
Oracle® Enterprise Service Bus
Developer's Guide

10g (10.1.3.3.0)

E10295-01

June 2007

Oracle Enterprise Service Bus Developer's Guide, 10g (10.1.3.3.0)

E10295-01

Copyright © 2006, 2007, Oracle. All rights reserved.

Primary Author: Rima Dave

Contributors: Abhimanyu Prabhavalkar, Amitabh Nandan, Aninda Sengupta, Ashwin Patel, Brian Volpi,
Dave Berry, Demed L'Her, Dhaval Parikh, Eric Belden, Harish Vinayachandran, Ingrid Stuart, Mahesh
Narayana, Maneesh Joshi, Nishad Desai, Prasad Dixit-Hardikar, Rakesh Saha, Santhosh Kumar, Seegler
Ittyavirah, Sivaraj Subbaiyan, Zahid Syed

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

List of FiguresList of Tables

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Related Documents ... xvi
Conventions ... xvi

1 Introduction to Oracle Enterprise Service Bus

Oracle Enterprise Service Bus Concepts Overview ... 1-1
Oracle Enterprise Service Bus Integration Features.. 1-2

Connectivity... 1-2
Document Transformation .. 1-4
Content-Based and Header-Based Routing .. 1-4

Creating, Configuring, and Managing Oracle Enterprise Service Bus.. 1-5
Introduction to Oracle JDeveloper .. 1-6
Introduction to the Oracle Enterprise Service Bus Control.. 1-7

Oracle Enterprise Service Bus Architecture .. 1-8
Sample Oracle Enterprise Service Bus Scenario .. 1-9
Starting, Stopping, and Accessing Oracle Enterprise Service Bus Components...................... 1-10

Starting and Stopping the ESB Server .. 1-11
Windows Installation .. 1-11
Linux Installation ... 1-11

Opening Oracle JDeveloper... 1-12
Opening the Oracle ESB Control .. 1-12

2 Developing the Enterprise Service Bus

Overview of Oracle JDeveloper .. 2-1
Overview of Connection Navigator Tab... 2-1
Overview of the Application Navigator Tab ... 2-1
Overview of the Design Tab and Component Palette .. 2-2
Overview of Service Definitions and Routing Rules .. 2-4

Getting Started with Oracle JDeveloper.. 2-5
Creating and Testing Connections .. 2-6

Viewing Port Numbers .. 2-6
Creating an Application Server Connection ... 2-7

iv

Creating an Integration Server Connection .. 2-8
Creating a Database Connection... 2-8
Testing a Connection ... 2-10

Creating Applications and ESB Projects .. 2-11
Creating ESB Systems and Service Groups ... 2-12

Creating ESB Systems.. 2-12
Creating ESB Service Groups ... 2-13

Adding Project Content.. 2-14
Importing Files into a Project .. 2-14
Registering ESB Projects and Services with the ESB Server ... 2-15
Syncing Services From ESB Server ... 2-15
Deleting ESB Projects.. 2-16

3 Monitoring the Enterprise Service Bus

Overview of the Oracle ESB Control.. 3-1
Understanding the Layout of the Oracle ESB Control.. 3-3

Oracle ESB Control Services View... 3-3
Oracle ESB Control Instances View... 3-5
Oracle ESB Control Maps View ... 3-6

Creating, Viewing, and Updating Organizational Units for Services ... 3-7
Managing Oracle Enterprise Service Bus Systems and Service Groups 3-8

Creating an ESB System ... 3-8
Viewing or Modifying an Existing ESB System Definition .. 3-9
Creating Service Groups ... 3-10
Viewing or Modifying an Existing Service Group.. 3-11
Deleting Systems or Service Groups ... 3-11

Viewing and Updating Service Definitions... 3-12
Enabling and Disabling Services... 3-12
Viewing Service Definitions .. 3-12

Understanding and Managing Routing Rules .. 3-14
Creating or Modifying Routing Rules.. 3-14
Viewing Routing Rules... 3-15
Deleting Routing Rules .. 3-16

Defining and Managing Tracking Fields.. 3-16
Understanding the Trackable Fields Tab... 3-17
Defining and Updating Trackable Fields .. 3-17
Using the Expression Builder to Specify a Trackable Field Expression.................................. 3-18
Enabling and Disabling Trackable Fields .. 3-19
Deleting Trackable Fields... 3-20

4 Creating Inbound and Outbound Services

Configuring Adapter Services with Oracle Enterprise Service Bus... 4-1
Using Adapter Services ... 4-2

Creating Adapter Services ... 4-3
Modifying Adapter Services ... 4-4
Deleting Adapter Services ... 4-4
Example: Creating an Inbound File Adapter.. 4-4

v

Using SOAP Invocation Services ... 4-7
Creating a SOAP Service.. 4-7
Modifying SOAP Services ... 4-9
Deleting SOAP Services ... 4-9

Browsing for Deployed Services... 4-10
Using Endpoint Properties .. 4-11

Specifying Endpoint Properties ... 4-11
Creating a BPEL Partner Link to an ESB Service .. 4-12
Calling an ESB Service From an External Service... 4-13

5 Creating Routing Services and Routing Rules

Introduction to Routing Services and Routing Rules ... 5-1
Overview of Specifying the Routing Service WSDL... 5-2

Modifying the Service WSDL File .. 5-4
Specifying Routing Service Properties... 5-6

Overview of Specifying Routing Rules... 5-7
Target Service and Operation Overview... 5-9
Filter Expression Overview .. 5-10
Transformation Overview .. 5-12
Accept Messages From Overview ... 5-13
Routing Invocation Type Overview.. 5-13
Routing Rule Priority Overview.. 5-13

Creating and Modifying Routing Services .. 5-13
Opening the Create Routing Service Dialog ... 5-13
Specifying the WSDL File for a Routing Service .. 5-14

Generating the WSDL for a Routing Service from an Existing XSD File......................... 5-14
Generating the WSDL to Create a Routing Service Based on a Sample File................... 5-16
Selecting an Existing WSDL to Create a Routing Service .. 5-17

Specifying Routing Rules... 5-18
Specifying the Target Operations .. 5-19
Creating an XSL Map File for Data Structure Transformation ... 5-20
Using An Expression for Filtering Messages Based on Payload 5-20
Specifying the ESB Systems From which Messages are Accepted 5-26
Specifying Synchronous or Asynchronous Execution ... 5-27
Specifying Routing Rules Priority ... 5-27

Header Transformation and Filtering .. 5-27
Header Support Terminology.. 5-27
Header-based Transformation ... 5-28
Header-Based Filtering ... 5-31
Limitations of ESB Header Support .. 5-32

Modifying a Routing Service... 5-33
Deleting a Routing Service... 5-33

6 XSLT Data Mapper and Transformations

XSLT Data Mapper ... 6-1
Notes on the Mapper ... 6-3

vi

Creating an XSL Map with Data Mapper .. 6-3
Using the XSLT Mapper .. 6-6

Simple Copy by Linking Nodes... 6-7
Setting Constant Values .. 6-7
Adding Functions... 6-8

Editing Function Parameters... 6-9
Chaining Functions.. 6-10
Named Templates.. 6-11
Importing User-Defined Functions ... 6-11

Editing XPath Expressions... 6-11
Adding XSLT Constructs ... 6-12

Conditional Processing with xsl:if ... 6-12
Conditional Processing with xsl:choose ... 6-13
Handling Repetition or Arrays .. 6-14

Automatically Mapping Nodes .. 6-15
Auto Map with Confirmation .. 6-16

Viewing Unmapped Target Nodes .. 6-17
Generating Dictionaries ... 6-18
Creating Map Parameters and Variables... 6-18

Creating a Map Parameter.. 6-19
Creating a Map Variable ... 6-19

Searching Source and Target Nodes .. 6-20
Ignoring Elements in the XSLT Document.. 6-21
Replacing a Schema in the XSLT Mapper.. 6-22
Using Instance Id in the XSLT Mapper.. 6-22

Using the Mapper Test Utility .. 6-22
Testing a Map .. 6-22
Generating Reports ... 6-24

Correcting Memory Errors When Generating Reports .. 6-25
Sample XML Generation.. 6-25

7 Domain-Value Maps

Understanding Domain-Value Maps ... 7-1
Creating and Populating Domain-Value Maps .. 7-1

Creating a New Domain-Value Map from Scratch ... 7-2
Exporting a Domain-Value Map.. 7-4
Domain-Value Map Template and XSD Files .. 7-5
Importing an Existing Domain-Value Map File .. 7-7
Importing Rows Into a Domain-Value Map .. 7-8
Editing a Domain-Value Map ... 7-10

Editing the Name of a Domain-Value Map ... 7-10
Adding Rows or Columns to a Domain-Value Map .. 7-11
Deleting a Row from a Domain-Value Map .. 7-11
Deleting a Column from a Domain-Value Map .. 7-11
Renaming a Column in a Domain-Value Map .. 7-11
Reordering the Columns in a Domain-Value Map ... 7-11
Resetting a Domain-Value Map to Its Last Saved State ... 7-12

vii

Resizing Columns in a Domain-Value Map .. 7-12
Deleting a Domain-Value Map ... 7-12

Using a Domain-Value Map in a Transformation ... 7-12

8 Creating Cross References

Introduction to Cross References .. 8-1
Introduction to the Cross Reference Command-Line Utility .. 8-4
Creating, Modifying, and Deleting Cross Reference Table ... 8-5

Modifying Cross Reference Tables .. 8-5
Deleting a Cross Reference Table .. 8-5

Populating Cross Reference Tables .. 8-6
xref:populateXRefRow Function ... 8-6

Using the xref:populateXRefRow Function .. 8-8
xref:populateXRefRow1M Function... 8-10

Looking Up Cross Reference Tables.. 8-12
xref:lookupXRef Function.. 8-12

Using the xref:lookupXRef Function... 8-12
xref:lookupXRef1M Function .. 8-14

Deleting Cross Reference Table Values .. 8-15
Importing and Exporting Cross References ... 8-17

Exporting Cross Reference Tables .. 8-17
Importing Cross Reference Tables.. 8-17

Schema Definition (XSD) File for Cross References.. 8-18

9 Administering the Enterprise Service Bus

Administrative Stages ... 9-1
Planning Resources for the ESB ... 9-2

Understanding Oracle Enterprise Service Bus Clusters ... 9-2
Providing Security.. 9-4
Setting Up Notification Channels... 9-4

Specifying Notification Channels .. 9-4
Configuring the Email Notification... 9-5
Configuring the Wireless Provider for Voice... 9-7
 Configuring Paging Notification .. 9-9
Configuring Mobile Notification ... 9-9
Configuring Phone Notification .. 9-9

Configuring the FAX Cover Page... 9-9
Testing the ESB Services ... 9-9
Checking Log Files.. 9-11

Viewing Log Files.. 9-12
Configuring Log Files... 9-13

Moving the ESB Instance to a Different Oracle Home .. 9-13
Using the ESB Import and Export Utilities.. 9-15

Configuring the InterConnect Adapter with ESB... 9-16

viii

10 Tracking Message Instances Across the Enterprise Service Bus

Overview of the Oracle ESB Control Instances View .. 10-1
Understanding Instances View Elements and Controls .. 10-2
Administering Message Instances ... 10-5

Enabling and Disabling Instance Tracking.. 10-6
Viewing Instance Details.. 10-6
Viewing Instance Statistics .. 10-7
Searching for Message Instances... 10-7
Purging Message Instances.. 10-9

11 Error Handling

Overview of Error Handling ... 11-1
Managing Error Conditions .. 11-2

Inbound Adapter Error Handling .. 11-2
User Error Handling ... 11-2
Resubmitting Messages on Errors .. 11-4

A XPath Extension Functions

add-dayTimeDuration-to-dateTime... A-2
compare ... A-2
compare-ignore-case ... A-3
create-delimited-string ... A-3
current-date... A-4
current-dateTime ... A-4
current-time .. A-4
day-from-dateTime.. A-5
doc .. A-5
ends-with .. A-5
format-dateTime .. A-6
format-string... A-6
generate-guid.. A-6
get-content-as-string ... A-7
get-localized-string.. A-7
getInboundResponseHeader .. A-8
getRequestHeader ... A-8
hours-from-dateTime.. A-8
implicit-timezone .. A-9
index-within-string ... A-9
last-index-within-string ... A-9
left-trim.. A-10
lookup-dvm .. A-10
lookup-table ... A-11
lookup-xml.. A-12
lower-case.. A-12
minutes-from-dateTime ... A-12
month-from-dateTime .. A-13

ix

query-database ... A-13
right-trim ... A-14
seconds-from-dateTime.. A-14
sequence-next-val .. A-14
setOutboundHeader ... A-15
setResponseHeader ... A-15
square-root .. A-16
subtract-dayTimeDuration-from-dateTime.. A-16
timezone-from-dateTime ... A-16
upper-case ... A-17
year-from-dateTime .. A-17

B Oracle Enterprise Service Bus API

ConsoleClientFactory Class... B-1
ConsoleClient Interface ... B-1

Perform Function .. B-1
Using Perform Function... B-2

Get the list of instances.. B-2
Get the list of errored instances ... B-3
Get all the errors occurred in a flow id ... B-3
Get the XML to draw the instance diagram for a flow id .. B-4
Resubmit a list of instances by Ids... B-4
Resubmit an instance by Id .. B-5
Resubmit an instance with modified/unmodified payload.. B-5
Get the current status of the instance tracking .. B-7
Enable/disable instance tracking .. B-7
Purge instances based on time ... B-7

XML Schema File... B-8

Index

x

List of Figures

1–1 Sample Data Mapper Tool... 1-4
1–2 Sample Oracle JDeveloper ... 1-7
1–3 Oracle ESB Control - Services View ... 1-8
1–4 ESB Architecture - Single Instance Environment ... 1-9
1–5 Illustration of a Sample ESB Scenario ... 1-10
1–6 Oracle JDeveloper – Initial Display... 1-12
1–7 Oracle ESB Control - Initial Display.. 1-13
2–1 Sample Application Navigator .. 2-2
2–2 Oracle JDeveloper Design Tab and Component Palette ... 2-3
2–3 Create Routing Service Dialog Box .. 2-4
2–4 Sample Property Sheet for a Routing Service ... 2-5
3–1 Oracle ESB Control - Services View Diagram Tab ... 3-3
3–2 Oracle ESB Control - Instances View Tracking Tab... 3-5
3–3 Oracle ESB Control - Instances View Errors Tab.. 3-6
3–4 Oracle ESB Control - Maps View with Sample Domain-Value Map 3-7
3–5 Icons Used in the Oracle ESB Control.. 3-8
3–6 ESB System – Definition Tab ... 3-9
3–7 Services View – Trackable Fields Tab ... 3-18
3–8 Trackable Fields - Expression Builder... 3-19
4–1 Adapter Configuration Wizard - Messages Page... 4-6
4–2 Create File Adapter Service Dialog .. 4-6
4–3 Automatic Routing Service Creation ... 4-7
4–4 Oracle Application Server Control – Applications .. 4-8
4–5 Service Explorer Dialog... 4-10
4–6 BPEL Partner Link ... 4-13
4–7 Oracle ESB Control – Definition Tab of Services View .. 4-14
5–1 Creating a Routing Service .. 5-2
5–2 Create Routing Service Dialog Box .. 5-3
5–3 Routing Service ... 5-4
5–4 Refresh WSDL Dialog... 5-5
5–5 Populated Refresh WSDL Dialog ... 5-5
5–6 Modified Routing Service .. 5-6
5–7 Routing Rules Priority.. 5-7
5–8 Routing Rules Properties Page ... 5-7
5–9 Routing Rules – Request/Reply/Response Schema ... 5-8
5–10 Routing Rules Icons, Fields, and Options ... 5-8
5–11 Browse Target Service Operation .. 5-10
5–12 Expression Builder Window – Initial View.. 5-11
5–13 Type Chooser Dialog... 5-15
5–14 Create Routing Service - Request Tab... 5-16
5–15 Routing Rule Property Sheet Icons.. 5-18
5–16 Routing Rules for Request/Reply with Target Service Specified..................................... 5-20
5–17 Sample Expression Builder Tool – WSDL Message Element Selected............................. 5-21
5–18 Sample Expression Builder Tool – WSDL Message Element Inserted............................. 5-22
5–19 Sample Expression Builder Tool – Function Selected... 5-23
5–20 Sample Expression Builder Tool – Function Inserted... 5-24
5–21 Sample Expression Builder Tool – Value Entered .. 5-25
5–22 Expression Editing Icons... 5-25
5–23 Request and Outbound Headers ... 5-28
5–24 Response and Inbound Response Headers .. 5-28
5–25 Create Variable Dialog With a Header Transformation Function.................................... 5-30
5–26 Expression Builder With a Header Transformation Function... 5-32
6–1 Sample XSLT Data Mapper Tool .. 6-2
6–2 Request Transformation Map Dialog... 6-4

xi

6–3 Auto Map Preferences Dialog ... 6-4
6–4 XSLT Data Mapper AutoMap ... 6-5
6–5 XSLT Data Mapper Context Menu... 6-6
6–6 Linking Nodes ... 6-7
6–7 Set Text Window... 6-8
6–8 Using the Concat Function .. 6-9
6–9 Editing Function Parameters.. 6-10
6–10 Chaining Functions.. 6-10
6–11 The XPath Building Assistant .. 6-12
6–12 Conditional Processing with xsl:if... 6-13
6–13 Conditional Processing with xsl:choose ... 6-14
6–14 Handling Repetition or Arrays .. 6-15
6–15 Auto Mapping Candidates ... 6-16
6–16 Auto Map with Confirmation .. 6-17
6–17 Completion Status.. 6-18
6–18 Test XSL Map Dialog... 6-23
6–19 Test Window... 6-24
6–20 The Generate Report Dialog... 6-25
7–1 Oracle ESB Control Map View – Create New Map.. 7-3
7–2 Domain-Value Map – Rows Created .. 7-4
7–3 Maps View – Import a New Map Dialog .. 7-8
7–4 Sample Domain-Value Map with a Conflict ... 7-8
7–5 Oracle ESB Control Map View – Import into an Existing Map Dialog............................... 7-9
7–6 Oracle ESB Control Map View – Updated Map After Importing Rows.......................... 7-10
7–7 Arrows for Rearranging Columns In Domain-Value Maps .. 7-11
7–8 Data Mapper – Source to Target Map... 7-13
7–9 Component Palette – lookup-dvm Function.. 7-13
7–10 Data Mapper – look-up dvm Function Added.. 7-14
7–11 Edit Function – lookup-dvm .. 7-14
7–12 Data Mapper – look-up dvm Function Defined.. 7-15
8–1 Common Value Integration Pattern Example .. 8-2
8–2 Expression Builder Dialog Box with Cross Reference Functions .. 8-3
8–3 XSLT Mapper Dialog Box with Cross Reference Functions ... 8-4
8–4 The Edit Function – populateXRefRow Dialog Box... 8-9
8–5 The Populated Edit Function – populateXRefRow Dialog Box .. 8-10
8–6 The Edit Function – lookupXRef Dialog Box ... 8-13
8–7 Populated Edit Function – lookupXRef Dialog Box ... 8-14
8–8 Edit Function – markForDelete Dialog Box ... 8-16
8–9 Populated Edit Function – markForDelete Dialog Box .. 8-16
9–1 ESB Architecture - Clustered Environment .. 9-3
9–2 ESB System – Definition Tab ... 9-5
9–3 Oracle Enterprise Manager Web Services ... 9-10
9–4 Oracle Enterprise Manager Test Web Service.. 9-10
9–5 Oracle Enterprise Manager Test Page... 9-11
9–6 Oracle Application Server Control – OC4J Log Files.. 9-12
9–7 Oracle Application Server Control – Logger Configuration ... 9-13
10–1 Instances View – Tracking Tab and Details Subtab .. 10-2
10–2 Instances View – Manage Panel... 10-2
10–3 Instances View – Search Panel ... 10-3
10–4 Instances Panel Showing Status Codes... 10-3
10–5 Oracle ESB Control – Instances View with Error .. 10-4
10–6 Instances View – Errors Tab ... 10-5
10–7 Sample Overlay Statistics in Instances View ... 10-7
11–1 Instances View – Tracking Tab .. 11-3
11–2 Error Details Dialog... 11-3

xii

11–3 Instances View - Errors Tab.. 11-4

xiii

List of Tables

1–1 Oracle Adapter Services.. 1-3
3–1 Comparison of Features Available in the Oracle ESB Control and Oracle JDeveloper... 3-2
3–2 ESB System Definition Tab .. 3-10
3–3 ESB Service Group Definition Tab ... 3-11
3–4 Service Definition – General Region .. 3-13
3–5 Service Definition - Operations Region ... 3-13
3–6 Service Definition - Operation Details Region.. 3-14
3–7 Routing Rules Tab in Oracle ESB Control ... 3-15
4–1 Summary of Oracle Technology Adapters... 4-2
8–1 Cross Reference Table Sample ... 8-1
8–2 Cross Reference Table with the Common Column... 8-2
8–3 xreftool Commands ... 8-5
8–4 xreftool Commands for Modifying a Cross Reference Table .. 8-5
8–5 xref:populateXRefRow Function Modes .. 8-7
8–6 xref:populateXRefRow Function Results with Different Modes .. 8-8
8–7 A Cross Reference Table with Multiple Column Values .. 8-10
8–8 xref:populateXRefRow1M Function Modes ... 8-11
8–9 xref:populateXRefRow1M Function Results with Different Modes................................ 8-11
9–1 XML Elements for the E-mail Notification Configuration File ... 9-6
9–2 XML Elements for the Voice Notification Configuration File ... 9-7
10–1 Specifying Message Instance Search Criteria.. 10-7

xiv

xv

Preface

This guide provides information about Oracle Enterprise Service Bus. The information
includes how to use Oracle JDeveloper and Oracle ESB Control to create and manage
Oracle Enterprise Service Bus.

Audience
This document is intended for all users interested in learning about and using Oracle
Enterprise Service Bus.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

xvi

Related Documents
For more information, see these Oracle resources:

■ Oracle Enterprise Service Bus Quick Start Guide

■ Oracle Enterprise Service Bus Installation Guide

■ Oracle Application Server Adapter Concepts

■ Oracle Application Server Adapter for Files, FTP, Databases, and Enterprise Messaging
User's Guide

■ Oracle Application Server Adapter for Oracle Applications User's Guide

■ Oracle BPEL Process Manager Developer's Guide

■ Oracle Application Server Administrator's Guide

■ Oracle Application Server Performance Guide

■ Oracle Application Server Enterprise Deployment Guide

■ Oracle Application Server High Availability Guide

■ Oracle Web Services Manager Administrator's Guide

■ Oracle Application Server Installation Guide for Microsoft Windows

■ Oracle Application Server Installation Guide for Linux x86

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN):

http://www.oracle.com/technology/documentation/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Introduction to Oracle Enterprise Service Bus 1-1

1
Introduction to Oracle Enterprise Service

Bus

This chapter introduces Oracle Enterprise Service Bus features, concepts, and
components.

This chapter contains the following topics:

■ Oracle Enterprise Service Bus Concepts Overview on page 1-1

■ Creating, Configuring, and Managing Oracle Enterprise Service Bus on page 1-5

■ Oracle Enterprise Service Bus Architecture on page 1-8

■ Sample Oracle Enterprise Service Bus Scenario on page 1-9

■ Starting, Stopping, and Accessing Oracle Enterprise Service Bus Components on
page 1-10

Oracle Enterprise Service Bus Concepts Overview
An enterprise service bus moves data among multiple endpoints, both within and
outside of an enterprise. It uses open standards to connect, transform, and route
business documents as Extensible Markup Language (XML) messages, among
disparate applications. It enables monitoring and management of business data, with
minimal impact on existing applications. An enterprise service bus is the underlying
infrastructure for delivering a service-oriented architecture (SOA) and event-driven
architecture (EDA).

Oracle Enterprise Service Bus is the foundation for services using SOA and EDA. At its
core, it is a loosely coupled application framework that provides your business with
increased flexibility, reusability, and overall responsiveness in a distributed,
heterogeneous, message-oriented environment using industry standards.

Oracle Enterprise Service Bus is a component of Oracle SOA Suite. Oracle SOA Suite is
a standards-based suite that provides an integrated design-time environment and a
common architecture for developing enterprise applications. Oracle SOA Suite enables
services to be created, managed, and orchestrated into composite applications and
business processes.

Oracle Enterprise Service Bus contains the following components:

■ ESB Server

The ESB Server is the runtime server which listens on the control topic for updates
from the ESB Metadata Server and updates its cache.

■ Oracle ESB Control

Oracle Enterprise Service Bus Concepts Overview

1-2 Oracle Enterprise Service Bus Developer's Guide

The Oracle ESB Control provides a Web-based interface for managing,
administering, and monitoring services that you have registered with the ESB
Metadata Server.

■ ESB Metadata Server

The database that holds your ESB metadata such as schemas, transformations, and
routing rules. The ESB Metadata Server is the server to which you register the ESB
services that you have designed using Oracle JDeveloper and configured using
Oracle ESB Control.

■ Oracle JDeveloper

Oracle JDeveloper is a graphical and user-friendly way to model, edit, and design
the services that comprise an Oracle Enterprise Service Bus system.

Oracle Enterprise Service Bus Integration Features
Oracle Enterprise Service Bus features that provide the ability to integrate applications
fall into three broad categories:

■ Connectivity on page 1-2

■ Document Transformation on page 1-4

■ Content-Based and Header-Based Routing on page 1-4

Connectivity
Connectivity is provided through adapter services and Simple Object Access Protocol
(SOAP) invocation services, as described in the list that follows:

■ SOAP invocations services

SOAP invocation services provide connectivity with external SOAP clients, such
as Oracle BPEL Process Manager, Apache Axis, and Microsoft .NET. You can call
Oracle Enterprise Service Bus services from such clients, or you can call those
products from Oracle Enterprise Service Bus.

You might call Oracle Enterprise Service Bus from Oracle BPEL Process Manager,
for example, to take advantage of the document routing features that Oracle
Enterprise Service Bus provides, or you might call Microsoft .NET from Oracle
Enterprise Service Bus to integrate a legacy Microsoft .NET infrastructure.

■ WSIF

Oracle Enterprise Service Bus utilizes WSIF bindings in a WSDL document to
perform native Java calls to external java interfaces. WSIF is also used internally
by the JCA framework.

■ Adapter services

Oracle Application Server adapters provide bidirectional, real-time data access to
virtually any data source in your enterprise.

An adapter either listens for, or polls for, events in the source application it
supports. When listening for events, an adapter registers as a listener for the
application that is configured to push events to the adapter. The adapter can also
poll the back-end application, such as a database or file, for the events required by
Oracle Enterprise Service Bus.

By registering adapters with Oracle Enterprise Service Bus (using a wizard), you
integrate external data sources with Oracle Enterprise Service Bus, and ultimately,
with each other.

Oracle Enterprise Service Bus Concepts Overview

Introduction to Oracle Enterprise Service Bus 1-3

Oracle Enterprise Service Bus Server enables you to define inbound and outbound
adapter services. An inbound adapter service receives data from an external data
source and transforms it into an XML message. An outbound adapter service
sends data to a target application by transforming an XML message into the native
format of the target application. Oracle Enterprise Service Bus Server currently
supports the Oracle adapters described in Table 1–1.

Any service, except an inbound adapter service, created in Oracle Enterprise Service
Bus service, such as an outbound adapter service or routing service (described in
"Content-Based and Header-Based Routing" on page 1-4), is automatically exposed as
a SOAP service without requiring you to provide configuration details. Oracle ESB
Control (described in "Introduction to the Oracle Enterprise Service Bus Control" on
page 1-7) lists the concrete WSDL URL for these services on the Definitions tab. You

Table 1–1 Oracle Adapter Services

Adapter Service Description

File/FTP adapter service An inbound file/FTP adapter service reads data from a local or
remote file system, transforms the file data into an XML message
and sends it to Oracle Enterprise Service Bus when a new text
file appears in a local or remote file system.

An outbound file/FTP adapter service transforms the contents
of an XML messages to a text file and writes it to a local or
remote file system.

Database adapter service An inbound database adapter service sends an XML message to
Oracle Enterprise Service Bus when a SQL insert, update, or
delete operation is performed against a database.

An outbound database adapter transforms the contents of an
XML message into a SQL insert, update, or delete operation on
the target database.

JMS adapter service An inbound JMS adapter service listens on a Java Message
Service (Oracle and non- Oracle) destination and forwards
incoming messages to the Oracle Enterprise Service Bus.

An outbound JMS adapter service writes messages from Oracle
Enterprise Service Bus to a Java Message Service external to
Oracle Enterprise Service Bus.

 MQ adapter service An inbound Native MQSeries adapter service sends an XML
message to Oracle Enterprise Service Bus when new XML
message is received by a queue.

An outbound Native MQSeries adapter service writes messages
from Oracle Enterprise Service Bus to a message queue.

AQ adapter service An inbound AQ adapter service sends an XML message to
Oracle Enterprise Service Bus when a new message is received
by an Oracle Advanced Queuing single or multiconsumer
queue.

An outbound AQ adapter service sends messages from Oracle
Enterprise Service Bus to an Oracle Advanced Queuing single or
multiconsumer queues.

Oracle Applications (OA)
Adapter services

An inbound OA adapter sends XML messages to Oracle
Enterprise Service Bus on receiving messages from an Oracle
E-Business Suite interface.

An outbound OA Adapter inserts data from Oracle Enterprise
Service Bus into Oracle Applications using interface tables, APIs,
and concurrent programs.

Custom adapter service A custom adapter service for configuring third party adapters.

Oracle Enterprise Service Bus Concepts Overview

1-4 Oracle Enterprise Service Bus Developer's Guide

can use the concrete WSDL URL to invoke the service using SOAP over Hypertext
Transfer Protocol (HTTP) from Oracle JDeveloper or Microsoft .Net. On the
Definitions tab, you also specify whether a service can be invoked by an application
(external) outside of Oracle Enterprise Service Bus.

Document Transformation
Oracle Enterprise Service Bus includes a standards-based data mapper launched from
within Oracle JDeveloper. The data mapper specifies an XSL file to transform data
from one XML schema to another, thus enabling data interchange among applications
using different schemas. Multiple transformations may be required to achieve the
desired result. These transformations can be reused, as needed, across your enterprise.

Figure 1–1 shows an example of the data mapper being used to map data from one
schema to another.

Figure 1–1 Sample Data Mapper Tool

Content-Based and Header-Based Routing
Data contained within XML messages are distributed from the source application to a
target application using routing services. As the name suggests, a routing service
determines how a message gets from one point to another within the Oracle Enterprise
Service Bus environment as defined by the routing rules it applies on the XML
message. As you can define rules to route messages based on the message content, that
routing is known as a content-based routing service. Routing that is based on header
transformation and filtering is known as header-based routing.

Routing rules specify the set of services (referred to as target services) that Oracle
Enterprise Service Bus invoke when the routing service receives a message. When you
configure routing rules, you specify the following details:

■ Whether a filter expression is applied.

A filter expression specifies that the contents (payload) of a message be analyzed
before any service is invoked. For example, using the scenario described in

Creating, Configuring, and Managing Oracle Enterprise Service Bus

Introduction to Oracle Enterprise Service Bus 1-5

"Sample Oracle Enterprise Service Bus Scenario" on page 1-9, you might apply a
filter expression that specifies that the database adapter service be invoked only if
the message includes customer contact information.

■ Whether a document transformation is applied.

See Document Transformation on page 1-4 for information about transformations.

■ Whether execution is synchronous or asynchronous

If you specify that execution is synchronous, then Oracle Enterprise Service Bus
invokes the target service immediately; control is not returned to the routing
service until the message has been received by the target service for processing.

If you specify that execution is asynchronous, then Oracle Enterprise Service Bus
uses JMS for delivering the message to the target service, which will be invoked at
a later time. Control is returned to the routing service immediately, before the
target service has received the message.

■ The priority level for execution

The priority level, determined by the order in which routing rules are ordered,
determines the order in which outbound service invocation actions are executed.

For information about routing rules, see "Specifying Routing Rules" on page 5-18. For
information about header transformation and filtering, see "Header Transformation
and Filtering" on page 5-27.

Creating, Configuring, and Managing Oracle Enterprise Service Bus
The two main tools for creating, configuring, and managing Oracle Enterprise Service
Bus are the following:

■ Oracle JDeveloper

Oracle JDeveloper is primarily intended for specifying the overall enterprise
service bus creation and configuration. It enables you to:

– Create inbound and outbound adapter services

Oracle JDeveloper provides an adapter configuration wizard that assists you
in creating inbound and outbound adapter services.

– Create routing services from inbound adapter services

When you complete the adapter configuration wizard for an inbound adapter
service, Oracle JDeveloper gives you the opportunity to create a routing
service from the newly created inbound adapter service.

– Select the routing service that will route to an outbound service

When you complete the adapter configuration wizard for an outbound
adapter service, Oracle JDeveloper gives you the opportunity to specify the
routing service that will route to the newly created outbound service.

– Specify or create document transformation files (XSL files)

As part of creating routing services from an inbound adapter service or
specifying an existing routing service to an outbound adapter service, you can
specify if a transformation is needed.

If a transformation is needed, you can specify that an existing transformation
file be used, or specify that you want to create a new transformation file. If

Creating, Configuring, and Managing Oracle Enterprise Service Bus

1-6 Oracle Enterprise Service Bus Developer's Guide

you specify that you want to create a new transformation file, Oracle
JDeveloper opens the data mapper tool to enable you to do so.

■ Oracle ESB Control

Oracle ESB Control is primarily intended for run time use. It enables you to:

– View the Oracle Enterprise Service Bus configuration graphically.

As shown in Figure 1–3, Oracle ESB Control provides a graphical
representation of the inbound and outbound adapter services, the routing
services and the connections among them.

– Adjust routing rules

Oracle ESB Control provides property pages that enable you to specify or
adjust the routing rules for routing services. For example, if you have write
privileges you can specify a filter expression, or add or change the document
transformation file associated with a routing operation.

– View run-time statistics

Oracle ESB Control enables you to view run-time statistics for messages
processed by the various services.

– Track message instances across the enterprise service bus

Similar to the configuration diagram, Oracle ESB Control provides a graphical
representation of the message flow through the services of Oracle Enterprise
Service Bus.

– You can also use Oracle ESB Control to create systems and service groups.
Systems and service groups are described in "Introduction to the Oracle
Enterprise Service Bus Control" on page 1-7.

The following two sections introduce these tools in more detail:

■ Introduction to Oracle JDeveloper on page 1-6

■ Introduction to the Oracle Enterprise Service Bus Control on page 1-7

Introduction to Oracle JDeveloper
Oracle JDeveloper is an integrated development environment (IDE) for building
applications and Web services using Java, XML, and SQL standards. Oracle
JDeveloper supports the entire development life cycle with integrated features for
designing, coding, debugging, testing, profiling, tuning, and registering applications.
A visual and declarative development approach and the Oracle Application
Development Framework (ADF) work together to simplify application development
and reduce coding tasks.

Oracle Enterprise Service Bus includes support for the following in Oracle JDeveloper:

■ Transformations and routing from inbound and outbound adapter services

■ Adapters

■ SOAP Services

Figure 1–2 shows Oracle JDeveloper with an ESB project.

Creating, Configuring, and Managing Oracle Enterprise Service Bus

Introduction to Oracle Enterprise Service Bus 1-7

Figure 1–2 Sample Oracle JDeveloper

The Applications Navigator displays the project files that you have created. In
Figure 1–2, for example, the Applications Navigator includes an application named
ESBSamples, which contains the project node entitled CustomerData. When the
CustomerData node is expanded you can see the WSDL files that define the adapter
services for the application, and the XSD files that define the structure of the data that
will be routed across the Oracle Enterprise Service Bus.

For more information, see Chapter 2, "Developing the Enterprise Service Bus".

Introduction to the Oracle Enterprise Service Bus Control
You monitor and make run-time adjustments to the Oracle Enterprise Service Bus
configuration using the Oracle ESB Control. The Oracle ESB Control provides the
Services, Instances, and Maps views, which you select by clicking the icons that run
across the top of the page.

■ The Services view enables you to view service definitions, update routing rules,
define trackable fields, and view a schematic diagram of the services. For more
information, see "Oracle ESB Control Services View" on page 3-3.

■ The Instances view enables you to view details about message processing across
an ESB system. For more information, see "Oracle ESB Control Instances View" on
page 3-5.

■ The Maps view enables you to create, update, and delete domain-value maps, as
well as view, export, and import existing domain-value maps. For more
information, see "Oracle ESB Control Maps View" on page 3-6.

Figure 1–3 is an example of the Services view of Oracle ESB Control.

Oracle Enterprise Service Bus Architecture

1-8 Oracle Enterprise Service Bus Developer's Guide

Figure 1–3 Oracle ESB Control - Services View

For more information, see Chapter 3, "Monitoring the Enterprise Service Bus".

Oracle Enterprise Service Bus Architecture
ESB services are designed and configured with Oracle JDeveloper and Oracle ESB
Control user interfaces. The ESB project which contains the services is registered to the
ESB Server. The ESB Server supports multiple protocol bindings including
HTTP/SOAP, JMS, JCA, WSIF, and Java that ensure guaranteed, reliable message
delivery using synchronous/asynchronous, request/reply or publish/subscribe
models. However, the ESB Server does not support Remote Method Invocation (RMI).

When an ESB project is registered with the ESB server, ESB files created in Oracle
JDeveloper or Oracle ESB Control are deployed to the design time metadata server.
The following JMS topics are running on the design time metadata server: control,
monitor, resubmit, and defer. Also running on the metadata server are the following
servlets: console, WSIL, design time, WebDav, and SOAP provider.

The created or updated service definition files are translated and captured in a
relational form in the ORAESB schema in the database repository while the XSD, XSL,
WSDL, and map files are written to the file system. The service definition files have
pointers to the XSD, XSL, WSDL, and map files.

An ESB runtime server, or multiple servers in a cluster, accesses the control topic file
on the design metadata server to cache the information for the ESB runtime services.
ESB runtime servers listen on the control topic to get notified of any metadata changes.
These notifications result into reload of cached metadata for the entities that changed.
The ESB runtime server contains the following: server execution, memory cache, JMS
error topic, XML/XSL engine, and JCA adapter agents.

At runtime, the ESB message flow is initiated by an inbound adapter polling or
listening for an event, such as a file copied to the directory specified for an inbound
file adapter. The ESB flow is also initiated when an external SOAP/HTTP process
invokes the Web service associated with an ESB routing service.

Sample Oracle Enterprise Service Bus Scenario

Introduction to Oracle Enterprise Service Bus 1-9

Figure 1–4 is an illustration of ESB architecture running on a single instance. For an
illustration of ESB architecture on a clustered environment, see Figure 9–1 on page 9-3.

Figure 1–4 ESB Architecture - Single Instance Environment

Sample Oracle Enterprise Service Bus Scenario
In most business environments, customer data resides in disparate sources, including
business partners, legacy applications, enterprise applications, databases, and custom
applications. The challenge of integrating this data can be met using Oracle Enterprise
Service Bus to deliver appropriate real-time data access to all applications that update
or have a common interest in the same data.

For example, Oracle Enterprise Service Bus might accept data contained in a text file,
transform it to a format appropriate for updating a database that serves as a customer
repository, and route and deliver the data to that database.

To accomplish all the required tasks, Oracle Enterprise Service Bus follows these basic
steps, which are shown in Figure 1–5. These steps are simplified for the purposes of
the introductory example.

Figure 1–5 illustrates a scenario in which Oracle Enterprise Service Bus:

1. Receives the customer data from a file system as a text file, through an inbound
file adapter service named CustIn. The CustIn adapter service sends the
message to a routing service named CustIn_RS.

2. The CustIn_RS routing service transforms the data format from the file adapter's
schema into the canonical XML schema, and sends the message to the routing
service named CustOut_RS.

3. The CustOut_RS routing service:

■ Routes the message in the canonical format to the CRMOut file adapter service.

Database

Console

User
Interfaces

Metadata Server

JMS Topics
· Control
· Monitor
· Resubmit
· Defer

Servlets
· Console
· WSIL
· Design Time
· WebDav
· SOAP Provider

Data Services

JDeveloper
Service MD
Routing Rules
Instances
Errors

Runtime Server
· Server Execution
· Memory Cache
· JMS Error Topic
· XML/XSL Engine
· JCA Adapter Agents

· XSD
· XSLT
· WSDL
· Maps

WebDAV

Starting, Stopping, and Accessing Oracle Enterprise Service Bus Components

1-10 Oracle Enterprise Service Bus Developer's Guide

■ Applies a filter expression to the XML message payload to determine whether
the message should be routed to the outbound adapter service for the
Customer Information Database, CustDBOut.

■ Invokes the appropriate adapter services (as determined by the filter
expression). Routing rules specify that messages bound for the CustDBOut
service be sent synchronously, while those bound for the CRMOut service be
sent asynchronously.

– If the receiving adapter service is CustDBOut, then the CustDBOut
service is invoked immediately and control is not returned to the
CustOut_RS service until the message has been received by CustDBOut.

– If the receiving adapter service is CRMOut, then the message is sent to JMS
and control is immediately returned to the CustOut_RS service.

4. The outbound adapter service delivers the message to its associated external
application.

Figure 1–5 Illustration of a Sample ESB Scenario

Starting, Stopping, and Accessing Oracle Enterprise Service Bus
Components

The key Oracle Enterprise Service Bus components are the ESB Server, Oracle
JDeveloper, and Oracle ESB Control.

This section contains the following topics:

■ Starting and Stopping the ESB Server on page 1-11

■ Opening Oracle JDeveloper on page 1-12

■ Opening the Oracle ESB Control on page 1-12

For information about the system requirements for and the installation of Oracle
Enterprise Service Bus, see Oracle Enterprise Service Bus Installation Guide.

For information about the system requirements for and the installation of Oracle
Application Server 10g Release 3 (10.1.3.1.0) which provides the Oracle SOA Suite, see
the Oracle Application Server 10g Release 3 (10.1.3.1.0) installation guide for your
system.

See Also: Oracle Enterprise Service Bus Quick Start Guide for
step-by-step instructions on implementing this scenario

Starting, Stopping, and Accessing Oracle Enterprise Service Bus Components

Introduction to Oracle Enterprise Service Bus 1-11

For information about getting started with the Oracle SOA Suite components of Oracle
Application Server 10g Release 3 (10.1.3.1.0), see Oracle Application Server
Administrator's Guide.

Starting and Stopping the ESB Server
This section discusses starting and stopping the ESB Server for the Oracle Enterprise
Service Bus standalone Developers installation type. For information about the Oracle
Enterprise Service Bus installation types, see Oracle Enterprise Service Bus Installation
Guide.

The process of starting and stopping the ESB Server depends on the operating system
where the ESB server is located.

Windows Installation
To start the ESB Server on Windows, use one of the following methods:

■ From the desktop Start button, select Programs > Oracle – Oracle_Home >
Oracle ESB > Start ESB Server, where Oracle_Home is the name of the Oracle
home where you installed Oracle Enterprise Service Bus.

■ From a command window, run Oracle_Home/opnm/bin/opmnctl startall
where Oracle_Home is the name of the Oracle home where you installed Oracle
Enterprise Service Bus

To stop the ESB Server on Windows, use one of the following methods:

■ From the desktop Start button, select Programs > Oracle – Oracle_Home >
Oracle ESB > Stop ESB Server, where Oracle_Home is the name of the Oracle
home where you installed Oracle Enterprise Service Bus.

■ From a command window, run Oracle_Home/opnm/bin/opmnctl stopall
where Oracle_Home is the name of the Oracle home where you installed Oracle
Enterprise Service Bus

Linux Installation
To start the ESB Server on Linux:

1. Start a command prompt and navigate to the Oracle_Home/opmn/bin folder.

2. Run the following from the operating system prompt:

opmnctl startall

To stop the ESB Server on Linux:

1. Start a command prompt and navigate to the Oracle_Home/opmn/bin folder.

2. Run the following from the operating system prompt:

opmnctl stopall

To check the status of the ESB Server on Linux:

Note: The Oracle Application Server SOA Suite Basic Install type is
recommended for developers. For information about the Oracle SOA
Suite installation, see the Oracle Application Server 10g Release 3
(10.1.3.1.0) installation guide for your system. For information about
stopping and starting Oracle SOA Suite components of Oracle
Application Server, see Oracle Application Server Administrator's Guide.

