user-defined variable in an ALSB message flow.

The following databases and JDBC drivers are supported using the execute-sql() function:

IBM DB2/NT 8

Microsoft SQL Server 2000, 2005

Oracle 8.1.x

Oracle 9.x, 10.x

Pointbase 4.4, 5.x

Sybase 12.5.2 and 12.5.3

WebLogic Type 4 JDBC drivers

Third-party drivers supported by WebLogic Server

Use non-XA drivers for datasources you use with the fn-bea:execute-sql() function—the function
supports read-only access to the datasources.

WARNING: In addition to specifying a non-XA JDBC driver class to use to connect to the
database, you must ensure that you disable global transactions and two-phase
commit. (Global transactions are enabled by default in the WebLogic Server
console for JDBC data sources.) These specifications can be made for your data
source via the WebLogic Server Administration Console. See Create JDBC Data
Sources in the WebLogic Server Administration Console Online Help.

For complete information about database and JDBC drivers support in ALSB, see Supported
Database Configurations in Supported Configurations for AquaLogic Service Bus.

Databases other than the core set described in the preceding listing are also supported. However,
for the core databases listed above, the XQuery engine does a better recognition and mapping of
data types to XQuery types than it does for the non-core databases—in some cases, a core
database’s proprietary JDBC extensions are used when fetching data. For the non-core databases,
the XQuery engine relies totally on the standard type codes provided by the JDBC driver and
standard JDBC resultset access methods.

When designing your proxy service, you can enter XQueries inline as part of an action definition
instead of entering them as resources. You can also use inline XQueries for conditions in

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateDataSources.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateDataSources.html
../../../platform/suppconfigs/configs_al30/alsb30/supported_db.html
../../../platform/suppconfigs/configs_al30/alsb30/supported_db.html

Unders tand ing Message Context

AquaLogic Service Bus User Guide 3-41

If...Then... actions in message flows. For information about using the inline XQuery editor, see
“Creating Variable Structure Mappings” on page 3-48.

Understanding Message Context
The message context is a set of variables that hold message context and information about
messages as they are routed through the ALSB. Together, the header, body, and attachments
variables, (referenced as $header, $body and $attachments in XQuery statements) represent
the message as it flows through ALSB. The canonical form of the message is SOAP. Even if the
service type is not SOAP, the message appears as SOAP in the ALSB message context.

Message Context Components
In a Message Context, $header contains a SOAP header element and $body contains a SOAP
Body element. The Header and Body elements are qualified by the SOAP 1.1 or SOAP 1.2
namespace depending on the service type of the proxy service. Also in a Message Context,
$attachments contains a wrapper element called attachments with one child attachment
element per attachment. The attachment element has a body element with the actual attachment.

When a message is received by a proxy service, the message contents are used to initialize the
header, body, and attachments variables. For SOAP services, the Header and Body elements are
taken directly from the envelope of the received SOAP message and assigned to $header and
$body respectively. For non-SOAP services, the entire content of the message is typically
wrapped in a Body element (qualified by the SOAP 1.1 namespace) and assigned to $body, and
an empty Header element (qualified by the SOAP 1.1 namespace) is assigned to $header.

Binary and MFL messages are initialized differently. For MFL messages, the equivalent XML
document is inserted into the Body element that is assigned to $body. For binary messages, the
message data is stored internally and a piece of reference XML is inserted into the Body element
that is assigned to $body. The reference XML looks like <binary-content ref="..."/>,
where "..." contains a unique identifier assigned by the proxy service.

The message context is defined by an XML schema. You must use XQuery expressions to
manipulate the context variables in the message flow that defines a proxy service.

The predefined context variables provided by ALSB can be grouped into the following types:

Message-related variables

Inbound and outbound variables

Operation variable

Mode l ing Message F l ow in ALSB

3-42 AquaLogic Service Bus User Guide

Fault variable

For information about the predefined context variables, see “Predefined Context Variables” on
page 5-2.

The $body contains message payload variable. When a message is dispatched from ALSB you
can decide the variables, whose you want to include in the outgoing message. That determination
is dependent upon whether the target endpoint is expecting a SOAP or a non-SOAP message:

For a binary, any text or XML message content inside the Body element in $body is sent.

For MFL messages, the Body element in $body contains the XML equivalent of the MFL
document.

For text messages, the Body element in $body contains the text. For text attachments, the
body element in $attachments contains the text. If the contents are XML instead of
simple text, the XML is sent as a text message.

For XML messages, the Body element in $body contains the XML. For XML attachments,
the body element in $attachments contains the XML.

SOAP messages are constructed by wrapping the contents of the header and body variables
inside a <soap:Envelope> element. (The SOAP 1.1 namespace is used for SOAP 1.1
services, while the SOAP 1.2 namespace is used for SOAP 1.2 services.) If the body
variable contains a piece of reference XML, it is sent.That is the referenced content is not
substituted in the message.

For non-SOAP services, if the Body element of $body contains a binary-content element, then
the referenced content stored internally is sent ‘as is’, regardless of the target service type.

For more information, see “Message Context” on page 5-1.

The types for the message context variables are defined by the message context schema
(MessageContext.xsd). When working with the message context variables in the BEA XQuery
Mapper, you need to reference MessageContext.xsd, which is available in a JAR file,
BEA_HOME/alsb_3.0/lib/sb-kernel-api.jar, and the transport-specific schemas, which
are available at

BEA_HOME/alsb_3.0/lib/transports/

where BEA_HOME represents the directory in which you installed ALSB.

To learn about the message context schema and the transport specific schemas, see “Message
Context Schema” on page 5-29.

Unders tand ing Message Context

AquaLogic Service Bus User Guide 3-43

Guidelines for Viewing and Altering Message Context
Consider the following guidelines when you want to inspect or alter the message context:

In an XQuery expression, the root element in a variable is not present in the path in a
reference to an element in that variable. For example, the following XQuery expression
obtains the Content-Description of the first attachment in a message:

$attachments/ctx:attachment[1]/ctx:content-Description

To obtain the second attachment

$attachments/ctx:attachment[2]/ctx:body/*

A context variable can be empty or it can contain a single XML element or a string value.
However, an XQuery expression often returns a sequence. When you use an XQuery
expression to assign a value to a variable, only the first element in the sequence returned
by the expression is stored as the variable value. For example, if you want to assign the
value of a WS-Addressing Message ID from a SOAP header (assuming there is one in the
header) to a variable named idvar, the assign action specification is:

assign data($header/wsa:messageID to variable idvar

Note: In this case, if two WS-Addressing MessageID headers exist, the idvar variable will
be assigned the value of the first one.

The variables $header, $body, and $attachments are never empty. However, $header
can contain an empty SOAP Header element, $body can contain an empty SOAP Body
element, and $attachments can contain an empty attachment element.

In cases in which you use a transformation resource (XSLT or XQuery), the transformation
resource is defined to transform the document in the SOAP body of a message. To make
this transformation case easy and efficient, the input parameter to the transformation can be
an XQuery expression. For example, you can use the following XQuery expression to feed
the business document in the Body element of a message ($body) as input to a
transformation:

$body/* [1]

The result of the transformation can be put back in $body with a replace action. That is
replace the content of $body, which is the content of the Body element. For more
information, see XQuery Transformations and XSL Transformations in Using the
AquaLogic Service Bus Console.

In addition to inserting or replacing a single element, you can also insert or replace a
selected sequence of elements using an insert or replace action. You can configure an

http://e-docs.bea.com/alsb/docs30/consolehelp/xquerytransforms.html
http://e-docs.bea.com/alsb/docs30/consolehelp/xslttransforms.html

Mode l ing Message F l ow in ALSB

3-44 AquaLogic Service Bus User Guide

XQuery expression to return a sequence of elements. For example, you can use insert and
replace actions to copy a set of transport headers from $inbound to $outbound. For
information on adding an action, see “Adding an Action” in Proxy Services: Actions in
Using the AquaLogic Service Bus Console. For an example, see “Copying JMS Properties
From Inbound to Outbound” on page 3-44.

Copying JMS Properties From Inbound to Outbound
It is assumed that the interfaces of the proxy services and of the invoked business service may be
different. Therefore, ALSB does not propagate any information (such as the transport headers and
JMS properties) from the inbound variable to the outbound variable.

The transport headers for the proxy service’s request and response messages are in $inbound and
the transport headers for the invoked business service’s request and response are in $outbound.

For example, the following XQuery expression can be used in a case where the user-defined JMS
properties for a one-way message (an invocation with no response) need to be copied from
inbound message to outbound message:

Use the transport headers action to set

$inbound/ctx:transport/ctx:request/tp:headers/tp:user-header

as the first child of:

./ctx:transport/ctx:request/tp:headers

in the outbound variable.

To learn how to configure the transport header action, see:

“Transport Headers” in Proxy Services: Actions in Using the AquaLogic Service Bus
Console.

Working with Variable Structures
The following sections describe

“Using the Inline XQuery Expression Editor” on page 3-45

“Using Variable Structures” on page 3-47

“Creating Variable Structure Mappings” on page 3-48

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 3-45

Using the Inline XQuery Expression Editor
ALSB allows you to import XQueries that have been created with an external tool such as the
BEA XQuery Mapper. You can use these XQueries anywhere in the proxy service message flow
by binding the XQuery resource input to an Inline XQuery, and binding the XQuery resource
output to an action that uses the result as the input; for example, the assign, replace, or insert
actions.

However, you can enter the XQuery inline as part of the action definition instead of entering the
XQuery as a resource. You can also use Inline XQueries for the condition in an If...Then... action.

Use the Inline XQuery Expression Editor to enter simple XQueries that consist of the following:

Fragments of XML with embedded XQueries.

Simple variable paths along the child axis.

Note: For more complex XQueries, it is recommended that you use the XQuery Mapper,
especially if you are not familiar with XQuery.

Inline XQueries can be used effectively to:

Create variable structures by using the Inline XQuery Expression Editor. See “Using
Variable Structures” on page 3-47.

Extract or access a business document or RPC parameter from the SOAP envelope
elements in $header or $body.

Extract or access an attachment document in $attachments.

Set up the parameters of a service callout action by extracting it from the SOAP envelope.

Insert the result parameter of a service callout action into the SOAP envelope.

Extract a sequence from the SOAP envelope to drive a for loop.

Update an item in the sequence in a for loop with an Update action.

Note: You can also use the Inline XQuery Expression Editor to create variable structures. For
more information, see “Using Variable Structures” on page 3-47.

Inline XQueries
ALSB allows you to import XQueries that have been created with an external tool such as the
BEA XQuery Mapper. You can use these XQueries anywhere in the proxy service message flow
by binding the XQuery resource input to an inline XQuery, and binding the XQuery resource

Mode l ing Message F l ow in ALSB

3-46 AquaLogic Service Bus User Guide

output to an action that uses the result as the action input; for example, the assign, replace, or
insert actions. However, you can enter the XQuery inline as part of the action definition instead
of entering the XQuery as a resource. You can also use inline XQueries for the condition in an
If...Then... action.

The inline XQuery and XPath editors allow you to declare a variable’s structure by mapping it to
a type or element and then creating path expressions with a drag and drop action from the
graphical representation of the structure. You can also enter the path expressions manually.

You can use this feature directly for all user-defined variables, as well as $inbound, $outbound,
and $fault. However, you cannot use it directly to access XML attachments in $attachments,
headers in $header, or documents and RPC parameters in $body, with one exception— you can
use it directly to access documents and parameters in $body for request messages received by a
WSDL proxy service.

To learn more about creating variable structures, see “Creating Variable Structure Mappings” on
page 3-48.

To learn more about XQuery engine support and the relationship with the DSP functions and
operators, see “XQuery Implementation” on page 9-1.

Uses of the Inline XQuery Expression Editor
You typically use the Inline XQuery Expression Editor to enter simple XQueries that consist of
the following:

Fragments of XML with embedded XQueries.

Simple variable paths along the child axis.

Note: For more complex XQueries, we recommend that you use the BEA XQuery Mapper, an
editor with drag-and-drop functionality. See Transforming Data Using the XQuery
Mapper in Transforming Data Using the XQuery Mapper.

Examples of good uses of inline XQueries are:

Extract or access a business document or RPC parameter from the SOAP envelope
elements in $header or $body.

Extract or access an attachment document in $attachments.

Set up the parameters of a service callout by extracting it from the SOAP envelope.

Fold the result parameter of a service callout into the SOAP envelope.

http://edocs.bea.com/bea/integration/docs102/dtguide/index.html
http://edocs.bea.com/bea/integration/docs102/dtguide/index.html

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 3-47

Extract a sequence from the SOAP envelope to drive a for loop.

Update an item in the sequence in a for loop with an Update action.

You can also use the Inline XQuery Expression Editor to create variable structures. For more
information, see “Using Variable Structures” on page 3-47.

Using Variable Structures
You can use the Inline XQuery Expression Editor to create variable structures, with which you
define the structure of a given variable for design purposes. For example, it is easier to browse
the XPath variable in the console rather than viewing the XML schema of the XPath variable.

Note: It is not necessary to create variable structures for your runtime to work. Variable
structures define the structure of the variable or the variable path but do not create the
variable. Variables are created at runtime as the target of the assign action in the stage.

In a typical programming language, the scope of variables is static. Their names and types are
explicitly declared. The variable can be accessed anywhere within the static scope.

In ALSB, there are some predefined variables, but you can also dynamically create variables and
assign value to them using the assign action or using the loop variable in the for-loop. When a
value is assigned to a variable, the variable can be accessed anywhere in the proxy service
message flow. The variable type is not declared but the type is essentially the underlying type of
the value it contains at any point in time.

Note: The scope of the for-loop variable is limited and cannot be accessed outside the stage.

When you use the Inline XQuery Expression Editor, the XQuery has zero or more inputs and one
output. Because you can display the structure of the inputs and the structure of the output visually
in the Expression Editor itself, you do not need to open the XML schema or WSDL resources to
see their structure when you create the Inline XQuery. The graphical structure display also
enables you to drag and drop simple variable paths along the child axis without predicates, into
the composed XQuery.

Each variable structure mapping entry has a label and maps a variable or variable path to one or
more structures. The scope of these mappings is the stage or route node. Because variables are
not statically typed, a variable can have different structures at different points (or at the same
point) in the stage or route node. Therefore, you can map a variable or a variable path to multiple
structures, each with a different label. To view the structure, select the corresponding label with
a drop-down list.

Note: You can also create variable structure mappings in the Inline XPath Expression Editor.
However, although the variable or a variable path is mapped to a structure, the XPaths

Mode l ing Message F l ow in ALSB

3-48 AquaLogic Service Bus User Guide

generated when you select from the structure are XPaths relative to the variable. An
example of a relative XPath is ./ctx:attachment/ctx:body.

Creating Variable Structure Mappings
The following sections describe how to create several types of variable structure mappings:

“Sample WSDL” on page 3-48

“Creating the Resources You Need for the Examples” on page 3-50

“Example 1: Selecting a Predefined Variable Structure” on page 3-53

“Example 2: Creating a Variable Structure That Maps a Variable to a Type” on page 3-54

“Example 3: Creating a Variable Structure that Maps a Variable to an Element” on
page 3-55

“Example 4: Creating a Variable Structure That Maps a Variable to a Child Element” on
page 3-56

“Example 5: Creating a Variable Structure that Maps a Variable to a Business Service” on
page 3-57

“Example 6: Creating a Variable Structure That Maps a Child Element to Another Child
Element” on page 3-59

Sample WSDL
This sample WSDL is used in most of the examples in this section. You need to save this WSDL
as a resource in your configuration. For more information, see “Creating the Resources You Need
for the Examples” on page 3-50.

Listing 3-17 Sample WSDL

<definitions

name="samplewsdl"

targetNamespace="http://example.org"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:s0="http://www.bea.com"

xmlns:s1="http://example.org"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 3-49

<types>

<xs:schema

attributeFormDefault="unqualified"

elementFormDefault="qualified"

targetNamespace="http://www.bea.com"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="PO" type="s0:POType"/>

<xs:complexType name="POType">

<xs:all>

<xs:element name="id" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

</xs:all>

</xs:complexType>

<xs:element name="Invoice" type="s0:InvoiceType"/>

<xs:complexType name="InvoiceType">

<xs:all>

<xs:element name="id" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

</xs:all>

</xs:complexType>

</xs:schema>

</types>

<message name="POTypeMsg">

<part name="PO" type="s0:POType"/>

</message>

<message name="InvoiceTypeMsg">

<part name="InvReturn" type="s0:InvoiceType"/>

</message>

<portType name="POPortType">

<operation name="GetInvoiceType">

<input message="s1:POTypeMsg"/>

<output message="s1:InvoiceTypeMsg"/>

</operation>

</portType>

<binding name="POBinding" type="s1:POPortType">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

Mode l ing Message F l ow in ALSB

3-50 AquaLogic Service Bus User Guide

<operation name="GetInvoiceType">

<soap:operation soapAction="http://example.com/GetInvoiceType"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

</definitions>

Creating the Resources You Need for the Examples
To make use of the examples that follow, you save the sample WSDL as a resource in your
configuration and create the sample business service and proxy service that use the sample
WSDL.

The instructions that follow tell how to accomplish the tasks in the ALSB Console:

“Save the WSDL as a Resource” on page 3-50

“Create a Proxy Service That Uses the Sample WSDL” on page 3-51

“Build a Message Flow for the Sample Proxy Service” on page 3-52

“Create a Business Service That Uses the Sample WSDL” on page 3-52

Save the WSDL as a Resource

1. In the left navigation pane in the ALSB Console, under Change Center, click Create to
create a new session for making changes to the current configuration.

2. In the left navigation pane, click Project Explorer.

3. In the Project View page, click the project to which you want to add the WSDL.

4. In the Project View page, in the Create Resource field, select WSDL under Interface.

5. In the Create a New WSDL Resource page in the Resource Name field, enter SampleWSDL.
This is a required field.

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 3-51

6. In the WSDL field, copy and paste the text from the sample WSDL into this field.

Note: This is a required field.

7. Click Save. The new WSDL SampleWSDL is included in the list of resources and saved in the
current session. You must now create a proxy service that uses this WSDL, see “Create a
Proxy Service That Uses the Sample WSDL” on page 3-51.

Create a Proxy Service That Uses the Sample WSDL

1. In the left navigation pane, click Project Explorer.

2. In the Project View page, select the project to which you want to add the proxy service.

3. In the Project View page, in the Create Resource field, select Proxy Service under Service.

4. In the Edit a Proxy Service - General Configuration page, in the Service Name field, enter
ProxywithSampleWSDL. This is a required field.

5. In the Service Type field, which defines the types and packaging of the messages exchanged
by the service:

a. Select WSDL Web Service from under Create a New Service.

b. Click Browse. The WSDL Browser is displayed.

c. Select SampleWSDL, then select POBinding in the Select WSDL Definitions pane.

d. Click Submit.

6. Keep the default values for all other fields on the General Configuration page, then click
Next.

7. Keep the default values for all fields on the Transport Configuration pages, then click Next.

8. In the Operation Selection Configuration page, make sure SOAP Body Type is selected in
the Selection Algorithm field, then click Next.

9. Review the configuration data that you have entered for this proxy service, then click Save.
The new proxy service ProxywithSampleWSDL is included in the list of resources and saved
in the current session.To build message flow for this proxy service, see “Build a Message
Flow for the Sample Proxy Service” on page 3-52.

Mode l ing Message F l ow in ALSB

3-52 AquaLogic Service Bus User Guide

Build a Message Flow for the Sample Proxy Service

1. In the Project View page, in the Actions column, click the Edit Message Flow icon for the
ProxywithSampleWSDL proxy service.

2. In the Edit Message Flow page, click the ProxywithSampleWSDL icon, then click Add
Pipeline Pair. PipelinePairNode1 is displayed, which includes request and response
pipelines.

3. Click the Request Pipeline icon, then click Add Stage. The Stage Stage1 is displayed.

4. Click Save. The basic message flow is created for the ProxywithSampleWSDL proxy service.

Create a Business Service That Uses the Sample WSDL

1. In the left navigation pane, click Project Explorer. The Project View page is displayed.

2. Select the project to which you want to add the business service.

3. From the Project View page, in the Create Resource field, select Business Service from
under Service. The Edit a Business Service - General Configuration page is displayed.

4. In the Service Name field, enter BusinesswithSampleWSDL. This is a required field.

5. In the Service Type field, which defines the types and packaging of the messages exchanged
by the service, do the following:

a. Select WSDL Web Service from under Create a New Service.

b. Click Browse. The WSDL Browser is displayed.

c. Select SampleWSDL, then select POBinding in the Select WSDL Definitions pane.

d. Click Submit.

6. Keep the default values for all other fields on the General Configuration page, then click
Next.

7. Enter an endpoint URI in the Endpoint URI field on the Transport Configuration page.
Click Add, and then click Next.

8. Use the default values for all fields on the SOAP Binding Configuration page.
Click Next.

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 3-53

9. Review the configuration data that you have entered for this business service, and then click
Save. The new business service BusinesswithSampleWSDL is included in the list of
resources and is saved in the current session.

10. From the left navigation pane, click Activate under Change Center. The session ends and
the configuration is deployed to run time. You are now ready to use the examples—continue
in “Example 1: Selecting a Predefined Variable Structure” on page 3-53.

Example 1: Selecting a Predefined Variable Structure
In this example, you select a predefined variable structure using the proxy service
ProxyWithSampleWSDL, which has a service type WSDL Web Service that uses the binding
POBinding from SampleWSDL.

The proxy service message flow needs to know the structure of the message in order to
manipulate it. To achieve this, ALSB automatically provides a predefined structure that maps the
body variable to the SOAP body structure as defined by the WSDL of the proxy service for all
the messages in the interface. This predefined structure mapping is labeled body.

Note: This predefined structure is also supported for messaging services with a typed interface.

To select a predefined variable structure:

In the Variable Structures panel on the XQuery Expression Editor page, select body from the
drop-down list of built-in structures.

The variable structure body is displayed in Figure 3-4.

Figure 3-4 Variable Structures—body

Mode l ing Message F l ow in ALSB

3-54 AquaLogic Service Bus User Guide

Example 2: Creating a Variable Structure That Maps a Variable to a Type
Suppose the proxy service ProxyWithSampleWSDL invokes a service callout to the business
service BusinessWithSampleWSDL, which also has a service type WSDL Web Service that uses
the binding POBinding from SampleWSDL. The operation GetInvoiceType is invoked.

In this example, the message flow needs to know the structure of the response parameter in order
to manipulate it. To achieve this, you can create a new variable structure that maps the response
parameter variable to the type InvoiceType.

To map a variable to a type:

1. In the Variable Structures panel, click Add New Structure. Additional fields are displayed in
Figure 3-5.

Figure 3-5 Variable Structures—Add a New Structure

2. Select the XML Type.

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 3-55

3. In the Structure Label field, enter InvoiceType as the display name for the variable
structure you want to create. This display name enables you to give a meaningful name to the
structure so you can recognize it at design time but it has no impact at run time.

4. In the Structure Path field, enter $InvoiceType as the path of the variable at run time.

5. To select the type InvoiceType, do the following:

a. Under the Type field, select the appropriate radio button, then select WSDL Type from
the drop-down list.

b. Click Browse. The WSDL Browser is displayed.

c. In the WSDL Browser, select SampleWSDL, then select InvoiceType under Types in
the Select WSDL Definitions pane.

d. Click Submit. InvoiceType is displayed under your selection WSDL Type.

6. Click Add. The new variable structure InvoiceType is included under XML Type in the
drop-down list of variable structures.

The variable structure InvoiceType is displayed in Figure 3-6.

Figure 3-6 Variable Structures—InvoiceType

Example 3: Creating a Variable Structure that Maps a Variable to an Element
Suppose a temporary variable has the element Invoice described in the SampleWSDL WSDL. In
this example, the ProxyWithSampleWSDL message flow needs to access this variable. To achieve
this, you can create a new variable structure that maps the variable to the element Invoice.

To map a variable to an element:

1. In the Variable Structures panel, click Add New Structure.

2. Make sure you select the XML Type.

Mode l ing Message F l ow in ALSB

3-56 AquaLogic Service Bus User Guide

3. In the Structure Label field, enter Invoice as the meaningful display name for the variable
structure you want to create.

4. In the Structure Path field, enter $Invoice as the path of the variable structure at run time.

5. To select the element Invoice, do the following:

a. For the Type field, make sure you select the appropriate radio button.Then select WSDL
Element from the drop-down list.

b. Click Browse.

c. In the WSDL Browser, select SampleWSDL, then select Invoice under Elements in the
Select WSDL Definitions pane.

d. Click Submit. Invoice is displayed under your selection WSDL Element.

6. Click Add. The new variable structure Invoice is included under XML Type in the
drop-down list of variable structures.

The variable structure Invoice is displayed in Figure 3-7.

Figure 3-7 Variable Structures—Invoice

Example 4: Creating a Variable Structure That Maps a Variable
to a Child Element
The ProxyWithSampleWSDL proxy service routes to the document style Any SOAP business
service that returns the Purchase Order in the SOAP body. In this example, the
ProxyWithSampleWSDL proxy service message flow must then manipulate the response. To
achieve this, you can create a new structure that maps the body variable to the PO element, and
specify the PO element as a child element of the variable. You need to specify it as a child
element because the body variable contains the SOAP Body element and the PO element is a
child of the Body element.

To map a variable to a child element:

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 3-57

1. In the Variable Structures panel, click Add New Structure.

2. Make sure you select the XML Type.

3. In the Structure Label field, enter body to PO as the meaningful display name for the
variable structure you want to create.

4. In the Structure Path field, enter $body as the path of the variable structure at run time.

5. To select the PO element:

a. Under the Type field, make sure you select the appropriate radio button, and then select
WSDL Element from the drop-down list.

b. Click Browse.

c. In the WSDL Browser, select SampleWSDL, then select PO under Elements in the Select
WSDL Definitions pane.

d. Click Submit.

6. Select the Set as child checkbox to set the PO element as a child of the body to PO variable
structure.

7. Click Add. The new variable structure body to PO is included under XML Type in the
drop-down list of variable structures.

The variable structure body to PO is displayed in Figure 3-8.

Figure 3-8 Variable Structures—body to PO

Example 5: Creating a Variable Structure that Maps a Variable
to a Business Service
The ProxyWithSampleWSDL proxy service routes the message to the
BusinessWithSampleWSDL business service, which also has a service type WSDL Web Service
that uses the binding POBinding from SampleWSDL. In this example, the message flow must then

Mode l ing Message F l ow in ALSB

3-58 AquaLogic Service Bus User Guide

manipulate the response. To achieve this, you can define a new structure that maps the body
variable to the BusinessWithSampleWSDL business service. This results in a map of the body
variable to the SOAP body for all the messages in the WSDL interface of the service.

