
Implementation Guide
for Oracle Self-Service
E-Billing

Version 6.0.4, Rev. A
January 2012

Copyright © 2005, 2012 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the
use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license
terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the
Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due
to your access to or use of third-party content, products, or services.

Contents
Implementation Guide for Oracle Self-Service E-Billing 1

Chapter 1: What’s New in This Release

Chapter 2: Customizing Oracle Self-Service E-Billing
Overview of Oracle Self-Service E-Billing Architecture 13

About the Billing and Payment Application 13
About the Command Center Application 17
About the Customer Service Representative Application 17

Guidelines for Customizing Oracle Self-Service E-Billing 18

Customizing the User Interface Files 18
Customizing the Existing Look-and-Feel 19
Customizing Web Document Styles 19
Using Custom JSP Pages and Action Classes 20
Using Velocity Templates 20
About Customizing Reports 21
Changing the URL Prefix 21
Using Spring (XMA) Configuration Files 21
Using the OLTP Database 22
Using the OLAP Database 22
Data Dictionary 23
Repackaging EAR Files 23
Auditing Database Administration Activity 23

Localizing the User Interface 23

Debugging Oracle Self-Service E-Billing 28
Viewing log4j Log Files 29
Viewing Command Center Logs 29
Displaying SQL Statements 30

Accessing Oracle Self-Service E-Billing Javadoc 31

Chapter 3: Customizing User Management
Customizing User Management and Security 33

Customizing User Enrollment 34

Customizing End User and CSR User Passwords 35
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 3

Contents ■
Customizing the Administrator User Password 37

Customizing the CSR User Password Configuration 37

Customizing User Security Questions 38

Deactivating and Reactivating the Master Customer Service Representative
Administrator User 39

Customizing Enrollment Validation 39

Customizing Account Lockout 40

Customizing Reactivate Account Lockout 42

Customizing Profile Management 42

About Deleting Users 42

Customizing Acegi Security 42

Customizing Acegi Configuration 44

Using or Simulating Single Sign-On 45

Chapter 4: Customizing Billing Statements
About Statement Presentment APIs 49

About Split Billing Rules Management APIs 49
About the OLAP.EDX_RPT_ETL_PLUG_RULE Table 50
About the OLAP.EDX_RPT_SPLIT_CATEGORY_TYPE Table 50

Transaction Dispute APIs 51

Unbilled Usage APIs 51

Contact APIs 51

Chapter 5: Using and Customizing Email Notifications
Configuring an Email Host and Other Messaging Properties 53

Customizing the Content of Email Notifications 55

Customizing the Default Display Patterns Used in Email Notifications 56

Email Notification Template Content (Business Edition) 59

Email Notification Template Content (Consumer Edition) 70

Adding a Custom Message Provider 82

About Email Notification Processing 84
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A4

Contents ■
Chapter 6: Using the Reporting Engine
Reporting Engine Features 87

Reporting Engine Architecture 90
Reporting Engine Object Model 92

Components Used by the Reporting Engine 93
Using the Report List Properties File 94
Configuring Batch Reporting 95
Reporting XML 95
Creating a PDF Template for Reporting 124
Integration with Struts and Tiles 127
Reporting API 129

Core Reporting Features 130
Sorting Feature of the Reporting Engine 130
Paging Feature of the Reporting Engine 131
Dynamic SQL 132
Internationalization and Localization of Reporting 133
Object Data Source 136
DSV Data Source 136
Drilldown and Breadcrumb Link 137

Customizing the Reporting Engine 138
Write Your Own Report XML 138
Customize the Report Template 138
Write Your Own Action Classes and ReportForm 139
Packaging 139
Hiding Report Columns and Manipulating IReport 140
Unlimited Paging 140
Reloading Report XML and Templates without Restarting the Server 141

Customizing Threshold Values for Batch Reporting 142

Customizing Charts 143

Configurable Chart Properties 145

Customizing the Statement Summary Chart 152

Reporting on User Audit Data 153

Reporting on System Administrator Audit Data 157

Chapter 7: About Payment Processing
About Check Processing 161

Adding a Check Account 161
Credit Reversals 165
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 5

Contents ■
Automated Clearing House (ACH) 166

About Credit Card Processing 168
Credit Card Payment Status 169
Credit Card Payment Transactions 170
Instant Credit Card Payments 170
Scheduled Credit Card Payments 171
Credit Reversals 172
User Options 172
Using PayPal Payflow Pro as a Payment Gateway 172
Address Verification Service 172

About Recurring Payments 173
Recurring Payment Transaction Cycle 175
Tables Affected by Recurring Payments 176
Example of Scheduling Amount Due and Before Due Date 177
Payment Job Status Monitoring 186
Payment Job Plug-In 186

Chapter 8: Customizing Payment
Architecture of Oracle Self-Service E-Billing Payment 187

About Recurring Payment Processing 192

About Payment Plug-Ins 212

Customizing Oracle Self-Service E-Billing Payment Template Files 219

Generating Accounts Receivables (A/R Files) 235

Customizing the Payment Amount Format 242

Configuring International Bank Routing 243

Packaging Oracle Self-Service E-Billing Payment Custom Code 245

Debugging Payment 245

About Job Plug-Ins 246

About Payment Auditing 246

Implementing Custom Oracle Self-Service E-Billing Payment Cartridges 263

Avoiding Paying a Bill More Than Once 265

Handling Multiple Payee ACH Accounts 266

Using Payment APIs 267
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A6

Contents ■
Chapter 9: Customizing the Customer Service
Representative Application

CSR Integration and Impersonation APIs 269

CSR Capabilities 269

CSR Access (Impersonate User) 269

CSR Application 270

Chapter 10: Input File Specifications and Data Mapping
Preprocessor Tasks 273

Data File Loading Tasks 274

About ETL File Processing 274

File Format for Dimension Level Information 274

Statement Level File Format 278

Account Level File Format 281

Service Level File Format 282

Service Detail Level File Format 285

File Record and Table Mapping 287

Internationalization Support Settings 288

Index
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 7

Contents ■
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A8

1 What’s New in This Release
What’s New in Implementation Guide for Oracle Self-Service E-Billing,
Version 6.0.4, Rev. A
Table 1 lists changes described in this version of the documentation to support release 6.0.4, Rev. A
of the software.

What’s New in Implementation Guide for Oracle Self-Service E-Billing,
Version 6.0.4
Table 2 lists some of the changes in this version of the documentation to support this release of the
software.

Table 1. New Product Features in Implementation Guide for Oracle Self-Service E-Billing, Version
6.0.4, Rev. A

Topic Description

“Configuring International Bank Routing” on
page 243

New topic. Added instructions for configuring
routing numbers for international banking
payments.

“Using or Simulating Single Sign-On” on page 45 Modified topic. Clarified the procedure to
simulate a single sign-on system. Added a
procedure to configure Oracle Self-Service E-
Billing to use a single sign-on system.

Table 2. Product Features Added to the Implementation Guide for Oracle Self-Service E-Billing,
Version 6.0.4

Topic Description

“Localizing the User Interface” on
page 23

New topic. Describes how to localize the Billing and Payment
and Customer Service Representative applications for one or
more new languages.

“Customizing User Security
Questions” on page 38

New topic. Describes how to customize the security
questions.

“Using or Simulating Single Sign-
On” on page 45

Modified topic. The procedure to simulate single sign-on has
been updated for implementations using Oracle Self-Service
E-Billing authentication with an external identity store.

Customizing the Content of Email
Notifications on page 55

New topic. Describes how to customize the text and variables
that appear in email notifications.

“Customizing the Default Display
Patterns Used in Email
Notifications” on page 56

New topic. Describes how to customize the default patterns
used to display dates, times, date and time, integers, and
amounts in Oracle Self-Service E-Billing applications.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 9

What’s New in This Release ■
What’s New in Implementation Guide for Oracle Self-Service E-Billing,
Version 6.0.3
Table 3 lists some of the changes in this version of the documentation to support this release of the
software.

“Email Notification Template
Content (Business Edition)” on
page 59

“Email Notification Template
Content (Consumer Edition)” on
page 70

New topics. These topics were moved from Application Guide
for Oracle Self-Service E-Billing (Business Edition) and
Application Guide for Oracle Self-Service E-Billing
(Consumer Edition). Template text has been updated to
support localization. The Statement Threshold notification
type has been added to both topics for the new
ThresholdExceedNotify job.

“Configuring Batch Reporting” on
page 95

New topic. Describes the configuration options available for
batch reporting.

“Creating a PDF Template for
Reporting” on page 124

New topic. Describes how to create an RTF template to
generate reports in PDF format.

“Customizing Charts” on page 143 New topic. Describes how to customize Oracle Data
Visualization Tool (DVT) charts for reporting. Oracle DVT
replaces KavaChart.

“Configurable Chart Properties” on
page 145

New topic. Describes the configurable properties for each
type of Oracle DVT chart available with reporting.

“Customizing the Statement
Summary Chart” on page 152

New topic. Describes the configurable properties available
with the vertical bar chart displayed in the Statement
Summary.

“Reporting on User Audit Data” on
page 153

New topic. Describes the audit data maintained on user
enrollment activity recorded in Oracle Self-Service E-Billing.

“Reporting on System
Administrator Audit Data” on
page 157

New topic. Describes the audit data maintained on system
administrator activity recorded in the Command Center
application.

Table 3. New Product Features in Implementation Guide for Oracle Self-Service E-Billing, Version
6.0.3.

Topic Description

“Auditing Database Administration
Activity” on page 23

New topic. Describes the external database administrator
auditing, as required by PCI DSS.

“Data Dictionary” on page 23 New topic. Describes where to find the new Data Dictionary
files in the Oracle Self-Service E-Billing product directories.

Table 2. Product Features Added to the Implementation Guide for Oracle Self-Service E-Billing,
Version 6.0.4

Topic Description
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A10

What’s New in This Release ■
“Customizing User Management
and Security” on page 33

Modified topic. Added functional changes to meet the Payment
Card Industry Data Security Standard (PCI DSS).

“Customizing User Enrollment” on
page 34

New topic. Describes how to customize the new enrollment
functionality, as required by PCI DSS.

“Customizing End User and CSR
User Passwords” on page 35

New topic. Describes how to customize the end user and CSR
user password validation rules, as required by PCI DSS.

“Customizing the Administrator
User Password” on page 37

New topic. Describes how to customize the Command Center
administrator user password, as required by PCI DSS.

“Deactivating and Reactivating the
Master Customer Service
Representative Administrator
User” on page 39

New topic. Describes how to deactivate and reactivate the
default Customer Service Representative (CSR) user account,
as required by PCI DSS.

“Customizing Enrollment
Validation” on page 39

New topic. Describes how to customize the new enrollment
validation functionality, as required by PCI DSS.

“Customizing Account Lockout” on
page 40

New topic. Describes how to customize the new user account
lockout feature, as required by PCI DSS.

“Customizing Reactivate Account
Lockout” on page 42

New topic. Describes how to customize the new reactivate
account lockout feature, as required by PCI DSS.

“Customizing Profile Management”
on page 42

New topic. Describes how to customize the enhanced profile
management, as required by PCI DSS.

“Customizing Acegi Configuration”
on page 44

New topic. Describes how to customize the enhanced Acegi
user enrollment framework, as required by PCI DSS.

“Using or Simulating Single Sign-
On” on page 45

New topic. Describes how to simulate a single sign-on user.

“Customizing Threshold Values for
Batch Reporting” on page 142

New topic. Describes how to set the batch reporting threshold
value for each report.

“Input File Specifications and Data
Mapping” on page 273

New chapter. This chapter was moved from Database Guide for
Oracle Self-Service E-Billing, which is no longer a part of the
Oracle Self-Service E-Billing documentation set. Additional
fields were added to the summary-level detail file format for
PA-DSS compliance.

“Customizing the Payment Amount
Format” on page 242

New topic. Describes how to customize the payment amount
format.

Using the Oracle Self-Service E-
Billing Payment APIs

Removed chapter. API code and lists of associated methods
have been removed from the book. For information about using
APIs, see Accessing Oracle Self-Service E-Billing Javadoc on
page 31.

Table 3. New Product Features in Implementation Guide for Oracle Self-Service E-Billing, Version
6.0.3.

Topic Description
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 11

What’s New in This Release ■
Table 4 lists some of the changes in this version of the documentation to support this release of the
software.

Table 4. Product Features Added to the Implementation Guide for Oracle Self-Service E-Billing,
Version 6.0.1

Topic Description

Adding a Custom Message
Provider on page 82

New topic. Describes how to add a custom message provider,
such as SMS.

Debugging Oracle Self-Service E-
Billing on page 28

Modified topic. Addition of a security caution on updating the
log4j_cc.xml file.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A12

2 Customizing Oracle Self-Service
E-Billing
This chapter covers general information to get started customizing your application. It includes the
following topics:

■ Overview of Oracle Self-Service E-Billing Architecture on page 13

■ Guidelines for Customizing Oracle Self-Service E-Billing on page 18

■ Customizing the User Interface Files on page 18

■ Localizing the User Interface on page 23

■ Debugging Oracle Self-Service E-Billing on page 28

■ Accessing Oracle Self-Service E-Billing Javadoc on page 31

Overview of Oracle Self-Service E-Billing
Architecture
Oracle Self-Service E-Billing includes three applications. Each application is packaged as one
Enterprise Archive (EAR) file:

■ Billing and Payment. Users interact with the Billing and Payment online interface to view their
statements, make payments, manage their business hierarchies, and so on. Use the information
in this guide to help you customize the preconfigured functionality for your company’s
implementation.

■ Command Center. Your system administrator uses the Command Center to manage the live
Oracle Self-Service E-Billing production environment. You do not customize this application,
although you can create custom jobs if necessary.

■ Customer Service Representative (CSR). Customer service representatives use the CSR
application to assist Oracle Self-Service E-Billing users.

This guide assumes you have installed Oracle Self-Service E-Billing and deployed these applications,
and can run and view them successfully. For information about installing Oracle Self-Service E-
Billing, see Installation Guide for Oracle Self-Service E-Billing.

About the Billing and Payment Application
The Billing and Payment application is the online bill presentment and payment interface for users.
For information about the preconfigured use cases provided in the Billing and Payment application,
see Application Guide for Oracle Self-Service E-Billing (Business Edition) or Application Guide for
Oracle Self-Service E-Billing (Consumer Edition).
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 13

Customizing Oracle Self-Service E-Billing ■ Overview of Oracle Self-Service E-Billing
Architecture
The Oracle Self-Service E-Billing interfaces are built upon Struts and Tiles. The Struts actions talk
with the Service APIs which then access different modules, such as Hierarchy or Reporting. The
Billing and Payment application includes the following feature modules:

■ Statement Module. This is the core J2EE functionality of Oracle Self-Service E-Billing self-
service software. The Statement module manages the access and display of statement data,
enrollment, logging, and production (administrative) environment. Preconfigured presentment
functionality includes bill summary, account, service, and usage summaries, usage detail,
transaction detail, and the ability to dispute a transaction. A dashboard is provided for B2B users
and includes a summary of recent charges across all accounts in a company.

■ Payment Module. A complete payment scheduling and management with real-time and batch
connections to payment gateways for Automated Clearing House (ACH) and credit card
payments, and payments using various payment processing service providers. Includes user
enrollment functions for both viewing and paying bills, setting up account information, making
payments, scheduling payments, payment reminders, recurring payments, and so on.
Administrative functions include setting up Payment jobs, Payment module settings, and viewing
reports.

■ User Management Module. A framework to authenticate and authorize a user using roles-
based control (RBAC). After the user has been authenticated, the user can then access different
Oracle Self-Service E-Billing features such as hierarchy, cost management, reports, and so on.
Users can view personal profiles and optionally change their names, password, and email
accounts.

■ Unbilled Usage Module. Presents a report of detailed transactions, also called unbilled details,
that have occurred since the last statement close date.

■ Split Billing Module. A feature that lets a service provider define a set of rules that enables the
application to categorize business and personal expenses for all transaction detail in a service
agreement. The service provider can change the application order of the rules, the rule definition,
and the number of rules to be applied. Users can manually change the automated split-billing
categorization through the online application.

■ Notifications Module. Users can configure personal event-based notification preferences that
control the delivery of email messages to the user for events such as when a new bill is ready
for viewing online or a payment is confirmed. Notification can be generated by a batch process
following an event (batch notifications) or in response to a user action (instant notifications).

■ Hierarchy Management Module. Manages the life cycle of a hierarchy: creation, modification,
expiration, deletion, copy, move, search, hierarchy-based access control (HBAC), and so on.

■ Analytics Module. Provides an analysis of group spending, group spending trends, account
billing overview, details, and trends, contract billing overview and trends, contract call details,
and total cost by plan. Chart type in reports (vertical bar, horizontal bar, stacked bar, multiple
line, and pie chart) is selectable. All report row data can be configured into a trend report. Users
can customize and save all report parameters. Ability to run reports from virtual nodes created
when a user is assigned to two or more locations within a hierarchy.

■ Cost and Budget Management Module. A set of tools to manage billing cost, such as rebill,
cost reallocation, and budget management.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A14

Customizing Oracle Self-Service E-Billing ■ Overview of Oracle Self-Service E-Billing
Architecture
■ Top X Reporting Module. Standard reports showing most expensive calls, longest calls, most
frequently called numbers, destinations, or countries, highest spender, and highest spending
contracts by usage type or call type. Users can also create a Find Calls report showing a list of
calls based on a custom search.

■ Database Presentment Engine. A framework to retrieve data from different data sources and
present them as HTML, XML, or CSV. Offers features like paging, sorting, charting, bread-crumb,
batch report, custom report, and so on.

■ DB Access. The majority of the Oracle Self-Service E-Billing code uses Hibernate, which is an
object-relational mapping tool, to access OLTP database. The access to OLAP is through direct
JDBC call to boost performance.

■ Transaction Management. Oracle Self-Service E-Billing uses distributed transaction (XA or JTA
transaction) to manage database access and JMS access. The transaction is managed through
the Spring Framework. The Spring framework is also used to manage object creations, and so on.

■ OLTP Database. The Oracle Self-Service E-Billing transactional database, which includes
transaction data such as user, account, services, and hierarchies.

■ OLAP Database. The Oracle Self-Service E-Billing non-transaction database, which includes
billing data. It is a star-schema based data warehouse and includes dimensional tables, fact
tables, and hierarchy tables.

■ OLTP-OLAP Synchronizer. A process which synchronizes the information from OLTP to OLAP
database. Currently, the main information being synchronized is the hierarchy. Any change made
to hierarchy on the OLTP side will be synchronized at OLAP. The OLAP hierarchy schema is
specially designed for queue performance and different from the OLTP hierarchy schema.
However, they have the exactly the same content; even the hierarchy node IDs are the same.

Default Installation Directory
The default installation directory for Oracle Self-Service E-Billing is:
■ UNIX. /opt/Oracle/eBilling

■ Windows. Oracle\eBilling

It is possible to change the default directory during installation. This guide refers to the directory
where you have Oracle Self-Service E-Billing as EDX_HOME.

Billing and Payment Application EAR File Structure
This Billing and Payment application EAR file can be found in the following directories:

■ Oracle WebLogic. EDX_HOME/eBilling/J2EEApps/ebilling/weblogic/ebilling-weblogic-10-
6.0.4.ear (or the EDX_HOME\eBilling\J2EEApps\ebilling\weblogic\ebilling-weblogic-10-
6.0.4.ear directory on Windows)

■ IBM WebSphere. EDX_HOME/J2EEApps/ebilling/websphere/ebilling-websphere-6-
6.0.4.ear

In general, you deploy the Billing and Payment application EAR file in a cluster environment for the
purpose of failover and load balance.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 15

Customizing Oracle Self-Service E-Billing ■ Overview of Oracle Self-Service E-Billing
Architecture
The following components are packaged inside the ebilling-weblogic-10-6.0.4.ear file:

■ ebilling-weblogic-10-6.0.4.ear. This is the root directory and contains the EJB JavaARchive
(JAR) and Web ARchive (WAR) files.

■ ebilling-weblogic-10-6.0.4.ear/lib. Contains the list of third-party lib files used by the
Billing and Payment application.

■ ebilling-weblogic-10-6.0.4.ear/META-INF. Contains the J2EE META-INF directory.

■ ebilling-weblogic-10-6.0.4.ear/xma. Contains a list of internal library files used by the Billing
and Payment application. In this directory there is one JAR file called api-version_number.jar,
where version_number is the Oracle Self-Service E-Billing version. This JAR file has all the public
Oracle Self-Service E-Billing APIs defined.

The following components are packaged under the directories inside the Billing and Payment
application WAR file, ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war:

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/_includes and
ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/_templates. Contains
JSP page fragments used by the Billing and Payment application; many of these are tiles.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/_assets. Contains
images, JavaScripts, and CSS files used by the Billing and Payment application.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/hierarchy. Contains
Hierarchy-related JSP pages.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/usermanagement.
Contains User-Management-related JSP pages.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/reporting. Contains
Reporting-related JSP pages.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/payment. Contains
Payment-related JSP pages.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/contacts. Contains
Contacts-related JSP pages.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/dispute. Contains
Dispute-related JSP pages.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/unbilled. Contains
Unbilled-related JSP pages.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/WEB-INF. Contains the
J2EE WAR file WEB-INF directory.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/WEB-INF/classes/

azcfg/policy. Contains the Oracle Self-Service E-Billing RBAC policy file.

■ ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/WEB-INF/classes/lib.
Contains libraries used by the WAR file.

NOTE: Some of the WAR file subdirectories are inherited from another legacy Oracle Self-Service E-
Billing application and are not used directly by Oracle Self-Service E-Billing.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A16

Customizing Oracle Self-Service E-Billing ■ Overview of Oracle Self-Service E-Billing
Architecture
About the Command Center Application
The Oracle Self-Service E-Billing Command Center is a separate application and is packaged as a
separate EAR file. You deploy the Command Center on a separate application server. A system
administrator uses the Command Center to run batch jobs and monitor the production environment.
Command Center consists of the following components:

■ Command Center User Interface. The Command Center user interface is based on Servlet-
JSP technology, not struts and tiles.

■ Jobs. A Command Center job is a process which an administrator for Oracle Self-Service E-Billing
must schedule and run using the Command Center console (UI). Oracle Self-Service E-Billing
comes with a set of predefined jobs, such as OLTP loader, batch generator, Hierarchy importer,
and so on. A job consists of one or more tasks, and each task performs a specific piece of the
processing. Each task is implemented as an EJB and has its own configuration parameters which
the administrator also configures using the Command Center UI. When a job runs, the tasks that
make up each job run sequentially.

For more information about configuring and running jobs in the Oracle Self-Service E-Billing
Command Center, see Administration Guide for Oracle Self-Service E-Billing.

■ PWC API. A set of APIs used to manage jobs.

Command Center EAR File
The Command Center EAR file can be found in the following directories, where EDX_HOME is the
directory where you installed Oracle Self-Service E-Billing:

■ Oracle WebLogic. EDX_HOME/J2EEApps/commandcenter/weblogic/command-center-weblogic-
10-6.0.4.ear (or the EDX_HOME\J2EEApps\commandcenter\weblogic\command-center-
weblogic-10-6.0.4.ear directory on Windows)

■ IBM WebSphere. EDX_HOME/J2EEApps/commandcenter/websphere/command-center-
websphere-6-6.0.4.ear

In general, you are not expected to modify this EAR file during deployment. Deploy the Command
Center on a separate application server.

About the Customer Service Representative Application
The Customer Service Representative application is used by customer service representatives to
assist customers. A CSR can impersonate an end-user. For information about preconfigured CSR use
cases provided with Oracle Self-Service E-Billing, see Application Guide for Oracle Self-Service E-
Billing (Business Edition) or Application Guide for Oracle Self-Service E-Billing (Consumer Edition).

About the CSR Application EAR File
The CSR EAR file can be found in the following directories, where EDX_HOME is the directory where
you installed Oracle Self-Service E-Billing:
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 17

Customizing Oracle Self-Service E-Billing ■ Guidelines for Customizing Oracle Self-
Service E-Billing
■ Oracle WebLogic. EDX_HOME/J2EEApps/csr/weblogic/csr-app-6.0.4.ear (or the
EDX_HOME\J2EEApps\csr\weblogic\csr-app-6.0.4.ear directory on Windows)

■ IBM WebSphere. EDX_HOME/J2EEApps/csr/websphere/csr-app-6.0.4.ear

Guidelines for Customizing Oracle Self-
Service E-Billing
Oracle Self-Service E-Billing provides a set of core functions, such as reporting and hierarchy
management, and a sample user interface (UI) to demonstrate these functions. The contract
between Oracle Self-Service E-Billing core and the UI is a set of APIs. These APIs and the Java-docs
are contained in the API JAR file of the EAR file. You must use these APIs for your customization
purposes; do not modify or bypass these APIs unless explicitly instructed in this guide.

The sample application demonstrates how Oracle Self-Service E-Billing functions. You can customize
your user interface, such as the billing, reporting, or even hierarchy.

NOTE: Because of the complexity of the Hierarchy Management UI, it is recommended that you try
and keep your UI as close as possible to the sample hierarchy UI to reduce your workload.

The functions exposed by the APIs exceed the ones demonstrated through the sample UI. Please
consult the API Java-docs and other topics of this guide for details. You can customize the Oracle
Self-Service E-Billing application to take advantage of these functions.

When you have to change existing Oracle Self-Service E-Billing files, such as a JSP or a Velocity
template, you can work either on an existing file or copy it and work on the copy. The second method
could be more time consuming but will save you more time for migration. Keep the history of
customization changes in a source control system.

Customizing the User Interface Files
The Oracle Self-Service E-Billing user interface-related files can be found in the following Web
application folders (packaged in the application EAR file):

■ The _assets. Contains all images, CSS files, and scripts used in the application.

■ The _templates. Template files for formatting and screen orientation.

Every JSP can extend any one of these templates.

All Oracle Self-Service E-Billing screens pick up their styles from a common file, swan.css (in the
_assets/swan/ folder). This file is imported in all the templates.

All JSP files can be found in the respective module folders.

UI customization can range from changing the look-and-feel or adding your own struts action classes.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A18

Customizing Oracle Self-Service E-Billing ■ Customizing the User Interface Files
Customizing the Existing Look-and-Feel
The Oracle Self-Service E-Billing UI is based on Tiles definitions. The user interface properties, such
as color and font size, are controlled using a style sheet (CSS file).

The stylesheet defines the styles for all classes defined. You can define as many stylesheets as
required, however, leave the class name the same as it is in take1.css.

The template files must also import the corresponding customized CSS files as necessary. Then the
JSPs will use the new styles.

You can modify the Tiles definitions file to use your own Tiles. All the Tiles definitions are in the
ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/WEB-INF/ directory.

The hierarchy UI-related JSP pages are in the ebilling-weblogic-10-6.0.4.ear/ebilling-web-
1.0-SNAPSHOT.war/hierarchy directory.

Reporting-related JSP pages are in the ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-
SNAPSHOT.war/reporting directory. If necessary, customize these JSP pages.

In special cases, when you use the Oracle Self-Service E-Billing presentment engine to generate a
report or a search page, the result of the query is not presented by JSP, instead, a set of Velocity
templates are used. These templates are defined in the EDX_HOME/templates/common/lib and
reporting directories. In the path, EDX_HOME is the directory where you installed Oracle Self-Service
E-Billing. Do not touch the VM files in the lib directories. For the files under reporting, you can
customize them if necessary. However, most of the time you can customize reports using report xml
files without touching the VM files.

Customizing Web Document Styles
Oracle Self-Service E-Billing provides Cascading Style Sheets (CSS) as a mechanism for adding style,
such as fonts, colors, and spacing, to Web documents to provide a user-customized interface.

The user interface of Oracle Self-Service E-Billing uses industry standards (consistent page layout,
navigation bars, bread crumbs, and logically labeled controls) to make a consistent and intuitive user
experience. The use of Cascading Style Sheets ensures separation of style from presentation.

The page layout of the Oracle Self-Service E-Billing application consists of the following body areas:

■ Pagewrap

■ Top_page

■ Logo

■ Userlinks

■ Tabbar and tabs

■ Subtabbar and subtabs

■ Sidecontent

❏ Quicklinks: Header and Quicklinklist

❏ Reportcontext: Header and Reportcontextlist
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 19

Customizing Oracle Self-Service E-Billing ■ Customizing the User Interface Files
■ Maincontent

❏ Breadcrumb

❏ Pageheading

❏ Pagetabs (When applicable)

❏ Errormessage

❏ successmessage

❏ Subtitle (Repeats at the top of each module)

❏ Buttonbar downloadPrint (When applicable)

❏ Buttonbar (When applicable)

❏ Contextbox

❏ Infomessage (When applicable)

❏ Buttonbar (When applicable)

■ Clearline

■ Footer. All style sheets reside in the _assets/css directory. The primary style sheet is take1.css,
which is the only style sheet that the application uses with the exception of all Printer Friendly-
rendered pages.

Oracle Self-Service E-Billing calls for the Cascading Style Sheet file from the main templates,
which are in the _templates directory. The JSP file names are:

■ simplelayout.jsp

■ simplelayout1.jsp

■ popupLayout.jsp

■ paymentLayout.jsp

■ dashBoardLayout.jsp

Using Custom JSP Pages and Action Classes
The user interface components can be found in the ebilling-weblogic-10-6.0.4.ear/ebilling-web-1.0-
SNAPSHOT.war.

It is possible to add your own UI components such as JSP, JavaScripts and so on.

After you create your own action class, you must modify the struts-config.xml file to register it.

Using Velocity Templates
The Oracle Self-Service E-Billing reporting UI is based on Velocity templates, an open source project.
The product offers a set of preconfigured templates to implement common UI features such as
paging, sorting, charting, print-friendly, and download.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A20

Customizing Oracle Self-Service E-Billing ■ Customizing the User Interface Files
You can customize these preconfigured templates either by modifying them directly or by copying
and then modifying. If you do copy and modify, configure the report XML files to pick up your new
templates.

About Customizing Reports
All of the report XML files defined in the EDX_HOME/config/rpt directory (or the
EDX_HOME\config\rpt directory on Windows) are for the preconfigured Oracle Self-Service E-Billing
user interface. In the path, EDX_HOME is the directory where you installed Oracle Self-Service E-
Billing.

You can add your own report XML files by following the instructions in Chapter 6, “Using the Reporting
Engine.” Your reports can use either the default Velocity templates provided with Oracle Self-Service
E-Billing or your own templates.

Changing the URL Prefix
Oracle Self-Service E-Billing uses ebilling as its URL prefix. However, you can change this to fit your
deployment environment. The prefix is defined in the application.xml file in the ebilling-weblogic-10-
6.0.4.ear/META-INF directory. All URLs from Oracle Self-Service E-Billing use a relative URL. This
ensures that after you change the URL prefix, the application can still work.

The Oracle Self-Service E-Billing-related action classes and other Struts are defined as a (Struts)
module called ebilling. Access all resources in the EAR file, including Struts actions, images, jsp
pages, and so on, with this prefix, for example:

http://host:port/ebilling/report.do

Using Spring (XMA) Configuration Files
Oracle Self-Service E-Billing uses Spring to manage JavaBean creation and transactions. The
configuration of Hibernate is also through Spring. These files are also called XMA configuration files
in Oracle Self-Service E-Billing terms and exist in the EDX_HOME/xma directory (or the EDX_HOME\xma
directory on Windows). In the path, EDX_HOME is the directory where you installed Oracle Self-Service
E-Billing. These are the core configuration files of Oracle Self-Service E-Billing and you must not
modify them unless instructed in this document.

Possible reasons to customize these files include:

■ To enable Hibernate show_sql.

■ To extend Hierarchy Management, such as adding a new link target type, reimplementing a
hierarchy search interface such as IAssignedObjectProvider, inserting a new loader into the
OLTPProductionLoader job, configuring a new event handler to handle hierarchy events, or
configuring the hierarchy UI behavior. For more information about extending Hierarchy, see
Hierarchy Developer’s Guide for Oracle Self-Service E-Billing.

■ To configure the batch report job, to send email, for example.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 21

Customizing Oracle Self-Service E-Billing ■ Customizing the User Interface Files
Using the OLTP Database
OLTP is the Oracle Self-Service E-Billing transactional database. Oracle Self-Service E-Billing expects
access to product tables to go through the Oracle Self-Service E-Billing APIs. Do not change the
existing product schema. However, you can add your own customization tables.

Using the OLAP Database
OLAP is the Oracle Self-Service E-Billing data warehouse. It is a non-transaction database used to
save billing information and has no APIs for access; these tables are accessed directly through report
XML files. For information on how to use report XML files to retrieve data from the OLAP database,
check the report XML files used to generate various billing reports. These files are defined in the
EDX_HOME/config/rpt directory (or the EDX_HOME\config\rpt directory on Windows), where
EDX_HOME is the directory where you installed Oracle Self-Service E-Billing.

The OLAP database includes three kinds of tables:

■ OLTP-OLAP Synchronization-Related Tables. Because OLAP is a non-transactional database,
it has no (or very limited) UI transactional operations. However, it requires transaction data to
report on, for example, hierarchy information. This information is synchronized from OLTP to
OLAP at real time. The tables related to this operation are:

■ EDX_RPT_ACCOUNT_WSPACE

■ EDX_RPT_ACCOUNT_XREF (Not used)

■ EDX_RPT_CC_CHARGE_WSPACE

■ EDX_RPT_HIERARCHY_NODE_PERIOD

■ EDX_RPT_HIERARCHY_TREE_DIM

■ EDX_RPT_HIERARCHY_TYPE_DIM

■ EDX_RPT_HIERARCHY_XREF_DIM

■ EDX_RPT_USER_HIERARCHY_WSPACE (Not used)

■ EDX_RPT_USER_SERVICE_WSPACE (Not used)

Do not customize these tables. Operations on these tables are read-only.

■ Dimensional Tables. Except the ones described in this topic, the remaining dimensional tables
are used to save dimensional data such as accounts, services, dates, periods, and so on. Also
most all the dimensional tables have some flexible fields which are for customization. Use the
flexible fields to hold your custom information instead of adding your own columns. You can also
create new dimensional tables.

■ Fact Tables. Fact tables are used to hold the fact information such as call details or summaries.
You can add new columns to the fact tables if necessary or add your own fact tables.

Never make any changes that could break the backward compatibility of the DB schema, such as
changing the column type or renaming a column or a table.

The Oracle Self-Service E-Billing screen JSPs pick the label from the property file using a unique key.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A22

Customizing Oracle Self-Service E-Billing ■ Localizing the User Interface
Data Dictionary
Oracle Self-Service E-Billing provides a Data Dictionary with details about the OLAP and OLTP
database tables.

The Oracle Self-Service E-Billing Data Dictionary is available in both PDF and HTML formats and can
be found in the following directories:

■ EDX_HOME/doc/api/datadictionary/html/E-Billing_oltpindex.html

■ EDX_HOME/doc/api/datadictionary/html/E-Billing_olapindex.html

■ EDX_HOME/doc/api/datadictionary/pdf/E-Billing_oltpindex.pdf

■ EDX_HOME/doc/api/datadictionary/pdf/E-Billing_olapindex.pdf

In the paths, EDX_HOME is the directory where you installed Oracle Self-Service E-Billing.

Repackaging EAR Files
Whenever you want to modify a JSP, add a new action class, or add an EJB, you must repackage the
EAR file.

When repackaging the EAR file, make sure you do not remove existing components and only modify
the components that are recommended as modifiable in this guide, such as JSP pages, CSS files, the
app-resources.jar file, and so on.

Auditing Database Administration Activity
Oracle Self-Service E-Billing does not audit database administrator activity. However, to remain
compliant with the Payment Card Industry Data Security Standard (PCI DSS), you must implement
auditing functionality that documents each time an administrator logs in, creates new tables or
attributes, deletes information including tables, attributes, or transaction details, or runs an external
script against the Oracle Self-Service E-Billing database.

Localizing the User Interface
The Oracle Self-Service E-Billing user interface is preconfigured to use English only. You can add
additional languages by copying and translating the required English-language resource bundle
(property) files and configuring the additional files described in this topic. The localization process
involves configuring and translating files for each of the Oracle Self-Service E-Billing applications:
Billing and Payment, Command Center, and Customer Service Representative applications.

You can set one language as the default for your implementation. Each user can choose a different
language from the interface, and that language becomes his or her preferred language and
automatically appears each time that user logs in.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 23

Customizing Oracle Self-Service E-Billing ■ Localizing the User Interface
To localize the user interface

1 Oracle Self-Service E-Billing must be installed and deployed. Shut down the Billing and Payment,
Command Center, and Customer Service Representative application servers.

2 For each new language, add a record in the EDX_SYS_LANG database table. For example, the
following SQL statement adds traditional Spanish and sets it as the default language:

insert into edx_sys_lang(id,code,name,is_default) values(1,'es_ES','Espanol’,1);

where:

■ id is the ID you want to use as the primary key for this language.

■ code is the language code. The format can be language_country (such as en_US, zh_CN, or
ja_JP) or language_country_variant, such as en_US_Traditional_WIN. The language
argument is a valid ISO-639 Language Code in two lower-case letters. The country argument
is a valid ISO-3166 Country Code in two upper-case letters.

The variant argument is a vendor- or browser-specific code, for example: WIN for Windows,
MAC for Macintosh, and POSIX for POSIX. The variant argument can have two parts,
separated by an underscore. For example, the code for Traditional Spanish on Windows is
es_ES_Traditional_WIN.

■ name is the name of the language that appears when a user selects a language in the
interface.

■ is_default indicates whether this language is to be the default (0 is No; 1 is Yes).

3 Create new resource bundle property files for each new language for all three Oracle Self-Service
E-Billing applications: Billing and Payment, Command Center, and Customer Self-Service
applications.

a Extract the app-resources-1.0-SNAPSHOT.jar file from the EAR files shown in the following table
(use back slashes (\) on Windows):

Application
Server

Oracle Self-
Service E-Billing
Application Location of the Application Resource Bundle File

Oracle
WebLogic

Billing and
Payment

EDX_HOME/J2EEApps/ebilling/

weblogic/ebilling-weblogic-10-6.0.4.ear/xma/

app-resources-1.0-SNAPSHOT.jar

Command Center EDX_HOME/J2EEApps/commandcenter/weblogic/

command-center-weblogic-10-6.0.4.ear/xma/app-

resources-1.0-SNAPSHOT.jar

Customer Service
Representative

EDX_HOME/J2EEApps/csr/

weblogic/csr-app-6.0.4.ear/xma/app-resources-

1.0-SNAPSHOT.jar

IBM
WebSphere

Billing and
Payment

EDX_HOME/J2EEApps/ebilling/

websphere/ebilling-websphere-6-6.0.4.ear/xma/

app-resources-1.0-SNAPSHOT.jar
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A24

Customizing Oracle Self-Service E-Billing ■ Localizing the User Interface
b Make copies of the following language resource property files, one for each language and each
Oracle Self-Service E-Billing application (3), appending the locale code
(languageCode_Country) to the new file names. For example, for Spanish, the copy of the
application resource messages file must be called
ApplicationResourcesNew_es_ES.properties. For each application, the files are located under
the corresponding JAR file path in the com/edocs/application/resources directory (or the
com\edocs\application\resources directory on Windows). (Place all new and updated
property files in the same directories as the English language files.)

NOTE: If you want to make any customizations to the pre-configured email content, make
those changes in the following files before creating copies for localization.

❏ ApplicationResourcesMessages.properties. Message text, such as validation and
error messages that appear in the user interface.

❏ ApplicationResourcesNew.properties. Text of tabs, labels, and titles that appear on
the user interface Web pages.

❏ NotificationResource.properties. Contains text strings used to compose email
notifications.

❏ Period.properties. Contains monthly time periods that appear in lists in the user
interface.

❏ CurrencyText.properties. Contains the currency name to display in reports and charts
for each language.

Oracle Self-Service E-Billing comes preconfigured with a set of language files for U.S.
English:

❏ ApplicationResourcesMessages_en_US.properties

❏ ApplicationResourcesNew_en_US.properties

❏ CurrencyText_en_US.properties

❏ NotificationResource_en_US.properties

❏ Period_en_US.properties

4 Translate the appropriate content in each new property file.

NOTE: The content of the resource bundle files are identical for all applications.

Command Center EDX_HOME/J2EEApps/commandcenter/websphere/

command-center-websphere-6-6.0.4.ear/xma/app-

resources-1.0-SNAPSHOT.jar

Customer Service
Representative

EDX_HOME/J2EEApps/csr/

websphere/csr-app-6.0.4.ear/xma/app-resources-

1.0-SNAPSHOT.jar

Application
Server

Oracle Self-
Service E-Billing
Application Location of the Application Resource Bundle File
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 25

Customizing Oracle Self-Service E-Billing ■ Localizing the User Interface
5 In the CurrencyText.properties file, for each application and in each language, add mappings
between the currency code and text for any currencies you want to use. The currency text
appears on reports and charts.

The following values (for the American dollar, Chinese yuan, and euro) are included in the file by
default:

USD.CurrencyText=Dollars

CNY.CurrencyText=CNY

EUR.CurrencyText=Euro

6 In the ApplicationResourcesNew.properties file, for each application and each language, update
the file to customize the date, time, and number formats used in the user interface. Specifying
custom values lets you override the default Java language formats. You can also add new
patterns to the ApplicationResourcesNew.properties file.

To apply a different date format in a report (such as using the short date format instead of the
medium format), update the report XML file with the pattern you prefer. The report XML files are
found in the EDX_HOME/config/rpt directory. Also update the report XML files where you want to
apply any new patterns. Update the following code in the ApplicationResourcesNew.properties
files:

#################### Date,Time,Number ########################

global.pattern.number.integer=#,##0
global.pattern.number.decimal=#,##0.00
global.pattern.number.percent=#0.00%
global.pattern.number.amount=\u00A4#,##0.00
global.pattern.number.amount2=\u00A4#,##0.00;\u00A4(#,##0.00)
global.pattern.number.amount3=#,##0;(#,##0)
global.pattern.number.amount4=#,##0.00;(#,##0.00)
global.pattern.date.short=M/d/yy
global.pattern.date.medium=MM/dd/yyyy
global.pattern.date.long=MMM/dd/yyyy
global.pattern.date.input=MM/dd/yyyy
global.pattern.time.short=HH:mm
global.pattern.time.long=HH:mm:ss
global.pattern.date.time=MM/dd/yyyy HH:mm:ss

NOTE: The amount3 and amount4 patterns display numbers that are not currency amounts.

7 For each application, update the StatementDisplay.properties file to add the Unicode currency
symbol for any currencies you want to use. The currency symbols appear in the user interface
and in email notification content. The StatementDisplay.properties file is found under the
application JAR file path in the com/edocs/application/resources directory (or the
com\edocs\application\resources directory on Windows). If your billing files contain only a
single currency, then add an entry for that currency.

The following values (for the American dollar, Chinese yuan, and euro), are included in the file
by default:

USD.CurrencySymbol=$

CNY.CurrencySymbol=\u00a5
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A26

Customizing Oracle Self-Service E-Billing ■ Localizing the User Interface
EUR.CurrencySymbol=\u20ac

8 If any of the new languages use special characters, update the Payment Module validation file,
validation-payment.xml. Adding the characters to this file lets a user enter the special characters
in payment account names, credit card names, and so on in the Payment Module. The validation-
payment.xml file is located in the /WEB-INF directory under the ebilling-web-1.0-SNAPSHOT.war
path. Extract the ebilling-web-1.0-SNAPSHOT.war file from the EAR files shown in the following
table (use back slashes (\) on Windows):

9 Repackage the JAR and EAR files at the application server console and deploy the EAR files. For
instructions on how to deploy an application EAR file, see Installation Guide for Oracle Self-
Service E-Billing.

10 Generate an email template XML file for each language:

a Modify the template generator script for your implementation. The template generator script
generates an email notification template XML file based on the notification properties file for each
language. Change to the EDX_HOME/bin/notification/ directory (or the
EDX_HOME\bin\notification\ directory on Windows). In the generateEmailTemplate.sh file
found in this directory (or the generateEmailTemplate.cmd file on Windows), update the value of
EDX_HOME and using the full path names for your installation. If you have saved the Billing and
Payment application ear file in a new location, update the path to the ear file in the EBearfile
variable (the default is EBearfile="$EDX_HOME/J2EEApps/ebilling/weblogic/ebilling-
weblogic-10-6.0.4.ear").

b Run the email template generator utility. You can run this tool in one of two ways:

■ Generate all new language email templates in batch. To generate a batch of XSL
template files in the corresponding languages, create a text file that contains each language
code on separate lines and place the file in the EDX_HOME/bin/notification directory (or the
EDX_HOME\bin\notification directory on Windows). Run the following command, where
filename is the name of the language code text file you created:

❏ Unix: ./generateEmailTemplate.sh -f filename

❏ Windows: generateEmailTemplate.cmd -f filename

For example, the following text file content generates two files called template_ zh_CN.xsl
and template_ ja_JP.xsl:

zh_CN

ja_JP

Application
Server

Oracle Self-
Service E-Billing
Application

Location of the Payment Validation File
validation-payment.xml

Oracle WebLogic Billing and Payment EDX_HOME/J2EEApps/ebilling/

weblogic/ebilling-weblogic-10-6.0.4.ear/

ebilling-web-1.0-SNAPSHOT.war/WEB-INF

IBM WebSphere Billing and Payment EDX_HOME/J2EEApps/ebilling/

websphere/ebilling-websphere-6-6.0.4.ear/

ebilling-web-1.0-SNAPSHOT.war/WEB-INF
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 27

Customizing Oracle Self-Service E-Billing ■ Debugging Oracle Self-Service E-Billing
■ Generate a single template for one new language. You can generate a single XSL
template file for a new language, run the utility as follows, where code is the language code:

❏ UNIX: ./generateEmailTemplate.sh -l code

❏ Windows: generateEmailTemplate.cmd -l code

For example, to generate a Chinese template file (called template_zh_CN.xsl), use the
following command:

❏ UNIX: ./generateEmailTemplate.sh -l zh_CN

❏ Windows: generateEmailTemplate.cmd -l zh_CN

The new template files generated will be saved in the EDX_HOME/config/notification/
templates directory.

11 For each new language, make copies of the following template files used for generating PDF
reports, appending the locale code (languageCode_Country) to the new file names. The files can
be found in the EDX_HOME/template/pdf directory (use back slashes (\) on Windows). Place the
new files in the same directory.

■ PrintSummary.rtf

■ StatementSummary.rtf

■ telco_std_r1.rtf

■ telco_std_r6.rtf

■ telco_std_r13.rtf

NOTE: Oracle Self-Service E-Billing comes preconfigured with a set of template files for
American English (appended with the American English locale code, _en_US).

12 Restart the application servers.

CAUTION: If you want to make any customizations to email notification text after localization,
make the changes to the notification property files for the language and regenerate the
corresponding template file. Changes made directly to a template file will be lost if the template
regeneration runs again for that language.

Debugging Oracle Self-Service E-Billing
Oracle Self-Service E-Billing produces various logging information for you to use to debug problems.

Oracle Self-Service E-Billing has three logging mechanisms:

■ Log4j. Log4j is the main logging mechanism. Each EAR (application) requires different log4j files
to avoid conflicting with each other. For more information about logs, see Administration Guide
for Oracle Self-Service E-Billing.

CAUTION: Because of security concerns, update the log4j_cc.xml file to write Command Center
logs to the database, not to a file. There are no file appenders to Command Center logs. An
appender is a named entity that represents a specific output destination for messages. It is
technically valid to write the Oracle Self-Service E-Billing and CSR application logs to either the
database or files as specified in the log4j.xml and log4j_csr.xml files.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A28

Customizing Oracle Self-Service E-Billing ■ Debugging Oracle Self-Service E-Billing
■ DB-logging. Most Command Center jobs also use DB-logging for job-level information and log4j
is still used to log API-level information. The DB-logging writes log information into DB tables
and can be viewed from the Command Center.

■ Java-option-logging. The logging is controlled by pass-in a JVM -D option. This is usually used
to log debug-level information and mostly for development purpose.

In addition, in the majority of use cases, Oracle Self-Service E-Billing prints out the exception stack
trace to the console or as part of the JSP error output page when an exception occurs.

Viewing log4j Log Files
Each application (Billing and Payment, Command Center, and Customer Service Representative)
maintains log files.

You can configure the log4j.xml and log4j_cc.xml files for the log level.

Billing and Payment Application Log Files
The Billing and Payment application maintains multiple log files:

■ hierarchy.log

■ reporting.log

■ umf.log

■ ebilling.log

See the log4j.xml file in the EDX_HOME/config/ directory for details. In the path, EDX_HOME is the
directory where you installed Oracle Self-Service E-Billing.

Command Center Application Log Files
The Command Center application maintains the following log files:

■ log4j_eStatement.log

■ log4j_scheduler.log

See the log4j_cc.xml file in the EDX_HOM/config/ directory for details.

Customer Service Representative Application Log Files
The CSR application maintains the log4j_csr.xml file in the EDX_HOME/config directory.

Viewing Command Center Logs
The Command Center jobs use a combination of DB-logging and log4j to log information.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 29

Customizing Oracle Self-Service E-Billing ■ Debugging Oracle Self-Service E-Billing
When there is a problem with a Command Center job, you can view the DB-logging for log4j logs.
For more information about viewing Command Center message logs, see Administration Guide for
Oracle Self-Service E-Billing.

If DB logging does not provide enough information, go to the log4j files described in “Viewing log4j
Log Files” on page 29.

Displaying SQL Statements
One of the most useful debug features is to display the SQL statements issued to the database.

To view the Hibernate SQL statements

1 Open the persistence.xma.xml file for editing. This file is found in the EDX_HOME/xma/config/
modules directory, where EDX_HOME is the directory where you installed Oracle Self-Service E-
Billing.

2 Edit the hibernate.show.sql property, changing the value from false to true:

<prop key=hibernate.show_sql>false</prop>

3 To be able to view the SQL binding values as well (the hibernate.show_sql property allows you
to view the SQL statements only), edit the log4j files (log4j.xml, log4jcc.xml, and
log4jccenter.xml) which are found in the EDX_HOME/config directory. Change the log level for
these two loggers to debug:

<logger name="org.hibernate.SQL" additivity="false">

<level value="TRACE"/>

 <appender-ref ref="cba-log"/>

</logger>

<logger name="net.sf.hibernate.type" additivity="false">

<level value="error"/>

 <appender-ref ref="cba-log"/>

</logger>

4 These configurations apply to Hibernate-based DB access. One exception is reporting-related
SQL statements, which are issued without using Hibernate. To view the report SQL statements
and their binding values, add a Java -D option:

java –Ddatasource.debug=true
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A30

Customizing Oracle Self-Service E-Billing ■ Accessing Oracle Self-Service E-Billing
Javadoc
Accessing Oracle Self-Service E-Billing
Javadoc
Oracle Self-Service E-Billing API Javadoc is available in your product installation.

To access Oracle Self-Service E-Billing Javadoc

1 Unzip the apidoc.jar file found in the EDX_HOME/docs/api directory (or the EDX_HOME\docs\api
directory on Windows).

2 Open the index.html file.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 31

Customizing Oracle Self-Service E-Billing ■ Accessing Oracle Self-Service E-Billing
Javadoc
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A32

3 Customizing User Management
This chapter covers the public APIs available for customizing the Oracle Self-Service E-Billing user
management functionality. It includes the following topics:

■ Customizing User Management and Security on page 33

■ Customizing User Enrollment on page 34

■ Customizing End User and CSR User Passwords on page 35

■ Customizing the Administrator User Password on page 37

■ Customizing the CSR User Password Configuration on page 37

■ Customizing User Security Questions on page 38

■ Deactivating and Reactivating the Master Customer Service Representative Administrator User on
page 39

■ Customizing Enrollment Validation on page 39

■ Customizing Account Lockout on page 40

■ Customizing Reactivate Account Lockout on page 42

■ Customizing Profile Management on page 42

■ About Deleting Users on page 42

■ Customizing Acegi Security on page 42

■ Customizing Acegi Configuration on page 44

■ Using or Simulating Single Sign-On on page 45

Customizing User Management and
Security
User management involves managing users and security. Security involves authentication,
authorization, encryption, and decryption. User management involves enrolling different users and
managing their profiles and roles.

You manage users and their roles using two main classes:

■ IUserManager. Use to add, delete and update users. User is represented with IUser object.

■ ISecurityProfileManager. Use mainly to manage a user's password and roles. The sec profile
is represented by ISecurityProfile and role is represented by ISecRole.

To get an instance of IUserManager and ISecurityProfileManager implementation classes, use the
following code:
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 33

Customizing User Management ■ Customizing User Enrollment
IUserManager _userMgr=UserFactory.getUserManager();

ISecurityProfileManager _secProfileMgr=UserFactory.getSecurityProfileManager();

In addition to these two primary managers, there is an API in the service layer called IUserService
for managing high-level user-related functions. This API is driven by use cases. There are one or
more methods for use cases in the application.

Customizing User Enrollment
You can customize the User Enrollment use case using XMA and APIs.

Configuring User Enrollment XMA
You can configure the IUserService JavaBean in the userService.xma.xml file, found in the EDX_HOME/
xma/config/modules/services directory. In the path, EDX_HOME is the directory where you installed
Oracle Self-Service E-Billing. The IUserService JavaBean contents are as follows:

<bean id="IUserService"

 class="com.edocs.common.services.umf.UserService">

 <property name="userAccountDao">

 <ref local="userAccountDao"/>

 </property>

 <property name="userServiceAgreementDao">

 <ref local="userServiceAgreementDao"/>

 </property>

 </bean>

Using User Enrollment APIs
When customizing user enrollment, you can call the enrollB2BUser or enrollB2CUser APIs to enroll
B2B or B2C users, for example:

IUserService usrService=EBillingServiceFactory.getUserService();

usrService.enrollB2BUser(c_user, role, user.getUserProfile().getEmail1());

Create a JavaBean called com.edocs.common.api.services.IUserEnrollProfile:

IUserEnrollProfile enrollProf = new UserEnrollProfile();

Use the following code to set the properties:

enrollProf.setRole(role)

enrollProf.setCompanyId(companyId);
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A34

Customizing User Management ■ Customizing End User and CSR User Passwords
enrollProf.setServiceAgreementExtKey(saExtKey);

enrollProf.setAccountExtKeyList(acctExtKeyList);

enrollProf.setAdminEmail(adminUser.getUserProfile().getEmail1());

Use the following code for enrolling a single B2B user:

usrService.enrollB2BUser(newUser, enrollProf, audit);

Using Bulk Enrollment API
To use the bulk enrollment API, pass the input stream CSV file for bulk enrollment, the filename,
import time, administrator user, and audit as shown in the following code. The method enrolls the
users in the file and returns the success number.

IUserService usrService = EBillingServiceFactory.getUserService();

int succeedEnrolledUsersNum = usrService.enrollB2BUser(csvFile.getInputStream(),
csvFile.getFileName(),importTime, adminUser, audit);Status OpenFixedClosed

Customizing End User and CSR User
Passwords
You can customize the password rules for end user and CSR user passwords.

You can modify the strength of a password by customizing the regular expression rule in each form
where the end user or CSR user enters a password in Oracle Self-Service E-Billing. You can specify
different password validation rules for end user and CSR user passwords. The default password rules
requires that the password have at least one capital letter, one lowercase letter, one number, and no
spaces.

You can also change the minimum and maximum password lengths, though the minimum password
length cannot be less than 7 as required by the Payment Card Industry Data Security Standard (PCI
DSS).

You must use the same password validation rule each time an end user or a CSR user enters his or
her password. Table 5 lists the form elements you must update in the validation.xml files for each
type of password.

Table 5. End User and CSR User XML Form Elements for Validating the Password

Password
Type Use Case XML Form Element to Update

End User Enrollment <form name="setSecQuestionForm">

Forgot Password and Reset Password <form name="ResetPwdForm">

Manage Profile <form name="changePwdForm">
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 35

Customizing User Management ■ Customizing End User and CSR User Passwords
To customize end user or CSR user passwords

1 Edit the validation.xml files, found in the following directories.

End user passwords:

■ Oracle WebLogic. EDX_HOME\J2EEApps\ebilling\weblogic\ebilling-weblogic-10-
6.0.4.ear\ebilling-web-1.0-SNAPSHOT.war\WEB-INF

■ IBM WebSphere. EDX_HOME\J2EEApps\ebilling\websphere\ebilling-websphere-6-
6.0.4.ear\ebilling-web-1.0-SNAPSHOT.war\WEB-INF

CSR user passwords:

■ Oracle WebLogic. EDX_HOME\J2EEApps\csr\weblogic\csr-app-6.0.4.ear\csr-web-1.0-
SNAPSHOT.war\WEB-INF

■ IBM WebSphere. EDX_HOME\J2EEApps\csr\websphere\csr-app-6.0.4.ear\csr-web-1.0-
SNAPSHOT.war\WEB-INF

2 In the validation.xml file, modify the following regular expression that validates the password
input in each form element for the type of password rule you are setting (end user or CSR user).
See Table 5 on page 35 for a list of form elements to update for each type of password.

