Contents

Preface
- Audience vii
- Documentation Accessibility vii
- Related Documents viii
- Conventions viii

1 Introduction
- OracleAS Adapter for IMS/DB Overview 1-1
- OracleAS Adapter for IMS/DB Architecture 1-2
 - Integration Flow from Oracle Application Server to the Legacy Application 1-2

2 Installing and Configuring the OracleAS Adapter for IMS/DB
- Preinstallation Tasks 2-1
 - IBM OS/390 or z/OS Hardware and Software Requirements 2-1
 - Hardware Requirements 2-1
 - Software Requirements 2-2
 - Windows Hardware and Software Requirements 2-2
 - Hardware Requirements 2-2
 - Software Requirements 2-3
- Installing Oracle Connect on an IBM OS/390 or z/OS Series Platform 2-3
 - Installation Worksheet 2-3
 - Preinstallation Tasks 2-4
 - Importing the Installation Kit 2-5
 - Installation Instructions 2-5
 - Postinstallation Instructions 2-9
 - Postinstallation Procedures 2-9
 - Starting the Daemon 2-10
 - Setting Up Oracle Connect for Reentrancy 2-11
 - Setting Up Oracle Connect to Update IMS/DB Data 2-11
- Updating an Existing Oracle Connect Installation with IMS/DB 2-12
- Installing Oracle Studio 2-13
 - Installing Oracle Studio from the CD-ROM 2-13
- Configuring Oracle Connect 2-14
 - Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio 2-14
 - Securing Access to Oracle Connect 2-15
Setting Password Access to Oracle Studio ... 2-15
Specifying Users with Administrative Rights ... 2-16
Setting Up Run-Time User Access to the IBM OS/390 or z/OS Platform 2-17
Modeling Interactions for OracleAS Adapter for IMS/DB................................. 2-18
Setting Up the IMS/DB Data Source .. 2-19
Configuring the Data Source Driver ... 2-22
Importing Metadata for the IMS/DB Data Source ... 2-24
Setting Up an Oracle Connect Adapter ... 2-32
Generating Outbound Interactions ... 2-34
Modifying Existing Interactions .. 2-36
Viewing the XML Schema .. 2-37
Creating XML Schemas .. 2-38

3 Integrating OracleAS Adapter for IMS/DB with OC4J

Integrating OracleAS Adapter for IMS/DB with OC4J .. 3-1
Configuring the J2CA 1.5 IMS/DB Adapter .. 3-2
Using the CCI API to Develop Applications .. 3-3
Configuring Multiple Adapters .. 3-4
Updating Configuration Information .. 3-4

4 Integrating OracleAS Adapters for IMS/DB with Oracle BPEL Process Manager

Overview of Integrating OracleAS Adapters for IMS/DB with Oracle BPEL Process Manager ... 4-1
Configuring Oracle BPEL Process Manager to interact with the OracleAS Adapter for IMS/DB ... 4-2
Setting up the Connection to the Oracle Connect Server 4-2
Checking Metadata Availability Using Oracle JDeveloper 4-2
Configuring the WSDL for Outbound Applications ... 4-2

5 Troubleshooting OracleAS Adapter for IMS/DB

Troubleshooting the Daemon ... 5-1
Starting the Daemon ... 5-1
Task: Starting the Daemon .. 5-2
Shutting Down the Daemon ... 5-2
Monitoring the Daemon During Run Time ... 5-2
Daemon (Computer) Options .. 5-2
Workspace Options ... 5-3
Server Options ... 5-4
Daemon Logs .. 5-4
The Daemon Log Monitor ... 5-5
The Workspace Log Monitor .. 5-5
The Server Log Monitor .. 5-5
Resolving Communication Errors .. 5-6
Resolving Specific Errors .. 5-6
6 Advanced Features of OracleAS Adapter for IMS/DB

Configuring the Daemon for High Availability ... 6-1
 Adding a New Daemon Workspace Configuration ... 6-1
 Editing the Workspace ... 6-2
 Configuring the Server Mode .. 6-2

Configuring a Binding Environment .. 6-4
 comm Category ... 6-5
 debug Category .. 6-5
 miscellaneous Category ... 6-6
 odbc Category .. 6-7
 oledb Category ... 6-7
 optimizer Category ... 6-7
 queryProcessor Category ... 6-8
 transactions Category ... 6-8
 tuning Category ... 6-8

Migration Considerations ... 6-8

Security Considerations ... 6-9
 Setting Design Time Security .. 6-9
 Setting Runtime Security .. 6-10

Transaction Support ... 6-10

A Advanced Tuning of the Metadata

Metadata for the IMS/DB Data Source .. A-1
 General Tab .. A-2
 Columns Tab .. A-4
 Indexes Tab .. A-6
 Statistics Tab .. A-7
 Generating Statistics ... A-8
 Source Tab .. A-9

Metadata for the Back-end Adapter ... A-9
 General Tab .. A-10
 Interaction Tab ... A-11
 Interaction Advanced Tab .. A-12
 Schema General Tab .. A-13
 Schema Record Tab .. A-13
 Source Tab .. A-15

B Back-end Adapter Data Type Support

Data Type Mapping ... B-1

C Advanced Tuning of the Daemon

Daemon Control .. C-1
Daemon Logging .. C-3
Daemon Security .. C-5
Workspaces .. C-7
Preface

This guide is the primary source of user and reference information on OracleAS Adapters for IMS/DB, which enables client applications to access transactions running under IMS/DB through the Sun J2EE Connector Architecture (J2CA) API.

This document describes the features of OracleAS Adapters for IMS/DB that apply to the UNIX, Windows 2000, Windows XP, and Windows Server 2003 operating systems.

This preface covers the following topics:

- **Audience**
- **Documentation Accessibility**
- **Related Documents**
- **Conventions**

Audience

This manual is intended for Oracle integration administrators who perform the following tasks:

- Installing and configuring OracleAS Adapters for IMS/DB
- Diagnosing errors
- Using OracleAS to access IMS/DB transactions

Note: You should understand the fundamentals of OracleAS, OC4J, the UNIX and Microsoft Windows operating system before using this guide to install or administer OracleAS Adapters for IMS/DB.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents
For more information, see the following documents in the Oracle Other Product One Release 7.0 documentation set or in the Oracle Other Product Two Release 6.1 documentation set:

- Oracle Application Server Adapter Concepts Guide
- Oracle Application Server Adapter Installation Guide
- Oracle Application Server Adapter Concepts Guide
- Oracle Application Server Containers for J2EE User’s Guide
- Oracle Application Server Containers for J2EE Services Guide
- Oracle Application Server Containers for J2EE Security Guide

Conventions
The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Oracle Application Server Adapter for IMS/DB (OracleAS Adapter for IMS/DB) provides connectivity and runs interactions on an Information Management System - Data Base (IMS/DB) system. This section provides an overview of the features and architecture of OracleAS Adapter for IMS/DB.

This section contains the following topics:

- OracleAS Adapter for IMS/DB Overview
- OracleAS Adapter for IMS/DB Architecture

OracleAS Adapter for IMS/DB Overview

IMS/DB (Information Management System - Data Base) is a high-performance hierarchical database. The data access API to IMS/DB is called DL/I, which is a function by which the IMS/DB database can be traversed and operated on. Working with DL/I requires the caller to run under the control of IMS/DB. APIs are also available to enable access to IMS/DB from CICS and IMS/TM transactions.

OracleAS Adapter for IMS/DB includes the following feature:

- Captures and maintains a metadata schema for IMS/DB by importing various IMS definition files such as a PSB file, DBD files, and COBOL copybooks. These are transformed into mapping definition for Oracle Connect for IMS/DB on the OS/390 computer.

- Uses an enterprise application integration (EAI) model. Users of a requesting application can model the interactions that they want implemented, specifying what each interaction does, when it occurs, and the inputs and outputs expected for each interaction. Moreover, the OracleAS Adapter for IMS/DB maps data structures, facilitating access to IMS/DB data from within Oracle Application Server.

- Implements interactions as parameterized SQL with the parameters forming the input record, and with the output (in cases where there is an output) aggregated into an XML document forming the output record.

- Includes the options to access IMS/DB data managed by CICS, IMS/TM, or directly.

- Does support global transactions under CICS and can fully participate in a distributed transaction.
OracleAS Adapter for IMS/DB Architecture

OracleAS Adapter for IMS/DB includes the following components:

- J2CA 1.5 VSAM adapter: The J2CA IMS/DB adapter is a standard resource adapter that is compliant with J2EE Connector Architecture, therefore, providing J2EE components connectivity.

- Oracle Connect: Oracle Connect runs on the legacy system and handles requests from the J2CA 1.5 IMS/DB adapter, that runs within Oracle Application Server Containers for J2EE (OC4J).

- Oracle Studio: Oracle Studio is the configuration tool for Oracle Connect. Configuration tasks using Oracle Studio are performed on a Windows platform. Oracle Studio uses perspectives that enables you to generate specific information necessary to model OracleAS Adapter for IMS/DB.

The following figure illustrates the components of OracleAS Adapter for IMS/DB.

See Also: Oracle Application Server Adapter Concepts Guide

Integration Flow from Oracle Application Server to the Legacy Application

The J2CA 1.5 IMS/DB adapter converts the J2CA interaction invocation received from Oracle Application Server to the XML format and passes the XML format to Oracle Connect on the legacy server. The daemon listens for the request coming from the J2CA 1.5 IMS/DB adapter client and assigns a server process to handle the request. The properties of the server process, such as connection pooling requirements, are defined by a workspace definition within the daemon.

The server process includes an instance of the application engine, which converts the XML format into standard SQL which is passed to the data engine. The data engine processes the SQL to create an efficient strategy for retrieving the data from IMS/DB and then passes the SQL and execution strategy to the database back-end adapter. The database back-end adapter passes the SQL to the back-end driver, which converts the SQL to the language understood by IMS/DB and passes it to IMS/DB to be executed. The results of the SQL statement are passed back to the application engine, through the back-end adapter, where these results are converted to XML and passed back to the client.
This section describes how to install Oracle Connect and Oracle Studio from the CD-ROM, and how to configure Oracle Connect using Oracle Studio.

Note: In addition to the installation procedures described in this section, the J2CA 1.5 IMS/DB adapter must be installed with Oracle Application Server. Installing the J2CA 1.5 IMS/DB adapter is described in *Oracle Application Server Adapter Installation Guide*.

This section includes the following topics:

- Preinstallation Tasks
- Installing Oracle Connect on an IBM OS/390 or z/OS Series Platform
- Updating an Existing Oracle Connect Installation with IMS/DB
- Installing Oracle Studio
- Configuring Oracle Connect

Preinstallation Tasks

Before installing OracleAS Adapter for IMS/DB, ensure that your computer meets the following requirements:

- IBM OS/390 or z/OS Hardware and Software Requirements
- Windows Hardware and Software Requirements

IBM OS/390 or z/OS Hardware and Software Requirements

This section describes the following requirements for installing Oracle Connect on an IBM OS/390 or z/OS platform:

- Hardware Requirements
- Software Requirements

Hardware Requirements

The following table summarizes the hardware requirements for Oracle Connect.
Preinstallation Tasks

Table 2–1 Oracle Connect Hardware Requirements

<table>
<thead>
<tr>
<th>Hardware Component</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>An IBM S/390 computer.</td>
</tr>
<tr>
<td>Memory</td>
<td>The minimum requirement is 4MB for each connection. A connection is defined as a connection to a server process or daemon. The actual memory requirement depends on such things as the size of the database and the number of databases accessed.</td>
</tr>
<tr>
<td>CD-ROM Drive</td>
<td>An internal or external CD-ROM drive.</td>
</tr>
<tr>
<td>Disk Space (3380 and 3390 disks)</td>
<td>150 cylinders.</td>
</tr>
</tbody>
</table>

Software Requirements

The following table summarizes the software requirements for Oracle Connect:

Table 2–2 Oracle Connect Software Requirements

<table>
<thead>
<tr>
<th>Software Component</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>IBM OS/390 V2R5 or higher Or IBM z/OS Series V1R0 or higher</td>
</tr>
<tr>
<td>CICS TP Monitor (if accessing IMS/DB data under CICS)</td>
<td>V4R1 or higher (recommended to use CICS V6R1 or higher) CICS EXCI support must be installed and IRCSTRT=YES must be specified in the CICS initialization parameters, so that the IRC (Inter Region Communication) starts. You can also set the IRC to open by issuing the following command: CEMT SET IRC OPEN. Also the IBM group DFH$EXCI (or an equivalent user-defined group) must be installed in the CICS region: using the CEDA RDO facility.</td>
</tr>
<tr>
<td>Oracle Application Server</td>
<td>Oracle Application Server 10g (10.1.2.0.1).</td>
</tr>
</tbody>
</table>

Windows Hardware and Software Requirements

This section describes the following requirements for installing Oracle Studio:

- Hardware Requirements
- Software Requirements

Hardware Requirements

The following table summarizes the hardware requirements for Oracle Studio.

Table 2–3 Oracle Studio Hardware Requirements

<table>
<thead>
<tr>
<th>Hardware Component</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>An Intel or 100% compatible personal computer (PC), based on a Pentium processor</td>
</tr>
<tr>
<td>Memory</td>
<td>256 MB of RAM</td>
</tr>
<tr>
<td>CD-ROM Drive</td>
<td>An internal or external CD-ROM drive</td>
</tr>
<tr>
<td>Disk Space for Oracle Studio</td>
<td>100 MB of free disk space</td>
</tr>
</tbody>
</table>
Software Requirements
The following table summarizes the software requirements for Oracle Studio.

<table>
<thead>
<tr>
<th>Table 2-4</th>
<th>Oracle Studio Software Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Component</td>
<td>Requirements</td>
</tr>
<tr>
<td>Operating System</td>
<td>Microsoft Windows 2000 with service pack 2 or higher, or Microsoft Windows XP, or Microsoft Windows 2003.</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Network transport protocol software, TCP/IP, included with Microsoft Windows.</td>
</tr>
</tbody>
</table>

Installing Oracle Connect on an IBM OS/390 or z/OS Series Platform
This section explains how to install Oracle Connect from the CD-ROM. This section includes the following:
- Installation Worksheet
- Preinstallation Tasks
- Importing the Installation Kit
- Installation Instructions
- Postinstallation Instructions

Note: If you have an Oracle Connect back-end adapter already installed on the IBM OS/390 or z/OS platform, follow the instructions described in "Updating an Existing Oracle Connect Installation with IMS/DB" on page 2-12.

The other back-end adapters that run on an IBM OS/390 or z/OS platform include:
- OracleAS Adapter for CICS
- OracleAS Adapter for IMS/TM
- OracleAS Adapter for VSAM

Installation Worksheet
Verify that you have all the information detailed in the following installation worksheets, so you can refer to it during the configuration process.

<table>
<thead>
<tr>
<th>Table 2-5</th>
<th>Preinstallation Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Required Information</td>
</tr>
<tr>
<td>General</td>
<td>Operating system</td>
</tr>
<tr>
<td>- Disk space</td>
<td>-</td>
</tr>
<tr>
<td>- Memory</td>
<td>-</td>
</tr>
</tbody>
</table>
Before starting the installation, ensure that you have the following information available:

- The output class for the installation output if you do not want to use the default value, which is A
- If you use SMS to manage all datasets (you cannot provide unit and volume information), then the unit where SMS resides.
Before starting the installation, ensure that you have the following permissions:

- Permission to define an APF-authorized library.
- Permission to write to an active proclib, such as user.proclib.
- Permission to read the CICS EXCI library, when accessing IMS/DB data under CICS.
- Permission to update the security manager, such as RACF.

Note: Optionally, ensure that you have permission to specify an output class for Oracle Connect output. Assigning a device which is set on HOLD prevents the loss of log information when Oracle Connect started tasks finish.

Oracle Connect for the IBM OS/390 or z/OS platform is contained in the following datasets:

- OCL1012.TRANSMIT.KIT
- OCL1012.TRANSMIT.LOAD

These datasets are provided on a CD-ROM, in the following directory.

Oracle_Connect\IMS/DB_Legacy_Adapter

Importing the Installation Kit

Perform the following steps on the mainframe to import Oracle Connect installation kit to the mainframe:

1. Run the following command:

   ```
tso profile noprefix
   ```

 The user name will not be used as part of the dataset name. On some systems this is the default.

2. Allocate datasets with the following space for each of these files:

 - OCL1012.TRANSMIT.KIT = 130 tracks (3380 and 3390 disks)
 - OCL1012.TRANSMIT.LOAD = 420 tracks (3380 and 3390 disks)

 For each dataset: RECFM=FB and LRECL=80. The block size is 3120.

3. Using FTP, copy OCL1012.TRANSMIT.KIT and OCL1012.TRANSMIT.LOAD in binary mode from the installation CD to the mainframe. You can replace the OCL1012 high-level qualifier to any qualifier you want.

Installation Instructions

Perform the following steps to install Oracle Connect:

1. Run the following command at the TSO prompt:

   ```
   RECEIVE INDSNAME('nnn.TRANSMIT.KIT')
   ```

 Where *nnn* represents the high-level qualifier you want to assign for the Oracle Connect installation. Assign the high-level qualifier you specified in step 7 of the preinstallation tasks. The default value is OCL1012.
2. Enter the following command when prompted for the restore parameters:

```
da('nnn.TRANSMIT.LIB') [UNIT(unit) VOLUME(volume)]
```

This extracts the `nnn.TRANSMIT.LIB` library from the `nnn.TRANSMIT.KIT kit` to the specified unit and volume. If a unit and volume are not specified the library is extracted to the current unit and volume.

3. Execute the `PREPARE` member of the `nn.TRANSMIT.LIB` library:

```
ex PREPARE
```

Follow the instructions in the Response column in Table 2–8 for each entry in the Screen column.

Table 2–8 Installation Prepare Job Prompts and Responses

<table>
<thead>
<tr>
<th>Screen</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO YOU WANT TO USE SMS MANAGED STORAGE FOR THIS INSTALLATION Y/N [N]</td>
<td>If you want to manage the storage using SMS, then answer Y, otherwise answer N.</td>
</tr>
<tr>
<td>ENTER THE STORCLASS FOR INSTALLATION TEMP DATASETS []</td>
<td>This prompt is displayed only if SMS is used to manage the installation (you answered Y to the first prompt). Enter the storage class.</td>
</tr>
<tr>
<td>ENTER THE UNIT NAME FOR INSTALLATION TEMP DATASETS [3390]</td>
<td>If a storage class is not specified, then enter the unit name for temporary datasets used during the installation procedure.</td>
</tr>
<tr>
<td>ENTER THE VOLUME NAME FOR INSTALLATION TEMP DATASETS</td>
<td>This prompt is displayed only if SMS is not used to manage the installation (you answered N to the first prompt). The volume name for temporary datasets used during the installation procedure.</td>
</tr>
<tr>
<td>ENTER THE OUTPUT CLASS FOR INSTALLATION OUTPUT [A]</td>
<td>Enter the output class only if you do not want the default class used (the default is A)</td>
</tr>
<tr>
<td>DO YOU WANT TO USE THE DEFAULT JOB CARD Y/N [Y]</td>
<td>A job card is displayed. If you want to use a replacement card, then it must be entered as it will appear in the job. You can enter up to six lines. Enter a blank card to end input. If you do not enter a card, then the Oracle Connect default card is used.</td>
</tr>
<tr>
<td>DO YOU WANT TO PERFORM A MANUAL (M) OR AUTOMATIC (A) INSTALLATION [A]</td>
<td>If you want to review the JCL used to install Oracle Connect, before it is submitted, then respond M for a manual installation.</td>
</tr>
<tr>
<td>PLEASE REVIEW AND SUBMIT FOR EXECUTION THE HLQ.TRANSMIT.LIB(INSTJO)</td>
<td>This prompt is displayed only if a manual installation is requested (you answered M to the previous prompt).</td>
</tr>
</tbody>
</table>

The following libraries are generated:

- `nnn.BUILDKIT.LOAD`
- `nnn.BUILDKIT.SRC`
nnn.BUILDKIT.GENDEMO

Where nnn is the high-level qualifiers you assigned in step 1.

4. In the nnn.BUILDKIT.SRC library, execute the NAVINST member:

ex NAVINST

Follow the instructions in the Response column in Table 2–9 for each entry in the Screen column.

Table 2–9 Installation Prompts and Responses

<table>
<thead>
<tr>
<th>Screen</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO YOU WANT TO USE SMS MANAGED STORAGE FOR THIS INSTALLATION Y/N [N]</td>
<td>If you want to manage the storage using SMS, then answer Y, otherwise answer N.</td>
</tr>
<tr>
<td>THE SOFTWARE WILL BE INSTALLED UNDER THE HIGH LEVEL QUALIFIER THAT YOU WILL CHOOSE.</td>
<td>The high-level qualifier for the installation (referred to as INSTROOT throughout this guide).</td>
</tr>
<tr>
<td>ENTER THE HIGH LEVEL QUALIFIER ["QUALIFIER"]:</td>
<td>You can use more than one high-level qualifier (such as ACME.DEV.VA10). The total length must be less than or equal to twenty characters. The qualifiers can be the same as the ones used for the installation (step 1). The words transmit and buildkit cannot be used as high-level qualifiers.</td>
</tr>
<tr>
<td>ENTER THE STORCLASS FOR TEMP DATASETS ["STORCLASS"]:</td>
<td>This prompt is displayed only if SMS is used to manage the installation (you answered Y to the first prompt). Enter the storage class.</td>
</tr>
<tr>
<td>ENTER THE UNIT NAME FOR INSTALLATION TEMP DATASETS [3390]:</td>
<td>The unit name for temporary datasets used during the installation procedure.</td>
</tr>
<tr>
<td>ENTER THE VOLUME NAME FOR INSTALLATION TEMP DATASETS:</td>
<td>This prompt is displayed only if SMS is not used to manage the installation (you answered N to the first prompt). The volume name for temporary datasets used during the installation procedure.</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT) [YES]:</td>
<td>Confirm the entered details.</td>
</tr>
<tr>
<td>ENTER THE OUTPUT CLASS FOR INSTALLATION OUTPUT [A]:</td>
<td>Enter the output class for Oracle Connect output. Assigning a device which is set on HOLD prevents the loss of log information when the Oracle Connect started tasks finish (the default is A).</td>
</tr>
<tr>
<td>DO YOU WANT TO USE THE DEFAULT JOB CARD Y/N [Y]</td>
<td>A job card is displayed. If you want to use a replacement card, then it must be entered as it will appear in the job. You can enter up to six lines. Enter a blank card to end input. If you do not enter a card, then the Oracle Connect default card is used.</td>
</tr>
</tbody>
</table>
Installing Oracle Connect on an IBM OS/390 or z/OS Series Platform

5. In the nnn.BUILDKIT.SRC library, execute the IMS/DB member:

 ex IMS/DB

 Follow the instructions in the Response column in Table 2–10 for each entry in the Screen column.