Note: This mapping is also supported for messaging services with a typed interface.

To map a variable to a business service:

1. In the Variable Structures panel, click Add New Structure.

2. Select Service Interface.

3. In the Structure Label field, enter BusinessService as the meaningful display name for
the variable structure.

4. In the Structure Path field, $body is already set as the default. This is the path of the variable
structure at run time.

5. To select the business service, do the following:

a. Under the Service field, click Browse. The Service Browser is displayed.

b. In the Service Browser, select the BusinessWithSampleWSDL business service, then
click Submit. The business service is displayed under the Service field.

c. In the Operation field, select All.

6. Click Add. The new variable structure BusinessService is included under Service
Interface in the drop-down list of variable structures.

The variable structure BusinessService is displayed in Figure 3-9.

Work ing w i th Var iab le S t ruc tu res

AquaLogic Service Bus User Guide 3-59

Figure 3-9 Variable Structures—Business Service

Example 6: Creating a Variable Structure That Maps a Child Element to
Another Child Element
Modify the SampleWSDL so that the ProxyWithSampleWSDL proxy service receives a single
attachment. The attachment is a Purchase Order. In this example, the proxy service message flow
must then manipulate the Purchase Order. To achieve this, you can define a new structure that
maps the body element in $attachments to the PO element, which is specified as a child
element. The body element is specified as a variable path of the form:

$attachments/ctx:attachment/ctx:body

You can select and copy the body element from the predefined attachments structure, paste this
element as the variable path to be mapped in the new mapping definition.

To map a child element to another child element:

1. In the Variable Structures panel, select attachments from the drop-down list of built-in
structures.

The variable structure attachments is displayed in Figure 3-10.

Mode l ing Message F l ow in ALSB

3-60 AquaLogic Service Bus User Guide

Figure 3-10 Variable Structures—attachments

2. Select the body child element in the attachments structure. The variable path of the body
element is displayed in the Property Inspector on the right side of the page:

$attachments/ctx:attachment/ctx:body

3. Copy the variable path of the body element.

4. In the Variable Structures panel, click Add New Structure.

5. Select the XML Type.

6. In the Structure Label field, enter PO attachment as the meaningful display name for this
variable structure.

7. In the Structure Path field, paste the variable path of the body element:

$attachments/ctx:attachment/ctx:body

This is the path of the variable structure at run time.

8. To select the PO element:

a. Under the Type field, make sure the appropriate radio button is selected, then select
WSDL Element.

b. Click Browse.

c. In the WSDL Browser, select SampleWSDL, then select PO under Elements in the Select
WSDL Definitions pane.

d. Click Submit.

9. Select the Set as child checkbox to set the PO element as a child of the body element.

Qual i t y o f Se rv i ce

AquaLogic Service Bus User Guide 3-61

10. Click Add. The new variable structure PO attachment is included under XML Type in the
drop-down list of variable structures.

11. If there are multiple attachments, add an index to the reference when you use fields from this
structured variable in your XQueries. For example, if you drag the PO field to the XQuery
field, but as PO will be the second attachment, change the inserted value from
$attachments/ctx:attachment/ctx:body/bea:PO/bea:id

to
$attachments/ctx:attachment[2]/ctx:body/bea:PO/bea:id

Quality of Service
The following sections discuss quality of service features in ALSB messaging:

“Delivery Guarantees” on page 3-61

“Outbound Message Retries” on page 3-67

Delivery Guarantees
ALSB supports reliable messaging. When messages are routed to another service from a route
node, the default quality of service (QoS) is exactly once if the proxy service transport is defined
as JMS/XA; otherwise best effort QoS is supported.

Quality of service is set in the qualityOfService element in the $outbound context variable.

The following delivery guarantee types are provided in ALSB, shown in Table 3-9.

Mode l ing Message F l ow in ALSB

3-62 AquaLogic Service Bus User Guide

Table 3-9 Delivery Guarantee Types

Delivery Reliability Description

Exactly once Exactly once reliability means that messages are delivered from inbound to
outbound exactly once, assuming a terminating error does not occur before the
outbound message send is initiated. Exactly once means reliability is
optimized.

Exactly once delivery reliability is a hint, not a directive. When exactly once
is specified, exactly once reliability is provided if possible. If exactly once is
not possible, then at least once delivery semantics are attempted; if that is not
possible, best effort delivery is performed.

The default value of the qualityOfService element is exactly-once
for a route node action for the following inbound transports:
• e-mail
• FTP
• File
• JMS/XA
• SFTP
• Transactional Tuxedo

Note: Do not retry the outbound transport when the QoS is exactly once

Qual i t y o f Se rv i ce

AquaLogic Service Bus User Guide 3-63

For more detailed information about quality of service for other transports, see the documentation
for the transport, at AquaLogic Service Bus Transports.

At least once At least once semantics means the message is delivered to the outbound from
the inbound at least once, assuming a terminating error does not occur before
the outbound message send is initiated. Delivery is considered satisfied even
if the target service responds with a transport-level error. However it is not
satisfied in the case of a time-out, a failure to connect, or a broken
communication link. If failover URLs are specified, at least once semantics is
provided with respect to at least one of the URLs.

At least once delivery semantics is attempted if exactly once is not possible but
the qualityOfService element is exactly-once.

Best effort Best effort means that there is no reliable messaging and there is no elimination
of duplicate messages—however, performance is optimized. It is performed if
the qualityOfService element is best-effort. Best effort delivery is
also performed if exactly once and at least once delivery semantics are not
possible but the qualityOfService element is exactly-once.

The default value of the qualityOfService element for a route node is
best-effort for the following inbound transports:
• HTTP
• JMS/nonXA
• Non-Transactional Tuxedo

The default value of the qualityOfService element is always
best-effort for the following:
• Service callout action — always best-effort, but can be changed if

required.
• Publish action — defaults to best-effort, modifiable

Note: When the value of the qualityOfService element is
best-effort for a publish action, all errors are ignored. However,
when the value of the qualityOfService element is
best-effort for a route node action or a Service callout action, any
error will raise an exception.

Table 3-9 Delivery Guarantee Types

Delivery Reliability Description

http://e-docs.bea.com/alsb/docs30/transports.html

Mode l ing Message F l ow in ALSB

3-64 AquaLogic Service Bus User Guide

Overriding the Default Element Attribute
To override the default exactly once quality of service attribute, you must set the
qualityOfService in the outbound message context variable ($outbound). For more
information, see “Message Context Schema” on page 5-29.

You can override the default qualityOfService element attribute for the following:

Route node action

Publish action

Service callout

To override the qualityOfService element attribute, you must use the route options action to
route or publish, and also select the checkbox for a service callout action. See “Message Context
Schema” on page 5-29.

Delivery Guarantee Rules
The delivery guarantee supported when a proxy service publishes a message or routes a request
to a business service depends on the following conditions:

The value of the qualityOfService element.

The inbound transport (and connection factory, if applicable).

The outbound transport (and connection factory, if applicable).

However, if the inbound proxy service is a Local Transport and is invoked by another proxy
service, the inbound transport of the invoking proxy service is responsible for the delivery
guarantee. That is because a proxy service that invokes another proxy service is optimized into a
direct invocation if the transport of the invoked proxy service is a Local Transport. For more
information on transport protocols, see Proxy Services and Business Services in Using the
AquaLogic Service Bus Console.

Note: No delivery guarantee is provided for responses from a proxy service.

The following rules govern delivery guarantees, shown in Table 3-10.

http://e-docs.bea.com/alsb/docs30/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html

Qual i t y o f Se rv i ce

AquaLogic Service Bus User Guide 3-65

Note: To support at least once and exactly-once delivery guarantees with JMS, you must
exploit JMS transactions and configure a retry count and retry interval on the JMS queue
to ensure that the message is redelivered in the event of a server crash or a failure that is
not handled in an error handler with a Reply or Resume action. File, FTP, and e-mail
transports also internally use a JMS/XA queue. The default retry count for a proxy
service with a JMS/XA transport is 1. For a list of the default JMS queues created by
ALSB, see AquaLogic Service Bus Deployment Guide.

The following are additional delivery guarantee rules:

If the transport of the inbound proxy service is File, FTP, e-mail, Transactional Tuxedo, or
JMS/XA, the request processing is performed in a transaction.

– When the qualityOfService element is set to exactly-once, any route node and
publish actions executed in the request flow to a transactional destination are performed
in the same transaction.

– When the qualityOfService element is set to best-effort for any action in a
route node, service callout or publish actions are executed outside of the request flow
transaction. Specifically, for JMS, Tuxedo, Transactional Tuxedo, or EJB transport, the
request flow transaction is suspended and the Transactional Tuxedo work is done
without a transaction or in a separate transaction that is immediately committed.

– If an error occurs during request processing, but is caught by a user error handler that
manages the error (by using the resume or reply action), the message is considered
successfully processed and the transaction commits. A transaction is aborted if the

Table 3-10 Delivery Guarantee Rules

Delivery Guarantee Provided Rule

Exactly once The proxy service inbound transport is transactional and the value
of the qualityOfService element is exactly-once to an
outbound JMS/XA transport.

At least once The proxy service inbound transport is file, FTP, or e-mail and the
value of the qualityOfService element is exactly-once.

At least once The proxy service inbound transport is transactional and the value
of the qualityOfService element, where applicable, is
exactly-once to an outbound transport that is not
transactional.

No delivery guarantee All other cases, including all response processing cases.

http://e-docs.bea.com/alsb/docs30/deploy/index.html

Mode l ing Message F l ow in ALSB

3-66 AquaLogic Service Bus User Guide

system error handler receives the error—that is, if the error is not handled before
reaching the system level. The transaction is also aborted if a server failure occurs
during request pipeline processing.

If a response is received by a proxy service that uses a JMS/XA transport to business
service (and the proxy inbound is not Transactional Tuxedo), the response processing is
performed in a single transaction.

– When the qualityOfService element is set to exactly-once, all route, service
callout, and publish actions are performed in the same transaction.

– When the qualityOfService element is set to best-effort, all publish actions and
service callout actions are executed outside of the response flow transaction.
Specifically, for JMS, EJB, or transactional Tuxedo types of transports, the response
flow transaction is suspended and the service is invoked without a transaction or in a
separate transaction that is immediately committed.

– Proxy service responses executed in the response flow to a JMS/XA destination are
always performed in the same transaction, regardless of the qualityOfService
element setting.

If the proxy service inbound transport is transactional Tuxedo, both the request processing
and response processing are done in this transaction.

Note: You will encounter a run-time error when the inbound transport is transactional
Tuxedo and the outbound is an asynchronous transport, for example, JMS/XA.

Threading Model
The ALSB threading model works as follows:

The request and response flows in a proxy service execute in different threads.

Service callouts are always blocking. An HTTP route or publish action is non-blocking (for
request/response or one-way invocation), if the value of the qualityOfService element is
best-effort.

JMS route actions or publish actions are always non-blocking, but the response is lost if
the server restarts after the request is sent because ALSB has no persistent message
processing state.

Note: In a request or response flow publish action, responses are always discarded because
publish actions are inherently a one-way message send.

Qual i t y o f Se rv i ce

AquaLogic Service Bus User Guide 3-67

Splitting Proxy Services
You may want to split a proxy service in the following situations:

When HTTP is the inbound and outbound transport for a proxy service, you may want to
incorporate enhanced reliability into the middle of the message flow. To enable enhanced
reliability in this way, split the proxy service into a front-end HTTP proxy service and a
back-end JMS (one-way or request/response) proxy service with an HTTP outbound
transport. In the event of a failure, the first proxy service must quickly place the message
in the queue for the second proxy service, in order to avoid loss of messages.

To disable the direct invocation optimization for a non-JMS transport when a proxy
service, say loanGateway1 invokes another proxy service, say loanGateway2. Route to
the proxy service loanGateway2 from the proxy service loanGateway1 where the proxy
service loanGateway2 uses JMS transport.

To have an HTTP proxy service publish to a JMS queue but have the publish action
rollback if there is a exception later on in the request processing, split the proxy service
into a front-end HTTP proxy service and a back-end JMS proxy service. The publish
action specifies a qualityOfService element of exactly-once and uses an XA
connection factory.

Outbound Message Retries
In addition to configuring inbound retries for messages using JMS, you can configure outbound
retries and load balancing. Load balancing, failover, and retries work in conjunction to provide
performance and high availability. For each message, the list of URLs you provide as failover
URLs is automatically ordered based on the load balancing algorithm into a failover sequence. If
the retry count is N, the entire sequence is retried N times before stopping. The system waits for
the specified retry interval before commencing subsequent loops through the sequence. After
completing the retry attempts, if there is still an error, the error handler pipeline for the route node
is invoked. For more information on the error handler pipeline, see “Adding Pipeline Error
Handling” in Proxy Services in Using the AquaLogic Service Bus Console.

Note: For HTTP transports, any HTTP status other than 200 or 202 is considered an error by
ALSB and must be retried. Because of this algorithm, it is possible that ALSB retries
errors like authentication failure that may never be rectified for that URL within the time
period of interest. On the other hand, if ALSB also fails over to a different URL for
subsequent attempts to send a given message, the new URL may not give the error.

For quality of service=exactly once failover or retries will not be executed.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html

Mode l ing Message F l ow in ALSB

3-68 AquaLogic Service Bus User Guide

Content Types, JMS Type, and Encoding
To support interoperability with heterogeneous endpoints, ALSB allows you to control the
content type, the JMS type, and the encoding used.

ALSB does not make assumptions about what the external client or service needs, but uses the
information configured for this purpose in the service definition. ALSB derives the content type
for outbound messages from the service type and interface. Content type is a part of the e-mail
and HTTP protocols.

If the service type is:

XML or SOAP with or without a WSDL, the content type is text/XML.

Messaging and the interface is MFL or binary, the content type is binary/octet-stream.

Messaging and the interface is text, the content type is text/plain.

Messaging and the interface is XML, the content type is text/XML.

Additionally, there is a JMS type, which can be byte or text. You configure the JMS type to use
when you define the service in ALSB Console or in the ALSB Plug-in for WorkSpace Studio.

You can override the content type in the outbound context variable ($outbound) for proxy
services invoking a service, and in the inbound context variable ($inbound) for a proxy service
response. For more information on $outbound and $inbound context variables, see “Inbound
and Outbound Variables” on page 5-10.

Encoding is also explicitly configured in the service definition for all outbound messages. For
more information on service definitions, see Proxy Services in and Business Service in Using the
AquaLogic Service Bus Console.

Throttling Pattern
In ALSB, you can restrict the message flow to a business service. This technique of restricting a message
flow to a business service is known as throttling. For information, see Throttling in ALSB in the AquaLogic
Service Bus Operations Guide.

WS-I Compliance
ALSB provides Web Service Interoperability (WS-I) compliance for SOAP 1.1 services in the
run-time environment. The WS-I basic profile has the following goals:

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/operations/throttling.html
http://e-docs.bea.com/alsb/docs30/consolehelp/businessServices.html

WS- I Compl iance

AquaLogic Service Bus User Guide 3-69

Disambiguate the WSDL and SOAP specifications wherever ambiguity exists.

Define constraints that can be applied when receiving messages or importing WSDLs so
that interoperability is enhanced. When messages are sent, construct the message so that
the constraints are satisfied.

The WS-I basic profile is available at the following URL:

http://www.ws-i.org/Profiles/BasicProfile-1.1.html.

When you configure a proxy service or business service based on a WSDL, you can use the ALSB
Console or the ALSB Plug-in for WorkSpace Studio to specify whether you want ALSB to
enforce WS-I compliance for the service. For information on how to do this, see

“Operation Selection Configuration page” under Proxy Services in Using the AquaLogic
Service Bus Console

“Proxy Service Operation Selection Configuration page” in Using the AquaLogic Service
Bus Plug-in for WorkSpace Studio

When you configure WS-I compliance for a proxy service, checks are performed on inbound
request messages received by that proxy service. When you configure WS-I compliance for an
invoked service, checks are performed when any proxy receives a response message from that
invoked service. BEA recommends that you create an error handler for these errors, since by
default, the proxy service SOAP client receives a system error handler-defined fault. For more
information on creating fault handlers, see:

Proxy Services: Error Handlers in Using the AquaLogic Service Bus Console.

Adding and Configuring Error Handlers in Message Flows in Using the AquaLogic Service
Bus Plug-in for WorkSpace Studio.

For messages sent from a proxy service, whether as outbound request or inbound response, WS-I
compliance checks are not explicitly performed. That is because the pipeline designer is
responsible for generating most of the message content. However, the parts of the message
generated by ALSB should satisfy all of the supported WS-I compliance checks. This includes
the following content:

Service invocation request message.

System-generated error messages returned by a proxy service.

HTTP status codes generated by a proxy service.

The Enforce WS-I Compliance checkbox is displayed as shown in Figure 3-11.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyerrors.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#taskAddConfigErrorHandlersInMessageFlows
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

Mode l ing Message F l ow in ALSB

3-70 AquaLogic Service Bus User Guide

Figure 3-11 Enforce WS-I Compliance Checkbox

WS-I Compliance Checks
Note: WS-I compliance checks require that the system knows what operation is being invoked

on a service. For request messages received by a proxy service, that means that the
context variable $operation should not be null. That depends upon the operation
selection algorithm being configured properly. For response messages received from
invoked services, the operation should be specified in the action configurations for route,
publish, and service callout.

WS- I Compl iance

AquaLogic Service Bus User Guide 3-71

When you configure WS-I compliance checking for a proxy service or a business service, ALSB
carries out the following checks, shown in Table 3-11.

Table 3-11 ALSB WS-I Compliance Checks

Check WS-I Basic Profile Details ALSB Description

3.1.1 SOAP Envelope
Structure

R9980 An Envelope must conform to the
structure specified in SOAP 1.1, Section 4,
“SOAP Envelope” (subject to amendment).

This check applies to request and
response messages. If a response
message is checked and the message
does not possess an outer Envelope
tag, a soap:client error is
generated. If the message is an
Envelope tag but possesses a different
namespace, it is handled by the 3.1.2
SOAP Envelope Namespace.

3.1.2 SOAP Envelope
Namespace

R1015 A Receiver must generate an error if
they encounter an envelope whose
document element is not soap:Envelope.

This check applies to request and
response messages and is related to the
3.1.1 SOAP Envelope Structure. If a
request message has a local name of
Envelope, but the namespace is not
SOAP 1.1, a
soap:VersionMismatch error is
generated.

3.1.3 SOAP Body
Namespace
Qualification

R1014 The child elements of the
soap:body element in an Envelope must
be namespace qualified.

This check applies to request and
response messages. All request error
messages generate a soap:Client
error.

3.1.4 Disallowed
Constructs

R1008 An Envelope must not contain a
Document Type Declaration.

This check applies to request and
response messages. All request error
messages generate a soap:Client
error.

3.1.5 SOAP Trailers R1011 An Envelope must not have any
child elements of soap:Envelope
following the soap:body element.

This check applies to request and
response messages. All request error
messages generate a soap:Client
error.

Mode l ing Message F l ow in ALSB

3-72 AquaLogic Service Bus User Guide

3.1.9 SOAP attributes
on SOAP 1.1
elements

R1032 The soap:Envelope,
soap:header, and soap:body elements
in an Envelope must not have attributes in
the namespace
http://schemas.xmlsoap.org/soa
p/envelope/

This check applies to request and
response messages. Any request error
messages generate a soap:client
error.

3.3.2 SOAP Fault
Structure

R1000 When an Envelope is a fault, the
soap:Fault element must not have
element children other than faultcode,
faultstring, faultactor, and
detail.

This check only applies to response
messages.

3.3.3 SOAP Fault
Namespace
Qualification

R1001 When an Envelope is a Fault, the
element children of the soap:Fault
element must be unqualified.

This check only applies to response
messages.

3.4.6 HTTP Client
Error Status Codes

R1113 An instance should use a “400 Bad
Request” HTTP status code if a HTTP
request message is malformed.

R1114 An instance should use a “405
Method not Allowed” HTTP status
code if a HTTP request message is
malformed.

R1125 An instance must use a 4xx HTTP
status code for a response that indicates a
problem with the format of a request.

Only applies to responses for a proxy
service where you cannot influence the
status code returned due to errors in the
request.

3.4.7 HTTP Server
Error Status Codes

R1126 An instance must return a “500
Internal Server Error” HTTP status
code if the response envelope is a fault.

This check applies differently to request
and response messages. For request
messages, any faults generated have a
500 Internal Server Error
HTTP status code. For response
messages, an error is generated if fault
responses are received that do not have
a 500 Internal Server Error
HTTP status code.

Table 3-11 ALSB WS-I Compliance Checks

Check WS-I Basic Profile Details ALSB Description

Conver t ing Between SOAP 1 .1 and SOAP 1 .2

AquaLogic Service Bus User Guide 3-73

Converting Between SOAP 1.1 and SOAP 1.2
ALSB supports SOAP 1.1 and SOAP 1.2. A SOAP 1.1 proxy service can invoke a SOAP 1.2
business service or vice versa. The SOAP namespace is automatically changed by ALSB before

4.7.19 Response
Wrappers

R2729 An envelope described with an
rpc-literal binding that is a response must
have a wrapper element whose name is the
corresponding wsdl:operation name
suffixed with the string Response.

This check only applies to response
messages. ALSB never generates a
non-fault response from a proxy
service.

4.7.20 Part Accessors R2735 An envelope described with an
rpc-literal binding must place the part
accessor elements for parameters and return
value in no namespace.

R2755 The part accessor elements in a
message described with an rpc-literal
binding must have a local name of the same
value as the name attribute of the
corresponding wsdl:part element.

This check applies to request and
response messages. Any request error
messages generate a soap:client
error.

4.7.22 Required
Headers

R2738 An envelope must include all
soapbind:headers specified on a
wsdl:input or wsdl:output of a
wsdl:operation of a wsdl:binding
that describes it.

This check applies to request and
response messages. Any request error
messages generate a soap:client
error.

4.7.25 Describing
SOAPAction

R2744 A HTTP request message must
contain a SOAPAction a HTTP header field
with a quoted value equal to the value of the
soapAction attribute of
soap:operation, if present in the
corresponding WSDL description.

R2745 A HTTP request message must
contain a SOAP action a HTTP header field
with a quoted empty string value, if in the
corresponding WSDL description, the
SOAPAction of soapbind:operation
is either not present, or present with an
empty string as its value.

This check applies to request messages
and a soap:client error is returned.

Table 3-11 ALSB WS-I Compliance Checks

Check WS-I Basic Profile Details ALSB Description

Mode l ing Message F l ow in ALSB

3-74 AquaLogic Service Bus User Guide

invoking the business service. If a fault comes back from the business service it is automatically
changed to the SOAP version of the proxy service. It is, however, up to the pipeline actions to
map the SOAP header-related XML attributes (like MustUnderstand) between the two versions.
It is also up to the pipeline actions to change the SOAP encoded name space for encoded
envelopes.

AquaLogic Service Bus User Guide 4-1

C H A P T E R 4

Improving Service Performance with
Split-Join

ALSB’s advanced mediation feature, called Split-Join, helps you improve service performance
by concurrently processing individual messages in a request. This topic, which describes
Split-Join, includes the following sections:

Introduction to Split-Join

Developing Split-Joins

Introduction to Split-Join
ALSB’s Split-Join feature lets you split a service payload, such as an order, into individual
messages for concurrent processing. Concurrent processing, as opposed to sequential processing,
greatly improves service performance. Split-Join achieves this task by splitting an input message
payload into sub messages (split), routing them concurrently to their destinations, and
aggregating the responses into one overall return message (join). This process of payload splitting
and response aggregation is called a Split-Join pattern.

Split-Joins are particularly useful for optimizing overall response times in scenarios where
payloads delivered by faster systems are being directed to responding services on slower systems.
Without Split-Join, individual messages in a payload are normally resolved in sequential order
by the recipient, which can take a long time if the responding system is slow. (The overall
response time is the sum of the individual response times for each message.) With Split-Join,
multiple messages are processed simultaneously, which reduces burden on the responding system
and greatly enhances response times. (The overall response time is roughly that of the longest
individual message’s response time plus some minor system overhead.)

Improv ing Serv ice Pe r fo rmance w i th Sp l i t - Jo in

4-2 AquaLogic Service Bus User Guide

There are two patterns supported by the Split-Join feature:

Static Split-Join

Dynamic Split-Join

Static Split-Join
The static Split-Join branches from the main execution thread of an ALSB message flow by
splitting a payload into a fixed number of new branches according to the configuration of the
Split-Join. At design time you determine the number and variety of services to be invoked.

Static Split-Join – Sample Scenario
A telco company might want to employ static Split-Join when processing a customer’s order for
a communications services package. In this case, the customer might sign up for DSL and voice
services all at once. Rather than executing each request in the payload separately in order, the
telco can execute the messages in parallel using a callout from the ALSB message flow to a
Split-Join employing the static Split-Join pattern.

Static Split-Join is the ideal pattern in this case because the developer knows there will always be
exactly two incoming service requests for this particular service package: DSL and voice.
Splitting the requests into parallel branches allows them to be processed concurrently, which
improves the overall response time for processing the payload. After all messages have been
processed, the generated responses are aggregated back into one reply in the execution thread.

Figure 4-1 illustrates a static Split-Join that splits two known service requests, DSL activation
and phone activation, processes each request in parallel, and joins the responses into a single
reply.

I n t roduct i on to Sp l i t - Jo in

AquaLogic Service Bus User Guide 4-3

Figure 4-1 Static Split-Join – Known number of service requests

Dynamic Split-Join
The dynamic Split-Join branches from the main execution thread of an ALSB message flow by
dynamically creating new branches according to the contents of the incoming payload. The
dynamic Split-Join uses conditional logic to determine the number of branches to create. All
requests are handled simultaneously, and the responses are aggregated into a single reply.

Dynamic Split-Join – Sample Scenario
A company might want to use dynamic Split-Join when placing automated stationery orders for
its employees. If the orders are automatically placed every week based on employee submissions,
there is no way of knowing how many individual orders are placed in any one weekly order.
Rather than placing each order separately, the company could use dynamic Split-Join to place the
orders concurrently using a callout from the ALSB message flow to a Split-Join employing the
dynamic Split-Join pattern.