<constant>

<constant-name>pwd</constant-name>

<constant-value>^(?=.*?[A-Z])(?=.*?[a-z])(?=.*?[0-9])[^\s]*$</constant-value>

</constant>

3 To customize the minimum and maximum password length, update the following code for each
form element for the type of password rule you are setting (end user or CSR user):

<var>

<var-name>minlength</var-name>

<var-value>8</var-value> <!-Password minimum length -->

</var>

<var>

CSR User CSR Enrollment <form name="csrAdministratorForm">

Manage CSR Profile <form name="updateSecQuestionForm">

CSR Forgot Password and Reset
Password

<form name="ResetPwdForm">

Reset an Expired CSR Password <form name="resetExpPwdForm">

Table 5. End User and CSR User XML Form Elements for Validating the Password

Password
Type Use Case XML Form Element to Update
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A36

Customizing User Management ■ Customizing the Administrator User Password
<var-name>maxlength</var-name>

<var-value>24</var-value> <!-Password maximum length -->

</var>

<var>

<var-name>mask</var-name>

<var-value>${pwd}</var-value>

</var>

Customizing the Administrator User
Password
A database administrator can customize the password validation rule for the Command Center
administrator using a regular expression.

To customize the administrator user password

1 Log on to the Oracle Self-Service E-Billing OLTP database instance using SQL*Plus (not as
SYSDBA):

OLTP schema username/OLTP schema password@OLTP TNS name

where:

■ OLTP schema username is the name of the OLTP schema user.

■ OLTP schema password is the password of the OLTP schema user.

■ OLTP TNS name is the TNS name for the OLTP instance.

2 Enter the following command, where param_password_rule is the regular expression with the
new password rule you want to implement:

SQL>exec change_pwd_validate_rule(param_password_rule) ;

Customizing the CSR User Password
Configuration
You can customize the configuration for Customer Service Representative user passwords.

Oracle Self-Service E-Billing forces a CSR user to change his or her password every 90 days, and the
new password cannot be the same as any of the last 4 passwords used by the same user. You can
change these values.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 37

Customizing User Management ■ Customizing User Security Questions
To customize the CSR user password configuration
■ Edit the security.xma.xml file, found in the EDX_HOME\xma\config\modules\security directory.

Modify the values in the PasswordManageRule JavaBean:

<bean id="PasswordManageRule"

class="com.edocs.common.security.authenticate.PasswordManageRule"
scope="singleton">

<property name="daysBeforeExpiration">

<value>90</value> <!--User password will be expired in the given days after
created-->

</property>

<property name="minUniqueNumOfPwd">

<value>4</value> <!--New password can not be the same as the last given
password used by the same user-->

</property>

</bean>

Customizing User Security Questions
You can customize the security questions that appear when a user forgets his or her password. You
can add, delete, or update security questions using the following methods in the IUserService API:

■ "public ISecurityQuestion addSecurityQuestionDef(String question, String

application, String locale);

■ "public List<ISecurityQuestion> getSecurityQuestionDefList(String application,

String locale);

■ "public void deleteSecurityQuestionDef(long securityRequestionId);

■ "public ISecurityQuestion updateSecurityQuestionDef(long securityRequestionId,

String newQuestion);

The following code shows an example of these methods:

IUserService _usrService = EBillingServiceFactory.getUserService();

String question1 = "This is a security question 1";

long securityRequestionId = 5327;

//Add new question definition

ISecurityQuestion sq1 = _usrService.addSecurityQuestionDef (question1,null,null);

//Get all questions

List<ISecurityQuestion> sqlist = _usrService.getSecurityQuestionDefLis (null,null);
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A38

Customizing User Management ■ Deactivating and Reactivating the Master Customer
Service Representative Administrator User
//Delete a question definition

_usrService.deleteSecurityQuestionDef(securityRequestionId);

//Update an existed question definition

ISecurityQuestion sq1 = _usrService.updateSecurityQuestionDef(securityRequestionId,
question1);

NOTE: English is the only language supported for security questions. The locale must be NULL.

Deactivating and Reactivating the
Master Customer Service Representative
Administrator User
You can deactivate and reactivate the master Customer Service Representative (CSR) administrator
user when needed.

To deactivate or reactivate the default CSR administrator user

1 Log on to the Oracle Self-Service E-Billing OLTP instance using SQL*Plus (not as SYSDBA).

2 To deactivate the master CSR administrator user, run the following command:

SQL>exec disable_default_csr_admin;

3 To reactivate the master CSR administrator user, run the following command:

SQL>exec enable_default_csr_admin;

Customizing Enrollment Validation
You can configure the validation code generator and use the validation API to customize enrollment
validation.

Configuring the Validation Code Generator
The characters in the verification code and its expiration time are configurable. You can configure the
following constraints in the security.xma.xml file, found in the
EDX_HOME\xma\config\modules\security directory (or the EDX_HOME/xma/config/modules/
security directory on Windows). In the path, EDX_HOME is the directory where you installed Oracle
Self-Service E-Billing. These constraints are found in the section for the IVCodeGenerator JavaBean:

■ length. An integer that represents the length of the verification code. The default value is 7;
must be equal to or larger than 7.

■ exclude. A string that contains the characters that cannot appear in the verification code.

■ includeSpecial. Whether the validation code can include special characters such as %$(). Value
can be true or false.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 39

Customizing User Management ■ Customizing Account Lockout
■ minUppercase. An integer, the validation code must contain at least this number of upper case
letters.

■ minLowercase. An integer, the validation code must contain at least this number of lower case
letters.

■ minNumber. An integer, the validation code must contain at least this number of digital
characters.

■ expirationTime. An integer and a unit (D means day, H means hour, M means minute); for
example, 4H means the verification code expires after 4 hours.

Using Enrollment Validation API
The ISecurityProfileManager API provides the method checkValidationCode for validation code and
security profile ID validation:

ISecurityProfileManager spManager = UserFactory.getSecurityProfileManager();

secProfile = spManager.checkValidationCode(secProfileId, validationCode);

If validate is expired, throw ValidationCodeExpireException

ISecurityXMAService provide method getValidationCode() to get a validation code.

LookupService lookUp = LookupServiceFactory.getInstance();

ISecurityXMAService securityXMAService = (ISecurityXMAService)
lookUp.getModule("security");

IValidationCode =
securityXMAService.createValidationCodeManager().getValidationCode();

Customizing Account Lockout
You can customize the maximum attempt thresholds in the Account Lockout use case.

Oracle Self-Service E-Billing locks a user account after a maximum number of attempts (5) to enter
information during the following use cases:

■ Log In. When an end user tries to log into the application.

■ Forgot and Reset Password. When an end user tries to enter a user name, account number,
or service number.

■ Forgot and Reset Password. When an end user tries to enter a security question or security
answer.

By default, each of these activities uses the same threshold. You can specify one new threshold for
all three activities, or set a different threshold value for each activity.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A40

Customizing User Management ■ Customizing Account Lockout
To configure the maximum attempt thresholds

1 Edit the user.xma.xml file, found in the EDX_HOME\xma\config\modules\umf directory.

2 In the IUserManager JavaBean, three lockers are defined as properties under the tag, each
associated with one action. All three lockers reference one locker, which means all three actions
have the same threshold value (maximum number of attempts). You can specify one new value
for the max_attempts property, or specify a different locker and configure the threshold for each
activity:

<bean id="IUserManager"

 class="com.edocs.common.umf.core.UserManager">

 <property name="userManagerDao">

 <ref local="userManagerDao"/>

 </property>

 <property name="loginLocker">

 <ref local="locker"/>

 </property>

 <property name="forgotPwdAccountLocker">

 <ref local="locker"/>

 </property>

 <property name="forgotPwdSecQstLocker">

 <ref local="locker"/>

 </property>

</bean>

<bean id="locker" class="com.edocs.common.umf.core.Locker">

 <property name="max_attempts" value="5"/>

</bean>

Using APIs
In the action layer, you can call the hasActionThresholdReached method to judge whether an action
reached the maximum attempt threshold:

IUserService usrService=EBillingServiceFactory.getUserService();

usrService. hasActionThresholdReached(user, action);

The method hasActionThresholdReached adds the specific number of times attempted by 1, then
compares the number of attempts with the maximum threshold. If the threshold is reached, the
method returns true; if the threshold is not reached, it returns false.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 41

Customizing User Management ■ Customizing Reactivate Account Lockout
Customizing Reactivate Account Lockout
You can customize the Reactivate Account Lockout use case APIs.

CSR administrator user can reactivate a locked out account. In the action layer, you can call
reactivateAccount API to reactivate an account:

IUserService usrService=EBillingServiceFactory.getUserService();

usrService. reactivateAccount(usrId, audit);

These APIs use the following parameters:

■ usrId. User ID. The user's account will be reactivated.

■ audit. Audit data of the reactivate user account action.

Customizing Profile Management
Oracle Self-Service E-Billing provides APIs for customizing profile management. The IUser API
provides setUserProfile and getUserProfile to set and get IUserProfile. Use the IUserProfile API to
manage a user’s profile. Also, setSecQuestionRespons(Set<ISecQuestionResponse> secQuesRes),
and getSecQuestionRespons in IUser can set and get the security question response for a user.

About Deleting Users
When a user is deleted, Oracle Self-Service E-Billing marks the user as deleted, not removed. A user
is marked as deleted by setting the active flag on the user to false. After the user is deleted by
making user inactive, the same username cannot be used again to enroll a new user; user names
are not recycled.

Customizing Acegi Security
Oracle Self-Service E-Billing uses the Acegi framework for authentication and authorization. Acegi
provides hooks for single sign-on implementation.

DaoAuthenticationProvider from ACEGI is implemented for authentication.
DaoAuthenticationProvider leverages a UserDetailsService in order to lookup the username,
password and GrantedAuthority[]s. IBillingUserDetailsService extends UserDetailsService and the
implementation class implements loadUserByUsername(String userId) method to provide
authentication mechanism. This method returns IBillingUserDetails object.

Authorization in Oracle Self-Service E-Billing is based on roles and permissions. Each user is assigned
a role. Authorization to access a particular resource is determined by the permissions for a user's
role. These permissions are defined in the azpolicy file. Permission is represented by an object called
EBillingPermission.

User roles are grouped to form high-level roles, called azPolicyRoles, and permissions are assigned
to the azPolicyRoles.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A42

Customizing User Management ■ Customizing Acegi Security
Role mapping is defined in the WEB-INF/classes/azcfg.properties subdirectory, under the
application directories for the EAR and WAR files.

The following examples show how to map azPolicyRoles:

■ com.edocs.common.security.rolemappers.secrole.ALL_USERS=Admin,User, Payer,Manager,
Subscriber,CSR,CSRAdministrator

■ com.edocs.common.security.rolemappers.secrole.ADMIN=Admin

■ com.edocs.common.security.rolemappers.secrole.MANAGER=Manager

■ com.edocs.common.security.rolemappers.secrole.SUBSCRIBER=Subscriber

■ com.edocs.common.security.rolemappers.secrole.CSR=CSR

■ com.edocs.common.security.rolemappers.secrole.CSR_ADMIN=CSRAdministrator

Once user roles are mapped to azPolicyRoles, define permissions for resources in the azpolicy.xml
file, found in the /WEB-INF/classes/azcfg/policy subdirectory, under the application directories for
the EAR and WAR files.

Example of sample permission code:

 <permission>

<name>perm_company_tab</name>
<cpath>com.edocs.common.security.authorize.az.permissions.EBillingPermission</
cpath>

<rule>

 <name>admin</name> <!--Defines the name of the rule -->

 <type>SecurityRole</type> <!-- Type of the rule -->

<values>ADMIN</values> <!-- The role(s) which can access this resource, comma
separated. Note it can be an alias defined in azcfg.properties -->

 </rule>

 </permission>

A permission called perm_company_tab is defined to control the company UI tab. This permission
specifies that the company tab is accessible for the azPolicyRole ADMIN. ADMIN is mapped to a user
role administrator, making company tab accessible for users whose role is administrator.

After permissions are defined, the code or resources that must be authorized are surrounded by a
tag called <authz:authorize>.

This example shows you how to use this tag:

<authz:authorize ifAnyGranted="perm_company_tab">

<li class="sts"><a href="companyProfile.do" title="<bean:message
key="global.myAccount.subNavTab3"/>"><bean:message
key="global.myAccount.subNavTab3"/>

</authz:authorize>
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 43

Customizing User Management ■ Customizing Acegi Configuration
You can have a list of permissions separated by commas in the ifAnyGanted attribute. If any of the
permissions in the list are granted, the body of the tag is written.

The authz:authorize tag can have the following attributes:

■ ifAllGranted. All the listed permissions must be granted for the tag to output its body.

■ ifAnyGranted. Any of the listed permissions must be granted for the tag to output its body.

■ ifNotGranted. None of the listed permissions must be granted for the tag to output its body.

Customizing Acegi Configuration
You can customize the Acegi configuration in the acegi-security.xml file, found in the EDX_HOME/
config/acegi subdirectory (under the application directories for the EAR and WAR files).

The filter defined to handle HTTP form authentication, formAuthenticationProcessingFilter, uses
AuthenticationProcessingFilter to process a log in form. This is the most common way to authenticate
users. Form-based authentication is entirely compatible with the DAO and JAAS authentication
providers.

The following code defines the filter that handles form authentication in the acegi-security.xml file:

<!-- Define filter to handle FORM authentication -->

<bean id="formAuthenticationProcessingFilter"

="org.acegisecurity.ui.webapp.AuthenticationProcessingFilter">

<property name="filterProcessesUrl">

<value>/j_acegi_security_check</value>

</property>

<property name="authenticationFailureUrl">

<value>/login.do?login_error=1</value>

</property>

<property name="defaultTargetUrl">

<value>/reportStart.do</value>

</property>

<property name="authenticationManager">

<ref bean="authenticationManager" />

</property>

</bean>

The configured AuthenticationManager processes each authentication request.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A44

Customizing User Management ■ Using or Simulating Single Sign-On
If authentication is successful, the resulting Authentication object is placed into the
SecurityContextHolder and the browser is redirected to the defaultTargetUrl property. The default
target URL is reportStart.do. You can customize the defaultTargetUrl property to a particular target
URL (action, jsp, or html).

If authentication fails, AuthenticationException is placed into the HttpSession attribute indicated by
AbstractProcessingFilter.ACEGI_SECURITY_LAST_EXCEPTION_KEY, which provides a reason on the
error page displayed to the user. If authentication fails, the browser displays the URL in
authenticationFailureUrl, which you can also customize.

Using or Simulating Single Sign-On
You must configure Oracle Self-Service E-Billing to use an external identity store. Follow the
procedure for your implementation:

■ Single sign-on (SSO) system. If you are using an external identity store and user
authentication or user management module such as a an SSO or LDAP system, follow “To
configure Oracle Self-Service E-Billing to use a single sign-on system.”

■ Simulating a single sign-on system. If you use an external store but use Oracle Self-Service
E-Billing to authenticate the user (by sending the user name and password from a URL), follow
“To configure Oracle Self-Service E-Billing to simulate a single sign-on system.”

Configuring Oracle Self-Service E-Billing to use a Single Sign-on
System
Follow this procedure to configure Oracle Self-Service E-Billing to use a single sign-on system.

To configure Oracle Self-Service E-Billing to use a single sign-on system
■ Prepopulate the OLTP table data shown in Table 6 on page 45. You do not need to populate the

PASSWORD column in the EDX_BSL_AUTH_SECPROFILE table.

Table 6. User Data for Single Sign-on

Database Table Columns to Populate Notes

EDX_BSL_UMF_USER ID Required; unique for all users.

USERID Required; unique for all users.

SECURITYPROFILEID References the PROFILEID column in the
EDX_BSL_AUTH_SECPROFILE table.
Required; unique for all users.

COMPANYID Required for B2B.

EMAIL1 Required.

DATE_CREATED Required.

DATE_MODIFIED Required.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 45

Customizing User Management ■ Using or Simulating Single Sign-On
Configuring Oracle Self-Service E-Billing to Simulate a Single Sign-on
System
Follow this procedure to simulate a single sign-on system if you use an external identity store but
use Oracle Self-Service E-Billing to authenticate users.

VERSION Required; the default is 0.

EDX_BSL_AUTH
_SECPROFILE

PROFILEID Required; unique for all users.

USERID Required; unique for all users.

STATUS Required for the activity user; the default is
2.

PASSWORD Required if you are simulating single-sign, or
using an external identity store but using
Oracle Self-Service E-Billing authentication.
The password can have any value.

ISLOCKED Required for the activity user; the default is
0.

SECURE_SUBKEY_ID Data type is NUMBER(19,0). This column
references the ID column in the
EDX_SECURE_SUBKEY table. Required; the
default is 1.

EDX_BSL_SEC_PROF
_ROLES_LINK

PROFILE_ID References the PROFILEID column in the
EDX_BSL_AUTH_SECPROFILE table.
Required; unique for all users.

ROLE_ID References the ID column in the
EDX_BSL_AUTH_SECROLE table. Required.

EDX_UMF_USER_ACCT
_LINK

USERID References the USERID column in the
EDX_BSL_UMF_USER table. Required for a
B2C user.

ACCOUNT_KEY References the NODEID in the
EDX_BSL_AMF_BACCOUNT table. Required
for a B2C user.

EDX_UMF_USER_ACCT
_LINK (OLAP)

USERID Required for B2C reporting.

ACCOUNT_KEY References the ACCOUNT_KEY column in the
edx_rpt_account_dim table. Required for B2C
reporting.

Table 6. User Data for Single Sign-on

Database Table Columns to Populate Notes
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A46

Customizing User Management ■ Using or Simulating Single Sign-On
To configure Oracle Self-Service E-Billing to simulate a single sign-on system

1 Populate the OLTP database with the data shown in Table 6 on page 45.

The PASSWORD column in the EDX_BSL_AUTH_SECPROFILE is required and must have an
appropriate encrypted value. You can get the decrypted password from the external identity
store. Use the following APIs for password encryption and to update the subkey ID in the user
security profile table:

LookupService lookUp = LookupServiceFactory.getInstance();

ICryptography cryptography = (ICryptography) lookUp.getModule("cryptography");

String hashPassword = cryptography.hash(plainPassword);

ISubkeyCrypto SubkeyCrypto =
EBillingServiceFactory.getSubkeyCryptoService().createSubkeyCrypto(null);

String enPassword = SubkeyCrypto.encrypt(hashPassword);

securityProfile.setSubkeyId(SubkeyCrypto.getSecureSubkeyID());

2 Log in to the Billing and Payment application using the following URL and credentials (password
and user name). The j_password parameter can be plain text or encrypted by the cryptography
module when sending the log in request URL:

http://ServerName:PortNum/ebilling/
j_acegi_security_check?j_username=Username&j_password=Password

where:

■ Username is the name of the user you are impersonating.

■ Password is the password of the user you are impersonating.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 47

Customizing User Management ■ Using or Simulating Single Sign-On
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A48

4 Customizing Billing Statements
This chapter covers APIs you can use to customize online billing statements. It includes the following
topics:

■ About Statement Presentment APIs on page 49

■ About Split Billing Rules Management APIs on page 49

■ Transaction Dispute APIs on page 51

■ Unbilled Usage APIs on page 51

■ Contact APIs on page 51

The online statement feature reduces operational costs when subscribers adopt online statements
instead of a printed one. Oracle Self-Service E-Billling can render a statement that looks similar to
the paper statement. Taking advantage of the dynamic of the Web, Oracle Self-Service E-Billling can
expand or collapse the amount of data displayed, drill down into details, show a more up-to-date
statement, and display a previous statement.

About Statement Presentment APIs
Oracle Self-Service E-Billling provides the following Statement Presentment API:

List<IStatement> getStatements(String billerId, String accountNumber, int maxCount,
Date fromTime, Date toTime);. getStatements retrieves a list of IStatement objects
for an account.

The list of statements returned have a statement date between the fromTime and toTime date. The
maxCount is to limit to the number of statements returned where there are a lot of statements.

About Split Billing Rules Management
APIs
The split-billing rules management feature enables providers to categorize business and personal
mobile phone usage and expenses included on the same statement. Service providers define the split
billing rules, and during the data load, Oracle Self-Service E-Billling uses these rules to categorize
the expenses.

There are two ways to categorize mobile phone usage:

■ All call records are automatically categorized at ETL time, based on the predefined rules. The rule
ID is recorded in the EDX_RPT_SERVICE_DETAIL_FACT table for each service detail entry, so
Oracle Self-Service E-Billling can track which split billing rule was applied when categorizing the
service details.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 49

Customizing Billing Statements ■ About Split Billing Rules Management APIs
■ Users can manually change the categorization when viewing their statements online if any of the
automatic categorization is not appropriate.

About the OLAP.EDX_RPT_ETL_PLUG_RULE Table
This table is where all the categorization rules used for split billing were specified. Upon ETL
processing, the rule execution loops through all the records in this table, following the path pointing
to an individual rule specified in the RULE_STORED_PROC column, to find the corresponding stored
procedure and execute it.

Rules are executed in the order specified in the RULE_EXEC_ORDER column.

If you have additional rules to execute, you can develop a customized store procedure. Insert a new
rule entry in the table, and the Oracle Self-Service E-Billling ETL process will apply the rule
automatically.

A special entry (with RULE_TYPE='MAN') in this table represents a manual categorization activity.

When a user recategorizes certain service detail records in the application, the rule ID of the special
entry will be recorded in EDX_RPT_SERVICE_DETAIL_FACT table, indicating that the user has
manually categorized the service detail and the manual rule ID overwrites the previous split billing
rule ID.

About the OLAP.EDX_RPT_SPLIT_CATEGORY_TYPE
Table
This table records the category type used in split billing. Currently the category is either business or
personal, (CORPORATE CALLS/PERSONAL CALLS). Choose one to be the default category using the
CATEGORY_DEFAULT_CODE column, which represents a Boolean flag, indicating the default category
type to be used when ambiguity occurs during the categorization process.

The last split billing rule (stored procedure) defined in EDX_RPT_ETL_PLUG_RULE categorizes all of
the remaining uncategorized service detail records using the default category specified in this table.

If a customer has more categories to be used in the split-billing feature, a new entry can be added
into the table.

Oracle Self-Service E-Billling provides the following Split Billing Rules Management APIs:

■ ISplitBillingService. The service API for split billing feature, used to retrieve a particular
service detail fact record, and change the category on a particular transaction detail. It can also
be used to retrieve the list of valid categories defined for categorizing transaction detail records.
(API is in package com.edocs.common.api.statement.splitbilling.ISplitBillingService)

■ IServiceTransactionDetail. Represents a single one single service detail fact record in
EDX_RPT_SERVICE_DETAIL_FACT table. (API is in package
com.edocs.common.api.statement.IServiceTransactionDetail)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A50

Customizing Billing Statements ■ Transaction Dispute APIs
Transaction Dispute APIs
Oracle Self-Service E-Billling provides the following Transaction Dispute APIs:

■ DisputeManagerFactory

■ IDispute

■ IDisputeManager

■ IDisputeManagerFactory

■ IDisputeReason

■ IDisputeService

■ IServiceAgrDetail

■ IServiceAgrDetailService

Unbilled Usage APIs
Oracle Self-Service E-Billling provides the following Unbilled Usage APIs:

■ IUnBilledActivity

■ IUnBilledActivityFilterCriteria

■ IUnBilledActivityManager

■ IUnbilledActivityService

■ UnBilledActivityManagerFactory

Contact APIs
Oracle Self-Service E-Billling provides the following Contact APIs:

■ ContactManagerFactory

■ ICCLManager

■ ICCLService

■ IContact

■ IContactXMAService

■ IContactsRetrievalFilter

■ ICorporateContact

■ IPCLManager

■ IPCLService

■ IPersonalContact

■ IUserServiceAgreement
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 51

Customizing Billing Statements ■ Contact APIs
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A52

e

5 Using and Customizing Email
Notifications
This chapter covers customizing the email notification feature in Oracle Self-Service E-Billling. It
includes the following topics:

■ Configuring an Email Host and Other Messaging Properties on page 53

■ Customizing the Content of Email Notifications on page 55

■ Customizing the Default Display Patterns Used in Email Notifications on page 56

■ Email Notification Template Content (Business Edition) on page 59

■ Email Notification Template Content (Consumer Edition) on page 70

■ Adding a Custom Message Provider on page 82

■ About Email Notification Processing on page 84

Configuring an Email Host and Other
Messaging Properties
You must configure the properties that control email message delivery for your organization to
specify the name of your email host and an SMTP host as part of the installation process. For details
about setting these properties, see Installation Guide for Oracle Self-Service E-Billing.

You can also configure the following optional email-specific properties as well:

■ Global notification settings. Settings for each notification type, which indicate whether to
send or suppress the notification type globally (to all applicable users) or to allow individual users
to choose whether to receive the email notification.

■ Maximum email queue threads. The maximum number of email threads to create when
sending email. The default is 10 threads.

■ Maximum queue elements per thread. Email messages are sent in batches, by thread. The
maximum number of messages that each thread must send in each batch. The default is 30
messages.

■ Queue dispatcher sleep period. The time period, in seconds, that the dispatcher must sleep
between sending email, to allow other threads to complete sends before removing queued
messages. The default is 5 seconds.

■ Queue hanging timeout period. The time period, in seconds, that the dispatcher must wait
before deciding the email host is not responding and queue messages. The default is 15 seconds.

■ Queue storage directory. The directory, located under the EDX_HOME\config\ directory (or the
EDX_HOME\config\ directory on Windows), used to temporarily store undeliverable email. The
default value is mailqueue.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 53

Using and Customizing Email Notifications ■ Configuring an Email Host and Other
Messaging Properties
To configure an email host and other messaging properties

1 Modify the properties in the notification.xma.xml file, which can be found in the EDX_HOME/xma/
config/com/edocs/common/notification directory (or the EDX_HOME\config\notification
directory on Windows). In the path, EDX_HOME is the directory where you installed Oracle Self-
Service E-Billling.

2 To specify global settings for each notification type valid in your edition of Oracle Self-Service E-
Billling (Business or Consumer), specify one of the following values under the
globalNotificationConfigMap property:

■ True. All applicable users receive the email type; individual users cannot set a preference.

■ False. The email notification type is not generated globally; individual users cannot set a
preference.

■ notSet. No global setting is specified; individual users can set their own preference.

For example, the following code shows where you specify the global setting for the bill-ready
notification type:

- <property name="globalNotificationConfigMap">

- <map merge="default">

- <!-- Key/value for Bill Ready Notification

Only those settings for notification types valid in your edition are recognized. For information
about valid email notification types in the Business Edition, see “Email Notification Template
Content (Business Edition)” on page 59. For information about valid email notification types in the
Consumer Edition, see “Email Notification Template Content (Consumer Edition)” on page 70.

3 To update any of the following email notification properties, specify the value under the
corresponding property in the notification.xma.xml file:

Email Notification Property
Function Property Name in the notification.xma.xml File

Maximum email queue threads mailQueueThreadMax

Maximum queue elements per
thread

mailQueueElementsPerThread

Queue dispatcher sleep period mailQueueDispatcherSleepPeriod

Queue hanging timeout period mailQueueHangingTimeout

Queue storage directory mailQueueStorageDirectory
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A54

Using and Customizing Email Notifications ■ Customizing the Content of Email
Notifications
Customizing the Content of Email
Notifications
Oracle Self-Service E-Billling provides email notification templates for each type of message it
supports. The content for each type of notification is described in “Email Notification Template Content
(Business Edition)” on page 59 and “Email Notification Template Content (Consumer Edition)” on
page 70. You can customize some of the notification content for your organization by updating the
notification properties file contained in the application resource bundles and regenerating the email
template XSL files using the automated template generator. The notification properties file contains
the strings and text used in the composition of email messages.

Oracle Self-Service E-Billling can send email notifications to users based on enrollment events as well
as various billing and payment lifecycle events, such as when a new bill is ready for viewing online,
a payment is due, scheduled, sent, and so on. Email notifications are classified into batch and instant
notifications, based on whether the notification is generated by a batch job defined and run in the
Command Center or a user’s action.

NOTE: Note that validation URLs are inserted automatically and cannot be changed; users are
required to complete the enrollment process.

If you have localized your Oracle Self-Service E-Billling applications, be sure to update the
corresponding notification property file for each language (if appropriate). For more information
about localization, see “Localizing the User Interface” on page 23.

To customize the content of email notifications

1 Oracle Self-Service E-Billling must be installed and deployed. Shut down the Billing and Payment,
Command Center, and Customer Service Representative application servers (if running).

2 Extract the app-resources-1.0-SNAPSHOT.jar file from the Billing and Payment and the Customer
Service Representative EAR files shown in the following table (use back slashes (\) on Windows):

Application Server

Oracle Self-Service
E-Billing
Application

Location of the Application Resource
Bundle File

Oracle WebLogic Billing and Payment EDX_HOME/J2EEApps/ebilling/

weblogic/ebilling-weblogic-10-

6.0.4.ear/xma/app-resources-1.0-

SNAPSHOT.jar

Command Center EDX_HOME/J2EEApps/commandcenter/
weblogic/command-center-weblogic-10-
6.0.4.ear/xma/app-resources-1.0-
SNAPSHOT.jar

Customer Service
Representative

EDX_HOME/J2EEApps/csr/

weblogic/csr-app-6.0.4.ear/xma/app-

resources-1.0-SNAPSHOT.jar
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 55

Using and Customizing Email Notifications ■ Customizing the Default Display Patterns
Used in Email Notifications
3 Edit the NotificationResource_en_US.properties file with your customizations, located under the
corresponding application JAR path in the com/edocs/application/resources directory (or the
com\edocs\application\resources directory on Windows).

4 Repackage the JAR and EAR files at the application server console and deploy the EAR files. For
instructions on how to deploy an application EAR file, see Installation Guide for Oracle Self-
Service E-Billing.

5 Generate a new email template XML file:

a Modify the template generator script for your implementation. The template generator script
generates an email notification template XML file based on the notification properties file.
Change to the EDX_HOME/bin/notification directory (or the EDX_HOME\bin\notification
directory on Windows). In the generateEmailTemplate.sh file script found in this directory (or the
enerateEmailTemplate.cmd file on Windows), update the value of EDX_HOME and using the full
path names for your installation. If you have saved the Billing and Payment application ear file
in a new location, update the path to the ear file in the EBearfile variable(the default is
EBearfile="$EDX_HOME/J2EEApps/ebilling/weblogic/ebilling-weblogic-10-
6.0.4.ear").

b Run the template generator script to regenerate the template_en_US.xsl file:

UNIX: ./generateEmailTemplate.sh -l en_US

Windows: generateEmailTemplate.cmd -l en_US

6 Restart the application servers.

Customizing the Default Display
Patterns Used in Email Notifications
You can change the default display patterns Oracle Self-Service E-Billling uses to display the
following data in email notifications:

■ Date

IBM WebSphere Billing and Payment EDX_HOME/J2EEApps/ebilling/

websphere/ebilling-websphere-6-

6.0.4.ear/xma/app-resources-1.0-

SNAPSHOT.jar

Command Center EDX_HOME/J2EEApps/commandcenter/
websphere/command-center-websphere-6-
6.0.4.ear/xma/app-resources-1.0-
SNAPSHOT.jar

Customer Service
Representative

EDX_HOME/J2EEApps/csr/

websphere/csr-app-6.0.4.ear/xma/app-

resources-1.0-SNAPSHOT.jar

Application Server

Oracle Self-Service
E-Billing
Application

Location of the Application Resource
Bundle File
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A56

Using and Customizing Email Notifications ■ Customizing the Default Display Patterns
Used in Email Notifications
■ Time

■ Date and time

■ Integers

■ Decimals (double)

■ Amounts

The default notification display patterns are defined in the notification.xma.xml file. The valid display
patterns are defined in the ApplicationResourcesNew.properties file, as shown:

#################### Date,Time,Number ########################

global.pattern.number.integer=#,##0
global.pattern.number.decimal=#,##0.00
global.pattern.number.percent=#0.00%
global.pattern.number.amount=\u00A4#,##0.00
global.pattern.number.amount2=\u00A4#,##0.00;\u00A4(#,##0.00)
global.pattern.number.amount3=#,##0;(#,##0)
global.pattern.number.amount4=#,##0.00;(#,##0.00)
global.pattern.date.short=M/d/yy
global.pattern.date.medium=MM/dd/yyyy
global.pattern.date.long=MMM/dd/yyyy
global.pattern.date.input=MM/dd/yyyy
global.pattern.time.short=HH:mm
global.pattern.time.long=HH:mm:ss
global.pattern.date.time=MM/dd/yyyy HH:mm:ss

The defaults set in the notification.xma.xml are used in all three Oracle Self-Service E-Billling
applications: Billing and Payment, Customer Service Representative, and the Command Center. For
example, you can change the default date pattern from global.pattern.date.medium (M/d/yy), to
global.pattern.date.long (MMM/dd/yyyy).

To customize the default display patterns used in email notifications
■ In the EDX_HOME\xma\config\com\edocs\common\notification\notification.xma.xml file (use

back slashes (\) on Windows), edit the appropriate values in the patternConfig property in the
<bean id="GlobalConfigurationBean" JavaBean. Specify one of the display patterns defined in
the ApplicationResourcesNew.properties file:

- <property name="patternConfig">

- <map merge="default">

- <entry key="defaultDatePattern">

 <value>global.pattern.date.medium</value>

 </entry>

- <entry key="defaultTimePattern">

 <value>global.pattern.time.long</value>

 </entry>
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 57

Using and Customizing Email Notifications ■ Customizing the Default Display Patterns
Used in Email Notifications
- <entry key="defaultDateTimePattern">

 <value>global.pattern.date.time</value>

 </entry>

- <entry key="defaultIntPattern">

 <value>global.pattern.number.integer</value>

 </entry>

- <entry key="defaultDoublePattern">

 <value>global.pattern.number.decimal</value>

 </entry>

- <entry key="defaultAmountPattern">

 <value>global.pattern.number.amount</value>

 </entry>

 </map>

 </property>
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A58

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Email Notification Template Content
(Business Edition)
Table 7 describes the template text provided for automated email notifications in Oracle Self-Service
E-Billling (Business edition). For the Oracle Self-Service E-Billling (Consumer edition) notification
text, see “Email Notification Template Content (Consumer Edition)” on page 70.

For instructions on configuring a Notifier job, see Administration Guide for Oracle Self-Service E-
Billing.

Table 7. Notification Types and Email Templates (Business Edition)

Notification Type Email Template (Business Edition)

Bill Ready From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have a New Bill

Dear $User,

The following accounts registered under your email address have new e-
Bills:

Account Number: $Account_Number

Service Number: $Service_Number of Account $Account_Number

You have additional bills; only $Cutoff_Number accounts have been
displayed above.

To view your e-bills, click $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Enrollment (B2B
User)

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome! Your administrator has enrolled you in the Customer Care
Application.

Contact your company administrator at $Admin_Email to receive your
assigned username. Then visit $Secure_Billing_URL to finish the enrollment
process.

This is an automatically generated email. Please do not reply to this
message.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 59

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Enrollment (CSR
User)

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome! Your administrator has enrolled you in the Customer Care
Application.

Contact your company administrator at $Admin_Email to receive your
assigned username. Then visit $Secure_Billing_CSR_URL to finish the
enrollment process.

Log in now and you will be redirected to create your own personal password.

This is an automatically generated email. Please do not reply to this
message.

Enrollment (CSR
Administrator)

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome to the Customer Care Application.

Now you can start managing other customer service representatives and
assisting customers with e-billing. Please visit $Secure_Billing_CSR_URL to
finish the enrollment process.

Log in now and you will be redirected to create your own personal password.

This is an automatically generated email. Please do not reply to this
message.

Enrollment
(Organization
Administrator)

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome! Your administrator has enrolled you in the Customer Care
Application.

Contact your company customer service representative at $Admin_Email to
receive your assigned username. Then visit $Secure_Billing_URL to finish
the enrollment process.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A60

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Enrollment
(Migrated B2B
User)

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome to the Customer Care Application.

Please visit $Secure_Billing_URL to finish the enrollment process.

This is an automatically generated email. Please do not reply to this
message.

Enrollment
(Migrated CSR
User)

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome to the Customer Care application.

Please visit $Secure_Billing_CSR_URL to finish the enrollment process.

This is an automatically generated email. Please do not reply to this
message.

Job Alert
Success

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Job Completed Successfully

Dear $User,

The following job completed successfully:

Job_Name Job_Type$ Job_Instance_ID $DDN

Job Alert Failure From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Job Failure

Dear $User,

The following job did not complete successfully:

Job_Name Job_Type$ Job_Instance_ID $DDN $Exception

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 61

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Recurring
Payment
Confirmation

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Welcome to Automatic Bill Payment

Dear $User,

You have successfully enrolled in the Automatic Bill Payment program for
your online accounts.

The first automatic bill payment will take place after your next billing cycle.
You will receive a payment confirmation email when the payment is
submitted.

Account Number: $Account_Number

Payment Type: $Payment_Type

Amount: $Amount

You can continue to make other payments on your account using the Quick
Payment option on the Payments Menu. Click $Billing_URL to view your e-
bills anytime.

Thank you for using Automatic Bill Payment.

This is an automatically generated email. Please do not reply to this
message.

Recurring
Payment
Configuration
Update

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Automatic Bill Payment Settings Have Been Updated

Dear $User,

The Automatic Bill Payment settings for your online accounts have been
updated.

Account Number: $Account_Number

Payment Type: $Payment_Type

Amount Due: $Amount_Due

Thank you for using Automatic Bill Payment.

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A62

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Recurring
Payment Delete

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Automatic Bill Payment Participation Cancelled

Dear $User,

This notification confirms that your participation in Automatic Bill Payment
has been cancelled.

Account Number: $Account_Number

Payment Type: $Payment_Type

Amount: $Amount

Please continue visiting $Billing_URL.

Thank you for using Automatic Bill Payment.

This is an automatically generated email. Please do not reply to this
message.

Successful Quick
Payment

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Thank You for Your Quick Payment

Dear $User,

Thank you for submitting the following one-time Quick Payment:

Account Number: $Account_Number

Amount: $Amount

Master Reference Number: $Reference_Number

Thank you for using Quick Payment. Visit us again to make your next online
payment at $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 63

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Quick Payment
Failure

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Quick Payment Failed

A problem occurred during your one-time Quick Payment transaction. The
following payment did not process successfully:

Amount: $Amount

Master Reference Number: $Reference_Number

Please visit $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Payment Due From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have a Payment Due

Dear $User,

You have a payment due for each of the following accounts:

Account: $Account

Due Date: $Due_Date

Due Amount: $Amount_Due

You have additional bills; only $Cutoff_Number accounts have been
displayed above.

Thank you for using online payment.

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A64

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Payment
Scheduled

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Automatic Payment Schedule Confirmed

Dear $User,

Automatic payments have been scheduled for the following accounts:

Account: $Number

Due Date: $Due_Date

Total Amount Due: $Due_Amount

Amount Paid: $Configured_Amount

Outstanding Balance: $Balance_Due

$Statement_Credit has been credited to your account.

Thank you for using online payment.

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Successful
Payment

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Thank You for Your Payment

Dear $User,

Your payments for the following accounts completed successfully:

Account: $Number

Amount Due: $Due_Amount

Please continue visiting $Billing_URL.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 65

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Payment Failure From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Payment Did Not Complete Successfully

Dear $User,

Your online payment for the following accounts has failed:

Account: $Number

Amount Due: $Due_Amount

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Statement
Threshold

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: 1st Notice - Your Payment Threshold Exceed

Dear $User,

Your most recent statement has exceeded the payment threshold you have
set for yourself.

Please log into your self-service application at $Secure_Billing_URL and
make the necessary changes.

Thank You

Payment
Threshold

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Automatic Payment Threshold Has Been Reached

Dear $User,

The amount due exceeds the threshold you set for automated payment for
the following accounts:

Account: $Number

Amount Due: $Due_Amount

Configured Amount: $Configured_Amount

Please continue visiting $Billing_URL.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A66

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Credit Card
Expiration

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Credit Card is About to Expire

Dear $User,

The following credit card account used for online payments is about to
expire:

Credit Card Number: $Credit_Card_Number

Expiration Date: $Expiration_Date

Please continue visiting $Billing_URL.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to this
message.

Payment
Account Create

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Payment Account Created Successfully

Dear $User,

The following payment account has been created successfully:

Account Name: $Account_Name

Thank you for using online payment.

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Payment
Account Update

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Payment Account Updated Successfully

The following payment account below has been updated successfully:

Account Name: $Account_Name

Please continue visiting $Billing_URL.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 67

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
Payment
Account Delete

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Payment Account Deleted Successfully

Dear $User,

The following payment account has been deleted successfully:

Account Name: $Account_Name

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Batch Report
Ready

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Batch Reporting Status

Dear $User,

This notification is to inform you of the status of your batch report:

Report Name: $Report_Name

Create Date: $Create_Date

Start Date: $Start_Date

End Date: $End_Date

Status: $Status

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to this
message.

Login Password
Changed

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Login Password Has Been Changed

Dear $User,

Your login password has been changed; you can use the new password to
login.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A68

Using and Customizing Email Notifications ■ Email Notification Template Content
(Business Edition)
End User
Account
Reactivated

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Account Has Been Reactivated

Dear $User,

Your account has been reactivated. You can now continue managing and
paying your bills online using the online Customer Care Application.

Why wait! Please visit $Secure_Billing_URL to finish the reactivation
process.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to this
message.

CSR User
Account
Reactivated

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Account Has Been Reactivated

Dear $User,

Your account has been reactivated; you can once again access your online
Customer Care Application.

Please visit $Secure_Billing_CSR_URL to finish the reactivation process.

This is an automatically generated email. Please do not reply to this
message.

Migrated End-
User Account
Reactivated

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Account Has Been Reactivated

Dear $User,

Your account has been reactivated. You can now continue managing and
paying your bills online using the online Customer Care Application.

Why wait! Please visit $Secure_Billing_URL to finish the reactivation
process.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 69

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Email Notification Template Content
(Consumer Edition)
This topic shows the content of the email templates provided for each type of notification in Oracle
Self-Service E-Billling (Consumer edition). Table 8 shows the template content for each notification
type. For the Oracle Self-Service E-Billling (Business edition) notification text, see “Email Notification
Template Content (Business Edition)” on page 59.

Migrated CSR
User Account
Reactivated

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Account Has Been Reactivated

Dear $User,

Your account has been reactivated; you can once again access your online
Customer Care Application.

Please visit $Secure_Billing_CSR_URL to finish the reactivation process.

This is an automatically generated email. Please do not reply to this
message.

Password
Expired

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Administrator Password is Expiring

Dear $User,

Your account password will expire in $Number_Days days. Please set a new
password.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to this
message.

Notification Type Email Template (Business Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A70

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Table 8. Notification Types and Email Templates (Consumer Edition)

Notification Type Email Template (Consumer Edition)

Bill Ready From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have a New Bill

Dear $User,

The following accounts registered under your email address
have new e-Bills:

Account Number: $Account_Number

Service Number: $Service_Number of Account
$Account_Number

You have additional bills; only $Cutoff_Number accounts have
been displayed above.

To view your e-bills, click $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Enrollment (B2C User) From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome! You have successfully enrolled in the Customer Care
Application.

You can now start managing and paying your bills online. Why
wait! Please visit $Secure_Billing_URL to finish the enrollment
process.

This is an automatically generated email. Please do not reply to
this message.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 71

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Enrollment (CSR User) From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome! Your administrator has enrolled you in the Customer
Care Application.

Contact your company administrator at $Admin_Email to
receive your assigned username. Then visit
$Secure_Billing_CSR_URL to finish the enrollment process.

Log in now and you will be redirected to create your own
personal password.

This is an automatically generated email. Please do not reply to
this message.

Enrollment (CSR
Administrator)

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome to the Customer Care Application.

Now you can start managing other customer service
representatives and assisting customers with e-billing. Please
visit $Secure_Billing_CSR_URL to finish the enrollment
process.

Log in now and you will be redirected to create your own
personal password.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A72

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Enrollment (Migrated B2C
User)

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome to the Customer Care application. You can now start
managing and paying your bills online.

Why wait! Please visit $Secure_Billing_URL to finish the
enrollment process.

This is an automatically generated email. Please do not reply to
this message.

Enrollment (Migrated CSR
User)

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have Been Enrolled

Dear $User,

Welcome to the Customer Care application.

Please visit $Secure_Billing_CSR_URL to finish the enrollment
process.

This is an automatically generated email. Please do not reply to
this message.

Job Alert Success From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Job Completed Successfully

Dear $User,

The following job completed successfully:

Job_Name Job_Type$ Job_Instance_ID $DDN

Job Alert Failure From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Job Failure

Dear $User,

The following job did not complete successfully:

Job_Name Job_Type$ Job_Instance_ID $DDN $Exception

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 73

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Recurring Payment
Confirmation

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Welcome to Automatic Bill Payment

Dear $User,

You have successfully enrolled in the Automatic Bill Payment
program for your online accounts.

The first automatic bill payment will take place after your next
billing cycle. You will receive a payment confirmation email
when the payment is submitted.

Account Number: $Account_Number

Payment Type: $Payment_Type

Amount: $Amount

You can continue to make other payments on your account
using the Quick Payment option on the Payments Menu. Click
$Billing_URL to view your e-bills anytime.

Thank you for using Automatic Bill Payment.

This is an automatically generated email. Please do not reply to
this message.

Recurring Payment
Configuration Update

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Automatic Bill Payment Settings Have Been
Updated

Dear $User,

The Automatic Bill Payment settings for your online accounts
have been updated.

Account Number: $Account_Number

Payment Type: $Payment_Type

Amount Due: $Amount_Due

Thank you for using Automatic Bill Payment.

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A74

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Recurring Payment Delete From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Automatic Bill Payment Participation Cancelled

Dear $User,

This notification confirms that your participation in Automatic
Bill Payment has been cancelled.

Account Number: $Account_Number

Payment Type: $Payment_Type

Amount: $Amount

Please continue visiting $Billing_URL.

Thank you for using Automatic Bill Payment.

This is an automatically generated email. Please do not reply to
this message.

Successful Quick Payment From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Thank You for Your Quick Payment

Dear $User,

Thank you for submitting the following one-time Quick
Payment:

Account Number: $Account_Number

Amount: $Amount

Master Reference Number: $Reference_Number

Thank you for using Quick Payment. Visit us again to make your
next online payment at $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 75

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Quick Payment Failure From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Quick Payment Failed

A problem occurred during your one-time Quick Payment
transaction. The following payment did not process
successfully:

Amount: $Amount

Master Reference Number: $Reference_Number

Please visit $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Payment Due From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: You Have a Payment Due

Dear $User,

You have a payment due for each of the following accounts:

Account: $Account

Due Date: $Due_Date

Due Amount: $Amount_Due

You have additional bills; only $Cutoff_Number accounts have
been displayed above.

Thank you for using online payment.

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A76

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Payment Scheduled From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Automatic Payment Schedule Confirmed

Dear $User,

Automatic payments have been scheduled for the following
accounts:

Account: $Number

Due Date: $Due_Date

Total Amount Due: $Due_Amount

Amount Paid: $Configured_Amount

Outstanding Balance: $Balance_Due

$Statement_Credit has been credited to your account.

Thank you for using online payment.

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Payment Success From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Thank You for Your Payment

Dear $User,

Your payments for the following accounts completed
successfully:

Account: $Number

Amount Due: $Due_Amount

Please continue visiting $Billing_URL.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 77

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Payment Failure From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Payment Did Not Complete Successfully

Dear $User,

Your online payment for the following accounts has failed:

Account: $Number

Amount Due: $Due_Amount

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Statement Threshold From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: 1st Notice - Your Payment Threshold Exceed

Dear $User,

Your most recent statement has exceeded the payment
threshold you have set for yourself.

Please log into your self-service application at
$Secure_Billing_URL and make the necessary changes.

Thank You

Payment Threshold From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Automatic Payment Threshold Has Been
Reached

Dear $User,

The amount due exceeds the threshold you set for automated
payment for the following accounts:

Account: $Number

Amount Due: $Due_Amount

Configured Amount: $Configured_Amount

Please continue visiting $Billing_URL.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A78

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Credit Card Expiration From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Credit Card is About to Expire

Dear $User,

The following credit card account used for online payments is
about to expire:

Credit Card Number: $Credit_Card_Number

Expiration Date: $Expiration_Date

Please continue visiting $Billing_URL.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to
this message.

Payment Account Create From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Payment Account Created Successfully

Dear $User,

The following payment account has been created successfully:

Account Name: $Account_Name

Thank you for using online payment.

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Payment Account Update From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Payment Account Updated Successfully

The following payment account below has been updated
successfully:

Account Name: $Account_Name

Please continue visiting $Billing_URL.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 79

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
Payment Account Delete From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Payment Account Deleted Successfully

Dear $User,

The following payment account has been deleted successfully:

Account Name: $Account_Name

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Batch Report Ready From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Batch Reporting Status

Dear $User,

This notification is to inform you of the status of your batch
report:

Report Name: $Report_Name

Create Date: $Create_Date

Start Date: $Start_Date

End Date: $End_Date

Status: $Status

Please continue visiting $Billing_URL.

This is an automatically generated email. Please do not reply to
this message.

Login Password Changed From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Login Password Has Been Changed

Dear $User,

Your login password has been changed; you can use the new
password to login.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A80

Using and Customizing Email Notifications ■ Email Notification Template Content
(Consumer Edition)
End User Account Reactivated From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Account Has Been Reactivated

Dear $User,

Your account has been reactivated. You can now continue
managing and paying your bills online using the online
Customer Care Application.

Why wait! Please visit $Secure_Billing_URL to finish the
reactivation process.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to
this message.

CSR User Account Reactivated From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Account Has Been Reactivated

Dear $User,

Your account has been reactivated; you can once again access
your online Customer Care Application.

Please visit $Secure_Billing_CSR_URL to finish the reactivation
process.

This is an automatically generated email. Please do not reply to
this message.

Migrated End-User Account
Reactivated

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Account Has Been Reactivated

Dear $User,

Your account has been reactivated. You can now continue
managing and paying your bills online using the online
Customer Care Application.

Why wait! Please visit $Secure_Billing_URL to finish the
reactivation process.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 81

Using and Customizing Email Notifications ■ Adding a Custom Message Provider
Adding a Custom Message Provider
Use the following procedure to add a custom message provider.

To add a custom message provider

1 Create a new message type and accompanying class to override the
com.edocs.common.api.notification.AbstractMessage class.

Migrated CSR User Account
Reactivated

From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Account Has Been Reactivated

Dear $User,

Your account has been reactivated; you can once again access
your online Customer Care Application.

Please visit $Secure_Billing_CSR_URL to finish the reactivation
process.

This is an automatically generated email. Please do not reply to
this message.

Password Expired From: admin@yourcompanydomain.com
Sent: Date Time
To: User
Subject: Your Administrator Password is Expiring

Dear $User,

Your account password will expire in $Number_Days days.
Please set a new password.

Thank you for using online payment.

This is an automatically generated email. Please do not reply to
this message.

Notification Type Email Template (Consumer Edition)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A82

Using and Customizing Email Notifications ■ Adding a Custom Message Provider
2 Initialize the new class with all the information necessary to send a message of that type using
the custom messaging provider.

It is not necessary to include static information that does not vary by individual message. For
example, an email address is necessary if you are using an SMTP provider and the address
changes for every message. However, the SMTP hostname does not change with every message.

If an existing implementation has all the necessary information, you can use that implementation
without modification, except that you must provide a unique message by calling the
setMessageType method on the object after object creation. The class
com.edocs.common.notification.extensions.InternalMessage provides a reference
implementation.

3 Create a new transport class with the logic for sending messages using the new message
provider, overriding the com.edocs.common.notification.extensionsapi.AbstractTransporter
class.

This transport class contains the methods for sending the message. All of the information
necessary for this class is available from the IMessage object.

4 Add a JavaBean definition to the notification.xma.xml file. Give the file a name that ends with
Bean, such as CustomTransportBean.

This name (without the Bean part) is used inside the NotificationService class to return the
correct messenger, for example: IMessenger messenger =
MessengerFactory.getMessenger(CustomTransport).

5 In the JavaBean definition, add all the properties required by the transporter to use the
messaging provider, such as the SMTP name. Do not include items like the email address, which
the message object provides.

The class com.edocs.common.notification.extensions.TrueTransporter and the JavaBean
definition for TrueTransporterBean in the notification.xma.xml file provide a reference
implementation.

6 Create a new NotificationService class that determines when to use the transport class, which
you wrote in Step 3, that overrides the com.edocs.common.api.notification.INotificationService
class.

INotificationService has two methods for sending instant messages and batch messages. These
methods decide which transport to use based on the IMessage object being passed in. You must
supply the logic to call the MessengerFactory with the transport in Step 3 as the transport type,
for the types of Messages you want that transport to send.

7 After you create the NotificationService class, add (or modify if it already exists) a JavaBean
called NotificationService to the notification.xma.xml file. NotificationServiceFactory looks up the
JavaBean called NotificationService from the XML file.

The class com.edocs.common.notification.core.NotificationService and the JavaBean definition
for NotificationService in the notification.xma.xml file provide a reference implementation.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 83

Using and Customizing Email Notifications ■ About Email Notification Processing
About Email Notification Processing
Oracle Self-Service E-Billling interacts with the Oracle Self-Service E-Billling database to determine
what email to send. Each message composed is stored, then the email dispatcher takes the stored
email and sends the messages based on selected external transport type, for example, SMTP.

Figure 1 shows an overview of email processing.

Oracle Self-Service E-Billling merges the message template with runtime information to create the
email message. The messenger then calls the gateway, configured in the app-config.properties file,
to send the email message.

The email composer consists of three components that function together to group multiple account
numbers by email address to roll-up messages. The components of the email composer perform the
following functions:

■ Group account numbers by send-to address

■ Compose a group message based on a template

■ Create a grouped message for a given queue

Figure 1. Email Processing
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A84

Using and Customizing Email Notifications ■ About Email Notification Processing
Figure 2 shows how email groups email messages for delivery.

Figure 2. Email Grouping
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 85

Using and Customizing Email Notifications ■ About Email Notification Processing
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A86

,

6 Using the Reporting Engine
This chapter covers using the Business Reporting Engine feature in Oracle Self-Service E-Billling. It
includes the following topics:

■ Reporting Engine Features on page 87

■ Components Used by the Reporting Engine on page 93

■ Core Reporting Features on page 130

■ Customizing the Reporting Engine on page 138

■ Customizing Threshold Values for Batch Reporting on page 142

■ Customizing Charts on page 143

■ Configurable Chart Properties on page 145

■ Customizing the Statement Summary Chart on page 152

■ Reporting on User Audit Data on page 153

■ Reporting on System Administrator Audit Data on page 157

Reporting Engine Features
The Reporting Engine is used for much more than just reporting. The Reporting Engine can present
any data you can retrieve from any data sources, such as RDBMS or CSV files.

Possible use cases supported by the Reporting Engine include:

■ Viewing statements and invoices

■ Analytic reports, such as the 10 most expensive calls

■ Cost center reports (hierarchy report), such as cost summary by cost centers

■ Reports, such as most frequent users or logging analysis

■ Address book

■ Email content composition

■ AR file generation

The Reporting Engine offers great tools to help you implement these use cases. It uses XML to
describe how you want to present a report. Then the Reporting Engine does the rest of the work for
you, including retrieving data from data source, formatting, and then presenting the data to the end
user through Velocity templates.

The Reporting Engine is designed to do the following:
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 87

Using the Reporting Engine ■ Reporting Engine Features
■ Use XML Files: Create an XML file to describe the report you want to create. The Reporting
Engine automatically generates that report for you, in variety of formats, such as HTML or CVS.

■ Have an extendable, customizable UI: You can extend the Reporting Engine to support any
UI customization. The Reporting Engine uses Velocity templates, which is a powerful reporting
tool based on Model-View-Controller (MVC) technology.

■ Be maintainable: The Reporting Engine is MVC-based and offers the best separation of
presentation logic and business logic, which makes it maintainable.

The following features are offered by the Reporting Engine:

■ Multiple data sources. The Reporting Engine connects to multiple data sources, including SQL
data source, object data source, and DSV data source.

■ Prompts. Prompts allow you to select desired data from data source.

■ Interactive sorting. Sorting can be case sensitive or insensitive.

■ Interactive grouping. Data is grouped by a particular column’s values.

■ Calculator operations. Summary, Boolean, minimal, average and count operations are
supported.

■ Charting. This feature supports bar, stack bar charts, line, and pie charts.

■ Template. Template-based presentation for both Web-based and non-Web based applications.

■ Formatting. Support is provided for locale based format for numeric values and dates.

■ Printer friendly view. This feature allows you to generate a printer friendly view for printing.

■ CSV download. CSV download lets you download the report in CSV format.

■ XML download. XML download lets you download the report in XML format.

■ PDF download. PDF download lets you download the report in PDF format. PDF format is not
generated automatically for all the reports. You must create an RTF template file for particular
reports to generate in PDF format.

■ Paging. Pages through a large set of data.

■ Custom report. Custom reports allow users to create their own reports and save them for later
retrieval.

■ Internationalization. Standard Java resource bundle based internationalization.

■ Drilldown and Breadcrumb links. The Report engine offers a way to drill down to different
reports and drill back through breadcrumb links.

■ Seamless integration with Struts and Tiles. The Reporting Engine is not tied to a particular
presentation framework, but offers excellent support for Struts and Tiles.

■ Batch report. When it takes a long time to generate a report online, you can use the batch
report feature to send a request which will be processed offline.