Table 2–9 (Cont.) Installation Prompts and Responses

<table>
<thead>
<tr>
<th>Screen</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDING AND UPDATING ORACLE CONNECT FOR IMS/DB CONFIGURATION ON THIS MACHINE, FROM A REMOTE ORACLE ADMINISTRATION CONSOLE, CAN ONLY BE DONE BY SOMEONE DEFINED AS AN ADMINISTRATOR FOR ORACLE CONNECT ON THIS MACHINE.</td>
<td>To manage Oracle Connect on this computer from Oracle Studio, you need to enter a user account of a user who will have administrative authorization, or press Enter to enable any user to administer Oracle Connect on this computer. The administrative rights can be changed from within Oracle Studio after the installation.</td>
</tr>
<tr>
<td>ENTER A VALID USER NAME FOR AN ORACLE CONNECT ADMINISTRATOR [ALL]:</td>
<td></td>
</tr>
<tr>
<td>DO YOU WANT TO PERFORM A MANUAL (M) OR AUTOMATIC (A) INSTALLATION [A]:</td>
<td>If you want to review the JCL used to install Oracle Connect, before it is submitted, then respond M for a manual installation.</td>
</tr>
<tr>
<td>PLEASE REVIEW AND SUBMIT FOR EXECUTION THE DSN1 (INSTJBOR)</td>
<td>This prompt is displayed only if a manual installation is requested (you answered M to the previous prompt). DSN1 is the dataset name where INSTJBOR is located.</td>
</tr>
</tbody>
</table>

Table 2–10 IMS/DB Adapter-Specific Installation Prompts and Responses

<table>
<thead>
<tr>
<th>Screen</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO YOU WANT ORACLE CONNECT FOR LEGACY ADAPTER TO WORK WITH IMS/DB UNDER CICS (YES/NO) [NO]:</td>
<td>Answer YES to this prompt if you want to access IMS/DB data under CICS.</td>
</tr>
<tr>
<td>ENTER THE CICS EXCI LOAD LIBRARY NAME [CICSTS13.CICS.SDFHEXCI]:</td>
<td>If you responded YES to working with IMS/DB under CICS, then enter the CICS EXCI load library name only if you do not want the default.</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT) [YES]:</td>
<td>If you responded YES to working with IMS/DB under CICS, then confirm the entered details.</td>
</tr>
<tr>
<td>ENTER THE ISPF LOAD LIBRARY NAME [ISP.SISPLOAD]:</td>
<td>Enter the ISPF load library name only if you do not want the default.</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT) [YES]:</td>
<td>Confirm the entered details</td>
</tr>
<tr>
<td>ENTER THE OUTPUT CLASS FOR INSTALLATION OUTPUT [A]:</td>
<td>Enter the output class for Oracle Connect output. Assigning a device which is set on HOLD prevents the loss of log information when the Oracle Connect started tasks finish (the default is A).</td>
</tr>
<tr>
<td>DO YOU WANT TO USE THE DEFAULT JOB CARD Y/N [Y]</td>
<td>A job card is displayed. If you want to use a replacement card, then it must be entered as it will appear in the job. You can enter up to six lines. Enter a blank card to end input. If you do not enter a card, then the Oracle Connect default card is used.</td>
</tr>
</tbody>
</table>

The installation is completed. All JCL jobs and REXX procedures are written to the INSTROOT.USERLIB library. INSTROOT is the high-level qualifier for the installation.
Postinstallation Instructions

The following postinstallation tasks must be done to work with Oracle Connect:

- Postinstallation Procedures
- Starting the Daemon
- Setting Up Oracle Connect for Reentrancy

Postinstallation Procedures

Perform the following procedures after completing the installation to configure Oracle Connect.

- Allocate a dataset for `INSTROOT.DEF.BRANDBIN`, using 1 track and with `RECFM=VB` and `LRECL=256`. The block size is 6233.

 `INSTROOT` is the high-level qualifier where Oracle Connect is installed.

 Using FTP, copy the `BRANDBIN` file, in binary mode, from the Oracle Connect\IMS/DB Legacy Adapter directory in the installation CD to the mainframe, to `INSTROOT.DEF.BRANDBIN`.

- Define the `LOADAUT` library as an APF-authorized library

 Note: To define a DSN as APF-authorized, in the SDSF screen enter the command:

  ```
  */setprog apf,add,dsn=INSTROOT.loadaut,volume=vol002
  ```

 where `vol002` is the volume where you installed Oracle Connect and `INSTROOT` is the high-level qualifier where Oracle Connect is installed.

 If the site uses SMS, then when defining APF-authorization in the SDSF screen, enter the following command:

  ```
  */setprog apf,add,dsn=INSTROOT.loadaut,SMS
  ```

 Ensure that the library is APF-authorized, even after an IPL (reboot) of the computer.

 Move the `INSTROOT.USERLIB(ATTDAEMN)` and
 `INSTROOT.USERLIB(ATTSRVR)` members to any active proclib, such as `user.proclib`, `ATTDAEMN` and `ATTSRVR` are run as started tasks.

 If you decide to change the name of the `ATTSRVR` member when you move it to a general high-level qualifier, then change the name specified in the `StartupScript` parameter in the daemon configuration to the new name:

 - Run `INSTROOT.USERLIB(NAVCMD)` and enter `EDIT DAEMON IRPCDINI` at the prompt.

 - Change the `startupScript` parameter from `ATTSRVR` to the new name for the server:

    ```xml
    <Workspace name="Navigator"
    startupScript="NEW_NAME"
    serverMode="reusable"
    ...
    ... />
    ```

 Note: To define a DSN as APF-authorized, in the SDSF screen enter the command:

  ```
  */setprog apf,add,dsn=INSTROOT.loadaut,volume=vol002
  ```

 where `vol002` is the volume where you installed Oracle Connect and `INSTROOT` is the high-level qualifier where Oracle Connect is installed.

 If the site uses SMS, then when defining APF-authorization in the SDSF screen, enter the following command:

  ```
  */setprog apf,add,dsn=INSTROOT.loadaut,SMS
  ```

 Ensure that the library is APF-authorized, even after an IPL (reboot) of the computer.
Exit and save the change.

Change the following line in the ATTDAEMN script to include the IP address and port of the IBM OS/390 or z/OS platform.

For example, before:

```
// PARM='-B START IRPCDINI'
```

After:

```
// PARM='-B -L ip_address:2252 START IRPCDINI'
```

Where `ip_address` specifies the IP address of the computer, 2552 is the default port for starting the daemon and IRPCDINI is the default daemon configuration.

The ATTDAEMN and ATTSRVR started tasks need permission to use an Open Edition TCP/IP stack. The owner must be a user with OMVS segment defined and OMVS UID= 000000000.

In the security manager, such as RACF, define ATTDAEMN and ATTSRVR with a started task class and a general profile that enables the following:

- Permission to issue master console commands.
- START authority for the ATTSRVR job.
- Access to an Open OS/390 segment (that defines access to TCP/IP OA sockets).
- ALTER authority on datasets under INSTROOT (to access to read, write, allocate and delete datasets under INSTROOT).

The installation includes a PS, INSTROOT.DEF.GBLPARMS, that contains global environment information. This PS is read at startup and the correct software version is used, based on the details provided in the startup task.

If you change the location of this member, you must also change the relevant cards in the following jobs to the new locations:

- ATTSRVR: located in an active proclib, such as user.proclib
- ATTDAEMN: located in an active proclib, such as user.proclib
- NAVSQL: located in INSTROOT.USERLIB

The input during the installation procedure is written to `nnn.BUILDKIT.SRC(PARS)`. You can use this file to provide the same inputs if you rerun the installation, where `nnn` is the high-level qualifier you assign for the installation.

For information about specifying Oracle Connect as the service using port 2552 in the TCP/IP network services file, consult TCP/IP documentation.

Starting the Daemon

Activate INSTROOT.USERLIB(ATTDAEMN) as a started task to invoke the daemon. For example, in the SDSF screen enter the following:

```
/s ATTDAEMN
```

Where INSTROOT is the high-level qualifier where Oracle Connect is installed.

To submit the daemon as a job, uncomment the first two lines of the ATTDAEMN JCL, change the PARM line as described earlier, and run the job using the subcommand. The ATTDAEMN JCL is similar to the following:
Installing Oracle Connect on an IBM OS/390 or z/OS Series Platform

Setting Up Oracle Connect for Reentrancy
All Oracle Connect load modules are reentrant to enable sub-tasking. Therefore, move `INSTROOT.LOAD` to the Link Pack Area (LPA).

Where `INSTROOT` is the high-level qualifier where Oracle Connect is installed. Using the LPA reduces real storage usage (because everyone shares the LPA copy) and fetch time.

Note: If you intend on using impersonation, so that you can run in a security context that is different than the context of the process that owns the server, then do the following:

- Place the `INSTROOT.LOAD(ATYSVCW)` member in an APF-authorized library outside the LPA.
- Change the `ATTSRVR` member (located in the active proclib), by adding the following to the STEPLIB list:

  ```
  // DD DSN=apf_library,DISP=SHR
  ```

Where `apf_library` is the APF-authorized library outside the LPA where the `ATYSCVW` member was moved.

Setting Up Oracle Connect to Update IMS/DB Data
Perform the following to set up Oracle Connect so that you can update IMS/DB data.

IMS/DB Running Under CICS To set up Oracle Connect so that you can update IMS/DB data from a CICS transaction, copy the `UPDTRNS` load module from `INSTROOT.LOAD` to a CICS DFHRPL library (such as `CICS.USER.LOAD`) and then define the `UPDTRNS` program under CICS using any available group such as `ORA` group:

```
CEDA DEF PROG(UPDTRNS) G(ORA) LANG(C) DA(ANY) DE(ORACLE IMS/DB UPDATE PROG)
```

Where `INSTROOT` is the high-level qualifier where Oracle Connect is installed.

After defining the `UPDTRNS` program to a group, install it as follows:

```
CEDA IN G(ORA)
```

IMS/DB Not Running Under CICS To enable Oracle Connect to create and delete IMS/DB data, run the following JCL:

```
// IDC SYSIN DD DSN=&&IMS/DB,DISP=(NEW,DELETE,DELETE),
// SPACE=(TRK,(1)),UNIT=SYSDA,
```
// DCB= (BLKSIZE=3200, LRECL=80, RECFM=FB)

Updating an Existing Oracle Connect Installation with IMS/DB

Verify that you have all the information detailed in the following installation worksheets, so you can refer to it during the configuration process.

Table 2–11 Preinstallation Information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Required Information</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS</td>
<td>CICS EXCI load library name</td>
<td>CICS.CICS.SDFHEXCL</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2–12 Required Permissions

<table>
<thead>
<tr>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permission to read the CICS EXCI library</td>
</tr>
</tbody>
</table>

In the `nnn.BUILDKIT.SRC` library, execute the `CUSTOCL` member:

```bash
ex CUSTOCL
```

Follow the instructions in the Response column in **Table 2–13** for each entry in the Screen column.

Table 2–13 IMS/DB Adapter Installation Prompts and Responses

<table>
<thead>
<tr>
<th>Screen</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO YOU WANT ORACLE CONNECT FOR LEGACY ADAPTER TO WORK WITH IMS/DB (YES/NO) [YES]:</td>
<td>Answer YES to this prompt if you have Oracle Connect for IMS/DB already installed.</td>
</tr>
<tr>
<td>ENTER DBD LIBRARY NAME [IMS.DBDLIB]:</td>
<td>If you responded YES to working with IMS/DB, then enter the library where database definition (DBD) files are located.</td>
</tr>
<tr>
<td>ENTER PSB LIBRARY NAME [IMS.PSBLIB]:</td>
<td>If you responded YES to working with IMS/DB, then enter the library where Program Specification Blocks (PSBs) are located.</td>
</tr>
<tr>
<td>ENTER YOUR PSB NAME [HOSPPSB]:</td>
<td>If you responded YES to working with IMS/DB, then enter the name of the PSB file to use.</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT) [YES]:</td>
<td>If you responded YES to working with IMS/DB, then confirm the entered details.</td>
</tr>
<tr>
<td>DO YOU WANT ORACLE CONNECT FOR LEGACY ADAPTER TO WORK WITH IMS/DB UNDER CICS (YES/NO) [NO]:</td>
<td>If you want to access IMS/DB data under CICS, using the OracleAS Adapter for IMS/DB, then respond YES.</td>
</tr>
<tr>
<td>ENTER THE CICS EXCI LOAD LIBRARY NAME [CICSTS13.CICS.SDFHEXCI]:</td>
<td>If you responded YES to working with IMS/DB under CICS, then enter the CICS EXCI load library name only if you do not want the default.</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT) [YES]:</td>
<td>If you responded YES to working with IMS/DB under CICS, then confirm the entered details.</td>
</tr>
<tr>
<td>DO YOU WANT ORACLE CONNECT FOR LEGACY ADAPTER TO WORK WITH CICS APP ADAPTER (YES/NO) [YES]:</td>
<td>Answer YES to this prompt.</td>
</tr>
<tr>
<td>ENTER THE CICS EXCI LOAD LIBRARY NAME [CICSTS13.CICS.SDFHEXCI]:</td>
<td>Enter the CICS EXCI load library name only if you do not want the default.</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT) [YES]:</td>
<td>Confirm the entered details.</td>
</tr>
</tbody>
</table>
Installing Oracle Studio

The installation is completed. All JCL jobs and REXX procedures are written to the
INSTROOT.USERLIB library. INSTROOT is the high-level qualifier for the installation.

After completing the installation, perform postinstallation tasks, as described in
"Postinstallation Instructions" on page 2-9, as required.

Installing Oracle Studio

This section explains how to install Oracle Studio from the distribution CD-ROM.

Table 2–13 (Cont.) IMS/DB Adapter Installation Prompts and Responses

<table>
<thead>
<tr>
<th>Screen</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE IMS/DB DRIVER IS INSTALLED AUTOMATICALLY. DO YOU ALSO WANT ORACLE CONNECT FOR LEGACY ADAPTER TO WORK WITH IMS/DB UNDER CICS (YES/NO) [NO]:</td>
<td>Answer YES to this prompt if you have Oracle Connect for IMS/DB already installed and you want to access IMS/DB data under CICS.</td>
</tr>
<tr>
<td>ENTER THE CICS EXCI LOAD LIBRARY NAME [CICSTS13.CICS.SDFHEXCI]:</td>
<td>If you responded YES to working with IMS/DB under CICS, then enter the CICS EXCI load library name only if you do not want the default.</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT) [YES]:</td>
<td>If you responded YES to working with IMS/DB under CICS, then confirm the entered details.</td>
</tr>
<tr>
<td>ENTER THE ISPF LOAD LIBRARY NAME [ISP.SISPLOAD]:</td>
<td>Enter the ISPF load library name only if you do not want the default.</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT) [YES] :</td>
<td>Confirm the entered details.</td>
</tr>
<tr>
<td>ENTER THE OUTPUT CLASS FOR INSTALLATION OUTPUT [A]:</td>
<td>Enter the output class for Oracle Connect output. Assigning a device which is set on HOLD prevents the loss of log information when the Oracle Connect started tasks finish (the default is A).</td>
</tr>
<tr>
<td>DO YOU WANT TO USE THE DEFAULT JOB CARD Y/N [Y]</td>
<td>A job card is displayed. If you want to use a replacement card, then it must be entered as it will appear in the job. You can enter up to six lines. Enter a blank card to end input. If you do not enter a card, then the Oracle Connect default card is used.</td>
</tr>
</tbody>
</table>

Note: If you have Oracle Studio already installed because you are also using another legacy adapter, then you do not need to reinstall it.

The other legacy adapters are:

- OracleAS Adapter for CICS
- OracleAS Adapter for VSAM
- OracleAS Adapter for IMS/TM
- OracleAS Adapter for Tuxedo

Installing Oracle Studio from the CD-ROM

Assuming that the CD-ROM drive is D:, the installation file is located in the
D:\Oracle_Studio directory. Install Oracle Studio from the CD-ROM by running
the self-extracting executable installation file, OSL904-win32.exe.
Configuring Oracle Connect

All modeling of Oracle Connect is performed using Oracle Studio. To use Oracle Studio, you first configure it to enable access to the IBM OS/390 or z/OS platform where the IMS/DB data resides.

To configure Oracle Connect, refer to the following sections:

- Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio
- Securing Access to Oracle Connect
- Modeling Interactions for OracleAS Adapter for IMS/DB
- Viewing the XML Schema
- Creating XML Schemas

Note: The following tasks assume you have permission to access the IBM OS/390 or z/OS platform and that the Oracle Connect daemon is running on this computer. Check with the system administrator to ensure these requirements are fulfilled.

Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio

Using Oracle Studio, perform the following steps to configure the IBM OS/390 or z/OS platform:

1. From the Start menu, select Programs, Oracle, and then select Studio. Oracle Studio opens, displaying the Design perspective.
2. Right-click Machines in the Configuration Explorer and select Add Machine. The Add Machine screen is displayed (see Figure 2–1).
3. Enter the name of the computer you want to connect to, or click Browse to select the computer from the list of computers that is displayed and which use the default port (2552).
4. Specify the username and password of the user who was specified as the administrator when Oracle Connect was installed.

Note: Selecting Anonymous connection enables anyone having access to the computer to be an administrator, if this was defined for the computer.

The Add Machine screen is shown in the following figure:
5. Click Finish.

The computer is displayed in the Configuration Explorer.

Securing Access to Oracle Connect

Oracle Studio includes mechanisms to secure access to Oracle Connect both during modeling and at run time.

During modeling, the following security mechanisms can be applied:

- Setting Password Access to Oracle Studio
- Specifying Users with Administrative Rights

At run time client access to Oracle Connect is provided by the user profile:

- Setting Up Run-Time User Access to the IBM OS/390 or z/OS Platform

Setting Password Access to Oracle Studio

Initially, any operation performed using Oracle Studio does not require a password. You can set a password so that the first operation that involves accessing the server from Oracle Studio requires a password to be entered.

Perform the following steps to set password access to Oracle Studio:

1. From the Start menu, select **Programs**, **Oracle**, and then select **Studio**. Oracle Studio opens.

2. Select **Window** from the menu bar, and then select **Preferences**. The Preferences screen is displayed.

3. Select the **Studio** node as shown in the following figure:
Figure 2–2 The Preferences screen

![The Preferences screen](image)

4. Click **Change Master Password**. The Change Master Password screen is displayed, as shown in the following figure:

Figure 2–3 The Change Master Password screen

![The Change Master Password screen](image)

5. Leave the **Enter Current Master Password** field blank and type a new master password.

6. Confirm the password.

7. Click **OK**.

Specifying Users with Administrative Rights

By default, only the user who was specified during the installation as an administrator has the authorization to modify settings on that computer from Oracle Studio. This user can then authorize other users to make changes or to view the definitions for a selected computer. Adding a computer to Oracle Studio is described in "Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio" on page 2-14.

Note: The default during installation is to enable all users to be administrators.
1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**. Oracle Studio opens.

2. Right-click the computer in the **Configuration Explorer** and select **Administration Authorization**.

 The Administration Authorization screen is displayed as shown in the following figure:

 Figure 2–4 The Administration Authorization screen

 ![Image of the Administration Authorization screen]

 The screen has the following sections:

 - **Administrators**: Administrators can view and modify all the definitions in Oracle Studio for the selected computer. On initial entry to Oracle Studio, every user is defined as a system administrator.

 - **Designers**: Designers can view all the definitions for the computer in Oracle Studio and can modify any of the definitions under the **Bindings** and **Users** nodes for the selected computer. For example, Oracle Studio database administrator can add new data sources and adapters and can change metadata definitions for a table in a data source.

 - **Users**: Users can view all the definitions for the computer in Oracle Studio for the selected computer. Regular users cannot modify any of the definitions.

3. Add users or groups of users by clicking **Add User** or **Add Group** for the relevant sections.

 The user or group that is added must be recognized as a valid user or group for the computer. Once a name has been added to a section, only the user or group who logs on with that user name has the relevant authorization.

Setting Up Run-Time User Access to the IBM OS/390 or z/OS Platform

During run time, client access to Oracle Connect is provided by the user profile. A user profile contains name and password pairs that are used to access a computer, data source or application at run time, when anonymous access is not allowed.
1. In the Configuration Explorer, expand the node of the computer for which you want to set the user name and password.

2. Expand the Users node.

3. Right-click the NAV user profile and select Edit User. The NAV user profile editor is displayed as shown in the following figure:

Figure 2–5 The User Editor pane

4. In the User editor, click Add. The Add Authenticator screen is displayed as shown in the following figure:

Figure 2–6 The Add Authenticator screen

5. Select Remote Machine from the Resource Type list.

6. Enter the name of the IBM OS/390 or z/OS computer defined in Oracle Studio.

7. Enter the name and password used to access the computer and confirm the password.

8. Click OK.

Modeling Interactions for OracleAS Adapter for IMS/DB

Modeling interactions for OracleAS Adapter for IMS/DB involves defining an Oracle Connect back-end adapter using Oracle Studio. All the definitions specified in Oracle Studio are written to the IBM OS/390 or z/OS platform.

This section contains the following:

- Setting Up the IMS/DB Data Source
Configuring Oracle Connect

- Importing Metadata for the IMS/DB Data Source
- Setting Up an Oracle Connect Adapter
- Generating Outbound Interactions

Setting Up the IMS/DB Data Source
Oracle Connect requires you to specify the IMS/DB data source as the first step in setting up the adapter.

Perform the following steps to setup the IMS/DB data source:

1. From the Start menu, select, Programs, Oracle, and then select Studio.
2. In the Configuration Explorer, expand the node of the computer defined in “Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio” on page 2-14.
3. Expand the Bindings node. The binding configurations available on this computer are listed.
4. Expand the NAV binding node. The NAV binding configuration includes branches for data sources and adapters that are located on the computer.
5. Right-click Data sources and select New data source, to open the New data source wizard.
6. In the New dialog box, enter a name for the IMS/DB data source. The name can contain letters and numbers and the underscore character only.
7. Select the data source type from the Type list, as follows:
 - If you are accessing IMS/DB data under CICS, then select IMS-DBCTL
 - If you are accessing IMS/DB data under IMS/TM, then select IMS-DBDC
 - If you are accessing IMS/DB data directly, then select IMS-DLI

Note: Only use the IMS-DLI option to connect directly to the IMS/DB data in the following circumstances:
- The IMS/DB records are not managed by CICS or by IMS/TM.
- The IMS/DB records are required for read-only purposes and changes to the data buffered by CICS or IMS/TM while reading the data, are not expected.

The New Data Source screen is shown in the following figure:
8. Click Next. The Data Source Connect String screen for the selected data source type is displayed.

9. Enter the connect string for the selected data source, as follows:

 If you select IMS-DBCTL, then the following screen is displayed:

 Figure 2–8 The Data Source Connect String screen (for CICS)

 Where:
 - CICS Application ID: The VTAM applid of the CICS target system. The default value is CICS. This parameter is used when updating IMS/DB data. You can determine this value by activating the CEMT transaction on the target CICS system. On the bottom right corner of the screen appears the legend APPLID=target_system.
 - Transaction ID: The mirror transaction within CICS that receives control through MRO, which transfers the transaction from the Oracle Connect for IMS/DB environment to CICS. The default value is EXCI.
- VTAM NetName: The VTAM netname of the specific connection being used by EXCI (and MRO) to relay the program call to the CICS target system. For example, if you issue to CEMT the following command:

 CEMT INQ CONN

 Then, you will see on the display screen that the netname is BATCHCLI (this is the default connection supplied by IBM upon the installation of CICS). The default value is ATYCL1EN.

- Program Name: The UPDTRNS program that is supplied by Oracle Connect for IMS/DB to enable updating IMS/DB data.

 See Also: "IMS/DB Running Under CICS" on page 2-11 for details about the adapter metadata

- Trace Queue: The name of queue for output which is defined under CICS when tracing the output of the UPDTRNS program. When not defined, the default CICS queue is used.

 If you select IMS-DBDC, then the following screen is displayed:

 Figure 2–9 The Data Source Connect String screen (for IMS/TM)

Where:

- XCF group: The Cross System Coupling Facility collection of XFC members the connection belongs to. A group may consist of up to eight characters, and may span between multiple systems.

- XCF server: The Cross System Coupling Facility group member.

- Tpipe prefix: The transaction pipe prefix used to associate between the transaction and the transaction pipe it is using. The default value is ATTU.

- User name: The security facility user identification.

- Group name: The security facility group identification.

