
Oracle® Business Intelligence Publisher
User's Guide
Release 10.1.3.2
Part No. B40017-01

December 2006

Oracle Business Intelligence Publisher User's Guide, Release 10.1.3.2

Part No. B40017-01

Copyright © 2005, 2006, Oracle. All rights reserved.

Primary Author: Leslie Studdard

Contributing Author: Ahmed Ali, Tim Dexter, Mike Donohue, Klaus Fabian, Chiang Guo, Edward Jiang,
Incheol Kang, Kazuko Kawahara, Kei Saito, Ashish Shrivastava, Elise Tung-Loo, Jackie Yeung

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted
Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all
risks associated with the use of such content. If you choose to purchase any products or services from a third
party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality
of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party,
including delivery of products or services and warranty obligations related to purchased products or services.
Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

 iii

Contents

Send Us Your Comments

Preface

Part 1 Viewing and Scheduling Reports

1 Getting Started
Accessing Business Intelligence Publisher Enterprise...1-1
Setting Preferences.. 1-2

2 Viewing and Scheduling Reports
Viewing a Report... 2-1
Scheduling a Report.. 2-5
Scheduling a Report to Be Burst... 2-8
Managing Your Scheduled Reports.. 2-9
Viewing Report History and Saved Output... 2-10
Using the Online Analyzer... 2-11
Using the BI Publisher Analyzer for Excel... 2-14

Part 2 Creating Reports and Layouts

3 Creating a New Report
Process Overview.. 3-1
Create the Report Entry and Specify General Properties... 3-2
Defining the Data Model.. 3-5

iv

Defining a SQL Query Data Set Type.. 3-7
Using the Query Builder.. 3-8

Defining an HTTP Data Set Type... 3-14
Defining a Web Service Data Set Type.. 3-15
Defining a Data Template Data Set Type...3-19
Defining an Oracle BI Answers Request Data Set Type..3-20
Defining a File as a Data Set Type.. 3-21
Adding Parameters and Lists of Values..3-22
Adding Layouts to the Report Definition...3-25

Creating an RTF Template Using the Template Builder for Word.....................................3-29
Adding a PDF Template to Your Report..3-34

Enabling Bursting..3-41
Accessing Reports via a URL...3-45

4 Building a Data Template
Introduction... 4-1
The Data Template Definition.. 4-2
Constructing the Data Template... 4-6
Using the Data Engine Java API... 4-26

Calling a Data Template from the Java API... 4-26
Sample Data Templates.. 4-29

5 Creating an RTF Template
Introduction... 5-1

Supported Modes...5-1
Prerequisites.. 5-2

Overview... 5-2
Using the BI Publisher Template Builder... 5-2
Associating the XML Data to the Template Layout... 5-3

Designing the Template Layout..5-6
Adding Markup to the Template Layout.. 5-7

Creating Placeholders.. 5-7
Defining Groups.. 5-11

Defining Headers and Footers.. 5-15
Native Support...5-15

Inserting Images and Charts... 5-17
Images.. 5-17
Chart Support.. 5-18

Drawing, Shape, and Clip Art Support.. 5-29
Supported Native Formatting Features...5-40

 v

General Features.. 5-40
Alignment.. 5-41
Tables... 5-41
Date Fields... 5-44
Multicolumn Page Support.. 5-44
Background and Watermark Support.. 5-46

Template Features... 5-48
Page Breaks.. 5-48
Initial Page Number... 5-49
Last Page Only Content .. 5-50
End on Even or End on Odd Page... 5-53
Hyperlinks... 5-53
Table of Contents... 5-56
Generating Bookmarks in PDF Output.. 5-56
Check Boxes... 5-57
Drop Down Lists.. 5-58

Conditional Formatting... 5-61
If Statements.. 5-62

If Statements in Boilerplate Text.. 5-62
If-then-Else Statements.. 5-63
Choose Statements... 5-64
Column Formatting... 5-65
Row Formatting... 5-68
Cell Highlighting... 5-70

Page-Level Calculations.. 5-72
Displaying Page Totals.. 5-72
Brought Forward/Carried Forward Totals... 5-74
Running Totals... 5-78

Data Handling... 5-80
Sorting..5-80
Checking for Nulls... 5-80
Regrouping the XML Data... 5-81

Using Variables... 5-87
Defining Parameters..5-88
Setting Properties.. 5-90
Advanced Report Layouts... 5-92

Batch Reports... 5-92
Cross-Tab Support... 5-94
Dynamic Data Columns... 5-97

Number and Formatting..5-101
Calendar and Timezone Support.. 5-114

vi

Using External Fonts... 5-115
Advanced Barcode Formatting.. 5-117

Advanced Design Options.. 5-118
Namespace Support... 5-121
Using the Context Commands... 5-121
Using XSL Elements... 5-124
Using FO Elements.. 5-126

6 Extended Function Support in RTF Templates
Extended SQL and XSL Functions.. 6-1
XSL Equivalents.. 6-6
Using FO Elements.. 6-7

7 Translating Reports
Template Translations...7-1
Report File Translations.. 7-8

8 Creating a PDF Template
Overview... 8-1

Supported Modes...8-1
Designing the Layout.. 8-2
Adding Markup to the Template Layout.. 8-3

Creating a Placeholder... 8-4
Defining Groups of Repeating Fields... 8-7

Adding Page Numbers.. 8-9
Performing Calculations... 8-13
Completed PDF Template Example.. 8-14
Runtime Behavior..8-15
Creating a Template from a Predefined PDF Form.. 8-17

9 Creating an eText Template
Introduction... 9-1
Outbound eText Templates.. 9-2

Structure of eText Templates... 9-2
Constructing the Data Tables... 9-6

Command Rows.. 9-6
Structure of the Data Rows.. 9-12

Setup Command Tables... 9-16
Expressions, Control Structures, and Functions.. 9-27

 vii

Identifiers, Operators, and Literals.. 9-30

Part 3 Administering BI Publisher

10 Defining a Security Model
Security Model Overview... 10-1
Understanding BI Publisher's Users and Roles..10-2
Considerations When Deleting a User... 10-6
Integrating with LDAP.. 10-6
Setting Up Oracle Single Sign-On.. 10-16
Integrating with Oracle E-Business Suite Security.. 10-25
Integrating with Oracle BI Server Security.. 10-27

11 Using the Admin Functions
Overview... 11-1
Setting Up Data Sources..11-2
Setting Up Integration with Oracle BI Presentation Services..11-6
Setting System Maintenance Options.. 11-7
Setting Up Delivery Options.. 11-10
Setting Runtime Properties... 11-13
Defining Font Mappings... 11-21
Managing Reports and Folders... 11-26

Folder Tasks... 11-29

12 Setting Up Print Servers
Setting Up CUPS... 12-1
Windows XP Setup.. 12-6

A Using the BI Publisher APIs
Introduction.. A-1
BI Publisher Core APIs... A-1
PDF Form Processing Engine..A-3
RTF Processor Engine... A-8
FO Processor Engine... A-10
PDF Document Merger... A-21
PDF Book Binder Processor.. A-28
Document Processor Engine... A-31
Bursting Engine...A-44
BI Publisher Properties... A-55

viii

Advanced Barcode Font Formatting Implementation..A-59

B Using the Delivery Manager APIs
Introduction.. B-1
Delivering Documents by e-Mail... B-2
Delivering Your Document to a Printer... B-8
Delivering Your Documents by a Fax Server... B-14
Delivering Your Documents to a WebDAV Server... B-15
Delivering Your Document Using FTP.. B-17
Delivering Your Documents over Secure FTP... B-19
Delivering Your Documents over HTTP.. B-22
Delivering Documents over AS2.. B-24
Delivering Documents Using an External Command..B-31
Delivering Documents to the Local File System.. B-32
Direct and Buffering Modes... B-33
Asynchronous Delivery Requests.. B-34
Document Filter Support.. B-35
Date Expression Support.. B-36
Internationalization Support.. B-36
Monitoring Delivery Status.. B-37
Setting Global Properties... B-38
Adding a Custom Delivery Channel.. B-39
Configuration File Support.. B-45

C Supported XSL-FO Elements
Supported XSL-FO Elements..C-1

D Configuration File Reference
BI Publisher Configuration Files .. D-1
Setting Properties in the Runtime Configuration File.. D-1
Structure.. D-3
Properties.. D-3
Font Definitions.. D-4
Predefined Fonts... D-7
The Server Configuration Files.. D-7

E Upgrading from XML Publisher Enterprise 5.6.2 to BI Publisher 10.1.3.2
Overview... E-1

 ix

Index

 xi

Send Us Your Comments

Oracle Business Intelligence Publisher User's Guide, Release 10.1.3.2
Part No. B40017-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Applications Release
Online Documentation CD available on Oracle MetaLink and www.oracle.com. It contains the most
current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

 xiii

Preface

Intended Audience
Welcome to Release 10.1.3.2 of the Oracle Business Intelligence Publisher User's Guide.

This guide is intended for users who will use Oracle Business Intelligence Publisher
Enterprise to perform one or all of the following:

• View and Schedule reports

• Design report layouts

• Develop report queries and data models

• Translate reports

• Perform administrative tasks including: setting up users, setting up data sources,
and configuring runtime behaviors

For users who will be developing report queries and data models, knowledge of SQL or
your data source is assumed.

For users who will be designing report layouts, some experience with Microsoft Word
is assumed. If you are designing advanced report layouts, you may benefit by using an
XSL reference.

See Related Information Sources on page xv for more Oracle product information.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

xiv

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading technology
vendors to address technical obstacles so that our documentation can be accessible to all
of our customers. For more information, visit the Oracle Accessibility Program Web site
at http://www.oracle.com/accessibility/ .

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise
empty line; however, some screen readers may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 Getting Started
2 Viewing and Scheduling Reports
3 Creating a New Report
4 Building a Data Template
5 Creating an RTF Template
6 Extended Function Support in RTF Templates
7 Translating Reports
8 Creating a PDF Template
9 Creating an eText Template
10 Defining a Security Model
11 Using the Admin Functions
12 Setting Up Print Servers
A Using the BI Publisher APIs
B Using the Delivery Manager APIs
C Supported XSL-FO Elements
D Configuration File Reference
E Upgrading from XML Publisher Enterprise 5.6.2 to BI Publisher 10.1.3.2

 xv

Related Information Sources
To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

Information specifically related to BI Publisher can be found at:

http://www.oracle.com/technology/products/applications/publishing/index.html

http://www.oracle.com/technology/membership/
http://www.oracle.com/technology/documentation/
http://www.oracle.com/technology/products/applications/publishing/index.html

Part 1
Viewing and Scheduling Reports

Getting Started 1-1

1
Getting Started

Accessing Business Intelligence Publisher Enterprise

Logging in with credentials:
1. Navigate to the URL provided by your system administrator.

2. Select the language you prefer for the user interface.

3. Enter your credentials to log in to BI Publisher.

4. Select Accessibility Mode if you wish to render the Reports home page in an
accessible tree structure.

5. Select Sign In.

1-2 Oracle Business Intelligence Publisher User's Guide

To view reports, see Viewing and Scheduling Reports, page 2-1.

To set user preferences, see Setting Preferences, page 1-2.

Logging in as Guest:
If your site has enabled a Guest user option, a Guest button will display on the log in
page.

A Guest user does not require credentials and has privileges only to view reports
available in the Guest folder.

1. Select the language you prefer for the user interface.

2. Select Guest.

To view reports, see Viewing and Scheduling Reports, page 2-1.

Setting Preferences
Use the Preferences page to set the following:

• UI Language

• Report Locale

• SVG support in HTML

• Report Timezone

• Password

Access the Preferences page by selecting the Preferences link from any page within the
BI Publisher Enterprise application.

Set UI Language
The UI language is the language that your user interface displays in. The language that
you selected at login will be selected as the default. Choose from the languages that are
available for your installation.

Set Report Locale
A locale is a language and territory combination (for example, English (United States)
or French (Canada)). BI Publisher uses the report locale selection to determine the
following:

• The template translation to apply

• The number formatting and date formatting to apply to the report data

Getting Started 1-3

Note that a particular report must have an available template translation for the
selected locale. If not, BI Publisher will apply a locale fallback logic to select the
template. For more information, see Locale Selection Logic, page 7-7.

The appropriate number and date formatting will be applied independently of the
template translation.

Set Report Timezone
Select the timezone to apply to your reports. Reports run by this user will display the
time according to the timezone preference selected here. You can override this setting
for a particular report from the Schedule Report, page 2-5 page. Note that the time
displayed on the user interface and reflected in report processing times is governed by
the BI Publisher server timezone.

Enable SVG for HTML
You can choose to have graphics in your HTML reports displayed using scalable vector
graphics (SVG) technology. Your browser may require a plug-in to enable SVG. If so,
you will be prompted to download this plug-in the first time you attempt to view an
HTML graphic with SVG enabled. If you do not wish to use the SVG plug-in, select No.

Set Your Password
To change your password, select the Account tab of the Preferences page. Enter your
current password then your new password as prompted.

Viewing and Scheduling Reports 2-1

2
Viewing and Scheduling Reports

Viewing a Report
The Reports home page offers different functionality depending on your user
permissions.

To view a report
1. Navigate to the report.

The Reports home page displays two main reports folders.

• Shared Folders contains the reports and folders you have been granted access
to based on your role

• My Folders contains the reports and folders your administrator has assigned to
you and the reports you have created (if you have the BI Publisher Developer
or Administrator role).

Each folder displays the first three items (reports or folders) contained in the folder.
To see additional items contained in a folder, either select the folder name, or select
the more link.

2-2 Oracle Business Intelligence Publisher User's Guide

Viewing a Report

2. From the Reports home page, select the report name; or, from the Folder view,
select the View link for the report. This will run the report using the default options
and display it in your browser.

Note: Some reports may not allow online execution. For these
reports, the View link will not display. Select Schedule to schedule
a report run. See Scheduling a Report, page 2-5.

Viewing and Scheduling Reports 2-3

Folder View

Depending on the report definition and your user permissions, you may be
presented with the following options:

• Change parameter values - if the report includes parameters, these are
presented on the View page. To display the report with new parameter values,
enter the values and select View.

2-4 Oracle Business Intelligence Publisher User's Guide

• Change the report template - if multiple templates are available they will be
displayed in the Template list. Select a new template, then select View.

• Change the output type - if multiple output types are available, select the
desired output type (example: html, pdf, rtf, excel, or data) from the list and
select View. The output will be rendered in your browser.

• Export the report - select the Export button to export the report to the default
application for its output type (for example: Adobe Acrobat for pdf output or
Microsoft Excel for excel output).

• Send the report - select the Send button to invoke the Destination dialog.
Select the delivery method (Email, Printer, Fax, FTP or Web Folder) and enter
the appropriate information for your choice.