Dynamic Split-Join is the ideal pattern in this case, because the developer has no way of knowing
how many orders will be submitted each week. The dynamic Split-Join loops through all the
orders and places them in parallel. The developer can also limit the number of orders processed.
After all of the orders have been processed, the generated order responses are aggregated back
into one reply in the execution thread.

Improv ing Serv ice Pe r fo rmance w i th Sp l i t - Jo in

4-4 AquaLogic Service Bus User Guide

Figure 4-2 illustrates a dynamic Split-Join that splits 15 orders, processes them concurrently, and
joins the responses into a single reply.

Figure 4-2 Dynamic Split-Join – Unknown number of service requests

Split-Join Framework
A Split-Join, which takes the form of a .flow file in WorkSpace Studio, is based on a WSDL
operation. The Split-Join is wrapped in a WSDL-based business service that communicates
across a FLOW transport, which is a dedicated transport for Split-Joins. The business service is
invoked from a proxy service. Figure 4-3 illustrates the Split-Join framework.

Deve lop ing Sp l i t - Jo ins

AquaLogic Service Bus User Guide 4-5

Figure 4-3 Split-Join framework

Developing Split-Joins
You create and configure Split-Joins in WorkSpace Studio, then import them into the ALSB
console for use in run-time configuration. For information on developing Split-Joins, see
Working with Split-Join in the WorkSpace Studio help system.

Split-Join Resource Type and Environment Variable
If you reference Split-Joins in any scripts or custom code, use the values in Table 4-1:

Table 4-1 Split-Join resource type and environment variable

typeId FLOW

Work manager
environment value
type

Split-Join Work Manager

/alsb/help30/eclipsehelp30cons/eclipsehelp/sj_tasks.html

Improv ing Serv ice Pe r fo rmance w i th Sp l i t - Jo in

4-6 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 5-1

C H A P T E R 5

Message Context

This section describes the ALSB message context model and the predefined context variables that
are used in message flows. It includes the following topics:

The Message Context Model

Predefined Context Variables

Message-Related Variables

Inbound and Outbound Variables

Operation Variable

Fault Variable

Initializing Context Variables

Performing Operations on Context Variables

Constructing Messages to Dispatch

Message Context Schema

Message Contex t

5-2 AquaLogic Service Bus User Guide

The Message Context Model
ALSB message context is a set of properties that hold message content as well as information
about messages as they are routed through ALSB. These properties are referred to as context
variables—for example, service endpoints are represented by predefined context variables.
ALSB also supports user-defined context variables.

The message context is defined by an XML schema. You typically use XQuery expressions to
manipulate the context variables in the message flow that defines a proxy service.

Predefined Context Variables
Table 5-1 describes the predefined context variables. The predefined context variables can be
grouped into the following types: message-related variables, inbound and outbound variables, the
operation variable, and the fault variable.
For information about the element types in the message context variables, see “Message Context Schema”
on page 5-29.

Table 5-1 Predefined Context Variables in ALSB

Context Variable1 Description See Also...

header For SOAP messages, header contains the SOAP header.
(If the proxy service is SOAP 1.2, header contains a
SOAP 1.2 Header element.)

For message types other than SOAP, header contains an
empty SOAP header element.

“Message-Related
Variables” on page 5-3

body For the following cases:
• SOAP messages—contains the <SOAP:Body> part

extracted from the SOAP envelope. (If the proxy service
is SOAP 1.2, the body variable contains a SOAP 1.2
Body element.)

• Non-SOAP, non-binary messages—contains the entire
message content wrapped in a <SOAP:Body> element.

• Binary messages—contains a <SOAP:Body> wrapped
reference to an in-memory copy of the binary message.

• Java objects—contains a <SOAP:Body> wrapped
reference to an in-memory copy of the Java object.

“Message-Related
Variables” on page 5-3

Message-Re lated Var iab les

AquaLogic Service Bus User Guide 5-3

Message-Related Variables
Together, the message-related variables header, body and attachments represent the canonical
format of a message as it flows through ALSB. These variables are initialized using the message
content received by a proxy service and are used to construct the outgoing messages that are
routed or published to other services.

If you want to modify a message as part of processing it, you must modify these variables.

A message payload (that is, a message content exclusive of headers or attachments) is contained
in the body variable. The decision about which variable’s content to include in an outgoing
message is made at the point at which a message is dispatched (published or routed) from ALSB.
That determination is dependent upon whether the target endpoint is expecting a SOAP or a
non-SOAP message:

When a SOAP message is expected, the header and body variables are combined in a
SOAP envelope to create the message.

attachments Contains the MIME attachments for a given message. “Message-Related
Variables” on page 5-3

inbound Contains:
• Information about the proxy service that received a

message
• The inbound transport headers

“Inbound and Outbound
Variables” on page 5-10

outbound Contains:
• Information about the target service to which a message

is to be sent
• The outbound transport headers

“Inbound and Outbound
Variables” on page 5-10

operation Identifies the operation that is being invoked on a proxy
service.

“Operation Variable” on
page 5-19

fault Contains information about errors that have occurred during
the processing of a message.

“Fault Variable” on
page 5-19

1. The “Message Context Schema” on page 5-29 specifies the element types for the message context
variables.

Table 5-1 Predefined Context Variables in ALSB (Continued)

Context Variable1 Description See Also...

Message Contex t

5-4 AquaLogic Service Bus User Guide

When a non-SOAP message is expected, the contents of the Body element in the body
variable constitutes the entire message.

In either case, if the service expects attachments, a MIME package is created from the
resulting message and the attachments variable.

Header Variable
The header variable contains SOAP headers associated with a message. The header variable
points to a <SOAP:Header> element with headers as sub-elements. (If the proxy service is SOAP
1.2, the header variable contains a SOAP 1.2 Header element.) In the case of non-SOAP
messages or SOAP messages with no headers, the <SOAP:Header> element is empty, with no
sub-elements.

Body Variable
The body variable represents the core message payload and always points to a <SOAP:Body>
element. (If the proxy service is SOAP 1.2, body contains a SOAP 1.2 Body element.) The core
payload for both SOAP and non-SOAP messages is available in the same variable and with the
same packaging—that is, wrapped in a <SOAP:Body> element:

In the case of SOAP messages, the SOAP body is extracted from the envelope and
assigned to the body variable.

In the case of non-SOAP, non-binary, messages, the full message contents are placed
within a newly created <SOAP:Body> element.

In the case of binary messages, rather than inserting the message content into the body
variable, a <binary-content/> reference element is created and inserted into the
<SOAP:Body> element. To learn how binary content is handled, see “Binary Content in the
body and attachments Variables” on page 5-6.

In the case of Java objects, a <java-content/> reference element is created and inserted
into the <SOAP:Body> element. To learn how Java content is handled, see “Java Content in
the body Variable” on page 5-7.

Attachments Variable
The attachments variable holds the attachments associated with a message. The attachments
variable is defined by an XML schema. It consists of a single root node: <ctx:attachments>,
with a <ctx:attachment> sub-element for each attachment. The sub-elements contain
information about the attachment (derived from MIME headers) as well as the attachment

Message-Re lated Var iab les

AquaLogic Service Bus User Guide 5-5

content. As with most of the other message-related variables, attachments is always set, but if
there are no attachments, the attachments variable consists of an empty <ctx:attachments>
element.

Each attachment element includes a set of sub-elements, as described in Table 5-2.

With the exception of the untyped body element, all other elements contain string values that are
interpreted in the same way as they are interpreted in MIME—for example, valid values for the
Content-Type element include text/xml and text/xml; charset=utf-8.

The parsing of attachments is not recursive. If an attachment has a Content-Type of
multipart/..., the body element holds the original unpacked MIME content as a stream of
bytes and does not contain attachment sub-elements. Because the MIME stream may contain
binary data, it is represented by a <binary-content> reference element.

To learn how binary content is handled, see “Binary Content in the body and attachments
Variables” on page 5-6.

Table 5-2 Sub-Elements of the Attachments Variable

Elements of the Attachments
Variable

Description1

1. The “Message Context Schema” on page 5-29 specifies the element types for the message
context variables.

Content-ID A globally-unique reference that identifies the attachment.The
type is string.

Content Type Specifies the media type and sub-type of the attachment. The
type is string.

Content-Transfer-Encoding Specifies how the attachment is encoded. The type is string.

Content-Description A textual description of the content. The type is string.

Content-Location A locally-unique URI-based reference that identifies the
attachment. The type is string.

Content-Disposition Specifies how the attachment should be handled by the
recipient. The type is string.

body Holds the attachment data. The type is anyType.

Message Contex t

5-6 AquaLogic Service Bus User Guide

Messages whose Content-Type is multipart/form-data are constructed at run-time as
follows:

Inbound: All parts of a received inbound multipart/form-data type message are
assigned to the $attachments variable. The $body variable is left empty.

Outbound: The content of an outbound multipart/form-data type message is built
from the content of the$attachments variable. Nothing from $header or $body is
included.

Note: If the inbound message is of a different multipart type than
multipart/form-data (for example, multipart/related) and the outbound
message is multipart/form-data, you must explicitly preserve the headers and
content of the inbound root part, because they will not otherwise be passed through.

Attachments are supported on inbound requests and on outbound responses (that is, in messages
received by a proxy service) only when the transport is HTTP, HTTPS or e-mail. Attachments
are supported for all transport types for outbound requests and inbound responses (that is for
messages sent by a proxy service).

ALSB does not support sending attachments to EJB-based or Tuxedo-based services.

Binary Content in the body and attachments Variables
In the case of both the body and attachments variables, text-, XML- and MFL-based content is
placed directly inside of an XML element. For binary data, which can contain byte values that are
illegal in XML, ALSB does not place the binary content in the XML element. Consequently, the
binary content cannot be manipulated, but it is handled efficiently.

When binary content is received, the ALSB run time stores it in an in-memory hash table and a
reference to that content is inserted into the XML (body or attachments) element. This
reference is represented by the following XML snippet:
<binary-content ref="..."/>

where the ref attribute contains a URI or URN that uniquely identifies the binary content. This
XML can be manipulated in a ALSB pipeline, branch, or route node in the same way any other
content can be manipulated, but only the reference and not the underlying binary content is
affected.

For example:

Binary content in the body variable can be copied to an attachment by copying the
reference XML to the body sub-element of an attachment element.

Message-Re lated Var iab les

AquaLogic Service Bus User Guide 5-7

Binary content in two different attachments can be swapped by swapping the snippets of
reference XML or by swapping the values of the ref attributes.

When messages are dispatched from ALSB, the URI in the reference XML is used to restore the
relevant binary content in the outgoing message. For information about how outbound messages
are constructed, see “Constructing Messages to Dispatch” on page 5-26.

Clients and certain transports, notably e-mail, file and FTP can use this same reference XML to
implement pass-by-reference. In this case, the transport or client creates the reference XML
rather than the proxy service run time. Also, the value of the URI in the ref attribute is specified
by the user that creates the reference XML. For these cases in which the reference XML is not
created by the proxy service run time—specifically, when the URI is not recognized as one
referring to internally managed binary content—ALSB does not de-reference the URI, and the
content is not substituted into an outgoing message.

Java Content in the body Variable
The ALSB pipeline supports Java objects as inputs and outputs to Java callout actions. A POJO
returned by a Java callout is cached in the pipeline, and its key is returned wrapped in an XML
message of the form <java-content ref=”cid:kkkkeeeeyyyy”/>, where
cid:kkkkeeeeyyyy is a key automatically generated by the producing action and used to index
the object in the pipeline’s cache. Any subsequent action then passes that XML unmodified as an
argument.

The content of a POJO variable is not directly accessible by pipeline actions at configuration
time. Rather, the content can be handled in the following ways:

The content’s metadata (that is, its key) can be handled as any other XML, for example in
an XQuery such as $pojo/java-content/@ref. This may be useful for logging or
debugging, but the content of the object cannot be directly accessed.

The content can be assigned to a new variable that automatically becomes typed (in the
pipeline) as a POJO. The object itself is not touched. The <java-content.../> XML
snippet is copied from the source variable to the target variable.

The content can be passed to another appropriate action (like Java callout) as a variable
(for example, $pojo). The object itself is not touched. The argument is automatically
de-referenced to the actual object.

The Java object is removed from the pipeline’s cache when you delete all variables holding the
object’s key (in <java-content…/>) or when you delete all XPaths pointing to the
<java-content…/> snippet.

Message Contex t

5-8 AquaLogic Service Bus User Guide

Streaming body Content
For processing message content, you can specify that the ALSB pipeline streams the content
rather than loading it into memory. When you enable content streaming for a proxy service, you
specify whether to buffer the streamed content to memory or a disk file as an intermediate step
during the processing of the message. The creation of these temporary files might affect
performance. For information about protecting temporary files, see the AquaLogic Service Bus
Security Guide.

When you enable the streaming option, content streaming applies only to the body variable.

In general, use content streaming:

When processing large content messages. See the guidelines in “Best Practices for Using
Content Streaming” on page 5-8.

In use cases where ALSB accesses the payload a small number of times.

For content-based routing without transformations; content streaming results in better
performance due to the benefits from partial parsing.

Best Practices for Using Content Streaming
Use the following guidelines and recommendations:

When you enable streaming for large message processing, you cannot use the assign,
replace, rename, for each, validate, and delete actions with respect to the body message
context variable, because these actions require the input variable to be fully materialized in
memory and full materialization is incompatible with the content streaming option.

You can use the results of an XQuery or XSL transformation from a very large $body with
these pipeline actions:

– Assign, insert, and replace actions—to update the value of another context variable (not
$body). However, you must ensure that the result of the expression is small enough to
be fully materialized and stored in the message context.

– Java callouts—to pass input arguments. All input to Java callouts is fully materialized,
therefore, the results of expressions used as input must be small enough to be fully
materialized.

– MFL transformations—to transform very large payloads without first materializing the
input as an XML Bean. When using a very large $body as an input to an MFL
transformation, declare a messaging service, binary message type proxy service. If you

http://e-docs.bea.com/alsb/docs30/security/index.html
http://e-docs.bea.com/alsb/docs30/security/index.html

Message-Re lated Var iab les

AquaLogic Service Bus User Guide 5-9

declare a messaging service, text message type proxy service, $body will get fully
materialized to obtain an input stream for the transformation.

– Alert, log, and report actions—to report the result of an XQuery or XSL transformation
on a very large $body.

– Service callouts

For XSL transformations, all input is fully materialized in order to perform the
transformation, therefore, you must ensure that the input is small enough so that it can be
fully materialized and processed by the XSLT processor.

With very large MFL input, you should use a MFL service instead of a MFL stage action
to perform a MFL-to-XML transformation.

Do not use the test console to test proxy services with very large content messages because
the content will be fully materialized, potentially causing an OOM exception, and
displayed, causing a slowdown in the console window.

When writing XQueries, use proper indexing to achieve partial parsing.

For example, instead of writing $body/*:DateTimeStruct, which would consume the
entire input stream, write:

($body/*:DateTimeStruct)[1] or $body[1]/*:DateTimeStruct[1]

By using indexing, only content up to and including the first DateTimeStruct element
will be parsed.

Because each variable that is accessed by two or more consumers (expressions) is
materialized, when writing XQueries, avoid statements such as:

let $labdata1 := $body/*
return <HEADER>{ $labdata1/HEADER/@*, $labdata1/HEADER/node() }</HEADER>

In this case, $labdata1 is bound to the whole document without the root element so the
XQuery engine runs out of memory when trying to materialize it.

One way of changing this query to avoid excessive materialization would be to move the
/HEADER path expression inside the let clause.

let $labdata1 := $body/*/HEADER
...

In this case, the XQuery engine will only materialize the HEADER element or elements.

Another way to avoid materialization would be to use the fn-bea:rename() function in
which you can rename elements in a streaming mode.

Message Contex t

5-10 AquaLogic Service Bus User Guide

fn-bea:rename($oldelements as element()*, $newname as element()) as element()*

For example:

fn-bea:rename($body/*/HEADER, <HEADER_NEW/>)

At run time, processing large messages is subjected to the limitations and restrictions of the
underlying transport; for example, the message size handling limitations of the transport.
Be aware of the JVM and RMI settings that limit the capacity of the transport to accept
large messages.

Inbound and Outbound Variables
The inbound and outbound context variables contain information about the inbound and
outbound endpoints. The inbound variable contains information about the proxy service that
received the request message; the outbound variable contains information about the target
business service to which a message is sent.

The outbound variable is set in the route action in route nodes and publish actions. You can
modify $outbound by configuring request and response actions in route nodes and by
configuring request actions in publish actions.

WARNING: Some modifications that you can make for the inbound and outbound context
variables are not honored at run time. That is, the values of certain headers and
metadata can be overwritten or ignored by the ALSB run time. The same
limitations are true when you set the transport headers and metadata using the
transport headers and service callout actions, and when you use the Test Console
to test your proxy or business services. For information about the headers and
metadata for which there are limitations, see “Understanding How the Run Time
Uses the Transport Headers Settings” on page 3-12. Note also that any
modifications you make to $outbound in the message flow outside of the request
or response actions in route nodes and publish actions are ignored. In other words,
those modifications are overwritten when $outbound is initialized in the route
nodes and publish actions.

You cannot modify the outbound variable in service callout actions.

The inbound and outbound variables have the following characteristics:

Have the same XML schema—the inbound and outbound context variables are instances
of the endpoint element as described in “Message Context Schema” on page 5-29.

I nbound and Outbound Var iab les

AquaLogic Service Bus User Guide 5-11

Contain a single name attribute that identifies the name of the endpoint as it is registered in
the service directory. The name attribute should be considered read-only for both inbound
and outbound.

WARNING: The read-only rule is not enforced. Changing read-only elements can result in
unpredictable behavior.

Contain the service, transport and security sub-elements described in the following
section.

Attachments are supported on inbound requests and outbound responses (that is, in messages
received by a proxy service) only when the transport is HTTP, HTTPS or e-mail.

Attachments are supported for all transport types for outbound requests and inbound responses
(that is for messages sent by a proxy service).

ALSB does not support sending attachments to EJB-based or Tuxedo-based services.

Sub-Elements of the inbound and outbound Variables
This section describes the sub-elements of the inbound and outbound context variables,
including information about whether a given sub-element is initialized at run time. To learn about
how context variables are initialized, see “Initializing Context Variables” on page 5-21. The
sub-elements include:

service

transport

security

service
The service element is read-only for both inbound and outbound. Sub-elements include
providerName and operation.

Table 5-3 Sub-Elements of the service Element

Sub-Elements1 Description...

Message Contex t

5-12 AquaLogic Service Bus User Guide

transport
The transport element is read-only on inbound, except for the response element, which you can
modify to set the response transport headers. The sub-elements of the transport element are
described in Table 5-4.

providerName Specifies the name of the service key provider.

Initialized based on the configuration of publish and routing actions.

operation

(outbound only)
Used in the outbound variable, specifies the name of the operation to be invoked
on the target business service.

Initialized based on the inbound and outbound.

Note: This element is used for the outbound variable only. In the case of
inbound messages, the name of the operation to be invoked on the proxy
service is specified by the operation variable.

1. The “Message Context Schema” on page 5-29 specifies the element types for the message context
variables.

Table 5-3 Sub-Elements of the service Element (Continued)

I nbound and Outbound Var iab les

AquaLogic Service Bus User Guide 5-13

Message Contex t

5-14 AquaLogic Service Bus User Guide

Table 5-4 Sub-Elements of the Transport Element

Sub-Elements1 Description...

uri Identifies the URI of the endpoint:
• When used in the inbound variable, this is the URI by which the message

arrived.
• When used in the outbound variable, this is the URI to use when sending

the message—it overrides any URI value registered in the service directory.

Initialization

The URI element is initialized as follows:
• Always initialized on the inbound variable
• Never initialized on the outbound variable. You can set the URI on

outbound when you want to override the set of URIs in the service
configuration. URI failover is not supported if this element is set.

I nbound and Outbound Var iab les

AquaLogic Service Bus User Guide 5-15

request

This element is
read-only2 in the
inbound variable.
You can modify it for
the outbound
variable.

Specifies transport-specific metadata about the request (including transport
headers). The value for this element is defined by the transport protocol
(specifically, the RequestMetaData XML defined by the transport
SDK).Therefore, the structure of this element depends on the transport being
used.

To learn about the transport-specific types for this element, see the appropriate
transport schema, which are available in the following directory in your ALSB
installation:

BEA_HOME/alsb_3.0/lib/transports/

where BEA_HOME represents the directory in which you installed ALSB.
Initialization

The URI element is initialized as follows:
• Initialized on the inbound variable using information from the request

message received by ALSB.
• On the outbound variable, the request element is created with the

proper typing. The typing is transport-dependent. The request element is
typically initialized as an empty element, with the exception of certain
important transport headers—for example, content-type and
SOAPAction.

You can set a filename for an outbound message using the File transport
protocol by configuring $outbound in a route node request action, as follows:
• If the fileName only is specified, a file of that name is stored at the

location specified by the endpoint URI of the target business service.
• If isFilePath is set to true, the value of fileName is used as a relative

path appended to the endpoint URI of the target business service. For
example, if the endpoint URI is file:////apollo/ob/data, and the
fileName header is set to ./foo/bar.xml, and isFilePath is set to
true, the message will be stored at /apollo/ob/data/foo/bar.xml.
If a file already exists with that name, a new name is generated, following
the format path/filename_random-number.xml, where
random-number is an integer in the range of 0 to 999999.

Table 5-4 Sub-Elements of the Transport Element (Continued)

Sub-Elements1 Description...

Message Contex t

5-16 AquaLogic Service Bus User Guide

response

This element is
read-only in the
outbound
variable. You can
modify it for the
inbound. variable.

Specifies transport-specific metadata about the response (including transport
headers). The value for this element is defined by the transport protocol
(specifically, the ResponseMetaData XML defined by the transport
SDK).Therefore, the structure of this element depends on the transport being
used.

To learn about the transport-specific types for this element, see the appropriate
transport schema, which are available in the following directory in your ALSB
installation:

BEA_HOME/alsb_3.0/lib/transports/

where BEA_HOME represents the directory in which you installed ALSB.
Initialization

The URI element is initialized as follows:
• Initialized on the outbound variable using information from the response

message received by ALSB.
• On the inbound variable, the response element is created with the

proper typing. The typing is transport-dependent. The response element
is typically initialized as an empty element, with the exception of certain
important transport headers—for example, content-type and
SOAPAction.

For a description of the standard HTTP headers, see
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

For a description of the standard JMS headers, see Value-Added Public JMS
API Extensions.

Note: The following MQ headers do not have equivalents in BEA JMS:
ApplOriginData, ApplIdentityData, Accounting Token

mode Specifies whether the communication style is request (one-way) or
request-response (two-way).

Initialization

Initialized on the inbound and outbound variables using information from
the service and its operations (if applicable). For example, if a request-only
operation is being invoked, the mode element is set to request, rather than to
request-response.

Table 5-4 Sub-Elements of the Transport Element (Continued)

Sub-Elements1 Description...

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://e-docs.bea.com/wls/docs100/jms/fund.html#jms_features
http://e-docs.bea.com/wls/docs100/jms/fund.html#jms_features

I nbound and Outbound Var iab les

AquaLogic Service Bus User Guide 5-17

qualityOfService

This element is read
only for inbound.

You can modify it for
the outbound case—
in the outbound request
actions of a publish or
routing action.

Specifies the quality of service expected when sending or receiving a message.
Valid values include best-effort and exactly-once:
• best-effort means that each dispatch defines its own transactional

context (if the transport is transactional).

Best effort means that there is no reliable messaging and no elimination of
duplicate messages—however, performance is optimized.

For the scenario in which a message is dispatched as a result of a publish
action, any dispatch errors are suppressed.

For the scenario in which a message is dispatched from a routing node,
dispatch errors are not suppressed.

• exactly-once means that the dispatch is included as part of the inbound
transactional context (if one exists and if the outbound transport is
transactional) and errors cause processing to abort and trigger the relevant
error handler (in the case of both the route and publish scenarios).

Exactly once reliability means that messages are delivered from inbound to
outbound exactly once, assuming a terminating error does not occur before
the outbound message send is initiated.

Initialization

The qualityOfService element is initialized on the inbound and outbound
variables as follows:
• In the inbound case, the quality of service (QoS) is dictated by the transport.

For example, for the JMS/XA transport, the QoS is exactly once; for the
HTTP transport, the QoS is best effort.

• In the outbound case, the QoS is set differently for publishing and for
routing, as follows:

Routing—When messages are routed to another service from a route node,
the QoS is always initialized using the value from the inbound context
variable. In other words, the outbound QoS is set to exactly once if (and only
if) the inbound QoS is exactly once. Otherwise, the outbound QoS is set to
best effort.

Publishing—When a message is published to another service as the result
of a publish action, the quality of service (QoS) is always initialized to best
effort regardless of the inbound setting.

Table 5-4 Sub-Elements of the Transport Element (Continued)

Sub-Elements1 Description...

Message Contex t

5-18 AquaLogic Service Bus User Guide

security
The sub elements of the security element are described in Table 5-5.

retryCount

(outbound only)
Specifies the number of retries to attempt when sending a message from ALSB.

If retryCount is set, the setting overrides any retry count value configured in
the target service configuration.

1. The “Message Context Schema” on page 5-29 specifies the element types for the message
context variables.
2. The read-only rule is not enforced. Changing read-only elements can result in unpredictable
behavior.

Table 5-4 Sub-Elements of the Transport Element (Continued)

Sub-Elements1 Description...

Table 5-5 Sub-Elements of the Security Element

Sub-Elements1 Description...

transportClient

(inbound only, read
only2)

Specifies authenticated transport-level user information. The user information
includes a username and any optional principals. The principals can themselves
include zero or more groups, one for each group the subject belongs to.

Note: If the subject is anonymous, then the username is "anonymous" and there
are no groups.

Initialized by ALSB. The inbound transportClient element is read-only.

messageLevelClient

(inbound only, read
only2)

Specifies authenticated message-level user information. The user information
includes a username and any optional principals. The principals can themselves
include zero or more groups, one for each group the subject belongs to.

Note: If the subject is anonymous, then the username is "anonymous" and there
are no groups.

Initialized by ALSB. The inbound messageLevelClient element is read-only.

doOutboundWss

(outbound only)
ALSB sets the value of this element during routing or publishing.

Some infrequently used design patterns set the value to false to preempt a proxy
service from automatically generating the outbound WS-Security SOAP envelope.

Future releases of ALSB will provide an easier way to disable outbound
WS-Security.