■ Unlimited Paging. If the data source has too many rows and if there is a performance issue to
retrieve all the rows, the Reporting Engine can retrieve them in batches. The paging though these
batches is seamless and retrieving result set in batches is invisible to the end user.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A88

Using the Reporting Engine ■ Reporting Engine Features
If you are working on the UI, consider using the Reporting Engine whenever you want to present a
tabular table with sorting and paging functionality. For a non-tabular based UI, use JSP files.

The Reporting Engine is also useful for generating dynamic text files, such as AR files or email
content.

It is recommended that you use JSP for most parts and only use Velocity templates for reporting-
related UIs.

The Reporting Engine uses Velocity instead of JSP because:

■ Velocity offers a better MVC module, which keeps most of the business logic in the core Reporting
Engine APIs.

■ The Reporting Engine is meant to be used by both front end and back end applications. For back
end applications, JSP is not available.

■ The views (templates) must be publishable and versioned. This is important if you want to use
the Reporting Engine to present bills. Note that there is no easy way to publish JSP pages.

It is not recommended to download a newer version of Velocity and replace the one in the EAR file.
The new Velocity version has not been tested with Oracle Self-Service E-Billling. Also, the default
velocity.properties file has been changed for Oracle Self-Service E-Billling. These changes include:
the velocityCount starts from 0 instead of the default 1, and the templates can be loaded as file and
also as class.

You cannot define your own data source. One way to get around this is to retrieve your data as a list
of objects and then use the Object Datasource feature to present it through the Reporting Engine.

You cannot extend report XML to add your own custom tags.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 89

Using the Reporting Engine ■ Reporting Engine Features
Reporting Engine Architecture
Figure 3 shows the Reporting Engine architecture based on the UML component model.

The overall Reporting Engine architecture follows the MVC model; the data source is the model, the
report manager, transformer and report XML are the controller, and the template is the view.

■ Report Client. This client calls the Report API to generate reports. The client can be a Web
Client, such as JSP and Servlet or Struts and Tiles, or it can be a regular standalone application.

■ Report API. This is a set of APIs that the reporting client can use to generate a report. For
information about how this API works, go to the Oracle Self-Service E-Billling Javadoc as
described in “Accessing Oracle Self-Service E-Billing Javadoc” on page 31.

■ Report Context. The Report context is used by the Report Client to exchange information with
the Report Engine. It includes the information passed from the client that is used to bind the SQL
query parameters and parse the templates. For example, the context can contain user session
information, such as login name, current role and organization level. Or it can contain report
input information, such as the date range used to generate reports. All the objects in the context
can be accessed using Velocity templates.

■ Request Queue. This queue holds all offline batch report requests. Users can generate reports
immediately, or they request that the reports be generated offline. Offline reports send email
notification when the reports are ready. The Request Queue is a JMS queue, and holds all offline
report requests.

Figure 3. Reporting Engine Architecture
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A90

Using the Reporting Engine ■ Reporting Engine Features
■ Batch Processor. The processor retrieves offline report requests from the Request Queue, and
sends them to the Report Engine for processing. The batch processor is a batch job that runs in
Command Center.

■ Report Manager. The Report Manager is the central controller of the report engine. It receives
reporting requests from the client, and invokes the appropriate data source and transformer to
perform the desired processing.

■ Data source. This item represents the data source. The data source can be an SQL statement,
an Object or a CSV file.

■ Transformer. The transformer transforms the query result from presentation, and applies a set
of computations on it, including sorting, grouping, paging, aggregation (summary, average,
Boolean, minimal, count), and formatting. The transformer can also cache the data retrieved
from data source so that the operations can be performed in the cache data (which reduces
database accesses).

■ Velocity Template. Templates are used to generate desired report output views. The templates
are based on Velocity, and can generate any text reports, such as HTML or CSV. However, it is
not currently possible to use Velocity to generate binary reports.

■ Report Definition XML. Report XML files control how reports are generated. To create your own
report, create a report definition in a report XML file. You can have multiple report XML files, and
each report XML file can define multiple reports.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 91

Using the Reporting Engine ■ Reporting Engine Features
Reporting Engine Object Model
Figure 4 shows the Reporting Engine object model. Only the main objects are shown.

■ ReportActionHelper. This class was designed to be called by the Servlet or Struts action class.
It performs a number of tasks, such as parsing the request parameters, and then does the
sorting, paging, and so on. It returns an IReport object, that you can use to render a report, or
manipulate further before rendering it. Though it is possible to avoid using this class by using
other APIs, it is strongly recommended that you use this class to reduce your customization work.

■ ReportManager. Use this class to get an instance of IReportManager.

■ IReportManager. This is the entry class to the Reporting Engine APIs. For example, to get an
instance of IReport and other objects.

■ ReportContext. This class is a Map, which allows the Reporting Engine client to pass information
to the Reporting Engine. For example, the binding values to SQL “?” parameters, and the objects
used in Velocity templates.

■ IReportConfig. This interface represents the report XML definition. For example, the SQL used
to query, instructions to bind the report context objects to the SQL, instructions to format the
report. There are a set of Config objects related to this class that represent the report XML
elements. For more information about this API, go to the Oracle Self-Service E-Billling Javadoc
as described in “Accessing Oracle Self-Service E-Billing Javadoc” on page 31.

■ ITransformer. This object represents the transformer defined in the report XML. It offers a set
of APIs that manipulate the format, such as format value, write the template, and so on.

Figure 4. Reporting Engine Object Model
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A92

Using the Reporting Engine ■ Components Used by the Reporting Engine
■ DataSource. This API is not a public. It represents the datasource defined in the report XML,
and allows you to retrieve report data from that data source.

■ IReportList and IReportRow. The report data retrieved from DataSource is represented as
IReportList, which is a java.util.List. IReportList includes a list of IReportRow objects,
which represents rows in a report. The objects in IReportRow are basic Java objects, such as
Integer, Double, String, Date, and so on. For more details, please check Java APIs of Reporting
Engine.

The object model of Reporting Engine is straightforward. Figure 5 shows how the Reporting Engine
objects interact with each other to generate a report.

For more information on how to write action class and report JSP pages, see “Customizing the
Reporting Engine” on page 138.

Components Used by the Reporting
Engine
The Reporting Engine uses the following components:

■ Reporting XML

■ Templates

Figure 5. Reporting Engine Object Interaction
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 93

Using the Reporting Engine ■ Components Used by the Reporting Engine
■ Reporting API

The Reporting Engine is packaged as part of the Oracle Self-Service E-Billling application. However,
the Reporting Engine is an individual component which can be used in any other application.

The following list describes the components of the EAR file required to customize Reporting:

■ Velocity-version_number-custom.jar and Velocity-version_number-tools.jar. Contains
the Velocity template engine and related files. Note, the property file for the Velocity engine has
been updated for Oracle Self-Service E-Billling; do not replace the property file with any other
version of Velocity JAR files. In the file name, version_number is defined by Velocity.

■ Api-version_number-SNAPSHOT.jar. This archive includes the public APIs that a Reporting
Engine client can use to access the Reporting Engine. The APIs are under
com.edocs.common.api.reporting. For more information about APIs, see the Oracle Self-Service
E-Billling Javadoc as described in “Accessing Oracle Self-Service E-Billing Javadoc” on page 31. In
the file name, version_number is defined by Velocity.

■ Reporting-core-version_number-SNAPSHOT.jar and Reporting-forms-
version_number-SNAPSHOT.jar. This archive includes the Reporting Engine implementation
classes. In the file names, version_number is defined by Velocity.

■ App-resources-version_number-SNAPSHOT.jar. This archive includes the resource bundles
used by the Oracle Self-Service E-Billling application. The resource bundles are loaded at the EAR
level instead of the WAR level in order to localize the batch reports, which are generated offline.
Currently, all reporting related resource bundles are in the
com.edocs.app.reporting.resources.ApplicationResourcesLanguage.properties files. In the file
name, version_number is defined by Velocity. In the properties file, Language is blank for U.S.
English, _es_US for Spanish, _zh_cn for Chinese, and _it_IT for Italian.

■ struts-config.xml. The Oracle Self-Service E-Billling user interface is defined as a Struts
module. All the Oracle Self-Service E-Billling related Struts configurations, such as the resource
bundles, are defined in this file. (This file is found in ebilling-web-1.0-SNAPSHOT.war.)

■ Skin.css. This file defines the report UI related CSS. (This file is found in ebilling-web-1.0-
SNAPSHOT.war.)

■ Report.jsp and other jsp files. This item consists of the Oracle Self-Service E-Billling reporting
related JSP files. The report.jsp renders the major reporting UI. You call IReport.writeTemplate()
to invoke Velocity template parsing. The view rendering is done through Velocity templates. (This
file is found in ebilling-web-1.0-SNAPSHOT.war.)

In addition to the EAR file, which includes classes and JSPs, there are a set of files packaged outside
the EAR. These files are Velocity template files and report XML files.

Using the Report List Properties File
The report list properties file, reportList.properties, includes the list of report XML files to be loaded
into report engine. You must have your report XML file defined in this file. The file format is:

name=xml_file_path
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A94

Using the Reporting Engine ■ Components Used by the Reporting Engine
In this definition, name must be unique for each report XML and the XML file must be either under
EDX_HOME or on the class path, where EDX_HOME is the directory where you installed Oracle Self-
Service E-Billling.

The following example, the telco.xml file is found under the EDX_HOME/config/rpt/ directory or on
the class path. In the path, EDX_HOME is the directory where you installed Oracle Self-Service E-
Billling:

telco_xml=config/rpt/telco.xml

Configuring Batch Reporting
You can specify the following parameters for batch reporting in Oracle Self-Service E-Billling:

■ batchReport.failTries. This parameter specifies the number of times to retry the batch report
job after a transaction timeout exception.

■ batchReport.processingTimeOut. This parameter specifies the time out period after which a
user can delete a batch report request with PROCESSING status.

To configure batch reporting
■ Update the appropriate parameters in the globalConfig.properties file, found in the EDX_HOME/

config/rpt directory (or the EDX_HOME\config\rpt directory on Windows):

 batchReport.failTries=3

 #The unit is hour.

 batchReport.processingTimeOut=12

Reporting XML
The Reporting XML is central to the Reporting Engine. It describes how to generate a report.

The Reporting XML includes the dataSource and the transformer sections. The dataSource describes
how to retrieve data from data source, and the transformer manipulates the data before sending it
to the template.

There are samples of report XML files in the EDX_HOME/config/rpt directory. To get a complete list
of all the valid report XML elements and attributes, see the report XSD file, report.xsd, under the
EDX_HOME/config/rpt directory. In the path, EDX_HOME is the directory where you installed Oracle
Self-Service E-Billling.

The following topics describe some of the main features of the Reporting Engine and explain how to
use report XML to implement them.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 95

Using the Reporting Engine ■ Components Used by the Reporting Engine
<reports> Element of Report XML
This is the root element of report XML. This element can include <report>, <localizer>, <prompts>
and <templates> elements. The following XML shows that structure:

<reports>
<templates>…</templates>
<localizer>…</localizer>
<prompts>…</prompts>
<report>…</report>

</reports>

<localizer> Element of Report XML
This element defines how the localization of the reports will be done. For details, see
“Internationalization and Localization of Reporting” on page 133 for more information.

The <localizer> element has the attributes described in Table 9.

Localizer can include <resourceBundle> as its child elements.

<resourceBundle> Element of Report XML
This element specifies one resource bundle property file name to be used for report localization. See
Internationalization/Localization on page 55 for more information.

For example:

<resourceBundle name="config/l10n/message" />

Table 9. Attributes for <localizer>

Name Required Description

enableMessageResources No This attribute allows you to use Struts
MessageResource to look for the resource bundles
for reports. This means you can use the same copy
of resource bundle files defined in a struts config
file without reloading another copy of it. The
default is true.

defaultCode No This attribute enables you to define the default
behavior if a resource is not found.

■ A value of 0 means to use the key as the
default value.

■ A value of 1 means to use Struts notion of
“???<locale>.<key>???”

A value of -1 means to throw an exception.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A96

Using the Reporting Engine ■ Components Used by the Reporting Engine
This example means the property file, config/l10/message_<locale>.properties, found in the
EDX_HOME directory (the directory where you installed Oracle Self-Service E-Billling) is used for
localization.

<prompts> Element of Report XML
The <prompts> element has the same format as the one defined under <dataSource>. However,
because it is defined at the global level, it can be shared and referenced by other reports. This
significantly reduces duplication of the report XML contents, and makes it easier to maintain report
XML files.

For more details, see the <prompts> definitions in “<dataSource> Element of Report XML” on page 98.

<templates> Element of Report XML
This element allows you define a list of global templates that can be included and parsed into other
templates. For example, the paging.vm is used to generate paging UI and could be included by other
templates, like report_body.vm.

For example, to define a template:

<templates>
 <template id="paging.vm" name="template/common/reporting/paging.vm"/>
 </templates>

This example means there is a template named paging.vm, located in the EDX_HOME/template/
common/reporting/ directory.

Then you can include the paging.vm from another template like this:

#parse ($transformerConfig.getTemplateName("paging.vm"))

The method transformerConfig.getTemplateName("paging.vm") returns this template, paging.vm,
from the EDX_HOME/template/common/reporting/paging.vm directory.

NOTE: If you have a template that has the same ID defined inside the transformer element, then
the ID in transformer takes precedence over the is in the global template list. This allows an
individual transformer to use its own template. See <transformer> for detail.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 97

Using the Reporting Engine ■ Components Used by the Reporting Engine
<template> Element of Report XML
This element defines a global template, which has following attributes described in Table 10.

<report> Element of Report XML
This element defines a report. A report can include zero or more <dataSource> elements, one or
more <transformer>s, and zero or one of <customList>, <printList> and <downloadList>.

<report id=”reportId” name=”MyReport”>
<downloadList>…</downloadList>
<printList>…</printList>
<customList>…</customList>
<dataSource>…</dataSource>
<transformer>…</transformer>

</report>

The <report> element has two attributes:

■ id. The ID identifies this report. All the reports defined in the report XML files in
reportList.properties must have unique IDs. This ID must start with an alphabetic character, and
can include numbers and underscores.

■ Name. This is the name of the report. This name is used to search the report bundle to get a
localized version of the report name. For example, in the Report List page, the names of reports
are from this attribute.

<dataSource> Element of Report XML
This element defines how to retrieve data from the data source.

<dataSource id=”” uri=”jdbcJNDI:edx.report.databasePool”>

<query dynamic=”true”>

</query>

<columns>

<column id=”” type=””/>

Table 10. Attributes for <template>

Name Required Description

ID Yes The ID is a unique identifier among all the global templates.
Note you can use the same ID for the transformer template
ID; in this case, the transformer template takes precedent of
the global one.

name Yes The name attribute is the full class path name of the
template.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A98

Using the Reporting Engine ■ Components Used by the Reporting Engine
</columns>

<inputBindings>

<inputBinding />

</inputBindings>

</dataSource>

The data retrieved from the data source is represented as a List of Lists of simple Java objects, such
as Strings, Date/Time/Timestamp or Numbers. It does not use a two dimensional array because: a
List of Lists gives you the potential to increase its size if required, and Velocity does not support
accessing array elements through the [] operator.

The <dataSource> element has following attributes:

■ id: A unique ID identifies this data source in this report. You must define it even there is only
one data source. It is not required that the ID be unique across all reports. This ID must start
with an alphabetic character, and can include numbers and underscores.

■ uri: A Universal Resource Identifier identifies the location of the data source. Oracle Self-Service
E-Billling supports three data sources: SQL data source, object data source, and DSV data
source. This example focuses on the SQL data source. For information about object data sources,
see “Object Data Source” on page 136 and for DSV data source, see “DSV Data Source” on
page 136.

For an SQL data source, there are three URIs:

■ jdbcJDNI:<dataSource_JNDI_NAME>.The jdbcJNDI indicates that this is a JDBC data
source identified by its JDNI name. For example, jdbcJDNI:edx.report.databasePool means
there is a JDNI data source named edx.report.databasePool.

■ jdbcRef:<dataSource_REF_NAME>. The jdbcRef indicates that this is a JDBC data source
identified by its local reference name, either defined in the web.xml or ejb-jar.xml file. For
example, you can have an entry similar to this in the web.xml file:

<resource-ref>
 <res-ref-name>jdbc/rptDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

With this entry, you can use following URI: jdbcRef:jdbc/rptDataSource. You must also
resolve this local reference through the weblogic.xml file or another vendor-specific XML file.

■ jdbcDirect:<jdbc_config_property_file_class_path>. The jdbcDirect means that there
is no connection pool and the Reporting Engine must make a direct JDBC connection to the
database. You must specify the class path to the DB config file. For example,
jdbcDirect:config/db/jdbcConfig.properties. For the format of the config file, look at the
sample jdbcConfig.properties file coming with the product. Avoid using this URI if your
application can access a connection pool.

This element can include <query>, <inputBindings>, <prompts> and <columns> elements.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 99

Using the Reporting Engine ■ Components Used by the Reporting Engine
<query> Element of Report XML
This element defines the query used to retrieve data from the data source. It applies to an SQL data
source but not an object data source.

<query dynamic=”false” maxRows=”1000”> <![CDATA[select name, amount from summary
where user_id=?]]></query>

The value for <query> is enclosed in a CDATA topic, which can include any SQL.

The question mark in the SQL means that a variable must be resolved (bound) before the SQL can
be executed. Variables are resolved through the <inputBindings> element.

Table 11 describes the attributes of the <query> element.

<inputBindings> Element of Report XML
This element defines a list of input bindings that are used to bind the SQL variables defined in the
<query> element. It has no attribute, and includes an <inputBinding> element.

<inputBinding> Element of Report XML
This element defines a single input binding. There are two kinds of bindings: objects and prompts.
The order of the <inputBinding> elements is the same as the order of the SQL variables. That means
the nth <inputBinding> is used to bind the nth SQL variable. Object binding means binding an object
or its property to an SQL variable.

For example:

<inputBinding object=”bean” property=”userId” />

This means there is an object called bean in the report context, this object is a JavaBean, and it has
a property named userId. The value returned by bean.getUserId() will be used to bind the SQL
variable. Usually, the JavaBean is a Struts ActionForm object. If the object returned by the property
is a Collection, then each element in the Collection will be used for binding.

<inputBinding object=”myObject” />

Table 11. Attributes for <query> Element

Name Required Description

dynamic No This attribute indicates whether to parse this SQL as a
Velocity template before execution. This allows you to use a
Velocity template to generate a SQL dynamically. For
information about how to write dynamically generated SQL,
see “Dynamic SQL” on page 132. True or False; the default is
False.

maxRows No This attribute indicates the Boolean number of rows will be
retrieved from the data source. An integer; the default is
1000.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A100

Using the Reporting Engine ■ Components Used by the Reporting Engine
In this case, there is no property defined, so myObject is not assumed to be a JavaBean. If the
myObject is not a Collection, then myObject is used to bind to the SQL variable directly. If the
myObject is a Collection, then each element in the myObject Collection will be used to bind to the
SQL variables in its natural order in the collection. This latter case is very useful where the number
of SQL variables is dynamic, such as a name in a (?…?) clause. For more information about using
dynamic SQL, see “Dynamic SQL” on page 132.

Prompt binding is a special case of object binding. Prompt binding means that the binding object is
from the user prompt, which allows you to bind the value of the prompt to a SQL variable.

<inputBinding object=”form” property=”<bean_property>” prompt=”<prompt_id>” />

You can use a map-backed ActionForm also. For example, the ReportForm from the Oracle Self-
Service E-Billling application is a map-backed form. It has map-methods, such as
getParameter(String name) and setParameter(String name, Object value). You can use this syntax in
a property or prompt attribute:

■ <inputBind object=”form” property=”parameter(callType)” />

■ <inputBind object=”form” property=”parameter(callType)” prompt=”parameter(callType)”/>
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 101

Using the Reporting Engine ■ Components Used by the Reporting Engine
Table 12 describes the attributes of the <inputBinding> element.

NOTE: The object name for the prompt form is fixed to form and you must use object=form for
prompt.

<prompts> Element of Report XML
This element defines an HTML form whose input is used for data source input bindings. Each input
field in the form is called a prompt. You configure where the prompt gets its original data (from a
database or from a fixed value list), and how it will be presented by the report XML. The Reporting
Engine builds the report prompt (input) UI, which is fully customizable (it uses a template to
generate the UI).

To control the look and feel of prompts, reporting uses a technique similar to tiles; layout.vm controls
the layout format, and prompt.vm controls the prompt rendering.

Table 12. Attributes for inputBinding Element

Name Required Description

object Yes The name of the object in the report context used for
binding. This object must be put into report context.

In the case of prompt binding, the Reporting Engine
automatically retrieves the prompt value from the prompt
form, and puts this object into the report context. The
ReportActionHelper class puts the value of the prompt into
the context with that name.

In the non-prompt case, the caller of Report engine must put
this object into context.

property No This attribute is optional. When it appears, it means the
object is a JavaBean and the value of the property of this
JavaBean is used to bind SQL variable.

If this property is not there, then it means the object
identified by object attribute is used for binding.

NOTE: A map-backed property is supported, such as
parameter(callType).

prompt No This attribute indicates that this input binding is from a
prompt, and the value of it must be the ID of the prompt
defined in the <prompts> element.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A102

Using the Reporting Engine ■ Components Used by the Reporting Engine
The <prompts> element has a list of prompt blocks. Each block is separated by that dark blue bar
at the top, and you can define a label for each blue bar. Inside each block, you can define a list of
groups, where each group has a list of prompts. Each prompt group acts like <tr> in an HTML table,
and all prompts within a prompt group display horizontally in a row. Each prompt must belong to a
group. Prompts can be HTML input or a plain label. In the preceding example UI, Data range is a
group with two prompts: the start date and end date. Usage type is another group that has two
prompts: usage type and call type.

The <prompts> definition used to generate the example UI is:

<prompts id="prompts1" formName="reportForm" action="report.do"
 method="post" templateID="layout.vm">
<block>

<group label="Date Range:" >
<text id="fromDate" size="12" value="1/1/2004"
 imgSrc="_assets/images/calendar.gif" label="From:"
 labelPosition="top"/>

<text id="toDate" size="12" value="12/1/2004"
 imgSrc="_assets/images/calendar.gif" label=" To:"
 labelPosition="top"/>
 </group>
 <group>

<select id="parameter(usageType)" report="prompt_usageType"
 displayColumnId="usage_type_name"
 valueColumnId="usage_type_key" value="2"
 label="Usage Type:"/>

<select id="parameter(callType)" report="prompt_callType"
 displayColumnId="call_type_name"
 valueColumnId="call_type_key" value="2"
 label="Call Type:"/>
 <image name="display" src="_assets/images/display.gif" />
</group>
<group label=" Billing Reports">

 <select report="prompt_reportList" value="first" name="reportId"
onChange="cleanupHiddenValues()"/>
 </group>

</block>
</prompts>

You can define <prompts> under <reports> and it will be global. To refer to a global <prompts>
from inside <dataSource>, use the following:

<prompts id="billingPrompts"/>

This expression means that there is a global <prompts> whose ID is billingPrompts. If the same
<prompts> is used across multiple data sources, the global <prompts> helps you to maintain only
one copy of it.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 103

Using the Reporting Engine ■ Components Used by the Reporting Engine
The <prompts> element has the attributes described in Table 13.

The <prompts> elements contain one or more <block> elements.

<block> Element of Report XML
This is an optional element. If you do not define it, then you can define group directly under
<prompts>, and all the groups will be put, implicitly, under a block. You can define a label for a block
and the label will be displayed in the blue bar of the prompt.

<group> Element of Report XML
This element defines a group of prompts. This group of prompts will be displayed horizontally in one
line. Different groups of prompts will be displayed vertically.

Table 13. Attributes for <prompts> Element

Name Required? Description

id Yes A unique ID is used to identify this prompts list in this data
source. Oracle Self-Service E-Billling supports one prompts
element for each data source.

formName No The name of the HTML form and default reportForm. It is only
useful if you want to use JavaScript to manipulate the form.

action Yes The action of the HTML form. Use report.do for the action
because it is used as the default. If you change the action
name defined in Struts config XML, you must search all your
JSP pages and Velocity templates to replace it.

method No The default is post.

templateID Yes The template ID specifies the layout template ID. The
template must be either defined in corresponding
transformer’s <templates> or in the global <templates>.

enctype No The encryption type.

onReset No The name of JavaScript being called when Reset is called on
the HTML form.

onSubmit No The name of JavaScript being called when Submit is called on
the HTML form.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A104

Using the Reporting Engine ■ Components Used by the Reporting Engine
The <group> element has the attributes described in Table 14.

There are eight types of prompts, which correspond to input types in an HTML form (except Label).

Some supported HTML forms are: text, check box, select, radio, image, submit, reset and label.
Image, submit, reset, label are purely for HTML form rendering and manipulation; their values are
not used for report SQL input bindings. Check box, select, radio and text can be used for SQL input
bindings.

Attributes for prompt related configuration in XML file, most of attributes are from an HTML form,
others are required by the Report Engine.

The <group> element can include one of the following attributes: <checkBox>, <select>, <radio>,
<text>, <image>, <label>, <submit> and <reset>.

<select> Element of Report XML
This element defines a select prompt. A select prompt allows you to select one or more values from
a list of values. A select prompt must associate with a report whose result set is used to populate
the select list. For example:

<select id="parameter(callType)"
report="prompt_callType"
displayColumnId="call_type_name"
valueColumnId="call_type_key"
value="2"
label="Call Type:"/>

A select list requires two types of information: display values and actual values. The display values
are for displaying, and the actual values are for querying. For example, you can display May 2010,
but use an internal value 5 for a query. For example:

<select>
 <option value=”5”>May 2010</option>
</select>

Table 14. Attributes for <group> Element

Name Required? Description

label No The label displays at the beginning of the each prompt
group.

description No The description displays for the rollover question mark.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 105

Using the Reporting Engine ■ Components Used by the Reporting Engine
To render the preceding UI, get the options values and display names from the associated reports.
Table 15 describes the select options.

Table 15. Attributes for <select> Element

Name Required? Description

id Yes Identifies this prompt in this prompts list. The ID is used as
the name of the input prompt in the HTML forms, which
means that it determines which ActionForm property is used
to hold this input value. In the example, the billPeriod
property of ActionForm holds the value of the select box.

If there is no corresponding property in the ActionForm (if it
is a map-backed form), you can use the Parameter property
(a map-backed property) to get the value into the
ActionForm.

The following example creates a prompt for call type, which
is not a property of ActionForm:

<inputBinding object="form"
property="parameter(callType)"
prompt="parameter(callType)"/>

where prompt is declared as:

<select id="parameter(callType)" label="Call Type:">.

NOTE: When using parameter(calltype) as id (and
therefore the HTML input file name), JavaScript might not
recognize the name. In that case, you might want to extend
your ActionForm implementation to be a regular JavaBean
property, which allows you to use <select id=”callType” >.

label No The label of this prompt. Used for display.

labelPosition No Display the label position against the prompt. Top, bottom,
left, and right are supported:

■ Top. The label is at the top of the prompt.

■ Bottom. The label is at the bottom of the prompt.

■ Left. The label is to the left of the prompt.

■ Right. The label is to the right of the prompt.

size No Size of the HTML input field.

report Yes The ID of the report, whose result set will be used to populate
the Select element. The report can load data from the
database or it can load from a DSV data source which is useful
if the data in the list is fixed.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A106

Using the Reporting Engine ■ Components Used by the Reporting Engine
The report used to generate <prompt> must meet the following requirements:

■ Have two columns: one column for display, and another for prompt value. The display column ID
must match the displayColumnId attribute defined, and the value column ID must match the
valueColumnId attributed defined. If the report only has only one column, you can have both
displayColumnId and valueColumnId point to the same column.

■ The report ID of the prompt report must match the report attribute defined.

■ You can format the prompt display names by using pattern attribute of column element of the
report.

<checkBox> Element of Report XML
The checkBox prompt allows you to print the prompt values in a list of check boxes. For example:

<checkBox id="billPeriod" label="Bill Period:"
report="prompt_billPeriod"
onClick="alter(‘onClick’)"

displayColumnId No The column ID of the report, whose values will be used as the
display names of the <option> fields of <select> list. The
first column of the report is used when displayColumnId is
not specified.

valueColumnId No The column ID of the report, whose values will be used as the
values of the <option> fields of <select> list. The second
column of the report is used when valueColumnId is not
specified.

value No The default value for the <select> list. It can be:

■ first, using the first value in the valueColumnId column of
the report

■ last, using the first value in the valueColumnId column of
the report

An integer N, such as 1 or 2, which indicates the nth value in
valueColumnId column of the report. Note the index starts
from 1.

multiple No Specifies that multiple items can be selected. True or False;
The default is false.

onBlur No Name of JavaScript being called for onBlur event.

onChange No Name of JavaScript being called for onChange event.

onClick No Name of JavaScript being called for onClickevent.

onFocus No Name of JavaScript being called for onFocus event.

Table 15. Attributes for <select> Element

Name Required? Description
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 107

Using the Reporting Engine ■ Components Used by the Reporting Engine
displayColumnId="bill_period_name"
valueColumnId="bill_period_key"

value="last"/>

In the example, the bill period prompt is defined as a set of check boxes, where you can check one
or more bill periods. The display names and values of bill period come from the prompt_billPeriod
report. The <checkBox> element has the same attributes as <select>, except multiple does not
apply. For information about using the <select> element, see “<select> Element of Report XML” on
page 105. You can think of the checkBox element as just another view presenting the same prompt,
similar to a multiple-select list. The data retrieved from data source for the <checkbox> element
must be either true or false.

<radio> Element of Report XML
This prompt presents a list of radio buttons, only one of which can be selected.

<radio id="billPeriod" label="Bill period:"
report="prompt_billPeriod"
onClick="alert(‘onclick’)"
value="last" />

In the example, the bill period prompt is defined as a set of radio buttons, where you can only check
one of the bill periods. The display names and values for bill period come from the prompt_billPeriod
report.

The <radio> has the same attributes as <select>, except multiple does not apply. See <select> for
more information. In fact, you can just think radio as another view of presenting the same prompt.
<radio> is like a single-select list.

The data retrieved from the data source used for <radio> must be either true or false, and only one
can be true.

<text> Element of Report XML
This element allows you to define a text box and use the user-entered value as the prompt value.

<prompt id="billPeriod" label="Bill period:">
<text

report="prompt_billPeriod"
maxLength="10"
onBlur="alert(‘onBlur’)"
onChange=" alert(‘onChange’)"
onFocus=" alert(‘onFocus’)"
onSelect=" alert(‘onSelect’)"
size="10"
value="06/2004"/>

</prompt>

In the text prompt, size attribute determines the width of the prompt.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A108

Using the Reporting Engine ■ Components Used by the Reporting Engine
<image> Element of Report XML
This element allows you to define an image. For example this usage creates an image submit button:

<image name="display" src="_assets/images/display.gif" />

NOTE: The <image> element is different from the HTML tag.

Table 16 describes the attributes for the <image> element.

<label> Element of Report XML
This element defines text to display in the form. For example:

<label name="ccc_toll_lbl" value=" and " />

 Table 17 describes the attributes for the <label> element.

<reset> Element of Report XML
This element displays an HTML reset button. For example:

<reset name=”reset” value=”reset” />

Table 18 describes the attributes for the <reset> element.

<submit> Element of Report XML
This element displays an HTML submit button. For example:

Table 16. Attributes for <image> Element

Name Required? Description

name Yes The display name of the image.

scr Yes The image src.

align No Left or right.

Table 17. Attributes for <label> Element

Name Required? Description

name No Not used.

Value Yes The text to be displayed as it is on the screen

Table 18. Attributes for <reset> Element

Name Required? Description

name Yes Name of the reset button.

value Yes The display value of the reset button.

onClick No JavaScript to invoke.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 109

Using the Reporting Engine ■ Components Used by the Reporting Engine
<submit name=”submit” value=”ok” />

Table 19 describes the attributes for the <submit> element.

<columns> Element of Report XML
This element, under <dataSource>, defines the list of columns retrieved from the data source. As
described previously, the data retrieved from the data source is a two-dimensional matrix with rows
and columns. For an SQL query, the rows are the rows from the SQL table, and the columns are the
SQL table columns. Most of the transformer operations, such as sorting, grouping and calculation,
are based on the types of the columns. Only the type of the column is important, not the definition
of the column. For example, you can summarize if the type is Number; it does not matter if the
definition is Air Fee or Toll Charge. That is the primary reason to use a List of Lists of objects to
present all the data.

You must define all the columns retrieved from the data source in this element, in the same order
as the data source. For example, if you are using a SQL data source, the order of selected columns
from Select must be the same as the order defined in the XML element. The same is true for object
data sources.

<column> Element of Report XML
This element describes the column retrieved from the data source. You must define the type of the
column in this element. The order of <column> elements must be the same as the order of columns
retrieved from the data source and for each column in the data source, you must have one of this
XML element defined for it.

The element <column> includes the attributes described in Table 20.

Table 19. Attributes for <submit> Element

Name Required? Description

name Yes Name of the submit button.

value Yes The display value of the submit button.

onClick No The JavaScript to invoke.

Table 20. Attributes for <column> Element

Name Required? Description

ID Yes Uniquely identifies this column in the data source.

type Yes Type of column. The legal types are all simple Java object types. A
column can be sorted if its type is java.lang.Comparable. or it can take
a calculator operation (aggregation), if its type is java.lang.Number.

default No This attribute indicates the default value for this column if the value
returned from data source is null.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A110

Using the Reporting Engine ■ Components Used by the Reporting Engine
Column types can be one of the following:

■ Java.lang.Object. A generic type. Avoid using this if you want to sort or format on the column.
Use a more specific type instead.

■ Java.lang.Double. A double value, which can be sorted and aggregated.

■ Java.lang.Float. A float value, which can be sorted and aggregated.

■ Java.lang.Integer. An integer, which can be sorted and aggregated.

■ Java.lang.Long. A Long value, which can be sorted and aggregated.

■ Java.lang.Short. A Short value, which can be sorted and aggregated.

■ Java.lang.BigDecimal. A BigDecimal, which can be sorted and aggregated.

■ Java.long.String. A String value, which can be sorted.

■ Java.sql.Date. A Date value (a Date has no time information). It can be sorted.

■ Java.sql.Time. A Time value (a Time has no date information). It can be sorted.

■ Java.sql.Timestamp. A Timestamp value, which includes both date and time information. It can
be sorted.

■ Java.lang.Boolean. A Boolean value, which can be sorted.

■ Java.lang.Byte. A Byte value, which can be sorted.

Attributes can be one of the following:

■ Number. The default value is parsed as a Number string using the parseXXX method on the
corresponding Java class. For example, use Double.parseDouble() if it is a double. It can only
include digits and decimal point.

■ Timestamp. You must supply the default value formatted as yyyy-mm-dd hh:mm:ss.

■ Date. You must supply the default value formatted as yyyy-mm-dd.

■ Time. You must supply the default value formatted as hh:mm:ss.

■ String. The default value is used as it is.

■ Boolean. The default value can be true or false.

<transformer> Element of Report XML
This element defines a transformer for this report. A report can include zero or more transformers.
Transformer is key element of the report engine; it is responsible for transforming the data retrieved
from data source into a format suitable for presentation.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 111

Using the Reporting Engine ■ Components Used by the Reporting Engine
The <transformer> element has the attributes described in Table 21.

<columns> Element of Report XML
This element defines a list of columns for the transformer. You are not required to define a column
in the transformer for each column in the data source. It is not necessary that the order of columns
in the transformer match the order of the columns in the data source. However, following those two
rules will make your code easier to maintain.

This XML element has no attribute and contains <column> elements.

<column> Element of Report XML
This XML element defines a column for the transformer. The transformer will render the columns in
a table format. This is one of the most important XML element.

<column
id="myColumnId"
name="Column Name"
Hidden="false"
sortable="true"
defaultSort=”true”
caseInsensitiveSort=”true”
pattern="MM/dd/yyyy"
link="report.do?reportId=myReport&parameter(myColumnId)=$col"
localize=”true”

/>

Table 21. Attributes for <transformer> Element

Name Required? Description

Id Yes Uniquely identifies this transformer in this report. Note, you are
allowed to have two transformers with same ID if they are from
different reports.

datasourceId No The ID of the data source where the transformer gets data.
Note, a transformer is not required to have a data source. If it
does, then the Reporting Engine is usually used as a pure
Template engine, and no meaningful data transformation is done
inside transformer. That means that all the reporting
functionality, such as sorting and paging, will not apply. For
example, in the telco.xml file, the transformer with
report_header.vm defined has no data source.

pageSize No This attribute enables paging and defines the number of rows
that will be displayed in one page. All the data will be presented
in one page if this attribute is not specified.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A112

Using the Reporting Engine ■ Components Used by the Reporting Engine
Table 22 lists all the attributes for the <column> XML element.

<link> Element of Report XML
This element allows you to define a drilldown link, which can also be defined as an attribute of the
<column> element. The benefit of using it as an attribute is that you can wrap the content in CDATA
without escaping the special characters.

<templates> Element of Report XML
This element includes a list of template elements. It has no attributes, and includes only one
element, template.

<template> Element of Report XML
This element defines one template used by the transformer. A transformer can define one or more
templates and each template represents a presentation view. For example, you can define one
template for HTML, one for XML and another for CSV. You specify which view or template to use to
render the UI by passing the template ID through Ireport.writeTemplate().

Table 22. Attributes for <column> Element

Name Required? Description

id Yes This ID must match one of the IDs defined in the data
source.

name Yes The name of the column. The name is localized and
presented as the table column name.

hidden No A template string; the parsing result is either true or false.

sortable No This attribute defines whether this column is sortable. If
true, the template generates a URL link for this column.
True or false; the default is false.

defaultSort No This attribute defines whether to sort this column when the
report generates. True or false; the default is false.

caseInsensitiveSort No This attributes defines whether you want a case-insensitive
sort when the column type is java.lang.String. True or
false; the default is false.

onlineOnly No This attribute defines whether this column shows on the
Web page only, and not in the CSV download file. True or
false; the default is false.

downloadOnly No This attribute defines whether this column shows only in
CSV download file only, and not on the Web page. True or
false; the default is false.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 113

Using the Reporting Engine ■ Components Used by the Reporting Engine
<templates>
<template

id="HTML_TEMPLATE"
name="template/common/reporting/report_body.vm"/>

</templates>

Table 23 describes the attributes for the <template> element.

For information about creating PDF templates, see “Creating a PDF Template for Reporting” on
page 124.

<groups> Element of Report XML

This element allows you to group the data retrieved from a data source into groups, where each
group is presented inside a table. For example, you might want to group on all types, so that all the
local calls are presented in one table, and international calls are presented in another table. Only
single column grouping is supported.

You can define multiple groups. You can define one of them as default grouping, so when the data is
retrieved from the data source, it will be grouped by that default grouping. Call Itransformer.group()
in your calling program to switch to another group.

This element has no attributes, and can include the <group> element.

<group> Element of Report XML
This XML element defines a single group. The <column> element defines the columns you want to
group on. You can only define one column. For example:

Table 23. Attributes for <template> Element

Attribute Required Description

id Yes The ID identifies this template inside this transformer. An ID
must be unique to this transformer.

name Yes The class path of the template name. Because the class loader
loads the template by default, this template must exist on the
classpath (such as on the WEB-INF/classes directory or
packaged into a JAR file). For example, if your template is
located under the template/templ/my.vm directory and that is
on the class path, then you must use the template/temp/my.vm
directory as the name.

localize No True or false. True means this template is localized. There is one
template for each locale, and the report engine finds the correct
template based on the locale. For example, the email template
has a lot of static text, therefore define one template for each
locale and specify this attribute as true to associate the correct
template for each locale.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A114

Using the Reporting Engine ■ Components Used by the Reporting Engine
<group id="group_by_type" default="true">
<column id="type"/>

</group>

Table 24 describes the <group> element attributes.

<column> Element of Report XML
This <column> element is defined as part of the <group> element, and identifies the column where
grouping will happen. It has the attributes described in Table 25.

<calculator> Element of Report XML
This element defines a calculator for the report. The calculator can perform a set of operations, for
example: summarize (subtotal), average, Boolean and minimal. The operations are grouped together
into an operation group. calculator contains one or more <operationGroup> elements. For
example:

<calculator>
<operationGroup name="Total">

<operation type="sum" columnId="Charges" />
<operation type="sum" columnId="taxes" />

</operationGroup>
<operationGroup name="Average">

<operation type="ave" columnId="Charges" />
<operation type="ave" columnId="taxes" />

</operationGroup>

</calculator>

Table 24. Attributes for <group> Element

Name Required Description

id Yes Defines a unique ID that identifies this group in this transformer.
The group ID must only be unique among the groups defined in
this transformer.

default Optional This flag indicates that this group is the default one, so when data
is retrieved from data source, the data will be grouped (only one
group can be default). The data will not be grouped if there is no
default group defined. The default is False.

Table 25. Attributes for <column> Element

Name Required Description

id Yes This is the column ID defined in data source. This ID must match the
ID of the column of the data source where you want the grouping to
happen.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 115

Using the Reporting Engine ■ Components Used by the Reporting Engine
For example, the Reporting Engine generates a table similar to the example in Table 26.

<operationGroup> Element of Report XML
This element defines a group of operations. Different operations in the group must operate on
different columns, but it is not required they have the same operation types. That is, you can mix
sum with avg in the same operation group.

In general, do not define an operation on the first visible column of the table; that column will be
used to display the name of the operationGroup. However, if necessary to define an operation on the
first visible column, you can change the report_body.vm by replacing the operationGroup name with
the operation value you define.

The <operationGroup> element has one attribute, name, which is described in Table 27.

This element can contain one or more <operation> elements.

Table 26. Example of Table Generated by the Reporting Engine

Invoice Number Charges Taxes

12345 10.01 0.23

23456 12.11 1.03

Total 22.12 1.26

Average 11.06 0.63

Table 27. Attributes for <operationGroup> Element

Name Required Description

name Yes The name of this group of operations. The default template,
report_body.vm, presents it as the first column of the
operation row of the table.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A116

Using the Reporting Engine ■ Components Used by the Reporting Engine
<operation> Element of Report XML
The <operation> element defines a single calculator operation on a single column. It has the
attributes described in Table 28.

<charts> Element of Report XML
This element allows you to define one or more charts for a single transformer. For example:

<charts>
<chart id="c1"

type="BAR_VERT_CLUST"
style="config/chart/vertical_bar_chart.properties"
chartTitle="global.title.accountBillingOverview"
xAxisTitle="global.label.accounts"
yAxisTitle="global.label.dollars">
<datasets>
<dataset><column id="Total"/></dataset>
</datasets>
<xlabel><column id="Billing_Account"/></xlabel>

</chart>
<chart id="c2"

type="PIE"
style="config/chart/pie_chart.properties"
chartTitle="global.title.plan">
<datasets>
<dataset><column id="total"/></dataset>
</datasets>
<xlabel><column id="rate_plan"/></xlabel>
<compress threshold="2" label="global.label.other" append="true"/>

</chart>
</charts>

Table 28. Attributes for <operation> Element

Name Required Comments

type Yes The type of operation:

■ summary. Finds the summary of all the values of the
column identified by columnId attribute.

■ avg. Finds the average of all the values of the column
identified by columnId attribute.

■ max. Finds the Boolean value of all the values of the
column identified by the columnId attribute.

■ min. Finds the minimal value of all the values of the
column identified by the columnId attribute.

count. Finds the total number of rows. In this case, columnId
is optional.

columned Yes The ID of the column that the operation will apply to.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 117

Using the Reporting Engine ■ Components Used by the Reporting Engine
<chart> Element of Report XML
This element defines a single chart for this transformer. Oracle Self-Service E-Billling supports two
chart types: Bar chart and Pie chart. The data of the chart must come from the columns of the data
source.

The <chart> element includes the attributes described in Table 29.

The <chart> elements also include following two elements: <datasets> and <xlabel>.

<datasets> Element of Report XML
This element allows you to define multiple data sets used to draw the chart. Only one dataset for
each chart is supported.

<dataset> Element of Report XML
This element defines a data set used for charting. A data set must come from the column of the data
source. Currently, you can only define one column for on dataset. It has no attributes and contains
one element: <column>.

Table 29. Attributes for <charts> Element

Name Required Description

id Yes Uniquely identifies this chart among all the charts defined in this
transformer. Note, you can use the same chart IDs in different
transformers.

type Yes The type of the chart. Oracle Self-Service E-Billling supports the
following types of chart:

■ BAR_VERT_CLUST. Vertical bar chart.

■ BAR_HORIZ_CLUST. Horizontal bar chart.

■ BAR_VERT_STACK. Vertical stack bar chart.

■ BAR_HORIZ_STACK. Horizontal stack bar chart.

■ PIE. Pie chart.

■ LINE. Line chart.

style Yes Path to the name of the DVT chart properties file. For information on
configuring the properties file for DVT charting, see “Customizing
Charts” on page 143.

chartTitle No Defines the title of the chart.

xAxisTitle No The title of the X-axis.

yAxisTitle No The title of the Y-axis.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A118

Using the Reporting Engine ■ Components Used by the Reporting Engine
<column> Element of Report XML
This element defines the column whose values will be used as the data set for DVT charting. For
example, for the BAR_VERT_CLUST chart, the dataset is used for the Y-axis values; for PIE, the
dataset is used for the pie chart data.

The <column> element of Report XML includes one attribute, which is described in Table 30.

<xlabel> Element of Report XML
This element defines the values for the x-axis. The x-label must come from the data source column.
It has no attributes, and contains one element: <column>. You can only define one column for each
x-label.

<column> Element of Report XML
This element defines the column used for the x-label. The values of the column are used for the x-
axis values. This element only includes one attribute, which is described in Table 31.

<downloadList> Element of Report XML
This element defines a list of downloads available for this report. For example, you can define XML,
CVS, and PDF downloads. For each download, the template generates a download link. You can define
multiple downloads for one report. For example:

<downloadList name="Download">
<download
name="Download CSV"
type="csv"
description="CSV download"
templateId="CSV_TEMPLATE" />

</downloadList>

Table 30. Attributes for <column> Element

Name Required Description

id Yes The ID of the column where the chart will get its data. The type of the
column must be a number.

Table 31. Attributes for <column> Element

Name Required Description

id Yes The ID of the column where the chart will get its x-axis values.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 119

Using the Reporting Engine ■ Components Used by the Reporting Engine
The <downloadList> element has one attribute, which is described in Table 32.

<download> Element of Report XML
The <download> element defines one download for the report. It has the attributes described in
Table 33.

<printList> Element of Report XML
This element defines a list of print-friendly available for this report. Though it is possible, it is unlikely
you will define more than one print-friendly. For each print friendly, a print friendly link will be
generated through the template.

For example:

<printList name="Print friendly">
<print

name="Print friendly"
description="print friendly account details"
templateId="PRINT_TEMPLATE" />

</printList>

Table 32. Attributes for <downloadList> Element

Name Required Description

name No The name of this downloadList. Depending on your template, you can
use this name for different purposes. For example, you can build a list
of downloads and use this name as the name of the list.

Table 33. Attributes for <download> Element

Name Required Description

type Yes The type of the download. You can name any type you want. The type
is used as the download file extension. For example, use csv for CSV
download and use xml for XML download.

name No The name of the download. Depends on the template; it can either
be shown as a URL link or as a list item.

description No Description of the download. Currently it is not used by template, but
you can modify template to use it for a pop-up help window

templateId Yes The template ID used to generate the download of the report. It is
possible that the same template ID list appears in multiple
transformers. If so, the templates will be parsed and appended
together in the order of the templates defined in XML
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A120

Using the Reporting Engine ■ Components Used by the Reporting Engine
The <printlist> element has one attribute, which is described in Table 34.

<print> Element of Report XML
The <print> element defines one print-friendly for the report. It has the attributes described in
Table 35.

<customList> Element of Report XML
This element defines a list of custom reports available for this report. Though possible, it is unlikely
that you must define more than one custom report. For each custom report, a custom report link will
be generated through the template.

For example:

<customList name="Customize">
<custom

name="Customize"
description="Create a custom report for contract call details"
reportId="telco_cust_std_r4" />

</customList>

The <customList> element has one attribute, which is described in Table 36.

Table 34. Attributes for <printList> Element

Name Required Description

name No The name of this printList. It is not used by current template

Table 35. Attributes for <print> Element

Name Required Description

name No The name of the print-friendly. The default template renders it as a
URL link.

description No Description of the print-friendly. Currently it is not used by
template, but you can modify the template to use it for a pop-up
help window.

templateId Yes The template ID used to generate the print-friendly report. It is
possible that the same template ID can appear in multiple
transformers, so all these templates will be parsed and appended
together, in the order of the templates defined in XML.

Table 36. Attributes for <customList>

Name Required Description

name N The name of this customList. It is not used by current template.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 121

Using the Reporting Engine ■ Components Used by the Reporting Engine
<custom> Element of Report XML
The <custom> element defines one custom report for the current report. Each custom report must
be itself defined as a report. This tag is used to build a link to that custom report. It has the attributes
described in Table 37.

Using Report Templates
All the report UIs are generated through Velocity templates. For information about how the Velocity
templates work, see:

http://jakarta.apache.org/velocity/index.html

Oracle Self-Service E-Billling has changed some of the default Velocity templates. The most
important one is that inside for each loop, the $velocityCount variable starts from 0 instead of the
default 1.

Oracle Self-Service E-Billling offers a set of example templates that generate useful UIs. These
templates are very generic, are not tied to a particular application, and can be used as the base for
your customization work.

The templates are all defined in the EDX_HOME/template/common directory, where EDX_HOME is the
directory where you installed Oracle Self-Service E-Billling.

The lib subdirectory includes some Velocity MACRO library files and the reporting subdirectory
includes report template files.

Table 38 explains the libraries that are included with the report package.

Table 37. Attributes for <custom> Element

Name Required Description

name No The name of the custom report. The default template renders it as
a URL link.

description No Description of the custom report. Currently it is not used by
template but you can modify template to use it for a pop-up help
window.

reportId Yes The report ID of the report used to define the custom report: the
custom report itself is a report and you must define it as a report.

Table 38. Libraries Included with Reporting Package

Name Description

Lib/report_library.vm This file defines some common MACROs used by the Reporting Engine.
You must use it as it is.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A122

Using the Reporting Engine ■ Components Used by the Reporting Engine
Table 39 explains the templates that are included with the report package.

Table 39. Templates Included with Reporting Package

Name Description

Common/report_header.vm This is the header part of the report. Note, this is not the
header of the tiles. The tile header is usually the Navigation
Tabs. The report header usually includes the report name and
the download, print friendly, and custom report links.

Common/report_body.vm This template renders the table associated with the
transformer. Because a report can define multiple
transformers, the template can be parsed multiple times for a
report.

Common/paging.vm This template renders the paging navigation part, which has
previous, forward buttons for a user to page through the
report.

Common/layout.vm This template is used to define the layout of the prompts of the
report.

Common/promt.vm This template renders each individual prompt of the report.

Common/promt.vm This template renders each individual prompt of the report.

Common/csv.vm This template renders the CSV format of a report. The current
CSV format does not consider the case of how to escape the
special characters like a comma. You must write code to
handle that case.

Common/print.vm This template renders the print friendly format of a report.

Common/custom_report.vm The template is used for custom report. It displays the custom
report detail and allows you to type a name for the report to
save into database.

common/batch_report.vm The template is used for batch reporting. It displays the batch
report detail and lets you type a name for the report to save
into database.

common/xml.vm This template renders the XML format of a report.

pdf/PrintSummary.rtf This template renders PDF format for the Print Summary quick
link on B2C pages.

pdf/StatementSummary.rtf This template renders PDF format for the Statement Summary
report.

pdf/telco_std_r1.rtf This template renders PDF format of the Account Billing
Overview report.

pdf/telco_std_r6.rtf This template renders the PDF format of Total Cost by Plan
report.

pdf/telco_std_r13.rtf This template renders the PDF format of Service Details
report.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 123

Using the Reporting Engine ■ Components Used by the Reporting Engine
Creating a PDF Template for Reporting
Oracle Self-Service E-Billling provides preconfigured PDF templates for reporting (listed in Table 39
on page 123). You can also define additional templates to present other reports in PDF.

To create a PDF template for reporting

1 Download and install Oracle Business Intelligence(BI) Publisher:

http://www.oracle.com/technetwork/middleware/bi-publisher/downloads/index.html

2 Download the existing or new report in XML format and use this file to create a new PDF template
(an RTF) file. See the Template Builder for Word Tutorial in Oracle BI Publisher for assistance
creating the RTF template. Training is also available on the Oracle Technology Network.

3 Using the toolbar in Oracle BI Publisher, load the report XML file.

4 Use Microsoft Word formatting and Oracle BI Publisher insert functions to add fields, tables,
charts, and conditional formatting to the template appropriate for your organization. Save the
file as an RTF.

5 After you create the template file filename.rtf (where filename is the name of the report
template), copy the file to EDX_HOME/template/pdf/filename_ll_CC.rtf, where ll_CC is your
default system language code, from the EDX_SYS_LANG table in the OLTP database.

6 If the application supports multiple languages, you can translate your template and name it using
the different language code. For example, if you support Spanish (es_ES) as well as American
English (en_US), create a template called filename_en_US.rtf and create a translated template
called filename_es_ES.rtf.

7 In EDX_HOME/config/rpt/*.xml, add the following line in <downloadlist> tag for the new report:

<download name="global.dropdown.pdf" type="pdf" description="PDF download"
templateId="PDF_TEMPLATE"/>

8 Add the following line in the <templates> tag for the report, where ll_CC is the default language:

<template id="PDF_TEMPLATE" downloadable="true" name="template/pdf/
filename_ll_CC.rtf"/>

NOTE: You do not need to specify additional languages in the XML. Oracle Self-Service E-Billling
finds the template that corresponds with the selected language.

Predefined Context Variables
When you call the IReportActionHelper.execute() method to generate reports, the reporting engine
puts a list of predefined context variables into the report context, which are then available to the
Velocity template.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A124

Using the Reporting Engine ■ Components Used by the Reporting Engine
Table 40 lists some of the variables that you can use. If the overwrite flag is Y, then you can pass a
variable with the same name through ReportContext to overwrite the default values set by
ReportActionHelper.

Table 40. Predefined Context Variables

Name Type
Over
write? Description

form Action Form No This is the struts ActionForm object
currently being processed.

gifDir String Yes The directory where the image files used by
report are saved, for example, the paging
arrow images. It is default to "_assets/
images.

link String No This is the URL link base of this page and it
is equivalent to the html <base> tag. The
default value is:

HttpServletRequest.getContextPath() +
HttpServletRequest.getServletPath()

The URL is similar to the following:

http://host:port/<web-root>/report.do

user IUser of UMF Yes The current user logged in. IUser is passed
in as a session variable, USER_PROFILE. If
it is not in the session, Oracle Self-Service
E-Billling does not put it in the context.
User is just used for query purposes and its
absence does not affect the functionality of
the reporting. For example, for some
reason, you might not use UMF IUser and
you can use your own user object.

NOTE: Some templates, like
report_header.vm, might expect IUser to
get user name and if you do not supply
IUser, the template might not display user
name properly.

contact Profile IContactProfile
of UMF

Yes The contactProfile is a profile of IUser
named as contact_profile. Oracle Self-
Service E-Billling uses it to retrieve the
user’s first name and last name and is
currently only used in report_header.vm.
The absence of this information does not
affect the function of Reporting Engine.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 125

Using the Reporting Engine ■ Components Used by the Reporting Engine
locale String Yes The default value set by
ReportActionHelper is the from http
session:
session.getAttribute("org.apache.stru

ts.action.LOCALE").

NOTE: This locale is put into session by the
Struts framework.

reportId String No The report ID of current report.

transformer ITransformer No You can use transformer object to do work
such as formatting data.

Never call ITransformer.writeTemplate()
in the template.

reportConfig IReportConfig No Represents the report configuration.

dataSourceConfig IDataSourceConfig No Represents the data source configuration.

dataSource
ColumnConfigs

A list of
IDataSource
ColumnConfig

No Represents the list of data source column
configurations.

transformerConfigs ITransformerConfi
g

No Represents the transformer configuration.

transformer
ColumnConfigs

A list of
ITransformer
ColumnConfig

No Represents the list of transformer column
configurations.

operationGroup
Configs

A list of IOperation
GourpConfig

No Represents the list of operation groups
defined inside calculator for the
transformer.

chartConfigs A list of
IChartConfig

No Represents the list of chart configurations
for the transformer.

templateConfigs A list of
ITemplateConfig

No Represents the list of template
configurations for the transformer.

rowlist IReportList No Represents the original data retrieved from
the data source. The data could be sorted
and so the order could be changed. Though
you cannot overwrite this variable, you can
certainly change the content of the list.

Table 40. Predefined Context Variables

Name Type
Over
write? Description
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A126

Using the Reporting Engine ■ Components Used by the Reporting Engine
Integration with Struts and Tiles
The Reporting Engine can be used with any presentation framework. However, because Oracle Self-
Service E-Billling is based on Struts and Tiles, the Reporting Engine has special extensions to help it
integrate with Struts and Tiles. This topic describes that integration.

Struts Action Class
The Struts action class does following processing:

groupSet Set No To support grouping, the transformer
maintains a Map of List objects. In the case
of no grouping, there is only one entry in
the map, the key is the report name, and
the value is the List returned from data
source; In the case of grouping, the
original list from the data source is
regrouped into multiple lists. Each list has
the same group value, and the group value
becomes the map key. This variable is
looped through in report_body.vm to build
the HTML table.

dataMap Map No This is the map of group keys to the List as
described previously.

reportContext ReportContext No The ReportContext object used to generate
reports.