Note: To Send a report to the Printer or Fax, you must first
change the output type to PDF and select View. Then select
Send.

Access to the following functions must be granted by the System Administrator and
may not be available to all users:

Viewing and Scheduling Reports 2-5

• Schedule a report - see Scheduling a Report, page 2-5.

• Invoke Analyzer - see Using the Online Analyzer, page 2-11.

• Invoke Excel Analyzer - see Using the BI Publisher Analyzer for Excel, page 2-
14.

Scheduling a Report
To schedule a report:

1. Select the name of the folder that contains the report to access the Folder view; or,
select the report name to View the report.

2. Select the Schedule link.

3. On the Schedule Report page, enter the following:

• Report Parameters (if applicable) - if the report definition includes parameters,
select the desired values for this submission.

• Template - select the layout template to apply to the report. You can apply one
template per job submission.

• Format - select the output format.

• Job Name - enter a name for your report run.

• Report Formatting Locale - Select the language-territory combination for the
report. This field defaults to the Report Locale defined in the user Preferences
(see Setting Preferences, page 1-2).

Note: A report must have an available template translation for
the selected locale. If not, BI Publisher will apply a locale
fallback logic to select the template. For more information, see
Locale Selection Logic, page 7-7.

The appropriate number and date formatting will be applied
independently of the template translation.

• Report Formatting Time Zone - select the time zone that you want use for the
published report. The time zone defaults to the time zone of the BI Publisher
server.

• Report Formatting Calendar - select the calendar to apply to the date.

2-6 Oracle Business Intelligence Publisher User's Guide

• Public - select this check box to make this job available to all users with access
to the report. Users with access can view the report from the History page.

• Save data for Republish - select this check box if you want the XML data from
the report run saved.

• Save Output - select this check box if you want the report output saved. You
must select this option if you want to view your report from the History page.

• Use Unicode (UTF8)

Schedule Report Page

Viewing and Scheduling Reports 2-7

4. If you wish to receive notification by e-mail, enter a comma-separated list of
addresses to send the notification to and select the notification criteria.

5. Enter the Time criteria.

• If you select Run Once, select the Run Date and Run Time.

• If you select Run Daily/Weekly select the days of the week, the Run Time,
Active Start Date to begin the recurring job and the Active End Date to end the
recurring schedule.

• If you select Run Monthly, select the month, the day of the month to run the
report, the Run Time, the Active Start Date to begin running the report and the
Active End Date. To select multiple days of the month to run the report, enter
each day separated by a comma (example: 1,15,28).

6. Select the Destination mode and enter the appropriate fields for your selection. To
deliver via multiple channels, select the Add Destination button and continue
adding destinations as needed.

If you do not wish to choose any of these destinations, leave this region blank.
Select the Save output check box in the Job Properties region to view the output
from the History page. See Viewing Report History, page 2-10.

• Email - enter multiple e-mail addresses separated by a comma. Enter any Body

2-8 Oracle Business Intelligence Publisher User's Guide

text that you want to include with the report.

• Printer - Select the Printer Group and the Printer, enter the Number of copies,
and select Single sided or Double sided (the printer must support duplex
printing for this option to take effect), the optionally select the printer Tray
from which to print the report, and the Pages to print if you do not wish to
print the entire report.

• Fax - select the Fax server to deliver the report and enter the Fax number to
which to send the report.

• FTP

• FTP Server - select the server to deliver the report.

• Username - enter a valid username for the server.

• Password - enter a valid password.

• Remote Filename - enter the full path to the file on the remote server.
(Example: /home/user/myreport.pdf)

• Use Secure FTP - select the check box to use secure FTP.

• Web Folder

• Web Folder Server - select the server to deliver the report.

• Username - enter a valid username for the server.

• Password - enter a valid password.

• Remote Filename - enter the full path to the file on the remote server.
(Example: /public/myreport.pdf)

7. Select Submit. This will invoke the Schedules page where you can monitor your
report. See Managing Your Scheduled Reports, page 2-9.

Scheduling a Report to Be Burst
If your report has been enabled for bursting, the Schedule Report page will include a
Burst Report option under the Job Properties region. Once you select this option, the
Template and Format parameters and the Delivery options for the report run are
disabled because these parameters are defined in the delivery dataset defined for the
report. See Enabling a Report for Bursting, page 3-41 for more information on bursting
set up.

Viewing and Scheduling Reports 2-9

Managing Your Scheduled Reports
The Schedules tab displays information about scheduled reports and the History of
reports that have already run.

Schedules Page

Navigate to this page by selecting the Schedules tab, and then the Schedules subtab.

• View current schedules for your private, shared, and public reports

• Monitor the status of a submitted report

2-10 Oracle Business Intelligence Publisher User's Guide

• Delete a scheduled report

• Suspend/Resume a scheduled report

• View the submission details

Viewing Report History and Saved Output
The History page displays information about scheduled reports and reports that have
already run.

Navigate to this page by selecting the Schedules tab then the History subtab. Use this
page to:

• View the status of private, shared, and public submitted reports

• View start and end processing times

• Download or view the XML data produced from the report (if you selected Save
Data for the report)

• Download or view the report document (if you selected Save output)

• View report submission details

• Republish the report data using other formats or templates (if you selected Save
Data for the report)

You can sort the table of reports by Job Name, Status, Username, Scope, Start Time, or
End Time by selecting the column heading.

Viewing and Scheduling Reports 2-11

Using the Online Analyzer
Note: Your system administrator must assign you access to this feature.

The online Analyzer allows you to create a pivot table of your data. Use the interface to
analyze your report data by dragging and dropping data items into the crosstab
structure. Then quickly rearrange data as desired by dragging items to different row,
column or summary positions.

You can filter the data displayed in your pivot table by defining page-level data items.
Drag and drop the desired field to the Page item area and then choose from the values
that immediately populate the list.

After selecting all the data items for the table, choose whether to view the Sum,
Average, or Count of the data items.

The following example displays the usage of the Analyzer with a simple Sales Analysis
report:

1. Select the Analyzer button from the View Report page.

The Analyzer interface displays the list of data fields on a pane and an empty
crosstab structure on the adjacent pane, as shown in the following figure.

2. To filter by CATEGORY_NAME, drag the item to the Page Items region, as shown
in the following figure:

2-12 Oracle Business Intelligence Publisher User's Guide

Now you can choose a value from the CATEGORY_NAME list to filter the page
data:

3. To view product sales by year, drag PRODUCT_NAME into the Row Field area,
and drop ORDER_YEAR into the Column Field area. Drop the SALES data into the
table body area, as shown in the following figure:

Viewing and Scheduling Reports 2-13

You can now see the calculated sales totals as a sum of the data items.

4. Add the dimension of ORDER_PERIOD to the table by dragging the data item over
the ORDER_YEAR. Now you can click the ORDER_YEAR to open it up to display
each ORDER_PERIOD total. Click again to close the item and view only the
ORDER_YEAR total.

2-14 Oracle Business Intelligence Publisher User's Guide

The final figure shows how you can arrange the same data differently in the
interface to perform a new analysis.

Using the BI Publisher Analyzer for Excel
Note: Your system administrator must assign you access to this feature.

Prerequisites
• Microsoft .NET Framework 2.0

If not installed on your computer, you will be prompted to download it the first

Viewing and Scheduling Reports 2-15

time you use the Analyzer for Excel.

• Microsoft Excel 2000 or later

Features
The Analyzer for Excel enables you to:

• Export the results of the report query to an Excel spreadsheet.

• Log in to BI Publisher Enterprise from Excel to refresh your data, apply new
parameters, and apply a template to the report data.

• Create Excel templates and upload them to the BI Publisher server

• Access and run your reports from an Excel session.

Launching the Excel Analyzer
1. Select the Excel Analyzer button from the View report page. You will be prompted

to Save or Open the report .xls file.

2. When you open the file, select Enable Macros from the Excel dialog.

Note: You must enable macros to use the Analyzer for Excel.

The report data will render in your Excel application window and the Oracle BI
Publisher menu will appear on your Excel menu bar. Note that the data are the
results of the report query with no template and default filtering applied.

You can now manipulate the data as you wish in Excel.

If the report has parameters, the parameter names will appear at the top of the
sheet, but you must log in to apply new parameter values. See Using the Oracle BI
Publisher Menu, page 2-15.

Using the Oracle BI Publisher Menu
You must log in to enable all the menu commands.

Login – allows you to log in to the BI Publisher server.

Note: If you do not have Microsoft .NET Framework 2.0 installed on
your computer, you will be prompted to download it. Select the URL
and follow the instructions on the Microsoft Web site to download and
install .NET. If you do not wish to install .NET, click OK to close the

2-16 Oracle Business Intelligence Publisher User's Guide

message window.

If this is the first time you have used the Analyzer for Excel, or if you do not have the
latest version of Analyzer for Excel, you will be prompted to install the latest version.

Show Report Parameters – displays the updateable parameters and available templates
for the report in a toolbar.

Analyzer for Excel Toolbar

To update the data, select a new parameter value then select Refresh Data to refresh the
data in the current sheet.

To apply a template, select the template, then select Refresh Formatted Data. This will
download the report as HTML into a new worksheet. Select the new worksheet to see
the data with the new template applied.

Note: The template you select must have HTML as an available output.

To change the parameters from this worksheet, select the new values, then select
Refresh Data, then select Refresh Formatted Data.

Update Excel Template

If you used the Open Template dialog to download a template from the BI Publisher
server, use this option to upload the updated layout back to the server.

Add as New Excel Template -

If you used the Open Template dialog to download a template or to open a report from
the BI Publisher server, use this option to upload the layout to the server. Also use this
option to upload modifications to an existing template under a different name.

Note that if you created any charts on a separate worksheet the charts cannot be
scheduled and viewed within BI Publisher Enterprise. Only charts that you create on
the same worksheet that is downloaded by the Excel Analyzer can be updated and

Viewing and Scheduling Reports 2-17

viewed within the BI Publisher application.

View Report Online

Launches the View report page.

Browse for Reports Online

This dialog enables you to select reports from the BI Publisher Report Server or the
Oracle BI Answers server. You can either load the report data to create a new template,
or download an existing template to update it or to use as a starting point for a new
template.

When you use the Open Template dialog to initiate the template building process, you
can then use the Update Excel Template options from the Oracle BI Publisher Menu to
upload the template directly to the appropriate report in the BI Publisher server.

From the Oracle BI Publisher menu, select Open Template.

Workspace

The default workspace is the Oracle BI Publisher server; you can also select Oracle BI to
connect to the Answers server. Browse the directory structure of the workspace to select
the desired report. Select a folder to display its contents in the Reports pane.

Reports Pane

The Reports pane lists the reports in the selected directory. Select a report to display the
available templates in the Layout Templates pane.

Open Report

Loads the XML data of the selected report to the Template Builder.

Open Layout Template Downloads and opens the selected template in the Template
Builder and loads the XML data.

To start a new template, select <New> from the list of templates then select Open
Layout Template; or double-click <New>.

Use the Report Browser's Up icon to move up the directory structure.

Use the View As menu to view the folder contents as Large Icons, Small Icons, List or
Details.

Preferences - select your locale and proxy settings if required.

Logging in Through Excel
Once you have installed the Analyzer for Excel, you can log in to the BI Publisher
Enterprise server any time from Excel, you do not have to log in to BI Publisher first.

Once you have Excel open, simply select Log in from the Oracle BI Publisher menu. The
BI Publisher Enterprise log in screen will prompt you to enter your credentials and to
select (or enter) the Report Server URL.

Part 2
Creating Reports and Layouts

Creating a New Report 3-1

3
Creating a New Report

Process Overview
Note: You must be assigned the BI Publisher Developer role or BI
Publisher Administrator role to create or edit reports.

Creating a new report consists of the following steps:

1. Create the report entry in the desired folder on the Reports page.

2. Open the Report Editor.

3. Specify the general properties for the report.

4. Define the Data Model.

Your report data may come from a SQL query, an HTTP feed, a Web service, an
Oracle BI Answers request, a file, or BI Publisher's data template.

5. Define the parameters that you want users to pass to the query, and define lists of
values for users to select parameter values.

6. Test your data model.

7. Design the layout template.

• If you are designing an RTF template, load the data to the Template Builder for
Word. Use the Template Builder in conjunction with the instructions in
Creating an RTF Template, page 5-1 to build your report layout.

• If you are designing a PDF template, follow the instructions in Creating a PDF
Template, page 8-1 to build your report layout.

3-2 Oracle Business Intelligence Publisher User's Guide

• If you are using a predesigned PDF form (such as a government form) follow
the instructions under Mapping Data to PDF Form Fields.

8. Upload your templates to the Report Editor.

9. (Optional) Enable bursting.

10. (Optional) Add translations for your reports. See Translating Reports, page 7-1.

Create the Report Entry and Specify General Properties
Note: You must be assigned the BI Publisher Developer role or BI
Publisher Administrator Role to create or upload reports.

1. Navigate to the folder in which you want the new report to reside.

To create a new folder for this report, select the Create a new folder link.

2. Select the Create a new report link from the Folder and Report Tasks menu. This
will invoke a text box for you to enter the name of your new report.

Creating a New Report 3-3

3. Enter the name for your new report and select Create. This creates the listing for
your report within the current folder.

4. Select the Edit link for the new report entry. This invokes the Report Editor.

3-4 Oracle Business Intelligence Publisher User's Guide

Report Editor

5. Enter the Report Properties:

• Description - the description will display beneath the report name within the
report folder.

• Default Data Source - select the data source from the list of values. You may
define multiple data sources for your report when you define the Data Model.
The Default Data Source you select here will be presented as the default for
each new data set you define. Select Refresh Data Source List to see any new
data sources added since your session was initiated.

• Parameters per line - enter the number of parameters that you want to display
before creating a second parameter line for the report. The parameter line is
displayed in the online report View page and the Schedule page.

• Run report online - select this box to enable this report in the online viewer. If
not selected, users will be able to Schedule the report only.

• Show controls - select this box so that all users can see the control region of the
report. Control region consists of the Template list, Output list, and Parameter
lists.

• Open Links in New Window? - select this box to open any links contained in

Creating a New Report 3-5

the report in a new browser window.

• Auto Run - select this box to automatically run the report when the user selects
the report or the View link for the report within the report folder. When Auto
Run is not turned on, selecting the report or the View link for the report
displays the online Viewer and parameters for the report only. The user must
select the View button from the online Viewer to run the report.

6. Select the Save icon to save your report definition.

Defining the Data Model
BI Publisher requires XML data to publish reports. The XML data can come from any of
the following sources:

• SQL query

• HTTP (XML feed)

• Web service

• Data Template

• Oracle BI Answers request

• File

You can define multiple data sets for one report and each data set can have a different
data source and source type. When you define multiple SQL queries, you can
concatenate the resulting data sets.