Starting, Stopping, and Accessing Oracle Enterprise Service Bus Components

1-12 Oracle Enterprise Service Bus Developer's Guide

1. Start a command prompt and navigate to the Oracle_Home/opmn/bin folder.

2. Run the following from the operating system prompt:

opmnctl status

Opening Oracle JDeveloper
To launch Oracle JDeveloper, run the jdeveloper executable in the JDeveloper home
directory. The Oracle JDeveloper is started, as shown in Figure 1–6.

Figure 1–6 Oracle JDeveloper – Initial Display

To close Oracle JDeveloper, click Exit in the File menu.

Opening the Oracle ESB Control
The Oracle ESB Control is launched from a Web browser. The Oracle ESB Control can
be accessed with the following URL:

http://host_name:port_number/esb

In the URL example, host_name is the host name where the ESB Server is running
and port_number is the Oracle HTTP Server Listen port number, which is listed in

Starting, Stopping, and Accessing Oracle Enterprise Service Bus Components

Introduction to Oracle Enterprise Service Bus 1-13

the output from the opmnctl status -l command. For more information about
viewing port numbers, see "Viewing Port Numbers" on page 2-6.

On Windows, you can launch the Oracle ESB Control from the Start menu. Select All
Programs > Oracle – Oracle_Home > Oracle ESB > ESB Control from the desktop
Start button, where Oracle_Home is the name of the Oracle home where you installed
Oracle Enterprise Service Bus.

Before opening the Oracle ESB Control, you must first start the ESB Server as
described in "Starting and Stopping the ESB Server" on page 1-11.

The Oracle ESB Control opens, as shown in Figure 1–7.

Figure 1–7 Oracle ESB Control - Initial Display

In Figure 1–7, The BPEL System is default location where BPEL services display up if
they are on the same SOA Suite container. The default service group matches the
BPEL Domain name for that BPEL process.

Starting, Stopping, and Accessing Oracle Enterprise Service Bus Components

1-14 Oracle Enterprise Service Bus Developer's Guide

Developing the Enterprise Service Bus 2-1

2
Developing the Enterprise Service Bus

The primary interface for developing an enterprise service bus is Oracle JDeveloper.
This chapter provides an introduction to Oracle JDeveloper, an overview of the design
process, and detailed descriptions of how to accomplish the tasks required to design
an Oracle Enterprise Service Bus.

This chapter contains the following topics:

■ Overview of Oracle JDeveloper on page 2-1

■ Getting Started with Oracle JDeveloper on page 2-5

Overview of Oracle JDeveloper
Oracle JDeveloper is a integrated development environment that provides tools to
help you design the enterprise service bus. It includes wizards and a design panel that
enable you to view the services that you create visually.

When you open Oracle JDeveloper, the interface appears as shown in Figure 1–6,
"Oracle JDeveloper – Initial Display" on page 1-12.

The following sections introduce the key components of Oracle JDeveloper:

■ Overview of Connection Navigator Tab on page 2-1

■ Overview of the Application Navigator Tab on page 2-1

■ Overview of the Design Tab and Component Palette on page 2-2

■ Overview of Service Definitions and Routing Rules on page 2-4

Overview of Connection Navigator Tab
The Connection Navigator tab, which appears in the upper left corner of Oracle
JDeveloper, enables you to create connections from Oracle JDeveloper to various
servers, such as an application or integration server. You can also create a connection
to a database. If the Connection Navigator is not visible in your console, from the
View menu, select Connection Navigator.

See "Creating and Testing Connections" on page 2-6.

Overview of the Application Navigator Tab
The Application Navigator tab, which appears in the upper left corner of Oracle
JDeveloper, is the starting point of the design process. If the Applications Navigator is
not visible in your console, from the View menu, select Application Navigator.

Overview of Oracle JDeveloper

2-2 Oracle Enterprise Service Bus Developer's Guide

You use the Application Navigator tab to create an application workspace and an ESB
project. Within an ESB project you can create multiple ESB systems. As you build the
enterprise service bus, the files you create for the services, transformation maps, and
so on, are presented in the Applications Navigator within the project folder.

A sample Application Navigator tab is shown in Figure 2–1. In this sample, an
application workspace named ESBSamples contains an ESB project named
CustomerData. See "Creating Applications and ESB Projects" on page 2-11 for
step-by-step instructions.

Figure 2–1 Sample Application Navigator

When you right-click a node in the Application Navigator tab, a menu of commands is
displayed. The menu commands displayed depend on the node selected. For example,
when you right-click an ESB project, such as CustomerData in Figure 2–1, the
following commands are included in the menu:

■ New

This command opens the New Gallery dialog box, which provides access to dialog
boxes and wizards that enable you to create new projects, create inbound and
outbound adapter services, and access the document transformation tool.

■ Register with ESB

This command enables you to register the adapter services, transformations, and
routing services that you design using Oracle JDeveloper with Oracle Enterprise
Service Bus. When you register the ESB project with the ESB Server, as described
in "Registering ESB Projects and Services with the ESB Server" on page 2-15, the
files are written to the ESB repository and are available from the Oracle ESB
Control.

Overview of the Design Tab and Component Palette
When you double-click an ESB project in the Applications Navigator, the project
properties dialog displays. Click the diagram component (esb file) in the Resources
folder within the project to display the Design tab and the Component Palette. If you

Overview of Oracle JDeveloper

Developing the Enterprise Service Bus 2-3

click the down arrow under Component Palette and select ESB Services, the types of
ESB services from which you can choose to build your enterprise service bus are
displayed, as shown in Figure 2–2. Similarly, if you click the down arrow under the
Component Palette and select Adapter Services, you can choose the type of adapter
service you want to create to move messages into and out of the enterprise service bus.

The Design tab initially appears in the empty area in the middle of the figure; the
Components Palette appears to its right. In Figure 2–2, the CustomerData project is
selected in the Applications view and the Design tab displays the adapter and routing
services in the project.

Figure 2–2 Oracle JDeveloper Design Tab and Component Palette

To create an ESB service, you drag a desired ESB service type from the Components
palette and drop it onto the Design tab. When you do so, a wizard or dialog box opens
to assist you in creating the desired service. Alternatively, you can create ESB services
and Adapter Services using dialog boxes only, but the Design tab provides a visual
method for building the enterprise service bus.

For example, you can drag and drop a Routing Service from the Component Palette to
the Design tab. When you do so, the Create Routing Service dialog box opens, as
shown in Figure 2–3. When you complete this dialog box and click OK, an icon
appears on the Design tab, similar to the CustOut_RS in Figure 2–2.

Overview of Oracle JDeveloper

2-4 Oracle Enterprise Service Bus Developer's Guide

Figure 2–3 Create Routing Service Dialog Box

You can use this building block approach to add the component services to the
enterprise service bus design one-by-one. Figure 2–2, for example, shows a completed
simple ESB configuration.

See Chapter 4, "Creating Inbound and Outbound Services" for conceptual information
and step-by-step instructions on creating adapter services. See Chapter 5, "Creating
Routing Services and Routing Rules" detailed conceptual information and step-by-step
instructions on creating routing services and specifying routing rules.

Overview of Service Definitions and Routing Rules
After you have created some services, you can view the definition of, and define
properties for, each service. You can also view routing rules for a routing service.

For example, suppose you create the routing service whose icon is in the Design tab
shown in Figure 2–2. When you double-click the top of the icon, property sheets
replace the visual presentation of the enterprise service bus configuration. The Routing
Rules panel is only displayed when you are viewing the property sheets for a routing
service.

As shown in Figure 2–4, the Definition section presents the service name, ESB system
(and group, if applicable), a description of the service, the name of the WSDL file that
defines the service, the port type and an indication of whether the service can be
invoked from a service that is external to the ESB system in which the service was
created.

Getting Started with Oracle JDeveloper

Developing the Enterprise Service Bus 2-5

Figure 2–4 Sample Property Sheet for a Routing Service

The Routing Rules section, shown in Figure 2–4, presents icons that provide access to
the tools that enable you to specify a filter expression, a transformation map, and the
target operation (defined within the target service WSDL). It also enables you to limit
the ESB systems from which messages will be accepted and whether execution of the
target operation is to be synchronous or asynchronous.

See Chapter 5, "Creating Routing Services and Routing Rules" for step-by-step
instructions about creating routing services.

Getting Started with Oracle JDeveloper
The overall process and tasks required for designing the enterprise service bus are
outlined in the following list. Links to step-by-step instructions are specified for each
task:

1. Start the ESB Server and open Oracle JDeveloper

The key Oracle Enterprise Service Bus design components are the ESB Server,
Oracle JDeveloper, and the database that serves as the ESB Metadata Server. For
information about starting ESB components, see "Starting, Stopping, and
Accessing Oracle Enterprise Service Bus Components" on page 1-10.

2. Create the necessary server and database connections.

See "Creating and Testing Connections" on page 2-6.

3. Create the Oracle JDeveloper applications and projects

See "Creating Applications and ESB Projects" on page 2-11.

4. Create ESB systems and, optionally, service groups.

See "Creating ESB Systems and Service Groups" on page 2-12

5. Add or import into an ESB project.

Getting Started with Oracle JDeveloper

2-6 Oracle Enterprise Service Bus Developer's Guide

See "Adding Project Content" on page 2-14 and "Importing Files into a Project" on
page 2-14.

6. Create the inbound and outbound services, or invoke external services.

See Chapter 4, "Creating Inbound and Outbound Services".

7. Create routing services and configure the routing rules to:

■ Apply conditional expressions to the message instance payload

■ Transform the structure of the message payload

■ Specify where a response in a request/response scenario be sent

■ Specify where faulted messages be sent

See Chapter 5, "Creating Routing Services and Routing Rules".

8. Register services with the ESB repository.

See "Registering ESB Projects and Services with the ESB Server" on page 2-15.

9. Sync services with the ESB Server.

See "Syncing Services From ESB Server" on page 2-15.

If you no longer need a service, you can remove it. See "Deleting ESB Projects" on
page 2-16.

Creating and Testing Connections
To begin configuring an Oracle Enterprise Service Bus, you need to create the
necessary server and database connections.

This section discusses the following topics:

■ Viewing Port Numbers on page 2-6

■ Creating an Application Server Connection on page 2-7

■ Creating an Integration Server Connection on page 2-8

■ Creating a Database Connection on page 2-8

■ Testing a Connection on page 2-10

Viewing Port Numbers
To view port numbers that are used when setting up connections, you can use the
following:

■ On Windows, click the desktop Start button, select All Programs > Oracle –
Oracle_Home > Oracle Process Manager > Oracle Assigned Port Numbers,
where Oracle_Home is the name of the Oracle home where you installed Oracle
Enterprise Service Bus.

■ Run Oracle_Home/opmn/bin/opmnctl.exe status -l, where Oracle_
Home is the name of the Oracle home where you installed Oracle Enterprise
Service Bus.

■ In Oracle Enterprise Manager Application Server Control, open the Cluster
Topology > Runtime Ports page.

■ View the port numbers in the Oracle_Home/opmn/config/opmn.xml file.

Getting Started with Oracle JDeveloper

Developing the Enterprise Service Bus 2-7

Creating an Application Server Connection
To create a new application server connection, follow these steps:

1. Select Connection Navigator under the View menu to display the Connections
Navigator.

2. Right-click Application Server in the tree and select New Application Server
Connection to launch the Create Application Server Connection wizard. The
information you need to provide varies depending on the type of connection you
choose on the Type page. Follow the instructions in the wizard to complete each of
the following pages:

a. Welcome page

b. Type page

Connection Name: Enter a name, such as LocalApplicationServer

Connection Type: Select a type, such as Oracle Application Server
10g 10.13

c. Authentication page

Username: Enter the OC4J username

Password: Enter the password

Deploy Password: Specify whether to deploy the password

d. Connection page

Enter the information for the specific connection type. For example, these are
options for the Oracle Application Server 10g 10.13 type:

Host Name: Enter the host name or localhost

OPMN Port: Enter the port number, such as 6003

OC4J Instance Name: Enter the OC4J instance name

Connect To: Select Single Instance or Group

e. Test page

3. On the Test page, click the Test Connection button to test the information you
provided. If the test succeeds, click the Finish button. If the test fails, review the

Getting Started with Oracle JDeveloper

2-8 Oracle Enterprise Service Bus Developer's Guide

information for the connection and correct as necessary. Before testing, make sure
the ESB Server is running.

Creating an Integration Server Connection
To create a new integration server connection, follow these steps:

1. Select Connection Navigator under the View menu to display the Connections
Navigator.

2. Right-click Integration Server tree and select New Integration Server Connection
to launch the Create Integration Server Connection wizard. Follow the instructions
in the wizard to complete each of the following pages:

a. Welcome page

b. Name page

Connection Name: Enter a name, such as LocalIntegrationServer

c. Connection page

Application Server: Select an application server that has been previously set
up from the list

Host Name: Enter the host name or localhost

Port Number: Enter the port number, such as 8888

Add Host Name: Specify whether you want to add the host name to the proxy
exceptions

d. Test page

3. On the Test page, click the Test Connection button to test the information you
provided. If the test succeeds, click the Finish button. If the test fails, review the
information for the connection and correct as necessary. Before testing, make sure
the ESB Server is running.

Creating a Database Connection
To create a new database server connection, follow these steps:

1. Select Connection Navigator under the View menu to display the Connections
Navigator.

Getting Started with Oracle JDeveloper

Developing the Enterprise Service Bus 2-9

2. Right-click Database tree and select New Database Connection to launch the
Create Database Connection wizard.

Follow the instructions in the wizard to complete each of the following pages. The
Oracle Lite database is used an example in the steps.

a. Welcome page

b. Type page

Connection Name: Enter a name for the database connection, such as Olite.
For the Oracle Lite database, it is strongly recommended to use Olite to
matched the predefined JNDI name (eis/DB/Olite) and in the name in
connector XML file.

Connection Type: Select a connection type from the list, such as Oracle Lite

c. Authentication

Username: Enter the username for the database account

Password: Enter the password for the username

Role: Enter the database role for the user

Deploy Password: Specify whether to deploy the password

d. Connection page

Provide the connections details for the type of database connection selected on
the Type page. For example, if Oracle Lite database type is selected you would
enter data for the fields described in this step.

Driver type and connection details for an Oracle Lite database:

Driver: Select the driver, such as Type 4 Driver

Host Name: Enter the host name where the database is installed

JDBC Port: Enter the port number for database, such as 1531

SID: Enter the service ID of the database, such as oraesb

Location of the Oracle Lite driver jar:

Driver Class: Enter the class name or accept the default class name, such as
oracle.lite.poljdbc.POLJDBCDriver

Library: Enter the library name, such as Olite40.jar

Classpath: Enter the classpath or accept the default classpath, such as
c:\product\10.1.3.1\OraceleAS_
1\integration\esb\lib\olite40.jar

Note: If you have selected the Basic Installation on Windows, an
Oracle Lite database has been installed with a Windows Service
named Oracle Lite Multiuser Service.

Getting Started with Oracle JDeveloper

2-10 Oracle Enterprise Service Bus Developer's Guide

e. Test page

3. On the Test page, click the Test Connection button to test the information you
provided. If the test succeeds, click the Finish button. If the test fails, review the
information for the connection and correct as necessary. Before testing, make sure
the database is running.

Testing a Connection
To review and test the connections in Oracle JDeveloper, perform the following steps:

1. Select Connection Navigator under the View menu to display the Connections
Navigator.

2. In the Connections Navigator, expand the connection tree that you want to test.

For example, expand the Application Server tree.

3. Right-click a connection in the tree that has been already been set up and select
Properties to display the Edit Connection property sheet. You can also
double-click the connection to display the property sheet.

For example, right-click an application server under the expanded Application
Server tree and select Properties. Click the Connection tab to view the connection
properties.

Getting Started with Oracle JDeveloper

Developing the Enterprise Service Bus 2-11

4. Review the information in the property tabs for the connection.

5. In the Test tab, click Test Connection to test the connection.

6. If the test fails, then correct the information in the property tabs and retest. Make
sure that the necessary server is running before testing the connection.

Creating Applications and ESB Projects
To begin configuring an Oracle Enterprise Service Bus, you must create an application
and an ESB project. An application contains one or more projects. An ESB project is a
collection of related files, for example, all the Oracle Enterprise Service Bus services
and associated files within a single Oracle Enterprise Service Bus.

To create an application in Oracle JDeveloper follow these steps:

1. From the File menu, click New.

The New Gallery dialog box opens.

2. In the Categories panel, select General.

3. In the Items panel, double-click Application.

The Create Application dialog box opens.

4. In the Application Name field, enter a name for the application.

5. In the Directory Name field, accept the default value or enter the directory
specification for the directory on the local file system where you want to store the
project files.

6. Click OK.

The Create Project dialog box opens.

7. In the Create Project dialog box, click Cancel. You will use a different dialog box
to create an ESB project.

To create an ESB project, follow these steps after you have created an application:

1. In the Applications Navigator, right-click the application to which you want to
add a project and then click New Project.

The New Gallery dialog box opens.

Getting Started with Oracle JDeveloper

2-12 Oracle Enterprise Service Bus Developer's Guide

2. Select ESB Project under General Projects, and then click OK.

The Create ESB Project dialog box opens.

3. In the Project Name field, enter the name of the project.

4. In the Directory Name field, specify the directory where the project files will be
stored, if you do not want to accept the default directory.

5. In the Diagram Name field, optionally enter a name for the diagram that will
schematically represent the project, if you do not want to accept the default
diagram name.

6. Click OK.

A design area is presented with a label of esb_project-name.esb, or
diagram-name.esb if you specified an optional name for the diagram in the
previous step.

You use this design area to model the enterprise service bus system. It enables you to
drag and drop ESB Services (adapter, routing, and SOAP services) from the
Component Palette panel in the upper-right corner into the design area.

Creating ESB Systems and Service Groups
ESB systems and service groups are units for organizing the services for the Oracle
Enterprise Service Bus.

The following sections contain information about and step-by-step instructions on
creating these organizational units:

■ Creating ESB Systems on page 2-12

■ Creating ESB Service Groups on page 2-13

Creating ESB Systems
A system is a representation of a single application, proxy for an application, or a
technical system. Examples of systems are:

■ An Oracle Applications instance

■ A set of transformations, Oracle BPEL Process Manager services, and adapter
services for an SAP instance

■ A set of transformations, BPEL Services, and database services for a custom
database application

■ A standalone Oracle Business Activity Monitoring instance, complex event
processing (CEP) services, and other related services

■ An Oracle B2B engine (that serves as a proxy for trading partners) and related
transformation services and other services

■ A set of services, adapter services, and Oracle BPEL Process Manager services
representing a bridge to a third party integration infrastructure (such as
webMethods, Inc, and IBM infrastructures)

If you do not explicitly specify an ESB system, then the services created in the ESB
project are added to the default system. The default system is provided for getting
started quickly.

Follow these steps to create an ESB system using Oracle JDeveloper:

Getting Started with Oracle JDeveloper

Developing the Enterprise Service Bus 2-13

1. In the Applications Navigator, open the ESB Project in which you want to create
the ESB system.

2. In the Design tab, click the Create System/Group icon on the top of the Design
window. This is the icon on left in the group of three icons. See Figure 2–2 on
page 2-3 for a screenshot that shows the icons at the top of the Design tab.

The Create ESB System or Service Group dialog box opens.

3. In the Create ESB System or Service Group dialog box, follow these steps:

a. For the Create option, select System.

b. In the Name field, enter a unique name.

The name must be unique across the ESB project in which you are creating it.

c. Optionally, in the Description field, enter a description of the ESB service.

d. Click OK.

4. In the Applications Navigator, click the refresh icon.

An entry for the ESB system in the form, system-name.esbsys, is added to the
Resources folder under the project name. For example, Figure 2–1 on page 2-2
shows a Oracle JDeveloper application that contains an ESB project named
CustomerData and an ESB system also named CustomerData.

For information about creating an ESB system from the Oracle ESB Control, see
"Managing Oracle Enterprise Service Bus Systems and Service Groups" on page 3-8.

Creating ESB Service Groups
A service group is an organization unit for ESB services. Its purpose is much like a
directory in a file structure – it is a mean to organize ESB services in groups.

A service group is similar to a directory in a directory structure. Just as a file can
belong to only one directory, a service can belong to only one service group. Different
services, with the same name can belong to different service groups, just as different
files with the same file name can reside in different directories in a file system. In
addition, you can create one service group within another, resulting in nested service
groups.

Before you can create an ESB service group, you must create an ESB system to contain
it, as described in "Creating ESB Systems" on page 2-12, then follow these steps to
create the ESB service group:

1. In the Applications Navigator, open the ESB Project in which you want to create
the ESB system.

2. In the Design tab, click the Create System/Group icon on the top of the Design
window. This is the icon on the left in the group of three icons. See Figure 2–2 on
page 2-3 for a screenshot that shows the icons at the top of the Design tab.

The Create ESB System or Service Group dialog box opens.

3. In the Create ESB System or Service Group dialog box, follow these steps:

a. For the Create option, select Service Group.

b. In the Name field, enter a unique name.

The name must be unique across the ESB system in which you are creating it.

c. In the System/Group field, enter the ESB system or an existing service group
in which you want to create this service group.

Getting Started with Oracle JDeveloper

2-14 Oracle Enterprise Service Bus Developer's Guide

d. Optionally, in the Description field, enter a description of the ESB service
group.

e. Click OK.

4. In the Applications Navigator, click the refresh icon.

An entry for the ESB service group in the form, service-group-name.esbgrp, is added
to the Resources folder under the project name.

Adding Project Content
You can add project content to an add existing project.

To add content to a project in Oracle JDeveloper, follow these steps:

1. In the Applications Navigator, right-click the ESB Project to which you want to
add project content.

2. Click Add to Project Content in the menu.

The Project Properties dialog opens.

3. Expand Project Content in the tree to view the categories of content that can be
added. These include:

■ Integration Content

■ Modelers

■ Offline Database

■ Resources

■ TopLink

■ Web Application

4. Make your selections for Project Content additions or for additions in the
categories under Project Content.

5. Click OK.

Importing Files into a Project
You can import files into an existing project.

To import files into a project in Oracle JDeveloper, follow these steps:

1. In the Applications Navigator, select the ESB Project to which you want to import
files.

2. Select Import from the File menu.

The Import dialog opens.

Note: If you add an XSD file to the project with the Java Content
feature, the XSD file is not copied to the project directory if it is not
already present in the project directory. Although the file shows up in
the project tree, it does not get deployed to the ESB Server with the
Register with ESB menu option.

Getting Started with Oracle JDeveloper

Developing the Enterprise Service Bus 2-15

3. Select the type of file you want to import from the list in the dialog, then click OK
to launch the wizard for the specific file type. Follow the instructions provided by
each wizard.

For example, select Web Source to launch the Web Source wizard. Browse the
local files system to locate schema files (XSD) that you want to copy into the
project, then click OK.

Registering ESB Projects and Services with the ESB Server
You use the integration server connection to register the ESB project and services that
you have created with Oracle JDeveloper. This registration with the ESB Metadata
Server is required to run these services, and to view and manage these services in the
Oracle ESB Control. Before registering an ESB project and services, make sure you
have a working integration server connection. See "Creating and Testing Connections"
on page 2-6.

To register services using an integration server connection, follow these steps:

1. Right click the ESB project in the Application Navigator.

2. Select the Register with ESB from the menu.

3. Click a local ESB Server option or on a connection to another integration server
that has been set up.

4. When the ESB Registration Summary dialog displays, click OK.

When you refresh the Oracle ESB Control, the ESB services that you registered with
the ESB Metadata Server display in the Oracle ESB Control Service Navigation tree.

Syncing Services From ESB Server
Use the Sync from ESB Server option to copy the metadata from the ESB Server and
replace the corresponding metadata in Oracle JDeveloper. For example, if a routing
rule has been modified in Oracle ESB Control, you can update that routing rule in
Oracle JDeveloper.

This option only replaces Oracle JDeveloper metadata that currently exists in the ESB
Server. When registering services, Oracle JDeveloper can determine that a change has
occurred and gives you the option of syncing services. For information about
registering services, see "Registering ESB Projects and Services with the ESB Server" on
page 2-15.

To sync metadata from the ESB Server:

1. Click the Sync from ESB Server icon at the top of the Design tab. This is the middle
icon (gear with sphere overlay) in the group of three icons. See Figure 2–2 on
page 2-3 for a screenshot that shows the icons at the top of the Design tab.

Note: You can also deploy one or multiple ESB projects to the ESB
Metadata Server by using the custom ant tasks such as
deployESBProjects. The files required for using the custom ant
tasks are available in the following folder of your installation
directory:

ORACLE_HOME\integration\esb\deployment

The deployment folder also contains the documentation about using
the ant tasks.

Getting Started with Oracle JDeveloper

2-16 Oracle Enterprise Service Bus Developer's Guide

2. Click Yes in the Confirm Sync from ESB Server dialog.

Deleting ESB Projects
To delete an ESB project in the Application Navigator, follow these steps:

1. Select the project or service in the Application Navigator.

2. Select Delete from the Edit menu.

3. Click Yes when the Removing Files from IDE dialog displays.

Note that deleting projects or services from the Oracle JDeveloper does not remove the
object from Oracle ESB Control or the ESB Server.

Monitoring the Enterprise Service Bus 3-1

3
Monitoring the Enterprise Service Bus

This chapter describes how to use Oracle ESB Control, a Web-based interface for
managing, administering, and monitoring an Oracle Enterprise Service Bus.

This chapter contains the following topics:

■ Overview of the Oracle ESB Control on page 3-1

■ Understanding the Layout of the Oracle ESB Control on page 3-3

■ Creating, Viewing, and Updating Organizational Units for Services on page 3-7

■ Viewing and Updating Service Definitions on page 3-12

■ Understanding and Managing Routing Rules on page 3-14

■ Defining and Managing Tracking Fields on page 3-16

Overview of the Oracle ESB Control
The Oracle ESB Control is typically used at run time to monitor and fine tune the
enterprise service bus. The Oracle ESB Control enables you to:

■ Create, modify, and delete ESB systems and service groups

■ View and modify routing rules for routing services, including filter expressions,
transformations, execution type (synchronous or asynchronous), and so on.

■ View and modify adapter and SOAP services

■ View the connections among the various Oracle Enterprise Service Bus services in
a schematic diagram

■ View run-time statistics

■ View system, group, and service definition details, including URLs required to call
ESB services from applications that are external to the enterprise service bus

■ Track message instances across the service bus in a schematic diagram

■ View error conditions within a schematic, including the messages that did not
reach their destination, and resubmit messages for retryable errors.

■ View and define domain-value maps

Note that many of these features are also available in Oracle JDeveloper. Table
Table 3–1 summarizes the features available in each of these tools:

Overview of the Oracle ESB Control

3-2 Oracle Enterprise Service Bus Developer's Guide

Figure 3–1 shows the Oracle ESB Control with the schematic that is generated when
you complete the tutorial documented in the Oracle Enterprise Service Bus Quick Start
Guide. On the left side of the Oracle ESB Control is a navigation tree that enables you
to select a system, group, or service; on the right side of the Oracle ESB Control are
tabbed pages that display, and enable you to change, properties for an object selected
in the navigation tree.

Table 3–1 Comparison of Features Available in the Oracle ESB Control and Oracle
JDeveloper

Feature
Available in Oracle
JDeveloper?

Available in Oracle ESB
Control?

Create, modify, and delete
ESB systems

Yes Yes

Create, modify, and delete
ESB routing service
definitions

Yes Yes

Create, modify, and delete
routing rules
(transformations, filter
expression and so on)

Yes Yes

Create a transformation file Yes No

Create, modify, and delete
ESB adapter services

Yes No

Create, modify, and delete
SOAP invocation services

Yes No

View service connections
schematically

Yes Yes

View run-time statistics No Yes

Specify notification channels No Yes

View message instances
schematically

No Yes

Resubmit messages that have
failed due to an error

No Yes

Define and view trackable
fields

No Yes

Define domain-value maps No Yes

Understanding the Layout of the Oracle ESB Control

Monitoring the Enterprise Service Bus 3-3

Figure 3–1 Oracle ESB Control - Services View Diagram Tab

For information about starting ESB components and opening the Oracle ESB Control,
see "Opening the Oracle ESB Control" on page 1-12

Understanding the Layout of the Oracle ESB Control
The Oracle ESB Control provides three views, which you select by clicking the links
that run across the top of the page. The currently selected view is indicated by a blue
bubble that encloses the link. In Figure 3–1, for example, the currently selected view is
Services.

Each of the views is described in the following subsections:

■ Oracle ESB Control Services View on page 3-3

■ Oracle ESB Control Instances View on page 3-5

■ Oracle ESB Control Maps View on page 3-6

Oracle ESB Control Services View
The Services view of the Oracle ESB Control, enables you to view service
definitions, update routing rules, define trackable fields, and view a schematic
diagram of the services.

As shown in Figure 3–1 on page 3-3, the Services view is divided into two main
regions: a services panel on the right and tabbed pages on the left. The services panel

Note: All the tasks described in this section assume that the ESB
Server is started and the database that is serving as the ESB repository
is up and running. For information about starting the ESB Server, see
"Starting, Stopping, and Accessing Oracle Enterprise Service Bus
Components" on page 1-10.

Understanding the Layout of the Oracle ESB Control

3-4 Oracle Enterprise Service Bus Developer's Guide

provides a navigation tree of ESB systems and the service groups and services within
each, and buttons to create, delete, and move objects within the navigation tree.

The services panel appears on the left side of the Oracle ESB Control. It provides
buttons for creating and deleting ESB systems, groups, and services and a navigation
tree to present these items (and their current status) after they have been created.

The tabbed panel presents details about services selected in the navigation tree.
Depending on the service selected, the following tabs are available:

■ On the Diagram tab, view the relationship of the selected service to other objects
within the ESB system. Oracle Enterprise Service Bus creates this diagram
automatically, based on the definitions you specify for each service.

The selected service is represented in blue within the diagram, whereas the other
services are represented in gray. In the diagram, the following conventions are
used:

– Adapter services are represented by rectangles with a long horizontal plane.

– Routing services are represented by rectangles with long vertical planes.

– Communication between services is represented by the lines between the
services.

– A routing service filter expression is indicated by a funnel.

– A transformation is indicated by two rectangles with an X overlay.

The navigator tab indicates which area of the diagram is currently being displayed
in relation to the entire diagram. This is useful for large diagrams that extend
beyond the area that can be presented in the diagram region. When you move the
scroll bar in the diagram region, notice that the blue window in the navigator
scrolls also, to highlight the portion of the diagram that is currently visible.

The detail tab provides the name of the selected service and the status of the
selected service in the Diagram tab. Overlay metrics enable you to select which
metrics, if any, you want to be superimposed on the diagram.

See "Creating, Viewing, and Updating Organizational Units for Services" on
page 3-7.

■ On the Definition tab, view the definition of the selected service, enable it, or
disable it. For outbound adapter services and routing services, these details
including the concrete WSDL URL, which you can use to invoke the service using
SOAP over HTTP from another application.

See "Viewing and Updating Service Definitions" on page 3-12.

■ On the Routing Rules tab, view, update, delete, and set the priority of routing
rules for the selected routing service. The routing rules tab is presented only when
you select a routing service from the navigation tree. It shows the rules that
govern how a message is routed by the routing service.

See "Understanding and Managing Routing Rules" on page 3-14 for more
information about routing rules.

■ On the Properties tab, view, update, and delete endpoint properties for the
selected adapter or SOAP service. The Properties tab is presented only when you
select an adapter or SOAP service from the navigation tree.

Click the + on right side of the screen to add endpoint properties. Select the
endpoint from the list under the Name column and enter a value in the Value
column. Setting endpoints is similar to the actions in the endpoint properties panel

Understanding the Layout of the Oracle ESB Control

Monitoring the Enterprise Service Bus 3-5

in Oracle JDeveloper. For more information about using endpoint properties, see
"Using Endpoint Properties" on page 4-11.

■ On the Trackable Fields tab, define trackable fields for the selected service. See
"Defining and Managing Tracking Fields" on page 3-16.

Oracle ESB Control Instances View
The Instances view enables you to view details about message processing across an
ESB system.

It enables you to filter messages based on any of the following properties:

■ The service that processed them

■ The status of the messages (Any, Error, Faulted, Processing, or Completed)

■ Tracking name and tracking value

■ Message IDs

■ Time frame during which the message was processed

When you select a service for a message from the Instances panel, the message
instance's path through the enterprise service bus is presented in the Tracking tab
diagram (and the selected service is enclosed by dotted lines in the diagram). Within
the diagram, endpoints that successfully processed the message are represented in
green, services where an error occurred are represented in red, and services that
processed the message successfully, but were rolled back due to an error are
represented in yellow. Endpoints that were not invoked in the processing of the
message are represented in gray.

Figure 3–2 shows that the CRM adapter service (CRMOut) was successfully invoked
and that the database adapter service (CustDBOut) was not invoked because a filter
expression excluded the message from delivery to the database adapter service.

Figure 3–2 Oracle ESB Control - Instances View Tracking Tab

Understanding the Layout of the Oracle ESB Control

3-6 Oracle Enterprise Service Bus Developer's Guide

If you select a service where an error occurred for the message, an Error tab is
presented, as shown in Figure 3–3. The Errors tab contains an error table that lists the
time, service:operation, and message associated with each error. Click the Error Details
icon in the Message column to view the error message and the stack trace.

Figure 3–3 Oracle ESB Control - Instances View Errors Tab

For more information message tracking, see Chapter 10, "Tracking Message Instances
Across the Enterprise Service Bus". For more information about error handling, see
Chapter 11, "Error Handling".

Oracle ESB Control Maps View
The Maps view enables you to create, update, and delete domain-value maps, as well
as view, export, and import existing domain-value maps.

Applications that you want to integrate using Oracle Enterprise Service Bus likely use
different values to represent the same information. For example, one application may
represent the state of Massachusetts as MA whereas another application might
represent it as Massachusetts or Mass. A domain-value map enables you to
associate values from one application to values from another. Each domain-value map
typically holds a specific category of value mappings among multiple applications. For
example, one domain-value map might hold mappings for country codes and another
might hold mappings for units of measurement.

Figure 3–4 shows a sample domain-value map in the Maps view of Oracle ESB
Control. The names of the saved maps are listed in the left panel of the page and right
panel shows the details about the mappings in a specific map. In this sample map,
mappings are set up for the long, abbreviated, and short name of states in the columns
of the map.

Creating, Viewing, and Updating Organizational Units for Services

Monitoring the Enterprise Service Bus 3-7

Figure 3–4 Oracle ESB Control - Maps View with Sample Domain-Value Map

For more information domain-value maps, see Chapter 7, "Domain-Value Maps".

Creating, Viewing, and Updating Organizational Units for Services
Oracle Enterprise Service Bus provides system and service group structures for
organizing services. ESB systems are required; service groups are optional.

Every service you create must be defined as a child of either a service group or a
system. A service is uniquely identified by its full path within the system/service
group/service or system/service structure. A service is represented by a gear icon in
the services navigation tree.

■ ESB systems

An Oracle Enterprise Service Bus system is an organizational unit, typically used
to contain the services associated with of a single application, proxy for an
application, or a technical system, such as an Oracle Applications instance.
Examples of systems are:

– An Oracle Applications instance

– A set of transformations, Oracle BPEL Process Manager services, and adapter
services for an SAP instance

– A set of transformations, BPEL Services, and database services for a custom
database application

– A standalone Oracle Business Activity Monitoring instance, complex event
processing (CEP) services, and other related services

– An Oracle B2B engine (that serves as a proxy for trading partners) and related
transformation services and other services

– A set of services, adapter services, and Oracle BPEL Process Manager services
representing a bridge to a third party integration infrastructure (such as
webMethods, Inc, and IBM infrastructures)

When you create a service, you must create it within the context of an Oracle
Enterprise Service Bus system. A service cannot belong to multiple ESB systems.

Creating, Viewing, and Updating Organizational Units for Services

3-8 Oracle Enterprise Service Bus Developer's Guide

You can specify that an administrator be alerted if an error or fault occurs for a
service contained within an ESB system.

A system is represented in the Oracle ESB Control by a stacked disks icon.

For more information see "Creating an ESB System" on page 3-8 or "Viewing or
Modifying an Existing ESB System Definition" on page 3-9.

■ Service groups

Similar to systems, service groups are units for organizing services. Unlike
systems, however, you are not required to create a service group before you can
create a service. A service group must be created within the context of an ESB
system. A service can belong to, at most, one service group.

A service group is represented in the navigation tree by a folder icon on which a
gear icon is superimposed.

For more information, see "Creating Service Groups" on page 3-10 or "Viewing or
Modifying an Existing Service Group" on page 3-11

Icons used to represent objects in the Oracle ESB Control are shown in Figure 3–5.

Figure 3–5 Icons Used in the Oracle ESB Control

Managing Oracle Enterprise Service Bus Systems and Service Groups
You can use the Oracle ESB Control to create new ESB systems, or view and modify
existing ESB systems. The following sections provide step-by-step instructions:

■ Creating an ESB System on page 3-8

■ Viewing or Modifying an Existing ESB System Definition on page 3-9

■ Creating Service Groups on page 3-10

■ Viewing or Modifying an Existing Service Group on page 3-11

■ Deleting Systems or Service Groups on page 3-11

Creating an ESB System
To create a system, follow these steps:

1. In the Service panel, click Create.

A dialog box opens.

2. In the What do you want to create? field, select System.

The dialog box refreshes to present only the fields required to create a system.

3. In the Specify Name field, enter a unique name for the system.

4. Click OK.

The named system is added to the Services panel (with an downward pointing
arrow that indicates that the system is disabled), and the Definition tab is
presented.

Creating, Viewing, and Updating Organizational Units for Services

Monitoring the Enterprise Service Bus 3-9

5. On the Definition tab, optionally specify the following:

■ The Java Message Service (JMS) topic where you want messages that could not
be delivered due to an errors be stored.

■ The JMS topic for storage of messages that are delivered asynchronously.

■ The notification channels that you want the ESB Server to use in the event that
an error occurs. See "Setting Up Notification Channels" on page 9-4 for details.

6. On the Definition tab, click Create.

An Update Service window opens to indicate that the system has been created.
The arrow next to the named service in the Services panel now points upward to
indicate that the service is enabled.

7. In the Update Service window, click OK.

Viewing or Modifying an Existing ESB System Definition
To view or modify the definition for a previously created ESB system, follow these
steps:

1. Click Services if the Services view is not currently displayed.

2. In the Services panel, click the name of the ESB system of interest.

The Definition tab displays similar to Figure 3–6.

Figure 3–6 ESB System – Definition Tab

3. Review the properties presented on the Definition tab and described in Table 3–2.

4. Make any desired updates. All properties can be updated except the
Asynchronous Topic and the Error Topic.

5. If you are satisfied with your changes, click Apply; otherwise, click Reset to return
the properties to the settings that were presented when you opened the page.

Creating, Viewing, and Updating Organizational Units for Services

3-10 Oracle Enterprise Service Bus Developer's Guide

Creating Service Groups
Similar to systems, service groups are units for organizing services. Unlike systems,
however, you are not required to create a service group before you can create a
service. A service can belong to, at most, one service group.

To create a service group:

1. Click Services if the Services view is not currently displayed.

2. In the Service panel, click Create.

A dialog box opens.

3. In the What do you want to create? field, select Service Group.

The dialog box refreshes to present only the fields required to create a system.

4. In the Specify Name field, enter a name for the service group that is unique within
the system or parent service group in which you are creating it.

5. To the right of the Choose the parent System or Service Group field, click the
icon.

The Choose Parent System or Service Group dialog box opens.

6. In the Choose Parent System or Service Group dialog box follow these steps:

a. Select the name of the parent system or service group.

b. Click Select.

7. Click OK.

Table 3–2 ESB System Definition Tab

Page Element Description

Name The name used in the Oracle ESB Control to identify the system.

Cluster Name The name of the Oracle Application Server cluster associated
with the system.

Virtual Host The name of the host where the Oracle Application Server is
running.

Port The port number on the host where the Oracle Application
Server is running.

Topic Location The JNDI location of the JMS topic to which messages are
published when messages are routed asynchronously.

Connection Factory
Location

The connection factory location to which messages are published
when messages are routed asynchronously.

Number of Listeners The number of listeners for the JMS topic to which messages are
published when messages are routed asynchronously.

Notification Details The notification details specify the communication channel or
channels that will be used to alert an administrator that an error
has occurred within the Oracle Enterprise Service Bus system.
You can specify notifications with the following channels:

■ Email ID

■ Pager number

■ Mobile number

■ Phone number

See "Setting Up Notification Channels" on page 9-4.

Creating, Viewing, and Updating Organizational Units for Services

Monitoring the Enterprise Service Bus 3-11

The dialog box closes and the service group name is added to the navigation tree.
The status column indicates that the service group is disabled.

8. On the Definition tab, in the Description field, optionally enter a description for
the service group.

9. On the Definition tab, click Create.

A window opens to indicate that the changes have been successfully applied.

10. Click OK.

The status column in the Services panel indicates that the status of the newly
created group is up.

Viewing or Modifying an Existing Service Group
After you have created a service group, you can change its name or description, if
desired. However you cannot change its parent.

To view or modify a service group, follow these steps:

1. Click Services if the Services view is not currently displayed.

2. In the Services panel, click the name of the service group of interest.

3. Review the properties presented on the Definition tab and described in Table 3–3.

4. Make any desired updates. All properties can be updated except the Identifier.

5. If you are satisfied with your changes, click Apply; otherwise, click Reset to return
the properties to the settings that were presented when you opened the page in
Step 2.

Deleting Systems or Service Groups
To delete a system or service group, select the system or service group and click
Delete. You need to confirm the action to delete the object from the Oracle ESB
Control.

Note that deleting a system or service group from the Oracle ESB Control does not
remove the object from Oracle JDeveloper. If you register the ESB project again with

Table 3–3 ESB Service Group Definition Tab

Page Element Description

Identifier The name by which the ESB Server identifies the service group.
When you create a service group, ESB Server creates an
identifier using the format systemnameSystem.servicegroupname,
where systemname is the name of the system in which the service
group was created and servicegroupname is the name that was
originally specified for the service group when it was created.

If you change the name of the service group, the name used in
the Services panel is updated to reflect your change, but the
identifier remains the same.

The ESB Server uses the identifier, not the name, to refer to the
service group in error messages.

Name The name used in the Oracle ESB Control to identify the service
group.

Parent Name The ESB system that contains the service group.

Description A user-specified description of the service group.

Viewing and Updating Service Definitions

3-12 Oracle Enterprise Service Bus Developer's Guide

the ESB Server in Oracle JDeveloper, it will appear in Oracle ESB Control after a
refresh.

Viewing and Updating Service Definitions
Although you cannot create services using the Oracle ESB Control, you can view the
service definitions, modify some properties, and create or modifying routing rules for
existing services, as described in the following sections:

■ Enabling and Disabling Services on page 3-12

■ Viewing Service Definitions on page 3-12

For information about creating services, see Chapter 4, "Creating Inbound and
Outbound Services" and Chapter 5, "Creating Routing Services and Routing Rules".

Enabling and Disabling Services
To enable or disable a service, follow these steps:

1. Click Services if the Services view is not currently displayed.

2. In the Services panel, navigate to the service of interest, and then select it.

3. Click the Definition tab.

4. Click Enable or Disable, as desired.

Viewing Service Definitions
To view the definition of an ESB service, follow these steps:

1. Click Services if the Services view is not currently displayed.

2. In the Services panel, navigate to the service of interest, and then select it.

3. Click the Definition tab.

The Definition page summarizes the contents of the WSDL file for the selected service.
It consists of the following three regions for all services, except inbound adapter
services. Inbound adapter services present the overall section only, and only a subset
of the fields for that region.