 If you select IMS-DLI, then the following screen is displayed:
Configuring the Data Source Driver

After setting up the data source, you can set its driver properties according to specific requirements, as follows:

1. Right-click the required data source in the Configuration Explorer and select **Edit Data source**.

2. Click the Properties tab.

 For IMS/DB under CICS, the following configuration properties are available:

 - **cicsProgramName=string**: The UPDTRNS program that is supplied with Oracle Server to enable updating VSAM data. To use the UPDTRNS program, copy the program from NAVROOT.LOAD to a CICS DFHRPL library (such as CICS.USER.LOAD) and then define the UPDTRNS program under CICS using any available group such as ATY group:

     ```
     CEDA DEF PROG (UPDTRNS) G(ATY) LANG(C) DA(ANY) DE(ATTUNIT VSAM UPDATE PROG)
     ```

 After defining the UPDTRNS program to a group, install it as follows:

     ```
     CEDA IN G(ATY)
     ```

 - **cicsTraceQueue=string**: The name of queue for output which is defined under CICS when tracing the output of the UPDTRNS program. When not defined, the default CICS queue is used.

 - **disableExplicitSelect=true | false**: Set to true to disable the ExplicitSelect ADD attribute; every field is returned by a SELECT * FROM... statement.
- **exciTransid=string**: The CICS TRANSID. This value must be EXCI or a copy of this transaction.
- **psbName=string**: (PSB Name parameter in the connect string) The name of the PSB file that contains details of all the IMS/DB databases that you want to access.
- **targetSystemApplid=string**: (Target system parameter in the connect string) The VTAM applid of the CICS target system. The default value is CICS. This parameter is used when updating VSAM data. You can determine this value by activating the CEMT transaction on the target CICS system. On the bottom-right corner of the screen appears the legend APPLID=target_system.
- **vtamNetname=string**: (VTAM NetName parameter in the connect string) The VTAM netname of the specific connection being used by EXCI (and MRO) to relay the program call to the CICS target system. The default value is ATYCLIEN.

For IMS/DB under IMS/TM, the following configuration properties are available:
- **disableExplicitSelect=true | false**: Set to true to disable the ExplicitSelect ADD attribute; every field is returned by a "SELECT * FROM..." statement.
- **imsTransname=string**: The name of the IMS transaction that points to the program that is used to access the PSB used to access the IMS/DB data. The default name of the transaction is ATYIMSTM.
- **maxSessions=n**: The maximum number of sessions allowed. The default value is 5.
- **racfGroupId=string**: The security facility group identification (for example, the RACF group identification).
- **racfUserId=string**: The security resource user name.
- **tpipePrefix=string**: (TPipe prefix parameter in the connect string) The transaction pipe prefix used to associate between the transaction and the transaction pipe it is using. The default is ATTU.
- **xcfClient=string**: The client name for the Cross System Coupling Facility the connection belongs to.
- **xcfGroup=string**: (XCF group parameter in the connect string) The Cross System Coupling Facility collection of XCF members the connection belongs to. A group may consist of up to eight characters, and may span between multiple systems.
- **xcfImsMember=string**: The Cross System Coupling Facility group member.
- **xcfServer=string**: (XCF server parameter in the connect string) The Cross System Coupling Facility group member.
- **userName=string**: (User name in the connect string) The security facility user identification (for example, the RACF user identification).

For IMS/DB direct, the following configuration property is available:
- **disableExplicitSelect=true | false**: Set to true to disable the ExplicitSelect ADD attribute; every field is returned by a SELECT statement.

3. Click **Save** to save the changes you made to the configuration properties.
Importing Metadata for the IMS/DB Data Source

Oracle Connect requires metadata describing the IMS/DB data source records and the fields in these records. Use the Import Metadata procedure in Oracle Studio Design perspective to import metadata for the IMS/DB data source from DBD, COBOL copybooks and PSB files, which describe the data.

The following information is needed during the import procedure:

- **DBD files**: These files are copied to the computer running Oracle Studio as part of the import procedure.
- **COBOL copybooks**: These copybooks are copied to the computer running Oracle Studio as part of the import procedure.
- **PSB file**: This file is copied to the computer running Oracle Studio as part of the import procedure.

Perform the following steps to import metadata for the IMS/DB data source:

1. From the **Start** menu, select, **Programs, Oracle**, and then select **Studio**.
2. In the Configuration Explorer, expand the node of the computer defined in "Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio" on page 2-14.
3. Expand the **Bindings** node. The binding configurations available on this computer are listed.
4. Expand the **NAV** binding node.
5. Expand the **Data sources** node.
6. Right-click the IMS/DB data source defined in "Setting Up the IMS/DB Data Source" on page 2-19.
7. Select **Edit Metadata**, to open the Metadata tab, with the IMS/DB data source displayed under the data sources list.
8. Right-click the IMS/DB data source and select **New Import**.
 The New Import screen is displayed.
9. Enter a name for the import. The name can contain letters and numbers and the underscore character only.
10. Select the import type from the **Import Type** list as shown in the following figure:
11. Click **Finish**. The Metadata Import wizard opens.

12. Click **Add**.

 The Select Resources screen is displayed, which provides the option to select files from the local computer or copy the files from another computer.

13. If the files are on another computer, right-click **My FTP Sites** and select **Add**. Optionally, double-click **Add FTP site**. The Add FTP Site screen is displayed.

14. Enter the server name or IP address where the COBOL copybooks reside and enter a valid username and password to access the computer (if anonymous access is used, select **Anonymous Connection**) then click **OK**. The FTP site is added to the list of available sites.

 Note: The selected server is accessed using the username as the high-level qualifier, enabling you to browse and transfer files.

The Select Resources screen is shown in the following figure:
15. Right-click the computer and select **Set Transfer Type**. Enter the transfer type (ASCII or BINARY) and click **OK**.

16. Expand the node of the added site and locate the necessary DBD/COBOL and PSB files. To change the high-level qualifier, right-click the computer and select **Change Root Directory**. Enter the high-level qualifier enclosed in quotes, and click **OK**.

17. Select the file or files and click **Finish**. The selected file or files are displayed in the Metadata Import wizard as shown in the following figure:
18. Click Next.

The Apply Filters screen is displayed as shown in the following figure:

Figure 2–14 The Apply Filters screen

19. Apply filters to the copybooks if required.

The following COBOL filters are available:

Table 2–14 Available Filters

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP_6 switch</td>
<td>The MicroFocus COMP-6 compiler directive. Specify either COMP-6’1’ to treat COMP-6 as a COMP data type or COMP-6’2’ to treat COMP-6 as a COMP-3 data type.</td>
</tr>
<tr>
<td>Compiler source</td>
<td>The compiler vendor.</td>
</tr>
<tr>
<td>Storage mode</td>
<td>The MicroFocus Integer Storage Mode. Specify either NOIBMCOMP for byte storage mode or IBMCOMP is for word storage mode.</td>
</tr>
<tr>
<td>Ignore after column 72</td>
<td>Ignores columns 73 to 80 in the COBOL copybook.</td>
</tr>
</tbody>
</table>
20. Click Next.

The Select Tables screen is displayed, showing the identified records, as shown in the following figure:

Table 2–14 (Cont.) Available Filters

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgnoreFirst6</td>
<td>Ignores the first six columns in the COBOL copybook.</td>
</tr>
<tr>
<td>Replace hyphens (-) in record and field names with underscores (_)</td>
<td>Replace all hyphens in either the record or field names in the metadata generated from the COBOL with underscore characters.</td>
</tr>
<tr>
<td>Prefix nested columns</td>
<td>Prefix all nested columns with the previous level heading.</td>
</tr>
<tr>
<td>Case sensitive</td>
<td>Specifies whether to be sensitive to the search string case.</td>
</tr>
<tr>
<td>Find</td>
<td>Searches for the specified value.</td>
</tr>
<tr>
<td>Replace with</td>
<td>Replaces the value specified for Find with the value specified here.</td>
</tr>
</tbody>
</table>

The following DBD filters are available:

- Ignore after column 72: Ignores columns 73 to 80 in the DBD file.
- Ignore first 6 columns: Ignores the first 6 columns in the DBD file.
- Ignore labels: Ignores labels in the DBD file.

The following PSB filters are available:

- Ignore after column 72: Ignores columns 73 to 80 in the PSB file.
- Ignore first 6 columns: Ignores the first 6 columns in the PSB file.
Figure 2–15 The Select Tables screen

21. Select the required tables or click Select All, then click Next.

The Match DBD to COBOL screen is displayed as shown in the following figure:
22. Select the required COBOL files and tables from the COBOL Files and the COBOL Tables columns respectively, that match the DBD tables, listed in the DBD Tables column.

23. Click Next. The Import Manipulation screen is displayed as shown in the following figure:
Figure 2–17 The Import Manipulation screen

This screen enables you to perform the following operations:

- Resolve table names, where tables with identical names are generated from different COBOL copybooks specified during the import.
- Specify the physical location for the data.
- Specify table attributes.
- Manipulate the fields generated from the COBOL, as follows:
 - Merge sequential fields into one for simple fields.
 - Resolve variants by either marking a selector field or specifying that only one case of the variant is relevant.
 - Add, delete, hide, or rename fields.
 - Change a data type.
 - Set a field size and scale.
 - Change the order of the fields.
 - Set a field as nullable.
 - Select a counter field for fields with dimensions (arrays). You can select the counter for the array from a list of potential fields.
 - Set column wise normalization for fields with dimensions (arrays). You can create new fields instead of the array field where the number of generated fields will be determined by the array dimension.
 - Create arrays and set the array dimensions.
The **Validation** tab at the lower area of the screen displays information about what needs to be resolved in order to validate the tables and fields generated from the COBOL. The Log tab displays a log of what has been performed (such as renaming a table or specifying a data location).

24. To manipulate table metadata, right-click the table record, and select the necessary operation. The following table lists the available options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields manipulation</td>
<td>Customizing the fields definitions, using the Fields Manipulation screen. You can also access this screen by double-clicking the required table record.</td>
</tr>
<tr>
<td>Rename</td>
<td>Renaming a table. This option is used especially when more than one table is generated from the COBOL with the same name.</td>
</tr>
<tr>
<td>Set data location</td>
<td>Setting the physical location of the data file for the table.</td>
</tr>
<tr>
<td>Set table attributes</td>
<td>Setting the table attributes.</td>
</tr>
<tr>
<td>XSL manipulation</td>
<td>Specifying an XSL transformation or JDOM document that is used to transform the table definitions.</td>
</tr>
</tbody>
</table>

25. Once all the validation error issues have been resolved, the Import Manipulation screen is displayed with no error indicators.

26. Click **Next** to generate the metadata.

27. Specify that you want to transfer the metadata from the Windows computer to the IBM OS/390 or z/OS platform and click **Finish**.

The metadata is imported based on the options specified and it is stored on the IBM OS/390 or z/OS platform. An XML representation of the metadata is generated. This XML file can be viewed by expanding the Output node.

After performing the import, you can view the metadata in the Metadata tab in Oracle Studio Design perspective. You can also make any fine adjustments to the metadata and maintain it, as necessary.

See Also: Metadata for the IMS/DB Data Source on page A-1 for details about the data source metadata.

Setting Up an Oracle Connect Adapter

To work with the Oracle Connect against the IMS/DB data source from Oracle Application Server, you need to set up an adapter definition on the IBM OS/390 or z/OS platform to handle the interactions to and from the IMS/DB data.

Perform the following steps to setup the adapter:

1. From the **Start** menu, select, **Programs, Oracle**, and then select **Studio**.
2. In the Configuration Explorer, expand the node of the computer defined in "Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio" on page 2-14.
3. Expand the **Bindings** node.
4. Expand the **NAV** binding node.
5. Right-click **Adapters** and select **New Adapter** to open the New Adapter wizard.
6. Enter a name for the back-end adapter.
7. Select **Database** as the back-end adapter type from the **Type** list. The Database adapter enables accessing the IMS/DB data source from Oracle Application Server.

8. Select **Events**.

9. Click **Finish**. The back-end adapter is added to the Configuration Explorer and the definition opens for editing.

Note: Other adapters that are displayed in the **Type** list are not supported with the version of Oracle Connect installed at the site.

10. Click the **Properties** tab and change any of the properties for the adapter, as required.

The **Properties** tab is shown in the following figure:

Figure 2–18 The Properties tab

The following properties are available:

Table 2–16 Adapter Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectString</td>
<td>Leave this value blank.</td>
</tr>
<tr>
<td>defaultDatasource</td>
<td>The name of the data source defined in Oracle Studio that you want to access with the Database adapter. For example, Legacy.</td>
</tr>
<tr>
<td>multipleResults</td>
<td>Leave this value as true.</td>
</tr>
</tbody>
</table>
Generating Outbound Interactions
Oracle Connect requires metadata describing the adapter interactions, including the structures used to pass information to and from the adapter.

Use the Metadata Import wizard in Oracle Studio to generate interaction metadata, as follows:

1. From the Start menu, select, Programs, Oracle, and then select Studio.
2. In the Configuration Explorer, expand the node of the computer defined in "Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio" on page 2-14.
3. Expand the Bindings node. The binding configurations available on this computer are listed.
4. Expand the NAV binding node.
5. Expand the Adapters node.
6. Right-click the Database back-end adapter defined in "Setting Up an Oracle Connect Adapter" on page 2-32.
7. Select Edit metadata to open the Metadata tab, with the database back-end adapter displayed under the Adapters list.
8. Right-click the Interactions node and select New to open the New Interaction wizard. The wizard opens with the following options displayed:
 - Automatic: Four interactions are generated for each IMS/DB table, enabling to execute the SELECT, INSERT, UPDATE, DELETE command.
 - Manual: One interaction is generated, based on the type of SQL selected such as database query (a SELECT statement) or Database Modification (an INSERT, UPDATE, or DELETE statement).

 Note: IMS/DB does not support the stored procedure option.

9. Select how you want to generate interactions (Automatic or Manual).
 If you select Automatic generation, perform the following steps:
 a. Click Next. The Select Tables screen opens, enabling you to add tables from the IMS/DB data source that you want to access with the interaction.
 b. Click Add to include tables.
 The data sources that have been defined and all the tables, for each data source, that have had metadata defined for them are displayed.
 Select the tables that you want to access with the interaction and click the right-pointing arrow to move these tables to the right-hand pane.
 c. Click Finish. The selected tables are displayed.
 d. Click Finish. Four interactions are generated for each table selected (SELECT, INSERT, UPDATE, DELETE), together with the record structures to support the interactions and the responses from the IMS/DB data source.

 Note: You must specify the IMS/DB data source name for the defaultDatasource property.
e. Click Yes to complete the task. The interactions and the record structures that relate to the interactions are displayed in the Metadata tab.

If you select Manual generation, perform the following steps:

a. Select the type of SQL (query or modification) for the interaction and click Next. The Interaction Name screen is displayed.

b. Enter a name for the interaction, and select Create new query.

Note: The option to use a previously saved query is not applicable.

c. Click Next. The Define Interaction screen is displayed enabling you to build the query.

Note: If the database query option was selected in step a, then the Define Interaction screen is displayed, enabling you to build a SELECT statement only, as indicated in the Query type field. If the database modification option was selected, then this field enables you to select the required SQL modification statement from a list (INSERT, UPDATE, or DELETE).

d. Click Next. The Interaction Properties screen is displayed, enabling you to define the interaction parameters. You can set the following interaction parameters:

<table>
<thead>
<tr>
<th>Table 2–17 Interaction Definition Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>passThrough</td>
</tr>
<tr>
<td>Reuse compiled query</td>
</tr>
<tr>
<td>Encoding</td>
</tr>
<tr>
<td>Event</td>
</tr>
<tr>
<td>Fail on no rows return</td>
</tr>
<tr>
<td>Root element</td>
</tr>
<tr>
<td>Record element</td>
</tr>
<tr>
<td>Max. records</td>
</tr>
<tr>
<td>Null string</td>
</tr>
</tbody>
</table>
e. Click Next. The Interaction Parameters screen is displayed, where you specify input parameters for the interaction. The following parameters are specified:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the parameter.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of parameter (such as string, number, binary).</td>
</tr>
<tr>
<td>Nullable</td>
<td>The nullable value (true or false).</td>
</tr>
<tr>
<td>Default</td>
<td>The default value for the parameter.</td>
</tr>
<tr>
<td>Context</td>
<td>This field is not applicable.</td>
</tr>
<tr>
<td>Field</td>
<td>This field is not applicable.</td>
</tr>
</tbody>
</table>

f. Click Finish to generate the interaction, including the record schema required to support the interaction input and output.

See Also: "Metadata for the Back-end Adapter" on page A-9 for details about the data source metadata.

Modifying Existing Interactions

You can modify the interaction definitions to the exact requirements of the application, in the Design perspective Metadata tab.

The following example uses the DELETE interaction, generated in the previous task, to describe how the interactions can be modified:

Note: The interaction modification procedure is the same for all types of SQL statements (INSERT and UPDATE) as described, using a DELETE SQL statement.

1. In the Metadata tab, right-click the interaction to modify and select Edit Metadata.

 The adapter metadata editor opens, displaying the Interaction General tab.

 The Interaction General tab displays general information about the way the interaction is executed. You can add a description of the interaction and define the mode of operation for the interaction. The following modes are available:
 - sync-send-receive: The interaction sends a request and expects to receive a response.
 - sync-send: The interaction sends a request and does not expect to receive a response.
 - sync-receive: The interaction expects to receive a response.

 The information for a request is passed in the input record. The information for the response from the IMS/DB data source is passed in the output record.

2. Click the Interaction Advanced tab to display specific information about the interaction.

 As required, change the SQL and the parameters associated with the SQL.
Parameters are specified in a `SET` clause or in a `WHERE` clause with the following format:

```
:parameter_name
```

3. Depending on the changes made to the SQL, when you close the editor, or when clicking `Save`, the Context Selection screen is displayed.

Select the required adapter from the Adapters list and select **Update interaction-related records**. Any changes that need making to the record structures in the schema part of the metadata are done automatically.

The Context Selection screen is shown in the following figure:

![Figure 2-19 The Context Selection screen](Image)

Note: The interaction records are built based on all the fields in the table and cannot be changed manually, even if you change the SQL so that less fields are involved.

4. Click **Finish** to implement the modifications made to the interaction definitions.

Viewing the XML Schema

The XML describing the adapter interactions can be viewed in Oracle Studio Design perspective Metadata Source tab.

A sample Source tab is shown in the following figure:
Creating XML Schemas

The XML schema describing the adapter interactions and the input and output records for these interactions are created automatically during the import procedure, as described in "Generating Outbound Interactions" on page 2-34.
To deploy and integrate OracleAS Adapter for IMS/DB with Oracle Application Server Containers for J2EE (OC4J), you need to configure the J2CA 1.5 IMS/DB adapter.

This section includes the following topics:
- Integrating OracleAS Adapter for IMS/DB with OC4J
- Configuring the J2CA 1.5 IMS/DB Adapter
- Using the CCI API to Develop Applications
- Configuring Multiple Adapters
- Updating Configuration Information

Integrating OracleAS Adapter for IMS/DB with OC4J

Oracle Application Server provides a complete Java 2 Enterprise Edition (J2EE) environment that executes on the Java Virtual Machine (JVM) of the standard Java Development Kit (JDK). OC4J is J2EE certified and provides all the J2EE specific containers, APIs, and services. OC4J supports the J2CA 1.5 standard.

J2CA defines standard Java interfaces for simplifying the integration of applications with the EIS. The Oracle adapters are deployed as a resource adapter within the OC4J container.

The contract between the OC4J client application and the resource adapter is defined by the common client interface (CCI). The contract between the OC4J container and the resource adapter is defined by the service provider interface (SPI). The SPI API addresses the connection management, transaction management and the security management.

Connection management enables application components to connect to an EIS and leverage any connection pooling provided by the application server.

Transaction management enables an application server to use a transaction manager to manage transactions across multiple resource managers. Security management provides authentication, authorization, and secure communication between the J2EE server and the EIS.

Lifecycle management contracts enable an application server to initialize a resource adapter instance during the deployment of the adapter or application server startup. In addition, it enables the application server to notify the resource adapter instance during server shutdown or undeployment of the adapter.
The lifecycle contract provides the mechanism for the application server to manage the lifecycle of the resource adapter instance.

Work management contracts enable the resource adapter to carry out its logic by using threads dispatched by an application server, rather than creating threads on its own. The handshake is done through a Work instance submission. This makes the application server threads management more efficient, providing better control over their execution contexts (like security and transaction).

Configuring the J2CA 1.5 IMS/DB Adapter

To connect to the J2CA 1.5 IMS/DB adapter under Oracle Application Server, perform the following steps:

1. Edit the `oc4j-ra.xml` file, which is located at the following path:

   ```
   root\j2ee\home\application-deployment\default\oracle\oc4j-ra.xml
   ```

 Where `root` is the Oracle Application Server root directory.

2. Set the following settings for each connection:

   ```xml
   <oc4j-connector-factories>
     <connector-factory location=" " connector-name="Oracle Legacy Adapter">
       <config-property name="userName" value=" "/>
       <config-property name="password" value=" "/>
       <config-property name="eisName" value=" "/>
       <config-property name="serverName" value=" "/>
       <config-property name="workspace" value=" "/>
       <config-property name="portNumber" value=" "/>
       <config-property name="persistentConnection" value=" "/>
       <config-property name="keepAlive" value=" "/>
       <config-property name="firewallProtocol" value=""/>
       <config-property name="connectTimeout" value=""/>
       <config-property name="encryptionProtocol" value=""/>
       <config-property name="encryptionKeyName" value=""/>
       <config-property name="encryptionKeyValue" value=""/>
       <config-property name="fakeXa" value=" "/>
     </connector-factory>
   </oc4j-connector-factories>
   ```

 The following table lists the properties that must be specified, and optional properties:

 Table 3–1 OC4J Connection Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>Specifies the JNDI location where Oracle Application Server should bind the connection factory instance for application components.</td>
</tr>
<tr>
<td>eisName</td>
<td>Sets the name of the adapter to use. The adapter is defined in the Oracle Connect server using Oracle Studio, as described in "Setting Up an Oracle Connect Adapter" on page 2-32.</td>
</tr>
</tbody>
</table>
Using the CCI API to Develop Applications

You can develop applications to run adapter interactions using the Common Client Interface (CCI) API.

Perform the following steps to use the CCI API with the J2CA 1.5 IMS/DB adapter:

1. Select a ConnectionFactory entry for the J2CA 1.5 IMS/DB adapter.
2. Create a Connection object using this ConnectionFactory. A Connection is a handle to the underlying network connection to the EIS, which is identified in the oc4j-ra-xml file by the serverName property.