NOTE: Note: You cannot overwrite
reportContext, but you can change the
content.

URLEncoder URLEncoder No This is a wrapper class around
java.net.URLEncoder, because Velocity
cannot invoke a static method directly
through class name, and
java.net.URLEncoder does not have a
constructor. Use this class to encode the
parameter values you passed through the
URL.

Table 40. Predefined Context Variables

Name Type
Over
write? Description
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 127

Using the Reporting Engine ■ Components Used by the Reporting Engine
ReportContext ctx = new ReportContext()
ctx.put(…) //put whatever your stuff used in template
IReportActionHelper helper = ReportManager.getReportActionHelper()
IReport report = helper.execute(ctx, form, request, response); //IReport will be in
session

return mapping.findForward(" page.reports.report ");

It creates a ReportContext object which you can put your own objects into. These objects can then
be used in report templates. Then it calls IReportActionHelper.execute() method to get an IReport
object. If this is the first time to access the report, a new IReport object will be created; if this is a
sorting or paging operation, the IReport object cached in the session will be returned. In case a new
IReport object is necessary, the report data will be retrieved from the DataSource defined in the
report XML of this reportId.

Next it calls IReportActionHelper.execute() method to get an IReport object. If this is the first time
to access the report, a new IReport object will be created; if this is a sorting or paging operation,
the IReport object cached in the session will be returned. In case a new IReport object is necessary,
the report data will be retrieved from the DataSource defined in the report XML of this reportId.

For the last action of this class, control is forwarded to the tile, page.reports.report, which is defined
in the tiles definition file.

Tiles Definition
Tiles are defined in the ebilling-tiles-defs.xml file in the WAR file of the EAR file.

<definition name="page.reports.report" extends="simpleLayout_1">

 <put name="pageName" value="Billing Report"/>

<put name="leftBar" value="/_includes/sidebar_left_analytics.jsp"/>

 <put name="pageDesc" value=""/>

 <put name="header" value="/_includes/header_analytics.jsp"/>

 <put name="footer" value="/_includes/footer_relative.jsp"/>

 <put name="subtab" value="/_includes/subtab_billing.jsp"/>

 <put name="body" value="/reporting/report.jsp"/>

 </definition>

The key to this tile is that the body tile is report.jsp, which generates the main body of reporting UI.

Report.jsp
The report.jsp page is used to render the view. In fact, there is almost no HTML code in this page.
Instead, this page just invokes the Velocity template engine to parse the templates:

IReport report = (IReport)request.getSession().getAttribute(reportId);
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A128

Using the Reporting Engine ■ Components Used by the Reporting Engine
IReport.writeTemplate(jspWriter, templateId);
//template is the one defined in report xml and default to “HTML_TEMPLATE”

The Reporting Engine goes through the Transformers defined in the report XML for this reportId and
for each transformer, parsing the template whose ID matches templateId. Note a transformer will be
ignored if it has no template with a matching templateId defined in the transformer configuration of
the report XML.

The matching templates will be parsed in the same order as defined in the report XML, and the results
will be written back into JSPWriter sequentially.

Reporting API
The reporting API offers an interface to interact with the Reporting Engine. These APIs manage
common reporting features, such as sorting, grouping and paging. They also offer report clients the
flexibility to customize reporting.

The reporting API is not tied to a particular presentation framework; you can use struts and tiles or
servlets and JSP to access it. However, you could find that using struts and tiles is the easiest way
to implement your own reporting UI, because that is the default presentation framework used for the
reporting UI of Oracle Self-Service E-Billling.

The core reporting APIs are: ReportContext, IReportManager, IReport, ITransformer, IReportConfig
and ReportActionHelper. For more information about reporting APIs, go to the Oracle Self-Service E-
Billling Javadoc as described in “Accessing Oracle Self-Service E-Billing Javadoc” on page 31.

ReportContext is the carrier of information between the reporting caller and the Reporting Engine.
ReportManager is a factory that gets an instance of IReportManager. IReportManager is the factory
for IReport objects. IReport represents a report defined in XML. ITransformer represents the
transformer defined inside a report in XML. IReportConfig represents the configuration information
in XML.

The following example shows how to generate a report:

ReportContext context = new ReportContext();
context.put(“form”, StrutsActionForm);
IReportManager rptmgr = ReportManager.getInstance();
IReport rpt = rptmgr.getReport(“reportId”, context);
Rpt.writeTemplate(“templateId”, Writer);

In the example, a Struts ActionForm is put into the reportContext, which means this object is
available to the Velocity template. You can use the syntax of $form.name in the Velocity template;
assume there is a name property in the form.

After you get an instance of IReportManager, call its getReport method to get a report. The reported
must match the one defined in report XML. It will return an object that represents the report defined
in the XML with the same reportId.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 129

Using the Reporting Engine ■ Core Reporting Features
After you get an instance of IReport, it calls its writeTemplate() method to parse the Velocity
template identified by templateId in the report XML, and writes the content into a Writer output. This
method loops through all the transformers in the report and calls transformer.writeTemplate(). If the
same template IDs appear in different transformers, then multiple templates can be parsed and the
content of the parsed templates will be appended together in the order in which they appear in the
report configuration XML.

You can also call the individual APIs of ITransformer to do sorting, grouping or paging.

However, it is tedious to call these APIs: they are usually used for back-end based applications. For
the common UI features, such as sorting, grouping, and paging, the reporting API offers a Web
helper class, ReportActionHelper, to shield you from the low-level APIs. This class is a facade to the
Report Engine APIs. In most cases, your struts action must call this helper class instead of calling
the lower-level reporting APIs. However, you can always access the report APIs directly if you want
to. The action used by the product, Com.edocs.app.reporting.actions.ReportAction, calls this helper
class. You can similarly do this in your action class.

Core Reporting Features
This topic describes some of the most important features of Reporting Engine, and how to use them
in your application.

Sorting Feature of the Reporting Engine
Sorting is a built-in feature of the report engine. It is available when you use the ReportActionHelper
class from your action class. With the reporting XML and template, enabling sorting is like configuring
a transformer’s column. For example:

<column sortable=”true” …/>

Only single column sorts are supported. The sorting is done in-memory, to eliminate accesses to the
data source.

Set the column attribute sortable to true. The Reporting Engine reads the configuration, instructs the
template to generate a sort-able link for the corresponding table column name, and the
ReportActionHelper class calls the ITransformer.sort() API.

When a column is defined as sort-able, the report_body.vm template renders the column of the HTML
table with a URL link. For example:

<a
href="$link?sortColumn=$x&reportId=$reportId&transformerId=$transformerConfig.id&c
urrentSortColumn=$currentSortColumn&ascending=$ascending¤tGroup=$groupIndex"
>

Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A130

Using the Reporting Engine ■ Core Reporting Features
Table 41 describes the parameters in the URL.

The Web component must process the URL request, and calls the ITransfomer.sort() method to sort
the column. The Helper class, ReportActionHelper does this work for you.

Just call the ReportActionHelper in your struts action. It processes this request and calls
Itransfomer.sort() to sort the column, then reorders the newly sorted report for you.

Paging Feature of the Reporting Engine
Paging is a built-in feature of the Reporting Engine. Use the ReportActionHelper class and the default
templates (or templates based on the defaults) to access that function. The main paging template is
paging.vm, which is included in report_body.vm.

Paging is enabled when:

■ you specify pageSize for transformer in report XML.

■ <transformer <pageSize=”20” />

Because reports are loaded and cached in the user session, paging is done on cached data. This
method of paging does not scale when there are a large number of rows of data. For that case, you
must limit the number of rows retrieved using the maxRows attribute of the <query> element.

Table 41. Sorting Parameters in the URL

Parameter Description

$link The URL context base, which is set to

http://host:port/<web-context>/report.do in
ReportActionHelper class, where <web-context> is
the Web context you defined in your EAR file.

SortColumn=$x This is the column index of the column being sorted in
the transformer configuration.

Reported=$reported The report ID of the report.

TransformerId=$tranformerConfig.id The ID of the transformer currently being sorted

CurrentSortColumn=$currentSortColumn This is the current column being sorted in this
transformer.

Ascending=$ascending Defines the sort order, true or false.

CurrentGroup=$groupIndex Not used but can be used for grouping.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 131

Using the Reporting Engine ■ Core Reporting Features
Dynamic SQL
Some situations require you to generate SQL dynamically. For example, you might have a report that
searches the call details. One of the criteria is the call date. You want to search for call date equals
a particular date, or you want to search for call dates between a start date and end date. Because
the where clause is different for these two search cases, without dynamically generated SQL, you
would be forced to write two reports with two SQL clauses. Dynamically generated SQL can solve this
problem; the where clause of the SQL statement can be generated based on the current operation
(equal or between), so only one report is required.

The Reporting Engine allows you to write an SQL query in a Velocity template, so that the SQL query
will be parsed before it is executed. You must set the dynamic attribute of <query> to true. For
example:

<query dynamic=”true”> <![CDATA[
select * from my_table where #if ($equal) date = ? #else date >= ? and date <= ?

#end
]]></query>

The variable $equal is set by the caller through the IreportActionCallback interface. It is true if the
user selects the date equal operation, and false if the user chooses the date between operations.

NOTE: The number of question marks is different based on operation types: one for equal and two
for between. To solve this problem, the report engine supports binding a Collection object to question
marks. The report engine loops through the Collection and binds each element to question marks.

The following example shows how to bind:

<inputBinding object=”form” property=”parameter(dateList)” />

The method form.getParameter(dateList) returns a list of Date objects, and each date in the list is
bound to the question marks in the query. The caller of Reporting Engine is responsible for collecting
the list of dates and passing them to ActionForm.setParameter(dateList, dateList). (This assumes
that ActionForm is as map-backed form, and has a pair of setParmeter and getParameter methods).

Another common use case is to generate the IN operation in a WHERE clause. The number of
question marks is based on the size of a Collection object.

For example, if you have a list of categories saved in a List, and want to generate a where clause, use

Where category in (?,?,..,?,?)

In this clause, the number of question marks is the size of the List.

When doing the input binding, there is only one List, but loops through the List to set the question
marks in the SQL as appropriate. This ensures that the number of question marks match the number
of variables passed in.

There is a macro to help you generate the number of question marks based on the collection size:

#macro getSQLVariablesIgnoreNull($list $columnName)

The macro generates the list.size() number of question marks. For example:

select * from my_table where date in getSQLVariablesIgnoreNull($dateList “date”)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A132

Using the Reporting Engine ■ Core Reporting Features
If the dateList size is 2, and it is Oracle database, then the result is:

select * from my_table where date in (NVL(?,date), NVL(?,date))

In this clause, NVL means ignore this question mark if the value is null.

Internationalization and Localization of Reporting
Resource bundles are used to support internationalization. This topic discusses internationalization
for Velocity templates.

Because the Reporting Engine uses Velocity templates, you cannot take advantage of the JSP
<message> tag or the Struts internationalization framework. Instead, the Reporting Engine has its
own internationalization mechanism specially designed for Velocity templates, which has following
features:

■ Allows a user to specify any resource bundle, just like Struts config does.

■ Allows a user to format a string as Y does, for example, My name is {0}.

■ Provides a seamless integration with Struts if it is used. For example, sharing the same resource
bundle.

■ Offers a better way to handle default messages than Struts. In Struts, a resource that is not
found is either returned as null or as ???<locale><resource_key>???. With the Reporting
Engine, you can configure it to return the key itself when the value of the key is not found.

For internationalization of reporting, you translate the following text:

■ Regular text on the report user interface.

■ Some text coming from the data source.

■ Chart, title and amount format, and so on.

■ Date format, number format, and so on.

Resource Bundle Definition
The resource bundle files used by the Reporting Engine templates are defined in the report XML files
under the <reports> tag. The following example comes with Oracle Self-Service E-Billling, and is
defined in the telco_global.xml file.

<localizer enableMessageResources="true" defaultCode="1">
<resourceBundle name="com/edocs/app/reporting/resources/ApplicationResources" />

</localizer>

Follow these naming guidelines for localizing resource bundles:

■ You must use “/ instead of “.” in the name of the resource bundle, which differs from Struts
message resource.

■ The <localizer> tag defines how text will be localized. You can define multiple <resourceBundle>
tags. Each resourceBundle tag defines a resource bundle file, and its name is defined by name
attribute.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 133

Using the Reporting Engine ■ Core Reporting Features
When the Reporting Engine searches for the resource bundle, it first checks whether this bundle
exists as a file under EDX_HOME (the directory where you installed Oracle Self-Service E-Billling), or
the current directory if EDX_HOME is not defined. If that fails, it will try to find it as a class.

The attribute enableMessageResources enables you to use Struts MessageResource to search for a
resource.

The attribute defaultCode enables you to define the default behavior if a resource is not found. 0
means to use the key as the default value; 1 means to use Struts notion of “???<locale>.<key>???”
and -1 means throw an exception. The default value for the attribute defaultCode is 0.

The search order for finding a resource is:

1 If the attribute enableMessageResources is true, and the Struts MessageResource does exist (it
might not exist for a non-Struts application), search the resource from Struts MessageResource,
and return the resource if it is found.

2 For each resource bundle defined in resourceBundle, load the bundle as either file or class, and
then search the resource in the order it appears, return if found.

3 If nothing is found, use defaultCode described previously.

Follow these guidelines when defining a resource bundle:

■ If you check the resource bundle name in the struts configuration file, you will notice that the
same file, com/edocs/app/reporting/resources/ApplicationResources, is defined in both the
Struts and report XML files. The only difference in the definitions is the file separators; reporting
uses a back slash (/) and Struts uses a period (.). The same file is in two locations in order to
support batch reporting. A batch job is not a Web application, so it does not have access to Struts
MessageResource. This is also true if you are using the Reporting Engine at the EAR level. For
example, you can generate an email message from an MDB event handler or from an EJB.
However, if you are using Struts, and you using the Reporting Engine for online applications only
(not batch reporting), then do not define a resourceBundle, because the online Web application
can always find resources from MessageResource.

■ Because the same resource is defined twice, both Struts and the Reporting Engine load the same
resource bundle and cache them (twice). Usually, this is not a problem, because a resource
bundle file is small. However, if you do want to reduce memory usage, you can put all the
template related resources into one file. Or, you can be more selective by putting only the batch
report, email, and AR-related resources into one file, and load it by using the resourceBundle tag
in report xml.

■ It is recommended that you define the resource bundle as flat file under EDX_HOME, which lets
you modify the file and reload it using this URL without restarting:

http://localhost:7001/ebilling/reporting/reloadReportConfig.jsp

■ If you want to use a struts message source, which is loaded from the classpath, you can disable
it during the development stage by setting enableMessageResource to false and loading a
resource bundle from file system.

■ Set the defaultCode to 1 to find all the text not being internationalized properly. You might want
to set it to 0 for demonstration purposes.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A134

Using the Reporting Engine ■ Core Reporting Features
Localization of Report Text
The localization of text in report is done through the #localize macro, which is defined in
reporting_library.vm. It is defined as:

#macro (localize $name)

For example, in your template, you can call this macro as follows. This expression searches the report
bundle to find a key with a value that matches name:

#localize(“name”)

All the texts defined in the report.xml file are treated as resource bundle keys. For example, report
names and column labels. In the report template files, all the texts are localized through the
#localize macro.

Localization of Report Data from a Data Source
By default, the text data retrieved from data source is not localized. You must turn on this option.
In this case, the text data from data source will be used as keys to search reporting resource bundles.

The localization of data from data source is done through the localize attribute of transformer column
configuration in report XML.

<column id=”call type” localize=”true” />

The column data retrieved from the database will be localized.

Localization of Charts
The chart components (chart title, labels and data) are localized by the ITransformer.writeChart()
method. The chart tile is searched as a regular resource bundle name. Label and data are localized
if the localize attribute is set to true for the corresponding columns.

Locale
To support internationalization, you must pass the Locale object to ReportContext by calling
setLocale(). If ReportContext does not have a locale defined, when you call the
IReportActionHelper.execute() method, it puts the Struts locale object in session.

Dynamic Localization
Velocity is used to support localization. Velocity acts similar to the way java.text.MessageFormat
does, and achieves the same result. The Reporting Engine parses the resource value as a Velocity
template, whose resource key ends with .vm, and returns the parsed value. For example,

rpt.test.vm=My name is $name.

Object name must come from the report context. This feature can make any text in your report
dynamic. For example, if you are on the account detail page, to display the report tile as Account
detail for <account_number> instead of the default text, define the report title as a .vm resource
bundle. In the following example, accountNumber is from the Struts ActionForm:
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 135

Using the Reporting Engine ■ Core Reporting Features
rpt.accountDetail.title=Account detail for $form.accountNumber

Object Data Source
Because you might not have access to the database, the Reporting Engine provides an API to get
back a list of Objects, which can be presented in a table with paging or sorting. The Reporting Engine
offers an Object data source to provide that feature.

The object data source is defined as:

<dataSource id="ds1" uri="object:reportList">
 <columns>
 <column id="id" type="java.lang.String"/>
 <column id="name" type="java.lang.String"/>
 </columns>
</dataSource>

This example states that there is an object called reportList in ReportContext, and you must put that
object into ReportContext before calling IReportActionHelper. This object can either be a List
(java.util.List), List of objects, or a List of JavaBean Objects. If the object is a List of List of objects,
then it is assumed that the objects in the inner list are basic Java objects, such as String or Integer.
The objects must also match the types defined in the dataSource column.

Usually, the object is a List of JavaBean objects. For example, as shown in the example XML,
reportList is a List of IReportConfig objects. (For more information about APIs, see the Oracle Self-
Service E-Billling Javadoc as described in “Accessing Oracle Self-Service E-Billing Javadoc” on
page 31.) The Reporting Engine uses reflection to get the property values of the JavaBeans, whose
property names match the column IDs defined in the example XML, and converts this List of
JavaBeans into a List of Lists of JavaBean property objects (more precisely, into a IReportList of
IReportRow objects). It is also assumed that the JavaBean properties are basic Java types. In the
example, for each IReportConfig object in the list, the report engine calls IReportConfig.getId() and
IReportConfig.getName(), and converts the List of IReportConfig objects into an IReportList object.
Each element in IReportList is an IReportRow object. Each IReportRow includes two elements, the
report IDs and the report names.

Then define the rest of the report XML, including transformers, as usual.

The object data source enables the Reporting Engine to connect to other data sources currently not
directly supported by the Reporting Engine. For example, you might have a CORBA interface that
retrieves financial data from a legacy system. You can still use the report engine to present the data,
as long as you can convert the data into a List of Lists of objects.

DSV Data Source
This feature allows you to read a delimiter separated string as a data source. The URI format of this
data source is as follows:

“dsv:inline:,:|”
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A136

Using the Reporting Engine ■ Core Reporting Features
In the data source, dsv stands for Delimiter Separated Values; inline means that the data can only
be embedded in the report XML (support is not available for reading data from a file); the comma is
the column separator, and | is a line separator, as shown in the following example:

<dataSource id="ds" uri="dsv:inline:,:|">
 <query><![CDATA[0,Business|1,Personal]]></query>
 <columns>
 <column id="value" type="java.lang.Integer"/>
 <column id="name" type="java.lang.String"/>
 </columns>
</dataSource>

The data source will be transferred into an IReportList with two IReportRows. The first row has values
of 0 and Business and the second row has values of 1 and Personal. You can use this data source to
implement the split-billing feature. For example, you can generate a list for call details and allow the
user to change a call from personal to business or conversely.

Drilldown and Breadcrumb Link
The Reporting Engine allows you to build a breadcrumb link while you are drilling down from report
to report.

To build drilldown link, define a <link> for a transformer column:

<report id=”testrpt0”>
 <transformer id=”tr1” dataSourceId=”ds1”>
<column id="invoice_number" name="Invoice number" >
<link title="Drill down to the invoice detail."><![CDATA[

report.do?reportId=testrpt1c&invoiceNumber=$row.get(1)¶meter(parentNode)=root
]]></link>
</column>

 </transformer>
</report>

The <link> element instructs the Reporting Engine to build a drilldown link for each account number.
You must construct the link, which must point to another report. The link will be parsed as a Velocity
template.

This link also has a title attribute, which allows you add an HTML title to the link. In most browsers,
the title will be displayed as popup help.

When you click an account number, you will drilldown to testrpt1 report. However, by default, there
is no breadcrumb link built to allow you to go back to the testrpt0 report. To enable the breadcrumb
link, add enableDrillUp=true to the column definition:

<report id=”testrpt0”>
 <transformer id=”tr1” dataSourceId=”ds1”>
 <column id="invoice_number" name="Invoice number" “enableDrillUp”=true >
link title="Drill down to the invoice detail."><![CDATA[

report.do?reportId=testrpt1c&invoiceNumber=$row.get(1)¶meter(parentNode)=root
]]></link>
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 137

Using the Reporting Engine ■ Customizing the Reporting Engine
 </column>
 </transformer>
</report>

When this flag is set to true, and you drilldown from testrp0 to testrpt1, there will be a breadcrumb
link in the testrpt1 view which allows you to go back to the testrpt0 report.

Currently, you must drill down from one report ID to another report ID, but the breadcrumb link will
not work if you try to drilldown to the same report. This feature makes sense when you are viewing
the same report but drilldown through hierarchy.

Customizing the Reporting Engine
This topic describes how to customize the Reporting Engine. The examples use Struts and Tiles for
the presentation framework, but the same techniques can be used for any other Web presentation
framework.

You might want to customize the Reporting Engine to add the following features:

■ Write your own Report XML

■ Modify report templates

■ Extending Reporting Engine through Reporting API

Write Your Own Report XML
The first step in creating your own report is to create your own report XML. Each report XML is
project-specific. The best way to start is to use existing report as a base for your modifications

CAUTION: The Reporting Engine has a DTD, but is not used to validate the report XML. Therefore,
make sure you do not to miss required attributes or XML elements.

You can create one report XML, which includes all the reports for your project, or you can create one
XML file for each report. Remember to register all your report XML files in the reportList.properties
file, and to give each XML file a unique name.

After creating your own report XML you can test it through the default template. Name your report
ID with a prefix of telco_std, which will cause it to be loaded into the standard billing report list of
Oracle Self-Service E-Billling

CAUTION: Make sure that each report has a unique name across all the reports in all report XMLs,
or else a latter one will overwrite the previous one.

Customize the Report Template
After you have created a report XML and familiarize yourself with how the report engine renders the
report, you might want to customize the report template to generate the look and feel of your
project.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A138

Using the Reporting Engine ■ Customizing the Reporting Engine
A set of templates are provided with the report product. To customize them, make a copy of each
template, put it into a new template directory, and change your report XML to point to the new
directory.

You can add new objects into the report context (and thereby, the Velocity context) using the
IReportActionCallback interface. But do not to overwrite the existing context variables. One
technique is to use a special prefix (a underscore character, for example) for your custom context
variables.

The CSS for the reporting HTML is defined in a file called skin.css. You can modify this file to change
the CSS of the report UI.

Write Your Own Action Classes and ReportForm
Write your own Action class and action form for your reports. Use the ReportActionHelper class to
take care of common issues such as sorting and paging.

When writing your own action class, you must call the ReportActionHelper.execute() method. See
“Integration with Struts and Tiles” on page 127 for details about how to invoke this method.

When defining your own Struts ActionForm, you can make the form map-based, which allows you to
pass any parameter into the Reporting Engine without explicitly adding a set of get and set methods.
The only downside to this method is that a map-based property cannot be passed into JavaScript for
client side validation.

For example, you can define two map methods: public Object getParameter(String name) and void
setParameter(String name, Object value). To use these parameters in an HTML form or URL, use a
notion similar to the following:

“parameter(contractNumber)=123456”

This expression passes the contract number to struts, which calls setParameter() on your ActionForm
to put the contractNumber into the map. This parameter can either be used as an SQL data source
input binding or used in template.

To retrieve the parameter as an inputBinding, use:

<inputBinding object=”form” property=”parameter(contractNumber)” />

To retrieve the parameter from the template, use:

$form.getParameter(“contractNumber”).

Packaging
You can package your Struts action classes as usual at the WAR level. For struts forms, if you are
not using batch report, then you can package them at the WAR level, but if you do use batch report,
the forms must be accessible by non-Web components such as the Common Center batch report job.
In that case, you must package your report forms at the EAR level. For example, make them part of
the reporting-ext.1.2.1.jar file.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 139

Using the Reporting Engine ■ Customizing the Reporting Engine
You must register your report XML files in the reportList.properties file, and put the report XML files
in the EDX_HOME/config/rpt directory, where EDX_HOME is the directory where you installed Oracle
Self-Service E-Billling.

However, it is possible to put the report XML files under the other sub-directories of EDX_HOME.

Hiding Report Columns and Manipulating IReport
After you call IReportActionHelper and get back an IReport object, you can manipulate the object
before forwarding it to report.jsp.

For example, to hide some columns based on certain conditions, get the IReportConfig object from
IReport, find the ITransformerColumnConfig of the corresponding columns, and set the Hidden
attribute based on your conditions.

Unlimited Paging
By default, the Reporting Engine retrieves 1000 rows from the data source. You can configure the
number of rows the Reporting Engine retrieves (maxRows or fetchSize) in the report XML file.

The following sample code shoes how to configure the size in the sample report.xml file:

<transformer id=”tr1” …>

<paging fetchSize=”2000”/>

</transformer>

To retrieve all the rows from the data source without impeding performance, you can use unlimited
paging. Unlimited paging enables the Reporting Engine to get the result set in batches and allows
users to page across multiple batches. A fetch is one batch.

Unlimited paging retrieves result set rows in multiple fetches on demand when the user requests
them. The user pages through the result set like regular paging. If the requested page is not in the
current fetch, the Reporting Engine gets the next fetch from the data source. However, all the
intricacies of checking whether the requested page is in the current fetch, if not getting next the
fetch, are hidden from the end user.

Fetch size is the number of result set rows in one fetch. You can configure fetch size and page size
in report XML. The following sample XML demonstrates how you can enable unlimited paging and to
define the fetch size.

<transformer id=”tr1” pageSize=”20” …>

<paging unlimited=”true” fetchSize=”5000”/>

</transformer>

The Reporting Engine supports unlimited paging for SQL data source and object data source. If
unlimited paging is enabled, sorting and calculator is not supported because it is necessary to sort
and apply calculator operations for all the result set across all the fetches rather than current fetch.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A140

Using the Reporting Engine ■ Customizing the Reporting Engine
Unlimited Paging for SQL Data Source
For the SQL data source you define the query as usual. The Reporting Engine embeds this query with
in select count(*) to get the size of the total result set.

Unlimited Paging for Object Data Source
For the object data source to get the result set in batches, the data source provides the Reporting
Engine with a call back method which retrieves the data from start position to end position. For this
purpose, the Reporting Engine expects an object which implements the call back interface in report
context rather than result set object. That means, for regular paging, you put result set list or array
of objects in the report context and for unlimited paging, you put an object which implements call
back interface. This call back interface is called IReportObjectResultSet and has the following
methods:

public Object getResultSet (ReportObjectSearchCriteria objectSearchCriteria);

public int getResultSetSize();

ReportObjectSearchCriteria object has the start position and end position of a fetch.

The object you put in the result set must implement getResultSet and getResultSetSize().

The getResultSet(ReportObjectSearchCriteria objectSearchCriteria) method returns result set rows
from start position to end position defined in objectSearchCriteria.

The getResultSetSize() method returns size of the complete result set that data source returns. If
you do not know the result set size, you can return IReportObjectResultSet.unknownResultSetSize.

Reloading Report XML and Templates without
Restarting the Server
If you change the report XML, you can use following URL to reload it, where localhost:7001 is the
name and port number for your local host:

http://localhost:7001/ebilling/reporting/reloadReportConfig.jsp

When you change the Velocity templates, the Velocity engine loads the templates automatically.
However, because of browser caching issues, restart the server or cleanup the browser cache.

If you are putting the resource bundle files under EDX_HOME and load them through <localizer>,
then the resource bundle can also be reloaded with preceding URL.

The URL will not work in a clustered environment because it only refreshes the cache in one JVM.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 141

Using the Reporting Engine ■ Customizing Threshold Values for Batch Reporting
Customizing Threshold Values for Batch
Reporting
Oracle Self-Service E-Billling sets batch threshold values for Account Billing Overview and the Service
Billing Overview reports by default. To implement this feature for other reports, you must specify the
report threshold value, which determines the number of result set lines above which a report must
process in batch mode instead of as an online download. Each report type uses this threshold value
as follows:

■ CSV. The report threshold value is the maximum number of output lines.

■ PDF. A percentage of the batch threshold value (the default is 10%).

■ XML. A percentage of the batch threshold value (the default is 20%).

For example, if the CSV report threshold is set to 3,000 result set lines, then a PDF threshold value
set at 10% must process in batch mode when it has 300 or more result set lines

Table 42 shows the report XML file name and the report ID, found in the XML file, that you use to set
batch report thresholds.

Table 42. Report XML File Names and IDs

Report Name in UI Report XML File Name Report ID in XML

Account Billing Overview telco_billing_account.xml telco_std_r1

Account Billing Trend telco_billing_account.xml telco_std_r9

Statement Billing Overview telco_billing_account.xml telco_std_r5

Service Billing Overview telco_billing_contract.xml telco_std_r3

Service Billing Trend telco_billing_contract.xml telco_std_r11

Service Details telco_billing_contract.xml telco_std_r13

Total Cost by Plan telco_billing_contract.xml telco_std_r6

Find Calls telco_billing_contract.xml telco_find_call

Highest Spending Services telco_topX.xml telco_topX_r13

Highest Spending Services by
Service Agreement

telco_topX.xml telco_HighestSpending
ServicesBySA_topX

Most Expensive Calls telco_topX.xml telco_topX_r7

Longest Calls telco_topX.xml telco_topX_r12

Most Frequently Called Numbers telco_topX.xml telco_topX_r10

Most Frequently Called Numbers
by Service Agreement

telco_topX.xml telco_FreqNumberBySA_topX

Most Frequently Called Numbers
by Service Agreement Detail

telco_topX.xml telco_FreqNumberBySADetail
_topX
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A142

Using the Reporting Engine ■ Customizing Charts
To specify a batch reporting threshold for a report

1 Add the following code before the <dataSource> tag in the report xml file, specifying the
threshold value and the XML report ID:

<batchCriteria threshold="10" reportId="batchCriteria_accounts">

 <query></query>

 <inputBindings name="input bindings name"></inputBindings>

 </batchCriteria>

2 You can also set the stopThreshold attribute. When you set the stopThreshold attribute, if the
testing report result meets the stopThreshold value, the report engine withholds the report and
displays the following message:

The scope of the report you have requested is too large; reduce the number of periods, change
your filter criteria, or change your hierarchy position.

Customizing Charts
Some Oracle Self-Service E-Billling reports use Data Visualization Tools (DVT) for charts. You can
customize the format of DVT charts, specifying size, fonts, color, and so on for each chart type. The
properties for each report are stored in individual property files. The properties in each file apply to
all report charts of that type.

You can also create additional property files with alternate formats to associate with particular
reports. You can associate only one property file with a chart type at any time, however.

Most Frequently Called
Destinations

telco_topX.xml telco_topX_r15

Most Frequently Called
Destinations by Service
Agreement

telco_topX.xml telco_FreqDestBySA_topX

Most Frequently Called
Destinations by Service
Agreement Detail

telco_topX.xml telco_FreqDestBySADetail_
topX

Most Frequently Called Countries telco_topX.xml telco_topX_r16

Most Frequently Called Countries
by Service Agreement

telco_topX.xml telco_FreqCountryBySA_topX

Most Frequently Called Countries
by Service Agreement Detail

telco_topX.xml telco_FreqCountryBySADetail
_topX

Table 42. Report XML File Names and IDs

Report Name in UI Report XML File Name Report ID in XML
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 143

Using the Reporting Engine ■ Customizing Charts
For details about which reports can be presented as charts, see Application Guide for Oracle Self-
Service E-Billing (Business Edition) or Application Guide for Oracle Self-Service E-Billing (Consumer
Edition).

For details on which properties are configurable for each type of chart available, see “Configurable
Chart Properties” on page 145.

To customize the DVT charts

1 To customize the formatting properties for a particular DVT chart, edit the property file
associated with the particular chart type. The following chart property files can be found in
EDX_HOME/config/chart directory:

2 You can create an alternate property file for a chart type and associate it with the chart type
(replacing the default property file for the chart). Edit the chart section of XML in the EDX_HOME/
config/rpt/filename.xml file, where filename is the name of the report. Replace the name of
the properties file with the new one in the style statement as shown in the following table.
(Specify only one property file for each chart type at a time.)

DVT Chart Type Property File

Vertical bar chart vertical_bar_chart.properties

Horizontal bar chart horiz_bar_chart.properties

Vertical stack bar chart vertical_stack_bar_chart.properties

Horizontal stack bar chart horiz_stack_bar_chart.properties

Pie chart pie_chart.properties

Line chart line_chart.properties

DVT Chart Type

Chart Type as
Indicated in the Report
XML

Corresponding XML Style Statement
Where You Specify the Chart Property
File Name

Vertical bar chart type="BAR_VERT_CLUST" style="config/chart/
vertical_bar_chart.properties"

Horizontal bar chart type="BAR_HORIZ_CLUST" style="config/chart/
horiz_bar_chart.properties"

Vertical stack bar
chart

type="BAR_VERT_STACK" style="config/chart/
vertical_stack_bar_chart.properties"

Horizontal stack bar
chart

type="BAR_HORIZ_STACK" style="config/chart/
horiz_stack_bar_chart.properties"

Pie chart type="PIE" style="config/chart/
pie_chart.properties"

Line chart type="LINE" style="config/chart/
line_chart.properties"
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A144

Using the Reporting Engine ■ Configurable Chart Properties
Configurable Chart Properties
You can configure many properties of each Oracle DVT chart type available with Oracle Self-Service
E-Billling.

For instructions on updating the properties for a chart, see “Customizing Charts” on page 143.

Bar Chart and Stack Bar Chart Properties
Table 43 shows the configurable properties for the following types of charts:

■ Vertical bar chart

■ Horizontal bar chart

■ Vertical stack bar chart

■ Horizontal stack bar chart

Table 43. Configurable Properties Horizontal and Vertical Stack Bar Charts

Property Description Property Name Values or Units

Chart width width Pixels

Dashboard width dashboardWidth Pixels

Chart height height Pixels

Dashboard height dashboardHeight Pixels

Three-dimensional effect 3D True or False

Gradient effect gradient True or False

Background color backgroundColor Transparent or a hex
color code

Legend display location legend Auto, Top, Bottom, Left,
Right, or None

Legend background color legendBGColor Transparent or a hex
color code

Legend border color legendBorderColor Transparent or a hex
color code

Legend font color legendFontColor Hex color code

Legend font type legendFont Style name

Legend font size legendFontSize Number

Legend dashboard font size dashboardLegendFontSize Number

Bold on legend legendBold True or False

Italic on legend legendItalic True or False
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 145

Using the Reporting Engine ■ Configurable Chart Properties
Underline on legend legendUnderline True or False

Legend alignment legendAlignment Right, Left, or Center

Series colors seriesColors String of hex color codes
separated by a comma

Color by group colorByGroup True or False

Color of plot background plotBGColor Transparent or a hex
color code

Color of plot border plotBorderColor Transparent or a hex
color code

Alignment of data labels dataLabels Above, Center, or None

Number of digits to display to the
right of the decimal point

dataDecimalDigit Whole number

Maximum bar width maxBarWidth Pixels

Color of title font titleFontColor Hex color code

Font style of title titleFont Style name

Font size of title titleFontSize Points

Font size of dashboard title dashboardTitleFontSize Points

Bold on title titleBold True or False

Italics on title titleItalic True or False

Underline on title titleUnderline True or False

Alignment of title titleAlignment Left, Right, or Center

Color of X axis title xAxisTitleColor Hex color code

Font style on X axis title xAxisTitleFont Style name

Font size of X axis title xAxisTitleFontSize Points

Font size of X axis dashboard title dashboardXAxisTitleFontSize Points

Bold on X axis title xAxisTitleBold True or False

Italics on X axis title xAxisTitleItalic True or False

Underline on X axis title xAxisTitleUnderline True or False

Alignment of X axis title xAxisTitleAlignment Left, Right, or Center

Color of X axis label xAxisLabelColor Hex color code

Font on X axis label xAxisLabelFont Style name

Font size of X axis label xAxisLabelFontSize Points

Table 43. Configurable Properties Horizontal and Vertical Stack Bar Charts

Property Description Property Name Values or Units
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A146

Using the Reporting Engine ■ Configurable Chart Properties
Font size of X axis dashboard
label

dashboardXAxisLabelFontSize Points

Bold on X axis label xAxisLabelBold True or False

Italics on X axis label xAxisLabelItalic True or False

Underline on X axis label xAxisLabelUnderline True or False

Alignment of X axis label xAxisLabelAlignment Left, Right, or Center

Color of X axis line xAxisLineColor Hex color code

Display X axis grid xGrid=false True or False

Color of X axis grid xGridColor Hex color code

Color of Y axis title y1AxisTitleColor Hex color code

Font of Y axis title y1AxisTitleFont Style name

Font size of Y axis title y1AxisTitleFontSize Number of points

Font size of Y axis dashboard title dashboardY1AxisTitleFontSize Number of points

Bold on Y axis title y1AxisTitleBold True or False

Italics on Y axis title y1AxisTitleItalic True or False

Underline on Y axis title y1AxisTitleUnderline True or False

Alignment of Y axis title y1AxisTitleAlignment Left, Right, or Center

Color of Y axis label y1AxisLabelColor Hex color code

Font on Y axis label y1AxisLabelFont Style name

Font size of Y axis label y1AxisLabelFontSize Points

Font size of Y axis dashboard
label

dashboardY1AxisLabelFontSize Points

Bold on Y axis label y1AxisLabelBold True or False

Italics on Y axis label y1AxisLabelItalic True or False

Underline on Y axis label y1AxisLabelUnderline True or False

Alignment of Y axis label y1AxisLabelAlignment Left, Right, or Center

Color of Y axis line y1AxisLineColor Hex color code

Show Y axis Grid y1Grid True or False

Color of Y axis grid y1GridColor Hex color code

Number of markers per row nMarkersPerRow Whole number

Table 43. Configurable Properties Horizontal and Vertical Stack Bar Charts

Property Description Property Name Values or Units
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 147

Using the Reporting Engine ■ Configurable Chart Properties
Pie Chart Properties
Table 44 shows the configurable properties for pie charts.

Table 44. Configurable Properties for Pie Charts

Property Description Property Name Values or Units

Three-dimensional effect 3D True or False

Gradient effect gradient True or False

Width of chart width Pixels

Height of chart height Pixels

Width of dashboard dashboardWidth Pixels

Height of dashboard dashboardHeight Pixels

Background color backgroundColor Transparent or a hex
color code

Legend display location legend Auto, Top, Bottom, Left,
Right, or None

Legend background color legendBGColor Transparent or a hex
color code

Legend border color legendBorderColor Transparent or a hex
color code

Legend font color legendFontColor Hex color code

Legend font type legendFont Style name

Legend font size legendFontSize Number

Legend dashboard font size dashboardLegendFontSize Number

Bold on legend legendBold True or False

Italic on legend legendItalic True or False

Underline on legend legendUnderline True or False

Legend alignment legendAlignment Left, Right, or Center

Number of markers per row nMarkersPerRow Whole number

Series colors seriesColors String of hex color codes
separated by a comma

Color by group colorByGroup True or False

Color of plot background plotBGColor Transparent or a hex
color code

Color of plot border plotBorderColor Transparent or a hex
color code
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A148

Using the Reporting Engine ■ Configurable Chart Properties
Alignment of data labels dataLabels Above, Center, or None

Number of digits to display to the
right of the decimal point

dataDecimalDigit Whole number

Color of title font titleFontColor Hex color code

Font style of title titleFont Style name

Font size of title titleFontSize Points

Font size of dashboard title dashboardTitleFontSize Points

Bold on title titleBold True or False

Italics on title titleItalic True or False

Underline on title titleUnderline True or False

Alignment of title titleAlignment Left, Right, or Center

Type of pie slice label sliceLabelType ■ Percent. The
percentage value.

■ Series. The name of
the series.

■ Value. The value of
each slice.

■ Series_percent.
The series name and
percentage of the
slice.

Position of pie slice label sliceLabelPosition Inside,
Outside_without_feeler,
Outside_with_feeler, or
None.

Color of pie slice label sliceLabelColor Hex color code

Font style of pie slice label sliceLabelFont Style name

Font size of pie slice sliceLabelFontSize Number

Bold on pie slice label sliceLabelBold True or False

Italics on pie slice label sliceLabelItalic True or False

Underline on pie slice label sliceLabelUnderline True or False

Table 44. Configurable Properties for Pie Charts

Property Description Property Name Values or Units
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 149

Using the Reporting Engine ■ Configurable Chart Properties
Line Chart Properties
Table 45 shows the configurable properties for line charts.

Table 45. Configurable Properties for Line Charts

Property Description Property Name Values or Units

Width of chart width Pixels

Width of dashboard dashboardWidth Pixels

Height of chart height Pixels

Height of dashboard dashboardHeight Pixels

Three-dimensional effect 3D True or False

Gradient effect gradient True or False

Background color backgroundColor Transparent or a hex
color code

Legend display location legend Auto, Top, Bottom, Left,
Right, or None

Legend background color legendBGColor Transparent or a hex
color code

Legend border color legendBorderColor Transparent or a hex
color code

Legend font color legendFontColor Hex color code

Legend font type legendFont Style name

Legend font size legendFontSize Number

Legend dashboard font size dashboardLegendFontSize Number

Bold on legend legendBold True or False

Italic on legend legendItalic True or False

Underline on legend legendUnderline True or False

Legend alignment legendAlignment Left, Right, or Center

Series colors seriesColors String of hex color codes
separated by a comma

Color by group colorByGroup True or False

Color of plot background plotBGColor Transparent or a hex
color code

Color of plot border plotBorderColor Transparent or a hex
color code

Alignment of data labels dataLabels Above, Center, or None
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A150

Using the Reporting Engine ■ Configurable Chart Properties
Number of digits to display to the
right of the decimal point

dataDecimalDigit Whole number

Color of title font titleFontColor Hex color code

Font style of title titleFont Style name

Font size of title titleFontSize Points

Font size of dashboard title dashboardTitleFontSize Points

Bold on title titleBold True or False

Italics on title titleItalic True or False

Underline on title titleUnderline True or False

Alignment of title titleAlignment Left, Right, or Center

Color of X axis title xAxisTitleColor Hex color code

Font style on X axis title xAxisTitleFont Style name

Font size of X axis title xAxisTitleFontSize Points

Font size of X axis dashboard title dashboardXAxisTitleFontSize Points

Bold on X axis title xAxisTitleBold True or False

Italics on X axis title xAxisTitleItalic True or False

Underline on X axis title xAxisTitleUnderline True or False

Alignment of X axis title xAxisTitleAlignment Left, Right, or Center

Color of X axis label xAxisLabelColor Hex color code

Font on X axis label xAxisLabelFont Style name

Font size of X axis label xAxisLabelFontSize Points

Font size of X axis dashboard
label

dashboardXAxisLabelFontSize Points

Bold on X axis label xAxisLabelBold True or False

Italics on X axis label xAxisLabelItalic True or False

Underline on X axis label xAxisLabelUnderline True or False

Alignment of X axis label xAxisLabelAlignment Left, Right, or Center

Color of X axis line xAxisLineColor Hex color code

Display X axis grid xGrid=false True or False

Color of X axis grid xGridColor Hex color code

Color of Y axis title y1AxisTitleColor Hex color code

Table 45. Configurable Properties for Line Charts

Property Description Property Name Values or Units
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 151

Using the Reporting Engine ■ Customizing the Statement Summary Chart
Customizing the Statement Summary
Chart
You can customize the vertical bar chart shown on the Statement Summary page in the Billing and
Payment application. The properties for this chart are maintained in the statement.properties file.
For details about the configurable properties for the Statement Summary chart, see “Bar Chart and
Stack Bar Chart Properties” on page 145.

NOTE: The dashboard height and width properties are not used with the Statement Summary chart.

To customize the Statement Summary vertical bar chart
■ Edit the statement.properties file, found in the EDX_HOME/config/chart directory (use back

slashes (\) on Windows).

Font of Y axis title y1AxisTitleFont Style name

Font size of Y axis title y1AxisTitleFontSize Number of points

Font size of Y axis dashboard title dashboardY1AxisTitleFontSize Number of points

Bold on Y axis title y1AxisTitleBold True or False

Italics on Y axis title y1AxisTitleItalic True or False

Underline on Y axis title y1AxisTitleUnderline True or False

Alignment of Y axis title y1AxisTitleAlignment Left, Right, or Center

Color of Y axis label y1AxisLabelColor Hex color code

Font on Y axis label y1AxisLabelFont Style name

Font size of Y axis label y1AxisLabelFontSize Points

Font size of Y axis dashboard
label

dashboardY1AxisLabelFontSize Points

Bold on Y axis label y1AxisLabelBold True or False

Italics on Y axis label y1AxisLabelItalic True or False

Underline on Y axis label y1AxisLabelUnderline True or False

Alignment of Y axis label y1AxisLabelAlignment Left, Right, or Center

Color of Y axis line y1AxisLineColor Hex color code

Show Y axis Grid y1Grid True or False

Color of Y axis grid y1GridColor Hex color code

Table 45. Configurable Properties for Line Charts

Property Description Property Name Values or Units
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A152

Using the Reporting Engine ■ Reporting on User Audit Data
Reporting on User Audit Data
Oracle Self-Service E-Billling audits some enrollment user actions performed in the Billing and
Payment application.

Oracle Self-Service E-Billling audits the following actions that occur when creating users:

■ A B2B administrator creates another B2B user’s account.

■ A B2C user creates his or her own account.

■ The default CSR administrator creates another CSR administrator account.

■ A CSR administrator creates a CSR user’s account.

■ A CSR administrator creates another B2B administrator’s account.

■ A CSR user (administrator or CSR) impersonates a B2B administrator creating another B2B user’s
account.

Oracle Self-Service E-Billling audits the following actions that occur when enrolling users:

■ An end user (B2B or B2C) enrolls.

■ A CSR user (administrator or CSR) enrolls.

Oracle Self-Service E-Billling audits the following actions that occur when updating user profiles:

■ An end user (B2B or B2C) updates his or her own user access information.

■ An end user (B2B or B2C) updates his or her own notification settings.

■ A B2B user (administrator or manager) updates another B2B user’s user access information.

■ A CSR user (administrator or CSR) updates his or her own user access information.

■ A CSR administrator updates another CSR user’s user access information.

■ A CSR user (administrator or CSR) updates another B2B user’s user access information.

■ A CSR user (administrator or CSR) updates the following by impersonation:

■ His or her own notification settings (B2B or B2C).

■ His or her own user access information (B2B or B2C).

■ A B2B user (administrator or manager) updates another B2B user’s user access information.

■ A B2B, B2C, or CSR user enrolls to complete the reactivation process after clicking the URL in an
email notification.

■ A B2B, B2C, or CSR user resets his or her forgotten password.

■ A migrated B2B, B2C, or CSR user creates a new HIPPA-compliant password after clicking the
URL in the email notification.

■ A B2B, B2C, or CSR user updates his or her own expired password.

Oracle Self-Service E-Billling audits the following actions that occur when deleting users:

■ A B2B administrator user deletes another B2B user’s account.

■ A CSR user (administrator or CSR) deletes an end user’s account.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 153

Using the Reporting Engine ■ Reporting on User Audit Data
■ A CSR administrator deletes another CSR user’s account.

■ A CSR user (administrator or CSR) impersonates a B2B administrator user deleting another B2B
user’s account.

Oracle Self-Service E-Billling audits the following actions that occur when logging in and out:

■ An end user (B2B or B2C) logs in.

■ A CSR user (administrator or CSR) logs in.

■ A CSR user (administrator or CSR) impersonates a B2B or B2C user logging in or out.

■ A B2B, B2C, or CSR user fails to log in.

■ A CSR administrator reactivates a locked-out account.

You can report on the audit data for each user role, including the user who performed the action, the
date and time, IP address, and various attributes. For details about payment audit data, see “About
Payment Auditing” on page 246. For information about database auditing, see “Auditing Database
Administration Activity” on page 23.

You can create customized reports on the audited user enrollment data. Oracle Self-Service E-Billling
stores audit data for user enrollment activities in the EDX_UMF_USER_AUDIT table. Table 46
describes the EDX_UMF_USER_AUDIT table:

Table 46. EDX_UMF_USER_AUDIT Table

Column Name Description

ID A unique ID assigned to the each occurrence of a user enrollment
event, generated automatically by sequence.

USER_ID The ID of the user who performed the action, either on his or her
own account or on another user’s account.

ACTION The ID indicating the type of user action. (Action type IDs are
defined in the EDX_UMF_USER_ACTION_TYPE table.)

ACTION_DATE The date of the user action.

TARGET_USER_ID The ID of the target user. If the user performed the action on his
or her own account (the target user is the same as the USER_ID),
the value in this column is null.

USER_ROLE The role of the user who performed the action.

NOTES The reason for locking an account: Incorrect Login, Reset
Password, Security Question, or Account Expired. (User account
reactivation only.)

ATTRIBUTES The changed attribute.

IP_ADDRESS The IP address of the user who accessed the Billing and Payment
application.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A154

Using the Reporting Engine ■ Reporting on User Audit Data
Table 47 describesdescribesdescribes user action type table, EDX_UMF_USER_ACTION_TYPE:

Table 48 shows the ID associated with each type of user action. These associations are stored in the
EDX_UMF_USER_ACTION_TYPE Table:

Table 47. Definition of the EDX_UMF_USER_ACTION_TYPE Table

Column Name Description

ID ID associated with the user action type.

TYPE User action type.

RESOURCE_KEY Key for the language resource bundle.

Table 48. ID of User Action Types Stored in the iEDX_UMF_USER_ACTION_TYPE Table

ID User Action Type

1 Reactivate

2 Impersonate-login

3 Impersonate-logout

4 Login

5 Logout

6 Update user profile

7 Update notifications

9 Reset password

10 Create user

13 Enroll user

16 Delete user

17 Login failure
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 155

Using the Reporting Engine ■ Reporting on User Audit Data
Table 49 shows the user action type recorded in the EDX_UMF_USER_AUDIT table for each user
enrollment activity in Oracle Self-Service E-Billling.

Table 49. User Action Types Used for Each User Enrollment Activity

User Action Type
ID and
Description Associated User Enrollment Activities Valid Attributes

1 - Reactivate A CSR administrator reactivates a locked-out
account.

Password

2-Impersonate-
login

A CSR user (administrator or CSR) impersonates a
B2B or B2C user logging in.

Null

3-Impersonate-
logout

A CSR user (administrator or CSR) impersonates a
B2B or B2C user logging out.

Null

4-Login A B2B, B2C, or CSR user logs in. Null

5-Logout A B2B, B2C, or CSR user logs in. Null

6 - Update user
profile

■ A B2B, B2C, or CSR user updates his or her
own user access information.

One of the following:

■ One or more of the
following: First
name, last name,
and email address

■ Password

■ Security question
and answer

■ A B2B user (administrator or manager)
updates another B2B user’s access
information.

■ A CSR administrator updates another CSR
user’s access information.

■ A CSR user (administrator or CSR) updates a
B2B or B2C user’s access information by
impersonation.

One of the following:

■ One or more of the
following: First
name, last name,
and email address

■ Role

■ A migrated B2B, B2C, or CSR user creates a
new HIPPA-compliant password.

Null

■ A B2B, B2C, or CSR user updates his or her
own expired password.

Password

7 - Update
notifications

■ An end user (B2B or B2C) updates his or her
own notification settings.

■ A CSR user (administrator or CSR) updates a
B2B or B2C user’s notifications by
impersonation.

Notifications
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A156

Using the Reporting Engine ■ Reporting on System Administrator Audit Data
Reporting on System Administrator
Audit Data
Oracle Self-Service E-Billling audits the following system administrator actions performed in the
Command Center application:

9 - Reset password A B2B, B2C, or CSR user resets his or her forgotten
password.

Password

10 - Create user ■ A B2B administrator creates another B2B
user’s account.

■ A B2C user creates his or her own account.

■ The default CSR administrator creates another
CSR administrator account.

■ A CSR administrator creates another CSR
user’s account.

■ A CSR administrator creates a B2B
administrator’s account.

■ A CSR administrator or user creates a B2B
user’s account while impersonating a B2B
administrator.

Null

13 - Enroll user ■ A B2B or B2C end user enrolls.

■ A CSR user (administrator or CSR) enrolls.

■ A migrated B2B, B2C, or CSR user creates a
new HIPPA-compliant password.

Null

■ A B2B, B2C, or CSR user enrolls to complete
the reactivation process after clicking the URL
in an email notification.

Security Question and
Answer

16 - Delete user ■ A B2B administrator user deletes another B2B
user’s account.

■ A CSR user (administrator or CSR) deletes a
B2B or B2C end user’s account by
impersonation.

■ A CSR administrator deletes another CSR
user’s account.

Null

17 - Login failure A B2B, B2C, or CSR user login fails. Null

Table 49. User Action Types Used for Each User Enrollment Activity

User Action Type
ID and
Description Associated User Enrollment Activities Valid Attributes
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 157

Using the Reporting Engine ■ Reporting on System Administrator Audit Data
■ Creating new jobs

■ Updating jobs

■ Removing jobs

■ Scheduling jobs

■ Running jobs

■ Creating a new administrator

■ Enrolling a new administrator

■ Updating an administrator’s information

■ Adding, updating, and deleting payment settings

■ Logging into and out of the Command Center

You can create customized reports on the audited administrator data. Oracle Self-Service E-Billling
stores the audit data for these system administrator activities in the administrator activity table,
ADMIN_ACTIVITY.

Table 50 describes the ADMIN_ACTIVITY table:

Table 50. Definition of the ADMIN_ACTIVITY Table

Column Name Description

ACTIVITY_ID Unique ID assigned to the each occurrence of a Command Center
activity, generated automatically by sequence.

ACTIVITY_CODE The name of the activity performed by the system administrator.
See Table 51 on page 159 for a list of valid activity codes.

PRODUCT_CODE The product name for the Command Center application. The
default value is ESTATEMENT.

DDN_REFERENCE The DDN reference number.

LOGIN_ID The ID of the system administrator who logged into the Command
Center to perform the activity.

ACTIVITY_START_TIME The time the activity started.

ACTIVITY_END_TIME The time the activity finished.

FLEX_FIELD1 For logging into and out of the Command Center: Whether the
activity was successful (Yes or No).

For creating, updating, removing, running, or scheduling a job:
The name of the job.

FLEX_FIELD2 The IP address where the administrator logged in and performed
the Command Center activity.

DATE_CREATED Date when the audit record was created.

CREATED_BY The ID of the system administrator who performed the activity.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A158

Using the Reporting Engine ■ Reporting on System Administrator Audit Data
Table 51 shows the valid activity codes that can be stored in the ACTIVITY_CODE column in the
ADMIN_ACTIVITY:

UPDATE_DATE This field is not currently used.

UPDATED_BY This field is not currently used.

Table 51. Valid Activity Codes

Valid Activity Code Description

LOGIN An administrator logs in.

LOGOUT An administrator logs out.

CREATE JOB An administrator creates a new job.

UPDATE JOB An administrator updates job information.

DELETE JOB An administrator deletes a job.

CREATE USER The default administrator creates a new administrator user.

ENROLL USER A newly created administrator user enrolls his or her own
information.

UPDATE USER An administrator updates his or her own information.

CREATE PAYMENT SETTINGS An administrator creates payment settings.

UPDATE PAYMENT SETTINGS An administrator updates payment settings.

DELETE PAYMENT SETTINGS An administrator deletes payment settings.

Table 50. Definition of the ADMIN_ACTIVITY Table

Column Name Description
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 159

Using the Reporting Engine ■ Reporting on System Administrator Audit Data
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A160

7 About Payment Processing
This chapter describes how Oracle Self-Service E-Billling processes certain payment activities. It
includes the following topics:

■ About Check Processing on page 161

■ About Credit Card Processing on page 168

■ About Recurring Payments on page 173

About Check Processing
This topic describes how Oracle Self-Service E-Billling supports check payments through the ACH
gateway.

Adding a Check Account
This topic is one example of adding a check account. You might use this feature differently,
depending on your business model.

The following actions describe the process to enroll a new user with Oracle Self-Service E-Billling
Payment who specifies a check account at enrollment time.

To add a check account for a new user

1 A new customer enrolls for check payment services by completing an enrollment form in the user
interface. Oracle Self-Service E-Billling saves the information in the payment_accounts table with
an enrollment status of pnd_active.

2 The pmtSubmitEnroll job runs to submit the enrollment information to the payment gateway. It
changes the enrollment status to pnd_wait. If the check cannot be submitted, its status is
changed to Failed.

For ACH only, pmtSubmitEnroll sends customer enrollment information, which is contained in a
zero amount check called a prenote, to an ACH payment gateway for verification. To send a
prenote, the pmtSubmitEnroll job creates a zero amount check with status of prenote_scheduled,
and immediately inserts the check into the check_payments table with a status of
prenote_processed. This means that the status prenote_scheduled is transitory, and so is not
visible in the check_payments table. A summary report is created, which can be viewed from the
Command Center.