■ General

This region of information, which is not labeled, appears at the top of the page.
The elements that are presented in this region of the page are described in
Table 3–4. For inbound adapter services, only the following elements are
presented: Name, Type, Description, and Inbound Adapter WSDL URL.

Note: By default, all services are enabled. When you explicitly
disable a service, an error is thrown back to the invoker.

In case of a routing service, the routing rule errors out when the target
service is disabled. This is applicable to synchronous as well as
asynchronous routing rules.

Viewing and Updating Service Definitions

Monitoring the Enterprise Service Bus 3-13

■ Operations

This region of the page lists the operations that the service WSDL describes and
their type. Table 3–5 describes this region of the page.

■ Operation Details

This region of the page provides details on an operation selected in the Operations
region. Table 3–6 describes this region of the page. Which tabs are presented in
this region depend on the operation definition, as follows:

– One-way operations

If the selected operation is defined as a one-way operation (only input
elements are defined for the operation in the WSDL), then only the Request
tab is active.

– Request/response operation

Table 3–4 Service Definition – General Region

Page Element Description

Name The name that was entered to identify the routing service when
it was created.

Type The type of this ESB service. The value of this field is always
Routing Service for a routing service.

Description An optional user-specified description of the routing service.

Invocable from an external
service

Indicates whether the service can be invoked from an external
service.

Concrete WSDL URL The concrete WSDL URL for the service. Use this URL to call the
service from any external Web Services client (such as .Net).

Click the URL to view the WSDL in your default browser.

Port Type A name that refers to the set of operations performed by this
service. This name corresponds to the name attribute of the
portType element in the WSDL that defines this routing service.

Namespace The XML namespace specified in the WSDL that defines this
routing service.

WSDL URL The abstract WSDL URL that ESB Server used to configure the
service.

Click the URL to view the WSDL in your default browser.

SOAP Endpoint URI The URl of the SOAP endpoint. Click the URL to open the Test
Web Service page.

Note: For information on using the Test Web Service page, see
"Testing the ESB Services" on page 9-9 and Oracle SOA Suite
Developer's Guide.

Table 3–5 Service Definition - Operations Region

Page Element Description

Name Lists the names of the operations specified in the service WSDL
URL.

Type Lists the type for each operation specified in the service WSDL
URL, such as One Way, Request Response, or Request Response
Fault.

Understanding and Managing Routing Rules

3-14 Oracle Enterprise Service Bus Developer's Guide

If the selected operation is defined as a request/response operation (both
input and output elements are defined for the operation in the WSDL), then
both the Request and Response tabs are active.

– Faults

If a fault is defined for the operation (fault elements are defined for the
operation in the WSDL), then the fault tab is active. Note that a fault is simply
a special response that can be directed to the requester.

Understanding and Managing Routing Rules
While a routing service determines the operations that will be performed on the
messages received by the routing service, whether or not it can be invoked by an
external service, and whether or not the message payload will be validated by the
routing service at run time, routing rules determine the following:

■ The set of target services to which message instances will be sent from the routing
service

■ The operation that will be applied to a message instance upon reaching the target
service

■ Whether a transformation will be applied to the structure of a message instance
before being sent to a given target service

■ Whether some message instances will not be sent to a target service, on the basis of
a filter applied to the message payload

This section discusses the following topics:

■ Creating or Modifying Routing Rules on page 3-14

■ Viewing Routing Rules on page 3-15

■ Deleting Routing Rules on page 3-16

For information about creating routing services, see Chapter 5, "Creating Routing
Services and Routing Rules".

Creating or Modifying Routing Rules
Although routing rules are typically specified as part of the development phase using
Oracle JDeveloper, the Oracle ESB Control also provides tools for creating and
modifying routing rules at run time. Although the method for accessing the controls
are different for each tool, the actual controls are the same.

Table 3–6 Service Definition - Operation Details Region

Page Element Description

Validate Payload at
Runtime

Enables you to specify whether or not you want the message
payload validated against the schema (XSD) definition at
runtime. Select to enable, deselect to disable.

If you select this option and a message payload received by the
service is invalid, the message handled as described in
"Managing Error Conditions" on page 11-2.

Element The message payload element name. This corresponds to the
<part> element's element attribute specified in the WSDL URL.

Schema Location Specifies the location of the schema, if any, used by the service.

Understanding and Managing Routing Rules

Monitoring the Enterprise Service Bus 3-15

To access the controls for creating a routing rule using the Oracle ESB Control, follow
these steps:

1. In the Services panel, click the routing service for which you want to create or
modify routing rules.

2. Click the Routing Rules tab.

The controls on Routing Rules tab in the Oracle ESB Control are similar to the Routing
Rules tab in Oracle JDeveloper. For information about using these controls, see
"Specifying Routing Rules" on page 5-18.

Viewing Routing Rules
To view the current routing rules for a routing service, follow these steps:

1. In the Services panel, click the routing service for which you want to view the
routing rules.

2. Click the Routing Rules tab.

Table 3–7 describes the page elements on this tab.

Table 3–7 Routing Rules Tab in Oracle ESB Control

Page Element Description

Priority arrows The green arrows at the top of the routing rules table enable to
you to set the priority of the routing rules relative to other
synchronously executed routing rules.

Filter Expression Specifies an expression by which you want messages to be
filtered for the selected rule. You might specify a filter
expression, for example, if you only want messages written to a
database for a customer record if that customer address is in the
United States.

This field is optional.

Click the icon to the right of this field to open the Expression
Builder. See "Using An Expression for Filtering Messages Based
on Payload" on page 5-20 for more information.

Transformation Map File Specifies the XSLT file that defines the transformation you want
to apply to the data format of message before it is delivered to
the service to which it is being routed. You might specify an
XSLT file to transform message data from a canonical format to
the format expected by the database receiving that data.

This field is optional.

Click the icon to the right of this field to open the Map Browser
dialog box, which enables you to search for and browse among
defined and registered Data Map (.xslt) files or to create a new
one. See "Creating an XSL Map File for Data Structure
Transformation" on page 5-20 for more information.

Target Operation Specifies the service and operation to which messages will be
sent.

Click the icon to the right of this field to open the Service
Operation Browser dialog box, which enables you to search for
and browse among registered service operations.

Defining and Managing Tracking Fields

3-16 Oracle Enterprise Service Bus Developer's Guide

Deleting Routing Rules
To delete a routing rule:

1. In the Services panel, click the routing service from which you want to delete a
routing rule.

2. Click the Routing Rules tab.

3. Click the plus sign (+) to the left of the routing rule to select it.

4. Click the minus (-) button on the far right of the routing rule page to delete the
selected routing rule.

5. Click Apply.

Defining and Managing Tracking Fields
The Oracle ESB Control enables you to track the path particular message instances
take across the Oracle Enterprise Service Bus and the current routing status of that
message.

The mechanism by which you track messages is using trackable fields. A trackable
field is a name-value pair, where the name is any meaningful string that you specify
(such as CustomerName or POId) and the value is an XPath expression defined for the
input and output message of an entire service or an operation performed by the
service.

Using the Trackable Fields tab in the Services view of the Oracle ESB Control, you can
define one or more trackable fields for each message associated with a service and
operation to keep track of the messages that the service operation processes at run
time. You can then search the message instances that the service or operation has
processed using the Instances view of the Oracle ESB Control.

The following sections provide step-by-step instructions on the tasks associated with
trackable fields:

■ Understanding the Trackable Fields Tab on page 3-17

Accept Messages From Specifies the ESB systems from which messages will be accepted
by the target service, as follows:

■ Any System

Select this option to specify that the target service will
accept messages from any ESB system.

■ Same System

Select this option to specify that the target service will
accept only messages that originate from the same ESB
system as that to which the target service belongs.

■ Other Systems

Select this option to specify that the target service will
accept only messages that originate from the a different ESB
system than that to which the target service belongs.

Rule Execution Specifies whether execution of the routing rule will be
synchronous or asynchronous. See "Specifying Synchronous or
Asynchronous Execution" on page 5-27 for more information.

Table 3–7 (Cont.) Routing Rules Tab in Oracle ESB Control

Page Element Description

Defining and Managing Tracking Fields

Monitoring the Enterprise Service Bus 3-17

■ Defining and Updating Trackable Fields on page 3-17

■ Using the Expression Builder to Specify a Trackable Field Expression on page 3-18

■ Enabling and Disabling Trackable Fields on page 3-19

■ Deleting Trackable Fields on page 3-20

Understanding the Trackable Fields Tab
The Trackable Fields tab contains the following fields:

■ Name

A unique name that you provide for the trackable field.

■ Operation

The operation associated with the service that you select for the trackable field.

■ Message

The message type of the service that you select for the trackable field.

■ Expression

The expression that you want to track for the service. This field includes a variable
of the message instance that is tracked.

■ Enabled

The status of the trackable field you can set to enable or disable.

Defining and Updating Trackable Fields
To define or update trackable fields, follow these steps:

1. At the top of the Oracle ESB Control, click the Services button if the Services view
is not currently displaying.

2. In the Services panel, select the service for which you want to set trackable fields.

3. Click the Trackable Fields tab.

4. Click the plus (+) button to add a row to the table and enable editing for that row;
double-click an existing row to update that row.

Defining and Managing Tracking Fields

3-18 Oracle Enterprise Service Bus Developer's Guide

Figure 3–7 Services View – Trackable Fields Tab

5. Enter values in the row, as follows:

a. In the Name field, enter a name for the trackable field that is unique across the
ESB system in which the service exists.

b. In the Operation field, select from the list the operation on which you want to
define the trackable field.

c. In the Message field, select from the list the type of message you want to track
for this service. Possible values are: Request, Response, Fault.

d. In the Expression field, enter the XPath expression that identifies the field that
you want to track.

Click the wand icon to the right of the Expression field to open the Expression
Builder, which assists you in building the XPath expression. For information
about the Expression Builder, see "Filter Expression Overview" on page 5-10.

e. In the Enabled field, click the check box to enabled the specified trackable
field. Deselect the check box to disable it.

If you disable the trackable field, the trackable field information is not logged
and is not available in the Instances view of the Oracle ESB Control.

f. Click OK when finished.

6. Click Apply to save the changes you have made; click Reset to return to the values
that were presented before you began editing fields.

Using the Expression Builder to Specify a Trackable Field Expression
For information about the Expression Builder, see "Filter Expression Overview" on
page 5-10.

1. At the top of the Oracle ESB Control, click the Services button if the Services view
is not currently displaying.

Defining and Managing Tracking Fields

Monitoring the Enterprise Service Bus 3-19

2. In the Services panel, select the service for which you want to set trackable fields.

3. Click the Trackable Fields tab.

4. Click the plus (+) button to add a row to the table and enable editing for that row;
double-click an existing row to update that row.

5. Click the plus \ icon to launch the Expression Builder.

6. Select and expand the Variables tree and select a variable.

7. Click Insert into Expression.

Figure 3–8 Trackable Fields - Expression Builder

8. Click OK.

9. Click Apply to save the changes you have made; click Reset to return to the values
that were presented before you began editing fields.

Enabling and Disabling Trackable Fields
To enable or disable trackable fields, follow these steps:

1. At the top of the Oracle ESB Control, click the Services button if the Services view
is not currently displaying.

2. Click the Trackable Fields tab.

3. Double-click the row that contains the trackable field that you want to enable or
disable.

Note: If you are not able to expand the Variables tree, then you can
manually enter the expression in the Expression field.

Defining and Managing Tracking Fields

3-20 Oracle Enterprise Service Bus Developer's Guide

4. In the Enabled column, select the check box to enable the trackable field, deselect
the check box to disable the trackable field.

5. Click Apply.

Deleting Trackable Fields
To delete a trackable field:

1. At the top of the Oracle ESB Control, click the Services button if the Services view
is not currently displaying.

2. Click the Trackable Fields tab.

3. Click the row that contains the trackable field to select it.

A selected row is highlighted in blue.

4. Click the minus (-) button.

5. Click Apply.

Creating Inbound and Outbound Services 4-1

4
Creating Inbound and Outbound Services

This chapter discusses creating inbound and outbound services.

This chapter contains the following topics:

■ Configuring Adapter Services with Oracle Enterprise Service Bus on page 4-1

■ Creating a BPEL Partner Link to an ESB Service on page 4-12

■ Calling an ESB Service From an External Service on page 4-13

Configuring Adapter Services with Oracle Enterprise Service Bus
The services you create with Oracle JDeveloper enable you to integrate the Oracle
Enterprise Service Bus with file systems, database tables, database queues, Java
Message Services (JMS), MQ services, and Oracle E-Business Suite and any SOAP
service. In addition to these services, which get messages into the enterprise service
bus, Oracle Enterprise Service Bus provides a service known as a routing service,
which determines the path that messages take across the enterprise service bus to get
from a source endpoint to a target endpoint.

Services are the core of the enterprise service bus. You design an Oracle Enterprise
Service Bus by creating a variety of services to move messages onto, across, and off of
the service bus.

To move data on to the service bus, you use inbound adapter services or have an
external application call an ESB service; to move data off of the service bus, you use an
outbound adapter service or invoke an external SOAP service. To move data across
the service bus and transform the data structure from the structure presented by the
source application to the structure required by the target application you use routing
services.

The following sections describe adapter services and routing services in more detail.

■ Using Adapter Services on page 4-2

■ Creating Adapter Services on page 4-3

■ Using SOAP Invocation Services on page 4-7

■ Browsing for Deployed Services on page 4-10

■ Using Endpoint Properties on page 4-11

See Chapter 5, "Creating Routing Services and Routing Rules" for information about
routing services.

Configuring Adapter Services with Oracle Enterprise Service Bus

4-2 Oracle Enterprise Service Bus Developer's Guide

Using Adapter Services
Oracle Enterprise Service Bus provides support for creating services for the Oracle
Technology adapters. The Oracle Technology adapters enable you to integrate
mainframe and legacy applications with enterprise resource planning (ERP), customer
relationship management (CRM), database, and messaging systems.

Table 4–1 provides a summary of the Oracle Technology adapter services you can
create. Adapters services can be configured as inbound or outbound adapters services.
Inbound adapter services send messages to the enterprise service bus, while outbound
adapter services send messages to an application or system external to the enterprise
service bus.

This section includes the following topics:

■ Creating Adapter Services on page 4-3

■ Modifying Adapter Services on page 4-4

■ Deleting Adapter Services on page 4-4

■ Example: Creating an Inbound File Adapter on page 4-4

Table 4–1 Summary of Oracle Technology Adapters

Adapter Service Description

AQ Adapter Service Sends or receives messages from Oracle Advanced Queuing
single or multiconsumer queues

Database Adapter Service Sends or receives messages extracted from an Oracle Database
table or created by executing a stored procedure

File Adapter Service Sends or receives messages from a file in the local file system

FTP Adapter Service Sends or receives messages from a file at a remote FTP server

JMS Adapter Service Sends or receives messages from a JMS queue or topic

MQ Adapter Sends or receives messages from IBM's MQ Series

Oracle Applications
Adapter Service

Sends or receives messages from an Oracle E-Business Suite
interface

See Also:

■ Oracle Application Server Adapter Concepts for an overview of
adapters

■ Oracle Application Server Adapter for Files, FTP, Databases, and
Enterprise Messaging User's Guide for specific details about
configuring adapters for Oracle Enterprise Service Bus

■ Oracle Application Server Adapter for Oracle Applications User's Guide
for information about using the Oracle Applications adapter for
Oracle E-Business Suite

■ Oracle Enterprise Service Bus Quick Start Guide for a tutorial that
describes how to design an enterprise service bus that uses a file
adapter service, a database adapter services and a JMS adapter
service.

Configuring Adapter Services with Oracle Enterprise Service Bus

Creating Inbound and Outbound Services 4-3

Creating Adapter Services
Oracle JDeveloper provides wizards that assist you in creating inbound and
outbound adapter services. The wizard collects the necessary information to generate
the WSDL file that defines the service.

To add an adapter service, perform the following steps:

1. In the Application navigator, navigate to the ESB project for which you want to
create an adapter service, expand the Resources folder and double click
project-name.esb, where project-name is the name of the project to which you want
to add the SOAP service.

The Design tab for the project is displayed.

2. In the Component Palette, click the down arrow and select Adapter Services if
not already selected.

3. Drag and drop an adapter into the Design tab.

The create adapter service dialog box for the specific adapter type opens.

4. Enter the Name, System/Group, and an optional Description for the adapter.

Name: Enter a unique name across the ESB system in which you are creating the
service; spaces are not allowed. For example: CustomerDataFileIn.

System/Group: Click the flashlight (torch) to open the ESB Service Group Browser
dialog and select the system/group for this service. For example: CustomerData
under Systems/Groups in project.

Description: Enter an optional description. For example: This adapter service
reads records from a local data file.

5. To complete WSDL File field, you can click the following icons to the right of the
field:

■ Configure adapter service wsdl icon

Click this icon to launch the adapter configuration wizard for the specific type
of adapter you have selected from the Component Palette. The wizard guides
you through the setups.

For details about configuring the AQ, database, file, FTP, JMS, and MQ
adapters in Oracle JDeveloper, see Oracle Application Server Adapter for Files,
FTP, Databases, and Enterprise Messaging User's Guide. For details about
configuring the Oracle application adapter for Oracle E-Business Suite, see
Oracle Application Server Adapter for Oracle Applications User's Guide.

■ Service Explorer icon

Click this icon to launch the Service Explorer and search for deployed services.

See "Browsing for Deployed Services" on page 4-10.

6. In the Port Type field, click the down arrow, and then select the port type for the
routing service.

7. Click OK.

After you complete the process for creating an adapter service, an icon for the service
appears in the Design tab. In the Applications Navigator, files with esbsvc and wsdl
extensions are created in the Resources folder of the project. The esbsvc file provides
the definition of the ESB service. The wsdl file defines the input and output messages
for this instance flow, the supported client interface and operations, and other
features.

Configuring Adapter Services with Oracle Enterprise Service Bus

4-4 Oracle Enterprise Service Bus Developer's Guide

In addition to the wsdl files that are named with the adapter service name, there are
standard JCA header files that are created with a new adapter. The header file name is
of the form adapter_typeAdapterOutboundHeader.wsdl or adapter_
typeAdapterInboundHeader.wsdl, depending on whether the service is inbound
or outbound. The adapter_type specifies the type of adapter, such as DB, file, or
jms. For information about the adapter inbound and outbound header WSDL files, see
Oracle Application Server Adapter for Files, FTP, Databases, and Enterprise Messaging
User's Guide.

When you create an inbound adapter service, Oracle JDeveloper automatically
creates a routing service for the newly created adapter and sets up the link between
the two. The name of this routing service is the name of the inbound adapter
appended with the string _RS, as an abbreviation for routing service. See "Specifying
Routing Rules" on page 5-18.

Modifying Adapter Services
To modify an existing adapter service, perform the following steps:

1. Double click the upper section of the adapter service icon in the Design tab. The
cursor is shaped like a hand on that region of the icon.

2. Make your changes to the adapter service information that can be modified. Note
that the name of the service cannot be changed.

3. In the Endpoint Properties panel, you can add, delete, update, or view endpoint
properties for the service. Click the + next to Endpoint Properties to open the
panel. See "Using Endpoint Properties" on page 4-11.

4. Save your changes.

Deleting Adapter Services
To delete an adapter service, perform the following steps:

1. Select the adapter service icon in the Design tab.

2. Click the large red X at the top of Design tab to delete the selected adapter service.

3. Confirm that you want to delete the selected service.

4. Save your changes.

Example: Creating an Inbound File Adapter
For an example of the information that is collected by Oracle JDeveloper wizards,
assume you want to create inbound file adapter service to read in local XML files from
the c:\customer\in directory. To create this adapter, perform these steps:

1. In the Applications navigator, navigate to the ESB project for which you want to
create a SOAP service, expand the Resources folder and double click
project-name.esb, where project-name is the name of the project to which you want
to add the SOAP service.

The Design tab for the project is displayed.

2. In the Component Palette, click the down arrow and select Adapter Services if
not already selected.

3. Drag and drop File Adapter into the Design tab.

Note: Do not delete adapter services in the Application Navigator.

Configuring Adapter Services with Oracle Enterprise Service Bus

Creating Inbound and Outbound Services 4-5

The Create File Adapter Service dialog box opens.

4. In the Create File Adapter Service dialog box, enter the name.

Enter a unique name across the ESB system in which you are creating the service;
spaces are not allowed.

For example: CustFileDataIn

5. In the Create File Adapter Service dialog box, enter the system/group.

Click the browse (flashlight) icon to display the ESB Service Group Browser
dialog. Locate the system/group where you want to place this adapter. For
example: CustomerData under ESB > Systems/Groups in project

6. In the Create File Adapter Service dialog box, enter the optional description.

For example: File adapter service for inbound data files

7. In the Create File Adapter Service dialog box, enter the WSDL file.

a. Click the Configure adapter service wsdl icon to launch the Adapter
Configuration Wizard.

b. In the Welcome page, click Next.

c. In the Service page, accept the Service Name and click Next.

You can add an optional description.

d. In the Operation page, enter the Operation type and name, then click Next.

For example:

Operation type: Read file

Operation Name: ReadCustFileData

e. In the File Directories page, update the directory information and click Next.

For example:

Directory Names are Specified as: Physical Path

Directory for Incoming Files (physical path): c:\customer\in

Delete files after successful retrieval: check box to enable

Accept the other default setups on the page.

f. In the File Filtering page, update the filtering setups and click Next.

For example:

Name Patterns are specified with: File Wildcards (po*.txt)

Include Files with Name Pattern: *.xml

Accept the other default setups on the page.

g. In the File Polling page, update the polling setups and click Next.

Polling Frequency: 10 seconds

Minimum File Age: 0 seconds

Accept the other default setups on the page.

h. In the Messages page, specify the message schema and click Next.

For example:

Configuring Adapter Services with Oracle Enterprise Service Bus

4-6 Oracle Enterprise Service Bus Developer's Guide

To locate an existing CustomerData schema, click the Browse button for
Schema Location to display the Type Chooser dialog box. Expand Project
Schema Files /Legacy Customer.xsd and select CustomerData. Click OK.

Accept the other default setups on the page.

Figure 4–1 Adapter Configuration Wizard - Messages Page

i. In the Finish page, click Finish to complete the Adapter Configuration Wizard.

8. In the Create File Adapter Service dialog box, click OK to create the service.

Figure 4–2 Create File Adapter Service Dialog

The new adapter service appears in the Design tab with a new routing service. The
routing service has the _RS suffix attached to the name.

For example, when use the Oracle JDeveloper Adapter Configuration wizard to
create an inbound file adapter service named CustFileDataIn, Oracle JDeveloper

Configuring Adapter Services with Oracle Enterprise Service Bus

Creating Inbound and Outbound Services 4-7

automatically creates a routing service named CustDataFileIn_RS and creates a
connection from the CustDataFileIn adapter service to the CustDataFileIn_RS
routing service, as illustrated in Figure 4–3.

Figure 4–3 Automatic Routing Service Creation

You now need to add the routing rules for this new routing service. See "Specifying
Routing Rules" on page 5-18.

Using SOAP Invocation Services
A SOAP invocation service enables you to integrate external Web services, such as
Apache AXIS, JDeveloper Web Services and .NET, into Oracle Enterprise Service
Bus.

This section includes the following topics:

■ Creating a SOAP Service on page 4-7

■ Modifying SOAP Services on page 4-9

■ Deleting SOAP Services on page 4-9

Creating a SOAP Service
This section describes how to use Oracle JDeveloper to create an outbound SOAP
service that integrates with an external service.

The external service could be an application deployed in an OC4J instance, such as
ACMECustomerSOAPService shown in Figure 4–4.

Configuring Adapter Services with Oracle Enterprise Service Bus

4-8 Oracle Enterprise Service Bus Developer's Guide

Figure 4–4 Oracle Application Server Control – Applications

To create an outbound SOAP service with Oracle JDeveloper, follow these steps:

1. In the Applications navigator, navigate to the ESB project for which you want to
create a SOAP service, expand the Resources folder and double click
project-name.esb, where project-name is the name of the project to which you want
to add the SOAP service.

The Design tab for the project is displayed.

2. In the Component Palette, click the down arrow and select ESB services if not
already selected.

3. Drag and drop SOAP Service into the Design tab.

The Create SOAP Invocation Service dialog box opens.

4. In the Create SOAP Invocation Service dialog box, enter the following
information:

a. Name

Enter a unique name across the ESB system in which you are creating the
service; spaces are not allowed.

For example: ACMEService

b. System/Group

For example: CustomerData

c. Description

For example: A SOAP Service

Configuring Adapter Services with Oracle Enterprise Service Bus

Creating Inbound and Outbound Services 4-9

d. WSDL File

For example:
http://localhost:8888/ESBSamples-AcmeCust-context-root/Rec
eiveCustomerDataSoapHttpPort?WSDL

e. Port Type

For example: ReceiveCustomerData

5. Click OK when finished.

The new SOAP service appears in the Design tab.

Now you need to add a routing rule that has the new SOAP service as a target. For
information about defining routing rules, see "Specifying Routing Rules" on page 5-18.

Modifying SOAP Services
You can modify SOAP services in Oracle JDeveloper by opening the SOAP service
property page.

To modify a SOAP service:

1. In the Oracle JDeveloper Design tab, double click the upper section of the SOAP
service icon. The cursor is shaped like a hand on that region of the icon.

2. Make your changes to the service information that can be modified. Note that the
name of the service cannot be changed.

3. In the Endpoint Properties panel, you can add, delete, update, or view endpoint
properties for the service. Click the + next to Endpoint Properties to open the
panel. See "Using Endpoint Properties" on page 4-11.

4. Save your changes.

Deleting SOAP Services
You can delete a SOAP service in the Oracle JDeveloper Design tab.

To delete a SOAP service:

1. In the Oracle JDeveloper Design tab, select the SOAP service icon.

2. Click the large red X at the top of Design tab to delete the selected service.

Configuring Adapter Services with Oracle Enterprise Service Bus

4-10 Oracle Enterprise Service Bus Developer's Guide

3. Confirm that you want to delete the selected service.

4. Save your changes.

Browsing for Deployed Services
You can browse for deployed services with the Service Explorer. The Service Explorer
is available when creating a adapter, routing, or SOAP service.

To browse for deployed services, perform the following steps.

1. If you have not already done so, open the Create Adapter, Routing, or SOAP
Service dialog.

2. Enter information for other fields on the page, such as Name, System/Group, and
Description.

3. If you are creating a routing service, choose Select Existing WSDL in the Create
Routing Service dialog.

4. To the right of the WSDL Location field, click the flashlight (torch) icon to open
the Service Explorer dialog.

5. Select a branch of the Service Explorer tree, such as BPEL Server Connection.

6. Expand the server connection folder to view the existing projects.

For example, expand the integration server connection that is set up.

7. Expand the project to view the deployed services.

8. Select a deployed service.

Figure 4–5 Service Explorer Dialog

9. Click OK when done to close the dialog box.

Note: Do not delete SOAP services in the Application Navigator.

Configuring Adapter Services with Oracle Enterprise Service Bus

Creating Inbound and Outbound Services 4-11

The Service Explorer dialog box closes and you are returned to the Create Service
dialog box.

Using Endpoint Properties
Each adapter type and SOAP service has a specific set of endpoint properties that are
provided when the service is created. For example, you can specify a new URL, or
URLs, for the Location endpoint property of a SOAP service. When you specify
multiple URLs for Location endpoint property, the SOAP service can be exposed
externally to multiple endpoints. If one endpoint is down, Oracle Enterprise Service
Bus redirects the request to alternative endpoint.

You can also change the RetryCount and RetryInterval endpoint properties to
override the default values for adapter error handling. For information about adapter
error handling, see "Inbound Adapter Error Handling" on page 11-2.

There are two types of endpoint properties: predefined and logical.

■ Predefined (override) properties

These properties are defined in the adapter wizard and the value can be
overridden or a value can be provided at runtime.

■ Logical properties

For the file and FTP adapters you can specify that the directories are logical rather
than physical. These logical names appear as endpoint properties in the Endpoint
Property Chooser dialog.

In addition, any adapter property can be made into a logical property by inserting
a $ into the wizard value (or manually edit the WSDL file). For example, if the
user specifies $myName as a value in the adapter wizard, then myName appear in
the Endpoint Property Chooser dialog.

You can add, delete, update, or view endpoint properties for the service in the
Endpoint Properties panel when modifying an adapter or SOAP service in Oracle
JDeveloper. See "Modifying Adapter Services" on page 4-4 and "Creating a SOAP
Service" on page 4-7. You can also access endpoints in the Property tab of the Oracle
ESB Control Services view. See "Oracle ESB Control Services View" on page 3-3.

Specifying Endpoint Properties
You can add and modify endpoint properties in Oracle JDeveloper by opening the
adapter or SOAP service property page.

To add or modify endpoint properties:

1. In the Oracle JDeveloper Design tab, double click the upper section of the adapter
or SOAP service icon to open the properties page. The cursor is shaped like a hand
on that region of the icon.

2. In the Endpoint Properties panel, you can add, delete, update, or view endpoint
properties for the service.

Click the + next to Endpoint Properties to open the panel. The Endpoint
Properties panel includes the following options:

■ Large Green Plus Sign (+) in upper right

Opens the Endpoint Properties Chooser dialog to enable you to add an
endpoint property to the service. Select a property from the list in the
Endpoint Properties Chooser dialog and click the OK button to add the

Creating a BPEL Partner Link to an ESB Service

4-12 Oracle Enterprise Service Bus Developer's Guide

endpoint property. Place the cursor over the property name to view the tooltip
description for the property.

■ Large Red X in upper right

Deletes the selected endpoint property.

■ Name

Name of the endpoint property. Place the cursor over the property name to
view the tooltip description for the property.

■ Value

Click in this field to enter or update the value of the endpoint property.

3. Select File > Save to save your changes to the property page.

Creating a BPEL Partner Link to an ESB Service
You can create a partner link from BPEL to an ESB service, as shown in Figure 4–6, if
SOA Suite is installed with both BPEL and ESB. For example, you can create a partner
link for an Invoke activity that invokes an ESB routing service.

To create a partner link from BPEL to invoke an ESB service:

1. In an Oracle JDeveloper BPEL Process project, drag and a drop an Invoke activity
from the Process Activities Component palette to the Design tab.

2. Enter a name in the Name field in the Invoke dialog.

3. In the Invoke dialog, click the torch icon next to Partner Link field to display the
Partner Link Chooser dialog.

4. In the Partner Link Chooser, select Partner Links and click the magic wand to
display the Create Partner Link dialog.

5. In the Create Partner Link dialog, enter a name in the Name field.

6. In the Create Partner Link dialog, click the torch icon to display the Service
Explorer dialog.

7. In the Service Explorer dialog, select the desired ESB routing service in the
Registered ESB Services tree and click OK.

8. In the Create Partner Link dialog, select the Partner Role from the list and click
OK.

9. In the Create Partner Link dialog, click the magic wand next to the Input Variable
field to display the Create Variable dialog.

10. In the Create Variable dialog, click OK.

11. In the Invoke dialog, click OK.

After you have successfully deployed the BPEL process to the integration server, the
ESB service that you specified in the BPEL partner link will be invoked by the BPEL
process.

Calling an ESB Service From an External Service

Creating Inbound and Outbound Services 4-13

Figure 4–6 BPEL Partner Link

For information about creating BPEL projects, see Oracle BPEL Process Manager
Developer's Guide.

Calling an ESB Service From an External Service
You can call an ESB service from an external service with the Concrete WSDL URL of
the service. You can find the Concrete WSDL URL in the Definition tab of the Oracle
ESB Control Services view, shown in Figure 4–7. Copy and paste the Concrete WSDL
URL into the external tool that you are using to call the ESB service.

Note that you need to specify that the ESB service can be invoked from an external
service in the service property page in Oracle JDeveloper or in the Definition tab of
Oracle ESB Control. For information about the service property page in Oracle
JDeveloper, see "Overview of Service Definitions and Routing Rules" on page 2-4. For
information about the service Definition tab in Oracle ESB Control, see "Viewing
Service Definitions" on page 3-12.

Calling an ESB Service From an External Service

4-14 Oracle Enterprise Service Bus Developer's Guide

Figure 4–7 Oracle ESB Control – Definition Tab of Services View

For information testing an ESB service in Oracle Enterprise Manager, see "Testing the
ESB Services" on page 9-9.

Creating Routing Services and Routing Rules 5-1

5
Creating Routing Services and Routing

Rules

This chapter introduces routing services and routing rules.

This chapter contains the following topics:

■ Introduction to Routing Services and Routing Rules on page 5-1

■ Creating and Modifying Routing Services on page 5-13

Introduction to Routing Services and Routing Rules
A routing service is the key component for moving a message across the enterprise
service bus – from its entry point to its exit point. Oracle JDeveloper provides tools
that assist you in creating a routing service

The following are the key components that define a routing service:

■ WSDL file

■ Target services and operations

■ Transformation definition

■ Filter Expression

■ Execution type (synchronous or asynchronous)

■ The ESB systems from which the routing service accepts messages

The WSDL specifies how other services (either within or outside of the enterprise
service bus) call the routing service. The remaining items, referred to as routing rules,
determine where the routing service sends each message it receives, how it sends it,
and what, if any, changes it makes to the message structure prior to sending it to the
target service.

Oracle JDeveloper provides tools that assist you in creating the routing service WSDL
and defining the routing rules.

The following sections provide an overview of concepts and how the routing service
and routing rules are specified. "Creating and Modifying Routing Services" on
page 5-13 provides step-by-step instructions on performing these tasks.

■ Overview of Specifying the Routing Service WSDL on page 5-2

■ Overview of Specifying Routing Rules on page 5-7

Introduction to Routing Services and Routing Rules

5-2 Oracle Enterprise Service Bus Developer's Guide

Overview of Specifying the Routing Service WSDL
To create a routing service, you can drag and drop an ESB routing service from the
Component Palette into the Design tab. You can also right-click in the Design tab, then
select Create ESB Service > Routing Service as illustrated in Figure 5–1.

Figure 5–1 Creating a Routing Service

When you create a routing service, Oracle JDeveloper opens a dialog box, as shown in
Figure 5–2.

Introduction to Routing Services and Routing Rules

Creating Routing Services and Routing Rules 5-3

Figure 5–2 Create Routing Service Dialog Box

As Figure 5–2 indicates, there are two main ways you can create the routing service
WSDL:

■ By specifying an existing WSDL file and one of the port types defined within that
WSDL

This option enables you to use an existing WSDL file (on the local file system or at
a Oracle JDeveloper connection) to define the routing service. Oracle JDeveloper
parses the WSDL you specify to present the list of port types from which you
make a selection.

If you want to edit an existing WSDL for the routing service, edit it using a WSDL
editor (such as Oracle JDeveloper) prior to specifying it in this dialog box.

■ By generating the WSDL from a schema file (XSD)

This option enables you to use an existing XSD file or a file in a native file format
(such as a comma-delimited value (CSV) file, a fixed-length file, a document type
definition (DTD) file or a COBOL copybook file) to define the routing service.

You can specify the same or different schema files for the request, response, and
fault message schemas, which Oracle JDeveloper converts into WSDL input,
output, and fault elements in the WSDL. Minimally, you must specify the schema
for the request message. You cannot specify a fault message schema, unless you
also specify a response.

In addition, you specify the operation and namespace. Oracle JDeveloper converts
the operation into a operation element in the WSDL file and the namespace you
specify is defined as the tns namespace in the WSDL file.

The operation element describes how input to the operation is defined.

Introduction to Routing Services and Routing Rules

5-4 Oracle Enterprise Service Bus Developer's Guide

When you complete the Create Routing Service dialog box, an icon is added to the
Design tab, as shown in Figure 5–1 on page 5-2. The name of the routing service
appears at the top of the icon, the name of the routing service operation appears below
that. A yellow triangle with the question mark indicates that the routing rules for this
routing service have not been specified yet. When you double-click the routing service
icon, the routing service Property Sheet is displayed as shown in Figure 5–3.

Figure 5–3 Routing Service

Modifying the Service WSDL File
You can modify the WSDL file for a service by adding or removing operations. Oracle
JDeveloper provides a WSDL editor that can be used to modify the WSDL file. You
can open the WSDL editor by double-clicking the WSDL file in Application Navigator.
After modifying the file, you can use the Refresh Operation From WSDL icon shown
in Figure 5–3 to synchronize the routing service with changes made to the WSDL.

When you click the Refresh Operation From WSDL icon, the Refresh WSDL dialog is
displayed as shown in Figure 5–4.

Note: WSDLs with multiple faults are not supported.

Note: it is not recommended that you make modifications to a
WSDL file other than adding or deleting operations. For example, if
you change the message schema type, then a transformation in a
routing rule that is expecting the old schema will fail.

Introduction to Routing Services and Routing Rules

Creating Routing Services and Routing Rules 5-5

Figure 5–4 Refresh WSDL Dialog

Click the Find existing WSDLs icon to the right of WSDL File field to select the WSDL
file. The Refresh WSDL dialog is updated as shown in Figure 5–5.

Figure 5–5 Populated Refresh WSDL Dialog

The CustIn_RS routing service shown in Figure 5–3 is updated as shown in Figure 5–6.

Introduction to Routing Services and Routing Rules

5-6 Oracle Enterprise Service Bus Developer's Guide

Figure 5–6 Modified Routing Service

Specifying Routing Service Properties
You can add and modify routing service properties by using the Properties panel of
the routing service property sheet shown in Figure 5–6. For example, you can specify
priority of a routing rule. The priority determines the order in which the message for a
routing rule gets processed. You can access the priority property of a routing rule
in following way:

OperationName.priority

For example: ReadCustomerData.priority

The priority value can range from 0 to 9. The message with priority 9 has a highest
priority during dequeue. The default priority is set to 4.

Perform the following steps to specify properties of a routing service:

1. Click the + next to Properties to open the panel.

2. Click the large Green Plus Sign (+) in upper right.

A new line is added where you can specify property name and value.

3. Specify a property name in the Name column.

4. Specify value for the property in the Value field.

5. Save the changes.

Figure 5–7 shows how you can specify priority for a routing rules.

Introduction to Routing Services and Routing Rules

Creating Routing Services and Routing Rules 5-7

Figure 5–7 Routing Rules Priority

Overview of Specifying Routing Rules
After you have created a routing service and at least one of the targets to which that
routing service will send messages, you can specify the routing rules to that target or
targets. You can specify routing rules using Oracle JDeveloper at design time or using
the Oracle ESB Control at run time. The interface for specifying routing rules is similar
in both interfaces; this section presents screen captures from Oracle JDeveloper.

You can access the page for specifying routing rules using Oracle JDeveloper by
double-clicking the icon on the Design tab that corresponds to the routing service for
which you want to specify routing rules. The property page has several sections,
including one labeled Routing Rules, as shown in Figure 5–8.

Figure 5–8 Routing Rules Properties Page

Clicking the large green + icon to the far right of the routing service operation, shown
in Figure 5–8, creates a routing rule and launches the service browser, allowing you to
choose the target service and operation for this new rule. When you click the small +
icon to the left of Routing Rules, fields such as shown in Figure 5–9 are presented.

Note that the operation specified when the routing service was defined appears with a
green arrow next to it. The green arrow indicates that only a request message schema

Introduction to Routing Services and Routing Rules

5-8 Oracle Enterprise Service Bus Developer's Guide

was specified for the routing service. If request, reply, and fault message schemas were
specified, three arrows would appear, such as shown in Figure 5–9. If a fault message
schema is not specified, then the red arrow is not presented.

Figure 5–9 Routing Rules – Request/Reply/Response Schema

Figure 5–10 describes the icons on the Routing Rules panel.

Figure 5–10 Routing Rules Icons, Fields, and Options

The following sections provide an overview of the routing rules options.

■ Target Service and Operation Overview on page 5-9

■ Filter Expression Overview on page 5-10

■ Transformation Overview on page 5-12

■ Accept Messages From Overview on page 5-13

■ Routing Invocation Type Overview on page 5-13

■ Routing Rule Priority Overview on page 5-13

Note: You must specify the target service and operation for each
routing rule before you can specify a transformation. Because the
service browser is launched when a new rule is created, the only time
you will see a rule without a target is when the target service is
deleted.

Introduction to Routing Services and Routing Rules

Creating Routing Services and Routing Rules 5-9

Target Service and Operation Overview
This routing rule specifies:

■ The service where message instances that the routing service receives will be sent.
This is referred to as a target service

■ The operation that will be executed on the message instances received by the
target service.

Later, if you specify a filter expression, you can prevent particular message instances
from being sent to a given target service on the basis of each message instance's
payload.

For each routing rule, you can specify only one target service and operation.
Therefore, if you want to specify multiple target operations for a given target service,
you must specify one routing rule for each target service operation.

For example, suppose you specify a database adapter service as a target service and
you want the operation applied to a message instance to be one of the following,
depending on the message payload:

■ Insert

■ Update

■ Delete

To do so, you create three routing rules, one for each operation. Later, when you
specify a filter expression, you can specify which target service and operation is
applied to each message instance on the basis of the message payload.

When you click the gear icon to the right of the target operation field (shown in
Figure 5–9), the Browse Target Service Operation dialog box opens, such as shown in
Figure 5–11.

After you have registered an ESB project, the services are listed under both Services in
project and Services at an ESB Connection. When selecting a target service, you can
navigate to the target service and operation at either of the locations as they are the
same.

■ Services in project

This branch lists all the ESB systems and the target services and operations within
each ESB system in the local Oracle JDeveloper project. In Figure 5–11, for
example, you could select target services and operations from the ESB system
named DefaultSystem.

■ Services at an ESB Server Connection

This branch lists all the ESB systems and the target services and operations within
each ESB system defined at an ESB Server connection. See "Registering ESB
Projects and Services with the ESB Server" on page 2-15.

Introduction to Routing Services and Routing Rules

5-10 Oracle Enterprise Service Bus Developer's Guide

Figure 5–11 Browse Target Service Operation

If, for example, you want to select a target service and operation in the local Oracle
JDeveloper project, you expand the desired ESB system under Services in Project,
expand the desired service, and then select the desired operation.

For step-by-step instructions on specifying the target service in the routing rules, see
"Specifying Routing Rules" on page 5-18.

Filter Expression Overview
The filter expression routing rule enables you to have the ESB Server filter messages
based on their payload. If the expression filter for a given message instance evaluates
to true, then the message is not delivered to the target service /operation pair
specified within the routing rule.

Suppose, for example, that you want notices of new product launches from
headquarters to be routed to three different stores: one in New York, one in Houston,
and one in San Francisco. However, you only want notices regarding the product line
of type MOBILE to be sent to the New York store.

To do so, you define a routing rule for each service/operation pair that sends
messages to the target stores. In addition, for the routing rule (or rules) that send
messages to the New York store, you specify a filter expression.

When you click the icon to the right of the filter expression field, shown in Figure 5–9,
the Expression Builder window opens, as shown in Figure 5–12.

Introduction to Routing Services and Routing Rules

Creating Routing Services and Routing Rules 5-11

Figure 5–12 Expression Builder Window – Initial View

The Expression Builder Window contains the components and controls that assist you
in designing a filter expression. Briefly, you double-click a value in the WSDL Message
navigation tree or the Functions palette, to add the value to the Expression field. Using
a combination of WSDL Message elements, functions, and manually entered text, you
use this window to build an expression by which you want message payloads to be
filtered for a given routing rule.

The following list describes each of the fields in the Expression Builder window:

■ Expression field

This field is where you enter the filter expression – either manually, or by using
the WSDL Message navigation tree and the Functions palette.

The icons that appear to the upper right of this field enable you to validate the
expression, undo the last edit made, redo the last edit made, or clear the entire
Expression field, respectively.