Table 3–1 (Cont.) OC4J Connection Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>serverName</td>
<td>Sets the TCP/IP address or host name where the Oracle Connect daemon is running. The daemon runs on the computer specified at the beginning of "Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio" on page 2-14.</td>
</tr>
<tr>
<td>workspace</td>
<td>Specifies to the name of a Oracle Connect server workspace to use. The default workspace is Navigator. See Also: "Workspaces" on page C-7 for details about workspaces.</td>
</tr>
<tr>
<td>portNumber</td>
<td>Specifies to the TCP/IP port where the Oracle Connect daemon is running on the server. The default port is 2552.</td>
</tr>
<tr>
<td>userName</td>
<td>Specifies a user who can access the Oracle Connect server. The user is defined in the Oracle Connect daemon configuration. See Also: "Daemon Security" and "WS Security" for details about users allowed to access an Oracle Connect server.</td>
</tr>
<tr>
<td>password</td>
<td>Specifies a valid password for the user.</td>
</tr>
<tr>
<td>persistentConnection</td>
<td>Set to true or false. When set to true, connections can persist across multiple requests or connection context changes. It is recommended to set this property to true.</td>
</tr>
<tr>
<td>keepAlive</td>
<td>Set to true or false. When set to true, the socket used for the connection is always kept open. It is recommended to set this property to true.</td>
</tr>
<tr>
<td>firewallProtocol</td>
<td>Specifies the firewall protocol used: either none or fixedNat (the Nat protocol using a fixed address for the daemon). The default value is none.</td>
</tr>
<tr>
<td>connectTimeout</td>
<td>Specifies the connection timeout in seconds. The default is 0, meaning that there is no connection timeout.</td>
</tr>
<tr>
<td>encryptionProtocol</td>
<td>Specifies the name of encryption protocol to use. The default is null. The RC4 protocol is supported.</td>
</tr>
<tr>
<td>encryptionKeyName</td>
<td>Specifies the name of the symmetric encryption key to use.</td>
</tr>
<tr>
<td>encryptionKeyValue</td>
<td>Specifies the value of the symmetric encryption key to use.</td>
</tr>
<tr>
<td>fakeXa</td>
<td>When set to true, the XA APIs are internally converted to local transaction APIs. Always set to true.</td>
</tr>
</tbody>
</table>
3. Create a Connection object using this ConnectionFactory. Specify the interaction properties using an AttuInteractionSpec object. The AttuInteractionSpec object has the following format:

```
AttuInteractionSpec(java.lang.String name, int verb, int timeOut)
```

The following table describes the properties that can be specified:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies the interaction name.</td>
</tr>
<tr>
<td>verb</td>
<td>Specifies the mode for the interaction: SYNC_SEND, SYNC_SEND_RECEIVE, or SYNC_RECEIVE.</td>
</tr>
<tr>
<td>timeOut</td>
<td>Specifies the time (in milliseconds) to wait for an EIS to run the specified interaction.</td>
</tr>
</tbody>
</table>

The following is an InteractionSpec sample:

```
AttuInteractionSpec iSpeq = new AttuInteractionSpec("query",
javax.resource.cci.InteractionSpec.SYNC_RECEIVE, 60);
javax.resource.cci.RecordFactory rf = new AttuRecordFactory(con,
mcf.getLogger());
javax.resource.cci.MappedRecord queryRecord = rf.createMappedRecord("query"),
queryRecord.put("##text", "select * from disam:nation");
javax.resource.cci.Record oRec = interaction.execute(iSpec, queryRecord);
```

4. Invoke the execute method on the interaction to initiate a call to the EIS. Pass any data for the interaction as input and output records.

5. Once the interactions have been processed, close the Interaction and Connection objects.

Configuring Multiple Adapters

Each J2CA 1.5 IMS/DB adapter requires an entry in the `oc4j-ra.xml` file as described in "Configuring the J2CA 1.5 IMS/DB Adapter" on page 3-2.

See Also: Oracle Application Server Adapter Concepts Guide

Updating Configuration Information

You can change the configuration settings for a resource adapter by editing the relevant `connector-factory` entry in the `oc4j-ra.xml` file. For these changes to take effect, you need to stop and restart Oracle Application Server.
To deploy and integrate OracleAS Adapters for IMS/DB with Oracle BPEL Process Manager, you need to configure BPEL Process Manager.

This section includes the following topics:

- Overview of Integrating OracleAS Adapters for IMS/DB with Oracle BPEL Process Manager
- Configuring Oracle BPEL Process Manager to interact with the OracleAS Adapter for IMS/DB

Overview of Integrating OracleAS Adapters for IMS/DB with Oracle BPEL Process Manager

Oracle BPEL Process Manager provides a comprehensive solution for creating, deploying, and managing BPEL business processes. Oracle BPEL Process Manager is based on the Service Oriented Architecture (SOA) to provide enterprises with flexibility, interoperability, reusability, extensibility, and rapid implementation of Web services and business processes. It reduces the overall costs of management, modification, extension, and redeployment of existing business processes. Each business activity is a self-contained, self-describing, and modular application whose interface is defined by the WSDL, and the business process is modeled as a Web Service.

A Web Service is first published and then composed or orchestrated into business flows. Publishing a service is implemented by taking a function within an existing application or system and making it available in a standard way, while orchestration is implemented by composing multiple services into an end-to-end business process. The interactions that are defined as part of the configuration of the OracleAS Adapter for IMS/DB are integrated into the orchestration as PartnerLinks. Every PartnerLink is linked to a WSDL that describes the Web service.

To integrating the OracleAS Adapter for IMS/DB with Oracle BPEL Process Manager, you must perform the following tasks in the specified order:

1. Installing and Configuring the OracleAS Adapter for IMS/DB
2. Integrating OracleAS Adapter for IMS/DB with OC4J
3. Configuring Oracle BPEL Process Manager to interact with the OracleAS Adapter for IMS/DB

See Also: Oracle Application Server Adapter Concepts Guide.
Configuring Oracle BPEL Process Manager to interact with the OracleAS Adapter for IMS/DB

This section includes the following topics:

- Setting up the Connection to the Oracle Connect Server
- Checking Metadata Availability Using Oracle JDeveloper
- Configuring the WSDL for Outbound Applications

Setting up the Connection to the Oracle Connect Server

Perform the following steps to set up the connection to the Oracle Connect server:

1. Open the Oracle BPEL Admin window.
2. On the Server tab, on the Configuration tab, specify the following:
 - LegacyServer: The IP address of the server where Oracle Connect is installed. For a single server, the default is localhost.
 - LegacyPort: The port number of the server where Oracle Connect is installed. For a single port, the default is 2551.
3. Repeat the previous step for each Oracle Connect server to be used by Oracle BPEL Process Manager. Use a comma as a separator between the different servers and ports.
4. Click Apply.
5. Restart the server where Oracle BPEL Process Manager is installed.

Checking Metadata Availability Using Oracle JDeveloper

Perform the following steps to verify that the metadata of the Oracle Connect server is available in Oracle BPEL Process Manager:

1. Open Oracle JDeveloper.
2. On the Connections tab, expand the Integration Server node to view the list of OC4J servers.
3. Expand the node of the OC4J server on which you configured the JCA 1.5 IMS/DB adapter (see Integrating OracleAS Adapter for IMS/DB with OC4J).
4. Under the Adapters node, expand the Legacy node to view a list of the Oracle Connect servers that you defined by using the Oracle BPEL Admin window.
5. Under the node of the Oracle Connect server whose metadata you want to check, expand the node of the daemon (IRPCDINI) to view a list of workspaces.
6. Under the node of the workspace that contains the adapter that you want to work with, expand the node of the relevant adapter to view a list of interactions.
7. Double-click an interaction to view the WSDL.

Configuring the WSDL for Outbound Applications

When you build an outbound application, Oracle BPEL Process Manager automatically creates the WSDL that corresponds to the interaction. The WSDL specifies the name of the adapter's connection factory as the value of the adapterInstanceJndi attribute of the <jca:address> element in the <service> section. This name is generated automatically. You need to verify that a
connection factory with this name exists on the OC4J server. If it does not, you need to create it, or change the name of the connection factory to the name of a connection factory that exists.

The following is an example of a WSDL for outbound applications:

```xml
<?xml version='1.0' encoding='UTF-8'?>
<definitions name="findAccount"
    targetNamespace="http://xmlns.oracle.com/pcbpel/findIMSAccount/findAccount"
    xmlns="http://schemas.xmlsoap.org/wsdl/"
    xmlns:legacyReq="noNamespace://findIMSAccount"
    xmlns:tns="http://xmlns.oracle.com/pcbpel/findIMSAccount/findAccount"
    xmlns:jca="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
    xmlns:jca="http://schemas.xmlsoap.org/wsdl/jca/"
    xmlns:pc="http://xmlns.oracle.com/pcbpel/"
    xmlns:legacyRes="noNamespace://findIMSAccount">
  <types>
    <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
        xmlns="noNamespace://findIMSAccount"
        targetNamespace="noNamespace://findIMSAccount" elementFormDefault="qualified"
        attributeFormDefault="unqualified">
      <xsd:element name="CA_INPUT" type="CA_INPUT"/>
      <xsd:complexType name="CA_INPUT">
        <xsd:attribute name="CA_EYE_CATCH">
          <xsd:simpleType>
            <xsd:restriction base="xsd:string">
              <xsd:maxLength value="8"/>
            </xsd:restriction>
          </xsd:simpleType>
        </xsd:attribute>
        <xsd:attribute name="CA_ACCT_I_NUM" type="xsd:int"/>
      </xsd:complexType>
    </xsd:schema>
    <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
        xmlns="noNamespace://findIMSAccount"
        targetNamespace="noNamespace://findIMSAccount" elementFormDefault="qualified"
        attributeFormDefault="unqualified">
      <xsd:element name="CA_OUTPUT" type="CA_OUTPUT"/>
      <xsd:complexType name="CA_OUTPUT">
        <xsd:sequence>
          <xsd:element minOccurs="0" maxOccurs="1" name="CA_ACCT_DATA" type="CA_OUTPUT__CA_ACCT_DATA"/>
        </xsd:sequence>
        <xsd:attribute name="CA_RET_CODE" type="xsd:int"/>
      </xsd:complexType>
    </xsd:schema>
    <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
        xmlns="noNamespace://findIMSAccount"
        targetNamespace="noNamespace://findIMSAccount" elementFormDefault="qualified"
        attributeFormDefault="unqualified">
      <xsd:element name="CA_OUTPUT__CA_ACCT_DATA" type="CA_OUTPUT__CA_ACCT_DATA"/>
      <xsd:complexType name="CA_OUTPUT__CA_ACCT_DATA" type="CA_OUTPUT__CA_ACCT_DATA">
        <xsd:sequence>
          <xsd:element minOccurs="0" maxOccurs="1" name="CA_CUST_INFO" type="CA_OUTPUT__CA_ACCT_DATA__CA_CUST_INFO"/>
          <xsd:element minOccurs="0" maxOccurs="10" name="CA_TRAN_HIST" type="CA_OUTPUT__CA_ACCT_DATA__CA_TRAN_HIST"/>
        </xsd:sequence>
        <xsd:attribute name="CA_ACCT_NUM" type="xsd:int"/>
        <xsd:attribute name="CA_ACCT_BAL" type="xsd:int"/>
      </xsd:complexType>
    </xsd:schema>
  </types>
</definitions>
```
<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="8"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType>
 <xsd:element name="CA_OUTPUT__CA_ACCT_DATA__CA_CUST_INFO" type="CA_OUTPUT__CA_ACCT_DATA__CA_CUST_INFO"/>
 <xsd:sequence>
 <xsd:element minOccurs="0" maxOccurs="4" name="CA_CUST_PHONE">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="14"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:attribute name="CA_CUST_NAME_F">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="10"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="CA_CUST_NAME_M">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="CA_CUST_NAME_L">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="10"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="CA_CUST_SOC_SEC">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="11"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:sequence>
</xsd:complexType>
</xsd:schema>

<message name="request">
 <part name="input_findAccount" element="legacyReq:CA_INPUT"/>
</message>

<message name="response">
 <part name="output_findAccount" element="legacyReq:CA_OUTPUT"/>
</message>

<portType name="findAccountPortType"/>
<operation name="findAccount">
 <input name="Input_findAccount" message="tns:request"/>
 <output name="Output_findAccount" message="tns:response"/>
</operation>
</portType>
<binding name="findAccountJCABinding" type="tns:findAccountPortType">
 <jca:binding XMLRecordConverterCallout="oracle.tip.adapter-fw.record.attunity.AttuXMLRecordConverterImpl"/>
 <operation name="findAccount">
 <jca:operation FunctionName="findAccount" InteractionSpec="com.attunity.adapter.AttuInteractionSpec" ExecutionTimeout="120"/>
 <input/>
 <output/>
 </operation>
</binding>
<service name="findAccountService">
 <port name="findAccountPort" binding="tns:findAccountJCABinding">
 <jca:address adapterInstanceJndi="eis/legacy/findIMSAccount"/>
 </port>
</service>
</plt:partnerLinkType>
Troubleshooting Oracle AS Adapter for IMS/DB involves checking various definitions and properties in Oracle Connect, including daemon status, workspace options, server parameters, and various system logs.

This section contains the following topics:

- Troubleshooting the Daemon
- Resolving Communication Errors
- Resolving Specific Errors

Troubleshooting the Daemon

Troubleshooting the daemon and the communication between Oracle Application Server and OracleAS Adapter for IMS/DB is performed using Oracle Studio. It is used to monitor the daemon and server activity and control what happens to the daemon and server processes.

See Also: Appendix C, "Advanced Tuning of the Daemon" for details about the configuration settings.

This section contains the following topics:

- Starting the Daemon
- Shutting Down the Daemon
- Monitoring the Daemon During Run Time
- Daemon Logs

Starting the Daemon

The daemon is started when OracleAS Adapter for IMS/DB is installed. In case you have shut down the daemon, as described in "Shutting Down the Daemon" on page 5-2, you can restart the daemon as described in the following task.

Note: The daemon is started on the IBM OS/390 or z/OS platform. It cannot be started remotely using Oracle Studio.
Task: Starting the Daemon

Activate `INSTROOT.USERLIB(ATTDAEMN)` as a started task to invoke the daemon. For example, in the SDSF screen, enter the following command:

`'/s ATTDAEMN`

Where `INSTROOT` is the high-level qualifier where Oracle Connect is installed.

See Also: "Starting the Daemon" on page 2-10 for details about the ATTDAEMN JCL

Shutting Down the Daemon

To shut down the daemon use Oracle Studio, as follows:

1. From the Start menu, select Start, Programs, Oracle, and then select Studio.
2. Select the computer defined in "Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio" on page 2-14.
3. Right-click the computer and select Open Runtime Perspective.
4. In the Runtime Explorer, right-click the computer and select Shutdown Daemon.

Monitoring the Daemon During Run Time

Use the Runtime Manager perspective of Oracle Studio to monitor the daemon during run time.

Perform the following steps:

1. From the Start menu, select Start, Programs, Oracle, and then select Studio.
2. Right-click the computer defined in "Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio" on page 2-14, and select Open Runtime Perspective.

You can manage the daemon by expanding the relevant node, daemon, workspace or server process, as described in the following sections.

Daemon (Computer) Options

Right-click the daemon to display the options available for it, including the ability to display the daemon log.

The following table lists the available daemon options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Daemon Configuration</td>
<td>Opens the daemon editor, which enables you to reconfigure the daemon. See Also: Appendix C, "Advanced Tuning of the Daemon" for details about the configuration settings.</td>
</tr>
<tr>
<td>Status</td>
<td>Checks the status of the daemon. The information about the daemon includes the name of the daemon configuration used, the active client sessions, and logging information.</td>
</tr>
<tr>
<td>Reload Configuration</td>
<td>Reloads the configuration after any changes. Any servers currently started are not affected by the changed configuration. See Also: Appendix C, "Advanced Tuning of the Daemon" for details about the configuration settings.</td>
</tr>
</tbody>
</table>
Workspace Options

Right-click a workspace to display the options available for the workspace, including the ability to display the workspace log.

The following table lists the available options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Log</td>
<td>Displays the daemon log. For details see "Daemon Logs" on page 5-4.</td>
</tr>
<tr>
<td>View Events</td>
<td>Displays the daemon events log.</td>
</tr>
<tr>
<td>Daemon Properties</td>
<td>Displays information about the computer where the daemon is running, such as the physical address and any username and password needed to access the computer.</td>
</tr>
<tr>
<td>Recycle servers</td>
<td>Closes all unused servers and prepares all active servers to close when the client disconnects. New connection requests are allocated with new servers.</td>
</tr>
<tr>
<td>Kill servers</td>
<td>Immediately closes all active and unused servers. Note: It is recommended to use this option with caution, as it may lead to data loss.</td>
</tr>
<tr>
<td>Shutdown Daemon</td>
<td>Shuts down the daemon on the computer.</td>
</tr>
<tr>
<td>Rename</td>
<td>Enables changing the name of the daemon displayed in the Runtime Explorer.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes the daemon from the Runtime Explorer.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Refreshes the display.</td>
</tr>
<tr>
<td>Edit Workspace</td>
<td>Opens the daemon editor to enable you to reconfigure the workspace.</td>
</tr>
<tr>
<td>Configuration</td>
<td>See Also: Appendix C, "Advanced Tuning of the Daemon" for details about the configuration settings.</td>
</tr>
<tr>
<td>Status</td>
<td>Checks the status of the workspace whether it is available or not.</td>
</tr>
<tr>
<td>Reload Configuration</td>
<td>Reloads the configuration of the workspace after any changes. Any servers currently started are not affected by the changed configuration.</td>
</tr>
<tr>
<td>View Log</td>
<td>Displays the log for all servers for the workspace. For details see "Daemon Logs" on page 5-4</td>
</tr>
<tr>
<td>View Events</td>
<td>Displays the workspace events log.</td>
</tr>
<tr>
<td>Recycle Servers</td>
<td>Closes all unused servers and prepares all active servers to close when the client disconnects. New connection requests are allocated with new servers.</td>
</tr>
<tr>
<td>Kill Servers</td>
<td>Immediately closes all active and unused servers. Note: It is recommended to use this option with caution, as it may lead to data loss.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes the selected workspace from the Runtime Explorer.</td>
</tr>
</tbody>
</table>

Table 5–1 (Cont.) Daemon Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Log</td>
<td>Displays the daemon log.</td>
</tr>
<tr>
<td>View Events</td>
<td>Displays the daemon events log.</td>
</tr>
<tr>
<td>Daemon Properties</td>
<td>Displays information about the computer where the daemon is running, such as the physical address and any username and password needed to access the computer.</td>
</tr>
<tr>
<td>Recycle servers</td>
<td>Closes all unused servers and prepares all active servers to close when the client disconnects. New connection requests are allocated with new servers.</td>
</tr>
<tr>
<td>Kill servers</td>
<td>Immediately closes all active and unused servers. Note: It is recommended to use this option with caution, as it may lead to data loss.</td>
</tr>
<tr>
<td>Shutdown Daemon</td>
<td>Shuts down the daemon on the computer.</td>
</tr>
<tr>
<td>Rename</td>
<td>Enables changing the name of the daemon displayed in the Runtime Explorer.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes the daemon from the Runtime Explorer.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Refreshes the display.</td>
</tr>
</tbody>
</table>

Table 5–2 Workspace Options
Troubleshooting the Daemon

Oracle Application Server Adapter for IMS/DB User's Guide

Server Options

Right-click a server to display the options available for the server, including the ability to display the server log.

The options available at the server level are listed in the following table:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Checks the status of the server. The information about the server includes the server mode and the number of active client sessions for the server.</td>
</tr>
<tr>
<td>View Log</td>
<td>Displays the server log. For details see "Daemon Logs" on page 5-4.</td>
</tr>
<tr>
<td>View Events</td>
<td>Displays the server events log.</td>
</tr>
<tr>
<td>Kill server</td>
<td>Ends the server process, regardless of its activity status.</td>
</tr>
<tr>
<td>Note:</td>
<td>It is recommended to use this option with caution, as it may lead to data loss.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Refreshes the display.</td>
</tr>
</tbody>
</table>

Daemon Logs

Oracle Connect produces a number of logs that you can use to troubleshoot problems. The daemon manages the following logs:

- Daemon
- Workspace
- Server process

The Runtime Manager perspective of Oracle Studio provides a monitor for these logs as shown in the following figure:
Display the required log by right-clicking the level you want (daemon, workspace or
server) and selecting View Log. Each log is displayed in a different tab. You can flick
between logs by clicking the required tab.

The Daemon Log Monitor

The daemon log displays activity between clients and the daemon, including clients
logging in and logging out from the daemon.

You can change the level of logging by clicking Properties. The following levels of
logging are available:

- **none**: The log displays who has logged in and out from the daemon.
- **error**: The log displays who has logged in and out from the daemon and any
 errors that have been generated.
- **debug**: The log displays who has logged in and out from the daemon, any errors
 that have been generated, and any tracing that has been specified in the daemon
 configuration.

See Also: "Daemon Logging" on page C-3.

The Workspace Log Monitor

The workspace log displays information about the workspace being used by the client.

You can change the level of logging by clicking Properties. The following levels of
logging are available:

- **none**: The log displays who has connected and disconnected from the server
 process.
- **error**: The log displays who has connected and disconnected from the server
 process and any errors that have been generated.
- **debug**: The log displays who has connected and disconnected from the server
 process, any errors that have been generated, and any tracing that has been
 specified in the daemon configuration.

See Also: "WS Logging" on page C-13.

The Server Log Monitor

The server log displays activity between clients and the server process used by that
client to handle the client request.

You can change the level of logging by clicking Properties. The following levels of
logging are available:

- **none**: The log displays who has connected and disconnected from the server
 process.
- **error**: The log displays who has connected and disconnected from the server
 process and any errors that have been generated.
- **debug**: The log displays who has connected and disconnected from the server
 process, any errors that have been generated, and any tracing that has been
 specified in the daemon configuration.

See Also: "WS Logging" on page C-13.
Resolving Communication Errors

When Oracle Studio disconnects from the IBM OS/390 or z/OS computer, the computer is displayed in Oracle Studio with an X in a red circle. If this situation occurs, try to access the computer later.

The following table describes the various scenarios that may exist when Oracle Application Server disconnects from the IBM OS/390 or z/OS computer.

Table 5-4 Scenarios When a Client Is Disconnected

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Idle (Not Processing a Client Request)</th>
<th>Processing a Client Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit Disconnect</td>
<td>The server is immediately notified of the disconnect and either becomes available for use by another client or terminates (if it is not reusable).</td>
<td>The server does not know that the client has disconnected and continues processing. When processing completes, the server tries to reply to the client and immediately gets an error that the connection was lost. The server either becomes available for use by another client or terminates (if it is not reusable).</td>
</tr>
<tr>
<td>Abrupt Disconnect</td>
<td>The server does not know that the client has disconnected and remains in the idle state. After timing out based on whichever comes first of the value for the client idle timeou daemon workspace parameter or the TCP/IP KEEPALIVE parameter, the server is notified of the disconnect and either becomes available for use by another client or terminates (if it is not reusable).</td>
<td>The server does not know that the client has disconnected and continues processing. When processing completes, the server tries to reply to the client. After an interval (typically several minutes, depending on the TCP/IP configuration), during which the TCP/IP subsystem retries sending the message to the client, the server assumes that the client has terminated and notifies the server that the connection has been closed. The server either becomes available for use by another client or terminates (if it is not reusable).</td>
</tr>
</tbody>
</table>

To troubleshoot client/server communication problems, you need to be familiar with the following:

- Daemon configuration settings
- Oracle Connect security
- TCP/IP subsystem. Oracle Application Server Adapter for IMS/DB uses TPC/IP for internal intercomputer communications.
- System details, such as the account name and password of the administrator account, the IP address of the computers involved and whether a portmapper is being used.

Resolving Specific Errors

The following error messages relate to errors received from Oracle Connect.

C007: Server initialization failed.

Cause: The daemon failed to start its network service.

Action: Check the processes being run on the system to see whether another daemon or program is using the port specified in the oc4j-ra.xml file for the adapter.

Action: Check the TCP/IP subsystem on the current computer by trying to ping it or run FTP or Telnet to or from it.
Action: Check whether the daemon has privileges to use the TCP/IP services on the current computer with the port specified in the oc4j-ra-xml file for the adapter.

C008: Setting server event handler failed.
Cause: Internal error.
Action: Contact Oracle Support Services.

C009: IRPCD process has been terminated by user request.
Cause: This message is informational only. The daemon successfully shut down.
Action: No action required.

C00A: Application %s not found.
Cause: The requested workspace does not exist.
Action: Check that the workspace defined in the oc4j-ra-xml file is also defined in the daemon configuration on the IBM OS/390 or z/OS platform. Use the Status option in the Runtime Manager perspective.

C00B: Invalid IRPCD client context.
Cause: A non-Oracle Connect program is trying to connect to the daemon.
Action: Check the processes and kill the relevant process with a system command.

C00C: Daemon request requires a server login.
Cause: A non-Oracle Connect server or program was trying to use a daemon service reserved for Oracle Connect servers.
Action: Check the processes and kill the relevant process with a system command.

