Contents

Preface

Audience ix
Documentation Accessibility ix
Related Documents ix
Conventions x

What's New in the Oracle Identity Manager Advanced Connector for IBM RACF?

Software Updates xi
Documentation-Specific Updates xiii

1 About the IBM RACF Advanced Connector

1.1 Introduction to the Connector 1-1
1.2 Certified Components 1-1
1.3 Certified Languages 1-2
1.4 Connector Architecture 1-3
 1.4.1 Understanding the Connector Components 1-3
 1.4.2 Understanding the Connector Operations 1-4
 1.4.2.1 Full Reconciliation Process 1-4
 1.4.2.2 Initial LDAP Population and Reconciliation Process 1-5
 1.4.2.3 Provisioning Process 1-5
1.5 Connector Features 1-7
 1.5.1 Full and Incremental Reconciliation 1-7
 1.5.2 Encrypted Communication Between the Target System and Oracle Identity Manager 1-7
 1.5.3 High Availability Feature of the Connector 1-7
1.6 Connector Objects Used During Reconciliation and Provisioning 1-8
 1.6.1 Supported Functions for Target Resource Reconciliation 1-9
 1.6.2 Supported Functions for Provisioning 1-9
 1.6.3 User Attributes for Target Resource Reconciliation and Provisioning 1-10
 1.6.4 GROUP Attributes for Target Resource Reconciliation and Provisioning 1-12
2 Installing and Configuring the LDAP Gateway

2.1 Hardware Requirements for Installing the LDAP Gateway
2.2 Installing the LDAP Gateway
2.3 Upgrading the LDAP Gateway
2.4 Configuring the LDAP Gateway
 2.4.1 Setting Connection Properties
 2.4.2 Creating the Connector Configuration
 2.4.3 Configuring the LDAP Gateway for Multiple Installations of the Target System
 2.4.4 Overriding the Default System Configuration
2.5 Configuring the Windows Service for the LDAP Gateway
 2.5.1 Installing and Configuring the Windows Service for the LDAP Gateway
 2.5.2 Uninstalling the Windows Service for the LDAP Gateway
2.6 Encrypting Data
 2.6.1 Understanding Encryption
 2.6.2 Configuring Encryption
2.7 Understanding the Caching Layer
2.8 Configuring Scheduled Reconciliation
2.9 About Parsing Grammar Protocol 1.0
2.10 Configuring IDF LDAP Gateway to Use SSL for Messaging Between Gateway and Pioneer/Voyager
 2.10.1 Configuring SSL for Messaging Between Gateway and Pioneer
 2.10.2 Configuring SSL for Messaging Between Gateway and Voyager
 2.10.3 Enabling AT-TLS for RACF Pioneer and Voyager

3 IBM RACF Connector Deployment on Oracle Identity Manager

3.1 Running the Connector Installer
3.2 Configuring the IT Resource
3.3 Configuring Oracle Identity Manager
 3.3.1 Creating Additional Metadata, Running Entitlement, and Catalog Synchronization Jobs
 3.3.1.1 Creating and Activating a Sandbox
4 Installing and Configuring the Agents of the IBM RACF Connector on the Mainframe

4.1 Installation Requirements for Agents 4-1
4.2 Installing the Mainframe Agents 4-3
4.3 Configuring the Mainframe Agents 4-8
 4.3.1 Configuring the Provisioning Agent 4-8
 4.3.2 Configuring the Reconciliation Agent 4-10
4.4 Configuring Logging 4-11
4.5 Activating and Deactivating Reconciliation Exits 4-17
4.6 Operator Interface for Mainframe Agents 4-17
 4.6.1 Provisioning Agent Commands 4-17
 4.6.2 Reconciliation Agent Commands 4-18

5 Using the IBM RACF Advanced Connector

5.1 Guidelines on Using the IBM RACF Advanced Connector 5-1
5.2 Scheduled Tasks for Lookup Field Synchronization 5-2
5.3 Configuring the Security Attributes Lookup Field 5-3
 5.3.1 Attributes of the Find All Security Attributes Scheduled Task 5-4
 5.3.2 Adding Additional Security Attributes for Provisioning and Reconciliation 5-5
5.4 Configuring Reconciliation 5-5
 5.4.1 Configuring Incremental Reconciliation 5-5
 5.4.2 Performing Full Reconciliation 5-6
 5.4.3 Reconciliation Scheduled Tasks 5-7
 5.4.3.1 RACF Reconcile All Users 5-7
 5.4.3.2 RACF Deleted User Reconciliation Using OIM 5-8
 5.4.3.3 RACF Reconcile Users to Internal LDAP 5-9
 5.4.3.4 RACF Reconcile All LDAP Users 5-9
5.4.4 Guidelines for Configuring Filtered Reconciliation to Multiple Resource Objects

5.5 Configuring Account Status Reconciliation for IBM RACF Advanced Connector

5.6 Scheduled Tasks for IBM RACF Advanced Connector

5.7 Configuring Reconciliation Jobs

5.8 Performing Provisioning Operations

6 Extending the Functionality of the IBM RACF Advanced Connector

6.1 Adding Custom Fields for Target Resource Reconciliation
 6.1.1 Adding Custom Fields for Reconciliation
 6.1.2 Adding Custom Fields to Oracle Identity Manager

6.2 Adding Custom Multivalued Fields for Reconciliation
 6.2.1 Adding Custom Multivalued Fields to the Reconciliation Component
 6.2.2 Adding Custom Multivalued Fields

6.3 Adding Custom Fields for Provisioning for IBM RACF Advanced Connector

6.4 Removing Attributes Mapped for Target Resource Reconciliation

6.5 Using the Provisioning Agent to Run IBM z/OS Batch Jobs

6.6 Configuring the Connector for Provisioning to Multiple Installations of the Target System

6.7 Customizing Log File Locations

6.8 LDAP Reconciliation Supported Queries

6.9 Handling Pioneer Error Messaging Exceptions in the Gateway

7 Troubleshooting the IBM RACF Advanced Connector

8 Known Issues and Workarounds for the IBM RACF Advanced Connector

A Files and Directories in the IBM RACF Advanced Connector Package

B APF-Authorized Libraries

C Pioneer Datasets
Creating Custom Scheduled Tasks

D.1 Code for Searching All Users and All User Data D-1
D.2 Code for Searching All Groups and All Group Data D-2
D.3 Code for Searching All Datasets and All Dataset Data D-2

Voyager and Pioneer Control File Parameters

Configuring RACF Starter User ID and Access for Voyager Agent and Pioneer Agent Started Tasks

Customizing AES Encryption Key

Mainframe Language Environment Runtime Options

H.1 Setting Runtime Options for IBM RACF H-1
H.2 Run Time Options, Defaults and Recommendations for IBM RACF H-2

Pioneer Post-Processing Commands

Pioneer SMF Process

Pioneer Messages

Voyager Messages

Features of the Mainframe Agents

M.1 Functions Supported by the Pioneer Provisioning Agent M-1
M.2 Functions Supported by the Voyager Reconciliation Agent M-3

Custom Data Field (CSDATA)

N.1 Adding CSDATA Fields N-1
N.2 Parsing CSDATA Fields N-2
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Provisioning Process</td>
<td>1-6</td>
</tr>
<tr>
<td>6-1</td>
<td>Multivalued Field Added on a New Form</td>
<td>6-4</td>
</tr>
<tr>
<td>6-2</td>
<td>Child Form Added to the Process Form</td>
<td>6-5</td>
</tr>
<tr>
<td>6-3</td>
<td>New Reconciliation Field Added in the resource Object</td>
<td>6-6</td>
</tr>
<tr>
<td>6-4</td>
<td>Entry Added in the Lookup Definition</td>
<td>6-7</td>
</tr>
<tr>
<td>6-5</td>
<td>New Reconciliation Field Mapped to a Process Data Field</td>
<td>6-8</td>
</tr>
</tbody>
</table>
Preface

This guide describes the connector that is used to integrate Oracle Identity Manager with IBM RACF.

Audience

This guide is intended for resource administrators and target system integration teams. Installation of the connector components on the mainframe requires experience with IBM RACF and various z/OS technologies and components, including TCP/IP, QSAM (flat files), and z/OS libraries.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For information about installing and using Oracle Identity Governance 12.2.1.3.0, visit the following Oracle Help Center page:

For information about installing and using Oracle Identity Manager 11.1.2.3, visit the following Oracle Help Center page:

http://docs.oracle.com/cd/E52734_01/index.html

For information about Oracle Identity Governance Connectors 12.2.1.3.0 documentation, visit the following Oracle Help Center page:

For information about Oracle Identity Manager Connectors 11.1.1 documentation, visit the following Oracle Help Center page:

http://docs.oracle.com/cd/E22999_01/index.htm
Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
What's New in the Oracle Identity Manager Advanced Connector for IBM RACF?

These are the updates made to the software and documentation for release 9.1.0.0.0 of the Oracle Identity Manager Advanced Connector for IBM RACF.

The updates discussed in this chapter are divided into the following categories:

- **Software Updates**
 This section describes updates made to the connector software.

- **Documentation-Specific Updates**
 These include major changes made to the connector documentation. These changes are not related to software updates.

Software Updates

These are the updates made to the connector software.

Software Updates in Release 9.1.0.0.0

The following are the software updates in release 9.1.0.0.0:

- Support for New Oracle Identity Governance Release
- Support for New Target System Version
- Detailed Audit Logs
- Support for High Availability and Disaster Recovery in the LDAP Gateway
- Support for Reconciling Space Character in TSO Command
- Dynamic Allocation of the Voyager DEBUGOUT Parameter
- Support for RACLINK Command
- Support for a New Diagnostic Tool
- Addition of New Parameters to Pioneer and Voyager
- Support for 256-Bit TCP/IP Encryption

Support for New Oracle Identity Governance Release

From this release onward, the connector can be installed and used on Oracle Identity Governance release 12.2.1.3.0. Be sure to download and apply the 28682376 and 29133050 mandatory patches from My Oracle Support.
Support for New Target System Version
From this release onward, you can install and use the connector with IBM RACF on z/OS 2.3.

Detailed Audit Logs
From this release onward, the connector provides a LOGGERX module that you can configure for detailed debug level log information on the Pioneer and Voyager agents. This detailed logging provides additional auditing and monitoring capabilities for your target system. In addition, you can choose to print or suppress log messages.

See Configuring Logging for more information.

Support for High Availability and Disaster Recovery in the LDAP Gateway
From this release onward, the LDAP gateway supports high availability and disaster recovery when you use OpenDS as the backend.

Support for Reconciling Space Character in TSO Command
From this release onward, the connector reconciles TSO commands that contain space characters.

Dynamic Allocation of the Voyager DEBUGOUT Parameter
From this release onward, the connector dynamically allocates the value of the DEBUGOUT parameter for Voyager.

Support for RACLINK Command
The connector can now issue RACLINK (administer user ID associations) commands for certain provisioning operations.

Support for a New Diagnostic Tool
From this release onward, a new diagnostic tool, ENVINFO, for the mainframe agents Pioneer and Voyager is available for use.

Addition of New Parameters to Pioneer and Voyager
The EBCDIC_COUNTRY_CODE and EBCDIC_TILDE_CHR parameters have been added to Pioneer and Voyager. You must use these parameters in conjunction with the gateway configuration property _mainframeCodePage_ that is available within the racf.properties file.

Note that the value of the EBCDIC_TILDE_CHR parameter must be the HEX value 'BC' on the target system if it is used.

Support for 256-Bit TCP/IP Encryption
The connector supports TCP/IP with 256-bit encryption between the LDAP gateway and mainframe agents Pioneer and Voyager.
Documentation-Specific Updates

These are the updates made to the connector documentation.

Documentation-Specific Updates in Release 9.1.0.0.0

This is the first release of the connector in this release track. Therefore, there are no documentation-specific updates in this release.
About the IBM RACF Advanced Connector

The IBM RACF Advanced connector integrates Oracle Identity Manager with a RACF target system.

This guide discusses the connector that enables you to use IBM RACF as a managed (target) resource of identity data for Oracle Identity Manager.

This chapter contains the following topics:

• Introduction to the Connector
• Certified Components
• Certified Languages
• Connector Architecture
• Connector Features
• Connector Objects Used During Reconciliation and Provisioning

1.1 Introduction to the Connector

Oracle Identity Manager automates access rights management, security, and provisioning of IT resources. Oracle Identity Manager connectors are used to integrate Oracle Identity Manager with external, identity-aware applications. The advanced connector for IBM RACF provides a native interface between IBM RACF installed on an IBM z/OS mainframe and Oracle Identity Manager. The connector functions as a trusted virtual administrator on the target system, performing tasks related to creating and managing users.

The connector allows information about users created or modified directly on the target system to be reconciled into Oracle Identity Manager. In addition, you can use Oracle Identity Manager to perform provisioning operations on the target system.

In the IBM RACF context, the term user profile is synonymous with user account. If IBM RACF is configured as a target resource, then user profiles on IBM RACF correspond to accounts or resources assigned to OIM Users.

1.2 Certified Components

These are the software components and their versions required for installing and using the connector.
Table 1-1 Certified Components

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| Oracle Identity Manager or Oracle Identity Governance | You can use one of the following releases of Oracle Identity Manager or Oracle Identity Governance:
 • Oracle Identity Governance 12c (12.2.1.3.0) with the 28682376 and 29133050 mandatory patches installed. You can download the mandatory patches from [My Oracle Support](https://support.oracle.com).
 • Oracle Identity Manager 11g release 2 PS3 (11.1.2.3.0) |
| JDK | The JDK version can be one of the following:
 • For Oracle Identity Governance release 12.2.1.3.0 or later, use JDK 1.8.0_131+.
 • For Oracle Identity Manager release 11.1.2.x or later, use JDK 1.6 update 31 or later. |
| Target systems | IBM RACF on z/OS 1.13 to 2.3 |
| Infrastructure requirement for the message transport layer between Oracle Identity Manager and the mainframe environment | The infrastructure requirements can be one of the following:
 • TCP/IP with Advanced Encryption Standard (AES) encryption
 • z/OS AES encryption |
| Target system user account for reconciliation and provisioning operations | IBM Authorized Program Facility (APF) authorized account with System Administrators privileges |
| Product Libraries | The following are the product libraries:
 • z/OS standard Load Libraries. These libraries must be APF authorized.
 • IRREVX01 resides in the Product Library. |
| Pioneer and Voyager | Pioneer and Voyager are written in single thread LE Cobol. They were developed to run above the 16M line. Options that can adversely affect these STCs are LE run options: ALL31(OFF) instead of ON
STACK(,,BELOW,,) instead of STACK(,,ANYWHERE,,) |
| LDAP Gateway | The computer hosting the LDAP Gateway must run the following software:
 • Operating system: Microsoft Windows Server 2012, or Red Hat Enterprise Linux 7 (64-bit)
 • Oracle Java JRE 1.8 or 1.7 |

1.3 Certified Languages

These are the languages that the connector supports.

- Arabic
- Chinese (Simplified)
- Chinese (Traditional)
- Danish
- English
- French
- German
1.4 Connector Architecture

Connectors require certain architecture consisting of Gateways and Provisioning Agent.

This section contains the following topics:

- Understanding the Connector Components
- Understanding the Connector Operations

1.4.1 Understanding the Connector Components

The IBM RACF Advanced connector contains the following components:

- **LDAP Gateway**: The LDAP Gateway receives instructions from Oracle Identity Manager in the same way as any LDAP version 3 identity store. These LDAP commands are then converted into native commands for IBM RACF and sent to the Provisioning Agent. The response, which is also native to IBM RACF, is parsed into an LDAP-format response and returned to Oracle Identity Manager.

 During reconciliation, the LDAP Gateway receives event notification, converts the events to LDAP format, and then forwards them to Oracle Identity Manager, or events can be stored in the LDAP Gateway internal store and pulled into Oracle Identity Manager by a scheduled task.

- **Provisioning Agent (Pioneer)**: The Pioneer Provisioning Agent is a mainframe component. It receives native mainframe IBM RACF identity and authorization change events from the LDAP Gateway. These events are processed against the IBM RACF authentication repository, in which all provisioning updates from the LDAP Gateway are stored. The response is parsed and returned to the LDAP Gateway.

 Note:

 At some places in this guide, the Provisioning Agent is referred to as Pioneer.

- **Reconciliation Agent (Voyager)**: The Reconciliation Agent captures mainframe events by using exits, which are programs run after events in IBM RACF are processed. These events include the ones generated at TSO logins, the command prompt, batch jobs, and other native events. These events are stored in the subpool cache area that is established by a supplied, standard z/OS procedure (STARTUP). The Reconciliation Agent captures these events, transforms them into LDAPv3 protocol notification messages, and then sends them to Oracle Identity Manager through the LDAP Gateway.
Note:

At some places in this guide, the Reconciliation Agent is referred to as Voyager.

- **Message Transport Layer:** The message transport layer enables the exchange of messages between the LDAP Gateway and the Reconciliation Agent and Provisioning Agent. TCP/IP is used for the transport of messages.

 TCP/IP with Advanced Encryption Standard (AES) encryption using 128-bit cryptographic keys. The connector supports a message transport layer by using the TCP/IP protocol, which is functionally similar to proprietary message transport layer protocols.

1.4.2 Understanding the Connector Operations

Provides an overview of the provisioning and reconciliation operations.

This section contains the following topics:

- Full Reconciliation Process
- Initial LDAP Population and Reconciliation Process
- Provisioning Process

1.4.2.1 Full Reconciliation Process

Full reconciliation involves fetching existing user profile data from the mainframe to Oracle Identity Manager.

If you configure the target system as a target resource, then this user profile data is converted into accounts or resources for OIM Users.

The following is a summary of the full reconciliation process:

1. You set values for the attributes of the RACF Reconcile All Users scheduled task.
2. You run the scheduled task. The task sends a search request to the LDAP Gateway.
3. The LDAP Gateway encrypts the search request and then sends it to the Provisioning Agent on the mainframe.
4. The Provisioning Agent encrypts user profile data received from RACF and then passes this data to the LDAP Gateway.
5. The LDAP Gateway decrypts the user profile data. If the user profile data does not include any changes when compared to the OIM user’s existing resource data, then the event is ignored and reconciliation continues with the next user on the target system. If the user profile data includes a change, then the LDAP Gateway passes the data on to Oracle Identity Manager.
6. The user profile data is converted into accounts or resources for OIM Users.
1.4.2.2 Initial LDAP Population and Reconciliation Process

This reconciliation process allows for a faster reconciliation based on an Extracted file configured on the Mainframe that will be used to populate the internal LDAP store, which OIM can then use a normal scheduled task to reconcile all the data to Oracle Identity Manager.

The following is a summary of the full reconciliation process:

Note:
For detailed instructions on how to perform full reconciliation, see Performing Full Reconciliation.

1. Use IBM utility to EXTRACT user data to a file.
2. Configure Pioneer to use this file when needed.
 Once this file has been created and used by OIM it will become stale and must be deleted. The file can be generated again if needed for re-populating or updating the Internal LDAP for Oracle Identity Manager to reconcile the latest data.
3. Once the above file is generated, run the RACF Reconcile Users To Internal LDAP scheduled task to populate the LDAP Gateway internal store.
4. After the LDAP Gateway internal store is populated, run the RACF Reconcile All LDAP Users scheduled task with one of the following settings:
 a. To reconcile all users, set the value of the Last Modified Timestamp attribute to 0.
 b. To reconcile all users that have changed since that date, set the value of the Last Modified Timestamp attribute to a date range.

Note:
If the _internalEnt_ property, located in the LDAP_INSTALL_DIR/conf/racf.properties file, is set to true, then the LDAP internal store will also be populated on an ongoing basis by the "real-time" event capture using Voyager and the EXITs. So after initial population and reconciliation the process will still continue to use the RACF Reconcile All LDAP Users Task scheduled job using a Date range to reconcile these "real-time" event changes from data captured in the LDAP internal store.

1.4.2.3 Provisioning Process

Figure 1-1 shows the flow data during provisioning.
The following is a summary of the provisioning process:

1. Provisioning data submitted from Oracle Identity Self Service is sent to the LDAP Gateway.

2. The LDAP Gateway converts the provisioning data into mainframe commands, encrypts the commands, and then sends them to the mainframe computer over TCP/IP.

3. The Provisioning Agent installed on the mainframe computer decrypts and converts the LDAP message from ASCII to EBCDIC.

4. The Provisioning agent executes the commands, runs them on the mainframe and within the Pioneer STC (Started Task) using the RACF API (IRRSEQ00).

5. The Provisioning Agent converts the RACF API output to ASCII and encrypts the message prior to sending back to the LDAP Gateway.

6. The outcome of the operation on the mainframe is displayed in Identity Self Service. A more detailed message is recorded in the connector log file.
1.5 Connector Features

The features of the connector are discussed in the following topics:

- **Full and Incremental Reconciliation**
- **Encrypted Communication Between the Target System and Oracle Identity Manager**
- **High Availability Feature of the Connector**

1.5.1 Full and Incremental Reconciliation

After you deploy the connector, you can perform full reconciliation to bring all existing user data from the target system to Oracle Identity Manager. After the first full reconciliation run, change-based or incremental reconciliation is automatically enabled and active. Incremental reconciliation is a real-time process. User changes on the target system are directly sent to Oracle Identity Manager or stored in the LDAP Gateway internal store.

You can perform a full reconciliation run at any time. See Configuring Incremental Reconciliation and Performing Full Reconciliation for more information.

1.5.2 Encrypted Communication Between the Target System and Oracle Identity Manager

AES-128 encryption is used to encrypt data that is exchanged between the LDAP Gateway and the Reconciliation Agent and Provisioning Agent on the mainframe.

1.5.3 High Availability Feature of the Connector

The following are component-failure scenarios and the response of the connector to each scenario:

- **Scenario 1: The Reconciliation Agent is running and the LDAP Gateway stops responding**
 1. The Reconciliation Agent stops sending messages (event data) to the LDAP Gateway.
 2. Messages that are not sent are stored in the subpool cache.
 3. When the LDAP Gateway is brought back online, the Reconciliation Agent reads data from the subpool cache and then sends messages to the LDAP Gateway.

- **Scenario 2: The LDAP Gateway is running and the Reconciliation Agent stops responding**
 1. Event data is sent to the subpool cache.
 2. When the Reconciliation Agent is brought back online, it reads data from the subpool cache and then sends messages to the LDAP Gateway.
During SHUTDOWN, there is a possibility that events that had been sent to the LDAP might be saved and re-sent again once the Agent is brought back online. This is to ensure no data lose and this process will re-list the event data to provide the most current view.

Scenario 3: The LDAP Gateway is running and the mainframe stops responding

1. Messages that are in the subpool cache are written to disk.
2. When the mainframe is brought back online, event data written to disk is again stored in the subpool cache.
3. The Reconciliation Agent reads data from the subpool cache and then sends messages to the LDAP Gateway.

Scenario 4: The LDAP Gateway is running and the Provisioning Agent or mainframe stops responding

The process task that sends provisioning data to the LDAP Gateway retries the task.

Scenario 5: The subpool is stopped by an administrator

If the subpool is stopped by an administrator, then it shuts down the Reconciliation Agent, thereby destroying any messages that are not transmitted. However, the messages in the AES-encrypted file are not affected and can be recovered.

1.6 Connector Objects Used During Reconciliation and Provisioning

Information about connector objects used during reconciliation and provisioning are discussed in the following topics:

- **Supported Functions for Target Resource Reconciliation**
- **Supported Functions for Provisioning**
- **User Attributes for Target Resource Reconciliation and Provisioning**
- **GROUP Attributes for Target Resource Reconciliation and Provisioning**
- **Security Attributes for Provisioning**
- **DATASET Profile Attributes for Provisioning**
- **Resource Profile Attributes for Provisioning**
1.6.1 Supported Functions for Target Resource Reconciliation

The connector supports reconciliation of user data from the following events:

- Create user
- Modify user
- Revoke user
- Resume user
- Delete user
- Add user to group
- Delete user from group

1.6.2 Supported Functions for Provisioning

These are the provisioning functions that the connector supports.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Mainframe Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create users</td>
<td>Adds new users on IBM RACF</td>
<td>ADDUSER</td>
</tr>
<tr>
<td>Create groups</td>
<td>Adds new group on IBM RACF</td>
<td>ADDGRP</td>
</tr>
<tr>
<td>Modify users</td>
<td>Modifies user information on IBM RACF</td>
<td>ALTUSER</td>
</tr>
<tr>
<td>Change password</td>
<td>Changes user passwords on IBM RACF in response to password changes made on Oracle Identity Manager through user self-service</td>
<td>ALTUSER</td>
</tr>
<tr>
<td>Reset passwords</td>
<td>Resets user passwords on IBM RACF</td>
<td>ALTUSER</td>
</tr>
<tr>
<td>Revoking user accounts</td>
<td>Sets IBM RACF user to a REVOKED state</td>
<td>ALTUSER</td>
</tr>
<tr>
<td>Resuming user accounts</td>
<td>Sets IBM RACF user to an ENABLED state</td>
<td>ALTUSER</td>
</tr>
<tr>
<td>Add user to group</td>
<td>Connects user with an IBM RACF group</td>
<td>CONNECT</td>
</tr>
<tr>
<td>Remove user from group</td>
<td>Disconnects user from an IBM RACF group</td>
<td>REMOVE</td>
</tr>
<tr>
<td>Permit user to dataset</td>
<td>Permits user to be part of the data set ACL and gives them access rights to the data set</td>
<td>PERMIT</td>
</tr>
<tr>
<td>Remove user from dataset</td>
<td>Removes user from the data set ACL</td>
<td>PERMIT</td>
</tr>
<tr>
<td>Permit user to access</td>
<td>Permits user to be part of the resource ACL and gives them access rights to the resource</td>
<td>PERMIT</td>
</tr>
<tr>
<td>Remove user from general</td>
<td>Removes user from the resource ACL</td>
<td>PERMIT</td>
</tr>
<tr>
<td>Grant security attribute</td>
<td>Provides non-value security attribute privileges to user</td>
<td>ALTUSER</td>
</tr>
</tbody>
</table>
Table 1-2 (Cont.) Supported Functions for Provisioning

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Mainframe Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant user to TSO segment</td>
<td>Provides TSO access and information to user</td>
<td>ALTUSER</td>
</tr>
<tr>
<td>Grant user to OMVS segment</td>
<td>Provides OMVS information to users</td>
<td>ALTUSER</td>
</tr>
<tr>
<td>Delete user</td>
<td>Deletes user from IBM RACF</td>
<td>DELUSER</td>
</tr>
</tbody>
</table>

1.6.3 User Attributes for Target Resource Reconciliation and Provisioning

Table 1-3 lists attribute mappings between IBM RACF and Oracle Identity Manager for target resource reconciliation and provisioning. The OnBoardRacfUser and ModifyUser adapters are used for the Create User and Modify User provisioning operations, respectively.

Table 1-3 User Attributes for Target Resource Reconciliation and Provisioning

<table>
<thead>
<tr>
<th>Process Form Field</th>
<th>IBM RACF Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cn</td>
<td>NAME</td>
<td>Full name You can specify the format in which Full Name values are stored on the target system.</td>
</tr>
<tr>
<td>cicsOpclass</td>
<td>CICS_OPCCLASS</td>
<td>Operator class</td>
</tr>
<tr>
<td>cicsOpident</td>
<td>CICS_OPIDENT</td>
<td>Operator ID</td>
</tr>
<tr>
<td>cicsOpprtty</td>
<td>CICS_OPPRTY</td>
<td>Operator priority</td>
</tr>
<tr>
<td>cicsRslkey</td>
<td>CICS_RSLKEY</td>
<td>Resource key 0–99</td>
</tr>
<tr>
<td>cicsTimeout</td>
<td>CICS_TIMEOUT</td>
<td>Timeout value</td>
</tr>
<tr>
<td>cicsTslkey</td>
<td>CICS_TSLKEY</td>
<td>Type key 1–99</td>
</tr>
<tr>
<td>cicsXrfssoff</td>
<td>CICS_XRFSOFF</td>
<td>Transaction off (Force</td>
</tr>
<tr>
<td>dfiltgrp</td>
<td>DEFAULT-GROUP</td>
<td>Default group for the user</td>
</tr>
<tr>
<td>instdata</td>
<td>DATA</td>
<td>Installation-defined data for the user</td>
</tr>
<tr>
<td>netviewConsname</td>
<td>NETVIEW_CONSNAME</td>
<td>Console name</td>
</tr>
<tr>
<td>netviewCtl</td>
<td>NETVIEW_CTL</td>
<td>Control</td>
</tr>
<tr>
<td>netviewDomains</td>
<td>NETVIEW_DOMAINS</td>
<td>Domain name</td>
</tr>
<tr>
<td>netviewIc</td>
<td>NETVIEW_IC</td>
<td>Command</td>
</tr>
<tr>
<td>netviewMsgrecvr</td>
<td>NETVIEW_MSGRECVR</td>
<td>Message receiver</td>
</tr>
<tr>
<td>netviewNgmfadm</td>
<td>NETVIEW_NGMFADM</td>
<td>Administration (Y</td>
</tr>
<tr>
<td>netviewNgmfvspn</td>
<td>NETVIEW_NGMFVSFN</td>
<td>View span</td>
</tr>
<tr>
<td>netviewOpclass</td>
<td>NETVIEW_OPCCLASS</td>
<td>Operator class</td>
</tr>
<tr>
<td>omvsAssizemax</td>
<td>OMVS_ASSIZEMAX</td>
<td>Address space size</td>
</tr>
<tr>
<td>omvsAutoid</td>
<td>OMVS_AUTOID</td>
<td>Generate auto user identifier</td>
</tr>
<tr>
<td>omvsCputimemax</td>
<td>OMVS_CPUTIMEMAX</td>
<td>CPU time</td>
</tr>
</tbody>
</table>
Table 1-3 (Cont.) User Attributes for Target Resource Reconciliation and Provisioning

<table>
<thead>
<tr>
<th>Process Form Field</th>
<th>IBM RACF Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>omvsFileprocmax</td>
<td>OMVS_FILEPROCMAX</td>
<td>Files per process</td>
</tr>
<tr>
<td>omvsHome</td>
<td>HOME</td>
<td>Homelocation</td>
</tr>
<tr>
<td>omvsMemlimit</td>
<td>OMVS_MEMLIMIT</td>
<td>Non-shared memory size</td>
</tr>
<tr>
<td>omvsMmapareamax</td>
<td>OMVS_MMAPAREAMAX</td>
<td>Memory map size</td>
</tr>
<tr>
<td>omvsProcusermax</td>
<td>OMVS_PROCUSERMAX</td>
<td>Processes per UID</td>
</tr>
<tr>
<td>omvsProgram</td>
<td>PROGRAM</td>
<td>Program</td>
</tr>
<tr>
<td>omvsShared</td>
<td>OMVS_SHARED</td>
<td>Shared user identifier</td>
</tr>
<tr>
<td>omvsShmemmax</td>
<td>OMVS_SHMEMMAX</td>
<td>Shared memory size</td>
</tr>
<tr>
<td>omvsThreadsmax</td>
<td>OMVS_THREADSMAX</td>
<td>Threads per process</td>
</tr>
<tr>
<td>omvsUid</td>
<td>UID</td>
<td>UID</td>
</tr>
<tr>
<td>owner</td>
<td>OWNER</td>
<td>Owner of the user profile</td>
</tr>
<tr>
<td>resumeDate</td>
<td>RESUME DATE</td>
<td>Future date from which the user will be allowed access to the system</td>
</tr>
<tr>
<td>revokeDate</td>
<td>REVOKE DATE</td>
<td>Future date from which the user's access to the system will be revoked</td>
</tr>
<tr>
<td>revoke</td>
<td>REVOKE</td>
<td>RESUME</td>
</tr>
<tr>
<td>tsoAcctNum</td>
<td>ACCTNUM</td>
<td>Default TSO account number on the TSO/E logon panel</td>
</tr>
<tr>
<td>tsoCommand</td>
<td>COMMAND</td>
<td>Command to be run during TSO/E logon</td>
</tr>
<tr>
<td>tsoDest</td>
<td>DEST</td>
<td>Default SYSOUT destination</td>
</tr>
<tr>
<td>tsoHoldclass</td>
<td>HOLDCLASS</td>
<td>Default hold class</td>
</tr>
<tr>
<td>tsoJobclass</td>
<td>JOBCLASS</td>
<td>Default job class</td>
</tr>
<tr>
<td>tsoMaxSize</td>
<td>MAXSIZE</td>
<td>Maximum region size the user can request at logon</td>
</tr>
<tr>
<td>tsoMsgclass</td>
<td>MSGCLASS</td>
<td>Default message class</td>
</tr>
<tr>
<td>tsoProc</td>
<td>PROC</td>
<td>Default logon procedure on the TSO/E logon panel</td>
</tr>
<tr>
<td>tsoSize</td>
<td>SIZE</td>
<td>Minimum region size if not requested at logon</td>
</tr>
<tr>
<td>tsoSysoutclass</td>
<td>SYSOUTCLASS</td>
<td>Default SYSOUT class</td>
</tr>
<tr>
<td>tsoUnit</td>
<td>UNIT</td>
<td>Default UNIT name for allocations</td>
</tr>
<tr>
<td>tsoUserdata</td>
<td>USERDATA</td>
<td>TSO-defined data for the user</td>
</tr>
<tr>
<td>uid</td>
<td>User</td>
<td>Login ID</td>
</tr>
<tr>
<td>userPassword</td>
<td>PASSWORD</td>
<td>Password used to log in</td>
</tr>
<tr>
<td>waaccnt</td>
<td>WAACCNT</td>
<td>Account number for APPC or IBM z/OS processing</td>
</tr>
<tr>
<td>waaddr1</td>
<td>WAADDR1</td>
<td>Address line 1 for SYSOUT delivery</td>
</tr>
<tr>
<td>waaddr2</td>
<td>WAADDR2</td>
<td>Address line 2 for SYSOUT delivery</td>
</tr>
</tbody>
</table>
Table 1-3 (Cont.) User Attributes for Target Resource Reconciliation and Provisioning

<table>
<thead>
<tr>
<th>Process Form Field</th>
<th>IBM RACF Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>waaddr3</td>
<td>WAADDR3</td>
<td>Address line 3 for SYSOUT delivery</td>
</tr>
<tr>
<td>waaddr4</td>
<td>WAADDR4</td>
<td>Address line 4 for SYSOUT delivery</td>
</tr>
<tr>
<td>wabldg</td>
<td>WABLDG</td>
<td>Building for SYSOUT delivery</td>
</tr>
<tr>
<td>wadepth</td>
<td>WADEPT</td>
<td>Department for SYSOUT delivery</td>
</tr>
<tr>
<td>waname</td>
<td>WANAME</td>
<td>User name for SYSOUT delivery</td>
</tr>
<tr>
<td>waroom</td>
<td>WAROOM</td>
<td>Room for SYSOUT delivery</td>
</tr>
</tbody>
</table>

1.6.4 GROUP Attributes for Target Resource Reconciliation and Provisioning

The connector supports reconciliation and provisioning of the GROUP multivalued attribute. For any particular user, a child form is used to hold values of the GROUP attributes listed in the table. The AddUserToGroup and RemoveUserFromGroup adapters are used for GROUP provisioning operations.

Table 1-4 lists GROUP attribute mappings between IBM RACF and Oracle Identity Manager.