For more information, see “Disabling Outbound WS-Security” under
Message-Level Security in AquaLogic Service Bus Security Guide.

http://e-docs.bea.com/alsb/docs30/security/message_level.html

Opera t i on Var iab le

AquaLogic Service Bus User Guide 5-19

Related Topics
Proxy Services: Actions in Using the AquaLogic Service Bus Console

“Adding Route Node Actions” in Proxy Services: Message Flow in Using the AquaLogic Service
Bus Console

For a description of the standard HTTP headers, see
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

For a description of the standard JMS headers, see
http://e-docs.bea.com/wls/docs92/jms/fund.html#jms_features

Operation Variable
The operation variable is a read-only variable. It contains a string that identifies the operation
to be invoked on a proxy service. If no operations are defined for a proxy service, the operation
variable is not set and returns the equivalent of null.

ALSB provides the operation variable as a stand-alone variable, rather than as a sub-element
of the inbound variable to optimize performance—the computation of the operation may be
deferred until the operation variable is explicitly accessed rather than anytime the inbound
variable is accessed.

Fault Variable
The fault variable is used to hold information about any error that has occurred during message
processing. When an error occurs, this variable is populated with information before the
appropriate error handler is invoked.

Note: This variable is defined only in error handler pipelines and is not set in request and
response pipelines, or in route or branch nodes.

The fault variable includes the errorCode, reason, details, and location sub-elements
described in Table 5-6.

1. The “Message Context Schema” on page 5-29 specifies the element types for the message context
variables.
2. The read-only rule is not enforced. Changing read-only elements can result in unpredictable
behavior.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://e-docs.bea.com/wls/docs100/jms/fund.html#jms_features
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxymessageflow.html

Message Contex t

5-20 AquaLogic Service Bus User Guide

The contents of the fault variable are modeled after SOAP faults to facilitate fault generation
when replying from a SOAP-based proxy service. The values for error codes generated by ALSB
correspond to system error codes and are prefixed with BEA string.

The error codes associated with the errors surface inside the element of the fault context
variable. You can access the value using the following XQuery statement:
$fault/ctx:errorCode/text()

ALSB defines three generic error codes for the three classes of possible errors. The format of the
generic codes is BEA-xxx000, where xxx represents a generic category as follows:

380 Transport

382 Proxy

386 Security

Table 5-6 Sub-Elements of the Fault Variable

Elements of the Fault
Variables

Description1...

errorCode Specifies the error code as a string value

reason Contains a text description of the error

details Contains user-defined XML content related to the error

location Identifies the node, pipeline and stage in which the error occurred. Also
identifies if the error occurred in an error handler. The sub-elements
include:
• node—the name of the pipeline, branch, or route node where an error

occurred; a string.
• pipeline—the name of the Pipeline where an error occurred (if

applicable); a string.
• stage—the name of the stage where an error occurred (if applicable); a

string.
• error-handler—indicates if an error occurred from inside an error

handler; a boolean.

1. The “Message Context Schema” on page 5-29 specifies the element types for the message
context variables.

I n i t ia l i z ing Context Var iab les

AquaLogic Service Bus User Guide 5-21

394 UDDI

This yields the generic codes as follows:

BEA–380000—BEA–380999

Indicates a transport error (for example, failure to dispatch a message).

BEA–382000—BEA–382499

Indicates a proxy service run-time error (for example, a stage exception).

BEA–382500—BEA–382999

Indicates an error in a proxy service action.

BEA–386000—BEA–386999

Indicates a WS-Security error (for example, authorization failure).

BEA–394500—BEA–394999

Indicates an error in the UDDI sub system.

ALSB defines unique codes for specific errors. For example:

BEA-382030—Indicates a message parse error (for example, a SOAP proxy service received a
non-SOAP message).

BEA-382500—Reserved for the case in which a service callout action receives a SOAP Fault
response.

For information about these and other specific error codes, see Error Codes in Using the
AquaLogic Service Bus Console. See also “Handling Errors in Message Flows” on page 3-31.

Initializing Context Variables
The message context and its variables are initialized in the binding layer when a message is
received and before message processing begins. Table 5-7summarizes how context variables are
initialized.

http://e-docs.bea.com/alsb/docs30/consolehelp/errorcodes.html

Message Contex t

5-22 AquaLogic Service Bus User Guide

Table 5-7 Initializing Context Variables

Context Variable How Initialized

outbound Initialized to null because no routing or errors have yet occurred.

The outbound variable is initialized in the route action in route nodes and
publish actions. You can modify $outbound through the request actions
in routing nodes and publish actions (also in the response actions in routing
nodes). For more information, see “Inbound and Outbound Variables”
on page 5-10.
For information about the initialization of sub-elements of outbound, see
“Sub-Elements of the inbound and outbound Variables” on page 5-11.

fault

inbound Initialized with service, transport and security information that is
obtained from Service Bus metadata about the registered proxy
service and transport-level metadata (transport headers,
authenticated user information, and so on) about the specific
incoming request.
For information about the initialization of sub-elements of inbound, see
“Sub-Elements of the inbound and outbound Variables” on page 5-11.

header Initialized using the content of the inbound message. How the initialization
is performed depends on the type of proxy service, as described in the
subsequent topics in this section:
• “Initializing the attachments Context Variable” on page 5-23
• “Initializing the header and body Context Variables” on page 5-23

The header, body, and attachments variables are re initialized after
routing using the content of the response that is received. If no routing is
performed or if the communication mode is request-only, then these
variables are not re initialized. That is, they are not cleared of any content.

body

attachments

operation

I n i t ia l i z ing Context Var iab les

AquaLogic Service Bus User Guide 5-23

Initializing the attachments Context Variable
The attachments context variable is initialized with any MIME attachments that accompany the
message, but does not include the part representing the main message (whether it is SOAP, XML,
MFL, and so on). Each <attachment> element is initialized using the MIME headers that
accompany each part in the MIME package.

The contents of the <body> element in the <attachment> can be one of the following depending
on the attachment’s Content-Type:

XML

text

A snippet of reference XML that refers to the attachment content (see “Binary Content in
the body and attachments Variables” on page 5-6)

Initializing the header and body Context Variables
This section describes how the initialization of header and body context variables is performed
depending on the type of proxy service: SOAP Services, XML Services (Non SOAP), Messaging
Services.

SOAP Services
Messages to SOAP-based services are SOAP messages containing XML that is contained in a
<soap:Envelope> element. In the case that messages include attachments, the content of the
inbound message is a MIME package that includes the SOAP envelope as one of the parts—
typically the first part or one identified by the top-level Content-Type header. The context
variables are initialized as follows:

header—initialized with the <soap:Header> element from the SOAP message

body—initialized with the <soap:Body> element from the SOAP message

XML Services (Non SOAP)
The messages to XML-based services are XML, but can be of any type allowed by the proxy
service configuration. In the case that messages include attachments, the content of the inbound
messages is a MIME package that includes the primary XML payload as one of the parts—
typically the first part or one identified by the top-level Content-Type header.

Message Contex t

5-24 AquaLogic Service Bus User Guide

The context variables are initialized as follows:

header—initialized with an empty <soap:Header/> element.

body—initialized with a <soap:Body> element that wraps the entire XML payload.

Messaging Services
Messaging services are those that can receive messages of one data type and respond with
messages of a different data type. The supported data types include XML, MFL, text, untyped
binary. The context variables are initialized as follows:

header—initialized with an empty <soap:Header/> element.

body—initialized with a <soap:Body> element that wraps the entire payload.

– In the case of XML, MFL, and text content, it is placed directly within the
<soap:Body> element.

– In the case of binary content, a piece of reference XML is created and inserted inside
the <soap:Body> element (see “Binary Content in the body and attachments Variables”
on page 5-6). The binary content cannot be accessed or modified, but the reference
XML can be examined, modified, and replaced with inline content.

Performing Operations on Context Variables
You interact with and manipulate the message context through actions in the pipelines, branch,
or route nodes that define a proxy service. Most actions expose the XQuery language to do so.
Each context variable is represented as an XQuery variable of the same name. For example, the
header variable is accessible in XQuery as $header, the body variable is accessible as $body,
and so on. The examples in this section show the use of XQuery to examine and manipulate
context variables.

$body
The $body variable includes the <soap-env:Body>...</soap-env:Body> element. (If the
proxy service is SOAP 1.2, the body variable contains a SOAP 1.2 Body element.)

For example, if you assign data to the body context variable using the assign action, you must
wrap it with the <soap-env:Body> element. In other words, you build the SOAP package by
including the <soap-env:Body> element in the context variable.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html

Per fo rming Opera t i ons on Context Var iab les

AquaLogic Service Bus User Guide 5-25

There is an exception to this behavior in ALSB—for the case in which you build the Request
Document Variable for the service callout action. Service callout actions work with the core
payload (RPC parameters, documents, and so on) and ALSB builds the SOAP package around
the core payload. In other words, when you configure the Request Document Variable for a
service callout action, you do not wrap the input document with
<soap-env:Body>...</soap-env:Body>.

For information about configuring the service callout action, see Proxy Services: Actions in
Using the AquaLogic Service Bus Console.

$header
The $header variable includes the <soap-env:Header>...</soap-env:Header> element. (If
the proxy service is SOAP 1.2, the header variable contains a SOAP 1.2 Header element.)

For example if you assign data to the header context variable using the assign action, you must
wrap it with the <soap-env:Header> element. In other words, you build the SOAP package by
including the <soap-env:Header> element in the context variable. This is true for all
manipulations of $header, including the case in which you can set one or more SOAP headers
for a service callout request. For information about configuring SOAP headers for a service
callout action, see Proxy Services: Actions in Using the AquaLogic Service Bus Console.

Extract the WS-Addressing Header—From
$header/wsa:From

Extract the Payload From a Non-SOAP Message
$body/*

Extract the user-header From an Outbound Response Message
$outbound/ctx:transport/ctx:response/tp:user-header[@name=’myheader’
]/@value

When creating a body input variable that is used for the request parameter in a service callout to
a SOAP Service, you would define that variable’s contents using body/* (to remove the wrapper
soap-env:Body), not $body (which results in keeping the soap-env:Body wrapper).

Assign Variable Contents for Request Parameter in a Service Callout
$body/*

Related Topics
For more information about handling context variables using the XQuery and XPath editors, see:

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html

Message Contex t

5-26 AquaLogic Service Bus User Guide

“Working with Variable Structures” on page 3-44.

Proxy Services: XQuery Editors in Using the AquaLogic Service Bus Console

Expression Editors in Using the AquaLogic Service Bus Plug-in for WorkSpace Studio

Constructing Messages to Dispatch
When ALSB publishes or routes a message, the content of the message is constructed using the
values of variables in the message context. For example, transport headers and other
transport-specific metadata are taken from $outbound/transport/request. As is the case
with initialization of the context, the message content for outbound messages is handled
differently depending upon the type of the target service. How the outbound message content is
created depends on the type of the target service, as described in the following topics:

SOAP Services

XML Services (Non SOAP)

Messaging Services

SOAP Services
An outgoing SOAP message is constructed by wrapping the contents of the header and body
variables inside a <soap:Envelope> element. If the invoked service is a SOAP 1.2 service, the
envelope created is a SOAP 1.2 envelope. If the invoked service is a SOAP 1.1 service, the
envelope created is a SOAP 1.1 envelope. If the body variable contains a piece of reference XML,
it is sent as is—in other words, the referenced content is not substituted into the message.

If attachments are defined in the attachments variable, a MIME package is created from the
main message and the attachment data. The handling of the content for each attachment part is
similar to how content is handled for messaging services.

XML Services (Non SOAP)
The messages to XML-based services from ALSB is constructed from the contents of the body
variable:

If the body variable is empty, then a zero-size message is sent.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyeditors.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/ui_ref.html#uiExpressionEditorsOverview

Cons t ruc t ing Messages to D ispatch

AquaLogic Service Bus User Guide 5-27

If the body variable contains multiple XML snippets, then only the first snippet is used in
the outbound message. For example, if <soap:Body> contains <abc/><xyz/>, only
<abc/> is sent.

If the content of the body variable is text and not XML, an error is thrown.

If the body variable contains a piece of reference XML, it is sent as is—in other words, the
referenced content is not substituted into the message.

If attachments are defined in the attachments variable, a MIME package is created from
the XML message and the attachment data. In the case of a null XML message, the
corresponding MIME body part is empty. The handling of the content for each attachment
part is similar to how content is handled for messaging services.

Regardless of any data it contains, the header variable does not contribute any content to the
outbound message.

For examples of how messages are constructed for service callout actions, see Proxy Services:
Actions in Using the AquaLogic Service Bus Console.

Messaging Services
The messages to messaging services from ALSB are constructed from the contents of the body
variable.

If the body variable is empty, then a zero-size message is sent, regardless of the outgoing
message type.

If the outgoing message type is XML, then the message is constructed in the same way as
it is for XML Services (Non SOAP).

If the outgoing message type is MFL, then the behavior is similar to that for XML message
types except that the extracted XML is converted to MFL. (An error occurs if the
XML→MFL conversion cannot be performed.)

If the target service requires text messages, the contents of the body variable are
interpreted as text and sent. In this way, it is possible for ALSB to handle incoming XML
messages that must be delivered to a target service as text. In other words, you do not need
to configure the message flow to handle such messages.

For target services that expect binary messages, the body variable must contain a piece of
reference XML—the reference URI references the binary data stored in the ALSB
in-memory hash table. The referenced content is sent to the target service.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html

Message Contex t

5-28 AquaLogic Service Bus User Guide

For cases in which a client, a transport, or the designer of a proxy service specifies the
reference URI, the referenced data is not stored in the ALSB and thus cannot be de
referenced to populate the outbound message. Consequently, the reference XML is sent in
the message.

If the body variable contains a piece of reference XML, and the target service requires a
message type other than binary, the reference XML inside the body variable is treated as
content. In other words, it is sent as XML, converted to text, or converted to MFL. This is
true regardless of the URI in the reference XML.

Regardless of any data it contains, the header variable does not contribute any content to the
outbound message.

For examples of how messages are constructed for service callout actions, see Proxy Services:
Actions in Using the AquaLogic Service Bus Console.

About Sending Binary Content in Email Messages
For binary messages, ALSB does not insert the message content into the body variable. Instead,
a <binary-content/> reference element is created and inserted into the <SOAP:Body> element
(see “Message-Related Variables” on page 5-3). However, the email standard does not support
sending binary content type as the main part of a message. If you want to send binary messages
via email to a messaging service that accepts text or XML documents and optional attachments,
you can do so as follows:

1. Transfer the binary-content reference XML from $body to $attachments.

2. Replace the content of $body with text or XML wrapped in a <SOAP:Body> element.

For the case in which the outgoing message type is MFL, the contents of $body is converted from
XML to text or binary based on the MFL transformation:

If the target service expects to receive text message, you can set the content-type (the
default is binary for MFL message type) as text/plain in $outbound

If the target service expects to receive binary messages, it is not possible to send MFL
content via the email transport.

To learn more about how binary content is handled, see “Binary Content in the body and
attachments Variables” on page 5-6.

Related Topics
“Message Context Schema” on page 5-29

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html

Message Contex t Schema

AquaLogic Service Bus User Guide 5-29

In Using the AquaLogic Service Bus Console:

“Service Callout” and “Transport Headers” in Proxy Services: Actions

“Adding a Route Node” in Proxy Services: Message Flow

Message Context Schema
The message context schema (MessageContext.xsd) that specifies the types for the message
context variables is shown in “Message Context.xsd” on page 5-29.

When working with the message context variables, you need to reference MessageContext.xsd
which is available in a JAR file, BEA_HOME/alsb_3.0/lib/sb-kernel-api.jar, and the
transport-specific schemas, which are available at

BEA_HOME/alsb_3.0/lib/transports/

where BEA_HOME represents the directory in which you installed ALSB.

Message Context.xsd
//depot/dev/src/wli/public/sb/schemas/MessageContext.xsd last updates @v9 6/11/05

<schema targetNamespace="http://www.bea.com/wli/sb/context"
 xmlns:mc="http://www.bea.com/wli/sb/context"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <!--== -->

 <!-- The context variable 'fault' is an instance of this element -->
 <element name="fault" type="mc:FaultType"/>

 <!-- The context variables 'inbound' and 'outbound' are instances of this
element -->
 <element name="endpoint" type="mc:EndpointType"/>

 <!-- The three sub-elements within the 'inbound' and 'outbound' variables -->
 <element name="service" type="mc:ServiceType"/>
 <element name="transport" type="mc:TransportType"/>
 <element name="security" type="mc:SecurityType"/>

 <!-- The context variable 'attachments' is an instance of this element -->
 <element name="attachments" type="mc:AttachmentsType"/>

 <!-- Each attachment in the 'attachments' variable is represented by an
instance of this element -->

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxymessageflow.html

Message Contex t

5-30 AquaLogic Service Bus User Guide

 <element name="attachment" type="mc:AttachmentType"/>

 <!-- Element used to represent binary payloads and pass-by reference content
-->
 <element name="binary-content" type="mc:BinaryContentType"/>

 <!-- === -->

 <!-- The schema type for -->
 <complexType name="AttachmentsType">
 <sequence>
 <!-- the 'attachments' variable is just a series of attachment elements
-->
 <element ref="mc:attachment" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="AttachmentType">
 <all>
 <!-- Set of MIME headers associated with attachment -->
 <element name="Content-ID" type="string" minOccurs="0"/>
 <element name="Content-Type" type="string" minOccurs="0"/>
 <element name="Content-Transfer-Encoding" type="string"
minOccurs="0"/>
 <element name="Content-Description" type="string" minOccurs="0"/>
 <element name="Content-Location" type="string" minOccurs="0"/>
 <element name="Content-Disposition" type="string" minOccurs="0"/>

 <!-- Contains the attachment content itself, either in-lined or as
<binary-content/> -->
 <element name="body" type="anyType"/>
 </all>
 </complexType>

 <complexType name="BinaryContentType">
 <!-- URI reference to the binary or pass-by-reference payload -->
 <attribute name="ref" type="anyURI" use="required"/>
 </complexType>

 <!-- === -->

 <complexType name="EndpointType">
 <all>
 <!-- Sub-elements holding service, transport, and security details
for the endpoint -->
 <element ref="mc:service" minOccurs="0" />
 <element ref="mc:transport" minOccurs="0" />
 <element ref="mc:security" minOccurs="0" />
 </all>

Message Contex t Schema

AquaLogic Service Bus User Guide 5-31

 <!-- Fully-qualified name of the service represented by this endpoint -->
 <attribute name="name" type="string" use="required"/>
 </complexType>

 <!-- === -->

 <complexType name="ServiceType">
 <all>
 <!-- name of service provider -->
 <element name="providerName" type="string" minOccurs="0"/>

 <!-- the service operation being invoked -->
 <element name="operation" type="string" minOccurs="0"/>
 </all>
 </complexType>

 <!-- === -->

 <complexType name="TransportType">
 <all>
 <!-- URI of endpoint -->
 <element name="uri" type="anyURI" minOccurs="0" />

 <!-- Transport-specific metadata for request and response (includes
transport headers) -->
 <element name="request" type="anyType" minOccurs="0"/>
 <element name="response" type="anyType" minOccurs="0" />

 <!-- Indicates one-way (request only) or bi-directional
(request/response) communication -->
 <element name="mode" type="mc:ModeType" minOccurs="0" />

 <!-- Specifies the quality of service -->
 <element name="qualityOfService" type="mc:QoSType" minOccurs="0" />

 <!-- Retry values (outbound only) -->
 <element name="retryInterval" type="integer" minOccurs="0" />
 <element name="retryCount" type="integer" minOccurs="0" />
 </all>
 </complexType>

 <simpleType name="ModeType">
 <restriction base="string">
 <enumeration value="request"/>
 <enumeration value="request-response"/>
 </restriction>
 </simpleType>

Message Contex t

5-32 AquaLogic Service Bus User Guide

 <simpleType name="QoSType">
 <restriction base="string">
 <enumeration value="best-effort"/>
 <enumeration value="exactly-once"/>
 </restriction>
 </simpleType>

 <!-- === -->

 <complexType name="SecurityType">
 <all>
 <!-- Transport-level client information (inbound only) -->
 <element name="transportClient" type="mc:SubjectType" minOccurs="0"/>

 <!-- Message-level client information (inbound only) -->
 <element name="messageLevelClient" type="mc:SubjectType"
minOccurs="0"/>

 <!-- Boolean flag used to disable outbound WSS processing (outbound
only) -->
 <element name="doOutboundWss" type="boolean" minOccurs="0"/>
 </all>
 </complexType>

<complexType name="SubjectType">
<sequence>
<!-- User name associated with this tranport- or message-level subject -->
<element name="username" type="string"/>
<element name="principals" minOccurs="0">
<complexType>
<sequence>
<!-- There is an element for each group this subject belongs to, as

determined by the authentication providers -->
<element name="group" type="string"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>

<!-- === -->

 <complexType name="FaultType">
 <all>
 <!-- A short string identifying the error (e.g. BEA38229) -->
 <element name="errorCode" type="string"/>

 <!-- Descriptive text explaining the reason for the error -->
 <element name="reason" type="string" minOccurs="0" />

 <!-- Any additional details about the error -->

Message Contex t Schema

AquaLogic Service Bus User Guide 5-33

 <element name="details" type="anyType" minOccurs="0" />

 <!-- Information about where the error occured in the proxy -->
 <element name="location" type="mc:LocationType" minOccurs="0" />
 </all>
 </complexType>

 <complexType name="LocationType">
 <all>
 <!-- Name of the Pipeline/Branch/Route node where error occured -->
 <element name="node" type="string" minOccurs="0" />

 <!-- Name of the Pipeline where error occured (if applicable) -->
 <element name="pipeline" type="string" minOccurs="0" />

 <!-- Name of the Stage where error occured (if applicable) -->
 <element name="stage" type="string" minOccurs="0" />

 <!-- Indicates if error occured from inside an error handler -->
 <element name="error-handler" type="boolean" minOccurs="0" />
 </all>
 </complexType>

<!-- Encapsulates any stack-traces that may be added to a fault <details> -->
 <element name="stack-trace" type="string"/>
</schema>

Related Topics
“Inbound and Outbound Variables” on page 5-10

“Performing Operations on Context Variables” on page 5-24

“Constructing Messages to Dispatch” on page 5-26

Message Contex t

5-34 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 6-1

C H A P T E R 6

Using the Test Console

The ALSB Test Console is a browser-based test environment you use validate and test the design
of your system. It is an extension of the ALSB Console. (The Test Console is not available in the
ALSB Plug-in for WorkSpace Studio) You configure the object of your test (proxy service,
business service, XQuery, XSLT, or MFL resource), execute the test, and view the results in the
test console. In some cases, you can trace through the code and examine the state of the message
at specific trace points. Design time testing helps isolate design problems before you deploy a
configuration to a production environment.

The test console can test specific parts of your system in isolation and it can test your system as
a unit. You can do testing in clustered environments. However, in a clustered domain, you cannot
use the test console to test any configured business service or proxy service which routes to a
business service.

You can access the test console from:

The Project Explorer

The Resource Browser

The XQuery Editor

For detailed procedural information, see Test Console in Using the AquaLogic Service Bus
Console.

Features
The test console supports the following features:

http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html

Using the Tes t Conso le

6-2 AquaLogic Service Bus User Guide

Testing proxy services

Testing business services

Testing resources

Testing XQueries

Tracing messages through the message flow (for proxy services only)

Prerequisites
To use the test console:

You must have ALSB running and you must have activated the session that contains the
resource you want to test.

You must disable the pop-up blockers in your browser for the XQuery testing to work.
Note that if you have toolbars in the Internet Explorer browser, this may mean disabling
pop-up blockers from under the Options menu as well as for all toolbars that are
configured to block them. XQuery testing is done only in the design time environment (in
an active session).

If you want the test console to generate and send SAML tokens to a proxy service, you
must configure the proxy service to require SAML tokens and to be a relying party. For
more information on creating a SAML relying party, see Create a SAML Relying Party in
WebLogic Server Administration Console Online Help.

Note: When creating a SAML relying party:

Only WSS/Sender-Vouches and WSS/Holder-of-Key SAML profiles are applicable
to a proxy service.

When you are configuring the relying party, for the target URL value provide the
URI of the proxy service. You can view the URI of the proxy service by clicking
on the proxy service name in the ALSB Console Project Explorer module. The
URI displays in the Endpoint URI row of the Transport Configuration table.

Testing Proxy Services
You can test the following types of proxy services:

WSDL Web Service

Messaging Service

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/security/CreateRelyingParty.html

Tes t ing P roxy Se rv ices

AquaLogic Service Bus User Guide 6-3

Any Soap Service

Any XML Service

Direct Calls
WARNING: Testing proxy services with the direct call option enabled bypasses some

important security steps, including access control. BEA Systems recommends
that you not use the test service in production systems.

A direct call is used to test a proxy service that is collocated in the ALSB domain. Using the direct
call option, messages are sent directly to the proxy service, bypassing the transport layer. When
you employ the direct call option, tracing is turned on by default, allowing you to diagnose and
troubleshoot a message flow in the test console. By default, testing of proxy services is done using
the direct call option.

When you use the direct call option to test a proxy service, the configuration data you input to the
test console must be that which is expected by the proxy service from the client that invokes it.
In other words, the test console plays the role of the client invoking the proxy service. Also, when
you do direct call testing, you bypass the monitoring framework for the message.

Figure 6-1 illustrates a direct call. Note that the message bypasses the transport layer; it is
delivered directly to the proxy service (P1).

Figure 6-1 Direct Call to Test a Proxy Service

A direct call strategy is best suited for testing the internal message flow logic of proxy services.
Your test data should simulate the expected message state at the time it is dispatched. Use this
test approach in conjunction with setting custom (inbound) transport headers in the test console
Transport panel to accurately simulate the service call.

Using the Tes t Conso le

6-4 AquaLogic Service Bus User Guide

Indirect Calls
When you test a proxy service with an indirect call (that is, when the direct call option is not
selected), the message is sent to the proxy service through the transport layer. The transport layer
performs manipulation of message headers or metadata as part of the test. The effect is to invoke
a proxy service to proxy service run-time path.

Figure 6-2 illustrates an indirect call. Note that the message is first processed through the
transport layer and is subsequently delivered to the proxy service (P1).

Figure 6-2 Indirect Call to Test a Proxy Service

BEA recommends this testing strategy when testing a proxy service to proxy service interface
when both services run in the same JVM. Use this test approach in conjunction with setting
custom (outbound) transport headers in the test console Transport panel to accurately simulate
the service call. For more information on transport settings, see “Test Console Transport
Settings” on page 6-20.