C00D: Daemon request requires a client login.
Cause: The requested daemon requires a valid client login, which was not supplied.
Action: Reissue the command and specify a username and password.
Action: Edit the user profile in Oracle Studio to specify a valid username and password for the IBM OS/390 or z/OS platform.

See Also: "Setting Up Run-Time User Access to the IBM OS/390 or z/OS Platform" on page 2-17.

C00E: Daemon request requires an administrator login.
Cause: The requested daemon service requires an administrative login.
Action: Edit the daemon security in Oracle Studio to specify a valid administrator username and password.

See Also: "Daemon Security" on page C-5.

C00F: Anonymous client logins are not allowed.
Cause: The daemon is configured to require a valid username and password, which were not supplied.
Action: Enable anonymous client access in daemon security in Oracle Studio.

See Also: "Daemon Security" on page C-5.
Action: Edit the user profile in Oracle Studio to specify a valid username and password for the IBM OS/390 or z/OS platform.

See Also: "Setting Up Run-Time User Access to the IBM OS/390 or z/OS Platform" on page 2-17.

C010: Anonymous server logins are not allowed.
Cause: Internal error.
Action: Contact Oracle Support Services.

C011: Client has already timed out.
Cause: A server process was started on behalf of a client and the client has timed out before the server completed its startup.
Action: Increase the Connect timeout value for the server workspace in the WS Info. tab of the daemon configuration.

See Also: "WS Info." on page C-7.

C012: Invalid username/password.
Cause: Invalid username/password supplied when logging on to the daemon.
Action: See the daemon log file for the reason that the username/password were not accepted.
Action: Edit the user profile in Oracle Studio to specify a valid username and password for the IBM OS/390 or z/OS platform.

See Also: "Setting Up Run-Time User Access to the IBM OS/390 or z/OS Platform" on page 2-17.

Action: Make sure the daemon is started from an APF-authorized account that is allowed to check for system usernames and passwords.

C014: Client connection limit reached - try later.
Cause: The maximum number of server processes for the workspace has been reached, and none of the active servers could accept the client connection.
Action: Increase the value of the Number of sub-tasks in the WS Server section of the daemon configuration.

See Also: "WS Server" on page C-9.

Action: Try running the command later.

C015: Failed to start server process.
Cause: The Oracle Connect daemon failed to start a server process or the started server failed upon starting up.
Action: See the daemon and server logs for the reason the server did not start. For example, you might receive an message with a reason specified in the log file similar to the following: [C015] Failed to start NAVIGATOR server process: No server account name defined for anonymous client; code: -1601: SQL code: 0

Action: If you use impersonation, check the user profile on the client. Also see C069.
Resolving Specific Errors

Troubleshooting OracleAS Adapter for IMS/DB 5-9

To set impersonation: APF authorize all the steplibs in the server script on OS/390 computer. For example:

```
setprog... ada622-volume adavol
CICS.CICS.SDFHEXCI - p390dx
INSTROOT.load - 111111
INSTROOT.loadaut - 111111
```

`INSTROOT` is the high level qualifier where Oracle Connect is installed.

In the WS Security tab of the Navigator workspace, under the daemon node in the Configuration Explorer, check the Use specific workspace account and clear the Workspace account field of all values.

C016: Unexpected server state.
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C017: Active daemon clients exist. Shutdown canceled.
 Cause: One or more clients are still connected to the daemon.
 Action: Wait until all the clients log off the daemon and then retry the shutdown operation.

C019: Request is not granted because someone else is locking it.
 Cause: A request to lock a resource managed by the daemon was denied because another user has locked the resource.
 Action: Wait for the other user to release the resource.

C01A: Lock %s not found.
 Cause: A request to free a resource was denied because the caller did not lock that resource (for example, another user shut down the daemon you are working with).
 Action: Contact Oracle Support Services.

C01B: Unexpected error in %s.
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C01C: Cannot update configuration without _APPLICATIONS lock.
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C01D: Need to lock the application first.
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C01F: Cannot set configuration of a deleted application.
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C020: Failed in looking up host name (gethostname())
 Cause: Cannot connect to the remote computer.
Action: Check that the name specified for the computer in the oc4j-ra-xml file is correct.

Action: Check that a domain name server (DNS) is available to look up the host name.

Action: Check the TCP/IP subsystem on the computer by trying to ping it or run FTP or Telnet to or from it.

C021: Required variable %s not found
Cause: An environment variable required by the Oracle Connect server was not defined when the server started up.
Action: Check whether the startup script makes any changes to the environment variables used by Oracle Connect.
Action: Check whether the system-defined environment size is sufficiently large for Oracle Connect.

C022: Server failed to connect and register with the daemon.
Cause: An Oracle Connect server started by the daemon was not able to connect or register back with the daemon.
Action: Try to connect again.
Action: Increase the Connect timeout value for the server workspace in the WS Info. section of the daemon configuration.

See Also: "WS Info.” on page C-7.

Action: Check that the startup script for the workspace launches the correct version of Oracle Connect.
Action: Increase the value of the Set maximum number of servers and Maximum parameter for the Clients per server limit in the WS Server section of the daemon configuration.

See Also: "WS Server” on page C-9.

C023: Call made to unregistered module %d.
Cause: Internal error.
Action: Contact Oracle Support Services.

C024: Failed to create a socket.
Cause: An error occurred within the TCP/IP subsystem.
Action: Check whether you have sufficient system privileges.
Action: Check the TCP/IP subsystem on the computer by trying to ping it or run FTP or Telnet to or from it.

C025: Failed to set socket option %s
Cause: An error occurred within the TCP/IP subsystem.
Action: Check whether you have sufficient system privileges.
Action: Check the TCP/IP subsystem on the computer by trying to ping it or run FTP or Telnet to or from it.
C026: Failed to bind server to port %s
 Cause: An Oracle Connect server or daemon was not able to bind to the specified port.
 Action: Check whether another program is holding the port that was specified in the oc4j-ra-xml file for the adapter.
 Action: Check whether you have sufficient system privileges.

C027: Cannot create TCP service for %s
 Cause: An error occurred within the TCP/IP subsystem
 Action: Check the TCP/IP subsystem on the computer by trying to ping it or run FTP or Telnet to or from it.

C028: Unable to register (%s, %d, tcp)
 Cause: This error may happen when a portmapper is used (host:a) but the portmapper is not available.
 Action: Enable the portmapper.
 Action: Avoid using the portmapper (by not using :a when starting the daemon).

C029: Failed to create a server thread
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C02A: Server thread failed to start
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C02B: Stopping the %s server - no client
 Cause: A server that was started by the Oracle Connect daemon to service a client did not get a client connection request within one minute. The server terminates.
 Action: In most cases, the client was terminated by a user request, so no specific action is required.
 Action: If no client can connect to the server, it may be that the server has multiple network cards and the Oracle Connect daemon is not aware of this. In this case, start the daemon with an IP address.

C02C: Unexpected event - a termination signal intercepted
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C02D: Modified transport, context unknown/lost
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C02F: Corrupted arguments passed to procedure
 Cause: Internal error.
 Action: Contact Oracle Support Services.

C030: Unable to free arguments for %s() of %s
 Cause: Internal error.
Action: Contact Oracle Support Services.

C031: Cannot register a non-module RPC %s
Cause: Internal error.
Action: Contact Oracle Support Services.

C032: An IRPCD program is required
Cause: Internal error.
Action: Contact Oracle Support Services.

C033: An IRPCD super-server is required for module events
Cause: Internal error.
Action: Contact Oracle Support Services.

C034: An invalid super-server module ID was specified, %d
Cause: Internal error.
Action: Contact Oracle Support Services.

C035: Out of memory
Cause: Not enough memory to service a client request.
Action: Increase process memory quota or add memory to the system.

C036: Failed to register RPC procedure module %s
Cause: Internal error.
Action: Contact Oracle Support Services.

C037: Failed to register an invalid RPC procedure number %x
Cause: Internal error.
Action: Contact Oracle Support Services.

C038: Cannot reregister RPC procedure number %x
Cause: Internal error.
Action: Contact Oracle Support Services.

C042: Remote call to %s failed; %s
Cause: Remote call to API failed.
Action: Check the daemon log file.

Action: If necessary, change the level of detail written to the log file to help resolve the problem.

See Also: "Daemon Logging" on page C-3.

C043: Failed to connect to host %s;%s
Cause: The remote host is not correctly defined to Oracle Connect or is not working.
Action: Check the remote computer definition in the oc4j-ra-xml file for the adapter.

Action: Check that the daemon is up on the IBM OS/390 or z/OS platform. Use the Status option in the Runtime Manager perspective.
Action: Check the network connection by trying to ping the host computer or run FTP or Telnet to or from it.

C045: Failed to create a service thread
Cause: The server failed to create a thread to service a client request.
Action: A system or process quota limit has been exceeded. Either increase the quota or lower the Clients per server limit field value in the WS Info. section of the daemon configuration.

See Also: "WS Info." on page C-7.

C047: %s out of memory
Cause: Not enough memory was available to Oracle Connect to complete a requested operation.
Action: Terminate unnecessary processes running on the server.
Action: Add more memory to the system.
Action: Allow the process to use more memory.
Action: Limit the number of processes the daemon may start. If the demand for servers exceeds the number of available servers, clients get a message telling them the maximum number of servers has been reached and asking them to try again later.

C066: Communication error with the server%s
Cause: Connection to the Oracle Connect daemon or server failed, or an established session with a server has failed.
Action: Check the remote computer definition in the oc4j-ra-xml file.
Action: Check that the daemon is up on the IBM OS/390 or z/OS platform. Use the Status option in the Runtime Manager perspective.
Action: In case of a network problem, check the network connection by trying to ping the host computer or run ftp or telnet to or from it.

C067: Unexpected error occurred in server function %s
Cause: One of the server functions has exited with an exception (such as an abend, or an Invalid Instruction).
Action: Contact Oracle Support Services.

C068: Fail to login daemon
Cause: The daemon is not running on the server computer.
Action: Use the Status in Oracle Studio Runtime Manager perspective to check whether a daemon is running on the server
Action: Have the system administrator reinstall Oracle Connect on the server.

C069: Fail to get server
Cause: The Oracle Connect daemon on the server computer could not start a server process to serve the client. A separate message provides more detail on why the server process could not start.
Action: There are many possible causes of this error. If the cause is not clear from the related message, see the Oracle Connect daemon log file on the server.
Action: The resolution to this error is highly dependent on the particular cause. The following are some typical causes and resolutions.

Action: Some process creation quota was exceeded. Either try again later or increase the quota or the other relevant system resources.

Action: The server startup script failed.

Action: The username given is not allowed to use the requested server. Use an authorized username.

Action: A limit on concurrent clients for a server has been reached. Try again later.

Action: If you use impersonation, check the user profile on the client. Also see C015.

C06A: Failed to connect to server

Cause: The server assigned to the client did not accept the client connection. A separate message provides more detail about why the server process did not accept the connection.

Action: See the daemon and server log files for the reason that the server was not available to accept its assigned client.

C06B: Disconnecting from server

Cause: A network failure, or a server computer failure or a server program failure caused the connection to abort. The currently active transaction is aborted as well.

Action: Oracle Connect automatically tries to reestablish a connection with a server upon the next SQL command issued against the server. Once the network or computer failure is corrected, the connection to the daemon is reestablished automatically.

C070: Server failed to send reply to the client

Cause: Server terminated unexpectedly.

Action: Unless the client was intentionally stopped (for example, using Control-C), contact Oracle Support Services.

C071: Connection to server %s was disconnected. Cursors state was lost.

Cause: Either a network failure, a server computer failure or a server program failure caused the connection to abort. The currently active transaction is aborted as well.

Action: Normally, Oracle Connect automatically tries to create a new session with the server upon the next attempt to access the server. If the network and server are accessible, the next operation should succeed. Otherwise, the network or server computer should be fixed before connection can be resumed.

Action: In case of a server crash not related to callable user code, contact Oracle Support Services.

C072: Reconnect to server %s

Cause: This is an informational message only. The client has reestablished its connection with the server.

Action: No action is required.

C073: The parameters passed to the admin server are invalid: %s

Cause: Internal error.
Resolving Specific Errors

Action: Contact Oracle Support Services.

C074: No authorization to perform the requested operation (%)
Cause: User/account has insufficient privileges.
Action: Grant administrative privileges to the user/account using the Administrator parameter of the Daemon Security or WS Security sections in the daemon configuration.

See Also: "Daemon Security" on page C-5 or "WS Security" on page C-16.

C075: Failed to register daemon in the TCP/IP service table
Cause: Registration of the daemon in the TCP/IP services file has failed.
Action: Check that the account running the daemon has the permissions to update the TCP/IP services file.

E001: Failed in lock/release operation
Cause: A lock or release operation of a global resource has failed. A separate message provides more details. The separate message specifies the cause of this error.
Action: There are various causes for this error, including lack of sufficient privileges or a system resource shortage.

J0006: Operation on already closed connection was requested
Cause: A request using a connection that was closed was attempted.
Action: Reopen the connection and try again.

J0028: Internal Error: Unknown XML tag %s
Cause: Internal error.
Action: Contact Oracle Support Services.

J0030: Internal Error: Method %s needs to be overwritten
Cause: Internal error.
Action: Contact Oracle Support Services.

J0031: Internal Error: Required attribute %s not found in %s verb
Cause: Internal error.
Action: Contact Oracle Support Services.

J0032: Internal Error: %s ACP object was returned instead of %s as expected
Cause: Internal error.
Action: Contact Oracle Support Services.

J0033: Internal Error: Attempt to work with closed socket
Cause: Internal error.
Action: Contact Oracle Support Services.

J0034: Internal Error: corrupted message; %s bytes read instead of %s as expected
Cause: XML sent from the client to the server has become corrupted.
Action: Check compression settings for XML transferred from the client to the server. If the setting are OK, retry sending the request from the client to the server.

See Also:
J0035: Internal Error: Invalid redirection address %s returned by daemon
 Cause: Internal error.
 Action: Contact Oracle Support Services.

J0036: %s: %s
 Cause: One of the following errors was received from the server: 0 - server.internalError, 1 - client.xmlError, 2 - client.requestError, 3 - client.noActiveConnection, 4 - server.resourceLimit, 5 - server.redirect, 6 - client.noSuchResource, 7 - client.authenticationError, 8 - client.noSuchInteraction, 9 - client.noSuchConnection, 10 - server.notImplemented, 11 - server.xaProtocolError, 12 - server.xaUnknownXID, 13 - server.xaDuplicateXID, 14 - server.xaTransactionTooFresh, 17 - server.resourceNotAvailable, 19 - client.authorizationError
 Action: Review the server log file to determine the problem.

J0037: Internal Error: No ACP response when %s was expected
 Cause: Internal error.
 Action: Contact Oracle Support Services.

J0039: Internal Error: ACP root is not found in the XML
 Cause: Internal error.
 Action: Contact Oracle Support Services.

J0040: Internal Error: Input record is required for interaction %s execution
 Cause: Internal error.
 Action: Contact Oracle Support Services.

J0048: Invalid metadata type %s is passed to %s function
 Cause: A request for metadata was not fulfilled.
 Action: Check the validity of the request.

J0050: Key of the put method must be of type string
 Cause: In either a GET or PUT operation, the key must be a string.
 Action: Change the key used in the operation to a valid key.

J0059: Value %s is invalid for attribute %s
 Cause: A request for metadata was not fulfilled.
 Action: Check the validity of the request.

J0068: Value must be of type string
 Cause: In a PUT operation, the value must be a string.
 Action: Change the value used in the operation to a valid value.

J0069: Value must be of type MappedRecord
 Cause: In a PUT operation, the value must be a mapped record.
 Action: Change the value used in the operation to a valid value.

J0070: Value must be of type MappedRecord[]
 Cause: In a PUT operation, the value must be a mapped record array.
 Action: Change the value used in the operation to a valid value.
J0071: Bad key for mapped record, #element or #element[] is required

 Cause: In a PUT operation, the value must be mapped record array.

 Action: Change the key used in the record to a valid key.

J0072: Value must be of type Object[]

 Cause: In a PUT operation, the value must be mapped record array.

 Action: Change the value used in the operation to a valid value.

J0078: In nonpersistent connection and the nonkeep alive encryption is not supported - ignored

 Cause: Encryption is not supported for nonpersistent connections.

 Action: There is no action to take. This warning can be ignored.

J0079: Invalid argument passed to %s - Argument: %s, Value: %s

 Cause: The value pass.

 Action: Change the argument used to a number.
Oracle Connect includes a number of tuning parameters that can improve performance. Specifically, the daemon can be configured to optimize communication between the IBM OS/390 or z/OS platform and a client.

In addition, the binding environment can be tuned to optimize the request handling.

This section contains the following topics:

- Configuring the Daemon for High Availability
- Configuring a Binding Environment
- Migration Considerations
- Security Considerations
- Transaction Support

Configuring the Daemon for High Availability

The daemon workspace is responsible for allocating server processes to clients. You can configure a workspace to use a pool of server processes so that a server process is always available for a client request.

Use Oracle Studio to maintain daemon and daemon workspace parameters to control the allocation of server processes and their management in a pool.

You can also have a number of daemon workspace configurations. Thus, you can create individual workspaces for use with different adapters.

Adding a New Daemon Workspace Configuration

Use Oracle Studio to add a new daemon configuration. You can set up different daemon configurations for different situations.

Perform the following steps to add a new daemon workspace configuration:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. In the Configuration Explorer, expand the node of the required computer.
3. Expand the Daemons node. The daemon configurations available on this computer are listed.
4. Right-click IRPCD and select New Workspace. The New Daemon Workspace screen is displayed.
5. Specify a name for the new workspace and optionally, provide a description.
6. Specify whether you want it to have default settings or copy the properties of an existing workspace.

To copy the properties of an existing workspace, click Ellipsis and select the workspace from which you want to copy the properties.

7. Click Next. The Select Scenario screen is displayed.
8. Select Application Server using connection pooling and click Next.
9. Continue through the wizard, specifying the required values for the workspace.
10. Click Finish.

The workspace is displayed under the IRPCD daemon node.

Editing the Workspace

You edit a workspace by using the tabs described in the following table:

<table>
<thead>
<tr>
<th>Tab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS Info</td>
<td>Specifies general information including the server type, the command procedure used to start the workspace, the binding configuration associated with this workspace and the timeout parameters.</td>
</tr>
<tr>
<td>WS Server Mode</td>
<td>Specifies workspace server information including features that control the operation of the servers started up by the workspace and allocated to clients.</td>
</tr>
<tr>
<td>WS Logging</td>
<td>Specifies parameters for logging and the format to use for a log file.</td>
</tr>
<tr>
<td>WS Security</td>
<td>Specifies administration privileges, user access, ports available to access the workspace and workspace account specifications.</td>
</tr>
<tr>
<td>WS Governing</td>
<td>This tab is not applicable for use with OracleAS Adapter for IMS/DB.</td>
</tr>
</tbody>
</table>

Use Oracle Studio to access these tabs, as follows:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. In the Configuration Explorer, expand the node of the required computer.
3. Expand the Daemons node. The daemon configurations available on this computer are listed.
4. Expand the IRPCD node. The daemon workspaces are listed.
5. Right-click the required workspace and select Edit Workspace.
6. Click the tab which contains the information you want to edit. For full details of the tabs and the fields in these tabs, refer to “Workspaces” on page C-7.
7. After editing the workspace, click Save.

Configuring the Server Mode

The server mode dictates how the daemon starts up new processes. The daemon supports the following server modes:
- singleClient: Each client receives a dedicated server process. The account in which a server process runs is determined either by the client login information or by the specific server workspace. This mode enables servers to run under a particular user account and isolates clients from each other (because each receives its own process). However, this server mode incurs a high overhead due to process startup times and may use a lot of server resources (because it requires as many server processes as concurrent clients).

- multiClient: Clients share a server process and are processed serially. This mode has low overhead because the server processes are already initialized. However, because clients share the same process, they may impact one another, especially if they issue lengthy queries. The number of clients that share a process is determined by the Clients per server limit (the maximum number of concurrent clients a server process for the current workspace accepts).

- reusable: This is an extension of the single client mode. Once the client processing finishes, the server process does not die and can be used by another client, reducing startup times and application startup overhead. This mode does not have the high overhead of single client mode because the servers are already initialized. However, this server mode may use a lot of server resources (because it requires as many server processes as concurrent clients).

The other modes can be set so that the server processes are reusable by setting the number of times a process can be reused with the Reuse limit value (the maximum number of times a particular server process can be reused or how many clients it can serve before it is retired). Reuse of servers enhances performance because it eliminates the need to repeat initializations. However, reuse runs a risk of higher memory leakage over time. The default value for the Reuse limit field is None, indicating that no reuse limit is enforced.

Set the server mode in the WS Server tab of the daemon workspace editor as shown in the following figure:

Figure 6–1 The WS Server tab

When using any of the server modes you can specify a pool of server processes. These server processes are started when the daemon starts and are maintained in a pool. The server processes are available for use by new client requests from the pool, saving initialization time. Instead of starting a new server process each time one is requested...
by a client, the client receives a process immediately from the pool of available processes. When the client finishes processing, this server process either dies, or if reusable servers have been specified, it is returned to the pool.

You set up a pool of server processes by specifying the following parameters in the WS Server tab.

- **Initial number of servers**: The number of server processes that are prestarted for this workspace when the daemon starts up. These are available for use by new client processes with minimal initialization time. Instead of starting a new server process each time one is requested by a client, the daemon immediately allocates (to the client) a server from a pool of available servers. When the number of available server processes drops lower than the value specified in the Minimum number of available servers field, the daemon again starts server processes until the specified number of available servers is reached. The default for this parameter is 0, meaning that no servers are prestarted for this workspace.

- **Minimum number of available servers**: The minimum number of server processes in the prestarted server's pool before the Oracle Connect daemon resumes creating new server processes (up to the number specified in the Initial number of servers field value, described earlier). If this parameter is set to a value greater than the Initial number of servers field value, the daemon considers the value to be the same as the value specified in the Initial number of servers field. In this case, a new server process is started and added to the pool each time a server process is removed from the pool and allocated to a client). The default for this parameter is 0, which means that new servers are created only when there are no other available servers.

- **Set maximum number of servers**: The maximum number of available server processes pooled for this workspace. If the server is reusable, once a client disconnects from the server, the daemon returns the server to the pool of available servers. If the limit is reached, excess server processes are discarded.

- **Number of sub-tasks**: The number of sub-tasks for a server that are prestarted for this workspace when the daemon starts up. In addition to setting up a pool of server processes as described earlier, you can set additional server processes as sub-tasks by specifying this parameter. Thus, setting 10 servers and 10 prestarted sub-tasks results in 100 tasks started (10 sub-tasks for each process).

Configuring a Binding Environment

Each binding configuration includes the following information:

- Environment settings, which are used to configure the environment used by any of the adapters defined in the binding.

- Application adapters on the current computer.