3 After receiving the customer enrollment information, the ACH payment gateway responds with a
return file only if there are errors in the customer enrollment information. If there are no errors,
ACH does not send a return file, or any other form of acknowledgement.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 161

About Payment Processing ■ About Check Processing
4 The pmtConfirmEnrollment job runs. This job updates the status of the customer enrollment
status to active if there are no problems after a specified number of days (by default, three days).

If the payment enrollment information is not correct, the pmtConfirmEnrollment job updates the
customer enrollment status to bad_active. An exception report is created, which can be viewed
from the Command Center.

5 The customer might optionally receive an email about enrollment status from the pmtNotifyEnroll
job.

Check Account Enrollment Status Workflow
Figure 6 shows the status changes that a new check account goes through for enrollment, depending
on customer actions and the pmtSubmitEnroll and pmtConfirmEnroll jobs. The status is kept in the
account_status field in the payment_accounts table.

Figure 6. Check Account Enrollment Status Workflow
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A162

About Payment Processing ■ About Check Processing
Table 52 describes each new check account status.

Check Payment Transaction Workflow
Check Payment Transaction Workflow, shown in Figure 6, processes the typical ACH check payment
transaction cycle (excluding transfers between the ODFI, ACH operator and RDFI).

Workflow Description. This workflow performs the following actions:

1 A customer logs in and schedules a new payment. This step inserts a check into the
database with a status of scheduled.

If the customer later cancels the payment, the check status is changed to cancelled, but the
payment remains in the database for the customer to view as a cancelled payment.

Table 52. New Check Account Status

Enrollment
Status Description

pnd_active A new check account is enrolled, pending approval.

pnd_wait The check account has been sent to the bank for verification.

active The check account has been activated for payment.

bad_active The check account failed to be activated.

Figure 7. Check Payment Transaction Workflow
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 163

About Payment Processing ■ About Check Processing
2 The pmtCheckSubmit job runs. This step selects all the checks that are due for payment,
creates a batch file of selected checks, and sends the batch file to the payment gateway (ODFI).
It also changes the status of each selected check to Processed in the Oracle Self-Service E-Billling
Payment database.

If the check cannot be submitted, the status is changed to Failed. A summary report log file is
generated, which can be viewed from Command Center.

3 The payment gateway (ODFI) processes the received check payment through the ACH
operator to the RDFI. In this step, if there is an error clearing the check, ACH creates a file
containing a code that indicates why the check was returned, and sends the file to Oracle Self-
Service E-Billling.

4 The pmtCheckUpdate job runs. This step changes the status of the check from processed to
paid if there is no return code, and five business days (default) have passed.

If the payment gateway returns the check, the pmtCheckUpdate job updates the check’s status
to returned, and saves the reason code in the txn_err_msg field of the check_payments table.
An exception report is generated to summarize the information in the returned file, which can be
viewed from Command Center.

If there is an error other than returned, pmtCheckUpdate changes the check status to failed.

5 If configured, the pmtPaymentReminder job sends email to the customer about the
status of the check payment.

Check Payment Status Workflow
Check Payment Status Workflow updates the check payment status at different stages of check
payment processing.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A164

About Payment Processing ■ About Check Processing
Figure 7 shows the states that a check can be in, and the jobs that change the state.

Table 53 lists the statuses that can occur during a check payment transaction cycle. The values in
parentheses () are the values saved in the Oracle Self-Service E-Billling Payment database.

Credit Reversals
Oracle Self-Service E-Billling supports check credit reversals.

Figure 8. Check Payment Status Workflow

Table 53. Check Payment Transaction Status

Transaction Status Description

Scheduled(6) A customer scheduled a new check payment.

Processed(7) Oracle Self-Service E-Billling Payment processed a check and sent it
to the ACH gateway.

Paid(8) ACH paid or cleared a check.

Cancelled(9) The customer cancelled a check.

Failed(-1) ACH failed to pay a check failed for a reason other than returned.

Returned(-4) ACH returned a check.

noc_returned(-5) This customer’s payment account information must be changed.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 165

About Payment Processing ■ About Check Processing
Automated Clearing House (ACH)
This topic describes the codes and other data used with Automated Clearing House (ACH) Network
fund transfers. Additional information about ACH and change codes are available at:

http://www.nacha.org

Supported SEC Codes
For ACH, Oracle Self-Service E-Billling supports the following SEC Codes (Standard Entry Class
Codes):

■ Web. Internet initiated entry (default for Oracle Self-Service E-Billling).

Debit entries are originated (either single or recurring) from a customer's account using web
based authorization.

■ PPD. Pre Arranged Payment and Deposit Entry. Under PPD the following types are included:

■ Direct Deposit: The credit application transfers funds into the customer's account.

■ Preauthorized Bill Payment: This is a debit application, where billers transfer electronic bill
payment entries through the ACH network.

■ CTX. Corporate Trade Exchange

Supports multiple Addenda record based on ANSI ASC X12 standards. Can be used either with
the credit or debit application.

ACH Change Codes (NOC)
Table 54 lists some of the ACH change codes (also known as NOC codes) that might appear in the
returns file after running the pmtCheckUpdate job if previously valid payment information is now
incorrect or out-of-date.

Table 54. ACH Change Code

Code ACH Change Code Description

C01 Incorrect DFI Account Number.

C02 Incorrect Routing Number.

C03 Incorrect Routing Number and Incorrect DFI Account Number.

C05 Incorrect Transaction Code.

C06 Incorrect DFI Account Number and Incorrect Transaction Code.

C07 Incorrect Routing Number, Incorrect DFI Account Number, and Incorrect
Transaction Code.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A166

About Payment Processing ■ About Check Processing
ACH Return Codes
Table 55 lists some of the ACH return codes that might appear in the returns file after running the
pmtCheckUpdate job.

Additional information about these and additional ACH return codes are available from the following
URL:

Table 55. ACH Return Codes

Code ACH Return Code Description

R01 Insufficient Funds.

R02 Account Closed.

R03 No Account or Unable to Locate the Account.

R04 Invalid Account Number.

R05 Reserved.

R06 Returned at the request of ODFI.

R07 Authorization Revoked by Customer (adjustment entries).

R08 Payment Stopped or Stop Payment on Item.

R09 Uncollected Funds.

R10 Customer Advises Not Authorized; Item Is Ineligible, Notice Not Provided,
Signatures Not Genuine, or Item Altered (adjustment entries).

R11 Check Truncation Entry Return (Specify) or State Law Affecting Acceptance of PPD
Debit Entry Constituting Notice of Presentment or PPD Accounts Receivable
Truncated Check Debit Entry.

R12 Branch Sold to Another DFI.

R14 Representative Payee Deceased or Unable to Continue in that Capacity.

R15 Beneficiary or Account Holder (Other Than a Representative Payee) Deceased.

R16 Account Frozen.

R17 File Record Edit Criteria (Specify).

R20 Non-Transaction Account.

R21 Invalid Company Identification.

R22 Invalid Individual ID Number.

R23 Credit Entry Refused by Receiver.

R24 Duplicate Entry.

R29 Corporate Customer Advises Not Authorized.

R31 Permissible Return Entry (CCD and CTX only).

R33 Return of XCK Entry.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 167

About Payment Processing ■ About Credit Card Processing
http://www.nacha.org/

NOC Transactions
When a prenote is returned with a NOC, TXN_MESSAGE is populated with NOC information formatted
as NOC_CODE::NEW_ADDENDA_INFO::OLD_ADDENDA_INFO, where

■ NOC_CODE is the three-character code returned.

■ NEW_ADDENDA_INFO is the NOC information returned from ACH, which can include the
corrected account number, routing and account type.

■ OLD_ADDENDA_INFO is the existing addenda information.

ACH Effective Date
The Skip non-business days for batch effective entry date field on the Payment Settings page for an
ACH check payment gateway controls how the effective entry date is calculated when the ACH batch
file is created by pmtCheckSubmit.

If the field is set to Yes, then non-business days are not taken into consideration. The effective entry
date is set to the payment date that the customer specified when scheduling the payment.

If the field is set to No, then non-business days are skipped, and the effective entry date is the next
business day following the computed date. Payment checks the scheduled payment date to see if it
is on or before the end of today. If it is, the computed date is the customer-scheduled date plus one.
If it is not, then the computed date is the customer-scheduled date.

Non-business days are weekend days, plus the U.S. Federal holidays.

ACH Settlement Date
The ACH settlement date is not written to the ACH batch file by pmtCheckSubmit. That date is added
by the ACH Operator when the payment is settled.

ACH Addenda Records
Payment supports ACH addenda records, which means you can append a list of addenda records after
an entry detail record in an ACH file. Addenda records are biller-specific, so customization is required
to support this feature. Theoretically, you can put any information into an addenda record, such as
the invoices of a payment. To add addenda records, you must write a plug-in for the pmtCheckSubmit
job. For more information about supporting ACH addenda records, contact My Oracle Support.

About Credit Card Processing
Credit card payments are supported for immediate or future (scheduled) payments. Credit card
payments require two steps: authorization and settlement. Authorization verifies the customer
account and puts a hold on the account for the amount of the payment. Settlement occurs when the
payment is made. Oracle Self-Service E-Billling Payment performs authorization and settlement in
one transaction using the credit card gateway for credit card payments.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A168

About Payment Processing ■ About Credit Card Processing
Credit card payments require an agreement with a credit card gateway to process credit card
transactions. A cartridge for PayPal Payflow Pro is provided with Oracle Self-Service E-Billling, which
requires signing up with PayPal Payflow Pro payment services. For help with cartridges, contact your
Oracle sales representative to request assistance from Oracle's Professional Services. In addition,
other cartridges can be created to support other payment processors.

Credit Card Payment Status
Table 56 lists the statuses that can occur during a credit card payment transaction cycle. The values
in parentheses () are the values saved in the payment database.

Table 56. Credit Card Payment Status

Transaction Status Description

Scheduled (6) A customer has scheduled a new credit card payment.

Settled (8) The credit card payment was authorized and settled successfully.

Failed-authorized (-4) A credit card payment failed during authorization.

Cancelled (9) A credit card payment was cancelled by the customer.

Failed (-1) A credit card payment failed because of network problems. This state
occurs only for instant payments. For scheduled payments or recurring
payments, the state stays scheduled if there is a network problem, so
that it will be tried again. It is not necessary for Oracle Self-Service E-
Billling to retry an instant payment; the user sees the error message
and can optionally retry the payment.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 169

About Payment Processing ■ About Credit Card Processing
Credit Card Payment Transactions
Figure 9 shows the entities involved in a credit card payment transaction.

Because credit card is processing is real-time and not batch-based, the life cycle of credit card is
simpler than check processing. Credit card processing typically goes through the following steps:

1 A user enters a credit card number and other card-related information.

2 The card information is sent to the card-issuing bank for authorization. Authorization only
guarantees that the money is available at the time of authorization.

3 The merchant issues a settlement request to issuing bank so that the money can be transferred,
usually after fulfillment (sending out ordered goods). For bill payments, the biller does not send
out ordered goods, so authorization and synchronization are combined into one operation; a
credit card payment is settled at the same time it is authorized.

Instant Credit Card Payments
The following code shows the states for an instant credit card payment. For instant payments, there
is no scheduled state:

Figure 9. Credit Card Payment Transactions
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A170

About Payment Processing ■ About Credit Card Processing
Credit Card Payment ‡ settled
 |-> failed-authorize
 |-> Failed

Instant credit card payments process is as follows:

1 A user submits an instant credit card payment from the UI.

2 Oracle Self-Service E-Billling sends the payment to credit card cartridge in real time.

3 If the card is authorize and settled, the credit card state is set to settled.

4 If the card failed to authorize, the state is set to failed_authorize.

5 If there is a network problem, the state is set to failed.

6 The card is inserted into creditcard_payments table.

7 The result of the transaction is presented to the user.

8 The pmtPaymentReminder job runs and (optionally) sends email to users who have made an
instant payment.

Scheduled Credit Card Payments
The following code shows the states for a scheduled credit card payment:

Credit Card Payment ‡ Scheduled ‡ Cancelled
|
| pmtCreditCardSubmit job
|‡ settled
|‡ failed-authorize
|‡ scheduled

Scheduled credit card payments process is as follows:

1 A credit card payment is scheduled by the customer through the user interface, and the payment
is marked as Scheduled in the creditcard_payments table.

Before the scheduled credit card payment is processed by pmtCreditCardSubmit, the user can
modify or cancel it.

2 When the pmtCreditCardSubmit job runs, it selects all credit card payments that are scheduled
to be paid at the time the job runs, opens a connection to the credit card payment gateway, and
starts making payments. The Number of days before a credit card's pay date for it to be
submitted field on the pmtCreditCardSubmit job determines how many days ahead to look when
selecting payments to be made.

If IPayPalCreditCardSubmitPlugIn has been implemented in Payment Settings, this job modifies
the credit card payments that are scheduled to be paid, or takes other actions related to the
selected credit card payments. Functions in the plug-in are called before and after credit card
payment processing. For more information about the pmtCreditCardSubmit job and its plug-in,
see Administration Guide for Oracle Self-Service E-Billing. For help with configuring job plug-ins,
contact your Oracle sales representative to request assistance from Oracle's Professional
Services.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 171

About Payment Processing ■ About Credit Card Processing
3 The credit card gateway sends the transactions to the credit card processor. The credit card
processor either authorizes and settles the credit card payment, or rejects it. The results are
returned to the credit card gateway, which forwards the results to the pmtCreditCardSubmit job.

4 The pmtCreditCardSubmit job changes the status of the credit card payment in the database
depending on the transaction status returned by the credit card processor, and optionally sends
email to the customer about the status of the payment.

If the card is authorized and settled, the credit card state is set to settled.

If the card fails to authorize, the state is set to failed_authorize.

If there is a network problem, the state remains scheduled so it will process the next time
pmtCreditCardSubmit runs.

5 The pmtPaymentReminder job runs and (optionally) sends email to users about the status of
their scheduled payment.

Credit Reversals
Oracle Self-Service E-Billling supports credit reversals.

User Options
The user interface to Oracle Self-Service E-Billling Payment can offer a variety of credit card payment
options. Some of those options require that fields be configured in Payment Settings for a credit card
payment gateway.

Using PayPal Payflow Pro as a Payment Gateway
A cartridge for PayPal Payflow Pro is provided with Oracle Self-Service E-Billling. Before configuring
a PayPal Payflow Pro credit card payment gateway, you must obtain a digital certificate through
PayPal Payflow Pro.

You must also configure your application server to support a PayPal Payflow Pro payment gateway.
For more information about setting up a payment gateway, see Installation Guide for Oracle Self-
Service E-Billing.

Address Verification Service
Address Verification Service (AVS) reduces the risk of fraudulent transactions by verifying that the
credit card holder's billing address matches the one on file at the card issuer. The address is optional
and does not affect whether the payment is accepted or rejected. However, using an address might
get a lower rate from the card issuer.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A172

About Payment Processing ■ About Recurring Payments
A merchant (also known as the biller) submits the AVS request through the payment process directly
to the specific credit card association (for example, PayPal Payflow Pro) for address comparison. If
AVS is turned on by the System Administrator, address information is passed into PayPal Payflow Pro
as part of the PayPal Payflow Pro request. PayPal Payflow Pro then contacts the credit card issuing
bank and passes along the address information.

The credit card issuing bank verifies the credit card address information on record matches the
address information from PayPal Payflow Pro. The credit card issuing bank then replies back to PayPal
Payflow Pro whether information matched (address and zip code are checked during AVS). Y means
yes, N means no, and X means a match cannot be determined. PayPal Payflow Pro then accepts or
rejects (voids) the transaction based on the filter set through Oracle Self-Service E-Billling Payment
(for both street address and zip code).

There is also a filter option to set the international AVS code to determine if the AVS response was
international, U.S. or could not be determined. Some credit card issuing banks require city and state
verification as well. Oracle Self-Service E-Billling Payment does not handle these by default, but the
pmtCreditCardSubmit job has a plug-in to allow custom code to pass in the AVS values.

If Oracle Self-Service E-Billling Payment does not send the address information to PayPal Payflow
Pro, or the system administrator did not turn on AVS, and the AVS check level is set to Full, the
transaction fails. If the card issuer address is sent to the payment gateway but the address does not
match the information on the gateway, then the gateway can send an AVS code. If an AVS code is
received, Oracle Self-Service E-Billling Payment logs the AVS code in the audit tables.

Turning AVS On or Off by Transaction
PayPal Payflow Pro supports turning AVS on or off by transaction. However, the lower capability
Payflow Link can perform this function. You also must set up the AVS level as part of your PayPal
Payflow Pro agreement. When setting up the account with PayPal Payflow Pro, the merchant must
specify the level of AVS check: full, medium or light. For additional information on setting up PayPal
Payflow Pro, see the PayPal Payflow Pro documentation.

When Oracle Self-Service E-Billling passes the address information, PayPal Payflow Pro accepts or
rejects the transaction based on the AVS check level. Note that the AVS check level is specified once
during merchant account setup and applies to all transactions for that merchant. During setup, the
customer (merchant) also must specify to PayPal Payflow Pro that he or she uses AVS (through
Oracle Self-Service E-Billling) for transactions.

About Recurring Payments
Oracle Self-Service E-Billling provides two types of recurring payments for check and credit card:

■ A recurring payment. A recurring payment allows a customer to schedule a payment amount
that is fixed, for the entire amount due from a bill, or for the minimum amount due from a bill.
The payment can be scheduled to be paid on a certain date of the week, month or quarter.

■ An automatic payment. An automatic payment allows a customer to schedule a payment of a
fixed amount, for the entire amount due from a bill, or for the minimum amount due from a bill,
to be made a certain number of days before due date. Automatic payments of the entire amount
due can also be made, if the amount due is less than a specified amount.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 173

About Payment Processing ■ About Recurring Payments
Both recurring and automatic payments are designated as recurring payments by the NACHA 2009
specification. NACHA 2009 defines a payment as recurring when the account manager (Oracle Self-
Service E-Billling) keeps the account information (in a database).

Recurring payments can be modified or cancelled at any time before the payment is scheduled.

Recurring payment allows a customer to make payments automatically, based on the amount and
pay date. There are five kinds of recurring payments:

■ (Minimum) amount due and before due date, for example, pay the entire amount due two days
before the due date.

■ (Minimum) amount due and fixed pay date, for example, pay minimal amount due on day 31 of
each month.

■ Fixed amount and before the due date, for example, pay $100 one day before the due date.

■ Fixed amount and fixed pay date, for example, pay $100 on the first day of each month.

■ (Minimum) amount due up to a fixed amount, and send email if over that fixed amount.

Amount defines how much the recurring payment is going to pay for each payment. The amount can
be fixed, amount due or minimum amount due. If the amount is (minimum) amount due, then it
must be indexed by the Composer. The name and format of the (minimum) amount due must be
specified in the Payment Settings topic of the Command Center.

Pay date defines when each payment is going to be cleared (money transfers). Pay date can be fixed
or before due. If it is before due, then the due date must be indexed by the Composer. The name
and format of the due date must be specified in the Payment Settings topic of the Command Center.

For monthly payments, if day 29, 30, or 31 is selected, and that day does not exist for a particular
month, the pay date defaults to the last day of that month. For example, specifying day 31 of each
month ensures that payments are made at the last day of each month.

For weekly payments, the week starts on Sunday. For example, day 1 of each week means Sunday.

The effective period defines when a recurring payment starts and ends. A payment is made if its pay
date is within the effective period (inclusive). If the pay date is after the end date of the effective
period, the recurring payment is deactivated. By default, a recurring payment only starts tomorrow.
This is done so that all bills that arrive up to and including today are considered paid, so recurring
payment must not pay these bills a second time.

There is also a script that can be run after installation that prevents a bill from being paid twice. For
more information about that script, see Installation Guide for Oracle Self-Service E-Billing.

After an end-customer creates a recurring payment, that customer is not permitted to change the
payment amount from fixed to (minimum) amount due, or to change the pay date from fixed to
before due date, or conversely. When a recurring payment starts (which is when the first recurring
payment has been made), the start date of the recurring payment cannot be modified.

CAUTION: Recurring payment supports only one customer account for each biller. Recurring
payment does not support multiple customer accounts with a single biller.

The next topic provides examples for the first four recurring payment types. The topic after that
explains how to test those payment types.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A174

About Payment Processing ■ About Recurring Payments
Recurring Payment Transaction Cycle
Recurring payment information is saved into the recurring_payments table.

Recurring payments can support only one customer account for a biller. Recurring payments do not
support multiple customer accounts with a single biller.

The parameter, When to Synchronize Recurring Payment with Statements, belongs to the
pmtRecurringPayment job.

By default, Oracle Self-Service E-Billling uses the latest available bill when submitting the payment
to the payment gateway. You can configure each payment gateway to only synchronize once, which
reduces processing. The setting, Whenever Job Runs, can be changed to, Only After the Current Bill
is Scheduled, which causes Oracle Self-Service E-Billling to synchronize only once when the bill is
scheduled.

The pmtRecurringPayment job retrieves bills, makes payments (check or credit card), and sends
email notifications for recurring payments. The job performs two actions:

■ Retrieves the latest bill for a recurring payment that a customer set up through the UI. This
process is called synchronization. A recurring payment can only be synchronized with the
Command Center database if it is associated with a bill and the amount to pay is the minimum
(amount) due or the pay date is before the due date. A recurring payment with fixed amount and
fixed date will not be synchronized with the Command Center database, which means there is no
bill information associated with this recurring payment.

■ Schedules payments (inserts a payment with status of scheduled in the check_payments or
creditcard_payments table so that the payments will be processed. This process is called
scheduling. A payment is scheduled three days before the pay date (by default). The number of
days can be changed by changing the Number of days before pay date to schedule the payment
field in the job configuration. This delay allows the customer to modify or cancel this payment
before the payment is processed by the pmtCheckSubmit or pmtCreditCardSubmit jobs.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 175

About Payment Processing ■ About Recurring Payments
Table 57 shows the columns that are updated in the recurring_payments table by the
pmtRecurringPayment job.

TIP: There is no payment inserted into check_payments or creditcard_payments table when a
recurring payment is created by the user. Payments are inserted by the pmtRecurringPayment job.

Tables Affected by Recurring Payments
The recurring_payments table only contains the setup information for the recurring payment, which
an end-user enters using a Web interface. This table does not save bill summary or payment
information. The amount field in the recurring_payments table records the amount when you do one
of the following:

■ Specify the recurring payment to pay fixed amount

■ Pay if less than this amount

■ Pay up to this amount

Table 57. Columns Updated in recurring_payments table by the pmtRecurringPayment Job

 Column Name in the
recurring_payments
Table Description

bill_scheduled Y or N: determines whether the current bill associated with the
recurring payment has been scheduled (inserted) into check_payments
or creditcard_payments. It is always N for a fixed amount and fixed pay
date.

Status Active or Inactive: This status is calculated internally. It indicates
whether the recurring payment has ended, because either the pay date
is after the end date, or the number of payments has reached the
maximum allowed.

last_process_time The last synchronization time. To improve performance, only bills
whose doc date falls between last_process_time and the current job
running time (inclusive) are synchronized. By default,
last_process_time is set to the start_date of the effective period when
the recurring payment is created, which means all bills whose doc dates
are before start_date will not be synchronized.

last_pay_date The pay date of last payment made. It is set to 01/01/1970 if the
recurring payment has not started yet.

next_pay_date The pay date of next payment. It is calculated based on start_date,
last_pay_date and pay_interval.

bill_id A foreign key reference to a row in the payment_bill_summaries table.
Use bill_id to retrieve the latest bill information paid by the recurring
payment. It might be null if there is no such bill.

curr_num_payments Current number of payments made.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A176

About Payment Processing ■ About Recurring Payments
Oracle Self-Service E-Billling pulls bill summary information from the Command Center tables and
saves it into the payment_bill_summaries table. The pmtRecurringPayment job populates the
payment_bill_summaries and bill_id of the recurring_payments tables.

Payment information is scheduled into the check_payments (for check) or creditcard_payments (for
credit card) tables. The recurring_payments table is updated with the payment_id.

Example of Scheduling Amount Due and Before Due
Date
This topic shows an example of how a recurring payment processes for amount due, before the due
date. You could use this feature differently, depending on your business model.

To schedule Amount Due and Before Due Date

1 On date 04/09/2009, a customer with account number acct1111 creates a recurring payment.
The amount is amount due, the pay date is one day before due date, the start date is 04/10/
2009, and the end date is 06/10/2009.

2 The pmtRecurringPayment job runs on 04/10/2009 23:59:00PM. The job searches the
recurring_payments table to find all recurring payments whose bill_scheduled is Y and status is
Active. It finds the example recurring payment and then asks Command Center to return all bills
whose account number is acct1111 and whose STATEMENT_LOAD_DATE is between 04/10/2009
(last_process_time) and 04/10/2009 23:59:00PM (job run time). Two bills - bill2 and bill3 - are
returned. pmtRecurringPayment then finds the bill with latest due date bill3. bill2 is ignored
because only the latest bill is paid.

Column Name in the
recurring_payments
Table Value

payer_account_number acct1111

bill_scheduled Y

status active

last_process_time 04/10/2009; Same as start date.

last_pay_date 01/01/1970; Not paid yet.

next_pay_date 01/01/3000; This future date ensures there is no due date
available yet.

bill_id null

max_num_payments 2147483647. This large number means the recurring payment
will only be deactivated when the pay date is after the end date.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 177

About Payment Processing ■ About Recurring Payments
3 After finding the latest bill from Command Center, pmtRecurringPayment checks whether the due
date of this bill is after the due date of the bill used in the last payment (last bill information can
be retrieved from payment_bill_summaries using the bill_id). If not, that means this is an old bill
and must not be paid. In this case, because there is no last payment, bill3 is paid.

4 bill3 is inserted into the payment_bill_summaries table and the recurring_payment table is
recalculated as follows:

5 If the pmtRecurringPayment job runs between 04/11/2009 and 05/10/2009, nothing happens to
this recurring payment because synchronization and scheduling do not happen. The table
remains unchanged.

Column Name Value

payer_account_number acct1111

bill_scheduled N, means this bill has not been paid or scheduled

status active, because next_pay_date is within the effective period

last_process_time 04/10/2009 23:59:00PM, changes to job run time

last_pay_date 01/01/1970, unchanged

next_pay_date 05/14/2009, one day before the due date, 05/15/2009

bill_id bill3
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A178

About Payment Processing ■ About Recurring Payments
6 On 05/11/2009 11:59:00PM, three days before next_pay_date, pmtRecurringPayment runs
again. The recurring payment mentioned previously will not be synchronized, because its
bill_scheduled is N. However, it will be scheduled. pmtRecurringPayment finds all recurring
payments whose bill_scheduled is N, status is Active and next_pay_date is equal to or before 05/
14/2009 (05/11/2009 + 3 days). The previously mentioned recurring payment is picked up and
a payment is inserted into the check_payments or creditcard_payments table. The amount of the
payment is $100.00, and the pay date is 05/14/2009. After this, the recurring payment table is
changed to:

The customer can now view the payment from Future Payments in the example interface. He or
she can update or cancel the scheduled payment if desired.

7 On 05/12/2009 23:59:00PM, pmtRecurringPayment runs again and finds bills whose doc date is
between 04/10/2009 11:59:00PM and 05/12/2009 23:59:00PM. No bills exist, and the last
process time is updated to 05/12/2009 23:59:00PM. Everything else remains the same.

8 On 05/13/2009, the ETL Load job runs again and inserts a new bill, bill4. ACCOUNT_NUM is
obtained from the EDX_RPT_ACCOUNT_DIM table from OLAP. Everything else is from the
EDX_RPT_STATMENT_FACT table. The table details are a combination of data from
EDX_RPT_ACCOUNT_DIM, EDX_RPT_ACCOUNT_FACT, and the EDX_RPT_STATEMENT_FACT
tables.

Column Name Value

payer_account_number acct1111

bill_scheduled Y, means this bill has been paid

status Active because next_pay_date is within the effective period

last_process_time 04/10/2009 23:59:00PM, unchanged because there was no
synchronization

last_pay_date 05/14/2009, change to check’s pay date

next_pay_date 05/14/2009, unchanged

bill_id bill3

payment_id points to the new payment_id inserted into the check_payments
or creditcard_payments table

Z_PRIMARY-
ACCOUNT_NUM

Z_DOC_ID-
STATEMENT_
NUMBER

Z_DOC_DATE-
STATEMENT_LOAD_
DATE AmountDue DueDate

acct1111 bill1 03/10/2009 100.01 04/15/2009

acct1111 bill2 04/10/2009 50.00 04/25/2009

acct1111 bill3 04/10/2009 100.00 05/15/2009

acct1111 bill4 05/13/2009 80.00 06/15/2009
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 179

About Payment Processing ■ About Recurring Payments
9 On 05/13/2009 23:59:00PM, the pmtRecurringPayment job runs again. It contacts Command
Center and retrieves bills whose doc date are between 05/12/2009 23:59:00PM and 05/13/2009
23:59:00PM. bill4 is retrieved and the recurring_payments table is updated like this:

After synchronization, the recurring payment is deactivated, and is never synchronized or
scheduled again.

Example of Scheduling Amount Due And Fixed Pay Date
This topic shows an example of how a recurring payment processes for the amount sue scheduled
on a fixed pay date. You could use this feature differently, depending on your business model.

Column Name Value

payer_account_number acct1111

bill_scheduled N means this bill has not been paid

status Inactive because next_pay_date is beyond the effective period

last_process_time 05/15/2009 23:59:00PM, changes to job run time

last_pay_date 05/14/2009, unchanged

next_pay_date 06/14/2009, one day before due date, 06/15/2009

bill_id bill4
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A180

About Payment Processing ■ About Recurring Payments
To schedule Amount Due and Fixed Pay Date

1 On 04/09/2009, a customer with account number acct1111 creates a recurring payment. The
amount is amount due, the pay date is day 31 of each month, the start date is 04/10/2009,and
the recurring payment stops after 10 payments.

The Bill table has the following values:

Even though the pay date is not related to the due date, DueDate must still be indexed because
it is used to decide which bill is the latest.

2 The pmtRecurringPayment job runs on 04/10/2009 23:59:00PM. bill3 is found in the index table
and inserted into the payment_bill_summaries table. The recurring_payments table is
recalculated as follows:

Column Name Value

payer_account_number acct1111

bill_scheduled Y

status active

last_process_time 04/10/2009

last_pay_date 01/01/1970

next_pay_date 4/30/2009; the first available pay date after 04/10/2009
(because there is no April 31).

bill_id null

end_date 01/01/3000; The end date is so far in the future that the
recurring payment will only be deactivated when the
number of payments reaches maximum allowed.

curr_num_payments 0; no payments yet.

Z_PRIMARY-
ACCOUNT_NUM

Z_DOC_ID-
STATEMENT_
NUMBER

Z_DOC_DATE-
STATEMENT_LOAD_
DATE AmountDue DueDate

acct1111 bill1 03/10/2009 100.01 04/15/2009

acct1111 bill2 04/10/2009 50.00 04/25/2009

acct1111 bill3 04/10/2009 100.00 05/15/2009

Column Name Value

payer_account_number acct1111

bill_scheduled N, this bill has not been paid.

status Active, curr_num_payments is less than max_num_payments.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 181

About Payment Processing ■ About Recurring Payments
3 On 04/27/2009, three days before next_pay_date, pmtRecurringPayment runs again. There is no
synchronization (bill_scheduled is N), but a payment is inserted into the check_payments or
creditcard_payments table. The amount of the check is $100.00 and its pay date is 04/30/2009.
The recurring payment table is changed as follows:

4 Repeat steps 2, 3 and 4 until curr_num_payments reaches 10. At step 4 of the tenth payment,
the status changes to Inactive.

If no bills arrive for a month, then next_pay_date is automatically moved to next month. For
example, if there is no bill for April, then the next_pay_date is automatically moved from 04/30/2009
to 05/31/2009 when the current job run time is May 1.

Example of Scheduling Fixed Amount and Before Due Date
This topic shows an example of how a recurring payment processes for a fixed amount scheduled
before the due date. You could use this feature differently, depending on your business model.

last_process_time 01/01/1970; unchanged.

last_pay_date 01/01/1970; unchanged.

next_pay_date 04/30/2009; there is no April 31.

bill_id bill3

curr_num_payments 0

Column Name Value

payer_account_number acct1111

bill_scheduled Y, means this bill has been paid.

status Active, curr_num_payments is less than
max_num_payments.

last_process_time 04/10/2009 23:59:00PM: not changed because there
has been no synchronization.

last_pay_date 04/30/2009; changed to next_pay_date.

next_pay_date 05/31/2009; changed to next available pay date.

bill_id bill3

payment_id Points to the new payment_id inserted into the
check_payments or creditcard_payments table.

curr_num_payments 1

Column Name Value
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A182

About Payment Processing ■ About Recurring Payments
To schedule Fixed Amount and Before Due Date

1 On 04/09/2009, a customer with account number as acct1111 creates a recurring payment from
the UI. The amount is $50, the pay date is one day before the due date, the start date is 04/10/
2009 and the recurring payment stops after 10 payments.

Index table entries are as follows:

Amount due is not required for this case.

2 The pmtRecurringPayment job runs on 04/10/2009 23:59:00PM, after running the ETL load and
after the new bill has been inserted. In this case, bill3 is found in the index table and inserted
into the payment_bill_summaries table. bill3 details are retrieved from the OLAP database tables
and inserted into the payment_bill_summaries table. The recurring_payments table is
recalculated as follows:

Column Name Value

payer_account_number acct1111

bill_scheduled Y

status active

last_process_time 04/10/2009

last_pay_date 01/01/1970

next_pay_date 01/01/300

bill_id null

end_date 01/01/3000; the end date is so far in the future that the
recurring payment will only be deactivated when the
number of payments reaches the maximum allowed.

curr_num_payments 0; no payment yet.

Z_PRIMARY-
ACCOUNT_NUM

Z_DOC_ID-
STATEMENT_
NUMBER

Z_DOC_DATE-
STATEMENT_LOAD_
DATE DueDate

acct1111 bill1 03/10/2009 04/15/2009

acct1111 bill2 04/10/2009 04/25/2009

acct1111 bill3 04/10/2009 05/15/2009

Column Name Value

payer_account_number acct1111

bill_scheduled N; this bill has not been paid.

status Active, curr_num_payments is less than
max_num_payments.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 183

About Payment Processing ■ About Recurring Payments
3 On 05/11/2009, three days before next_pay_date, pmtRecurringPayment runs again. There is no
synchronization (because bill_scheduled is N), but a payment is inserted into the
check_payments or creditcard_payments table. The amount of the payment is $50.00 and its pay
date is 05/14/2009. The recurring_payments table is changed as follows:

Repeat steps 2, 3 and 4 until next_pay_date is after end_date, when status changes to inactive.

Example of Scheduling Fixed Amount and Fixed Pay Date
This topic shows an example of how a recurring payment processes for a fixed amount scheduled on
a fixed pay date. You could use this feature differently, depending on your business model.

last_process_time 04/10/2009 23:59:00PM; changes to job run time.

last_pay_date 01/01/1970; unchanged.

next_pay_date 05/14/2009; one day before due date, 05/15/2009.

bill_id bill3

curr_num_payments 0

Column Name Value

payer_account_number acct1111

bill_scheduled Y means this bill has been paid.

status Active, next_pay_date is not after end_date.

last_process_time 04/10/2009 23:59:00PM; unchanged, because
there was no synchronization.

last_pay_date 05/11/2009; changed to next_pay_date.

next_pay_date 05/11/2009; unchanged, the next bill is not
known.

bill_id bill3

payment_id Points to the new payment_id inserted into the
check_payments or creditcard_payments table.

curr_num_payments 1

Column Name Value
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A184

About Payment Processing ■ About Recurring Payments
To schedule Fixed Amount and Fixed Pay Date

1 On 04/09/2009, a customer with account number acct1111 creates a recurring payment. The
amount is $50 and the pay date is day 1 of each month. The recurring payment starts at 04/10/
2009 and ends at 06/10/2009. The columns in the recurring_payments table are updated as
follows:

2 On 04/28/2009, three days before next_pay_date, pmtRecurringPayment runs again. There is no
synchronization (bill_scheduled is always N) but a payment is inserted into the check_payments
or creditcard_payments table. The amount of the check is $50.00 and its pay date is 05/01/2009.
The columns in the recurring_payments table are updated as follows:

Repeat step 2 until next_pay_date is after end_date. Then the status changes to Inactive.

Column Name Value

payer_account_number acct1111

bill_scheduled N

status active

last_process_time 04/10/2009

last_pay_date 01/01/1970

next_pay_date 05/01/2009

bill_id null

end_date 06/10/2009

curr_num_payments 0; no payment yet.

Column Name Value

payer_account_number acct1111

bill_scheduled N; this bill has been paid.

status Active, next_pay_date is not after end_date.

last_process_time 04/10/2009; unchanged, because there was no
synchronization.

last_pay_date 05/01/2009; changed to next_pay_date.

next_pay_date 06/01/2009; changed to the next available pay
date.

bill_id null

payment_id Points to the new payment_id inserted into the
check_payments or creditcard_payments table

curr_num_payments 1
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 185

About Payment Processing ■ About Recurring Payments
Payment Job Status Monitoring
When a payment job is done, an email can be sent to the administrator about the status of the email.
You can enable this feature in the Payment Settings.

Payment Job Plug-In
Some Oracle Self-Service E-Billling payment jobs support plug-ins to extend core Oracle Self-Service
E-Billling payment functionality.

1 If the setting When to Synchronize Recurring Payment with statements is Whenever job runs,
then the pmtRecurringPayment job synchronizes the bill with the Command Center every time
pmtRecurringPayment runs. If the setting is Only after the current bill is scheduled, a rebill
is not synchronized unless it is time to schedule the payment.

2 The pmtRecurringPayment job runs again. If the setting Synchronize with Statements Every Time
the Job Runs is Yes, and a rebill arrives, the pmtRecurringPayment job synchronizes the bill with
the statements.

■ If the payment for this bill has already been scheduled, then the job cancels the scheduled
payment, and schedules a payment for the updated amount.

■ If the status of the bill is Processed, then the rebill is ignored.

Each time the pmtRecurringPayment job runs, it checks the bills that are newer than the last time
the pmtRecurringPayment job ran. To determine whether a bill is newer, it checks the due date. If
the due date is the same as the previous bill, then the bill is considered newer if the doc_date
database field or the IVN number is newer, and the bill's payment status is processed. The last
process time of that recurring payment is updated.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A186

8 Customizing Payment
This chapter covers the tasks required to customize the Payment module in Oracle Self-Service E-
Billing. It includes the following topics:

■ Architecture of Oracle Self-Service E-Billing Payment on page 187

■ About Recurring Payment Processing on page 192

■ About Payment Plug-Ins on page 212

■ Customizing Oracle Self-Service E-Billing Payment Template Files on page 219

■ Generating Accounts Receivables (A/R Files) on page 235

■ Customizing the Payment Amount Format on page 242

■ Configuring International Bank Routing on page 243

■ Packaging Oracle Self-Service E-Billing Payment Custom Code on page 245

■ Debugging Payment on page 245

■ About Job Plug-Ins on page 246

■ About Payment Auditing on page 246

■ Implementing Custom Oracle Self-Service E-Billing Payment Cartridges on page 263

■ Avoiding Paying a Bill More Than Once on page 265

■ Handling Multiple Payee ACH Accounts on page 266

■ Using Payment APIs on page 267

Architecture of Oracle Self-Service E-
Billing Payment
Oracle Self-Service E-Billing Payment is based on J2EE. It uses Servlets and JSPs for the presentation
layer and uses Enterprise JavaBeans (EJB) for the business logic layer. It offers the following sets of
functions:

■ Enrollment functions. To enroll users for both viewing bills and paying bills (payment).
Examples of user information include account numbers and email addresses, and examples of
payment account information include bank account numbers and credit card accounts.

■ Payment functions. To make payments, set up payment reminders and recurring payments,
and so on.

■ Administration functions. To set up payment jobs, view payment reports and configure
Payment Settings.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 187

Customizing Payment ■ Architecture of Oracle Self-Service E-Billing Payment
Figure 10 shows an overview of the J2EE architecture of Oracle Self-Service E-Billing.

In this architecture, the servlet is responsible for user authentication. After authentication, the
servlet forwards the request to JSP pages, which do the bulk of the work. The Oracle Self-Service E-
Billing Payment user JSP pages can be categorized into two groups:

■ Enrollment JSP pages are responsible for Oracle Self-Service E-Billing Payment user enrollment

■ Oracle Self-Service E-Billing JSP pages are responsible for core Oracle Self-Service E-Billing
Payment functionality: scheduling payment, setting up recurring payment, and so on.

All Oracle Self-Service E-Billing Payment database access is performed through EJB objects. The JSPs
and servlets do not access the database directly. The Oracle Self-Service E-Billing payment batch
jobs run from the Command Center. For a list and description of Oracle Self-Service E-Billing Payment
jobs, see Administration Guide for Oracle Self-Service E-Billing.

This chapter assumes that you have installed and configured Oracle Self-Service E-Billing. It also
assumes you understand:

■ XML structure and syntax

■ J2EE: JSP, HTML, Struts and Tiles

Primary Payment JavaBeans
This topic describes the primary JavaBeans used for payments in the Billing and Payment, and
Command Center EAR files.

Figure 10. J2EE Architecture of Oracle Self-Service E-Billing
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A188

Customizing Payment ■ Architecture of Oracle Self-Service E-Billing Payment
Table 58 describes the PayServer JavaBean features.

Table 59 describes the PayAdmin Server JavaBean features.

Table 60 describes the IPaymentAccount Manager JavaBean features.

Table 58. PayServer JavaBean Features

JavaBean Feature Description

Function Payserver is the main EJB JavaBean that the Billing and Payment
application uses to access the Oracle Self-Service E-Billing database.

Remote Interface Com.edocs.payment.remote.IPayServer

Home Interface Com.edocs.payment.remote.IPayServerHome

JavaBean Type Stateless

Jar File ejb-Payment-payserver.jar

Table 59. PayAdmin Server JavaBean Features

JavaBean Feature Description

Function PayAdmin Server is the main EJB that Command Center uses to configure
payment settings and display payment reports.

Remote Interface Com.edocs.payment.remote.IPayAdminServer

Home Interface Com.edocs.payment.remote.IPayAdminServerHome

JavaBean Type State-less

Jar File ejb-Payment-admin.jar

Table 60. IPaymentAccount Manager JavaBean Features

JavaBean Feature Description

Function IPaymentAccount Manager is the main EJB used by the Billing and
Payment application to access payment account information in the Oracle
Self-Service E-Billing database.

Remote Interface Com.edocs.payment.remote.PaymentAccountManager

Home Interface Com.edocs.payment.remote.IPaymentAccountManagerHome

JavaBean Type Stateful

Jar File ejb-Payment-acctmgr.jar
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 189

Customizing Payment ■ Architecture of Oracle Self-Service E-Billing Payment
Table 61 describes the CreditCardSubmit JavaBean features.

Table 62 describes the ChkSubmit JavaBean features.

Table 63 describes the ChkUpdate JavaBean features.

Table 61. CreditCardSubmit JavaBean Features

JavaBean Feature Description

Function The CreditCardSubmit JavaBean performs the CreditCardSubmitTask.

Remote Interface Com.edocs.pwc.tasks.ITask

Home Interface Com.edocs.pwc.tasks.ITaskHome

JavaBean Type Stateful

Jar File ejb-Payment-ccsubmit.jar

Table 62. ChkSubmit JavaBean Features

JavaBean Feature Description

Function The ChkSubmit JavaBean performs the CheckSubmitTask.

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

JavaBean Type Stateful

Jar File ejb-Payment-chksubmit.jar

Table 63. ChkUpdate JavaBean Features

JavaBean Feature Description

Function The ChkUpdate JavaBean performs the pmtCheckUpdate task.

Remote Interface com.edocs.pwc.tasks.ITask

Home Interface com.edocs.pwc.tasks.ITaskHome

JavaBean Type Stateful

Jar File ejb-Payment-chkupdate.jar
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A190

Customizing Payment ■ Architecture of Oracle Self-Service E-Billing Payment
Table 64 describes the ConfirmEnroll JavaBean features.

Table 65 describes the NotifyEnroll JavaBean features.

Table 66 describes the RecurPayment JavaBean features.

Table 64. ConfirmEnroll JavaBean Features

JavaBean Feature Description

Function The ConfirmEnroll JavaBean performs the pmtConfirmEnroll task.

Remote Interface Com.edocs.pwc.tasks.ITask

Home Interface Com.edocs.pwc.tasks.ITaskHome

JavaBean Type Stateful

Jar File ejb-Payment-confirm-enroll.jar

Table 65. NotifyEnroll JavaBean Features

JavaBean Feature Description

Function The NotifyEnroll JavaBean performs the Notify enroll task.

Remote Interface Com.edocs.pwc.tasks.ITask

Home Interface Com.edocs.pwc.tasks.ITaskHome

JavaBean Type Stateful

Jar File ejb-Payment-notify-enroll.jar

Table 66. RecurPayment JavaBean Features

JavaBean Feature Description

Function The RecurPayment JavaBean performs the Recurring payment task.

Remote Interface Com.edocs.pwc.tasks.ITask

Home Interface Com.edocs.pwc.tasks.ITaskHome

JavaBean Type Stateful

Jar File ejb-Payment-recur-payment.jar
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 191

Customizing Payment ■ About Recurring Payment Processing
Table 67 describes the PaymentReminder JavaBean.

Table 68 describes the SubmitEnroll JavaBean features.

About Recurring Payment Processing
The recurring payment feature is very complex, involving a great deal of business logic. This topic
discusses the recurring payment processing in detail.

Recurring payments consist of actions at the front-end (UI) and back end (Command Center jobs).
The UI allows a user to insert, update, and delete a recurring payment, and the back end
pmtRecurPayment job makes the payment.

Table 67. PaymentReminder JavaBean Features

JavaBean Feature Description

Function The PaymentReminder JavaBean performs the payment reminder task.

Remote Interface Com.edocs.pwc.tasks.ITask

Home Interface Com.edocs.pwc.tasks.ITaskHome

JavaBean Type Stateful

Jar File ejb-Payment-reminder.jar

Table 68. SubmitEnroll JavaBean Features

JavaBean Feature Description

Function The SubmitEnroll JavaBean performs the submit enroll task.

Remote Interface Com.edocs.pwc.tasks.ITask

Home Interface Com.edocs.pwc.tasks.ITaskHome

JavaBean Type Stateful

Jar File ejb-Payment-submit-enroll.jar
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A192

Customizing Payment ■ About Recurring Payment Processing
The changes to the information in the recurring_payments table are described in Table 69, showing
how payment works.

Table 69. Changes in the Recurring Payments Table

Column Name Comment

AMOUNT_TYPE and AMOUNT These two columns record how the payment amount is generated.
They are only updated through the UI and are used by back-end
jobs to calculate how much to pay. The valid values of
AMOUNT_TYPE are:

■ Fixed amount. Pay a fixed amount and the amount value is
specified by AMOUNT column.

■ Amount due. Pay amount due on the bill and, AMOUNT
column is not used (null).

■ Minimal due. Pay minimum amount due on the bill and
AMOUNT column is not used (null).

■ Less due. Pay the amount due if it is less than the value of
the AMOUNT column; otherwise, pay nothing and send email
notification.

■ Upto amount. Pay the amount due if it is less than the value
of the AMOUNT column; otherwise, pay the value of AMOUNT
and send email notification.

PAY_INTERVAL
DAY_OF_PAY_INTERVAL

MONTH_OF_PAY_INTERVAL

These three columns record how the payment date is generated.
They are only updated through the UI, and are used by back-end
jobs to calculate when to pay. Valid PAY_INTERVAL values are:

■ Weekly. User-specified to make payments weekly. The day of
week is specified by DAY_OF_PAY_INTERVAL. The
MONTH_OF_PAY_INTERVAL is irrelevant.

■ Monthly. User-specified to make payments monthly. The day
of month is specified by DAY_OF_PAY_INTERVAL. The
MONTH_OF_PAY_INTERVAL is irrelevant.

■ Quarterly. User-specified to make payments quarterly. The
day of month is specified by DAY_OF_PAY_INTERVAL. The
month of quarter is specified by MONTH_OF_PAY_INTERVAL
(one of 1,2 or 3).
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 193

Customizing Payment ■ About Recurring Payment Processing
Recurring Payment UI
This topic discusses the actions of the recurring payment UI.

The UI sets up a recurring payment: the UI allows you to insert/update/delete a recurring payment
and get back the list of recurring payments.

START_DATE

END_DATE

CURR_NUM_PAYMENTS

MAX_NUM_PAYMENTS

STATUS

These columns determine when to start the recurring payment
and when to stop it. START_DATE, END_DATE and
MAX_NUM_PAYMENTS can only be updated through the UI.

START_DATE is required, but you set only one of the END_DATE
(end by that date) or MAX_NUM_PAYMENTS (end when this
number of payments is made).

The recurring payment STATUS is active when it is created and it
has not reached either END_DATE or MAX_NUM_PAYMENTS.
When one of them is reached, the STATUS is changed to inactive
and the recurring payment will never take effect again.

If END_DATE is chosen, NEXT_PAY_DATE (the pay date for the
next bill to be paid) is greater than or equal to START_DATE and
less then or equal to END_DATE, the bill will be paid. The STATUS
is set to inactive if NEXT_PAY_DATE > END_DATE.

If MAX_NUM_PAYMENTS is chosen, the STATUS is changed to
inactive when CURR_NUM_PAYMENTS reaches
MAX_NUM_PAYMENTS.

LAST_PAY_DATE This is the pay date of last bill. It is set to 01/07/1970 when
recurring payment is created to indicate that there is valid
information.

NEXT_PAY_DATE This is the pay date of next bill. When the recurring payment job
runs, it schedules a payment with a pay date of NEXT_PAY_DATE.
Note, NEXT_PAY_DATE is calculated based on LAST_PAY_DATE
and PAY_INTERNAL.

Table 69. Changes in the Recurring Payments Table

Column Name Comment
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A194

Customizing Payment ■ About Recurring Payment Processing
Figure 11 illustrates the objects involved in the process.

Retrieving and deleting recurring payments from the database is straightforward, so the next topics
discuss what happens when a recurring payment is inserted or updated.

Figure 11. Objects Involved in the Recurring Payment User Interface
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 195

Customizing Payment ■ About Recurring Payment Processing
Insert Recurring Payment From UI
Figure 12 demonstrates what happens when a recurring payment is inserted into database using the
UI.

The next topic explains RecurringPaymentUtil.calculateInternal(). This method calculates the
next_pay_date and status of the recurring payment before it is being inserted into database.

This method calculates the internal states of recurring payment differently for insert and update. For
the insert operation, this method performs the following tasks:

1 Call init() method: this method sets some of the recurring payment fields.

■ If the user chooses to end recurring payment by maximum number of payments, set
end_date to 01/01/3000 00:00:00.

■ If the user chooses to end recurring payments by a fixed date, set max_num_payments it
java.lang.Integer.MAX_VALUE.

■ Set last_pay_date to 01/01/1970 00:00:00; this means no bill has been paid.

■ Set bill_scheduled to Y if the recurring payment is fixed amount and fixed date. Note, in this
case, the flag is always true because whenever a payment is made, the next payment is
calculated. It has the same effect as making the next bill available immediately.

Figure 12. Recurring Payment Inserted into the Database Using the User Interface
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A196

Customizing Payment ■ About Recurring Payment Processing
■ Set last_process_time to start_date, which by default must be tomorrow or later. This means
that any bills indexed through today (inclusive) will not be picked up by recurring payment.
The recurring payment UI checks whether there are unpaid bills when a recurring payment
is setup, and reminds the user to make a one-time payment to pay the outstanding bill.

2 Call the checkSynchronization method: Checks whether any required information is missing from
recurring payment before inserting it into the database.

3 Check whether the recurring payment has expired by checking the current number of payments
against maximum number of payments. Note, this check always return false for insert case.

4 Calculate the next_pay_date by calling one of calculateMonthly(), calculateQuarterly(),
calculateWeekly() or calculateBeforeDue() depending on whether pay_interval is “monthly”,
“quarterly” or “weekly” or “before_due” respectively.

■ Call calculateMonthly() when pay_interval is “monthly”

This method calculates the next pay date, which is based on last_pay_date, start_date and
day_of_pay_internal. Because last_pay_date is 01/01/1970, the next_pay_date is the
nearest date with day_of_pay_internal after the start_date. If date_of_pay_internal is 29, 30
or 31 and there is no such date in that month, the last day of that month is used. After
next_pay_date is calculated, it is checked against the end_date. If next_pay_date passes the
end_date, the status of the recurring payment is set to “inactive”.

The following table displays some examples of how next_pay_date is calculated:

■ Call calculateQuarterly() when pay_interval is “quarterly”: works similar to “monthly”

■ Call calculateWeekly() when pay_interval is “weekly”: works similar to “weekly”.

■ Call calculateBeforeDue() when pay_interval is “before due”: because there is no bill yet (bill
due date is null), the recurring payment status is set to active and the next_pay_date is set
to 01/01/3000.

Update Recurring Payment From the UI
This topic assumes that the UI prevents a user from updating a recurring payment from fixed date
to before due date or conversely. If the UI is changed to allow a user to do so, the behavior of
recurring payment is not tested.

Day_of_pay_interval Start_date Next_pay_date

1 Sep 10 October 1

10 Sep 10 September 10

15 Sep 10 October 15

31 Sep 10 September 30
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 197

Customizing Payment ■ About Recurring Payment Processing
Figure 13 demonstrates what happens when a recurring payment is updated using the UI into the
database.

The RecurringPaymentUtil.calculateInternal() method calculates the next_pay_date and the status
of the recurring payment before it is inserted into database. Note that this method is also used for
update by the back-end job.

The following example shows how this method processes starting with
iRecurringPaymentLog.update():

1 Call IRecurringPaymentLog.update()

2 Call RecurringPaymentUtil.calculateInternal()

3 Call checkSynchronization() method to check whether the information required for recurring
payment is present.

4 If checkSynchronization() throws an exception indicating missed information, then:

■ Call synchronize() method to read the missed information from the database and populate
the missing information into the recurring payment object.

■ Call checkSynchronization() again to make sure the required information has been
populated.

Figure 13. Recurring Payment Inserted into the Database Using the Database
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A198

Customizing Payment ■ About Recurring Payment Processing
■ Call init() method: unlike the insert operation, this method checks whether the recurring
payment has started or not by checking the last_pay_date (01/01/1970 means not started
yet) and then sets the last process time to the start_date of the recurring payment if the
recurring payment has not been started. The last process time will not be updated if recurring
payment has been started.

5 Check whether the recurring payment has expired by checking the current number of payments
against maximum number of payments. If true, set the recurring payment as inactive and return.

6 Calculate next_pay_date and recurring payment status by calling one of calculateMonthly(),
calculateQuarterly() or calculateWeekly() based on pay_interval of monthly, quarterly or weekly.

a Call calculateMonthly() when pay_interval is monthly, to calculate the next pay date.

b If the last_pay_date is 01/01/1970, then the next_pay_date is calculated based on the
start_date and day_of_pay_interval. It is set to the nearest date with day_of_pay_interval as
day of month after the start_date. This is the same as the insert case.

c If the last_pay_date is not 01/01/1970, that means that recurring payment has started, so the
next_pay_date is calculated based on the last_pay_date and day_of_pay_interval. It is set to the
date one month after the last_pay_date. The calculation does not depend on the current date.
For example, if the recurring payment job runs today on October 1, the last_pay_date is Aug 30
and day_of_pay_interval is 30, the next_pay_date will be Sep 30 (not October 30) even though
this date is in the past. In the case of fixed date and pay amount due, this can pose a problem
if there is no bill for a certain month: the pay date will be in the past. To fix the problem, the
recurring payment job will move the last_pay_date ahead by one month if there is no bill for that
month. See following discussion for more details about the recurring payment job.

d If day_of_pay_interval is 29, 30 or 31 and there is no such date in that month, the last day of
that month is used.

After next_pay_date is calculated, it is checked against the end_date and if it passes the
end_date, the status of the recurring payment is set to inactive.

■ Call calculateQuarterly() when pay_interval is quarterly, it works similarly to monthly.

■ Call calculateWeekly() when pay_interval is weekly, it works similar to weekly.

■ Call calculateBeforeDue() when pay_interval is before_due:

First check whether the recurring payment has been synchronized (bill due date not null) and
if so, set status to active and next pays date to 01/01/3000 and return.

Calculate the proposed next pay date by current bill due date and day_of_internal.

If the proposed next_pay_date is before start_date, set the status of recurring payment to
active and next_pay_date to 01/01/3000 and return: the bill will not be paid in this case
because it falls outside the effective period of the recurring payment.

If the proposed next pay date is after end_date, set the status of recurring payment to
inactive and set the next_pay_date to 01/01/3000 and return.

Otherwise, set the status of the recurring payment to active and set its next_pay_date to the
proposed next pay date.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 199

Customizing Payment ■ About Recurring Payment Processing
Recurring Payment – Back-End Job
The pmtRecurringPayment job gets bills from the Command Center and then schedules payments.
The first process is called synchronization and the second process is called scheduling.