To Define the Data Model:
1. Select Data Model.

3-6 Oracle Business Intelligence Publisher User's Guide

This will display the Main Data Set list. This list will be empty until you define a
data set. To define a data set, select New.

• Enter a Name and Type for the data set. The Type can be:

• SQL Query

• HTTP (XML Feed)

• Web Service

• Data Template

• Oracle BI Answers

• File

Important: If your data set is a Web Service or HTTP (XML
Feed) you must define any parameters before you define the
data set.

2. After you have defined your data sets, select Data Model. The data sets that you
have defined will now populate the list for Main Data Set. Select the data set that
will be used to generate the report.

Creating a New Report 3-7

Note: If you are defining multiple data sets from SQL queries, you
can combine them into a single data set by selecting Concatenated
SQL Data Source. It is strongly recommended that you select Make
row names unique if you are concatenating datasets.

Defining a SQL Query Data Set Type

1. Select the Data Source for this data set. Select the Default Data Source (defined in
the Report Properties) or select a new data source from the list.

2. Select the Cache Result box if you wish to cache the results of the query for your
session.

By caching the results of the query, multiple templates can be applied to these
results without requerying the data. This will enhance online performance.
However, if the data is updated during the session, the user cannot view the new
data via the View report page until the cache is cleared.

Note: You can control the cache expiration time and the cache size
through the configuration settings. See Setting Server
Configuration Options, page 11-8 for more information.

3-8 Oracle Business Intelligence Publisher User's Guide

3. Enter the SQL query or select Query Builder. See Using the Query Builder, page 3-
8 for information on the Query Builder utility.

Using the Query Builder

About Query Builder
Use the Query Builder to build SQL queries without coding. The Query Builder enables
you to search and filter database objects, select objects and columns, create relationships
between objects, and view formatted query results with minimal SQL knowledge.

The Query Builder page is divided into three sections:

• Object Selection pane contains a list objects from which you can build queries. Only
objects in the current schema display.

• Design pane displays selected objects from the Object Selection pane.

• Output pane allows you to create conditions, view the generated SQL, or view
query results.

Creating a New Report 3-9

Understanding the Query Builder Process
To build a query, perform the following steps:

• Select objects from the Object Selection pane.

• Add objects to the Design pane and select columns.

• Optional: Establish relationships between objects.

• Optional: Create query conditions.

• Execute the query and view results.

Using the Object Selection Pane
In the Object Selection pane you can select a schema and search and filter objects.

To hide the Object Selection pane, select the control bar located between it and the
Design pane. Select it again to unhide it.

Selecting a Schema
The Schema list contains all the available schemas in the data source. Note that you may
not have access to all that are listed.

Searching and Filtering Objects
Use the Search field to enter a search string. Note that if more than 100 tables are

3-10 Oracle Business Intelligence Publisher User's Guide

present in the data source, you must use the Search feature to locate and select the
desired objects.

Selecting Objects
The Object Selection pane lists the tables, views, and materialized views from the
selected schema (for Oracle databases, synonyms are also listed). Select the object from
the list and it displays on the Design pane. Use the Design pane to identify how the
selected objects will be used in the query.

Supported Column Types
Columns of all types display as objects in the Design pane. Note the following column
restrictions:

• Each can select no more than 60 columns for each query.

• Only the following column types are selectable:

• VARCHAR2, CHAR

• NUMBER

• DATE, TIMESTAMP

• BLOB

Note: The BLOB must be XML or an image. When you execute
the query in the Query Builder, the BLOB will not display in
the Results pane, however, the query will be constructed
correctly when saved to the Report Editor.

• XMLType

Note: When you execute the query in the Query Builder, the
XMLType will display as null. When you save the query to the
Report Builder, you must add the function (such as
getClobval()) to extract the XML from the type.

Adding an Object to the Design Pane
1. Select an object.

The selected object displays in the Design pane. An icon representing the datatype
displays next to each column name.

2. Select the check box for each column to include in your query.

When you select a column, it appears on the Conditions tab. Note that the Show
check box on the Conditions tab controls whether a column is included in query
results. Be default, this check box is selected.

Creating a New Report 3-11

To select the first twenty columns, click the small icon in the upper left corner of the
object and then select Check All.

3. To execute the query and view results, select Results.

Tip: You can also execute a query using the key strokes CTRL +
ENTER.

Resizing the Design and Results Pane
As you select objects, you can resize the Design and Results panes by selecting and
dragging the gray horizontal rule dividing the page.

Removing or Hiding Objects in the Design Pane
To remove an object, select the Remove icon in the upper right corner of the object.

To temporarily hide the columns within an object, click the Show/Hide Columns icon.

Specifying Query Conditions
Conditions enable you to filter and identify the data you want to work with. As you
select columns within an object, you can specify conditions on the Conditions tab. You
can use these attributes to modify the column alias, apply column conditions, sort
columns, or apply functions.

When you select a column to include in your query, it appears as a separate row in the
Output pane. The following table describes the attributes available on the Conditions
tab:

Condition Attribute Description

Up and Down Arrows Controls the display order of the columns in the resulting query.

Column Displays the column name.

Alias Specify an optional column alias. An alias is an alternative column name. Aliases are
used to make a column name more descriptive, to shorten the column name, or
prevent possible ambiguous references.

Condition The condition modifies the query's WHERE clause. When specifying a column
condition, you must include the appropriate operator and operand. All standard SQL
conditions are supported. For example:

>=10

='VA'

IN (SELECT dept_no FROM dept)

BETWEEN SYSDATE AND SYSDATE + 15

3-12 Oracle Business Intelligence Publisher User's Guide

Condition Attribute Description

Sort Type Select ASC (Ascending)

or DESC (Descending).

Sort Order Enter a number (1, 2, 3, and so on) to specify the order in which selected columns
should display.

Show Select this check box to include the column in your query results. You do not need to
select Show if you need to add a column to the query for filtering only.

For example, suppose you wish to create following query:

SELECT ename FROM emp WHERE deptno = 10

To create this query in Query Builder:

1. From the Object list, select EMP.

2. In the Design Pane, select ename and deptno.

3. For the deptno column, in Condition enter =10 and uncheck the Show check
box.

Function Available argument functions include:

1. Number columns - COUNT, COUNT DISTINCT, AVG, MAXIMUM,.
MINIMUM, SUM

2. VARCHAR2, CHAR columns - COUNT, COUNT DISTINCT, INITCAP,
LENGTH, LOWER, LTRIM, RTRIM, TRIM, UPPER

3. DATE, TIMESTAMP columns- COUNT, COUNT DISTINCT

Group By Specify columns to be used for grouping when an aggregate function is used. Only
applicable for columns included in output.

Delete Deselect the column, excluding it from the query.

As you select columns and define conditions, Query Builder writes the SQL for you.

To view the underlying SQL, click the SQL tab

Creating Relationships Between Objects
You can create relationships between objects by creating a join. A join identifies a
relationship between two or more tables, views, or materialized views.

Creating a New Report 3-13

About Join Conditions
When you write a join query, you specify a condition that conveys a relationship
between two objects. This condition is called a join condition. A join condition
determines how the rows from one object will combine with the rows from another
object.

Query Builder supports inner, outer, left, and right joins. An inner join (also called a
simple join) returns the rows that satisfy the join condition. An outer join extends the
result of a simple join. An outer join returns all rows that satisfy the join condition and
returns some or all of those rows from one table for which no rows from the other
satisfy the join condition.

Note: See Oracle Database SQL Reference for information about join
conditions.

Joining Objects Manually
Create a join manually by selecting the Join column in the Design pane.

1. From the Object Selection pane, select the objects you want to join.

2. Identify the columns you want to join.

You create a join by selecting the Join column adjacent to the column name. The
Join column displays to the right of the datatype. When your cursor is in the
appropriate position, the following help tip displays:

Click here to select column for join

3. Select the appropriate Join column for the first object.

When selected, the Join column is darkened. To deselect a Join column, simply
select it again or press ESC.

4. Select the appropriate Join column for the second object.

When joined, line connects the two columns. An example is shown in the following
figure:

3-14 Oracle Business Intelligence Publisher User's Guide

5. Select the columns to be included in your query. You can view the SQL statement
resulting from the join by positioning the cursor over the join line.

6. Click Results to execute the query.

Saving a Query
Once you have built the query and executed it, select the Save button to return to the
Report Editor. The query will appear in the SQL Query box.

Editing a Saved Query
Once you have saved the query from the Query Builder to the Report Editor, simply
select Query Builder again to edit the query. The Query Builder will parse the query
and present it for modification in the Query Builder interface.

Defining an HTTP Data Set Type
Using the HTTP data source type you can create reports from RSS feeds over the Web.

Note that if you want to include parameters for an HTTP (XML feed), you must define
the parameters first, so that they are available for selection when setting up the data
source. See Adding Lists of Values and Parameters, page 3-22.

• Enter the URL for the XML feed.

• Select the Method: Get or Post.

Creating a New Report 3-15

• Enter the Username, Password, and Realm for the URL, if required.

• Select the Cache Result box if you wish to cache the results of the query for your
session.

By caching the results of the query, multiple templates can be applied to these
results without requerying the data. This will enhance online performance.
However, if the data is updated during the session, the user cannot view the new
data via the View report page until the cache is cleared.

Note: You can control the cache expiration time and the cache size
through the configuration settings. See Setting Server
Configuration Options, page 11-8 for more information.

• To add a parameter, select the Add link. Enter the Name and select the Value. The
Value list is populated by the parameter Identifiers defined in the Parameters
section. See Adding Parameters and Lists of Values, page 3-22.

Defining a Web Service Data Set Type
BI Publisher supports document/literal Web service data sources that return XML as a

3-16 Oracle Business Intelligence Publisher User's Guide

string.

Tip: If the WSDL URL is outside of your company firewall remember to
start the server up with the proxy parameters.

Note that if you want to include parameters for the Web service method, you must
define the parameters first, so that they are available for selection when setting up the
data source. See Adding Parameters and Lists of Values, page 3-22.

Multiple parameters are supported. Ensure the method name is correct and the order of
the parameters matches the order in the method. If you want to call a method in your
Web service that accepts two parameters, you must map two parameters defined in the
report to those two. Note that only parameters of simple type are supported, for
example, string and integer.

• Enter the WSDL URL and the Web Service Method.

Important: Only document/literal Web services are supported.

• To specify a parameter, select the Add link. Select the parameter from the list.

Note: The parameters must already be set up in the Parameters
section of the report definition See Adding Parameters and Lists of
Values, page 3-22.

Web Service Example
This example shows how to add a Web service to BI Publisher as a data source. The
Web service returns stock quote information. The Web service will pass one parameter:
the quote symbol for a stock.

The WSDL URL is:
http://www.webservicex.net/stockquote.asmx?WSDL

If you are not already familiar with the available methods and parameters in the Web
service that you want to call, you can open the URL in a browser to view them. This
Web service includes a method called GetQuote. It takes one parameter, which is the
stock quote symbol.

To add the Web service as a data source:
1. Enter the Data Set information:

• Enter a Name for the Data Set and select Web Service as the Type.

• Enter the WSDL URL:
http://www.webservicex.net/stockquote.asmx?WSDL

Creating a New Report 3-17

• Enter the Method: GetQuote

2. Define the parameter to make it available to the Web service data set.

Select Parameters on the Report definition pane and click New to create a new
parameter. Enter the following:

• Identifier - enter an internal identifier for the parameter.

• Data Type - String

• Default Value - if desired, enter a default for the parameter.

• Parameter Type - Text

• Display label - enter the label you want displayed for your parameter.

• Text Field Size - enter the size for the text entry field in characters.

3-18 Oracle Business Intelligence Publisher User's Guide

3. Return to your Web service data set and add the parameter.

• In the Details section under Parameters, Select Add. The Quote parameter you
specified is now available from the list.

Creating a New Report 3-19

4. To view the results XML, select View. Enter a valid value for your Stock Quote
parameter and select View again.

Defining a Data Template Data Set Type
Use the BI Publisher data template to create more complex SQL queries. See Building a
Data Template, page 4-1 for features and usage. Please note that lexical parameters
are only supported when executing a query against an Oracle E-Business Suite instance.

Enter the data template code directly in the Data Template text box, or copy and paste
the data template from another text source.

Important: If copying the data template, the entry in the text box must
begin with the <dataTemplate> element. Do not include the XML
declaration.

3-20 Oracle Business Intelligence Publisher User's Guide

Defining an Oracle BI Answers Request Data Set Type
If you have enabled integration with Oracle Business Intelligence Presentation Services,
then you can access the BI catalog to select an Oracle BI Answers request as a data
source. Oracle BI Answers is an ad hoc query building tool included in the Oracle
Business Intelligence Enterprise Edition. For more information on building Oracle BI
Answers see the Oracle Business Intelligence Answers, Delivers, and Interactive Dashboards
User Guide.

1. Choose Oracle BI Answers as the data set Type.

Note: BI Publisher does not support lists of values and parameters
for the Oracle BI Answers request data set type.

2. Select the browse icon to connect to the Oracle BI Answers catalog. This action
displays the folders you have access to on the Oracle BI Presentation Services
server.

Note: You must set up integration with Oracle BI Presentation
Services to enable Oracle BI Answers as a data set Type. See

Creating a New Report 3-21

3. Select the Answers request you wish to use as the data set for your report.

4. Select the Cache Result box if you wish to cache the results of the query for your
session.

By caching the results of the query, multiple templates can be applied to these
results without requerying the data. This will enhance online performance.
However, if the data is updated during the session, the user cannot view the new
data via the View report page until the cache is cleared.

Note: You can control the cache expiration time and the cache size
through the configuration settings. See Setting Server
Configuration Options, page 11-8 for more information.

Defining a File as a Data Set Type
When you set up data sources (see Setting Up Data Sources, page 11-2) you can define
a file directory as a data source. You can then place xml documents in the file directory
to access directly as data sources for your reports.

1. Choose File as the data set Type.

2. Choose the appropriate file directory as the Data Source.

3-22 Oracle Business Intelligence Publisher User's Guide

3. Enter the File Name of the XML document to use as the report data set. If the file
resides in a subdirectory, include the path.

Adding Parameters and Lists of Values
Add parameters to your report definition to enable your users to interact with the
report and specify the data of interest from the data set; or specify hidden parameters to
control the data returned to a user from a data set.

Note: Parameters are not supported for Oracle BI Answers request data
set type.

BI Publisher supports the following parameter types:

• Text - allows the user to enter a text entry to pass as the parameter.