To configure environment settings in Oracle Studio, perform the following steps:

1. From the **Start** menu, select **Programs**, **Oracle**, and then select **Studio**.
2. In the Configuration Explorer, expand the node of the required computer.
3. Expand the **Bindings** node. The binding configurations available on this computer are listed.
4. Right-click **NAV** and select **Edit Binding**.
5. In the **Properties** tab, edit the environment settings as needed. To edit an environment setting, expand the property category and click the value to edit.
The binding **Properties** tab is shown in the following figure:

Figure 6–2 The binding Properties tab

The binding environment is divided into the following categories:

- **comm Category**
- **debug Category**
- **miscellaneous Category**
- **odbc Category**
- **oledb Category**
- **optimizer Category**
- **queryProcessor Category**
- **transactions Category**
- **tuning Category**

comm Category

The following table lists the parameters that define the communication buffers:

Table 6–2 comm Category Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>comCacheBufferSize</td>
<td>Specifies the size of a memory buffer on a client, which is used by the Oracle Connect client/server to store read-ahead data. The default is 200000 bytes.</td>
</tr>
<tr>
<td>comMaxSocketSize</td>
<td>Specifies the maximum bytes that can be written in one chunk on a socket. The default is -1 (no limitation).</td>
</tr>
<tr>
<td>comMaxXmlInMemory</td>
<td>Specifies the maximum size of an XML document held in memory. The default is 65535 bytes.</td>
</tr>
<tr>
<td>comMaxXmlSize</td>
<td>Specifies the maximum size of an XML document passed to another computer. The default is 65535 bytes.</td>
</tr>
</tbody>
</table>

debug Category

The following table lists the parameters that define debugging and logging operations:
Table 6–3 debug Category Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acxTrace</td>
<td>When set to true, the input xml sent to the back-end adapter and the output xml returned by the back-end adapter are written to the log.</td>
</tr>
<tr>
<td>analyzerQueryPlan</td>
<td>This parameter is not applicable for use with OracleAS Adapter for IMS/DB.</td>
</tr>
<tr>
<td>gdbTrace</td>
<td>This parameter is not applicable for use with OracleAS Adapter for IMS/DB.</td>
</tr>
<tr>
<td>generalTrace</td>
<td>When set to true, logs general trace information. The default writes only error messages to the log.</td>
</tr>
<tr>
<td>logFile</td>
<td>The high-level qualifier of the log file for messages. The following type of message are written to the log:</td>
</tr>
<tr>
<td></td>
<td>- Error messages</td>
</tr>
<tr>
<td></td>
<td>- Trace information and information about the query optimization strategy, if generalTrace is set to true.</td>
</tr>
<tr>
<td>oledbTrace</td>
<td>This parameter is not applicable for use with OracleAS Adapter for IMS/DB.</td>
</tr>
<tr>
<td>optimizerTrace</td>
<td>This parameter is not applicable for use with OracleAS Adapter for IMS/DB.</td>
</tr>
<tr>
<td>queryWarnings</td>
<td>This parameter is not applicable for use with OracleAS Adapter for IMS/DB.</td>
</tr>
<tr>
<td>traceDir</td>
<td>This parameter is not applicable for use with OracleAS Adapter for IMS/DB.</td>
</tr>
</tbody>
</table>

miscellaneous Category

The following table lists the parameters that define miscellaneous operations, including globalization support and the directory where temporary files are written:

Table 6–4 misc Category Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>codepage</td>
<td>For use with globalization support to identify the codepage for the workspace. See also: Appendix E, “Globalization Settings”.</td>
</tr>
<tr>
<td>cvtSeverityLevel</td>
<td>The data type conversion policy when a conversion error occurs:</td>
</tr>
<tr>
<td></td>
<td>0 (Default): The data in the output column will be a null or empty value.</td>
</tr>
<tr>
<td></td>
<td>1: The data in the output column will be a null or empty value and the error is reported to the log.</td>
</tr>
<tr>
<td></td>
<td>2: An error is reported and processing stops</td>
</tr>
<tr>
<td>edit</td>
<td>This parameter is not applicable for use with OracleAS Adapter for Tuxedo.</td>
</tr>
<tr>
<td>language</td>
<td>Identifies the application language. A default codepage is selected based on the value specified for this parameter. See also: Appendix E, “Globalization Settings”.</td>
</tr>
</tbody>
</table>
Configuring a Binding Environment

Table 6-4 (Cont.) misc Category Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| nlsString | Specifies the codepage used by a field whose data type is defined as nlsString. Use this for a field whose codepage is other than that of the computer codepage. This parameter includes the following values:
 ■ The name of the codepage.
 ■ Whether the character set reads from right to left (as in middle eastern character sets).
 The default is false. |
| tempDir | The directory where temporary files are written, including the temporary files created for use by hash joins and for sorting files. The default is the current high-level qualifier. |
| year2000Policy | Determines the way two-digit years are converted into four-digit years. When the year2000Policy parameter is not set, or when it is set to a value outside the range of values defined for the policy, as described in the following paragraphs, a default value of 5 and the Sliding Base Year policy is used. Two policies are provided:
 Fixed Base Year: year2000Policy is set to a value greater than, or equal to 1900. In this case, the value of year2000Policy is the first four-digit year after 1900 that can be represented by a two-digit year. For example, if year2000Policy is set to 1905, the years 2000->2004 will be represented by 00->04. All other two digits will map to 19xx.
 Sliding Base Year: year2000Policy is set to a positive value less than 100. In this case, the value of year2000Policy represents the number of years ahead of the current year that can be represented by a two-digit number. With each passing year the earliest year that can be represented by a two-digit number changes to a year later. |

odbc Category

The odbc parameters are not applicable for use with OracleAS Adapter for IMS/DB.

oledb Category

The oledb parameters are not applicable for use with OracleAS Adapter for IMS/DB.

optimizer Category

The optimizer parameters are not applicable for use with OracleAS Adapter for IMS/DB.
Migration Considerations

queryProcessor Category

The queryProcessor parameters are not applicable for use with OracleAS Adapter for IMS/DB.

transactions Category

The following table lists the parameters that define transaction support:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>convertAllToDistributed</td>
<td>When set to true, converts all simple transactions into distributed transactions.</td>
</tr>
<tr>
<td>convertAllToSimple</td>
<td>When set to true, converts all distributed transactions into simple transactions.</td>
</tr>
<tr>
<td>disable2PC</td>
<td>When set to true, disables two phase commit capabilities, even in drivers that support two phase commit.</td>
</tr>
<tr>
<td>logFile</td>
<td>The high-level qualifier and name of the log file that logs activity when using transactions. The logfile parameter can also include the keyword NORRS after a comma (so that the format is log,NORRS) when RRS is not running on the OS/390 or z/OS platform.</td>
</tr>
<tr>
<td>recoveryDelay</td>
<td>The number of minutes from the start of a transaction before any recovery operation on that transaction can be attempted. The default is 15 minutes.</td>
</tr>
<tr>
<td>useCommitConfirmTable</td>
<td>This parameter is not applicable for use with OracleAS Adapter for IMS/DB.</td>
</tr>
</tbody>
</table>

tuning Category

The tuning parameters are not applicable for use with OracleAS Adapter for IMS/DB.

Migration Considerations

You can migrate an adapter configuration from one platform to another. The configuration information is stored in the Oracle Connect repository on the source platform and is exported to an XML file which can then be imported to the target platform.

Note that when migrating a configuration, any file names and paths that are specific to the source platform must be changed to valid files on the target platform.

To migrate an adapter configuration using Oracle Studio, perform the following steps:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. In the Configuration Explorer, right-click the required computer, and select Export XML definitions.
3. Specify the path and name of the XML file where the XML representation of the computer and its complete configuration is stored.
4. Edit any paths in the XML definition to the paths required on the target platform. For example, the setting for the serverLogFile might need changing, depending on the platform.
5. Set up the target platform in Oracle Studio in the same way you set up the source platform, as described in "Setting Up the IBM OS/390 or z/OS Platform in Oracle Studio" on page 2-14.

6. In the Configuration Explorer, right-click the target computer and select Import XML definitions.

7. Import the XML file to the target platform.

Security Considerations

Oracle Connect works within the confines of the platform security system. For example, on an OS/390 computer with RACF installed, and with the workspace server mode set to multi-tasking, a TRACROUTE VERIFY is performed for each task in the address space, according to the client connection.

In addition, Oracle Connect provides the following security:

- A binary XML encryption mechanism, which is activated as follows:
 1. The client’s first message to the server includes a pre-defined shared key, including the key name and value in the connection string. The server gets the key value for the key name passed from the client from the native object store (NOS).
 2. The server generates a random 128-bit RC4 session key which is returned encrypted to the client, using the shared key. If no predefined shared key is provided, then a predefined, hardcoded key is used (this key is hardcoded on the client and on the server).
 3. Passwords are always encrypted when passed over the wire, using an RC4, 128-bit session key, regardless of whether the entire session is encrypted or not.
 4. If a predefined shared key was provided, then the entire session is encrypted. Otherwise, only the password exchange is encrypted (using the hardcoded key).

- Credentials: Passwords and usernames exchanged over the network are encrypted using a pre-defined, hardcoded, 128-bit RC4 session key.

- Design Time: Security within Oracle Studio to grant access to Oracle Studio itself and to grant access to computers, user profiles and workspaces.

- Run time: Security used to access IMS/DB, including controlling the daemon for the access.

Setting Design Time Security

Setting design time security is described in the following sections:

- Securing access to Oracle Studio is described in "Setting Password Access to Oracle Studio" on page 2-15.

- Securing rights to configure a computer in Oracle Studio is described in "Specifying Users with Administrative Rights" on page 2-16.

- Securing access to user profiles is accomplished by right-clicking the relevant user profile in Oracle Studio and selecting Change Master Password. In the dialog box that is displayed, specify a password that must be provided in the future to edit the specific user profile.
Securing access to workspaces is accomplished by right-clicking the relevant workspace in Oracle Studio and selecting **Set Authorization**. In the dialog box that is displayed, specify a valid user and password that must be provided in the future to edit the specific workspace.

Setting Runtime Security

During run time, security considerations are implemented as follows:

- When the client request accesses the legacy platform through the daemon, either anonymous access is allowed or a valid user name and password must be provided for the computer in the user profile. The `userName` and `password` properties in the J2CA 1.5 IMS/DB adapter are used at this stage to access the daemon.

 Note: The user name used to access the daemon must also be the name of a user profile used.

- Access by the client must be through a valid port, according to the list of ports specified in the Workspace Access section of the **WS Security** tab in Oracle Studio. For details on the **WS Security** tab, refer to "WS Security" on page C-16.

 Note: Access to the legacy platform through a firewall using the NAT protocol is specified when the computer is added to Oracle Studio.

- To be allocated a server process, the client must be granted anonymous access to the workspace or be listed in the Workspace Users section of the **WS Security** tab in Oracle Studio. For details of the **WS Security** tab, refer to "WS Security" on page C-16.

 Note: You can also specify administrators who can run commands only at the level of the workspace. Specify these administrators in the **WS Security** tab, as described in "WS Security" on page C-16.

- The ability to run commands on the daemon, such as starting or stopping a daemon or ending server processes is available only to administrators who have been registered in Oracle Connect as a daemon administrator. A client is registered as a valid daemon administrator in the **Daemon Security** tab in Oracle Studio, as described in "Daemon Security" on page C-5.

 Note: To use Oracle Application Server Adapter for IMS/DB under CICS with global transactions, you must have RRS installed and configured.

Transaction Support

Oracle Application Server (OAS) for IMS/DB supports global transactions and can fully participate in a distributed transaction if you access the IMS/DB data under CICS.
To work with global transactions, set the `convertAllToDistributed` transaction environment property to `true`, as shown in the following figure:

Figure 6–3 The convertAllToDistributed Transaction Property Settings

To use the global-transaction capability to access data on the OS/390 or z/OS computer, define every library in the ATTSRVR JCL as an APF-authorized library.

To define a DSN as APF-authorized, in the SDSF screen, enter the following command:

```
/setprog apf,add,dsn=instroot.library,volume=ac002
```

Where `ac002` is the volume where you installed Oracle Connect and `INSTROOT` is the high-level qualifier where Oracle Connect is installed.

If the Oracle Connect installation volume is managed by SMS, when defining APF-authorization enter the following command in the SDSF screen:

```
/setprog apf,add,dsn=instroot.library,SMS
```

Make sure that the library is APF-authorized, even after an IPL (restart) of the computer.

If RRS is not running, OracleAS Adapter for IMS/DB can participate in a distributed transaction, as the only one-phase commit resource, if the transaction environment property `logFile` includes the keyword `NORRS` as shown in the following figure:
Figure 6–4 The logFile Transaction Property Settings

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>trim</td>
<td>false</td>
</tr>
<tr>
<td>debug</td>
<td>false</td>
</tr>
<tr>
<td>msp</td>
<td>true</td>
</tr>
<tr>
<td>jdbc</td>
<td>false</td>
</tr>
<tr>
<td>index</td>
<td>false</td>
</tr>
<tr>
<td>optimizer</td>
<td>false</td>
</tr>
<tr>
<td>queryProcessor</td>
<td>false</td>
</tr>
<tr>
<td>tempFeatures</td>
<td>false</td>
</tr>
<tr>
<td>transactions</td>
<td>false</td>
</tr>
<tr>
<td>commCommDestroy</td>
<td>false</td>
</tr>
<tr>
<td>commCommDistributed</td>
<td>true</td>
</tr>
<tr>
<td>commMAPSinline</td>
<td>false</td>
</tr>
<tr>
<td>doubleOTC</td>
<td>false</td>
</tr>
<tr>
<td>extendedLogging</td>
<td>false</td>
</tr>
<tr>
<td>logFile</td>
<td>logFile,NORSS</td>
</tr>
<tr>
<td>dbThreads</td>
<td>false</td>
</tr>
<tr>
<td>recoveryDelay</td>
<td>false</td>
</tr>
<tr>
<td>transaction</td>
<td>false</td>
</tr>
<tr>
<td>userconnectTimeout</td>
<td>false</td>
</tr>
<tr>
<td>debugging</td>
<td>false</td>
</tr>
</tbody>
</table>

Note: If a log file is not specified, then the format for the logFile parameter when RRS is not running is ,NORSS.
Advanced Tuning of the Metadata

Oracle Studio enables you to define outbound adapter interactions. In addition, Oracle Studio defines input and output structures used for these interactions. The interactions and input and output structures are maintained as metadata by Oracle Studio in the Metadata tab of the Design perspective.

This appendix contains the following sections:
- Metadata for the IMS/DB Data Source
- Metadata for the Back-end Adapter

Metadata for the IMS/DB Data Source

Using Oracle Studio, perform the following steps to maintain the metadata for the IMS/DB data source:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. Expand the node of the required computer.
3. Expand the Bindings node.
4. Expand the NAV binding node.
5. Expand the Data sources node to display the data sources.
6. Right-click the IMS/DB data source and select Edit Metadata to display the Metadata tab.
The Metadata tab is shown in the following figure:

Figure A–1 The Metadata Explorer and General tab

7. Right-click the table you want to view in the Metadata Explorer and select Edit. The metadata editor opens, displaying the General tab, with general table details. The following tabs are used to view and edit the metadata:

- General Tab
- Columns Tab
- Indexes Tab
- Statistics Tab
- Source Tab

General Tab

Use the General tab to maintain information about the whole table, such as the table name and the way the table is organized.
The General tab is shown in the following figure:

Figure A–2 The General tab

The General tab comprises fields, as listed in the following table:

Table A–1 General tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table name</td>
<td>Specifies the name of the table.</td>
</tr>
<tr>
<td>Comment</td>
<td>An optional description of the table.</td>
</tr>
<tr>
<td>Data File</td>
<td>Specifies the location of the file containing the table.</td>
</tr>
</tbody>
</table>
| Organization | Specifies how the record represented by the table is organized. The options that are displayed depend on the record. The following options are available:
 ■ Index
 ■ Sequential
 Relative: Used with RRDS files. Access to a specific record number of a relative file is performed by using a pseudo column to specify the record position. The hash symbol (#) is used to specify a pseudo column. For example:
 `SELECT * FROM colleges WHERE # = 6`
| Record format | Specifies how the record, represented by the table, is formatted. The options that are displayed depend on the record. The IMS/DB records have a fixed format. |
| Maximum record length | Specifies the record length. |
| Filter Expression | A WHERE clause. This clause is added to every query accessed using this metadata. The filter is specified without the WHERE keyword. Specify a filter when more than one logical table is stored in the same physical file. |
IMS/DB specific commands are displayed in the DB Command screen, which you open by clicking **DB Command**.

The DB Command screen is shown in the following figure:

Figure A–3 The DB Command screen

![DB Command screen](image)

The information displayed is generated automatically when the metadata is generated and should not be modified.

Columns Tab

Use the **Columns** tab to specify metadata describing the columns of the table. The **Columns** tab is shown in the following figure:

Figure A–4 The Columns tab

![Columns tab](image)

The **Columns** tab comprises fields, as listed in the following table:
Table A–2 Columns tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Name</td>
<td>The name of the column.</td>
</tr>
<tr>
<td>Data Type</td>
<td>The data type of the data the column contains. Selecting this field displays a list of the available data types. See Also: "Data Type Mapping" on page B-1 for details about the available data types.</td>
</tr>
<tr>
<td>Size</td>
<td>The size allocated for the column.</td>
</tr>
<tr>
<td>Scale</td>
<td>The definition depends on the data type. For decimal data types this value is the number of digits to the right of the decimal place. This number must not be greater than the number of digits. The default value is 0. For scaled data types this value is the total number of digits. The number must be negative.</td>
</tr>
<tr>
<td>Offset</td>
<td>An absolute offset for the field in a record. The Column Properties relates to the selected column.</td>
</tr>
<tr>
<td>Alias</td>
<td>A name used to replace the default virtual table name for an array. Virtual table names are generated by appending the array name to the record name. Thus, when an array includes another array the name of the nested array is the name of the record and the parent array and the nested array. When the default generated virtual table name is too long to be usable, specify an Alias to replace the long name.</td>
</tr>
<tr>
<td>Array dimension</td>
<td>The maximum number of occurrences of the group of columns that make up the array.</td>
</tr>
<tr>
<td>Comment</td>
<td>A comment about the specific column.</td>
</tr>
<tr>
<td>OnBit</td>
<td>The position of the bit in a BIT field and the starting bit in a BITS field.</td>
</tr>
<tr>
<td>Empty value</td>
<td>The value for the field during an insert operation, when a value is not specified.</td>
</tr>
<tr>
<td>Null value</td>
<td>The null value for the field during an insert operation, when a value is not specified.</td>
</tr>
<tr>
<td>DBcommand</td>
<td>IMS/DB-specific commands for the column. The information displayed is generated automatically when the metadata is generated and should not be modified.</td>
</tr>
<tr>
<td>Nullable</td>
<td>The current field can contain NULL values.</td>
</tr>
<tr>
<td>Updateable</td>
<td>The current field can be updated.</td>
</tr>
<tr>
<td>Explicit select</td>
<td>The current field is not returned when you run a <code>SELECT * FROM ...</code> statement. To return this field, you must explicitly ask for it (in a query such as <code>SELECT NATION_ID, SYSKEY FROM NATION</code> where SYSKEY is a field defined with Explicit Select).</td>
</tr>
<tr>
<td></td>
<td>Note: You cannot include the asterisk (*) in a query where you want to retrieve a field defined with Explicit Select. That is, a statement such as: <code>SELECT * , SYSKEY FROM NATION</code> will not return SYSKEY.</td>
</tr>
<tr>
<td></td>
<td>You can disable this attribute by specifying the disableExplicitSelect attribute in Oracle Studio, in the properties for the data source.</td>
</tr>
</tbody>
</table>
Indexes Tab

Use the **Indexes** tab to specify metadata describing the indexes of a table.

Note: The Indexes tab contains information only if the **Organization** field in the Table tab is set to **Index**.

The **Indexes** tab is shown in the following figure:

Figure A–5 The Indexes tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The names of existing indexes for the current table.</td>
</tr>
<tr>
<td>Order</td>
<td>The ordering of the rows retrieved by the index.</td>
</tr>
<tr>
<td>DB Command</td>
<td>IMS/DB-specific commands for the index. The information displayed is generated automatically when the metadata is generated and should not be modified.</td>
</tr>
</tbody>
</table>
Statistics Tab

Use the Statistics tab to update statistics for a table. The Statistics tab is shown in the following figure:

Figure A–6 The Statistics tab

The Statistics tab comprises fields as listed in the following tables:

Table A–3 (Cont.) Indexes tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>An optional comment on the selected index.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates the type of the index. The following types are available:</td>
</tr>
<tr>
<td></td>
<td>■ Unique: Indicates that the current index is unique.</td>
</tr>
<tr>
<td></td>
<td>■ Clustered: Indicates that the current index is clustered.</td>
</tr>
<tr>
<td></td>
<td>■ Hierarchical: Indicates that the current index is hierarchical.</td>
</tr>
<tr>
<td></td>
<td>■ Hashed: Indicates that the current index is hashed.</td>
</tr>
</tbody>
</table>

Table A–4 Statistics tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of rows</td>
<td>The approximate number of rows in the table. If the value is −1, then the</td>
</tr>
<tr>
<td></td>
<td>number of rows in the table is unknown (a value was not supplied and the</td>
</tr>
<tr>
<td></td>
<td>update statistics utility was not run to update the value). A value of 0</td>
</tr>
<tr>
<td></td>
<td>indicates that this table is empty.</td>
</tr>
<tr>
<td>No. of blocks</td>
<td>The approximate number of blocks in the table.</td>
</tr>
<tr>
<td></td>
<td>Note: If neither the number of rows nor the number of blocks is specified</td>
</tr>
<tr>
<td></td>
<td>for a table, queries over the table might be executed in a nonoptimal</td>
</tr>
<tr>
<td></td>
<td>manner.</td>
</tr>
</tbody>
</table>
Use the Columns group box to specify cardinality for each of the columns in the table:

Table A–5 Columns group Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column name</td>
<td>The columns in the table.</td>
</tr>
<tr>
<td>Cardinality</td>
<td>The number of distinct values for the column. If the value is -1, then the number of distinct values for the column is unknown (a value was not supplied and the update statistics utility was not run to update the value). A value of 0 indicates that there are no distinct values for the column.</td>
</tr>
</tbody>
</table>

Use the Indexes group box to specify cardinality for the columns in each of the indexes in the table:

Table A–6 Indexes group Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indexes and segments</td>
<td>The indexes and segments in the table.</td>
</tr>
<tr>
<td>Cardinality</td>
<td>The number of distinct key values in the index. If the value is -1, then the number of distinct key values in the index is unknown (a value was not supplied and the update statistics utility was not run to update the value). A value of 0 indicates that there are no distinct key values in the index.</td>
</tr>
</tbody>
</table>

Generating Statistics

Click Update in the Statistics tab to generate updated statistics for the table. The Update Statistics screen is displayed, as shown in the following figure:

Figure A–7 The Update Statistics screen

![Update statistics screen](image)

The following tables list the fields that are used to update statistics:

Use the Type group to specify the following:
Use the Resolution group to specify the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated</td>
<td>An estimation of the amount of statistical information returned.</td>
</tr>
<tr>
<td>Estimated with rows</td>
<td>An estimation of the amount of statistical information returned. The estimate includes an estimation of the number of rows in the table. Specify the number in the text box. This number is used to shorten the time to produce the statistics, assuming that the value specified here is the correct value, or close to the correct value.</td>
</tr>
</tbody>
</table>

Use the Resolution group to specify the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>The exact statistical information returned. Note that this can be a lengthy task and can lead to disk space problems with large tables.</td>
</tr>
<tr>
<td>Default</td>
<td>Only information about the table and indexes is collected. Information for partial indexes and columns is not collected.</td>
</tr>
<tr>
<td>All columns and indexes</td>
<td>Information about the table, indexes, partial indexes and columns is collected.</td>
</tr>
<tr>
<td>Select columns and indexes</td>
<td>Enables you to select the columns and indexes for which you want to collect statistics. In the enabled list of columns or indexes, left click those columns you want included (you can use shift-click and control-click to select a number of columns or indexes).</td>
</tr>
</tbody>
</table>

Source Tab

The **Source** tab displays the XML representation of the metadata.

Metadata for the Back-end Adapter

Use Oracle Studio to maintain the metadata for the IMS/DB adapter.

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. Expand the node of the required computer.
3. Expand the **Bindings** node.
4. Expand the **NAV** binding node.
5. Expand the **Adapters** node to display the adapters list.
6. Right-click the IMS/DB adapter, and select **Edit Metadata** to open the Metadata tab.
7. Right-click the required interaction in the Metadata Explorer, and select **Edit**.

The metadata editor opens, displaying the General tab, with general table details. The following tabs are used to edit the metadata:

- **General Tab**
- **Interaction Tab**
General Tab

Use the General tab to maintain information generally describing the adapter and the connection to it.