Table 1-4 GROUP Attribute Mappings for IBM RACF Connector

<table>
<thead>
<tr>
<th>Child Form Field</th>
<th>IBM RACF Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMBER_OF</td>
<td>GROUP</td>
<td>UID Of the group being assigned to User</td>
</tr>
</tbody>
</table>

1.6.5 Security Attributes for Provisioning

The connector supports provisioning of the SECURITY ATTRIBUTE multivalued attribute. For any particular user, a child form is used to hold values of the SECURITY ATTRIBUTE attributes listed in the table.

The following list shows the bit flag security attributes that are supported for provisioning operations between Oracle Identity Manager and IBM RACF:

- ADSP
- AUDITOR
- CICS
- DCE
- DFP
- EXPIRED
• GRPACC
• NETVIEW
• OIDCARD
• OMVS
• OPERATIONS
• OPERPARM
• OVM
• PROTECTED
• PROXY
• RESTRICTED
• SPECIAL
• TSO
• UAUDIT

Table 1-5 Security Attribute for Target Resource Reconciliation and Provisioning

<table>
<thead>
<tr>
<th>Child Form Field</th>
<th>IBM RACF Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTRIBUTE</td>
<td>Security Attribute</td>
<td>Attribute access authority for user</td>
</tr>
</tbody>
</table>

1.6.6 DATASET Profile Attributes for Provisioning

The connector supports provisioning of the DATASET multivalued attribute. For any particular user, a child form is used to hold values of the DATASET attributes listed in the table.

Table 1-6 lists DATASET attribute mappings between IBM RACF and Oracle Identity Manager.

Table 1-6 DATASET Attribute Mappings for IBM RACF Advanced Connector

<table>
<thead>
<tr>
<th>Child Form Field</th>
<th>IBM RACF Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset Name</td>
<td>PROFILE NAME</td>
<td>Profile ID</td>
</tr>
<tr>
<td>Dataset Access</td>
<td>ACCESS</td>
<td>User’s access level to the dataset</td>
</tr>
<tr>
<td>Dataset Generic</td>
<td>GENERIC</td>
<td>Treat the dataset as a generic name</td>
</tr>
</tbody>
</table>

1.6.7 Resource Profile Attributes for Provisioning

(The connector supports reconciliation and provisioning of the RESOURCE PROFILE multivalued attribute. For any particular user, a child form is used to hold values of the RESOURCE PROFILE attributes listed in the table.)
1.6.8 Reconciliation Rule

During target resource reconciliation, Oracle Identity Manager tries to match each user fetched from IBM RACF with existing IBM RACF resources provisioned to OIM Users. This is known as process matching. A reconciliation rule is applied for process matching. If a process match is found, then changes made to the user on the target system are copied to the resource on Oracle Identity Manager. If no match is found, then Oracle Identity Manager tries to match the user against existing OIM Users. This is known as entity matching. The reconciliation rule is applied during this process. If an entity match is found, then an IBM RACF resource is provisioned to the OIM User. Data for the newly provisioned resource is copied from the user profile.

The following is the reconciliation rule for target resource reconciliation:

Rule name: IdfReconUserRule

Rule element: User Login Equals uid

In this rule element:

- User Login is the User ID field on the process form and the OIM User form.
- uid is the USER attribute on IBM RACF.

After you deploy the connector, you can view this reconciliation rule by performing the following steps:

1. On the Design Console, expand **Development Tools** and then double-click **Reconciliation Rules**.
2. Search for and open the **IdfReconUserRule** rule.

1.6.9 Reconciliation Action Rules

Reconciliation action rules specify actions that must be taken depending on whether or not matching IBM RACF resources or OIM Users are found when the reconciliation rule is applied. Table 1-8 lists the reconciliation action rules.

<table>
<thead>
<tr>
<th>Rule Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Matches Found</td>
<td>None</td>
</tr>
<tr>
<td>One Entity Match Found</td>
<td>Establish Link</td>
</tr>
<tr>
<td>One Process Match Found</td>
<td>Establish Link</td>
</tr>
</tbody>
</table>
1.6.10 Viewing the Reconciliation Action Rules for IBM RACF Advanced Connector

After you deploy the connector, you can view the reconciliation action rules for target resource reconciliation by performing the following steps:

2. Search for and open the OIMRacfResourceObject resource object.
3. Click the Object Reconciliation tab, and then click the Reconciliation Action Rules tab. The Reconciliation Action Rules tab displays the action rules defined for this connector. Reconciliation Action Rules shows the reconciliation action rule for target resource reconciliation.
2

Installing and Configuring the LDAP Gateway

The LDAP Gateway acts as the intermediary between Oracle Identity Manager and the connector components on the mainframe. You can install the LDAP Gateway either on a Microsoft Windows or RHEL Linux platform.

- Hardware Requirements for Installing the LDAP Gateway
- Installing the LDAP Gateway
- Upgrading the LDAP Gateway
- Configuring the LDAP Gateway
- Configuring the Windows Service for the LDAP Gateway
- Encrypting Data
- Understanding the Caching Layer
- Configuring Scheduled Reconciliation
- About Parsing Grammar Protocol 1.0
- Configuring IDF LDAP Gateway to Use SSL for Messaging Between Gateway and Pioneer/Voyager

2.1 Hardware Requirements for Installing the LDAP Gateway

These are the recommended hardware requirements that are designed to give you optimal system performance from the LDAP gateway.

<table>
<thead>
<tr>
<th>Requirement Type</th>
<th>Processor</th>
<th>RAM</th>
<th>Hard Disk</th>
<th>Network Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum hardware requirement</td>
<td>2 GHz single-core processor</td>
<td>4 GB RAM</td>
<td>10GB hard disk drive</td>
<td>1</td>
</tr>
<tr>
<td>Recommended hardware requirement</td>
<td>2 GHz multicore processor</td>
<td>16 GB RAM</td>
<td>50GB hard disk drive</td>
<td>1</td>
</tr>
</tbody>
</table>
2.2 Installing the LDAP Gateway

You can install the LDAP Gateway on Windows and Linux platforms.

See Hardware Requirements for Installing the LDAP Gateway and the “LDAP Gateway” row of Certified Components to ensure that the computer on which you want to install the LDAP Gateway meets the recommended specifications.

To install the LDAP Gateway:

1. Download and save the connector installation package (for example, IBM_RACF_Adv_9.1.0.0.zip) to any directory on the computer that will host the LDAP Gateway. You can download the connector installation package from the OTN website at http://www.oracle.com/technetwork/middleware/id-mgmt/downloads/connectors-101674.html.

2. Extract the contents of the connector installation package to any directory on the computer. This creates a directory named CONNECTOR_NAME-RELEASE_NUMBER.

3. Extract the contents of the etc/LDAP Gateway/IDF_LDAP_GATEWAY_v6.4.0.zip file from the connector installation package to a temporary directory on the computer hosting the LDAP gateway.

4. Depending on the operating system computer on which you want to install the LDAP Gateway, run one of the following files:
 - Microsoft Windows: IDFLDAPGateway-6-windows-v6.4.0-rc.2.exe
 - Linux: IDFLDAPGateway-6-linux-x64-v6.4.0-rc.2.run

5. On the Setup - LDAP Gateway screen, click Next to proceed with installation.

6. On the License Agreement screen, select I accept the agreement if you agree with the terms of the agreement, and then click Next.

7. On the Installation Location screen, specify the location where the LDAP Gateway must be installed.
 - For Linux: When you install the gateway as a normal user, the default location is inside the Home folder (home/ubuntu/IDFLDAPGateway-6). When you install the gateway as a sudo or root user, the default location is /opt/IDFLDAPGateway-6.
 - For Microsoft Windows, the default location is Program files (x86)\ProgramFiles\IDFLDAPGateway-6

8. Click Next to proceed.

9. On the License File screen, browse to the location containing the license.lic file, select it and then click Next. The license.lic file is located in the IDF_LDAP_GATEWAY_v6.4.0-rc.2 directory that you extracted in Step 2.

 The Ready to Install window is displayed.

10. Click Next to proceed.

 The Installing screen with a progress indicator bar for the installation is displayed.
11. On the Completing the LDAP Gateway Setup Wizard screen, select **View Readme File** if you want to read the enhancements made to the gateway. Click **Finish** to complete the installation process.

2.3 Upgrading the LDAP Gateway

If you already have an earlier version of the LDAP Gateway (for example, version 5.x), then you can upgrade it to the latest version 6.x by running the LDAP gateway installer.

Note:

Before you begin the upgrade procedure:

- On the computer hosting the gateway, stop the running instance of the gateway. If you are using a Microsoft Windows Service to run the gateway, then uninstall the Windows service.

- In the target system environment, shut down any agents (for example, Pioneer or Voyager) that may be running.

- Disable any cron jobs.

To upgrade the LDAP Gateway, do the following:

1. Download and save the connector installation package to any directory on the computer that will host the LDAP Gateway. You can download the connector installation package from the OTN website at http://www.oracle.com/technetwork/middleware/id-mgmt/downloads/connectors-101674.html.

2. Extract the contents of the IDF_LDAP_GATEWAY_v6.4.0-rc.2.zip file from the connector installation package to a temporary directory on the computer hosting the LDAP gateway.

3. Depending on the operating system of the computer on which the LDAP gateway is installed, run one of the following files:
 - For Linux: IDFLDAPGateway-6-linux-x64-v6.4.0-rc.2.run
 - For Microsoft Windows: IDFLDAPGateway-6-windows-v6.4.0-rc.2.exe

4. On the Setup - LDAP Gateway screen, click **Next** to proceed with upgrade.

5. On the License Agreement screen, select **I accept the agreement** if you agree with the terms of the agreement, and then click **Next**.

The installer detects the earlier installation of the gateway as shown in the following image:
6. On the Previous Installation Detected screen, when you are prompted whether you want to upgrade the existing installation, select one of the following options:
 - select Yes if you want to upgrade, and click Next to proceed. Then, on the Ready to Install screen, click Next to proceed with the upgrade.
 - Select No if you want to perform a fresh installation, and then click Next to proceed.

 Note:

 To upgrade from version 5.x to 6.x, you need to provide the location of the existing installation folder location and the path of the valid license file. If the installation folder location is same, then the installer detects and creates a backup of the entire folder of the previous version with a suffix pre- and a timestamp. This can be verified at the installation location. The backup of the entire folder happens only once when you are upgrading from version 5.x to version 6.x. For example, if you already have a Gateway version 5.3 installed on your system, and you want to install Gateway version 6, then a backup folder for the files of 5.3 is created at the installation location.

 The Ready to Install window is displayed.

7. If you selected No on the Previous Installation Detected screen, then on the Installation Directory screen, specify the location where the gateway must be installed.
 - For Linux:
When you install the gateway as a normal user, the default location is inside the Home folder (home/ubuntu/IDFLDAPGateway-6).

When you install the gateway as a sudo or root user, the default location is /opt/IDFLDAPGateway-6.

b. For Microsoft Windows, the default location is Program files (\ProgramFiles (x86)\IDFLDAPGateway-6)

Note:

If the installation directory points to a location containing an existing gateway, that gateway is automatically upgraded during the installation process.

8. Click *Next*. In the Upgrade Previous Install dialog box, click *Yes* to confirm that you want to upgrade your existing installation of the gateway.

9. In the Ready to Install screen, click *Next* to proceed with the upgrade.

The installing screen with a progress indicator bar for the installation is displayed.

10. On the Completing the LDAP Gateway Setup Wizard screen, select View Readme File if you want to read the enhancements made to the gateway. Click *Finish* to complete the upgrade process.

2.4 Configuring the LDAP Gateway

Configure the LDAP gateway to connect to the target system and access the data.

The following topics describe the procedure to configure the LDAP Gateway:

Note:

The following procedures are for a fresh installation only. If you already have a running setup or if you want to upgrade, then you do not have to perform these procedures.

- Setting Connection Properties
- Creating the Connector Configuration
- Configuring the LDAP Gateway for Multiple Installations of the Target System
- Overriding the Default System Configuration

2.4.1 Setting Connection Properties

The `LDAP_INSTALL_DIR/conf` directory contains the `racf.properties.example` file that contains sample entries and is used as the basis for configuring the gateway.

The `racf.properties.example` file is only a sample file. Therefore, create a separate properties file (for example, `racf.properties`) in the `LDAP_INSTALL_DIR/conf` location by creating a copy of the `racf.properties.example` file. Use this properties file to
specify connection information that the gateway uses to connect to your target system. To do so:

1. In the `LDAP_INSTALL_DIR/conf` directory, create a copy of the `LDAP_INSTALL_DIR/conf/racf.properties.example` file and rename it to for example, `racf.properties`.

 Note:

 If you are configuring the gateway for multiple instances of the target system, then you must create a copy of the `LDAP_INSTALL_DIR/conf/racf.properties.example` file and rename it for each target system instance. Ensure that the names of the renamed files are not the same.

2. In a text editor, open the `racf.properties` file for editing and set values for properties such as host, port, user credentials and so on to point to your environment.

 The following table describes these properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>agentPort</code></td>
<td>Enter the port number on the LDAP Gateway host computer that you are going to reserve for messages sent from the mainframe by the Reconciliation Agent, Voyager. The LDAP Gateway will receive real-time reconciliation messages using this port. This value should match the value of the PORT parameter in the Voyager agent control file.</td>
</tr>
</tbody>
</table>
| `_configDNames_` | This property holds the display names of RACF fields that are defined in the CSDATA segment and used during user reconciliation operations. If entering more than one value, separate each value with a vertical bar (|) character. Each display name should have a corresponding `configAttrs` entry. For example, if you define a field with a display name of `$PST15` and VEND ID, then you would enter:

    ```
    # CUSTOM CSDATA RACF ATTRIBUTE DISPLAY NAME
    _configDNames_ = |$PST15 = |VEND ID = |
    ```  |
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
</table>
| _configAttrs_ | This property holds the field names of any custom target system fields that are defined in the CSDATA user segment and used during user provisioning operations. If entering more than one value, separate each value with a vertical bar (|) character. Each field name should have a corresponding config-DNames entry. This step is mentioned in the following sections:
 • Adding Custom Fields for Target Resource Reconciliation
 • Adding Custom Fields for Provisioning for IBM RACF Advanced Connector
 For example, if you define fields with a display name of $PST15 and VEND ID, then you would enter:
 # CUSTOM CSDATA RACF ATTRIBUTE FIELD NAME
 configAttrs=$PST15|VEND ID| |
| defaultDelete | Enter one of the following as the value of this property:
 • Set revoke as the value if you want the user to be disabled on the target system as the outcome of a Delete User provisioning operation.
 • Set delete as the value if you want the user to be deleted from the target system as the outcome of a Delete User provisioning operation.
 For example:
 # DEFAULT ACTION WHEN DELETE FUNCTION USED
 defaultDelete=delete |
| host | Enter the host name or IP address of the computer that must connect to Pioneer. For example, _host_=localhost. |
| port | Enter the number of the port on the Mainframe that you are going to reserve for Pioneer. The LDAP Gateway will send provisioning messages to this port. This value should match the PORT parameter specified in the Pioneer provisioning agent STC. For example, _port_=5790. |
| _stcID_ | This property allows the real-time agent to ignore events that have been submitted to the target system by the Pioneer STC (such as by request from Oracle Identity manager). Enter the name given to the Pioneer STARTED TASK. |
Table 2-2 (Cont.) Properties in the racf.properties File

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auditOn</td>
<td>This property is used to store audit data from IBM RACF. Default setting is false.</td>
</tr>
<tr>
<td>domainOu</td>
<td>This property stores users in the specified subtree under the ou=People tree of the internal LDAP store. This entry needs to be unique and specific for each system if multiple systems are used within one LDAP Gateway. Default setting is domainOu=racf</td>
</tr>
<tr>
<td>internalEnt</td>
<td>This property allows the real-time agent to store user data in the LDAP Gateway internal store. Values: [true</td>
</tr>
<tr>
<td>internalGrpEnt</td>
<td>This property is used to allow the real-time agent to store groups in the LDAP internal store. Values: [true</td>
</tr>
<tr>
<td>internalCREnt</td>
<td>This property is used to allow the real-time agent to store connect and remove commands in the LDAP internal store. Values: [true</td>
</tr>
<tr>
<td>isStreamingUsers</td>
<td>This property is used by the RACF Reconcile Users to Internal LDAP scheduled task. If you set the value of this property to true, then the LDAP gateway will process the USER EXTRACT data from the mainframe. If you set the value of this property to false, then the LDAP gateway will not process any USER EXTRACT data. Default value: true</td>
</tr>
<tr>
<td>isStreamingGroups</td>
<td>This property is used by the RACF Reconcile Users to Internal LDAP scheduled task. If you set the value of this property to true, the LDAP gateway will process the GROUP EXTRACT data from the mainframe. If you set the value of this property to false, the LDAP gateway will not process any GROUP EXTRACT data. Default value: true</td>
</tr>
<tr>
<td>configExtractAttrs</td>
<td>Use this property to list any custom CSDATA fields for RACF. Use this when using 'useExtractUser=true' property above. Note: The value in this property must match the RACF CSDATA segment. Sample value: EMPSER :</td>
</tr>
</tbody>
</table>
Table 2-2 (Cont.) Properties in the racf.properties File

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>_allowDeleteDS_</code></td>
<td>This property is used for default action when a delete request occurs that will delete dataset profiles for a user being deleted. If the property is set to <code>true</code>, deleting a user will delete both the user and the user's datasets.</td>
</tr>
<tr>
<td>secretKeyValue</td>
<td>This property contains the custom encryption key. This key should match the secret-key value used by the mainframe agents. See Customizing AES Encryption Key for more information about using this property.</td>
</tr>
<tr>
<td><code>_useUnivGrp_</code></td>
<td>Use this property to specify whether to use universal groups instead of normal groups on the target system. Universal groups can have an unlimited number of AUTH(USE) userIDs connected to it. Values: `[true</td>
</tr>
<tr>
<td>resumeOnReset</td>
<td>This property is used when resetting a user’s password.</td>
</tr>
<tr>
<td>trimOmvsUid</td>
<td>This property is used with the omvsUid attribute.</td>
</tr>
<tr>
<td>trimNum</td>
<td>This property is used with the trimOmvsUid property and specifies the number of leading zeroes to trim from a user's omvsUid attribute. Default value: 2</td>
</tr>
<tr>
<td>newOmvsUidAttr</td>
<td>This property specifies the new name to use for the omvsUid property. Default value: <code>OmvsUidEmplNumber</code></td>
</tr>
</tbody>
</table>
Table 2-2 (Cont.) Properties in the racf.properties File

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>usePwdComplexLength</td>
<td>This property is used to control the length of passwords. If you set the value of this property to true, the LDAP gateway will use the properties file password length settings. If you set the value of this property to false, the LDAP gateway will use the standard password length. Default value: true</td>
</tr>
<tr>
<td>idMinLength</td>
<td>This property specifies the minimum ACID length in characters. Default value: 1</td>
</tr>
<tr>
<td>idMaxLength</td>
<td>This property specifies the maximum ACID length in characters. Default value: 8</td>
</tr>
<tr>
<td>pwdMinLength</td>
<td>This property specifies the minimum password length for an ACID. Default value: 1</td>
</tr>
<tr>
<td>pwdMaxLength</td>
<td>This property specifies the maximum password length for an ACID. Default value: 8</td>
</tr>
<tr>
<td>phraseMinLength</td>
<td>Enter the minimum length for the passphrase as per IBM RACF documentation. Sample value: 9</td>
</tr>
<tr>
<td>phraseMaxLength</td>
<td>Enter the maximum length for the passphrase as per IBM RACF documentation. Sample value: 100</td>
</tr>
<tr>
<td>dateFormat</td>
<td>Enter the format for the date coming in from Mainframe in Read Response. For example, MM/dd/yy.</td>
</tr>
<tr>
<td>type</td>
<td>These properties are no longer used in Oracle installations. Do not modify their values.</td>
</tr>
<tr>
<td>configDatasets</td>
<td>Use the following components to set a value for the configDatasets property:</td>
</tr>
<tr>
<td>fn</td>
<td>Use fn to represent the first name.</td>
</tr>
<tr>
<td>sp</td>
<td>Use sp to represent the space character.</td>
</tr>
<tr>
<td>ln</td>
<td>Use ln to represent the last name.</td>
</tr>
<tr>
<td>comma</td>
<td>Use a comma (,) to represent the comma.</td>
</tr>
</tbody>
</table>

3. If you want to include custom segment as a part of the TSS LIST command set, then set a value for the _configDatasets_ property.

Use the following components to set a value for the _configDatasets_ property:

- Use fn to represent the first name.
- Use sp to represent the space character.
- Use ln to represent the last name.
- Use a comma (,) to represent the comma.
2.4.2 Creating the Connector Configuration

To allow the gateway to work with the target system, you must create and configure the customer-configuration.properties file for the type of connector and its related parameters for the operations.

Note:
In this guide, `LDAP_INSTALL_DIR` is the standard term used to refer to the directory in which the gateway has been installed. For example, for a Microsoft Windows host machine, the default installation directory for the gateway is `.\Program Files (x86)\IDFLDAPGateway-6`.

1. Create an empty customer-configuration.properties text file in the `LDAP_INSTALL_DIR/conf` directory.

 Note: If you have upgraded the gateway, then skip this step as the customer-configuration.properties file already exists and contains all the connector configurations present in the beans.xml file.

2. Navigate to the `LDAP_INSTALL_DIR/conf` directory and then locate and open the customer-configuration.properties.example file.

 The customer-configuration.properties.example file contains sample definitions (configuration properties) in various sections for each connector that the LDAP Gateway can be used with.

3. Search for and copy the following snippet from the customer-configuration.properties.example file, and paste it into the customer-configuration.properties file located in the `LDAP_INSTALL_DIR/conf` directory.

   ```
   cnctr.racf.class=com.identityforge.idfserver.backend.racf.RacfModule
   cnctr.racf.racf1.schema=schemas
   cnctr.racf.racf1.suffix=dc=racf,dc=com
   cnctr.racf.racf1.adminUserDN=cn=idfRacfAdmin,dc=racf,dc=com
   cnctr.racf.racf1.adminUserPassword=idfRacfPwd
   cnctr.racf.racf1.altAdminUserDN=cn=oimRacfAdmin,dc=racf,dc=com
   cnctr.racf.racf1.altAdminUserPassword=oimRacfPwd
   cnctr.racf.racf1.configLocation=../conf/racf.properties
   cnctr.racf.racf1.allowAnonymous=false
   cnctr.racf.racf1.metaBackend=ldapds
   cnctr.racf.racf1.agent=true
   cnctr.racf.racf1.customSchemaLocation=
   cnctr.racf.racf1.people.multiCallAttributes=userpassword,attributes,uid,userpassword|userpassword|passwordexpire|passwordexpire|...```

4. Save and close the file.
dexpiredays

# Simple equality filters using the following attributes will be passed through to the target
cnctr.racf.racf1.cachingAllowedTargetFilterAttributes=uid,object-Class,alldata

4. In the customer-configuration.properties file, rename the connector qualifier for the newly pasted entries to match the name of the connection properties file that you created in Setting Connection Properties. Suppose you created a properties file named racfadv.properties, then rename all instances of racf in the newly pasted configuration entries to racfadv. For example, in the cnctr.racf.racf1.suffix=dc=racf,dc=com property, rename racf to racfadv. So the entry will now be cnctr.racfadv.racf1.suffix=dc=racf,dc=com

5. Similarly, rename the instance ID for all the configuration properties. For example, in the cnctr.racf.racf1.schema=schemas property, rename racf1 to racf2.

6. Edit the value of the cnctr.racf.racf1.configLocation= property to point to the connection properties file that you created in Setting Connection Properties. For example, if you created a file named racfadv.properties, then replace cnctr.racf.racf1.configLocation= ../conf/racf.properties with cnctr.racf.racf1.configLocation= ../conf/racfadv.properties

7. Change the default system administrator credentials that the gateways uses to connect to the target system as follows:
   a. Locate the following properties:

   cnctr.racf.racf1.adminUserDN=cn=IdfRacfAdmin,dc=racf,dc=com
cnctr.racf.racf1.adminUserPassword=IdfRacfPwd

   b. Set new values for the adminUserDN and adminUserPassword properties and note them down. You must enter the same values for the idfPrincipalDn and idfPrincipalPwd parameters of the IT resource.

   *Note:*

   - By default, all sensitive data is automatically encrypted when you start the gateway.
   - For the adminUserDN property:
     - It is mandatory to that you use `cn` as the RDN identifier.
     - If you put spaces after the commas in the DN, then you must match that when using that ID to connect to the gateway. For example, if the required format is `cn=adminId,dc=racf,dc=com`, then `dc=racf,dc=com` must match the suffix property.

8. Save and close the file.

9. Restart the gateway for the changes to take effect.
2.4.3 Configuring the LDAP Gateway for Multiple Installations of the Target System

You can instantiate the same type of connector multiple times to represent multiple different endpoints of the same target system. This is in addition to the gateway supporting the ability to run connectors for various target systems within a single gateway instance.

If you have already configured a single instance of the connector for one target system installation and want to configure an additional instance, then:

1. For each target system installation in your environment, create a properties file in the `LDAP_INSTALL_DIR/conf` directory by creating a copy of the `LDAP_INSTALL_DIR/conf/racf.properties` file. Then, edit the newly created properties file to specify all connection properties.

2. Open the `customer-configuration.properties.example` file located in the `LDAP_INSTALL_DIR/conf` directory, copy the following configuration properties specific to your connector and paste it into the `LDAP_INSTALL_DIR/conf/customer-configuration.properties` file, below the existing set of configuration properties.

   ```text
 cnctr.racf.class=com.identityforge.idfserver.backend.racf.RacfModule
 cnctr.racf.racf1.schema=schemas
 cnctr.racf.racf1.suffix=dc=racf,dc=com
 cnctr.racf.racf1.adminUserDN=cn=idfRacfAdmin,dc=racf,dc=com
 cnctr.racf.racf1.adminUserPassword=idfRacfPwd
 cnctr.racf.racf1.altAdminUserDN=cn=oimRacfAdmin,dc=racf,dc=com
 cnctr.racf.racf1.altAdminUserPassword=oimRacfPwd
 cnctr.racf.racf1.configLocation=../conf/racf.properties
 cnctr.racf.racf1.allowAnonymous=false
 cnctr.racf.racf1.metaBackend=ldapds
 cnctr.racf.racf1.agent=true
 cnctr.racf.racf1.customSchemaLocation=
 cnctr.racf.racf1.people.multiCallAttributes=userpassword,attributes,uid,userpassword|userpassword,userpassword|passwordexpire|passwordexpriedays
 # Simple equality filters using the following attributes will be passed through to the target
 cnctr.racf.racf1.cachingAllowedTargetFilterAttributes=uid,objectClass,alldata

 Close the `customer-configuration.properties.example` file.

3. In the `LDAP_INSTALL_DIR/conf/customer-configuration.properties` file, rename the instance ID for all the newly pasted configuration properties. For example, in the `cnctr.racf.racf1.schema=schemas` property, replace racf1 with racf2.
4. Modify the following properties:

- `adminUserPassword` - change the default value for security reasons.
- `suffix` - Enter the unique baseDN that you want to use in OIM. The default value is `dc=racf,dc=com`. You can change the default value to a baseDN of your choice.
- `adminUserDN` - Enter the full DN of an administrative user account that is allowed to use the connector for reconciliation and provisioning operations. Note that the DN suffix must match the value that you set for `suffix` property.
- `altAdminUserDN` - Enter the full DN of the alternative administrative user account that is allowed to use the connector for reconciliation and provisioning operations. Note that the DN suffix must match the value that you set for `suffix` property.
- `configLocation` - Enter the location of the property file (created in Step 1) for the instance of the target system. For example, `.conf/racf10.properties`. If the intent is to point these two connectors to different target systems, then the `configLocation` property should point to a different connector properties file (created in Step 1) for each target system instance. The new properties file can be a copy of the original properties file with changes in the necessary properties to point to the new system.

5. Save and close the `customer-configuration.properties` file and then restart the gateway for the changes to take effect.

2.4.4 Overriding the Default System Configuration

You can override the default system configuration by modifying the `LDAP_INSTALL_DIR/conf/customer-configuration.properties` file.

To change the default system properties, locate that property in the `configuration.properties` file (located in the `conf/` folder) and copy it to `customer-configuration.properties` file and provide a new value.

Note:

Not all properties can be modified and must be done in consultation with Support.

By default, all system configurations are stored in the `LDAP_INSTALL_DIR/conf/configuration.properties` file. If required, you can override any of these system configurations by copying relevant properties from the `LDAP_INSTALL_DIR/conf/`
There can be several reasons when you want to override the default system configuration. For example, you may want to change the default passwords for the system backend persistence store or change the listening port when the default collides with another service or when the policies of the company require using a different port.

- **To change the default system backend passwords**, add the following properties to the `LDAP_INSTALL_DIR/conf/customer-configuration.properties` file:

  ```
  cnctr.proxy.ldaps.adminUserPassword=<admin-password>
  cnctr.proxy.ldaps.altAdminUserPassword=<alt-admin-password>
  ```

 In the preceding lines, replace `<admin-password>` with the password for accessing the system backend. Similarly, replace `<alt-admin-password>` with the alternative password for accessing the system backend (dc=system,dc=backend).

 Not all properties can be modified and must be done in consultation with Support.

- **To change the default port**, add the following properties to the `LDAP_INSTALL_DIR/conf/customer-configuration.properties` file:

  ```
  system.port=6389
  system.ssl_port=7389
  ```

 In the preceding lines, replace 6386 with the desired listening port for LDAP. Similarly, replace 7389 with the desired listening port for LDAPS.

2.5 Configuring the Windows Service for the LDAP Gateway

The Windows Service for the LDAP Gateway is installed using an IdentityForge batch file (IDF-Win-Service) that is included in the installation media.

- **Installing and Configuring the Windows Service for the LDAP Gateway**
- **Uninstalling the Windows Service for the LDAP Gateway**

2.5.1 Installing and Configuring the Windows Service for the LDAP Gateway

You can install the Windows Service by running the `IDF-Win-Service install` command.

To install the Windows service, switch to the `LDAP_INSTALL_DIR/win_service` directory in a command window and then run the `IDF-Win-Service install` command. If you encounter any issues with the installation, then uncomment the

Note:

Do not edit `LDAP_INSTALL_DIR/conf/configuration.properties` file directly as it will be overwritten when you upgrade the gateway.
CG_PATH_TO_JVM variable in the LDAP_INSTALL_DIR/win_service/IDF-Win-Service.bat file and ensure that the path is accurate. The following is the code snippet from the LDAP_INSTALL_DIR/win_service/IDF-Win-Service.bat file that you need to uncomment:

```
rem -- 7. Set this if you want to use a different JVM than the one configured in your registry, or if it is not configured in the windows registry
rem set CG_PATH_TO_JVM=C:\Program Files\Java\jre7\bin\server\jvm.dll
```

If you need to modify the Windows service settings, then it is recommended to first uninstall the service, make the modifications, and then reinstall the service until it installs and runs correctly.

After installing the service, you can start, stop, or restart it anytime by using the Windows Services console. Alternatively, run the following command to start the service:

```
> net start IdentityForgeService
```

Run the following command to stop the service:

```
> net stop IdentityForgeService
```

2.5.2 Uninstalling the Windows Service for the LDAP Gateway

Uninstall the Windows service for the LDAP Gateway by running the IDF-Win-Service remove command.

To uninstall the Windows service, switch to the LDAP_INSTALL_DIR/win_service directory in a command window and then run the IDF-Win-Service remove command.

2.6 Encrypting Data

Learn about encryption performed by the LDAP gateway and how to configure it.

- **Understanding Encryption**
- **Configuring Encryption**

2.6.1 Understanding Encryption

The LDAP_INSTALL_DIR/conf/encryption.properties file allows the ability to configure what properties, associated with the connector, must the LDAP Gateway manage as encrypted values.

The LDAP_INSTALL_DIR/conf/encryption.properties file is a common file containing properties of various modules that need to be securely protected. Use this file to define and encrypt any property located in the following files:

- connection properties file (created in Setting Connection Properties)
- LDAP_INSTALL_DIR/conf/customer-configuration.properties
When the LDAP gateway starts, it uses the encryption.properties file to examine the properties that it must represent in encrypted format.

For example, when the LDAP gateway starts, it reads the following entry from the encryption.properties file:

```
file.customer-configuration=adminUserPassword,altAdminUserPassword
```

This entry implies that there exists a properties file called customer-configuration.properties that contains sensitive properties `adminUserPassword` and `altAdminPassword`. The LDAP gateway searches for the customer-configuration.properties file, and if found, replaces any clear-text values for the `adminUserPassword` and `altAdminPassword` properties with an encrypted version.

Similarly, at start up, the LDAP gateway also reads the following entry from the encryption.properties file:

```
class.RacfModule=_secretKeyValue_
```

This entry implies that there exists a connector called RacfModule and its associated properties file (the one created in `Setting Connection Properties`) contains the sensitive property `_secretKeyValue_`. The LDAP gateway searches for this properties file and replaces the clear-text value for the `_secretKeyValue_` property with an encrypted value.

Encrypted values within property files are always represented using the `ENC(ENCRYPTED_STRING)` format. To add or replace an existing encrypted value with a new value, replace the entire encryption string if present (including the `ENC(ENCRYPTED_STRING)`) with a new clear-text value, and then restart the gateway. Once the gateway restarts, the newly added clear-text value goes through an encryption process with the result being written back out to the property file replacing the original clear-text value.

During the encryption process, the encryption framework that the gateway uses automatically detects the highest level of encryption possible by examining the version of the Java Virtual Machine running, along with any additional encryption libraries that may have been installed alongside the JVM. By default, Java 1.8 supports 128-bit AES encryption and Java 1.7 supports 40-bit AES encryption. You can install additional encryption libraries by BouncyCastle into the JVM allowing for up to 256-bit AES encryption.

The encryption process in the LDAP gateway also allows for automatic migration of encryption values from a lower bit strength to a higher strength as it becomes available. For example, if the gateway is initially deployed on a system running Java 1.7 with 40-bit AES and that system is upgraded to Java 1.8 running 128-bit AES, then upon the next restart of the gateway, all encrypted values remaining at the 40-bit AES level are automatically re-encrypted at the higher 128-bit and stored back out in the property files. This process eliminates the need to manually replace the values in every property file in order to take advantage of the higher bit strength.

The gateway uses the private key located in the `LDAP_INSTALL_DIR/conf/idf.properties` file for all the encryption and decryption that it performs. The `idf.properties` file is created in the `conf` directory when the LDAP gateway is started for the first time. It is recommended that access to this file is restricted.
Note:

Once the gateway is deployed and started for the first time, the value of the autogenerated encryption key in the idf.properties file should not be changed. However, you can change the file name and its location. For example, to store the idf.properties file to a more secure location, the default location (where the gateway resides) can be overwritten and defined as `system.idfprops.filepath=ABSOLUTE_PATH_OF_THE_NEW_FILE` in the customer-configuration.properties file.

2.6.2 Configuring Encryption

You can configure encryption by editing the encryption.properties file located in the `LDAP_INSTALL_DIR/conf/` directory.