• Menu - allows the user to pass parameters by making selections from a list of
values. This option supports multiple selections, a "Select All" option, and partial
page refresh for cascading parameters. Define the properties for the list of values in
the report definition. A list of values can contain fixed data that you specify or the
list can be created via a SQL query executed against any of the defined data sources.

To add a parameter as a menu, define the list of values first. Then define the
parameter and associate it to the list of values. See Adding a List of Values, page 3-
23.

Creating a New Report 3-23

• Date

• Hidden - enables you to pass the default value always, without allowing the user to
see or change it.

Adding a List of Values:
• Select List of Values and then select the New icon in the toolbar. This will create a

New List of Values entry.

• Enter a Name for the list and select a Type: SQL Query or Fixed Data.

If you select SQL Query:
• Select a Connection from the data source list.

• Select Cache Result if you want the results of the query cached for the report
session.

• Enter the SQL query or use the Query Builder. See Using the Query Builder,
page 3-8 for information on the Query Builder utility.

If you select Fixed Data:
• Select the Add link to add the Label and Value pairs for the LOV.

3-24 Oracle Business Intelligence Publisher User's Guide

Adding Parameters
Select Parameters and then select the New icon to define parameters for the report.

• Enter a name Identifier and the Data Type (String, Integer, Boolean, Date, or Float).

• Enter a Default Value for the parameter, if desired. Enter * to pass All as the
default.

Note: Using * passes a null, so you must handle the null in your
data source. A method to handle the null would be the standard
Oracle NVL command, for example:

where customer_id = nvl(:cstid, customer_id)

where cstid is a value passed from the LOV and when the user
selects All it will pass a null value.

If your data source is the Oracle BI Server, use the following macro
to handle the null:

Creating a New Report 3-25

{$ if ${sYear}='*'$}
{$elsif ${sYear}='2000' $}
where Year = :sYear
{$else $}
where Year = :sYear
{$endif$}

where Year is a value passed from the LOV and when the user
selects All it will pass a null value.

Note that the test operator must be either "=" or "!=".

• Select the Parameter Type:

• Text - this type allows the user to enter a text entry to pass as the parameter.
Enter the Display Label for the parameter and the Text Field Size in characters.

• Menu - this type presents an LOV. Enter the Display Label and select from the
LOVs you defined in the previous step. You may also enable the following
options:

• Multiple Selection - allows the user to select multiple entries from the list.

• Can select all - inserts an "All" option in the list.

• Refresh other parameters on change - performs a partial page refresh to
refresh any other parameters whose values are dependent on the value of
this one.

• Date - passes a date parameter. If you select a Parameter Type of Date, the Data
Type automatically defaults to Date. Enter the following:

• Display Label and Text Field Size in characters.

• Date Format String

• Date From and Date To

• Hidden - select this option to pass the default value always, without allowing
the user to see or change it.

Adding Layouts to the Report Definition
BI Publisher offers several options for designing templates for your reports. Templates
can be in any of the following formats:

• Rich Text Format (RTF)

3-26 Oracle Business Intelligence Publisher User's Guide

RTF is the most common template type. Use Microsoft Word to design the template.
Most Microsoft Word formatting features are supported. BI Publisher provides a
plugin utility for Microsoft Word that automates template design and enables you
to connect to BI Publisher to access data and upload templates directly from your
Word session.

• Portable Document Format (PDF)

PDF templates are used primarily for using predefined forms as templates for your
reports. For example, you can download forms from government Web sites and
load them to BI Publisher as report templates. You can also design your own PDF
templates using Adobe Acrobat Professional. BI Publisher provides a mapping tool
to enable you to map fields from your data source to the form fields in the PDF
template.

• Microsoft Excel (XLS)

Use BI Publisher's Analyzer for Excel to download your report data to an Excel
spreadsheet. Create a layout for the data in Excel and then upload the spreadsheet
back to BI Publisher to use as a template. See Using the BI Publisher Analyzer for
Excel, page 2-14.

• XSL Stylesheet

You can define a template in XSL formatting language. Specify whether your
template is for FO, HTML, XML, or Text transformation. To add your template,
follow the steps in Adding a Layout - General Steps, page 3-27.

• eText

These are specialized RTF templates used for constructing EDI or EFT transactions.
See Creating an eText Template, page 9-1. To add your template, follow the steps
in Adding a Layout - General Steps, page 3-27.

To add a layout to your report definition, select Layouts to specify the layout template
for the report. Defining layouts consists of two steps: Upload a template file, and then
assign the template file to a Layout definition. If you are connected to BI Publisher
through the Template Builder or Excel Analyzer, you can upload the layout file in one
step.

Note: To build a template for your report, you must have sample data.
Once you have defined your query, you can select the View link to
generate XML. Select the Export button and save the file to your local
directory. If you are building an RTF template or Excel template you
can load this data directly to the Template Builder for Word or Excel
using BI Publisher's desktop tools described in the following sections.

For information on creating template layout files, see Creating an RTF Template, page
5-1 or Creating a PDF Template, page 8-1.

Creating a New Report 3-27

Adding a Layout - General Steps
To add a layout to your report definition, select Layouts to specify the layout template
for the report. Defining layouts consists of two steps: Upload a template file, and then
assign the template file to a Layout definition. If you are connected to BI Publisher
through the Template Builder or Excel Analyzer, you can upload the layout file in one
step.

See Creating an RTF Template Using the Template Builder for Word, page 3-29.

The general guidelines for uploading and defining the layout for any template type are
as follows:

1. Upload your layout template file.

From the BI Publisher Report Editor. Select Layouts.

Use the Browse button to locate it in your local file system, then select Upload. The
template will now appear in the Manage Template Files region. You can upload as
many templates as you want to make available to this report.

2. Select the New icon to create the definition for the new template.

3-28 Oracle Business Intelligence Publisher User's Guide

• Enter a Name for the layout definition. This name will appear in the Template
list on the View report page.

• Select the Template file from the list of uploaded templates to correspond to
this layout definition.

• Select the appropriate template type you are uploading: RTF, PDF, Excel, XSL,
or eText.

• Select the Output Format types to allow for this layout.

If the template type is RTF, you can either select All Formats or limit the
allowed formats by selecting only those desired.

All other template types have specific output formats. For these, All Formats is
automatically selected. The allowed output type for each of the other template
types is the same as the template type (example: PDF Templates allow PDF
output only).

Note: You can also manage the output types allowed through
the Runtime Configuration properties. However, the setting on
the report definition will override the configuration. See Setting
Runtime Properties, page 11-13.

Creating a New Report 3-29

3. Select Save. The Layout will now appear as an available template when you run the
report.

4. Select a Default Template. The Default Template will be used by default by the
online viewer and the scheduler unless the user selects another.

Creating an RTF Template Using the Template Builder for Word
Prerequisites:
• Your report data model has been created and runs successfully.

• Microsoft Word version 2000 or later and Microsoft Windows version 2000 or later
are installed on your client.

• The Template Builder has been downloaded and installed on your client.

The Template Builder can be downloaded from the BI Publisher Folder and Report
Tasks region.

Features of the Template Builder
When you open Microsoft Word after installing the Template Builder you will notice
the Oracle BI Publisher menu and the BI Publisher toolbar.

3-30 Oracle Business Intelligence Publisher User's Guide

The toolbar and the menu provide two methods of performing many of the same
functions, including:

• Insert data fields into your RTF templates

• Insert tables, forms, charts, and crosstabs

• Preview your template in multiple outputs

• Browse and update the content of form fields

• Validate your template

• Perform calculations on fields within the template

• Connect to the Oracle BI Publisher server or the Oracle BI server to retrieve data to
build your template

• Publish your template to the Oracle BI Publisher server

• Extract boilerplate text into an XLIFF translation file and test translations

Building and Uploading Your Template
You can build and upload your template via a direct connection with the BI Publisher
server, or you can build and upload your template in disconnected mode.

Creating a New Report 3-31

Connected Mode
1. Open Microsoft Word.

2. From the Oracle BI Publisher menu, select Log On.

3. Enter your BI Publisher credentials and the URL for the BI Publisher server.
(Contact your system administrator if you do not know the URL.)

4. The Open Template dialog presents the same folder structure as your BI Publisher
Reports home page. Select the report for which you want to build a template.

5. Select Open Report to load the data to the Template Builder; or double-click <New>
in the Layout Templates pane.

Note that any existing templates will be listed in the Layout Templates pane.

6. Follow the guidelines in the Template Builder online help (from the Oracle BI
Publisher menu) to insert data fields and design your template using features such
as tables, charts, graphics, and crosstabs. Use Microsoft Word to apply formatting
to fonts and other objects in your template.

For more advanced template options, use the guidelines in Creating an RTF
Template, page 5-1.

7. To upload your template to the BI Publisher server and add it to your report
definition, select Publish Template As from the Oracle BI Publisher menu.

If you have not saved your template, you will be prompted to save it in Rich Text
Format.

8. Enter a name for your template in the Upload as New dialog. Note that this is the
name that appears under Layouts in the Report Editor. This is also the template
name that will be displayed whenever the user is presented an option for selecting a

3-32 Oracle Business Intelligence Publisher User's Guide

template for this report (for example, in the View Report page).

9. (Optional) Limit the output formats for this template.

From the BI Publisher Enterprise interface, open the report in the Report Editor.
Under Layouts, select your uploaded template. If you wish to limit the output
formats for this report, select only the formats you want to make available.

Disconnected Mode
From the Report Editor:

1. Generate a sample data file.

From the Report Editor or from the Reports page, select View. If no layouts are
defined for your report, then the output type will default to xml, otherwise, choose
data for the output type. Select Export. Save the results as an XML file to a local
directory.

2. Open Microsoft Word with the Template Builder installed.

3. From the Oracle BI Publisher menu select Data and then select Load Sample XML
Data. Locate your sample data file in your local directory and select Open. A pop
up message will indicate your data has loaded successfully.

4. Follow the guidelines in the Template Builder online help (from the Oracle BI
Publisher menu) to insert data fields and design your template using features such
as tables, charts, graphics, and crosstabs. Use Microsoft Word to apply formatting
to fonts and other objects in your template.

For more advanced template options, use the guidelines in Creating an RTF
Template, page 5-1.

5. Upload your layout template file.

Return to your report definition in the BI Publisher Report Editor. Select Layouts.

Use the Browse button to locate it in your local file system, then select Upload. The
template will now appear in the Manage Template Files region. You can upload as
many templates as you want to make available to this report.

Creating a New Report 3-33

6. Select the New icon to create the definition for the new template.

3-34 Oracle Business Intelligence Publisher User's Guide

• Enter a Name for the layout definition. This name will appear in the Template
list on the View report page.

• Select the Template file from the list of uploaded templates to correspond to
this layout definition.

• Select the appropriate template type: RTF or PDF.

• Select the Output Format types to allow for this layout.

If the template type is RTF, you can either select All Formats or limit the
allowed formats by selecting only those desired.

If the template type is PDF, All Formats is automatically selected. The only
allowed output type for a PDF template is PDF.

Note: You can also manage the output types through the
Runtime Configuration Properties. However, the setting on the
report definition will override the configuration setting. For
more information, see Setting Runtime Properties, page 11-13.

Adding a PDF Template to Your Report
Typically, the source for a PDF template is a predefined form from a third party, such as

Creating a New Report 3-35

the government. If form fields have already been defined in the PDF, then you have two
options for associating the XML data to the PDF form fields:

• Map the data fields to the form fields in the PDF, using BI Publisher's PDF mapping
tool

• Name the fields from your data source to match the names of the form fields.

If you are creating a report to be used exclusively for the preparation of a PDF form,
then consider naming the fields in your data according to the form field names in
the PDF. If the field names match, no mapping is required.

If the predefined PDF does not have form fields defined, or if you wish to design your
own PDF template, then you must use Adobe Acrobat Professional to insert the form
fields. You can then either name the fields according to the data source (no mapping
will be required) or use BI Publisher's PDF mapping tool. For information on designing
a PDF template and inserting form fields, see Creating a PDF Template, page 8-1.

Determining If a PDF Has Form Fields Defined
If you have the full version of Adobe Acrobat 5.0 or later:

1. Open the file in Adobe Acrobat.

2. Select the Text Field Tool (Adobe Acrobat Professional 6.0 users) or the Form Tool
(Adobe Acrobat 5.0 users). This will highlight text fields that have already been
defined. If no fields are highlighted then you must add the fields to the PDF. See
Adding Markup to the Template Layout, page 8-3 for instructions on inserting
PDF form fields.

The following figure shows a sample PDF form opened in Adobe Acrobat
Professional 6.0. The Text Field Tool has been selected to display all the available
form fields.

3-36 Oracle Business Intelligence Publisher User's Guide

If you do not have the full version of Adobe Acrobat 5.0 or later:

1. Follow the instructions in Adding a Predefined PDF Form as a Template, page 3-36
.

2. If no highlighted fields display for mapping, or you cannot select a field, then you
must add them before you can use BI Publisher's mapping tool. Adding form fields
requires Adobe Acrobat 5.0 or later, or Adobe Acrobat Professional 6.0 or later. For
more information, see Creating a PDF Template, page 8-1.

Adding a Predefined PDF Form as a Template
Prerequisites:

• A report data model defined in BI Publisher.

• A PDF document with form fields defined.

• Adobe Acrobat Reader installed as a Web browser plugin. Recommended version is
Adobe Acrobat Reader 7.0 or later. (You can use Acrobat Reader 6 if English is the
only language required for your site.)

1. From the Report Editor, select Layouts.

Creating a New Report 3-37

2. Upload the PDF template file.

From the Manage Template Files region, select Browse to locate the PDF file, and
then select Upload.

3. Generate a sample data file.

From the Report Editor or from the Reports page, select View. If no layouts are
defined for your report, then the output type will default to xml, otherwise, choose
data for the output type. Select Export. Save the results as an XML file to a local
directory.

4. Upload the sample data file.

From the Report Editor, Layouts pane, in the Sample Data region, browse for and
upload your sample data file.

5. Map the PDF form fields.

Once you have uploaded your template and sample data, the Map Form Fields
button will become enabled.

3-38 Oracle Business Intelligence Publisher User's Guide

6. Select Map Form Fields.

The BI Publisher mapping tool will launch in a separate browser window.

Note that as you mouse over the fields, the name of the field in the PDF form will
display.

Creating a New Report 3-39

7. Click in the field on the PDF form that you want to map data to.

A second window will launch, displaying the field names from the sample data that
you loaded. Note that the form field selected is shown at the top of the dialog. If the
field is already mapped, the dialog will display the name of the data field that it is
currently mapped to. In the figure below, ANNUAL_SALARY is the name of the
selected form field. It is shown as being mapped to ANNUAL_SALARY in the data
(ANNUAL_SALARY = ANNUAL_SALARY).