The General tab is shown in the following figure:

![The General tab](image)

The General tab comprises fields, as listed in the following table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter definition name</td>
<td>Specifies the name of the adapter definition.</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies an identifying description of the adapter.</td>
</tr>
<tr>
<td>Authentication mechanism</td>
<td>Specifies the authentication to access the adapter. The available mechanisms are:</td>
</tr>
<tr>
<td></td>
<td>kerbV5</td>
</tr>
<tr>
<td></td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>basic password</td>
</tr>
<tr>
<td>Max request size</td>
<td>Specifies the maximum size in bytes for an XML request or reply. Larger messages are rejected with an error.</td>
</tr>
<tr>
<td>Max active connections</td>
<td>Specifies the maximum number of simultaneous connections for an adapter (per process).</td>
</tr>
</tbody>
</table>
Use the Interaction tab to define the general details of the interaction in addition to its input and output definitions.

The Interaction General tab is shown in the following figure:

Figure A–9 The Interaction General tab

The Interaction General tab comprises fields, as listed in the following table:

Table A–10 Interaction General tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction name</td>
<td>Specifies the name of the interaction.</td>
</tr>
<tr>
<td>Description</td>
<td>Provides a descriptive identifier for the interaction.</td>
</tr>
<tr>
<td>Mode</td>
<td>Determines the interaction mode. The following interaction modes are available:</td>
</tr>
<tr>
<td></td>
<td>■ sync-send-receive: The interaction sends a request and expects to receive a response.</td>
</tr>
<tr>
<td></td>
<td>■ sync-send: The interaction sends a request and does not expect to receive a response.</td>
</tr>
<tr>
<td></td>
<td>■ sync-receive: The interaction expects to receive a response.</td>
</tr>
<tr>
<td>Input record</td>
<td>Identifies an input record.</td>
</tr>
</tbody>
</table>
Interaction Advanced Tab

Use the **Interaction Advanced** tab to define advanced interaction parameters, such as the SQL statement type and properties, manual query adjustments, and table properties.

The **Interaction Advanced** tab is shown in the following figure:

Figure A–10 The Interaction Advanced tab

The **Interaction Advanced** tab comprises fields and uses, as listed in the following table:

Table A–11 Interaction Advanced tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Type</td>
<td>The SQL statement query type.</td>
</tr>
<tr>
<td>Table/Column Definition</td>
<td>The SQL statement table and column selection area.</td>
</tr>
<tr>
<td>Manual Query Editing</td>
<td>The SQL statement manual editing area.</td>
</tr>
<tr>
<td>Interaction Properties</td>
<td>The interaction properties.</td>
</tr>
</tbody>
</table>
Schema General Tab

Use the **Schema General** tab to define the general details of the input and output record structures for the interaction.

The **Schema General** tab is shown in the following figure:

![Figure A–11 The Schema General tab](image)

The **Schema General** tab comprises fields, as listed in the following table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema name</td>
<td>The name of the adapter.</td>
</tr>
<tr>
<td>Version</td>
<td>The schema version.</td>
</tr>
<tr>
<td>Header</td>
<td>A C header file to map between the data structure and the adapter.</td>
</tr>
</tbody>
</table>

Schema Record Tab

Use the **Schema Record** tab to define the input and output record structures for the interaction.

The **Schema Record** tab is shown in the following figure:
The **Schema Record** tab comprises fields, as listed in the following table:

Use the Fields List area to define single data items within a record.

Table A–13 Schema Record tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Specifies the name of the field.</td>
</tr>
<tr>
<td>Type</td>
<td>The data type of the field. The following are valid data types:</td>
</tr>
<tr>
<td></td>
<td>■ Binary</td>
</tr>
<tr>
<td></td>
<td>■ Boolean</td>
</tr>
<tr>
<td></td>
<td>■ Date</td>
</tr>
<tr>
<td></td>
<td>■ Double</td>
</tr>
<tr>
<td></td>
<td>■ Float</td>
</tr>
<tr>
<td></td>
<td>■ Int</td>
</tr>
<tr>
<td></td>
<td>■ Long</td>
</tr>
<tr>
<td></td>
<td>■ Numeric</td>
</tr>
<tr>
<td></td>
<td>■ Short</td>
</tr>
<tr>
<td></td>
<td>■ String</td>
</tr>
<tr>
<td></td>
<td>■ Time</td>
</tr>
<tr>
<td></td>
<td>■ Timestamp</td>
</tr>
<tr>
<td></td>
<td>■ XML</td>
</tr>
<tr>
<td>Length</td>
<td>The size of the field including a null terminator, when the data type supports null termination.</td>
</tr>
</tbody>
</table>

See Also: Appendix B, "Back-end Adapter Data Type Support" for details about the mapping from COBOL datatypes to IMS/DB back-end adapter datatypes.
Source Tab

The **Source** tab displays the XML representation of the adapter metadata.

Note: Use the Specifications box to specify field properties.
OracleAS Adapters for IMS/DB supports a number of data types that are used when defining metadata in Oracle Studio. The data types are mapped from the COBOL data types during the import procedure.

Note: The mapping of data types between OracleAS Adapters for IMS/DB and Oracle Application Server is performed internally by Oracle Connect.

Data Type Mapping

The COBOL data type COMP, in the table is an abbreviation for, and synonymous with, COMPUTATIONAL. Square brackets ([]) denote optional qualifiers for some COBOL compilers, which may not be allowed for other COBOL compilers.

Table 6–6 Data Type Mapping: COBOL and Oracle Connect Back-end Adapter

<table>
<thead>
<tr>
<th>COBOL Data Type</th>
<th>Oracle Connect Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINARY (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>BINARY (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>COMP (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>COMP (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>COMP-2</td>
<td>double</td>
</tr>
<tr>
<td>COMP-3</td>
<td>string</td>
</tr>
<tr>
<td>COMP-4 (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>COMP-4 (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>COMP-5 (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>COMP-5 (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>COMP-X (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>COMP-X (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>INDEX</td>
<td>int</td>
</tr>
<tr>
<td>[SIGN [IS]] LEADING</td>
<td>string</td>
</tr>
<tr>
<td>[SIGN [IS]] LEADING SEPARATE [CHARACTER]</td>
<td>string</td>
</tr>
<tr>
<td>NATIVE-2</td>
<td>int</td>
</tr>
</tbody>
</table>
Table 6–6 (Cont.) Data Type Mapping: COBOL and Oracle Connect Back-end Adapter

<table>
<thead>
<tr>
<th>COBOL Data Type</th>
<th>Oracle Connect Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATIVE-4</td>
<td>int</td>
</tr>
<tr>
<td>NATIVE-8</td>
<td>string</td>
</tr>
<tr>
<td>PACKED-DECIMAL</td>
<td>string</td>
</tr>
<tr>
<td>POINTER</td>
<td>int</td>
</tr>
<tr>
<td>[SIGN [IS]] TRAILING</td>
<td>string</td>
</tr>
<tr>
<td>[SIGN [IS]] TRAILING SEPARATE [CHARACTER]</td>
<td>string</td>
</tr>
</tbody>
</table>
Advanced Tuning of the Daemon

The daemon configuration is managed using Oracle Studio. Daemon configuration is divided into the following groups:

- Daemon Control
- Daemon Logging
- Daemon Security
- Workspaces

Daemon Control

Using the Daemon Control tab, you define various daemon control options. The Daemon Control tab is accessed as follows:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. Select the required computer from the Configuration Explorer.
3. Right-click the computer and select Open Runtime Perspective.
4. Right-click the required daemon in the Runtime Explorer and select Edit Daemon Configuration. The Daemon Control tab is displayed.
5. After making changes to the daemon, right-click the daemon and select Reload Configuration.

Note: You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select Edit Daemon.

Changes made to the daemon configuration are only implemented after the configuration is reloaded using the Reload Configuration option in the Runtime Manager perspective.

The Daemon Control tab is shown in the following figure:
The **Daemon Control** tab comprises fields, as listed in the following table:

Table 6–7 Daemon Control tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatically recover from failure</td>
<td>The daemon restarts automatically if it fails for any reason (any error that causes the daemon process to terminate, such as network process lost or the CPU running the daemon crashes and the backup daemon is defined on another CPU). All available and unconnected servers are terminated and any connected servers are marked and terminated on release. Also the backup starts a backup for itself. The backup appends a new log file to the log of the original daemon, adding a line indicating that a backup daemon was started.</td>
</tr>
<tr>
<td>Maximum XML request size</td>
<td>The maximum number of bytes that the daemon handles for an XML document.</td>
</tr>
<tr>
<td>Maximum XML in memory</td>
<td>The maximum amount of space reserved for the XML in memory.</td>
</tr>
<tr>
<td>Default language</td>
<td>The language that the daemon supports. This setting is used when working with a client with a code page different from the server code page.</td>
</tr>
<tr>
<td>Call timeout</td>
<td>The timeout period for short calls for all daemons. The definition of a short call is a call that should be completed in a few seconds. For example, most calls to a database such as <code>DESCRIBE</code> should be completed in a few seconds as opposed to call like a <code>GETROWS</code> call, which can take a long time. In heavily loaded or otherwise slow systems, even short calls such as calls to open a file, may take a significant amount of time. If a short call takes more than the specified time to complete, then the connection is stopped. The default value for this parameter is 60 seconds. Values of less than 60 seconds are considered to be 60 seconds. Specifying the timeout in a workspace overrides the value set in this field for that workspace.</td>
</tr>
</tbody>
</table>
Using the Daemon Logging tab, you define the daemon log file settings, the log file structure and the location where the log is saved. In addition, use it to define the data that is logged and traced in the file.

The Daemon Logging tab is accessed as follows:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. Select the required computer from the Configuration Explorer.
3. Right-click the computer and select Open Runtime Perspective.
4. Right-click the daemon in the Runtime Explorer and select Edit Daemon Configuration.
5. Click the Daemon Logging tab.
6. After making changes to the daemon, right-click the daemon and select Reload Configuration.

Note: You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select Edit Daemon.

Changes made to the daemon configuration are only implemented after the configuration is reloaded using the Reload Configuration option in the Runtime Manager perspective.

7. Right-click the daemon and select End Unused Servers. Any servers in the connection pool are closed and new servers start with the new configuration.

The Daemon Logging tab is shown in the following figure:

Table 6–7 (Cont.) Daemon Control tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Connect timeout | The time the client waits for a daemon server to start. If the daemon server does not start within this period, then the client is notified that the server did not respond. The value specified for this parameter serves as the default timeout for all the workspaces listed in the daemon configuration. The default value for this parameter is 60 seconds. **Notes:**
- Entering the timeout in a workspace overrides the value set in this field for that workspace.
- Even if the XML source does not list this parameter in the workspace section, the workspace gets it using the default value. If you want to prevent a workspace from using the default value, you must enter a value of zero for this parameter in the workspace section. |
| Client idle timeout | The maximum amount of time any daemon client may be idle before the connection with the server is closed. Specifying the timeout in a Workspace overrides this setting for that workspace. |
The **Daemon Logging** tab comprises fields, as listed in the following table:

Table 6–8 Daemon Logging tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daemon log file location</td>
<td>Specifies the daemon produces its log data. The full path must be specified.</td>
</tr>
<tr>
<td>Logging options</td>
<td>Specifies what tracing is performed.</td>
</tr>
<tr>
<td>Client requests for server</td>
<td>Logs client requests for server activations; this provides logging of the</td>
</tr>
<tr>
<td></td>
<td>process IDs of the started servers along with the location of the log files.</td>
</tr>
<tr>
<td>Administration requests for</td>
<td>Logs all of the administration requests for the daemon.</td>
</tr>
<tr>
<td>daemon</td>
<td></td>
</tr>
<tr>
<td>Daemon operations</td>
<td>Logs all of the daemon operations.</td>
</tr>
<tr>
<td>Daemon logins</td>
<td>Logs daemon logins.</td>
</tr>
<tr>
<td>Daemon RPC function calls</td>
<td>Logs all daemon RPC function calls.</td>
</tr>
<tr>
<td>Daemon internal operations</td>
<td>Logs daemon internal operations.</td>
</tr>
<tr>
<td>Log trace information</td>
<td>Logs low-level RPC operations.</td>
</tr>
<tr>
<td>Display host and client</td>
<td>Specifies whether the client host and domain name are logged rather than the</td>
</tr>
<tr>
<td>domain name</td>
<td>client IP address. The default is false.</td>
</tr>
<tr>
<td>Trace options</td>
<td>Specifies the type of tracing being performed.</td>
</tr>
<tr>
<td>No timeout</td>
<td>Disables the standard RPC timeouts, setting them to a long duration (</td>
</tr>
<tr>
<td></td>
<td>approximately an hour) to facilitate debugging.</td>
</tr>
<tr>
<td>Call trace</td>
<td>Generates a message in the server log file for each RPC function called.</td>
</tr>
<tr>
<td></td>
<td>This is useful for troubleshooting the server.</td>
</tr>
<tr>
<td>RPC trace</td>
<td>Enables debugging messages on the server.</td>
</tr>
<tr>
<td>Sockets</td>
<td>Generates a message in the server log file for each socket operation.</td>
</tr>
<tr>
<td>Extended RPC trace</td>
<td>Generates a verbose message in the server log file for each low-level RPC</td>
</tr>
<tr>
<td></td>
<td>function called. This is useful for troubleshooting the server.</td>
</tr>
</tbody>
</table>
The following tokens can appear in the log file template and will be replaced accordingly:

- %A: workspace name
- %D: date (ymmd)
- %I: instance number of the given workspace server
- %L: server account login directory
- %P: server process ID
- %T: time (hhmmss)
- %U: server account name (username)

For example, %L/server_%A%I.log may produce a log file such as:
/usr/smith/server_sales15.log.

The default log file template is %L/server_%A%I.log.

Daemon Security

The Daemon Security tab is used to:

- Grant administration rights for the daemon.
- Determine access to the computer.

The Daemon Security tab is accessed as follows:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. Select the required computer from the Configuration Explorer.
3. Right-click the computer and select Open Runtime Perspective.
4. Right-click the daemon in the Runtime Explorer and select Edit Daemon Configuration.
5. Click the Daemon Security tab.
6. After making changes to the daemon, right-click the daemon and select Reload Configuration.
7. Right-click the daemon and select **End Unused Servers**. Any servers in the connection pool are closed and new servers start with the new configuration.

The **Daemon Security** tab is shown in the following figure:

Figure 6–7 The Daemon Security tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrators privileges</td>
<td>Identifies the users (accounts) allowed to perform administrative tasks (tasks that require administrative login).</td>
</tr>
<tr>
<td>All users</td>
<td>Enables all users to access the daemon and change the settings.</td>
</tr>
</tbody>
</table>
A daemon can include a number of workspaces. A workspace defines the server processes and environment that are used for the communication between the client and the server for the duration of the client request. Each workspace has its own definition. The workspace definition is divided into the following groups:

- **WS Info.**
- **WS Server**
- **WS Logging**
- **WS Security**
- **WS Governing**: This tab is not applicable for use with OracleAS Adapters for IMS/DB

WS Info.

Using the **WS Info.** tab, you specify the features that control the operation of the workspace, such as the server type, the command procedure used to start the workspace and the binding configuration associated with this workspace.

The **WS Info.** tab is accessed as follows:

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. Select the required computer from the Configuration Explorer.
3. Right-click the computer and select **Open Runtime Perspective**.

Table 6–9 (Cont.) Daemon Security tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected users only</td>
<td>Identifies the names of users (accounts) and groups that can be administrators. If a user is not specified, the account from which the daemon was started is considered the administrator. Note that the daemon does not require the user to log in to the account on the system, but to log in to the daemon using the account name and password.</td>
</tr>
<tr>
<td>Machine access</td>
<td>Manages access to the computer.</td>
</tr>
<tr>
<td>Allow anonymous login</td>
<td>Whether workspaces allow anonymous logins (without user name/password entries). For the optimal level of security, keep this option unchecked and define a username for the Daemon Administrators parameter. If unchecked, then no workspace can have an anonymous client. If checked, then a particular workspace allows anonymous clients.</td>
</tr>
<tr>
<td>Cached password</td>
<td>Enables login passwords to be cached. This enhances performance by reducing login times for future connections from the same client in a session.</td>
</tr>
<tr>
<td>Encryption methods</td>
<td>Specifies the encryption method used to send information across the network. The default is an asterisk (*), meaning that all methods are acceptable. If an encryption method is specified, it must be used. The RC4 and DES3 protocols are currently supported.</td>
</tr>
</tbody>
</table>

1 The name is prefixed with '@', to utilize the operating system GROUP feature.
4. Expand the Daemons node to display the workspaces in the Runtime Explorer.

5. Right-click the workspace and select **Edit Workspace Configuration**. The WS Info. tab opens.

6. After making changes to the workspace, right-click the daemon and select **Reload Configuration**.

 Note: You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select **Edit Daemon**.

 Changes made to the daemon configuration are not implemented. They are only implemented after the configuration is reloaded using the **Reload Configuration** option in the Runtime Manager.

7. Right-click the daemon and select **End Unused Servers**. Any servers in the connection pool are closed and new servers start with the new configuration.

The **WS Info**. tab is shown in the following figure:

Figure 6–8 The WS Info tab

The **WS Info**. tab comprises fields, as listed in the following table:

Table 6–10 WS Info tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workspace name</td>
<td>The name used to identify the workspace. Note: The default configuration includes the default Navigator workspace. This workspace is automatically used if a workspace is not specified as part of the connection settings.</td>
</tr>
<tr>
<td>Description</td>
<td>A description of the workspace.</td>
</tr>
<tr>
<td>Startup script</td>
<td>The full path name of the script that starts the workspace server processes. The script specified here must always activate the nav_login procedure and then run the server program (svc). If you do not specify the directory, the startup procedure is taken from the directory where the daemon resides. Oracle Connect includes a default startup script, which it is recommended to use.</td>
</tr>
</tbody>
</table>
Using the **WS Server** tab, you specify the features that control the operation of the servers started up by the workspace and allocated to clients.

For example, you can configure the workspace to start up a number of servers for future use, prior to any client request, instead of starting each server when a request is received from a client.

The **WS Server** tab is accessed as follows:

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. Select the required computer from the Configuration Explorer.
3. Right-click the computer and select **Open Runtime Perspective**.
4. Expand the Daemons node to display the workspaces in the Runtime Explorer.
5. Right-click the workspace and select **Edit Workspace Configuration**.
6. Click the **WS Server** tab.
7. After making changes to the workspace, right-click the daemon and select **Reload Configuration**.

Notes:

- You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select **Edit Daemon**.
- Changes made to the daemon configuration are not implemented. They are only implemented after the configuration is reloaded using the **Reload Configuration** option in the Runtime Manager.
8. Right-click the daemon and select **End Unused Servers**. Any servers in the connection pool are closed and new servers start with the new configuration.

The **WS Server** tab is shown in the following figure:

Figure 6–9 The **WS Server** tab

The **WS Server** tab comprises fields, as listed in the following table:
Table 6–11 WS Server tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workspace server mode</td>
<td>Specifies the type of new server processes that the daemon starts up. The daemon supports the following server modes:</td>
</tr>
<tr>
<td></td>
<td>■ singleClient: Each client receives a dedicated server process. The account in which a server process runs is determined either by the client login information or by the specific server workspace. This mode enables servers to run under a particular user account and isolates clients from each other, as each receives its own process. However, this server mode incurs a high overhead due to process startup times and can use a lot of server resources as it requires as many server processes as concurrent clients.</td>
</tr>
<tr>
<td></td>
<td>■ multiClient: Clients share a server process and are processed serially. This mode has low overhead because the server processes are already initialized. However, because clients share the same process, they can impact one another, especially if they issue lengthy queries. The number of clients that share a process is determined by the Clients per server limit field.</td>
</tr>
<tr>
<td></td>
<td>■ multiThreaded: This mode is not applicable for use with OracleAS Adapter for IMS/DB.</td>
</tr>
<tr>
<td></td>
<td>■ reusable: An extension of single-client mode. Once the client processing finishes, the server process does not die and can be used by another client, reducing startup times and application startup overhead. This mode does not have the high overhead of single-client mode because the servers are already initialized. However, this server mode can use a lot of server resources as it requires as many server processes as concurrent clients.</td>
</tr>
<tr>
<td></td>
<td>Note: The other modes can be set so that the server processes are reusable. The number of times a process can be reused is controlled by the Reuse limit field value.</td>
</tr>
<tr>
<td>Reuse limit</td>
<td>Sets the maximum number of times a particular server can be reused. A one-client server can be reused after its (single) client has disconnected. Reuse of servers enhances startup performance because it avoids the need to repeat initialization. The default for this field is none (0), indicating that server reuse is unlimited. This parameter is disabled only if the server mode value is singleClient.</td>
</tr>
<tr>
<td>Clients per server limit</td>
<td>Sets the maximum number of clients a server process for the current workspace accepts. The default for this field is none (0), indicating that the number of clients for each server is unlimited. This field is enabled only if the server mode value is multiClient or multiThreaded.</td>
</tr>
</tbody>
</table>
Table 6–11 (Cont.) WS Server tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server availability</td>
<td>Specifies the number of servers in a pool of servers, available to be assigned to a client. The following options are available:</td>
</tr>
<tr>
<td></td>
<td>■ Initial number of servers: The number of server processes that are prestarted for this workspace when the daemon starts up. When the number of available server processes drops lower than the value specified in the Minimum number field, the daemon again starts server processes until this number of available server processes is reached. The default for this field is 0.</td>
</tr>
<tr>
<td></td>
<td>■ Minimum number: The minimum number of server processes in the prestarted pool before the daemon resumes creating new server processes (to the value specified in the Initial number of servers field). If this field is set to a value higher than the Initial number of servers field, the daemon uses the value specified in the Initial number of servers field. The default for this field is 0.</td>
</tr>
<tr>
<td></td>
<td>■ Keep when daemon ends: When a daemon is shutdown, all the servers started by that daemon are also killed, even if they are active. Set this field to true if you want the servers for the workspace to remain active, even after the daemon has been shut down. If this field is set to true, it is the responsibility of the system operator or manager to ensure that the servers are eventually killed. This must be done at the system level.</td>
</tr>
<tr>
<td></td>
<td>■ Set maximum number of servers: The maximum number of available server processes. Once this number is reached, no new nonactive server processes are created for the particular workspace. For example, if a number of server processes are released at the same time, so that there are more available server processes than specified by this field, the additional server processes higher than this value are terminated. The default for this field is zero, meaning that there is no maximum.</td>
</tr>
</tbody>
</table>
WS Logging

Using the **WS Logging** tab, you specify parameters to log, that occur with the workspace server process.

The **WS Logging** tab is accessed as follows:

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. Select the required computer from the Configuration Explorer.
3. Right-click the computer and select **Open Runtime Perspective**.
4. Expand the Daemons node to display the workspaces in the Runtime Explorer.
5. Right-click the workspace and select **Edit Workspace Configuration**.
6. Click the WS Logging tab.
7. After making changes to the workspace, right-click the daemon and select **Reload Configuration**.
Note: You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select Edit Daemon.

Changes made to the daemon configuration are not implemented. They are only implemented after the configuration is reloaded using the Reload Configuration option in the Runtime Manager.

8. Right-click the daemon and select End Unused Servers. Any servers in the connection pool are closed and new servers start with the new configuration.