Recurring Payment Synchronization
During the synchronization process, the job retrieves a list of recurring payments to be synchronized,
and then tries to get the bills for the recurring payments from the Command Center. Figure 14
illustrates this process.

Figure 14. The Recurrent Payment Synchronization Process
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A200

Customizing Payment ■ About Recurring Payment Processing
Figure 15 shows the synchronization.

Synchronization follows these steps:

1 RecurPaymentTask.executeTask() is called when the job runs, which calls
RecurringPaymentTask.synchronizeSummary().

2 RecurringPaymentTask.synchronizeSummary() is called. This method does the real work of
synchronization and following are the actions taken in this method.

3 IRecurringPaymentLog.getRecurringPaymentsToBeSynchronized() is called to get a list of
recurring payments to be synchronized. The query result is affected by the recurring payment
job configuration parameter When to Synchronize Recurring Payment with Oracle. When this
configuration is Whenever job runs, all the recurring payments are retrieved from the
recurring_payments table with payee_id as the job DDN and status as active. If Only after
current bill is scheduled is selected, then all payments with the payee_id as job DDN and status
as active” and bill_scheduled as Y are retrieved from the recurring_payments table.

4 For each recurring payment, IRecurringPaymentPlugIn.preGetLatestSummary() is called. This
method allows the recurring payment plug-in code to decide whether to retrieve bills for a
particular recurring payment based on biller-specific business rules.

5 Call RecurPaymentTask.updateRecuringPaymentOnly() if the plug-in rejects this recurring
payment by returning PRE_GET_LATEST_SUMMARY_REJECT. This method performs these
functions:

■ Update last_process_time to the current time.

Figure 15. Recurring Payment Synchronization
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 201

Customizing Payment ■ About Recurring Payment Processing
■ If the recurring payment pay date is fixed date (monthly/quarterly/weekly) and pay amount
is based on (minimum) amount due, and no bill arrives for this pay period (bill_scheduled is
Y and current time is after the current next_pay_date), the last_pay_date is updated to
current next_pay_date. This ensures that if no bill arrives for this pay period; the next bill
will be paid on the correct date.

■ Call IRecurringPayment.update(): this method calculates the next_pay_date based on the
current last_pay_date.

6 Call IBillDepot.getNewBillSummary(). This interface is implemented by
com.edocs.payment.imported.eadirect.BillDepot. The BillDepot class retrieves the latest bill
summary for the specified account.

■ BillDepot.getNewBillSummary() is called, which then calls BillDepot.getSummary().

■ BillDepot.getSummary() is called. This method calls IDataSource.getDocumentSummary()
to get all the bills indexed for this account between the last_process_time of the recurring
payment and the current job run time.

■ The returned bills are in the format of name value pairs with value of string. They are
interpreted to retrieve due date, amount due and/or minimum amount due.

❏ For each bill, if minimum amount due is not null, call BillDepot.preParseMinAmountDue()
to give a child class of BillDepot (through the plug-in) a chance to manipulate the
minimum amount due string before it is parsed, then it parses min amount due.

❏ If the bill’s amount due is not null, call BillDepot.preParseAmountDue() to give child class
of BillDepot (through the plug-in) a chance to manipulate the amount due string before
it is parsed, then it parses the amount due. If the amount due fails to parse, the bill is
ignored.

❏ If the bill has no amount due, or its amount due is set to null by preParseAmountDue(),
or the amount due failed parsing, then the bill is ignored.

❏ If the bill’s due date is not null, call BillDepot.preParseDueDate() to give child class of
BillDepot (through the plug-in) a chance to manipulate the due date string before it is
parsed, then it parses the due date.

❏ If the bill has no due date, or its due date is set to null by preParseAmountDue(), or the
due date failed parsing, then the bill is ignored.

■ All the successfully parsed bills are compared with the bill summary associated with the
current recurring payment, if the summary is not null. The following business rules are used
to decide which bill is the latest one:

The due dates of the bill summaries retrieved are compared and the one with latest due date
is chosen.

For rebill, multiple bills with the same due date can be retrieved. In this case, a rebill is
chosen based on the following rules: the one with latest doc date and in case of the same
doc date, the one with the larger IVN number. This assumes that a rebill is indexed after its
original bill. A rebill will be ignored if its original bill has been paid (the bill_scheduled flag of
recurring payment is Y).

■ BillDepot.Summary() returns the latest bill if there is one found, otherwise, it returns null.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A202

Customizing Payment ■ About Recurring Payment Processing
Recurring Payment Scheduling
Recurring payment scheduling processes as follows:

1 Call RecurPaymentTask.isValidBillSummar() to validate the latest retrieved bill summary. The
latest bill summary could be ignored if it has no bill due date, or if the recurring payment is based
on minimum amount due but the bill summary has no minimum amount due, or the recurring
payment is based on amount due but the bill summary has no amount due.

2 Now you have a valid bill summary. If the payment to the previous bill summary is still in
scheduled status, it does the following:

■ Call RecurPaymentTask.cancelScheduledPayment() to cancel this payment. The reason to
cancel it is that the new bill summary just retrieved must include the balance of this
scheduled bill, cancel the payment so that it will not pay the same bill twice.

■ Call RecurPaymentTask.modifyLastPayDate(): If a recurring payment has a fixed pay date,
but the amount is based on amount due or minimum amount due, it is necessary to back
date the last pay date because the previous bill payment has been cancelled. Failing to do so
will cause the current new bill being paid in next pay interval, not the current one. For
example, assume that current bill cycle is October, the previous bill was retrieved on October
10 and is scheduled to pay on October 15. As a result, the last_pay_date and next_pay_date
of the recurring payment are updated to October 15 and November 15, respectively. On
October 11, a new bill is retrieved and the payment is scheduled. If Oracle Self-Service E-
Billing does not back up the last_pay_date, the new bill will be scheduled to pay on November
15. But in this case, it is necessary to pay the bill on October 15 because it is still in the
October billing cycle. To fulfill this goal, go back date the last_pay_date to Sep 15 so the
next_pay_date will be calculated as October 15, which will be used as the pay date for the
new bill.

3 Call RecurPaymentTask.insertNewBillAndUpdateRecurring(), which inserts the retrieved new bill
and updates recurring payment accordingly.

■ Call IRecurringPaymentPlugIn.preInsertLatestSummary() before inserting the bill summary
in the payment_bill_summaries table.

■ If PRE_INSERT_LATEST_SUMMARY_REJECT is returned from the plug-in, call
RecurPaymenTask.updateRecurringPaymentOnly() and return. See step 5 for details about
what this method does.

■ Call IBillSummaryLog.insert() to insert this new bill summary.

■ If IBillSummaryLog.insert() throws DuplicateKeyException indicating that this bill is already
in the database, so call RecurPaymenTask.updateRecurringPaymentOnly(). See step 5 for
details about what this method does.

■ Set the bill_scheduled flag to N if the payment amount is not negative, or Y if it is negative.
This means that no credit/reversal will be issued from recurring payment; the credit appears
as part of the next bill.

■ Set the bill_id of the recurring payment to the one of the new bill summary.

■ Call IRecurringPaymentPlugIn.preUpdateSynchronizedRecurring().

■ If PRE_UPDATE_SYNCHRONIZED_RECURRING_REJECT is returned from the plug-in, call
RecurPaymenTask.updateRecurringPaymentOnly() and return. See step 5 for details about
what this method does.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 203

Customizing Payment ■ About Recurring Payment Processing
■ Call IRecurringPaymentLog.update() to update the recurring payment. The following table
lists the information being updated:

Column Value

last_pay_date In the case where the pay date is fixed, but amount is based on
amount due, last_pay_date could be moved one pay_interval back if
a scheduled payment is cancelled because a new bill arrives.
Otherwise, last_pay_date will stay the same.

next_pay_date Next_pay_date will be updated in
RecurringPaymentUtil.calculateInternal(). In the case of fixed pay
date, it will be updated based on last_pay_date; in case of before due,
it will be updated based on the due date of the new bill. See “Update
Recurring Payment From the UI” on page 197 for more information.

status Because next_pay_date is changed, the status could be changed to
inactive if next_pay_date falls after end_date.

bill_id It is set to the bill_id (doc ID) of the bill being inserted into the
payment_bill_summaries table.

bill_scheduled The bill_scheduled flag is set to N if the payment amount is not
negative, Y if it is negative.

last_process_time Set to the current time.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A204

Customizing Payment ■ About Recurring Payment Processing
Recurring Payment Scheduling Workflow
Recurring Payment Scheduling Workflow schedules recurring payments for processing with the
pmtRecurringPayment job. During scheduling processing, the pmtRecurringPayment job retrieves a
list of recurring payments to be scheduled, and then schedules them, as shown in Figure 16.

Figure 17 shows the action sequence:

Figure 16. Recurring Payment Scheduling Workflow

Figure 17. Recurring Payment Scheduling Action Sequence
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 205

Customizing Payment ■ About Recurring Payment Processing
Workflow Description. This workflow performs the following actions:

1 RecurPaymentTask.execute().

2 RecurringPaymentTask.schedulePayments(). This step performs the scheduling work.

3 IRecurringPaymentLog.getRecurringPaymentsToBeScheduled(). This step gets a list of
recurring payments to be scheduled. The result is affected by the recurring payment job
configuration parameter Number of days before pay date to schedule the payment, which is a
number, N. The SQL query finds all the recurring payments where the payee_id is the job’s DDN
reference, bill_scheduled is N and next_pay_date is less than or equal to today plus N.

4 IPayUserAccountAccessor.getPaymentAccount(). This step gets the current payment
account information associated with this recurring payment. A sanity check is done on the
retrieved payment account and different actions can be take based on the result:

■ If no payment account has been retrieved, which means it has been deleted from database,
then the current recurring payment setup will be de-activated
(IRecurringPaymentLog.update() is called to update status to inactive) and no payment is
scheduled.

■ If the payment account is a check account, its status is cancelled, and the job configuration
parameter “Cancel recurring payment if payment account is canceled?” is true, then the
current recurring payment setup is de- activated (IRecurringPaymentLog.update() is called
to update status to inactive) and no payment is scheduled.

■ If the payment account is a credit card account, it has expired, and the job configuration
parameter Cancel recurring payment if payment account is canceled? is true, then the
current recurring payment setup is de-activated (IRecurringPaymentLog.update() is called to
update status to inactive) and no payment is scheduled.

5 RecurPaymentTask.createPaymentTransaction(). This step creates a new payment
transaction (either a check or a credit card) with status as scheduled and pay date and amount
as specified by recurring payment setup.

6 IRecurringPaymentPlugin.preSchedulePayment(). This step gives PS a change to
customize the payment transaction before it is inserted into the database. If this method returns
PRE_SCHEDUE_PAYMENT_REJECT, the payment will not be scheduled, and the program return to
process next recurring payment. If not, the program will go to the next step to schedule the
payment.

7 ICheckPaymentLog.insert(). This step inserts a check or ICreditCardPaymentLog.insert() to
insert a credit card if the amount of the payment is not negative (it will never be negative
because the bill_scheduled will not be N if amount is negative. See job synchronization part for
detail). The following table lists part of the payment information inserted into the payment
tables:

Column Value

status 6

pay_date The next_pay_date (calculated during synchronization process) of the
current recurring payment. Because recurring payment will be updated
after this insert operation, this value is the same value as
last_pay_date of the updated recurring payment.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A206

Customizing Payment ■ About Recurring Payment Processing
8 IRecurringPaymentLog.update(). This step updates the recurring payment. The following
information of the recurring payment will be updated:

Amount This value is decided by amount_type and the amount of the recurring
payment. It is calculated when
RecurPaymentTask.createPaymentTransaction() is called. It must be
the same as the amount column of the recurring payment if
amount_type is Fixed. It must be the same as the amount_due or
min_amount_due of the bill associated with current recurring payment
if amount_type is amount due or minimal due, respectively. If
amount_type is “less due”, the payment amount is the amount due of
the bill if amount due is less than or equal to the amount column value
of the recurring payment. Otherwise, the payment amount value is 0.
If amount_type is “upto amount”, then the payment amount is the
amount due of the bill if amount due is less than or equal to the amount
column value of the recurring payment. Otherwise, the payment
amount is the amount column value of the recurring payment.

bill_id Same as the one from recurring_payment.

Pid Same as the one from recurring_payment.

payer_id Same as the one from recurring_payment.

payer_acct_number Same as the one from recurring_payment.

Column Value

Curr_num_payments Increased by 1

Bill_scheduled N if pay date is on fixed date (monthly, quarterly or weekly) and pay
amount is fixed amount, otherwise Y.

Last_pay_date The last_pay_date is set to the current next_pay_date of the recurring
payment.

Next_pay_date After last_pay_date is set to the current next_pay_date, the
next_pay_date is calculated again by
RecurringPaymentUtil.calculateInternal(). If the payment is using a
fixed pay date (weekly, quarterly or weekly), then next_pay_date is
calculated and moved to the next pay date in the next pay interval. In
case of before due date, the next pay date will be calculated based on
the current due date (whose bill has been paid), so this next_pay_date
has no meaning until the next bill is synchronized.

Status Status is recalculated and will be changed to inactive if next_pay_date
is after end_date, or curr_num_payments is greater than
max_num_payments.

Column Value
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 207

Customizing Payment ■ About Recurring Payment Processing
9 IRecurringPaymentPlugIn.preSendEmail(). This step lets the plug-in customize the email
being sent out. The email is not sent out if this method returns PRE_SEND_EMAIL_REJECT.

10 Template.parse(). This step parses the email template and generates the content of email.

11 PaymentMailer.send(). This step sends email.

Recurring Payment FAQ
This topic answers a few common questions about recurring payment.

■ Why is my current bill not paid by recurring payment after I set up my recurring
payment?

The recurring payment start date can only start from tomorrow, so the last_process_date is set
to start from tomorrow. This means all the bills indexed before today will not be processed by
the recurring payment. The reason is that, currently, there is no reliable way for recurring
payment to know whether the current bill has been paid or not. The user might have paid it
through a one-time payment or through paper check. To avoid paying the bill twice, recurring
payment will only start processing bills indexed since tomorrow.

When a recurring payment is created, the JSP page checks whether there are any indexed bills
for the account. If so, Oracle Self-Service E-Billing retrieves the latest bill for the account. Oracle
Self-Service E-Billing also checks whether the latest bill has been paid by checking its doc ID
against the bill_id of Oracle Self-Service E-Billing Payment tables. If there is no match, it is
reasonable to assume that the bill has not been paid, so Oracle Self-Service E-Billing prompts
the user to make a one-time payment to pay that bill.

■ What assumptions does recurring payment make?

Recurring payment assumes that the bill balances are accumulative; that is, the bill of this billing
cycle includes the balance of the bill from previous billing cycle, and the later bill has a due date
after that of the previous bill (the only situation where the same due date can happen is for a
rebill).

Recurring payment also assumes that each bill has a date indicating the chronological order of
bills; this is usually the date when the bill arrives. For example, in the case of the Command
Center, doc date can be used to indicate the chronological order of arriving bills. In the case of
external billing software, other dates such as statement date can be used for this purpose. When
recurring payment synchronizes with the Command Center or other billing software, it must
retrieve the latest bill issued between the last_process_time and current time. This chronological
date of bills (doc date or statement date) is used to guarantee that functionality.

■ Can recurring payment work with billing software other than the Command Center?

Yes. Recurring payment assumes nothing specific to the Command Center and the only action to
take is to reimplement the IBillDepot API. The billing software must meet assumptions stated in
item 2.

■ Must the bills have due dates?

Yes, if the recurring payment is not fixed date and fixed amount. The due date is used to decide
which bill is the latest one to pay. For the Command Center, you must index the due date or some
date equivalent to use as the due date.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A208

Customizing Payment ■ About Recurring Payment Processing
■ What is the Rebill feature? How do I enable it?

The Rebill feature lets you issue the same bill multiple times during one billing cycle to handle
adjustments. All the rebills must have the same due dates. To decide which rebill is the latest bill
to pay, the current IBillDepot implementation considers the latest one to be the one with latest
doc date. If there is more than one bill with same doc date, the bill with highest IVN number is
chosen. Note, this implementation assumes that a later rebill is always indexed after a previous
rebill, and no rebills will be put together in one data file. This would cause the rebills to have
same doc date and IVN number. If you want to consider other factor such as amount for making
the decision, you must reimplement IBillDepot.

The Rebill feature is enabled by job configuration parameter When to synchronize with Oracle.
To use the Rebill feature, you must choose Whenever the job runs. If you do not use the Rebill
feature, you can choose either Whenever the job runs, or Only after current bill is scheduled.

Technically, there is not much difference between a regular bill and rebill. The major difference
is the logic required to decide which rebill is the latest bill, which goes beyond checking bill due
date. You can think about non rebill as a special case of rebill; rebill allows the same bill to appear
more than once in a single billing period, but non rebill appears only once. The code and
programming logic does not distinguish between these two cases.

■ When rebill is not involved, is there any difference between the job configuration
options for the job configuration parameter When to Synchronize with Oracle?

It must not affect functionality, and you can choose either of them. Consider the following two
possibilities:

■ Performance can deteriorate if you choose Whenever the job runs because instead of waiting
until current bill is scheduled, the job will try to synchronize with the Command Center for
each recurring payment. This can be especially true if you are talking with billing software
other than the Command Center that might have a slow connection.

■ A scheduled payment can be cancelled because of an unexpected early-arrival of next bill.
Because the user only wants to pay the latest bill, the scheduled payment will be canceled
and the new bill will be scheduled.

■ Why and when can a scheduled payment be cancelled by recurring payment job?

The cancellation of a scheduled payment can only happen when the job configuration When to
synchronize with Oracle is set to Whenever job runs.

It can happen because of two reasons:

■ The first case is: (for rebill) after the original bill is scheduled, but before it is processed, the
rebill arrives. In this case, the original payment will be cancelled, and the rebill will be
scheduled.

■ Second, the bill of this billing cycle is still scheduled, but before it is processed, the bill of
next billing cycle arrives (early). In this case, this bill’s payment is cancelled and the next bill
is scheduled.

In case of fixed pay date and pay amount due, if a scheduled payment is cancelled, move the
last_pay_date and next_pay_date back by the pay_interval before the next bill is scheduled. This
ensures that the next bill is paid with the same pay date as the previous bill.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 209

Customizing Payment ■ About Recurring Payment Processing
■ In the case of fixed pay date and pay amount due, what happens if there is no bill for
this billing cycle?

Recurring payment can never be triggered for a billing cycle if there is no bill, or if the bill’s
balance is negative (recurring payment does not issue credit). For example, a user sets to pay
the bill's amount due on the 15th of each month, and current month is Oct. The next_pay_date
will be set to October 15. However, if no bill arrives before October 15, then after October 15,
the next_pay_date will be changed to November 15 to ensure that the bill arrives it will be paid
in the next pay period. Otherwise, the user might end up paying the November bill with the
October pay date.

■ Will recurring payment make a pay if the balance is negative?

No. Instead, recurring payment assumes that this credit will roll into the balance of next bill.
However, a zero dollar payment will be made if the balance is zero.

■ Can I set up a recurring payment to pay from multiple payment accounts?

No, you can only pay from one payment account for each recurring payment.

■ Why does the default recurring payment update UI limit some options after the
recurring payment is started? For example, it is not possible to switch from pay on fixed date
to pay before due.

The logic to calculate next pay date becomes extremely complicated, so it is disallowed. If a
custom UI does allow such an update, the behavior is undefined.

■ What happens if my credit card account expires?

The recurring payment does not schedule a payment. It is then de-activated and an email is sent
to the users to indicate that they must update their credit card account information. In this case,
the user must log in to cancel the inactive recurring payment and create a new one.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A210

Customizing Payment ■ About Recurring Payment Processing
■ Why was my bill not scheduled?

This is the most often asked question, but there can be many causes. Follow these steps to debug
this problem. To start, review the recurring payment logic steps described previously.

First, check whether this is a false alarm. A bill can be synchronized, but yet scheduled. Also
check the next_pay_date to see whether it reflects the correct pay date for the bill.

If the bill is not even synchronized, check whether it has been indexed;

If indexed, check whether it falls into the synchronization period. Only bills whose doc date fall
between last_process_time and the current time will be considered.

Check whether this bill has valid information. For example, whether its due date, amount due are
valid parse-able strings. A bill with invalid bill information or with negative balance will not be
paid.

Even though this is a valid bill, it might not still be paid because its due date is before the due
date of the current bill associated with the recurring payment.

Custom plug-ins might be a factor. The custom code might not have been thoroughly tested, so
check the plug-in the code carefully. Especially if the custom plug-in is manipulating the bill’s due
date or amount due or recurring payment information directly.

The bill cannot be scheduled because the payment account has been cancelled or deleted or de-
activated.

■ Will a single recurring payment failure fail the whole recurring payment job?

No. If it does, it is a bug. If this happens, create a service request (SR) on My Oracle Support.
Alternatively, you can phone Oracle Global Customer Support directly to create a service request
or get a status update on your current SR. Support phone numbers are listed on My Oracle
Support.

■ What is bill ID?

A unique ID used to identify each bill. In the Command Center, it is the doc ID.

■ What is last process time? What is it used for?

The time when the last recurring payment job ran. It is used to ensure that a bill is only retrieved
once from the Command Center. Oracle Self-Service E-Billing Payment only retrieves bills
indexed between the last process time and the current time. That is, bills whose doc date is
greater than or equal to the last process time and less than or equal to the current time. The last
process time only contains date information (because the doc date only contains date
information).

■ What happens if a bill is indexed twice?

This is similar to rebill. The two bills have the same due dates, but the second indexing produces
a later doc date, or a larger IVN, if they are indexed in the same day.

If When to synchronize with is set to Whenever job runs, this is a true rebill case, and will be
treated as a rebill.

If When to synchronize with Oracle is set to After current bill is scheduled, the second indexed
bill will be ignored during next round of synchronization.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 211

Customizing Payment ■ About Payment Plug-Ins
About Payment Plug-Ins
The Oracle Self-Service E-Billing Payment plug-in is a callback, which allows you to add code to
extend the functionality of Oracle Self-Service E-Billing. The following payment plug-ins are included
with Oracle Self-Service E-Billing:

■ IAchCheckSubmitPlugIn for the ACH cartridge when submitting checks to ACH.

■ IPayPalCreditCardSubmitPlugIn for the PayPal Payflow Pro cartridge when submitting credit cards
to PayPal Payflow Pro.

■ IPaymentReminderPlugIn for the job pmtPaymentReminder

■ IRecurringPaymentPlugIn for the job pmtRecurPayment

Each plug-in comes with a default implementation. It is recommended that you derive your plug-in
from the default implementation to ensure that future updates to the plug-in will not break your
code. The plug-ins and sample code are provided in Sample Plugin Code on page 87.

ACH Check Submit Plug-In
The ACH cartridge supports a plug-in to modify ACH file generation. When the pmtCheckSubmit job
runs for ACH, it calls the methods of the implementation of IAchCheckSubmitPlugIn (defined in
Payment Settings) during numerous events. The default implementation is AchCheckSubmitPlugIn,
which does nothing.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A212

Customizing Payment ■ About Payment Plug-Ins
Figure 18 shows the workflow for the pmtCheckSubmit job plug-in.

Writing a Plug-in
You can use the pmtCheckSubmit plug-in to change the default name of the ACH file, create a
remittance file in addition to the standard ACH file, deny a check or change the default information
put into the ACH file. Create your own implementation to accomplish these tasks. See “Accessing
Oracle Self-Service E-Billing Javadoc” on page 31 for information about writing an implementation of
IAchCheckSubmitPlugIn.

Figure 18. pmtCheckSubmit Job Plug-in Workflow
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 213

Customizing Payment ■ About Payment Plug-Ins
To create your own implementation

1 Derive your implementation from the default implementation AchCheckSubmitPlugIn.

2 Overwrite the methods whose behavior you want to change.

3 When compiling, include Payment_common.jar and Payment_client.jar into your java classpath.

4 Package this class into Payment_custom.jar of each EAR file. See “Packaging Oracle Self-Service
E-Billing Payment Custom Code” on page 245 for information about redeploying EAR files.

5 Change the Payment Settings to point to your new class.

Using a Plug-in to Write ACH Addenda Records
You can use the pmtCheckSubmit plug-in to write addenda records for ACH. The implementation
called AddendaCheckSubmitPlugIn gets the invoice information of a payment and writes them out as
addenda records. For more information about this class or its implementation details, see “Accessing
Oracle Self-Service E-Billing Javadoc” on page 31, and then follow the steps in “Writing a Plug-in” on
page 213 to write your own implementation.

PayPal Payflow Pro Credit Card Payment Plug-in
Unlike the ACH plug-in, the PayPal Payflow Pro credit card plug-in CreditCardSubmit is invoked from
both the front end (when an instant credit card is made) and the back end (when credit card submit
job runs). This plug-in allows you to audit the credit card payment, deny it, or even changes the
HTTP request sent to PayPal Payflow Pro HTTP server. Check the API IPayPalCreditCardSubmitPlugIn
for details.

Figure 19 shows the workflow of the plug-in when an instant credit card payment is submitted:

Figure 19. Workflow of the Plug-in when an Instant Credit Card Payment is Submitted
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A214

Customizing Payment ■ About Payment Plug-Ins
Figure 20 shows the workflow of the plug-in when the pmtCreditCardSubmit job runs for PayPal
Payflow Pro:

Writing a Credit Card Plug-in
The default implementation of IPayPalCreditCardSubmitPlugIn, PayPalCreditCardSubmitPlugIn, does
nothing. You must write an implementation.

To write your own implementation

1 Derive your implementation from PayPalCreditCardSubmitPlugIn.

2 Overwrite the methods for which you want to change the default behavior.

3 When compiling, include Payment_common.jar and Payment_client.jar in your java class path.

4 Package this class into Payment_custom.jar of each EAR file.

5 Change the Payment Settings of that DDN to use the new plug-in implementation.

Payment Reminder Plug-in
The payment reminder plug-in is invoked when the pmtPaymentReminder job runs.
pmtPaymentReminder performs the following functions:

Figure 20. Workflow of the Plug-in when the pmtCreditCardSubmit Job Runs for PayPal Payflow Pro
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 215

Customizing Payment ■ About Payment Plug-Ins
■ Regular payment reminders

■ Check status notification

■ Credit card status notification

There are corresponding plug-ins for the preceding tasks. Refer to
com.edocs.payment.tasks.reminder.IPaymentReminderPlugIn for details.

Figure 21 shows the workflow for the plug-in of the pmtPaymentReminder job:

Creating a pmtPaymentReminder Plug-in
The default plug-in implementation, com.edocs.payment.tasks.reminder.PaymentReminderPlugIn,
does nothing.

Figure 21. pmtPaymentReminder Job Plug-in Workflow
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A216

Customizing Payment ■ About Payment Plug-Ins
To implement your own plug-in

1 Derive your implementation class from PaymentReminderPlugIn.

2 Overwrite the methods for you want to change behavior.

3 When compiling, include Payment_common.jar and Payment_client.jar in your javac class path.

4 Package this class into Payment_custom.jar of each EAR file.

5 Update the pmtPaymentReminder job configuration to use the new class.

Recurring Payment Plug-in
The recurring payment plug-in is called when the pmtRecurPayment job runs. You can use this plug-
in to prevent a recurring payment from being scheduled based on business rules. Or, you can extract
some indexed fields from the index table and put them into the payment being scheduled. The
implementations: com.edocs.tasks.payment.recur_payment.RecurringPaymentPlugIn, is the default
one and it does nothing.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 217

Customizing Payment ■ About Payment Plug-Ins
The file SampleRecurringPlugin.java provides an example implementation. Figure 22 shows the
workflow of recurring payment and how the plug-in works.

Writing a Plug-in
The default plug-in implementation, com.edocs.payment.tasks.recur_payment.
RecurringPaymentPlugIn, does nothing.

To implement your own plug-in

1 Derive your implementation class from RecurringPaymentPlugIn.

Figure 22. Recurring Payment Workflow
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A218

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
2 Overwrite the method that you want to change behavior of.

3 When compiling, include Payment_common.jar and Payment_client.jar in your javac class path.

4 Package this class into Payment_custom.jar of each EAR file.

5 Update the pmtRecurPayment job configuration to use the new class.

Populating Index Fields in Payment Flexible Fields
The plug-in com.edocs.paymenttasks.recur_payment.SampleRecurringPlugIn demonstrates how to
use a plug-in to populate the flexible fields of the Oracle Self-Service E-Billing Payment database
(ICheck or ICreditCard) with the indexed information from the indexer table.

Customizing Oracle Self-Service E-
Billing Payment Template Files
Oracle Self-Service E-Billing provides a template engine to generate text messages, such as email,
ACH files, and A/R files. This topic describes how to use Oracle Self-Service E-Billing Payment
templates to customize those text messages.

Oracle Self-Service E-Billing Payment Template Engine
The Oracle Self-Service E-Billing Payment templates provide a generic template mechanism based
on Java reflection. The template engine generates custom text output based on the templates.
Similar to JSP, the template engine replaces the special placeholders inserted into the text file with
the values of Java objects. For more detailed API documentation, see “Accessing Oracle Self-Service
E-Billing Javadoc” on page 31 for details on accessing Oracle Self-Service E-Billing Javadoc.

The Template engine hosts a pool of objects in its context in the form of a hash table. You can refer
to the variables in that context by their names. For example, there is a Check object whose name is
check. You can refer to that object as %check%. This means replace %check% with the string
returned from check.toString(). This is true for all Java objects except java.util.Date, where
getTime() is called and inserts a long value that is the number of milliseconds since January 1, 1970,
00:00:00 GMT. If a method returns void, then nothing prints.

The content of the message consists of text plus resolved placeholders. Placeholders are Java
variables, which are Payment hosted objects including their attributes and methods.

Enclose all template variables with two percent signs (%%). To escape %, use %%. For example,
%%40 means %40.

In addition to referring to variables, you can also access an object’s public fields and methods. The
valid reference is %name.field%, %name.method(param1, param2, ...)%, where each parameter to
a method can be name, name.field, or name.method(param1, param2, ,,,). The number of
parameters is unlimited and an arbitrary level of method nesting is allowed (nesting means that a
method's return value is used as a parameter when calling another method). For example, suppose
there are two objects in contexts: buf which is a StringBuffer, and str which is a String. The following
references are valid: %buf%, %buf.append(str)%, %buf.append(str.toString())%.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 219

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
A static field or method can be accessed directly without instantiating an object. For example,
java.lang.Integer has a static field called MIN_VALUE and a static method called parseInt. You can
refer to them as %java.lang.Integer.MIN_VALUE% or %java.lang.Integer.parseInt(“12.34”)%.

All variables must be preset by calling putToContext on the Template class. Some variables are
already set by Oracle Self-Service E-Billing Payment which you can use directly. But you can also put
your own variables into the context:

%template.putToContext(“buf”, new java.lang.StringBuffer())%

This means to put a new StringBuffer object called buf into the template context. You can then refer
to this object by its name:

%buf.append(“abc”)%

This appends “abc” to the end of the StringBuffer’s value.

The current Oracle Self-Service E-Billing Payment engine has some limitations. It cannot do math
operations, such as x plus y. You must call a Java method to do math operations. Another limitation
is that it does not allow you to concatenate method calls, for example: %variable.method().method()
%. You must write your own Java method to do method concatenation.

Included with the Oracle Self-Service E-Billing Payment package, there are a few utility classes to
help you overcome the weakness of Oracle Self-Service E-Billing Payment Template Engine. These
classes are:

com.edocs.payment.util.DecimalUtil
com.edocs.payment.util.DateUtil
com.edocs.payment.util.StringUtil.

One useful method in StringUtil is concat, which you declare and use as follows:

public static String concat(String s1, String s2, String s3)
%com.edocs.payment.util.StringUtil.concat(s1,s2,s3)%

Remember, you cannot do %s1.concat(s2).concat(s3)% inside a template, instead, you must call this
function from template:

%com.edocs.payment.util.StringUtil.concat(s1,s2,s3)%.

Another useful method is format() from DateUtil class. This method helps format a Date object into
different display formats. For example: %com.edocs.payment.util.DateUtil.format(“MMM dd, yyyy”,
check.getPayDate())% formats a check’s pay date to display as “Jan 01, 2000.” For a complete list
of possible date formats, please check the JDK document about java.text.SimpleDateFormat.

When writing customized Java code, it is strongly recommended that you use static methods as
frequently as possible, so you can call them directly from a template without creating an instance of
that object first. For example, by default, the individual ID field of an ACH entry detail field is
populated with the customer’s account number using %check.getPayerAcctNumber()%. The
returned result is 16 bytes long, but the account number is 15 bytes, so you must truncate the
retrieved value.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A220

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
To create a java class to do truncation and enable it in the Oracle Self-Service E-
Billing Payment Template Engine

1 Write a Java class:

package com.edocs.ps;
public class MyUtil {
 public static String truncate(String s){
 return s.substring(1);
 }
}

2 Compile the class and put it into Payment_custom.jar of each EAR file, then redeploy the EAR
files.

3 Refer to this class in a template as follows:

%com.edocs.ps.MyUtil.truncate(check.getPayerAcctNumber())%

Customizing Email Templates
The Payment module uses template files to generate customized text that will be sent in a notification
email. The email templates can be customized for you by Oracle Professional Services, or you can
customize them yourself.

Table 70 describes the email notification templates used in Payment.

For UNIX, the default path to the email template files is the EDX_HOME/payment/lib/
payment_resources/ directory (the EDX_HOME\payment\lib\payment_resources directory on
Windows). In the path, EDX_HOME is the directory where you installed Oracle Self-Service E-Billing.

The email templates use a programming structure that works similar to JSP (but is not JSP). The
template language includes a list of placeholders that refers to Java objects, which are hosted by
Payment. It also includes some logic control directives such as IF and LOOP.

For more information about template classes, see “Accessing Oracle Self-Service E-Billing Javadoc” on
page 31 for details on accessing Oracle Self-Service E-Billing Javadoc.

Table 70. Email Notification Templates

Type of Notification
Name of the Task that
Uses the Notification Template File

Reminder to pay bills and the status of
the checks

pmtPaymentReminder paymentReminder.txt

Enrollment status pmtNotifyEnroll modifyEnroll.txt

Recurring payment was scheduled pmtRecurPayment recurringNotify.txt

Payment Command Center job status All Payment jobs notifyPaymentTask.txt

Credit card expiration pmtCreditCardExpNotify CCExpNotify.txt
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 221

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
Oracle Self-Service E-Billing Payment Reminder Template
Oracle Self-Service E-Billing Payment reminder messages are generated based on
PaymentReminder.txt, which resides in the EDX_HOME/payment/lib/payment_resources/ directory
(the EDX_HOME\payment\lib\payment_resources directory on Windows). In the path, EDX_HOME is
the directory where you installed Oracle Self-Service E-Billing.

This template is used for regular payment reminder and email notifications for processed, returned
or failed payments.

Table 71 describes the Oracle Self-Service E-Billing Payment reminder template variables.

Enrollment Notification Template
The enrollment notification template notifies customers about active and bad-active payment
accounts and NOC returns. Enrollment reminder messages are generated based on enrollNotify.txt.

This template is used for ACH. The text between %<IF isACH>% and the corresponding %</IF>%
is for ACH. If there are no payment gateways for ACH, you can remove that topic from the template
file.

Each Oracle Self-Service E-Billing Payment account will be sent an individual email. Oracle Self-
Service E-Billing Payment supports multiple payment accounts. If a customer has multiple payment
accounts, there could be more than one email message sent for each customer.

Table 71. Payment Reminder Template Variables

Variable Type Description

check ICheck The ICheck object being notified, valid only when
isCheck is true.

creditcard ICreditCard The ICreditCard object being notified, valid only when
isCCard is true.

isCCard Boolean True means this is for credit card status notification.

isCheck Boolean True means this is for check status notification.

isFailed Boolean True means the payment has failed to process
(isFailedAuthorize).

isPaid Boolean True means the check has been paid or cleared.

isProcessed Boolean True means the check has been processed.

isReminded Boolean True means this is for regular payment reminders.

isReturned Boolean True means the check has been returned.

isSettled Boolean True means the credit card has been settled.

isSystemFailure Boolean True means there has been a system error. For
example, a network failure.

reminder IPaymentReminder The IPaymentReminder object being reminded, valid
only when isReminded is true.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A222

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
Table 72 list the variables available for use in the Enrollment Notification email template. The
variables described in Table 72 apply to all cases.

The variables described in Table 73 apply to ACH.

The variables described in Table 74 apply to ACH NOC returns.

Table 72. Enrollment Notification Template Variables

Variable Type Description

checkAccount ICheckAccount The current check account being notified.

template Template The Payment Template Engine, which is used to declare
new variables for the template.

config IPaymentConfig Payment setting information, as configured in the
Command Center.

Table 73. ACH Variables

ACH Variable Type Description

isACH Boolean True indicates this is an ACH notification.

success Boolean Success means this account has been activated successfully.

errCode String ACH return code, if the transaction failed.

Table 74. ACH NOC Return Variables

ACH NOC Variable Type Description

isNOC Boolean True indicates this is an NOC return.

isC01, isC02, isC03,
isC05, isC06, isC07

Boolean True indicates the returned NOC codes.

isAutoUpdate Boolean Returns the state of the
com.edocs.payment.cassette.ach.autoUpdatNOC flag,
which is configured on the Payment Settings page from the
Command Center.

newPaymentAccount String New payment account number.

oldPaymentAccount String Old payment account number.

newRouting String New payment routing number.

oldRouting String Old payment routing number.

newPaymentType String New payment account type.

oldPaymentType String Old payment account type.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 223

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
Recurring Payment Schedule Notification Template
When recurring payment schedules a payment, email notification messages are generated from the
template file recurringNotify.txt.

Table 75 describes the recurring notification template variables.

Payment Notification Template
This template controls the format of email that are sent to the administrator by each job. The
template file is notifyPaymentTask.txt.

Table 75. Recurring Notification Template Variables

Variable Name Type Description

recurringPayment IRecurringPayment Contains recurring payment information
and current bill information paid by this
recurring payment, when applicable. Bill
information is null if the amount and pay
date are both fixed.

isPaymentScheduled Boolean True if a payment has been scheduled.

isCheck Boolean True if the payment scheduled is a
check.

isCCard Boolean True if the payment scheduled is a credit
card.

payment IPaymentTransaction ICheck if isCheck is true or ICreditCard
if isCCard is true. This is the payment
being scheduled.

isPaymentNotScheduled Boolean True if the payment is not scheduled for
some reason. Usually this is because a
payment job plug-in rejected the
payment based on a customer business
rule.

isLessPayment Boolean True if the amount due is less than a
certain amount, but the amount due is
more than that. Notify the customer to
pay manually.

isAlreadyPaid Boolean True when Oracle Self-Service E-Billing
finds a DuplicateBillIdException during
the insertion of a payment into
database.

isLastRecurringPayment Boolean True if this is the last payment.

isRecurringPaymentCancelled Boolean True if the recurring payment is
cancelled. For example, if the payment
account is cancelled. See the job
configuration for details.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A224

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
pmtCreditCardExpNotify Variables
Table 76 describes the payment notification template variables related to pmtCreditCardExpNotifiy.

pmtRecurringPayment Variables
Table 77 describes the recurring notification template variables for the synchronization task.

Table 76. pmtCreditCardExpNotifiy Variables

Variable Value type Description

CreditCardExpNotifyTask String Identifies the credit card expiration
notification task.

isDone Boolean (true or false) Identifies the job had done.

jobName String Identifies the job name.

ccexpNotifyCount int Total number of notifications to be made.

ccexpNotifySuccessCount int Successful number of accounts.

ccexpNotifyFailureCount int Failed number of accounts.

goodCCAccountCount int Number of good credit card accounts (due
to decryption).

badCCAccountCount int Number of bad credit card accounts (due to
decryption).

Table 77. Synchronization Task Variables

Recurring
Synchronization
Variable Type Description

skipSynchronization Boolean (true
or false)

True enables the skip synchronization option.

recurringPmtSyncTask Boolean (true
or false)

True identifies this as the recurring payment task.

isDone Boolean (true
or false)

True indicates that the job is done.

jobName String The job name.

syncCount int Total number of accounts to be synchronized.

syncSuccessCount int Successful number of synchronized accounts.

syncFailureCount int Number of failed of synchronized accounts.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 225

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
Table 78 describes the recurring notification template variables for the scheduler task.

pmtPaymentReminder Variables
Table 79 describes the pmtPaymentReminder variables.

Table 78. scheduler Task Variables

Recurring Scheduler
Variable Type Description

recurringPmtSchedulerTask String Identifies the scheduler task.

isDone Boolean (true
or false)

To identify the job had done.

jobName String To identify the job name.

scheduleCount Int Total number of accounts to be scheduled.

scheduleSuccessCount Int Successful number of scheduled accounts.

scheduleFailureCount Int Failed number of scheduled accounts.

CancelCount Int Cancelled number of scheduled accounts.

isDecryptFailed Boolean value
(true or false)

To identify whether there were any decryption
failures.

Table 79. pmtPaymentReminder Task Variables

Reminder Variable Type Description

paymentReminderTask String Identifies the payment reminder task

isDone Boolean (true
or false)

Identifies the job is done

jobName String Identifies the job name

goodCheckPaymentsCount Int Number of successful check accounts

badCheckPaymentsCount Int Number of failed check accounts

goodCCPaymentsCount Int Number of successful credit card accounts

badCCPaymentsCount Int Number of failed credit card accounts
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A226

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
pmtCreditCardExpNotify Variables
Table 80 describes the pmtCreditCardExpNotify variables.

pmtCheckSubmit Variables
Table 81 describes the pmtCheckSubmit variables.

Table 80. pmtCreditCardExpNotify Variables

CCExpNotify Variable Type Description

CreditCardExpNotifyTask String Identifies the credit card expiration notification task

isDone Boolean (true
or false)

Identifies the job is done

jobName String Identifies the job name

ccexpNotifyCoun int Total number of notifications to be made

ccexpNotifySuccessCount int Number of successful accounts

ccexpNotifyFailureCount int Number of failed accounts

goodCCAccountCount int Number of good credit card accounts (due to
successful decryption)

badCCAccountCount int Number of bad credit card accounts (due to
unsuccessful decryption)

Table 81. pmtCheckSubmit Variables

Check Submit
Variable Type Description

CheckSubmitTask Boolean value (true or false) Identifies the check submit task.

isDone Boolean (true or false) Identifies the job done.

jobName String Identifies the job name.

isHoliday Boolean value (true or false) Identifies a holiday.

dateUtil DateUtil object Format of the expiration date.

isDecryptFailed Boolean value (true or false) Identifies whether there were any decryption
failures.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 227

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
pmtSubmitEnroll
Table 82 describes the pmtSubmitEnroll variables.

Credit Card Expiration Notification Template
When a credit card is about to expire, email notification messages are generated from the template
file CCExpNotify.txt.

Table 83 describes the credit card expiration notification template variables.

Customizing ACH Templates
The ACH records of interest are in File Header, Batch Header, Entry Detail for PPD, Addenda and
return for PPD, Batch Trailer and File Trailer. ACH fields can be mandatory, required, or optional. The
contents of mandatory fields are fixed and must not be customized. Required fields are usually
defined by the receiving bank, and can be customized for different banks. Optional fields can be
customized, also.

By default, secCode is set to WEB to be compliant with the ACH 2001 format. However, you can
change the SEC code based on the requirements of a biller’s bank by editing the
batchHeader_template.xml file.

Table 82. pmtSubmitEnroll Variables

Submit Enroll
Variable Type Description

SubmitEnrollTask String Identifies the submit enroll task.

isDone Boolean (true or false) Identifies the job had done.

jobName String Identifies the job name.

sHoliday Boolean value (true or false) Identifies a holiday.

isDecryptFailed Boolean value (true or false) Identifies whether there were any
decryption failures.

Table 83. Credit Card Expiration Notification Template Variables

Variable Value Type Description

accExpired Boolean value (true or false) Identify whether the account is expired or not

account ICreditCardAccount object Object of ICreditCardAccount that has the
information about the account
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A228

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
Table 84 describes some ACH fields. These fields can be customized upon a biller’s request. The
pmtCheckSubmit jobs running date is referred to as Today.

The templates for ACH are XML files, which describe the format of each ACH record, such as the start
position, length, and so on. There are two sets of templates: one to generate ACH files, and another
to parse ACH return files.

The first set of templates is used to generate the following ACH files:

■ fileHeader_template.xml

■ batchHeader_template.xml

■ entryDetail_template.xml

■ batchTrailer_template.xml

■ Trailer_template.xml

When an ACH file is generated, check information is pulled from the database and then populated
into the content of the XML files by replacing the template variables. The resulting XML file is
transferred into an ACH file according to the format specified by the XML tags. The generic format
of an XML tag is:

Table 84. ACH Fields

Field Name Location Description

Company
Descriptive Date

8th field in batch
header, optional

Default set to Today; the date pmtCheckSubmit is
running.

Effective Entry Date 9th field in batch,
required

The date when checks in the batches are to be
cleared. This is a suggested date from ACH, but the
date that checks are cleared can vary. All checks with
the same pay date will be put into one batch. The
effective entry date might not always be the pay
date. The default setting for effective entry date is:
If the pay date is tomorrow or earlier, then it is the
earliest business date after today. If the pay date is
after tomorrow, then it is the earliest business date
after the pay date (including the pay date).

Individual ID 7th field in PPD entry
detail, optional or
required

By default set to the customer’s account with the
biller. Because this field is 15 bytes, the length of
customer’s account must not exceed 15 bytes. If the
customer account is longer than 15 bytes, either the
field will not be populated, or you must truncate this
field using Java code or the Java classes provided by
Oracle Self-Service E-Billing.

Individual Name 8th field in PPD entry
detail. Required

By default set to the check’s payment ID. Payment ID
is the primary key on the check_payments table. It
can be used to map a returned check back to the one
in Oracle Self-Service E-Billing Payment database.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 229

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
<amount pos="30" len="10" fmt="N" fract="2">%

where:

■ amount is the name of the tag

■ pos="30" is the start position

■ len="10" is the length of the field

■ fmt="N" is the format of the field

■ fract="2" is the number of digits after the decimal point if the format (fmt) is N (numerical)

Table 85 through Table 89 list the template variables that are predefined in the Oracle Self-Service
E-Billing Payment Template Engine. These variables are used to populate the content of the
templates.

Table 85 describes the template variables that all templates use.

Table 85. Global Template Variables

Global Variable
Name Type Description

template com.edocs.util.template.
Template

The template engine.

stringUtil com.edocs.payment.
util.StringUtil

Makes calling the static methods of StringUtil
easier. Instead of using:
%com.edocs.payment.util.
StringUtil.concat(“a”,”b”,”c”)% use:
%stringUtil.concat(“a”, “b”, “c”)%

decimalUtil com.edocs.payment.
util.DecimalUtil

Provides decimal number manipulations.

dateUtil com.edocs.payment.
util.DateUtil

Provides date manipulation methods Also a
calendar, which includes all U.S. holidays.

batch com.edocs.payment.
IPaymentBatch

The payment summary report, which you can view
through the Command Center.

config com.edocs.payment.
config.IPaymentConfig

Payment setting information.

attributeName com.edocs.payment.
config.AttributeName

Payment setting parameter names, Use it with the
variable config to get payment setting
information.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A230

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
Table 86 describes the template variables that File Header uses.

Table 87 describes the template variables that Batch Header uses.

Table 88 describes the template variables that Entry Detail uses.

Table 89 describes the template variables that Batch Trailer uses.

Table 86. File Header Variables

Variable Name Type Description

fileCreateDate java.util.Date Creation date of the ACH file.

fileCreateTime java.util.Date Creation time of the ACH file.

fileIdModifier java.lang.String ACH file modifier, A to Z and 0 to 9.

Table 87. Batch Header Variables

Variable Name Type Description

curPayDate java.util.Date The pay date of checks in the batch. All the checks in
the same batch have the same pay date.

companyDescData String From Payment Settings.

companyDescDate Date Defaults to Today. To use another date, you must call
a static Java method.

batchNumber int Starts from 1; identifies the batches in the ACH.

batchEffectiveEntryDate Date Identifies the batches in the ACH.

Table 88. Entry Detail Variables

Variable Name Type Description

check com.edocs.
payment.ICheck

All check payment information, including the trace
number.

addenda Record
Indicator

int Indicates whether there is addenda record for entry
detail. 0=No; 1=Yes.

Table 89. Batch Trailer Variables

Variable Name Type Description

batchEntryHash String See the ACH documentation.

batchEntryAddendaCount int Number of entries in the batch.

batchDebitAmount String Total debit amount in the batch.

batchCreditAmount String Always zero.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 231

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
Matching a Check in the ACH Return to the Database
Return files are parsed by the return templates:

■ fileHeader_return_template.xml

■ batchHeader_return_template.xml

■ entryDetail_return_template.xml

■ addenda_return_template.xml

■ batchTrailer_return_template.xml

■ fileTrailer_return_template.xml

The format of these files is similar to the format of the submit template. For example:

<individualName pos="55" len="22" fmt="AN" target="%check.setPaymentId(?)%"></
individualName>

This code retrieves the part of the text from positions 55 to 77, puts it into a variable called ? and
then calls check.setPaymentId() to set payment_id for the check. The template executes the
template statement specified by XML tag “target” only.

When a check is returned from the ACH network, Oracle Self-Service E-Billing Payment matches it
to that check in the database and marks it as returned. ACH modifies several fields in the return file.
Oracle Self-Service E-Billing Payment populates one or more unchanged fields with identification
information to help in matching them with a check in the database. Consult the ACH documentation
for information about which fields are not changed.

The return template retrieves the error return code from the addenda record and then tries to
reconstruct the payment ID or gateway payment ID to match a check in the database. If Oracle Self-
Service E-Billing Payment cannot populate the payment ID into the ACH file, it uses the gateway
payment ID, which is a concatenation of a few check payment fields that can identify a check.

By default, Oracle Self-Service E-Billing Payment populates the payment_id of the check into the
individual name field to create the ACH file. The following line in the entryDetail_template.xml file
populates the payment ID into an individual name:

<individualName pos="55" len="22" fmt="AN">%check.getPaymentId()%</individualName>

The following line in the entryDetail_return_template.xml file extracts the payment ID:

< individualName pos="55" len="22" fmt="AN" target="%check.setPaymentId(?)%"></
individualName >

blockCount int See the ACH documentation.

totalEntryHash String See the ACH documentation.

totalEntryAddendaCount int Total number of entries in the file.

totalDebitAmount String Total debit amount in the file.

Table 89. Batch Trailer Variables

Variable Name Type Description
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A232

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
The following line in the addenda_return_template.xml file extracts the return error code:

<returnReasonCode pos="4" len="3" target="%check.setTxnErrMsg(?)%"></
returnReasonCode>

Payment then changes the status of the check to returned and updates this check in the database
using its payment_id.

If the individual name is required for another task, for example, the check account name (which is
the first 22 bytes), then follow these steps to use gateway payment ID.

To use the gateway payment ID

1 Modify the entryDetail_template.xml file to populate individual name with account name.
Change:

<individualName pos="55" len="22" fmt="AN">%check.getPaymentId()%</
individualName>

to:

<individualName pos="55" len="22"
fmt="AN">%stringUtil.substring(check.getAccountName(), 0, 22)%</individualName>

2 Modify the entryDetail_return_template.xml file so that payment ID will not be set for a returned
check. Change:

<individualName pos="55" len="22" fmt="AN" target='%check.setPaymenId(?)%'></
individualName>

to:

<individualName pos="55" len="22" fmt="AN"></individualName>

3 Because payment ID cannot be used to match checks, use the gateway payment ID instead.
Gateway payment ID is the ID generated by the template that submitted the ACH file to ACH.
This template generates a unique ID based on the information submitted to ACH. This ID must
contain information that will not be changed by ACH in the return file. The Oracle Self-Service E-
Billing engine uses the gateway payment ID to find a match in the database.

In very rare circumstances, more than one match might be found. In that case, the match with the
latest creation time is used. The following example discusses several ways to generate the gateway
payment ID. Oracle Self-Service E-Billing Payment generates a trace number and puts that into the
entry detail record. By default, the trace number starts at 0000000 and increases by one for each
check until it reaches 9999999. After this point, the numbering restarts at 0000000. It is possible to
get a duplicate trace number (after 10 million checks). However, because the Oracle Self-Service E-
Billing Payment engine always chooses the payment with the latest date, the correct check will be
matched. You can use both the trace number and individual ID (customer account number) to
identify a payment and use them for the gateway payment ID.

Example 1: Unchanged ACH Trace Number
In the following example, it is assumed that the ACH or Bank will return both the original trace
number and individual ID to Oracle Self-Service E-Billing:
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 233

Customizing Payment ■ Customizing Oracle Self-Service E-Billing Payment Template Files
1 At the beginning of the entryDetail_template.xml file, see the following code:

<ACH_6>
%<*>%
%check.setGatewayPaymentId(com.edocs.payment.util.StringUtil.concat(check.getPa
yerAcctNumber(), "_", check.getTxnNumber()))%

%</*>%

This statement is commented out in the template, using %<*>% and %</*>%. Removing the
comment tags enables the statement.

The trace number is stored as txnNumber in the check object. This statement concatenates the
customer account number, a “_”, and trace number as the gateway payment ID. The
setGatewayPaymentId method returns void, so nothing will print out. (If it did return a value,
then that would print, which would ruin the format of the XML file.) After running
pmtCheckSubmit, check the gateway payment ID in the check_payments table, which is the
concatenation of the individual ID and the trace number that are written into the entry detail
record.

2 Next, Payment retrieves the original trace number from the return file, and sets it as the gateway
payment ID. In the addenda_return_template.xm, find this code:

<traceNumber pos="80" len="15" fmt="N"
target1='%check.setGatewayPaymentId(txnNumber)%'
target2='%check.setGatewayPaymentId(stringUtil.concat(payerAcctNumber, "_",
txnNumber))%'></traceNumber>

Rename target2= to target, which will reconstruct the gateway payment ID based on the
returned customer account number and trace number. Template variable payerAcctNumber has
been set in the entryDetail_return_template.xml file and txnNumber has been set before this line
in the addenda_return_template.xml file by calling template.putToContext.

3 Now you are all set. Test this setting using a real return file and verify that the check’s status
has been updated to –4 in the check_payments table.

Example 2: Modified ACH Trace Number
If the individual ID is not returned as it was set, you can try to use other information, such as
individual name combined with trace number. If only the trace number can be used for gateway
payment ID, use that as follows.

To use only the trace number for gateway payment ID

1 At the beginning of the entryDetail_template.xml file, see the following code:

 %<*/>%

%check.setGatewayPaymentId(check.getTxnNumber())%

%</*>%

Remove the comment tags to enable the statement.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A234

Customizing Payment ■ Generating Accounts Receivables (A/R Files)
2 In the addenda_return_template.xml file, rename target1 to target to enable using trace number
as gateway payment ID:

<traceNumber pos="80" len="15" fmt="N"
target1='%check.setGatewayPaymentId(txnNumber)%'
target2='%check.setGatewayPaymentId(stringUtil.concat(payerAcctNumber, "_",
txnNumber))%'></traceNumber>

Generating Accounts Receivables (A/R
Files)
It is often necessary to synchronize Payment with a biller’s A/R software. Payment sends A/R files
periodically to a biller’s A/R software, which includes the payments being made through Payment.
The format of the file varies among billers. To support this function, Payment has the
pmtARIntegrator job, which uses a template and XML/XSLT to generate output in a variety of file
formats.

The pmtARIntegrator job queries the Payment database to get proper payments, and then writes the
payments into a flat file or an XML file using the Payment Template Engine. The XML file can be
further transformed into other format by using XSLT.

The default implementation of the pmtARIntegrator job performs the following steps:

1 Queries the Payment database to get a list of check and/or credit card payments. The query is
defined in arQuery.xml file, which finds all the check and credit card payments where the
payee_id matches the current job DDN, the status is 8 (paid) and flexible_field_3 is N.

2 Invokes the process() method of the default implementation of
com.edocs.payment.tasks.ar.IARPaymentIntegrator, which is
com.edocs.payment.tasks.ar.SampleARPaymentIntegrator. In this method,
ARPaymentIntegrator writes the payments into a flat file or XML file using the Payment Template
Engine. There are two templates provided by Payment:

■ arFlat_template.txt. Generates a flat A/R file

■ arXML_template.txt. Generates an XML file

The output file name is: ar_yyyyMMddHHmmssSSS.extension, where extension matches the
extension of the template file.

3 Inside the process() method, if the output is an XML file, SampleARPaymentIntegrator can
optionally apply an XSLT file against the output file to transform it into another format. The
transformed file name is: ar_trans_yyyyMMddHHmmssSSS.extention, where extension is
defined by the pmtARIntegrator job configuration.

4 Inside the process() method, SampleARPaymentIntegrator updates flexible_field_3 of both
check and credit card payments to Y, and writes that to database. This ensures these payments
will not be processed again by the next run of pmtARIntegrator.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 235

Customizing Payment ■ Generating Accounts Receivables (A/R Files)
Customizing the arQuery.xml File
The SQL queries used by the pmtARIntegrator job are defined in an XML file, arQuery.xml, which is
provided by the default Payment installation. The arQuery.xml file is based on Oracle XMLQuery
technology.

CAUTION: XMLQuery supports paging, but this feature must not be used for this job.