By default, the LDAP gateway encrypts the values of:

- the `adminUserPassword` and `altAdminPassword` properties in the `LDAP_INSTALL_DIR/conf/customer-configuration.properties` file.
- the `_secretKeyValue_` property in the connection properties file (created in Setting Connection Properties).
- If you want to encrypt additional properties in the `customer-configuration.properties` file, then you must include them as a comma-separated list in the following property of the `encryption.properties` file: `file.customer-configuration=adminUserPassword,altAdminUserPassword`

For example, if you want to encrypt the `schema` and `suffix` properties of the `customer-configuration.properties` file, then include them in the `file.customer-configuration` property of the `encryption.properties` file as follows:

```
file.customer-configuration=adminUserPassword,altAdminUserPassword,schema,suffix
```

- If you want to encrypt additional properties in the connection properties file, then include them as a comma-separated list in the following property of the `encryption.properties` file:

```
class.RacfModule=_secretKeyValue_
```

For example, if you want to encrypt the `_host_` and `_port_` properties of the connection properties file, then include them in the `class.RacfModule=_secretKeyValue_` property of the `encryption.properties` file as follows:

```
class.RacfModule=_secretKeyValue_,_host_,_port_
```

- If you want to change the values any encrypted properties, then remove the `ENC` along with the value and then add the new value.

For example, if the value of the `adminUserPassword` property in the `customer-configuration.properties` file is encrypted, then from the `adminUserPassword=ENC(t8+B0TbafPKyFF0KoTAmde82aRnwtf)` value, remove `ENC(t8+B0TbafPKyFF0KoTAmde82aRnwtf)` and replace it with the new value, without the prefix `ENC`. Whenever the gateway is restarted, it automatically overwrites the clear-text value with its encrypted counterpart.
2.7 Understanding the Caching Layer

The LDAP gateway features an optional and configurable caching layer, which is a temporary storage area where frequently accessed data is stored for rapid access.

An expiration policy defines the time dependency for the cached resource. For example, the `cachingMaxAge` parameter specifies the maximum time in minutes when the data is not in sync with the target system. You can pair the caching layer with an incremental reconciliation (to maintain the most recently updated data in the caching layer. This improves the performance of the LDAP gateway. In addition, the caching layer opens the LDAP gateway for more advanced features defined by the LDAPv3 RFC.

Benefits of Using the Caching Layer

Using the caching layer provides the following benefits:

- Faster search operations (when the cache is primed)
- A unified Base DN for both provisioning and reconciliation data

When paired with an embedded directory server, the caching layer offers these additional benefits:

- The ability to perform advanced LDAP search filters against the gateway.
- The ability to query an RFC compliant ChangeLog for delta reconciliation.

Note:

In an environment where the items noted above may not be required, you can disable the caching layer.

Considerations for Using the Caching Layer

The LDAP gateway can suffer a performance penalty when all of the following conditions are met:

- There is no data in the cache, or the cache is stale based on the configuration.
- An LDAP search operation is performed to retrieve the children of an Organizational Unit. For example, the contents of `ou=People` Such an LDAP search operation returns only DNs (along with RDN components).
- The connector only returns key information when returning a list of objects.
- The `cachingIterateBehavior` property in the `LDAP_INSTALL_DIR/conf/configuration.properties` file remains set to the default of AUTO and not overwritten within the `customer-configuration.properties` file.

In such a scenario, an LDAP search operation initially retrieves the list of results, containing only DN and RDN values. The caching layer then iterates through each result, fetching and caching the details from the target system. Finally, the full set of results are returned to Oracle Identity Manager.

To avoid this scenario, it is recommended that you use the caching layer in combination with scheduled reconciliation. With reconciliation setup and the staleness settings configured properly the above conditions will not be met.
How to Enable or Disable the Caching Layer?

The caching layer is enabled by default. To override this default setting or disable the caching layer, copy the `cnctr.coreBean.nexus.cachingEnabled` property from the `LDAP_INSTALL_DIR/conf/configuration.properties` file to the `LDAP_INSTALL_DIR/conf/customer-configuration.properties` file and then set its value to `false`.

You can enable the caching layer by setting the value of the `cnctr.coreBean.nexus.cachingEnabled` property in the `LDAP_INSTALL_DIR/conf/customer-configuration.properties` file to `true`.

2.8 Configuring Scheduled Reconciliation

Scheduled reconciliation allows for establishing a periodic synchronization between the Identity Store associated with the LDAP Gateway and that represented by your target system reachable by way of the connector.

The Scheduled Recon Utility (provided by `LDAP_INSTALL_DIR/dist/scheduled-recon.jar`) is a tool that ships with the IdentityForge LDAP Gateway. It provides the ability to perform a full recon against a configurable target system, placing the results in the internal identity store of the gateway. This utility provides a basic scheduling service for kicking off the built-in batched reconciliation of the connector on a configurable interval.

An example properties file, `scheduled-recon.properties.example` file that defines the reconciliation setup and behavior is available in the `LDAP_INSTALL_DIR/conf` folder. Use this file to configure scheduled reconciliation.

1. In the `LDAP_INSTALL_DIR/conf` directory, create a copy of the `LDAP_INSTALL_DIR/conf/scheduled-recon.example` file and rename it `scheduled-recon.properties`.

2. If required, open the `LDAP_INSTALL_DIR/conf/scheduled-recon.properties` file in a text editor and configure it to meet your requirements.

3. Run the `LDAP_INSTALL_DIR/bin/run-recon.bat` file to start the scheduled recon utility.

You can run this batch file with the following options:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-h</code></td>
<td>Use this argument for help.</td>
</tr>
<tr>
<td><code>-loglevel <level></code></td>
<td>Use this argument to define the logging level. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>• severe</td>
</tr>
<tr>
<td></td>
<td>• warning</td>
</tr>
<tr>
<td></td>
<td>• info</td>
</tr>
<tr>
<td></td>
<td>• fine</td>
</tr>
<tr>
<td></td>
<td>• finer</td>
</tr>
<tr>
<td></td>
<td>• finest</td>
</tr>
<tr>
<td></td>
<td>Default value is <code>warning</code>.</td>
</tr>
<tr>
<td><code>-logfile <filepath></code></td>
<td>Use this argument to specify the path to the log file.</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>-p <properties filepath></td>
<td>Use this argument to specify the path to the scheduled-recon.properties file.</td>
</tr>
</tbody>
</table>

The following is the basic command structure for executing this batch file:

```
_\ldapgateway6\bin>run-recon.bat -loglevel "warning" -logfile <location of the log file> -p "D:\ldapgateway6\conf\scheduled-recon.properties"
```

2.9 About Parsing Grammar Protocol 1.0

Grammar is necessary for properly parsing user and group listings that come into the gateway from the mainframe agent during search requests and reconciliation events.

The grammar represents line-by-line parsing instructions that convert the semi-structured textual data into LDAP attributes and their respective values. Each line (ending in CRLF) of the listing received from the agent can be represented by an individual grammar definition and specified in the grammar file.

Grammar files with the default grammar are present in the `LDAP_INSTALL_DIR/conf/parser-grammars/rafc` directory. It parses user and group listings that come into the gateway from the mainframe agent during search requests and reconciliation events.

For example, following is the user listing for IBM RACF Advanced:

```
USER=HBCMXJHB  NAME=HBCMXJHB
OWNER=IDFAGNT CREATED=19.214
DEFAULT-GROUP=IDFSGRP
PASSDATE=00.000 PASS-INTERVAL=180 PHRASEDATE=N/A
ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
LAST-ACCESS=UNKNOWN
CLASS AUTHORIZATIONS=NONE
INSTALLATION-DATA=NEW VALUE
NO-MODEL-NAME
LOGON ALLOWED (DAYS) (TIME)
---------------------------------------------
ANYDAY ANYTIME
GROUP=IDFSGRP AUTH=USE CONNECT-OWNER=IDFAGNT CONNECT-DATE=19.214
CONNECTS= 00 UACC=NONE LAST-CONNECT=UNKNOWN
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
SECURITY-LEVEL=NONE SPECIFIED
CATEGORY-AUTHORIZATION
NONE SPECIFIED
SECURITY-LABEL=NONE SPECIFIED
TSO INFORMATION
***
----------
ACCTNUM= 23456
```
Using the above listing, if you want to parse out the OPCLASS value from the listing and assign it to an LDAP attribute called “opcls”, then you can construct the following <Line> element in the grammar file:

```xml
<Line id="opclassVal" enabled="yes" sig="[ ]*OPCLASS = (?)&lt;opcls;&gt;.*"/>
```

The signature attribute (sig) in the Line element above is a regex that represents the rules for pulling out the value and assigning it to an LDAP attribute. Regex named groups are used as the convention for assigning the discovered values to LDAP attributes exposed through the connector.

The following table lists the attributes of a line element. The allowed values for these attributes are yes or no.

<table>
<thead>
<tr>
<th>String</th>
<th>Mandatory?</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>Yes</td>
<td>Unique ID that is given to the line definition. Used primarily for internal referencing purposes, such as with the ‘dependson’ attribute. Values allowed: any</td>
</tr>
<tr>
<td>enabled</td>
<td>No</td>
<td>Specifies whether the line is eligible for participating in the parsing process. Use this flag to override files (turn off lines). Default value: yes</td>
</tr>
<tr>
<td>signature</td>
<td>Yes</td>
<td>Defines the rules for what values are to be extracted for each line of the listing and which LDAP attributes should be assigned the values.</td>
</tr>
</tbody>
</table>
Customizing Grammar Rules

<table>
<thead>
<tr>
<th>String</th>
<th>Mandatory?</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>required</td>
<td>no</td>
<td>Defines whether an attribute is required or not. Default to: yes</td>
</tr>
<tr>
<td>multiline_sig</td>
<td>No</td>
<td>An optional regex expression to define the signature of a follow-on line that could represent whether the value was wrapped around two additional lines in the document. Values allowed: Any valid regex containing attribute matching key and attribute name. Defaults to: empty value</td>
</tr>
<tr>
<td>repeats</td>
<td>No</td>
<td>Represents whether the line can show up multiple times in the document. If set to no, then once the line is found, this Line definition is not evaluated again for the rest of the document. Defaults to: No</td>
</tr>
<tr>
<td>overflow</td>
<td>No</td>
<td>Represents whether data for an associated attribute can overflow to the next line. In case of an overflow, the final value of an attribute is derived by concatenating all values. Defaults to: No</td>
</tr>
<tr>
<td>multivalue_parser</td>
<td>No</td>
<td>An optional regex expression that defines how the found values are to be parsed out and turned into a multivalued list, such as using <code>(\S+)</code> to parse values that are space delimited. Values Allowed: Any valid regex Defaults to: empty value</td>
</tr>
<tr>
<td>applyCompositeRef</td>
<td>no</td>
<td>An optional comma-separated list of composite attributes to be built immediately after processing the line. Each value in the comma-separated list must correspond to the "id" attribute of a CompositeAttribute definition.</td>
</tr>
<tr>
<td>defaultvalue</td>
<td>No</td>
<td>Defines the default value for an attribute. If this line does not match with any line of input, then this default value will be assigned to attribute.</td>
</tr>
</tbody>
</table>
You can apply new grammar rules to append to or override rules that are available by default in the `LDAP_INSTALL_DIR/conf/parser-grammars/rafc` directory.

To define new grammar rules or override the existing rules, you must create a custom grammar file (for example, `racf_FindAllPeople.cust`) in the `LDAP_INSTALL_DIR/conf/parser-grammars/rafc` directory.

Note:
- If the ID of the existing attribute matches with the attribute in the grammar line, it overrides the existing grammar definition.
- If the ID of the existing attribute does not match with the attribute in the grammar line, it creates a new grammar definition.

Key Considerations
- The `parser-grammars.cust` grammar file must be at the same location where the default grammar files are located (`LDAP_INSTALL_DIR/conf/parser-grammars/rafc`).
- The name of the grammar file must be the same except the `cust` extension. For example, if you need to customize the grammar for the `LDAP_INSTALL_DIR/conf/parser-grammars/rafc/racf_FindAllPeople.xml` file, then create a custom grammar file `LDAP_INSTALL_DIR/conf/parser-grammars/rafc/racf_FindAllPeople.cust`.
- For the grammar definitions to override, the ID attribute from both the files should match.

Nomenclature of the parsing grammar files
Each grammar file is named for the type of operation and listing it is responsible for parsing.

For example, for RACF, use the following for user extraction:
- `racf_FindAllPeople.xml` — fetches the IDs of all users.
- `racf_ExtractUserById.xml` — fetches all the details of a single user (for the given ID).

Overriding default existing grammar definitions
The grammar definitions specified in the custom grammar file override the default grammar definitions. To enable overriding of the particular line, the ID attribute in the custom provided attribute should match with the default grammar definition.
For example, if the default grammar definition in the property file and the definition specified in the custom grammar file is as shown in the following lines, then the definition is disabled and the line is not parsed.

```xml
<Protocol><Lines>
  <Line id="elId" enabled="yes" sig="[ ]*ELID[ ]*=\[(.?<ELID>\.)\]*"/>
</Lines></Protocol>
```

```xml
<Protocol><Lines>
  <Line id="elId" enabled="no" sig="[ ]*ELID[ ]*=\[(.?<ELID>\.)\]*"/>
</Lines></Protocol>
```

New grammar definitions

New grammar definitions can be specified in the custom grammar file. For example, the following grammar definition is used to get values of `DEPT_ACID=001` `DEPT_NAME=hr`.

```xml
<Protocol><Lines>
  =\"deptAcid\" enabled="yes" sig="[ ]*DEPT_ACID[ ]*=\[(.?&lt;deptacid;&gt;\.)\]*\"[ ]*DEPT_NAME[ ]*=\[(.?&lt;department;&gt;\.)\]*\" /
</Lines></Protocol>
```

2.10 Configuring IDF LDAP Gateway to Use SSL for Messaging Between Gateway and Pioneer/Voyager

Configuring IDF LDAP Gateway to use SSL for messaging between Gateway and Pioneer/Voyager involves the following steps:

Note:

- LDAP Gateway requires JAVA JDK 1.7 or above.
- Oracle recommends installing JAVA in a directory whose name is without spaces, for example, c:\software.

- Configuring SSL for Messaging Between Gateway and Pioneer
- Configuring SSL for Messaging Between Gateway and Voyager
- Enabling AT-TLS for RACF Pioneer and Voyager

2.10.1 Configuring SSL for Messaging Between Gateway and Pioneer

To configure SSL for messaging between Gateway and Pioneer:

1. Import certificate in LDAP Gateway's trust store. To do so:
2.10.2 Configuring SSL for Messaging Between Gateway and Voyager

To configure SSL for messaging between Gateway and Voyager:

1. Generate a certificate for Voyage by running the following command:

   ```
   keytool -genkey -keyalg RSA -alias <certificate alias> -keystore <keystore-file> -keysize 2048
   ```

 For example:

   ```
   keytool -genkey -keyalg RSA -alias gatewayCert -keystore keystore.jks -keysize 2048
   ```

2. Export the certificate for Voyage to a file by running the following command:

   ```
   keytool -export -alias <certificate alias> -file <certificate file> -keystore <keystore-file> -keysize 2048
   ```

 For example:

   ```
   keytool -export -alias gatewayCert -file gatewayCert.dat -keystore keystore.jks -keysize 2048
   ```

3. Import the certificate into Voyage agent. See step 10 in Enabling AT-TLS for RACF Pioneer and Voyager.

4. While starting the gateway, specify the keystore and the password along with the java executable command using the parameters `-Djavax.net.ssl.keyStore` and `-Djavax.net.ssl.keyStorePassword`.

2.10.3 Enabling AT-TLS for RACF Pioneer and Voyager

Using AT-TLS or TLS with Voyager and Pioneer require z/OS system definitions and RACF definitions.

To enable AT-TLS for RACF Pioneer and Voyager:

1. Create PAGENT STC (Started Task).
2. Create SYSLOGD STC (Started Task).
3. Create required parameters for PAGENT and SYSLOGD.
4. Modify TCPIP STC (Started Task) Profile to support TTLS.
5. Generate the Certificate on z/OS Unix System Services using gskkyman.
6. Add a Certificate as RSA, keysize = 2048, and Private Key = YES.
7. Create a RACF definitions for PAGENT, SYSLOGD, Pioneer, and Voyager.

The following are sample PAGENT config parameters used in testing on z/OS 2.2

OMVS - /etc/pagent.env

LIBPATH=/usr/lib
TZ=EST5EDT
PAGENT_CONFIG_FILE=/etc/pagent.conf
PAGENT_LOG_FILE=SYSLOGD
GSK_RENEGOTIATION=ALL
GSK_PROTOCOL_TLSV1_2=ON

OMVS - /etc/pagent.conf

loglevel 255
tcpimage TCPIP /etc/pagent_policy.conf flush purge

OMVS - /etc/pagent_policy.conf

Shows AT-TLS events and result of each System SSL call
TTLSGroupAction grp_Diagnostic

{
TTLSEnabled On
Trace 6 # Log Error, Info, Event and Flow to syslogd
}

TTLSRule Pioneer_Server

{
LocalPortRange 6000 # Pioneer STC for IDMWORKS
Direction Inbound
Priority 1 # Base Priority
TTLSGroupActionRef grp_Diagnostic
TTLSEnvironmentActionRef Pioneer_List_Env
}

TTLSEnvironmentAction Pioneer_List_Env

{
HandshakeRole Server
TTLSEntryParmsRef PIONEERING
TTLSCipherParmsRef Pioneer_cipher_list
}

TTLSEntryParms PIONEERING

{
Keyring PIONEERING
}

TTLSCipherParms Pioneer_cipher_list

{
V3CipherSuites TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
}
Configuring IDF LDAP Gateway to Use SSL for Messaging Between Gateway and Pioneer/Voyager

V3CipherSuites TLS_DHE_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_RSA_WITH_RC4_128_SHA
V3CipherSuites TLS_RSA_WITH_RC4_128_MD5
V3CipherSuites TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
V3CipherSuites TLS_RSA_EXPORT_WITH_RC4_40_MD5

Chapter 2

Configuring IDF LDAP Gateway to Use SSL for Messaging Between Gateway and Pioneer/Voyager

V3CipherSuites TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_RSA_WITH_RC4_128_SHA
V3CipherSuites TLS_RSA_WITH_RC4_128_MD5
V3CipherSuites TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
V3CipherSuites TLS_RSA_EXPORT_WITH_RC4_40_MD5
}

RACF required definitions are:

```
//PAGRACD JOB SYSTEMS,MSGLEVEL=(1,1),MSGCLASS=X,CLASS=A,PRTY=8,
// NOTIFY=&SYSUID,REGION=4096K
//TSOX EXEC PGM=IKJEFT01,DYNAMNBR=99
//SYSTSPRT DD SYSOUT=* 
//SYSTSIN DD *
ADDUSER PAGENT NAME('PAGENT-ATTLS') DFLTGRP(OMVSGRP) - 
OMVS(UID(0) HOME('/'))
ADDUSER SYSLOGD NAME('SYSLOGD-UNIX') DFLTGRP(OMVSGRP) - 
OMVS(UID(0) HOME('/'))
RALTER STARTED PAGENT.* STDATA(USER(SYSLOGS)
SETROPTS CLASSACT(OPERCMDS)
RDEFINE OPERCMDS (MVS.SERVMGR.PAGENT) UACC(NONE)
PERMIT MVS.SERVMGR.PAGENT CLASS(OPERCMDS) ACCESS(CONTROL) - 
ID(PAGENT)
SETROPTS RACLIST(OPERCMDS) REFRESH
SETROPTS CLASSACT(STARTED)
SETROPTS RACLIST(STARTED)
SETROPTS GENERIC(STARTED)
RDEFINE STARTED PAGENT.* UACC(NONE)
SETROPTS RACLIST(STARTED) REFRESH
SETROPTS GENERIC(STARTED) REFRESH
SETROPTS CLASSACT(DIGTCERT DIGTRING)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(TCPIP) ACCESS(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(TCPIP) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH
RACDCERT ID(PIONEER) - 
GENCERT SUBJECTSDN(CN('IDMWORKS.COM') - 
O('IDMWORKS') - 
OU('IDF ZOS22 SERVER') - 
C('US')) - 
WITHLABEL('PIONEER TESTER')
RACDCERT ID(PIONEER) ADDRING(PIONEERING)
RACDCERT ID(PIONEER) CONNECT(ID(PIONEER) - 
LABEL('PIONEER SERVER') - 
RING(PIONEERING) - 
DEFAULT - 
USAGE(PERSONAL)
/*

8. Import Certificate into RACF:
RACDCERT ID(PIioneer) EXPORT\{LABEL('PIioneer TESTER')\} - FORMAT\{CERTB64\}
DSN('PIioneer.CERT.FILE')

9. FTP the Certificate DSN=PIioneer.CERT.FILE to the LDAP.

10. FTP LDAP Certificate to z/OS into a sequential file.

11. CONNECT Certificate to Voyager:

RACDCERT CERTAUTH ADD('VOYAGER.CERT.LDAP') TRUST -
WITHLABEL('LABEL00000001')
RACDCERT ID(VOYAGER) CONNECT\{CERTAUTH -
LABEL('LABEL00000001') -
RING(VOYAGERING)\)
IBM RACF Connector Deployment on Oracle Identity Manager

The LDAP Gateway acts as the intermediary between Oracle Identity Manager and the connector components on the mainframe. The following sections of this chapter describe the procedure to deploy some components of the connector, including the LDAP Gateway, on the Oracle Identity Manager host computer:

Note:
The procedure to deploy the mainframe components of the connector is described in the next chapter.

- Running the Connector Installer
- Configuring the IT Resource
- Configuring Oracle Identity Manager

3.1 Running the Connector Installer

Perform the following steps to run the Connector Installer:

1. Ensure you have downloaded the connector installation package from the OTN website at http://www.oracle.com/technetwork/middleware/id-mgmt/downloads/connectors-101674.html and extracted its contents.

2. Copy the contents of the connector installation package into the following directory:
   
   OIM_HOME/server/ConnectorDefaultDirectory

3. Log in to Oracle Identity System Administration.

4. In the left pane, under Provisioning Configuration, click Manage Connector.

5. In the Manage Connector page, click Install.

6. From the Connector list, select IBM RACF Advanced RELEASE_NUMBER. This list displays the names and release numbers of connectors whose installation files you copy into the default connector installation directory in Step 2.

   If you have copied the installation files into a different directory, then:

   a. In the Alternative Directory field, enter the full path and name of that directory.

   b. To repopulate the list of connectors in the Connector list, click Refresh.

   c. From the Connector list, select IBM RACF Advanced RELEASE_NUMBER.

7. Click Load.
8. To start the installation process, click **Continue**. In a sequence, the following tasks are automatically performed:
   a. Configuration of connector libraries.
   b. Import of the connector Target Resource user configuration XML file (by using the Deployment Manager).
   c. Compilation of adapters.

   On successful completion of a task, a check mark is displayed for the task. If a task fails, then an X mark and a message stating the reason for failure are displayed. If a task fails, make the required correction and then perform one of the following steps:
   - Retry the installation by clicking **Retry**.
   - Cancel the installation and begin again from Step 2.

9. If all three tasks of the connector installation process are successful, then a message indicating successful installation is displayed.

10. Click **Exit** to close the installation page.

When you run the Connector Installer, it copies the connector files and external code files to destination directories on the Oracle Identity Manager host computer. These files are listed in **Files and Directories in the IBM RACF Advanced Connector Package**.

### 3.2 Configuring the IT Resource

You must specify values for the parameters of the RacfResource IT resource as follows:

1. Log in to the Oracle Identity System Administration.
2. In the left pane, under Configuration, click **IT Resource**.
3. In the IT Resource Name field on the Manage IT Resource page, enter **RacfResource** and then click **Search**.
4. Click the edit icon for the IT resource.
5. From the list at the top of the page, select **Details and Parameters**.
6. Specify values for the parameters of the IT resource as described in the following table:

**Table 3-1 IT Resource Parameters for IBM RACF Advanced Connector**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtMap User</td>
<td>This parameter holds the name of the lookup definition containing attribute mappings that are used for provisioning.</td>
</tr>
<tr>
<td></td>
<td>Value: AtMap.RACF</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> You must not change the value of this parameter.</td>
</tr>
<tr>
<td>idfConnectTimeoutMS</td>
<td>Enter an integer value that specifies the number of milliseconds after which an attempt to establish a connection between the LDAP Gateway and Oracle Identity Manager times out.</td>
</tr>
<tr>
<td></td>
<td>If you do not enter a value for this parameter, then the connector uses a default timeout of 300000 ms (that is, 5 minutes).</td>
</tr>
</tbody>
</table>
Table 3-1  (Cont.) IT Resource Parameters for IBM RACF Advanced Connector

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>idfPrincipalDn</td>
<td>Set a user ID for an account that the connector will use to connect to the LDAP Gateway. Format: cn=USER_ID,dc=racf,dc=com Sample value: cn=idfRacfAdmin,dc=racf,dc=com</td>
</tr>
<tr>
<td>idfPrincipalPwd</td>
<td>Set a password for the account that the connector will use to connect to the LDAP Gateway. You also set this password in the files listed in the description of the idfPrincipalDn parameter. Note: Do not enter an encrypted value.</td>
</tr>
<tr>
<td>idfReadTimeoutMS</td>
<td>Enter an integer value that specifies the number of milliseconds after which an attempt to read data from the target system times out. If you do not enter a value for this parameter, then the connector uses a default timeout of 1800000 ms (that is, 30 minutes).</td>
</tr>
<tr>
<td>idfRootContext</td>
<td>This parameter holds the root context for IBM RACF. Value: dc=racf,dc=com Note: You must not change the value of this parameter.</td>
</tr>
<tr>
<td>idfServerHost</td>
<td>This parameter holds the host name or IP address of the computer on which you install the LDAP Gateway. For this release of the connector, you install the LDAP Gateway on the Oracle Identity Manager host computer. Default value: localhost Note: Do not change the value of this parameter unless you have installed the LDAP Gateway on a different machine from the Oracle Identity Manager host computer.</td>
</tr>
<tr>
<td>idfServerPort</td>
<td>Enter the number of the port for connecting to the LDAP Gateway. Sample value: 5389</td>
</tr>
<tr>
<td>idfSsl</td>
<td>This parameter determines whether the LDAP Gateway will use SSL to connect to the target system. Enter true if using SSL. Otherwise, enter false. Sample value: true</td>
</tr>
<tr>
<td>idfTrustStore</td>
<td>This parameter holds the directory location of the trust store containing the SSL certificate. This parameter is optional, and should only be entered when using SSL authentication. This must be the full path to the directory location. Sample value: /app/home/ldapgateway/conf/idf.jks</td>
</tr>
<tr>
<td>idfTrustStorePassword</td>
<td>This parameter holds the password for the SSL trust store. This parameter is optional, and should only be entered when using SSL authentication.</td>
</tr>
<tr>
<td>idfTrustStoreType</td>
<td>This parameter holds the trust store type for the SSL trust store. This parameter is optional, and should only be entered when using SSL authentication. Sample value: jks</td>
</tr>
</tbody>
</table>
Table 3-1  (Cont.) IT Resource Parameters for IBM RACF Advanced Connector

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Modified Time Stamp</td>
<td>The most recent start time of the RACF Reconcile All LDAP Users reconciliation scheduled task is stored in this parameter. See RACF Reconcile All LDAP Users for more information about this scheduled task. The format of the value stored in this parameter is as follows: MM/dd/yy hh:mm:ss a.</td>
</tr>
<tr>
<td></td>
<td>In this format:</td>
</tr>
<tr>
<td></td>
<td>MM is the month of the year.</td>
</tr>
<tr>
<td></td>
<td>dd is the day of the month.</td>
</tr>
<tr>
<td></td>
<td>yy is the year.</td>
</tr>
<tr>
<td></td>
<td>hh is the hour in am/pm (01-12).</td>
</tr>
<tr>
<td></td>
<td>mm is the minute in the hour.</td>
</tr>
<tr>
<td></td>
<td>ss is the second in the minute.</td>
</tr>
<tr>
<td></td>
<td>a is the marker for AM or PM.</td>
</tr>
<tr>
<td></td>
<td>Sample value: 05/07/10 02:46:52 PM</td>
</tr>
<tr>
<td></td>
<td>Default value: 0</td>
</tr>
<tr>
<td></td>
<td>The reconciliation task will perform full LDAP user reconciliation when the value is 0. If the value is a non-zero, standard time-stamp value in the format given above, then incremental reconciliation is performed. Only records that have been created or modified after the specified time stamp are brought to Oracle Identity Manager for reconciliation.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> When required, you can manually enter a time-stamp value in the specified format.</td>
</tr>
</tbody>
</table>

7. To save the values, click **Update**.

### 3.3 Configuring Oracle Identity Manager

Configuring Oracle Identity Manager involves the following procedures:

- **Note:**
  
  In an Oracle Identity Manager cluster, you must perform these steps on each node of the cluster.

- Creating Additional Metadata, Running Entitlement, and Catalog Synchronization Jobs
- Localizing Field Labels in UI Forms
- Clearing Content Related to Connector Resource Bundles from the Server Cache for Oracle Identity Manager Connector
- Enabling Logging for IBM RACF Advanced Connector
3.3.1 Creating Additional Metadata, Running Entitlement, and Catalog Synchronization Jobs

You must create additional metadata, such as a UI form and an application instance. In addition, you must run entitlement and catalog synchronization jobs. These procedures are described in the following sections:

- Creating and Activating a Sandbox
- Creating a New UI Form
- Creating an Application Instance
- Publishing a Sandbox
- Harvesting Entitlements and Sync Catalog
- Updating an Existing Application Instance with a New Form

3.3.1.1 Creating and Activating a Sandbox

Create and activate a sandbox as follows:

1. On the upper navigation bar, click **Sandbox**. The Manage Sandboxes page is displayed.
2. On the toolbar, click **Create Sandbox**. The Create Sandbox dialog box is displayed.
3. In the Sandbox Name field, enter a name for the sandbox. This is a mandatory field.
4. In the Sandbox Description field, enter a description of the sandbox. This is an optional field.
5. Click **Save and Close**. A message is displayed with the sandbox name and creation label.
6. Click **OK**. The sandbox is displayed in the Available Sandboxes section of the Manage Sandboxes page.
7. From the table showing the available sandboxes in the Manage Sandboxes page, select the newly created sandbox that you want to activate.
8. On the toolbar, click **Activate Sandbox**. The sandbox is activated.

3.3.1.2 Creating a New UI Form

Create a new UI form as follows:

1. In the left pane, under Configuration, click **Form Designer**.
2. Under Search Results, click **Create**.
3. Select the resource type for which you want to create the form, for example, OIM-RacfResourceObject.
4. Enter a form name and click **Create**.
3.3.1.3 Creating an Application Instance

Create an application instance as follows:

1. In the System Administration page, under Configuration in the left pane, click Application Instances.
2. Under Search Results, click Create.
3. Enter appropriate values for the fields displayed on the Attributes form and click Save.
4. In the Form drop-down list, select the newly created form and click Apply.
5. Publish the application instance to an organization to make the application instance available for requesting and subsequent provisioning to users.

3.3.1.4 Publishing a Sandbox

Before publishing a sandbox, perform the following procedure as a best practice to validate all sandbox changes made till this stage as it is difficult to revert the changes after a sandbox is published:

1. In Identity System Administration, deactivate the sandbox.
2. Log out of Identity System Administration.
3. Log in to Identity Self Service using the xelsysadm user credentials and then activate the sandbox that you deactivated in Step 1.
4. In the Catalog, ensure that the Concur application instance form appears with correct fields.
5. Publish the sandbox. See Publishing a Sandbox in Oracle Fusion Middleware Developing and Customizing Applications for Oracle Identity Manager.

3.3.1.5 Harvesting Entitlements and Sync Catalog

To harvest entitlements and sync catalog:

1. Run the scheduled jobs for lookup field synchronization. See Scheduled Tasks for Lookup Field Synchronization for more information about these scheduled jobs.
2. Run the Entitlement List scheduled job to populate Entitlement Assignment schema from child process form table.
3. Run the Catalog Synchronization Job scheduled job.

See Also:

Predefined Scheduled Tasks in Oracle Fusion Middleware Administering Oracle Identity Governance for a description of the Entitlement List and Catalog Synchronization Job scheduled jobs.
3.3.1.6 Updating an Existing Application Instance with a New Form

For any changes you do in the Form Designer, you must create a new UI form and update the changes in an application instance. To update an existing application instance with a new form:

1. Create a sandbox and activate it as described in Creating and Activating a Sandbox.
2. Create a new UI form for the resource as described in Creating a New UI Form.
3. Open the existing application instance.
4. In the Form field, select the new UI form that you created.
5. Save the application instance.
6. Publish the sandbox as described in Publishing a Sandbox.

3.3.2 Localizing Field Labels in UI Forms

Perform the following steps to localize field labels that you add to in UI forms:

1. Log in to Oracle Enterprise Manager.
2. In the left pane, expand Application Deployments and then select oracle.iam.console.identity.sysadmin.ear.
3. In the right pane, from the Application Deployment list, select MDS Configuration.
4. On the MDS Configuration page, click Export and save the archive to the local computer.
5. Extract the contents of the archive, and open the following file in a text editor:
   SAVED_LOCATION\xliffBundles\oracle\iam\ui\runtime\BizEditorBundle.xlf
6. Edit the BizEditorBundle.xlf file as follows:
   a. Search for the following text:
      
      <file source-language="en" original="/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle.xlf" datatype="x-oracle-adf">
   
   b. Replace with the following text:
      
      <file source-language="en" target-language="LANG_CODE" original="/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle.xlf" datatype="x-oracle-adf">

      In this text, replace LANG_CODE with the code of the language that you want to localize the form field labels. The following is a sample value for localizing the form field labels in Japanese:

      <file source-language="en" target-language="ja" original="/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle.xlf" datatype="x-oracle-adf">

   c. Search for the application instance code. The original code will be in the following format:

      <trans-unit id="${adfBundle['oracle.adf.businesseditor.model.util.BaseRuntimeResourceBundle']['persdef.sessiondef.oracle.iam.ui.runtime.form.mod-"
For example, the following sample code show the update that should be made for the FULL NAME field on a UI form named RacfUserFormv1:

```
<trans-unit id="sessiondef.oracle.iam.ui.runtime.form.model.RacfUserFormv1.entity.RacfUserFormv1EO.UD_IDF_RACF_ADV_CN__c_LABEL">
<source>FULL NAME</source>
<target>
氏名
</target>
</trans-unit>
```

As an example, the code for FULL_NAME field translation would be:

```
<trans-unit id="${adfBundle["oracle.adf.businesseditor.model.util.BaseRuntimeResourceBundle'"|'persdef.sessiondef.oracle.iam.ui.runtime.form.model.user.entity.userEO.UD_IDF_RACF_ADV_CN__c_description']]">
<source>FULL_NAME</source>
<target>
\u6C0F\u540D</target>
</trans-unit>
```

f. Repeat Steps 6.c through 6.e for all attributes of the process form.
g. Save the file as BizEditorBundle_LANG_CODE.xlf. In this file name, replace `LANG_CODE` with the code of the language to which you are localizing. Sample file name: BizEditorBundle_ja.xlf.

7. Repackage the ZIP file and import it into MDS.

8. Log out of and log in to Oracle Identity Manager.

### 3.3.3 Clearing Content Related to Connector Resource Bundles from the Server Cache for Oracle Identity Manager Connector

When you deploy the connector, the resource bundles are copied from the resources directory on the installation media into Oracle Identity Manager database. Whenever you add a new resource bundle to the connectorResources directory or make a change in an existing resource bundle, you must clear content related to connector resource bundles from the server cache.

To clear content related to connector resource bundles from the server cache:

1. In a command window, switch to the `OIM_HOME/server/bin` directory.
2. Enter one of the following commands:

   ![Note]
   
   You can use the PurgeCache utility to purge the cache for any content category. Run `PurgeCache.bat CATEGORY_NAME` on Microsoft Windows or `PurgeCache.sh CATEGORY_NAME` on UNIX. The `CATEGORY_NAME` argument represents the name of the content category that must be purged.

   For example, the following commands purge Metadata entries from the server cache:

   ```
 PurgeCache.bat MetaData
 PurgeCache.sh MetaData
   ```

   - **On Microsoft Windows**: `PurgeCache.bat All`
   - **On UNIX**: `PurgeCache.sh All`

   When prompted, enter the user name and password of an account belonging to the SYSTEM ADMINISTRATORS group. In addition, you are prompted to enter the service URL in the following format:

   ```
 t3://OIM_HOST_NAME:OIM_PORT_NUMBER
   ```

   In this format:

   - Replace `OIM_HOST_NAME` with the host name or IP address of the Oracle Identity Manager host computer.
   - Replace `OIM_PORT_NUMBER` with the port on which Oracle Identity Manager is listening.
3.3.4 Enabling Logging for IBM RACF Advanced Connector

The IBM RACF Advanced connector supports two forms of logging, namely LDAP gateway-level logging and Oracle Identity Manager-level logging. This section discusses the following topics:

- Enabling Logging for the LDAP Gateway
- Event Logging in Oracle Identity Manager

3.3.4.1 Enabling Logging for the LDAP Gateway

LDAP Gateway logging operations are managed by the log4j.properties file, which can be extracted from within the `LDAP_INSTALL_DIR/dist/idfservlet.jar` compilation. In the log4j.properties file, edit the rootLogger log level:

```
log4j.rootLogger=ERROR
```

The following is a list of log levels that can be used:

- **ALL**
  This level enables logging for all events.
- **DEBUG**
  This level enables logging of information about fine-grained events that are useful for debugging.
- **INFO**
  This level enables logging of messages that highlight the progress of the application at a coarse-grained level.
- **WARN**
  This level enables logging of information about potentially harmful situations.
- **ERROR**
  This level enables logging of information about error events that might allow the application to continue running.
- **FATAL**
  This level enables logging of information about very severe error events that could cause the application to stop functioning.
- **OFF**
  This level disables logging for all events.

Multiple log files are available for use with the connector. Table 3-2 lists the name, location, and contents of each LDAP gateway log file.
### Table 3-2  Log Files and their Contents

<table>
<thead>
<tr>
<th>Log File</th>
<th>Description</th>
</tr>
</thead>
</table>
| nohup.out         | This log file contains the console window output from the LDAP Gateway. This file is primarily used in conjunction with the run.sh script (instead of the run.bat file)  
**Location:**  
.../ldapgateway/bin/ |  
| idfserv.log.0     | This log file contains provisioning and reconciliation logging messages from the LDAP Gateway and is the primary log file used by the gateway component.                                                           
**Location:**  
.../ldapgateway/logs/ |

### 3.3.4.2 Event Logging in Oracle Identity Manager

Oracle Identity Manager uses Oracle Java Diagnostic Logging (OJDL) for logging. OJDL is based on java.util.logger. This section contains the following topics:

- Understanding the Log Levels
- Configuring Logging in Oracle Identity Manager

#### 3.3.4.2.1 Understanding the Log Levels

To specify the type of event for which you want logging to take place, you can set the log level to one of the following:

- ERROR:1
- WARNING:1
- NOTIFICATION:1
- TRACE:1
- TRACE:16
- TRACE:32

Oracle Identity Manager level logging operations are managed by the logging.xml file which is located in the following directory:

`DOMAIN_NAME/config/fmwconfig/servers/SERVER_NAME/`

Loggers are used to configure logging operations for the Oracle Identity Manager functions of the connector.

#### 3.3.4.2.2 Configuring Logging in Oracle Identity Manager

OIM level logging operations are managed by the logging.xml file, which is located in following directory:

`DOMAIN_NAME/config/fmwconfig/servers/SERVER_NAME/`

Loggers are used to configure logging operations for the connector’s OIM functions. To configure loggers:
1. In the text editor, open the `DOMAIN_NAME/config/fmwconfig/servers/SERVER_NAME/logging.xml` file.

2. Locate the logger you want to configure. If adding a logger for the first time, you must create the logger definition. Table 3-3 lists the Oracle Identity Manager loggers for this connector.

### Table 3-3  Logger Parameters

<table>
<thead>
<tr>
<th>Logger</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM.IDENTITYFORGE.IDFUSEROPERATIONS</td>
<td>Logs events related to provisioning operations from Oracle Identity Manager to the LDAP gateway, such as user creation and modification events.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.UTIL.RACF.IDFLDAPOPERATIONSIMPL</td>
<td>Logs events related to basic LDAP functions, including connecting to and disconnecting from the LDAP gateway.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.RACF.TASKS.DELETECONCILEOIMUSERSTASK</td>
<td>Logs events related to the RACF Delete OIM Users scheduled task.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.RACF.TASKS.FINDALLDATASETSTASK</td>
<td>Logs events related to the Find All Datasets scheduled task.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.RACF.TASKS.FINDALLGROUPSTASK</td>
<td>Logs events related to the Find All Groups scheduled task.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.RACF.TASKS.FINDALLSOURCESTASK</td>
<td>Logs events related to the Find All Sources scheduled task.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.RACF.TASKS.FINDALLSECURITYATTRIBUTESTASK</td>
<td>Logs events related to the RACF Find All Security Attributes scheduled task.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.RACF.TASKS.RECONCILEALLLDAPUSERSTASK</td>
<td>Logs events related to the Reconcile All LDAP Users scheduled task.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.RACF.TASKS.RECONCILEALLUSERSTASK</td>
<td>Logs events related to the Reconcile All Users scheduled task.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.RACF.TASKS.RECONCILEDDELETEDDAPUSERSTASK</td>
<td>Logs events related to the RACF Reconcile Deleted LDAP Users scheduled task.</td>
</tr>
<tr>
<td>COM.IDENTITYFORGE.RACF.TASKS.RECONCILEUSERSTOINTERNALLDAPTASK</td>
<td>Logs events related to the RACF Reconcile Users to Internal LDAP scheduled task.</td>
</tr>
</tbody>
</table>

3. Define the `<logger>` element and its handlers. You can use the standard odl-handler as the log handler, or write your own.

The following is an example of a logger definition for the Reconcile All Users scheduled task:

```xml
<logger name="COM.IDENTITYFORGE.RACF.TASKS.RECONCILEALLUSERSTASK" level='TRACE:32'>
 <handler name='odl-handler'/>
</logger>
```
4. Save the changes and close the file.

5. Restart the Oracle Identity Manager server for the changes to take effect.

Log statements will be written to the path that is defined in the log handler that you assigned in the logger definition. For example, in the above logger definition for the Reconcile All Users scheduled task (in step 3), the handler is odl-handler, which has the following default output file path:

`$\{domain.home\}/servers/$\{weblogic.Name\}/logs/$\{weblogic.Name\}-diagnostic.log`
4

Installing and Configuring the Agents of the IBM RACF Connector on the Mainframe

Install the Provisioning Agent - Pioneer and Reconciliation Agent - Voyager of the IBM RACF connector on the mainframe. These agents communicate with the LDAP Gateway during connector operations.

4.1 Installation Requirements for Agents

These are the software and environmental setting requirements for installing the Provisioning Agent - Pioneer and Reconciliation Agent - Voyager.

Verifying Installation Requirement

Ensure that the mainframe system on which you intend to install Pioneer and Voyager meet the following requirements:

Table 4-1 Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>IBM z/OS 2.2, 2.3</td>
</tr>
<tr>
<td>Message Transport Layer</td>
<td>TCP/IP with AES encryption</td>
</tr>
<tr>
<td>IBM RACF Advanced Identity Repository</td>
<td>Verify that the current patch for z/OS is installed.</td>
</tr>
<tr>
<td>Target system user account for the Provisioning Agent - Pioneer and Reconciliation Agent - Voyager.</td>
<td>IBM RACF Advanced-authorized user account with System Administrators privileges.</td>
</tr>
</tbody>
</table>
Environmental Settings and Other Requirements

Ensure that the following requirements are met on the mainframe:

- Voyager and Pioneer each require approximately a 2-megabyte region to work. In addition, a subpool is created to contain the reconciliation changes for Voyager to access and send to the LDAP gateway. The subpool is in ECSA and is generally a small, temporary staging area for reconciliation requests. If there is an outage, Voyager saves the encrypted messages from the subpool to the //CACHESAV ddname in the Voyager STC. When Voyager is restarted and the subpool is rebuilt, the CACHESAV file is read and the messages are reloaded into the subpool. Once the LDAP gateway connects, the subpool data is sent to the LDAP.

- A IBM RACF ACID profile is required to start both Voyager and Pioneer. An IBM type userid such as START2 or START2 can be used to perform this function. The Voyager Agent operates by using the Installation Exit, TSSINSTX, IBM RACF. The IDF – TSSINSTX is passive. It does not change any z/OS storage. The storage area for collected IBM RACF events is created by using STARTUP and only referenced by the TSSINSTX exit and is fully re-entrant.

- Once the TSSINSTX module is enabled either by using the TSS control file or Operator command, the TSS events are queued into the subpool. If STARTUP has not been executed, then these TSS events or messages will be lost. You can recover these TSS events or messages by performing a full import reconciliation process.

- The TSSINSTX caching mechanism uses Storage Tokens and is safe. No operating system integrity can or will be lost with its usage. The storage is obtained by using the STORAGE OBTAIN macros and is in the ECSA. After storage is obtained, the storage token anchors are inserted. These are checked for by Voyager. If they are not present, then Voyager issues a message and shuts down.

Maintaining a specific password format is an example of the objective for which you use custom exits.

The IDF modified TSSINSTX has multiple exit points to capture IBM RACF events. The exit points are:

- Pre-Init
- TSS command
4.2 Installing the Mainframe Agents

The IBM RACF Advanced connector is shipped with a pair of agents, one for the provisioning (Pioneer) and one for real-time reconciliation (Voyager). If real-time reconciliation is not required, then install and start only the provisioning agent.

1. On the computer hosting the mainframe, extract the contents of the RACF-$<TIMESTAMP>-$<VERSION>.zip file located in the connector installation media.

   The following XMIT files are extracted:
   - CLISTLIB.XMIT
   - JCLLIB.XMIT
   - LINKLIB.XMIT
   - PARMLIB.XMIT
   - PROCLIB.XMIT

2. Transmit the extracted XMIT files to z/OS by using the following specifications:
   - RECFM=FB
   - LRECL=80
   - BLKSIZE=3120
   - DSORG=PS

   For example, you can use 3270 or FTP to transfer the files.

   The following datasets will exist on z/OS:
   - $<HLQ>.CLISTLIB.XMIT
   - $<HLQ>.JCLLIB.XMIT
   - $<HLQ>.LINKLIB.XMIT
   - $<HLQ>.PARMLIB.XMIT
   - $<HLQ>.PROCLIB.XMIT
3. For each of the XMIT files that have been transmitted, execute the following command at the TSO prompt:

```
TSO RECEIVE INDA(''<HLQ>''.<FILE>.XMIT')
```

When prompted to specify restore parameters, enter:

```
DA(''<HLQ>''.<FILE>')
```

For example, if the high-level qualifier is IDF and the file is `CLISTLIB.XMIT`, then execute the following command:

```
TSO RECEIVE INDA(''IDF.CLISTLIB.XMIT'')
```

When prompted, respond with:

```
DA(''IDF.CLISTLIB'')
```

The following datasets will exist on z/OS:

- `<HLQ>.CLISTLIB`
- `<HLQ>.JCLLIB`
- `<HLQ>.LINKLIB`
- `<HLQ>.PARMLIB`
- `<HLQ>.PROCLIB`

4. Edit each of the following installed job streams to replace any placeholders in them with actual values.

```
• <HLQ>.CLISTLIB.ENVINFO
• <HLQ>.JCLLIB.CREATDSN
• <HLQ>.JCLLIB.IEBCOPYL
• <HLQ>.JCLLIB.IEBCOPYP
• <HLQ>.JCLLIB.IEBCPYPR
• <HLQ>.JCLLIB.KEYMODR
• <HLQ>.PARMLIB.PROGID
```

```
Note:
In the preceding job stream, <HLQ> is the high-level-qualifier used when receiving the previously transmitted files.
```

```
• <HLQ>.PROCLIB.PIONEER
• <HLQ>.PROCLIB.STARTUP
```

```
Note:
In the preceding job stream, update the ++vol++ placeholder with the VOLUME from where you have received LINKLIB.
```

```
• <HLQ>.PROCLIB.STARTUP
```

---

**Note:**

In the preceding list, `<HLQ>` is the high-level-qualifier used when transmitting the files to z/OS.
Note:
In the preceding list, <HLQ> is the high-level-qualifier used when receiving the previously transmitted files.

The following table lists the installation placeholders found in job streams, their description, and example.

Table 4-2  Installation Placeholders

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>++hlq++</td>
<td>The high-level qualifier where the mainframe agent is to be installed. You must include all the multiple segments, if any.</td>
<td>IDF.PROD</td>
</tr>
<tr>
<td>++hlql++</td>
<td>The top-most segment of the high-level qualifier where the mainframe agent is to be installed.</td>
<td>IDF</td>
</tr>
<tr>
<td>++vol++</td>
<td>The volume where the mainframe agent is to be installed.</td>
<td>SDWRK1</td>
</tr>
<tr>
<td>++lpalib++</td>
<td>The DSN of the data set that contains customized lpalibs. Customize based on the z/OS environment.</td>
<td>USER.LPALIB</td>
</tr>
<tr>
<td>++parmdtr++</td>
<td>The name of the PARMLIB XMIT that was trasmitted to z/OS (without the .XMIT).</td>
<td>&lt;HLQ&gt;.PARMLIB</td>
</tr>
<tr>
<td>++parmlib++</td>
<td>The DSN of the data set that contains customized parmlibs. Customize based on z/OS environment.</td>
<td>USER.PARMLIB</td>
</tr>
</tbody>
</table>
### Table 4-2  (Cont.) Installation Placeholders

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>++procdtr++</td>
<td>The name of the PROCLIB XMIT that was transmitted to z/OS (without the .XMIT).</td>
<td><strong>&lt;HLQ&gt;.PROCLIB</strong></td>
</tr>
<tr>
<td>++proclib++</td>
<td>The DSN of the data set that contains customized proclibs. Customize based on z/OS environment.</td>
<td><strong>USER.PROCLIB</strong></td>
</tr>
<tr>
<td>++linkdtr++</td>
<td>The name of the LINKLIB XMIT that was transmitted to z/OS (without the .XMIT).</td>
<td><strong>&lt;HLQ&gt;.LINKLIB</strong></td>
</tr>
<tr>
<td>++linklib++</td>
<td>The DSN where the LINKLIB XMIT that was received.</td>
<td><strong>&lt;HLQ&gt;.LINKLIB</strong></td>
</tr>
<tr>
<td>++rexxdtr++</td>
<td>The name of the CLISTLIB XMIT that was transmitted to z/OS (without the .XMIT).</td>
<td><strong>&lt;HLQ&gt;.CLISTLIB</strong></td>
</tr>
<tr>
<td>++rexxlib++</td>
<td>The DSN where the CLISTLIB XMIT that was received.</td>
<td><strong>&lt;HLQ&gt;.CLISTLIB</strong></td>
</tr>
<tr>
<td>++pionprms++</td>
<td>The DSN of the control (configuration) file for the provisioning agent.</td>
<td><strong>PIONEER.CONTROL.FILE</strong></td>
</tr>
<tr>
<td>++voyprms++</td>
<td>The DSN of the control (configuration) file for the reconciliation agent.</td>
<td><strong>VOYAGER.CONTROL.FILE</strong></td>
</tr>
<tr>
<td>++pionlog++</td>
<td>The DSN of the control log (configuration) file for the LOGGERX feature of provisioning agent.</td>
<td><strong>PIONEER.CONTROL.LOG</strong></td>
</tr>
<tr>
<td>++voyglog++</td>
<td>The DSN of the control log (configuration) file for the LOGGERX feature of reconciliation agent.</td>
<td><strong>VOYAGER.CONTROL.LOG</strong></td>
</tr>
<tr>
<td>++pstcuserid++</td>
<td>The ACID of the user to be created for running the provisioning agent STC.</td>
<td><strong>PIONEER</strong></td>
</tr>
<tr>
<td>++vstcuserid++</td>
<td>The ACID of the user to be created for running the reconciliation agent STC.</td>
<td><strong>VOYAGER</strong></td>
</tr>
<tr>
<td>++pstcnm++</td>
<td>The name / description for the provisioning agent STC.</td>
<td>'PIONEER STARTED TASK'</td>
</tr>
<tr>
<td>++vstcnm++</td>
<td>The name / description for the reconciliation agent STC.</td>
<td>'VOYAGER STARTED TASK'</td>
</tr>
<tr>
<td>++pstcuid++</td>
<td>The OMVS UID assigned to the provisioning agent STC. Customize based on z/OS environment.</td>
<td>80</td>
</tr>
<tr>
<td>++vstcuid++</td>
<td>The OMVS UID assigned to the reconciliation agent STC. Customize based on z/OS environment.</td>
<td>90</td>
</tr>
</tbody>
</table>
Table 4-2  (Cont.) Installation Placeholders

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>++stcgrp++</td>
<td>The group assigned to the provisioning and reconciliation agent STCs. Ensure the group has UID(0) or BPX.SUPERUSER assigned. Customize based on z/OS environment.</td>
<td>OMVSGRP</td>
</tr>
<tr>
<td>++secgrp++</td>
<td>The Secure ID user default group.</td>
<td>IDFSGRP</td>
</tr>
<tr>
<td>++secuid++</td>
<td>The Secure ID user ACID.</td>
<td>IDFAGNT</td>
</tr>
<tr>
<td>++secidnm++</td>
<td>The Secure ID name.</td>
<td>SECURE_ID</td>
</tr>
<tr>
<td>++cailink++</td>
<td>The CA Linklist Library DSN. Customize based on RACF environment.</td>
<td>CAI.CAKOLINK</td>
</tr>
</tbody>
</table>

For example, in the following snippet from CREATEDSN, replace the placeholders ++hlq++ and ++vol++ with values such as IDF.PROD and SDWRK1:

```/*
//S1 SET PHLQ=++hlq++.PIONEER
//S2 SET VHLQ=++hlq++.VOYAGER
//S3 SET PVOL=++vol++
//S4 SET VVOL=++vol++
/*```

The following snippet displays the placeholders replaced with values:

```/*
//S1       SET  PHLQ=IDF.PROD.PIONEER
//S2       SET  VHLQ=IDF.PROD.VOYAGER
//S3       SET  PVOL=SDWRK1
//S4       SET  VVOL=SDWRK1
//S5       SET  THLQ=IDF.PROD
/*```

5. Execute each of the following job streams in the order as shown in the following table to complete installation.

Table 4-3  Job Streams to Execute

<table>
<thead>
<tr>
<th>Job Stream</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;HLQ&gt;.JCLLIB.IEBCOPYP</td>
<td>Copies PARMLIB members to user PARMLIB.</td>
</tr>
<tr>
<td>&lt;HLQ&gt;.JCLLIB.IEBCPYPR</td>
<td>Copies PROCLIB members to user PROCLIB.</td>
</tr>
<tr>
<td>&lt;HLQ&gt;.JCLLIB.IEBCPYCL</td>
<td>Copies Rexx execs to user Rexx library.</td>
</tr>
<tr>
<td>&lt;HLQ&gt;.JCLLIB.IEBCOPYL</td>
<td>Copies exit routines to use LPA library.</td>
</tr>
<tr>
<td>&lt;HLQ&gt;.JCLLIB.CREATDSN</td>
<td>Allocates run time data sets, deleting the data sets first if they already exist.</td>
</tr>
</tbody>
</table>
Table 4-3  (Cont.) Job Streams to Execute

<table>
<thead>
<tr>
<th>Job Stream</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;HLQ&gt;.JCLLIB.CREATEXP</td>
<td>Allocates run time EXPORTIN data set.</td>
</tr>
<tr>
<td>&lt;HLQ&gt;.JCLLIB.LOADDSN</td>
<td>Copies PIONEER &amp; VOYAGER configuration (control) files.</td>
</tr>
<tr>
<td>&lt;HLQ&gt;.JCLLIB.RACFDEL</td>
<td>Deletes pre-existing user accounts and privileges on the user accounts required to execute agent STCs.</td>
</tr>
<tr>
<td>&lt;HLQ&gt;.JCLLIB.RACFDEF</td>
<td>Defines users and permissions required to run the mainframe agent STCs.</td>
</tr>
</tbody>
</table>

The installation of the provisioning and reconciliation agents, Pioneer and Voyager, is complete. At this point, you can optionally remove the XMIT datasets that were originally transmitted to z/OS.

4.3 Configuring the Mainframe Agents

After installing Pioneer and Voyager, you must configure the mainframe agents to receive requests from and send responses to the LDAP gateway.

This section discusses the following topics:

- Configuring the Provisioning Agent
- Configuring the Reconciliation Agent

4.3.1 Configuring the Provisioning Agent

You must configure the provisioning agent to receive requests from the LDAP gateway, which originates from Oracle Identity Manager.

Edit the <HLQ>.PIONEER.CONTROL.FILE file to configure the behavior of the provisioning agent. Here, <HLQ> is the high-level-qualifier that you specified while installing the agents.

Table 4-4  Parameters of the Pioneer Control File

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPN</td>
<td>TCPIP</td>
<td>The name of the TCP/IP STC where the agent is executing.</td>
</tr>
<tr>
<td>IPAD</td>
<td>0.0.0.0</td>
<td>Do not change.</td>
</tr>
<tr>
<td>PORT</td>
<td>9999</td>
<td>The TCP/IP port that the agent will listen on.</td>
</tr>
<tr>
<td>CRLF</td>
<td>Y or N</td>
<td>If this flag is set to Y, then mainframe sends a response with carriage line feed. You must set the value of this parameter to Y for version 6+ of the LDAP Gateway. Set to N for version 5.</td>
</tr>
</tbody>
</table>
Table 4-4 (Cont.) Parameters of the Pioneer Control File

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESIZE</td>
<td>16</td>
<td>This is the only valid value. This parameter is for the AES128 encryption and decryption.</td>
</tr>
<tr>
<td>POST_PROC_ALIAS</td>
<td>T or F</td>
<td>If you set the value of this parameter to T, then all LDAP Alias requests are processed. If you set it to F, then all LDAP Alias requests are rejected.</td>
</tr>
<tr>
<td>RWAIT</td>
<td>0 or 999 (in seconds)</td>
<td>Enter the number of seconds the agent must wait before executing the jobs submitted by the batch recon.</td>
</tr>
<tr>
<td>JWAIT</td>
<td>0 or 999 (in seconds)</td>
<td>Enter the number of seconds the agent must wait before executing the IDCAMS jobs.</td>
</tr>
<tr>
<td>QUEUE_DSN</td>
<td>IDF.SEARCH</td>
<td>Max 44 character DSN used with RWAIT for recons. This DSN does not need allocated or deleted.</td>
</tr>
<tr>
<td>EXPORT_MON</td>
<td>NO or YES, REC=X</td>
<td>Monitor XML imports displaying a message every X ACIDS.</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Y or N</td>
<td>This parameter is deprecated.</td>
</tr>
<tr>
<td>IDLEMSG</td>
<td>Y or N</td>
<td>This parameter is deprecated.</td>
</tr>
<tr>
<td>DEBUGOUT</td>
<td>SYSOUT, CLASS(X)</td>
<td>This parameter is deprecated.</td>
</tr>
<tr>
<td>SPIN_CLASS</td>
<td>X</td>
<td>This parameter is deprecated.</td>
</tr>
<tr>
<td>AUDIT_LOG</td>
<td>YES or NO</td>
<td>This parameter is deprecated.</td>
</tr>
</tbody>
</table>

Postprocessing Procedure for the Provisioning Agent

If the provisioning agent requires post processing for it to run, then you must add additional statements to the Pioneer control file as follows:

```
C=CREATE,M=TESTA,L=TEST.TESTA
C=ADDTO,M=TESTB,L=TEST.TESTB
C=REMOVE,M=TESTC,L=TEST.TESTC
```

Control file ( //PARMFLE ) explanations:

By default, the post-processing submits member (M=) from PDS library (L=) for every CREATE, ADDTO, REMOVE done on TSS. The post-processing takes place on every command added to the Pioneer control file. This library is dynamically allocated to Pioneer and later freed. If no post-processing is required, then do not code the C= for the TSS command. For example, C=CREATE .... C=ADDTO ....

Pioneer post-processes the TSS commands received from the LDAP for CREATE and ADDTO. By default, the following parameters are passed to only a clist:

- CREATE - ACID
• ADDTO - ACID and KEYWORD
• REMOVE - ACID and KEYWORD

The REXX clist should have the following line to accept the parameters:

/* rexx sample clist */
Arg p1 p2

The Library specified with L= parameter and the member with M= parameter should contain batch JCL to execute REXX Clist.

The following is a sample job using the high-level qualifier of Pioneer:

//REXXCLST JOB SYSTEMS,MSGLEVEL=(1,1),MSGCLASS=X,CLASS=A,PRTY=8,
// NOTIFY=&SYSUID,REGION=OK
//STEP0 EXEC PGM=IKJEFT01,DYNAMNBR=50
//SYSTSPRT DD SYSOUT=*  
//SYSPRINT DD SYSOUT=*  
//SYSUDUMP DD SYSOUT=*  
//SYSPROC DD DISP=SHR,DSN=PIONEER.CLIST.LIBRARY
//SYSTERM DD DUMMY
//SYSTSIN DD *
/*  

For postprocessing the commands (CREATE/ADDTO/REMOVE etc ) mentioned in the control file, Pioneer adds: %clistname p1 p2

Where clistname is the value specified with M= parameter in the control file for the corresponding command.

Note:
The JCL member name specified with the M= parameter in the control file and the corresponding REXX/Clist member name needs to be the same.

4.3.2 Configuring the Reconciliation Agent

You must configure the reconciliation agent to send incremental responses to the LDAP gateway.

Edit the <HLQ>.VOYAGER.CONTROL.FILE file to configure the behavior of the reconciliation agent. <HLQ> is the high-level qualifier that you specified while installing the agents.

Table 4-5 Parameters of the Voyager Control File

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPN</td>
<td>TCPIP</td>
<td>The name of the TCP/IP STC where the agent is executing.</td>
</tr>
</tbody>
</table>
### Table 4-5 (Cont.) Parameters of the Voyager Control File

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAD</td>
<td>999.999.999.999 or ldap.example.com</td>
<td>LDAP destination IP address or hostname (up to 40 characters).</td>
</tr>
<tr>
<td>PORT</td>
<td>9999</td>
<td>LDAP destination port that is listening to the incoming agent messages.</td>
</tr>
<tr>
<td>CRLF</td>
<td>Y or N</td>
<td>If this flag is set to Y, then mainframe sends a response with carriage line feed. You must set the value of this parameter to Y for version 6+ of the LDAP Gateway. Set to N for version 5.</td>
</tr>
<tr>
<td>ESIZE</td>
<td>16</td>
<td>This is the only valid value. This parameter is for the AES128 encryption and decryption.</td>
</tr>
<tr>
<td>CACHE_DELAY</td>
<td>0 to 999</td>
<td>This is the number of seconds that Voyager waits before issuing a write socket to the LDAP Gateway.</td>
</tr>
<tr>
<td>VOYAGER_ID</td>
<td>VOYAGER</td>
<td>This value will be included in the LDAP logs for diagnostic</td>
</tr>
<tr>
<td>CONNECT_RETRY</td>
<td>999</td>
<td>The number of times to retry when the LDAP connection is down.</td>
</tr>
<tr>
<td>CONNECT_INTV</td>
<td>10</td>
<td>The number of seconds between retries when the LDAP connection is down.</td>
</tr>
<tr>
<td>PIONEER_DELETE_MSGS</td>
<td>Not applicable</td>
<td>The parameter is deprecated.</td>
</tr>
<tr>
<td>RECOVERY_INTERVAL</td>
<td>Not applicable</td>
<td>The parameter is deprecated.</td>
</tr>
<tr>
<td>DNS_RECOVERY_INTERVAL</td>
<td>Not applicable</td>
<td>The parameter is deprecated.</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Y or N</td>
<td>This parameter is deprecated.</td>
</tr>
<tr>
<td>DEBUGOUT</td>
<td>SYSOUT, CLASS (X)</td>
<td>This parameter is deprecated.</td>
</tr>
<tr>
<td>CONNECT_MSGS</td>
<td>Y or N</td>
<td>This parameter is deprecated.</td>
</tr>
<tr>
<td>MSGID01</td>
<td>NO or YES, IDMV602E,X</td>
<td>This parameter is deprecated.</td>
</tr>
</tbody>
</table>

#### 4.4 Configuring Logging

You can configure logging for both Pioneer and Voyager by editing the `<HLQ>.PIONEER.CONTROL.LOG` and `<HLQ>.VOYAGER.CONTROL.LOG` files, respectively, and setting values for various log parameters based on your requirement. For example, you can have complete control over the messages that you want to print or sup-
press and also the device over which the message must be printed. A separate control file is designed and used to control the functionality of logging through LOGGERX.

**Logging Parameters**

LOGGERX requires initial parameters setup for operating. This is achieved by using a control file (different from the control file for Pioneer). The parameters of this control file described in the following table.

**Table 4-6  Logging Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Accepted Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGGERX_MSGID01</td>
<td>NO or YES, IDMV602E,X</td>
<td>If you want to suppress the IDMV602E recovery message, then set the value of this parameter to NO. If you want to display the IDMV602E recovery message, then set the value of the parameter to YES in the following format: YES, IDMV602E, X. In this format, replace X with any number between 0 through 99, which specifies the number of times the recovery message IDMV602E must be displayed. For example, YES, IDMV602E, 6. <strong>Note:</strong> This parameter is applicable only to the &lt;HLQ&gt;.VOYAGER.CONTROL.LOG file.</td>
</tr>
<tr>
<td>LOGGERX_SYSOUT_CLASS</td>
<td>A through Z</td>
<td>The value in this parameter determines the class where the SYSOUT messages must be rolled to. For example, if you set the value of this parameter to A, then all SYSOUT messages will be directed to class A. If you do not specify a value for this parameter, then by default, all SYSOUT messages are rolled to class A.</td>
</tr>
</tbody>
</table>
Table 4-6  (Cont.) Logging Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Accepted Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| LOGGERX_LEVEL_ROUTING | **MSG_TYPE:DEVICE** | In this format, replace:  
  • **MSG_TYPE** with types of messages such as INFO, WARN, ERR, or DBG.  
  • **DEVICE** with any combination of SYSOUT, CONSOLE, FILE, or NONE by using a vertical bar (|) as the delimiter.  
  This parameter controls the message logging based on message type. The value of this parameter must contain the message type and the devices on which it is to be printed. For example, if you set the value of this parameter to INFO:SYSOUT|CONSOLE, then it means that all informational messages will be written to SPOOL/SYSOUT and the mainframe operator console. The same is applicable for message types – WARN(Warning), ERROR(Error) and DEBG(DEBUGOUT). |
| LOGGERX_XXXX where XXXX can be either INFO, WARN, EROR, DEBG, AUDT, or PARM | SYSOUT | Use this parameter to specify SYSOUT when the value of **DEVICE** in the LOGGERX_LEVEL_ROUTING parameter is FILE.  
When the value is passed as SYSOUT, the file is created in the SPOOL as part of job output. For example, consider that the value of the LOGGERX_LEVEL_ROUTING parameter is set to WARN:FILE. In such a case, the entry LOGFILE_WARN=SYSOUT means that the job output will contain a file by the name WARNOUT that will contain warning messages. |
Table 4-6   (Cont.) Logging Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Accepted Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGGERX_MSG_ROUTING</td>
<td>MSGID:DEVICE</td>
<td>Use this parameter to redirect messages to a different device or suppress individual message based on message IDs. This parameter overrides the message levels set in the LOGGERX_LEVEL_ROUTING parameter. For example, the entries LOGGERX_MSG_ROUTING=IDFRPI001:NONE and LOGGERX_MSG_ROUTING=IDFRPI002:FILE combined with LOGGERX_LEVEL_ROUTING=INFO:CONSOLE mean that all Informational messages will go out on CONSOLE except, IDFRPI001(suppressed) and IDFRPI002(written on a file). You can provide 999 message IDs for each agent. In other words, you can choose to override, suppress, or redirect any number of messages.</td>
</tr>
</tbody>
</table>
|                    |                | In this format, replace:  
|                    |                | • MSGID with the message ID corresponding to a message text.  
|                    |                | • DEVICE with any combination of SYSOUT, CONSOLE, FILE, or NONE by using the vertical bar (|) as the delimiter.                                                                                                                                                                                                 |
| LOGGERX_FILE_MSG   | SYSOUT         | This parameter is used when FILE is specified as the Device type in the LOGGERX_MSG_ROUTING parameter to route all message ID-specific messages to MSGOUT in the spool. This parameter accepts a value of SYSOUT. When the value is passed as SYSOUT, the file is (MSGOUT) created in the SPOOL as part of job output. For example, the entry LOGFILE_MSG=SYSOUT means that the job output will contain a file by the name MSGOUT that contains messages corresponding to the message ID provided in the value of the LOGGERX_MSG_ROUTING parameter with the destination device as FILE. |
| LOGGERX_DEBUG      | Y or N         | This parameter is deprecated in v6.0.0 and later versions of the Mainframe agents.                                                                                                                                                                                                                       |
Table 4-6  (Cont.) Logging Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Accepted Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGGERX_SPIN_CLASS</td>
<td>X</td>
<td>This parameter is deprecated in v6.0.0 and later versions of the Mainframe agents.</td>
</tr>
<tr>
<td>LOGGERX_AUDIT_LOG</td>
<td>YES or NO</td>
<td>This parameter is deprecated in v6.0.0 and later versions of the Mainframe agents.</td>
</tr>
<tr>
<td>LOGGERX_CONNECT_MSGS</td>
<td>Y or N</td>
<td>This parameter is deprecated in v6.0.0 and later versions of the Mainframe agents.</td>
</tr>
</tbody>
</table>

Important Use Case of the Log File

1. \text{LOGGERX\_LEVEL\_ROUTING=}INFO:FILE
   - \text{LOGGERX\_LEVEL\_ROUTING=}AUDT:FILE
   - \text{LOGGERX\_LEVEL\_ROUTING=}WARN:FILE
   - \text{LOGGERX\_LEVEL\_ROUTING=}ERR:FILE
   - \text{LOGGERX\_LEVEL\_ROUTING=}DBG:FILE
   - \text{LOGGGERX\_FILE\_WARN=}SYSOUT
   - \text{LOGGGERX\_FILE\_INFO=}SYSOUT
   - \text{LOGGGERX\_FILE\_AUDT=}SYSOUT
   - \text{LOGGGERX\_FILE\_DEBG=}SYSOUT
   - \text{LOGGGERX\_FILE\_EROR=}SYSOUT
   The above combination results in all INFO, AUDT, WARN, ERR, and DBG messages written onto INFOUT, WARNOUT, ERROUT, and DBGOUT in spool/ Sysout.

2. \text{LOGGERX\_LEVEL\_ROUTING=}INFO:FILE|SYSOUT
   - \text{LOGGERX\_LEVEL\_ROUTING=}AUDT:FILE|SYSOUT
   - \text{LOGGERX\_LEVEL\_ROUTING=}WARN:FILE|SYSOUT
   - \text{LOGGERX\_LEVEL\_ROUTING=}ERR:FILE|SYSOUT
   - \text{LOGGERX\_LEVEL\_ROUTING=}DBG:FILE|SYSOUT
   - \text{LOGGGERX\_FILE\_WARN=}SYSOUT
   - \text{LOGGGERX\_FILE\_INFO=}SYSOUT
   - \text{LOGGGERX\_FILE\_AUDT=}SYSOUT
   - \text{LOGGGERX\_FILE\_DEBG=}SYSOUT
   - \text{LOGGGERX\_FILE\_EROR=}SYSOUT
   The above combination results in all INFO, AUDT, WARN, ERR, DBG messages written onto INFOUT, WARNOUT, ERROUT, and DBGOUT in spool and all the messages will also be written onto SYSOUT file in job output.

3. \text{LOGGERX\_LEVEL\_ROUTING=}INFO:FILE|SYSOUT|CONSOLE


• LOGGERX_LEVEL_ROUTING=AUDT:FILE|SYSOUT|CONSOLE
• LOGGERX_LEVEL_ROUTING=WARN:FILE|SYSOUT|CONSOLE
• LOGGERX_LEVEL_ROUTING=ERR:FILE|SYSOUT|CONSOLE
• LOGGERX_LEVEL_ROUTING=DBG:FILE|SYSOUT|CONSOLE
• LOGGERX_FILE_WARN=SYSOUT
• LOGGERX_FILE_INFO=SYSOUT
• LOGGERX_FILE_AUDT=SYSOUT
• LOGGERX_FILE_DBG=SYSOUT
• LOGGERX_FILE_ERR=SYSOUT

The above combination results in all INFO, AUDT, WARN, ERR, and DBG messages written onto INFOUT, WARNOUT, ERROUT, and DBGOUT in spool and all the messages will also be written onto SYSOUT file in job output and on the mainframe operator console.

4. LOGGERX_LEVEL_ROUTING=INFO:NONE|SYSOUT|CONSOLE
• LOGGERX_LEVEL_ROUTING=AUDT:NONE
• LOGGERX_LEVEL_ROUTING=WARN:NONE|SYSOUT|CONSOLE
• LOGGERX_LEVEL_ROUTING=ERR:NONE|SYSOUT|CONSOLE
• LOGGERX_LEVEL_ROUTING=DBG:NONE|SYSOUT|CONSOLE
• LOGGERX_FILE_WARN=SYSOUT
• LOGGERX_FILE_INFO=SYSOUT
• LOGGERX_FILE_AUDT=SYSOUT
• LOGGERX_FILE_DBG=SYSOUT
• LOGGERX_FILE_ERR=SYSOUT
• LOGGERX_MSG_ROUTING=IDMP000I :CONSOLE
• LOGGERX_MSG_ROUTING=IDMP010I :CONSOLE
• LOGGERX_MSG_ROUTING=IDMP300I :CONSOLE
• LOGGERX_MSG_ROUTING=IDMP001E:CONSOLE

The above combinations result in all INFO, AUDT, WARN, ERR, and DBG messages being suppressed. Since NONE is specified it does not matter if other devices are specified too, the messages will be suppressed. However, as LOGGERX_MSG_ROUTING is also specified, the messages IDs IDMP000I, IDMP010I, IDMP300I, and IDMP001E are not suppressed and are displayed on the CONSOLE. This establishes that at any point of time, the LOGGERX_MSG_ROUTING parameter has a higher priority in deciding the message’s output device, than its corresponding LEVEL ROUTING
Note:
In the sample control log files, for Parm message output, logging is routed based on message IDs IDMP400I, IDMP401E, and IDMV400I. These are set to route to 'SYSOUT' device and needs to maintain to get the PARMOUT dataset created in SPOOL.

4.5 Activating and Deactivating Reconciliation Exits

To make use of real-time reconciliation and the reconciliation agent, you must activate system exits for capturing and reacting to changes in the target system.

Activate the system exits to capture target system changes in real-time. To do so, run the following command from the z/OS operator interface:

```
t prog=75
```

Deactivate the system exits to disable the reconciliation of real-time changes to the target system. To do so, run the following command from the z/OS operator interface:

```
t prog=76
```

4.6 Operator Interface for Mainframe Agents

Both provisioning and reconciliation agents have an operator interface, and you can control the agents by passing commands through the interface.

The following topics are discussed in this section:

- Provisioning Agent Commands
- Reconciliation Agent Commands

4.6.1 Provisioning Agent Commands

Pass the Pioneer provisioning agent commands through the operator interface to control Pioneer.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T PROG=ID</td>
<td>APF authorizes &lt;HLQ&gt;.LINKLIB - required to start the agent.</td>
</tr>
<tr>
<td>S PIONEER</td>
<td>Starts the agent.</td>
</tr>
<tr>
<td>F PIONEER,SHUTDOWN</td>
<td>Shuts down the agent.</td>
</tr>
<tr>
<td>F PIONEER,STATUS</td>
<td>Sends a status request to the agent.</td>
</tr>
<tr>
<td>F PIONEER,DEBUG=Y</td>
<td>Enables debug-level (detailed) log output.</td>
</tr>
<tr>
<td>F PIONEER,DEBUG=N</td>
<td>Disables debug-level (detailed) log output.</td>
</tr>
</tbody>
</table>

Chapter 4
Activating and Deactivating Reconciliation Exits
4.6.2 Reconciliation Agent Commands

Pass the Voyager reconciliation agent through the operator interface to control Voyager.

**Table 4-8  Reconciliation Agent Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T PROG=ID</td>
<td>APF authorizes &lt;HLQ&gt;.LINKLIB - <em>required to start the agent.</em></td>
</tr>
<tr>
<td>T PROG=75</td>
<td>Activates system exits - <em>required for real-time reconciliation as described in Activating and Deactivating Reconciliation Exits.</em></td>
</tr>
<tr>
<td>S VOYAGER</td>
<td>Starts the agent.</td>
</tr>
<tr>
<td>F VOYAGER,SHUTDOWN</td>
<td>Shuts down the agent.</td>
</tr>
<tr>
<td>F VOYAGER,STATUS</td>
<td>Sends a status request to the agent.</td>
</tr>
<tr>
<td>F VOYAGER,DEBUG=Y</td>
<td>Enables debug-level (detailed) log output.</td>
</tr>
<tr>
<td>F VOYAGER,DEBUG=N</td>
<td>Disables debug-level (detailed) log output.</td>
</tr>
<tr>
<td>F VOYAGER,IPAD=999.999.999.999,PORT=9999</td>
<td>Changes the IP address and port of the target LDAP Gateway.</td>
</tr>
</tbody>
</table>

**Note:**

The interface through the z/OS modify command is a single-threaded system. Commands are queued and take a few seconds before the agent acknowledges them.
5

Using the IBM RACF Advanced Connector

You can use the IBM RACF Advanced connector for performing reconciliation and provisioning operations after configuring it to meet your requirements.

The procedure to use the IBM RACF Advanced connector can be divided into the following topics:

• Guidelines on Using the IBM RACF Advanced Connector
• Scheduled Tasks for Lookup Field Synchronization
• Configuring the Security Attributes Lookup Field
• Configuring Reconciliation
• Configuring Account Status Reconciliation for IBM RACF Advanced Connector
• Scheduled Tasks for IBM RACF Advanced Connector
• Configuring Reconciliation Jobs
• Performing Provisioning Operations

5.1 Guidelines on Using the IBM RACF Advanced Connector

Apply the following guidelines while using the connector:

• The LDAP Gateway does not send the full attribute value when provisioning attribute values that contain one or more space characters. If this problem occurs, surround the attribute value in single quotation marks when populating the form field.

• The RACF connector LDAP gateway encrypts ASCII data transmitting the encrypted message to the mainframe. The mainframe decrypts this message, as the inbound message is in ASCII format, it is translated to EBCDIC for mainframe processing. As a result, any task that requires non-ASCII data transfer fails. In addition, there is no provision in the connector to indicate that the task has failed or that an error has occurred on the mainframe. To avoid errors of this type, you must exercise caution when providing inputs to the connector for the target system, especially when using a regional language interface.

• Passwords used on the mainframe must conform to stringent rules related to passwords on mainframes. These passwords are also subject to restrictions imposed by corporate policies and rules about mainframe passwords. Keep in mind these requirements when you create or modify target system accounts through provisioning operations on Oracle Identity Manager.

• The subpool must be started before starting the Reconciliation Agent. If the agent is started before the subpool, then an error message stating, "NO TOKEN FOUND", will be printed. Additionally, if the LDAP Gateway is not available when the Reconciliation Agent is started, then an error message is generated stating, "NO LDAP FOUND" will be printed.
• When you update the TSO_SIZE and TSO_MAXSIZE attributes during a provisioning operation, you must not include leading zeros in the value that you specify. For example, if you want to change the value of the SIZE attribute from 000001 to 000002, then enter 2 in the SIZE field on the Identity Self Service.

5.2 Scheduled Tasks for Lookup Field Synchronization

The scheduled tasks for lookup field synchronization populate lookup tables with facility, dataset, group, or profiles IDs that can be assigned during the user provisioning process.

The following are the scheduled tasks for lookup field synchronization:

- RACF Find All Resources
- RACF Find All Datasets
- RACF Find All Groups

These scheduled tasks populate lookup fields in Oracle Identity Manager with resource profiles, datasets, or group IDs. Values from these lookup fields can be assigned during user provisioning operations and reconciliation runs. When you configure these scheduled tasks, they run at specified intervals and fetch a listing of all resource, dataset, or group IDs on the target system for reconciliation.

Table 5-1 describes the attributes of the scheduled task.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Resource</td>
<td>Enter the name of the IT resource that was configured for the target system.</td>
</tr>
<tr>
<td></td>
<td>Sample value: RACFResource</td>
</tr>
<tr>
<td>Resource Object</td>
<td>Enter the name of the resource object against which provisioning runs must be performed.</td>
</tr>
<tr>
<td></td>
<td>Sample value: OIMRacfResourceObject</td>
</tr>
<tr>
<td>Lookup Code Name</td>
<td>Enter the name of the lookup code where OIM will store the results of the scheduled task.</td>
</tr>
<tr>
<td></td>
<td>Sample value: Lookup.profileNames</td>
</tr>
</tbody>
</table>
Table 5-1  (Cont.) Attributes of the Find All Datasets and Find All Groups
Scheduled Tasks

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| Recon Type | This attribute determines how datasets or group memberships from the target system are populated in Oracle Identity Manager lookup definitions. You can use one of the following options:  
  • Append adds datasets or group membership entries from the target system that do not exist in the Lookup.DatasetNames or Lookup.GroupNames lookup definitions. Any existing entries remain untouched.  
  • Replace removes all the existing entries in Lookup.DatasetNames or Lookup.GroupNames lookup definition and replaces them with datasets or group membership entries from the target system.  
  • Merge handles entries in the following manner:  
    – If you are using the connector for a single installation of the target system, then datasets and group membership entries that exist in both the target system and Oracle Identity Manager are updated in the Lookup.DatasetNames or Lookup.GroupNames lookup definitions. Datasets and group membership entries that exist only in the target system are added to the Lookup.DatasetNames or Lookup.GroupNames lookup definitions.  
    – If you are using the connector for multiple installations of the target system, then only datasets and group membership entries corresponding to the target system installation that you are using are updated or added. Entries that exist in both the target system and Oracle Identity Manager are updated in the Lookup.DatasetNames or Lookup.GroupNames lookup definitions. Entries that exist only in the target system are added to the Lookup.DatasetNames or Lookup.GroupNames lookup definitions.  

Default value: Merge

5.3 Configuring the Security Attributes Lookup Field

The Lookup.RacfSecurityAttributeNames lookup definition is one of the lookup definitions that is created in Oracle Identity Manager when you deploy the connector. This lookup field is populated with standard RACF nonvalue security attributes such as ADSP, AUDIT, SPECIAL, and so on.

The IBM RACF Advanced connector includes a scheduled task to automatically populate the lookup field used for storing RACF security attributes.

This section contains the following topics:

• Attributes of the Find All Security Attributes Scheduled Task
• Adding Additional Security Attributes for Provisioning and Reconciliation
5.3.1 Attributes of the Find All Security Attributes Scheduled Task

The IBM RACF Advanced connector includes a scheduled task to automatically populate the lookup field used for storing RACF security attributes.

Note:
The Find All Security Attributes scheduled task does not query the target system for data. Instead, the scheduled task automatically populates the lookup field with “itResourceKey~sourceName” pairs based on the IT Resource and Find All Security Attributes scheduled task property values.

Table 5-2 describes the properties of the Find All Security Attributes scheduled task.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Resource</td>
<td>Enter the name of the IT resource that was configured for the target system.</td>
</tr>
<tr>
<td></td>
<td>Sample value: RacfResource</td>
</tr>
<tr>
<td>Security Attributes</td>
<td>Enter a comma-separated list of RACF non-value security attributes.</td>
</tr>
<tr>
<td></td>
<td>Sample value: ADSP, AUDIT, RESTRICTED, SPECIAL, UAUDIO</td>
</tr>
<tr>
<td>Lookup Code Name</td>
<td>Enter the name of the lookup code where Oracle Identity Manager will store the source entries.</td>
</tr>
<tr>
<td></td>
<td>Sample value: Lookup.RacfSecurityAttributes</td>
</tr>
<tr>
<td>Recon Type</td>
<td>This attribute determines how security attributes from the target system are populated in Oracle Identity Manager lookup definitions. You can use one of the following options:</td>
</tr>
<tr>
<td></td>
<td>* Append adds security attributes from the target system that do not exist in the Lookup.RacfSecurityAttributes lookup definition. Any existing entries remain untouched.</td>
</tr>
<tr>
<td></td>
<td>* Replace removes all the existing entries in the Lookup.RacfSecurityAttributes lookup definition and replaces them with security attributes from the target system.</td>
</tr>
<tr>
<td></td>
<td>* Merge handles entries in the following manner:</td>
</tr>
<tr>
<td></td>
<td>* If you are using the connector for a single installation of the target system, then security attributes that exist in both the target system and Oracle Identity Manager are updated in the Lookup.RacfSecurityAttributes lookup definition. Security attributes that exist only in the target system are added to the Lookup.RacfSecurityAttributes lookup definitions.</td>
</tr>
<tr>
<td></td>
<td>* If you are using the connector for multiple installations of the target system, then only security attributes corresponding to the target system installation that you are using are updated or added.</td>
</tr>
<tr>
<td></td>
<td>Security attributes that exist in both the target system and Oracle Identity Manager are updated in the Lookup.RacfSecurityAttributes lookup definition. Security attributes that exist only in the target system are added to the Lookup.RacfSecurityAttributes lookup definition.</td>
</tr>
<tr>
<td></td>
<td>Security attributes that exist only in the target system are added to the Lookup.RacfSecurityAttributes lookup definition.</td>
</tr>
<tr>
<td></td>
<td>Default value: Merge</td>
</tr>
</tbody>
</table>
However, you can also manually add additional values. See Adding Additional Security Attributes for Provisioning and Reconciliation.

### 5.3.2 Adding Additional Security Attributes for Provisioning and Reconciliation

To add additional security attributes for provisioning and reconciliation:

1. Login to Oracle Identity Manager Design Console.
2. Expand **Administration**, and then double-click **Lookup Definition**.
4. Click **Add**.
5. In the Code Key column, enter the name of the security attribute. Enter the same value in the Decode column. The following is a sample entry:
   - **Code Key:** ITResource~ADSP
   - **Decode:** ITResource~ADSP
6. Click the Save icon.

### 5.4 Configuring Reconciliation

The IBM RACF Advanced connector supports both incremental reconciliation (sometimes referred to as real-time reconciliation) and full reconciliation. This section discusses the following topics related to configuring reconciliation:

- Configuring Incremental Reconciliation
- Performing Full Reconciliation
- Reconciliation Scheduled Tasks
- Guidelines for Configuring Filtered Reconciliation to Multiple Resource Objects

#### 5.4.1 Configuring Incremental Reconciliation

The Voyager agent and the LDAP gateway perform incremental reconciliation using the RACF Reconcile All LDAP Users scheduled task. To configure incremental reconciliation:

1. Ensure the racf.properties has the following set:
   - **USE INTERNAL META STORE**
     ```yaml
 [true|false]_internalEnt_=true
     ```
   - **USE GROUP INTERNAL META STORE**
     ```yaml
 [true|false]_internalGrpEnt_=true
     ```
2. Use the Last Modified Timestamp parameter of the IT resource to set a date range that will reconcile all users that have changed since that date.
5.4.2 Performing Full Reconciliation

Full reconciliation involves reconciling all existing user records from the target system into Oracle Identity Manager.

After you deploy the connector, you must first perform full reconciliation. After first-time reconciliation, the connector will automatically switch to performing incremental reconciliation based on the time stamp value present in the IT resource.

To perform full reconciliation in a set up that involves LDAP gateway as an intermediary datastore between the RACF target system and Oracle Identity Manager, choose one of the options:

- If you are performing reconciliation for the first time, then:
  1. Generate an EXTRACT reconciliation file on the RACF target system. To do so:
     On the mainframe, execute the RACFRCOU or RACFRCOG batch jobs for reconciling Users or Groups, respectively. These batch jobs populate user and group data in the &HLQ..PIONEER.IMPORTU.FILE dataset (referenced with DD name //FULLIMPU inside PIONEER STC Procedure) and &HLQ..PIONEER.IMPORTG.FILE dataset (referenced with DD name //FULLIMPG inside PIONEER STC Procedure), respectively.
     These batch jobs are a member of the <hlq>.JCLLIB dataset that is available in the etc/Provisioning and Reconciliation Connector/RACF-AGENTS-201905311134-6.0.0.zip file of the connector installation media.
     When Pioneer receives request for full reconciliation (user or group), it reads the corresponding dataset and sends the response back to gateway and clears the dataset. After each execution of full reconciliation, the corresponding file gets cleared. Therefore, if required, you must regenerate the EXTRACT file for populating the internal LDAP for Oracle Identity Manager to reconcile the latest data.
  2. Set the value of the Last Modified Time Stamp parameter of the IT resource parameter to 0.
  3. Run the RACF Reconcile Users to Internal LDAP scheduled task.
  4. Run the RACF Reconcile All LDAP Users scheduled task.
Note:

If you do not run the RACF Recon Users to Internal LDAP scheduled task with the EXTRACT recon file, then the RACF Reconcile LDAP Users scheduled task will always perform in incremental mode.

- If this not the first time that you are performing full reconciliation, then:
  1. Set the value of the Last Modified Time Stamp parameter of the IT resource parameter to 0.
  2. Run the RACF Reconcile All LDAP Users scheduled task.

This completes full reconciliation and from the next reconciliation run onward, the connector will automatically switch to incremental reconciliation by using the value in the Last Modified Time Stamp parameter of the IT resource.

To perform full reconciliation in a set up that does not involve LDAP gateway, run the RACF Reconcile All Users scheduled task. The scheduled job will always run in full reconciliation mode.

5.4.3 Reconciliation Scheduled Tasks

When you run the Connector Installer, these reconciliation scheduled tasks are automatically created in Oracle Identity Manager.

- RACF Reconcile All Users
- RACF Deleted User Reconciliation Using OIM
- RACF Reconcile Users to Internal LDAP
- RACF Reconcile All LDAP Users

5.4.3.1 RACF Reconcile All Users

The RACF Reconcile All Users scheduled task is used to reconcile user data in the target resource (account management) mode of the connector. This scheduled task runs at specified intervals and fetches create or modify events on the target system for reconciliation.

Table 5-3 describes the attributes of the scheduled task.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Resource</td>
<td>Enter the name of the IT resource that was configured for the target system.</td>
</tr>
<tr>
<td>Sample value: RacfResource</td>
<td></td>
</tr>
<tr>
<td>Resource Object</td>
<td>Enter the name of the resource object against which reconciliation runs must be performed.</td>
</tr>
<tr>
<td>Sample value: OIMRacfResourceObject</td>
<td></td>
</tr>
<tr>
<td>MultiValuedAttributes</td>
<td>Enter a comma-separated list of multivalued attributes that you want to reconcile. Do not include a space after each comma.</td>
</tr>
<tr>
<td>Sample value: attributes, member of</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-3  (Cont.) Attributes of the RACF Reconcile All Users Scheduled Task

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SingleValueAttributes</td>
<td>Enter a comma-separated list of single-valued attributes that you want to reconcile. Do not include a space after each comma. Do not include attributes already listed in the MultiValueAttributes field.</td>
</tr>
<tr>
<td></td>
<td><strong>Sample value:</strong> uid,owner,defaultGroup,waddr1,tsoMax-Size</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> By default, Oracle Identity Manager's design form only allows entering up to 150 characters in a text field. To increase this limit, change the value of the TSA_VALUE column in Oracle Identity Manager database.</td>
</tr>
<tr>
<td>UID Case</td>
<td>Enter either &quot;upper&quot; or &quot;lower&quot; for the case for the UID attribute value.</td>
</tr>
<tr>
<td></td>
<td><strong>Sample value:</strong> upper</td>
</tr>
<tr>
<td>UsersList</td>
<td>Enter a comma-separated list of UIDs that you want to reconcile from the target system. If this property is left blank, all users on the target system will be reconciled.</td>
</tr>
<tr>
<td></td>
<td><strong>Sample value:</strong> userQA01,georgeb,marthaj,RST0354</td>
</tr>
</tbody>
</table>

5.4.3.2 RACF Deleted User Reconciliation Using OIM

The RACF Reconcile Deleted Users to OIM scheduled task is used to reconcile data about deleted users in the target resource (account management) mode of the connector.

When you configure this scheduled task, it runs at specified intervals and fetches a list of users on the target system. These user names are then compared with provisioned users in Oracle Identity Manager. Any user profiles that exist within Oracle Identity Manager, but not in the target system, are deleted from Oracle Identity Manager.

Table 5-4 describes the attributes of the scheduled task.

Table 5-4  Attributes of the RACF Reconcile Deleted Users to Oracle Identity Manager Scheduled Task

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Resource</td>
<td>Enter the name of the IT resource that was configured for the target system.</td>
</tr>
<tr>
<td></td>
<td><strong>Sample value:</strong> RcflResource</td>
</tr>
<tr>
<td>Resource Object</td>
<td>Enter the name of the resource object against which the delete reconciliation runs must be performed.</td>
</tr>
<tr>
<td></td>
<td><strong>Sample value:</strong> OIMRcflResourceObject</td>
</tr>
<tr>
<td>Recon Matching Rule Attributes</td>
<td>Enter a comma-separated list of attributes used in the matching rule. If the IT resource is used, enter IT.</td>
</tr>
<tr>
<td></td>
<td><strong>Sample value:</strong> UID,IT</td>
</tr>
</tbody>
</table>
5.4.3.3 RACF Reconcile Users to Internal LDAP

The RACF Reconcile Users to Internal LDAP scheduled task is used to process the CFILE extract from the target system to the internal LDAP store. When you configure this scheduled task, it runs at specified intervals and fetches a list of users and their profiles on the target system. Each of these users is then reconciled to the internal LDAP store. No reconciliation to Oracle Identity Manager is performed.

Table 5-5 describes the attributes of the scheduled task.

Table 5-5    Attributes of the RACF Reconcile Users to Internal LDAP Scheduled Task

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Resource</td>
<td>Enter the name of the IT resource that was configured for the target system. Sample value: RacfResource</td>
</tr>
<tr>
<td>Domain OU</td>
<td>Enter the name of the internally-configured directory in the LDAP internal store where the contents of event changes will be stored. Sample value: racf</td>
</tr>
</tbody>
</table>

5.4.3.4 RACF Reconcile All LDAP Users

The RACF Reconcile All LDAP Users scheduled task is used to reconcile users from the internal LDAP store to Oracle Identity Manager. When you configure this scheduled task, it runs at specified intervals and fetches a list of users within the internal LDAP store and reconciles these users to Oracle Identity Manager.

Table 5-6 describes the attributes of the scheduled task.

Table 5-6    Attributes of the RACF Reconcile All LDAP Users Scheduled Task

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Resource</td>
<td>Enter the name of the IT resource that was configured for the target system. Sample value: RacfResource</td>
</tr>
<tr>
<td>Resource Object</td>
<td>Enter the name of the resource object against which the delete reconciliation runs must be performed. Sample value: OIMRacfResourceObject</td>
</tr>
<tr>
<td>Domain OU</td>
<td>Enter the name of the internally-configured directory in the LDAP internal store where the contents of event changes will be stored. Sample value: racf</td>
</tr>
<tr>
<td>MultiValuedAttributes</td>
<td>Enter a comma-separated list of multivalued attributes that you want to reconcile. Do not include a space after each comma. Sample value: member of,attributes</td>
</tr>
</tbody>
</table>
### Table 5-6  (Cont.) Attributes of the RACF Reconcile All LDAP Users Scheduled Task

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| SingleValueAttributes | Enter a comma-separated list of single-valued attributes that you want to reconcile. Do not include a space after each comma. Do not include attributes already listed in the MultiValueAttributes field.  
**Sample value:** uid,owner,defaultGroup,waddrl,tsoMaxSize  
**Note:** By default, Oracle Identity Manager's design form only allows entering up to 150 characters in a text field. To increase this limit, change the value of the TSA_VALUE column in the Oracle Identity Manager database. |
| LDAP Time Zone        | Enter the time zone ID for the server on which the LDAP gateway is hosted.  
**Sample value:** EST |
| UID Case              | Enter whether the user ID should be displayed in uppercase or lowercase.  
**Sample value:** upper |

### 5.4.4 Guidelines for Configuring Filtered Reconciliation to Multiple Resource Objects

Some organizations use multiple resource objects to represent multiple user types in their system. The Resource Object property of the RACF Reconcile All Users scheduled task is used to specify the resource object used during reconciliation, and you can enter more than one resource object in the value of the Resource Object attribute. Further, you can include IBM RACF attribute-value pairs to filter records for each resource object.

The following is a sample format of the value for the Resource Object attribute:

**(ATTRIBUTE1:VALUE1)RESOURCE_OBJECT1,RESOURCE_OBJECT2**

As shown by RESOURCE_OBJECT2 in the sample format, specifying a filter attribute is optional, but if more than one resource object is specified, you must specify a filter for each additional resource object. If you do not specify a filter attribute, then all records are reconciled to the first resource object in the list. Further, the filters are checked in order, so the resource object without a filter attribute should be included last in the list.

Filter attributes should be surrounded by parentheses.
Apply the following guidelines while specifying a value for the Resource Object attribute:

- The names of the resource objects must be the same as the names that you specified while creating the resource objects in the Oracle Identity Manager Design Console.
- The IBM RACF attribute names must be the same as the names used in the LDAP Gateway configuration files.
- The value must be a regular expression as defined in the java.util.regex Java package. Note that the find() API call of the regex matcher is used rather than the matches() API call. This means that a substring matching rule can be specified in the pattern, rather than requiring the entire string matching rule.

Further, substring matching is case-sensitive. A "(tso)" filter will not match a user with the user ID "TSOUSER1".

- Multiple values can be matched. Use a vertical bar (|) for a separator as shown in the following example:

  \( (ATTRIBUTE:VALUE1|VALUE2|VALUE3)RESOURCE\_OBJECT \)

- Multiple filters can be applied to the attribute and to the same resource object. For example:

  \( (ATTRIBUTE1:VALUE1)\&(ATTRIBUTE2:VALUE2)RESOURCE\_OBJECT \)

The following is a sample value for the Resource Object attribute:

\( (tsoProc:x)TSSRO1, (instdata:value1|value2|value3)RacfResourceObject2, (tso)RacfResourceObject24000, Resource \)

In this sample value:

- \( (tsoProc:x)TSSRO1 \) represents a user with \( x \) as the attribute value for the TSO Proc segment. Records that meet this criterion are reconciled with the TSSRO1 resource object.

- \( (instdata:value1|value2|value3)RacfResourceObject2 \) represents a user with value1, value2, or value3 as their INSTDATA attribute value. Records that meet this criterion are reconciled with the RacfResourceObject2 resource object.

- \( (tso)RacfResourceObject24000 \) represents a user with TSO privileges. A TSO attribute value is not specified. Records that meet this criterion are reconciled with the RacfResourceObject24000 resource object.

- All other records are reconciled with the resource object.

### 5.5 Configuring Account Status Reconciliation for IBM RACF Advanced Connector

**Note:**

This section describes an optional procedure. Perform this procedure only if you want reconciliation of user status changes on IBM RACF.
When a user is disabled or enabled on the target system, the status of the user can be reconciled into Oracle Identity Manager. To configure reconciliation of user status changes made on IBM RACF:

1. In the RACF Reconcile All Users scheduled task, add the Status attribute to the SingleValueAttributes property list.
2. Log in to the Design Console:
   - In the OIMRacfSecretResourceObject resource object, create a reconciliation field to represent the Status attribute.
   - In the OIMRacfProvisioningProcess process definition, map the field for the Status field to the OIM_OBJECT_STATUS field.

5.6 Scheduled Tasks for IBM RACF Advanced Connector

Table 5-7 lists the scheduled tasks that you must configure.

<table>
<thead>
<tr>
<th>Scheduled Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACF Find All Resources</td>
<td>This scheduled task is used to synchronize the values of resource profile lookup fields between Oracle Identity Manager and the target system. For information about this scheduled task and its attributes, see Scheduled Tasks for Lookup Field Synchronization.</td>
</tr>
<tr>
<td>RACF Find All Datasets</td>
<td>This scheduled task is used to synchronize the values of dataset lookup fields between Oracle Identity Manager and the target system. For information about this scheduled task and its attributes, see Scheduled Tasks for Lookup Field Synchronization.</td>
</tr>
<tr>
<td>RACF Find All Groups</td>
<td>This scheduled task is used to synchronize the values of group lookup fields between Oracle Identity Manager and the target system. For information about this scheduled task and its attributes, see Scheduled Tasks for Lookup Field Synchronization.</td>
</tr>
<tr>
<td>RACF Find All Security Attributes</td>
<td>This scheduled task is used to automatically populate the security attributes lookup field with IT Resource Key--Security Attribute Name pairs. For information about this scheduled task and its attributes, see Configuring the Security Attributes Lookup Field.</td>
</tr>
<tr>
<td>RACF Reconcile All Users</td>
<td>This scheduled task is used to fetch user data during target resource reconciliation. For information about this scheduled task and its attributes, see RACF Reconcile All Users.</td>
</tr>
<tr>
<td>RACF Reconcile Deleted Users to OIM</td>
<td>This scheduled task is used to fetch data about deleted users during target resource reconciliation. During a reconciliation run, for each deleted user account on the target system, the RACF User resource is revoked for the corresponding OIM User. For information about this scheduled task and its attributes, see RACF Deleted User Reconciliation Using OIM.</td>
</tr>
<tr>
<td>RACF Reconcile Users to Internal LDAP</td>
<td>This scheduled task is used to reconcile users from the target system to the internal LDAP store. For information about this scheduled task and its attributes, see RACF Reconcile Users to Internal LDAP.</td>
</tr>
<tr>
<td>RACF Reconcile All LDAP Users</td>
<td>This scheduled task is used to reconcile users from the internal LDAP store to Oracle Identity Manager. For information about this scheduled task and its attributes, see RACF Reconcile All LDAP Users.</td>
</tr>
</tbody>
</table>
5.7 Configuring Reconciliation Jobs

Configure reconciliation jobs to perform reconciliation runs that check for new information on your target system periodically and replicates the data in Oracle Identity Governance.

You can apply this procedure to configure the reconciliation jobs for users and entitlements.

To configure a reconciliation job:

1. Log in to Identity System Administration.
2. In the left pane, under System Management, click **Scheduler**.
3. Search for and open the scheduled job as follows:
   a. In the Search field, enter the name of the scheduled job as the search criterion. Alternatively, you can click **Advanced Search** and specify the search criterion.
   b. In the search results table on the left pane, click the scheduled job in the Job Name column.
4. On the **Job Details** tab, you can modify the parameters of the scheduled task:
   - **Retries**: Enter an integer value in this field. This number represents the number of times the scheduler tries to start the job before assigning the Stopped status to the job.
   - **Schedule Type**: Depending on the frequency at which you want the job to run, select the appropriate schedule type. See Creating Jobs in *Oracle Fusion Middleware Administering Oracle Identity Governance*.

In addition to modifying the job details, you can enable or disable a job.

5. On the **Job Details** tab, in the Parameters region, specify values for the attributes of the scheduled task.

   **Note:**
   
   Values (either default or user-defined) must be assigned to all the attributes. If even a single attribute value is left empty, then reconciliation is not performed.

6. Click **Apply** to save the changes.

   **Note:**
   
   You can use the Scheduler Status page in Identity System Administration to either start, stop, or reinitialize the scheduler.
5.8 Performing Provisioning Operations

You create a new user in Identity Self Service by using the Create User page. You provision or request for accounts on the Accounts tab of the User Details page.

To perform provisioning operations in Oracle Identity Governance:

1. Log in to Identity Self Service.
2. Create a user as follows:
   a. In Identity Self Service, click Manage. The Home tab displays the different Manage option. Click Users. The Manage Users page is displayed.
   b. From the Actions menu, select Create. Alternatively, you can click Create on the toolbar. The Create User page is displayed with input fields for user profile attributes.
   c. Enter details of the user in the Create User page.
3. On the Account tab, click Request Accounts.
4. In the Catalog page, search for and add to cart the application instance for the connector that you configured earlier, and then click Checkout.
5. Specify value for fields in the application form and then click Ready to Submit.
6. Click Submit.

See Also:

Creating a User in Oracle Fusion Middleware Performing Self Service Tasks with Oracle Identity Governance for details about the fields on the Create User page.
Extending the Functionality of the IBM RACF Advanced Connector

These are the optional procedures that you can perform to extend the functionality of the connector for addressing your business requirements.

- Adding Custom Fields for Target Resource Reconciliation
- Adding Custom Multivalued Fields for Reconciliation
- Adding Custom Fields for Provisioning for IBM RACF Advanced Connector
- Removing Attributes Mapped for Target Resource Reconciliation
- Using the Provisioning Agent to Run IBM z/OS Batch Jobs
- Configuring the Connector for Provisioning to Multiple Installations of the Target System
- Customizing Log File Locations
- LDAP Reconciliation Supported Queries
- Handling Pioneer Error Messaging Exceptions in the Gateway

6.1 Adding Custom Fields for Target Resource Reconciliation

To add a custom field for reconciliation, you must first update the connector reconciliation component you are using, and then update Oracle Identity Manager.

**Note:**

You must ensure that new attributes you add for reconciliation contain only string-format data. Binary attributes must not be brought into Oracle Identity Manager natively.

By default, the attributes listed in Table 1-3 are mapped for reconciliation between Oracle Identity Manager and the target system. If required, you can add new attributes for target resource reconciliation.

This section discusses the following topics:

- Adding Custom Fields for Reconciliation
- Adding Custom Fields to Oracle Identity Manager
6.1.1 Adding Custom Fields for Reconciliation

You can add custom fields for reconciliation by specifying a value for the SingleValueAttributes attribute of the RACF Reconcile All Users and RACF Reconcile All LDAP Users scheduled tasks.

To add a custom field for scheduled task reconciliation:

1. Log in to Identity System Administration.
2. In the left pane, under System Management, click Scheduler.
3. Search for and open the RACF Reconcile All Users and RACF Reconcile All LDAP Users scheduled tasks as follows:
   a. On the left pane, in the Search field, enter RACF Reconcile All Users or RACF Reconcile All LDAP Users as the search criterion. Alternatively, you can click Advanced Search and specify the search criterion.
   b. In the search results table on the left pane, click the scheduled job in the Job Name column.
4. Add the custom field to the list of attributes in the SingleValueAttributes scheduled task attribute.
5. Click Apply.

6.1.2 Adding Custom Fields to Oracle Identity Manager

After adding the custom field to the RACF Reconcile All users scheduled task (if using scheduled task reconciliation), you must add the custom field to the Oracle Identity Manager components.

To update Oracle Identity Manager with the custom field:

1. Log in to the Oracle Identity Manager Design Console.
2. Add the custom field to the list of reconciliation fields in the resource object as follows:
   b. Search for and open the OIMRacfResourceObject resource object.
   c. On the Object Reconciliation tab, click Add Field.
   d. In the Add Reconciliation Field dialog box, enter the details of the field.
      For example, if you are adding a RACF attribute called "Description", then enter Description in the Field Name field and select String from the Field Type list.
   e. Click Save and close the dialog box.
   f. Click Create Reconciliation Profile. This copies changes made to the resource object into MDS.
   g. Click Save.
3. Add the custom field on the process form as follows:
   a. Expand Development Tools and then double-click Form Designer.
b. Search for and open the UD_RACF_ADV process form.

c. Click Create New Version, and then click Add.

d. Enter the details of the field.
   For example, if you are adding the Description field, then enter UD_RACF_ADV_DESCRIPTION in the Name field, and then enter the rest of the details of this field.

e. Click Save and then click Make Version Active.

4. Create a reconciliation field mapping for the custom field in the provisioning process as follows:
   b. Search for and open the OIMRacfProvisioningProcess process definition.
   c. On the Reconciliation Field Mappings tab of the provisioning process, click Add Field Map.
   d. In the Add Reconciliation Field Mapping dialog box, from the Field Name field, select the value for the field that you want to add. For example, from the Field Name field, select Description.
   e. Double-click the Process Data field, and then select UD_RACF_ADV_DESCRIPTION.
   f. Click Save and close the dialog box.
   g. Click Save.

5. Create a new UI form and attach it to the application instance to make this new attribute visible. See Creating a New UI Form and Updating an Existing Application Instance with a New Form for the procedures.

6. If you are adding a custom attribute or custom dataset, then set values for the _configAttrs_, _configDNames_, and _configDatasets_ properties in the racf.properties file. See Table 2-2 for information about these properties.

6.2 Adding Custom Multivalued Fields for Reconciliation

To add a custom multivalued field to reconciliation, you must first update the IDF reconciliation component you are using, and then update Oracle Identity Manager.

- Adding Custom Multivalued Fields for Reconciliation
- Adding Custom Multivalued Fields

6.2.1 Adding Custom Multivalued Fields to the Reconciliation Component

You can add custom multivalued fields for reconciliation by specifying a value for the MultiValuedAttributes property of the RACF Reconcile All Users and RACF Reconcile All LDAP Users scheduled tasks.

To add a custom field for scheduled task reconciliation:

1. Log in to Identity System Administration.
2. In the left pane, under System Management, click Scheduler.
3. Search for and open the **RACF Reconcile All Users** and **RACF Reconcile All LDAP Users** scheduled tasks as follows:
   a. On the left pane, in the Search field, enter **RACF Reconcile All Users** or **RACF Reconcile All LDAP Users** as the search criterion. Alternatively, you can click Advanced Search and specify the search criterion.
   b. In the search results table on the left pane, click the scheduled job in the Job Name column.

4. Add the custom field to the list of attributes in the **MultiValuedAttributes** property.

5. Click **Apply**.

### 6.2.2 Adding Custom Multivalued Fields

After adding the custom multivalued field to the RACF Reconcile All users scheduled task (if using scheduled task reconciliation), you must add the custom multivalued field to the Oracle Identity Manager components.

To update Oracle Identity Manager with the multivalued field:

1. Log in to the Oracle Identity Manager Design Console.
2. Create a form for the multivalued field as follows:
   a. Expand **Development Tools** and double-click **Form Designer**.
   b. Create a form by specifying a table name and description, and then click **Save**.
   c. Click **Add** and enter the details of the field.
   d. Click **Save** and then click **Make Version Active**. **Figure 6-1** shows the multivalued field added on a new form.

**Figure 6-1**  Multivalued Field Added on a New Form

3. Add the form created for the multivalued field as a child form of the process form as follows:
   a. Search for and open the **UD_RACF_ADV** process form.
b. Click Create New Version.

c. Click the Child Table(s) tab.

d. Click Assign.

e. In the Assign Child Tables dialog box, select the newly created child form, click the right arrow, and then click OK.

f. Click Save and then click Make Version Active. Figure 6-2 shows the child form added to the process form.

Figure 6-2 Child Form Added to the Process Form

4. Add the new multivalued field to the list of reconciliation fields in the resource object as follows:


b. Search for and open the OIMRacfObject resource object.

c. On the Object Reconciliation tab, click Add Field.

d. In the Add Reconciliation Field dialog box, enter the details of the field.

   For example, enter phoneNumber in the Field Name field and select Multi-Valued Attribute from the Field Type list.

e. Click Save and close the dialog box.

f. Right-click the newly created field and select Define Property Fields.

g. In the Add Reconciliation Fields dialog box, enter the details of the newly created field.

   For example, enter phonenumber in the Field Name field and select String from the Field Type list.

h. Click Save and then close the dialog box. Figure 6-3 shows the new reconciliation field added in the resource object.
i. Click **Create Reconciliation Profile**. This copies changes made to the resource object into MDS.

5. Create an entry for the field in the AtMap.Racf lookup definition, as follows:
   a. Expand **Administration** and then double-click **Lookup Definition**.
   b. Search for the AtMap.Racf lookup definition.
   c. Click **Add** and enter the Code Key and Decode values for the field. The Code Key value is the name of the process form field that you created for the multivalued custom field in Step 3.d. The Decode value is the name of the target system field.

   For example, enter UD_PHONENUM_PHONENUMBER in the Code Key field and then enter phononenumber in the Decode field. **Figure 6-4** shows the lookup code added to the lookup definition.
Figure 6-4   Entry Added in the Lookup Definition

Click Save.

6. Create a reconciliation field mapping for the new multivalued field as follows:
   b. Search for and open the OIMRacfProvisioningProcess process definition.
   c. On the Reconciliation Field Mappings tab of the provisioning process, click Add Table Map.
   d. In the Add Reconciliation Table Mapping dialog box, select the field name and table name from the list, click Save, and then close the dialog box.
   e. Right-click the newly created field and select Define Property Field Map.
   f. In the Field Name field, select the value for the field that you want to add.
   g. Double-click the Process Data field, and then select UD_PHONENUM_PHONENUMBER.
   h. Select Key Field for Reconciliation Field Matching and click Save. Figure 6-5 shows the new reconciliation field mapped to a process data field in the process definition.
6.3 Adding Custom Fields for Provisioning for IBM RACF Advanced Connector

By default, the user attributes for target resource reconciliation and provisioning are mapped for provisioning between Oracle Identity Manager and the target system. If required, you can map additional attributes for provisioning.

To add a new attribute for provisioning:

1. Log in to the Oracle Identity Manager Design Console.
2. Add the new attribute on the process form as follows:

   If you have added the field on the process form by performing Step 4 of Adding Custom Fields to Oracle Identity Manager, then you need not add the field again. If you have not added the field, then:
   a. Expand Development Tools.
   b. Double-click Form Designer.
   c. Search for and open the UD_RACF_ADV process form.
   d. Click Create New Version, and then click Add.
   e. Enter the details of the attribute.

   For example, if you are adding the Description field, enter UD_RACF_ADV_DESCRIPTION in the Name field, and then enter the rest of the details of this field.
   f. Click Save and then click Make Version Active.
3. To enable update of the attribute during provisioning operations, create a process task as follows:
   b. Search for and open the OIMRacfProvisioningProcess process definition.
   c. Click Add.
   d. On the General tab of the Creating New Task dialog box, enter a name and description for the task and then select the following:
      - Conditional
      - Required for Completion
      - Disable Manual Insert
      - Allow Cancellation while Pending
      - Allow Multiple Instances
   e. Click Save.
   f. Go to the Integration tab and click Add.
   g. In the Handler Selection dialog box, select Adapter, click adpMODIFYUSER, and then click the Save icon.
      The list of adapter variables is displayed on the Integration tab.
   h. To create the mapping for the first adapter variable:
      Double-click the number of the first row.
      In the Edit Data Mapping for Variable dialog box, enter the following values:
      - Variable Name: Adapter return value
      - Data Type: Object
      - Map To: Response code
      Click the Save icon.
   i. To create mappings for the remaining adapter variables, use the data given in the following table:

```
<table>
<thead>
<tr>
<th>Variable Number</th>
<th>Variable Name</th>
<th>Map To</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second</td>
<td>idfResource</td>
<td>Process Data</td>
<td>LDAP_SERVER</td>
</tr>
<tr>
<td>Third</td>
<td>uid</td>
<td>Process Data</td>
<td>LoginId</td>
</tr>
<tr>
<td>Fourth</td>
<td>attrName</td>
<td>String Literal</td>
<td>Enter the LDAP attribute name in the Literal Value field. Example: description</td>
</tr>
<tr>
<td>Fifth</td>
<td>attrValue</td>
<td>Process Data</td>
<td>Select the process form field from the drop-down list. Example: DESCRIPTION</td>
</tr>
</tbody>
</table>
```


j. On the Responses task, click **Add** to add at least the SUCCESS response code, with status C. This ensures that if the custom task is successfully run, then the status of task is displayed as Completed in Oracle Identity Manager.

k. Click the Save icon in the Editing Task dialog box, and then close the dialog box.

l. Click the Save icon to save changes to the process definition.

**Note:**

To enable Password Interval provisioning:

- Use literal attrName "pwdInterval" for the modifyUser task. Value=0 (Note a value of 0 will set the command to NOINTERVAL).
- Use literal attrName "pwdInterval" for the modifyUser task. Value=1 through nnn, where nnn is system accepted value range for INTERVAL (1) through INTERVAL (nnn).

4. Create a new UI form and attach it to the application instance to make this new attribute visible. See Creating a New UI Form and Section Updating an Existing Application Instance with a New Form for the procedures.

6.4 Removing Attributes Mapped for Target Resource Reconciliation

The SingleValueAttributes and MultiValuedAttributes attributes contain the list of target system attributes that are mapped for scheduled task reconciliation. These attributes are found in the RACF Reconcile All Users and RACF Reconcile All LDAP Users scheduled tasks.

If you want to remove an attribute mapped for scheduled task reconciliation, then remove it from the SingleValueAttributes or MultiValuedAttributes attributes.

6.5 Using the Provisioning Agent to Run IBM z/OS Batch Jobs

You can use the Provisioning Agent to run IBM z/OS batch jobs after provisioning operations. This feature provides an interface to the batch environment of IBM z/OS. For example, a CLIST script written in IBM REXX can be called through the standard TSO JCL. When it is called, the CLIST can perform user functions such as calling IBM DB2 UDB for database table updates, calling user programs to handle file updates, and generating reports.

To configure the Provisioning Agent to run IBM z/OS batch jobs:

1. Open the Provisioning Agent control file in a text editor.
2. In this file, create entries in the following format:

```plaintext
C=RACF_COMMAND,M=MEMBER_NAME,L=LIBRARY_NAME
P=USERID(Y),NAME(Y),CSDATA(003)
```
If you want to perform special post-processing, then a new feature has been added to only one parameter of the control file. The following is the definition for the new feature:

\[ \text{C=DELUSER, M=member-name, L=library_name, DEL=Y or DEL=N} \]

- **DEL=Y** -- execute Rexx clist or z/OS job stream in library \( L= \), \( M= \) and perform the actual deluser via RACF
- **DEL=N** -- execute Rexx clist or z/OS job stream in library \( L= \), \( M= \) and DO NOT issue the deluser to RACF

In the first line:

- \( \text{RACF\_COMMAND} \) can be ADDUSER, ALTUSER, DELUSER, CONNECT, or REMOVE.
- \( \text{MEMBER\_NAME} \) is the name of the IBM z/OS PDS that is submitted for execution in the IBM z/OS batch environment.
- \( \text{LIBRARY\_NAME} \) is the name of the IBM z/OS PDS library name that contains the member specified by \( \text{MEMBER\_NAME} \).

The output of the submitted job is not sent back to the Provisioning Agent of the LDAP Gateway. You must take steps to ensure that the required action is taken based on the status of the operation. For example:

\[ \text{C=ADDUSER, M=ABCD, L=PDS.LIBRARY.ONE} \]
\[ \text{P=USERID(Y), NAME(N)} \]

The Provisioning Agent fetches the RACF user ID and passes it as a parameter to a REXXX clist. The REXXX clist must be set up to support parameters or arguments as shown in this example:

```rexx
/* rexx */
Arg p1
```

Here, \( p1 \) is the RACF user ID and it can be used in the REXXX clist. The same applies for \( \text{NAME} \). If \( \text{NAME(Y)} \) and \( \text{USERID(Y)} \) are used, then the REXXX clist can be similar to the following:

```rexx
/* rexx */
Arg p1 p2
```

Here, \( p1 \) is the RACF user ID and \( p2 \) is the name.

If \( \text{USERID(Y), NAME(N)} \) is used, then only the user ID is passed. The csdata field can also be passed. The following example shows how to create and pass this field:

a. Define a csdata segment. See the *IBM RACF System Administrator's Guide* for information about the procedure.

b. To populate a CSDATA segment with one field:

```
Altuser IDF004 CSDATA(EMPLOYEE(100100))
lu idf004 csdata noracf
USER=IDF004
CSDATA INFORMATION

EMPLOYEE SERIAL= 0000100100
```

c. To populate a CSDATA segment with multiple fields:

```
Altuser idf004 csdata(address('99 Main St, Anywhere, NJ, 08022')
Phone(555-555-5555))
```
lu idf004 csdata noracf
USER=IDF004
CSDATA INFORMATION
------------------
EMPLOYEE SERIAL= 0000100100
HOME ADDRESS = 99 Main St, Anywhere, NJ, 08022
HOME PHONE = 555-555-5555
For example:
C=ADDUSER,M=ABCD,L=PDS.LIBRARY.ONE
P=USERID(Y),NAME(N),CSDATA(001)

The Provisioning Agent fetches the RACF user ID and passes it and the EMPLOYEE SERIAL csdata field to a REXX clist. This format has been changed and on CSDATA, the number of CSDATA fields need to be passed. The passed fields including userID, name and CSDATA cannot exceed 80 bytes. A CSDATA(001) will pass the first CSDATA field defined.

Note:
A hyphen must be added between the two names in this example and the length must be provided.

The REXX clist must be set up to support parameters or arguments as shown in the following example:
/* rexx */
Arg p1 p2

Here, p1 is the RACF user ID and p2 is Employee-Serial.

Note:
In this release of the Provisioning Agent, there is an 80-byte limit on the size of the field value that is passed. For example, if the user ID, name, and Employee-Serial are together over 80 bytes, one or two of these values must be removed so that the 80-byte limit is not exceeded.

3. Save and close the file.

The following sequence of steps takes place after a provisioning operation:

1. The Provisioning Agent opens the control file and reads the association between provisioning functions and the members specified in the file.

2. If there is an entry for the provisioning operation that was performed, then the corresponding member is submitted to the IBM z/OS batch environment. For example, suppose you had added the following entry in the control file:
C=ALTUSER,M=MY_MEMBER,L=MY_LIBRARY

At the end of a Modify User provisioning operation on the target system, the Provisioning Agent runs the MY_MEMBER member. This member performs the required operation on IBM z/OS.
6.6 Configuring the Connector for Provisioning to Multiple Installations of the Target System

You can configure the connector for multiple installations of the target system. You can also configure the connector for a scenario in which multiple logical partitions (LPARs), which are not associated with the first LPAR, are configured in the target system.

For each installation of the target system, you create an IT resource and configure an additional instance of the LDAP Gateway.

To configure the connector for the second installation of the target system:

1. Create an IT resource based on the OIMLDAPGatewayResourceType IT resource type.
   See Configuring the IT Resource for information about the parameters of the IT resource.

2. Copy the current LDAP_INSTALL_DIR directory, including all the subdirectories, to a new location on the Oracle Identity Manager computer.

   \[\text{Note:}\]
   \[\text{In the remaining steps of this procedure, LDAP_INSTALL_DIR refers to the newly copied directory.}\]

3. Extract the contents of the LDAP_INSTALL_DIR/dist/idfserver.jar file.

4. In the beans.xml file, change the value of the port in the <property name="port" value="xxxx"/> line to specify a port that is different from the port used for the first instance of the LDAP Gateway. The default port number is shown in the following example:

   ```xml
 <bean id="listener" class="com.identityforge.idfserver.nio.Listener">
 <constructor-arg><ref bean="bus"/></constructor-arg>
 <property name="admin"><value>false</value></property>
 <property name="config"><value>../conf/listener.xml</value></property>
 <property name="port" value="5389"/>
 </bean>

 When you change the port number, you must make the same change in the value of the idfServerPort parameter of the IT resource that you create by performing Step 1.

5. Save and close the beans.xml file.

6. Open the LDAP_INSTALL_DIR/conf/racl.conf file and set values for the following parameters:
• _host_ = Enter the IP address or host name of the mainframe.
• _port_ = Enter the port number for the second instance of the Provisioning agent.
• _agentPort_ = Enter the port number for the second instance of the Reconciliation agent.

Note:
The value of the _agentPort_ parameter must not be the same as that of the first instance if a second LPAR, which is not associated with the first LPAR, is configured in the target system. This value can be the same as the value of the idfServerPort parameter if you have two mainframe servers with IBM RACF running on each server.

7. Save and close the racf.properties file.
8. In a Linux or Solaris environment, if there are not enough socket file descriptors to open up all the ports needed for the server, then:
 a. In a text editor, open the run script from the LDAP_INSTALL_DIR/bin directory.
 b. Add the following line in the file:
      ```java -Djava.nio.channels.spi.SelectorProvider=sun.nio.ch.PollSelectorProvider```
   c. Save and close the file.

**Note:**
When you use Identity Self Service to perform provisioning, you can specify the IT resource corresponding to the IBM RACF installation to which you want to provision the user.

### 6.7 Customizing Log File Locations

The name and log location of the main LDAP gateway log file (idfserver.log) and the EXTRACT XML error log file (idf.xml.error.log) can be modified by adding additional arguments to the LDAP gateway server STARTUP command. These arguments are optional, and you can include one, both, or neither in the STARTUP command.

1. In a text editor, open the run script from the LDAP_INSTALL_DIR/bin directory. This run script is used to start and stop the LDAP gateway.
   - If using a Windows system, open the run.bat file.
   - If using a UNIX system, open the run.sh file.
2. Add the arguments to the start command, located at the end of the run script:
   - Add the arguments after the `-cp %CLASSPATH%` argument.
   - To modify the idfserver.log path, use the `-Didf.logpath=` argument.
• To modify the idf.xml.error.log path, use the -Didf.xmllogpath= argument.

In the following example, the start command will set the idfserver.log path to C:/logs/ldap/idfserver.log and the idf.xml.error.log path to C:/logs/errors/idf.xml.error.log:

%JAVACMD% %DEBUG% %JVM_OPTS% %SECURE% -cp %CLASSPATH% -Didf.logpath="c:/logs/ldap/idfserver.log" -Didf.xmllogpath="c:/logs/errors/idf.xml.error.log" -Djava.library.path=%HOME%/lib com.identityforge.idfserver.Main %1 %2 %3 %4 %5 %6 %7 %8 %9

6.8 LDAP Reconciliation Supported Queries

User Reconciliation Queries

• All User DNs and "uid" attribute
  – baseDn= ou=People,dc=racfxxx,dc=com
  – filter= (objectclass=*)

• Single User Search for all data
  – baseDn=ou=People,dc=racfxxx,dc=com
  – filter= (uid=idxxx)

Group Reconciliation Queries

• All Group DNs and "uid" attribute
  – baseDn= ou=Groups,dc=racfxxx,dc=com
  – filter= (objectclass=*)

• Single Group Search for all data
  – baseDn=ou=Groups,dc=racfxxx,dc=com
  – filter= (cn=idxxx)

Dataset Profiles for a given USER (uid) Reconciliation Queries

Dataset Profiles returned for a user

• baseDn= ou=Datasets,dc=racfxxx,dc=com
• filter= (uniqueMember=uid=idxxx,ou=People,dc=racfxxx,dc=com)i OR
• Filter= (uid=idxxx)

User-Defined Resources Reconciliation Queries

• Retrieve All User-Defined Resources: SEARCH CLASS (type)
  – baseDn= ou=Resources,dc=racfxxx,dc=com
  – Filter= (resourceType="YOUR CLASS TYPE")
  This returns all LDAP DN entries and each entry will contain the Resource ID via the 'cn' LDAP attribute.

• Retrieve Single User-Defined Resource: RLIST (cn) ALL
  – baseDn=ou=Resources,dc=racfxxx,dc=com
6.9 Handling Pioneer Error Messaging Exceptions in the Gateway

The error handling routines let you configure what error messages to look for when deciding that a request sent to Pioneer has succeeded or failed. Use these instructions to configure error handling.

Enable or Disable the Ability to Examine the Pioneer SAF Code

Some commands will return SAF or RACF codes whenever a command fails.

To enable the ability to automatically throw an error whenever codes greater than 0 are returned, add the check-return-codes property to the racf.properties file (created in Setting Connection Properties) and set its value to yes.

Note:
Warning codes may also show up as codes greater than 0 depending on the type of mainframe environment that you are using. Ensure to check for false positives with testing before determining whether this is an appropriate capability to turn on before deploying to a production environment.

Configuring Custom Error Messages

Many commands will require parsing out the return value looking for error messages. The error handling has been expanded to include a configuration file that allows for extending the set of error messages you might encounter.

Each error message which is being searched, is defined as a regex signature.

The IBM RACF Advanced connector comes with a default signatures file, errorMsgSignatures.xml, that you can extract from within the LDAP_INSTALL_DIR/dist/idfserver.jar compilation file. The errorMsgSignatures.xml file is located in the com/identityforge/idfserver/backend/racf/repository/ directory of the idfserver.jar compilation file.

You can add, overwrite, or disable the defaults in favor of custom messages.

To do so, in the LDAP_INSTALL_DIR/conf directory, create a new XML file representing the messages to add, replace, or disable. For example, create a new XML file LDAP_INSTALL_DIR/conf/custom-racf-error-sig-file.xml and add your custom messages. Then, in the LDAP_INSTALL_DIR/conf/racf.properties file, add a reference to the newly created XML file by setting a value for the errormsg-sig-file property. For example:

errormsg-sig-file=../conf/custom-racf-error-sig-file.xml

Restart the LDAP gateway for the changes to take effect. At runtime, the contents of the custom signature file are merged into the default signatures file and the overrides or additions will be applied.
The following are examples of custom signatures:

**Example 1:** Suppose you create a new XML file `LDAP_INSTALL_DIR/conf/custom-racf-error-sig-file.xml` in the `LDAP_INSTALL_DIR/conf` directory with the following entries:

```xml
<?xml version="1.0" encoding="utf-8"?>
<Signatures>
 <Signature id="custom1" regex="^C4R541E .*" enabled="yes"/>
 <Signature id="custom2" regex="^ICH02005I .*" enabled="yes"/>
 <Signature id="custom3" regex="^IKJ56701I .*" enabled="yes"/>
</Signatures>
```

In this example, the first signature looks for `C4R541E` located at the beginning of the returned message from Pioneer. If found, it would get flagged as an error and the message returned.

The second signature looks for `ICH02005I` located at the beginning of the returned message from Pioneer. If found, it would get flagged as an error and the message returned. Modify as needed for example, signature 3 `regex="^IKJ56701I .*"` to indicate. If found, it would get flagged as an error and the message returned.

In the preceding example, the `enabled="yes"` entry implies that the messages defined in the regex patterns must not be considered as errors.

**Example 2:** Suppose you create a new XML file `LDAP_INSTALL_DIR/conf/custom-rcaf-error-sig-file.xml` in the `LDAP_INSTALL_DIR/conf` directory with the following entries:

```xml
<?xml version="1.0" encoding="utf-8"?>
<Signatures>
 <Signature id="custom1" regex="^ICH\d{5}I .*">
 <Exception regex="^ICH01432I .*"/>
 <Exception regex="^ICH05555I .*"/>
 <Exception regex="^ICH01024I .*"/>
 </Signature>
 <Signature id="custom2" regex=".*INVALID DEPARTMENT.*" enabled="yes"/>
 <Signature id="e2" enabled="no"/>
</Signatures>
```

In this example, the first signature looks for the `ICH\d{5}I` pattern located at the beginning of the returned message from Pioneer. If found, it then examines the exceptions defined. If the message begins with `ICH01432I` or `ICH05555I`, then it is marked as a warning and ignored. Otherwise, it is flagged as an error and the message returned.

The second signature looks for `INVALID DEPARTMENT` to show up anywhere in the returned message. If found, then it is flagged as an error and the message returned.

The third signature is an example of disabling an existing default signature. All default signatures start with `e` in the `id` attribute followed by a number. By referencing the `id`, the default signature’s `regex`, enablement flag, and or exceptions can be replaced with a custom override. The `enabled="yes"` entry implies that the messages defined in the regex patterns must not be considered as errors.

At any given point in time, you can locate and open the `errorMsgSignatures.xml` file to obtain the list of default signatures currently deployed.
Given that according to the IBM RACF manual, "I" type messages are technically classified as informational and not error related, you need to make sure that it truly is a failure on the mainframe rather than something whereby the account gets created and Oracle Identity Manager considers it failed. We explicitly called out this RACF code as a warning as that is what the original implementation was doing.
These are some helpful tips to assist in resolving problems that you may encounter while using the connector.

### Table 7-1  Troubleshooting Tips

<table>
<thead>
<tr>
<th>Problem Description</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Oracle Identity Manager cannot establish a connection with the target system. | • Ensure that the mainframe is running.  
  • Verify that the required ports are working.  
  • Due to the nature of the Provisioning Agent, the LDAP Gateway must be started first, and then the mainframe JCL started task must be started. This is a requirement based on how TCP/IP operates. Check that the IP address of the server that hosts the LDAP Gateway is configured in the Reconciliation Agent JCL.  
  • Read the LDAP Gateway logs to determine if messages are being sent and received.  
  • Examine the Oracle Identity Manager configuration to verify that the IP address, admin ID, and admin password are correct.  
  • Check with the mainframe platform manager to verify that the mainframe user account and password have not been changed. |
| The mainframe does not appear to respond.                | • Check the connection information that you have provided in the IT resource and the acf2Connection.properties file.  
  • Check the logs. If any of the mainframe JCL jobs have reached an abnormal end, then make the required corrections and rerun the jobs. |
| A particular use case does not work as expected.         | Check for the use case event in the LDAP Gateway logs. Then check for the event in the specific log assigned to the connector:  
  • If the event has not been recorded in either of these logs, then investigate the connection between Oracle Identity Manager and the LDAP Gateway.  
  • If the event is in the log but the command has not had the intended change on a mainframe user profile, then check for configuration and connections between the LDAP Gateway and the mainframe.  
  Verify that the message transport layer is working. |
<table>
<thead>
<tr>
<th>Problem Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The LDAP Gateway fails and stops working</td>
<td>If this problem occurs, then the Reconciliation Agent stops sending messages to the LDAP Gateway. Instead, it stores them in the subpool cache. When this happens, restart the LDAP Gateway instance so that the Reconciliation Agent reads the subpool cache and resends the messages.</td>
</tr>
<tr>
<td>The LDAP Gateway is running. However, the Reconciliation Agent fails and stops working</td>
<td>If this problem occurs, then all events are sent to the subpool cache. If the mainframe fails, then all messages are written to the disk. When this happens, restart the Reconciliation Agent instance so that it reads messages from the disk or subpool cache and resends the messages.</td>
</tr>
</tbody>
</table>
| Voyager unable to connect to the LDAP                                              | 1. Can the LDAP server be pinged?  
2. Is the LDAP up?  
3. Is the LDAP listening on the correct port? Must be what is defined on PORT= on Voyager.  
4. Can the Server where the LDAP resides Ping Voyager? |
| Voyager abends: S306-30 or Pioneer abends: S306-30                               | Review all RACF definitions. This abend is a incorrect definition.                                                                                                                                         |
| Voyager or Pioneer abends other than S306-30 and SB37, SD37 or SE37                | Open an Oracle SR and send the Voyager/Pioneer STC logs.                                                                                                                                                  |
| LDAP cant connect to Pioneer                                                        | 1. Verify the listening port is correct on Pioneer, must be PORT=  
2. Can the LDAP server ping Pioneer?  
3. Can Pioneer ping the Server? |
| ADDUSER, ALTUSER, ADDGROUP, DELUSER submitted by LDAP and it fails.                | Fails with SAF RC=8, RACF RC = 8  
Incorrect RACF definitions for Pioneer. Must have access to all irr.radmin.* functions.                                                                                                               |
| No Data in Voyager subpool. No events coming to the LDAP                            | Verify the three exits are up by:  
"D PROG,EXIT" the command exit should be active,  
"IRREVX01"                                                                                                                                 |

Table 7-1  (Cont.) Troubleshooting Tips
Known Issues and Workarounds for the IBM RACF Advanced Connector

These are the known issues associated with this release of the connector.

Multi-Threaded Batched Reconciliation Encounters an Error

When more than one open batched reconciliation operation is created (that is, when multi-threaded batched reconciliation is invoked) for a particular job and resource object, the following error is encountered:

Internal Exception: java.sql.SQLException: ORA-01422: exact fetch returns more than requested number of rows

As a workaround, open the reconciliation profile of the resource object and set the value of the batchSize attribute to 0. By default, the attribute has a value of either -1 or higher. This approach would result in single event processing. If the error is already encountered, open the RECON_BATCHES table for the particular job and resource object. Of all the multiple reconciliation batches in the Initiated status, manually update all the batches except one to Completed status. Then, open the reconciliation profile of the resource object and set the value of the batchSize attribute to 0.

Note that the batchSize attribute to be updated is the reconciliation profile attribute and not a scheduled job parameter.
Files and Directories in the IBM RACF Advanced Connector Package

These are the files and directories on the connector installation package that comprise the IBM RACF Advanced connector.

Table A-1 Files and Directories in the Installation Package

<table>
<thead>
<tr>
<th>Files in the Installation Package Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration/RacfAdv.xml</td>
<td>This XML file contains configuration information that is used during connector installation.</td>
</tr>
<tr>
<td>etc/LDAP Gateway/IDF_LDAP_GATEWAY_v6.4.0.zip</td>
<td>This ZIP file contains the files required to deploy the LDAP Gateway.</td>
</tr>
<tr>
<td>etc/Provisioning and Reconciliation Connector/RACF-AGENTS-201905311134-6.0.0.zip</td>
<td>This ZIP file contains the files required to deploy the Reconciliation and Provisioning Agents on the mainframe.</td>
</tr>
<tr>
<td>lib/racf-provisioning-adapter.jar</td>
<td>This JAR file contains the code for the adapters that are used during connector provisioning operations. During connector installation, this file is copied to the Oracle Identity Manager database.</td>
</tr>
<tr>
<td>lib/racf-scheduled-tasks.jar</td>
<td>This JAR file contains the code for the connector's scheduled tasks that perform lookup population and full reconciliation. During connector installation, this file is copied to the Oracle Identity Manager database.</td>
</tr>
</tbody>
</table>

Files in the resources directory

Each of these resource bundles contains locale-specific information that is used by the connector. During connector installation, this file is copied to the Oracle Identity Manager database.

**Note:** A resource bundle is a file containing localized versions of the text strings that include GUI element labels and messages.

| xml/oimRacfAdvR2Connector.xml | This XML file contains definitions of the connector components, such as the IT resource and resource object. These objects are created in Oracle Identity Manager when you import the XML file. |
APF stands for Authorized Program Facility. In a z/OS environment, APF is a facility that permits the identification of programs that are authorized to use restricted functions.

APF-authorized programs must reside in one of the following authorized libraries:

- SYS1.LINKLIB
- SYS1.SVCLIB
- SYS1.LPALIB
- Authorized libraries specified by your installation

Authorized libraries are defined in an APF list, or in the link pack area (LPA). Any module in the LPA ( pageable, modified, fixed, or dynamic) will be treated by the system as though it came from an APF-authorized library. The installation must ensure that it has properly protected SYS1.LPALIB and any other library that contributes modules to the link pack area to avoid system security and integrity exposures, just as it would protect any APF-authorized library.

APF also prevents authorized programs (supervisor state, APF-authorized, PSW key 0-7) from accessing a load module that is not in an APF-authorized library.

To find the datasets that have been APF authorized:

1. Type TSO ISRDDN in your ISPF session (some shops need just ISRDDN with no TSO prefix) and hit enter.
2. Type APF and hit enter. It'll bring up a list of all datasets that are APF authorized.

Remember that, if you like to use an APF authorized dataset in a job STEPLIB, make sure all the datasets in the STEPLIB are APF authorized.
### Appendix B

#### Current Data Set Allocations  
Row 1 of 116

<table>
<thead>
<tr>
<th>Volume</th>
<th>Disposition</th>
<th>Act</th>
<th>DName</th>
<th>Data Set Name</th>
<th>Actions: B E V M F C I Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>AOFPRT</td>
<td>AOFTABL</td>
<td>AUT330.AOFTABL</td>
<td>-</td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>DITPLIB</td>
<td>DIT330.DITPLIB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>HRCONF</td>
<td>HRCONF</td>
<td>AUT330.HRCNF</td>
<td>-</td>
</tr>
<tr>
<td>2CRES2</td>
<td>NEW, DEL</td>
<td>ISFCTL1</td>
<td>SYS12331.T223906.RA000.MLTGHT.R01000807</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2CRES2</td>
<td>NEW, DEL</td>
<td>ISFCTL2</td>
<td>SYS12331.T223906.RA000.MLTGHT.R01000808</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>ISFEXEC</td>
<td>ISF.ISIFEXEC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>SYS1.SBFEXEC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>CSQ701.CSQEXEC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>EUF.UEFEXEC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>ISFLOD</td>
<td>ISFLOD</td>
<td>GEM.SADMOD</td>
<td>-</td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>FMDN10.FMDNMOD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>CSQ701.CSQMAUTH</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>AUT330.AUTMOD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>TCP1F.TCPLOAD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CSTY1</td>
<td>NEW, DEL</td>
<td>ISFLST1</td>
<td>SYS12331.T223906.RA000.MLTGHT.R01000809</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2CSTY1</td>
<td>NEW, DEL</td>
<td>ISFLST2</td>
<td>SYS12331.T223906.RA000.MLTGHT.R01000810</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2CRES2</td>
<td>SHR, KEEP</td>
<td>ISFEXEC</td>
<td>ISF.ISIFEXEC</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

#### Current Data Set Allocations  
Row 3 of 156

<table>
<thead>
<tr>
<th>Volume</th>
<th>Disposition</th>
<th>Act</th>
<th>DName</th>
<th>Data Set Name</th>
<th>Actions: B E V M F C I Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2CRES1</td>
<td></td>
<td>APFLIST</td>
<td>SYS1.LINKLIB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>SYS1.SYCLIB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>SYS1.SASLNEK</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>SYS1.SAMELIB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>SYS1.MIGLIB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>SYS1.SERBLINK</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>SYS1.SIEALNK</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>SYS1.CSGLIB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>GEM.SGIMMD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>IOE.SICEMOD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>SYS1.SASMIG</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>CSF.CSFMOD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>SYS1.SBMTLIB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>USER.LINKLIB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>ACC2112.LINKLIB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>ACC2112.VTAALIB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2CRES1</td>
<td></td>
<td>US25.VTAALIB</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Command: **APP**  
Scroll: **PAGE**  
F1=Help  
F2=Split  
F3=Exit  
F5=Find  
F7=Up  
F8=Down  
F9=Swap
Pioneer Datasets

Table C-1 shows the relationship between the steps in the LOADDSN member and the file contents that are loaded into Pioneer's datasets. In these example datasets, PIO‐NEER is used for the High-Level qualifier for Pioneer files and VOYAGER is used for the High-Level qualifier for Voyager files. The HLQ will have to be changed to meet installation standards. Table C-1 shows the relationship between the steps in the LOADDSN member and the corresponding file contents.