Using an indirect call, the configuration data you input to the test is the data being sent from a
proxy service, for example, from a route node or a service callout action of another proxy service.
In the indirect call scenario, the test console plays the role of the proxy service that routes to, or
makes a callout to, another service.

Note: Using an indirect call to a request/response MQ proxy service will not work.

In addition, the test console does not display the response from an indirect call to an MQ
or JMS request/response proxy service using a correlation based on a messageID. When
you test an MQ or JMS request/response proxy service with an indirect call, the response
is retained in the response queue, and not displayed in the test console.

For more information, see the Native MQ Transport User Guide.

http://e-docs.bea.com/alsb/docs30/mqtransport/index.html

Tes t ing Bus iness Serv ices

AquaLogic Service Bus User Guide 6-5

HTTP Requests
When you test proxy services, the test console never sends a HTTP request over the network,
therefore, transport-level access control is not applied. Transport-level access control is achieved
through the Web application layer—therefore, even in the case that an indirect call is made
through the ALSB Console transport layer, an HTTP request is not sent over the network and
transport-level access control is not applied. For information about message processing in the
transport layer, see Architecture Overview in AquaLogic Service Bus Concepts and Architecture.

For information about transport settings, see Understanding How the Run Time Uses the
Transport Settings in the Test Console in Using the AquaLogic Service Bus Console.

Testing Business Services
You can test the following types of business services:

WSDL Web Service

Transport Typed Service

Messaging Service

Any Soap Service

Any XML Service

When testing business services, the messages are always routed through the transport layer. The
direct call option is not available. The configuration data that you provide to the test console to
test the service is that which represents the state of the message that is expected to be sent to that
business service—for example, from a route node or a service callout action of a proxy service.
The test console functions in the role of the caller proxy service when you use it to test a business
service.

Tip: Ensure that the user name and password that you specify in the test console exists in the
local ALSB domain even if the business service being tested is in a remote domain. The
test service performs a local authentication before invoking any proxy or business
service.

http://e-docs.bea.com/alsb/docs30/concepts/architecture_overview.html
http://e-docs.bea.com/alsb/docs30/concepts/architecture_overview.html
http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html
http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html

Using the Tes t Conso le

6-6 AquaLogic Service Bus User Guide

Recommended Approaches to Testing Proxy and
Business Services

In the scenario depicted in Figure 6-3, a client invokes the proxy service (P1). The message flow
invokes business service B1, then proxy service P2, then proxy service P3 before returning a
message to the client. Interfaces are identified by number.

Figure 6-3 Test Scenario Example

There are many valid test strategies for this scenario. BEA recommends the following:

Complete the testing of interfaces other than the client interface to a given proxy service
before you test the client call. In the sample scenario illustrated in Figure 6-3, this means
that you complete the testing of interfaces 1 through 4 first, then test interface 5. In this
way, the message flow logic for the proxy service (P1) can be iteratively changed and
tested (via interface 5) knowing that the other interfaces to the proxy service function
correctly.

Validate and test all the XQuery expressions in a message flow prior to a system test. In
Figure 6-3, interface 1 refers to XQuery expression tests.

Test proxy service to business service (interface 2 in Figure 6-3) using a indirect call. In
other words, route the messages through the transport layer.

Trac ing P roxy Se rv ices Us ing the Tes t Conso le

AquaLogic Service Bus User Guide 6-7

Test proxy service to proxy service (interfaces 3 and 4 in Figure 6-3) using an indirect call.
In other words, disable the direct call option, which means that during testing, the
messages are routed through the transport layer.

Make your final system test simulate the client invoking the proxy service P1. This test is
represented by interface 5 in Figure 6-3. Test interface 5 with a direct call. In this way,
during the testing, the messages bypass the transport layer. By default, tracing is enabled
with a direct call.

Save the message state after executing successful interface tests to facilitate future
troubleshooting efforts on the system. Testing interface 5 is in fact a test of the complete
system. Knowing that all other interfaces in the system work correctly helps narrow the
troubleshooting effort when system errors arise.

Tracing Proxy Services Using the Test Console
Tracing the message through a proxy service involves examining the message context and
outbound communications at various points in the message flow. The points at which the
messages are examined are predefined by ALSB. ALSB defines tracing for stages, error handlers,
and route nodes.

For each stage, the trace includes the changes that occur to the message context and all the
services invoked during the stage execution. The following information is provided by the trace:

 (New variables)—The names of all new variables and their values. View values by
clicking on the + sign.

 (Deleted variables)—The names of all deleted variables.

 (Changed variables)—The names of all variables for which the value changed.
View the new value by clicking on the + sign.

Publish—Every publish call is listed. For each publish call, the trace includes the name of
the service invoked, and the value of the outbound, header, body, and attachment
variables.

Service callout—Every service callout is listed. For each service callout, the trace includes
the name of the service that is invoked, the value of the outbound variable, the value of
the header, body, and attachment variables for both the request and response messages.

The trace contains similar information for route nodes as for stages. In the case of route nodes,
the trace contains the following categories of information:

Using the Tes t Conso le

6-8 AquaLogic Service Bus User Guide

The trace for service invocations on the request path

The trace for the routed service

The trace for the service invocations on the response path

Changes made to the message context between the entry point of the route node (on the
request path) and the exit point (on the response path)

Example: Testing and Tracing a Proxy Service
The following example scenario uses one of the proxy services in the ALSB Examples domain
as a basis of instruction, the loanGateway3 proxy service associated with the Validating a Loan
Application example. For more information on how to start the Examples domain and run the
examples, see BEA AquaLogic Service Bus Samples.

The message flow for loanGateway3 is represented in Figure 6-4. The figure is annotated with
the configuration for the validate loan application stage and route node.

Figure 6-4 Message Flow for Proxy Service (LoanGateway3)

To test this proxy service in the ALSB Examples domain using the test console, complete the
following procedure:

1. Start the ALSB Examples domain and load the samples data, as described in BEA AquaLogic
Service Bus Samples.

http://e-docs.bea.com/alsb/docs30/examples.html
http://e-docs.bea.com/alsb/docs30/examples/samples.html
http://e-docs.bea.com/alsb/docs30/examples/samples.html

Trac ing P roxy Se rv ices Us ing the Tes t Conso le

AquaLogic Service Bus User Guide 6-9

2. Log in to the ALSB Console, then select Resource Browser and locate the LoanGateway3
proxy service.

3. Click the Launch Test Console icon for the LoanGateway3 proxy service. The Proxy
Service Testing - LoanGateway3 page is displayed. Note that the Direct Call and the
Include Tracing options are selected.

4. Edit the test XML provided to send the following test message, illustrated in Listing 6-1.

Listing 6-1 Test Message for LoanGateway3

<loanRequest xmlns:java=”java:normal.client”>
<java:Name>Name_4</java:Name>
<java:SSN>SSN_11</java:SSN>
<java:Rate>4.9</java:Rate>
<java:Amount>2500</java:Amount>
<java:NumOfYear>20.5</java:NumOfYear>
<java:Notes>Name_4</java:Notes>

</loanRequest>

5. Click Execute.

Scroll to the bottom of the results page to view the tracing results in the Invocation Trace
panel, shown in Figure 6-5.

Using the Tes t Conso le

6-10 AquaLogic Service Bus User Guide

Figure 6-5 Invocation Trace for LoanGateway3 Proxy Service

Compare the output in the trace with the nodes in the message flow shown in Figure 6-4.

The trace indicates the following:

Initial Message Context—Shows the variables initialized by the proxy service when it is
invoked. To see the value of any variable, click on the + sign associated with the variable
name.

Test ing Resources

AquaLogic Service Bus User Guide 6-11

Changed Variables—$header $body and $inbound changed as a result of the processing
of the message through the validate loan application stage. These changes are seen at
the end of the message flow.

The contents of the fault context variable ($fault) is shown as a result of the stage error
handler handling the validation error. The non-integer value (20.5) you entered for the
<java:NumOfYear> element in Listing 6-1 caused the validation error in this case.

You can test the proxy service using different input parameters or by changing the message flow
in the ALSB Console. Then run the test again and view the results.

For more information about this loan application scenario, see Tutorial 3: Validating a Loan
Application in AquaLogic Service Bus Tutorials.

Testing Resources
You can test the following resources:

“MFL” on page 6-11

“XSLT” on page 6-13

“XQuery” on page 6-13

MFL
A Message Format Language (MFL) document is a specialized XML document used to describe
the layout of binary data. MFL resources support the following transformations:

XML to binary—There is one required input (XML) and one output (binary).

binary to XML—There is one required input (binary) and one output (XML).

Each transformation accepts only one input and provides a single output.

Example
The following example illustrates testing an MFL transformation. The test console generates a
sample XML document from the MFL file. Execute the test using the XML input. A successful
test results in the transformation of the message content of the input XML document to binary
format.

Listing 6-2 shows an example MFL file.

http://e-docs.bea.com/alsb/docs30/tutorial/tutErrorHandling.html
http://e-docs.bea.com/alsb/docs30/tutorial/tutErrorHandling.html

Using the Tes t Conso le

6-12 AquaLogic Service Bus User Guide

Listing 6-2 Contents of an MFL File

<?xml version='1.0' encoding='windows-1252'?>
<!DOCTYPE MessageFormat SYSTEM 'mfl.dtd'>

<MessageFormat name='StockPrices' version='2.01'>
<StructFormat name='PriceQuote' repeat='*'>
<FieldFormat name='StockSymbol' type='String' delim=':'

codepage='windows-1252'/>
<FieldFormat name='StockPrice' type='String'

delim='|'codepage='windows-1252'/>
</StructFormat>
</MessageFormat>

The XML document generated by the test console to test the MFL file in the Listing 6-2 is shown
in Listing 6-3.

Listing 6-3 Test Console XML Input

<StockPrices>
<PriceQuote>

<StockSymbol>StockSymbol_31</StockSymbol>
<StockPrice>StockPrice_17</StockPrice>

</PriceQuote>
</StockPrices>

In the test console, click Execute to run the test. Listing 6-4 shows the resulting test data, the
stock symbol and stock price in binary format.

Listing 6-4 MFL Test Console Results

00000000:53 74 6F 63 6B 53 79 6D 62 6F 6C 5F 33 31 3A 53 StockSymbol_31:S
00000010:74 6F 63 6B 50 72 69 63 65 5F 31 37 7C StockPrice_17|...

Test ing Resources

AquaLogic Service Bus User Guide 6-13

XSLT
Extensible Stylesheet Language Transformation (XSLT) describes XML-to-XML mappings in
ALSB. You can use XSL transformations when you edit XQuery expressions in the message flow
of proxy services.

To test an XSLT resource, you must supply an input XML document. The test console returns the
output XML document. You can create parameters in your document to assist with a
transformation. XSLT parameters accept either primitive values or XML document values. You
cannot identify the types of parameters from the XSL transformation. In the Input and
Parameters panel of the XSLT Resource Testing page in the test console, you must provide the
values to bind to the XSLT parameters defined in your document.

For more information, see Testing XSLT Transformations in Using the AquaLogic Service Bus
Console.

XQuery
XQuery uses the structure of XML to express queries across different kinds of data, whether
physically stored in XML or viewed as XML.

An XQuery transformation can take multiple inputs and returns one output. The inputs expected
by an XQuery transformation are variable values to bind to each of the XQuery external variables
defined. The value of an XQuery input variable can be a primitive value (String, integer, date),
an XML document, or a sequence of the previous types. The output value can be a primitive value
(String, integer, date), an XML document, or a sequence of the previous types.

XQuery is a typed language—every external variable is given a type. The types can be
categorized into the following groups:

Simple/primitive type—String, int, float, and so on.

XML nodes

Untyped

In the test console, a single-line edit box is displayed if the expected type is a simple type. A
multiple-line edit box is displayed if the expected data is XML. A combination input is used when
the variable is not typed. The test console provides the following field in which you can declare
the variable type: [] as XML. Input in the test console is rendered based on the type to make it
easier to understand the type of data you must enter.

http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html

Using the Tes t Conso le

6-14 AquaLogic Service Bus User Guide

Figure 6-6 shows an XQuery with three variables: int, XML, and undefined type.

Figure 6-6 Input to the XQuery Test

In the test console, all three variables are listed in the Variables panel. By default, XML is
selected for the untyped variable as it is the most typical case. You must configure these variables
in the Variables panel. See Testing XQuery Transformations in Using the AquaLogic Service
Bus Console.

You can also test an XQuery expression from the XQuery Editor.

http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html

Pe r fo rming XQue ry Tes t ing

AquaLogic Service Bus User Guide 6-15

Performing XQuery Testing
You must disable the pop-up blockers in your browser for the XQuery testing to work. Note that
if you have toolbars in the Internet Explorer browser, you may need to disable pop-up blockers
from under the browser Options menu as well as for all toolbars that are configured to block
them.

When performing XQuery testing in the test console, use the Back button to execute a new test.
However, if you want to execute a new test after making changes to the XQuery, you must close
and re-open the test console for the changes to take effect. For detailed information, see
Performing XQuery Testing in Using the AquaLogic Service Bus Console.

Testing Services With Web Service Security
The test console supports testing proxy services and business services protected with Web
Service Security (WSS). A SOAP service is protected with WSS if it has WS-Policies with
WS-Security assertions assigned to it. Specifically, a service operation is protected with
WS-Security if its effective request or response WS-Policy includes WS-Security assertions.
WS-Policies are assigned to a service by WS-PolicyAttachment. See “Attaching WS-Policy
Statements to WSDL Documents” in Using Web Services Policy to Specify Inbound
Message-Level Security in the AquaLogic Service Bus Security Guide. Note that an operation
may have both a request policy and a response policy.

When an operation has a request or response WS-Policy, the message exchange between the test
console and the service is protected by the mechanisms of WS-Security. According to the
operation’s policy, the test service digitally signs or encrypts the message (more precisely, parts
of the message) and includes any applicable security tokens. You specify the input to the digital
signature and encryption operations is the clear-text SOAP envelope specified as described in
“Configuring Proxy Service Test Data” and “Configuring Business Service Test Data” in Test
Console in the Using the AquaLogic Service Bus Console.

Similarly, the service processes the response according to the operation’s response policy. The
response may be encrypted or digitally signed. The test service then processes this response and
decrypts the message or verifies the digital signature.

The test console (Security panel) displays fields used for testing services with WS-Security:
Service Provider, Username, and Password.

http://e-docs.bea.com/alsb/docs30/security/ws_policy.html
http://e-docs.bea.com/alsb/docs30/security/ws_policy.html
http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html
http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html
http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html

Using the Tes t Conso le

6-16 AquaLogic Service Bus User Guide

Figure 6-7 Security Panel in Test Console

If you specify a service key provider in the test console, all client-side PKI key-pair credentials
required by WS-Security are retrieved from the service key provider. You use the user name and
password fields when an operation’s request policy specifies an Identity assertion and user name
Token is one of the supported token types. For more information, see Web Service Policy.

The Service Provider, Username, and Password fields are displayed whenever the operation
has a request or response policy. Whether the values are required depends on the actual request
and response policies.

Table 6-1 and Table 6-2 describe security scenarios.

Table 6-1 Digital Signature and Encryption Scenarios

Scenario Is Service Key Provider Required?

The request policy has a Confidentiality assertion. No. The test service encrypts the request with the
service’s public key. When testing a proxy service, the test
service automatically retrieves the public key from the
encryption certificate assigned to the service key provider
of the proxy service.

When testing a business service, the encryption certificate
is embedded in the WSDL of the business service. The test
service automatically retrieves this WSDL from the
WSDL repository and extracts the encryption certificate
from the WSDL.

The response policy has a Confidentiality
assertion.

Yes. In this scenario, the operation policy requires the
client to send its certificate to the service. The service will
use the public key from this certificate to encrypt the
response to the client. A service key provider must be
specified and must have an associated encryption
credential.

If both request and response encryption are supported,
different credentials must be used.

http://e-docs.bea.com/alsb/docs30/security/ws_policy.html

Test ing Serv i ces Wi th Web Serv ice Secur i t y

AquaLogic Service Bus User Guide 6-17

The request policy has an Integrity assertion. Yes. The client must sign the request. A service key
provider must be specified and must have an associated
digital signature credential.

Furthermore, if this is a SAML holder-of-key integrity
assertion, a user name and password is needed in addition
to the service key provider.

The response policy has an Integrity assertion. No. In this case, the policy specifies that the service must
sign the response. The service signs the response with its
private key. The test console simply verifies this
signature.

When testing a proxy service, this is the private key
associated to the service key provider’s digital signature
credential for the proxy service.

When testing a business service, the service signing
key-pair is configured in a product-specific way on the
system hosting the service.

In the case that the current security realm is configured to
do a Certificate Lookup and Validation, then the
certificate that maps to the service key provider must be
registered and valid in the certificate lookup and
validation framework.

For more information on Certificate Lookup and
Validation, see ''Configuring the Credential Lookup and
Validation Framework” in Configuring WebLogic
Security Providers in Securing WebLogic Server.

Table 6-1 Digital Signature and Encryption Scenarios

Table 6-2 Identity Policy Scenarios (Assuming that the Policy has an Identity Assertion)

Supported Token
Types1

Description Comments

UNT The service only
accepts WSS user
name tokens

You must specify a user name and password in the Security panel.

X.509 The service only
accepts WSS
X.509 tokens

You must specify a service key provider in the Security panel and the
service key provider must have an associated WSS X.509 credential.

http://e-docs.bea.com/wls/docs100/secmanage/providers.html
http://e-docs.bea.com/wls/docs100/secmanage/providers.html

Using the Tes t Conso le

6-18 AquaLogic Service Bus User Guide

Limitations for Services and Policies
The following limitations exist for testing proxy services with SAML policies and business
services with SAML holder-of-key policies:

Testing proxy services with inbound SAML policies is not supported.

Testing business services with a SAML holder-of-key policy is a special case. The SAML
holder-of-key scenario can be configured in two ways:

– as an integrity policy (this is the recommended approach)

– as an identity policy

SAML The service only
accepts WSS
SAML tokens

You must specify a user name and password in the Security panel or
a user name and password in the Transport panel. If both are
specified, the one from the Security panel is used as the identity in
the SAML token.

UNT, X.509 The service
accepts UNT or
X.509 tokens

You must specify a user name and password in the Security panel or
a service key provider in the Security panel with an associated WSS
X.509 credential. If both are specified, only a UNT token is
generated.

UNT, SAML The service
accepts UNT or
SAML tokens

You must specify a user name and password in the Security panel or
a user name and password in the Transport panel. If both are
specified, only a UNT token is sent.

X.509, SAML The service
accepts X.509 or
SAML tokens

You must specify one of the following:
• user name and password in the Security panel
• user name and password in the Transport panel
• service key provider with an associated WSS X.509 credential

UNT, X.509,
SAML

The service
accepts UNT,
X.509 or SAML
tokens

You must specify one of the following:
• user name and password in the Security panel
• user name and password in the Transport panel
• service key provider with an associated WSS X.509 credential

1. From the Identity Assertion inside the request policy.

Table 6-2 Identity Policy Scenarios (Assuming that the Policy has an Identity Assertion)

Supported Token
Types1

Description Comments

Test ing Serv i ces Wi th Web Serv ice Secur i t y

AquaLogic Service Bus User Guide 6-19

In both cases, you must specify a user name and password—the SAML assertion will be
on behalf of this user. If SAML holder-of-key is configured as an integrity policy, you
must also specify a service key provider. The service key provider must have a digital
signature credential assigned to it. This case is special because this is the only case where a
user name and password must be specified even if there is not an identity policy.

Note: After executing a test in the test console, the envelope generated with WSS is not always
a valid envelope—the results page in the test console includes white spaces for improved
readability. That is, the secured SOAP message is displayed with extra white spaces.
Because white spaces can affect the semantics of the document, this SOAP message
cannot always be used as the literal data. For example, digital signatures are white-space
sensitive and can become invalid.

Using the Tes t Conso le

6-20 AquaLogic Service Bus User Guide

Test Console Transport Settings
You use the Transport panel in the test console to specify the metadata and transport headers for
messages in your test system.

Figure 6-8 shows the Transport panel for a WSDL-based proxy service.

Figure 6-8 Transport Panel in the Test Console

By setting the metadata and the transport headers in the message flow of a proxy service, you
influence the actions of the outbound transport. You can test the metadata, the message, and the
headers so that you can view the pipeline output. The fields that are displayed in the Transport
panel when testing a proxy service represent those headers and metadata that are available in the

About Secur i t y and T ranspo r ts

AquaLogic Service Bus User Guide 6-21

pipeline. The test console cannot filter the fields it displays depending on the proxy service. The
same set of transport parameters are displayed for every HTTP-based request.

The Username and Password fields are used to implement basic authentication for the user that
is running the proxy service. The Username and Password fields are not specifically transport
related.

Metadata fields are located below the Username and Password fields and above the transport
header fields. The fields displayed are based on the transport type of the service. Certain fields
are pre-populated depending on the operation selection algorithm you selected for the service
when you defined it.

For example, in the Transport panel displayed in Figure 6-8, the SOAPAction header field is
populated with “http://example.orgprocessLoanApp”. This value comes from the service
definition (the selection algorithm selected for this proxy service was SOAPAction Header). For
more information about the selection algorithms, see “Modeling Message Flow in ALSB” on
page 3-1.

Specify the values in the Transport panel fields according to whether the message will be
processed through the transport layer (for example, if you are testing the service using a direct
call), or not (an indirect call).

When testing a proxy service with a direct call, the test data must represent the message as if it
had been processed through the transport layer. That is, the test data should represent the message
in the state expected at the point it leaves the transport layer and enters the service. When testing
a proxy or business service using an indirect call, the test data represents the data that is sent from
a route node or a service callout. The test message is processed through the transport layer.

For information about specific headers and metadata and how they are handled by the test
framework, see Understanding How the Run Time Uses the Transport Settings in the Test
Console in Using the AquaLogic Service Bus Console.

About Security and Transports
When using the test console to test HTTP business services with BASIC authentication, the
test console authenticates the user name and password from the service account of the
business service. Similarly, when testing JMS, e-mail, or FTP business services that require
authentication, the test console authenticates the service account associated with the
business service.

When you test proxy services, the test console never sends a HTTP request over the
network. Therefore, transport-level access control is not applied.

http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html#testConsoleTransports
http://e-docs.bea.com/alsb/docs30/consolehelp/testing.html#testConsoleTransports

Using the Tes t Conso le

6-22 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 7-1

C H A P T E R 7

UDDI

This section contains the following topics:

UDDI, UDDI Registries, and Web Services

Sample Business Scenarios for ALSB and UDDI

Using ALSB and UDDI

Configuring a Registry

Publishing a Proxy Service to a UDDI Registry

Using Auto-Publish

Importing a Service from a Registry

Using Auto-Import

Auto-Synchronization of Services With UDDI

Mapping ALSB Proxy Services to UDDI Entities

Canonical tModels Supporting ALSB Services

Example

UDDI

7-2 AquaLogic Service Bus User Guide

UDDI, UDDI Registries, and Web Services
UDDI stands for Universal Description, Discovery, and Integration. The UDDI Project is an
industry initiative which aims to enable businesses to quickly, easily, and dynamically find and
carry out transactions with one another.

A populated UDDI registry contains cataloged information about businesses; the services that
they offer; and communication standards and interfaces they use to conduct transactions. A UDDI
registry provides a standards-based foundation infrastructure for locating services, invoking
services, and managing metadata about services (security, transport, or quality of service). The
UDDI registry can store and provide these metadata using arbitrary categorizations. These
categorizations are called taxonomies.

UDDI registries are used in an enterprise to share Web Services. Using UDDI registries helps
companies organize and catalog Web Services for sharing and reuse in an enterprise or with
trusted external partners. The UDDI version 3.0 specification is available at:
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3.
UDDI registries are based on this specification, which provides details on how to publish and
locate information about Web Services using UDDI. The specification does not define run-time
aspects of the services (it is only a directory of the services). UDDI provides a framework in
which to classify your business, its services, and the technical details about the services you want
to expose.

Publishing a service to a registry requires knowledge of the service type and the data structure
representing that service in the registry. A registry entry has certain properties associated with it
and these property types are defined when the registry is created. You can publish your service
to a registry and make it available for other organizations to discover and use. Proxy services
developed in ALSB can be published to a UDDI registry. ALSB can interact with any version
3.0-compliant UDDI registry. BEA provides the AquaLogic Service Registry.

Figure 7-1 illustrates the integration of ALSB with a UDDI registry.

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

UDDI , UDDI Reg is t r i es , and Web Serv ices

AquaLogic Service Bus User Guide 7-3

Figure 7-1 ALSB integration with UDDI

The ALSB Web-based interface to AquaLogic Service Registry makes the registry accessible and
easy to use. In working with UDDI, ALSB promotes the reuse of standards-based Web Services.
In this way, ALSB registry entries can be searched for, discovered, and used by multiple domains.
Web Services and UDDI are built on a set of standards, so reuse promotes the use of acceptable,
tested Web Services and application development standards across the enterprise. The Web
Services and interfaces can be catalogued by type, function, or classification so that they can be
discovered and managed more easily.

Basic Concepts of the UDDI Specification
UDDI is based upon several established industry standards, including HTTP, XML, XML
Schema Definition (XSD), SOAP, and WSDL. The UDDI specification describes a registry of
Web Services and its programmatic interfaces. UDDI itself is a set of Web Services. The UDDI
specification defines services that support the description and discovery of:

Businesses, organizations, and other Web Services providers

The Web Services they make available

The technical interfaces that can be used to access and manage those services

Benefits of Using a UDDI Registry with ALSB
A UDDI registry stores data and metadata about business services. A UDDI registry offers a
standards-based mechanism to classify, catalog, and manage Web Services so that they can be
discovered and consumed by other applications. UDDI offers several benefits to IT managers and
developers at both design time and run time, including the following:

UDDI

7-4 AquaLogic Service Bus User Guide

UDDI improves infrastructure management by publishing information about services to the
registry and categorizing the services for discovery. This ability of UDDI to categorize a
growing portfolio of services makes it easier to manage them and helps you to understand
relationships among components, supports versioning, and manages dependencies.

You can import UDDI services from a registry to configure the parameters required to
invoke the Web Service and the necessary transport and security protocols.

UDDI promotes the use of standards-based Web Services and business services
development in business applications and provides a link to a library of resources for Web
Services developers. This decreases development time and improves productivity. It also
increases the prospect of interoperability between business applications by sharing
standards-based resources.