3-40 Oracle Business Intelligence Publisher User's Guide

8. Select the field from the Form Field Mapping dialog and then click Select. This will
complete the mapping for the field.

9. Repeat the selection process for each field that you want to map from the PDF
template.

10. To see a preview of your template with the sample data mapped to the fields, select
Show Preview.

11. When you have mapped all fields, select Submit to save your mapping file.

Note that the PDF mapping file is saved in the report definition as a .map file.

12. Select the New icon to create the definition for the new template.

• Enter a Name for the layout definition. This name will appear in the Template
list on the View report page.

• Select the Template file from the list of uploaded templates to correspond to
this layout definition.

• Select the appropriate template type: PDF.

• The Output Format for PDF templates defaults to All Formats and does not
allow update. PDF output is the only allowed output type for PDF templates.

Creating a New Report 3-41

Enabling Bursting
Using BI Publisher's bursting feature you can split a single report based on a key in the
report data and deliver the report based on a second key in the report data. Driven by
the delivery key, you can apply a different template, output format, delivery method,
and locale to each split segment of your report. Example implementations include:

• Invoice generation and delivery based on customer-specific layouts and delivery
preference

• Financial reporting to generate a master report of all cost centers, bursting out
individual cost center reports to the appropriate manager

• Generation of payslips to all employees based on one extract and delivered via
e-mail

Enabling a Report for Bursting
Prerequisite: A report defined in BI Publisher. The report data must contain an element
by which the report will be split and an element by which the report will be delivered.

Enabling a report for bursting consists of the following steps:

• Open the report in Edit mode.

• Select Bursting under the report definition.

• Select the Enable Bursting check box.

• Select the Split By and Deliver By elements.

The Split By element is the data element from the report file that you wish to split
the report by. For example, to split a batch of invoices by each invoice, you may use
an element called CUSTOMER_NAME.

The Deliver By element is the data element from the report file by which to
determine the delivery method. In the invoice example, it is likely that each invoice
will have delivery criteria determined by customer, therefore the Deliver By
element may be CUSTOMER_ID.

• Select the data source for the delivery XML.

The delivery XML can be sourced from the same data source as the main data set,
or it can be generated from a different data source.

• Enter the SQL query to build the delivery XML. See Defining the Delivery Data Set,
page 3-42 for details.

3-42 Oracle Business Intelligence Publisher User's Guide

Defining the Delivery Data Set
Based on the SQL query that you provide on the Bursting criteria page of the Report
Editor, BI Publisher will build the delivery XML data set. The delivery XML data set
contains the information to deliver your burst report appropriately to each recipient.
The delivery data in this XML document is used as a mapping table for each Deliver By
element. The structure of the delivery XML is as follows:
<ROWSET>
 <ROW>
 <KEY></KEY>
 <TEMPLATE></TEMPLATE>
 <TEMPLATE_FORMAT></TEMPLATE_FORMAT>
 <LOCALE></LOCALE>
 <OUTPUT_FORMAT></OUTPUT_FORMAT>
 <DEL_CHANNEL></DEL_CHANNEL>
 <PARAMETER1></PARAMETER1>
 <PARAMETER2></PARAMETER2>
 <PARAMETER3></PARAMETER3>
 <PARAMETER4></PARAMETER4>
 <PARAMETER5></PARAMETER5>
 <PARAMETER6></PARAMETER6>
 <PARAMETER7></PARAMETER7>
 <PARAMETER8></PARAMETER8>
 <PARAMETER9></PARAMETER9>
 <PARAMETER10></PARAMETER10>
 </ROW>
</ROWSET>

where

• KEY is the Delivery key and must match the Deliver By element. The bursting
engine uses the key to link delivery criteria to a specific section of the burst data.

• TEMPLATE - is the name of the Layout template to apply. Note that the value is the
Layout name (for example, "Invoice"), not the template file name (for example,
invoice.rtf).

• TEMPLATE_FORMAT - is the format of the layout template. Valid values are:

• RTF

• PDF

• ETEXT

• XSL_FO

• LOCALE - is the template locale, for example, "en-US".

• OUTPUT_FORMAT - is the output format. Valid values are:for example: pdf, html,
excel.

Creating a New Report 3-43

• HTML

• PDF

• RTF

• EXCEL

• DEL_CHANNEL - is the delivery method. Valid values are:

• EMAIL

• FAX

• FILE

• FTP

• PRINT

• WEBDAV

• Delivery parameters by channel. The delivery parameters by channel are defined in
the following table:

Parameter Mapping

Channel Parameter
1

Parameter
2

Parameter
3

Parameter
4

Parameter
5

Parameter
6

Parameter
7

Email Email
address

cc From Subject Message
Body

Attachment
(true/false)

Note that if
your output
format is
pdf, you
must set
this
parameter
to "true" to
attach the
pdf to the
email.

Reply-To

3-44 Oracle Business Intelligence Publisher User's Guide

Channel Parameter
1

Parameter
2

Parameter
3

Parameter
4

Parameter
5

Parameter
6

Parameter
7

Printer Printer
Group

Printer Number of
copies

Sides Tray

Fax Fax server
Name

Fax
Number

WEBDAV Server
Name

Username Password Remote
Directory

Remote File
Name

File Directory File Name

FTP Server
Name

Username Password Remote
Directory

Remote File
Name

Bursting Example
Example
The following example shows bursting enabled for a report based on the Split By key
CUSTOMER_NAME and the Deliver By key CUSTOMER_ID.

Creating a New Report 3-45

The report will be burst and delivered via e-mail. The template, template format, locale,
output format, delivery channel, and customer e-mail address are all specified in
elements from the delivery data source and will be returned by the query. The SQL to
generate the delivery XML for this example is as follows:
select distinct
CUSTOMER_ID KEY,
CST_TEMPLATE TEMPLATE,
TMPL_TYPE TEMPLATE_FORMAT,
CST_LOCALE LOCALE,
CST_FORMAT OUTPUT_FORMAT,
CST_DEL_CHAN DEL_CHANNEL,
CST_EMAIL PARAMETER1,
'accounts.receivable@oracle.com' PARAMETER2,
'bip-collections@oracle.com'PARAMETER3,
'Your Invoices' PARAMETER4,
'Hi'||CUST_FIRST_NAME||chr(13)|| 'Please find attached your
invoices.' PARAMETER5,
'true' PARAMETER6,
'donotreply@nowhere.com' PARAMETER7
from customers

For information on running the report, see Scheduling a Report to Be Burst, page 2-8.

Accessing Reports via a URL
This section describes how to call a BI Publisher report via a URL from another
application, for example from a portal or from an Application Express application.

3-46 Oracle Business Intelligence Publisher User's Guide

Security Considerations
In the BI Publisher security model, reports are placed in folders and those folders are
then secured to a role and a role assigned to a user. For a user to successfully access the
report, you must ensure that the user is credentialed within BI Publisher to see it. There
are two options for this:

• Use the Guest folder

Enable the Guest folder via the Security Configuration tab of the Security Center
page (for more information see Allowing Guest Access, page 10-2). Any report in
this folder is open to all users to see and run. Use this option if the report does not
contain sensitive data.

• Use SSO

If both the calling application and BI Publisher are configured as partner
applications in an SSO server, you can call any report via a URL and as long as the
user has rights to see or run the report, then BI Publisher will render it without the
need for the user to log in. For more information on setting up security options, see
Defining a Security Model, page 10-1.

Building the URL
The basic URL for a report is as follows:
http://<server:port>/xmlpserver/<ReportDirectory>/<ReportName>.xdo

where

server:port - is the name of the server and port number where BI Publisher is
running

xmlpserver - is a required string (the name of the application)

ReportDirectory - is the folder path to the report

Important: On the BI Publisher server, a report resides in a folder
named for the report. For example, assume you have a report called
Salary Report. On your BI Publisher desktop it is located in a folder of
reports called Executive. Within Executive, it is located in a folder
called Private. The path to this report would therefore be

Executive/Private/Salary+Report

Note that you must replace a space in the folder or report name with
the + character.

ReportName.xdo - is the name of the report with the .xdo extension.

This will render the complete report inside the BI Publisher page with all the report

Creating a New Report 3-47

controls. The default template, output and parameters will be used to render the report.
For example:
http://xdopf.us.oracle.com:9999/xmlpserver/Executive/Salary+Report/Salar
y+Report.xdo

server:port - xdopf.us.oracle.com:9999

xmlpserver

ReportDirectory - Executive/Salary+Report

ReportName.xdo - Salary+Report.xdo

Specifying Parameters in the URL
If you want to specify parameters for your output report, such as the template, the
output format, and any parameters defined for the report, you can add name/value
pairs to the URL. The easiest way to generate the URL is to use the Export function from
the BI Publisher View Report page. The URL generated will look similar to the basic
URL described above, but the name/value pairs will be added.

For example:
http://xdopf.us.oracle.com:9999/xmlpserver/Executive/Employee+Salary+Rep
ort/Employee+Salary+Report.xdo?_xpf=&_xpt=1&_xdo=%2FExecutive%2FEmployee
+Salary+Report%2FEmployee+Salary+Report.xdo&dept=10&_xt=Standard&_xf=htm
l

The URL components through the report name are described in the previous section.
The URL after the report name consists of:
?_xpf=&_xpt=1&_xdo=%2FExecutive%2FEmployee+Salary+Report%2FEmployee+Sala
ry+Report.xdo&dept=10=*&_xt=Standard&_xf=html

Note the following standard URL syntax:

? - denotes the first parameter

& - denotes each additional parameter

The BI Publisher parameters are as follows:

_xpf - required string for internal use

_xpt - defines whether to render the report in the full BI Publisher window (as above),
or to render just the report document. Valid values are

• 0 - uses the BI Publisher window

• 1- renders just the document

_xdo - (optional) provides the path to the current report

dept - this is a parameter specific to the report as defined in the report definition. In
this case the department for the data. Notice it takes the department ID. The parameter
definition is to show the user the department name and then pass the ID to the query.
You can have multiple parameters and their values in the URL.

3-48 Oracle Business Intelligence Publisher User's Guide

_xt - this controls the template to be used. This is the template name, not the template
file name. In this case, the template name is "Standard".

_xf - this controls the format of the output to be generated. Valid values are same as for
the report: pdf, html, excel, rtf, or data.

Building a Data Template 4-1

4
Building a Data Template

Introduction
The BI Publisher data engine enables you to rapidly generate any kind of XML data
structure against any database in a scalable, efficient manner. The data template is the
method by which you communicate your request for data to the data engine. It is an
XML document whose elements collectively define how the data engine will process the
template to generate the XML.

The data engine supports the following functionality:

• Single and multiple data queries

• Query links

• Parameters

• Aggregate functions (SUM, AVG, MIN, MAX, COUNT)

• Event triggers

• Multiple data groups

The XML output generated by the data engine supports the following:

• Unicode for XML Output

Unicode is a global character set that allows multilingual text to be displayed in a
single application. This enables you to develop a single multilingual application
and deploy it worldwide.

• Canonical format

The data engine generates date elements using the canonical ISO date format:
YYYY-MM-DDTHH24:MI:SS.FF3TZH:TZM for a mapped date element, and

4-2 Oracle Business Intelligence Publisher User's Guide

######.## for number elements in the data template XML output.

The Data Template Definition
The data template is an XML document that consists of four basic sections: define
parameters, define triggers, define data query, define data structure. This structure is
shown in the following graphic:

As shown in the sample figure, the data template consists of a <parameters>section in
which parameters are declared in child <parameter> elements; a <dataQuery>
section in which the SQL queries are defined in child <sqlStatement> elements; and
a <dataStructure> section in which the output XML structure is defined.

The table below lists the elements that make up the XML data template. Each element is
described in detail in the following sections. Required elements are noted.

Building a Data Template 4-3

Element Attributes/Description

dataTemplate (Required) Attributes:

• name (Required)

• description

• version (Required)

• defaultPackage - the PL/SQL package name to resolve any lexical
references, group filters, or data triggers defined in the template.

• dataSourceRef - (Required) the default data source reference for the
entire data template.

properties Consists of one or more <property> elements to support the XML output
and Data Engine specific properties.

property Attributes:

• name (Required) - the property name.

• value - valid values for this property.

parameters Consists of one or more <parameter> elements.

parameter Attributes:

• name (Required) - the parameter name that will be referenced in the
template.

• dataType - valid values are: "character", "date", "number"

• defaultValue - value to use for the parameter if none supplied from the
data

• include_in_output - whether this parameter should appear in the XML
output or not. The valid values are "true" and "false".

lexicals (Supported for queries against the Oracle E-Business Suite only). Consists of
one or more lexical elements to support flexfields.

4-4 Oracle Business Intelligence Publisher User's Guide

Element Attributes/Description

lexical There are four types of key flexfield-related lexicals as follows:

• oracle.apps.fnd.flex.kff.segments_metadata

• oracle.apps.fnd.flex.kff.select

• oracle.apps.fnd.flex.kff.where

• oracle.apps.fnd.flex.kff.order_by

dataQuery (Required) Consists of one or more <sqlstatement> or <xml>elements.

sqlstatement (Required) Attributes:

• name (Required) - the unique query identifier. Note that this name
identifier will be the same across the data template. Enter the query
inside the CDATA section.

xml Attributes:

• name (Required) - the unique query identifier.

• expressionPath – Xpath expression

url Attributes:

• method – either GET or POST

• realm - authentication name

• username- valid username

• password - valid password

Building a Data Template 4-5

Element Attributes/Description

link Attributes:

• parentQuery - specify the parent query name.

• parentColumn - specify the parent column name.

• childQuery - specify the child query name.

• childColumn - specify the child column name.

• condition - the SQL operator that defines the relationship between the
parent column and the child column. The following values for condition
are supported: =, <, <=, >, >=

dataTrigger Attributes:

• name (Required) - the event name to fire this trigger

• source (Required) - the PL/SQL <package name>.<function name>

dataStructure (Required for multiple queries) Defines the structure of the output XML.
Consists of <group> and <element>elements to specify the structure. This
section is optional for single queries; if not specified, the data engine will
generate flat XML.

group Consists of one or more <element> elements and sub <group> elements.

Attributes:

• name (Required) - the XML tag name to be assigned to the group.

• source (Required) - the unique query identifier for the corresponding
sqlstatement from which the group's elements will be derived.

• groupFilter - the filter to apply to the output data group set. Define the
filter as: <package name>.<function name>.

Note: Applying a filter has performance impact. Do not use this
functionality unless necessary. When possible, filter data using a
WHERE clause in your query.

4-6 Oracle Business Intelligence Publisher User's Guide

Element Attributes/Description

element (Required) Attributes:

• name - the tag name to assign to the element in the XML data output.