Table C-1  Relationship between the Steps in the LOADDSN Member and the File Contents

<table>
<thead>
<tr>
<th>Steps</th>
<th>File Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step#3</td>
<td>//STEP3 EXEC PGM=IEBGENER&lt;br&gt; //SYSUT1 DD DSN=IDF.PROD.JCLLIB(PSAMPLE),DISP=SHR&lt;br&gt; //SYSUT2 DD DSN=PIONEER.CONTROL.FILE,DISP=SHR&lt;br&gt; //SYSPRINT DD SYSOUT=*&lt;br&gt; //SYSIN DD DUMMY</td>
</tr>
<tr>
<td></td>
<td>PSAMPLE&lt;br&gt; TCPN=TCPIP&lt;br&gt; IPAD=0.0.0.0&lt;br&gt; PORT=5697&lt;br&gt; DEBUG=N&lt;br&gt; ESIZE=16&lt;br&gt; LPAR=ZPDT-112&lt;br&gt; POST_PROC_ALIAS=T&lt;br&gt; IDLEMSG=N&lt;br&gt; DEBUGOUT=SYSOUT,CLASS(S)&lt;br&gt; SPIN_CLASS=K&lt;br&gt; AUDIT_LOG=YES</td>
</tr>
<tr>
<td>Step#4</td>
<td>//STEP4 EXEC PGM=IEBGENER&lt;br&gt; //SYSUT1 DD DSN=IDF.PROD.JCLLIB(VSAM‐PLE),DISP=SHR&lt;br&gt; //SYSUT2 DD DSN=VOYAGER.CONTROL.FILE,DISP=SHR&lt;br&gt; //SYSPRINT DD SYSOUT=*&lt;br&gt; //SYSIN DD DUMMY</td>
</tr>
<tr>
<td>Steps</td>
<td>File Contents</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| VSAMPLE  | SUBPOOL_SIZE=7500K  
|          | TCPN=TCP/IP   
|          | * IPAD=192.168.1.999  
|          | IPAD=192.168.1.100  
|          | * IPAD=RACF.LEGACYIDM.COM  
|          | PORT=5097  
|          | DEBUG=N  
|          | ESIZE=16  
|          | * DELAY=00  
|          | * STARTDELAY=10  
|          | * PRTNCODE=SHUTRC  
|          | CSDATA=N  
|          | VOYAGER_ID=TESTVGER  
|          | CACHE_DELAY=000  
|          | AUDIT_LOG=YES  
|          | PIONEER_ID=START2  
|          | EXTRACT=Y |
Creating Custom Scheduled Tasks

The following sections provide information about Java classes that you can use to create scheduled tasks for user reconciliation and lookup field synchronization:

• Code for Searching All Users and All User Data
• Code for Searching All Groups and All Group Data
• Code for Searching All Datasets and All Dataset Data

See Managing Scheduled Tasks in Oracle Fusion Middleware Administering Oracle Identity Manager and Developing Lookup Definitions, UDFs, and Remote Manager in Oracle Fusion Middleware Developing and Customizing Applications for Oracle Identity Manager for detailed information about creating scheduled tasks and adding lookup fields for provisioning operations.

D.1 Code for Searching All Users and All User Data

Use the following class to create a scheduled task for fetching user data from the target system:

```java
public void testSearchAllUsers() {
 try {
 SearchControls ctls = new SearchControls();
 // SET COUNT LIMIT to 0 for all users //
 ctls.setCountLimit(5);

 // Search for objects that have those matching attributes - (objectclass=*)
 //or (objectclass=idforgperson) is supported
 NamingEnumeration answer =
 ctx.search("ou=People,dc=racf,dc=com", "(objectclass=idforgperson)", ctls);

 while(answer.hasMoreElements()) {
 SearchResult result = (SearchResult)answer.nextElement();
 Attributes as = result.getAttributes();
 }
 } catch(NamingException nException) {
 System.out.println(nException.toString());
 }
}
```
D.2 Code for Searching All Groups and All Group Data

Use the following class to create a scheduled task for fetching group data from the target system. This data can be used to synchronize a group lookup field.

```java
public void testSearchAllGroups() {
 try {

 SearchControls ctls = new SearchControls();
 // SET COUNT LIMIT to 0 for all users //
 ctls.setCountLimit(0);

 // Search for objects that have those matching attributes - (objectclass=*)
 // or (objectclass=idforggroup) is supported
 NamingEnumeration answer =
 ctx.search("ou=Groups,dc=racf,dc=com", "(objectclass=idforggroup)", ctls);

 while(answer.hasMoreElements()) {
 SearchResult result = (SearchResult)answer.nextElement();
 Attributes as = result.getAttributes();
 }
 } catch(NamingException nException) {
 System.out.println(nException.toString());
 }
}
```

D.3 Code for Searching All Datasets and All Dataset Data

Use the following class to create a scheduled task for fetching dataset data from the target system. This data can be used to synchronize a dataset lookup field.

```java
public void testSearchAllDatasets() {
 try {

 SearchControls ctls = new SearchControls();
 // SET COUNT LIMIT to 0 for all users //
 ctls.setCountLimit(5);

 // Search for objects that have those matching attributes - (objectclass=*)
 // or (objectclass=idforgdataset) is supported
 NamingEnumeration answer =
 ctx.search("ou=Datasets,dc=racf,dc=com", "(objectclass=idforgdataset)", ctls);

 while(answer.hasMoreElements()) {
 SearchResult result = (SearchResult)answer.nextElement();
 Attributes as = result.getAttributes();
 }
 }
```
Appendix D
Code for Searching All Datasets and All Dataset Data

```java
} catch(NamingException nException) {
 System.out.println(nException.toString());
}
```
### Table E-1: Voyager Control File Parameters

<table>
<thead>
<tr>
<th>Voyager Control File Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBPOOL_SIZE=</td>
<td>The size of the cache in Subpool 231(ECSA) Voyager will allocate for event messages created by installed exits. The values are from 0200K to 7500K. Before allocating verify that there is enough ECSA storage available. Sample value: 1000K</td>
</tr>
<tr>
<td>TCPN=</td>
<td>The TCPIP STC name where Voyager is executing. This is required for socket allocations. Sample value: TCPIP</td>
</tr>
<tr>
<td>IPAD=</td>
<td>The LDAP IP address or hostname. The hostname can only be 40 characters long. Sample value: 10.10.10.10</td>
</tr>
<tr>
<td>PORT=</td>
<td>The port the LDAP is listening on for Voyager messages. <strong>Note:</strong> This is the value <em>agentPort</em> as specified in racf.properties. Sample value: 5790</td>
</tr>
<tr>
<td>DEBUG=</td>
<td>Enter <strong>Y</strong> to turn on debugging and enter <strong>N</strong> to turn it off. If you enter <strong>Y</strong>, then the output is sent to DEBUGOUT. <strong>Note:</strong> If you set DEBUG=Y produces enormous log. It is advised not to use DEBUG=Y in production. Default value: <strong>N</strong></td>
</tr>
<tr>
<td>ESIZE=</td>
<td>The value of this parameter must be set to 16 always. This never changes.</td>
</tr>
<tr>
<td>CSDATA=</td>
<td>Enter <strong>Y</strong> if the RACF database is supporting CSDATA fields. Otherwise, enter <strong>N</strong>. If EXTRACT=Y, then set the value of this parameter to <strong>N</strong>. Sample value: <strong>N</strong></td>
</tr>
</tbody>
</table>
### Table E-1  (Cont.) Voyager Control File Parameters

<table>
<thead>
<tr>
<th>Voyager Control File Parameters</th>
<th>Description</th>
</tr>
</thead>
</table>
| VOYAGER_ID=                     | The ID defined to LDAP for Voyager, if several Voyagers are using the same RACF database, then they must all have the same VOYAGER_ID. This parameter is used for the following purposes:  
  • For user documentation.  
  • Comes in handy when one VOYAGER LPAR.  
  • Gateway uses VOYAGER_ID= and some consideration is given to configure to exclude gateway events by VOYAGER_ID if needed.  
  Sample value: VOYID |
| CACHE_DELAY=                    | The delay (in seconds) Voyager will use when issuing a write socket to the LDAP. This parameter is used in conjunction with communications from the Mainframe Connector Portion to Oracle Identity Manager Appserver Parent Product.  
  Sample value: 005 |
| AUDIT_LOG=                      | Enter **YES** to turn on audit logging. Otherwise, enter **NO**.  
  Sample value: **YES** |
| PIONEER_ID=                     | (Optional) Enter the RACF userID defined for Pioneer. When Voyager reads a subpool message and the issuer is this RACF userID, then Voyager will not send this message to the LDAP. If you do not specify a value for this parameter, no action takes place. |
| EXTRACT=                        | Enter **Y** to utilize a RACF Extract versus a RACF LISTUSER. Otherwise, enter **N**. This Parameter should be **Y** unless told otherwise by Oracle Support Representative.  
  Sample value: **Y** |
| CONNECT_RETRY=                  | The number of times Voyager will attempt to reconnect. You can specify a value from **001** through **999**. A value of **999** indicates unlimited retries.  
  Sample value: **009** |
| CONNECT_INTV=                   | The number of seconds between each reconnect attempt. The value can range from **01** through **99**. If CONNECT_RETRY=**010** and CONNECT_INTV=**10**, then Voyager will retry the connection to the LDAP for **100** seconds. After the **100** seconds have elapsed, Voyager will shutdown.  
  Sample value: **05** |
### Table E-1  (Cont.) Voyager Control File Parameters

<table>
<thead>
<tr>
<th>Voyager Control File Parameters</th>
<th>Description</th>
</tr>
</thead>
</table>
| EBCDIC_COUNTRY_CODE             | This parameter represents the EBCDIC Country Code page override.  
**Note:** Do not specify values for special reserved usage parameters unless directed by Oracle Support. These parameters are available only for specific custom usage, and their sample values are not available.  
These parameters must be used along with the gateway configuration property file (_mainframeCodePage_), which is available inside the racf.properties file. |
| EBCDIC_TILDE_CHR                 | This parameter represents the EBCDIC HEX value tilde character that indicates the end of data override.  
**Note:** Do not specify values for special reserved usage parameters unless directed by Oracle Support. These parameters are available only for specific custom usage, and their sample values are not available.  
These parameters must be used along with the gateway configuration property file (_mainframeCodePage_), which is available inside the racf.properties file. |

### Table E-2  Pioneer Control File Parameters

<table>
<thead>
<tr>
<th>Pioneer Control File Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| TCPN=                         | The TCPIP STC name where Voyager is executing. This is required for socket allocations.  
Sample value: TCPIP |
| IPAD=                         | This is the Reserved value. The value of this parameter must be set to 0.0.0.0 always. |
| PORT=                         | The port at which Pioneer is listening for LDAP messages.  
Sample value: 5709 |
| DEBUG=                        | Enter Y to turn on debugging and enter N to turn it off. If you enter Y, then the output is sent to DEBUGOUT.  
**Note:** Setting this flag to Y will create enormous log. Do not use it on production systems.  
Sample value: N |
| ESIZE=                        | The value of this parameter must be set to 16 always. This never changes. |
Table E-2  (Cont.) Pioneer Control File Parameters

<table>
<thead>
<tr>
<th>Pioneer Control File Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **LPAR=** | Enter a 20-byte unique name for the LPAR of the Voyager system.  
Sample value: `zOS-2.2-TEST` |
| **POST_PROC_ALIAS=** | If you set the value of this parameter to `T`, then Pioneer will honor all DEFINE/DELETE alias requests from the LDAP.  
If you set the value of this parameter to `F`, Pioneer will ignore all requests for DEFINE or DELETE aliases.  
Sample value: `T` |
| **IDLEMSG=** | Can take a value of either `Y` or `N`.  
If you set the value of this parameter to `Y`, then for every 60 minutes Pioneer is idle, it displays an IDLE message.  
Sample value: `N` |
| **DEBUGOUT=** | This parameter is valid only if you set DEBUG=Y.  
If you have set DEBUG=N, then this parameter is ignored.  
If the output must be sent to SYSOUT, then use the following format:  

```
SYSOUT,CLASS(x)
```

In this format, `x` represents the JES2 output class desired, please use a lettered SYSOUT CLASS available at your installation versus "+".  
Sample value: `IBM z/oS JCL`  
**Note:** The usage of SYSOUT,CLASS(*) has been noted to cause IKJ5623I FILE DEBUG-OUT NOT ALLOCATED, SYSTEM OR INSTALLATION ERROR+ when used with a Control card. |
| **SPIN_CLASS=** | The output SPIN class for DEBUGOUT when Pioneer shutdown or debugging is turned off through Operator command.  
Sample value: `x` |
| **AUDIT_LOG=** | If you set the value of this parameter to YES, then the Audit log is turned on and the output goes to AUDTLOG ddname of Pioneer.  
If you set the value of this parameter to NO, then auditing will not be in effect.  
Sample value: `YES` |
### Table E-2  (Cont.) Pioneer Control File Parameters

<table>
<thead>
<tr>
<th>Pioneer Control File Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| SECURE_ID=                     | YES is required.  
                                      NO is not accepted and will fail.  
SECURE id can run in one of the three following modes:  
* SECURE_ID = YES, DEFAULT = YES  
  This mode uses RACF userid IDFAGNT as the default userid. This must have 'SPECIAL' as a coded attribute.  
* SECURE_ID = YES, DEFAULT = NO,  
  ENCRYPT = NO, ID = racfuserid  
  This mode uses the RACF userid for RACF API calls and must have 'SPECIAL' coded on that RACF userid.  
* SECURE_ID = YES, DEFAULT = NO,  
  ENCRYPT = YES  
  This mode uses the RACF userid that was encrypted using the new IDFSECUT program. This encrypted RACF userid will be used for all RACF API calls.  
Sample value: YES, DEFAULT=YE
| SMP|F= | A value of either N or Y is required.  
If you set the value of this parameter to N, then SMF recording is not turned off, but custom SMF TYPE 245 subtype 1 and 2 records are not created when the SECURE_ID is invoked.  
If you set the value of this parameter to Y, then every time the SECURE_ID is invoked, custom SMF TYPE 245 subtype 1 and 2 records are created. In addition, SMFPRMxx of z/OS SYS1.PARMLIB must be reviewed to verify that this SMF Type record will be written. Also, Pioneer must have the z/OS authority to write custom SMF type 245 entries.  
Sample value: N
| EBCDIC_COUNTRY_CODE | This parameter represents the EBCDIC Country Code Page override.  
| EBCDIC_TILDE_CHR     | This parameter represents the EBCDIC HEX value Tilde Character that indicates the end of data override. |
Configuring RACF Starter User ID and Access for Voyager Agent and Pioneer Agent Started Tasks

Pioneer Started Task no longer supports or requires a RACF userid attribute 'SPECIAL'. A normal RACF userid as shown below can be used.

There are various modes that you can use. The modes and the required RACF definitions are shown below. Note that the normal RACF userid is italicized.

Note:
Depending on the requirement, select one of the modes between 1, 2, or 3.

One of the following 3 modes can be used:

• **Mode:**

  SECURE_ID=YES,DEFAULT=YES

  This mode uses RACF userid IDFAGNT as the default userid. This must have SPECIAL as a coded attribute.

  Default Pioneer control file parameter is **SECURE_ID=YES,DEFAULT=YES**

  – ADDGROUP SECGRP
  – **ADDUSER PIONEER NAME(PIONEER) DFLTGRP(SECGRP) NOPASS NOPHRASE**
  – ADDUSER IDFAGNT NAME(DEFAULT-ID) DFLTGRP(SECGRP) NOPASS NOPHRASE SPECIAL
  – PW USER(PIONEER) NOINTERVAL
  – ALU PIONEER AUDITOR
  This is used for list type commands like LISTUSER, LISTGRP, and other similar commands.
  – RDEFINE FACILITY IDFADMIN.CMD UACC(NONE)
  – PERMIT IDFADMIN.CMD ID(PIONEER) ACCESS(READ)
  – CONNECT PIONEER GROUP(grpname)
  The grpname must be the same grpname used for FTPD. It must have a OMVS segment and a Permit for using BPX.DAEMON without which the Pioneer RACF Userid will fail as shown below:

  0090 IDMP006I - PIONEER DETECTS DEBUGGING IS ACTIVE
  0090 IDMP011I - PIONEER DETECTS CPUID 1006112064
  0090 IDMP012I - PIONEER DETECTS SYSPLEX SYSNAME ADCD113S
• **Mode:**

  ```plaintext
 SECURE ID=YES,DEFAULT=NO,ENCRYPT=NO,ID=IDMSECU
  ```

  This mode uses the RACF userid for RACF API calls and must have 'SPECIAL' coded on that RACF userid.

  Using a user defined RACF secure id:

  **Pioneer parameter is** `SECURE ID=YES,DEFAULT=NO,ENCRYPT=NO,ID=IDMSECU`

  - `ADDGROUP SECGRP`
  - `ADDUSER PIONEER NAME(PIONEER) DFLTGRP(SECGRP) NOPASS NOPHRASE`
  - `PW USER(PIONEER) NOINTERVAL`
  - `ALU PIONEER AUDITOR`
    This is used for list type commands like LISTUSER, LISTGRP, and other similar commands.
  - `ADDUSER IDMSECU NAME('SECURE-ID') DFLTGRP(SECGRP) NOPASS NOPHRASE SPECIAL`
  - `RDEFINE FACILITY IDFADMIN.CMD UACC(NONE)`
  - `PERMIT IDFADMIN.CMD ID(PIONEER) ACCESS(READ)`
  - `See Pioneer CONNECT above`

• **Mode:**

  ```plaintext
 SECURE_ID=YES,DEFAULT=NO,ENCRYPT=YES
  ```

  This mode uses the RACF userid that was encrypted using the new IDFSECUT program. This encrypted RACF userid will be used for all RACF API calls.

  Using an encrypted RACF userid:

  **Pioneer parameter is** `SECURE_ID=YES,DEFAULT=NO,ENCRYPT=YES`

  - `ADDGROUP SECGRP`
  - `ADDUSER PIONEER NAME(PIONEER) DFLTGRP(SECGRP) NOPASS NOPHRASE`
  - `PW USER(PIONEER) NOINTERVAL`
  - `ALU PIONEER AUDITOR`
    This is used for list type commands like LISTUSER, LISTGRP, and other similar commands.
- ADDUSER <your-secure-id-that was encrypted> NAME('SECURE-ID')
  DFLTGRP(SECGRP) NOPASS NOPHRASE SPECIAL
- RDEFINE FACILITY IDFADMIN.CMD UACC(NONE)
- PERMIT IDFADMIN.CMD ID(PIONEER) ACCESS(READ)
See Pioneer CONNECT above

You can encrypt and decrypt the RACF userid, and implement the SECUREID process. To do so, perform the following procedures:

- Procedure to encrypt the RACF userid:
  Execute IDFSECUT. In the sample below, JCL is supplied in the distribution JCLLIB. The 'DFLEOUT' ddname dataset must match the ddname//SECURE-ID of Pioneer. The member name of JCLLIB is 'SECUTLE' which is the encryption utility of JCL. Then, only the parameters are visible and the ID=XXXXX is the RACF userid that has to be encrypted.

  ```
 //IDFSECUT JOB SYSTEMS,MSGLEVEL=(1,1),
 // MSGCLASS=X,CLASS=A,PRTY=8,
 // NOTIFY=&SYSUID,REGION=4096K
 ঙ/* ID=XXXXX IS THE RACF USER THAT HAS SPECIAL ATRIIBUTES
 ঙ/* FOR USE WITH PIONEER
 ঙ//STEP1 EXEC PGM=IDFSECUT,PARM='ID=XXXXX,FUNC=ENCRYPT'
 ঙ//STEPLIB DD DSN=<YOURHLQ.PROD.LOADLIB,DISP=SHR
 ঙ//DFLEOUT DD DSN=<YOURHLQ>.SECUREID.FILE,DISP=SHR
 ঙ//LINEOUT DD SYSOUT=*
 ঙ//SYSPRINT DD SYSOUT=*
  ```

- Procedure to decrypt the RACF userid:
  Execute IDFSECUT. In the sample below, JCL is supplied in the distribution JCLLIB. The 'DFLEOUT' ddname dataset must match the ddname//SECUREID of Pioneer. The member name of JCLLIB is 'SECUTLE' which is the encryption utility of JCL. The parameters are the only ones that are displayed.

  ```
 //IDFSECUT JOB SYSTEMS,MSGLEVEL=(1,1),
 // MSGCLASS=X,CLASS=A,PRTY=8,
 // NOTIFY=&SYSUID,REGION=4096K
 ঙ/* ID=NONE IS TO VERIFY WHAT RACF USER ID IS CONTAINED IN
 ঙ/* THE SECUREID FILE
 ঙ//STEP1 EXEC PGM=IDFSECUT,PARM='ID=NONE,FUNC=DECRYPT'
 ঙ//STEPLIB DD DSN=<YOURHLQ.PROD.LOADLIB,DISP=SHR
 ঙ//DFLEOUT DD DSN=<YOURHLQ>.SECUREID.FILE,DISP=SHR
 ঙ//LINEOUT DD SYSOUT=*
 ঙ//SYSPRINT DD SYSOUT=*
  ```

- Procedure to implement the SECUREID process:
  * Select the RACF userid desired to perform the Pioneer RACF API calls to R_admin.
  * Define it to RACF as shown in Step 3.
  * Encrypt it using the IDFSECUT as shown in the above Step.
  * Start Pioneer.
  Pioneer reads the SECURE_ID file and stores the encrypted id.
  Pioneer also first receives the RACF command and accesses the RACF facility 'MYADMN.CMD'. If access is granted, Pioneer uses the encrypted id with which it decrypts all RACF calls.

The following steps are required to use all the modes as these are common for each mode.
Perform the following steps after you select the mode:

1. **RACF Facility must be changed as mentioned below in order to start Pioneer:**
   
   RACF Facility must be changed as follows:
   
   ```
 RDEF STARTED PIONEER.* UACC(NONE) OWNER(xxxxxxx)

 RALT STARTED PIONEER.* AUDIT(FAILURES(READ))

 RALT STARTED PIONEER.* STDATA(USER(PIONEER) GROUP(SYS1) PRIVILEGED(NO) TRACE(NO))
   ```

2. **Pioneer (Other RACF definitions):**

   ```
 RDEFINE FACILITY IRR.RADMIN.* UACC(NONE)

 PERMIT IRR.RADMIN CLASS(FACILITY) ID(<your-RACF-non-secure-id>) ACCESS(READ)

 ADDSD 'yourhlq.CONTROL.FILE' UACC(NONE)

 PERMIT 'yourhlq.CONTROL.FILE' ID(<your-RACF-non-secure-id>) ACCESS(READ)

 ADDSD 'yourhlq.REXXOUT.FILE' UACC(NONE)

 PERMIT 'yourhlq.REXXOUT.FILE' ID(<your-RACF-non-secure-id>) ACCESS(UPDATE)

 ADDSD 'yourhlq.RECON.FILE' UACC(NONE)

 PERMIT 'yourhlq.RECON.FILE' ID(<your-RACF-non-secure-id>) ACCESS(UPDATE)

 ADDSD 'yourhlq.RECON.LIBRARY' UACC(NONE)

 PERMIT 'yourhlq.RECON.LIBRARY' ID(<your-RACF-non-secure-id>) ACCESS(READ)

 ADDSD 'yourhlq.IMPORTU.FILE' UACC(NONE)

 PERMIT 'yourhlq.IMPORTU.FILE' ID(<your-RACF-non-secure-id>) ACCESS(UPDATE)

 ADDSD 'yourhlq.IMPORTG.FILE' UACC(NONE)

 PERMIT 'yourhlq.IMPORTG.FILE' ID(<your-RACF-non-secure-id>) ACCESS(UPDATE)

 ADDSD 'yourhlq.ALIAS.LSTOUT' UACC(NONE)

 PERMIT 'yourhlq.ALIAS.LSTOUT' ID(<your-RACF-non-secure-id>) ACCESS(UPDATE)

 ADDSD 'yourhlq.IDCAMS.CTL' UACC(NONE)

 PERMIT 'yourhlq.IDCAMS.CTL' ID(<your-RACF-non-secure-id>) ACCESS(UPDATE)
   ```
G

Customizing AES Encryption Key

Perform this procedure to configure and customize an AES encryption key.

1. In order to use your own key with the LDAP gateway, you must add it to the properties file for the particular mainframe connector that you are using. The property files used for the the IBM RACF connector is racf.properties. It will be a 32 character HEX key.

Define a property called _secretKeyValue_ to store the key you want to use.

The value defined is the same in all the property files.

For example, _secretKeyValue_=52810283F6B4E0A5D82FDE935E23ED7C

**Note:**

The LDAP Gateway will have to be restarted for the new key to take effect.

2. Once you have defined the key in the LDAP property file, you will need to set the key on the mainframe side.

A MVS Job called KEYMODR will set the key on the mainframe side. It will ship with the distribution JCL files in the JCLLIB.xmi library as follows:

//ADCDZZAP JOB ,SYSTEMS,CLASS=A,MSGCLASS=X,
// MSGLEVEL=(1,1),REGION=4096K,TIME=1440,NOTIFY=&SYSUID
//ZAPKEY EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=* 
//SYSLIB DD DISP=SHR,DSN=MLIGHT.MY.LOAD 
//SYSIN DD *
NAME IDFRINFO IDFRINFO
* VERIFY EYECATHER IS PRESENT
VER 0080 C9C4,C6D9,C9D5,C6D6 'IDFRINFO'
* SET KEYLEN = 100
REP 0088 0064
* SET 1ST 16 BYTES WITH YOUR KEY
REP 008A 7CC7,3006,074D,8747,9447,2FC4,3BA4,5DB1
* SET 2ND 16 BYTES WITH ANYTHING (FOR FUTURE USE)
REP 009A D2D3,4D45,5C4D,5B5C,6C63,6465,71E7,8E9
* SET 3RD 16 BYTES WITH ANYTHING (FOR FUTURE USE)
REP 00AA F6F7,F8F9,F9F9,F9F9,F9F9,F9F9,F9F9,F9F9
* SET 4th 16 BYTES WITH THE DATE (2013082013200000)
REP 00BA F2F0,F3F0,F3F0,F3F0,F3F0,F0F0,F0F0

3. To use the BATCH JCL, perform the following procedure:

a. Change the job card to conform to the standards of your system.

b. Change the below line to set the DSN where you have the linklib for the mainframe agent:

//SYSLIB DD DISP=SHR,DSN=MLIGHT.MY.LOAD
c. Change the below line to set your key value:
   * SET 1ST 16 BYTES WITH YOUR KEY
   REP 008A 7CC7,3006,074D,E87A,A647,2FC4,3BA4,5DB1
   Do not change the beginning of the line REP 008A. However, you can change
   the rest of the line to match your key. Use 4 characters at a time followed by a
   comma, as shown above.

d. Change the below line to set the date for your key:
   * SET 4th 16 BYTES WITH THE DATE (2013082013200000)
   REP 00BA F2F0,F1F3,F0F8,F2F0,F1F3,F3F0,F0F0,F0F0
   Do not change the beginning of the line REP 008A. However, you can change
   the rest of the line to match the date you changed the key.

   **Note:**

   EBCDIC HEX values for the numbers 0 through 9 are used. They are F0 through F9.
   The format for the date is YYYYMMDDHHMMSMMM (Year Month
   Day Hour Minutes Seconds Miliseconds). This is optional, but it will
   help in identifying the key.

After you have made the changes, you will need to submit the Job to set your
changes.

Additionally, note that Pioneer and Voyager will have to be restarted for the
new key take effect.

If AMASPZAP is not allowed, then follow the instructions mentioned below:

The procedure to change the key is very similar to the directions for the KEY-
MODR jcl. The first line for KEYBYTES will be changed after which the fourth
line for the key date change will have to be changed.

EBCDIC HEX values for the numbers 0 through 9 are used. They are F0
through F9. The format for the date is YYYYMMDDHHMMSMMM (Year Month
Day Hour Minutes Seconds Miliseconds). This is optional, but it will help in
identifying the key.

In addition to changing the Jobcard, you must change the following in IDFRIN-
FO:

EYECATCH DC C'IDFRINFO'
INFOLEN DC H'100'
KEYBYTES DC X'D880D7614C07088BC2D51A1945FDB6B4': Ensure that
you change this key.
DC X'D8D9E2E3E4E5E6E7E8E9F0F1F2F3F4F5': This is reserved for later
use. Keep it as is.
DC X'F6F7F8F9F9F9F9F9F9F9F9F9F9F9F9': This is reserved for later
use. Keep it as is.
DC X'F2F0F0F6F1F0F2F6F1F4F2F5F0F0F0': This is the date key was
changed.
Once they have changed the Key and have assembled/linked IDFRINFO, then they will have to replace the IDFRINFO that we supply.

The LDAP gateway server settings must also be updated to use the new key. To configure the LDAP gateway, perform the following steps:

a. Stop the LDAP gateway server (if it is running).
b. Open the racf.properties file, located in the `LDAP_INSTALL_DIR/conf` directory.
c. Modify the value of the `_secretKey_` property to match the new key.
d. Save and close the file.
e. Restart the LDAP gateway server.
Mainframe Language Environment Runtime Options

For the IBM RACF Advanced Connector you need to set the Mainframe Language Environment runtime options.

This appendix contains the following topics:

• Setting Runtime Options for IBM RACF
• Run Time Options, Defaults and Recommendations for IBM RACF

H.1 Setting Runtime Options for IBM RACF

If the following settings are not properly set, they can cause random S806 or S0C4 conditions.

1. Add the following CEEOPTS DD to your PIONEER and or VOYAGER Task (or other modules through STC/JCL) as needed.

Example (this may vary by site requirements):

```//CEEOPTS DD DISP=SHR,
//DSN=&SYSPLEX.OIDM.VOYAGER.CONTROL.PARMLIB(CEEPRM00)
```

2. Where the CEEPRM00 PDS member contains:

   a. RPTOPT(ON)
   b. RPTSTG(ON)

3. When you run the offending STC/JCL again you will get a list of the options in affect.

4. Compare the output of the current JES LOG and look for one of the following literals, so one may review the current options in place.

   a. "LAST WHERE SET"
   b. "IBM-supplied default"
   c. "ALL31"

5. Note that all LE options should all be reviewed (not only ALL31) as noted in Run Time Options, Defaults and Recommendations for IBM RACF.

6. The options can be overridden within the CEEOPTS DD through the CEEPRM00 PDS member (or site specific implementation), as follows:

   • Where CEEPRM00
   • ALL31(ON)
   • RPTOPT(ON)
   • RPTSTG(ON)
   • STACK(128K,128K,ANYWHERE,KEEP,512K,512K)
7. When the anomaly is addressed, the RPT* lines can be removed, if desired:
   • Where CEEPRM00
   • ALL31(ON)
   • STACK(128K,128K,ANYWHERE,KEEP,512K,512K)

H.2 Run Time Options, Defaults and Recommendations for IBM RACF


Table H-1 lists Language Environment run time options, defaults and recommendations.

Table H-1   Language Environment Run Time Options, Defaults and Recommendations for IBM RACF

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Recommended</th>
<th>IDF's</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABPERC</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>ABTERMENC</td>
<td>ABEND</td>
<td>ABEND</td>
<td>ABEND</td>
</tr>
<tr>
<td>AIXBLD</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ALL31</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>ANYHEAP</td>
<td>16K,8K,ANY,FREE</td>
<td>16K,8K,ANY,FREE</td>
<td>16K,8K,ANY,FREE</td>
</tr>
<tr>
<td>ARGPARSE</td>
<td>ARGPARSE</td>
<td>ARGPARSE</td>
<td>ARGPARSE</td>
</tr>
<tr>
<td>AUTOTASK</td>
<td>NOAUTOTASK</td>
<td>NOAUTOTASK</td>
<td>NOAUTOTASK</td>
</tr>
<tr>
<td>BELOWHEAP</td>
<td>8K,4K,FREE</td>
<td>8K,4K,FREE</td>
<td>8K,4K,FREE</td>
</tr>
<tr>
<td>CBLOPTS</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>CBPSHPPOP</td>
<td>ON</td>
<td>N/A</td>
<td>ON</td>
</tr>
<tr>
<td>CBLQDA</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>CEEDUMP</td>
<td>60,SYSOUT=*,FREE-END,SPIN-UNALLOC</td>
<td>60,SYSOUT=*,FREE-END,SPIN-UNALLOC</td>
<td>60,SYSOUT=*,FREE-END,SPIN-UNALLOC</td>
</tr>
<tr>
<td>CHECK</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>COUNTRY</td>
<td>US</td>
<td>User defined</td>
<td>US</td>
</tr>
<tr>
<td>DEBUG</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>DEPTHCONDLMT</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>DYNDMP</td>
<td>*USERID,NODYNAMIC,TDUMP</td>
<td>*USERID,NODYNAMIC,TDUMP</td>
<td>*USERID,NODYNAMIC,TDUMP</td>
</tr>
<tr>
<td>ENV</td>
<td>No default</td>
<td>User default</td>
<td>No default</td>
</tr>
<tr>
<td>ENVAR</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>ERRCOUNT</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ERRUNIT</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>EXECOPS</td>
<td>EXECOPS</td>
<td>EXECOPS</td>
<td>EXECOPS</td>
</tr>
<tr>
<td>Option</td>
<td>Default</td>
<td>Recommended</td>
<td>IDF's</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>FILEHIST</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>FILETAG</td>
<td>NOAUTOCVT,NOAUTOTAG</td>
<td>NOAUTOCVT,NOAUTOTAG</td>
<td>NOAUTOCVT,NOAUTOTAG</td>
</tr>
<tr>
<td>HEAP</td>
<td>32K,32K,ANY,KEEP,8K,4K</td>
<td>32K,32K,ANY,KEEP,8K,4K</td>
<td>32K,32K,ANY,KEEP,8K,4K</td>
</tr>
<tr>
<td>HEAP64</td>
<td>1M,1M,KEEP,32K,32K,KEEP,4K,4K,FREE</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

There are many more run time options that are not applicable to this situation.
Pioneer Post-Processing Commands

Pioneer can post-process RACF commands. The commands that are enabled through Pioneer for Post-Processing are ADDUSER, ALTUSER, CONNECT, DELUSER, and REMOVE.