UDDI provides a user-friendly interface for searching and discovering Web Services.

Introduction to UDDI Entities
UDDI uses a specific data model to represent entities that define organizations and services.
Figure 7-2 shows the relationships between different UDDI entities.

Figure 7-2 UDDI Entities Representing Organizations and Services

Table 7-1 provides a high-level overview of UDDI entities.

Sample Bus iness Scenar ios fo r ALSB and UDDI

AquaLogic Service Bus User Guide 7-5

For more information on the UDDI data model and entities used in UDDI, see Introduction to
BEA AquaLogic Service Registry in BEA AquaLogic Service Registry 3.0 User’s Guide. See also
Publishing and Finding Web Services Using UDDI in WebLogic Web Services: Advanced
Programming.

Sample Business Scenarios for ALSB and UDDI
The following are two sample business scenarios that highlight the benefit of using UDDI.

Basic Proxy Service Communication with a UDDI Registry
This scenario shows how you can use ALSB to import services from a registry and then publish
ALSB proxy services back to the registry. See Figure 7-3.

Table 7-1 High-Level Description of UDDI Entities

Business Entity An organization or group of people who own and provide the services. A
business entity can be described by a set of names, descriptions, contact details
for the service provider, a set of categories that represent the business entity
features, unique identifiers, and discovery URLs.

Business Service Represents functionality or resources provided by a business entity. A business
service is described by a name, a description, and a set of categories that represent
the function of the service. A business service in a UDDI registry does not
necessarily represent a Web Service. The UDDI registry can register arbitrary
services, for example EJB, CORBA, and such.

Binding Template Represents the technical details of how to invoke a business service. A business
service can contain one or more binding templates. Binding templates are
described by access points representing service endpoints (the endpoint URI and
protocol specification), tModel instance information, and categories to reference
specific features of the binding template.

tModel Represents a technical specification; typically a specifications pointer, or
metadata about a specification document, describing how services must be
represented in the UDDI registry. The description of a service includes a name,
a description, an overview document (a reference to a document specifying the
purpose of the tModel), a category, and an identifier (to uniquely identify the
tModel).

http://edocs.bea.com/alsr/docs30/index.html
http://edocs.bea.com/alsr/docs30/index.html
http://e-docs.bea.com/wls/docs100/webserv_adv/uddi.html

UDDI

7-6 AquaLogic Service Bus User Guide

Figure 7-3 Proxy Service Communication with a UDDI Registry

ALSB imports business services from a UDDI registry. Proxy services are configured to
communicate with the business services in the proxy service message flow. The proxy services
can then be published back to the registry and made available for use by other domains.

Cross-Domain Deployment in ALSB
This scenario shows cross-domain deployment using ALSB. In this scenario, an ALSB
application in one domain requires access to an ALSB service in another domain at run time. See
Figure 7-4.

Figure 7-4 Sample Business Case of Cross-Domain Deployment

An instance of ALSB is deployed in each of two domains. The ALSB proxy service (P1) is
configured in domain (D1). The ALSB proxy service (P2) in domain (D2) requires access to
proxy service (P1). As the domains cannot communicate directly with each other, P2 in D2
cannot use P1 in D1. The ALSB import and export feature does not support run-time discovery

Us ing ALSB and UDDI

AquaLogic Service Bus User Guide 7-7

of services in different domains, but publishing the service to a UDDI registry allows the
discovery and use of a service in any domain. Once P1 is made available in the UDDI registry it
can be invoked at run time (for example, get a stock quote) and imported as a business service in
another ALSB proxy service.

When importing and exporting from different domains you should have network connectivity. A
proxy service might reference schemas located in the repository of a different domain, in which
case you need HTTP access to the domain to import it using the URL. In the absence of
connectivity an error message is returned.

Using ALSB and UDDI
ALSB works with any UDDI registry that is compliant with the version 3.0 implementation of
UDDI. AquaLogic Service Registry 2.1 is a V3.0-compliant UDDI registry and is certified to
work with ALSB.

Using the ALSB Console or ALSB Plug-in for WorkSpace Studio, you can:

Configure ALSB to work with one or more V3.0-compliant UDDI registries.

Configure a registry to allow users to publish services and import services.

Publish information about any proxy service to a registry, including the following service
types: WSDL, messaging, any SOAP, and any XML.

Search for specific services in a registry or list all services available. You can search on
business entity, service name pattern, or both.

Import business services from a registry.

For detailed procedural information, see the following topics in Using the AquaLogic Service Bus
Console:

Configuring UDDI Registries

Importing a Business Service from UDDI Registry

Publishing a Proxy Service to a UDDI Registry

A UDDI Workflow
The typical workflow for using a UDDI registry with ALSB is as follows:

Install ALSB. See AquaLogic Service Bus Installation Guide.

http://e-docs.bea.com/alsb/docs30/install/index.html
http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#config_registries
http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#import_services
http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#publish_services

UDDI

7-8 AquaLogic Service Bus User Guide

Install AquaLogic Service Registry or any V3.0-compliant UDDI registry. For information
on installing BEA AquaLogic Service registry 3.0, see AquaLogic Service Registry
Installation Guide.

Note: AquaLogic Service Registry is not provided with ALSB. In order to use AquaLogic
Service Registry you have to buy a separate licence from BEA. For more information
on the management of AquaLogic Service Registry, particularly configuring the
registry and managing permissions, approval, and replication, see BEA AquaLogic
Service Registry Administrator’s Guide.

Configure the registry in the ALSB Console or the ALSB Plug-in for WorkSpace Studio.
See

– Configuring UDDI Registries in Using the AquaLogic Service Bus Console.

– Configuring UDDI Registries in Using the AquaLogic Service Bus Plug-in for
WorkSpace Studio.

Set a default registry in the ALSB Console. See Setting Up a Default UDDI Registry in
Using the AquaLogic Service Bus Console.

Configuring a Registry
You can configure a UDDI registry, make it available in ALSB, and then publish ALSB proxy
services to it or import business services from the registry to be used in a proxy service. You must
be in an active session in the ALSB Console to configure the registry. For detailed information,
see:

Configuring UDDI Registries in Using the AquaLogic Service Bus Console

Configuring UDDI Registries in Using the AquaLogic Service Bus Plug-in for WorkSpace
Studio.

When publishing services to AquaLogic Service Registry, you need a valid user name and
password for authentication to gain access to the registry. The user name and password
combination is implemented as a service account resource in ALSB. You must define service
accounts before configuring proxy services. See Specifying Service Accounts in Using the
AquaLogic Service Bus Console.

You can set up registries with multiple user names and passwords allowing different users to have
different permissions based on the associated service accounts. In BEA AquaLogic Service
Registry, administrators manage user privileges and create views into the registry, specific to the

http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#config_registries
http://edocs.bea.com/alsr/docs30/install/index.html
http://edocs.bea.com/alsr/docs30/install/index.html
http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#default_registry
http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#config_registries
http://edocs.bea.com/alsr/docs30/registry/index.html
http://edocs.bea.com/alsr/docs30/registry/index.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html#specify_service_acct
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#taskConfiguringUDDIRegistries
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#taskConfiguringUDDIRegistries

Publ ish ing a P roxy Se rv ice to a UDDI Reg is t r y

AquaLogic Service Bus User Guide 7-9

needs of different users. In ALSB, user permissions govern access to the registries, their content,
and available functionality.

Publishing a Proxy Service to a UDDI Registry
You can use the ALSB Console or the ALSB Plug-in for WorkSpace Studio to publish proxy
services to the AquaLogic Service Registry. To do this you must have a user account set up in
AquaLogic Service Registry. You can publish any proxy service to a UDDI registry. The
permitted service types and transports are listed in Table 7-2.

You can select the Business Entity under which a service is to be published. Business Entity
Administration (including creation, removal, update, and deletion of entities) is done using the
management console provided by the registry vendor (for example, the Business Service Console
of AquaLogic Service Registry). The first time you publish to a registry you must load the
tModels to that registry. You do this when you configure the publishing details in the ALSB
Console or ALSB Plug-in for WorkSpace Studio. For more information on how to publish to a
UDDI registry, see Publishing Proxy Services to a UDDI Registry in Using the AquaLogic
Service Bus Console.

Note: An error can occur when you attempt to import a service from a UDDI registry if that
service was originally published to the registry from an ALSB cluster in which any of the
clustered servers uses the localhost address. Specifically, when the service being
imported references a resource (WSDL or XSD) which references other resources
(WSDL or XSD).

Table 7-2 Service Types and Transports for Proxy Services

Service Type Transports

WSDL HTTP, JMS, Local, SB, WS

Any SOAP HTTP, JMS, Local, SB

Any XML E-mail, File, FTP, HTTP, JMS, Local, MQ, SB, SFTP, Tuxedo

Messaging E-mail, File, FTP, HTTP, JMS, Local, MQ, SFTP, Tuxedo

Note: Messaging services can have different content for requests and responses, or can have no response
at all (one-way messages). E-mail, File, SFTP, and FTP should be one-way.

http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#publish_services

UDDI

7-10 AquaLogic Service Bus User Guide

Ensure that before you publish services to a UDDI registry from a clustered domain, none
of the servers in the cluster use localhost in the server addresses. Instead, use either the
machine name or the IP address.

Publishing Local Proxy Services to UDDI
You can now publish local proxy services to UDDI so you can associate them with ALSB generic
proxy services. For example, you might have an any SOAP or any XML generic proxy service
that dynamically routes to multiple local transport proxy services with concrete WSDLs.
Alternatively, you might have a generic proxy service in Enterprise Service Bus (ESB) 1 that
dynamically routes to a generic proxy service in ESB 2 where the business service is attached.
From the UDDI registry, you can get the WSDL of the local proxy service and the URL of the
any SOAP or any XML generic proxy service. Combining the WSDL and URL creates an
effective WSDL for sending messages to the local proxy service through the generic proxy
service.

Using Auto-Publish
When you create a proxy service you can configure it to be published automatically to a default
UDDI registry. You must first set up a default registry. See Setting Up a Default UDDI Registry
in Using the AquaLogic Service Bus Console.

To enable the auto-publish feature for individual proxy services, you select the Publish To
Registry check box on the Create a Proxy Service-General Configuration page. When you
enable the Publish To Registry option, the proxy service is published to the default registry upon
session activation. If the UDDI registry is unavailable, the publish action is retried. Any further
changes to the proxy service resets the retry attempts. When a proxy service is republished to a
UDDI registry, all taxonomies and categorizations, which are defined in UDDI for the proxy
service, are preserved.

When you change the default registry, all the proxy services that have auto-publish enabled will
be published to the new default registry. Synchronization then takes place with the current default

registry. When a proxy service is not synchronized, the ALSB Console displays a
unsynchronized icon.

Note: When you have a default registry and you import a sbconfig.jar, which has a default
registry set with the same logical name during the import, it is possible that the default
registry will have an incorrect value for the business entity. You might now see errors on

http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#default_registry

Impor t ing a Serv ice f rom a Reg is t r y

AquaLogic Service Bus User Guide 7-11

the Auto Publish Status page, if there are any auto-published proxy services. You can
correct this situation by selecting the default registry again.

Importing a Service from a Registry
You can import services from a registry as ALSB business services. When importing a
WSDL-based service, if multiple UDDI binding templates are encountered, ALSB creates a
different business service for each binding template.

To establish access to UDDI registries in ALSB you must have ALSB IntegrationAdmin or
IntegrationDeployer privileges. See Role-Based Access in AquaLogic Service Bus Console in
the AquaLogic Service Bus Security Guide. The registry entries are located on the System
Administration > Import from UDDI page in the ALSB Console. When importing, you select
from the list of available registries. To discover a service in a registry you must query a specific
registry. Entries in registries are unique. The query is performed when you specify what registry
you want to use for importing a service.

You can import the following business services types from a UDDI registry into ALSB:

WSDL over HTTP binding. When multiple UDDI binding templates are present, a
business service is created for each binding template.

SOAP or XML binding over HTTP.

Services that are categorized as ALSB services. These are ALSB proxy services that are
published to a UDDI registry. This feature is primarily used in multi-domain ALSB
deployments where proxy services from one domain need to discover and route to proxy
services in another domain.

For information on how to use the ALSB Console to import services from a UDDI registry, see:

Importing Business Services from a UDDI Registry in Using the AquaLogic Service Bus
Console

Importing Business Services from a UDDI Registry in Using the AquaLogic Service Bus
Plug-in for WorkSpace Studio

When a service is updated, you must re-import the service from the registry to get the most recent
version, unless you have selected the Enable Auto Import option to auto-synchronize imported
services with the UDDI registry. Any service that is imported with this option selected will be
kept in synchrony with the UDDI registry. See “Auto-Synchronization of Services With UDDI”
on page 7-14. If there is any failure during auto-synchronization, it will be reported on the
Auto-Import Status page where you can update it manually.

http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#import_services
http://e-docs.bea.com/alsb/docs30/security/admin_security.html#role_based_access
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#taskImportingBusinessServicesFromAUDDIRegistry

UDDI

7-12 AquaLogic Service Bus User Guide

Services have documents associated with them and these documents can include a number of
other documents (schemas, policies, and so on). On import, the UDDI registry points to the
document location based on the inquiry URL of the service. When a document that includes or
references other resources is located, all of the referenced information and each included item is
added as a separate resource in ALSB.

Business Entity and pattern are the criteria used to search for a service in a registry. For example,
you can enter foo%, when searching for a service. Services published by ALSB have specific
tmodel keys identifying the services that you use when searching for the service in the registry.

The Business Entity is the highest level of organization in the registry, though you can use other
search criteria, such as business, application type, and so on. If you require authentication, then
you need a user name and password which you must get from your system administrator.

Related References
Technical Notes can be found at
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm. The note on
Using WSDL in a UDDI Registry is important.

UDDI product and development tool information is available at the OASIS UDDI
Solutions page at http://uddi.org/solutions.html.

The UDDI specifications
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

The specification defines the following:

– SOAP APIs that applications use to query and to publish information to a UDDI
registry

– XML schema of the registry data model and the SOAP message formats

– WSDL definitions of the SOAP APIs

– UDDI registry definitions (tModels) of various identifier and category systems that
may be used to identify and categorize UDDI registrations

Using Auto-Import
You can use the auto-import feature to synchronize the business services, which are imported
from the AquaLogic Service Registry, with the corresponding services in the registry. See Using
Auto-Import Status in Using the AquaLogic Service Bus Console.

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm
http://uddi.org/solutions.html
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#auto_import

Us ing Auto- Impor t

AquaLogic Service Bus User Guide 7-13

Note: Auto-import is available only in the ALSB Console, not in the ALSB Plug-in for
WorkSpace Studio.

You can use the Auto Import Status page to do the following:

“Synchronize” on page 7-13

“Detach” on page 7-14

Synchronize
You can synchronize the services you have imported from the registry. If the services in the
registry change, you can synchronize services in the ALSB Console with those in the registry.
The following use case illustrates the process of synchronization. If the business service is not
detached from the registry, ALSB automatically subscribes to any changes to the service in the

registry. If the service changes, a unsynchronized icon appears in the Resource Browser
and Project Explorer indicating that the service needs to be synchronized. In addition, the Auto
Import Status page shows this service and provides options for synchronizing the service or
detaching it from the registry. Under certain circumstances, synchronizing the service might
result in semantic validation errors that show up on the View Conflicts page. You will have to
fix these errors before activating the session.

When a service is synchronized, the service is updated only with fields that are obtained from
UDDI. Other fields in the service definition will preserve their values if modified since last
import.

Consider a scenario where you publish services from Domain1 to a registry (see Figure 7-5). You
then import these services from the registry into a domain, Domain2. Then you make changes to
the services in Domain1 and update them in the registry. You can update the services in Domain2
by synchronizing them with the registry using the auto-import feature.

UDDI

7-14 AquaLogic Service Bus User Guide

Figure 7-5 Sample Business Case of Cross-Domain Deployment

Detach
Sometimes you do not want the service in the ALSB Console to be synchronized with the
corresponding service in the registry. You can avoid synchronization by detaching the service
from the registry. See Detaching Services in Using the AquaLogic Service Bus Console.

Auto-Synchronization of Services With UDDI
You can keep the service definitions in ALSB automatically synchronized (both ways) with those
in UDDI.

Services can be automatically published to a UDDI registry after they are created or changed
within ALSB and business service definitions can be imported from UDDI and automatically
updated when the original service is changed in UDDI. Alternatively, you can configure the
ALSB Console or the ALSB Plug-in for WorkSpace Studio to prompt you for approval for
synchronization when a service changes in the UDDI registry.

When configuring a registry, select the Enable Auto Import option to auto-synchronize
imported services with the UDDI registry. Any service that is imported with this option enabled
will be kept in synchrony with the UDDI registry automatically. If there is any failure during
auto-synchronization, it is reported on the Auto-Import Status page where you can update it
manually. See Configuring UDDI Registries in Using the AquaLogic Service Bus Console.

http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#detaching
http://e-docs.bea.com/alsb/docs30/consolehelp/uddi.html#config_registries

Mapping ALSB Proxy Se rv ices to UDDI En t i t i es

AquaLogic Service Bus User Guide 7-15

Mapping ALSB Proxy Services to UDDI Entities
ALSB proxy service attributes must be mapped to the data model supported by the UDDI registry
to allow a proxy service to be published as a UDDI business entity. The following table shows
the service types, message types, and transports relevant to the UDDI registry mapping for an
ALSB proxy service.

Note: Optional parts are listed in parentheses. Messaging services can have different content
for requests and responses, or can have no response at all (one-way messages). E-mail,
File, SFTP, and FTP should be one-way.

Proxy services have attributes in common and also attributes that are specifically defined by the
transport protocols used by the service and the type of service. Each proxy service can deliver
messages of a certain type.

The primary relevant entities in UDDI are:

businessService: represents the service as a whole and contains high-level general
information about the service.

bindingTemplate: contains information for accessing the service.

tModels: supplies the individual attributes for categorizing and defining the service.

Figure 7-6 shows how WSDL-based services are mapped to UDDI business entities.

Table 7-3 Proxy Service Attributes and Service Types

Service Type Message Content Type Transports

WSDL SOAP or XML (with attachment) HTTP, JMS, Local, SB, WS

Any SOAP Untyped SOAP (with attachment) HTTP, JMS, Local, SB

Any XML Untyped XML (with attachment) E-mail, File, FTP, HTTP, JMS,
Local, MQ, SB, SFTP, Tuxedo

Messaging Binary, Text, MFL, XML (schema) E-mail, File, FTP, HTTP, JMS,
Local, MQ, SFTP, Tuxedo

UDDI

7-16 AquaLogic Service Bus User Guide

Figure 7-6 WSDL Service to UDDI Mapping

The technical note on Using WSDL in a UDDI registry, version 2.0.2, at
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm, is used as the basis
for publishing WSDL-based proxy services to the UDDI registry. This document is also used as
a reference point for publishing non-WSDL based services. The document and the base UDDI
specification describe the canonical technical models (tModels) used to describe UDDI entities.
To publish ALSB proxy services as entities in the UDDI registry, you must provide additional
canonical tModels to support some of the constructs specific to ALSB. Not all attributes of an
ALSB proxy service are useful when searching for a service, for example, service type and
transport details. These attributes do not categorize the service. tmodels are configuration details
of the service once it has been discovered. These configuration details are mapped to the business
service binding template tmodelinstanceDetails section. Other attributes specifically
identify a service and can be used as the search criteria for the service. These attributes are
mapped using keyed references to tModels with values in the categoryBag of the binding
template.

An example of how ALSB maps to UDDI is shown in Figure 7-7.

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm

Mapping ALSB Proxy Se rv ices to UDDI En t i t i es

AquaLogic Service Bus User Guide 7-17

Figure 7-7 ALSB to UDDI Mapping

UDDI Mapping Details for an ALSB Proxy Service
ALSB high-level proxy service information maps to the business service as follows:

Name and Description map to businessService elements.

There is a special keyedReferenceGroup for ALSB properties. An example of a key is
uddi:bea.com:attributes:aqualogicservicebus.

ALSB type (WSDL, SOAP, XML, and Mixed) and instance are mapped to
keyedReferences in the service category. An example of a key is
uddi:bea.com:servicetype.

An ALSB instance maps to a keyedReference in the ALSB keyedReferenceGroup
(Name = “AquaLogicServiceBus”, Values = URL of the ALSB instance).

This instance serves two purposes:

– To indicate that this service is in fact hosted by an ALSB server.

– To contain the URL of the ALSB instance.

Listing 7-1 shows a mapping of high-level proxy service information to a business service.

UDDI

7-18 AquaLogic Service Bus User Guide

Listing 7-1 Sample Proxy Service to Business Service Mapping

<keyedReferenceGroup tModelKey="uddi:bea.com:servicebus:properties">

 <keyedReference tModelKey="uddi:bea.com:servicebus:servicetype"

 keyName="Service Type"

 keyValue="SOAP"/>

 <keyedReference tModelKey="uddi:bea.com:servicebus:instance"

 keyName="Service Bus Instance"

 keyValue="http://FOO02.amer.bea.com:7001"/>

</keyedReferenceGroup>

Note: The key for the businessService created when a proxy service is published is a publisher
assigned key name. It is derived from the ALSB domain name, the path of the proxy
service, and the proxy service name. It takes the following form:

uddi:bea.com:servicebus:<domainname>:<path>:<servicename>.

For example, AnonESBan, which is a domain in ALSB, contains a project named Proxy,
which contains a folder named Accounting, which in turn contains a proxy service called
PayoutProxy. When PayoutProxy is published to UDDI, its businessService is created
with the following key:
uddi:bea.com:servicebus:AnonESB:Proxies:Accounting:PayoutProxy.

ALSB detailed proxy service information maps into the binding template as follows:

The Endpoint URI maps to the access point.

The Marker tModel for each transport maps to tModelInstanceDetails.

– Transport tModels for HTTP, JMS, File, FTP, E-mail. New tModels are packaged
with ALSB to support JMS and file transports.

– Detailed ALSB configuration information maps to instanceParms.

The Market tModel for each service type maps to the tModelInstanceDetails. This includes
the following:

– Protocol tModels for WSDL, any SOAP, any XML, and Messaging. New tModels are
packaged with ALSB to support anySOAP, anyXML, and Messaging.

Mapping ALSB Proxy Se rv ices to UDDI En t i t i es

AquaLogic Service Bus User Guide 7-19

– WSDL maps via WSDL to UDDI technology note.

– Messaging has detailed configuration information that maps to InstanceParms.

Listing 7-2 shows a detailed information mapping to the binding template.

Listing 7-2 Sample Detailed Mapping to the Binding Template

<bindingTemplate bindingKey="uddi:" serviceKey="uddi:">

 <accessPoint useType="endPoint">file:///c:/temp/in3</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo tModelKey="uddi:uddi.org:transport:file">

 <InstanceDetails>

 <InstanceParms><ALSBInstanceParms xmlns="http://www.bea.com/wli/sb/uddi">

 <property name="fileMask" value="*.*"/>

 <property name="sortByArrival" value="false"/> </ALSBInstanceParms>

 </InstanceParms>

 </InstanceDetails>

 </tModelInstanceInfo>

 <tModelInstanceInfo tModelKey="uddi:bea.com:servicebus:protocol:

 messagingservice">

 <InstanceDetails>

 <InstanceParms><ALSBInstanceParms xmlns="http://www.bea.com/wli/sb/uddi">

 <property name="requestType" value="XML"/>

 <property name="RequestSchema" value="http://domain.com:7001

 /sbresource?SCHEMA%2FDJS%2FOAGProcessPO"/>

 <property name="RequestSchemaElement"

 value="PROCESS_PO"/>

 <property name="responseType" value="None"/></ALSBInstanceParms>

 </InstanceParms>

UDDI

7-20 AquaLogic Service Bus User Guide

 </InstanceDetails>

 </tModelInstanceInfo>

</tModelInstanceDetails>

</bindingTemplate>

Transport Attributes
Each of the transport types in the uddi:uddi.org:transport: * group has a different set of
detailed metadata. See Table 7-3. This metadata provides the configuration details of the
transport for the proxy service. It is neither useful for characterizing the service nor useful in
querying the service. However, after the service has been discovered, this data is needed to access
the service. The metadata is represented by an XML string and is located in the instanceParms
field in tModelInstanceInfo.

If you are mapping a proxy service that uses the HTTP transport, and as part of the HTTP
configuration you need to describe some configuration details, including the required client
authorization and the request and response character encoding. Listing 7-3 provides an example
of what must appear in the bindingTemplate tModelInstanceDetails.

Listing 7-3 Example of tModelInstanceDetails

<tModelInstanceDetails>
<tModelInstanceInfo tModelKey="uddi:uddi.org:transport:http">
<instanceDetails>

<instanceParms>
<ALSBInstanceParms xmlns="http://www.bea.com/wli/sb/uddi">

<property name="client-auth" value="basic"/>
<property name="request-encoding" value="iso-8859-1"/>
<property name="response-encoding" value="utf-8"/>
<property name="Scheme" value="http"/>

</ALSBInstanceParms>
</instanceParms>

</instanceDetails>
</tModelInstanceInfo>

</tModelInstanceDetails>

Mapping ALSB Proxy Se rv ices to UDDI En t i t i es

AquaLogic Service Bus User Guide 7-21

Note: For each transport, the service endpoint is always stored in the bindingTemplate
accessPoint field.

The client-auth property is present in the instanceParms of the HTTP or HTTPS transport
attributes whenever authentication is configured. The possible values for client-auth are
basic, client-cert, and custom-token. Whenever the value is custom-token, two
additional properties are present: token-header and token-type.

Because ALSB business service definitions do not support custom token authentication in this
release, if you import a service from UDDI that has a value of custom-token for client-auth,
the service is imported as if it does not have any authentication configuration.

Table 7-4 is organized by transport type and lists the tModelKey and instanceParms used by
each of the transports.

Table 7-4 Transport Attributes

Transport tModelKey InstanceParms

E-mail1 uddi:uddi.org:transport:smtp • Attachment Supported [Boolean]
• Request Encoding

File uddi:uddi.org:transport:file • File Mask
• Sort by Arrival [Boolean]
• Request Encoding

FTP uddi:uddi.org:transport:ftp • File Mask
• Sort by Arrival [Boolean]
• Transfer Mode [Text, Binary]
• Request Encoding

HTTP uddi:uddi.org:transport:http • Client Authentication [None, Basic, Client
Cert (HTTP only), and Custom Token]

• Request Encoding
• Response Encoding

JMS uddi:uddi.org:transport:jms • Destination Type [Queue, Topic]
• Response Required, Response URI
• Response Message Type [Bytes, Text]
• Request Encoding
• Response Encoding

UDDI

7-22 AquaLogic Service Bus User Guide

Local uddi:uddi.org:transport:local • None

MQ uddi:bea.org:transport:mq • Response Required
• Response URI
• Response Correlation Pattern

SB uddi:bea.org:transport:sb

The URI scheme is sb when use ssl is
false; sbs when use ssl is true.