The WS Logging tab is shown in the following figure:

Figure 6–10 The WS Logging tab

<table>
<thead>
<tr>
<th>Specific log file format</th>
<th>File*%Y%m_%d.log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace options</td>
<td></td>
</tr>
<tr>
<td>No timeout</td>
<td>Extended RPC trace</td>
</tr>
<tr>
<td>Call trace</td>
<td>System trace</td>
</tr>
<tr>
<td>RPC trace</td>
<td>Timing</td>
</tr>
<tr>
<td>Sockets</td>
<td></td>
</tr>
<tr>
<td>Event Information:</td>
<td></td>
</tr>
<tr>
<td>Logging</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td></td>
</tr>
<tr>
<td>error</td>
<td></td>
</tr>
<tr>
<td>debug</td>
<td></td>
</tr>
<tr>
<td>Server</td>
<td></td>
</tr>
<tr>
<td>Connect</td>
<td></td>
</tr>
<tr>
<td>Disconnect</td>
<td></td>
</tr>
<tr>
<td>Client</td>
<td></td>
</tr>
<tr>
<td>Connect</td>
<td></td>
</tr>
<tr>
<td>Disconnect</td>
<td></td>
</tr>
<tr>
<td>Audit</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>Headers</td>
<td></td>
</tr>
<tr>
<td>Detailed</td>
<td></td>
</tr>
</tbody>
</table>

The WS Logging tab comprises fields, as listed in the following table:
Table 6–12 WS Logging tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Specific log file format | Defines the name and location of the server log file if you want the data written to a file instead of SYSOUT for the server process. The parameter must specify the name and the high level qualifier. The following tokens can appear in the log file template and will be replaced accordingly:
 - %A: workspace name
 - %D: date (yymmdd)
 - %I: instance number of the given workspace server
 - %L: server account's login directory
 - %P: server's process ID
 - %T: time (hhmmss)
 - %U: server's account name (username) |
| Trace options | Specifies the type of tracing to be performed. The following tracing options are available:
 - No timeout: Disables the standard RPC timeouts, setting them to a long duration (approximately an hour) to facilitate debugging.
 - Call trace: Generates a message in the server log file for each RPC function called. This is useful for troubleshooting the server.
 - RPC trace: Enables debugging messages on the server.
 - Sockets: Generates a message in the server log file for each socket operation. This is useful for troubleshooting client/server communication - providing a detailed trace of every client/server communication.
 - Extended RPC trace: Generates a verbose message in the server log file for each low-level RPC function called. This is useful for troubleshooting the server.
 - System trace: Generates operating system-specific tracing.
 - Timing: Generates a timestamp for every entry to the server log file. |
| Logging | Specifies the level of events that are logged for the workspace. The following event levels are available:
 - none: The event log only displays the IP addresses of client that have logged in and out from the workspace.
 - error: The event log displays the IP addresses of client that have logged in and out from the workspace as well as any errors that have been generated.
 - debug: The event log displays the IP addresses of client that have logged in and out from the workspace as well as any errors that have been generated and all trace results that were specified in the Daemon Logging tab. |
Using the WS Security tab, you specify the level of security at the workspace level, as opposed to the daemon level, which is set in the Daemon Security tab.

See Also: "Daemon Security" on page C-5 for details about security.

The WS Security tab is used to:
- Grant administration rights for the workspace
- Determine access to the workspace by a client

The WS Security tab is accessed as follows:
1. From the Start menu, select Programs, Oracle, and then select Studio.
2. Select the required computer from the Configuration Explorer.
3. Right-click the computer and select Open Runtime Perspective.
4. Expand the Daemons node to display the workspaces in the Runtime Explorer.
5. Right-click the workspace and select Edit Workspace Configuration.
6. Click the WS Security tab.
7. After making changes to the workspace, right-click the daemon and select Reload Configuration.

Note: You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select Edit Daemon.

Changes made to the daemon configuration are not implemented. They are only implemented after the configuration is reloaded using the Reload Configuration option in the Runtime Manager.
8. Right-click the daemon and select **End Unused Servers**. Any servers in the connection pool are closed and new servers start with the new configuration.

The **WS Security** tab is shown in the following figure:

Figure 6–11 The WS Security tab

The **WS Security** tab comprises fields, as listed in the following table:

Table 6–13 WS Security tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>Defines the users (accounts) allowed to perform administrative tasks (tasks that require administrative login) on this workspace.</td>
</tr>
<tr>
<td>Administrator privileges</td>
<td>Identifies the users (accounts) with administrator privileges. The following options are available:</td>
</tr>
<tr>
<td></td>
<td>■ All users: Indicates that anyone can access the workspace and change the settings.</td>
</tr>
<tr>
<td></td>
<td>■ Selected users only: The names of users (accounts) and groups that can be administrators.</td>
</tr>
<tr>
<td></td>
<td>Note: If a user is not specified here, the user specified in the Workspace users area will have administrator rights for this workspace. In this case, if all users are selected for the Workspace users area, then all users have administrator rights for this workspace.</td>
</tr>
<tr>
<td></td>
<td>■ Allow Listing: Determines whether this workspace appears in the list of workspaces.</td>
</tr>
<tr>
<td>Workspace account</td>
<td>Defines the users (accounts) allowed to access the workspace, firewall access ports, workspace account, and anonymous login permissions.</td>
</tr>
</tbody>
</table>
Workspace users

List the users who are allowed to use the workspace.

- All users: Indicates that any user who has logged on to the daemon can use the workspace.
- Selected users only: Specifies users (accounts) and groups that can use the workspace.

 Note: If a user is not specified, any user who has logged on to the daemon can use the workspace.

- Enable ports range: Defines the firewall ports through which you access the workspace. Specifies the range of ports available for this workspace when starting server processes. Use this option when you want to control the port number, so that Oracle Connect can be accessed through a firewall.

- Use specific workspace account: Defines the operating system account used for the workspace. If not specified, the account name that was provided by the client is used.

- Allow anonymous client login to server account:
 Defines whether this workspace can be accessed without authentication (user name/password). If anonymous login is allowed, specify the server account name to use. If this field is not specified, then the value in the Workspace account field is used.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workspaces</td>
<td>Lists the users who are allowed to use the workspace.</td>
</tr>
<tr>
<td></td>
<td>- All users: Indicates that any user who has logged on to the daemon can use the workspace.</td>
</tr>
<tr>
<td></td>
<td>- Selected users only: Specifies users (accounts) and groups that can use the workspace.</td>
</tr>
<tr>
<td></td>
<td>Note: If a user is not specified, any user who has logged on to the daemon can use the workspace.</td>
</tr>
<tr>
<td></td>
<td>- Enable ports range: Defines the firewall ports through which you access the workspace. Specifies the range of ports available for this workspace when starting server processes. Use this option when you want to control the port number, so that Oracle Connect can be accessed through a firewall.</td>
</tr>
<tr>
<td></td>
<td>- Use specific workspace account: Defines the operating system account used for the workspace. If not specified, the account name that was provided by the client is used.</td>
</tr>
<tr>
<td></td>
<td>- Allow anonymous client login to server account: Defines whether this workspace can be accessed without authentication (user name/password). If anonymous login is allowed, specify the server account name to use. If this field is not specified, then the value in the Workspace account field is used.</td>
</tr>
</tbody>
</table>
OracleAS Adapter for IMS/DB provides basic support for standard ANSI '92 SQL along with a number of enhancements, all of which can be used when specifying adapter interactions.

This appendix contains the following sections:

- Supported SQL Statements
- Supported Operators
- Supported Functions
- SQL Enhancements

Supported SQL Statements

OracleAS Adapter for IMS/DB supports `SELECT`, `DELETE`, `INSERT`, and `UPDATE` statements, when specified in interactions.

Supported Operators

OracleAS Adapter for IMS/DB enables the use of the following operators in SQL statements:

- **Arithmetic Operators**
- **Comparison Operators**

<table>
<thead>
<tr>
<th>Table D–1</th>
<th>Arithmetic Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td></td>
</tr>
<tr>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table D–2</th>
<th>Comparison Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>
Supported Functions

OracleAS Adapter for IMS/DB enables the use of the following functions in SQL statements:

- **String Functions**
- **Group Functions**
- **Mathematical Functions**

Table D–3 String Functions

<table>
<thead>
<tr>
<th>Oracle Function</th>
<th>Oracle Connect Function</th>
<th>Usage</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>`</td>
<td></td>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td>Ascii</td>
<td>Ascii</td>
<td><code>Ascii(c)</code></td>
<td>Returns the ASCII value of <code>c</code></td>
</tr>
<tr>
<td>Chr</td>
<td>Chr</td>
<td><code>Chr(ascii)</code></td>
<td>Returns the character corresponding to the given ASCII value</td>
</tr>
<tr>
<td>Instr</td>
<td>Position</td>
<td><code>Position(str2, str1)</code></td>
<td>Returns an index in <code>str2</code> to the first occurrence of <code>str1</code> in <code>str2</code></td>
</tr>
<tr>
<td>Length</td>
<td>Length</td>
<td><code>Length(str)</code></td>
<td>Returns the number of bytes of <code>str</code></td>
</tr>
<tr>
<td>Lower</td>
<td>Lower</td>
<td><code>Lower(str)</code></td>
<td>Returns <code>str</code> in lowercase</td>
</tr>
<tr>
<td>Lpad</td>
<td>Lpad</td>
<td><code>Lpad(str, n)</code></td>
<td>Returns <code>str</code> with <code>n</code> leading blanks</td>
</tr>
<tr>
<td>Ltrim</td>
<td>Ltrim</td>
<td><code>Ltrim(str)</code></td>
<td>Returns <code>str</code> with leading blanks removed</td>
</tr>
<tr>
<td>Rpad</td>
<td>Rpadd</td>
<td><code>Rpadd(str, n)</code></td>
<td>Returns <code>str</code> with <code>n</code> trailing blanks</td>
</tr>
<tr>
<td>Rtrim</td>
<td>Rtrim</td>
<td><code>Rtrim(str)</code></td>
<td>Returns <code>str</code> with trailing blanks removed</td>
</tr>
<tr>
<td>Substr</td>
<td>Substr</td>
<td><code>Substr(str, n [, m])</code></td>
<td>Returns a substring of <code>str</code>, starting with the <code>n</code>th character and <code>m</code> characters in length, or until the end of the string if <code>m</code> is not supplied</td>
</tr>
<tr>
<td>Upper</td>
<td>Upper</td>
<td><code>Upper(str)</code></td>
<td>Returns <code>str</code> in uppercase</td>
</tr>
</tbody>
</table>

Table D–4 Group Functions

<table>
<thead>
<tr>
<th>Oracle Function</th>
<th>Oracle Connect Function</th>
<th>Usage</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>Avg</td>
<td><code>Avg(exp)</code></td>
<td>Returns the average value of the expression <code>exp</code></td>
</tr>
<tr>
<td>Count</td>
<td>Count</td>
<td><code>Count(exp)</code></td>
<td>Returns the count of the expression <code>exp</code></td>
</tr>
</tbody>
</table>
SQL Enhancements

You can incorporate the following SQL enhancements into the adapter interactions to handle hierarchical data in IMS/DB.

- Generating Hierarchical Results
- Accessing Hierarchical Data Using SQL
- Flattening Hierarchical Data Using SQL

Generating Hierarchical Results

A hierarchical query nests a SELECT statement as one of the columns of the rowset retrieved by a nested SELECT statement.

Use braces (|{||}) to delimit the nesting.

Table D–5 Mathematical Functions

<table>
<thead>
<tr>
<th>Oracle Function</th>
<th>Oracle Connect Function</th>
<th>Usage</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs</td>
<td>Abs</td>
<td>Abs(n)</td>
<td>Returns the absolute value of n</td>
</tr>
<tr>
<td>Ceil</td>
<td>Ceil</td>
<td>Ceil(n)</td>
<td>Returns n rounded up to the closest integer</td>
</tr>
<tr>
<td>Cos</td>
<td>Cos</td>
<td>Cos(n)</td>
<td>Returns the cosine value of n</td>
</tr>
<tr>
<td>Exp</td>
<td>Exp</td>
<td>Exp(n)</td>
<td>Returns the exponential value of n</td>
</tr>
<tr>
<td>Floor</td>
<td>Floor</td>
<td>Floor(n)</td>
<td>Returns n rounded down to the closest integer</td>
</tr>
<tr>
<td>Ln</td>
<td>Ln</td>
<td>Ln(n)</td>
<td>Returns the natural log value of n</td>
</tr>
<tr>
<td>Log</td>
<td>Log</td>
<td>Log(n)</td>
<td>Returns the log value of n</td>
</tr>
<tr>
<td>Mod</td>
<td>Mod</td>
<td>Mod(n, m)</td>
<td>Returns the integer value after dividing n by m</td>
</tr>
<tr>
<td>Nvl</td>
<td>Nvl</td>
<td>Nvl(exp1, exp2)</td>
<td>Returns exp2 when exp1 is null</td>
</tr>
<tr>
<td>Power</td>
<td>Power</td>
<td>Power(n, m)</td>
<td>Returns n to the power of m</td>
</tr>
<tr>
<td>Round</td>
<td>Round</td>
<td>Round(n, m)</td>
<td>Returns n with the fractional part rounded to m digits</td>
</tr>
<tr>
<td>Sin</td>
<td>Sin</td>
<td>Sin(n)</td>
<td>Returns the sine value of n</td>
</tr>
<tr>
<td>Sqrt</td>
<td>Sqrt</td>
<td>Sqrt(n)</td>
<td>Returns the square root of n</td>
</tr>
<tr>
<td>Tan</td>
<td>Tan</td>
<td>Tan(n)</td>
<td>Returns the tangent value of n</td>
</tr>
<tr>
<td>Trunc</td>
<td>Trunc</td>
<td>Trunc(n, m)</td>
<td>Returns the absolute value of n</td>
</tr>
</tbody>
</table>
Accessing Hierarchical Data Using SQL

Data stored hierarchically in a IMS/DB data source can be referenced by using a hyphen followed by a right arrow (->) to denote the parent child relationship in the source:

FROM ... parent_name->child1->child2... [alias]

Or, using an alias for the parent table:

FROM ... parent_alias->child1->child2... [alias]

Flattening Hierarchical Data Using SQL

You can produce a flattened view of hierarchical data by embedding a SELECT statement inside the list of columns to be retrieved by another SELECT statement. You use parentheses to delimit the nesting. The nested SELECT statement can reference a child rowset (using the parent->child syntax) only in its FROM clause.

Using an Alias

To list the hierarchical data with the parent data only, you must use an alias for the child data.

Note: Without an alias the query lists, for each parent row, all of the children of all of the parent rows.
OracleAS Adapters for IMS/DB provides the globalization support for the following languages:

- Arabic
- English (the default)
- French
- German
- Greek
- Hebrew
- Italian
- Japanese
- Korean
- Portugueses
- Simple Chinese
- Spanish
- Traditional Chinese
- Turkish

This appendix describes how to define the language support.

Defining the Language and Codepage

The language and codepage parameters are accessed from the computer where Oracle Studio is installed.

Perform the following steps to define the required language and codepage:

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. Select and expand the required computer node from the Configuration Explorer.
3. Expand the Binding node.
4. Right-click **NAV** and select **Edit Binding**.
5. In the binding **Properties** tab, expand the **misc** node.
The NAV binding **Properties** tab is shown in the following figure:

Figure 6–12 The Properties tab

6. Enter a valid value for the language. See [NLS Language Codes](#).
7. Optionally, in the **codepage** field, specify the codepage required.

You can skip this step, and specify a language (see the previous step). In this case, a default codepage is used.

The following table lists the codepages:

Table 6–14 NLS Language Codes

<table>
<thead>
<tr>
<th>Language Name</th>
<th>Language Code</th>
<th>ASCII Platforms (Default)</th>
<th>EBCDIC Platforms (Default)</th>
<th>Alternative Codepages (EBCDIC based unless noted otherwise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>ARA</td>
<td>ISO-8859-6</td>
<td>IBM420</td>
<td>Windows-1256 (ASCII based)</td>
</tr>
<tr>
<td>Chinese - Simplified</td>
<td>SCHI</td>
<td>GB2312</td>
<td>IBM935</td>
<td>-</td>
</tr>
<tr>
<td>Chinese - Traditional</td>
<td>TCHI</td>
<td>BIG5</td>
<td>IBM937</td>
<td>-</td>
</tr>
<tr>
<td>English UK</td>
<td>ENUK</td>
<td>ISO-8859-15</td>
<td>IBM1146</td>
<td>IBM037, IBM500, IBM1140, IBM1148</td>
</tr>
<tr>
<td>English US</td>
<td>ENUS</td>
<td>ISO-8859-15</td>
<td>IBM1140</td>
<td>IBM500, IBM1148</td>
</tr>
<tr>
<td>French</td>
<td>FRE</td>
<td>ISO-8859-15</td>
<td>IBM1147</td>
<td>IBM037, IBM500, IBM1140, IBM1148</td>
</tr>
<tr>
<td>Language Name</td>
<td>Language Code</td>
<td>ASCII Platforms (Default)</td>
<td>EBCDIC Platforms (Default)</td>
<td>Alternative Codepages (EBCDIC based unless noted otherwise)</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>German</td>
<td>GER</td>
<td>ISO-8859-15</td>
<td>IBM1141</td>
<td>IBM037, IBM500, IBM1140, IBM1148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Greek</td>
<td>GRK</td>
<td>ISO-8859-7</td>
<td>IBM875</td>
<td>-</td>
</tr>
<tr>
<td>Hebrew</td>
<td>HEB</td>
<td>ISO-8859-8</td>
<td>IBM424</td>
<td>-</td>
</tr>
<tr>
<td>Italian</td>
<td>ITL</td>
<td>ISO-8859-15</td>
<td>IBM1144</td>
<td>IBM037, IBM500, IBM1140, IBM1148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Japanese</td>
<td>JPN</td>
<td>Sjis</td>
<td>IBM939</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUC (Solaris)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMS-JP (VMS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korean</td>
<td>KOR</td>
<td>KSC5601</td>
<td>IBM933</td>
<td>MS949, EUC-KR (both ASCII based)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS949 (Win)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin International</td>
<td>LAT</td>
<td>ISO-8859-15</td>
<td>IBM1148</td>
<td>IBM037, IBM1140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Portuguese</td>
<td>POR</td>
<td>ISO-8859-15</td>
<td>IBM1140</td>
<td>IBM500, IBM1148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Russian</td>
<td>RUS</td>
<td>ISO-8859-5</td>
<td>IBM1154</td>
<td>-</td>
</tr>
<tr>
<td>Spanish</td>
<td>SPA</td>
<td>ISO-8859-15</td>
<td>IBM1145</td>
<td>IBM037, IBM500, IBM1140, IBM1148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Turkish</td>
<td>TUR</td>
<td>ISO-8859-9</td>
<td>IBM1155</td>
<td>IBM857</td>
</tr>
</tbody>
</table>
A

acxTrace parameter, 6-6
analyzerQueryPlan parameter, 6-6
application language parameter, 6-6
arithmetic operators, D-1

B

buffer size, comCacheBufferSize parameter, 6-5

C

CD-ROM drive requirements
 IBM S/390, 2-2
 PC, 2-2
codepage parameter, 6-6
comCacheBufferSize parameter, 6-5
comm parameters
 comCacheBufferSize, 6-5
 comMaxSocketSize, 6-5
 comMaxXmlSize, 6-5
comMaxSocketSize parameter, 6-5
comMaxXmlSize parameter, 6-5
comparison operators, D-1
cvtSeverityLevel parameter, 6-6

D
daemon
 logging, C-3
 security, C-5
server modes, 6-2
shutting down, 5-2
starting, 5-1
timeout, 5-6
data types
 atomic metadata, B-1
cvtSeverityLevel parameter, 6-6
nlsString parameter, 6-7
debug parameters
 acxTrace, 6-6
 analyzerqueryPlan, 6-6
 environment, 6-5
generalTrace, 6-6
logFile, 6-6
oledbTrace, 6-6
optimizerTrace, 6-6
queryWarnings, 6-6
traceDir, 6-6
disk space requirements
 IBM S/390, 2-2
 PC, 2-2

E

edit parameter, 6-6
environment parameters
 acxTrace, 6-6
 analyzerQueryPlan, 6-6
 codepage, 6-6
 comCacheBufferSize, 6-5
 comMaxSocketSize, 6-5
 comMaxXmlSize, 6-5
cvtSeverityLevel, 6-5
debug, 6-5
edit, 6-6
generalTrace, 6-6
language, 6-6
logFile, 6-6
miscellaneous, 6-6
nlsString, 6-7
odbc, 6-7
oledb, 6-7
oledbTrace, 6-6
optimizer, 6-7
optimizerTrace, 6-6
queryProcessor, 6-8
queryWarnings, 6-6
tempDir, 6-7
traceDir, 6-6
transactions, 6-8
tuning, 6-8
year2000Policy, 6-7
error log, logFile parameter, 6-6

F

flattening hierarchical data, D-4
functions
 group, D-2
 string, D-2
G

generalTrace parameter, 6-6
group functions, D-2

H

hardware requirements
 IBM S/390 CD-ROM drive, 2-2
 IBM S/390 disk space, 2-2
 IBM S/390 memory, 2-2
 PC CD-ROM drive, 2-2
 PC disk space, 2-2
 PC memory, 2-2
 PC processor, 2-2
 UNIX, 2-2
hierarchical data, flattening, D-4
hierarchical queries, flattening hierarchical data, D-4

I

IBM S/390
 installing, 2-5
 postinstallation, 2-9
 preinstallation, 2-4
importing installation kit, 2-5
IMS, setting up, 2-19
installation kit, importing, 2-5
installing
 IBM S/390, 2-5
 Windows, 2-13
integration flow, Oracle Application Server to legacy application, 1-2

L

language parameter, 6-6
log files
 daemon options, C-3
 logFile parameter, 6-6
logFile parameter, 6-6
logging
 daemon configuration, C-3
 optimizer strategy, 6-6
 trace information, 6-6

M

maximum size, XML documents, 6-5
memory requirements
 IBM S/390, 2-2
 PC, 2-2
metadata, atomic data types, B-1
Microsoft software requirements, 2-3
miscellaneous parameters
 codepage, 6-6
cvtSeverityLevel, 6-6
eidt, 6-6
environment, 6-6
language, 6-6
nlsString, 6-7
tempDir, 6-7
year2000Policy, 6-7

N

NAV_UTIL, text editor, 6-6
nlsString parameter, 6-7

O

odbc environment parameters, 6-7
oledb environment parameters, 6-7
oledbTrace parameter, 6-6
operating system requirements
 PC, 2-3
 UNIX, 2-2
optimizer
 environment parameters, 6-7
 traceDir parameter, 6-6
 writing plan to file, 6-6
optimizerTrace parameter, 6-6
Oracle Application Server requirements, 2-2

P

postinstallation, IBM S/390, 2-9
preinstallation, IBM S/390, 2-4
processor requirements
 PC, 2-2
 UNIX, 2-2

Q

query optimizer
 logging strategy, 6-6
 traceDir parameter, 6-6
 writing plan to file, 6-6
queryProcessor environment parameters, 6-8
queryWarnings parameter, 6-6

R

requirements
 PC hardware requirements, 2-2
 PC software requirements, 2-3
 UNIX hardware requirements, 2-1
 UNIX software requirements, 2-2

S

security configuration, daemon, C-5
servers
 configuring modes, 6-2
 reusable, 6-3
 Reuse limit daemon parameter, 6-3, C-11
setting up IMS, 2-19
SMS
 See system managed storage
sockets, comMaxSocketSize parameter, 6-5
software requirements
 Microsoft, 2-3
Oracle Application Server, 2-2
PC operating system, 2-3
UNIX operating system, 2-2
SQL, flattening hierarchical data, D-4
string functions, D-2
system managed storage, 2-4

tempDir parameter, 6-7
temporary files, 6-7
timeout
client idle, 5-6
daemon, 5-6
trace information, logging, 6-6
traceDir parameter, 6-6
transactions environment parameters, 6-8
tuning environment parameters, 6-8

Windows, installing, 2-13
Workspace server mode, C-11

XML documents, maximum size, 6-5

Y2K
See year2000Policy parameter
year2000Policy parameter, 6-7