• value (Required) - the column name for the SQL statement. Note that for
aggregations in which the column name is in another group, the value
must be defined as <group name>.<column/alias name>.

• function - supported functions are: SUM(), COUNT(), AVG(), MIN(),
MAX()

Constructing the Data Template
You can use any text or XML editor to write a data template.

Data Template Declaration
The <dataTemplate> element is the root element. It has a set of related attributes
expressed within the <dataTemplate> tag.

Attribute Name Description

name (Required) Enter the data template name.

description (Optional) Enter a description of this data template.

version (Required) Enter a version number for this data template.

defaultPackage This attribute is required if your data template contains lexical
references or any other calls to PL/SQL.

dataSourceRef (Required) The default data source reference for the entire data
template.

Properties Section
Use the <properties> section to set properties to affect the XML output and data
engine execution.

Example:

Building a Data Template 4-7

<properties>
 <property name="include_parameters" value="false" />
 <property name="include_null_Element" value="false" />
 <property name="include_rowsettag" value="false" />
 <property name="scalable_mode" value="on" />
</properties>

The following table shows the supported properties:

Property Name Description

include_parameters Indicates whether to include parameters in the
output.

Valid values are:

• True (default)

• False

include_null_Element Indicates whether to remove or keep the null
elements in the output.

Valid values are:

• True (default)

• False

xml_tag_case Allows you to set the case for the output XML
element names.

Valid values are:

• upper (default)

• lower

• as_are (The case will follow the definition
in the dataStructure section.)

db_fetch_size Sets the number of rows fetched at a time
through the jdbc connection. The default value
is 500.

4-8 Oracle Business Intelligence Publisher User's Guide

Property Name Description

scalable_mode Sets the data engine to execute in scalable
mode. This is required when processing a
large volume of data.

Valid values:

• on

• off (default)

include_rowsettag Allows you to include or exclude the Rowset
Tag from the output.

Valid values:

• true (default)

• false

debug_mode Turns debug mode on or off.

Valid values:

• on

• off (default)

Parameters Section
A parameter is a variable whose value can be set at runtime. Parameters are especially
useful for modifying SELECT statements and setting PL/SQL variables at runtime. The
Parameters section of the data template is optional.

How to Define Parameters
The <parameter> element is placed between the open and close <parameters> tags.
The <parameter> element has a set of related attributes. These are expressed within
the <parameter> tag. For example, the name, dataType, and defaultValue
attributes are expressed as follows:
<parameters>
 <parameter name="dept" dataType="number" defaultValue="10"/>
</parameters>

Building a Data Template 4-9

Attribute Name Description

name Required. A keyword, unique within a given Data
Template, that identifies the parameter.

dataType Optional. Specify the parameter data type as "character",
"date", or "number". Default value is "character".

For the "date" dataType, the following three formats
(based on the canonical ISO date format) are supported:

• YYYY-MM-DD (example: 1997-10-24)

• YYYY-MM-DD HH24:MI:SS (example: 1997-10-24
12:00:00)

• YYYY-MM-DDTHH24:MI:SS.FF3TZH:TZM

defaultValue Optional. This value will be used for the parameter if no
other value is supplied from the data at runtime.

include_in_output Optional. Whether this parameter should appear in XML
output or not. The valid values are "true" and "false".

How to Pass Parameters
To pass parameters, (for example, to restrict the query), use bind variables in your
query. For example:

Query:
SELECT * FROM EMP
WHERE deptno=:department

At runtime, the value of department is passed to the query:
SELECT * FROM EMP
WHERE deptno=10

Data Query Section
The <dataQuery> section of the data template is required.

Supported Column Types
The following column types are selectable:

• VARCHAR2, CHAR

4-10 Oracle Business Intelligence Publisher User's Guide

• NUMBER

• DATE, TIMESTAMP

• BLOB/BFILE (conditionally supported)

BLOB image retrieval is supported in the following two cases:

• Using the SetSQL API (see SQL to XML Processor, page 4-28)

• In the data template when no Structure section is defined. The returned data
must be flat XML.

The BLOB/BFILE must be an image. Images are retrieved into your results XML as
base64 encoding. You can retrieve any image type that is supported in the RTF
template (jpg, gif, or png). You must use specific syntax to render the retrieved
image in your template. See Rendering an Image Retrieved from BLOB Data, page
5-17.

• CLOB (conditionally supported)

The CLOB must contain text or XML. Data cannot be escaped inside the CLOB
column.

• XMLType (conditionally supported)

XMLType can be supported if it is converted to a CLOB using the getClobVal()
method.

• REF CURSOR (conditionally supported)

A REF CURSOR is supported inside the SQL statement when only one results set is
returned.

How to Define SQL Queries
The <sqlStatement> element is placed between the open and close dataQuery tags.
The <sqlStatement> element has a related attribute, name. It is expressed within the
<sqlStatment> tag. The query is entered in the CDATA section. For example:
<dataQuery>
 <sqlStatement name="Q1">
 <![CDATA[SELECT DEPTNO,DNAME,LOC from dept]]>
 </sqlStatement>
</dataQuery>

Building a Data Template 4-11

Attribute Name Description

name A unique identifying name for the query.
Note that this name will be referred to
throughout the data template.

If your column names are not unique, you must use aliases in your SELECT statements
to ensure the uniqueness of your column names. If you do not use an alias, then the
default column name is used. This becomes important when you specify the XML
output in the dataStructure section. To specify an output XML element from your query
you declare a value attribute for the element tag that corresponds to the source
column.

Tip: Performing operations in SQL is faster than performing them in
the data template or PL/SQL. It is recommended that you use SQL for
the following operations:

• Use a WHERE clause instead of a group filter to exclude records.

• Perform calculations directly in your query rather than in the
template.

How to Define an XML Data Source
Place the <xml> element between the open and close dataQuery tags. The <xml>
element has the related attributes: name, which is a unique identifier; and
expressionPath, which can be used to link the SQL query and the XML data.
Linking the SQL query and XML data enables you to leverage capabilities such as
aggregation and summarization.

Example:
<xml name="empxml" expressionPath=".//ROW[DEPTNO=$DEPTNO]">
<url method="GET" realm="" username=""
password="">file:///d:/dttest/employee.xml</url>
</xml>

Lexical References
You can use lexical references to replace the clauses appearing after SELECT, FROM,
WHERE, GROUP BY, ORDER BY, or HAVING. Use a lexical reference when you want
the parameter to replace multiple values at runtime.

Create a lexical reference using the following syntax:
¶metername

Define the lexical parameters as follows:

4-12 Oracle Business Intelligence Publisher User's Guide

• Before creating your query, define a parameter in the PL/SQL default package for
each lexical reference in the query. The data engine uses these values to replace the
lexical parameters.

• Create your query containing lexical references.

For example:
Package employee
AS
 where_clause varchar2(1000);

Package body employee
 AS

where_clause := 'where deptno=10';
.....

Data template definition:
<dataQuery>
 <sqlstatement name="Q1">
 <![CDATA[SELECT ENAME, SAL FROM EMP &where_clause]]>
</sqlstatement>
</dataQuery>

How to Define a Data Link Between Queries
If you have multiple queries, you must link them to create the appropriate data output.
In the data template, there are two methods for linking queries: using bind variables or
using the <link> element to define the link between queries.

Tip: To maximize performance when building data queries in the data
template:

BI Publisher tests have shown that using bind variables is more efficient
than using the link tag.

The following example shows a query link using a bind variable:
<dataQuery>
 <sqlstatement name="Q1">
 <![CDATA[SELECT EMPNO, ENAME, JOB from EMP
 WHERE DEPTNO = :DEPTNO]]>
 </sqlstatement>
</dataQuery>

The <link> element has a set of attributes. Use these attributes to specify the required
link information. You can specify any number of links. For example:
<link name="DEPTEMP_LINK" parentQuery="Q1" parentColumn="DEPTNO"
childQuery="Q_2" childColumn="DEPARTMENTNO"/>

Building a Data Template 4-13

Attribute Name Description

name Required. Enter a unique name for the link.

parentQuery Specify the parent query name. This must be the name that you
assigned to the corresponding <sqlstatement> element. See
How to Define Queries, page 4-10.

parentColumn Specify the parent column name.

childQuery Specify the child query name. This must be the name that you
assigned to the corresponding <sqlstatement> element. See
How to Define Queries, page 4-10.

childColumn Specify the child column name.

Using Data Triggers
Data triggers execute PL/SQL functions at specific times during the execution and
generation of XML output. Using the conditional processing capabilities of PL/SQL for
these triggers, you can do things such as perform initialization tasks and access the
database.

Data triggers are optional, and you can have as many <dataTrigger> elements as
necessary.

The <dataTrigger> element has a set of related attributes. These are expressed within
the <dataTrigger> tag. For example, the name and source attributes are expressed
as follows:
<dataTrigger name="beforeReport" source="employee.beforeReport()"/>
<dataTrigger name="beforeReport"
source="employee.beforeReport(:Parameter)"/>

Attribute Name Description

name The event name to fire this trigger.

source The PL/SQL <package name>.<function name>
where the executable code resides.

The location of the trigger indicate at what point the trigger fires:

• Place a beforeReport trigger anywhere in your data template before the
<dataStructure> section.. A beforeRepot trigger fires before the dataQuery is

4-14 Oracle Business Intelligence Publisher User's Guide

executed.

• Place an afterReport trigger after the <dataStructure> section. An afterReport
trigger fires after you exit and after XML output has been generated.

Data Structure Section
In the data structure section you define what the XML output will be and how it will be
structured. The complete group hierarchy is available for output. You can specify all the
columns within each group and break the order of those columns; you can use
summaries, and placeholders to further customize within the groups. The dataStructure
section is required for multiple queries and optional for single queries. If omitted for a
single query, the data engine will generate flat XML.

Defining a Group Hierarchy
In the data template, the <group>element is placed between open and close
<dataStructure> tags. Each <group>has a set of related elements. You can define a
group hierarchy and name the element tags for the XML output.

Creating Break Groups
Use a break group to produce subtotals or add placeholder columns. A break group
suppresses duplicate values in sequential records. You should set an Order By clause in
the SQL query to suppress duplicate values.

Assign a name to the group, and declare the source query, then specify the elements
you want included in that group. When you specify the element, you assign it a name
that will be used as the XML output tag name, and you declare the source column as the
value. If you do not assign a name, the value (or source column name) will be used as
the tag name.

For example:
<dataStructure>
 <group name="G_DEPT" source="Q1" ">
 <element name="DEPT_NUMBER" value="DEPTNO" />
 <element name="DEPT_NAME" value="DNAME"/>
 <group name="G_EMP" source="Q2">
 <element name="EMPLOYEE_NUMBER" value="EMPNO" />
 <element name="NAME" value="ENAME"/>
 <element name="JOB" value="JOB" />
 </group>
 </group>
 </dataStructure>

The following table lists the attributes for the <group>element tag:

Building a Data Template 4-15

Attribute Name Description

name Specify any unique name for the group. This
name will be used as the output XML tag
name for the group.

source The name of the query that provides the
source data for the group. The source must
come from the name attribute of the
<sqlStatement> element.

The following table lists the attributes for the <element>element tag:

Attribute Name Description

name Specify any name for the element. This name
will be used as the output XML tag name for
the element. The name is optional. If you do
not specify a name, the source column name
will be used as the XML tag name.

value The name of the column that provides the
source data for the element (from your query).

Applying Group Filters
It is strongly recommended that you use a WHERE clause instead of a group filter to
exclude records from your extract. Filters enable you to conditionally remove records
selected by your queries, however, this approach impacts performance. Groups can
have user-created filters, using PL/SQL.

The PL/SQL function must return a boolean value (TRUE or FALSE). Depending on
whether the function returns TRUE or FALSE, the current record is included or
excluded from the XML data output.

For example, a sample PL/SQL function might be:
function G_EMPFilter return boolean is
begin
 if sal < 1000 then
 return (FALSE);
 else
 return (TRUE);
end if;
end;

An example of the group filter in your data template definition would be:

4-16 Oracle Business Intelligence Publisher User's Guide

<group name="G_DEPT" source="Q1"
groupFilter="empdata.G_EMPFilter(:DEPTSAL)">
 <element name="DEPT_NUMBER" value="DEPTNO" />
 <element name="DEPT_NAME" value="DNAME"/>
 <element name="DEPTSAL" value="G_EMP.SALARY" function="SUM()"/>

Creating a Summary Column
A summary column performs a computation on another column's data. Using the
function attribute of the <element> tag, you can create the following summaries:
sum, average, count, minimum, and maximum.

To create a summary column, you must define the following three attributes in the
element tag:

Attribute Description

name The XML tag name to be used in the XML data
output.

source The name of the column that contains the data
on which the summary calculation is to be
performed. The source column remains
unchanged.

function The aggregation function to be performed.
The type tells the XDO data engine how to
compute the summary column values. Valid
values are: SUM(), AVG(), COUNT(), MAX(),
and MIN().

The break group determines when to reset the value of the summary column. For
example:
<group name="G_DEPT" source="Q1">
 <element name="DEPT_NUMBER" value="DEPTNO" />
 <element name="DEPTSAL" value="G_EMP.SALARY" function="SUM()"/>
 <group name="G_EMP" source="Q2">
 <element name="EMPLOYEE_NUMBER" value="EMPNO" />
 <element name="NAME" value="ENAME"/>
 <element name="JOB" value="JOB" />
 <element name="SALARY" value="SAL"/>
 </group>
</group>

Flexfield Support
Note: This section applies to data templates written to query the Oracle
Applications database.

Building a Data Template 4-17

Flexfields are defined in the data template using lexical parameters.

How to define a flexfield
1. Define the SELECT statement to use for the report data.

2. Within the SELECT statement, define each flexfield as a lexical. Use the
&LEXICAL_TAG to embed flexfield related lexicals into the SELECT statement.

3. Define the flexfield-related lexicals using XML tags in the data template.

Example
<dataTemplate ...
 <parameters ...
 </parameters>

 <lexicals ...
 <lexical type="oracle.apps.fnd.flex.kff..."
 name="<Name of the lexical>"
 comment="<comment>"
 />
 <lexical type="oracle.apps.fnd.flex.kff..."
 name="<Name of the lexical>"
 comment="<comment>"
 />
 </lexicals>

 <dataQuery>
 <sqlStatement ...