• None

SFTP uddi:bea.org:transport:sftp • File Mask
• Sort by Arrival [Boolean]
• Request Encoding
• Authentication Mode

Tuxedo uddi:bea.org:transport:tuxedo • Response Required
• Access Point ID
• Buffer Type
• Buffer Subtype
• Classes Jar
• Field Table Classes
• View Classes

WS uddi:uddi.org:transport:http

WS uses the HTTP tModelKey
• None

1. The accessPoint in the Binding Template for an E-mail transport uses the standard mailto URL format:
mailto:name@some_server.com
This is different from the one configured for the proxy service in ALSB, which is a URL oriented toward
reading e-mail. It is not be possible to derive this mailto URL from the proxy service definition as the
server name is not known. For example, if the proxy service is defined to read from a POP3 server, it
might be defined with a URL such as mailfrom:pop3.bea.com. When publishing such a proxy
service, a dummy server is added. In the above example, the published URL will take the form
mailto:some_name@some_server.com.

Table 7-4 Transport Attributes (Continued)

Transport tModelKey InstanceParms

Canonica l tMode ls Suppor t ing ALSB Serv ices

AquaLogic Service Bus User Guide 7-23

Service Type Attributes
Table 7-5 provides a high-level description of each of the service types.

Canonical tModels Supporting ALSB Services
The ALSB-UDDI mapping introduces a number of new canonical tModels that are used to
represent ALSB metadata and relationships. These tModels must be registered in the UDDI

Table 7-5 Service Type Attributes

Service Description

WSDL WSDL based proxies map to UDDI based on the Using WSDL in a UDDI
Registry, version 2.0.2 technical note at URL:

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-

spec-tc-tn-wsdl-v202-20040631.htm.

Any SOAP A simple marker protocol in the tModel in the bindingTemplate
tModelInstanceDetails, as well as in the categoryBag, defines the Any
Soap attributes.

Any XML A simple marker protocol tModel within the bindingTemplate
tModelInstanceDetails, as well as in the categoryBag defines the Any
XML attributes. This is a new detailed tModel.

Messaging
Services

A simple marker protocol tModel in the bindingTemplate
tModelInstanceDetails, defines the messaging services attributes. This is a
new detailed tModel. Unlike the other service types, messaging services have
additional configuration information associated with them, which provides detail
about the request and response messages. The configuration details are represented as
XML data in the InstanceParms data for the following tModel reference in the
tModelInstanceInfo:
• Input message format (XML, Text, Binary, MFL)
• URL of input message schema in ALSB (optional, if input message is XML)
• URL of input message MFL in ALSB (if input message is MFL)
• Output message format (none, XML, Text, Binary, MFL)
• URL of output message schema in ALSB (optional, if output message is XML)
• URL of output message MFL in ALSB (if output message is MFL)

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm

UDDI

7-24 AquaLogic Service Bus User Guide

registry to support this mapping. You can create these tModels in AquaLogic Service Registry
under the administrator ID.

Table 7-6 provides a summary of the new tModels.

Table 7-6 ALSB tModels

Name Value Description

CategorizationGroup tModel Types

bea-com:servicebus:propertie
s

Describes very specific attributes of an ALSB
service. In the data model it is used in the business
service categoryBag.

Categorization tModel Types

bea-com:servicebus:serviceTy
pe

WSDL,
SOAP, XML,
Messaging
Service

Describes the service type of the ALSB service.

bea-com:servicebus:instance URL of ALSB
Console

Describes the service instance in ALSB
responsible for publishing the service to UDDI.

Transport tModel Types

uddi-org:jms Describes the type of transport used by the service.
A reference to it is found in the accessPoint
attribute of the business service binding template.

uddi-org:file Describes the type of transport used to invoke the
service. A reference to it is found in the
accessPoint attribute of the business service
binding template.

Protocol tModel Types

bea-com:servicebus:anySoap Describes the type of protocol used to access the
service. It designates services that have a SOAP
message but not defined by a WSDL or schema.
The message body content is determined
dynamically by the application.

Example

AquaLogic Service Bus User Guide 7-25

Example
Listing 7-4 is an example of the mapping for a Messaging Service, configured with JMS
transport, the request being XML with a schema and the response being a text message.

Listing 7-4 Sample Messaging Service Mapping

<businessService
serviceKey="uddi:bea.com:servicebus:Domain:Project:JMSMessaging"
businessKey="uddi:9cb77770-57fe-11da-9fac-6cc880409fac"
xmlns="urn:uddi-org:api_v3">
<name>JMSMessagingProxy</name>
<bindingTemplates>

<bindingTemplate
bindingKey="uddi:4c401620-5ac0-11da-9faf-6cc880409fac"
serviceKey="uddi:bea.com:servicebus:

Domain:Project:JMSMessaging">
<accessPoint useType="endPoint">

jms://server.com:7001/weblogic.jms.XAConnectionFactory/
ReqQueue

</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo tModelKey="uddi:uddi.org:transport:jms">
<instanceDetails>
<instanceParms>

bea-com:servicebus:anyXML Describes the type of protocol used to access the
service. It designates services having an XML
message but not defined by a WSDL or schema.
The message body content is determined
dynamically by the application.

bea-com:servicebus:messaging
Service

Describes the type of protocol used to access the
service. It designates services where the request
message can be any XML (with or without
schema), text, binary, or MFL and whose response
messge can be any of the above or none. The
message body content is determined dynamically
by the application.

Table 7-6 ALSB tModels

Name Value Description

UDDI

7-26 AquaLogic Service Bus User Guide

<ALSBInstanceParms
xmlns="http://www.bea.com/wli/sb/uddi">
<property name="is-queue" value="true"/>
<property name="request-encoding"
value="iso-8859-1"/>

<property name="response-encoding"
value="utf-8"/>

<property name="response-required"
value="true"/>

<property name="response-URI"
value="jms://server.com:7001/
.jms.XAConnectionFactory/

RespQueue"/>
<property name="response-message-type"
value="Text"/>

<property name="Scheme" value="jms"/>
</ALSBInstanceParms>

</instanceParms>
</instanceDetails>

</tModelInstanceInfo>
<tModelInstanceInfo

tModelKey="uddi:bea.com:servicebus:
protocol:messagingservice">

<instanceDetails>
<instanceParms>

<ALSBInstanceParms xmlns=
"http://www.bea.com/wli/sb/uddi">
<property name="requestType" value="XML"/>
<property name="RequestSchema"

value="http://server.com:7001/
sbresource?SCHEMA%2FDJS%2FOAGProcessPO"/>

<property name="RequestSchemaElement"
value="PROCESS_PO_007"/>

<property name="responseType" value="Text"/>
</ALSBInstanceParms>

</instanceParms>
</instanceDetails>

</tModelInstanceInfo>
</tModelInstanceDetails>

</bindingTemplate>
</bindingTemplates>

<categoryBag>
<keyedReferenceGroup tModelKey="uddi:bea.com:servicebus:properties">
<keyedReference tModelKey="uddi:bea.com:servicebus:servicetype"

keyName="Service Type"
keyValue="Mixed" />

<keyedReference tModelKey="uddi:bea.com:servicebus:instance"
keyName="Service Bus Instance"
keyValue="http://cyberfish.bea.com:7001" />

Example

AquaLogic Service Bus User Guide 7-27

</keyedReferenceGroup>
</categoryBag>

</businessService>

UDDI

7-28 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 8-1

C H A P T E R 8

Extensibility Using Java Callouts and
POJOs

To allow you to extend the capabilities of ALSB, you can invoke custom Java code from within
proxy services. ALSB supports a Java exit mechanism via a Java callout action that allows you
to call out to a Plain Old Java Object (POJO). Static methods can be accessed from any POJO.
The POJO and its parameters are visible in the ALSB Console or ALSB Plug-in for WorkSpace
Studio at design time; the parameters can be mapped to message context variables.

You can also use Java callouts to create Java objects to store in the pipeline and to pass Java
objects as parameters to other Java callouts.

For information about configuring a Java callout to a POJO, see:

“Java Callout” in Proxy Services: Actions in Using the AquaLogic Service Bus Console

Adding and Configuring Java Callout Actions in Using the AquaLogic Service Bus Plug-in
for WorkSpace Studio

Usage Guidelines
The scenarios in which you can use Java callouts in ALSB include the following:

Custom validation—Examples of custom validation include validation against a DTD, or
doing cross-field semantic validation in Java.

Custom transformation—Examples of custom transformations can include converting a
binary document to base64Binary, or vice versa, or using a custom Java transformation
class.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/eclipsehelp/tasks.html#taskAddConfigJavaCalloutActionsInMessageFlows

Extens ib i l i t y Us ing Java Ca l louts and POJOs

8-2 AquaLogic Service Bus User Guide

Custom authentication and authorization—Examples of custom authentication and
authorizations include scenarios in which a custom token in a message needs to be
authenticated and authorized. However, the authenticated user’s identity cannot be
propagated by ALSB to the services or POJOs subsequently invoked by the proxy service.

Lookups for message enrichment—For example, a file or Java table can be used to look up
any piece of data that can enrich a message.

Binary data access—You can use a Java callout to a POJO to sniff the first few bytes of a
binary document to deduce the MFL type. The MFL type returned is used for a subsequent
NonXML-to-XML transformation using the MFL Transform action.

Implementing custom routing rules or rules engines.

Create a Java object and store it in the pipeline.

Pass a Java object as a parameter to another Java callout.

The input and return types for Java callouts are not restricted. However, any return types other
than primitives, Strings, or XmlObjects can only be passed (unmodified) to other Java callouts.
See “Java Content in the body Variable” on page 5-7 for more information about storing and
passing Java objects in the pipeline.

Enterprise JavaBeans (EJBs) also provide a Java exit mechanism. The use of EJBs is
recommended over the use of POJOs in the following cases:

When you already have an EJB implementation.

When you require read access to a JDBC database—Although POJOs can be used for this
purpose, EJBs were specifically designed for this and provide better support for
management of, and connectivity to, JDBC resources.

When you require write access to a JDBC database or other J2EE transactional resource—
EJBs were specifically designed for transactional business logic and they provide better
support for proper handling of failures. However, transaction and security context
propagation is supported with POJOs and they can be used for this purpose.

For outbound messaging, BEA recommends that you write a custom transport instead of using
POJOs or EJBs.

Best Practices
POJOs are registered as JAR resources in ALSB. For information about JAR resources, see JARs
in Using the AquaLogic Service Bus Console.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyactions.html
http://e-docs.bea.com/alsb/docs30/consolehelp/jars.html

Best P ract ices

AquaLogic Service Bus User Guide 8-3

In general, BEA recommends that the JARs are small and simple—any large bodies of code that
a JAR invokes or large frameworks that are made use of are best included in the system classpath.
Note that if you make a change to the system classpath, you must reboot the server.

BEA recommends that you put dependent and overlapping classes in the same JAR resource; put
them in different JARS if they are naturally distinct. Any change to a JAR causes all the services
that reference it to be redeployed—this can be time consuming for your ALSB system. The same
class can be located in multiple JAR resources without causing conflicts. The JARs are
dynamically class loaded when they are first referenced.

A single POJO can be invoked by one or more proxy services. All the threads in the proxy
services invoke the same POJO. Therefore, the POJO must be thread safe. A class or method on
a POJO can be synchronized, in which case it serializes access across all threads in all of the
invoking proxy services. Any finer-grained concurrency (for example, to control access to a DB
read results cache and implement stale cache entry handling) must be implemented by the POJO
code.

It is generally a bad practice for POJOs to create threads.

Extens ib i l i t y Us ing Java Ca l louts and POJOs

8-4 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide 9-1

C H A P T E R 9

XQuery Implementation

ALSB uses the BEA AquaLogic Data Services Platform implementation of the XQuery engine
which fully supports all of the language features that are described in the World Wide Web
(W3C) specification for XQuery with one exception: modules. For more information about the
XQuery 1.0 and XPath 2.0 functions and operators (W3C Working Draft 23 July 2004), see the
following URL:

http://www.w3.org/TR/2004/WD-xpath-functions-20040723/

ALSB supports the following XQuery functions:

A robust subset of the XQuery functions that are described in W3C specification. For a list
of the supported functions and a description of each function, see BEA XQuery
Implementation in the XQuery Developer's Guide.

The function extensions and language keywords that BEA AquaLogic Data Services
Platform provides—with a small number of exceptions. For information about those
exceptions, see “Supported Function Extensions from AquaLogic Data Services Platform”
on page 9-2.

ALSB-specific function extensions. See “Function Extensions from ALSB” on page 9-2.

Note: All of the BEA function extensions use the following function prefix fn-bea: In other
words, the full XQuery notation for an extended function is of this format:
fn-bea: function_name.

http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/xquery/extensions.html
http://edocs.bea.com/aldsp/docs30/xquery/extensions.html
http://www.w3.org/TR/2004/WD-xpath-functions-20040723/

XQuery Implementat i on

9-2 AquaLogic Service Bus User Guide

Supported Function Extensions from AquaLogic Data
Services Platform

ALSB supports all function extensions that BEA AquaLogic Data Services Platform provides
except for the following:

fn-bea:is-access-allowed

fn-bea:is-user-in-group

fn-bea:is-user-in-role

fn-bea:userid

fn-bea:async

fn-bea:timeout

fn-bea:get-property

fn-bea:execute-sql()

BEA recommends that you do not use the following functions in ALSB—they are better covered
by other language features:

fn-bea:if-then-else

fn-bea:QName-from-string

fn-bea:sql-like

For a list of all AquaLogic Data Services Platform function extensions and a description of each
function, see BEA XQuery Implementation in the XQuery Developer's Guide.

Function Extensions from ALSB
ALSB provides the following XQuery functions:

fn-bea:lookupBasicCredentials

fn-bea: uuid()

fn-bea:execute-sql()

fn-bea:serialize()

http://edocs.bea.com/aldsp/docs30/xquery/extensions.html

Func t ion Ex tens ions f rom ALSB

AquaLogic Service Bus User Guide 9-3

fn-bea:lookupBasicCredentials
The fn-bea:lookupBasicCredentials function returns the user name and unencrypted
password from a specified service account. You can specify any type of service account (static,
pass-through, or user-mapping). See Service Account in Using the AquaLogic Service Bus
Console.

Use the fn-bea:lookupBasicCredentials function as part of a larger set of XQuery functions
that you use to encode a user name and password in a custom transport header or in an
application-specific location within the SOAP envelope. You do not need to use this function if
you only need user names and passwords to be located in HTTP Authentication headers or as
WS-Security user name tokens. ALSB already retrieves user names and passwords from service
accounts and encodes them in HTTP Authentication headers or as WS-Security user name tokens
when required.

The function has the following signature:

fn-bea:lookupBasicCredentials($service-account as xs:string) as

UsernamePasswordCredential

where $service-account is the path and name of a service account in the following form:

project-name[/folder[...]]/service-account-name

The return value is an XML element of this form:

<UsernamePasswordCredential
xmlns="http://www.bea.com/wli/sb/services/security/config">
<username>name</username>
<password>unencrypted-password</password>

</UsernamePasswordCredential>

You can store the returned element in a user-defined variable and retrieve the user name and
password values from this variable when you need them.

For example, your ALSB project is named myProject. You create a static service account named
myServiceAccount in a folder named myFolder1/myFolder2. In the service account, you save
the user name of pat with a password of patspassword.

To get the user name and password from your service account, invoke the following function:

fn-bea:lookupBasicCredentials(

myProject/myFolder1/myFolder2/myServiceAccount)

http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html

XQuery Implementat i on

9-4 AquaLogic Service Bus User Guide

The function returns the following element:
<UsernamePasswordCredential

xmlns="http://www.bea.com/wli/sb/services/security/config">
<username>pat</username>
<password>patspassword</password>

</UsernamePasswordCredential>

fn-bea: uuid()
The function fn-bea:uuid() returns a universally unique identifier. The function has the
following signature:

fn-bea:uuid() as xs:string

You can use this function in the proxy pipeline to generate a unique identifier. You can insert the
generated unique identifier into an XML document as an element. You cannot generate a unique
identifier to the system variable. You can use this to modify a message payload.

For example, suppose you want to generate a unique identifier to add to a message for tracking
purposes. You could use this function to generate a unique identifier. The function returns a string
that you can add it to the SOAP header.

fn-bea:execute-sql()
The fn-bea:execute-sql() function provides low-level database access from XQuery within
ALSB message flows--see “Accessing Databases Using XQuery” on page 3-39. The query
returns a sequence of flat row elements with typed data.

The function has the following signature:
fn-bea:execute-sql($datasource as xs:string, $rowElemName as xs:QName,
$sql as xs:string, $param1, ..., $paramk) as element()*

where

$datasource is the JNDI name of the datasource

$rowElemName is the name of the row element—specify $rowElemName as whatever
QName you want each element of the resulting element sequence to have

$sql is the SQL statement

$param1, ..., $paramk are 1 to k parameters

element()* represents the sequence of elements returned

Func t ion Ex tens ions f rom ALSB

AquaLogic Service Bus User Guide 9-5

The return value is a sequence of flat row elements with typed data and automatically translates
values between SQL/JDBC and XQuery data models. Data Type mappings that the XQuery
engine generates or supports for the supported databases can be found in the “XQuery-SQL
Mapping Reference” on page A-1.

When you execute the fn-bea:execute-sql() function from an ALSB message flow, you can
store the returned element in a user-defined variable.

Use the following examples to understand the use of the fn-bea:execute sql() function in
ALSB:

“Example 1: Retrieving the URI from a Database for Dynamic Routing” on page 9-5

“Example 2: Getting XMLType Data from a Database” on page 9-7

Example 1: Retrieving the URI from a Database for Dynamic Routing
ALSB proxy services support specification of the URI to which messages are to be routed at run
time (dynamically)—see “Using Dynamic Routing” on page 3-35. Listing 9-1 is an example use
of the fn-bea:execute-sql() function to retrieve the URI from a database in a dynamic
routing scenario.

Listing 9-1 Get the URI for a Business Service from a Database

<ctx:route><ctx:service>

{

fn-bea:execute-sql(

'ds.myJDBCDataSource',

xs:QName('customer'),

'SELECT targetService FROM DISPATCH_MAPPING WHERE customer_priority=?',

xs:string($body/m:Request/m:customer_pri/text())

)/TARGETSERVICE/text()

}

</ctx:service></ctx:route>

XQuery Implementat i on

9-6 AquaLogic Service Bus User Guide

In Listing 9-1:

ds.myJDBCDataSource is the JNDI name to the data source

xs:string($body/m:Request/m:customer_pri/text()) interrogates the request
message and populates customer_priority=? with the value of customer_pri in the
message

/TARGETSERVICE/text()is the path applied to the result of the SQL statement, which
results in the string (CDATA) contents of that element being returned

<ctx:route><ctx:service> ... </ctx:service></ctx:route> are required
elements of the XQuery statement for a dynamic routing scenario

The following is the table definition for DISPATCH_MAPPING:

create table DISPATCH_MAPPING

(

customer_priority varchar2(256),

targetService varchar2(256),

soapPayload varchar2(1024)

);

The DISPATCH_MAPPING table is populated as shown in Listing 9-2:

Listing 9-2 DISPATCH_MAPPING Table

INSERT INTO DISPATCH_MAPPING (customer_priority, targetService,

soapPayload)

VALUES ('0001', 'system/UCGetURI4DynamicRouting_proxy1', '<something/>');

INSERT INTO DISPATCH_MAPPING (customer_priority, targetService,

soapPayload)

VALUES ('0002', 'system/UCGetURI4DynamicRouting_proxy2', '<something/>');

Note: The third column in the table (soapPayload) is not used in this scenario.

Func t ion Ex tens ions f rom ALSB

AquaLogic Service Bus User Guide 9-7

Executing the fn-bea:execute-sql for Example 3

If the XQuery in Listing 9-1 is executed as a result of a proxy service receiving the request
message in Listing 9-3 (note that the value of <customer_pri> in the request message is 0001),
the URI returned for the dynamic route scenario is

system/UCGetURI4DynamicRouting_proxy1

(See also Listing 9-2.)

Listing 9-3 Example Request Message $body

<m:Request xmlns:m="http://www.bea.com/alsb/example">

<m:customer_pri>0001</m:customer_pri>

</m:Request>

Example 2: Getting XMLType Data from a Database
Data Type mappings that the XQuery engine generates or supports for the supported databases
can be found in the “XQuery-SQL Mapping Reference” on page A-1. Note that the XMLType
column type in SQL is not supported. However, you can access the data in an XMLType column
by using the getStringVal() method of the XMLType object to convert it to a String value.

The following scenario outlines a procedure you can use to select data from an XMLType column
in an Oracle database.

1. Use an assign action in a proxy service message flow to assign the results of the following
XQuery to a variable ($result).

Listing 9-4 Get XMLType Data from a Database

fn-bea:execute-sql(

'ds.myJDBCDataSource',

'Rec',

'SELECT a.purchase_order.getStringVal() purchase_order from datatypes

a'

XQuery Implementat i on

9-8 AquaLogic Service Bus User Guide

)

where:

– ds.myJDBCDataSource is the JNDI name to the data source

– Rec is the $rowElemName—therefore, Rec is the QName given to each element of the
resulting element sequence

– select a.purchase_order.getStringVal() ... is the SQL statement that uses
the getStringVal() method of the XMLType object to convert it to a String value

– datatypes is the table from which the value of the XML is read (the datatypes table
in this case contains one row)

Note: The following is the table definition for the dataty.pes table:

create table datatypes

(

purchase_order xmltype

);

2. Use a replace action to replace the node contents of $body with the results of the
fn-bea:execute-sql() query (assigned to $result in the preceding step):

Replace [node contents] of [undefined XPath] in [body] with
[$result/purchase_order/text()]

The following listing shows $body after the replacement.

Note: The datatypes table contains one row (with the purchase order data); the row contains
the XML represented in Listing 9-5.

Listing 9-5 $body After XML Content is Replaced with Result of fn-bea:execute-sql()

<soap-env:Body>

<openuri:orders xmlns:openuri="http://openuri.com/">

<openuri:order>

<openuri:customerID>123</openuri:customerID>

<openuri:orderID>123A</openuri:orderID>

Func t ion Ex tens ions f rom ALSB

AquaLogic Service Bus User Guide 9-9

</openuri:order>

<openuri:order>

<openuri:customerID>345</openuri:customerID>

<openuri:orderID>345B</openuri:orderID>

</openuri:order>

<openuri:order>

<openuri:customerID>789</openuri:customerID>

<openuri:orderID>789C</openuri:orderID>

</openuri:order>

</openuri:orders>

</soap-env:Body>

fn-bea:serialize()
You can use the fn-bea:serialize() function if you need to represent an XML document as
a string instead of as an XML element. For example, you may want to exchange an XML
document through an EJB interface and the EJB method takes String as argument. The function
has the following signature:
fn-bea:serialize($input as item()) as xs:string

XQuery Implementat i on

9-10 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide A-1

A P P E N D I X A

XQuery-SQL Mapping Reference

This appendix provides information about the native RDBMS Data Type support and XQuery
mappings that the BEA XQuery engine generates or supports. It includes the following topics:

Core RDBMS Data Type Mapping:

– IBM DB2/NT 8

– Microsoft SQL Server

– Oracle 8.1.x

– Oracle 9.x, 10.x

– Pointbase 4.4 (and higher)

– Sybase 12.5.2 (and higher)

Base (Generic) RDBMS Data Type Mapping

For information about using these mappings in ALSB XQueries, see “Accessing Databases Using
XQuery” on page 3-39.

For complete information about database and JDBC drivers support in ALSB, see Supported
Database Configurations in Supported Configurations for AquaLogic Service Bus.

../../../platform/suppconfigs/configs_al30/alsb30/supported_db.html
../../../platform/suppconfigs/configs_al30/alsb30/supported_db.html

XQuery-SQL Mapping Refe rence

A-2 AquaLogic Service Bus User Guide

IBM DB2/NT 8
This section identifies the data type mappings that the XQuery engine generates or supports for
IBM DB2/NT 8.

Table A-1 IBM DB2 Data Type Mappings

DB2 Data Type XQuery Type

BIGINT xs:long

BLOB xs:hexBinary

CHAR xs:string

CHAR() FOR BIT DATA xs:hexBinary

CLOB1

1. Pushed down in project list only.

xs:string

DATE xs:date

DOUBLE xs:double

DECIMAL(p,s)2 (NUMERIC)

2. Where p is precision (total number of digits, both to the right and left of decimal point)
and s is scale (total number of digits to the right of decimal point).

xs:decimal (if s > 0), xs:integer (if s = 0)

INTEGER xs:int

LONG VARCHAR1 xs:string

LONG VARCHAR FOR BIT DATA xs:hexBinary

REAL xs:float

SMALLINT xs:short

TIME3 xs:time4

TIMESTAMP5 xs:dateTime4

VARCHAR xs:string4

VARCHAR() FOR BIT DATA xs:hexBinary

Mic rosof t SQL Serve r

AquaLogic Service Bus User Guide A-3

Microsoft SQL Server
This section identifies the data type mappings that the XQuery engine generates or supports for
Microsoft SQL Server.

3. Accurate to 1 second.
4. Values converted to local time zone (timezone information removed) due to TIME and
TIMESTAMP limitations. See XQuery-SQL Data Type Mappings in XQuery Engine and
SQL in the XQuery Developer's Guide for more information.
5. Precision limited to milliseconds.

Table A-2 SQL Server 2000 Data Type Mapping

SQL Data Type XQuery Type

BIGINT xs:long

BINARY xs:hexBinary

BIT xs:boolean

CHAR xs:string

DATETIME1 xs:dateTime2

DECIMAL(p,s)3
(NUMERIC)

xs:decimal (if s > 0), xs:integer (if s = 0)

FLOAT xs:double

IMAGE xs:hexBinary

INTEGER xs:int

MONEY xs:decimal

NCHAR xs:string

NTEXT4 xs:string

NVARCHAR xs:string

REAL xs:float

http://edocs.bea.com/aldsp/docs30/xquery/sql_pushdown.html

XQuery-SQL Mapping Refe rence

A-4 AquaLogic Service Bus User Guide

Oracle 8.1.x
This section identifies the data types that the XQuery engine generates or supports for Oracle
8.1.x (Oracle 8i).