Most of the A/R file creation is done by an implementation class of the interface
com.edocs.payment.tasks.ar.IARPaymentIntegrator. This adaptor interface provides maximum
flexibility for customizing this job. The default implementation is
com.edocs.payment.tasks.ar.SampleARPaymentIntegrator.

Before the query is executed in the database, the job invokes the getMap() method of
IARPaymentIntegrator, which gets a list of objects that are used to replace the variables “?” defined
in the SQL query of the arQuery.xml file. For more information about IARPaymentIntegrator, see
Accessing Oracle Self-Service E-Billing Javadoc on page 31 for details on accessing Oracle Self-Service
E-Billing Javadoc.

The default IARPaymentIntegrator implementation, SampleARPaymentIntegrator, uses this
arQuery.xml file for database query:

<?xml version="1.0" encoding="UTF-8"?>
<query-spec>
 <data_source_type>SQL</data_source_type>

<query name="checkQuery">
 <sql-stmt><![CDATA[select * from check_payments where payee_id = ? and statu
s = 8]]></sql-stmt>
 <param name="payee_id" type="java.lang.Integer" position="1"/>
 <!--param name="last_modify_time" type="java.sql.Timestamp" position="2" /-->
 </query>

 <query name="creditCardQuery">
 <sql-stmt><![CDATA[select * from creditcard_payments where payee_id = ? and st
atus = 8 and flexible_field_3 = 'N']]></sql-stmt>
 <param name="payee_id" type="java.lang.Integer" position="1"/>
 </query>

</query-spec>

Two queries are defined:

■ checkQuery. Queries check payments
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A236

Customizing Payment ■ Generating Accounts Receivables (A/R Files)
■ creditCardQuery. Queries credit card payments

Both these queries get all the successful payments (status=8) of the current payee (biller or DDN
of current job) from the relevant Oracle Self-Service E-Billing Payment tables. They both use
flexible_field_3 as a flag to prevent a payment from being sent to the A/R job twice. This flag is
initially set to N when the payment is created. After the A/R job runs, the
SampleARPaymentIntegrator changes the flag to Y.

When using flexible_field_3 as an A/R flag, you can create an index for it to increase
performance. Oracle Self-Service E-Billing Payment provides a script just for that purpose:
create_ar_index.sql. This script is not run when the Oracle Self-Service E-Billing Payment
database is created, run it manually.

Each of the queries in the arQuery.xml file has an SQL variable (‘?’) that must be resolved before
the query can be sent to the database. The A/R job calls the getMap() method of
IARPaymentIntegrator to get a Map of query variables, and uses their values to replace the ‘?’s
in the query. The names of the Map elements match those defined in the param tags of the query
tags.

For example, the default arQuery.xml file has the param tag:

<param name="payee_id" type="java.lang.Integer" position="1"/>

To support this, define a Map element whose name is payee_id and whose value (which must be
an Integer, and contains the DDN reference number) replaces the question mark (?) with
payee_id in the query:

select * from check_payments where payee_id = ? and status = 8 and
flexible_field_3 = 'N'

The query result set will be transferred to a list of checks (ICheck objects) for checkQuery, and
credit cards (ICreditCard objects) for creditCardQuery, and then pass that list to the process()
method of IARPaymentIntegrator.

CAUTION: The XML Query object supports paging, but do not use this feature for A/R query.

You can modify this file to use different queries.

Querying Case Study
The new requirement for this example is to retrieve all payments whose status is returned or paid
between 5:00PM today (the job run date) and 5:00PM yesterday (yesterday's job run date).

To try a query case study

1 Change the arQuery.xml file for checkQuery:

<query name="checkQuery">

<sql-stmt><![CDATA[select * from check_payments where payee_id=? and status in
(8,-4) and last_modify_time >= ? and last_modify_time < ?]] </sql-stmt>

<param name="payee_id" type="java.lang.Integer" position="1"/>
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 237

Customizing Payment ■ Generating Accounts Receivables (A/R Files)
<param name="min_last_modify_time" type="java.sql.Timestamp" position="2"/>

<param name="max_last_modify_time" type="java.sql.Timestamp" position="3"/>

</query>

TIP: Use java.sql.Timestamp instead of java.util.Date.

2 Change the arQuery.xml file for creditCardQuery. Because you are adding more question marks
to the query, override the getMap() method of the default ARPaymentIntegrator:

package com.edocs.ps.ar;
import java.util.*;
import com.edocs.payment.util.DateUtil;

public class MyARIntegrator extends ARPaymentIntegrator

{

 /**Override this method to populate the SQL variables in arQuery.xml

 */

public Map getMap(ARPaymentIntegratorParams payIntegratorParam,
 String objectFlag) throws Exception
{
 //call super class because

need to get the payee_id value
 Map map = super.getMap(payIntegratorParam, objectFlag);
 //no need to check objectFlag because we actually populate the
 //same values for both checkQuery and creditCardQuery
 Date today = new Date();

 today = DateUtil.dayStart(today);//set to 00:00:00AM
 Date today5 = DateUtil.addHours(today, 17); //set to 05:00:00PM

 Date yesterday5 = DateUtil.addHours(today, -7) ;//set to 05:00:00PM of
yesterday
 map.put(“min_last_modify_time”, DateUtil.toSqlTimestamp(yesterday5));

 map.put(“max_last_modify_time”, DateUtil.toSqlTimestamp(today5));
}

3 To make the cutoff time configurable instead of fixed at 5:00PM, use the flexible configuration
fields of the A/R job, which are passed in as part of ARPaymentIntegratorParams. For more
information about ARPaymentIntegratorParams, see Accessing Oracle Self-Service E-Billing
Javadoc on page 31 to access the Javadoc.

4 Compile your class using the Payment_client.jar and Payment_common.jar that comes with
Oracle Self-Service E-Billing, package the compiled class into the payment EAR files, and
redeploy the EAR files.

5 Log into the Command Center and change the configuration of the A/R job to use the new
implementation of the IARPaymentIntegrator, com.edocs.ps.ar.MyARIntegrator.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A238

Customizing Payment ■ Generating Accounts Receivables (A/R Files)
Customizing the arFlat_template.txt File
Payments returned by the arQuery.xml file are written to an A/R file using an Oracle Self-Service E-
Billing Payment template file. Two templates come with Oracle Self-Service E-Billing:

■ arFlat_template.txt. Generates a flat A/R file

■ arXML_template.xml. Generates an XML A/R file

The arFlat_template.txt file generates a sample flat A/R file. If this file includes most of your required
data, but the format is not what you want, you can edit the template file to generate your own
format. For more information about using the Template class, see Accessing Oracle Self-Service E-
Billing Javadoc on page 31.

The A/R job using arFlat_template.txt does the following:

■ Loops through the list of check and credit card payments to print out their details.

■ Calculates the totals for check debits, check credits, credit card debits and credit card credits
(reversals).

Customizing the arXML_template.xml File
The arXML_template.xml file generates the same information as arFlat_template.txt, but in XML
format. After creating the XML file, you can use XSLT to transform it into another XML file or into a
flat file. The default arTransform.xsl transforms the original XML file into the same format as the one
generated by arFlat_template.txt. Using XSLT is the recommended way to do the customization.

The A/R job using the arXML_template.xml file does the following:

■ Loops through the list of check and credit card payments to print out their details.

■ Calculates the totals for check debits, check credits, credit card debits and credit card credits
(reversals).

To generate different file formats, change arTransform.xsl. Or, customize the arXML_template.xml
file directly.

Customizing the arXML_template.xml File and Using XSLT to Generate
an XML Flat AR File
The arXML_template.xml file generates the same information as arFlat_template.txt, but in XML
format. After generating the XML file, you can use XSLT to transfer it into another XML file or into a
flat file. The default arTransform.xsl transforms the XML file into the same format as the one
generated by arFlat_template.txt. If you are familiar with XSLT, this is the recommended way to do
the customization.

This template does the following:

■ Loops through the list of check and credit card payments to print out their details.

■ Calculates the totals for check debits, check credits, credit card debits and credit card credits
(reversals).

To generate different file formats, change arTransform.xsl. If required, you can also customize the
arXML_template.xml file.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 239

Customizing Payment ■ Generating Accounts Receivables (A/R Files)
To rename the generated files
■ To rename the files generated by these utilities you must write an implementation of

IARPaymentIntegrator. The following code demonstrates how to rename the XSLT output file to
another name:

import java.io.*;
public class MyARIntegrator extends ARPaymentIntegrator
{
protected void getTransformedARFileName(ARPaymentIntegratorParams
 payIntegratorParam,) throws Exception
{
return ”newARName.txt”;
}
}

Reimplement IARPaymentIntegrator
You might want to reimplement the default SampleARPaymentIntegrator if you want to add any of
the following features.

To reimplement the default SampleARPaymentIntegrator

1 Rename the default AR files.

2 Change the SQL query to add more “?” variables and to set values for those variables in the
IARPaymentIntegrator implementation.

3 Add any additional steps, such as putting more objects into Template context before it is parsed.

4 Change the result of the template parsing. For example, because of limitations of Template
engine, sometimes unwanted empty new lines are added. Remove those lines.

5 Modify the check or credit card objects before they are updated in the database. By default, only
flexible_field_3 is updated from N to Y. Another alternative is to update the check or credit card
object in the template, and all your updates will be updated in the database.

To add any of the preceding features, you must extend from SampleARPaymentIntegrator and
configure the pmtARIntegrator job to use your implementation.

You can overwrite following methods for your customization:

■ getARFileName(). Overwrite to change the name of the AR flat file generated from
arFlat_template.txt.

■ getMap(). Overwrite

Select Only Check or Credit Card Payments
A biller might support only one of check or credit card payments. In this case, you must configure
the pmtARIntegrator job to leave the Credit card query name in XML query file field blank. To
optionally remove any reference to the unavailable payment type, customize the template files
(arFlat_template.txt or arXML_template.xml).
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A240

Customizing Payment ■ Generating Accounts Receivables (A/R Files)
Compiling and Packaging a Custom IARIntegrator
If you reimplement IARIntegrator or you have some custom Java classes to call from the AR
template, you must recompile and package your changes.

In most cases, you put your custom code into Payment_custom.jar. Unfortunately, the IARIntegrator
and its related classes are packaged as part of ejb-Payment-ar.jar, not Payment_custom.jar, so a
different procedure is required.

To compile, put ejb-Payment-ar.jar along with Payment_common.jar, Payment_custom.jar and
Payment_client.jar in your class path to reimplement IARIntegrator.

To package, drop all your AR custom classes into the ejb-Payment-ar.jar.

A/R Filenames
The generated A/R files have default names of ar_yyyyMMddHHmmssSSS.template_file_ext, where
the template_file_ext is the file extension of the template file. The XSLT transformed file has default
name of ar_trans_yyyyMMddHHmmssSSS.extension, where extension is defined by the
pmtARIntegrator job configuration. You can rename these files to a more meaningful name.

To rename the files, write an implementation of IARPaymentIntegrator. The following code
demonstrates how to rename the XSLT output file to another name:

package com.edocs.ps.ar;

import com.edocs.payment.tasks.ar.*;

public class MyARIntegrator extends ARPaymentIntegrator

{

/**Override this method to give a new name*/

protected void getTransformedARFileName(ARPaymentIntegratorParams
 payIntegratorParam,) throws Exception
{

return ”newARName.txt”;

}

}

Single Payment Type
A biller might have only ACH and not credit card payments, or conversely. In this case, you can
customize the template files (arFlat_template.txt or arXML_template.xml) to remove any references
to the unavailable payment type.

Or, when configuring the pmtARIntegrator job enter an empty value for the Check query name in
XML query file or Credit card query name in XML query file parameter.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 241

Customizing Payment ■ Customizing the Payment Amount Format
Customizing the Payment Amount
Format
You can customize the payment amount format for the following features:

■ Credit card registration fee

■ Minimum and maximum payment amounts

■ Currency pattern

■ Two decimal pattern

■ Payment amount threshold

■ Whether to allow payments greater than the amount due

■ Whether to display a warning message if the payment amount is less than the amount due

To configure the payment amount format

1 Edit the paymentService.xma.xml file, found in the EDX_HOME\xma\config\modules\services
directory.

2 Modify the parameters in the paymentConfigurationBean section as needed:

<bean id="paymentConfigurationBean"

 class ="com.edocs.common.services.payment.config.PaymentConfigurationBean"
scope="singleton">

 <property name="DDNName">

 <value>ReportApp</value>

 </property>

<property name="creditCardRegisterFee">

 <value>1.0</value>

 </property>

<property name="paymentAmountThreshold">

 <value>NoLimit</value>

 </property>

<property name="paymentAmountGreaterthanAmountDue">

 <value>Yes</value>

 </property>

<property name="minimumPayAmount">

 <value>1.0</value>
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A242

Customizing Payment ■ Configuring International Bank Routing
 </property>

<property name="currencyPattern">

 <value>##,##0.00</value>

 </property>

<property name="twoDecimalPattern">

 <value>[0-9]*[G]*[0-9]*[D]?[0-9]{0,2}</value>

 </property>

<!-- For value Yes , it displays the warning message if payment amount is less
than the amount due. for value No, not display the warning message -->

<property name="paymentAmountLessthanAmountDue">

 <value>Yes</value>

 </property>

 </bean>

Configuring International Bank Routing
Oracle Self-Service E-Billing supports ACH gateways with US routing number standards as the
default. To provide your customers with the option to make payments using international bank
accounts, configure the check gateway specifications for the particular country.

To configure international bank routing

1 Implement the following custom classes:

■ Check cassette class. For the country’s specific check gateway standard, including
properties for communicating with the gateway, replace the default implementation in
\com\edocs\payment\cassette\ach\ach_CheckCassette.class.

■ ACH check class. For extending the standard Check class, including properties coming from
different check gateway standards. This class is used to generate files sent to the check
gateway for authentication or check transaction purposes. Replace the default
implementation in \com\edocs\payment\cassette\ach\AchCheck.class.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 243

Customizing Payment ■ Configuring International Bank Routing
■ Returned check class. For processing the returned check file for the gateway. Replace the
default implementation in \com\edocs\payment\cassette\ach\AchReturnedCheck.class.

Replace the default files with your custom class files in the payment_custom.jar file in the
following directories. For Windows, change the slashes and root as necessary.

2 Implement a custom RoutingNumber.class. This class is used to validate routing numbers when
creating a new check account. This file is located in the following directory. For Windows, change
the slashes and root as necessary.

■ Oracle WebLogic. EDX_HOME/J2EEApps/ebilling/weblogic/ebilling-weblogic-10-
6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/WEB-INF/lib/ebilling-web-1.0-

SNAPSHOT.jar/com/edocs/application/ebilling/payment/util/RoutingNumber.class

■ IBM WebSphere. EDX_HOME/J2EEApps/ebilling/websphere/ebilling-websphere-10-
6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/WEB-INF/lib/ebilling-web-1.0-

SNAPSHOT.jar/com/edocs/application/ebilling/payment/util/RoutingNumber.class

3 In the validation-payment.xml file, edit the validation rules for the routingNumber field property.
This file is located in the following directory:

■ Oracle WebLogic. EDX_HOME/J2EEApps/ebilling/weblogic/ebilling-weblogic-10-
6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/WEB-INF/validation-payment.xml

■ IBM WebSphere. EDX_HOME/J2EEApps/ebilling/websphere/ebilling-websphere-10-
6.0.4.ear/ebilling-web-1.0-SNAPSHOT.war/WEB-INF/validation-payment.xml

4 Customize your templates files for generating the files sent to the gateway or for parsing the
returned file from the gateway.

Application Server Jar Files and Directories

Oracle WebLogic EDX_HOME\J2EEApps\commandcenter\weblogic\command-center-

weblogic-10-6.0.1.ear\lib\payment_custom.jar

EDX_HOME\J2EEApps\ebilling\weblogic \ebilling-weblogic-10-

6.0.1.ear\lib\payment_custom.jar

EDX_HOME\payment\lib\payment_custom.jar

IBM WebSphere EDX_HOME\J2EEApps\commandcenter\websphere\command-center-

websphere-6-6.0.1.ear \lib\payment_custom.jar

EDX_HOME\J2EEApps\ebilling\websphere\lib\payment_custom.jar

EDX_HOME\payment\lib\payment_custom.jar
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A244

Customizing Payment ■ Packaging Oracle Self-Service E-Billing Payment Custom Code
Packaging Oracle Self-Service E-Billing
Payment Custom Code
You can package your custom code, both plug-in code and custom A/R jobs and templates, by adding
it to Payment_custom.jar. The Oracle Self-Service E-Billing Payment EAR files will access this JAR,
and find the custom code. The Oracle Self-Service E-Billing Payment EAR files merge into the
Command Center EAR file as part of installation, so your custom code will also be seen by the
Command Center.

To make this JAR file accessible by all of the Oracle Self-Service E-Billing Payment EJB, JAR and WAR
files, place it in the classpath of the MANIFEST file of each JAR and WAR file. For details of how the
MANIFEST file works, refer to the J2EE or EJB specifications or the SDK: Customizing and Deploying
Applications document that comes with the Command Center SDK. When the EJB JAR or WAR files
are loaded, this JAR will be loaded and can be accessed by the EJB JAR files or WAR files.

CAUTION: Never put your custom EJB code into Payment_custom.jar; put your EJB code in your
own JAR files.

To write a new plug-in for IAchCheckSubmitPlugIn

1 Write and then compile your implementation class. You might want to use Payment_common.jar
and Payment_client.jar from Oracle Self-Service E-Billing Payment as part of your class path.

2 Create a JAR file called Payment_custom.jar, or use the Payment_custom.jar from any of the
Oracle Self-Service E-Billing Payment EAR files. Place your implementation class into that JAR file
using the JAR command.

3 Replace all the Payment_custom.jar files under the lib directory of all the deployed Oracle Self-
Service E-Billing Payment EAR files with the new Payment_custom.jar, using JAR command.

4 Deploy the new Oracle Self-Service E-Billing Payment EAR files on your application server.

5 Go to Payment Settings in the Command Center, and configure the payment gateways to use the
new class by replacing the default one,
com.edocs.payment.cassette.ach.AchCheckSubmitPlugIn, with your new plug-in.

6 Run the pmtCheckSubmit job, which will load the new class from Payment_custom.jar, because
you added it to the classpath of the MANIFEST file of ejb-Payment-chksubmit.jar.

Debugging Payment
Follow the installation steps carefully to set up payment. After installation and initial configuration,
if you still have problems, the following actions describe a few ways to help identify the cause:

■ View the Oracle WebLogic Logs. From the Oracle WebLogic console, change the level of log
messages. By default, only error messages will be printed out to the console. You can change it
to print more detailed information.

■ View log files From the Command Center. If an Oracle Self-Service E-Billing Payment job
fails, you can view log files from the Command Center to see the details of the error message.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 245

Customizing Payment ■ About Job Plug-Ins
■ Turn on the Oracle Self-Service E-Billing Payment Debug Flag. If you have problems with
executing payment operations, such as making a check payment or running an Oracle Self-
Service E-Billing Payment job, you can turn on the com.edocs.payment.debug flag to see more
details.

Configure your application server to use “-Dcom.edocs.payment.debug=true” as part of the JVM
starting option. For example, for Oracle WebLogic on UNIX, change the startWebLogic.sh file to
add another option to the java command:

java –Dcom.edocs.payment.debug=true …

About Job Plug-Ins
Table 90 lists the plug-ins available for the payment jobs.

About Payment Auditing
Oracle Self-Service E-Billing Payment audits some Oracle Self-Service E-Billing Payment jobs to track
a variety of transaction failures. Audits are kept for actions taken through the UI, as well as jobs.

Payment Jobs That Are Audited
The following jobs write to the audit tables:

■ pmtCheckSubmit. Writes the following audited information:

■ Payments that failed during submission

■ Encryption exceptions

■ pmtPaymentReminder. Writes payment reminders that were not sent, including:

■ Regular payment reminders that failed to send, for any reason, such as bad email address.

■ Check payment email that failed to send, for any reason, such as encryption error, bad email
address.

Table 90. Payment Job Plug-Ins

Job Plug-in Code

pmtPaymentReminder PaymentReminderPlugIn.java

pmtCreditCardSubmit PayPalCreditCardSubmitPlugIn.java

pmtCheckSubmit AchCheckSubmitPlugIn.java

AddendaCheckSubmitPlugIn.java (Example implementation included.)

pmtRecurringPayment RecurringPaymentPlugIn.java

SampleRecurringPlugIn.java (Example implementation included.)
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A246

Customizing Payment ■ About Payment Auditing
■ Credit card payment email failed to send, for any reason, such as encryption error or bad
email address.

■ pmtCreditCardSubmit. Writes credit card payments that failed to submit, for example, because
of encryption errors, invalid credit card information (such as invalid account) or network errors.

■ pmtIntegrator (AR). Writes check and credit card payments that were not written to the AR
file, such as because of encryption errors or file write errors.

■ pmtRecurringPayment Job. Check and credit card payments that failed.

■ pmtCheckSubmit and pmtCreditCardSubmit.

UI Actions That Are Audited
Lists successful and unsuccessful payments along with a reason code.

The UI actions that trigger an audit entry are:

■ Create Recurring Payment

■ Update Recurring Payment

■ Delete Recurring Payment

■ Create Schedule Payment

■ Create Instant Payment

■ Cancel Future Payment (Credit Card Payment)

■ Update Future Payment (Credit Card Payment)

■ Cancel Future Payment (Check Payment)

■ Update Future Payment (Check Payment)

■ Create Payment Reminder

■ Update Payment Reminder

■ Delete Payment Reminder

■ Create Check Account

■ Edit Check Account

■ Delete Check Account

■ Create Credit Card Account

■ Edit Credit Card Account

■ Delete Credit Card Account

Example UI Audit Flow
The following steps show how a UI audit flow processes:
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 247

Customizing Payment ■ About Payment Auditing
1 The customer selects the Setup of recurring payment option, populates the information to
initially set up recurring payment, and submits it. The following information is recorded as the
audit data in the recurring_payments_history table in addition to the columns defined in the
recurring _payments table. (This history table contains all the columns defined in the
recurring_payments (regular table) table plus the additional following columns).

2 The customer selects Recurring Payment option, and then selects Update, and updates the
recurring payment information and submits it, the following information is recorded as the audit
data in recurring_payments_history table other than the columns defined in the regular recurring
_payments table. (This history table contains all the columns defined in the recurring_payments
(regular table) table and additional following columns).

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
recurring_payment_const table.

audit_status 1 Status constant value successful operation. This constant
value for the status is explained in the
recurring_payment_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is an UI operation, the job ID value is 0 (not a
job).

Job_name NULL Because this is a UI operation, job name is NULL.

Timestamp none The current system time when an audit occurs.

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
recurring_payment_const table.

audit_status 1 Status constant value for successful operation. This
constant value for the status is explained in the
recurring_payment_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A248

Customizing Payment ■ About Payment Auditing
3 The customer selects Recurring Payment option, and then selects Delete, the following
information is recorded as the audit data in recurring_payments_history table other than the
columns defined in the regular recurring _payments table. (This history table contains all the
columns defined in the recurring_payments (regular table) table and additional following
columns).

4 The customer selects Create Check account in the User Profile UI, and submits the new check
account information, the following audit data is recorded in payment_accounts_history table
other than the columns defined in the regular payment_accounts table. (This history table
contains all the columns defined in the payment_accounts (regular table) table and additional
following columns).

Column Value Description

audit_operation 1003 This constant value for the operation is described in the
recurring_payment_const table.

audit_status 1 Status constant value for successful operation. This
constant value for the status is described in the
recurring_payment_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This
constant value for the status is explained in the
payment_account_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 249

Customizing Payment ■ About Payment Auditing
5 The customer selects Update Check account in the User Profile UI, and submits the updated
check account information, the following audit data is recorded in payment_accounts_history
table other than the columns defined in the regular payment_accounts table. (This history table
contains all the columns defined in the payment_accounts (regular table) table and additional
following columns).

6 The customer selects Delete Check account in the User Profile UI, and submits the delete request,
the following audit data is recorded in payment_accounts_history table other than the columns
defined in the regular payment_accounts table. (This history table contains all the columns
defined in the payment_accounts (regular table) table and additional following columns).

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This
constant value for the status is explained in the
payment_account_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_account_const table).

audit_status 1 Status constant value for successful operation. (this
constant value for the status is explained in the
payment_account_const table).

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A250

Customizing Payment ■ About Payment Auditing
7 The customer selects Create Credit Card account in the User Profile UI, and submits the new
credit card account information, the following audit data is recorded in
payment_accounts_history table other than the columns defined in the regular
payment_accounts table. (This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns).

8 The customer selects Update Credit Card account in the User Profile UI, and submits the updated
credit card account information, the following audit data is recorded in
payment_accounts_history table other than the columns defined in the regular
payment_accounts table. This history table contains all the columns defined in the
payment_accounts (regular table) table and additional following columns:

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This
constant value for the status is explained in the
payment_account_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This
constant value for the status is explained in the
payment_account_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 251

Customizing Payment ■ About Payment Auditing
9 The customer selects Delete Credit Card account in the User Profile UI, and submits the delete
request, the following audit data is recorded in payment_accounts_history table other than the
columns defined in the regular payment_accounts table. This history table contains all the
columns defined in the payment_accounts (regular table) table and additional following columns:

10 The customer selects Create payment reminder in the User Profile UI, and submits the new
payment reminder information, the following audit data is recorded in
payment_reminders_history table other than the columns defined in the regular
payment_reminders table. (This history table contains all the columns defined in the
payment_reminders (regular table) table and additional following columns).

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_account_const table.

audit_status 1 Status constant value for successful operation. This
constant value for the status is explained in the
payment_account_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.

Column Value Description

audit_operation 1001 This constant value for the operation is explained in the
payment_reminder_const table.

audit_status 1 Status constant value for successful operation. This constant
value for the status is explained in the
payment_reminder_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A252

Customizing Payment ■ About Payment Auditing
11 The customer selects Update payment reminder in the User Profile UI, and submits the updated
payment reminder information, the following audit data is recorded in
payment_reminders_history table other than the columns defined in the regular
payment_reminders table. (This history table contains all the columns defined in the
payment_reminders (regular table) table and additional following columns).

12 The customer selects Delete payment reminder in the User Profile UI, and submits the delete
request for the payment reminder, the following audit data is recorded in
payment_reminders_history table other than the columns defined in the regular
payment_reminders table. This history table contains all the columns defined in the
payment_reminders (regular table) table and additional following columns:

About Query Files
The following files are provided for each operating system to support queries of the audit tables:

■ UNIX:

■ getAuditInfoByAccount.sh

■ getAuditInfoByAccount.sql

Column Value Description

audit_operation 1002 This constant value for the operation is explained in the
payment_reminder_const table.

audit_status 1 Status constant value for successful operation. This
constant value for the status is explained in the
payment_reminder_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.

Column Value Description

audit_operation 1003 This constant value for the operation is explained in the
payment_reminder_const table.

audit_status 1 Status constant value for successful operation. This
constant value for the status is explained in the
payment_reminder_const table.

audit_reason none Description of the audit.

Job_id 0 Because this is a UI operation, the job ID value is 0.

Job_name NULL Because this is a UI operation, the job name is NULL.

Timestamp none The current system time when an audit occurs.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 253

Customizing Payment ■ About Payment Auditing
■ getAuditInfoByPaymentId.sh

■ getAuditInfoByPaymentId.sql

■ getAuditInfoByPid.sh

■ getAuditInfoByPid.sql

■ Windows:

■ getAuditDataByAccount.bat

■ getAuditDataByAccount.sql

■ getAuditDataByPaymentId.bat

■ getAuditDataByPaymentId.sql

■ getAuditDataByPid.bat

■ getAuditDataByPid.sql

■ set_audit_isql_options.bat

Running Audit Queries
Audit queries require one of the following arguments:

■ Payment ID

■ User Account Number

■ PID

The audit queries are implemented in batch files, which require the user argument and date range.
The results are displayed on the console.

Before running the queries, you must perform setup. The description for each query describes the
setup.

Query Audit Data by Payment ID
Displays data from all history tables which have a payment ID column. This query performs a select
on each table where the Payment ID matches and the time_stamp is between the fromTime and
toTime values. The following tables are queried:

■ check_payments_history

■ creditcard_payments_history

■ payment_bill_summaries_history

■ payment_email_history
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A254

Customizing Payment ■ About Payment Auditing
Query Audit Data by User Account Number
Displays data from all history tables which have a payer ID column. This query performs a select on
each table where the payer ID matches Account Number, and whose time_stamp is between
fromTime and toTime. The AccountNumber is the account number with the biller (payee_id column).
The following tables are queried:

■ check_payments_history

■ creditcard_payments_history

■ payment_bill_summaries_history

■ recurring_payments_history

Query Audit Data by PID
Displays data from all the history tables which have a PID column. This query performs a select on
each table where the PID matches and whose time_stamp is between fromTime and toTime. The
following tables are queried:

■ check_payments_history

■ creditcard_payments_history

■ payment_accounts_history

■ recurring_payments_history

Setting Up a Query
Before running the queries, you must perform setup tasks.

To set up a query

1 Set the database connection parameters.

2 Configure TNS Listener for Oracle (Client/Server).

3 Configure DB2 Clients for Windows.

4 Check execution permissions for shell scripts.

5 Specify database connection parameters.

Follow the configuration instructions for your operating system.

Configuring Windows
For Windows, you must edit set_isql_options.bat before running the queries. The file constrains the
following line:

set ISQL_OPTIONS=-U <username> -P <password> -S <sqlsvr-Servername> -d <database
name>

Edit this file and enter your values for username, password, server name and database name. For
example:
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 255

Customizing Payment ■ About Payment Auditing
set ISQL_OPTIONS=-U edx1 -P edx1 -S EDXSERVER -d edxDB

Configuring UNIX
For UNIX, the database connection string is embedded in the file. You must edit the connection
parameters in each file before running the queries. The connection parameters are as follows:

On Oracle:

sqlplus <username>/<password>@<TNS name>

For example:

sqlplus edx1/edxadmin@edxdb

TNS Listener for Oracle (Client/Server)
The TNS Listener has to be configured for the Oracle database in Windows and UNIX for client/server.

Permissions for UNIX
Grant execution permissions for shell scripts to run successfully. For example:

$ chmod 755 *.sh

Running the Queries in Windows and MSSQL
This topic describes how to run queries in Windows and MSSQL.

Querying Audit Data by Payment ID
Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.bat. This file requires three parameters: Payment ID, From Timestamp,
and To Timestamp. The execution format is:

getAuditDataByPaymentId Payment_ID, From Date, To Date

For example:

getAuditDataByPaymentId 123465564,'2008-01-01’,'2009-12-12'

where:

■ Payment_ID is numeric.

■ From Date and To Date are in YYYY-MM-DD format.

Querying Audit Data by Account
Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From Timestamp,
and To Timestamp. The execution format is:

getAuditDataByAccount Account_Number, From Date, To Date
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A256

Customizing Payment ■ About Payment Auditing
For example:

getAuditDataByAccount '123465564','2008-01-01’,'2009-12-12'

where:

■ Account_Number is a string.

■ From Date and To Date are in YYYY-MM-DD format.

Querying Audit Data by PID
Change your working directory to the location of the query script files, and run
getAuditDataByPid.bat. This file requires three parameters: PID, From Timestamp, and To
Timestamp. The execution format is:

getAuditDataByPid PID, From Date, To Date

For example:

getAuditDataByPid '123465564','2008-01-01’,'2009-12-12'

where:

■ PID is a string.

■ From Date and To Date are in YYYY-MM-DD format.

Running the Queries in Oracle Database
This topic describes how to run queries in Oracle Database.

Querying Audit Data by Payment ID
Change your working directory to the location of the query script files, and run
getAuditDataByPaymentId.bat. This file requires three parameters: Payment ID, From Timestamp,
and To Timestamp. The execution format is:

getAuditDataByPaymentId Payment_ID, From Date, To Date

For example:

getAuditDataByPaymentId 123465564,'2008-01-01’,'2009-12-12'

where:

■ Payment_ID is numeric.

■ From Date and To Date are in YYYY-MM-DD format.

Querying Audit data by Account
Change your working directory to the location of the query script files, and run
getAuditDataByAccount.bat. This file requires three parameters: Account Number, From Timestamp,
and To Timestamp. The execution format is:
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 257

Customizing Payment ■ About Payment Auditing
getAuditDataByAccount Account_Number,From Date, To Date

For example:

getAuditDataByAccount '123465564','2008-01-01’,'2009-12-12'

where:

■ Account_Number is a string.

■ From Date and To Date are in YYYY-MM-DD format.

Querying Audit Data by PID
Change your working directory to the location of the query script files, and run
getAuditDataByPid.bat. This file requires three parameters: PID, From Timestamp, and To
Timestamp. The execution format is:

getAuditDataByPid PID, From Date, To Date

For example:

getAuditDataByPid '123465564','2008-01-01’,'2009-12-12'

where:

■ PID is a string.

■ From Date and To Date are in YYYY-MM-DD format.

Running the Queries in UNIX
This topic explains running queries in UNIX and the Oracle Database.

Querying Audit Data by Payment ID
Change your working directory to the location of the query script files, and run
getAuditInfoByPaymentId.sh. This file requires three parameters: Payment ID, From Timestamp, and
To Timestamp. The execution format is:

$./getAuditInfoByPaymentId.sh Payment_ID, From Date, To Date

For example:

$./getAuditInfoByPaymentId.sh 123465564 '2008-01-01’ '2009-12-12'

where:

■ Payment_ID is numeric.

■ From Date and To Date are in YYYY-MM-DD format.

■ Arguments are separated by spaces.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A258

Customizing Payment ■ About Payment Auditing
Querying Audit Data by Account
Change your working directory to the location of the query script files, and run
getAuditInfoByAccount.sh. This file requires three parameters: Account Number, From Timestamp,
and To Timestamp. The execution format is:

$./getAuditInfoByAccount.sh Account_Number, From Date, To Date

For example:

& ./getAuditInfoByAccount.sh '123465564' '2008-01-01’ '2009-12-12'

where:

■ Account_Number is a string

■ From Date and To Date are in YYYY-MM-DD format

■ Arguments are separated by spaces

Query Audit Data by PID
Change your working directory to the location of the query script files, and run getAuditInfoByPid.sh.
This file requires three parameters: PID, From Timestamp, and To Timestamp. The execution format
is:

$./getAuditInfoByPid.sh PID, From Date, To Date

For example:

$./getAuditInfoByPid '123465564' '2008-01-01’ '2009-12-12'

where:

■ PID is a string.

■ From Date and To Date are in YYYY-MM-DD format.

■ Arguments are separated by spaces.

Change your working directory to the location of the query script files, and run getAuditDataByPid.sh.
This file requires three parameters: PID, From Timestamp, and To Timestamp.

Audit Database
The Oracle Self-Service E-Billing Payment database supports auditing.

Columns for Audit
The following tables have the new columns:

■ check_payments_history

■ creditcard_payments_history
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 259

Customizing Payment ■ About Payment Auditing
The history tables have all the columns that the base table has (check_payments and
creditcard_payments) plus the columns listed in Table 91.

New Tables
The following tables are based on the table name with _history at the end. They have all the columns
in the base table, plus the new columns listed in Table 91 on page 260 to support auditing.

■ payment_accounts_history

■ payment_bill_summeries_history

■ payment_reminder_history

■ recurring_payments_history

Table 91. Additional Columns in History Tables

Column Name Comments

audit_operation Defined in corresponding constant tables

audit_status Defined in corresponding constant tables

audit_reason Description of the audit

job_id Pwc job ID

job_name User given job name (see Job Name Entries)

time_stamp The record insertion time. For example: 1/18/2004 11:47:38 AM
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A260

Customizing Payment ■ About Payment Auditing
payment_email_history
This table is new, and not based on a previous table. It has the columns listed in Table 92 plus the
columns listed in the preceding table to support auditing.

Table 93 lists the possible values for email types and description.

Table 92. Payment Email History Table Columns

Column Name Comments

type This indicates the purpose of the email. Possible values are listed in Table 93
on page 261.

payee id DDN

payer_id User ID

account_number Check or credit card number

payment_id Payment ID

to_address Receivers email address. If there are multiple addresses, they will be
separated by a semicolon.

content Content; Length of the email content must be truncated based on the Email
Content Audit Length configuration parameter.

audit_operation Defined in corresponding constant tables

audit_status Defined in corresponding constant tables

audit_reason Description of the audit

job_id Pwc job ID

job_name User given job name (see Job Name Entries)

time_stamp The record insertion time. For example: 1/18/2004 11:47:38 AM

to_address Receivers email address. If there are multiple addresses, they will be
separated by a semicolon.

Table 93. Email Types

Email Type Description

0 Unknown email type.

1 A fixed date payment reminder email.

2 Before due date payment reminder email.

3 After due date payment reminder email.

4 Check status notification email.

5 Credit card status notification email.

6 Recurring payment cancelled email.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 261

Customizing Payment ■ About Payment Auditing
Audit Table Constants
Table 94 lists the tables that have audit information and the names of the corresponding code tables
that explain the numeric codes for audit columns. See the tables in your Payment database for the
latest descriptions for each code.

Job Name Entries
User job names are combined with a shortened version of the task name to keep database entries
manageable. The name of the job given by the user is combined with a shortened version of the task
name as follows:

<job name given by the Admin>-<shorten task name>

Table 95 shows the shortened name for each job.

7 Recurring payment scheduled email.

8 Payment account status notification email.

9 Credit card expiration notification email.

Table 94. Audit Table Constants

Constant Table Name History Table Name

credit_card_const creditcard_payments_history

check_const check_payments_history

recurring_payment_const recurring_payment_history

payment_email_const payment_email_history

payment_bill_summaries_const payment_bill_summaries history

payment_account_const payment_accounts_history

payment_reminders_const payment_reminders_history

Table 95. Job Name Entries

Task Name Shortened Task Name

CheckSubmitTask ChkSubTsk

CheckUpdateTask ChkUpdTsk

PaymentIntegratorTask PmtIntTsk

CreditCardExpNotifyTask CCExpNTsk

CreditCardSubmitTask CCSubTsk

CreditCardUpdateTask CCUpdTsk

Table 93. Email Types

Email Type Description
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A262

Customizing Payment ■ Implementing Custom Oracle Self-Service E-Billing Payment
Cartridges
Implementing Custom Oracle Self-
Service E-Billing Payment Cartridges
You can implement two custom cartridges:

■ Implementing a Demonstration Cartridge

■ Implementing a Custom Credit Card Cartridge

Implementing a Demonstration Cartridge
Oracle Self-Service E-Billing Payment provides an example cartridge that demonstrates how to
implement a custom cartridge. The code is in the /vobs/payment/com/edocs/payment/cassette/
demo directory. There are two cartridges:

■ demo_CheckCassette.java. For check payments.

■ demo_CreditCardCassette.java. For credit card payments.

The example cartridge delegates all API calls to demo_CheckProcessorProxy.java and
demo_CreditCardProcessorProxy.java to communicate with a dummy payment gateway.

If you configure a DDN to use the demonstration cartridge, then you can make payments against it
from the user interface.

Implementing a Custom Credit Card Cartridge
The example cartridge is based on the interface com.edocs.payment.cassette.ICreditCardCassette,
which extends from com.edocs.payment.cassette.IPaymentCassette, which then extends from
com.edocs.payment.cassette.IEnrollmentCassette. In general, do not modify IEnrollmentCassette,
because it defines how to verify a credit card when a user enrolls it through the user interface.

To implement the cartridge, extend your cartridge implementation from PaymentCassette, and
implement ICreditCardCassette:

public class MyCreditCardCassette extends PaymentCassette implements
ICreditCardCassette

ConfirmEnrollTask ConEnrTsk

NotifyEnrollTask NotEnrTsk

RecurPaymentSchedulerTask RcuSchTsk

RecurPaymentSynchronizerTask RcuSynTsk

PaymentReminderTask PmtRmdTsk

SubmitEnrollTask SubEnrTsk

CustomTask CustomTsk

Table 95. Job Name Entries

Task Name Shortened Task Name
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 263

Customizing Payment ■ Implementing Custom Oracle Self-Service E-Billing Payment
Cartridges
Use demo_CreditCardCassette.java to create your implementation. You can use three
implementation methods:

■ IPaymentCassette.getDefaultConfigAttributes()

■ ICreditCardCassette.authorize()

■ ICreditCardCassette.batchAuthorize()

You must implement IPaymentCassette.getDefaultConfigAttributes() to return a list of parameters
(of type com.edocs.payment.config.Attribute), which are used to configure the cartridge. Calling
IPaymentCassette.getDefaultConfigAttributes() causes those parameters to be displayed in the
Payment Settings of the Command Center, where you can use them to configure the cartridge. These
parameters include the global ones, the ones shared by both credit card and check types, and the
ones specific to this credit card cartridge. Your implementation of getDefaultConfigAttributes() must
at least return the global and shared parameters in that list. See
demo_CreditCardCassette.getDefaultConfigAttributes() in the Oracle Self-Service E-Billing Javadoc,
and the file demo_CreditCardAttributes.java for more information. See “Accessing Oracle Self-Service
E-Billing Javadoc” on page 31 for details on accessing the Oracle Self-Service E-Billing Javadoc.

If you want to support instant payments, then you must implement the
ICreditCardCassette.authorize() method. In this method, you must get the payment information
from the ICreditCard object that is passed in, then send it to the payment gateway.

The payment gateway sends back a response, which you use to update the status of the ICreditCard
object:

■ If the payment is authorized, set the status to settled by calling:

ICreditCard.setStatus(CreditCardState.SETTLED);

■ If the payment failed authorization, set status to failed-authorize by calling:

ICreditCard.setStatus(CreditCardState.FAILED_AUTHORIZE);

You could also call ICreditCard.setTxnErrMsg() to log an error message.

■ If there is a system or network error (Payment failed to connect to payment gateway), set the
status to failed by calling:

ICreditCard.setStatus(CreditCardState.FAILED);

You could also call ICreditCard.setTxnErrMsg() to log an error message.

When you call these methods, Oracle Self-Service E-Billing Payment updates the credit card
information in the database. The Oracle Self-Service E-Billing Payment JSP pages get the credit
card information from the user and pass the information to the cartridge. After the card is
processed, Oracle Self-Service E-Billing Payment updates Oracle Self-Service E-Billing Payment
database.

If your application supports scheduled payments, then you must implement
ICreditCardCassette.batchAuthorize(). This method is called by the CreditCardSubmit job, which
extracts all the scheduled payments from the database and sends them to the payment gateway.
Your cartridge must perform the following actions:

1 Get the scheduled payments from Oracle Self-Service E-Billing Payment database. There are
examples of using the APIs in demo_CreditCardCassette.batchSubmit().
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A264

Customizing Payment ■ Avoiding Paying a Bill More Than Once
2 Loop through the list of payments and send them to the payment gateway. Set the status of each
payment the same way as for instant payments. After setting the status and other information,
call the Oracle Self-Service E-Billing Payment API to update this credit card back to Oracle Self-
Service E-Billing database (note that this is different from Instant payments, because Oracle
Self-Service E-Billing Payment does not update the database).

3 Package your custom cartridge. With Oracle WebLogic, package the custom cartridge into
Payment_custom.jar which is in the lib directory.

4 Prepopulate Oracle Self-Service E-Billing Payment database.

5 Tell Oracle Self-Service E-Billing Payment about your cartridge implementation class by
populating the payment_gateway_configure table. If your cartridge class name is
com.edocs.ps.MyCreditCardCartridge, and you want to name it “customCCardCartridge”, use:

6 insert into
payment_gateway_configure(GATEWAY,PAYMENT_TYPE,CARTRIDGE_CLASS)values(‘customCCa
rdCartridge’, ‘ccard’, ‘com.edocs.ps.MyCreditCardCartridge’);

7 When you go to Payment Settings of Command Center and configure a DNN for your credit card
cartridge, the JSP page will read the list of available cartridges from this table and allow you to
select one of them.

8 After you finish all the preceding steps, create a DDN, configure a cartridge for it and then make
the payments from UI.

Avoiding Paying a Bill More Than Once
By default, Oracle Self-Service E-Billing Payment allows a bill to be paid more than once. If you want
to ensure that a bill can only be paid once, add a unique key constraint on the bill_id field of the
check_payments table. You can run the set_unique_bill_id.sql script located in the EDX_HOME/
payment/db/ directory to set the unique constraint. In the path, EDX_HOME is the directory where you
installed Oracle Self-Service E-Billing. Note, the bill_id in Oracle Self-Service E-Billing Payment is the
same as the doc ID in the Command Center.

If a customer tries to pay a bill that has already been paid (either from the UI or by a previously
scheduled recurring payment) after the unique key constraint has been added, the customer will
receive an error message saying that the bill has been already paid. If the bill is paid from the UI
and a recurring payment tries to pay it again, the payment will fail and an email notification message
will be sent to the customer (if recurring payments are configured for that email notification).

Adding this constraint will not prevent a customer from making a payment using a bill ID. For
example, a customer can still make a payment directly from the Make Check Payment link, which
allows him or her to make a payment without specifying a bill.

The unique key constraint only informs customers that the bill has been paid when they try to pay a
bill that has already been paid. If you want to provide additional features, such as disabling the
payment button when the bill has already been paid, you must query the database to get that
information. Be careful when adding extra functions, because performing additional database queries
can affect Oracle Self-Service E-Billing Payment performance. Make sure the proper index has been
created if you plan to create a new query.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 265

Customizing Payment ■ Handling Multiple Payee ACH Accounts
Handling Multiple Payee ACH Accounts
By default, Oracle Self-Service E-Billing Payment only allows one payee (biller) ACH account for a
DDN, which is limited by Payment Settings. However, some billers can have multiple ACH accounts
and their users will usually choose to pay to one of the ACH accounts when scheduling a payment.
The way that the user chooses the ACH account to pay with can be based on some business rules
added to the JSP. The rest of this topic describes a solution to this problem.

The assumptions for this solution are:

■ All ACH accounts are at the same bank, which means they have the same immediate origination
and immediate destination but different company name and company ID.

■ The business logic elements required to route the payment transaction to one ACH account
versus another is available or can be made available in the web application and in the execution
context of an Oracle Self-Service E-Billing Payment plugin.

Oracle Self-Service E-Billing also assumes there are multiple ACH accounts and there is one DDN for
this biller. This DDN is the Real DDN.

To handle multiple payee ACH accounts

1 Create a real DDN. You use this real DDN to configure Payment Settings for one of the ACH
accounts.

2 Create virtual DDNs: Create N – 1 virtual DDNs, where each of their Payment Settings is
configured to one of the N – 1 ACH accounts, respectively. Make sure the immediate origination
and immediate destination are the same for all DDNs but their company name and company ID
are different.

NOTE: There will be no ETL load jobs run against these virtual DDNs. They are used solely for
payment purposes.

3 Customize the UI: The UI must employ some business logic to determine which DDN (effectively,
ACH account) the payment transaction is to be entered against and set the payee ID of the
payment to that DDN.

4 Run the pmtCheckSubmit Job: Configure a single pmtCheckSubmit job under the real DDN and
configure it to pull payments from the all the N –1 virtual DDNs in addition to the real DDN. The
payments from the same DDN will be under same batch.

5 Run the pmtCheckUpdate Job: pmtCheckUpdate processes the ACH return file. Because return
files include returns from all DDNs and the pmtCheckUpdate job can process these returns,
create one pmtCheckUpdate job under the real DDN to process all the returned transactions
(even though the returns could belong to other virtual DDNs).

6 Run the Payment pmtRecurringPayment Job: A single recurring payment job configured with the
real DDN is required. A Recurring Payment plug-in is required to execute the same logic as in
scheduled payment; that is, apply the business rules to determine which DDN (effectively, ACH
account) the recurring payment must be applied against. Override the preSchedulePayment()
method of the plug-in for this purpose.

7 Change the Payment pmtPaymentReminder Job setting: Six payment reminders, one for each
DDN, must be configured.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A266

Customizing Payment ■ Using Payment APIs
8 Run the pmtARIntegrator Job: The AR_Query.xml file is an XML definition of the database query
that queries the Oracle Self-Service E-Billing Payment tables to build the default A/R file. The
default query must be customized to include the virtual DDNs. Because the query is using the
DDN reference numbers, you must pass that information into the query using one of the following
methods:

■ Directly hard code the DDN references numbers in the query, though this is risky in the sense
that if the DDN is recreated, your query will fail.

■ Extend the SampleARIntegrator and overwrite the getMap() method and use
com.edocs.payment.util.DDNUtil to find out the DDN reference number of a DDN, then set it
as a “?” parameter used by the query. In this solution, the DDN names are hard coded but
not the DDN reference numbers.

■ Pass in the names of virtual DDNs as a flexible job configuration parameter from the job UI.
The getMap() method can then parse the parameter to get the list of virtual DDNs. This
method is recommended.

9 Add support for the ACH Prenote: If you are using ACH prenote, then you must create
pmtSubmitEnroll, pmtConfirmEnroll and pmtNotifyEnroll jobs for each virtual DDN, which means
you will get N prenote ACH files. pmtSubmitEnroll cannot aggregate prenotes from different
DDNs into one.

Using Payment APIs
Use the following APIs to customize Payment. These are part of the
com.edocs.common.api.services.payment package:

■ BillDepot

■ CustomRecurringPaymentPlugin

■ PayPalCreditCardSubmitPlugin

■ DummyUserAccountAccessor

■ IPayment

■ IPaymentAccountService

■ IPaymentService

■ IRecurringPaymentService

■ Payment

■ PaymentAccountService

■ PaymentConfigurationBean

■ PaymentService

■ RecurringPaymentService
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 267

Customizing Payment ■ Using Payment APIs
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A268

9 Customizing the Customer
Service Representative
Application
This chapter covers customizing the CSR application for your implementation. It includes the
following topics:

■ CSR Integration and Impersonation APIs on page 269

■ CSR Capabilities on page 269

■ CSR Access (Impersonate User) on page 269

■ CSR Application on page 270

CSR Integration and Impersonation
APIs
Struts Web actions are available only as public APIs.

The following packages are available for customizing the Oracle Self-Service E-Billing CSR:

■ com.edocs.application.csr.actions

■ com.edocs.application.csr.common

■ com.edocs.application.csr.exceptions

■ com.edocs.application.csr.forms

CSR Capabilities
The Customer Service Representative (CSR) application delivered with Oracle Self-Service E-Billing
provides an interface to create and manage CSR administrators and organizations. Through this
application a CSR can also impersonate a user. As with Billing and Payment users, when a CSR enrolls
in a CSR-enabled application, Oracle Self-Service E-Billing creates profiles in the database.
Depending on the CSR roles configured, a CSR can be limited to specific UI views and actions on
behalf of another user. SAF authorizes access based on the permissions set for the CSR role.

CSR Access (Impersonate User)
When a CSR logs into the CSR application, he or she intends to administer organizations, search for
users or other CSRs, or impersonate another user to provide support for that user. A CSR can see all
the users with whom he or she works and click the Impersonate hyperlink for a user.
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 269

Customizing the Customer Service Representative Application ■ CSR Application
The CSRImpersonationUrl request attribute is configured in the csr-xma.xml file. The configurable
points for impersonate are in the csr.xma.xml file. For details on how to access the Oracle Self-
Service E-Billing Javadoc for more information about the CSR application, see Accessing Oracle Self-
Service E-Billing Javadoc on page 31. Acegi provides the authentication and UMF classes to update,
create and delete users. Clicking the impersonate hyperlink executes CSRAction.impersonate().

CSR Application
The CSR application WAR file contains the tiles (*.JSP) for the application. Under the war/src/main/
webapp directory are a variety of packages containing tiles that address key CSR view functions such
as impersonating and finding a CSR's customer (access-cust), enrolling the CSR and searching for a
customer's CSR (manage-csr), enrolling the customer (manage-cust), and searching and managing
organizations (manage-org).

Under the \web-actions\src\main\java\com\edocs\application\csr (compiled source) directory
are action, form, and tag classes which comprise the model and controller of the CSR application.
The common package contains a variety of CSR helper classes for logging in, enrolling,
authentication, and configuration.

See the war/src/main/webapp/WEB-INF for the struts configuration JavaBeans and forwarding
actions for this CSR application. The tiles configuration also resides in this file.

See the web-actions\src\main\config\csr.xma.xml file for how to configure access to the
customer application from the CSR application and the list of CSR roles that are enabled.

In the csr.xma.xml file, you must modify properties custAppURL and custLogoutAppURL to the value
where the Billing and Payment application is deployed. By default, the property values are:

■ https://localhost:7001/ebilling/j_acegi_security_check?

■ https://localhost:7001/ebilling/logout.do? respectively

The following properties must point to the I.P. address, for example:

■ https://10.1.1.1:7001/ebilling/j_acegi_security_check?

■ https://10.1.1.1:7001/ebilling/logout.do?

Contents of csr.xma.xml
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/
dtd/spring-beans.dtd">

<beans>

 <!-- XMA specific definitions -->
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A270

Customizing the Customer Service Representative Application ■ CSR Application
 <bean id="GlobalConfigurationBean"
class="com.edocs.application.csr.common.CSRConfiguration">

<property name="custAppURL">

<value>http://10.149.189.225:7006/ebilling/j_acegi_security_check?</value>

</property>

<property name="custLogoutAppURL">

<value>http://10.149.189.225:7006/ebilling/logout.do?</value>

</property>

<property name="userNameParam">

<value>j_username</value>

</property>

<property name="passwordParam">

<value>j_password</value>

</property>

<property name="csrParam">

<value>csr</value>

</property>

<property name="activeStatus">

<value>Active</value>

</property>

<property name="inActiveStatus">

<value>Inactive</value>

</property>

 </bean>

</beans>
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 271

Customizing the Customer Service Representative Application ■ CSR Application
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A272

10 Input File Specifications and
Data Mapping
This chapter describes the input file specifications and data mapping tasks. It includes the following
topics:

■ Preprocessor Tasks on page 273

■ Data File Loading Tasks on page 274

■ About ETL File Processing on page 274

■ File Format for Dimension Level Information on page 274

■ Statement Level File Format on page 278

■ Account Level File Format on page 281

■ Service Level File Format on page 282

■ Service Detail Level File Format on page 285

■ File Record and Table Mapping on page 287

■ Internationalization Support Settings on page 288

NOTE: Before running core Extract Transform and Load (ETL) tasks, you must process all billing data
files using a customized preprocessor.

For information on running ETL and other jobs, see Administration Guide for Oracle Self-Service E-
Billing.

Preprocessor Tasks
Oracle Self-Service E-Billing requires that all input bill data files conform to the file format specified
in this section. The flat file format is pipe delimited. Each row in the file has specific record type
associated with it indicating the type of the record. The preprocessor performs the following tasks:

■ Converts data file from an outside billing system file format to the one Oracle Self-Service E-
Billing uses.

■ Converts all dimension value literal strings into dimension value business keys.

You can use many dimension values in a data file. For example, the data file might contain a record
with the following text: service 781-359-1000 Peak 2000 minutes. In this record, Peak could be
interpreted as one of Tariff dimension value, which might have a business key PEAK_CALL. For the
ETL process to recognize this record indicating that the service with number 781-359-1000 made a
total of 2000 call minutes during peak hours, Oracle Self-Service E-Billing expects the file to contain
PEAK_CALL (the business KEY string rather than the word Peak, the literal string that came from the
billing system).
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 273

Input File Specifications and Data Mapping ■ Data File Loading Tasks
Data File Loading Tasks
The following tasks must occur when loading a data file:

■ Preload any new dimension values for dimension tables.

■ Run the preprocessor for each file you are loading.

This approach enables bill files in different languages to be stored with the correct business key
value, allowing for data to be aggregated at a later time.

NOTE: Files must be Unicode compliant so that Oracle Self-Service E-Billing can process data in
multiple languages.

About ETL File Processing
ETL processes two types of data files:

■ Files to populate any new dimension information, including the following 3-character record types
(REC_TYPE): 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200

■ Files to populate fact data into all the fact tables and some dimension tables, including the
following 4-character record types (REC_TYPE)s: 0000, 1000, 1100, 1200, 2000, 2100, 3000,
3100, 3200, 3300, 3400, 4000

File Format for Dimension Level
Information
This topic shows the file format for dimension level information.

Table 96 shows the file format for payment type information.

Table 96. Payment Type Format

Table 97 shows the file format for the adjustment type information.

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN NAME DB_TABLE_NAME DB_COLUMN_NAME

100 Rec Type 1 3 VARCHAR2 No REC_TYPE

100 Payment
Type Code

2 50 VARCHAR2 No COL1 EDX_RPT_PAYMENT_
TYPE_DIM

PAYMENT_TYPE_CD

100 Payment
Type Name

3 100 VARCHAR2 No COL2 EDX_RPT_PAYMENT_
TYPE_DIM

PAYMENT_TYPE_NAME
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A274

Input File Specifications and Data Mapping ■ File Format for Dimension Level
Information
Table 97. Adjustment Type Format

Table 98 shows the file format for charge type information.

Table 98. Charge Type Format

Table 99 shows the file format for sub-charge type information.

Table 99. Sub-Charge Type Format

Table 100 shows the file format for plan type information.