 SELECT &FLEX_SELECT flex_select_alias
 FROM some_table st, code_combination_table cct
 WHERE st.some_column = 'some_condition'
 AND &FLEX_WHERE
 ORDER BY st.some_column, &FLEX_ORDER_BY
 </sqlStatement>
 </dataQuery>
 <dataStructure .../>

</dataTemplate>

Flexfield Lexicals
There are four types of KFF-related lexicals. These are:

• oracle.apps.fnd.flex.kff.segments_metadata

• oracle.apps.fnd.flex.select

• oracle.apps.fnd.flex.kff.where

• oracle.apps.fnd.flex.kff.order_by

Following are descriptions of each type of KFF lexical:

4-18 Oracle Business Intelligence Publisher User's Guide

oracle.apps.fnd.flex.kff.segments_metadata
Use this type of lexical to retrieve flexfield-related metadata. Using this lexical, you are
not required to write PL/SQL code to retrieve this metadata. Instead, define a dummy
SELECT statement, then use this lexical to get the metadata.

The XML syntax for this lexical is as follows:
<lexicals>
 <lexical
 type="oracle.apps.fnd.flex.kff.segments_metadata"
 name="Name of the lexical"
 comment="Comment"
 application_short_name="Application Short Name of the KFF"
 id_flex_code="Internal code of the KFF"
 id_flex_num="Internal number of the KFF structure"
 segments="For which segment(s) is this metadata requested?"
 show_parent_segments="Should the parent segments be listed?"
 metadata_type="Type of metadata requested"/>
</lexicals>

The following table lists the attributes for the segements_metadata lexical:

Attribute Description

application_short_name (Required) The application short name of the key
flexfield. For example: SQLGL.

id_flex_code (Required) the internal code of the key flexfield. For
example: GL#

id_flex_num (Required) Internal number of the key flexfield
structure. For example: 101

segments (Optional) Identifies for which segments this data is
requested. Default value is "ALL". See the Oracle
Applications Developer's Guide for syntax.

show_parent_segments (Optional) Valid values are "Y" and "N". Default
value is "Y". If a dependent segment is displayed, the
parent segment is automatically displayed, even if it
is not specified as displayed in the segments
attribute.

metadata_type (Required) Identifies what type of metadata is
requested. Valid values are:

above_prompt - above prompt of segment(s).

left_prompt - left prompt of segment(s)

Building a Data Template 4-19

Example
This example shows how to request the above_prompt of the GL Balancing Segment,
and the left_prompt of the GL Account Segment.
SELECT &FLEX_GL_BALANCING_APROMPT alias_gl_balancing_aprompt,
&FLEX_GL_ACCOUNT_LPROMPT alias_gl_account_lprompt
FROM dual

<lexicals>
 <lexical type="oracle.apps.fnd.flex.kff.segments_metadata"
 name="FLEX_GL_BALANCING_APROMPT"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NM"
 segments="GL_BALANCING"
 metadata_type="ABOVE_PROMPT"/>
 <lexical type="oracle.apps.fnd.flex.kff.segments_metadata"
 name="FLEX_GL_ACCOUNT+LPROMPT"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NUM"
 segments="GL_ACCOUNT"
 metadata_type="LEFT_PROMPT"/>
</lexicals>

oracle.apps.fnd.flex.kff.select
This type of lexical is used in the SELECT section of the statement. It is used to retrieve
and process key flexfield (kff) code combination related data based on the lexical
definition.

The syntax is as follows:
<lexicals>
 <lexical
 type="oracle.apps.fnd.flex.kff.select"
 name="Name of the lexical"
 comment="Comment"
 application_short_name="Application Short Name of the KFF"
 id_flex_code="Internal code of the KFF"
 id_flex_num="Internal number of the KFF structure"
 multiple_id_flex_num="Are multiple structures allowed?"
 code_combination_table_alias="Code Combination Table Alias"
 segments="Segments for which this data is requested"
 show_parent_segments="Should the parent segments be listed?"
 output_type="output type"/>
</lexicals>

The following table lists the attributes for this lexical:

Attribute Description

application_short_name (Required) The application short name of the key
flexfield. For example: SQLGL.

4-20 Oracle Business Intelligence Publisher User's Guide

Attribute Description

id_flex_code (Required) the internal code of the key flexfield. For
example: GL#

id_flex_num (Conditionally required) Internal number of the key
flexfield structure. For example: 101. Required if
MULTIPLE_ID_FLEX_NUM is "N".

multiple_id_flex_num (Optional) Indicates whether this lexical supports
multiple structures or not. Valid values are "Y" and
"N". Default is "N". If set to "Y", then flex will assume
all structures are potentially used for data reporting
and it will use
<code_combination_table_alias>.<set_def
ining_column_name> to retrieve the structure
number.

code_combination_table_alias (Optional) Segment column names will be
prepended with this alias.

segments (Optional) Identifies for which segments this data is
requested. Default value is "ALL". See the Oracle
Applications Developer's Guide for syntax.

show_parent_segments (Optional) Valid values are "Y" and "N". Default
value is "Y". If a dependent segment is displayed, the
parent segment is automatically displayed, even if it
is not specified as displayed in the segments
attribute.

output_type (Required) Indicates what kind of output should be
used as the reported value. Valid values are:

value - segment value as it is displayed to user.

padded_value - padded segment value as it is
displayed to user. Number type values are padded
from the left. String type values are padded on the
right.

description Segment value's description up to the description
size defined in the segment definition.

full_description Segment value's description (full size).

Building a Data Template 4-21

Attribute Description

security Returns Y if the current combination is secured
against the current user, N otherwise.

Example
This example shows how to report concatenated values, concatenated descriptions, the
value of the GL Balancing Segment, and the full description of the GL Balancing
Segment for a single structure:

4-22 Oracle Business Intelligence Publisher User's Guide

SELECT &FLEX_VALUE_ALL alias_value_all,
 &FLEX_DESCR_ALL alias_descr_all,
 &FLEX_GL_BALANCING alias_gl_balancing,
 &FLEX_GL_BALANCING_FULL_DESCR alias_gl_balancing_full_descr,
 ...
 FROM gl_code_combinations gcc,
 some_other_gl_table sogt
 WHERE gcc.chart_of_accounts_id = :p_id_flex_num
 and sogt.code_combination_id = gcc.code_combination_id
 and <more conditions on sogt>

 <lexicals>
 <lexical
 type="oracle.apps.fnd.flex.kff.select"
 name="FLEX_VALUE_ALL"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NUM"
 multiple_id_flex_num="N"
 code_combination_table_alias="gcc"
 segments="ALL"
 show_parent_segments="Y"
 output_type="VALUE"/>
 <lexical
 type="oracle.apps.fnd.flex.kff.select"
 name="FLEX_DESCR_ALL"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NUM"
 multiple_id_flex_num="N"
 code_combination_table_alias="gcc"
 segments="ALL"
 show_parent_segments="Y"
 output_type="DESCRIPTION"/>
 <lexical
 type="oracle.apps.fnd.flex.kff.select"
 name="FLEX_GL_BALANCING"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NUM"
 multiple_id_flex_num="N"
 code_combination_table_alias="gcc"
 segments="GL_BALANCING"
 show_parent_segments="N"
 output_type="VALUE"/>
 <lexical
 type="oracle.apps.fnd.flex.kff.select"
 name="FLEX_GL_BALANCING_FULL_DESCR"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NUM"
 multiple_id_flex_num="N"
 code_combination_table_alias="gcc"
 segments="GL_BALANCING"
 show_parent_segments="N"
 output_type="FULL_DESCRIPTION"/>

Building a Data Template 4-23

</lexicals>

oracle.apps.fnd.flex.kff.where
This type of lexical is used in the WHERE section of the statement. It is used to modify
the WHERE clause such that the SELECT statement can filter based on key flexfield
segment data.

The syntax for this lexical is as follows:
<lexicals>
 <lexical
 type="oracle.apps.fnd.flex.kff.where"
 name="Name of the lexical"
 comment="Comment"
 application_short_name="Application Short Name of the KFF"
 id_flex_code="Internal code of the KFF"
 id_flex_num="Internal number of the KFF structure"
 code_combination_table_alias="Code Combination Table Alias"
 segments="Segments for which this data is requested"
 operator="The boolean operator to be used in the condition"
 operand1="Values to be used on the right side of the operator"
 operand2="High value for the BETWEEN operator"/>
</lexicals>

The attributes for this lexical are listed in the following table:

Attribute Description

application_short_name (Required) The application short name of the key
flexfield. For example: SQLGL.

id_flex_code (Required) the internal code of the key flexfield. For
example: GL#

id_flex_num (Conditionally required) Internal number of the key
flexfield structure. For example: 101. Required if
MULTIPLE_ID_FLEX_NUM is "N".

code_combination_table_alias (Optional) Segment column names will be
prepended with this alias.

segments (Optional) Identifies for which segments this data is
requested. Default value is "ALL". See the Oracle
Applications Developer's Guide for syntax.

operator (Required) Valid values are:

=, <, >, <=, >=, !=, <>, ||, BETWEEN, LIKE

operand1 (Required) Values to be used on the right side of the
conditional operator.

4-24 Oracle Business Intelligence Publisher User's Guide

Attribute Description

operand2 (Optional) High value for the BETWEEN operator.

full_description Segment value's description (full size).

security Returns Y if the current combination is secured
against the current user, N otherwise.

Example
This example shows a filter based on the GL Account segment and the GL Balancing
Segment:
SELECT <some columns>
 FROM gl_code_combinations gcc,
 some_other_gl_table sogt
 WHERE gcc.chart_of_accounts_id = :p_id_flex_num
 and sogt.code_combination_id = gcc.code_combination_id
 and &FLEX_WHERE_GL_ACCOUNT
 and &FLEX_WHERE_GL_BALANCING
 and <more conditions on sogt>

<lexicals>
 <lexical
 type="oracle.apps.fnd.flex.kff.where"
 name="FLEX_WHERE_GL_ACCOUNT"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NUM"
 code_combination_table_alias="gcc"
 segments="GL_ACCOUNT"
 operator="="
 operand1=":P_GL_ACCOUNT"/>
 <lexical
 type="oracle.apps.fnd.flex.kff.where"
 name="FLEX_WHERE_GL_BALANCING"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NUM"
 code_combination_table_alias="gcc"
 segments="GL_BALANCING"
 operator="BETWEEN"
 operand1=":P_GL_BALANCING_LOW"
 operand2=":P_GL_BALANCING_HIGH"/>
</lexicals>

oracle.apps.fnd.flex.kff.order_by
This type of lexical is used in the ORDER BY section of the statement. It returns a list of
column expressions so that the resulting output can be sorted by the flex segment
values.

The syntax for this lexical is as follows:

Building a Data Template 4-25

<lexicals>
 <lexical
 type="oracle.apps.fnd.flex.kff.order_by"
 name="Name of the lexical"
 comment="Comment"
 application_short_name="Application Short Name of the KFF"
 id_flex_code="Internal code of the KFF"
 id_flex_num="Internal number of the KFF structure"
 multiple_id_flex_num="Are multiple structures allowed?"
 code_combination_table_alias="Code Combination Table Alias"
 segments="Segment(s)for which data is requested"
 show_parent_segments="List parent segments?"/>
</lexicals>

The attributes for this lexical are listed in the following table:

Attribute Description

application_short_name (Required) The application short name of the key
flexfield. For example: SQLGL.

id_flex_code (Required) the internal code of the key flexfield. For
example: GL#

id_flex_num (Conditionally required) Internal number of the key
flexfield structure. For example: 101. Required if
MULTIPLE_ID_FLEX_NUM is "N".

multiple_id_flex_num (Optional) Indicates whether this lexical supports
multiple structures or not. Valid values are "Y" and
"N". Default is "N". If set to "Y", then flex will assume
all structures are potentially used for data reporting
and it will use
<code_combination_table_alias>.<set_def
ining_column_name> to retrieve the structure
number.

code_combination_table_alias (Optional) Segment column names will be
prepended with this alias.

segments (Optional) Identifies for which segments this data is
requested. Default value is "ALL". See the Oracle
Applications Developer's Guide for syntax.

show_parent_segments (Optional) Valid values are "Y" and "N". Default
value is "Y". If a dependent segment is displayed, the
parent segment is automatically displayed, even if it
is not specified as displayed in the segments
attribute.

4-26 Oracle Business Intelligence Publisher User's Guide

Example
The following example shows results sorted based on GL Account segment and GL
Balancing segment for a single structure KFF.
SELECT <some columns>
 FROM gl_code_combinations gcc,
 some_other_gl_table sogt
 WHERE gcc.chart_of_accounts_id = :p_id_flex_num
 and sogt.code_combination_id = gcc.code_combination_id
 and <more conditions on sogt>
 ORDER BY <some order by columns>,
 &FLEX_ORDER_BY_GL_ACCOUNT,
 &FLEX_ORDER_BY_GL_BALANCING

 <lexicals>
 <lexical
 type="oracle.apps.fnd.flex.kff.order_by"
 name="FLEX_ORDER_BY_GL_ACCOUNT"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NUM"
 code_combination_table_alias="gcc"
 segments="GL_ACCOUNT"
 show_parent_segments="Y"/>
 <lexical
 type="oracle.apps.fnd.flex.kff.order_by"
 name="FLEX_ORDER_BY_GL_BALANCING"
 comment="Comment"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":P_ID_FLEX_NUM"
 code_combination_table_alias="gcc"
 segments="GL_BALANCING"
 show_parent_segments="N"/>
 </lexicals>

Using the Data Engine Java API
This section describes how to utilize BI Publisher's data engine outside of the BI
Publisher Enterprise user interface through the Java APIs. Use the descriptions in this
section in conjunction with the Javadocs included with your installation files.

Calling a Data Template from the Java API
The following classes comprise the data engine utility Java API:

• oracle.apps.xdo.oa.util.DataTemplate (OA wrapper API)

• oracle.apps.xdo.dataengine.DataProcessor (Core wrapper API)

The DataProcessor class is the main class to use to execute a data template with the BI
Publisher Data Engine. To use this API, you will need to instantiate this class and set
parameter values for the data template, connection and output destination. Once the
parameters are set, you can start processing by calling processData() method.

Building a Data Template 4-27

Example
This example provides a sample data template file, then shows an annotated Java code
sample of how to call it.