■ WSDL Message Navigation Tree

This field contains the WSDL for the message defined for the routing service.
When you select an element from the navigation tree, it is presented in the
Content Preview field and described in the Description field. For example,
Figure 5–18 on page 5-22 shows how the Expression Builder window appears
when you select an element and click Insert into Expression.

■ Functions Palette

This list enables you to select different functions to include in an expression. When
you select a function, a preview of how that function will appear when added to

Introduction to Routing Services and Routing Rules

5-12 Oracle Enterprise Service Bus Developer's Guide

the Expression field is presented in the Content Preview field, and a description of
the function is presented in the Description field, as shown in Figure .

Expression Builder Window – Function Preview and Description

■ Content Preview

This field indicates how a value selected from the WSDL Message or Functions
palette will appear when it is inserted into the Expression field.

■ Description

This field provides a description of a value selected from the WSDL Message or
Functions palette.

See "Using An Expression for Filtering Messages Based on Payload" on page 5-20 for
step-by-step instructions on building a filter expression.

Transformation Overview
A transformation map enables you to transform data from one XML schema to
another, enabling data interchange among applications using different schemas.

For example, suppose an inbound adapter service picks up a comma-delimited file
from a file system. A routing service receives that message and, using a
transformation, changes the file structure to the table structure as required by an
outbound database adapter service.

When you click the transformation map icon to the right of the Transformation Map
field in the routing rules panel of the routing service properties page, the Request
Transformation Map dialog displays. In that dialog, you can select an existing mapper
file (xsl) or create a new xsl file with the Data Mapper tool to perform the required

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-13

transformation. For information about the Data Mapper tool, see Chapter 6, "XSLT
Data Mapper and Transformations".

Accept Messages From Overview
You can specify the ESB systems from which the target service will accept messages.
The options are any system, the local system only, or systems other than the one in
which the target service is defined. See "Specifying the ESB Systems From which
Messages are Accepted" on page 5-26.

Routing Invocation Type Overview
You can choose to execute the message instance synchronously or asynchronously in
the routing rules. Synchronous messaging provides an immediate response.
Asynchronous messaging is useful for environments in which a service can take a long
time to process a client request. Asynchronous services also provide a more reliable
fault-tolerant and scalable architecture than synchronous services. See "Specifying
Synchronous or Asynchronous Execution" on page 5-27.

Routing Rule Priority Overview
You can choose the priority of the routing rules of a routing service by ordering the
rule in the ascending and descending order. The priority determines the order in
which the rules are applied during message processing. See "Specifying Routing Rules
Priority" on page 5-27.

Creating and Modifying Routing Services
You create routing services using Oracle JDeveloper, but you can create and modify
routing rules using Oracle JDeveloper or the Oracle ESB Control.

This section contains the following topics:

■ Opening the Create Routing Service Dialog on page 5-13

■ Specifying the WSDL File for a Routing Service on page 5-14

■ Specifying Routing Rules on page 5-18

■ Header Transformation and Filtering on page 5-27

■ Modifying a Routing Service on page 5-33

■ Deleting a Routing Service on page 5-33

Opening the Create Routing Service Dialog
To create a routing service, you complete the Create Routing Service dialog box
available in Oracle JDeveloper. You can access this dialog box using either of the
following two methods:

■ Schematically, using the Design tab, by following these steps

1. In the Applications navigator, navigate to the ESB project for which you want
to create a routing service, expand the Resources folder and double click
project-name.esb, where project-name is the name of the project to which you
want to add the routing service.

The Design tab for the project is displayed.

2. In the Component Palette, click the down arrow and select ESB services if
they are not already selected.

Creating and Modifying Routing Services

5-14 Oracle Enterprise Service Bus Developer's Guide

3. Drag and drop Routing Service into the Design tab.

The Create Routing Services dialog box opens.

■ Using dialog boxes only, by following these steps:

To create the routing service using dialog boxes only, follow these steps:

a. In the Applications navigator, right-click the ESB project for which you want
to create a routing service, and then click New.

The New Gallery dialog box opens.

b. In the Categories panel, expand Business Tier, and then click Web Services.

c. In the Items panel, click ESB Routing Service, and then click OK.

The Create Routing Service dialog box opens.

Specifying the WSDL File for a Routing Service
The Create Routing Service dialog box provides three methods for specifying the
WSDL for the routing service, as described in the following sections. Each of these
sections provides step-by-step instructions on completing the Create Routing Service
dialog box for the method you want to use:

■ Generating the WSDL for a Routing Service from an Existing XSD File on
page 5-14

■ Generating the WSDL to Create a Routing Service Based on a Sample File on
page 5-16

■ Selecting an Existing WSDL to Create a Routing Service on page 5-17

Generating the WSDL for a Routing Service from an Existing XSD File
Use this method to provide an existing WSDL for the routing service. After you
specify the file, Oracle JDeveloper parses it to determine the defined schema elements
and presents them in a drop-down list from which you can make a selection.

1. If you have not already done so, open the Routing Service dialog box, as described
in "Creating and Modifying Routing Services" on page 5-13.

2. In the Name field, enter a name for the routing service.

The name must be unique within the scope of the project in which the routing
service is being created. Spaces are not allowed.

3. For the System/Group field, click Browse to open the ESB Service Group Browser
dialog box, select the system (and service group, if desired) to which you want to
add the routing service, and then click OK.

To create a new system or service group to contain the routing service you are
creating, click Create New at the top of the ESB Service Group Browser dialog box.
See "Creating ESB Systems and Service Groups" on page 2-12 for information
about creating a new ESB system or service group.

4. In the Description field, enter a description for the routing service, if desired. This
field is optional.

5. Choose Generate WSDL from Schemas.

This option includes the Request, Reply, and Fault tabs.

6. On the Request tab, click Browse to access the Schema Location.

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-15

The Type Chooser dialog box, shown in Figure 5–13, opens and presents the
schema files (XSD files) from which you can choose to generate the WSDL. Expand
the trees under Project Schema Files, Project WSDL Files, and ESB to locate the
schema. Navigate to the root element of the XSD file for the message instance that
you want this routing service to process. Select the element and click OK.

You can import a schema XSD file or WSDL file into a project by clicking on the
Import Schema File or Import WSDL icon that appears at the top right of the Type
Chooser dialog box. For information about importing schemas into an ESB project,
see "Importing Files into a Project" on page 2-14.

Figure 5–13 Type Chooser Dialog

7. In the Request tab Schema Element field, select the root element for the message
that you want this routing service to process if not already selected.

8. On the Reply tab, repeat the steps for the Request tab if entering any information.

9. On the Fault tab, repeat the steps for the Request tab if entering any information.

10. In the Operation Name field, enter the operation name. Spaces are not allowed.

For example: executeQuery

11. In the Namespace field, enter a namespace or accept the current value.

For example: http://oracle.com/esb/namespaces/DefaultSystem

12. Click OK.

Note: If you want to use a schema XSD file that resides on your local
file system, ensure that the XSD file, and any XSD files that it imports,
all reside in the JDeveloper project directory.

Creating and Modifying Routing Services

5-16 Oracle Enterprise Service Bus Developer's Guide

Figure 5–14 Create Routing Service - Request Tab

The routing service is created and an icon is added to the Design tab of the ESB
project.

Generating the WSDL to Create a Routing Service Based on a Sample File
Oracle JDeveloper provides a wizard that assists you in creating the XSD
representation of various file formats (such as CSV file, fixed-length file, DTD, and
Cobol copybooks) based on a sample file and details that you provide about the file's
structure. You can then direct Oracle JDeveloper to generate the WSDL for the routing
service from that XSD file.

To use this method, follow these steps in the Create Routing Service dialog box:

1. If you have not already done so, open the Routing Service dialog box, as described
in "Creating and Modifying Routing Services" on page 5-13.

2. In the Service Name field, enter a name for the routing service.

The name must be unique within the scope of the project in which the routing
service is being created. Spaces are not allowed.

3. For the System/Group field, click Browse to open the ESB Service Group Browser
dialog box, select the system (and service group, if desired) to which you want to
add the routing service, and then click OK.

Click Help for assistance in using the ESB Service Group Browser dialog box.

4. In the Description field, enter a description for the routing service, if desired. This
field is optional.

5. Choose Generate WSDL from Schema.

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-17

This option includes the Request, Reply, and Fault tabs.

6. On the Request tab, click Define Schema for Native Format.

The Native Format File Builder wizard opens.

7. Follow the steps through the wizard.

If you need assistance on a wizard page, click Help.

8. In the Schema Element field on the Request tab, select the root element for the
message that you want this routing service to process.

9. Reply tab

10. Fault tab

11. Operation Name

Spaces are not allowed in the operation name.

12. Namespace

13. Click OK.

The routing service is created and an icon is added to the Design tab of the ESB
project.

Selecting an Existing WSDL to Create a Routing Service
If you use this method to provide the WSDL for the routing service, the existing WSDL
must exist on the local file system. After you specify the file, Oracle JDeveloper parses
it to determine the defined port types and presents them in a drop-down list from
which you can make a selection.

To use this method, follow these steps in the Create Routing Service dialog box:

1. If you have not already done so, open the Routing Service dialog box, as described
in "Creating and Modifying Routing Services" on page 5-13.

In the Service Name field, enter a name for the routing service.

The name must be unique within the scope of the project in which the routing
service is being created. Spaces are not allowed.

2. For the System/Group field, click Browse to open the ESB Service Group Browser
dialog box, select the system (and service group, if desired) to which you want to
add the routing service, and then click OK.

Click Help for assistance in using the ESB Service Group Browser dialog box.

3. In the Description field, enter a description for the routing service, if desired. This
field is optional.

4. Choose Select Existing WSDL.

5. To the right of the WSDL Location field, click the icon.

The Open dialog box opens.

6. In the Open dialog box, navigate to the existing WSDL file, and then click OK. (If
you need assistance with this dialog box, click Help.)

7. In the Port Type field, click the down arrow, and then select the port type for the
routing service.

8. Click OK.

Creating and Modifying Routing Services

5-18 Oracle Enterprise Service Bus Developer's Guide

After you complete the process for creating a routing service, an icon for the service
appears in the Design tab of the project. For an example, see Figure 5–1. In the
Applications Navigator, files with esbsvc and wsdl extensions are created in the
Resources folder of the project. The esbsvc file provides the definition of the ESB
service. The WSDL file defines the input and output messages for this instance flow,
the supported client interface and operations, and other features.

Specifying Routing Rules
After you define a routing service, by specifying its WSDL, you can specify the rules
that determine how a message processed by the routing service gets to its next
destination. Routing rules can be defined using a property sheet in Oracle JDeveloper
or a property sheet in the Oracle ESB Control.

To access the Routing Rules property sheet inOracle JDeveloper, use either of the
following two methods. For information about accessing the Routing Rules property
sheet in the Oracle ESB Control, see "Viewing Routing Rules" on page 3-15.

■ From the Applications Navigator:

a. In the Applications Navigator, expand the ESB project, followed by the
Resources folder.

b. In the Resources folder, double click the name of the routing service for which
you want to specify routing rules.

c. Click the plus symbol (+) to expand the Routing Rules information.

■ From the Design tab:

a. Double-click the icon that represents the routing service for which you want to
specify routing rules.

b. Click the plus symbol (+) to expand the Routing Rules information.

The Routing Rules property sheet is displayed, as shown in Figure 5–8 on page 5-7.

The icons on the Routing Rules property sheet are summarized in Figure 5–15.

Figure 5–15 Routing Rule Property Sheet Icons

The following sections describe each of the available routing rules and how to specify
them:

■ Specifying the Target Operations on page 5-19

■ Creating an XSL Map File for Data Structure Transformation on page 5-20

■ Using An Expression for Filtering Messages Based on Payload on page 5-20

■ Specifying the ESB Systems From which Messages are Accepted on page 5-26

■ Specifying Synchronous or Asynchronous Execution on page 5-27

■ Specifying Routing Rules Priority on page 5-27

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-19

Specifying the Target Operations
The target operation is the only routing rule you must specify to make use of a routing
service. This routing rule tells the routing service the next service, known as the target
service, to which the message should be sent and the operation to perform on that
message when it reaches the target service.

You can specify multiple target service and target operation pairs for each routing
service. In addition, for request/reply message flows, you can forward the reply
message to another target, and specify a target service in the event that a message fault
occurs. Note that a fault is simply a special reply that can be directed to the requester.

You can specify the following target operations for routing rules:

■ Specifying the Target Operation for a One-Way Configuration

■ Specifying the Target Operation to Return a Reply to the Source Service

■ Specifying the Target Operation to Forward a Reply to a Non-Source Service

■ Specifying the Target Operation for a Faulted Message

Follow these steps to specify a target service and operation:

1. If you have not already done so, expand the Routing Rules information, as
described in "Specifying Routing Rules" on page 5-18.

2. Click the large green plus (+) button.

The Browse Target Service Operation dialog box opens. For information about the
target service and operation, see "Target Service and Operation Overview" on
page 5-9.

3. In the Browse Target Service Operation dialog, follow these steps:

a. Navigate to, and then expand the desired target service.

b. Select the target service operation in the Browse Target Service Operation
dialog. See Figure 5–11 on page 5-10.

c. Click OK.

The Routing Rules panel is updated to reflect the newly added target service
and operation, with the value expressed as target_service.target_operation, as
shown in Figure 5–16. Depending on the target selected, the rule includes a
combination of Request, Reply, or Fault fields.

4. Repeat steps two and three if you want to add an additional target service and
target operation pair. You can specify the same target service and a different
operation, if desired.

Note: WSDLs with multiple faults are not supported.

Note: To modify the target service and target service operation, click
the Browse for Target Service Operation icon, as shown in
Figure 5–15.

Creating and Modifying Routing Services

5-20 Oracle Enterprise Service Bus Developer's Guide

Figure 5–16 Routing Rules for Request/Reply with Target Service Specified

Creating an XSL Map File for Data Structure Transformation
Oracle JDeveloper provides an XSLT Data Mapper tool that enables you to specify an
xsl file to transform data from one XML schema to another. This enables data
interchange among applications using different schemas. For example, you can map
incoming source purchase order schema to an outgoing invoice schema. After you
define an xsl file, you can reuse it in multiple routing rule specifications.

See "Creating an XSL Map with Data Mapper" on page 6-3.

Using An Expression for Filtering Messages Based on Payload
You can specify an expression to filter messages based on their payload. You can, for
example, route messages for a customer record to different offices, based on that
customer's postal code.

To specify a filtering expression, follow these steps:

1. If you have not already done so, expand the Routing Rules information, as
described in "Specifying Routing Rules" on page 5-18.

2. Click the Add Filter Expression icon, as shown in Figure 5–15.

The Expression Builder opens.

3. Specify the filter expression, and then click OK.

Information about using the Expression Builder is described in the text following
these steps.

When the Expression Builder opens, it appears similar to Figure on page 5-12. Notice
that Oracle JDeveloper parses the routing service WSDL and presents the message
definition in the WSDL Message box.

You build the expression for filtering as follows:

1. In the WSDL Message box, expand the message definition and select the message
element on which you want to base the expression.

Notice that the Content Preview box indicates the XPath expression for the
selected WSDL message element, an example of which is shown in Figure 5–17.

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-21

Figure 5–17 Sample Expression Builder Tool – WSDL Message Element Selected

2. Click Insert Into Expression.

The expression is presented in the Expression box, as shown in Figure 5–18.

Creating and Modifying Routing Services

5-22 Oracle Enterprise Service Bus Developer's Guide

Figure 5–18 Sample Expression Builder Tool – WSDL Message Element Inserted

3. From the Function box, select the function that you want to apply to the WSDL
Message payload.

Functions are listed within categories that are listed when you click the down
arrow within the Functions box. For example, if you click the down arrow and
select Logical Functions, the list appears as shown in Figure 5–19. Notice that if
you select a function within the Logical Functions list, a description of that
function is presented in the Explanation box.

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-23

Figure 5–19 Sample Expression Builder Tool – Function Selected

4. Click Insert Into Expression.

The XPath expression for the selected function is inserted in to the Expression box.
Notice that because the expression requires editing by hand to complete the
expression, a red squiggle appears at the end of the line, as shown in Figure 5–20.

Creating and Modifying Routing Services

5-24 Oracle Enterprise Service Bus Developer's Guide

Figure 5–20 Sample Expression Builder Tool – Function Inserted

5. Complete the expression. In this example, a value of 5 is entered, as shown in
Figure 5–21.

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-25

Figure 5–21 Sample Expression Builder Tool – Value Entered

6. Validate the expression by clicking the green check mark.

7. If the expression is invalid or you need to make a change, you can edit the
expression manually, or use the expression editing icons, which are summarized
in Figure 5–22.

Figure 5–22 Expression Editing Icons

8. Click OK.

The expression is added to the Routing Rule property sheet.

Note that in addition to the XPath expression generated by the Expression Builder,
namespace definitions are automatically provided by Oracle Enterprise Service Bus to
create an extended syntax. If you place the cursor on a non-empty filter icon of a
routing service in the Design tab, the extended syntax displays.

To modify or delete a filter expression, double-click the Add Filter Expression icon,
and then modify or delete the expression in the Expression panel of the Expression
Builder.

You can also use user-defined extension functions in the Expression builder dialog
box. Perform the following steps to use a user-defined extension function:

Creating and Modifying Routing Services

5-26 Oracle Enterprise Service Bus Developer's Guide

1. Write a function that implements the javax.xml.xpath.XPathFunction
interface. A sample function is shown in the following example:

public class ExtnFunc implements XPathFunction
{
 public Object evaluate(List args) throws XPathFunctionException
 {
 return "helloworld";
 }
}

2. Modify the extn_xpath_functions_config.xml file in the ORACLE_
HOME/integration/esb/config folder to add the user-defined extension
function details.

A sample extn_xpath_functions_config.xml is shown in the following
example.

<?xml version="1.0" encoding="UTF-8"?>
<!-- === -->
<!-- XPath extension functions available to ESB 10.1.3 -->
<!-- === -->
<esb-xpath-functions xmlns="http://xmlns.oracle.com/soa/config/esb"
version="10.1.3.1">
 <!-- function id="function id which will be used in xpath" arity="1">
 <classname>your class name including package</classname>
 <namespace-uri>
 your namespace
 </namespace-uri>
 </function -->
</esb-xpath-functions>

3. You can use the user-defined extension function to build an expression in the
Expression builder dialog box in following way:

NamespaceName:ExtensionFunctionName

The NameSpace refers to the namespace defined in the extn_xpath_
functions_config.xml file. The ExtensionFunctionName refers to the
extension function. For example,

{ns1:MyExtensionFunction= 'US'};

Specifying the ESB Systems From which Messages are Accepted
To indicate the ESB systems from which the routing service will accept messages,
follow these steps:

1. If you have not already done so, open the Routing Rules properties, as described
in "Specifying Routing Rules" on page 5-18.

2. Choose one of the following options:

■ Any System

Choose this option to specify that the routing service accept messages that
originate from any ESB system, including the one in which the routing service
was created.

■ Same System

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-27

Choose this option to specify that the routing service accept messages that
originate only from the same ESB system as the one in which the routing
service was created.

■ Other Systems

Choose this option to specify that the routing service accept messages that
originate only from ESB systems other than the one in which the routing
service was created.

Specifying Synchronous or Asynchronous Execution
Synchronous execution provides an immediate response to a request; asynchronous
does not. Asynchronous execution is useful for environments in which a service can
take a long time to process a request. Asynchronous services also provide a more
reliable fault-tolerant and scalable architecture than synchronous services.

To indicate whether the routing service invokes the target service as synchronous or
asynchronous execution, follow these steps:

1. If you have not already done so, open the Routing Rules properties, as described
in "Specifying Routing Rules" on page 5-18.

2. Click the plus (+) button to expand the routing rules information.

The Execution options display on the right side of the property sheet.

3. Specify Synchronous or Asynchronous execution with the appropriate button.
For an illustration of the property sheet, see Figure 5–16 on page 5-20.

Specifying Routing Rules Priority
You can choose the priority of multiple routing rules of a routing service by placing
the rules in ascending order, with the top rules having the highest priority.

After you have selected a rule by clicking on the + on the left of the rule, you can click
the up or down triangles in the upper right of the routing rules panel to move the
selected rule to order of the correct priority. For an illustration of the property sheet,
see Figure 5–16 on page 5-20.

Header Transformation and Filtering
Oracle Enterprise Service Bus provides limited support for header-based
transformation and filtering (routing).

This section includes the following topics:

■ Header Support Terminology on page 5-27

■ Header-based Transformation on page 5-28

■ Header-Based Filtering on page 5-31

■ Limitations of ESB Header Support on page 5-32

Header Support Terminology
In ESB, the headers are referred to as follows:

■ A request header goes to a service and leaves as an outbound header.

Filtering and transformation can be used with the request header. If a
transformation is not specified, the header is copied as-is (pass-through).

Creating and Modifying Routing Services

5-28 Oracle Enterprise Service Bus Developer's Guide

Figure 5–23 Request and Outbound Headers

■ An inbound response header goes to an outbound routing service and leaves as a
response header.

Transformation can be used with the response header. If a transformation is not
specified, the header is copied as-is (pass-through).

Figure 5–24 Response and Inbound Response Headers

For information about the adapter inbound and outbound header WSDL files, see
Oracle Application Server Adapter for Files, FTP, Databases, and Enterprise Messaging
User's Guide.

Header-based Transformation
ESB header-based transformation is supported with XSLT extension functions for:

■ Reading request headers:

String getRequestHeader(String xpathExpression,
String namespaceDecl)

■ Writing outbound headers:

void setOutboundHeader(String xpathExpression,
String value,
String namespaceDecl)

■ Reading inbound response headers to a routing service:

String getInboundResponseHeader(String xpathExpression,
String namespaceDecl)

■ Writing response headers:

void setResponseHeader(String xpathExpression,
String value,
String namespaceDecl)

Routing Service

F X
Request Header Outbound Header

Pass-through

Routing Service

X
Response Header Inbound Response Header

Pass-through

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-29

The following applies to the syntax of the XSLT function declarations:

■ xpathExpression - the XPath expression to get or set in the header

■ value - the value to be set for the xpathExpression

■ namespaceDecl - namespace declarations in the form 'prefix=namespace;'

Note the semi-colon (;) at the end of the namespace declaration.

The namespace for the XSLT extension functions is:
http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.h
eaders.ESBHeaderFunctions

To set up a header-based transformation, follow these steps:

1. Create a data transformation with the XSLT Data Mapper tool if one does not
already exist.

2. Right click <target> in the data map, then select Add Variable from the menu to
display the Create Variable dialog, shown in Figure 5–25.

3. In the Create Variable dialog, complete the fields for each variable as follows:

■ Local Name:

Enter a name for the variable

■ XPath Expression:

Enter the expression using one of the header transformation functions.

To display the header-based transformation functions, you can enter ehdr:
and then Ctrl+Spacebar in the field. Double-click the function that you want
to add to the expression, then add the required parameters to complete the
function.

When you are entering the XPath expression for an adapter, you need to check
the source of the adapter header schema definition for values of the
parameters, shown in Example 5–1. Oracle JCA adapter headers are defined in
a separate WSDL file. For information about the adapter inbound and
outbound header WSDL files, see Oracle Application Server Adapter for Files,
FTP, Databases, and Enterprise Messaging User's Guide.

Creating and Modifying Routing Services

5-30 Oracle Enterprise Service Bus Developer's Guide

Figure 5–25 Create Variable Dialog With a Header Transformation Function

Example 5–1 is an example of a an adapter schema file.

Example 5–1 Sample fileAdapterInboundHeader.wsdl

<definitions
 name="fileAdapter"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >

 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:FILEAPP="http://xmlns.oracle.com/pcbpel/adapter/file/">
 <element name="InboundFileHeaderType">
 <complexType>
 <sequence>
 <element name="fileName" type="string"/>
 <element name="directory" type="string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>

 <!-- Header Message -->
 <message name="InboundHeader_msg">
 <part element="tns:InboundFileHeaderType" name="inboundHeader"/>
 </message>

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-31

</definitions>

For Example 5–1, the corresponding getRequestHeader call in the Xpath expression
would be in the following form:

ehdr:getRequestHeader('/fhdr:InboundFileHeaderType/fhdr:fileName',
 'fhdr=http://xmlns.oracle.com/pcbpel/adapter/file/;')

If you are writing the fileName to an outbound file adapter, you could use the
following in the XPath expression when creating a variable, where INFILENAME is the
variable name corresponding to getRequestHeader call:

ehdr:setOutboundHeader('/fhdr:OutboundFileHeaderType/fhdr:fileName', $INFILENAME,
'fhdr=http://xmlns.oracle.com/pcbpel/adapter/file/;')

Header-Based Filtering
You can route a message based on the message headers using filtering. ESB
header-based filtering is supported for request and inbound response headers with
XPath extension functions:

■ Reading request headers:

String getRequestHeader(String xpathExpression)

■ Reading inbound response headers to a routing service:

String getInboundResponseHeader(String xpathExpression)

The following applies to the syntax of the XPath function declarations:

■ xpathExpression - the XPath expression to get in the header

The syntax of the filter expression in Expression Builder is:

{filterExpression};{namespaceDeclaration}

The namespace for the XSLT extension functions is:
http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.h
eaders.ESBHeaderFunctions

To set up a header-based filtering (routing), follow these steps:

1. Launch the Expression Builder tool from the routing service.

2. Select Header Functions under Functions to display the XPath extension
functions.

3. Select the function you want and click Insert Into Expression.

4. Check the source of the adapter schema file for values of the parameters, then edit
the function to the correct syntax. For information about the adapter inbound and
outbound header WSDL files, see Oracle Application Server Adapter for Files, FTP,
Databases, and Enterprise Messaging User's Guide.

When creating the expression, it might be easier to edit the expression in a text
editor and paste the completed expression into Expression Builder.

Note: When using the set header functions, you must set values in
the order that is expected by the target service. This means that in
Example 5–1, you would need to first set the fileName before setting
the directory element.

Creating and Modifying Routing Services

5-32 Oracle Enterprise Service Bus Developer's Guide

Figure 5–26 Expression Builder With a Header Transformation Function

For example, if you want to check if the fileName is payload.xml, then you use the
following in Expression Builder after checking the values in
fileAdapterInboundHeader.wsdl file shown in Example 5–1.

 {ehdr:getRequestHeader('/fhdr:InboundFileHeaderType/fhdr:fileName') = 'payload.xml'};
 { namespace fhdr=http://xmlns.oracle.com/pcbpel/adapter/file/ namespace
ehdr=http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.headers.ESBHeaderFunctions
 }

Limitations of ESB Header Support
These are the limitations when using ESB header transformation and routing:

■ The setXHeader functions only support the following types of Xpath
expressions:

Absolute path, such as /Customer/Address/Zip.

Indexed, such as /Customer/Address[2]/Zip. If Address[1] is not already
created in the target document, it is created.

■ Multiple headers are not supported.

See Also: The samples for the Header-Based Filtering are available
on the Oracle Enterprise Service Bus page on the Oracle Technology
Network site
(http://www.oracle.com/technology/products/integrati
on/esb/index.html).

Creating and Modifying Routing Services

Creating Routing Services and Routing Rules 5-33

■ When using SOAP with headers, SOAP Header elements are set as header. Xpath
expressions must start with the Header element, such as
/env:Header/Message/Priority.

■ There is limited GUI tools support.

■ Does not support setting attributes.

Modifying a Routing Service
To edit an existing routing service, perform the following steps:

1. Double click the routing service in the Application Navigator or in the Design
tab.

2. Make your changes to the routing service information. Note that the name of the
service cannot be changed.

3. Save your changes.

Deleting a Routing Service
To delete a routing service, perform the following steps:

1. Select the routing service icon in the Design tab.

2. Click the large red X at the top of Design tab to delete the selected routing service.

3. Confirm that you want to delete the selected service.

4. Save your changes.

Note: Do not delete routing services in the Application Navigator.

Creating and Modifying Routing Services

5-34 Oracle Enterprise Service Bus Developer's Guide

XSLT Data Mapper and Transformations 6-1

6
XSLT Data Mapper and Transformations

This chapter describes features of the XSLT Data Mapper and provides instructions for
using a transformation mapping in routing rules.

This chapter contains the following topics:

■ XSLT Data Mapper on page 6-1

■ Creating an XSL Map with Data Mapper on page 6-3

■ Using the XSLT Mapper on page 6-6

■ Using the Mapper Test Utility on page 6-22

XSLT Data Mapper
The Data Mapper tool provides data transformation in the routing rules of the routing
service. You use the XSLT Mapper transformation tool to create the contents of a map
file. Figure 6–1 shows the layout of the XSLT Mapper.

XSLT Data Mapper

6-2 Oracle Enterprise Service Bus Developer's Guide

Figure 6–1 Sample XSLT Data Mapper Tool

The Source and the Target schemas are represented as trees and the nodes in the trees
are represented using a variety of icons. The displayed icon reflects the schema or
property of the node. For example:

■ An XSD attribute is denoted with an icon that is different from an XSD element

■ An optional element is represented with an icon that is different from a mandatory
element

■ A repeating element is represented with an icon that is different from a
nonrepeating element, and so on

The various properties of the element and attribute are displayed in the Property
Inspector in the lower right of Figure 6–1 (for example, type, cardinality, and so on).
The Functions Palette in the upper right of Figure 6–1 is the container for all functions
provided by the XSLT Mapper. The mapper pane or canvas is the actual drawing area
for dropping functions and connecting them to source and target nodes.

The XSLT Mapper provides three separate context sensitive menus:

■ One in the source panel

■ One in the target panel

■ One in the mapper pane or canvas in the middle

Right-click in each of the three separate panels to see what the context menus look like.
A full set of Undo Auto Map, Redo, Delete, and Delete All functions are also
available.

Creating an XSL Map with Data Mapper

XSLT Data Mapper and Transformations 6-3

Notes on the Mapper
■ A node in the target tree can be linked only once (that is, you cannot have two

links connecting a node in the target tree).

■ An incomplete function and expression does not result in an XPath expression in
the source view. If you switch from the design view to the source view with one or
more incomplete expressions, the Mapper Messages window displays warning
messages.

■ When you map duplicate elements in the XSLT Mapper, the style sheet becomes
invalid and you cannot work in the Design view. The Log Window shows the
following error messages when you map an element with a duplicate name:

Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/ns0:rel"
 Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:ind"
 Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:var"

The workaround is to give each element a unique name.

Creating an XSL Map with Data Mapper
The XSLT Data Mapper tool that enables you to create an xsl file to transform data
from one XML schema to another. After you define an xsl file, you can reuse it in
multiple routing rule specifications. This section provides an overview of creating a
transformation map xsl file with the XSLT Data Mapper tool.

The Data Mapper tool is available through the Routing Service property page or from
the routing service icon in the Design tab of Oracle JDeveloper. You can either create a
new transformation map or update an existing one.

To launch the Data Mapper tool from Routing Service property page and create or
update a data transformation xsl file, follow these steps:

1. Open the properties page of a Routing Service.

2. Open the Routing Rules panel by clicking on the + to the left of Routing Rules as
described in "Specifying Routing Rules" on page 5-18.

The transformation map icon is visible in the routing rules panel. For an example
of the routing service property page with the transformation map icon in the
routing rules panel, see Figure 5–8 on page 5-7.

3. Click the transformation map icon to the right of the Transformation Map field in
the routing rules panel to open the Request Transformation Map dialog, shown in
Figure 5–16 on page 5-20.

The Request Transformation Map dialog displays with options for selecting an
existing transformation map (XSL) file or creating a new map file.

Creating an XSL Map with Data Mapper

6-4 Oracle Enterprise Service Bus Developer's Guide

Figure 6–2 Request Transformation Map Dialog

If the routing rule includes a reply or fault, the Request Transformation Map
dialog contains the Include Request in the Reply Payload option for reply or fault
transformations. When you enable this option, you can obtain information from
the request message. When you create a new map for reply or fault
transformations, the ESBREQUEST variable is added on the source side of the Data
Mapper tool. When you view the properties in the Edit Parameter dialog for
ESBREQUEST, you can add XPath Expression functions.

4. Choose one of the following options:

■ Create New Mapper File and then enter a name for the file (or accept the
default value).

■ Use Existing Mapper File and then click the flashlight icon to browse for an
existing mapper file (or accept the default value). When the data mapper tool
opens, you can update the existing file.

5. Click OK.

If you chose Create New Mapper File, the XSLT Data Mapper tool opens to enable
you to correlate source schema elements to target schema elements, as shown in
Figure 6–1 on page 6-2.

6. You can select and drag a component on either side of the tool to the component
you want to correlate on the other side of the mapper tool. When you initially
select and drag, the Auto Map Preferences dialog displays so you can set
preferences for the mapping.

Figure 6–3 Auto Map Preferences Dialog

7. You can choose to drag and drop source elements to target elements individually
or you can use the AutoMap feature in the Auto Map Preferences dialog. If you

Creating an XSL Map with Data Mapper

XSLT Data Mapper and Transformations 6-5

enable the AutoMap and Match Elements with Similar Names options, the Data
Mapper tool automatically maps source elements to target elements after you click
OK in the Auto Map Preferences dialog, as shown inFigure 6–4.

Figure 6–4 XSLT Data Mapper AutoMap

8. You can edit a new or existing transformation map.

■ Add new links by dragging and dropping source elements to target elements.

■ Remove (undo) links by selecting the link and right-clicking to bring up menu
options. Select Undo link from the context menu.

Using the XSLT Mapper

6-6 Oracle Enterprise Service Bus Developer's Guide

Figure 6–5 XSLT Data Mapper Context Menu

9. After you have completed the transformation map, use File > Save to save the xsl
file.

You can directly launch the Data Mapper tool by double-clicking on a data
transformation icon in a routing service icon in the Design tab. If the transformation
exists, the Data Mapper tool opens for you to update the transformation file. If the
transformation file has not been specified yet, the Request Transformation Map dialog
displays and enables you to create a new transformation file or select an existing
transformation map file for update.

Using the XSLT Mapper
The following sections describe how to use the XSLT Mapper:

■ Simple Copy by Linking Nodes on page 6-7

■ Setting Constant Values on page 6-7

■ Adding Functions on page 6-8

■ Editing XPath Expressions on page 6-11

Note: You can also create an XSL transformation map file from an
XSL stylesheet. Click New, then XML, then XSL Map From XSL
Stylesheet from the File main menu in Oracle JDeveloper.

Note: If you select a file with an xslt extension such as
xform.xslt, it opens the mapper pane to create a new XSL file
named xform.xslt.xsl, even though your intension was to use the
existing xform.xslt file. An xsl extension is appended to any file
that does not already have an xsl extension, and you must create the
mappings in the new file. As a workaround, ensure that your files first
have an extension of xsl. If the XSL file has an extension of xslt,
then rename it to xsl.

Using the XSLT Mapper

XSLT Data Mapper and Transformations 6-7

■ Adding XSLT Constructs on page 6-12

■ Automatically Mapping Nodes on page 6-15

■ Viewing Unmapped Target Nodes on page 6-17

■ Generating Dictionaries on page 6-18

■ Creating Map Parameters and Variables on page 6-18

■ Searching Source and Target Nodes on page 6-20

■ Ignoring Elements in the XSLT Document on page 6-21

■ Replacing a Schema in the XSLT Mapper on page 6-22

Simple Copy by Linking Nodes
To copy an attribute or leaf-element in the source to an attribute or leaf-element in the
target, drag and drop the source to the target, as shown in Figure 6–6.

Figure 6–6 Linking Nodes

Setting Constant Values
Perform the following steps to set a constant value.

1. Select a node in the target tree.

2. Invoke the context menu by right-clicking the mouse.

3. Select the Set Text menu option.

4. Enter text in the Set Text window.

5. Click OK to save the text.

A T icon is displayed next to the node that has text associated with it.

6. If you want to remove the text associated with the node, right click the node to
invoke the Set Text window again. Delete the contents and click OK.

Using the XSLT Mapper

6-8 Oracle Enterprise Service Bus Developer's Guide

Figure 6–7 Set Text Window

Adding Functions
In addition to the standard XPath 1.0 functions, the Data Mapper provides a number
of prebuilt extension functions and has the ability to support user-defined functions
and named templates. The extension functions are prefixed with xp20 or orcl and
mimic XPath 2.0 functions.

To view function definitions and use a function in a data transformation map, Perform
the following steps:

1. Select a category of functions, such as String Functions, from the Component
Palette.

2. Right-click an individual function, such as lower-case.

3. Select Help. A window with a description of the function appears. You can also
click a link at the bottom to access the function description at the World Wide Web
Consortium at www.w3.org.

4. Drag a function from one of the functions categories in the Component Palette to
the data mapper pane.

■ You can drag a function from the Component Palette on an existing link in the
mapper pane.

For example, drag the lower-case function under String Functions on an
existing link into the mapper pane, such as Email in the source list to

See Also: The online Help for the Set Text window for detailed
information

Using the XSLT Mapper

XSLT Data Mapper and Transformations 6-9

contactemail in the target list. This function converts the email value in the
source element to lower case when it is output to the target element.

■ You can drag a function into an empty area of the mapper pane. Then drag a
source elements on the left handle of the function and a target element on the
right handle of the function.

For example, drag the concat function under String Functions to the mapper
pane. Drag threads from multiple source elements, such as
CustomerData/ContactTitle and CustomerData/ContactName, to the left
handle of the concat function. Then drag a thread from the
Customer/ShippingAddress/Title element in the target list. This function
combines the values in the source elements when it is output to the target
element.

5. When you have finished adding functions, use File > Save to save the changes to
the data transformation xsl file.

Figure 6–8 Using the Concat Function

Editing Function Parameters
To edit the parameters of a function in the data mapper pane, double-click the
function icon to launch the Edit Function dialog. This window enables you to add,
remove, and reorder parameters.

For example, to edit the parameters of the concat function, double-click the function
icon to launch the Edit Function - concat window. If you want to add a new parameter
so that the output of the concat function is ContactTitle: Contact Name, then click

See Also:

■ "Using a Domain-Value Map in a Transformation" on page 7-12

■ Appendix A, "XPath Extension Functions" for reference
information about the XPath extension functions.

Using the XSLT Mapper

6-10 Oracle Enterprise Service Bus Developer's Guide

Add to add a new parameter ':' (with single quotes) and reorder the parameters to get
this output.

Figure 6–9 Editing Function Parameters

Chaining Functions
Complex expressions can be built by chaining functions. The chaining function can
also be defined by dragging and dropping the function to a connecting link.

For example, to remove all leading and trailing spaces from the output of the concat
function discussed in "Editing Function Parameters" on page 6-9, use the left-trim and
right-trim functions and chain them as shown in the Figure 6–10.

Figure 6–10 Chaining Functions

See Also: The online Help for the Edit Function window by clicking
the Help button to see how to add, remove, and reorder function
parameters

Using the XSLT Mapper

XSLT Data Mapper and Transformations 6-11

Named Templates
Some complicated mapping logic cannot be represented or achieved by visual
mappings. For these situations, named templates are useful. Named templates enable
you to share common mapping logic. You can define the common mapping logic as a
named template and then use it as often as you want.

You define named templates in the source view, and they appear in the User Defined
Named Templates list of the Component Palette. You can use named templates in
almost the same way as you use other functions. The only difference is that you cannot
link the output of a named template to a function or another named template; you can
only link its output to a target node in the target tree.

To write named templates, you must be familiar with the XSLT language. See any
XSLT book or visit the following URL for details about writing named templates:

http://www.w3.org/TR/xslt

Importing User-Defined Functions
You can import your own set of Java functions, which appear in the function palette
under the User defined Extension Functions category. They can be used like any
other function. To add functions, select Preferences, then XSL Maps from the Tools
main menu.

In the XSLT mapper source view, you can use the user-defined functions in the
following way:

NamespacePrefix:FunctionName([ARGUMENT1, ARGUMENT2, ARGUMENT3...])

The namespace prefix should be declared in the XSL file as follows:

"http://www.oracle.com/XSL/Transform/java/<ClassNameincludingthePackageName>"

Editing XPath Expressions
To use an XPath expression in a transformation mapping, select Advanced Functions
from the Component Palette and drag and drop xpath-expression from the list into
the data mapper transformation pane.

When you double-click the icon, the Edit XPath Expression dialog appears. You can
press the Ctrl + spacebar to invoke the XPath Building Assistant, as show in
Figure 6–11.

Using the XSLT Mapper

6-12 Oracle Enterprise Service Bus Developer's Guide

Figure 6–11 The XPath Building Assistant

Adding XSLT Constructs
While mapping complex schemas, it is sometimes essential to conditionally map a
source node to a target or map an array of elements in the source to an array of
elements in the target. The XSLT Mapper provides various XSLT constructs in the
context sensitive menu of the target tree for the these conditional scenarios. These
constructs include for-each, if, or choose.

To add an XSLT element such as for-each, if, or choose to a schema element:

1. Select the element in the target tree.

2. Right-click and select Add XSL Node to bring up the context menu.

3. Choose the required XSLT element in the menu.

Conditional Processing with xsl:if
With the if construct, you can choose to map a source element if a the value exists
and map a value from a different element when it does not exist. For example, if the
source contains an AccountRep phone number use that value. If the AccountRep
phone number does not exist, then use the Contact phone number.

1. Select the target element in the target tree and right-click to bring up the context
sensitive menu.

2. Select Add XSL Node, and then if.

3. Connect a source element to the if element in the target tree.

4. Connect a source element to the target element.

Figure 6–12 shows the results.

See Also: The online Help for the Edit XPath Expression window,
which includes a link to instructions on using the XPath Building
Assistant

Using the XSLT Mapper

XSLT Data Mapper and Transformations 6-13

Figure 6–12 Conditional Processing with xsl:if

Conditional Processing with xsl:choose
With the choose construct, you can copy a source element to a specified target
element, if the source element exists. Otherwise, copy a different source element to the
target element.

1. Select the target element in the target tree and right-click to bring up the context
sensitive menu.

2. Select Add XSL Node, and then choose.

3. Connect the source element to the target element to define the condition.

4. Select choose in the target tree and right-click to bring up the context sensitive
menu.

5. Select XSL Add Node and then otherwise.

6. Connect the source element to the target element under otherwise.

Figure 6–13 shows the results.

Using the XSLT Mapper

6-14 Oracle Enterprise Service Bus Developer's Guide

Figure 6–13 Conditional Processing with xsl:choose

Handling Repetition or Arrays
The XSLT Mapper allows repeating elements on the source to be copied to repeating
elements on the target.

1. Select a target element in the target tree and right-click to bring up the context
sensitive menu.

2. Select Add XSL Node, and then for-each.

3. Connect the repeating source elements to the targets elements.

Figure 6–14 shows the results.

Using the XSLT Mapper

XSLT Data Mapper and Transformations 6-15

Figure 6–14 Handling Repetition or Arrays

Automatically Mapping Nodes
Mapping nonleaf nodes starts the auto map feature. The system automatically tries to
link all relevant nodes under the selected source and target, as shown in Figure 6–4 on
page 6-5.

The behavior of the auto map can be tuned by altering the settings in Oracle
JDeveloper preferences or by right-clicking the transformation window and selecting
Auto Map Preferences. This displays the window shown in Figure 6–3 on page 6-4.

This window enables you to customize your auto mapping as follows:

■ Invoke the automatic mapping feature, which attempts to automatically link all
relevant nodes under the selected source and target. When disabled, you must
individually map relevant nodes.

■ Display and review all potential source-to-target mappings detected by the XSLT
Mapper, and then confirm to create them.

■ Be prompted to customize the auto map preferences before the auto map is
invoked.

■ Select the Basic or Advanced method for automatically mapping source and target
nodes. This enables you to customize how the XSLT mapper attempts to
automatically link all relevant nodes under the selected source and target.

■ Manage your dictionaries. The XSLT Mapper uses the rules defined in a dictionary
when attempting to automatically map source and target elements.

Note: Executing an auto map automatically inserts xsl:for-each.