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

110 Rec Type 1 3 VARCHAR2 No REC_TYPE

110 Adjustment
Type Code

2 50 VARCHAR2 No COL1 EDX_RPT_ADJUSTMENT
_TYPE_DIM

ADJUSTMENT_TYPE_CD

110 Adjustment
Type Name

3 100 VARCHAR2 No COL2 EDX_RPT_ADJUSTMENT
_TYPE_DIM

ADJUSTMENT_TYPE_NAME

RECORD
TYPE FIELD POSITION

MAX
LENGT
H

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR
) COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

120 Rec Type 1 3 VARCHAR2 No REC_TYPE

120 Charge
Type Code

2 50 VARCHAR2 No COL1 EDX_RPT_CHARGE_TYPE
_DIM

CHARGE_TYPE_CD

120 Charge
Type Name

3 100 VARCHAR2 No COL2 EDX_RPT_CHARGE_TYPE
_DIM

CHARGE_TYPE_NAME

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR
) COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

130 Rec Type 1 3 VARCHAR2 No REC_TYPE

130 Sub Charge
Type Code

2 50 VARCHAR2 No COL1 EDX_RPT_SUB_CHARGE
_TYPE_DIM

SUB_CHARGE_TYPE_CD

130 Sub Charge
Type Name

3 100 VARCHAR2 No COL2 EDX_RPT_SUB_CHARGE
_TYPE_DIM

SUB_CHARGE_TYPE_NAME
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 275

Input File Specifications and Data Mapping ■ File Format for Dimension Level
Information
Table 100. Plan Type Format

Table 101 shows the file format for product and sub-product type information.

Table 101. Product and Sub-Product Type Format

Table 102 shows the file format for service usage type information.

Table 102. Service Usage Type Format

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

140 Rec Type 1 3 VARCHAR2 No REC_TYPE

140 Plan Type
Code

2 50 VARCHAR2 No COL1 EDX_RPT_PLAN_TYPE_DIM PLAN_TYPE_CD

140 Plan Type
Name

3 100 VARCHAR2 No COL2 EDX_RPT_PLAN_TYPE_DIM PLAN_TYPE_NAME

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

150 Rec Type 1 3 VARCHAR2 No REC_TYPE

150 Product Code 2 50 VARCHAR2 No COL1 EDX_RPT_PRODUCT_DIM PRODUCT_CD

150 Product Desc 3 100 VARCHAR2 No COL2 EDX_RPT_PRODUCT_DIM PRODUCT_NAME

150 Subproduct
Code

4 50 VARCHAR2 No COL3 EDX_RPT_SUB_PRODUCT
_DIM

SUB_PRODUCT_CD

150 Subproduct
Desc

5 100 VARCHAR2 No COL4 EDX_RPT_SUB_PRODUCT
_DIM

SUB_PRODUCT_NAME

150 Subproduct
Charges

6 16,2 NUMBER No COL5 EDX_RPT_SUB_PRODUCT
_DIM

SUB_PRODUCT_CHAR
GES

150 Subproduct
Unit

7 20 VARCHAR2 No COL6 EDX_RPT_SUB_PRODUCT
_DIM

SUB_PRODUCT_UNIT

150 Product Note1 8 2000 VARCHAR2 No COL7 EDX_RPT_PRODUCT_DIM PRODUCT_NOTE1

150 Product Note2 9 2000 VARCHAR2 No COL8 EDX_RPT_PRODUCT_DIM PRODUCT_NOTE2

150 Product Note3 10 2000 VARCHAR2 No COL9 EDX_RPT_PRODUCT_DIM PRODUCT_NOTE3

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

160 Rec Type 1 3 VARCHAR2 No REC_TYPE

160 Usage
Type Code

2 50 VARCHAR2 No COL1 EDX_RPT_USAGE_TYPE
_DIM

USAGE_TYPE_CD

160 Usage
Type
Name

3 100 VARCHAR2 No COL2 EDX_RPT_USAGE_TYPE
_DIM

USAGE_TYPE_NAME
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A276

Input File Specifications and Data Mapping ■ File Format for Dimension Level
Information
Table 103 shows the file format for tariff type information.

Table 103. Tariff Type Format

Table 104 shows the file format for other type (dimension) related information.

Table 104. Other Type (Dimension) Related Information Format

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

170 Rec Type 1 3 VARCHAR2 No REC_TYPE

170 Tariff
Code

2 50 VARCHAR2 No COL1 EDX_RPT_TARIFF_DIM TARIFF_CD

170 Tariff
Name

3 100 VARCHAR2 No COL2 EDX_RPT_TARIFF_DIM TARIFF_NAME

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

180 Rec Type 1 3 VARCHAR2 No REC_TYPE

180 Region
Code

2 50 VARCHAR2 No COL1 EDX_RPT_REGION_DIM REGION_CD

180 Region
Name

3 100 VARCHAR2 No COL2 EDX_RPT_REGION_DIM REGION_NAME

190 Rec Type 1 3 VARCHAR2 No REC_TYPE

190 Carrier
Code

2 50 VARCHAR2 No COL1 EDX_RPT_CARRIER_DIM CARRIER_CD

190 Carrier
Name

3 100 VARCHAR2 No COL2 EDX_RPT_CARRIER_DIM CARRIER_NAME

200 Rec Type 1 3 VARCHAR2 No REC_TYPE

200 Calling/
Called City
and State

2 100 VARCHAR2 No COL1 EDX_RPT_AREA_CD_DI
M

AREA_CD

200 Calling/
Called
Country

3 100 VARCHAR2 No COL2 EDX_RPT_AREA_CD_DI
M

COUNTRY_CD
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 277

Input File Specifications and Data Mapping ■ Statement Level File Format
Statement Level File Format
This topic shows the file format for statement-level information.

Table 105 shows the file format for summary-level detail information.

Table 105. Summary-Level Detail Record Format

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

0000 Rec Type 1 3 VARCHAR2 Yes N/A N/A N/A

0000 HEADER
TYPE

2 20 VARCHAR2 Yes N/A N/A N/A

0000 BILLING
SYSTEM

3 20 VARCHAR2 Yes N/A N/A N/A

1000 Rec Type 1 3 VARCHAR2 Yes N/A N/A N/A

1000 Statement
Number

2 20 VARCHAR2 Yes COL1 EDX_RPT_STATEMENT_
FACT

STATEMENT_NUMBER

1000 Company ID 3 20 VARCHAR2 No COL2 EDX_RPT_COMPANY_DI
M

COMPANY_CD

1000 Company
Name

4 255 VARCHAR2 No COL3 EDX_RPT_COMPANY_DI
M

COMPANY_NAME

1000 Statement
Date

5 8 DATE No COL4 EDX_RPT_STATEMENT_
FACT

STATEMENT_DATE

1000 Billing Cycle
Start Date

6 8 DATE Yes COL5 EDX_RPT_STATEMENT_
FACT

BILL_CYCLE_START_DA
TE

1000 Billing Cycle
End Date

7 8 DATE Yes COL6 EDX_RPT_STATEMENT_
FACT

BILL_CYCLE_END_DATE

1000 Previous
Balance

8 16,2 NUMBER No COL7 EDX_RPT_STATEMENT_
FACT

PREVIOUS_BALANCE

1000 Total
Payment
Posted

9 16,2 NUMBER No COL8 EDX_RPT_STATEMENT_
FACT

TOTAL_PAYMENT_POST
ED

1000 Total
Adjustments

10 16,2 NUMBER No COL9 EDX_RPT_STATEMENT_
FACT

TOTAL_ADJUSTMENTS

1000 Balance
Forward Due

11 16,2 NUMBER No COL10 EDX_RPT_STATEMENT_
FACT

BALANCE_FORWARD_D
UE

1000 Total Current
Charge Due

12 16,2 NUMBER No COL11 EDX_RPT_STATEMENT_
FACT

TOTAL_CURRENT_CHAR
GE_DUE

1000 Total Amount
Due

13 16,2 NUMBER No COL12 EDX_RPT_STATEMENT_
FACT

TOTAL_AMOUNT_DUE

1000 Monthly
Service
Charges

14 16,2 NUMBER No COL13 EDX_RPT_STATEMENT_
FACT

MONTHLY_CHARGE_AM
T

1000 Usage
Charges

15 16,2 NUMBER No COL14 EDX_RPT_STATEMENT_
FACT

USAGE_CHARGE_AMT

1000 Credits 16 16,2 NUMBER No COL15 EDX_RPT_STATEMENT_
FACT

CREDIT_ADJUST_AMT

1000 Other
Charges

17 16,2 NUMBER No COL16 EDX_RPT_STATEMENT_
FACT

OTHER_CHARGE_AMT

1000 Taxes and
Fees

18 16,2 NUMBER No COL17 EDX_RPT_STATEMENT_
FACT

TAXES_SURCHARGES_F
EE
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A278

Input File Specifications and Data Mapping ■ Statement Level File Format
1000 Flex Field_1 19 16,2 NUMBER No COL18 EDX_RPT_STATEMENT_
FACT

FLEX_FIELD1

1000 Flex Field_2 20 16,2 NUMBER No COL19 EDX_RPT_STATEMENT_
FACT

FLEX_FIELD2

1000 Flex Field_3 21 16,2 NUMBER No COL20 EDX_RPT_STATEMENT_
FACT

FLEX_FIELD3

1000 Flex Field_4 22 16,2 NUMBER No COL21 EDX_RPT_STATEMENT_
FACT

FLEX_FIELD4

1000 Flex Field_5 23 16,2 NUMBER No COL22 EDX_RPT_STATEMENT_
FACT

FLEX_FIELD5

1000 Minimum
Amount Due

24 16,2 NUMBER No COL23 EDX_RPT_STATEMENT_
FACT

MINIMUM_DUE_AMT

1000 Statement
Due Date

25 8 DATE No COL24 EDX_RPT_STATEMENT_
FACT

STATEMENT_DUE_DATE

1000 Statement
Currency

26 50 VARCHAR2 No COL25 EDX_RPT_STATEMENT_
FACT

CURRENCY_TYPE_CD

1000 Statement
Country

27 50 VARCHAR2 No COL26 EDX_RPT_STATEMENT_
FACT

COUNTRY_CD

1000 Statement
Time Zone

28 50 VARCHAR2 No COL27 EDX_RPT_STATEMENT_
FACT

TIME_ZONE_CD

1000 Note1 29 2010 VARCHAR2 No COL28 EDX_RPT_STATEMENT_
FACT

NOTE1

1000 Note2 30 2010 VARCHAR2 No COL29 EDX_RPT_STATEMENT_
FACT

NOTE2

1000 Note3 31 2010 VARCHAR2 No COL30 EDX_RPT_STATEMENT_
FACT

NOTE3

1000 Note4 32 2010 VARCHAR2 No COL31 EDX_RPT_STATEMENT_
FACT

NOTE4

1000 Note5 33 2010 VARCHAR2 No COL32 EDX_RPT_STATEMENT_
FACT

NOTE5

1000 MEDIA_TYPE 34 50 VARCHAR2 No COL33 EDX_RPT_STATEMENT_
FACT

MEDIA_TYPE

1000 Corporation
Account No

35 255 VARCHAR2 No COL34 EDX_RPT_COMPANY_DI
M

FLEX_FIELD1

1000 Corporation
Tax ID

36 255 VARCHAR2 No COL35 EDX_RPT_COMPANY_DI
M

FLEX_FIELD2

1000 Street 37 255 VARCHAR2 No COL36 EDX_RPT_COMPANY_DI
M

FLEX_FIELD3

1000 City 38 255 VARCHAR2 No COL37 EDX_RPT_COMPANY_DI
M

FLEX_FIELD4

1000 State 39 255 VARCHAR2 No COL38 EDX_RPT_COMPANY_DI
M

FLEX_FIELD5

1000 Country 40 255 VARCHAR2 No COL39 EDX_RPT_COMPANY_DI
M

FLEX_FIELD6

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 279

Input File Specifications and Data Mapping ■ Statement Level File Format
Table 106 shows the file format for statement payment fact information.

Table 106. Statement Payment Fact Format

Table 107 shows the file format for statement adjustment fact information.

Table 107. Statement Adjustment Fact Format

1000 Zipcode 41 10 VARCHAR2 No COL40 EDX_RPT_COMPANY_DI
M

FLEX_FIELD7

1000 Company
display name

42 255 VARCHAR2 No COL41 EDX_RPT_COMPANY_DI
M

FLEX_FIELD8

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

1100 Rec Type 1 3 VARCHAR2 Yes REC_TYPE

1100 Statement
Number

2 20 VARCHAR2 Yes COL1 EDX_RPT_STATEMENT
_PAYMENT_FACT

STATEMENT_KEY

1100 Payment
Type Code

3 50 VARCHAR2 Yes COL2 EDX_RPT_STATEMENT
_PAYMENT_FACT

PAYMENT_TYPE_KEY

1100 Payment
Amount

4 16,2 NUMBER Yes COL3 EDX_RPT_STATEMENT
_PAYMENT_FACT

PAYMENT_AMOUNT

1100 Payment
Date

5 8 DATE No COL4 EDX_RPT_STATEMENT
_PAYMENT_FACT

PAYMENT_DATE

1100 Payment
Note

6 255 VARCHAR2 No COL5 EDX_RPT_STATEMENT
_PAYMENT_FACT

PAYMENT_NOTE

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

1200 Rec Type 1 3 VARCHAR2 Yes REC_TYPE

1200 Statement
Number

2 20 VARCHAR2 Yes COL1 EDX_RPT_STATEMENT
_ADJUST_FACT

STATEMENT_KEY

1200 Adjustment
Type Code

3 50 VARCHAR2 Yes COL2 EDX_RPT_STATEMENT
_ADJUST_FACT

ADJUSTMENT_TYPE_KEY

1200 Adjustment
Amount

4 16,2 NUMBER Yes COL3 EDX_RPT_STATEMENT
_ADJUST_FACT

ADJUSTMENT_AMOUNT

1200 Adjustment
Date

5 8 DATE No COL4 EDX_RPT_STATEMENT
_ADJUST_FACT

ADJUSTMENT_DATE

1200 Service
Number

6 20 VARCHAR2 No COL5 EDX_RPT_STATEMENT
_ADJUST_FACT

SERVICE_NUMBER

1200 Adjustment
Note

7 255 VARCHAR2 No COL6 EDX_RPT_STATEMENT
_ADJUST_FACT

ADJUSTMENT_NOTE

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A280

Input File Specifications and Data Mapping ■ Account Level File Format
Account Level File Format
This topic shows the account level file formats.

Table 108 shows the file format for account fact charge information.

Table 108. Account Fact Charges (charge Summary for Account) Format

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

2000 Rec Type 1 4 VARCHAR
2

Yes REC_TYPE

2000 Statement
Number

2 20 VARCHAR
2

Yes COL1 EDX_RPT_ACCOUNT_FACT STATEMENT_KEY

2000 Account
Number

3 20 VARCHAR
2

Yes COL2 EDX_RPT_ACCOUNT_DIM ACCOUNT_NUM

2000 Account
Owner Name

4 255 VARCHAR
2

Yes COL3 EDX_RPT_ACCOUNT_DIM CONTACT_NAME

2000 Address1 5 200 VARCHAR
2

No COL4 EDX_RPT_ACCOUNT_DIM,

EDX_RPT_ADDRESS_DIM

ADDRESS1,

ADDRESS1

2000 Address2 6 200 VARCHAR
2

No COL5 EDX_RPT_ACCOUNT_DIM,

EDX_RPT_ADDRESS_DIM

ADDRESS2,
ADDRESS2

2000 City 7 100 VARCHAR
2

No COL6 EDX_RPT_ACCOUNT_DIM,

EDX_RPT_ADDRESS_DIM

CITY,
CITY

2000 State 8 100 VARCHAR
2

No COL7 EDX_RPT_ACCOUNT_DIM,

EDX_RPT_ADDRESS_DIM

STATE,
STATE

2000 Country 9 100 VARCHAR
2

No COL8 EDX_RPT_ACCOUNT_DIM,

EDX_RPT_ADDRESS_DIM

COUNTRY,

COUNTRY

2000 Zip 10 20 VARCHAR
2

No COL9 EDX_RPT_ACCOUNT_DIM,

EDX_RPT_ADDRESS_DIM

ZIP,
ZIP

2000 Monthly
Service
Charges

11 16,2 NUMBER Yes COL 10 EDX_RPT_ACCOUNT_FACT MONTHLY_CHARGE_AM
T

2000 Usage
Charges

12 16,2 NUMBER Yes COL 11 EDX_RPT_ACCOUNT_FACT USAGE_CHARGE_AMT

2000 Credits 13 16,2 NUMBER Yes COL 12 EDX_RPT_ACCOUNT_FACT CREDIT_ADJUST_AMT

2000 Other
Charges

14 16,2 NUMBER Yes COL 13 EDX_RPT_ACCOUNT_FACT OTHER_CHARGE_AMT

2000 Taxes and
Fees

15 16,2 NUMBER Yes COL 14 EDX_RPT_ACCOUNT_FACT TAXES_SURCHARGES_
FEE

2000 Total Charge
Amount

16 16,2 NUMBER Yes COL15 EDX_RPT_ACCOUNT_FACT TOTAL_CHARGE_AMT

2000 Charge Flag 17 1 VARCHAR
2

Yes COL16 EDX_RPT_ACCOUNT_FACT CHARGE_FLAG

2000 Account
Type

18 20 VARCHAR
2

No COL17 EDX_RPT_ACCOUNT_FACT ACCOUNT_TYPE_KEY

2000 Flex Field_1 19 16,2 NUMBER No COL18 EDX_RPT_ACCOUNT_FACT FLEX_FIELD1

2000 Flex Field_2 20 16,2 NUMBER No COL19 EDX_RPT_ACCOUNT_FACT FLEX_FIELD2

2000 Flex Field_3 21 16,2 NUMBER No COL20 EDX_RPT_ACCOUNT_FACT FLEX_FIELD3
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 281

Input File Specifications and Data Mapping ■ Service Level File Format
Table 109 shows the file format for information about account level charges at the charge type level.

Table 109. Account Level Charges at Charge Type Level Format

Service Level File Format
This topic shows the file format for account level information.

Table 110 shows the file format for information about the total charges at the service agreement level
for an account under a statement.

2000 Flex Field_4 22 16,2 NUMBER No COL21 EDX_RPT_ACCOUNT_FACT FLEX_FIELD4

2000 Flex Field_5 23 16,2 NUMBER No COL22 EDX_RPT_ACCOUNT_FACT FLEX_FIELD5

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

2100 Rec Type 1 3 VARCHAR2 Yes REC_TYPE

2100 Statement
Number

2 20 VARCHAR2 Yes COL1 EDX_RPT_ACCOUNT_
CHARGE_FACT

STATEMENT_KEY

2100 Account
Number

3 20 VARCHAR2 Yes COL2 EDX_RPT_ACCOUNT_
CHARGE_FACT

ACCOUNT_KEY

2100 Charge Type
Code

4 50 VARCHAR2 Yes COL3 EDX_RPT_ACCOUNT_
CHARGE_FACT

CHARGE_TYPE_KEY

2100 Monthly
Service
Charges

5 16,2 NUMBER Yes COL4 EDX_RPT_ACCOUNT_
CHARGE_FACT

MONTHLY_CHARGE_AMT

2100 Usage
Charges

6 16,2 NUMBER Yes COL5 EDX_RPT_ACCOUNT_
CHARGE_FACT

USAGE_CHARGE_AMT

2100 Credits 7 16,2 NUMBER Yes COL6 EDX_RPT_ACCOUNT_
CHARGE_FACT

CREDIT_ADJUST_AMT

2100 Other
Charges

8 16,2 NUMBER Yes COL7 EDX_RPT_ACCOUNT_
CHARGE_FACT

OTHER_CHARGE_AMT

2100 Taxes and
Fees

9 16,2 NUMBER Yes COL8 EDX_RPT_ACCOUNT_
CHARGE_FACT

TAXES_SURCHARGES_FEE

2100 Total Charge
Amount

10 16,2 NUMBER Yes COL9 EDX_RPT_ACCOUNT_
CHARGE_FACT

TOTAL_CHARGE_AMT

2100 Charge Note 11 255 VARCHAR2 No COL10 EDX_RPT_ACCOUNT_
CHARGE_FACT

CHARGE_NOTE

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A282

Input File Specifications and Data Mapping ■ Service Level File Format
Table 110. Service Level Total Format

Table 111 shows the file format for the service level on charge type information.

Table 111. Service Level on Charge Type Format

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

3000 Rec Type 1 3 VARCHAR2 Yes REC_TYPE

3000 Statement
Number

2 20 VARCHAR2 Yes COL1 EDX_RPT_SERVICE_FACT STATEMENT_KEY

3000 Account
Number

3 20 VARCHAR2 Yes COL2 EDX_RPT_SERVICE_DIM ACCOUNT_KEY

3000 Service
Number

4 20 VARCHAR2 Yes COL3 EDX_RPT_SERVICE_DIM SERVICE_NUM

3000 Service Owner
Name

5 100 VARCHAR2 No COL4 N/A N/A

3000 Monthly
Service
Charges

6 16,2 NUMBER Yes COL5 EDX_RPT_SERVICE_FACT MONTHLY_CHARGE_A
MT

3000 Usage
Charges

7 16,2 NUMBER Yes COL6 EDX_RPT_SERVICE_FACT USAGE_CHARGE_AMT

3000 Adjustments 8 16,2 NUMBER Yes COL7 EDX_RPT_SERVICE_FACT CREDIT_ADJUST_AMT

3000 Other Charges 9 16,2 NUMBER Yes COL8 EDX_RPT_SERVICE_FACT OTHER_CHARGE_AMT

3000 Taxes and
Fees

10 16,2 NUMBER Yes COL9 EDX_RPT_SERVICE_FACT TAXES_SURCHARGES
_FEE

3000 Total Charge
Amount

11 16,2 NUMBER Yes COL10 EDX_RPT_SERVICE_FACT TOTAL_CHARGE_AMT

3000 Charge Note 12 255 VARCHAR2 No COL11 EDX_RPT_SERVICE_FACT CHARGE_NOTE

3000 Flex Field_1 13 16,2 NUMBER No COL12 EDX_RPT_SERVICE_FACT FLEX_FIELD1

3000 Flex Field_2 14 16,2 NUMBER No COL13 EDX_RPT_SERVICE_FACT FLEX_FIELD2

3000 Flex Field_3 15 16,2 NUMBER No COL14 EDX_RPT_SERVICE_FACT FLEX_FIELD3

3000 Flex Field_4 16 16,2 NUMBER No COL15 EDX_RPT_SERVICE_FACT FLEX_FIELD4

3000 Flex Field_5 17 16,2 NUMBER No COL16 EDX_RPT_SERVICE_FACT FLEX_FIELD5

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

3100 Rec Type 1 3 VARCHAR2 Yes REC_TYPE N/A N/A

3100 Statemen
t Number

2 20 VARCHAR2 Yes COL1 EDX_RPT_SERVICE_CHARGE
_FACT

STATEMENT_KEY

3100 Account
Number

3 20 VARCHAR2 Yes COL2 EDX_RPT_SERVICE_CHARGE
_FACT

ACCOUNT_KEY

3100 Service
Number

4 20 VARCHAR2 Yes COL3 EDX_RPT_SERVICE_CHARGE
_FACT

SERVICE_KEY

3100 Charge
Type Code

5 50 VARCHAR2 Yes COL4 EDX_RPT_SERVICE_CHARGE
_FACT

CHARGE_TYPE_KEY
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 283

Input File Specifications and Data Mapping ■ Service Level File Format
Table 112 shows the file format for the service charge on product and plan information.

Table 112. Service Charge on Product and Plan Format

Table 113 shows the file format for service charge on usage type information.

Table 113. Service Charge on Usage Type Format

3100 Sub
Charge
Type Code

6 50 VARCHAR2 No COL5 EDX_RPT_SERVICE_CHARGE
_FACT

SUB_CHARGE_TYPE_KE
Y

3100 Monthly
Charge
Amount

7 10 NUMBER Yes COL6 EDX_RPT_SERVICE_CHARGE
_FACT

CHARGE_AMT

3100 Charge
Note

8 255 VARCHAR2 No COL7 EDX_RPT_SERVICE_CHARGE
_FACT

CHARGE_NOTE

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

3200 Rec Type 1 3 VARCHAR2 Yes REC_TYPE N/A N/A

3200 Statement
Number

2 20 VARCHAR2 Yes COL1 EDX_RPT_SERVICE_PRODUCT
_FACT

STATEMENT_KEY

3200 Account
Number

3 20 VARCHAR2 Yes COL2 EDX_RPT_SERVICE_PRODUCT
_FACT

ACCOUNT_KEY

3200 Service
Number

4 20 VARCHAR2 Yes COL3 EDX_RPT_SERVICE_PRODUCT
_FACT

SERVICE_KEY

3200 Plan Type
Code

5 50 VARCHAR2 Yes COL4 EDX_RPT_SERVICE_PRODUCT
_FACT

PLAN_TYPE_KEY

3200 Product
Code

6 50 VARCHAR2 Yes COL5 EDX_RPT_SERVICE_PRODUCT
_FACT

PRODUCT_CHILD_KE
Y

3200 Monthly
Charge
Amount

7 16,2 NUMBER Yes COL6 EDX_RPT_SERVICE_PRODUCT
_FACT

CHARGE_AMT

3200 Product
Note

8 255 VARCHAR2 No COL7 EDX_RPT_SERVICE_PRODUCT
_FACT

PRODUCT_NOTE

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

3300 Rec Type 1 3 VARCHAR2 Yes REC_TYPE

3300 Statement
Number

2 20 VARCHAR2 Yes COL1 EDX_RPT_SERVICE_USAGE_F
ACT

STATEMENT_KEY

3300 Account
Number

3 20 VARCHAR2 Yes COL2 EDX_RPT_SERVICE_USAGE_F
ACT

ACCOUNT_KEY

3300 Service
Number

4 20 VARCHAR2 Yes COL3 EDX_RPT_SERVICE_USAGE_F
ACT

SERVICE_KEY

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A284

Input File Specifications and Data Mapping ■ Service Detail Level File Format
Table 114 shows the file format for the service charges on various tariff information.

Table 114. Service Charges on Various Tariff Format

Service Detail Level File Format
Table 115 shows the file format for account level file information.

3300 Usage
Type Code

5 50 VARCHAR2 Yes COL4 EDX_RPT_SERVICE_USAGE_F
ACT

USAGE_TYPE_KEY

3300 Total
Usage

6 16,2 NUMBER Yes COL5 EDX_RPT_SERVICE_USAGE_F
ACT

TOTAL_USAGE

3300 Usage Unit
Code

7 50 VARCHAR2 Yes COL6 EDX_RPT_SERVICE_USAGE_F
ACT

UNIT_KEY

3300 Amount 8 16,2 NUMBER Yes COL7 EDX_RPT_SERVICE_USAGE_F
ACT

TOTAL_CHARGE_AMT

3300 Usage
Note

9 255 VARCHAR2 No COL8 EDX_RPT_SERVICE_USAGE_F
ACT

USAGE_NOTE

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR
) COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

3400 Rec Type 1 3 VARCHAR2 Yes REC_TYPE N/A N/A

3400 Statement
Number

2 20 VARCHAR2 Yes COL1 EDX_RPT_SERVICE_TARIFF
_FACT

STATEMENT_KEY

3400 Account
Number

3 20 VARCHAR2 Yes COL2 EDX_RPT_SERVICE_TARIFF
_FACT

ACCOUNT_KEY

3400 Service
Number

4 20 VARCHAR2 Yes COL3 EDX_RPT_SERVICE_TARIFF
_FACT

SERVICE_KEY

3400 Usage
Type Code

5 50 VARCHAR2 Yes COL4 EDX_RPT_SERVICE_TARIFF
_FACT

USAGE_TYPE_KEY

3400 Tariff Code 6 50 VARCHAR2 Yes COL5 EDX_RPT_SERVICE_TARIFF
_FACT

TARIFF_KEY

3400 Allowance 7 20 VARCHAR2 Yes COL6 EDX_RPT_SERVICE_TARIFF
_FACT

ALLOWANCE

3400 Total
Usages

8 16,2 NUMBER Yes COL7 EDX_RPT_SERVICE_TARIFF
_FACT

TOTAL_USAGE

3400 Usage Unit
Code

9 50 VARCHAR2 Yes COL8 EDX_RPT_SERVICE_TARIFF
_FACT

UNIT_KEY

3400 Billable 10 16,2 NUMBER Yes COL9 EDX_RPT_SERVICE_TARIFF
_FACT

BILLABLE

3400 Amount 11 16,2 NUMBER Yes COL10 EDX_RPT_SERVICE_TARIFF
_FACT

CHARGE_AMT

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 285

Input File Specifications and Data Mapping ■ Service Detail Level File Format
Table 115. Service Call Usage Details (Voice, Data, Message) Format

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME

4000 Rec Type 1 3 VARCHAR2 Yes REC_TYPE N/A N/A

4000 Usage
Name

2 50 VARCHAR2 Yes COL1 EDX_RPT_SERVICE_DETAIL
_FACT

USAGE_TYPE_KEY

4000 Statement
Number

3 20 VARCHAR2 Yes COL2 EDX_RPT_SERVICE_DETAIL
_FACT

STATEMENT_KEY

4000 Account
Number

4 20 VARCHAR2 Yes COL3 EDX_RPT_SERVICE_DETAIL
_FACT

ACCOUNT_KEY

4000 Service
Number

5 20 VARCHAR2 Yes COL4 EDX_RPT_SERVICE_DETAIL
_FACT

SERVICE_KEY

4000 Called Date 6 8 DATE Yes COL5 EDX_RPT_SERVICE_DETAIL
_FACT

DATE_KEY

4000 Called Time 7 10 VARCHAR2 Yes COL6 EDX_RPT_SERVICE_DETAIL
_FACT

DURATION

4000 Called
Number

8 20 VARCHAR2 Yes COL7 EDX_RPT_SERVICE_DETAIL
_FACT

CALLED_NUM

4000 Tariff Code 9 50 VARCHAR2 Yes COL8 EDX_RPT_SERVICE_DETAIL
_FACT

TARIFF_KEY

4000 Call Type
Code

10 50 VARCHAR2 No COL9 EDX_RPT_SERVICE_DETAIL
_FACT

CALL_TYPE_KEY

4000 Direction
Code

11 20 VARCHAR2 Yes COL10 EDX_RPT_SERVICE_DETAIL
_FACT

DIRECTION_KEY

4000 Service
Type Code

12 50 VARCHAR2 No COL11 EDX_RPT_SERVICE_DETAIL
_FACT

SERVICE_TYPE_KEY

4000 Total
Usages

13 16,2 NUMBER Yes COL12 EDX_RPT_SERVICE_DETAIL
_FACT

TOTAL_USAGE

4000 Usages Unit
Code

14 50 VARCHAR2 Yes COL13 EDX_RPT_SERVICE_DETAIL
_FACT

UNIT_KEY

4000 Other
Charge

15 16,2 NUMBER Yes COL14 EDX_RPT_SERVICE_DETAIL
_FACT

OTHER_CHARGE_AMT

4000 Total
Charge

16 16,2 NUMBER Yes COL15 EDX_RPT_SERVICE_DETAIL
_FACT

TOTAL_CHARGE_AMT

4000 Calling City
and State

17 100 VARCHAR2 Yes COL16 EDX_RPT_SERVICE_DETAIL
_FACT

CALLING_AREA_CD_K
EY

4000 Calling
Country
Code

18 100 VARCHAR2 Yes COL17 EDX_RPT_SERVICE_DETAIL
_FACT

CALLING_AREA_CD_K
EY

4000 Reference
Number

19 100 VARCHAR2 No COL18 EDX_RPT_SERVICE_DETAIL
_FACT

REFERENCE_NUM

4000 Carrier
Code

20 50 VARCHAR2 No COL19 EDX_RPT_SERVICE_DETAIL
_FACT

CARRIER_KEY

4000 Region
Code

21 50 VARCHAR2 No COL20 EDX_RPT_SERVICE_DETAIL
_FACT

REGION_KEY

4000 Note1 22 2000 VARCHAR2 No COL21 EDX_RPT_SERVICE_DETAIL
_FACT

NOTE1

4000 Note2 23 2000 VARCHAR2 No COL22 EDX_RPT_SERVICE_DETAIL
_FACT

NOTE2

4000 Note3 24 2000 VARCHAR2 No COL23 EDX_RPT_SERVICE_DETAIL
_FACT

NOTE3
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A286

Input File Specifications and Data Mapping ■ File Record and Table Mapping
File Record and Table Mapping
Table 116 shows the mapping between record types and Oracle Self-Service E-Billing database
tables.

Table 116. File Record and Table Mapping Table

4000 Note4 25 2000 VARCHAR2 No COL24 EDX_RPT_SERVICE_DETAIL
_FACT

NOTE4

4000 Note5 26 2000 VARCHAR2 No COL25 EDX_RPT_SERVICE_DETAIL
_FACT

NOTE5

4000 Called City
and State

27 100 VARCHAR2 Yes COL26 EDX_RPT_SERVICE_DETAIL
_FACT

CALLED_AREA_CD_KE
Y

4000 Called
Country
Code

28 100 VARCHAR2 Yes COL27 EDX_RPT_SERVICE_DETAIL
_FACT

CALLED_AREA_CD_KE
Y

Record Type Table Name Pre-Populated

100 EDX_RPT_PAYMENT_TYPE_DIM Can be populated from data file

110 EDX_RPT_ADJUSTMENT_TYPE_DIM Can be populated from data file

120 EDX_RPT_CHARGE_TYPE_DIM Can be populated from data file

130 EDX_RPT_SUB_CHARGE_TYPE_DIM Can be populated from data file

140 EDX_RPT_PLAN_TYPE_DIM Can be populated from data file

150 EDX_RPT_PRODUCT_DIM Can be populated from data file

150 EDX_RPT_SUB_PRODUCT_DIM Can be populated from data file

160 EDX_RPT_USAGE_TYPE_DIM Can be populated from data file

170 EDX_RPT_TARIFF_DIM Can be populated from data file

180 EDX_RPT_REGION_DIM Can be populated from data file

190 EDX_RPT_CARRIER_DIM Can be populated from data file

200 EDX_RPT_AREA_CD_DIM Can be populated from data file

1000 EDX_RPT_STATEMENT_FACT Fact Data

1000 EDX_RPT_COMPANY_DIM Can be populated from data file

1000 EDX_RPT_PERIOD_DIM Can be populated from data file

1000 EDX_RPT_COUNTRY_DIM Can be populated from data file

1000 EDX_RPT_COMPANY_DIM Can be populated from data file

1000 EDX_RPT_CURRENCY_TYPE_DIM Can be populated from data file

RECORD
TYPE FIELD POSITION

MAX
LENGTH

DATA
TYPE REQ?

STAGING
TABLE
(STG_CDR)
COLUMN
NAME DB_TABLE_NAME DB_COLUMN_NAME
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 287

Input File Specifications and Data Mapping ■ Internationalization Support Settings
Internationalization Support Settings
Oracle Self-Service E-Billing supports multiple languages.

Unicode data storage requires a Unicode Database solution, which involves creating a Unicode-based
database using UTF-8 as the encoding not only for CHAR and VARCHAR2 character datatypes but
also for all SQL names and literals. To implement the Unicode Database solution, the Oracle Self-
Service E-Billing database character set is configured as AL32UTF8, the Oracle name for UTF-8.

The NLS_LENGTH_SEMANTICS parameter in the init.ora (parameter) file of the target Oracle
database is set to CHAR instead of the default BYTE to enable global character semantic support.

Character semantics changed the way multibyte characters were treated in Oracle Database. Instead
of doubling or tripling column or variable precision, setting NLS_LENGTH_SEMANTICS = CHAR
causes Oracle Database to treat storage of the string 'Today' the same as the Japanese string ''. With
this setting, glyphs (characters) are the measure for column and variable precision rather than the
bytes required to store the characters.

Oracle Self-Service E-Billing uses the init.ora file parameter settings shown in Table 117 for the OLAP
and OLTP database instances.

1000 EDX_RPT_TIME_ZONE_DIM Can be populated from data file

1100 EDX_RPT_STATEMENT_PAYMENT_FACT Fact Data

1200 EDX_RPT_STATEMENT_ADJUST_FACT Fact Data

2000 EDX_RPT_ACCOUNT_DIM Populates from data file

2000 EDX_RPT_ADDRESS_DIM Populates from data file

2000 EDX_RPT_ACCOUNT_FACT Fact Data

2100 EDX_RPT_ACCOUNT_CHARGE_FACT Fact Data

3000 EDX_RPT_SERVICE_DIM Populates from data file

3000 EDX_RPT_SERVICE_FACT Fact Data

3100 EDX_RPT_SERVICE_CHARGE_FACT Fact Data

3200 EDX_RPT_SERVICE_PRODUCT_FACT Fact Data

3300 EDX_RPT_SERVICE_USAGE_FACT Fact Data

3400 EDX_RPT_SERVICE_TARIFF_FACT Fact Data

4000 EDX_RPT_SERVICE_DETAIL_FACT Fact Data

Record Type Table Name Pre-Populated
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A288

Input File Specifications and Data Mapping ■ Internationalization Support Settings
Table 117. Internationalization Support Settings

Parameter Value

NLS_LANGUAGE AMERICAN

NLS_TERRITORY AMERICA

NLS_CURRENCY $

NLS_ISO_CURRENCY AMERICA

NLS_NUMERIC_CHARACTERS .

NLS_CALENDAR GREGORIAN

NLS_DATE_FORMAT YYYY-MM-DD

NLS_DATE_LANGUAGE AMERICAN

NLS_CHARACTERSET AL32UTF8

NLS_SORT BINARY

NLS_TIME_FORMAT HH.MI.SSXFF AM

NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM

NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR

NLS_TIMESTAMP_TZ_FORMAT DD-MON-RR HH.MI.SSXFF AM TZR

NLS_DUAL_CURRENCY $

NLS_NCHAR_CHARACTERSET AL16UTF16

NLS_COMP BINARY

NLS_LENGTH_SEMANTICS CHAR

NLS_NCHAR_CONV_EXCP FALSE

NLS_LANGUAGE AMERICAN
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 289

Input File Specifications and Data Mapping ■ Internationalization Support Settings
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A290

Index
A
account level file format 281
account lockout 42
Acegi security, customizing 42
ACH

addenda records 214
change codes 166
customizing 228
effective date 168
individual ID 220
plug-in 212
return codes 167
return files 232
settlement date 168
templates 228

action class 20
addenda records 214
Address Verification Service 172
Analytics Module 14
audit data, reporting 153, 157
Automated Clearing House (ACH) 166

B
B2B Manage Company Profile 70
bank routing

international 243
bar chart properties 145
batch reporting

configuring 95
batch reporting threshold values,

customizing 142

C
cartridge 263
cascading style sheet (CSS) 19
chart, Statement Summary 152
charts

configuring properties 145
customizing 143

check payments
transaction cycle 163
transaction statuses 165

color 19
configurable chart properties 145
configuring batch reporting 95
configuring international bank routing 243

configuring profile management 42
configuring the maximum attempt times 40
configuring the validation code

generator 39
Cost and Budget Management Module 14
creating a PDF template for reporting 124
credit card

overview 168
scheduled payment logic 171
statuses 169
transaction overview 170
user options 172
Verisign 172

credit reversals 165, 172
CSR administrator user, deactivating and

reactivating 39
CSR application 17
custom message provider 82
customizing account reactivation 42
customizing Acegi security 42
customizing charts 143
customizing default display patterns used in

email notifications 56
customizing email notifications 53
customizing the administrator user

password 37
customizing the content of email

notifications 55
customizing the CSR application 269
customizing the payment amount

format 242
customizing the Statement Summary

chart 152
customizing threshold values for batch

reporting 142
customizing user enrollment 34
customizing user lockout 40
customizing user management and

security 33
customizing user password rule 35
customizing user security questions 38

D
data loading 274
data mapping 273
Data Visualization Tools 143
database presentment engine 15
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 291

Index ■ E
DB-logging 29
deactivating and reactivating the default

CSR administrator user 39
debugging Oracle Self-Service E-Billing 28
deleting users 42
dimension level information 274
display patterns, customizing default for

email notifications 56
dynamic SQL 132

E
EAR files

and payment beans 188
and Velocity templates 94
repackaging 23

email notifications
content (Business Edition) 59
content (Consumer Edition) 70
customizing content 55
customizing default display patterns 56
localizing 23
processing 84

enrollment
customizing 34
email template 222

ETL input file format 274
account level 281
dimension level information 274
service detail level 285
service level 282

external identity store 45

F
file processing, ETL 274
file record and table mapping (ETL) 287
fonts 19

H
Hibernate 15
Hierarchy Management Module 14
holidays

and ACH effective date 168
Global Template variable 230
pmtCheckSubmit variable 227
pmtSubmitEnroll variable 228

I
instant payments 170
international bank routing 243
internationalization support settings 288

J
JavaBeans 188
Javadoc 31
Java-option-logging 29
JavaScripts 20
jobs 17
JSP 20

L
language resource bundles 23
line chart properties 150
localizing the user interface 23
lockout 40, 42
Log4j 28
log4j_cc.xml 29
logging 28, 29

M
mapping file record and database table

(ETL) 287
maximum attempt times

configuring 40
message provider, custom 82

N
NOC

ACH change codes 166
ACH returns 223
codes 166
returns 222
transactions 168

Notifications Module 14

O
ODFI

ACH return codes 167
and ACH payment transaction cycle 163
and received check processing 164

OLAP database 15, 22
OLTP database 15, 22
OLTP-OLAP synchronizer 15

P
password rule (user), customizing 35
password, customizing the administrator

user 37
payment amount format, customizing 242
Payment EAR 190
Payment Module 14
PDF template for reporting 124
pie chart properties 148
plug-in
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A292

Index ■ Q
creating for ACH 213
creating for credit cards 215
for recurring payments 217
overview for ACH 212
overview for credit cards 214
overview for reminders 215

pmtCheckSubmit
and ACH effective date 168
bean 190
date 168
job email template 227
plug-in 212

pmtCheckUpdate
and ACH change codes 166
and ACH return codes 167
bean 190

pmtCreditCardExpNotify
job email template 225, 227

pmtCreditCardSubmit
and the payment transaction cycle 171
bean 190

pmtNotifyEnroll
bean 191

pmtPaymentReminder
bean 192
job email template 226

pmtRecurPayment
email template 224

pmtRecurringPayment
job email template 226
jobemail template 225

pmtSubmitEnroll 228
preprocessor tasks, ETL 273
profile management

configuring 42
PWC API 17

Q
query

and IReportConfig 92
and recurring payments 201
and single payment type 241
and transformer 91
and user context variable 125
attributes for 100
audit 254
case study 237
changing SampleARPaymentIntegrator 240
checkQuery and creditCardQuery 236
credit card 240
dynamic SQL 132
element 100
element and paging 131

element of Report XML 100
elements in jdbcDirect 99
files 253
in avoiding duplicate bill paying 265
in multiple payee ACH accounts 267
in presentment engine reports 19
in report context 90
in UNIX 258
in Windows 256, 257
SQL and report XML 110
values for 105

R
reactivate account lockout

configuring 42
recurring payments

email template 224
plug-in 217

reminders 215
report list properties file 94
reporting

creating a PDF template 124
Reporting Engine 87
reporting on system administrator audit

data 157
reporting on user audit data 153

S
SampleARPaymentIntegrator 240
security

Acegi 42
customizing in enrollment 33

security questions, customizing 38
security.xma.xml file

using to customize enrollment validation 39
service detail level file format 285
service level file format 282
single sign-on

simulating 45
SMTP 83
Split Billing Module 14
Spring 21
SQL

displaying 30
dynamic 132
hibernate 30

stack bar chart properties 145
statement level file format

ETL input file format
statement level 278

Statement Module 14
Statement Summary chart, customizing 152
struts 14, 21
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 293

Index ■ T
style sheets 20
support settings 288
system administrator audit data,

reporting 157

T
table mapping 287
templates

and action classes 139
and attribute for column element 113
and attribute for transformer element 112
and attributes for printList element 121
and dynamic localization 135
and EAR structure 16
and ITransformer 92
and localization 135
and predefined context variables 125
and ReportContext objects in 128
and Reporting Engine 88, 90, 93
and reporting XML 95
and resource bundle definition 134
attributes for downloadList element 120
attributes for template element 114
changing 18
customizing 19
customizing report 138
download element of report XML 120
element of report XML 97, 98, 113
email composer 84
enabling sorting 130
folder 18
generating custom link report 121
included in report package 123
modify reports 138
paging 131
report XML 141
reporting 122
Reporting Engine 133
testing report XML 138
to generate the UI 102
Velocity 20, 87, 91, 92, 94
Velocity and attributes for prompts

element 104
Velocity and attributes for query

element 100
Velocity and changing files 18
Velocity and drilldown and breadcrumb

link 137
Velocity and predefined context

variables 124
Velocity and reporting API 129
Velocity and Reporting Engine 88
Velocity and SQL query 132

Velocity engine in parsing 128
Velocity for internationalization and

localization 133
Velocity versus JSP 89
Velocity, changing 141
XML operationGroup element report 116

Top X Reporting Module 15
transaction management 15
translating the interface 23

U
Unbilled Usage Module 14
UNIX

editing files before running queries 256
email template default path 221
Oracle WebLogic payment debug flag 246
queries 258
query files 253

user audit data, reporting 153
user enrollment, customizing 34
user interface

components 20
localizing 23

user lockout
customizing 40

user management and security
customizing 33

User Management Module 14
user security questions, customizing 38
user.xma.xml file

using to configure maximum attempt
times 40

users, deleting 42
userService.xma.xml

using to customize user enrollment 34
using single sign-on 45
using the report list properties file 94

V
validation code generator, configuring 39
Velocity

and changing files 18
and EAR files 94
and ReportContext class 92
and Reporting Engine 87, 88
changing templates 141
new version 89
template 91
template and attributes for query

element 100
template and drilldown and breadcrumb

link 137
template and reporting API 129
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A294

Index ■ W
template and SQL query 132
template engine in parsing 128
templates 20
templates and attributes for prompts

element 104
templates and predefined context

variables 124
templates and reporting 122
templates for internationalization and

localization 133

W
Web documents 19
Windows

query files 254

X
XMA configuration files 21
XML 236
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A 295

Index ■ X
Implementation Guide for Oracle Self-Service E-Billing Version 6.0.4, Rev. A296

	Contents
	1 What’s New in This Release
	What’s New in Implementation Guide for Oracle Self-Service E-Billing, Version 6.0.4, Rev. A
	What’s New in Implementation Guide for Oracle Self-Service E-Billing, Version 6.0.4
	What’s New in Implementation Guide for Oracle Self-Service E-Billing, Version 6.0.3

	2 Customizing Oracle Self-Service E-Billing
	Overview of Oracle Self-Service E-Billing Architecture
	About the Billing and Payment Application
	Default Installation Directory
	Billing and Payment Application EAR File Structure

	About the Command Center Application
	Command Center EAR File

	About the Customer Service Representative Application
	About the CSR Application EAR File

	Guidelines for Customizing Oracle Self- Service E-Billing
	Customizing the User Interface Files
	Customizing the Existing Look-and-Feel
	Customizing Web Document Styles
	Using Custom JSP Pages and Action Classes
	Using Velocity Templates
	About Customizing Reports
	Changing the URL Prefix
	Using Spring (XMA) Configuration Files
	Using the OLTP Database
	Using the OLAP Database
	Data Dictionary
	Repackaging EAR Files
	Auditing Database Administration Activity

	Localizing the User Interface
	Debugging Oracle Self-Service E-Billing
	Viewing log4j Log Files
	Billing and Payment Application Log Files
	Command Center Application Log Files
	Customer Service Representative Application Log Files

	Viewing Command Center Logs
	Displaying SQL Statements

	Accessing Oracle Self-Service E-Billing Javadoc

	3 Customizing User Management
	Customizing User Management and Security
	Customizing User Enrollment
	Configuring User Enrollment XMA
	Using User Enrollment APIs
	Using Bulk Enrollment API

	Customizing End User and CSR User Passwords
	Customizing the Administrator User Password
	Customizing the CSR User Password Configuration
	Customizing User Security Questions
	Deactivating and Reactivating the Master Customer Service Representative Administrator User
	Customizing Enrollment Validation
	Configuring the Validation Code Generator
	Using Enrollment Validation API

	Customizing Account Lockout
	Using APIs

	Customizing Reactivate Account Lockout
	Customizing Profile Management
	About Deleting Users
	Customizing Acegi Security
	Customizing Acegi Configuration
	Using or Simulating Single Sign-On
	Configuring Oracle Self-Service E-Billing to use a Single Sign-on System
	Configuring Oracle Self-Service E-Billing to Simulate a Single Sign-on System

	4 Customizing Billing Statements
	About Statement Presentment APIs
	About Split Billing Rules Management APIs
	About the OLAP.EDX_RPT_ETL_PLUG_RULE Table
	About the OLAP.EDX_RPT_SPLIT_CATEGORY_TYPE Table

	Transaction Dispute APIs
	Unbilled Usage APIs
	Contact APIs

	5 Using and Customizing Email Notifications
	Configuring an Email Host and Other Messaging Properties
	Customizing the Content of Email Notifications
	Customizing the Default Display Patterns Used in Email Notifications
	Email Notification Template Content (Business Edition)
	Email Notification Template Content (Consumer Edition)
	Adding a Custom Message Provider
	About Email Notification Processing

	6 Using the Reporting Engine
	Reporting Engine Features
	Reporting Engine Architecture
	Reporting Engine Object Model

	Components Used by the Reporting Engine
	Using the Report List Properties File
	Configuring Batch Reporting
	Reporting XML
	<reports> Element of Report XML
	<localizer> Element of Report XML
	<resourceBundle> Element of Report XML
	<prompts> Element of Report XML
	<templates> Element of Report XML
	<template> Element of Report XML
	<report> Element of Report XML
	<dataSource> Element of Report XML
	<query> Element of Report XML
	<inputBindings> Element of Report XML
	<inputBinding> Element of Report XML
	<prompts> Element of Report XML
	<block> Element of Report XML
	<group> Element of Report XML
	<select> Element of Report XML
	<checkBox> Element of Report XML
	<radio> Element of Report XML
	<text> Element of Report XML
	<image> Element of Report XML
	<label> Element of Report XML
	<reset> Element of Report XML
	<submit> Element of Report XML
	<columns> Element of Report XML
	<column> Element of Report XML
	<transformer> Element of Report XML
	<columns> Element of Report XML
	<column> Element of Report XML
	<link> Element of Report XML
	<templates> Element of Report XML
	<template> Element of Report XML
	<group> Element of Report XML
	<column> Element of Report XML
	<calculator> Element of Report XML
	<operationGroup> Element of Report XML
	<operation> Element of Report XML
	<charts> Element of Report XML
	<chart> Element of Report XML
	<datasets> Element of Report XML
	<dataset> Element of Report XML
	<column> Element of Report XML
	<xlabel> Element of Report XML
	<column> Element of Report XML
	<downloadList> Element of Report XML
	<download> Element of Report XML
	<printList> Element of Report XML
	<print> Element of Report XML
	<customList> Element of Report XML
	<custom> Element of Report XML

	Creating a PDF Template for Reporting
	Integration with Struts and Tiles
	Struts Action Class
	Tiles Definition
	Report.jsp

	Reporting API

	Core Reporting Features
	Sorting Feature of the Reporting Engine
	Paging Feature of the Reporting Engine
	Dynamic SQL
	Internationalization and Localization of Reporting
	Resource Bundle Definition
	Localization of Report Text
	Localization of Report Data from a Data Source
	Localization of Charts
	Locale
	Dynamic Localization

	Object Data Source
	DSV Data Source
	Drilldown and Breadcrumb Link

	Customizing the Reporting Engine
	Write Your Own Report XML
	Customize the Report Template
	Write Your Own Action Classes and ReportForm
	Packaging
	Hiding Report Columns and Manipulating IReport
	Unlimited Paging
	Unlimited Paging for SQL Data Source
	Unlimited Paging for Object Data Source

	Reloading Report XML and Templates without Restarting the Server

	Customizing Threshold Values for Batch Reporting
	Customizing Charts
	Configurable Chart Properties
	Bar Chart and Stack Bar Chart Properties
	Pie Chart Properties
	Line Chart Properties

	Customizing the Statement Summary Chart
	Reporting on User Audit Data
	Reporting on System Administrator Audit Data

	7 About Payment Processing
	About Check Processing
	Adding a Check Account
	Check Account Enrollment Status Workflow
	Check Payment Transaction Workflow
	Check Payment Status Workflow

	Credit Reversals
	Automated Clearing House (ACH)
	Supported SEC Codes
	ACH Change Codes (NOC)
	ACH Return Codes
	NOC Transactions
	ACH Effective Date
	ACH Settlement Date
	ACH Addenda Records

	About Credit Card Processing
	Credit Card Payment Status
	Credit Card Payment Transactions
	Instant Credit Card Payments
	Scheduled Credit Card Payments
	Credit Reversals
	User Options
	Using PayPal Payflow Pro as a Payment Gateway
	Address Verification Service
	Turning AVS On or Off by Transaction

	About Recurring Payments
	Recurring Payment Transaction Cycle
	Tables Affected by Recurring Payments
	Example of Scheduling Amount Due and Before Due Date
	Example of Scheduling Amount Due And Fixed Pay Date
	Example of Scheduling Fixed Amount and Before Due Date
	Example of Scheduling Fixed Amount and Fixed Pay Date

	Payment Job Status Monitoring
	Payment Job Plug-In

	8 Customizing Payment
	Architecture of Oracle Self-Service E- Billing Payment
	Primary Payment JavaBeans

	About Recurring Payment Processing
	Recurring Payment UI
	Insert Recurring Payment From UI
	Update Recurring Payment From the UI

	Recurring Payment – Back-End Job
	Recurring Payment Synchronization
	Recurring Payment Scheduling

	Recurring Payment Scheduling Workflow
	Recurring Payment FAQ

	About Payment Plug-Ins
	ACH Check Submit Plug-In
	Writing a Plug-in
	Using a Plug-in to Write ACH Addenda Records
	PayPal Payflow Pro Credit Card Payment Plug-in
	Writing a Credit Card Plug-in
	Payment Reminder Plug-in
	Creating a pmtPaymentReminder Plug-in

	Recurring Payment Plug-in
	Writing a Plug-in

	Populating Index Fields in Payment Flexible Fields

	Customizing Oracle Self-Service E- Billing Payment Template Files
	Oracle Self-Service E-Billing Payment Template Engine
	Customizing Email Templates
	Oracle Self-Service E-Billing Payment Reminder Template
	Enrollment Notification Template
	Recurring Payment Schedule Notification Template
	Payment Notification Template
	pmtCreditCardExpNotify Variables
	pmtRecurringPayment Variables
	pmtPaymentReminder Variables
	pmtCreditCardExpNotify Variables
	pmtCheckSubmit Variables
	pmtSubmitEnroll

	Credit Card Expiration Notification Template
	Customizing ACH Templates
	Matching a Check in the ACH Return to the Database
	Example 1: Unchanged ACH Trace Number
	Example 2: Modified ACH Trace Number

	Generating Accounts Receivables (A/R Files)
	Customizing the arQuery.xml File
	Querying Case Study
	Customizing the arFlat_template.txt File
	Customizing the arXML_template.xml File
	Customizing the arXML_template.xml File and Using XSLT to Generate an XML Flat AR File
	Reimplement IARPaymentIntegrator
	Select Only Check or Credit Card Payments
	Compiling and Packaging a Custom IARIntegrator
	A/R Filenames
	Single Payment Type

	Customizing the Payment Amount Format
	Configuring International Bank Routing
	Packaging Oracle Self-Service E-Billing Payment Custom Code
	Debugging Payment
	About Job Plug-Ins
	About Payment Auditing
	Payment Jobs That Are Audited
	UI Actions That Are Audited
	Example UI Audit Flow
	About Query Files
	Running Audit Queries
	Query Audit Data by Payment ID
	Query Audit Data by User Account Number
	Query Audit Data by PID

	Setting Up a Query
	Configuring Windows
	Configuring UNIX
	TNS Listener for Oracle (Client/Server)
	Permissions for UNIX

	Running the Queries in Windows and MSSQL
	Querying Audit Data by Payment ID
	Querying Audit Data by Account
	Querying Audit Data by PID

	Running the Queries in Oracle Database
	Querying Audit Data by Payment ID
	Querying Audit data by Account
	Querying Audit Data by PID

	Running the Queries in UNIX
	Querying Audit Data by Payment ID
	Querying Audit Data by Account
	Query Audit Data by PID

	Audit Database
	Columns for Audit
	New Tables
	payment_email_history

	Audit Table Constants
	Job Name Entries

	Implementing Custom Oracle Self- Service E-Billing Payment Cartridges
	Implementing a Demonstration Cartridge
	Implementing a Custom Credit Card Cartridge

	Avoiding Paying a Bill More Than Once
	Handling Multiple Payee ACH Accounts
	Using Payment APIs

	9 Customizing the Customer Service Representative Application
	CSR Integration and Impersonation APIs
	CSR Capabilities
	CSR Access (Impersonate User)
	CSR Application
	Contents of csr.xma.xml

	10 Input File Specifications and Data Mapping
	Preprocessor Tasks
	Data File Loading Tasks
	About ETL File Processing
	File Format for Dimension Level Information
	Statement Level File Format
	Account Level File Format
	Service Level File Format
	Service Detail Level File Format
	File Record and Table Mapping
	Internationalization Support Settings

	Index