SMALLDATETIME5 xs:dateTime

SMALLINT xs:short

SMALLMONEY xs:decimal

SQL_VARIANT xs:string

TEXT4 xs:string

TIMESTAMP xs:hexBinary

TINYINT xs:short

VARBINARY xs:hexBinary

VARCHAR xs:string

UNIQUIDENTIFIER xs:string

1. Fractional-second-precision up to 3 digits (milliseconds). No timezone.
2. Values converted to local time zone (timezone information removed) and fractional
seconds truncated to milliseconds due to DATETIME limitations. See XQuery-SQL Data
Type Mappings in XQuery Engine and SQL in the XQuery Developer's Guide for more
information.
3. Where p is precision (total number of digits, both to the right and left of decimal point)
and s is scale (total number of digits to the right of decimal point).
4. Pushed down in project list only.
5. Accuracy of 1 minute.

Table A-2 SQL Server 2000 Data Type Mapping

Table A-3 Oracle 8.1.x Data Type Mapping

Oracle 8 Data Type XQuery Type

BFILE not supported

BLOB xs:hexBinary

http://edocs.bea.com/aldsp/docs30/xquery/sql_pushdown.html
http://edocs.bea.com/aldsp/docs30/xquery/sql_pushdown.html

Orac le 8 .1 . x

AquaLogic Service Bus User Guide A-5

CHAR xs:string

CLOB1 xs:string

DATE2 xs:dateTime

FLOAT xs:double

LONG1 xs:string

LONG RAW xs:hexBinary

NCHAR xs:string

NCLOB1 xs:string

NUMBER xs:double

NUMBER(p,s)3 xs:decimal (if s > 0), xs:integer (if s <=0)

NVARCHAR2 xs:string

RAW xs:hexBinary

ROWID xs:string

UROWID xs:string

1. Pushed down in project list only.
2. Does not support fractional seconds.
3. Where p is precision (total number of digits, both to the right and left of decimal point)
and s is scale (total number of digits to the right of decimal point).

Table A-3 Oracle 8.1.x Data Type Mapping

XQuery-SQL Mapping Refe rence

A-6 AquaLogic Service Bus User Guide

Oracle 9.x, 10.x
This section identifies the data type and other mappings that the XQuery engine generates or
supports for Oracle 9.x (Oracle 9i) and Oracle 10.x (Oracle 10g). Note that Oracle treats empty
strings as NULLs, which deviates from XQuery semantics and may lead to unexpected results for
expressions that are pushed down.

Table A-4 Oracle 9.x, 10.x Data Type Mapping

Oracle 9 Data Type XQuery Type

BFILE not supported

BLOB xs:hexBinary

CHAR xs:string

CLOB1 xs:string

DATE xs:dateTime2

FLOAT xs:double

INTERVAL DAY TO SECOND xdt:dayTimeDuration

INTERVAL YEAR TO MONTH xdt:yearMonthDuration

LONG1 xs:string

LONG RAW xs:hexBinary

NCHAR xs:string

NCLOB1 xs:string

NUMBER xs:double

NUMBER(p,s) xs:decimal (if s > 0), xs:integer (if s <=0)

NVARCHAR2 xs:string

RAW xs:hexBinary

ROWID xs:string

Sybase 12 .5 .2 (and h igher)

AquaLogic Service Bus User Guide A-7

Sybase 12.5.2 (and higher)
This section identifies the data types that the XQuery engine generates or supports for Sybase
12.5.2 (and higher).

Note: Sybase deviates from XQuery semantics (which ignores empty strings) and treats empty
strings as a single-space string.

TIMESTAMP xs:dateTime3

TIMESTAMP WITH LOCAL
TIMEZONE

xs:dateTime

TIMESTAMP WITH
TIMEZONE

xs:dateTime

VARCHAR2 xs:string

UROWID xs:string

1. Pushed down in project list only.
2. When SDO stores xs:dateTime value in Oracle DATE type, it is converted to local
time zone and fractional seconds are truncated due to DATE limitations. See
XQuery-SQL Data Type Mappings in XQuery Engine and SQL in the XQuery
Developer's Guide for more information.
3. XQuery engine maps XQuery xs:dateTime to either TIMESTAMP or TIMESTAMP
WITH TIMEZONE data type, depending on presence of timezone information. Storing
xs:dateTime using SDO may result in loss of precision for fractional seconds,
depending on the SQL type definition.

Table A-4 Oracle 9.x, 10.x Data Type Mapping

Table A-5 Sybase 12.5.2 Data Type Mapping

Sybase Data Type XQuery Type

BINARY xs:hexBinary

BIT xs:boolean

CHAR xs:string

DATE xs:date

http://edocs.bea.com/aldsp/docs30/xquery/sql_pushdown.html

XQuery-SQL Mapping Refe rence

A-8 AquaLogic Service Bus User Guide

DATETIME1 xs:dateTime2

DECIMAL(p,s)3 (NUMERIC) xs:decimal (if s > 0), xs:integer (if s == 0)

DOUBLE PRECISION xs:double

FLOAT xs:double

IMAGE xs:hexBinary

INT (INTEGER) xs:int

MONEY xs:decimal

NCHAR xs:string

NVARCHAR xs:string

REAL xs:float

SMALLDATETIME4 xs:dateTime

SMALLINT xs:short

SMALLMONEY xs:decimal

SYSNAME xs:string

TEXT5 xs:string

TIME xs:time

TINYINT xs:short

VARBINARY xs:hexBinary

VARCHAR xs:string

1. Supports fractional seconds up to 3 digits (milliseconds) precision; no timezone
information.
2. When SDO stores xs:dateTime value in Oracle DATE type, it is converted to local time
zone and fractional seconds are truncated due to DATE limitations. See XQuery-SQL Data
Type Mappings in XQuery Engine and SQL in the XQuery Developer's Guide for more
information.

Table A-5 Sybase 12.5.2 Data Type Mapping

http://edocs.bea.com/aldsp/docs30/xquery/sql_pushdown.html
http://edocs.bea.com/aldsp/docs30/xquery/sql_pushdown.html

Po intbase 4 .4 (and h igher)

AquaLogic Service Bus User Guide A-9

Pointbase 4.4 (and higher)
This section identifies the data types that the XQuery engine generates or supports for Pointbase.

3. Where p is precision (total number of digits, both to the right and left of decimal point)
and s is scale (total number of digits to the right of decimal point).
4. Accurate to 1 minute.
5. Expressions returning text are pushed down in the project list only.

Table A-6 Pointbase 4.4 Data Type Mapping

Pointbase Data Type XQuery Type

BIGINT xs:long

BLOB xs:hexBinary

BOOLEAN xs:boolean

CHAR (CHARACTER) xs:string

CLOB xs:string

DATE xs:date

DECIMAL(p,s)1
(NUMERIC)

1. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).

xs:decimal (if s > 0), xs:integer (if s == 0)

DOUBLE PRECISION xs:double

FLOAT xs:double

INTEGER (INT) xs:int

SMALLINT xs:short

REAL xs:float

TIME xs:time

TIMESTAMP xs:dateTime

VARCHAR xs:string

XQuery-SQL Mapping Refe rence

A-10 AquaLogic Service Bus User Guide

Base (Generic) RDBMS Data Type Mapping
When mapping SQL to XQuery data types, the XQuery engine first checks the JDBC typecode.
If the typecode has a corresponding XQuery type, the XQuery engine uses the matching native
type name. If no matching typecode or type name is available, the column is ignored. Table A-7
shows this mapping.

Table A-7 Base Platform Data Type Mapping (JDBC<–>XQuery Equivalents)

JDBC Data Type Typecode XQuery Data Type

BIGINT -5 xs:long

BINARY -2 xs:string

BIT -7 xs:boolean

BLOB 2004 xs:hexBinary

BOOLEAN 16 xs:boolean

CHAR 1 xs:string

CLOB1 2005 xs:string

DATE 91 xs:date2

DECIMAL (p,s)3 3 xs:decimal (if s > 0), xs:integer (if s =0)

DOUBLE 8 xs:double

FLOAT 6 xs:double

INTEGER 4 xs:int

LONGVARBINARY -4 xs:hexBinary

LONGVARCHAR1 -1 xs:string

NUMERIC (p,s)3 2 xs:decimal (if s > 0), xs:integer (if s =0)

REAL 7 xs:float

SMALLINT 5 xs:short

Base (Gene r i c) RDBMS Data Type Mapping

AquaLogic Service Bus User Guide A-11

Related Topics
“Accessing Databases Using XQuery” on page 3-39

“fn-bea:execute-sql()” on page 9-4

TIME4 92 xs:time4

TIMESTAMP4 93 xs:dateTime2

TINYINT -6 xs:short

VARBINARY -3 xs:hexBinary

VARCHAR 12 xs:string

OTHER 1111 ALSB uses native data type name to map to an
appropriate XQuery data type.

Other vendor-specific JDBC type codes

1. Pushed down in project list only.
2. Values converted to local time zone (timezone information removed) due to DATE
limitations. See XQuery-SQL Data Type Mappings in XQuery Engine and SQL in the XQuery
Developer's Guide for more information.
3. Where p is precision (total number of digits, both to the right and left of decimal point) and s
is scale (total number of digits to the right of decimal point).
4. Precision of underlying RDBMS determines the precision of TIME data type and how much
truncation, if any, will occur in translating xs:time to TIME.

Table A-7 Base Platform Data Type Mapping (JDBC<–>XQuery Equivalents)

JDBC Data Type Typecode XQuery Data Type

http://edocs.bea.com/aldsp/docs30/xquery/sql_pushdown.html

XQuery-SQL Mapping Refe rence

A-12 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide B-1

A P P E N D I X B

Debugging ALSB

This section provides information about enabling debugging for different modules in ALSB. You
can enable and disable debugging by modifying the corresponding entries in the following debug
XML files, which are located in the root directory of your ALSB domain:

alsbdebug.xml—Contains ALSB related debug flags

configfwkdebug.xml—Contains configuration related debug flags

If the XML files are not in the root directory or if they have been deleted, they are created again
without any contents when the server starts. Listing B-1 provides an example of the contents of
the alsbdebug.xml file with debugging disabled for all modules (all entries set to false).

Listing B-1 alsbdebug.xml File

<java:sb-debug-logger xmlns:java='java:com.bea.wli.debug'>

<java:alsb-stages-transform-runtime-debug>false</java:alsb-stages-transform-ru
ntime-debug>

<java:alsb-alert-manager-debug>false</java:alsb-alert-manager-debug>
<java:alsb-credential-debug>false</java:alsb-credential-debug>

<java:alsb-jms-reporting-provider-debug>false</java:alsb-jms-reporting-provide
r-debug>

<java:alsb-management-credential-debug>false</java:alsb-management-credential-
debug>

Debugg ing ALSB

B-2 AquaLogic Service Bus User Guide

<java:alsb-management-dashboard-debug>false</java:alsb-management-dashboard-de
bug>

<java:alsb-management-debug>false</java:alsb-management-debug>

<java:alsb-management-user-mgt-debug>false</java:alsb-management-user-mgt-debu
g>

<java:alsb-module-debug>true</java:alsb-module-debug>

<java:alsb-monitoring-aggregator-debug>false</java:alsb-monitoring-aggregator-
debug>

<java:alsb-monitoring-debug>false</java:alsb-monitoring-debug>
<java:alsb-pipeline-debug>true</java:alsb-pipeline-debug>
<java:alsb-security-wss-debug>true</java:alsb-security-wss-debug>

<java:alsb-service-account-manager-debug>false</java:alsb-service-account-mana
ger-debug>

<java:alsb-service-provider-manager-debug>false</java:alsb-service-provider-ma
nager-debug>

<java:alsb-service-repository-debug>false</java:alsb-service-repository-debug>

<java:alsb-service-security-manager-debug>false</java:alsb-service-security-ma
nager-debug>

<java:alsb-service-validation-debug>false</java:alsb-service-validation-debug
<java:alsb-test-console-debug>false</java:alsb-test-console-debug>
<java:alsb-transports-debug>true</java:alsb-transports-debug>
<java:alsb-uddi-debug>true</java:alsb-uddi-debug>
<java:alsb-wsdl-repository-debug>false</java:alsb-wsdl-repository-debug>

<java:alsb-wspolicy-repository-debug>true</java:alsb-wspolicy-repository-debug
>

<java:alsb-security-encryption-debug>false</java:alsb-security-encryption-debu
g>

<java:alsb-security-module-debug>false</java:alsb-security-module-debug>
<java:alsb-sources-debug>false</java:alsb-sources-debug>
<java:alsb-custom-resource-debug>false</java:alsb-custom-resource-debug>
<java:alsb-mqconnection-debug>false</java:alsb-mqconnection-debug>
<java:alsb-throttling-debug>false</java:alsb-throttling-debug>

</java:sb-debug-logger>

Listing B-2 provides an example of the contents of the configfwkdebug.xml file.

AquaLogic Service Bus User Guide B-3

Listing B-2 configfwkdebug.xml File

<java:config-fwk-debug-logger xmlns:java='java:com.bea.wli.config.debug'>

<n1:Name

xmlns:n1='java:weblogic.diagnostics.debug'>configfwkdebug</n1:Name>

<java:config-fwk-debug>true</java:config-fwk-debug>

<java:config-fwk-transaction-debug>false</java:config-fwk-transaction-debu

g>

<java:config-fwk-deployment-debug>true</java:config-fwk-deployment-deb

ug>

<java:config-fwk-component-debug>false</java:config-fwk-component-debu

g>

<java:config-fwk-security-debug>false</java:config-fwk-security-debug>

</java:config-fwk-debug-logger>

Although debugging should be disabled during normal ALSB operation, you may find it helpful
to turn on certain debug flags while you are developing your solution and experimenting with it
for the first time. For example, you may want to turn on the alert debugging flag when you are
developing alerts and would like to investigate how the alert engine works.

Some of the available ALSB debug flags are shown in Table B-1.

Table B-1 ALSB Debug Flags

Debug Flag Action

alsb-stages-transform-runtime-debug Provides information on transformation related
actions.

alsb-alert-manager-debug Prints an evaluation of alerts.

alsb-jms-reporting-provider-debug Provides information on the out of the box,
JMS-based reporting provider.

alsb-management-debug Provides information on user and group
management in the console.

alsb-monitoring-debug Provides information on the statistics system.

Debugg ing ALSB

B-4 AquaLogic Service Bus User Guide

Table B-2 lists the available configuration framework debug flags.

alsb-pipeline-debug Provides information on errors that are generated
within the pipeline.

alsb-service-repository-debug Provides information on various service related
configuration operations.

alsb-service-security-manager-debug Provides information on access control.

alsb-transports-debug Provides transport related debug information,
including transport headers, which is printed
per-message.

alsb-wsdl-repository-debug Provides information on WSDL related
configuration operation.

alsb-wspolicy-repository-debug Provides information on WS policy.

alsb-custom-resource-debug Provides information on custom resources.

alsb-mqconnection-debug Provides information on the MQ connection resource.

alsb-throttling-debug Provides information on the throttling feature.

Table B-1 ALSB Debug Flags (Continued)

Debug Flag Action

Table B-2 Configuration Framework Debug Flags

Debug Flag Action

config-fwk-debug Provides information on general aspects of ALSB
configuration.

config-fwk-transaction-debug Provides low level debug information about changes
made to in-memory data structures and files. This
debug flag also generates server startup recovery logs.

config-fwk-deployment-debug Provides debug information on session creation,
activation, and distribution of configuration in a
cluster.

AquaLogic Service Bus User Guide B-5

All other debug flags are self explanatory.

For all flags, debug information is logged to the server log at
{domaindir}/servers/{servername}/logs/{servername}.log.

config-fwk-component-debug Provides low level debug information about create,
update, delete, and import operations.

config-fwk-security-debug Provides debug information on encryption and decryption
during importing and exporting.

Table B-2 Configuration Framework Debug Flags (Continued)

Debug Flag Action

Debugg ing ALSB

B-6 AquaLogic Service Bus User Guide

AquaLogic Service Bus User Guide C-1

A P P E N D I X C

ALSB APIs

ALSB exposes APIs to allow customizing resources and to provide external access to monitoring
data and deployment.

Resource Update and Customization

Management and Monitoring

Deployment

Javadoc for the ALSB APIs is provided at the following URL:
http://edocs.bea.com/alsb/docs30/javadoc

Resource Update and Customization
A number of APIs are exposed to allow customization of service definitions, WSDLs, schemas,
XQueries, and other design-time resources through programmatic interfaces. The supporting
APIs allow loading ZIP files containing resources, in addition to moving, renaming, cloning, or
deleting resources, folders, and projects. A typical use case is one in which you have a
prototypical proxy service from which you make a number of copies—each copy can be modified
programmatically.

Numerous customization options can be applied during deployment. For example, environment
variables allow you to preserve or tailor settings when moving from one environment to another.

The available APIs include:

ProxyServiceConfigurationMBean—Enable and disable SLA alerts and pipeline alerts for
proxy services

http://e-docs.bea.com/alsb/docs30/javadoc/com/bea/wli/sb/management/configuration/ProxyServiceConfigurationMBean.html
http://e-docs.bea.com/alsb/docs30/javadoc/

ALSB APIs

C-2 AquaLogic Service Bus User Guide

BusinessServiceConfigurationMBean

– Enable and disable SLA alerts

– Synchronize business services imported from UDDI registries

– Detach business services from a UDDI registry

ALSBConfigurationMBean Interface—APIs for managing resources in an ALSB domain,
including:

– Query, export, and import resources

– Obtain validation errors

– Get and set environment values

– Modify references inside resources to new references

– Move, rename, clone, and delete resources

Customization Class

– Find and replace environment values

– Assign environment values

– Map references found in resources to other references

Management and Monitoring
The JMX Monitoring API in ALSB provides external access to monitoring data. Java
Management Extensions (JMX) technology was used for the implementation. ALSB resources
within a domain use JMX Managed Beans (MBeans) to expose their management functions. An
MBean is a concrete Java class that is developed according to JMX specifications.

For information, see the JMX Monitoring API Programming Guide.

Deployment
You can use the ALSB MBeans in Java programs and WLST scripts to automate promotion of
ALSB configurations from development environments through testing, staging, and finally to
production environments.

Numerous customization options can be applied during deployment. For example, an extended
list of environment variables allows you to preserve or tailor settings when moving from one
environment to another.

http://e-docs.bea.com/alsb/docs30/jmx_monitoring/
http://e-docs.bea.com/alsb/docs30/javadoc/com/bea/wli/sb/management/configuration/BusinessServiceConfigurationMBean.html
http://e-docs.bea.com/alsb/docs30/javadoc/com/bea/wli/sb/management/configuration/ALSBConfigurationMBean.html
http://e-docs.bea.com/alsb/docs30/javadoc/com/bea/wli/config/customization/Customization.html

Deployment

AquaLogic Service Bus User Guide C-3

For information, see Using the Deployment APIs in the AquaLogic Service Bus Deployment
Guide.

http://e-docs.bea.com/alsb/docs30/deploy/config_appx.html

ALSB APIs

C-4 AquaLogic Service Bus User Guide

	Introduction to ALSB
	Document Scope and Audience
	Document Organization

	Configuring Proxy Services and Business Services
	ALSB Proxy Services
	ALSB Business Services
	How WSDL is Used in ALSB
	About Effective WSDLs and Generated WSDLs
	WSDL Overview

	Using a WSDL to Define a Service
	SOAP Document Wrapped Web Services
	SOAP Document Style Web Services
	SOAP RPC Web Services

	Basing Services on WSDL Ports and on WSDL Bindings
	Characteristics of Effective WSDLs Generated for Proxy Services
	Characteristics of Effective WSDLs Generated for Non-Transport-Type Business Services
	Characteristics of Effective WSDLs Generated for Transport-Type Business Services
	Generating Effective WSDLs in Clustered Domains
	Examples of Proxy Services Based on a Port and on a Binding
	Basing the Service on a Port
	Basing the Service on a Binding

	Using Any SOAP or Any XML Service Types
	Using the Messaging Service Type

	Configuring Proxy Services
	Proxy Service Types and Transports
	Transport and Security Configuration for Proxy Services
	Configuration Settings For Each Proxy Service Type
	Configuring Message Flow
	Security-Related Validation for Proxy Services

	Configuring Business Services
	Business Service Types and Transport
	Configuration Settings for All Business Service Types
	Configuration Settings For Each Business Service Type

	Viewing Resource Details

	Modeling Message Flow in ALSB
	Message Flow Components
	Building a Message Flow
	Message Execution

	Branching in Message Flows
	Operational Branching
	Conditional Branching

	Configuring Actions in Stages and Route Nodes
	Communication Actions
	Flow Control Actions
	Message Processing Actions
	Reporting Actions
	Configuring Transport Headers in Message Flows
	Configuring Global Pass Through and Header-Specific Copy Options for Transport Headers
	Understanding How the Run Time Uses the Transport Headers Settings

	Performing Transformations in Message Flows
	Transformations and Publish Actions
	Transformations and Route Nodes

	Constructing Service Callout Messages
	SOAP Document Style Services
	SOAP RPC Style Services
	XML Services
	Messaging Services

	Handling Errors as the Result of a Service Callout
	Transport Errors
	SOAP Faults
	Unexpected Responses

	Handling Errors in Message Flows
	Generating the Error Message, Reporting, and Replying
	Example of Action Configuration in Error Handlers

	Using Dynamic Routing
	Implementing Dynamic Routing
	Sample XML File
	Creating an XQuery Resource From the Sample XML
	Creating and Configuring the Proxy Service to Implement Dynamic Routing

	Accessing Databases Using XQuery
	Understanding Message Context
	Message Context Components
	Guidelines for Viewing and Altering Message Context
	Copying JMS Properties From Inbound to Outbound

	Working with Variable Structures
	Using the Inline XQuery Expression Editor
	Inline XQueries
	Uses of the Inline XQuery Expression Editor

	Using Variable Structures
	Creating Variable Structure Mappings
	Sample WSDL
	Creating the Resources You Need for the Examples
	Save the WSDL as a Resource
	Create a Proxy Service That Uses the Sample WSDL
	Build a Message Flow for the Sample Proxy Service
	Create a Business Service That Uses the Sample WSDL

	Example 1: Selecting a Predefined Variable Structure
	Example 2: Creating a Variable Structure That Maps a Variable to a Type
	Example 3: Creating a Variable Structure that Maps a Variable to an Element
	Example 4: Creating a Variable Structure That Maps a Variable to a Child Element
	Example 5: Creating a Variable Structure that Maps a Variable to a Business Service
	Example 6: Creating a Variable Structure That Maps a Child Element to Another Child Element

	Quality of Service
	Delivery Guarantees
	Overriding the Default Element Attribute
	Delivery Guarantee Rules
	Threading Model
	Splitting Proxy Services

	Outbound Message Retries

	Content Types, JMS Type, and Encoding
	Throttling Pattern
	WS-I Compliance
	WS-I Compliance Checks

	Converting Between SOAP 1.1 and SOAP 1.2

	Improving Service Performance with Split-Join
	Introduction to Split-Join
	Static Split-Join
	Static Split-Join - Sample Scenario

	Dynamic Split-Join
	Dynamic Split-Join - Sample Scenario

	Split-Join Framework

	Developing Split-Joins
	Split-Join Resource Type and Environment Variable

	Message Context
	The Message Context Model
	Predefined Context Variables
	Message-Related Variables
	Header Variable
	Body Variable
	Attachments Variable
	Binary Content in the body and attachments Variables
	Java Content in the body Variable
	Streaming body Content
	Best Practices for Using Content Streaming

	Inbound and Outbound Variables
	Sub-Elements of the inbound and outbound Variables
	service
	transport
	security

	Operation Variable
	Fault Variable
	Initializing Context Variables
	Initializing the attachments Context Variable
	Initializing the header and body Context Variables
	SOAP Services
	XML Services (Non SOAP)
	Messaging Services

	Performing Operations on Context Variables
	Constructing Messages to Dispatch
	SOAP Services
	XML Services (Non SOAP)
	Messaging Services
	About Sending Binary Content in Email Messages

	Message Context Schema

	Using the Test Console
	Features
	Prerequisites
	Testing Proxy Services
	Direct Calls
	Indirect Calls
	HTTP Requests

	Testing Business Services
	Recommended Approaches to Testing Proxy and Business Services
	Tracing Proxy Services Using the Test Console
	Example: Testing and Tracing a Proxy Service

	Testing Resources
	MFL
	XSLT
	XQuery

	Performing XQuery Testing
	Testing Services With Web Service Security
	Test Console Transport Settings
	About Security and Transports

	UDDI
	UDDI, UDDI Registries, and Web Services
	Basic Concepts of the UDDI Specification
	Benefits of Using a UDDI Registry with ALSB
	Introduction to UDDI Entities

	Sample Business Scenarios for ALSB and UDDI
	Basic Proxy Service Communication with a UDDI Registry
	Cross-Domain Deployment in ALSB

	Using ALSB and UDDI
	A UDDI Workflow

	Configuring a Registry
	Publishing a Proxy Service to a UDDI Registry
	Publishing Local Proxy Services to UDDI

	Using Auto-Publish
	Importing a Service from a Registry
	Using Auto-Import
	Auto-Synchronization of Services With UDDI
	Mapping ALSB Proxy Services to UDDI Entities
	UDDI Mapping Details for an ALSB Proxy Service
	Transport Attributes
	Service Type Attributes

	Canonical tModels Supporting ALSB Services
	Example

	Extensibility Using Java Callouts and POJOs
	Usage Guidelines
	Best Practices

	XQuery Implementation
	Supported Function Extensions from AquaLogic Data Services Platform
	Function Extensions from ALSB
	fn-bea:lookupBasicCredentials
	fn-bea: uuid()
	fn-bea:execute-sql()
	Example 1: Retrieving the URI from a Database for Dynamic Routing
	Example 2: Getting XMLType Data from a Database

	fn-bea:serialize()

	XQuery-SQL Mapping Reference
	IBM DB2/NT 8
	Microsoft SQL Server
	Oracle 8.1.x
	Oracle 9.x, 10.x
	Sybase 12.5.2 (and higher)
	Pointbase 4.4 (and higher)
	Base (Generic) RDBMS Data Type Mapping
	Related Topics

	Debugging ALSB
	ALSB APIs
	Resource Update and Customization
	Management and Monitoring
	Deployment