See Also: The online Help for the Auto Map Preferences window by
clicking the Help button to see a description of the fields

Using the XSLT Mapper

6-16 Oracle Enterprise Service Bus Developer's Guide

To see potential source mapping candidates for a target node, right-click the target
node, select Show Matches, and click OK in the Auto Map Preferences window. The
Auto Map window appears, as shown in Figure 6–15.

Figure 6–15 Auto Mapping Candidates

Auto Map with Confirmation
When the Confirm Auto Map Results check box shown in Figure 6–3 on page 6-4 is
selected, a confirmation window appears. If matches are found, the potential
source-to-target mappings detected by the XSLT Mapper are displayed, as shown in
Figure 6–16. The window enables you to filter one or more mappings.

See Also: The online Help for the Auto Map window by clicking the
Help button to see a description of the fields.

Using the XSLT Mapper

XSLT Data Mapper and Transformations 6-17

Figure 6–16 Auto Map with Confirmation

Viewing Unmapped Target Nodes
You can view a list of target nodes that are currently unmapped to source nodes. Right
click in the mapper pane as shown in Figure 6–5 on page 6-6 and select Completion
Status. This window provides statistics at the bottom about the number of unmapped
target nodes. This window enables you to identify and correct any unmapped nodes
before you test your transformation mapping logic on the Test XSL Map window.
Select a target node in the list. The node is highlighted. A check mark indicates that the
target node is required to be mapped. If not required, the check box is empty.

Figure 6–17 provides an example of the Completion Status window.

See Also: The online Help for the Auto Map window by clicking the
Help button to see a description of the fields

Using the XSLT Mapper

6-18 Oracle Enterprise Service Bus Developer's Guide

Figure 6–17 Completion Status

Generating Dictionaries
A dictionary is an XML file that captures the synonyms for mappings. Right-click in
the mapper pane as shown in Figure 6–5 on page 6-6 and select Generate Dictionary.
This prompts you for the dictionary name and the directory in which to place the
dictionary.

The XSLT Data Mapper uses the rules defined in the dictionary when attempting to
automatically map source and target elements. For example, you may want to map a
purchase order to a purchase order acknowledgment, then reuse most of the map
definitions later.

1. Build all the mapping logic for the purchase order and purchase order
acknowledgment.

2. Generate a dictionary for the created map.

3. Create a new map using a different purchase order and purchase order
acknowledgment.

4. Load the previously created dictionary by selecting Tools > Preferences > XSL
Maps > Auto Map in Oracle JDeveloper.

5. Perform an automatic mapping from the purchase order to the purchase order
acknowledgment.

Creating Map Parameters and Variables
You can create map parameters and variables. You create map parameters in the
source tree and map variables in the target tree.

Note the following issues:

Using the XSLT Mapper

XSLT Data Mapper and Transformations 6-19

■ Parameters are created in the source tree, are global, and can be used anywhere in
the mappings.

■ Variables are created in the target tree, and are either global or local. Where they
are defined in the target tree determines if they are global or local.

– Global variables are defined immediately below the <target> node and
immediately above the actual target schema (for example, POAcknowledge).
Right-click the <target> node to create a global variable.

– Local variables are defined on a specific node below the actual target schema
(for example, subnode name on schema POAcknowledge). Local variables
can have the same name as long as they are in different scopes. Local variables
can only be used in their scopes, while global variables can be used anywhere
in the mappings.

Creating a Map Parameter
1. Right-click the source tree root and select Add Parameter.

The Create Parameter window appears.

2. Specify the information for the parameter.

3. Click OK.

Creating a Map Variable
1. Right-click the target tree root and select Add Variable. If you right-click a node

below the target tree root, select Insert Variable.

The Create Variable window appears.

Using the XSLT Mapper

6-20 Oracle Enterprise Service Bus Developer's Guide

2. Specify the information for the variable.

3. Click OK.

Searching Source and Target Nodes
You can search source and target nodes. For example, you can search in a source node
named Customer for all occurrences of the subnode named Name.

To search for a source or target node:

1. Right-click a source or target node.

2. Select the Find menu item.

The Find Node dialog displays.

Using the XSLT Mapper

XSLT Data Mapper and Transformations 6-21

3. In the Search For field, enter a keyword to search on.

4. Specify additional details, as necessary. For example:

■ Select Search Annotations if you want annotations text to also be searched.

■ Specify the scope of the search. You can search the entire source or target tree,
search starting from a selected position, or search within a selected subtree.

The first match found is highlighted, and the Find window closes. If no matches
are found, a message displays on-screen.

5. Select the F3 key to find the next match in the direction specified. To search in the
opposite direction, select the Shift and F3 keys.

Ignoring Elements in the XSLT Document
When the XSLT Mapper encounters any elements in the XSLT document that cannot
be found in the source or target schema, it is unable to process them and displays an
Invalid Source Node Path error. XSL map generation fails. You can create and
import a file that directs the XSLT Mapper to ignore and preserve these specific
elements during XSLT parsing by selecting Preferences, then XSL Maps in the Tools
main menu of Oracle JDeveloper.

For example, preprocessing may create elements named myElement and
myOtherElementWithNS that you want the XSLT Mapper to ignore when it creates
the graphical representation of the XSLT document. You create and import a file with
these elements to ignore that includes the following syntax:

<elements-to-ignore>
 <element name="myElement"/>
 <element name="myOtherElementWithNS" namespace="NS"/>
</elements-to-ignore>

You must restart Oracle JDeveloper after importing the file.

Note: You cannot search on functions or text values set with the Set
Text option.

Using the Mapper Test Utility

6-22 Oracle Enterprise Service Bus Developer's Guide

Replacing a Schema in the XSLT Mapper
You can replace the map source schema and map target schema that currently display
in the XSLT Mapper. Right click in either the source or target panel and select Replace
Schema. This opens the Select Source and Target Schema window, which enables you
to select the new source or target schema to use.

Using Instance Id in the XSLT Mapper
You can use the ESB instance Id to correlate between messages in the XSLT mapper. In
the source view of the XSLT mapper, you can use the ehdr:getInstanceID()
function in the following way to access the id of an ESB instance:

<xsl:value-of select="ehdr:getInstanceID()"/>

A sample XSL file is shown in the following example.

<xsl:template match="/">
 <imp1:Root-Element>
 <imp1:info>
 <xsl:value-of
select="concat(/imp1:Root-Element/imp1:Root-Element/imp1:id,'--',/imp1:Root-El
ement/imp1:Root-Element/imp1:appname,'--',/imp1:Root-Element/imp1:Root-Element
/imp1:operation)"/>
 </imp1:info>
 <imp1:more_info>
 <xsl:value-of select="ehdr:getInstanceID()"/>
 </imp1:more_info>
 </imp1:Root-Element>
 </xsl:template>

Using the Mapper Test Utility
The XSLT Mapper provides a test utility to test the style sheet or map. The test tool can
be invoked by selecting the Test menu item from the mapper pane context sensitive
menu, as shown in Figure 6–5 on page 6-6. When you select Test, the Test XSL Map
dialog displays, shown in Figure 6–18 on page 6-23.

The test settings you specify are stored and do not need to be entered again the next
time you test. Test settings must be entered again if you close and reopen Oracle
JDeveloper.

This section contains the following topics:

■ Testing a Map on page 6-22

■ Generating Reports on page 6-24

■ Sample XML Generation on page 6-25

Testing a Map
Use the Data Mapper test utility for testing from data transformation maps.

To test an XSL map:

1. Select the Test menu item from the mapper pane context sensitive menu.

The Test XSL Map dialog displays, shown in Figure 6–18.

Using the Mapper Test Utility

XSLT Data Mapper and Transformations 6-23

Figure 6–18 Test XSL Map Dialog

2. Choose to allow a sample source XML file to be generated for testing or click
Browse to specify a different source XML file in the Source XML File field.

When you click OK, the source XML file is validated. If validation passes,
transformation occurs, and the target XML file is created.

If validation fails, no transformation occurs and a message displays on-screen.

3. Select the Generate Source XML File check box to create a sample XML file based
on the map source XSD schema.

4. Select the Show Source XML File check box to display the source XML file for the
test. The source XML file displays in an Oracle JDeveloper XML editor.

If the map has defined parameters, the Parameters table appears. If you want to
specify a value, click Specify Value and make appropriate edits to the Type and
Value columns.

5. Enter a file name in the Target XML File field or browse for a file name in which
to store the resulting XML document from the transformation.

6. Select the Show Target XML File check box to display the target XML file for the
test. The target XML file displays in an Oracle JDeveloper XML editor.

7. If you select to show both the source and target XML, you can customize the
layout of your XML editors. Select Enable Auto Layout and click one of the
patterns.

For this example, the source XML and target XML display side-by-side, with the
XSL map underneath (the default setting).

8. Click OK.

The test results appear, as shown in Figure 6–19.

The source and target XML each display in an Oracle JDeveloper XML editor. You
can right-click an editor and select Validate XML to validate the source or target
XML against the map source or target XSD schema.

Using the Mapper Test Utility

6-24 Oracle Enterprise Service Bus Developer's Guide

Figure 6–19 Test Window

Generating Reports
You can generate an HTML report with the following information:

■ XSL map file name, source and target schema file names, their root element
names, and their root element namespaces

■ Target document mappings

■ Target fields not mapped (including mandatory fields)

■ Sample transformation map execution

To generate a report, right-click the transformation window and select Generate
Report. The Generate Report window appears in the transformation window, as
shown in Figure 6–20. If the map has defined parameters, the Parameters table
appears.

Using the Mapper Test Utility

XSLT Data Mapper and Transformations 6-25

Figure 6–20 The Generate Report Dialog

Correcting Memory Errors When Generating Reports
If you attempt to generate a report and receive an out-of-memory error, increase the
heap size of the JVM as follows:

1. Open the Oracle_Home\integration\jdev\jdev\bin\jdev.conf file.

2. Go to the following section:

Set the maximum heap to 512M
#
AddVMOption -Xmx512M

3. Increase the size of the heap as follows (for example, to 1024)

AddVMOption -Xmx1024M

In addition, you can also uncheck the Open Report option on the Generate Report
window before generating the report.

Sample XML Generation
You can customize sample XML generation by specifying the following parameters.
Select Preferences, then XSL Maps in the Tools main menu of Oracle JDeveloper to
display the Preferences window.

■ Number of repeating elements

Specifies how many occurrences of an element are created if the element has the
attribute maxOccurs set to a value greater than 1. If the specified value is greater
than the value of the maxOccurs attribute for a particular element, the number of
occurrences created for that particular element is the maxOccurs value, not the
specified number.

■ Generate optional elements

If selected, any optional element (its attribute minOccurs set to a value of 0) is
generated the same way as any required element (its attribute minOccurs set to a
value greater than 0).

See Also: The online Help for the Generate Report window by
clicking the Help button to see detailed information

Using the Mapper Test Utility

6-26 Oracle Enterprise Service Bus Developer's Guide

■ Maximum depth

To avoid the occurrence of recursion in sample XML generation caused by
optional elements, specify a maximum depth in the XML document hierarchy tree
beyond which no optional elements are generated.

Domain-Value Maps 7-1

7
Domain-Value Maps

This chapter introduces domain-value maps, presents the XML structure required by
Oracle Enterprise Service Bus for a domain-value-map, describes how to create,
populate, import and export domain-value maps using the Oracle ESB Control, and
how to use domain-value maps when designing transformations within enterprise
service bus routing rules.

This chapter contains the following topics:

■ Understanding Domain-Value Maps on page 7-1

■ Creating and Populating Domain-Value Maps on page 7-1

■ Using a Domain-Value Map in a Transformation on page 7-12

Understanding Domain-Value Maps
Applications that you want to integrate using Oracle Enterprise Service Bus likely use
different values to represent the same information. For example, one application might
represent a state with the long name (Massachusetts) while another application may
represent the state with an abbreviation (MA). A domain-value map enables you to
associate values from one application with values from another.

Each domain-value map typically holds a specific category of value mappings among
multiple applications. For example, one domain-value map might hold mappings for
state codes and another might hold mappings for units of measurement.

After a domain-value map is created and populated using Oracle ESB Control, it can
be used with the Oracle JDeveloper Mapper tool while developing XSLT data
transformations during design time. Then, at runtime the lookups for
application-specific values occur.

For example, suppose you want to use a a domain-value map to perform a runtime
lookup to convert long state names input to the two-letter state code output. In this
scenario, the state name is passed to an Oracle Enterprise Service Bus. Within the
enterprise service bus, the data is transformed by a transformation specified in the
routing rule of the routing service from the state name to the state code using a
domain-value map look up.

Creating and Populating Domain-Value Maps
The overall process of creating and using a domain value map is summarized in the
following list:

Creating and Populating Domain-Value Maps

7-2 Oracle Enterprise Service Bus Developer's Guide

1. Using the Oracle ESB Control, you create a domain-value map and populate it
with values that will need to be mapped across the applications integrated using
the enterprise service bus. This process is described in the subsections of this topic.

2. Using Oracle JDeveloper, you create an XSL file to define the source to target
transformation within a routing rule transformation. This process is described in
"Creating an XSL Map File for Data Structure Transformation" on page 5-20.

3. At runtime, Oracle Enterprise Service Bus uses the domain-value map to look up
appropriate values and populate the targets for the applications that it integrates
with.

You create (and then save) a domain-value map using the Map view of the Oracle ESB
Control. When you save the domain-value map, it is saved in the ESB repository,
which makes it available for use with the data mapper in Oracle JDeveloper. The
following sections describe the various methods available for creating (and saving) a
domain-value map.

■ Creating a New Domain-Value Map from Scratch on page 7-2

■ Exporting a Domain-Value Map on page 7-4

■ Domain-Value Map Template and XSD Files on page 7-5

■ Importing an Existing Domain-Value Map File on page 7-7

■ Importing Rows Into a Domain-Value Map on page 7-8

■ Editing a Domain-Value Map on page 7-10

■ Deleting a Domain-Value Map on page 7-12

Creating a New Domain-Value Map from Scratch
To create a domain-value map from scratch, follow these steps:

1. At the top of the Oracle ESB Control, click the Map icon.

2. Click the Create down-arrow on the left side of the Oracle ESB Control.

Two choices are presented: Create a new map and Import a new map.

3. Click Create a new map.

The Oracle ESB Control refreshes and appears similar to Figure 7–1.

Creating and Populating Domain-Value Maps

Domain-Value Maps 7-3

Figure 7–1 Oracle ESB Control Map View – Create New Map

4. Replace the default New DVM with a name for the domain-value map file. To edit
New DVM, click in the name field in the right pane of the screen above the
Mappings area.

For example, you replace New DVM with StateCodes to identify a domain-value
map for state names, abbreviations, and short codes.

If you export the domain-value map, the name you specify is used for the export
file name. See "Exporting a Domain-Value Map" on page 7-4 for information about
exporting a domain-value map.

5. In the Description field, enter a description of the domain-value map.

For example, you might enter: Mappings of state names, abbreviations, and short
codes

6. If you need additional columns, click the Add down-arrow, and then click
Column once for each additional column you want to add. If you add too many
columns, select the column and click Delete.

Each column represents a domain. If you will be using the domain-value map to
map values among four domains, for example, you click Column twice to add two
more columns. There are no restrictions on what can be considered a domain; you
specify domains based on your needs. A domain might be, for example, a trading
partner, an organization, a department, an application, and so on.

For example, add one column Add > Column.

7. Double-click a column name to change it from the default value of Applicationn to
a more meaningful name. Each column name must be unique within the
domain-value map.

For example, you change the default column names to Long, Abbrev, and Short.

8. If you need additional rows, click the Add down-arrow, and then click Row once
for each additional row you want to add. If you add too many rows, select the row
and click Delete, or leave it as-is. Empty rows are deleted when you save the
domain-value map.

Creating and Populating Domain-Value Maps

7-4 Oracle Enterprise Service Bus Developer's Guide

9. Double-click a row and enter values for the domain value map.

For example, enter Massachusetts, Mass, and MA in the columns under Long,
Abbrev, and Short.

10. Repeat the previous step until you have entered the desired rows. You do not
have to enter all rows that will be required by the applications. You can edit the
domain-value map to add more rows later.

Figure 7–2, shows an example of a domain-value map.

11. Review the name for the domain-value map and click the Save button above the
Description field.

After you click the Save button, you can change components of the domain-value
map, as described in "Editing a Domain-Value Map" on page 7-10.

You can change the name of a saved domain-value map by double-clicking on the
map name, but any transformation map referring to the domain-value map would
need to modified. See "Using a Domain-Value Map in a Transformation" on
page 7-12.

Although these instructions indicate that you click Save when you have completed
a domain-value map, you can click Save at any point in the process.

12. If you want to export the map, see "Exporting a Domain-Value Map" on page 7-4.

The domain-value map can now be used when creating a transformation in Oracle
JDeveloper.

Figure 7–2 Domain-Value Map – Rows Created

Exporting a Domain-Value Map
After you have created and saved a domain-value map, you can export it to a file. You
might want to do this if you have created it on a test system and now want to export it
so that you can import it on a production system.

To export a domain-value map, follow these steps:

Creating and Populating Domain-Value Maps

Domain-Value Maps 7-5

1. In the Maps view of the Oracle ESB Control, create or import a domain value map,
as described in "Creating a New Domain-Value Map from Scratch" on page 7-2 or
"Importing an Existing Domain-Value Map File" on page 7-7.

2. Click Save, if you have not already done so.

3. Click Export.

4. Click OK, and then wait for the operating system dialog box to open that enables
you to save the file to the local file system. If you are prompted whether to open or
save the file, select Save.

5. In the save file dialog box, save the domain-value map file, such as
StateCodes.xml, in the desired location.

After the map file has been exported and saved to the file system, you can edit the
XML file with a text editor. However, make sure that you have carefully updated the
file so that the file remains valid. See Example 7–1 for a sample domain-value map file.

Example 7–1 Sample Domain-Value Map File

<?xml version = '1.0' encoding = 'UTF-8'?>
<dvm name="StateCodes" isNew="null">
<description>Mapping of state names, abbreviations, and codes</description>
 <columns>
 <column name="Long"/><column name="Abbrev"/><column name="Short"/>
 </columns>
 <rows>
 <row><cell>Massachusetts</cell><cell>Mass</cell><cell>MA</cell></row>
 <row><cell>California</cell><cell>Calif</cell><cell>CA</cell></row>
 </rows>
</dvm>

Domain-Value Map Template and XSD Files
This section provides examples of the domain-value map template and schema
definition file.

Example 7–2 shows the domain-value map template (XML) file. This file should be
used if you are creating a domain-value map file from scratch with a text editor.

Example 7–2 Domain-Value Map Template File

<?xml version="1.0" encoding="UTF-8"?>
<dvm name="New DVM" isNew="true">
 <description>DVM description</description>
 <columns>
 <column name="Domain1"/>
 <column name="Domain2"/>
 </columns>
 <rows>
 <row>
 <cell>value1</cell>
 <cell>value2</cell>
 </row>
 </rows>
</dvm>

Example 7–3 shows the domain-value map schema definition (XSD) file. All imported
domain-value map XML files are validated against this schema definition file.

Creating and Populating Domain-Value Maps

7-6 Oracle Enterprise Service Bus Developer's Guide

Example 7–3 Domain-Value Map XSD File

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Copyright (c) 2006, Oracle. All rights reserved. -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="dvm">
 <xsd:annotation>
 <xsd:documentation>The Top Level Element
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="description" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>The DVM Description. This is optional
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="columns">
 <xsd:annotation>
 <xsd:documentation>This element holds DVM's column List.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="column" minOccurs="2" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>This represents a DVM Column
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="name" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="rows">
 <xsd:annotation>
 <xsd:documentation>This represents all the DVM Rows.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="row" minOccurs="1" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 Each DVM row of values
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cell" minOccurs="2" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>This is the value for this row and for each column in
 the same order as defined in Columns.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

Creating and Populating Domain-Value Maps

Domain-Value Maps 7-7

 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" use="required"/>
 <xsd:attribute name="isNew"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:annotation>
 <xsd:documentation>This schema is used to validate the DVM Document used for creating
 and updating a domain-value map
 </xsd:documentation>
 </xsd:annotation>
</xsd:schema>

Importing an Existing Domain-Value Map File
If you have an existing domain-value map on the local file system, you can import it
into Oracle ESB Control as a means to add it to the ESB repository so that it can be
used when you are specifying a transformation in a routing rule.

Typical scenarios for importing an existing domain-value map file are the following:

■ To move a domain-value map from a test system to a production system

If you need to move an entire ESB configuration from a test system to a production
system, Oracle recommends you use the import method described in "Moving the
ESB Instance to a Different Oracle Home" on page 9-13. To import a domain-value
map only, first export it on the test system, as described in "Exporting a
Domain-Value Map" on page 7-4.

■ To import an XML lookup file exported from a database as the basis for a
domain-value map.

This scenario assumes that you exported the schema from the database using a
tool such as XSU, and have converted the exported file to use the schema required
for ESB domain-value maps. See "Domain-Value Map Template and XSD Files" on
page 7-5. For an example of an exported domain-value map, see Example 7–1 on
page 7-5.

To import an existing domain-value map file and store it in the ESB repository, follow
these steps:

1. At the top of the Oracle ESB Control, click Maps.

2. Click the Create down-arrow on the left side of the Oracle ESB Control.

Two choices are presented: Create a new map and Import a new map.

3. Click Import a new map.

The Import a New Map dialog box opens. See Figure 7–3.

4. In the Import a New Map dialog box, follow these steps:

a. In the Import field, enter the complete path for the file on the local file system
that you want to import.

b. Select or deselect overwrite if a map with the same name already exists, as
desired.

Creating and Populating Domain-Value Maps

7-8 Oracle Enterprise Service Bus Developer's Guide

Because the name becomes the primary key for the domain-value map when it
is stored in the ESB repository, the name must be unique. If you select
overwrite if a map with the same name already exists and a domain-value
map with the same name already exists that you do not want to overwrite,
you can do either of the following:

– Cancel this dialog box, rename the domain-value map, and then restart
the import operation. See "Editing the Name of a Domain-Value Map" on
page 7-10.

– Deselect overwrite if a map with the same name already exists.

5. Click OK.

The Oracle ESB Control refreshes and presents the imported domain-value map
file. The imported file is saved to the ESB repository and the domain-value map
can now be used when creating a transformation in Oracle JDeveloper.

Figure 7–3 Maps View – Import a New Map Dialog

Importing Rows Into a Domain-Value Map
If you are working on a domain-value map that currently has several rows and then
want to import additional rows from a properly formatted file, you can do so as
described in the list that follows. When you do so, rows from the imported file may
conflict with rows in the current domain value map.

Rows are considered to conflict, when a given column contains the same value in two
or more different rows, such as shown for the Oracle application in Figure 7–4.

Figure 7–4 Sample Domain-Value Map with a Conflict

When such a conflict exists you are given the following options:

■ Overwrite conflicting rows

If you select this option, conflicting rows in the domain-value map displaying in
the Oracle ESB Control are overwritten with rows from the file being imported.

■ Skip conflicting rows

Creating and Populating Domain-Value Maps

Domain-Value Maps 7-9

If you select this option, conflicting rows in the domain-value map displaying in
the Oracle ESB Control are not overwritten with rows from the file being
imported. Those rows are not imported into the domain-value map.

■ Add conflicting rows

If you select this option, rows from the file being imported are added to the
domain-value map, even if they conflict with existing rows in the domain value
map. You should only select this option under particular circumstances and if you
are familiar with the applications that will use the domain-value map at runtime.

For example, the rows presented in Figure 7–4, should remain only if the
domain-value map will be used to map values from the SAP application values to
the Oracle application at run time, and not the reverse. If values from the Oracle
application will map to the SAP application at run time, then it is impossible for
the ESB Server to determine whether, Gallon should map to Container or Gal, and
therefore an error will result.

Follow these steps to import rows into a domain-value map:

1. In the Maps view of the Oracle ESB Control, create or import a domain value map,
as described in "Creating a New Domain-Value Map from Scratch" on page 7-2 or
"Importing an Existing Domain-Value Map File" on page 7-7.

2. Click Save to save any changes you have made.

3. Click Import.

The Import into an Existing Map dialog box opens.

4. In the Import File field, enter the path for the file from which you want to import
rows.

5. Select one of the Import Options, which are described in section.

Figure 7–5 Oracle ESB Control Map View – Import into an Existing Map Dialog

6. Click OK.

The Oracle ESB Control refreshes the view and presents the imported rows. The
domain-value map is saved to the ESB repository and it can be used when creating a
transformation in Oracle JDeveloper, as described in "Using a Domain-Value Map in a
Transformation" on page 7-12.

Creating and Populating Domain-Value Maps

7-10 Oracle Enterprise Service Bus Developer's Guide

Figure 7–6 Oracle ESB Control Map View – Updated Map After Importing Rows

Editing a Domain-Value Map
This section presents the editing options that are available for editing a domain-value
map and making adjustments to the presentation of data in the Map view. All of the
options described here can be used while you are creating a domain-value map.

This section contains the following topics:

■ Editing the Name of a Domain-Value Map on page 7-10

■ Adding Rows or Columns to a Domain-Value Map on page 7-11

■ Deleting a Row from a Domain-Value Map on page 7-11

■ Deleting a Column from a Domain-Value Map on page 7-11

■ Renaming a Column in a Domain-Value Map on page 7-11

■ Reordering the Columns in a Domain-Value Map on page 7-11

■ Resetting a Domain-Value Map to Its Last Saved State on page 7-12

■ Resizing Columns in a Domain-Value Map on page 7-12

Editing the Name of a Domain-Value Map
Follow these steps:

1. Double-click the domain-value map name.

2. Edit the map name.

You can change the name of a saved domain-value map by double-clicking on the map
name, but any transformation map referring to the domain-value map would need to
modified. See "Using a Domain-Value Map in a Transformation" on page 7-12.

Creating and Populating Domain-Value Maps

Domain-Value Maps 7-11

Adding Rows or Columns to a Domain-Value Map
Follow these steps:

1. Click the Add down-arrow

A drop-down list presents a choice of row or column.

2. Click row or column to add the desired table element. You can click the option
multiple times to add multiple rows or columns.

Deleting a Row from a Domain-Value Map
Follow these steps:

1. Click the number of the row that you want to delete.

The row is highlighted in blue.

2. Click the Delete button under the Mappings heading.

Deleting a Column from a Domain-Value Map
Follow these steps:

1. Click the name of the column that you want to delete.

The column is highlighted in blue.

2. Click the Delete button under the Mappings heading.

Renaming a Column in a Domain-Value Map
Follow these steps:

1. Double-click the name of the column that you want to rename.

The text cursor appears before the first letter of the existing column name.

2. Edit the column name.

You can delete all the existing characters and type in the new name.

3. Click the Save button to save the changes.

Reordering the Columns in a Domain-Value Map
You can move a selected column one position at a time, as described in the following
list. This options is provided to support user preferences, it has no effect on how the
domain-value map is applied at run-time.

Follow these steps:

1. Click the column that you want to move to the right.

Small arrows appears in the column heading, as shown in Figure 7–7.

Figure 7–7 Arrows for Rearranging Columns In Domain-Value Maps

2. Click the arrow in the direction you want to move the selected column.

3. Repeat steps 1 and 2 until all the columns appear in the desired order.

Using a Domain-Value Map in a Transformation

7-12 Oracle Enterprise Service Bus Developer's Guide

Resetting a Domain-Value Map to Its Last Saved State
As you are creating or editing a domain-value map, it is best to save it frequently,
especially if you are adding numerous rows manually.

Suppose, for example, you save a domain value map, and then add multiple
additional rows. You realize that entered many incorrect rows since the last time you
saved the domain-value map. You can reset the domain-value map to its last saved
state by clicking the Reset button. Any changes made after the last time you clicked
the Save button are removed.

Resizing Columns in a Domain-Value Map
If the values you add to the cells in a domain value map are wider than the default cell
width, you might want to resize the columns, by following these steps:

1. Place the cursor on the boundary between two column headers so that the cursor
shape changes to a double-headed arrow; this is the resize cursor.

2. Left-click the double-headed arrow – a dotted line appears at the column
boundary.

3. Drag the dotted line left or right, as desired, to indicate the new placement of the
boundary.

4. Release the mouse button.

Deleting a Domain-Value Map
If you a domain-value map is no longer used in any routing rule transformations and
you want to delete it, follow these steps:

1. Click Maps in the Oracle ESB Control.

2. In the Domain-Value Maps navigator, select the name of the domain-value map
that you want to delete.

3. Click the Delete button within the Domain-Value Maps navigator.

The Delete Map dialog box opens.

4. Click Yes.

The selected domain-value map is deleted from the Domain-Value Maps navigator
and from the ESB repository.

Using a Domain-Value Map in a Transformation
To include a domain-value map in a transformation, you drag and drop a
lookup-dvm function from the component palette onto the connection between the
source and target elements where you want the domain-value map to be used.

Note: If you have previously used Oracle BPEL Process Manager,
you may be familiar with the lookup-xml and lookup-table
functions. Using these functions you can accomplish operations
similar to using the Oracle Enterprise Service Bus lookup-dvm
function. However, the lookup-xml and lookup-table functions
are independent of the domain-value map infrastructure; a
lookup-table function, for example, cannot be used with an ESB
domain-value map.

Using a Domain-Value Map in a Transformation

Domain-Value Maps 7-13

1. Open an ESB project in Oracle JDeveloper.

For example, open the CustomerData project to display the routing service icons
in the Design tab. See Figure 2–2 on page 2-3 for a sample screenshot of the
CustomerData project.

2. Select a routing icon in the Design tab and then double-click the transformation
XSL icon to display the Data Mapper window.

For example, select CustOut_RS in the Design tab and double click the XSL icon.

3. Expand the trees in the Source and Target panes in the Data Mapper window.

4. Drag and drop the source element to the target element.

For example, State to top:state as shown in Figure 7–8.

Figure 7–8 Data Mapper – Source to Target Map

5. In the Components palette, click the down-arrow and then select Advanced
Functions.

The lookup-dvm function is listed in the component palette, as shown in
Figure 7–9.

Figure 7–9 Component Palette – lookup-dvm Function

6. Drag and drop lookup-dvm onto the line that connects the source object to the
target object.

Using a Domain-Value Map in a Transformation

7-14 Oracle Enterprise Service Bus Developer's Guide

A lookup-dvm icon appears on the connecting line, as shown in Figure 7–10. The
yellow warning triangles indicate that the definition of the lookup-dvm function
is not complete.

Figure 7–10 Data Mapper – look-up dvm Function Added

7. Double-click the look-up dvm icon.

The Edit Function – look-up dvm dialog box opens.

8. Specify values for the fields in the Edit Function – look-up dvm dialog box.

Figure 7–11 Edit Function – lookup-dvm

a. You can manually enter a value in sourceValue or the following methods:

Move the source value that appears in the dvmName field to the sourceValue
field by clicking Move Down twice.

Using a Domain-Value Map in a Transformation

Domain-Value Maps 7-15

Press Ctrl-Space to launch Expression Builder. Press the up and down keys to
locate an object in the list and press enter to select that item.

b. In the dvmName field, enter the name of the domain-value map schema that
you previously defined using the Oracle ESB Control.

Click the flashlight icon to the right of the dvmName field to select the name
from a list of domain-value maps stored in the ESB repository.

For example, select 'StateCodes' that was described in "Creating a New
Domain-Value Map from Scratch" on page 7-2.

c. In the sourceColumnName field, enter the name of the column in the
domain-value map that is associated with the source element value.

Click the flashlight icon to the right of the sourceColumnName field to select
the name from the columns defined for the domain-value map you previously
selected.

For example, 'Long'

d. In the targetColumnName field, enter the name of the column in the
domain-value map that is associated with the target element value.

Click the flashlight icon to the right of the targetColumnName field to select
the name from the columns defined for the domain-value map you previously
selected.

For example, 'Short'

e. Enter an optional default value.

For example, ""

f. Click OK.

The data mapper appears in the Design tab with the lookup-dvm function
icon, as shown in Figure 7–12.

Figure 7–12 Data Mapper – look-up dvm Function Defined

9. From the File menu, click Save All.

Using a Domain-Value Map in a Transformation

7-16 Oracle Enterprise Service Bus Developer's Guide

10. Register the project with the ESB Server.

When the transformation is included in an ESB routing rule, the transformation is
applied at run time. For example, if the StatesCodes domain-value map is used in the
transformation, the transformation from the user-specified state value to the state code
value required by the target application is applied at run time.

You can view the results of a transformation if you have set up the field in the
Trackable Fields tab of the Oracle ESB Control Services view. The tracking data is
displayed in the Details tab of the Oracle ESB Control Instances view, as shown in
Figure 10–1 on page 10-2.

Creating Cross References 8-1

8
Creating Cross References

The cross referencing feature of Oracle Enterprise Service Bus enables you to associate
identifiers for equivalent entities created in different applications. For example, you
can use cross references to associate a customer entity created in one application (with
native id Cust_100) with an entity for the same customer in another application (with
native id CT_001).

This chapter explains how to create, populate, and use cross references. It contains the
following topics:

■ Introduction to Cross References on page 8-1

■ Creating, Modifying, and Deleting Cross Reference Table on page 8-4

■ Populating Cross Reference Tables on page 8-5

■ Looking Up Cross Reference Tables on page 8-12

■ Deleting Cross Reference Table Values on page 8-15

■ Importing and Exporting Cross References on page 8-17

■ Schema Definition (XSD) File for Cross References on page 8-18

Introduction to Cross References
Many a time, when you create or update objects in one application, you also want to
propagate the changes to another application. For example, when a new customer is
created in a SAP application, you might want to create a new entry for the same
customer in your Oracle E-Business Suite application named as EBS.

However, the applications that you are integrating could be using different entities to
represent the same information. For example, for a new customer in a SAP application,
a new row is inserted in its Customer database with a unique identifier such as SAP_
001. When the same information is propagated to an Oracle E-Business Suite
application and a Siebel application, a new row should be inserted with different
identifiers, such as EBS_1001 and SBL001. In such cases, you need some kind of
functionality to map these identifiers with each other so that they could be interpreted
by different applications to be referring to the same entity. This can be done by using
cross references tables. Table 8–1 shows a cross reference table containing information
about customer identifiers in different applications.

Table 8–1 Cross Reference Table Sample

SAP EBS SBL

SAP_001 EBS_1001 SBL001

Introduction to Cross References

8-2 Oracle Enterprise Service Bus Developer's Guide

The identifier mapping is also required when information about a customer is updated
in one application and the changes need to be propagated in other applications also.
You can also integrate different identifiers by using a common value integration
pattern, which maps to all identifiers in a cross reference table. For example, you can
add one more column Common to the cross reference table shown in Table 8–1. The
updated cross reference table would appear as shown in Table 8–2.

Figure 8–1 shows how you can use the common value integration pattern to map
identifiers in different applications.

Figure 8–1 Common Value Integration Pattern Example

A cross reference table consists of following two parts, metadata and the actual data.
The metadata is created by using the cross reference command line utilities and is
stored in the repository as an XML file. The actual data is stored in the database.

You can use a cross reference table to look up column values at run time. However,
before using a cross reference to look up a particular value, you need to populate it at
run time. This can de done by using the cross reference XPath functions. The XPath
functions enable you to populate a cross reference, perform lookups, and delete a
column value. These XPath functions can be used in the Expression builder dialog box
to create an expression or in the XSLT Mapper dialog box to create transformations.

SAP_002 EBS_1002 SBL002

Table 8–2 Cross Reference Table with the Common Column

SAP EBS SBL Common

SAP_001 EBS_1001 SBL001 CM001

SAP_002 EBS_1002 SBL002 CM002

Table 8–1 (Cont.) Cross Reference Table Sample

SAP EBS SBL

C
O
M
M
O
N

V
I
E
W

Cross
Reference
Database

SAP
System

Oracle
E-Business

Suite System

Siebel
System

Transform
Common value

to Siebel System

Transform
Siebel System

value to
Common value

Transform Oracle
E-Business Suite
System value to
Common value

Transform
Common value to
Oracle E-Business
Suite System value

Transform
SAP system

value to
Common value

Introduction to Cross References

Creating Cross References 8-3

The Expression builder dialog box is displayed when you click the Invoke Expression
Builder icon in the routing rules panel. Figure 8–2 shows how you can select the cross
reference functions in the Expression builder dialog box.

Figure 8–2 Expression Builder Dialog Box with Cross Reference Functions

The XSLT Mapper dialog box is displayed when you create an XSL file to transform
data from one XML schema to another. Figure 8–3 shows how you can select the cross
reference functions in the XSLT Mapper dialog box.

Introduction to the Cross Reference Command-Line Utility

8-4 Oracle Enterprise Service Bus Developer's Guide

Figure 8–3 XSLT Mapper Dialog Box with Cross Reference Functions

Introduction to the Cross Reference Command-Line Utility
Oracle Enterprise Service Bus provides a set of command line utilities that you can use
for cross reference administration. The command line utilities are xreftool, xrefimport,
and xrefexport.

The xrefimport and xrefexport utility enables you to import and export cross reference
metadata and data.

The xreftool utility enables you to create cross reference metadata such as creating
cross reference table and columns. However, you cannot populate the cross reference
tables by using the xreftool commands. You can also use the xreftool commands to
modify, and delete cross reference tables. To use the xreftool utility, perform the
following steps:

1. Create two variables named OC4J_USERNAME and OC4J_PASSWORD as
environment variables.

2. Start the command prompt.

3. At the prompt, type the following command:

cd <ORACLE_HOME>\integration\esb\bin

4. At the prompt, type the following command:

xreftool -shell

This command starts the cross reference shell where you can run xreftool
commands.

Table 8–3 lists various xreftool commands.

Note: Before using these command line utilities, you need to start the
Oracle SOA Suite Server.

Creating, Modifying, and Deleting Cross Reference Table

Creating Cross References 8-5

Creating, Modifying, and Deleting Cross Reference Table
You can use the xreftool utility to create, modify, and delete cross reference tables. To
create a cross reference table, use the following command in the cross reference shell:

createTable TableName

For example, the createTable customers command creates a cross reference table
named customers:

To view a list of all cross reference tables present in the repository, you can use the
following xreftool command:

listTables

Modifying Cross Reference Tables
You can modify the cross reference tables by adding, and deleting columns. Table 8–4
lists various xreftool utility commands that you can use to modify a cross reference
table.

Deleting a Cross Reference Table
You can delete a cross reference table by using the following command:

Table 8–3 xreftool Commands

Functionality Command

Running multiple
commands in a sequence

xreftool COMMAND1 ARGS1 COMMAND2 ARGS2

Running commands from a
file

xreftool -f FILELOCATION

Viewing the description of
all xreftool commands

xreftool help

Note: The table names and column names are not case-sensitive.

Table 8–4 xreftool Commands for Modifying a Cross Reference Table

Functionality Command Example

Adding a column to a
cross reference table

addColumns XREFTABLENAME
COLUMNNAME

addColumns
orders sap

Adding multiple
columns to a cross
reference table

addColumns XREFTABLENAME
COLUMNNAME1,COLUMNNAME2,
COLUMNNAME3

addColumns
orders
sap,siebel

Deleting a column

When you delete a
column, the data
corresponding to the
column is deleted
from the database.

deleteColumn XREFTABLENAME,
COLUMNNAME

deleteColumn
orders sap

Viewing all columns
of a cross reference
table

listColumns XREFTABLENAME listColumns
orders

Populating Cross Reference Tables

8-6 Oracle Enterprise Service Bus Developer's Guide

deleteTable TABLENAME

For example:

deleteTable orders

When you delete a table, the data corresponding to the table is deleted from the
database.

Populating Cross Reference Tables
A cross reference table needs to be populated at run time before being used. This can
be done by using the following XPath extension functions:

■ xref:populateXRefRow Function

■ xref:populateXRefRow1M Function

xref:populateXRefRow Function
You can use the xref:populateXRefRow function to populate a cross reference
column with a value. This function returns a string value which is the cross reference
value being populated. The syntax of the xref:populateXRefRow function is as
follows:

xref:populateXRefRow(xrefTableName as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters
■ xrefTableName: The name of the cross reference table.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be populated.

■ xrefValue: The value to be populated in the column.

■ mode: The mode in which the xref:populateXRefRow function populates the
column. You can specify any of the following values: ADD, LINK, or UPDATE.
Table 8–5 describes these modes.

Populating Cross Reference Tables

Creating Cross References 8-7

Table 8–5 xref:populateXRefRow Function Modes

Mode Description Exception Reasons

ADD Adds the reference value
and the value to be added.

For example,
xref:populateXRefRow(
"customers","SAP","SA
P_100",
"Common","CM001","ADD
") adds the reference value
SAP_100 in the SAP
reference column and value
CM001 in the Common
column.

Exceptions can occur due to
the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ The value being added
is not unique across
that column for that
table.

■ The column for that
row already contains a
value.

■ The reference value
exists.

LINK Adds the cross reference
value corresponding to the
existing reference value. For
example,
xref:populateXRefRow(
"customers","SAP","SA
P_100",
"Common","CM001","Lin
k") links the value CM001
in the Common column to
the SAP_100 value in the
SAP column.

Exceptions can occur due to
the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ The reference value is
not found.

■ The value being linked
exists in that column
for that table.

UPDATE Updates the cross reference
value corresponding to an
existing reference
column-value pair. For
example,
xref:populateXRefRow(
"customers","SAP","SA
P_100", "SAP","SAP_
1001","Update")updates
the value SAP_100 in the
SAP column to value SAP_
1001.

Exceptions can occur due to
the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ Multiple values are
found for the column
being updated.

■ The reference value is
not found.

■ The column for that
row does not have a
value.

Populating Cross Reference Tables

8-8 Oracle Enterprise Service Bus Developer's Guide

Table 8–6 describes the xref:populateXRefRow function modes and exception
conditions for these modes.

Using the xref:populateXRefRow Function
The xref:populateXRefRow function can be used in transformation to populate a
column of a cross reference table by performing the following steps:

1. In the XSLT Mapper dialog box, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Component Palette, click the down arrow list and then select Advanced
Functions.

4. Drag and drop populateXRefRow onto the line that connects the source object to
the target object.

A populateXRefRow icon appears on the connecting line.

5. Double-click the populateXRefRow icon.

The Edit Function – populateXRefRow dialog box is displayed, as shown in
Figure 8–4.

Note: The mode parameter values are case-sensitive and should be
specified in the upper case only as shown in Table 8–5.

Table 8–6 xref:populateXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

UPDATE Absent

Present

Present

Absent

Absent

Present

Exception

Exception

Success

Populating Cross Reference Tables

Creating Cross References 8-9

Figure 8–4 The Edit Function – populateXRefRow Dialog Box

6. Specify the following values for the fields in the Edit Function – populateXRefRow
dialog box:

a. In the tableName field, enter the name of the cross reference table.

b. In the referenceColumnName field, enter the name of the cross reference
column.

c. In the referenceValue field, you can manually enter a value or press
Ctrl-Space to launch XPath Building Assistant. Press the Up and Down arrow
keys to locate an object in the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

e. In the value field, you can manually enter a value or press Ctrl-Space to
launch the XPath Building Assistant.

f. In the mode field, enter a mode in which you want to populate the cross
reference table column, for example, ADD.

7. Click OK.

A populated Edit Function – populateXRefRow dialog box is shown in Figure 8–5.

Populating Cross Reference Tables

8-10 Oracle Enterprise Service Bus Developer's Guide

Figure 8–5 The Populated Edit Function – populateXRefRow Dialog Box

xref:populateXRefRow1M Function
Many a time, two values in a system can correspond to a single value in another
system. For example, as shown in Table 8–7, the SAP_001 and SAP_0011 values refer
to one value of the EBS and the SBL application.

To populate a column in the cross reference table with multiple values, you can use
the xref:populateXRefRow1M function. The syntax of the
xref:populateXRefRow1M function is as follows:

xref:populateXRefRow1M(xrefTableName as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters
■ xrefTableName: The name of the cross reference table.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to reference column name.

■ xrefColumnName: The name of the column to be populated.

■ xrefValue: The value to be populated in the column.