To determine if there is a post-process, Pioneer will read the control file (DDNAME=PARMFLE) and look for the C=SUPPORTED_COMMAND property.

The supported formats of properties and the underlying implementation is as follows:

- **CONNECT**
  - C=CONNECT,L=<DSNNAME>,M=<MEMBERNAME>,USERID=Y
    On a CONNECT userid to group command, execute the desired rexx clist from the PDS library and pass the userid to clist.
  - C=CONNECT,L=<DSNNAME>,M=<MEMBERNAME,CMD=Y
    On a CONNECT userid to group command, execute the desired rexx clist from the PDS library and pass the entire RACF CONNECT command that the LDAP sent to clist.

- **DELUSER**
  - C=DELUSER,L=<DSNNAME>,M=<MEMBERNAME,DEL=N
    On a DELUSER command, execute the desired rexx clist from the PDS library and do not delete the userid.
  - C=DELUSER,L=<DSNNAME>,M=<MEMBERNAME,DEL=Y
    On a DELUSER command, execute the desired rexx clist from the PDS library and delete the userid.

- **REMOVE**
  - C=REMOVE,L=<DSNNAME>,M=<MEMBERNAME,USERID=Y
    On a REMOVE userid from a group command, execute the desired rexx clist from the PDS library and pass the userid to clist.
  - C=REMOVE,L=<DSNNAME>,M=<MEMBERNAME,CMD=Y
    On a REMOVE userid from a group command, execute the desired rexx clist from the PDS library and pass the entire RACF CONNECT command that the LDAP sent to clist.

**Note:**

All the supported post-commands configured in the control file are processed every time the command is sent from LDAP.

The below examples show how to Post-Process with Pioneer. The Post Processing is triggered by the usage of a C=ADDUSER, C=ALTUSER, C=DELUSER, C=CONNECT or C=REMOVE. When these C=(commands) are coded with the L= M= parameters then the PDS in
L=(library) and M=(member) are submitted by the Provisioning Agent - Pioneer through the Intrd.

Every time the C= is executed by the LDAP this will occur.

**Example of the ADDUSER command in Post-Processing**

**ADDUSER example:**

```
C=ADDUSER,M=TEST,L=YOUR.PDS.LIBRARY,USERID=Y
```

- **C=ADDUSER,M=TEST,L=YOUR.PDS.LIBRARY,USERID=Y**
- RACF userid is added as provided from the LDAP
- Pioneer receives an ADDUSER via the LDAP and dynamic allocates PDS library dsn='YOUR.PDS.LIBRARY', member=TEST
- Pioneer Reads the PDS(L=) member(M=):

```
//REXXBTH JOB,SYSTEMS,CLASS=A,MSGCLASS=X,
// MSGLEVEL=(1,1),REGION=4096K,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSDUMP DD SYSOUT=*
//SYSPROC DD DSN=PIONEER.CLIST.LIBRARY,DISP=SHR
//SYSTSIN DD *
```

- Pioneer adds %TEST (value in M= parameter) USERID (RACF USERID) as input to SYSSTSIN DD statement to execute rexx exec %TEST
- Pioneer punches each of the above JCL statements and '%TEST USERID' stmt to the z/OS Intrdr.
- Pioneer closes library dsn='YOUR.PDS.LIBRARY', member=TEST
- Pioneer frees library dsn='YOUR.PDS.LIBRARY',member=TEST

The % TEST Rexx list would check for the USERID argument and process further as post process.

A simple Rexx clist (e.g. %TEST) would look like this:

```
/* rexx */
Arg pl
when this rexx clist gets executed, P1 would contain the USERID passed.
The Rexx list then could pass them or interact with them as the developer/programmer desires.
```

**Example of the ALTUSER command in Post-Processing**

If Post-Processing is only required for ALTUSERS, then the control file should only have its normal parameters shown.

**ALTUSER Example:**

```
C=ALTUSER,M=TEST,L=YOUR.PDS.LIBRARY,USERID=Y
```
USERID=Y specifies that RACF user ID will be passed as an argument to CLIST/REXX exec in M= member.

RACF userid is added as provided from the LDAP.

Pioneer receives an ALTUSER via the LDAP and dynamic allocates PDS library dsn='YOUR.PDS.LIBRARY', member=TEST.

Pioneer Reads the PDS(L=) member(M=):

```plaintext
//REXXBTH JOB,SYSTEMS,CLASS=A,MSGCLASS=X,
// MSGLEVEL=(1,1),REGION=4096K,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSIN DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSPROC DD DSN=PIONEER.CLIST.LIBRARY,DISP=SHR
//SYSTSIN DD *
```

Pioneer adds %TEST (value in M= parameter) USERID (RACF USERID) as input to SYSSTSIN DD statement to execute rexx exec %TEST.

Pioneer punches each of the above JCL statements and '%TEST USERID' stmt to the z/OS Intrdr.

Pioneer closes library dsn='YOUR.PDS.LIBRARY', member=TEST.

Pioneer frees library dsn='YOUR.PDS.LIBRARY',member=TEST.

A simple Rexx clist would look like this:

```plaintext
/* rexx */
Arg p1when this rexx clist gets executed, P1 would contain the USERID passed.
The Rexx list then could pass them or interact with them as the developer/programmer desires.
```

Example of the DELUSER command in Post-Processing:

If Post-Processing is only required for DELUSERs, then the control file should only have its normal parameters.

DELUSER Example #1:

```plaintext
C=DELUSER,M=TESTD,L=YOUR.PDS.LIBRARY,DEL=Y
```

In this example the userid will be deleted from RACF and the Job or Script described in M=L= will be executed. RACF UserID will be passed as an argument to REXX exec as described in ADDUSER or ALTUSER example.

DELUSER Example #2:

```plaintext
C=DELUSER,M=TESTD,L=YOUR.PDS.LIBRARY,DEL=N
```

The difference in this example is that the userid will not be deleted in RACF and the Job or Script described in M=L= will be executed. RACF UserID will be passed as an argument to REXX exec as described in ADDUSER or ALTUSER example.
Example of CONNECT command in Post-Processing

If Post-Processing is only required for CONNECTs, then the control file should only have its normal parameters.

CONNECT Example #1:

C=CONNECT,M=TEST,L=YOUR.PDS.LIBRARY,USERID=Y

This example specifies that for each CONNECT command execution, the Job or Script described in M=,L= will be executed and RACF UserID will be passed as an argument to REXX exec as described in ADDUSER or ALTUSER example.

CONNECT Example #2:

C=CONNECT,M=TEST,L=YOUR.PDS.LIBRARY,CMD=Y

This example specifies that for each CONNECT command execution, the Job or Script described in M=,L= will be executed and RACF command will be passed as an argument to REXX exec. Max 69 characters from CONNECT racf command gets passed to REXX exec.

Example of REMOVE command in Post-Processing

If Post-Processing is only required for REMOVEs, then the control file should only have its normal parameters.

REMOVE Example #1:

C=REMOVE,M=TEST,L=YOUR.PDS.LIBRARY,USERID=Y

This example specifies that for each REMOVE command execution, the Job or Script described in M=,L= will be executed and RACF UserID will be passed as an argument to REXX exec as described in ADDUSER or ALTUSER example.

REMOVE Example #2:

C=REMOVE,M=TEST,L=YOUR.PDS.LIBRARY,CMD=Y

This example specifies that for each REMOVE command execution, the Job or Script described in M=,L= will be executed and RACF command will be passed as an argument to REXX exec. Max 69 characters from REMOVE racf command gets passed to REXX exec.
Pioneer SMF Process

The following is a brief outline of the startup and initialization process of Pioneer:

1. The Provisioning Agent - Pioneer reads the control file and validates the parameters.

2. The Provisioning Agent - Pioneer calls the following:
   - **IDFGETIF**: Extracts Jobname, Jobid, and Userid
   - **IDFCHKAU**: This new program issues RACROUTE macros to validate access of the RACF userid that starts Pioneer’s access to IDFRADMIN.CMD facility.

3. If the Return code from IDFCHKAU is not 0, then error messages are issued and the Provisioning Agent - Pioneer terminates with RC=300.

4. If the Return code from IDFCHKK is 0, then IDFCHKIR is called using RACROUTE macros to validate access of the RACF userid that starts the Provisioning Agent - Pioneer. It has access to IRR.RADMIN.* that is required for RACF List functions performed by Provisioning Agent - Pioneer’s called program MYRADMIN.

5. If Return code from IDFCHKIR is not 0, then error messages are issued and Provisioning Agent - Pioneer terminates with a RC=300.

6. When the previous steps are executed, the Provisioning Agent - Pioneer initializes the TCPIP interface and goes into a Listen state on the PORT= port.

7. When a message arrives and passes validation, then MYRADMIN is called if the functions are RACF LIST and SEARCH type functions. If the RACF functions are not LIST or SEARCH, then programs are called based on the SMF= parameter. If SMF=Y, then IDFRADMNS is called using the SECURE_ID and after the command completes a SMF TYPE 245 TYPE 1, 2 records are written. If SMF=N then IDFRADMN is called using the SECURE_ID and no SMF record is written.

8. When all the steps are completed, the output is sent back to the LDAP.
Table K-1 lists the Pioneer messages.

Note:
All Provisioning Agent messages are prefixed with IDFRP. The next character after IDFRP defines the message type followed by 3 digit number that uniquely identifies the message in its specific sub-genre.

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Message Text</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMP000I</td>
<td>Pioneer Starting</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP001I</td>
<td>Pioneer Input parameters are good</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP002I</td>
<td>Pioneer detects IDF-BUILD &lt;Build info&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRP0063</td>
<td>Pioneer detects Audit log is now: &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP003I</td>
<td>Pioneer detects jobname: &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP004I</td>
<td>Pioneer detects TCPIP IP Address &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP005I</td>
<td>Pioneer detects TCPIP Port &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP006I</td>
<td>Pioneer detects Debugging is &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP009I</td>
<td>Pioneer detects encryption is enabled</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP011S</td>
<td>Pioneer is using &lt;value&gt; for security calls</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP011I</td>
<td>Pioneer detects CPUID of &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP012I</td>
<td>Pioneer detects sysplex sys-name of &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP013I</td>
<td>Pioneer detects LPAR Name as &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP014I</td>
<td>Pioneer detects country code of &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP016I</td>
<td>Pioneer has APF authorization</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP017I</td>
<td>Pioneer found secured racf id</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP020I</td>
<td>Pioneer accepting messages on &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>Message ID</td>
<td>Message Text</td>
<td>Type</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IDMP020A</td>
<td>Pioneer operator has issued shutdown command</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP030I</td>
<td>Pioneer INITAPI was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP031I</td>
<td>Pioneer GETCLIENTID was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP032I</td>
<td>Client name is &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP033I</td>
<td>Client task is &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP035I</td>
<td>Pioneer bind socket was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP036I</td>
<td>Pioneer Listening port is &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP037I</td>
<td>Pioneer listening address is &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP038I</td>
<td>Pioneer listen socket call was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP038A</td>
<td>Pioneer is ready for messages</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP039I</td>
<td>Pioneer write socket call was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP041I</td>
<td>Pioneer socket accept was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP050A</td>
<td>Pioneer closing IP connection</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP051I</td>
<td>Pioneer close socket call was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP052I</td>
<td>Pioneer shutdown socket call was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP070I</td>
<td>Pioneer &lt;filename&gt; is now open</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP071I</td>
<td>Pioneer &lt;filename&gt; is now closed</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP100I</td>
<td>Pioneer (IN) MSGS processed is: &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI064</td>
<td>Pioneer message (READ) bytes: &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI065</td>
<td>Pioneer message (write) bytes: &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP102I</td>
<td>Pioneer terminating</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP201I</td>
<td>Pioneer &lt;parm&gt; status=good</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP206I</td>
<td>Pioneer jobname is &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP207I</td>
<td>Pioneer jobid is &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP208I</td>
<td>Pioneer RACF userid is &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP209I</td>
<td>Pioneer RACF userid &lt;value&gt; authorized for IDF ADMIN.CMD</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP210I</td>
<td>Pioneer RACF userid &lt;value&gt; authorized for IRR.RADMIN.*</td>
<td>Informational</td>
</tr>
<tr>
<td>Message ID</td>
<td>Message Text</td>
<td>Type</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>IDMP500I</td>
<td><em>AUDIT</em> - &lt;message,info,txt&gt;</td>
<td>Audit</td>
</tr>
<tr>
<td>IDMP500I</td>
<td><em>HEADER</em> - AUDIT FUNC &lt;value&gt; RACF CMD &lt;value&gt; RACF USR &lt;value&gt; FUNC-STAT &lt;value&gt; OTHER-INFO &lt;value&gt;</td>
<td>Audit</td>
</tr>
<tr>
<td>IDMP500I</td>
<td>&lt;Blank&gt; AUDIT MESSAGE</td>
<td>Audit</td>
</tr>
<tr>
<td>IDMP400I</td>
<td><em>PARMS</em> - &lt;text,info,value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP400I</td>
<td><em>PARMS</em> - &lt;text,info,value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP305I</td>
<td>Pioneer debugging was turned &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP306I</td>
<td>Pioneer-polloper: &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP307I</td>
<td>Pioneer received a status query and is alive</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI052</td>
<td>EZACIC09 OUTPUT : CANONICAL NAME &lt;VALUE&gt; NAME LENGTH &lt;VALUE&gt; NAME &lt;VALUE&gt; NEXT ADRINFO &lt;VALUE&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI053</td>
<td>DEBUG: &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI054</td>
<td>Timer Wait Failed</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI055</td>
<td>SOCK# &lt;value&gt; is OFF /ON</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI056</td>
<td>PIONEERX: &lt;Function value&gt; RETCODE = &lt;value&gt; ERRNO = &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI057</td>
<td>USERID=(&lt;value&gt;) RC=&lt;value&gt; OOPS(1)=&lt;recode 1&gt; OOPS(2)=&lt;recode 2&gt; OOPS(3) = &lt;recode 3&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI058</td>
<td>&lt;IMPORTU/G file type&gt; records read : &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI059</td>
<td>LDAP Command &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI060</td>
<td>PIONEER-BUILD : &lt;IDF-BUILD Value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI061</td>
<td>Write Socket MSGS : &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRPI062</td>
<td>RACF CMD: &lt;value&gt; FOR USER &lt;value&gt; SAF Return code &lt;value&gt; RACF Return code &lt;value&gt; RACF Reason code &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMP001E</td>
<td>Pioneer &lt;Error&gt; &lt;Info&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP009E</td>
<td>Pioneer detects encryption is disabled</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP016E</td>
<td>Pioneer has no APF authorization and is required</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP030E</td>
<td>Pioneer INITAPI failed RC/ERRNO: &lt;value&gt;</td>
<td>Error</td>
</tr>
</tbody>
</table>
Table K-1  (Cont.) Pioneer Messages

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Message Text</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMP040E</td>
<td>Pioneer translation was not successful from-to: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE023</td>
<td>Pioneer socket accept was not successful RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP209E</td>
<td>Pioneer RACF userid &lt;value&gt; not authorized for IDFAD-MIN.CMD</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP210E</td>
<td>Pioneer RACF userid &lt;value&gt; not authorized for IRR.RAD-MIN.*</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP211E</td>
<td>Pioneer Translation failed from &lt;value&gt; using Country code &lt;value&gt; reason &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP208E</td>
<td>Pioneer module IDFGETIF failed to extract JOB info - Pioneer will terminate</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP401E</td>
<td><em>PARMS</em> - &lt;text,info,value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP402E</td>
<td>Pioneer is ending due to errors</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE024</td>
<td>Pioneer ends RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP403E</td>
<td>Pioneer found secure-ID errors - Found: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE015</td>
<td>Pioneer found a syntax error in a post-parameter Error occurred with &lt;value&gt; Post Error is &lt;value&gt; in_parm &lt;value&gt; Closing PARMFLE</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE016</td>
<td>Function= &lt;value&gt; RETCODE=&lt;value&gt; ERROR_NO=&lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE017</td>
<td>INVALID USER &lt;value&gt; RETCODES = &lt;value1&gt;, &lt;value2&gt;, &lt;value3&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE018</td>
<td>Error Calling Program &lt;name&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE019</td>
<td>DEBUGOUT Did not allocate OK RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE020</td>
<td>DYNAMIC CALL Failed BPXWDYN-RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE021</td>
<td>PIONEER COULD NOT FREE DEBUGOUT</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRPE022</td>
<td>&lt;FILE&gt; Failed to &lt;ACTION&gt; RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP080E</td>
<td>Pioneer called RACF with SMF=Y and SMFPARMXX had no record=245 defined a critical error</td>
<td>Error</td>
</tr>
<tr>
<td>IDMP300I</td>
<td><em>DEBUG</em> &lt;message,text,value&gt;</td>
<td>Debug</td>
</tr>
</tbody>
</table>
Table K-1  (Cont.) Pioneer Messages

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Message Text</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMP048I</td>
<td>Pioneer the LDAP connection timed out</td>
<td>Warning</td>
</tr>
<tr>
<td>IDMP049I</td>
<td>Pioneer has been idle for 10 minutes</td>
<td>Warning</td>
</tr>
<tr>
<td>IDFRPW009</td>
<td>Pioneer could not open &lt;file&gt; RC: &lt;value&gt;</td>
<td>Warning</td>
</tr>
<tr>
<td>IDMP402I</td>
<td>Pioneer No open TCP connections found</td>
<td>Warning</td>
</tr>
<tr>
<td>IDFRPW005</td>
<td>Max Timeouts Triggered, Going to Exit</td>
<td>Warning</td>
</tr>
<tr>
<td>IDFRPW006</td>
<td>Pioneer control file must have control records in it see admin manual for details Pioneer will abend</td>
<td>Warning</td>
</tr>
<tr>
<td>IDFRPW007</td>
<td>NO DDNAME Found</td>
<td>Warning</td>
</tr>
<tr>
<td>IDFRPW008</td>
<td>DINDX Invalid</td>
<td>Warning</td>
</tr>
</tbody>
</table>
Table L-1 lists the Voyage messages.

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Message Text</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMV000I</td>
<td>Voyager reconciliation agent starting</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRVI068</td>
<td>Voyager is executing from an APF authorized library</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRVI069</td>
<td>Voyager found &lt;value&gt; security subsystem</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRVI070</td>
<td>Voyager subpool initialization Ok</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV001I</td>
<td>Voyager subpool size is: &lt;value&gt; K</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV002I</td>
<td>Voyager subpool will hold &lt;value&gt; messages</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV003I</td>
<td>Voyager SP231 allocated OK</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV004I</td>
<td>Voyager storage token built OK</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV006I</td>
<td>Voyager build level is at &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV008I</td>
<td>Voyager detects subpool - 100 byte version</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV009I</td>
<td>Voyager detects (TCPIP) job-name &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV010I</td>
<td>Voyager detects (TCPIP) IP address &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV011I</td>
<td>Voyager detects (TCPIP) IP port &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV012I</td>
<td>Voyager detects encryption is ON</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV015I</td>
<td>Voyager detects cache file opened OK</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV016I</td>
<td>Voyager computing cache timer delay successful</td>
<td>Informational</td>
</tr>
<tr>
<td>Message ID</td>
<td>Message Text</td>
<td>Message Type</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>IDMV017I</td>
<td>Voyager detects encryption KVER spaces</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV019I</td>
<td>Voyager detects debugging is OFF</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV020I</td>
<td>Voyager detects MVS retcodes is</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRVI020</td>
<td>Voyager detects MVS retcodes is</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV022I</td>
<td>Voyager detects hostname of &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV023I</td>
<td>Voyager initialization of TCP API was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV024I</td>
<td>Voyager initialization of GET client ID was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV025I</td>
<td>Voyager accept messages on &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV027I</td>
<td>Voyager connected to gateway server was successful</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV032I</td>
<td>Voyager connection start timer begins</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV033I</td>
<td>Voyager connection start timer ends</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV050I</td>
<td>Voyager cache polling begins</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV070I</td>
<td>Voyager &lt;filename&gt; is now open</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV071I</td>
<td>Voyager &lt;filename&gt; is now closed</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV100I</td>
<td>Voyager shutdown started</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV103I</td>
<td>Voyager found storage allocation</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV104I</td>
<td>Voyager storage freed OK</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV110I</td>
<td>Voyager reconciliation agent has terminated</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV111I</td>
<td>Voyager has ended with zero return code</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRVI071</td>
<td>Voyager sent messages &lt;value&gt; received messages &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV105I</td>
<td>Voyager subpool messages read : &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV151I</td>
<td>Voyager DNS request &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV152I</td>
<td>Voyager IP connect request &lt;value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV155I</td>
<td>Voyager cachesave was read &lt;value&gt; messages</td>
<td>Informational</td>
</tr>
<tr>
<td>IDFRVI072</td>
<td>Voyager wrote &lt;value&gt; messages</td>
<td>Informational</td>
</tr>
</tbody>
</table>
### Table L-1  (Cont.) Voyager Messages

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Message Text</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMV200E</td>
<td>Voyager startup parameter error</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV200I</td>
<td>Voyager unable to connect to gateway</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV202E</td>
<td>Voyager no storage token found</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV202I</td>
<td>Voyager unable to connect to NEW IP/PORT</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV210I</td>
<td>Voyager &lt;poll message value&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV400I</td>
<td><em>PARM</em> &lt;value, info, text&gt;</td>
<td>Informational</td>
</tr>
<tr>
<td>IDMV500I</td>
<td><em>AUDIT</em> &lt;value, info, text&gt;</td>
<td>Audit</td>
</tr>
<tr>
<td>IDMV109I</td>
<td>Voyager write successful - MSG = &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td>IDMV111I</td>
<td>Voyager probing LDAP ...... ....</td>
<td></td>
</tr>
<tr>
<td>IDMV112I</td>
<td>Polling Cache 100 processed</td>
<td></td>
</tr>
<tr>
<td>IDMV113I</td>
<td>Messages sent &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td>IDMV300I</td>
<td>END saving cache to DASD</td>
<td></td>
</tr>
<tr>
<td>IDMV114I</td>
<td>Voyager RACF Listuser/Group call</td>
<td></td>
</tr>
<tr>
<td>IDFRVI056</td>
<td>SAF Return Code : &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td>IDFRVI057</td>
<td>RACF Return code : &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td>IDFRVI058</td>
<td>RACF Reason code: &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td>IDMV001E</td>
<td>Voyager has terminated. See sysout for details</td>
<td></td>
</tr>
<tr>
<td>IDFRVI060</td>
<td>Voyager detects TCP write is Off</td>
<td></td>
</tr>
<tr>
<td>IDFRVI061</td>
<td>Voyager Control File must have control records in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>it see admin manual for control record format</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sequence Voyager will now Abend</td>
<td></td>
</tr>
<tr>
<td>IDFRVI062</td>
<td>Voyager cache found phase : &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td>IDFRVI063</td>
<td>SOCKET-NUM : &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOCKETS-USED : &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOCKETSUSED : &lt;value&gt; %</td>
<td></td>
</tr>
<tr>
<td>IDFRVI064</td>
<td>MAXNo= &lt;value&gt; SOCKETS-USED=&lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td>IDFRVI065</td>
<td>Select call modified MAXSNO to : &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td>IDFRVI066</td>
<td>NO DDNAME FOUND</td>
<td></td>
</tr>
<tr>
<td>IDFRVI067</td>
<td>&lt;File Name&gt; &lt;Status msg&gt; RC : &lt;value&gt;</td>
<td></td>
</tr>
<tr>
<td>IDMV300I</td>
<td><em>DEBUG</em> &lt;value, info, text&gt;</td>
<td>Debug</td>
</tr>
<tr>
<td>Message ID</td>
<td>Message Text</td>
<td>Message Type</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>IDMV000E</td>
<td>Voyager has exceeded the connect in/nv/retry OF: &lt;value&gt; secs &lt;value&gt; times</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE022</td>
<td>Voyager is not executing from an APF authorized library</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE023</td>
<td>Voyager does not have AES encryption active and AES active is required</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE024</td>
<td>Voyager subpool initialization failed storage obtain RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV004E</td>
<td>Voyager storage token build failed IEANTCR RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV005E</td>
<td>Voyager input control file is empty</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV015E</td>
<td>Voyager detects cache file &lt;file name&gt; Failure RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE025</td>
<td>Voyager detects cache file read error RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV022E</td>
<td>Voyager detects bad hostname of &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV023E</td>
<td>Voyager initialization of TCP API failed RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV024E</td>
<td>Voyager initialization of GET client ID failed RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV026E</td>
<td>Voyager initialization of PTON failed</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV070E</td>
<td>Voyager could not open &lt;filename&gt; RC: &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV112E</td>
<td>BAD cache record - Leaving</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV113E</td>
<td>TCP Err messages - Leaving</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE016</td>
<td>Voyager cache has an invalid phase</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE017</td>
<td>LDAP Gateway error &lt;TCP Add&gt; has not responded in &lt;retry value&gt; secs</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE018</td>
<td>Voyager COBOL LE Timer function failed &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE019</td>
<td>Destination IP/PORT failure reason: &lt;value&gt; Voyager will retry connection</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE020</td>
<td>Connection to LDAP has failed TCPIP recovery to LDAP has failed recovery has occurred: &lt;failure retry value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDFRVE021</td>
<td>Reserved</td>
<td>Error</td>
</tr>
</tbody>
</table>
## Table L-1 (Cont.) Voyager Messages

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Message Text</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMV211E</td>
<td>Voyager Translation failed from :&lt;val&gt; using country code &lt;val&gt; reason : &lt;value&gt;</td>
<td>Error</td>
</tr>
<tr>
<td>IDMV013I</td>
<td>Voyager detects cache delay set to &lt;value&gt; secs</td>
<td>Warning</td>
</tr>
<tr>
<td>IDMV014I</td>
<td>Voyager detects cache read delay &lt;value&gt; secs</td>
<td>Warning</td>
</tr>
<tr>
<td>IDMV018I</td>
<td>Voyager detects debugging is ON</td>
<td>Warning</td>
</tr>
<tr>
<td>IDMV103I</td>
<td>Voyager has ended with a non-zero return code</td>
<td>Warning</td>
</tr>
<tr>
<td>IDFRVW005</td>
<td>Cache Overflow</td>
<td>Warning</td>
</tr>
</tbody>
</table>
Features of the Mainframe Agents

This appendix contains the following topics:

• Functions Supported by the Pioneer Provisioning Agent
• Functions Supported by the Voyager Reconciliation Agent

M.1 Functions Supported by the Pioneer Provisioning Agent

The Pioneer Provisioning Agent supports the following functions:

Standard IBM RACF user profile commands:

• [ADDUSER]: Creates a IBM RACF user profile
• [ALTUSER]: Modifies a IBM RACF user profile
• [DELUSER]: Deletes a IBM RACF user profile
• [PASSWORD]: Modifies password data for IBM RACF user profile

Standard IBM RACF group profile commands:

• [ADDGRP]: Creates a IBM RACF group profile
• [ALTGRP]: Modifies a IBM RACF group profile
• [DELGPR]: Deletes a IBM RACF group profile
• [CONNET]: Adds an IBM RACF user to a group. This command works based on the variables that set access rights.
• [REMOVE]: Removes an IBM RACF user from a group.

Standard IBM RACF data set and resource profile commands:

• [PERMIT]: Provides data set or resource profile access to a user
• [SETROPTS]: Refresh access to resource

Standard IBM RACF searching:

• SEARCH CLASS(USER)
• SEARCH CLASS(GROUP)
• SEARCH CLASS(DATASET)
• [RLIST]: Retrieve Resource information

Standard IBM RACF alias commands:

• [DEFINE ALIAS]: Defines user to catalog
• [DELETE ALIAS]: Removes user from catalog
• [LISTC ENTRIES]: List Master Catalogs By User
Proprietary IdentityForge IBM RACF Authentication and Change Password Commands:

- CHKUSER
- CHKUSERPWD

Table M-1 lists the functions supported by the Provisioning Agent - Pioneer.

Table M-1  Functions Supported by the Provisioning Agent - Pioneer

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authenticate Users</td>
<td>Validates users LoginId and Password.</td>
</tr>
<tr>
<td>Create Users</td>
<td>Adds new users IBM RACF.</td>
</tr>
<tr>
<td>Modify Users</td>
<td>Modifies user information in IBM RACF.</td>
</tr>
<tr>
<td>Change Passwords</td>
<td>Changes user passwords on IBM RACF in response self-service change password.</td>
</tr>
<tr>
<td>Reset Passwords</td>
<td>Resets user passwords IBM RACF. The passwords are reset by the administrator.</td>
</tr>
<tr>
<td>Change Passphrase</td>
<td>Changes user passphrase on IBM RACF in response self-service change passphrase.</td>
</tr>
<tr>
<td>Reset passphrase</td>
<td>Resets user passphrase on IBM RACF. The passphrase are reset by the administrator.</td>
</tr>
<tr>
<td>Disable User Accounts</td>
<td>Disables users in IBM RACF.</td>
</tr>
<tr>
<td>Enable User Accounts</td>
<td>Enables users in IBM RACF.</td>
</tr>
<tr>
<td>Delete Users</td>
<td>Removes users from IBM RACF.</td>
</tr>
<tr>
<td>Create Groups</td>
<td>Adds new groups to IBM RACF.</td>
</tr>
<tr>
<td>Modify Groups</td>
<td>Modifies group information in IBM RACF.</td>
</tr>
<tr>
<td>Delete Groups</td>
<td>Removes groups from IBM RACF.</td>
</tr>
<tr>
<td>Search All Users</td>
<td>Retrieves all users with current data from IBM RACF.</td>
</tr>
<tr>
<td>Search All Groups</td>
<td>Retrieves all groups with current data from IBM RACF.</td>
</tr>
<tr>
<td>Search All Datasets</td>
<td>Retrieves all datasets with current data from IBM RACF.</td>
</tr>
<tr>
<td>Search All Dataset Profiles by User</td>
<td>Retrieves all dataset profiles for a given RACF,LOGIN ID.</td>
</tr>
<tr>
<td>Search Resource</td>
<td>Retrieve RACF resource with current data.</td>
</tr>
<tr>
<td>Grant Users Access to Datasets and General Resources</td>
<td>Adding/Removing the user to an IBM RACF dataset or resources.</td>
</tr>
<tr>
<td>Grant Users Access to Privileges (TSO, SPECIAL)</td>
<td>Provides TSO login access to users or other Privileges.</td>
</tr>
<tr>
<td>Grant User TSO attributes</td>
<td>Provides TSO information.</td>
</tr>
<tr>
<td>Grant User NETVIEW attributes</td>
<td>Provides NETVIEW information.</td>
</tr>
<tr>
<td>Grant User CICS attributes</td>
<td>Provides CICS information.</td>
</tr>
<tr>
<td>Grant User CSDATA attributes</td>
<td>Provides CSDATA user-defined information.</td>
</tr>
<tr>
<td>Grant User OMVS attributes</td>
<td>Provides OMVS information.</td>
</tr>
<tr>
<td>Grant Users Access to Groups</td>
<td>Adding the user to an IBM RACF group.</td>
</tr>
</tbody>
</table>
M.2 Functions Supported by the Voyager Reconciliation Agent

The Voyager Reconciliation Agent supports reconciliation of changes that are made to user profiles by using commands such as ADDUSER or ALTUSER. These commands also contain users' passwords for reconciliation, if any.

The Voyager Reconciliation Agent supports the following functions:

- Change passwords
- Create user data
- Modify user data
- Password Interval changes
- Disable users
- Delete users
- Enable users
- Group Membership Changes
- Create group data
- Modify group data
- Delete groups
- Audit information
Custom Data Field (CSDATA)

Custom Data Fields (CSDATA) are user-defined segments available on the User and Group profiles. These fields provide an alternative to Installation Data or use of other predefined segments to keep the information in the RACF database.

CSDATA is defined in the CFIELD General Resource Class using the standard RACF commands. Multiple fields can be defined in the CSDATA. CSDATA may contain any information such as: Department, Employee ID, Email address, Physical Location (City/State), and so on.

This appendix contains the following topics:

• Adding CSDATA Fields
• Parsing CSDATA Fields

N.1 Adding CSDATA Fields

RACF administrators can create customized user-defined fields for specific segments.

For example, to add a field with 8 characters all numeric:

```
RDEFINE CFIELD USER.CSDATA.EMPSER UACC(NONE)
CFDEF(TYPE(NUM)
FIRST(NUMERIC) OTHER(NUMERIC)
MAXLENGTH(8)
MINVALUE(100000)
MAXVALUE(99999999)
HELP('EMPLOYEE SERIAL, 6-8 Digits')
LISTHEAD('Employee serial=')
```

To enter more than one value, separate each value with a vertical bar (|) character. Each field name should have a corresponding configDNames entry.

To include CSDATA in a LISTUSER command [true|false] -useCSDATA_=true/.

---

**Note:**

To include CSDATA as part of the 'LISTUSER' command, set the value of the command to true.

To add a custom attribute or custom dataset, set values for the _configAttrs_, _configDNames and _configDatasets_properties in the connector.properties file.

• _configAttrs_: specifies the property that holds the field names of any custom target system fields that are defined in the CSDATA user segment and used during user provisioning operations. To enter more than one value, separate each val-
ue with a vertical bar (|) character. Each field name should have a corresponding configDNames entry. For example:

```bash
CUSTOM CSDATA RACF ATTRIBUTE FIELD NAME
configAttrs=$PST15|VEND ID|
```

- **_configDNames_**: specifies the property that holds the display name(s) of RACF field(s) that are defined in the CSDATA segment and used during user reconciliation operations. If entering more than one value, separate each value with a vertical bar (|) character. Each display name should have a corresponding configAttrs entry. For example, to define a field with a display name of $PST15 and VEND ID, then enter:

```bash
CUSTOM CSDATA RACF ATTRIBUTE DISPLAY NAME
configDNames=$PST15 =|VEND ID =|
```

## N.2 Parsing CSDATA Fields

To properly parse the fields from the CSDATA section of a user extract, the following parameter must be defined:

```bash
configExtractAttrs=<fld1>|<fld2>|
```

Here, `<fld>` = 9-character field name including ending colon.

For example, if the user extract produces the following CSDATA listing:

```
Segment: CSDATA Fields:03
EMPSER :100101
ADDRESS1:20 Main St., Anytown, PA., 08011
PHONE :555-444-7777
```

The definition of the property would be:

```bash
configExtractAttrs=EMPSER :|ADDRESS1:|
```

It is important to make sure that the colon character is in the ninth character position on all fields being parsed from a user extract as that is considered the standard format of all field listings in a user extract.

To add a field with 8 characters all numeric:

```bash
RDEFINE CFIELD USER.CSDATA.EMPSER UACC(NONE)
 CFDEF(TYPE(NUM)
 FIRST(NUMERIC) OTHER(NUMERIC)
 MAXLENGTH(8)
 MINVALUE(100000)
 MAXVALUE(99999999)
 HELP('Employee serial, 6-8 Digits')
 LISTHEAD('Employee serial=')
```