■ mode: The mode in which the xref:populateXRefRow function populates the
column. You can specify either of the two values, ADD or LINK. Table 8–8
describes these modes:

Table 8–7 A Cross Reference Table with Multiple Column Values

SAP EBS SBL

SAP_001

SAP_0011

EBS_1001 SBL001

SAP_002 EBS_1002 SBL002

Populating Cross Reference Tables

Creating Cross References 8-11

Table 8–9 describes the xref:populateXRefRow1M function modes and exception
conditions for these modes.

The design-time steps for using the xref:populateXRefRow1M function are similar
to the xref:populateXRefRow function described in "Using the
xref:populateXRefRow Function" on page 8-8.

Table 8–8 xref:populateXRefRow1M Function Modes

Mode Description Exception Reasons

ADD Adds the reference value
and the value to be added.
For example,
xref:populateXRefRow1
M("customers","SAP","
SAP_100",
"Common","CM002","ADD
")adds the reference value
SAP_100 in the reference
column SAP and the value
CM002 in the Common
column.

Exceptions can occur due to
the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ The value being added
is not unique across
that column for that
table.

■ The reference value
exists.

LINK Adds the cross reference
value corresponding to the
existing reference value. For
example,
xref:populateXRefRow1
M("customers","SAP","
SAP_100",
"Common","CM001","Lin
k") links the value CM001
in the Common column to
the SAP_100 value in the
SAP column.

Exceptions can occur due to
the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ The reference value is
not found.

■ The value being added
is not unique across the
column for that table.

Table 8–9 xref:populateXRefRow1M Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

Looking Up Cross Reference Tables

8-12 Oracle Enterprise Service Bus Developer's Guide

Looking Up Cross Reference Tables
After populating the cross reference table, you can use it to look up for a value. This
can be done by using the following XPath extension functions:

■ xref:lookupXRef Function

■ xref:lookupXRef1M Function

xref:lookupXRef Function
You can use the xref:lookupXRef function to look up a cross reference column for a
value that corresponds to a specific value in a reference column. For example, the
following function looks up the Common column of the cross reference table described
in Table 8–2 for a value corresponding to the SAP_001 value in the SAP column.

xref:lookupXRef("customers","SAP","SAP_001", "Common", true())

The syntax of the xref:lookupXRefRow function is as follows:

xref:lookupXRef(xrefTableName as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, needAnException as
 boolean) as string

Parameters
■ xrefTableName: The name of the cross reference table.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: Specify true or false.

If needAnException parameter is set to true, an exception is thrown if the
value, being looked up in the table, is not found. If needAnException parameter
is set to false, an empty value is returned if the value, being looked up in the
table, is not found.

Exception Reasons
An exception can occur because of the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column names are not found.

■ The specified reference value is empty.

■ Multiple values are found.

Using the xref:lookupXRef Function
You can use the xref:lookupXRef function to look up a cross reference table
column by performing the following steps during transformation:

1. In the XSLT Mapper dialog box, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Component Palette, click the down arrow list and then select Advanced
Functions.

Looking Up Cross Reference Tables

Creating Cross References 8-13

4. Drag and drop lookupXRef onto the line that connects the source object to the
target object.

A lookupXRef icon appears on the connecting line.

5. Double-click the lookupXRef icon.

The Edit Function – lookupXRef dialog box is displayed, as shown in Figure 8–6.

Figure 8–6 The Edit Function – lookupXRef Dialog Box

6. Specify the following values for the fields in the Edit Function – lookupXRef
dialog box:

a. In the tableName field, enter the name of the cross reference table.

b. In the referenceColumnName field, enter the name of the cross reference
column.

c. In the referenceValue field, you can manually enter a value or press
Ctrl-Space to launch the XPath Building Assistant. Press the Up and Down
arrow keys to locate an object in the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

e. In the needException field, enter Yes to raise an exception if no value is found,
else enter No.

7. Click OK.

A populated Edit Function – lookupXRef dialog box is shown in Figure 8–7.

Looking Up Cross Reference Tables

8-14 Oracle Enterprise Service Bus Developer's Guide

Figure 8–7 Populated Edit Function – lookupXRef Dialog Box

xref:lookupXRef1M Function
You can use the xref:lookupXRef1M function to look up a cross reference column
for multiple values corresponding to a specific value in a reference column. This
function returns a node-set containing the multiple nodes. Each node in the node-set
contains a value.

For example, the following function looks up the SAP column of Table 8–7 for multiple
values corresponding to EBS_1001 value in the EBS column:

xref:lookupXRef1M("customers","EBS","EBS_1001", "Common", true())

The syntax of the xref:lookupXRefRow1M function is as follows:

xref:lookupXRef1M(xrefTableName as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, needAnException as
 boolean) as node-set

Parameters
■ xrefTableName: The name of the cross reference table.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: Specify true or false.

If needAnException parameter is set to true, an exception is thrown if the
value, being looked up in the table, is not found. If needAnException parameter
is set to false, an empty value is returned if the value, being looked up in the
table, is not found.

Exception Reasons
An exception can occur because of the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column names are not found.

Deleting Cross Reference Table Values

Creating Cross References 8-15

■ The specified reference value is empty.

The design-time steps for using the xref:lookupXRef1M function are similar to the
xref:lookupXRef function explained in "Using the xref:lookupXRef Function" on
page 8-12.

Deleting Cross Reference Table Values
You can use the xref:markForDelete function to delete a value in a cross reference
table. The value in the column is marked as deleted. This function returns true if
deletion was successful, else it returns false.

A cross reference table row should have at least two mappings. Therefore, if you have
only two mappings in a row and you mark one value for deletion, then the value in
the other column is also deleted.

Any column value marked for deletion is treated as if the value does not exist.
Therefore, you can populate the same column with the xref:populateXRefRow
function in the ADD mode.

However, using the column value marked for deletion as a reference value in the LINK
mode of the xref:populateXRefRow function, would raise an error.

The syntax for the xref:markForDelete function is as follows:

xref:markForDelete(xrefTableName as string, xrefColumnName as string,
xrefValueToDelete as string) return as boolean

Parameters
■ xrefTableName: The name of the cross reference table.

■ xrefColumnName: The name of the column from which you want to delete a
value.

■ xrefValueToDelete: The value to be deleted.

Exception Reasons
An exception can occur due to the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column name is not found.

■ The specified value is empty.

■ The specified value is not found in the column.

■ Multiple values are found.

Perform the following steps to delete a value from a cross reference table column:

1. In the XSLT Mapper dialog box, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Component Palette, click the down arrow list and then select Advanced
Functions.

4. Drag and drop markForDelete onto the line that connects the source object to the
target object.

A markForDelete icon appears on the connecting line.

Deleting Cross Reference Table Values

8-16 Oracle Enterprise Service Bus Developer's Guide

5. Double-click the markForDelete icon.

The Edit Function – markForDelete dialog box is displayed, as shown in
Figure 8–8.

Figure 8–8 Edit Function – markForDelete Dialog Box

6. Specify the following values for the fields in the Edit Function – markForDelete
dialog box:

a. In the tableName field, enter the name of the cross reference table.

b. In the columnName field, enter the name of the column.

c. In the value field, you can manually enter a value or press Ctrl-Space to
launch the XPath Building Assistant. Press the Up and Down arrow keys to
locate an object in the list and press Enter to select that object.

A populated Edit Function – markForDelete dialog box is shown in Figure 8–9.

Figure 8–9 Populated Edit Function – markForDelete Dialog Box

7. Click OK.

Importing and Exporting Cross References

Creating Cross References 8-17

Importing and Exporting Cross References
You can import and export the cross reference tables by using the xrefimport and
xrefexport utilities. However, before using the xrefimport and xrefexport utilities, you
need to create the following environment variables:

■ DB_URL: Contains the connection string of the database.

Example: jdbc:oracle:thin:@stapm21.us.oracle.com:1521:orcl

■ DB_USER: The user name of the schema where the cross reference tables are
created.

Example: DB_PASSWORD=oraesb

■ DB_PASSWORD: The password associated with the user specified in the DB_USER
variable.

Example: DB_USER=oraesb

The following sections explain how to import and export cross reference tables:

■ Exporting Cross Reference Tables

■ Importing Cross Reference Tables

Exporting Cross Reference Tables
The xrefexport utility enables you to export a cross reference table metadata along
with the values. The exported data is stored in an XML file which is based on the
schema defined in "Schema Definition (XSD) File for Cross References" on page 8-18. If
the table that you are exporting contains columns without any values, then the
missing column values are replaced with an empty cell element in the exported XML
file.

To export a cross reference table, use the following command:

xrefexport -file FILENAME -table TABLENAME

The FILENAME and TABLENAME parameters are mandatory. The FILENAME parameter
specifies the location of the file to which the data will be exported. The TABLENAME
parameter specifies the name of the cross reference table to be exported.

Importing Cross Reference Tables
The xrefimport utility enables you to import a cross reference table metadata from an
XML file. The XML file that you are importing should be based on the schema defined
in "Schema Definition (XSD) File for Cross References" on page 8-18.

To import cross reference metadata, use the following command:

xrefimport -file FILENAME [-mode <ignore | overwrite>] [-generate <columnName>]

The following list explains the various parameters of the xrefimport function:

■ FILENAME: The FILENAME parameter specifies the location of the file from which
the data will be imported.

Note: If you have not created OC4J_USERNAME and OC4J_
PASSWORD environment variables earlier, then you also need to create
these environment variables.

Schema Definition (XSD) File for Cross References

8-18 Oracle Enterprise Service Bus Developer's Guide

■ mode: The mode parameter specifies how the conflicts with existing data will be
handled. The mode parameter can consist of one of the two values, ignore or
overwrite. The value ignore specifies that the existing data should be kept in
the repository. The value overwrite specifies that existing data should be
overwritten with the data present in the XML file. The mode parameter is optional
and is used only in case of a conflict. The default value is ignore.

■ generate: The generate parameter can be used to create a column
automatically while importing the metadata. For example, generate SAP creates
a SAP column automatically while importing the metadata.

Schema Definition (XSD) File for Cross References
Example 8–1 shows the cross reference XSD file. All imported cross reference XML
files are validated against this schema definition file. All functions in the schema
definition file should be in the following namespace:

http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions

Example 8–1 Cross Reference XSD File

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/xref"
 xmlns:tns="http://xmlns.oracle.com/xref" elementFormDefault="qualified">
 <element name="xref" type="tns:xrefType"/>
 <complexType name="xrefType">
 <sequence>
 <element name="table">
 <complexType>
 <sequence>
 <element name="columns" type="tns:columnsType" minOccurs="0"
 maxOccurs="1"/>
 <element name="rows" type="tns:rowsType" maxOccurs="1"
 minOccurs="0"/>
 </sequence>
 <attribute name="name" use="required">
 <simpleType>
 <restriction base="string">
 <minLength value="1"/>
 </restriction>
 </simpleType>
 </attribute>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="columnsType">
 <sequence>
 <element name="column" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" use="required">
 <simpleType>
 <restriction base="string">
 <minLength value="1"/>
 </restriction>
 </simpleType>
 </attribute>

Schema Definition (XSD) File for Cross References

Creating Cross References 8-19

 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="rowsType">
 <sequence>
 <element name="row" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="cell" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="colName" use="required">
 <simpleType>
 <restriction base="string">
 <minLength value="1"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

Schema Definition (XSD) File for Cross References

8-20 Oracle Enterprise Service Bus Developer's Guide

Administering the Enterprise Service Bus 9-1

9
Administering the Enterprise Service Bus

This chapter discusses various administration tasks for Oracle Enterprise Service Bus.

This chapter contains the following topics:

■ Administrative Stages on page 9-1

■ Understanding Oracle Enterprise Service Bus Clusters on page 9-2

■ Providing Security on page 9-4

■ Setting Up Notification Channels on page 9-4

■ Testing the ESB Services on page 9-9

■ Checking Log Files on page 9-11

■ Moving the ESB Instance to a Different Oracle Home on page 9-13

■ Configuring the InterConnect Adapter with ESB on page 9-16

Administrative Stages
At different stages in setting up and running Oracle Enterprise Service Bus,
administrative attention is required, as described in the following list:

■ Planning Resources for the ESB

This stage involves choosing the right amount of resources to provide the
necessary capacity. This includes simple resources such as CPU, memory, and
disk space; and also more complex resources including the type and size of the
database to use for the metadata repository.

■ Installing the ESB software

This stages involves determining the system topology, deciding whether or not to
create a cluster of Oracle Enterprise Service Bus Servers installed on different
machines for high availability, choosing an active/active or active/passive model
for failover, and choosing firewalls.

■ Designing the enterprise service bus

This stage involves testing and stress testing the enterprise service bus at design
time

■ Functional testing

This stage involves testing to make sure the system supports the message flow as
expected, coverage to ensure that the testers do not overlook any key elements, the
number of different environments, and production once all testing is complete

Understanding Oracle Enterprise Service Bus Clusters

9-2 Oracle Enterprise Service Bus Developer's Guide

■ Operational tuning

This stage involves tuning the Oracle Enterprise Service Bus to provide the best
performance, generating and reading log files, and performing backups and
restoring from a backup if necessary.

For information about administration tasks, see Oracle Application Server
Administrator's Guide.

Planning Resources for the ESB
To estimate capacity, consider the needs of the business that will use the ESB system,
including the following:

■ The number of message instances

■ The path through the ESB for each message

■ Throughput of ESB messages, including:

– Peak throughput per hour

– Sustained throughput per hour

■ Load of ESB messages, including:

– Peak load start time and duration

– Sustained load duration

■ Resource sizing

– The number and sizes of documents, or payloads, passed between the ESB
processes and the web services they use

– The average response time for synchronous process during normal load

– Average response time for synchronous process during peak load

■ Fault-tolerance – is High Availability required, or is cold failover acceptable?

In addition to business requirements, the needs of the ESB processes that will be used
need to be considered and estimated. These needs include:

■ Payload size

Select the system resource capacity to accommodate the anticipated payloads plus
reserve capacity. This is particularly an issue for Java-based application server
components. For example, a 50 MB XML document in memory is large and
therefore a challenge to process unless system resources are unusually generous.
For efficiency, the best practice is to break up large payloads into smaller pieces.

■ Data transformations performed

■ End points and integration points

■ Number of Web services used and how often the ESB process invokes them

■ Type of Web service invocations, synchronous or asynchronous

■ Anticipated response times for both synchronous callbacks

Understanding Oracle Enterprise Service Bus Clusters
To configure Oracle Enterprise Service Bus for high availability, you configure it as a
cluster. An ESB cluster is a collection of instances with identical configuration and

Understanding Oracle Enterprise Service Bus Clusters

Administering the Enterprise Service Bus 9-3

deployment. Clusters enforce homogeneity between member instances so that a group
of ESB systems can appear and function as a single instance. With appropriate
front-end load balancing, any instance in an ESB cluster can serve requests. This
simplifies configuration and deployment across multiple instances and enables fault
tolerance among clustered instances.

When you set up Oracle Enterprise Service Bus as a cluster, you first need to install the
J2EE Server and Web Server option of the Application Server Advanced Installation on
all the computers that belong to the cluster. Next, you need to install the Design Time
(repository) OracleAS Middle Tier option of the ESB installation on one computer of
the ESB cluster. Then install the Runtime OracleAS Middle Tier option of the ESB
installation on the remaining computers of the ESB cluster. You can have multiple
runtime installations, but only one design time (repository) installation. After the
installations are completed, you need to configure the systems in the ESB cluster.

For an illustration of an ESB architecture showing a clustered environment, see
Figure 9–1.

Figure 9–1 ESB Architecture - Clustered Environment

By configuring ESB systems into ESB clusters, you can take advantage of the high
availability and load balancing features that OC4J instances configured with multiple
processes provide. Configuring ESB systems in ESB clusters do not limit the flow of
messages; messages can flow across ESB clusters.

When you install Oracle Enterprise Service Bus, an ESB cluster named ESB is created
and configured for you. This default ESB cluster is provided so that you can use ESB

Database

Console

User
Interfaces

Metadata Server

JMS Topics
· Control
· Monitor
· Resubmit
· Defer

Servlets
· Console
· WSIL
· Design Time
· WebDav
· SOAP Provider

Data Services

RAC Cluster

OHS

Load Balancer

JDeveloper
Service MD
Routing Rules
Instances
Errors
JMS
WebDAV

ESB Runtime Cluster

Runtime Server
· Server Execution
· Memory Cache
· JMS Error Topic
· XML/XSL Engine
· JCA Adapter Agents

Runtime Server
· Server Execution
· Memory Cache
· JMS Error Topic
· XML/XSL Engine
· JCA Adapter Agents

· XSD
· XSLT
· WSDL
· Maps

WebDAV

Providing Security

9-4 Oracle Enterprise Service Bus Developer's Guide

tutorial documented in the Oracle Enterprise Service Bus Quick Start Guide without the
prerequisite of configuring an ESB cluster manually. For production systems, you will
want to create and configure additional ESB clusters, if you want to take advantage of
the load-balancing and high-availability features enabled by OC4J clusters.

For information about high availability solutions for Oracle Enterprise Service Bus, see
"High Availability for Oracle SOA Suite" in Oracle Application Server High Availability
Guide. For information about high availability deployment scenarios for Oracle
Enterprise Service Bus, see Oracle Application Server Enterprise Deployment Guide.

Providing Security
Security for Oracle Enterprise Service Bus is provided by Oracle Application Server.
See the following resources information about setting up security:

■ For information about Secure Sockets Layer (SSL) and HTTPS protocol in Oracle
Application Server, see "Enabling SSL in the Infrastructure" and "Enabling SSL in
the Middle Tier" in Oracle Application Server Administrator's Guide.

■ For information about JDBC Client-Side security features, see Oracle Containers for
J2EE Security Guide.

■ For information about Oracle Web Services Manager's authentication capabilities,
see Oracle Web Services Manager Administrator's Guide.

Setting Up Notification Channels
You can set up notification channels in the event that an error occurs in the Oracle
Enterprise Service Bus message processing. These notifications can be sent to the email
ID, pager number, mobile number, or phone number of a system administrator or the
person assigned to this task. You can set notification channels for each ESB system you
have created.

Before notifications are sent, the channels must be configured using the XML files in
the Oracle_Home\integration\esb\config\ directory.

This sections contains the following topics:

■ Specifying Notification Channels on page 9-4

■ Configuring the Email Notification on page 9-5

■ Configuring the Wireless Provider for Voice on page 9-7

■ Configuring Paging Notification on page 9-9

■ Configuring Mobile Notification on page 9-9

■ Configuring Phone Notification on page 9-9

Specifying Notification Channels
To specify the notification channels:

1. Start the ESB Server and open the Oracle ESB Control.

Note: If you have installed the SOA suite, or ESB and BPEL are both
on the same middle tier, the configuration files are located in the
Oracle_Home\bpel\system\services\config directory.

Setting Up Notification Channels

Administering the Enterprise Service Bus 9-5

See "Opening the Oracle ESB Control" on page 1-12 for instructions.

2. In the Services navigation tree, select the ESB system for which you want to set
channels under Notification Details.

The Definition tab appears similar to Figure 9–2.

Figure 9–2 ESB System – Definition Tab

3. Enter or update the values in the Email ID, Pager Number, Mobile Number, or
Phone Number fields. Separate multiple entries with commas.

For example, enter sys_admin@mycompany.com,it_mgr@mycompany.com in
the Email ID field.

4. If you are satisfied with your changes, click Apply; otherwise, click Reset to return
the properties to the settings that were presented when you opened the page.

Configuring the Email Notification
To send email for notifications, ensure that the mail server for the Oracle Enterprise
Service Bus has been set up properly for each account in the Oracle_
Home\integration\esb\config\ns-emails.xml file.

Each EmailAccount element sets the configuration of a specific e-mail account. The
name attribute in the EmailAccount element is the name of the account.

A default e-mail account is specified in the e-mail configuration file. This account is
used when there is no account specified to send an e-mail notification. This account is
also used to send task-related notifications. A default e-mail account must always be
specified in the configuration file.

The EmailAccount element contains the OutgoingServerSettings and
IncomingServerSettings attributes. For actionable notifications in a workflow,
both IncomingServerSettings and OutgoingServerSettings are required.

Setting Up Notification Channels

9-6 Oracle Enterprise Service Bus Developer's Guide

Table 9–1 describes the XML elements for the e-mail notification configuration stored
in the ns_emails.xml file.

The following is an example of an ns-emails.xml file:

Example 9–1 Sample ns-emails.xml File

<!-- == -->
<!-- 1) The default values in this file have to be changed for email to work. -->
<!-- 2) In addition to setting the email account(s), you also need to change the attribute -->
<!-- "NotificationMode" to either (the default value of this attribute is "NONE") -->
<!-- * "EMAIL" - if you have only email set up, but not other channels -->
<!-- * "ALL" - if you have email and other channels like voice, SMS, fax, etc. set up. -->
<!-- == -->

<EmailAccounts xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"
 EmailMimeCharset=""
 NotificationMode="NONE">
 <EmailAccount>
 <Name>Default</Name>
 <GeneralSettings>
 <FromName>Oracle ESB</FromName>
 <FromAddress>accountId@yourdomain.com</FromAddress>
 </GeneralSettings>
 <OutgoingServerSettings>
 <SMTPHost>yourdomain.com</SMTPHost>
 <SMTPPort>25</SMTPPort>

Table 9–1 XML Elements for the E-mail Notification Configuration File

Name Description

EmailAccount/Name Name of the account. This can be any name, but
must be unique within this server.

EmailAccount/GeneralSettings/FromName Name of the From e-mail address

EmailAccount/GeneralSettings/FromAddress E-mail address for the From e-mail address

EmailAccount/OutgoingServerSettings/SMTPHost Name of the outgoing SMTP server

EmailAccount/OutgoingServerSettings/SMTPPort Port of the outgoing SMTP server

EmailAccount/IncomingServerSettings/Server Name of the incoming e-mail server

EmailAccount/IncomingServerSettings/Port Port of the incoming e-mail server

EmailAccount/IncomingServerSettings/UserName User ID of the e-mail address

EmailAccount/IncomingServerSettings/Password User password

EmailAccount/IncomingServerSettings/Password[
encrypted

Encrypted attribute of the password. It is true if the
password is encrypted and false if it is not.
Generally, you should set this to false when you
first enter the password. The server automatically
encrypts the password the first time it reads the
configuration file and sets the attribute to true.

EmailAccount/IncomingServerSettings/UseSSL Secure sockets layer (SSL) attribute. It is true if the
incoming server requires SSL and false if it does
not.

EmailAccount/IncomingServerSettings/Folder Name of the folder from which to read the incoming
messages

EmailAccount/IncomingServerSettings/PollingFr
equency

Polling interval for reading messages from the
incoming messages folder

Setting Up Notification Channels

Administering the Enterprise Service Bus 9-7

 </OutgoingServerSettings>
 <IncomingServerSettings>
 <Server>yourdomain.com</Server>
 <Port>110</Port>
 <Protocol>pop3</Protocol>
 <UserName>accountId</UserName>
 <Password ns0:encrypted="false"
xmlns:ns0="http://xmlns.oracle.com/ias/pcbpel/NotificationService">password</Password>
 <UseSSL>false</UseSSL>
 <Folder>Inbox</Folder>
 <PollingFrequency>1</PollingFrequency>
 <PostReadOperation>
 <MarkAsRead/>
 </PostReadOperation>
 </IncomingServerSettings>
 </EmailAccount>
 <!--EmailAccount>
 <Name>TaskServiceReceiving</Name>
 <GeneralSettings>
 <FromName>Oracle BPM</FromName>
 <FromAddress>accountId@yourdomain.com</FromAddress>
 </GeneralSettings>
 <OutgoingServerSettings>
 <SMTPHost>yourdomain.com</SMTPHost>
 <SMTPPort>25</SMTPPort>
 </OutgoingServerSettings>
 <IncomingServerSettings>
 <Server>yourdomain.com</Server>
 <Port>110</Port>
 <Protocol>pop3</Protocol>
 <UserName>accountId</UserName>
 <Password ns0:encrypted="false"
xmlns:ns0="http://xmlns.oracle.com/ias/pcbpel/NotificationService">password</Password>
 <UseSSL>false</UseSSL>
 <Folder>Inbox</Folder>
 <PollingFrequency>1</PollingFrequency>
 <PostReadOperation>
 <MarkAsRead/>
 </PostReadOperation>
 </IncomingServerSettings>
 </EmailAccount-->
</EmailAccounts>

Configuring the Wireless Provider for Voice
The wireless provider for voice is set up in the Oracle_
Home\integration\esb\config\ns_iaswconfig.xml file.

Example 9–2 describes the XML elements for the voice notification configuration
stored in ns_iaswconfig.xml on the Oracle_Home server.

Table 9–2 XML Elements for the Voice Notification Configuration File

Name Description

/IASWConfiguration/SoapURL URL of the wireless service provider

/IASWConfiguration/UserName Name of the user account with the wireless service
provider

/IASWConfiguration/Password User password

Setting Up Notification Channels

9-8 Oracle Enterprise Service Bus Developer's Guide

Example 9–2 is a an example of the ns_iaswconfig.xml file.

Example 9–2 Sample ns_iaswconfig.xml File

<?xml version = '1.0' encoding = 'UTF-8'?>
<!-- == -->
<!-- 1) This XML file stores the details of the IAS Wireless Notification Service. -->
<!-- 2) In addition to setting the email account(s) in ns_emails.xml and ns_iaswconfig.xml, -->
<!-- you also need to change the attribute "NotificationMode" in ns_emails.xml to either -->
<!-- EMAIL or ALL (the default value of this attribute is "NONE") -->
<!-- * "EMAIL" - if you have only email set up, but not other channels -->
<!-- * "ALL" - if you have email and other channels like voice, SMS, fax, etc. set up. -->
<!-- === -->

<IASWConfiguration xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <!-- URL to the SOAP Service -->
 <SoapURL>http://messenger.oracle.com/xms/webservices</SoapURL>

 <!-- UserName - this username should exist in iAS Wireless schema -->
 <UserName></UserName>
 <Password ns0:encrypted="false"
xmlns:ns0="http://xmlns.oracle.com/ias/pcbpel/NotificationService"></Password>

 <!-- Proxy information to connect to the hosted wireless service -->
 <ProxyHost>www-proxy.us.oracle.com</ProxyHost>
 <ProxyPort>80</ProxyPort>

 <!-- Specify any custom implementation for sending notification through Voice, Fax, -->
 <!-- Pager, SMS or IM channels. -->
 <!-- All refers to an implementation for all of the above specified channels. -->
 <!-- Email service can't have a custom implementation -->
 <CustomNotificationServices>
 <All/>
 <Email/>

/IASWConfiguration/Password[encr
ypted

Encrypted attribute of the password. It is true if the
password is encrypted and false if it is not.
Generally, you should set this to false when you first
enter the password. The server automatically encrypts
the password the first time it reads the configuration
file and sets the attribute to true.

/IASWConfiguration/ProxyHost Name of the proxy server

/IASWConfiguration/ProxyPort Port number of the proxy server

Note: The username and password are intentionally left blank at
installation. If a username or password is not specified, the wireless
server allows up to 50 notifications from a specific IP address. After 50
notifications, you must get a paid account from:

http://messenger.oracle.com

You then specify the appropriate username and password in the
configuration file, ns_iaswconfig.xml, or by using Oracle
Enterprise Manager Application Server Control.

Table 9–2 (Cont.) XML Elements for the Voice Notification Configuration File

Name Description

Testing the ESB Services

Administering the Enterprise Service Bus 9-9

 <Voice/>
 <Fax/>
 <Pager/>
 <SMS/>
 <IM/>
 </CustomNotificationServices>
</IASWConfiguration>

 Configuring Paging Notification
To send paging notifications, make sure that paging for the Oracle Enterprise Service
Bus has been set up properly for each account in the Oracle_
Home\integration\esb\config\ns_iaswconfig.xml file.

See "Configuring the Wireless Provider for Voice" on page 9-7.

Configuring Mobile Notification
To send mobile notifications, make sure that mobile notification for the Oracle
Enterprise Service Bus has been set up properly for each account in the Oracle_
Home\integration\esb\config\ns_iaswconfig.xml file.

See "Configuring the Wireless Provider for Voice" on page 9-7.

Configuring Phone Notification
To send phone notifications, make sure that the phone notification for the Oracle
Enterprise Service Bus has been set up properly for each account in the Oracle_
Home\integration\esb\config\ns_iaswconfig.xml file.

 See "Configuring the Wireless Provider for Voice" on page 9-7.

Configuring the FAX Cover Page
To add cover pages for a fax, you need to edit the Oracle_
Home\integration\esb\config\ns_faxcoverpages.xml. Use the cover page
name to specify the cover page in the fax message.

Example 9–3 Example of FAX Cover Page File

<FaxCoverPages xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <FaxCoverPage>
 <Name>legal</Name>
 <MimeType>application/pdf</MimeType>
<FileLocation>C:\esb\runtime\config\faxcoverpages\003288.pdf</FileLocation>
 </FaxCoverPage>
</FaxCoverPages>

Testing the ESB Services
To test the services you are creating in Oracle JDeveloper, use the Test Web Service
feature of Oracle Enterprise Manager.

To test using Oracle Enterprise Manager, perform the following steps:

1. Enter the URL for Oracle Enterprise Manager:

For example: http://localhost:8888/em

2. Enter the username and password to log in.

Testing the ESB Services

9-10 Oracle Enterprise Service Bus Developer's Guide

3. Click an application server in the list of All Application Servers.

For example, click the home application server.

4. In Application Server page, click the Web Services link.

The list of Web services displays.

Figure 9–3 Oracle Enterprise Manager Web Services

5. Select a Web service and click the Test Service button.

The Test Web Service page displays.

Figure 9–4 Oracle Enterprise Manager Test Web Service

6. In the Test Web Service page, click the Test Web Service button.

The test page displays.

7. Enter data in the fields of the Test page to test the service.

Checking Log Files

Administering the Enterprise Service Bus 9-11

For example, enter sample data for a customer order that would be processed by
the CustIn_RS routing service.

Figure 9–5 Oracle Enterprise Manager Test Page

8. After providing sample data, click Invoke to display the Test Results page.

Check whether there are any errors in the page. You can close the test page after
viewing the results.

9. View Instances in the Oracle ESB Control to check whether the message instance
was successfully processed with the sample data. For an example of successful
processing in the Instances in the Oracle ESB Control, see Figure 3–2 on page 3-5.

10. If necessary, correct any errors and repeat the test process.

Checking Log Files
You can view logs for all the OC4J components running on an application server with
Oracle Enterprise Manager Application Server Control. Oracle Application Server
components generate log files containing messages that record all types of events,
including startup and shutdown information, errors, warning messages, access
information about HTTP requests, and additional information. You can set the level of
information in a log file with the Logger Configuration page.

This sections contains the following topics:

■ Viewing Log Files on page 9-12

■ Configuring Log Files on page 9-13

See Also: "Managing Log Files" in Oracle Application Server
Administrator's Guide for more information about the log files of
Oracle Application Server components

Checking Log Files

9-12 Oracle Enterprise Service Bus Developer's Guide

Viewing Log Files
You can view log files using Oracle Enterprise Manager, as follows:

1. Go to the following URL:

http://host_name:port_number/em

2. Log in with username/password.

3. Click an application server to display the home page of the server.

4. Click Logs in the upper right corner to display the Log Files page.

5. Expand Components > OC4J > name-of-application server

The page appears similar to Figure 9–6.

Figure 9–6 Oracle Application Server Control – OC4J Log Files

6. Expand the items in the Select list until you locate a specific log file, then click
View.

For example, expand the Application esb-dt, Application esb-rt, and Diagnostic
Logs items. Click the icon in the View column to display the log file text.

The diagnostic file is located in the log.xml file and can be viewed with a text
editor.

Moving the ESB Instance to a Different Oracle Home

Administering the Enterprise Service Bus 9-13

Configuring Log Files
You can configure log file settings for individual logger classes to display more
information in the log files.

To configure the log file settings:

1. Go to the following URL:

http://host_name:port_number/em

2. Log in with username/password.

3. Click an application server to display the home page of the server.

4. Click the Administration tab.

5. Under Administration Tasks > Properties, click Go to Task next to Logger
Configuration.

6. Expand Root Logger > oracle to display the logger classes and the Log Level
settings.

7. You can locate specific logger classes by name with the search option. In the
Search by Logger Name field, enter a string and then click Go.

For example, enter esb in the Search by Logger Name field.

8. In the Log Level list, select a level option for the logger classes you want to
configure.

For example, set oracle.tip.esb.server.common and
oracle.tip.esb.server.service to FINE, as shown in Figure 9–6.

Figure 9–7 Oracle Application Server Control – Logger Configuration

9. Click Apply.

Moving the ESB Instance to a Different Oracle Home
You can move the ESB instance to a different database if you want to change the
Oracle Home of the ESB Server.

To move the ESB instance, follow these steps:

Moving the ESB Instance to a Different Oracle Home

9-14 Oracle Enterprise Service Bus Developer's Guide

1. If the new Oracle Home does not have an ESB schema, create a new database
schema by executing the createuser.sql and createschema.sql scripts that
are located in the Oracle_Home/integration/esb/sql/oracle/ directory.

For example:

SQL>@Oracle_Home\integration\esb\sql\oracle\createuser.sql
SQL>@Oracle_Home\integration\esb\sql\oracle\createschema.sql

If the new Oracle Home contains already contains an ESB schema:

■ You can back up the ESB metadata with the ESB export utility. See "Using
the ESB Import and Export Utilities" on page 9-15.

■ You can remove the existing schema with the drop_esb_tables.sql script
that is located in the Oracle_Home/integration/esb/sql/oracle/
directory.

2. Configure the ESB JDBC connection pooling to point to the new Oracle Home in
the Oracle_Home/j2ee/home/config/data-sources.xml file. You need to
update the connection-factory details in the data-sources.xml file:

<connection-pool name="ESBPool">
 <connection-factory factory-class="driver_class_name_for_db"
 url="url_to_database" user="db_user_name" password="db_user_password"/>
</connection-pool>

3. Export the ESB parameters from the old Oracle Home by running the ant utility
as follows:

ant export-params -Dparamfile=file_path_specfication\esb.properties>
 -DDB_URL=jdbc_url_to_old_database
 -DDB_USER=db_user_name
 -DDB_PASSWORD=db_user_password

You do not need to provide the DDB_URL, DDB_USER, and DDB_PASSWORD
parameters if you are using a standalone Oracle Lite database.

4. Export the metadata from the old Oracle Home with the ESB export utility.

For example:

> Oracle_home/integration/esb/bin/export c:\temp\metadata.zip

See "Using the ESB Import and Export Utilities" on page 9-15.

5. Import the ESB parameters from the old Oracle Home to the new Oracle Home by
running the ant utility as follows:

ant import-params -Dparamfile=file_path_specfication\esb.properties>
 -DDB_URL=jdbc_url_to_new_database
 -DDB_USER=db_user_name
 -DDB_PASSWORD=db_user_password

You do not need to provide the DDB_URL, DDB_USER, and DDB_PASSWORD
parameters if you are using a standalone Oracle Lite database.

6. Restart the ESB Server with the opnmctl utility as follows:

> Oracle_Home\opmn\bin\opmnctl stopall
> Oracle_Home\opmn\bin\opmnctl startall

7. Import the metadata from the old Oracle Home to the new Oracle Home with the
ESB import utility.

Moving the ESB Instance to a Different Oracle Home

Administering the Enterprise Service Bus 9-15

For example:

> Oracle_home/integration/esb/bin/import c:\temp\metadata.zip

See "Using the ESB Import and Export Utilities" on page 9-15.

Using the ESB Import and Export Utilities
You can use the Oracle Enterprise Service Bus import and export utilities to export
ESB metadata to and from an ESB Server on different Oracle instances.

To export metadata from anESB Server:

1. Start the ESB Server if it is not currently running. See "Starting, Stopping, and
Accessing Oracle Enterprise Service Bus Components" on page 1-10.

2. Open a operating system command window.

3. Change the directory to the Oracle_home/integration/esb/bin directory.

For example, cd c:\product\10.1.3.1\integration\esb\bin

4. Enter the following command:

export file-spec
-system system_name
-serviceGroup service_group_name
-service service_name
-flow

■ file-spec is the full file specification for the file in which you want to export
the metadata

■ -system is the name of the system to be exported. All service
groups/services belonging to the specified system are exported recursively.

■ -serviceGroup is the name of the service group to be exported. All service
groups/services belonging to the specified service group are exported
recursively.

■ -service is the name of the service to be exported

■ -flow indicates that the entire flow of the service specified using -service
option is to be exported. All the down stream services along with this service
are exported. If inbound adapter service is specified using -service option,
then all services involving in the flow are exported. If a routing service is
specified, the routing service and all the down stream services involving in the
flow are exported.

The options -system, -serviceGroup, and -service can be used multiple
times for different entities. If no option is specified, the entire metadata is
exported.

Examples:

export c:\temp\metadata.zip

export c:\esb\metadata.zip -system T-Vox -system T-Vox1
-serviceGroup T-Vox2.Stores -service
T-Vox3.Stores.SFOProductLanuch -flow

To import metadata to an ESB Server:

1. Start the ESB Server if it is not currently running. See "Starting, Stopping, and
Accessing Oracle Enterprise Service Bus Components" on page 1-10.

Configuring the InterConnect Adapter with ESB

9-16 Oracle Enterprise Service Bus Developer's Guide

2. Open a operating system command window.

3. Change the directory to the Oracle_home/integration/esb/bin directory.

For example, cd c:\product\10.1.3.1\integration\esb\bin

4. Enter the following command:

import file-spec
-system system_name
-serviceGroup service_group_name
-service service_name
-flow

■ file-spec is the full file specification for the file that contains the metadata
that you want to import

■ -system is the name of the system to be imported. All service
groups/services belonging to the specified system are imported recursively.

■ -serviceGroup is the name of the service group to be imported. All service
groups/services belonging to the specified service group are exported
recursively.

■ -service is the name of the service to be imported

■ -flow indicates that the entire flow of the service specified using -service
option is to be imported. All the down stream services along with this service
are imported. If inbound adapter service is specified using -service option,
then all services involving in the flow are imported. If a routing service is
specified, the routing service and all the down stream services involving in the
flow are imported.

The options -system, -serviceGroup, and -service can be used multiple
times for different entities. If no option is specified, the entire metadata is
imported.

Examples:

import c:\temp\metadata.zip

import c:\esb\metadata.zip -system T-Vox -system T-Vox1
-serviceGroup T-Vox2.Stores -service
T-Vox3.Stores.SFOProductLanuch -flow

Configuring the InterConnect Adapter with ESB
To use Oracle Enterprise Service Bus with Oracle InterConnect, you need to install and
configure the ICAdapter for use with ESB.

To install and configure the InterConnect Adapter, perform the following steps. For a
SOA basic (instead of advanced) installation, replace oc4j_soa with home in the java
commands.

1. Deploy ICAdapter with the following:

java -jar admin_client.jar
 deployer:oc4j:opmn://hostname:opmn_request_port/oc4j_soa oc4jadmin welcome1
 -deploy -file oracle_home\integration\esb\lib\icadapter.rar
 -deploymentName IcAdapter

2. Deploy ICwsilplugin with the following:

java -jar admin_client.jar

Configuring the InterConnect Adapter with ESB

Administering the Enterprise Service Bus 9-17

 deployer:oc4j:opmn://hostname:opmn_request_port/oc4j_soa oc4jadmin welcome1
 -deploy -file oracle_home\integration\esb\lib\icwsilplugin.ear
 -deploymentName icwsilplugin -parent default

3. Bind ICWsilPlugin with the following:

java -jar admin_client.jar
 deployer:oc4j:opmn://hostname:opmn_request_port/oc4j_soa oc4jadmin welcome1
 -bindWebApp -appName icwsilplugin -webModuleName icwsilplugin
 -webSiteName default-web-site -contextRoot /ic

4. Update the oc4j-ra.xml file in the Oracle_
home\j2ee\home\application-deployments\defaults\ICAdapter
directory. The following is an example of the oc4j-ra.xml file.

<?xml version="1.0"?>
<oc4j-connector-factories schema-minor-version="0" >
 <connector-factory location="eis/ICAdapter"
 connector-name="Interconnect Adapter">
 <config-property name="applicationName" value="BPELPM"/>
 <config-property name="driverClassName"
 value="oracle.jdbc.driver.OracleDriver"/>
 <config-property name="connectionString"
 value="jdbc:oracle:thin:@bpel-db-as:1521:ORCL"/>
 <config-property name="userName" value="ichub"/>
 <config-property name="password" value="Manager1"/>
 <config-property name="repoName" value="InterConnectRepository"/>
 <connection-pooling use="none"></connection-pooling>
 <security-config use="none"></security-config>
 </connector-factory>
</oc4j-connector-factories>

5. Add the oai.jar path to the server.xml file in the Oracle_
home\j2ee\home\config directory. The following is an example of the
server.xml file.

<shared-library name="bpel" version="1.0" library-compatible="true">
 <code-source path="c:/oracle/mid/integration/interconnect/lib/oai.jar"/>
 <code-source path="../../../integration/esb/lib/orabpel-common.jar"/>
 <code-source path="../../../integration/esb/lib/orabpel-thirdparty.jar"/>
 <code-source path="../../../integration/esb/lib/orabpel.jar"/>
 <code-source path="../../../integration/esb/lib/orabpel-boot.jar"/>
 <code-source path="../../../integration/esb/lib/bpm-infra.jar"/>
 <code-source path="../../../integration/esb/lib/olite40.jar"/>
 <code-source path="../../../integration/esb/lib/wdk.jar"/>
 <import-shared-library name="apache-commons"/>
 <import-shared-library name="oracle.xml"/>
 <import-shared-library name="oracle.jdbc"/>
 <import-shared-library name="oracle.jwsdl"/>
 <import-shared-library name="oracle.dms"/>
 <import-shared-library name="soap"/>
 <import-shared-library name="oracle.ws.client"/>
</shared-library>

6. Restart the ESB Server.

7. Register the InterConnect events and procedures under the ESB application in
InterConnect to ESB as ESB services with the following:

oracle_home\integration\esb\bin\regadapters.bat

On a Linux system, run the regadapters.sh script.

Configuring the InterConnect Adapter with ESB

9-18 Oracle Enterprise Service Bus Developer's Guide

Tracking Message Instances Across the Enterprise Service Bus 10-1

10
Tracking Message Instances Across the

Enterprise Service Bus

This chapter describes how to use the Oracle ESB Control Instances view to track
message instances across the enterprise service bus.

This chapter contains the following topics:

■ Overview of the Oracle ESB Control Instances View on page 10-1

■ Understanding Instances View Elements and Controls on page 10-2

■ Administering Message Instances on page 10-6

Overview of the Oracle ESB Control Instances View
The Instances view enables you to view details about instance processing across an
ESB system. It enables you to filter message instances based on any of the following
properties:

■ The service that processed them

■ The status of the messages (Any, Error, Faulted, Resubmittable)

■ Tracking name and tracking value (trackable fields)

■ Instance IDs

■ The time frame during which the message was processed

When you select a message instance from the Instances panel (shown in the lower left
of Figure 10–1), the message instance's path through the enterprise service bus is
presented in the Tracking tab diagram. Within the diagram, services that successfully
processed the message instance are represented in green, services where an error
occurred are represented in red, and services that were not invoked (or have not yet
been invoked) in the processing of the message are represented in gray. If the
transaction is rolled back, the service is represented in yellow. You can select a service
in the Tracking tab diagram and view the processing details in the Details subtab,
shown in the lower right of Figure 10–1.

Figure 10–1 shows that the CRM adapter service (CRMOut) was successfully invoked
and that the database adapter service (CustDBOut) was not invoked because a filter
expression excluded the message from delivery to the database adapter service.

Understanding Instances View Elements and Controls

10-2 Oracle Enterprise Service Bus Developer's Guide

Figure 10–1 Instances View – Tracking Tab and Details Subtab

Understanding Instances View Elements and Controls
The Instances view of the Oracle ESB Control, as shown in Figure 10–1 is divided into
four main regions, as follows:

■ Manage panel

This panel, shown in Figure 10–2, enables you to enable and disable message
instance tracking as well as purge the message instances. Note that when instances
that are purged, they are lost forever.

The control to the left of the Manage title enables you to open or close this panel;
the green arrow icon to the right of the Manage title applies changes you make in
this panel.

Figure 10–2 Instances View – Manage Panel

■ Search panel

Because the volume of messages processed during that time can be quite large, the
Search panel, shown in Figure 10–3, enables you to limit the messages displayed
using a variety of filter criterion.

The control to the left of the Search title enables you to open or close this panel; the
green arrow icon to the right of the Search title applies changes you make in this
panel. The Advanced control toggles to Basic and back; it enables you to show or
hide the Instances containing region of this panel.

Understanding Instances View Elements and Controls

Tracking Message Instances Across the Enterprise Service Bus 10-3

By default, the Instances panel displays all the messages processed during the past
day. If you want to view messages processed prior to the past day, then you need
to increase the number of days in the Activity in last field in the Advanced
options before searching for messages.

Only the first 100 instances are returned after any search filtering.

Figure 10–3 Instances View – Search Panel

■ Instances panel

The Instances panel lists the message instances processed or being processed by
the ESB services, optionally filtered by search options you select. The maximum
number of displayed is 100.

For each message, the time at which each message instance entered the enterprise
service bus, instance ID for the message, and the status of that processing is
provided. The status is represented by the following color-coded icon(s) in the
Status column (shown in Figure 10–4):

– Green rectangle - No faults or errors during message processing

– Solid red circle overlaid with an X - Error occurred

– Yellow triangle overlaid with an exclamation point - Faulted message (the
target service returned an application fault)

– An error icon plus a faulted icon - Error and faulted

– An error icon overlaid with a small yellow left arrow – Error is resubmittable
(for asynchronous processing)

– An error icon overlaid with a small yellow left arrow plus a faulted icon –
Error (resubmittable) and faulted

– An error icon overlaid with a small yellow right arrow plus a faulted icon –
Error (rejection by inbound adapter) and faulted

Figure 10–4 Instances Panel Showing Status Codes

Understanding Instances View Elements and Controls

10-4 Oracle Enterprise Service Bus Developer's Guide

■ Tracking Tab (with associated subtabs)

The Tracking tab has a diagram region that provides a schematic of the message
processing, as well as Navigator, Details, and Overlay subtabs, as described in the
following list:

– Schematic

The Tracking tab schematic shows the path the message selected from the
Instances panel has taken (or is taking) across the enterprise service bus. If you
select a particular service within the Instances panel, that service is enclosed in
a dotted grey box, as shown for the service labeled CustOut_RS in Figure 10–1.

If a service has successfully processed the message, that service appears in
green, as shown for the service labeled CRMOut in Figure 10–1.

If any service has not processed the selected message because processing is
incomplete or due to filter criterion, that service appears in grey, as shown for
the service labeled CustDBOut in Figure 10–2.

If an error occurred during processing, the service at which the error occurred
is red, as shown in Figure 10–5. A yellow service icon indicates a
non-transactional endpoint.

Figure 10–5 Oracle ESB Control – Instances View with Error

– Navigator subtab

For complex ESB configurations, the schematic can be quite large and you may
not be able to view it in its entirety all at once. The Navigator subtab provides
a birds-eye view of the entire schematic. The purple region of the Navigator
tab highlights the area of the schematic currently in showing.

Use the scroll bars around the schematic to view areas currently outside the
purple shaded region. Click the down-arrow button to the left of the
Navigator tab to hide the contents of the subtabs (and thereby increase the
available viewing area for the schematic.)

– Details subtab

Administering Message Instances

Tracking Message Instances Across the Enterprise Service Bus 10-5

The details subtab provides information about the status of a message with
respect to a selected service. Note that a pencil icon on the service designates
that the service has been updated since the message instance was processed.

– Overlay subtab

The Overlay subtab enables you to view statistics on the messages processed
by each service.

■ Error tab

The Error tab is presented only when you select a service in the Instances panel
where an error occurred, as shown in Figure 10–6. The Errors tab contains an error
table that lists the time, service:operation, and message associated with each error.
Click the Error Details icon in the Message column to view the error message and
the stack trace. See Chapter 11, "Error Handling" for information about handling
error conditions.

Figure 10–6 Instances View – Errors Tab

Administering Message Instances
You can view details and statistics of, search for, and delete message instances. You
can also enable and disable message instance tracking.

This section discusses the following topics:

■ Enabling and Disabling Instance Tracking on page 10-6

■ Viewing Instance Details on page 10-6

■ Viewing Instance Statistics on page 10-7

■ Searching for Message Instances on page 10-7

■ Purging Message Instances on page 10-9

Administering Message Instances

10-6 Oracle Enterprise Service Bus Developer's Guide

Enabling and Disabling Instance Tracking
Instance tracking is enabled by default. However, for maximum throughput at high
volumes, it is recommended that instance tracking is disabled.

Follow these steps to enable or disable message tracking:

1. At the top of the Oracle ESB Control, click the Instances button if the Instances
view is not currently displaying.

2. Open the Manage panel if it is not already open.

3. Select or deselect Enable tracking of instances to enable or disable instance
tracking, respectively.

4. In the Manage panel title bar, click the Apply icon (green arrow).

Viewing Instance Details
The Details tab, below the schematic in the Oracle ESB Control Instances view, shows
the following details about a message instance, as follows:

■ If you select a service in the Instances panel or the schematic:

– Status

This field specifies the status of the message, which can be successful or failed.
If a message was processed successfully, but the transaction was rolled back
due to some other error, that information is included in the Status field. For
example, the status might be: Successful; however, the transaction
was rolled back due to an error in CRMOUT:Write.

– Activity Time

This field specifies the time at which the message was processed by the service
selected in the Instances panel.

– Tracking data

■ If you click the connection between two services in the schematic:

– Source

Specifies the service and operation from which the message instance is being
sent, in the format source_service::operation.

– Target

Specifies the service and operation to which the message instance is being
sent, in the format target_service::operation.

– Status

Specifies the status of the target service. For example, the status might be one
of the following:

* Did not process the message.

* Not executed as part of the message flow.

* Not successful because there was an error during the invocation of the
target.

Administering Message Instances

Tracking Message Instances Across the Enterprise Service Bus 10-7

Viewing Instance Statistics
The Overlay tab, below the schematic in the Oracle ESB Control Instances view,
enables you to view statistics as overlays on the schematic.

If you enable Processing Time, the schematic shows the time in milliseconds it took for
each service within the enterprise service bus to process the message instance, as
shown in Figure 10–7.

Figure 10–7 Sample Overlay Statistics in Instances View

Searching for Message Instances
If the Instances panel contains too many message instances for you to find the message
instances of interest quickly, you can search the messages, as follows:

1. At the top of the Oracle ESB Control, click the Instances button if the Instances
view is not currently displaying.

2. Open the Search panel, if it is not already open.

3. Specify the desired search criteria, as described in Table 10–1.

4. In the Search panel title bar, click the Apply icon (green arrow).

Table 10–1 Specifying Message Instance Search Criteria

Search Criteria Description

Instance ID To limit the messages to those with a specific instance ID:

1. If they are not already displaying, open the Advanced
options by click the expand icon. (The plus (+) box next to
Basic. in the Instances panel.)

2. In the Instance ID field, enter the ID of the desired message
instance.

Multiple Instance IDs cannot be specified. If an Instance ID is
provided as search criteria, other filter conditions are ignored.

Administering Message Instances

10-8 Oracle Enterprise Service Bus Developer's Guide

Activity in last <time
frame>

To limit the messages to processed in a specific time frame:

1. If they are not already displaying, open the Advanced
options by click the expand icon. (The plus (+) box next to
Basic. in the Instances panel.)

2. From the drop-down list next to the Activity in last field,
select a time period.

3. In the Activity in last field, select the number of time
periods specified in step 2 that you want to include.

Be aware that message instances for a given time frame may
not be available if messages have been purged, as described
in "Purging Message Instances" on page 10-9.

Service To limit the messages to those processed by a particular service:

1. To the right of the Service field, click the ESB Service
Browser icon.

A dialog box opens.

2. Navigate to the ESB system that contains the service of
interest.

3. Select the service of interest.

4. Click Select.

Status To limit the messages to those in a particular status, in the Status
field, select one of the following:

■ Any - Select this option to display all message instances.

■ Error – Select this option to limit the message instances to
those for which an error occurred in processing.

■ Faulted – Select this option to limit the message instances to
those for which a fault, as defined by the service WSDL,
occurred.

■ Resubmittable - Select this option to limit the message
instances to those that are resubmittable.

Match Specify whether to match Any or All of the criteria in the
Tracking Name and Value fields.

Table 10–1 (Cont.) Specifying Message Instance Search Criteria

Search Criteria Description

Administering Message Instances

Tracking Message Instances Across the Enterprise Service Bus 10-9

Purging Message Instances
By default, no message instances are purged. As a result the list of message instances
in the Instances panel can become unwieldy. You can direct the ESB Server to purge all
messages or all message instances that occurred outside a specified time range.
Instances that are purged are lost forever.

To purge messages:

1. At the top of the Oracle ESB Control, click the Instances button if the Instances
view is not currently displaying.

2. Open the Manage panel if it is not already open.

3. Select the frequency with which you want messages purged:

■ To purge all message instances, under Purge instances, select All.

■ To purge all message instances that occurred outside a time range, under
Purge instances, select Older than and indicate the time range.

4. In the Manage title bar, click the Apply icon (green arrow).

Tracking Name and
Tracking Value (trackable
fields)

To limit the messages to those which have a particular value in a
trackable field or fields:

1. Replace <Tracking Name> with the name of a previously
defined trackable field.

See "Defining and Managing Tracking Fields" on page 3-16
for instructions on defining trackable fields.

2. The logical operator cannot be selected. It is always equals
(=) for an exact match.

3. Replace <Tracking Value> with the value for the trackable
field.

4. If you want to specify multiple trackable field/value pairs,
click the plus (+) button, and then repeat steps 1 and 2 for
each additional pair.

5. In the Match field, select Any if you want a message
instance listed if it matches one or more of the listed
tracking field/tracking value pairs specified; select All if
you want only messages listed that match all of the listed
tracking field/tracking value pairs.

If you want to delete a trackable field/tracking value pair, click
the minus (-) button that appears next to that row.

See Also: Appendix B, "Oracle Enterprise Service Bus API"

Table 10–1 (Cont.) Specifying Message Instance Search Criteria

Search Criteria Description

Administering Message Instances

10-10 Oracle Enterprise Service Bus Developer's Guide

Error Handling 11-1

11
Error Handling

This chapter describes how to interpret error conditions and how to handle them in
Oracle Enterprise Service Bus. The Instances view in the Oracle ESB Control enables
you to view and manage error conditions that occur across the enterprise service bus.

This chapter contains the following topics:

■ Overview of Error Handling on page 11-1

■ Managing Error Conditions on page 11-2

You can also view the log files with Oracle Enterprise Manager to check for details on
error conditions. See "Checking Log Files" on page 9-11.

Overview of Error Handling
When an error occurs in Oracle Enterprise Service Bus processing, the error is noted by
visual cues, such as icon and color changes, in the Oracle ESB Control. See Figure 10–4
on page 10-3, Figure 10–5 on page 10-4, and Figure 10–6 on page 10-5. Also, you can
also set up notifications by email, fax, or phone when errors occur. See "Setting Up
Notification Channels" on page 9-4.

Error handling in Oracle Enterprise Service Bus involves several types of errors that
can occur in transaction processing:

■ Application or Business Faults

■ Retryable Exceptions: A temporary loss of a service impacting the routing of the
message, but is usually resolved in a relatively short time period

■ Fatal Exceptions: A disabled or deleted service or system, out of memory
condition, or other serious problem that results in a serious error requiring
attention by a system administrator

Error handling is processed differently whether asynchronous and synchronous
execution is specified for a routing service. Errors during synchronous execution are
rolled back and cannot be retried with Oracle ESB Control; errors during
asynchronous execution can be resubmitted. For more information about
asynchronous and synchronous execution, see "Specifying Synchronous or
Asynchronous Execution" on page 5-27.

■ For synchronous execution, the transaction is rolled back and an error notification
is returned to the adapter that initiated the processing. The calling adapter is
expected to handle the error and resubmission. See "Inbound Adapter Error
Handling" on page 11-2.

■ For asynchronous execution, the user can resubmit the transaction after the error
condition has been resolved. See "User Error Handling" on page 11-2.

Managing Error Conditions

11-2 Oracle Enterprise Service Bus Developer's Guide

Managing Error Conditions
This section discuses how to manage errors conditions that occur with Oracle
Enterprise Service Bus.

The topics contained in this section are:

■ Inbound Adapter Error Handling on page 11-2

■ User Error Handling on page 11-2

■ Resubmitting Messages on Errors on page 11-4

Inbound Adapter Error Handling
An inbound adapter handles exceptions and faults using the default error handling
process of the adapter.

■ By default, an adapter retries the message three times at five second intervals for
an error condition. The retry count and interval can be specified in the endpoint
properties of the adapter service. For information about endpoint properties, see
"Using Endpoint Properties" on page 4-11.

■ If an inbound adapter fails to invoke a routing service for a certain number of
consecutive times, it marks itself broken and disables itself. The Oracle ESB
Control displays this event source with a special icon to visually represent its
disabled state. You can enable the adapter service.

■ If the next service that the inbound adapter invokes does not exist, perhaps
because it has been deleted or is not enabled, then the inbound adapter processor
disables itself and marks itself broken.

■ If a subscription fails a certain number of consecutive times, the service notifies the
repository to mark it as in a broken state. The dispatcher does not dispatch this
subscription after it is marked as broken.

The administrator is notified of any disabled services.

For more information about adapters, including a discussion of managing errors, see
Oracle Application Server Adapter Concepts.

User Error Handling
When an error occurs during process a message instance, it is indicated by a red
service icon in the Tracking tab of the Oracle ESB Control Instances view.

An error condition in the Tracking tab appears similar to Figure 11–1.

Managing Error Conditions

Error Handling 11-3

Figure 11–1 Instances View – Tracking Tab

You can view the error message, trace, and payload details by clicking on the Error
Details icon in the Message column on the Errors tab, shown in Figure 11–3.

Figure 11–2 is an example of the Error Details dialog.

Figure 11–2 Error Details Dialog

After you review the error details and fix the error condition, you can resubmit the
message to the invoking service.

For information about enabling validation of the payload at runtime, see Table 3–6 on
page 3-14 in "Viewing Service Definitions" on page 3-12.

Managing Error Conditions

11-4 Oracle Enterprise Service Bus Developer's Guide

Resubmitting Messages on Errors
In some situations, a message instance can be resubmitted. If a routing rule has been
set to asynchronous execution, you can usually resubmit a message instance after
fixing the error condition.

To resubmit a message on error, follow these steps:

1. At the top of the Oracle ESB Control, click the Instances icon to display the
message instance processing.

2. In the Instances panel of the Instances view, click the message instance where the
error occurred.

3. Click the Error tab to display the error information.

4. Click the Error Details icon under the Message column to view error message,
trace, and payload details about the error condition in the Errors Detail dialog.

5. Click OK to close the Errors Detail dialog after reviewing the error message
details.

6. Correct the error condition, then click Resubmit in the Error tab.

For example, edit the message payload in the Resubmission Payload window if is
incorrect and then click Resubmit.

Figure 11–3 is an example of the resubmitted message instance.

Figure 11–3 Instances View - Errors Tab

XPath Extension Functions A-1

A
XPath Extension Functions

Oracle provides XPath extension functions that use built-in ESB capabilities and XPath
standards. This chapter describes the XPath extension functions, along with their
descriptions, signature, argument descriptions, and property ID information

This appendix contains the following topics:

■ add-dayTimeDuration-to-dateTime on page A-2

■ compare on page A-2

■ compare-ignore-case on page A-3

■ create-delimited-string on page A-3

■ current-date on page A-4

■ current-dateTime on page A-4

■ current-time on page A-4

■ day-from-dateTime on page A-5

■ doc on page A-5

■ ends-with on page A-5

■ format-dateTime on page A-6

■ format-string on page A-6

■ generate-guid on page A-6

■ get-content-as-string on page A-7

■ get-localized-string on page A-7

■ getInboundResponseHeader on page A-8

■ getRequestHeader on page A-8

■ hours-from-dateTime on page A-8

■ implicit-timezone on page A-9

■ index-within-string on page A-9

■ last-index-within-string on page A-9

■ left-trim on page A-10

■ lookup-dvm on page A-10

■ lookup-table on page A-11

■ lookup-xml on page A-12

add-dayTimeDuration-to-dateTime

A-2 Oracle Enterprise Service Bus Developer's Guide

■ lower-case on page A-12

■ minutes-from-dateTime on page A-12

■ month-from-dateTime on page A-13

■ query-database on page A-13

■ right-trim on page A-14

■ seconds-from-dateTime on page A-14

■ sequence-next-val on page A-14

■ setOutboundHeader on page A-15

■ setResponseHeader on page A-15

■ square-root on page A-16

■ subtract-dayTimeDuration-from-dateTime on page A-16

■ timezone-from-dateTime on page A-16

■ upper-case on page A-17

■ year-from-dateTime on page A-17

add-dayTimeDuration-to-dateTime
This function returns a new date time value adding dateTime to the given duration.

If the duration value is negative, then the resulting value precedes dateTime.

Signature:

xp20:add-dayTimeDuration-from-dateTime(dateTime as string,
duration as string)

Arguments:

■ dateTime as string – The dateTime to which the function adds the duration,
in string format.

■ duration as string – The duration to add to the dateTime, or subtract if the
duration is negative, in string format.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

compare
This function returns the lexicographical difference between inputString and
compareString comparing the unicode value of each character of both the strings.

This function returns -1 if inputString lexicographically precedes the
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the
compareString.

create-delimited-string

XPath Extension Functions A-3

Example:

xp20:compare('Audi', 'BMW') returns -1

Signature:

xp20:compare(inputString as string, compareString as string)

Arguments:

■ variableName – The source variable for the data

■ propertyName – The qualified name (QName) of the property

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

compare-ignore-case
This function returns the lexicographical difference between inputString and
compareString while ignoring case and comparing the unicode value of each
character of both the strings.

This function returns -1 if inputString lexicographically precedes the
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the
compareString.

Example:

xp20:compare-ignore-case('Audi','bmw') returns -1

Signature:

orcl:compare-ignore-case(inputString as string, compareString as
string)

Arguments:

■ inputString as string – The input string

■ CompareString as string – The string to compare against the input string

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

create-delimited-string
This function returns a delimited string created from nodeSet delimited by delimiter.

Signature:

orcl:create-delimited-string(nodeSet as node-set, delimiter as
string)

current-date

A-4 Oracle Enterprise Service Bus Developer's Guide

Arguments:

■ nodeSet – The node set to be converted into a deliminated string

■ delimiter – The character that separates the items in the output string; for
example, a comma or a semicolon.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

current-date
This function returns the current date in ISO format YYYY-MM-DD.

Signature:

xp20:current-date(object)

Arguments:

■ object - The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

current-dateTime
This function returns the current datetime-value in ISO format
CCYY-MM-DDThh:mm:ssTZD.

Signature:

xp20:current-dateTime(object)

Arguments:

■ object – The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

current-time
This function returns the current time in ISO format. The format is hh:mm:ssTZD.

Signature:

xp20:current-time(object)

Arguments:

ends-with

XPath Extension Functions A-5

■ object – The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

day-from-dateTime
This function returns the day from dateTime. The default day is 1.

Signature:

xp20:day-from-dateTime(object)

Arguments:

■ object – The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

doc
This function returns the content of an XML file.

Signature:

ora:doc('fileName','xpath'?)

Arguments:

■ fileName – The name of the XML file

■ xpath – path to the XML file

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

ends-with
This function returns true if inputString ends with searchString.

Example:

xp20:ends-with('XSL Map','Map') returns true

Signature:

xp20:ends-with(inputString as string, searchString as string)

Arguments:

■ inputString – The string of data to be searched

■ searchString – The string for which the function searches

format-dateTime

A-6 Oracle Enterprise Service Bus Developer's Guide

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

format-dateTime
This function returns the formatted string of dateTime using the format provided.

Signature:

xp20:format-dateTime(dateTime as string, format as string)

Arguments:

■ dateTime – The dateTime to be formatted

■ format – The format for the output

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

format-string
This function returns the message formatted with the arguments passed. At least one
argument is required and supports up to a maximum of 10 arguments.

Example:

orcl:format-string('{0} + {1} = {2}','2','2','4') returns '2 + 2 =
4'

Signature:

orcl:format-string(string,string,string...)

Arguments:

■ string – One of the strings to be used in the formatted output

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

generate-guid
This function generates a unique GUID.

Signature:

orcl:generate-guid()

Arguments:

get-localized-string

XPath Extension Functions A-7

■ none

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

get-content-as-string
This function returns the XML representation of the input element.

Signature:

orcl:get-content-as-string(element as node-set)

Arguments:

■ element as node-set – The input element that the function returns as an XML
representation

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

get-localized-string
This function returns the locale-specific string for key. This function uses language,
country, variant, and resource bundle to identify the correct resource bundle.

The resource bundle in obtained by resolving resourceLocation against the
resourceBaseURL. The URL is assumed to be a directory only if it ends with /.

Usage:

orcl:get-localized-string(resourceBaseURL as string,
resourceLocation as string, resource bundle as string, language
as string, country as string, variant as string, key as string)

Example:
orcl:get-localized-string('file:/c:/','','MyResourceBundle','en'
,'US','','MSG_KEY') returns a locale-specific string from a resource bundle
'MyResourceBundle' in the C:\ directory

Signature:

orcl:get-localized-string(resourceURL,resourceLocation,resourceB
undleName,language,country,variant,messageKey)

Arguments:

■ resourceURL – The URL of the resource

■ resourceLocation – The subdirectory location of the resource

■ resourceBundleName – The name of the zip file containing the resource bundle

■ language – The language of the localized output

■ country – The country of the localized output

getInboundResponseHeader

A-8 Oracle Enterprise Service Bus Developer's Guide

■ variant – The language variant of the localized output

■ messageKey – The message key in the resource bundle

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

getInboundResponseHeader
This function gets a string value from inbound response header.

Signature:

ehdr:getInboundResponseHeader(headerXPath,
namespaceDeclarations)

Arguments:

■ headerXPath is the xpath into the header document

■ namespaceDeclarations used in the headerXPath as
prefix=Namespace-URI

Property IDs:

■ http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
headers.ESBHeaderFunctions

■ namespace-prefix: ehdr

getRequestHeader
This function gets a string value from request message header.

Signature:

ehdr:getRequestHeader(headerXPath, namespaceDeclarations)

Arguments:

■ headerXPath is the xpath into the header document

■ namespaceDeclarations used in the headerXPath as
prefix=Namespace-URI

Property IDs:

■ http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
headers.ESBHeaderFunctions

■ namespace-prefix: ehdr

hours-from-dateTime
This function returns the hour from dateTime. The default hour is 0.

Signature:

xp20:hours-from-dateTime(dateTime as string)

Arguments:

last-index-within-string

XPath Extension Functions A-9

■ dateTime as string – The dateTime

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

implicit-timezone
This function returns the current time zone in ISO format +/- hh:mm, indicating a
deviation from UTC (Coordinated Universal Timezone).

Signature:

xp20:implicit-timezone(object)

Arguments:

■ object – The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

index-within-string
This function returns the zero-based index of the first occurrence of searchString
within the inputString.

This function returns -1 if searchString is not found.

Example:

orcl:index-within-string('ABCABC, 'B') returns 1

Signature:

orcl:index-within-string(inputString as string, searchString as
string)

Arguments:

■ inputString – The string to be searched

■ searchString – The string for which the function searches in the inputString

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

last-index-within-string
This function returns the zero-based index of the last occurrence of searchString
within inputString.

left-trim

A-10 Oracle Enterprise Service Bus Developer's Guide

This function returns -1 if searchString is not found.

Example:

orcl:last-index-within-string('ABCABC', 'B') returns 4

Signature:

orcl:last-index-within-string(inputString as string,
searchString as string)

Arguments:

■ inputString – The string to be searched

■ searchString – The string for which the function searches in the inputString

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

left-trim
This function returns the value of inputString after removing all the leading white
spaces.

Example:

orcl:left-trim(' account ') returns 'account '

Signature:

orcl:left-trim(inputString)

Arguments:

■ inputString – The string to be left-trimmed

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

lookup-dvm
This function returns a string by looking up the value for target column in the DVM
where the value for source column is equal to the source value. The source value is an
xpath expression bound to the source document of the XSLT transformation. The
expression will be evaluated during the transformation and the result value will be
passed as the source value for lookup. This function takes 5 parameters.

Example:

orcl:lookup-dvm
('StateCodes','Long',/inp1:Customer/Profile/AccountRep/Address/S
tate,'Short',"")

Signature:

lookup-table

XPath Extension Functions A-11

orcl:lookup-dvm (dvmName as string, sourceColumn as string,
sourceValue as xpath expression, targetColumnName as string,
defaultValue as string)

Arguments:

■ dvmName

■ sourceColumnName

■ sourceValue

■ targetColumnName

■ defaultValue

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

lookup-table
This function returns a string based on the SQL query generated from the parameters.

The string is obtained by executing:

SELECT outputColumn FROM table WHERE inputColumn = key

against the data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source
JNDI identifier. Only Oracle Thin Driver is supported if the JDBC connect string is
used.

Example:

orcl:lookup-table('employee','id','1234','last_
name','jdbc:oracle:thin:scott/tiger@localhost:1521:ORCL')

Signature:

orcl:lookup-table(table, inputColumn, key, outputColumn,
datasource)

Arguments:

■ table – The table from which to draw the data

■ inputColumn – The column within the table

■ key – The key

■ outputColumn – The column to output the data

■ datasource – The source of the data

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

lookup-xml

A-12 Oracle Enterprise Service Bus Developer's Guide

lookup-xml
This function returns the string value of an element defined by lookupXPath in an
XML file (docURL) given its parent XPath (parentXPath), the key XPath
(keyXPath), and the value of the key (key).

Example:

orcl:lookup-xml('file:/d:/country_data.xml',
'/Countries/Country', 'Abbreviation', 'FullName', 'UK') returns the
value of the element FullName child of /Countries/Country where
Abbreviation = 'UK' is in the file D:\country_data.xml.

Signature:

orcl:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath, key)

Arguments:

■ docURL – The XML file

■ parentXPath – The parent XPath

■ keyXPath – The key XPath

■ lookupXPath – The lookup XPath

■ key – The key value

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

lower-case
This function returns the value of inputString after translating every character to its
lower-case correspondent.

Example:

xp20:lower-case('ABc!D') returns 'abc!d'

Signature:

xp20:lower-case(inputString)

Arguments:

■ inputString – The input string

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

minutes-from-dateTime
This function returns the minute from dateTime. The default minute is 0.

query-database

XPath Extension Functions A-13

Signature:

xp20:minutes-from-dateTime(dateTime)

Arguments:

■ dateTime – The dateTime

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

month-from-dateTime
This function returns the month from dateTime. The default month is 1 (January).

Signature:

xp20:month-from-dateTime(dateTime)

Arguments:

■ dateTime – The dateTime to be formatted

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

query-database
This function returns a node-set by executing the SQL query against the specified
database.

Signature:

orcl:query-database(sqlquery as string, rowset as boolean, row
as boolean, datasource as string)

Arguments:

■ sqlquery – The SQL query to perform

■ rowset – Indicates if the rows should be enclosed in a <rowset> element

■ row – Indicates if each row should be enclosed in a <row> element

■ datasource – Either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a JNDI
name for the database

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

right-trim

A-14 Oracle Enterprise Service Bus Developer's Guide

right-trim
This function returns the value inputString after removing all the trailing white
spaces.

Example:

 orcl:right-trim(' account ') returns ' account'

Signature:

orcl:right-trim(inputString as string)

Arguments:

■ inputString – The input string to be right-trimmed

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

seconds-from-dateTime
This function returns the second from dateTime. The default second is 0.

Signature:

xp20:seconds-from-dateTime(dateTime as string)

Arguments:

■ dateTime – The dateTime as a string

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

sequence-next-val
Return the next value of an Oracle sequence.

The next value is obtained by executing

SELECT sequence.nextval FROM dual

against data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source
JNDI identifier. Only Oracle Thin Driver is supported if a JDBC connect string is used.

Example:

orcl:sequence-next-val('employee_id_
sequence','jdbc:oracle:thin:scott/tiger@localhost:1521:ORCL')

Signature:

orcl:sequence-next-val(sequence as string, datasource as string)

setResponseHeader

XPath Extension Functions A-15

Arguments:

■ sequence – name of the sequence in the database

■ datasource – a JDBC connect string or data source JNDI identifier

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

setOutboundHeader
This function sets an outbound message header value.

Signature:

ehdr:set-outbound-header(headerXPath, value,
namespaceDeclarations)

Arguments:

■ headerXPath is the xpath into the outbound header document

■ value is the value to set on outbound message header

■ namespaceDeclarations used in the headerXPath as
prefix=Namespace-URI

Property IDs:

■ http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
headers.ESBHeaderFunctions

■ namespace-prefix: ehdr

setResponseHeader
This function sets a response message header value.

Signature:

ehdr:set-response-header(headerXPath, value,
namespaceDeclarations)

Arguments:

■ headerXPath is the xpath into the response header document

■ value is the value to set on response message header

■ namespaceDeclarations used in the headerXPath as
prefix=Namespace-URI

Property IDs:

■ http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
headers.ESBHeaderFunctions

■ namespace-prefix: ehdr

square-root

A-16 Oracle Enterprise Service Bus Developer's Guide

square-root
This function returns the square root of inputNumber.

Example:

orcl:square-root(25) returns 5

Signature:

orcl:square-root(inputNumber as number)

Arguments:

■ inputNumber – The input number for which the function calculates the square
root

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

subtract-dayTimeDuration-from-dateTime
This function returns a new dateTime value after subtracting duration from
dateTime.

If the duration value is negative, then the resultant dateTime value follows
input-dateTime value.

Signature:

xp20:subtract-dayTimeDuration-from-dateTime(dateTime as string,
duration as string)

Arguments:

■ dateTime as string – The dateTime from which the function subtracts the
duration, in string format.

■ duration as string – The duration to subtract to the dateTime, or add if the
duration is negative, in string format.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

timezone-from-dateTime
This function returns the timezone from dateTime. The default timezone is
GMT+00:00.

Signature:

xp20:timezone-from-dateTime(dateTime as string)

Arguments:

year-from-dateTime

XPath Extension Functions A-17

■ dateTime as string – The dateTime for which this function returns a time
zone

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

upper-case
This function returns the value of inputString after translating every character to its
upper-case correspondent.

Example:

xp20:upper-case('abCd0') returns 'ABCD0'

Signature:

xp20:upper-case(inputString as string)

Arguments:

■ inputString – The input string

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

year-from-dateTime
This function returns the year from dateTime.

Signature:

xp20:year-from-dateTime(dateTime as string)

Arguments:

■ dateTime – The dateTime

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

year-from-dateTime

A-18 Oracle Enterprise Service Bus Developer's Guide

Oracle Enterprise Service Bus API B-1

B
Oracle Enterprise Service Bus API

This appendix describes the classes and interfaces that can be used with Oracle ESB
Control. It contains the following topics:

■ ConsoleClientFactory Class on page B-1

■ ConsoleClient Interface on page B-1

■ XML Schema File on page B-8

ConsoleClientFactory Class
Provides the ConsoleClient object.

package oracle.tip.esb.client;
import oracle.tip.esb.client.impl.ConsoleClientImpl;
public class ConsoleClientFactory
 {
 public static ConsoleClient getConsoleClient(String host, int port, String
 userName, String password) throws ClientException
 {
 return new ConsoleClientImpl(host,port,userName,password);
 }
 }

ConsoleClient Interface
Provides the interface to interact with the Oracle ESB Control to perform actions on
the metadata and instance data.

package oracle.tip.esb.client;
import java.util.Map;
public interface ConsoleClient
{
public String perform(String action, Map<String,String> requestParameters) throws
ClientException;
}

Perform Function
The perform function of the ConsoleClient interface invokes the console servlet to
perform a specified action. The perform function returns the data produced by an
action. If the action specified in the action parameter does not generate any data, then
the perform function throws ClientException exception. The action parameter
can contain one of the following values:

ConsoleClient Interface

B-2 Oracle Enterprise Service Bus Developer's Guide

■ GetInstances

■ GetFailedInstances

■ GetErrorInstance

■ GetTrackingDetails

■ ResubmitInstancesByIds

■ ResubmitInstancesById

■ ResubmitInstance

■ GetTrackingConfig

■ UpdateTrackingConfig

Using Perform Function
You can use the perform function to perform the following tasks:

■ Get the list of instances

■ Get the list of errored instances

■ Get all the errors occurred in a flow id

■ Get the XML to draw the instance diagram for a flow id

■ Resubmit a list of instances by Ids

■ Resubmit an instance by Id

■ Resubmit an instance with modified/unmodified payload

■ Get the current status of the instance tracking

■ Enable/disable instance tracking

Get the list of instances
To get a list of all instances, specify GetInstances as value of action parameter.
The perform function returns a list of instances matching the given filter. If an error
occurs, an exception is returned to the caller.

Input XSD Element
The input XML should correspond to the instanceFilter element of the XSD file
described in "XML Schema File" on page B-8.

Output XSD
The output XML corresponds to the instances element of the XSD file described in
"XML Schema File" on page B-8.

Example
The following example returns all the instances created in last one day.

String filter = "<instanceFilter timeZone=\"GMT+05:30\">" +
 " <startTime>86400000</startTime>" +
 "</instanceFilter>";

HashMap<String,String> requestProps = new HashMap<String,String>();
requestProps.put("filter", URLEncoder.encode(filter,"UTF-8"));

ConsoleClient Interface

Oracle Enterprise Service Bus API B-3

ConsoleClient client = ConsoleClientFactory.
 getConsoleClient(HOST,PORT,USER_NAME,PASSWORD);
String data = client.perform("GetInstances", requestProps);
System.out.println("Instances ==> "+data);

Get the list of errored instances
To get a list of errored instances, specify GetFailedInstances as value of action
parameter. The perform function returns a list of errored instances matching the
given filter. If an error occurs, an exception is returned to the caller.

Input XSD Element
The input XML should correspond to the failedInstanceFilter element of the
XSD file described in "XML Schema File" on page B-8.

Output XSD
The output XML corresponds to the failedInstances element of the XSD file
described in "XML Schema File" on page B-8.

Example
The following example returns all the errored (Retryable and non-retryable) instances
created in last one day:

String filter = "<failedInstanceFilter timeZone=\"GMT+05:30\">" +
 " <startTime>86400000</startTime>" +
 "</failedIinstanceFilter>";

HashMap<String,String> requestProps = new HashMap<String,String>();
requestProps.put("filter", URLEncoder.encode(filter,"UTF-8"));

ConsoleClient client = ConsoleClientFactory.getConsoleClient(HOST,PORT,USER_
NAME,PASSWORD);

String data = client.perform("GetFailedInstances", requestProps);

System.out.println("Failed Instances ==> "+data);

Get all the errors occurred in a flow id
To get a list of all errors occurred in a flow id, specify GetErrorInstance as value of
action parameter. The perform function returns all the errors that occurred in the
given flow id. If the error can be retried, the corresponding error element contains the
list of routing rules that would be executed upon resubmission and the payload that
the user can modify before resubmission. If an error occurs, an exception is returned to
the caller.

Output XSD
The output XML corresponds to the errorInstances element of the XSD file
described in "XML Schema File" on page B-8.

Example
The following example returns all the errored instances for a given instance id:

HashMap<String,String> requestProps = new HashMap<String,String>();
requestProps.put("instanceID",URLEncoder.encode("102@1164094022","UTF-8"));

ConsoleClient Interface

B-4 Oracle Enterprise Service Bus Developer's Guide

ConsoleClient client = ConsoleClientFactory.
getConsoleClient(HOST,PORT,USER_NAME,PASSWORD);

String data = client.perform("GetErrorInstance", requestProps);

System.out.println("Error Instances ==> "+data);

Get the XML to draw the instance diagram for a flow id
To get XML containing the flow details, specify GetTrackingDetails as value of
action parameter. The perform function returns the XML containing the flow
details. You can use this XML is used to draw the instance diagram on the console. If
an error occurs, an exception is returned to the caller.

Output XSD
The output XML corresponds to the relationship element of the XSD file described
in "XML Schema File" on page B-8.

Example
The following example returns the XML required to draw the instance diagram for the
given flow id.

HashMap<String,String> requestProps = new HashMap<String,String>();
requestProps.put("flowId", URLEncoder.encode("102@1164094022","UTF-8"));

ConsoleClient client = ConsoleClientFactory.
getConsoleClient(HOST,PORT,USER_NAME,PASSWORD);

String data = client.perform("GetTrackingDetails", requestProps);
System.out.println("Instance Diagram XML ==> "+data);

Resubmit a list of instances by Ids
To resubmit multiple instances that failed in multiple systems and flows, specify
ResubmitInstancesByIds as value of action parameter. The input for this action
is a list of ids. A unique instance id is created by using the FlowId and SystemId.
During resubmit, the console back end retrieves the actual payloads for these ids from
instance store.

Input XSD Element
The input XML should correspond to the resubmitInstanceIds element of the
XSD file described in "XML Schema File" on page B-8.

Output XSD
The output XML corresponds to the resubmissionFailureReport element of the
XSD file described in "XML Schema File" on page B-8.

Example
HashMap<String,String> requestProps = new HashMap<String,String>();
String ids = "<resubmitInstanceIds>" +
 "<resubmitInstanceId flowId=\"102@1164094022\"
systemId=\"96DD76C0971311DABF1A87858E4395A7\"/>" +
 "<resubmitInstanceId flowId=\"101@1164094022\"
systemId=\"96DD76C0971311DABF1A87858E4395A7\"/>" +

ConsoleClient Interface

Oracle Enterprise Service Bus API B-5

 "</resubmitInstanceIds"; requestProps.put("resubmitIds",
URLEncoder.encode(ids,"UTF-8"));

ConsoleClient client = ConsoleClientFactory.
getConsoleClient(HOST,PORT,USER_NAME,PASSWORD);

String data = client.perform("ResubmitInstancesByIds",requestProps);

System.out.println("Resubmit Instances By Ids Status ==> "+data);

Resubmit an instance by Id
To resubmit multiple instances that failed in a system, specify
ResubmitInstanceById as value of action parameter. The input for this action is
an ID. A unique instance id is created by using the FlowId and SystemId. During
resubmit, the console back end retrieves the actual payload for the given id from
instance store.

Example
 HashMap<String,String> requestProps = new HashMap<String,String>();
 requestProps.put("flowId", flowId);
 requestProps.put("systemId", systemId);
 ConsoleClient client = ConsoleClientFactory.
 getConsoleClient(HOST,PORT,USER_NAME,PASSWORD);
 client.perform("ResubmitInstanceById",requestProps);

Resubmit an instance with modified/unmodified payload
To resubmit a single instance that failed in a system and flow, specify
ResubmitInstance as value of action parameter. The input for this action is an
XML document containing the modified or unmodified payload.

The actions mentioned in "Get the list of instances" on page B-2 and "Get the list of
errored instances" on page B-3 can be used to obtain the list of errored instances with
payload. You need to call these actions in a loop to submit each error instance.

Input XSD Element
The input XML should correspond to the messageInstance element of the XSD file
described in "XML Schema File" on page B-8.

The following example shows a sample XML file based on the messageInstance
element.

 String resubInstance = "<messageInstance flowId="eJy_IuGNrBcA2cdYouGUGw.."
 operationGUID="776C7C10EF1D11DBBFB64F031236B6A9">
 <instanceLink subFlowId="96DD76C0971311DABF1A87858E4395A7~1" />
 <inPayload>
 <![CDATA[<PurchaseOrder xmlns="http://www.globalcompany.com/ns/sales">
 <CustID>Fonda Automobiles</CustID>
 <ID>4P-91S3</ID>
 <ShipTo>
 <Name>
 <First>Prashant</First>
 <Last>Nema</Last>
 </Name>
 <Address>
 <Street>123, Sultod Ave</Street>
 <City>Vasetras</City>

ConsoleClient Interface

B-6 Oracle Enterprise Service Bus Developer's Guide

 <State>Sweden</State>
 <Zip>SW-30845</Zip>
 <Country>Sweden</Country>
 </Address>
 </ShipTo>
 <BillTo>
 <Name>
 <First>Matti</First>
 <Last>Korkalop</Last>
 </Name>
 <Address>
 <Street>A5G, TagenStrasse</Street>
 <City>Ausburg</City>
 <State>Bravaria</State>
 <Zip>DE-15982</Zip>
 <Country>Germany</Country>
 </Address>
 </BillTo>
 <UserContact>
 <PhoneNumber>01-41-294-2938</PhoneNumber>
 <EmailAddress>mattik@automart.de</EmailAddress>
 </UserContact>
 <OrderItems>
 <Item>
 <ProductName>Front Glass Panel</ProductName>
 <itemType>Automobile</itemType>
 <partnum>F39-FR3</partnum>
 <price>400.00</price>
 <Quantity>1</Quantity>
 </Item>
 <Item>
 <ProductName>Al Wheel Hub</ProductName>
 <itemType>Assembly</itemType>
 <partnum>45-JRP4</partnum>
 <price>900.00</price>
 <Quantity>3</Quantity>
 </Item>
 </OrderItems>
 <OrderDate>2003-11-12</OrderDate>
 <OrderPrice>5100.00</OrderPrice>
 <OrderStatus>unknown</OrderStatus>
 </PurchaseOrder>
]]>
 </inPayload>
</messageInstance>";

Example
HashMap<String,String> requestProps = new HashMap<String,String>();
requestProps.put("resub", URLEncoder.encode(resubInstance,"UTF-8"));
ConsoleClient client = ConsoleClientFactory.
getConsoleClient(HOST,PORT,USER_NAME,PASSWORD);

client.perform("ResubmitInstance",requestProps);

ConsoleClient Interface

Oracle Enterprise Service Bus API B-7

Get the current status of the instance tracking
To know if instance tracking is enabled or not, specify GetTrackingConfig as value
of action parameter. The perform function returns true if the instance tracking is
enabled else returns false.

Output XSD
The output XML corresponds to the instanceManage element of the XSD file
described in "XML Schema File" on page B-8.

Example
The following example returns the current status of the instance tracking:

ConsoleClient client = ConsoleClientFactory.
getConsoleClient(HOST,PORT,USER_NAME,PASSWORD);

client.perform("GetTrackingConfig",null);

Enable/disable instance tracking
To enables or disable the instance tracking, specify UpdateTrackingConfig as
value of action parameter.

Input XSD Element
The input XML should correspond to the instanceManage element of the XSD file
described in "XML Schema File" on page B-8.

Example
The following example disables the instance tracking:

String config = "<instanceManage enable=\"false\" />"
HashMap<String,String> requestProps = new HashMap<String,String>();
requestProps.put("root", config);
ConsoleClient client = ConsoleClientFactory.
getConsoleClient(HOST,PORT,USER_NAME,PASSWORD);
client.perform("UpdateTrackingConfig", requestProps);

Purge instances based on time
To purge instances based on time, specify UpdateTrackingConfig as value of
action parameter. You can purge instances based on the following criteria: all or
Older than <TIME>.

Input XSD Element
The input XML should correspond to the purgeInstance element of the XSD file
described in "XML Schema File" on page B-8.

Example
The following example deletes all the instances that are older than ten minutes:

String purge = "<purgeInstance userPurgeTimePeriod=\"600000\"/>";
 HashMap<String,String> requestProps = new HashMap<String,String>();
requestProps.put("root", purge);
ConsoleClient client = ConsoleClientFactory.
getConsoleClient(HOST,PORT,USER_NAME,PASSWORD);
client.perform("UpdateTrackingConfig", requestProps);

XML Schema File

B-8 Oracle Enterprise Service Bus Developer's Guide

XML Schema File
The XML Schema file for instance tracking is defined in the following example.

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.oracle.com/esb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:esb="http://www.oracle.com/esb" xmlns="http://www.oracle.com/esb">
<!-- Elements for relationship diagram -->

 <xsd:element name="relationship">
 <xsd:annotation>
 <xsd:documentation>
 Provides the data required to render the relationship diagram
 on the console
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="service">
 <xsd:complexContent>
 <xsd:extension base="RelationshipService">
 <xsd:sequence>
 <xsd:element name="linkedServices" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="service"
 type="RelationshipService"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:element>
 <xsd:element name="serviceLinks" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="serviceLink" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="operationLink"
 maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="property"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 Will have one of the following
 properties
 executionType - Immediate |
 Deferred
 subscriptionType - Local | Remote
 phase - The phase value
 filter - Subscription filter

XML Schema File

Oracle Enterprise Service Bus API B-9

 expression
 mep - One-Way | RequestResponse |
 RequestResponseFault |
 SolicitResponse |
 Notification
 transformFile - ESB URL to XSL file
 replyTransformFile - ESB URL to XSL
 file
 faultTransformFile - ESB URL to XSL
 file

 replyHandler - Guid of the service,
 which the response
 is routed to
 replyHandlerOperation -
 Name of the operation,
 which the response is routed to
 faultHandler -
 Guid of the service, which the
 fault is routed to
 faultHandlerOperation -
 Name of the operation, which
 the fault is routed to

 Following properties are used ONLY
 for Instance Diagram

 status - Completed | Faulted |
 Error | In-Flight |
 Filtered | NotElgible |
 Committed | RolledBack
 errorType - Transform |
 Reply_Transform |
 Fault_Transform
 routedOutputTo - Source | Ignored |
 Handler
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="replyHandlerLink"
 type="HandlerLink"
 minOccurs="0"/>
 <xsd:element name="faultHandlerLink"
 type="HandlerLink"
 minOccurs="0"/>
 </xsd:sequence>

 <xsd:attributeGroup ref="RelationshipLink"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attributeGroup ref="RelationshipLink"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

XML Schema File

B-10 Oracle Enterprise Service Bus Developer's Guide

 <xsd:complexType name="HandlerLink">
 <xsd:sequence>
 <!-- Contains the following properties
 status - Completed | Error | In-Flight
 transformFile - XSL file
 -->
 <xsd:element ref="property" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 <xsd:attribute name="serviceGUID" type="xsd:string"
 use="required"/>
 <xsd:attribute name="operation" type="xsd:string" use="required"/>
 </xsd:element>

 <xsd:complexType name="RelationshipService">
 <xsd:sequence>
 <xsd:element ref="property" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 Contains the following properties:
 id - unique id
 system - Name of the system that this service belongs to
 status - ENABLED | DISABLED for Relationship diagram
 Completed | Faulted | Error | In-Flight |
 Committed | RolledBack for instance diagram
 depth - To be used to place the service icons at
 appropriate places on the console

 BPEL process specific properties
 processDomain - Domain name
 processName - The name of the bpel process
 processVersion - version
 host - The host name where bpel service runs
 port - bpel service port
 instanceId - Bpel instance id

 Overlay properties
 latency - Average execution time in milliseconds taken
 for the service to process messages
 throughput - Average number of messages processed by the
 service in a minute
 instanceCount - Total number of messages processed by
 the service
 failureCount - Total number of messages that the service
 could not process sucessfully

 Above-mentioned overlay properties are ONLY for
 relationship diagram

 changeType - Modified | Deleted
 executionTime - Time taken in millieseconds to process a
 message.
 lastActivityTime - Time when the last activity recorded
 for service during a message processing

 Above-mentioned overlay properties are ONLY for instance
 diagram

 The overlay properties depend on the instance tracking
 data.

XML Schema File

Oracle Enterprise Service Bus API B-11

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <!-- Only for instance diagram -->
 <xsd:element name="trackableFields" type="TrackableFieldValueList"
 minOccurs="0"/>
 </xsd:sequence>
 <!-- contains guid, qname and name attribute -->
 <xsd:attributeGroup ref="IdentifierInfo"/>
 <xsd:attributeGroup ref="ServiceTypeInfo"/>
 <xsd:attribute name="version" type="xsd:long"/>
 </xsd:complexType>
 <xsd:attributeGroup id="RelationshipLink">
 <xsd:attribute name="source" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 Represents the name of the source that invokes the
 target. If the source service is Inbound Adapter Service,
 this attribute will not be present in the xml
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="target" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation>
 Represents the name of the target that gets invoked
 by the source
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:attributeGroup>

 <xsd:element name="property">
 <xsd:annotation>
 <xsd:documentation>
 Represents a name-value pair
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="xsd:any">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="value" type="xsd:string"
 use="required"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="instanceStatusMessage" type="xsd:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>
 Holds a message providing more information about an activity
 based on the status.
 If the status is error, this element will have the error
 message.
 If the status is faulted, this element will have the fault
 message generated by the target serice.
 </xsd:documentation>

XML Schema File

B-12 Oracle Enterprise Service Bus Developer's Guide

 </xsd:annotation>
 </xsd:element>

<!-- Elements and types for Instances-->

 <xsd:element name="instances">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="instance" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="instanceCount" type="xsd:string"/>
 <xsd:attribute name="availableMore" type="xsd:boolean"/>
 <xsd:attribute name="generatedTime" type="xsd:dateTime"/>
 <xsd:attribute name="generatedTimeString" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="instance">
 <xsd:complexType>
 <xsd:attribute name="flowId" type="xsd:string" use="required"/>
 <!-- Service GUID for Inbound adapter service
 SOAP
 Java -->
 <xsd:attribute name="initiatedBy" type="MessageSource"
 use="required"/>
 <xsd:attribute name="initiatedAt" type="xsd:dateTime"
 use="required"/>
 <xsd:attribute name="initiatedAtString" type="xsd:string"
 use="required"/>
 <xsd:attribute name="status" type="InstanceStatus"/>
 <xsd:attribute name="type" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:simpleType name="MessageSource">
 <xsd:restriction base="xsd:TOKEN">
 <xsd:enumeration value="Service"/>
 <xsd:enumeration value="SOAP"/>
 <xsd:enumeration value="Java"/>
 <xsd:enumeration value="Unknown"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="InstanceStatus">
 <xsd:restriction base="xsd:TOKEN">
 <!-- <xsd:enumeration value="Completed"/> -->
 <xsd:enumeration value="Error"/>
 <xsd:enumeration value="Faulted"/>
 <!-- <xsd:enumeration value="In-Flight"/> -->
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:element name="instanceFilter">
 <xsd:complexType>
 <xsd:sequence>
 <!-- Flow id to uniquely identify a flow
 If flow id is present in the filter, rest of the filters will
 be ignored.
 -->
 <xsd:element name="flowId" type="xsd:string" minOccurs="0"/>
 <!-- Activity in last 'n' seconds | minutes | hours | days.

XML Schema File

Oracle Enterprise Service Bus API B-13

 The value should be converted to milliseconds
 -->
 <xsd:element name="startTime" type="xsd:long" minOccurs="0"/>
 <xsd:element name="serviceGUID" type="xsd:string"
 minOccurs="0"/>
 <xsd:element name="status" type="InstanceStatus"
 minOccurs="0"/>
 <xsd:element name="trackableFields"
 type="TrackableFieldValueList"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="timeZone" type="xsd:TOKEN" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="failedInstanceFilter">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="instanceFilter"/>
 <xsd:sequence>
 <xsd:element name="errorMessageContains" type="xsd:string"
 minOccurs="0"/>
 </xsd:sequence>

 <!-- The starting number of the instance page -->
 <xsd:attribute name="pageStartsFrom" type="xsd:integer"
 default="1"/>

 <!-- The size of the instance page.
 If omitted, only 100 (that is default for instance
 search) instances would be retured with
 "availableMore" attribute set to true in
 "FailedInstances" output element -->
 <xsd:attribute name="pageSize" type="xsd:integer"/>

 <!-- Error message, Stacktrace and payload would be included
 only if this flag is set to true -->
 <xsd:attribute name="includeMoreDetails"
 type="xsd:boolean"/>

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="TrackableFieldValueList">
 <xsd:sequence>
 <xsd:element name="trackableField" maxOccurs="unbouunded">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
 <xsd:attribute name="operator" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="operator">
 <xsd:simpleType>

XML Schema File

B-14 Oracle Enterprise Service Bus Developer's Guide

 <xsd:restriction base="xsd:TOKEN">
 <xsd:enumeration value="AND"/>
 <xsd:enumeration value="OR"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

 <xsd:complexType name="MessageInstanceType">
 <xsd:sequence>
 <xsd:element name="instanceLink" type="InstanceLinkType"
 minOccurs="1" maxOccurs="unbounded"/>
 <!-- Request payload -->
 <xsd:element name="inPayload" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="flowId" type="xsd:string" use="required"/>
 <xsd:attribute name="batchId" type="xsd:string"/>
 <!-- QName of the service -->
 <xsd:attribute name="serviceQName" type="xsd:string"/>
 <xsd:attribute name="operationGUID" type="xsd:string"/>
 <!-- name of the operation -->
 <xsd:attribute name="operationQName" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="InstanceLinkType">
 <xsd:sequence>
 <xsd:element name="filterExpression" type="xsd:string"
 minOccurs="0"/>
 <xsd:element name="xslFileURL" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="guid" type="xsd:string"/>
 <xsd:attribute name="subFlowId" type="xsd:string" use="required"/>
 <!-- QName of the target service -->
 <xsd:attribute name="serviceQName" type="xsd:string"
 use="required"/>
 <!-- QName of the target operation -->
 <xsd:attribute name="operationQName" type="xsd:string"
 use="required"/>
 </xsd:complexType>

 <xsd:element name="messageInstance" type="MessageInstanceType"/>

 <xsd:element name="messageInstances"
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="messageInstance" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="errorInstances"
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="errorInstance" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="errorInstance">
 <xsd:complexType>

XML Schema File

Oracle Enterprise Service Bus API B-15

 <xsd:complexContent>
 <xsd:extension base="MessageInstanceType">
 <xsd:sequence>
 <xsd:element name="failedInstanceLink"
 type="FailedInstanceLinkType" minOccurs="1"
 maxOccurs="unbounded"/>
 <!-- This will be present only if the retryable attribute
 value is true -->
 <xsd:element ref="messageInstance"/>
 </xsd:sequence>
 <xsd:attribute name="retryable" type="xsd:boolean"
 use="required"/>
 <xsd:attribute name="serviceType" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="FailedInstanceLinkType">
 <xsd:complexContent>
 <xsd:extension base="InstanceLinkType">
 <xsd:sequence>
 <xsd:element name="failureTime" type="xsd:dateTime"/>
 <xsd:element name="failureTimeString" type="xsd:string"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element name="exception" type="xsd:string"
 minOccurs="0"/>
 <xsd:element name="outPayload" type="xsd:string"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="failedInstances">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="failedInstance" maxOccurs="unbounded"/>
 </xsd:sequence>
 <!-- Indicates more instances are available matching the given
 filter -->
 <xsd:attribute name="availableMore" type="xsd:boolean"/>
 </xsd:complexType>
 </xsd:element>

 <!-- Describes the details of an errored instance -->
 <xsd:element name="failedInstance">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="failureTime" type="xsd:dateTime"/>
 <xsd:element name="errorMessage" type="xsd:string"/>
 <xsd:element name="exception" type="xsd:string" minOccurs="0"/>
 <xsd:element name="inPayload" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="flowId" type="xsd:string" use="required"/>

 <!-- Id of the system in which the deferred subscription failed
 -->

XML Schema File

B-16 Oracle Enterprise Service Bus Developer's Guide

 <xsd:attribute name="systemId" type="xsd:string"/>

 <!-- Qname of the failed service -->
 <xsd:attribute name="serviceQName" type="xsd:string"/>

 <!-- Name of the failed operation -->
 <xsd:attribute name="operationName" type="xsd:string"/>

 <!-- Indicates If the instance is retryable -->
 <xsd:attribute name="retryable" type="xsd:boolean"
 use="required"/>

 </xsd:complexType>
 </xsd:element>

 <!-- Contains the list of Ids to be used to resubmit the failed instances -->
 <xsd:element name="resubmitInstanceIds">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="resubmitInstanceId"
 type='ResubmitInstanceId' maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="onError" default="SkipAndContinue">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <!-- Indicates that the resubmission should continue, even
 if the resubmission failed for an id. At the end,
 the API would return the details on the failed ids -->
 <xsd:enumeration value="SkipAndContinue"/>
 <!-- Indicates that the resubmission should terminate with
 an exception -->
 <xsd:enumeration value="Abort"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <!-- Applicable only if onError is SkipAndContinue -->
 <xsd:attribute name="abortThreshold" type="xsd:integer"/>
 <!-- Delay to be applied between resubmits to avoid message
 flooding -->
 <xsd:attribute name="delay" type="xsd:long"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="ResubmitInstanceId">
 <!-- The id of the flow for which the errored instance should be
 resubmitted -->
 <xsd:attribute name="flowId" type="xsd:string" use="required"/>
 <!-- The id of the system in which the errored instance should be
 processed -->
 <xsd:attribute name="systemId" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:element name="resubmissionFailureReport">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="ResubmitInstanceId">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 <xsd:element name="exception" type="xsd:string"

XML Schema File

Oracle Enterprise Service Bus API B-17

 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="aborted" type="xsd:boolean"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="instanceManage">
 <xsd:complexType>
 <!-- True if instance tracking is enabled. or false -->
 <xsd:attribute name="enable" type="xsd:boolean"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="purgeInstance">
 <xsd:complexType>
 <!-- long value indicating the date. The instances, which are
 older than the given date would be deleted.
 If userPurgeTimePeriod=0, all the instances would be deleted
 -->
 <xsd:attribute name="userPurgeTimePeriod" type="xsd:long" use="required"/>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

XML Schema File

B-18 Oracle Enterprise Service Bus Developer's Guide

Index-1

Index

A
adapter services

access to data sources and, 1-2
AQ, 1-3
configuring, 4-1
creating, 4-3
database, 1-3
deleting, 4-4
described, 1-2
error handling with inbound, 11-2
example creating an inbound file, 4-4
file, 1-3
FTP, 1-3
inbound, 1-3
JMS, 1-3
modifying, 4-4
Native MQSeries, 1-3
Oracle Applications (OA), 1-3
outbound, 1-3
using, 4-2

adapters
supported by Oracle JDeveloper, 1-6

add-dayTimeDuration-to-dateTime function
description, A-2

Apache Axis
connectivity with, 1-2
SOAP invocation services and, 1-2

Application Navigator tab
New Gallery dialog, 2-2
Oracle JDeveloper, 2-1
Register with ESB, 2-2

applications
creating, 2-11
ESB, 2-11

Applications Navigator
Oracle JDeveloper and, 1-7

AQ adapter services
defined, 1-3

arrays
in transformations, 6-14

asynchronous execution
JMS and, 1-5

auto mapping
in transformations, 6-15

auto mapping with confirmation

in transformations, 6-16

B
BPEL partner link

to an ESB service, 4-12

C
class

ConsoleClientFactory, B-1
clusters

Oracle Enterprise Service Bus, 9-2
compare function

description, A-2
compare-ignore-case function

description, A-3
Component Palette

Oracle JDeveloper, 2-2
concrete WSDL

calling an ESB service, 4-13
concrete WSDL URL

using to invoke a service, 1-4
conditional processing

with xsl choose, 6-13
with xsl if, 6-12

Connection Navigator tab
Oracle JDeveloper, 2-1

connections
creating a database, 2-8
creating an application server, 2-7
creating an integration server, 2-8
creating and testing in Oracle JDeveloper, 2-6
testing in Oracle JDeveloper, 2-10

connectivity
example of, 1-2
Oracle Enterprise Service Bus, 1-2
SOAP invocation services and, 1-2

ConsoleClient Interface, B-1
perform function, B-1

ConsoleClientFactory class, B-1
constant values

in transformations, 6-7
Create Routing Service dialog

opening, 5-13
Oracle JDeveloper, 2-3

Index-2

specifying the WSDL file, 5-14
create-delimited-string function

description, A-3
creating

domain-value map, 7-2
cross reference table look up, 8-12

xref
lookupXRef function, 8-12
lookupXRef1M function, 8-14

cross reference tables, 8-1
creating, 8-5
deleting values, 8-15
looking up, 8-12
modifying, 8-5
populating columns, 8-6
xref

lookupXRef function, 8-12
lookupXRef1M function, 8-14
markForDelete function, 8-15
populateXRefRow function, 8-6
populateXRefRow1M function, 8-10

cross references
creating, 8-5
introduction, 8-1
modifying, 8-5
overview, 8-1
schema definition file, 8-18

current-date function
description, A-4

current-dateTime function
description, A-4

current-time function
description, A-4

custom ant tasks
deployESBProjects, 2-15

D
data mapper

document transformation and, 1-4
purpose of, 1-4

database adapter services
defined, 1-3

day-from-dateTime function
description, A-5

Definition tab
services, 3-4

definitions
services in Oracle ESB Control, 3-12

deleting
adapter services, 4-4
ESB projects, 2-16

deleting a routing service, 5-33
deleting cross reference table value, 8-15

xref
markForDelete function, 8-15

deployed services
browsing, 4-10

deployment, 2-15
custom ant tasks, 2-15

Design tab
Oracle JDeveloper, 2-2

details
displaying in Diagram panel, 3-4

Details panel
on Diagram tab, 3-4

Diagram panel
displaying details, 3-4

Diagram tab
Details panel, 3-4
Navigator panel, 3-4

dictionaries
in transformations, 6-18

doc function
description, A-5

document transformation
data mapper and, 1-4
Oracle Enterprise Service Bus, 1-4
reuse of, 1-4

document transformations
routing rules and, 1-5

domain-value maps
creating, 7-2
creating and populating, 7-1
editing, 7-10
importing an existing map, 7-7
importing rows into an existing map, 7-8
overview, 7-1
using in a transformation map, 7-12

E
elements

ignoring in XSLT documents, 6-21
endpoint properties

specifying, 4-11
using, 4-11

ends-with function
description, A-5

error conditions
managing, 11-2

error handling
inbound adapters, 11-2
managing, 11-2
Oracle Enterprise Service Bus, 11-1
overview, 11-1
resubmitting messages, 11-4
user, 11-2

ESB metadata
moving, 9-15

ESB Metadata Server
overview, 1-1

ESB Server
overview, 1-1
registering ESB projects, 2-15
starting, 1-10, 1-11
starting and stopping on Linux, 1-11
starting and stopping on Windows, 1-11
stopping, 1-11
syncing services, 2-15

Index-3

execution priority
routing rules and, 1-5

execution types
asynchronous, 1-5
defined, 1-5
synchronous, 1-5

Expression Builder
specifying a trackable field, 3-18

F
file adapter services

defined, 1-3
filter expressions

defined, 1-4
routing rules and, 1-4

format-dateTime function
description, A-6

format-string function
description, A-6

FTP adapter services
defined, 1-3

functions
add-dayTimeDuration-to-dateTime, A-2
chaining in transformations, 6-10
compare, A-2
compare-ignore-case, A-3
create-delimited-string, A-3
current-date, A-4
current-dateTime, A-4
current-time, A-4
day-from-dateTime, A-5
descriptions, 6-8
doc, A-5
editing in transformations, 6-9
editing XPath expressions in

transformations, 6-11
ends-with, A-5
format-dateTime, A-6
format-string, A-6
functions prefixed with xp20 or orcl, 6-8
generate-guid, A-6
get-content-as-string, A-7
getInboundResponseHeader, A-8
get-localized-string, A-7
getRequestHeader, A-8
hours-from-dateTime, A-8
implicit-timezone, A-9
in transformations, 6-8
index-within-string, A-9
last-index-within-string, A-9
left-trim, A-10
lookup-dvm, A-10
lookup-table, A-11
lookup-xml, A-12
lower-case, A-12
minutes-from-dateTime, A-12
month-from-dateTime, A-13
prefixed with xp20 or orcl, 6-8
query-database, A-13

right-trim, A-14
seconds-from-dateTime, A-14
sequence-next-val, A-14
setOutboundHeader, A-15
setResponseHeader, A-15
square-root, A-16
subtract-dayTimeDuration-from-dateTime, A-16
timezone-from-dateTime, A-16
upper-case, A-17
user-defined in transformations, 6-11
year-from-dateTime, A-17

G
generate-guid function

description, A-6
get the list of instances, B-2
get-content-as-string function

description, A-7
GetErrorInstance, B-2
GetFailedInstances, B-2
getInboundResponseHeader function

description, A-8
GetInstances, B-2
get-localized-string function

description, A-7
getRequestHeader function

description, A-8
getting started

Oracle JDeveloper, 2-5
GetTrackingConfig, B-2
GetTrackingDetails, B-2

H
header transformation and filtering, 5-27
header-based routing, 5-27
heap size

increasing, 6-25
hours-from-dateTime function

description, A-8

I
icons

used in Oracle ESB Control, 3-8
implicit-timezone function

description, A-9
import

user-defined functions in the XSLT Mapper, 6-11
inbound adapter services

defined, 1-3
index-within-string function

description, A-9
instance tracking

XML schema file, B-8
Instances view

Details tab, 10-6
disabling tracking, 10-6
elements and controls, 10-2
enabling tracking, 10-6

Index-4

Oracle ESB Control, 3-5, 10-1
Overlay tab, 10-7
processing statistics, 10-7
purging messages, 10-9
searching for messages, 10-7

J
JMS

asynchronous execution type and, 1-5
JMS adapter services

defined, 1-3

L
last-index-within-string function

description, A-9
left-trim function

description, A-10
log files

configuring in Oracle Enterprise Manager, 9-13
viewing in Oracle Enterprise Manager, 9-12

looking up cross reference tables, 8-12
xref

lookupXRef function, 8-12
lookupXRef1M function, 8-14

lookup-dvm function
description, A-10

lookup-table function
description, A-11

lookup-xml function
description, A-12

lower-case function
description, A-12

M
maps

domain-value, 7-1
Maps view

Oracle ESB Control, 3-6
maxOccurs attribute

setting for transformations, 6-25
messages

purging in Instances view, 10-9
resubmitting on error, 11-4
searching in the Instances view, 10-7

Microsoft .NET
SOAP invocation services and, 1-2

Microsoft .Net
connectivity with, 1-2

minOccurs attribute
setting for transformations, 6-25

minutes-from-dateTime function
description, A-12

modes
xref

populateXRefRow function, 8-6
populateXRefRow1M function, 8-10

modifying a routing service, 5-33
month-from-dateTime function

description, A-13
moving ESB metadata, 9-15

N
named templates

creating, 6-11
in functions, 6-11

Native MQSeries adapter services
defined, 1-3

Navigator panel
on Diagram tab, 3-4

notification channels
email, 9-5
mobile, 9-9
phone, 9-9
setting up, 9-4
wireless provider for voice, 9-7

O
Oracle Applications (OA) adapter services

defined, 1-3
Oracle BPEL Process Manager

connectivity with, 1-2
SOAP invocation services and, 1-2

Oracle Database Lite
starting, 1-10

Oracle Enterprise Service Bus
adapter services, 4-1
administrative stages, 9-1
architecture, 1-8
checking log files

log files
Oracle Enterprise Service

Bus, 9-11
clusters, 9-2
components, 1-1
configuring InterConnect adapter, 9-16
developing with Oracle JDeveloper, 2-1
error handling, 11-1
features, 1-2
managing error conditions, 11-2
notification channels, 9-4
overview, 1-1
planning resources, 9-2
routing rules, 5-1
routing services, 5-1
Secure Sockets Layer (SSL), 9-4
security, 9-4
service groups, 2-12
starting and stopping components, 1-10
systems, 2-12
testing, 9-9
tools for creating, configuring, and managing, 1-5
WSIF, 1-2

Oracle ESB Control
creating a service group, 3-10
creating a system, 3-8
creating or modifying routing rules, 3-14

Index-5

creating, viewing, and updating structures, 3-7
defining and updating trackable fields, 3-17
enabling and disabling services, 3-12
icons used in, 3-8
Instances view, 3-5, 10-1
introduction to, 1-7
layout, 3-3
managing routing rules, 3-14
managing systems and service groups, 3-8
managing trackable fields, 3-16
managing tracking fields, 3-16
Maps view, 3-6
opening, 1-10, 1-12
overview, 1-1, 3-1
Services view, 3-3
understanding trackable fields, 3-17
viewing and updating service definitions, 3-12
viewing or modifying a service group, 3-11
viewing or modifying a system, 3-9
viewing routing rules, 3-15
viewing service definitions, 3-12
views, 3-3

Oracle InterConnect
configuring the adapter with ESB, 9-16

Oracle JDeveloper
adapters supported by, 1-6
Application Navigator tab, 2-1
Applications Navigator, 1-7
Component Palette, 2-2
Connection Navigator tab, 2-1
Create Routing Service dialog, 2-3, 5-13
creating a database connection, 2-8
creating an application server connection, 2-7
creating an integration server connection, 2-8
creating and modifying routing services, 5-13
creating and testing connections, 2-6
Design tab, 2-2
getting started, 2-5
introduction to, 1-6
overall process and tasks, 2-5
overview, 1-1, 2-1
routing rules, 5-18
routing services and, 1-6
SOAP services, 1-6
starting, 1-10, 1-12
testing a connection, 2-10
transformations and, 1-6

outbound adapter services
defined, 1-3

P
perform function, B-1

GetErrorInstance, B-2
GetFailedInstances, B-2
GetInstances, B-2
GetTrackingConfig, B-2
GetTrackingDetails, B-2
ResubmitInstance, B-2
ResubmitInstancesById, B-2

ResubmitInstancesByIds, B-2
UpdateTrackingConfig, B-2
using, B-2

populating cross reference tables, 8-6
xref

populateXRefRow function, 8-6
populateXRefRow1M function, 8-10

port numbers
viewing, 2-6

projects
adding content, 2-14
creating, 2-11
deleting, 2-16
ESB, 2-11
importing files into, 2-14
registering with ESB Server, 2-15

Properties tab
Oracle ESB Control, 3-4

Q
query-database function

description, A-13

R
registering ESB projects with ESB Server, 2-15
repeating elements

in transformations, 6-14
reports

correcting memory errors when generating for
transformations, 6-25

customizing sample XML generation for
transformations, 6-25

generating for transformations, 6-24
ResubmitInstance, B-2
ResubmitInstancesById, B-2
ResubmitInstancesByIds, B-2
resubmitting messages

on error conditions, 11-4
right-trim function

description, A-14
routing

content-based, 1-4
header-based, 1-4, 5-27
XML messages, 1-4

routing rules
accept messages from, 5-13
asynchronous invocation, 5-13
creating, 5-7
creating or modifying in Oracle ESB Control, 3-14
defined, 1-4
deleting, 3-16
document transformations and, 1-5
execution priority and, 1-5
execution type and, 1-5
filter expression, 5-10
filter expressions and, 1-4
introduction, 5-1
invocation type, 5-13

Index-6

managing in Oracle ESB Control, 3-14
overview, 2-4
priority, 5-13
specifying, 5-7
specifying in Oracle JDeveloper, 5-18
synchronous invocation, 5-13
target service and operation, 5-9
transformation map, 5-12
viewing in Oracle ESB Control, 3-15

Routing Rules tab
Oracle ESB Control, 3-4

routing service
defined, 1-4

routing services
Create Routing Service dialog, 5-13
creating, 5-2
creating and modifying in Oracle

JDeveloper, 5-13
deleting, 5-33
header transformation and filtering, 5-27
introduction, 5-1
modifying, 5-33
Oracle JDeveloper and, 1-6
overview, 2-4
specifying the WSDL file, 5-14
specifying WSDL, 5-2

S
scenario

used for tutorial, 1-9
schema definition file

cross references, 8-18
schemas

replacing in the XSLT Mapper, 6-22
seconds-from-dateTime function

description, A-14
sequence-next-val function

description, A-14
service groups

creating, 2-13
creating in Oracle ESB Control, 3-10
ESB, 2-12
managing in Oracle ESB Control, 3-8
Oracle Enterprise Service Bus, 3-8
restrictions on, 2-13
viewing or modifying in Oracle ESB Control, 3-11

service icon
used in Oracle ESB Control, 3-8

services
browsing for deployed, 4-10
calling from an external service, 4-13
creating a BPEL partner link to, 4-12
creation as SOAP services, 1-3
Definition tab, 3-4
enabling and disabling in Oracle ESB

Control, 3-12
external, 4-13
managing definitions in Oracle ESB Control, 3-12
managing in Oracle ESB Control, 3-7

overview of definitions, 2-4
syncing from ESB Server, 2-15
viewing definitions in Oracle ESB Control, 3-12

services group icon
used in Oracle ESB Control, 3-8

Services view
Oracle ESB Control, 3-3

setOutboundHeader function
description, A-15

setResponseHeader function
description, A-15

SOAP endpoint property
location, 4-11

SOAP invocation services, 1-2
Apache Axis and, 1-2
Microsoft .NET and, 1-2
Oracle BPEL Process Manager and, 1-2

SOAP services
creating, 4-7
deleting, 4-9
modifying, 4-9
Oracle Enterprise Service Bus services, 1-3
supported by Oracle JDeveloper, 1-6
using, 4-7

square-root function
description, A-16

stacked disks icon
systems and, 3-8

starting and stopping components
Oracle Enterprise Service Bus, 1-10

subtract-dayTimeDuration-from-dateTime function
description, A-16

sync services from ESB Server, 2-15
system icon

used in Oracle ESB Control, 3-8
systems

creating, 2-12
creating in Oracle ESB Control, 3-8
ESB, 2-12
examples of, 2-12, 3-7
managing in Oracle ESB Control, 3-8
Oracle Enterprise Service Bus, 3-7
stacked disks icon and, 3-8
viewing or modifying in Oracle ESB Control, 3-9

T
target services

defined, 1-4
testing

Oracle Enterprise Service Bus, 9-9
testing JDeveloper connections

viewing port numbers, 2-6
timezone-from-dateTime function

description, A-16
trackable fields

defining and updating, 3-17
deleting, 3-20
disabling, 3-19
enabling, 3-19

Index-7

managing in Oracle ESB Control, 3-16
overview, 3-17
specifying with Expression Builder, 3-18

Trackable Fields tab
Oracle ESB Control, 3-5

tracking fields
managing in Oracle ESB Control, 3-16

transformations
adding XSLT constructs, 6-12
auto mapping, 6-15
auto mapping with confirmation, 6-16
chaining functions, 6-10
correcting memory errors, 6-25
creating an XSL map, 6-3
creating an XSL map from an XSL stylesheet, 6-6
customizing sample XML generation, 6-25
dictionaries, 6-18
editing functions, 6-9
editing XPath expressions, 6-11
error when mapping duplicate elements, 6-3
functions, 6-8
functions prefixed with xp20 or orcl, 6-8
generating optional elements, 6-25
generating reports, 6-24
ignoring elements, 6-21
linking source target nodes, 6-7
named templates in functions, 6-11
Oracle JDeveloper and, 1-6
repeating elements, 6-14
replacing schemas, 6-22
rules, 6-3
setting constant values, 6-7
setting the maximum depth, 6-26
setting the number of repeating elements, 6-25
testing the map file, 6-22
user-defined functions, 6-11
using arrays, 6-14
using the XSLT Mapper, 6-6
viewing unmapped target nodes, 6-17
xsl choose conditional processing, 6-13
xsl if conditional processing, 6-12

tutorial
scenario description, 1-9

U
UpdateTrackingConfig, B-2
upper-case function

description, A-17
user-defined extension functions in expression

builder, 5-25
using perform function, B-2

enable/disable instance tracking, B-7
get all the errors occurred in a flow id, B-3
get instance tracking status, B-7
get the list of errored instances, B-3
get the list of instances, B-2
get XML for a flow id, B-4
purge instances based on time, B-7
resubmit a list of instances by ids, B-4

resubmit an instance by id, B-5
resubmit an instance with modified/unmodified

payload, B-5
using xref

lookupXRef Function, 8-12
markForDelete function, 8-15
populateXRefRow function, 8-8

W
WSDL

concrete, 4-13
WSDL URL

using to invoke a service, 1-4
WSIF

connectivity, 1-2

X
XML messages

routing, 1-4
XML schema file

instance tracking, B-8
XPath expressions

editing in transformations, 6-11
XPath functions

in transformations, 6-8
xref

lookupXRef function, 8-12
exception reasons, 8-12
parameters, 8-12
using, 8-12

lookupXRef1M function, 8-14
exception reasons, 8-14
parameters, 8-14

markForDelete function, 8-15
exception reasons, 8-15
parameters, 8-15
using, 8-15

populateXRefRow function, 8-6
modes, 8-6
parameters, 8-6
using, 8-8

populateXRefRow1M function, 8-10
modes, 8-10
parameters, 8-10

XSD file
cross references, 8-18

xsl choose
conditional processing, 6-13

xsl if
conditional processing, 6-12

XSL map
creating, 6-3
creating from an XSL stylesheet, 6-6

XSL stylesheet
creating an XSL map, 6-6

XSLT constructs
adding in transformations, 6-12

XSLT Mapper

Index-8

adding XSLT constructs, 6-12
auto mapping, 6-15
auto mapping with confirmation, 6-16
chaining functions, 6-10
correcting memory errors when generating

reports, 6-25
creating a map file, 6-1
creating an XSL map, 6-3
creating an XSL map from an XSL stylesheet, 6-6
customizing sample XML generation for

transformations, 6-25
dictionaries, 6-18
editing functions, 6-9
editing XPath expressions, 6-11
error when mapping duplicate elements, 6-3
functions, 6-8
functions prefixed with xp20 or orcl, 6-8
generating optional elements, 6-25
generating reports, 6-24
ignoring elements, 6-21
layout in Oracle JDeveloper, 6-1
linking source and target nodes, 6-7
named templates in functions, 6-11
repeating elements, 6-14
replacing schemas, 6-22
rules, 6-3
setting constant values, 6-7
setting the maximum depth, 6-26
setting the number of repeating elements, 6-25
testing the map file, 6-22
user-defined functions, 6-11
using, 6-6
using arrays, 6-14
viewing unmapped target nodes, 6-17
xsl choose conditional processing, 6-13
xsl if conditional processing, 6-12

Y
year-from-dateTime function

description, A-17

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Oracle Enterprise Service Bus
	Oracle Enterprise Service Bus Concepts Overview
	Oracle Enterprise Service Bus Integration Features
	Connectivity
	Document Transformation
	Content-Based and Header-Based Routing

	Creating, Configuring, and Managing Oracle Enterprise Service Bus
	Introduction to Oracle JDeveloper
	Introduction to the Oracle Enterprise Service Bus Control

	Oracle Enterprise Service Bus Architecture
	Sample Oracle Enterprise Service Bus Scenario
	Starting, Stopping, and Accessing Oracle Enterprise Service Bus Components
	Starting and Stopping the ESB Server
	Windows Installation
	Linux Installation

	Opening Oracle JDeveloper
	Opening the Oracle ESB Control

	2 Developing the Enterprise Service Bus
	Overview of Oracle JDeveloper
	Overview of Connection Navigator Tab
	Overview of the Application Navigator Tab
	Overview of the Design Tab and Component Palette
	Overview of Service Definitions and Routing Rules

	Getting Started with Oracle JDeveloper
	Creating and Testing Connections
	Viewing Port Numbers
	Creating an Application Server Connection
	Creating an Integration Server Connection
	Creating a Database Connection
	Testing a Connection

	Creating Applications and ESB Projects
	Creating ESB Systems and Service Groups
	Creating ESB Systems
	Creating ESB Service Groups

	Adding Project Content
	Importing Files into a Project
	Registering ESB Projects and Services with the ESB Server
	Syncing Services From ESB Server
	Deleting ESB Projects

	3 Monitoring the Enterprise Service Bus
	Overview of the Oracle ESB Control
	Understanding the Layout of the Oracle ESB Control
	Oracle ESB Control Services View
	Oracle ESB Control Instances View
	Oracle ESB Control Maps View

	Creating, Viewing, and Updating Organizational Units for Services
	Managing Oracle Enterprise Service Bus Systems and Service Groups
	Creating an ESB System
	Viewing or Modifying an Existing ESB System Definition
	Creating Service Groups
	Viewing or Modifying an Existing Service Group
	Deleting Systems or Service Groups

	Viewing and Updating Service Definitions
	Enabling and Disabling Services
	Viewing Service Definitions

	Understanding and Managing Routing Rules
	Creating or Modifying Routing Rules
	Viewing Routing Rules
	Deleting Routing Rules

	Defining and Managing Tracking Fields
	Understanding the Trackable Fields Tab
	Defining and Updating Trackable Fields
	Using the Expression Builder to Specify a Trackable Field Expression
	Enabling and Disabling Trackable Fields
	Deleting Trackable Fields

	4 Creating Inbound and Outbound Services
	Configuring Adapter Services with Oracle Enterprise Service Bus
	Using Adapter Services
	Creating Adapter Services
	Modifying Adapter Services
	Deleting Adapter Services
	Example: Creating an Inbound File Adapter

	Using SOAP Invocation Services
	Creating a SOAP Service
	Modifying SOAP Services
	Deleting SOAP Services

	Browsing for Deployed Services
	Using Endpoint Properties
	Specifying Endpoint Properties

	Creating a BPEL Partner Link to an ESB Service
	Calling an ESB Service From an External Service

	5 Creating Routing Services and Routing Rules
	Introduction to Routing Services and Routing Rules
	Overview of Specifying the Routing Service WSDL
	Modifying the Service WSDL File
	Specifying Routing Service Properties

	Overview of Specifying Routing Rules
	Target Service and Operation Overview
	Filter Expression Overview
	Transformation Overview
	Accept Messages From Overview
	Routing Invocation Type Overview
	Routing Rule Priority Overview

	Creating and Modifying Routing Services
	Opening the Create Routing Service Dialog
	Specifying the WSDL File for a Routing Service
	Generating the WSDL for a Routing Service from an Existing XSD File
	Generating the WSDL to Create a Routing Service Based on a Sample File
	Selecting an Existing WSDL to Create a Routing Service

	Specifying Routing Rules
	Specifying the Target Operations
	Creating an XSL Map File for Data Structure Transformation
	Using An Expression for Filtering Messages Based on Payload
	Specifying the ESB Systems From which Messages are Accepted
	Specifying Synchronous or Asynchronous Execution
	Specifying Routing Rules Priority

	Header Transformation and Filtering
	Header Support Terminology
	Header-based Transformation
	Header-Based Filtering
	Limitations of ESB Header Support

	Modifying a Routing Service
	Deleting a Routing Service

	6 XSLT Data Mapper and Transformations
	XSLT Data Mapper
	Notes on the Mapper

	Creating an XSL Map with Data Mapper
	Using the XSLT Mapper
	Simple Copy by Linking Nodes
	Setting Constant Values
	Adding Functions
	Editing Function Parameters
	Chaining Functions
	Named Templates
	Importing User-Defined Functions

	Editing XPath Expressions
	Adding XSLT Constructs
	Conditional Processing with xsl:if
	Conditional Processing with xsl:choose
	Handling Repetition or Arrays

	Automatically Mapping Nodes
	Auto Map with Confirmation

	Viewing Unmapped Target Nodes
	Generating Dictionaries
	Creating Map Parameters and Variables
	Creating a Map Parameter
	Creating a Map Variable

	Searching Source and Target Nodes
	Ignoring Elements in the XSLT Document
	Replacing a Schema in the XSLT Mapper
	Using Instance Id in the XSLT Mapper

	Using the Mapper Test Utility
	Testing a Map
	Generating Reports
	Correcting Memory Errors When Generating Reports

	Sample XML Generation

	7 Domain-Value Maps
	Understanding Domain-Value Maps
	Creating and Populating Domain-Value Maps
	Creating a New Domain-Value Map from Scratch
	Exporting a Domain-Value Map
	Domain-Value Map Template and XSD Files
	Importing an Existing Domain-Value Map File
	Importing Rows Into a Domain-Value Map
	Editing a Domain-Value Map
	Editing the Name of a Domain-Value Map
	Adding Rows or Columns to a Domain-Value Map
	Deleting a Row from a Domain-Value Map
	Deleting a Column from a Domain-Value Map
	Renaming a Column in a Domain-Value Map
	Reordering the Columns in a Domain-Value Map
	Resetting a Domain-Value Map to Its Last Saved State
	Resizing Columns in a Domain-Value Map

	Deleting a Domain-Value Map

	Using a Domain-Value Map in a Transformation

	8 Creating Cross References
	Introduction to Cross References
	Introduction to the Cross Reference Command-Line Utility
	Creating, Modifying, and Deleting Cross Reference Table
	Modifying Cross Reference Tables
	Deleting a Cross Reference Table

	Populating Cross Reference Tables
	xref:populateXRefRow Function
	Using the xref:populateXRefRow Function

	xref:populateXRefRow1M Function

	Looking Up Cross Reference Tables
	xref:lookupXRef Function
	Using the xref:lookupXRef Function

	xref:lookupXRef1M Function

	Deleting Cross Reference Table Values
	Importing and Exporting Cross References
	Exporting Cross Reference Tables
	Importing Cross Reference Tables

	Schema Definition (XSD) File for Cross References

	9 Administering the Enterprise Service Bus
	Administrative Stages
	Planning Resources for the ESB

	Understanding Oracle Enterprise Service Bus Clusters
	Providing Security
	Setting Up Notification Channels
	Specifying Notification Channels
	Configuring the Email Notification
	Configuring the Wireless Provider for Voice
	Configuring Paging Notification
	Configuring Mobile Notification
	Configuring Phone Notification
	Configuring the FAX Cover Page

	Testing the ESB Services
	Checking Log Files
	Viewing Log Files
	Configuring Log Files

	Moving the ESB Instance to a Different Oracle Home
	Using the ESB Import and Export Utilities

	Configuring the InterConnect Adapter with ESB

	10 Tracking Message Instances Across the Enterprise Service Bus
	Overview of the Oracle ESB Control Instances View
	Understanding Instances View Elements and Controls
	Administering Message Instances
	Enabling and Disabling Instance Tracking
	Viewing Instance Details
	Viewing Instance Statistics
	Searching for Message Instances
	Purging Message Instances

	11 Error Handling
	Overview of Error Handling
	Managing Error Conditions
	Inbound Adapter Error Handling
	User Error Handling
	Resubmitting Messages on Errors

	A XPath Extension Functions
	add-dayTimeDuration-to-dateTime
	compare
	compare-ignore-case
	create-delimited-string
	current-date
	current-dateTime
	current-time
	day-from-dateTime
	doc
	ends-with
	format-dateTime
	format-string
	generate-guid
	get-content-as-string
	get-localized-string
	getInboundResponseHeader
	getRequestHeader
	hours-from-dateTime
	implicit-timezone
	index-within-string
	last-index-within-string
	left-trim
	lookup-dvm
	lookup-table
	lookup-xml
	lower-case
	minutes-from-dateTime
	month-from-dateTime
	query-database
	right-trim
	seconds-from-dateTime
	sequence-next-val
	setOutboundHeader
	setResponseHeader
	square-root
	subtract-dayTimeDuration-from-dateTime
	timezone-from-dateTime
	upper-case
	year-from-dateTime

	B Oracle Enterprise Service Bus API
	ConsoleClientFactory Class
	ConsoleClient Interface
	Perform Function
	Using Perform Function
	Get the list of instances
	Get the list of errored instances
	Get all the errors occurred in a flow id
	Get the XML to draw the instance diagram for a flow id
	Resubmit a list of instances by Ids
	Resubmit an instance by Id
	Resubmit an instance with modified/unmodified payload
	Get the current status of the instance tracking
	Enable/disable instance tracking
	Purge instances based on time

	XML Schema File

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X
	Y