The sample data template is called EmpDataTemplate.xml and is stored as
/home/EmpDataTemplate.xml:
<?xml version="1.0" encoding="WINDOWS-1252" ?>
 <dataTemplate name="EmpData" description="Employee Details"
Version="1.0">
 <parameters>
 <parameter name="p_DeptNo" dataType="character" />
 </parameters>
 <dataQuery>
 <sqlStatement name="Q1">
 <![CDATA[
 SELECT d.DEPTNO,d.DNAME,d.LOC,EMPNO,ENAME,JOB,MGR,HIREDATE,
 SAL,nvl(COMM,0)
 FROM dept d, emp e
 WHERE d.deptno=e.deptno
 AND d.deptno = nvl(:p_DeptNo,d.deptno)
]]>
 </sqlStatement>
 </dataQuery>
 <dataStructure>
 <group name="G_DEPT" source="Q1">
 <element name="DEPT_NUMBER" value="DEPTNO" />
 <element name="DEPT_NAME" value="DNAME" />
 <element name="DEPTSAL" value="G_EMP.SALARY"
 function="SUM()" />
 <element name="LOCATION" value="LOC" />
 <group name="G_EMP" source="Q1">
 <element name="EMPLOYEE_NUMBER" value="EMPNO" />
 <element name="NAME" value="ENAME" />
 <element name="JOB" value="JOB" />
 <element name="MANAGER" value="MGR" />
 <element name="HIREDATE" value="HIREDATE" />
 <element name="SALARY" value="SAL" />
 </group>
 </group>
 </dataStructure>
 </dataTemplate>

The following code sample is an annotated snippet of the Java code used to process the
data template by the data engine:

4-28 Oracle Business Intelligence Publisher User's Guide

{
 try {

 //Initialization – instantiate the DataProcessor class//
 DataProcessor dataProcessor = new DataProcessor();

 //Set Data Template to be executed
 dataProcessor.setDataTemplate("/home/EmpDataTemplate.xml");

 //Get Parameters – this method will return an array of the
//parameters in the data template
 ArrayList parameters = dataProcessor.getParameters();
// Now we have the arraylist we need to iterate over
// the parameters and assign values to them
 Iterator it = parameters.iterator();

 while (it.hasNext())
 {
 Parameter p = (Parameter) it.next();
 if (p.getName().equals("p_DeptNo"))
// Here we assign the value '10' to the p_DeptNo parameter.
// This could have been entered from a report submission
// screen or passed in from another process.
 p.setValue(new "10");
 }
// The parameter values now need to be assigned
// to the data template; there are two methods
// available to do this: 1. Use the setParameters
// method to assign the 'parameters' object to the template:
 dataProcessor.setParameters(parameters);

// 2. or you can assign parameter values using a hashtable.

 Hashtable parameters = new Hashtable();
 parameters.put("p_DeptNo","10");
 dataProcessor.setParameters(parameters);

// Now set the jdbc connection to the database that you
// wish to execute the template against.
// This sample assumes you have already created
// the connection object 'jdbcConnection'
 dataProcessor.setConnection(jdbcConnection);
// Specify the output directory and file for the data file
 dataProcessor.setOutput("/home/EmpDetails.xml")
// Process the data template
 dataProcessor.processData();
 } catch (Exception e)
 {
 }
 }

SQL to XML Processor
The data engine not only supports data generation from data templates, but it can also
return data by simply passing it a SQL statement. This functionality is similar to the
native database support for generating XML with the added advantage that you can
retrieve huge amounts of data in a hierarchical format without sacrificing performance
and memory consumption. You SQL statement can also contain parameters that can be
given values prior to final processing.

The processor will generate XML in a ROWSET/ROW format. The tag names can be
overridden using the setRowsetTag and setRowsTagmethods.

Building a Data Template 4-29

The following annotated code sample shows how to use the setSQLmethod to pass a
SQL statement to the data engine and set the element names for the generated data:

Example
//Initialization – instantiate the DataProcessor class
DataProcessor dataProcessor = new DataProcessor();
 // Set the SQL to be executed
 dataProcessor.setSQL("select invoicenum, invoiceval
 from invoice_table where
 supplierid = :SupplID");
//Setup the SuppID value to be used
Hashtable parameters = new Hashtable();
parameters.put("SupplID ","2000");
//Set the parameters
dataProcessor.setParameters(parameters);
//Set the db connection
dataProcessor.setConnection(jdbcConnection);
//Specify the output file name and location
dataProcessor.setOutput("/home/InvoiceDetails.xml")
//Specify the root element tag name for the generated output
dataProcessor.setRowsetTag("INVOICES");
//Specify the row elemen tag name for the generated outputt
dataProcessor.setRowsetTag("INVOICE");
//Execute the SQL
dataProcessor.processData();

Other Useful Methods
The data engine has several very useful functions that can be used to generate objects or
files that can be used with the other BI Publisher APIs:

writeDefaultLayout – once the DataTemplate has been instantiated you can call this
method to generate a default RTF template that can be used with the RTFProcessor to
create an XSL template to be used with the FOProcessor. Alternatively, the default RTF
can be loaded into Microsoft Word for further formatting. This method can generate
either a String or Stream output.

writeXMLSchema - once the DataTemplate has been instantiated you can call this
method to generate an XML schema representation of your data template. This is very
useful if you are working with PDF templates and need to create mapping from the
PDF document to your XML data.

setScalableModeOn – if you know you are going to return a large dataset or have a
long running query you can specify that the data engine enter scalable mode. This will
cause it to use the disk rather than use memory to generate the output.

setMaxRows – this allows you to specify a fixed number of rows to be returned by the
engine. This is especially useful when you want to generate some sample data to build a
layout template against.

Sample Data Templates
This section contains two sample data templates:

4-30 Oracle Business Intelligence Publisher User's Guide

• Employee Listing

• General Ledger Journals Listing

The sample files are annotated to provide a better description of the components of the
data template. To see more data template samples, see the BI Publisher page on Oracle
Technology Network (OTN)
[http://www.oracle.com/technology/products/applications/publishing/index.html].
From here you can copy and paste the samples to get you started on your own data
templates.

Employee Listing Data Template
This template extracts employee data and department details. It has a single parameter,
Department Number, that has to be populated at runtime. The data is extracted using
two joined queries that use the bind variable method to join the parent (Q1) query with
the child (Q2) query. It also uses the event trigger functionality using a PL/SQL package
"employee" to set the where clause on the Q1 query and to provide a group filter on the
G_DEPT group.

The sample data template will generate the following XML:

http://www.oracle.com/technology/products/applications/publishing/index.html
http://www.oracle.com/technology/products/applications/publishing/index.html

Building a Data Template 4-31

<?xml version="1.0" encoding="UTF-8"?>
<dataTemplateName>
 <LIST_G_DEPT>
 <G_DEPT>
 <DEPT_NUMBER>10</DEPT_NUMBER>
 <DEPT_NAME>ACCOUNTING</DEPT_NAME>
 <LOCATION>NEW YORK</LOCATION>
 <LIST_G_EMP>
 <G_EMP>
 <EMPLOYEE_NUMBER>7782</EMPLOYEE_NUMBER>
 <NAME>CLARK</NAME>
 <JOB>MANAGER</JOB>
 <MANAGER>7839</MANAGER>
 <HIREDATE>1981-06-09T00:00:00.000-07:00</HIREDATE>
 <SALARY>2450</SALARY>
 </G_EMP>
 <G_EMP>
 <EMPLOYEE_NUMBER>7839</EMPLOYEE_NUMBER>
 <NAME>KING</NAME>
 <JOB>PRESIDENT</JOB>
 <MANAGER/>
 <HIREDATE>1981-11-17T00:00:00.000-08:00</HIREDATE>
 <SALARY>5000</SALARY>
 </G_EMP>
 ...
 </LIST_G_EMP>
 <DEPTSAL>12750</DEPTSAL>
 </G_DEPT>
 <G_DEPT>
 <DEPT_NUMBER>20</DEPT_NUMBER>
 <DEPT_NAME>RESEARCH</DEPT_NAME>
 <LOCATION>DALLAS</LOCATION>
 <LIST_G_EMP>
 <G_EMP>
 <EMPLOYEE_NUMBER>7369</EMPLOYEE_NUMBER>
 <NAME>SMITH</NAME>
 <JOB>CLERK</JOB>
 ...
 </G_EMP>
 </LIST_G_EMP>
 <DEPTSAL>10875</DEPTSAL>
 </G_DEPT>
</LIST_G_DEPT>
</dataTemplateName>

Following is the data template used to extract this data.

4-32 Oracle Business Intelligence Publisher User's Guide

<?xml version="1.0" encoding="WINDOWS-1252" ?>- The template is named,
an optional description
- can be provided and the default package, if any, is identified:
<dataTemplate name="Employee Listing" description="List of
Employees" dataSourceRef="ORCL_DB1" defaultPackage="employee"
 version="1.0">
 <parameters>- Defines a single parameter for the Department Number
- with default of 20:
 <parameter name="p_DEPTNO" dataType="character"
 defaultValue="20"/>
 </parameters>
 <dataQuery>
 <sqlStatement name="Q1">- This extracts the department
information based on a
- where clause from a pl/sql package:
 <![CDATA[SELECT DEPTNO,DNAME,LOC from dept
 where &pwhereclause
 order by deptno]]>
 </sqlStatement>
 <sqlStatement name="Q2">- This second query extracts the employee
data and joins to
- the parent query using a bind variable, :DEPTNO
 <![CDATA[SELECT EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,nvl
 (COMM,0) COMM
 from EMP
 WHERE DEPTNO = :DEPTNO]]>
 </sqlStatement>
 </dataQuery>- A call is made to a before fetch trigger to set the

- where clause variable in the department query, &pwhereclause:

 <dataTrigger name="beforeReport"
 source="employee.beforeReportTrigger"/>
 <dataStructure>- The following section specifies the XML
hierarchy
- for the returning data:
 <group name="G_DEPT" source="Q1"
 groupFilter="employee.G_DEPTFilter(:DEPT_NUMBER)">- There is a
group filter placed on the DEPT group.
- This is returned from the employee.G_DEPTFilter plsql package.
- It passes the DEPT_NUMBER value ("name" attribute) rather
- than the DEPTNO value ("value" attribute)

 <element name="DEPT_NUMBER" value="DEPTNO" />
 <element name="DEPT_NAME" value="DNAME"/>- This creates a
summary total at the department level based
- on the salaries at the employee level for each department:

 <element name="DEPTSAL" value="G_EMP.SALARY"
 function="SUM()"/>
 <element name="LOCATION" value="LOC" />
 <group name="G_EMP" source="Q2">
 <element name="EMPLOYEE_NUMBER" value="EMPNO" />
 <element name="NAME" value="ENAME"/>
 <element name="JOB" value="JOB" />
 <element name="MANAGER" value="MGR"/>
 <element name= "HIREDATE" value="HIREDATE"/>
 <element name="SALARY" value="SAL"/>
 </group>
 </group>
 </dataStructure>

Building a Data Template 4-33

</dataTemplate>

The PL/SQL Package:
- This is the package specification, it declares the global
- variables and functions contained therein
function BeforeReportTrigger return boolean;
p_DEPTNO NUMBER;
pwhereclause varchar2(3200);
function G_DEPTFilter(deptno number) return boolean;
END;

/
- This is the package body, it contains the code for the
- functions/procedures

create or replace package body employee as

- this is the event trigger called from the data template
- prior to the data fetch. It sets the where clause
- for the department query (Q1) based on the incoming
- data template parameter
 FUNCTION BeforeReportTrigger return boolean is
 begin
 IF (p_DEPTNO=10) THEN
 pwhereclause :='DEPTNO =10';
 elsif (p_DEPTNO=20) THEN
 pwhereclause:='DEPTNO =20';
 elsif (p_DEPTNO=30) THEN
 pwhereclause:='DEPTNO =30';
 elsif (p_DEPTNO=40) THEN
 pwhereclause:='DEPTNO =20';
 else
 pwhereclause:='1=1';
 end if;
 end;
 RETURN(TRUE);
- This function specifies a group filter on the Q1 group.
- If the department number is 30 then the data is not returned.
 FUNCTION G_DEPTFilter(deptno number) return boolean is
 BEGIN
 if deptno = 30 then
 return (FALSE);
 end if;

 RETURN (TRUE);
 end;
END;
/

General Ledger Journals Data Template Example
This data template extracts GL journals data from the E-Business Suite General Ledger
schema. It is based on an existing Oracle Report that has been converted to a data
template format. It follows the same format as the Employee data template but has
some added functionality.

4-34 Oracle Business Intelligence Publisher User's Guide

<?xml version="1.0" encoding="UTF-8" ?>
<dataTemplate name="GLRGNJ" dataSourceRef="ORA_EBS"
 defaultPackage="GLRGNJ" version="1.0">
 <parameters>- Parameter declaration, these will be populated at
runtime.
 <parameter name="P_CONC_REQUEST_ID" dataType = "number"
 defaultValue="0"></parameter>
 <parameter name="P_JE_SOURCE_NAME" dataType="character">
 </parameter>
 <parameter name="P_SET_OF_BOOKS_ID" dataType="character"
 defaultValue="1"></parameter>
 <parameter name="P_PERIOD_NAME" dataType="character">Dec-97
 </parameter>
 <parameter name="P_BATCH_NAME" dataType="character"></parameter>
 <parameter name="P_POSTING_STATUS" dataType="character"
 defaultValue="P"></parameter>
 <parameter name="P_CURRENCY_CODE" dataType="character"
 defaultValue="USD"></parameter>
 <parameter name="P_START_DATE" dataType = "date"></parameter>
 <parameter name="P_END_DATE" dataType = "date"></parameter>
 <parameter name="P_PAGESIZE" dataType = "number"
 defaultValue="180"></parameter>
 <parameter name="P_KIND" dataType = "character"
 defaultValue="L"></parameter>
 </parameters>
 <lexicals>- Flexfield lexical declaration, this specifies the setup
required
- for these flexfield functions.
- The first will return the full accounting flexfield with
- the appropriate delimiter e.g. 01-110-6140-0000-000
<lexical type ="oracle.apps.fnd.flex.kff.select"
 name ="FLEXDATA_DSP"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":STRUCT_NUM"
 multiple_id_flex_num="N"
 code_combination_table_alias="CC"
 segments="ALL"
 show_parent_segments="Y"
 output_type="VALUE" />- The second will return 'Y' if the current
combination is
- secured against the current user, 'N' otherwise
<lexical type ="oracle.apps.fnd.flex.kff.select"
 name ="FLEXDATA_SECURE"
 application_short_name="SQLGL"
 id_flex_code="GL#"
 id_flex_num=":STRUCT_NUM"
 multiple_id_flex_num="N"
 code_combination_table_alias="CC"
 segments="ALL"
 show_parent_segments="Y"
 output_type="SECURITY" />
 </lexicals>
<dataQuery>
<sqlStatement name="Q_MAIN">
<![CDATA[
 SELECT
 S.user_je_source_name Source,
 B.name Batch_Name,
 B.default_effective_date Batch_Eff_date,
 B.posted_date Batch_Posted_Date,

Building a Data Template 4-35

B.je_batch_id Batch_Id,
 B.running_total_accounted_dr B_TOT_DR,
 B.running_total_accounted_cr B_TOT_CR,
 D.je_header_id Header_id,
 D.name Header_Name,
 C.user_je_category_name Category,
 D.running_total_accounted_dr H_TOT_DR,
 D.running_total_accounted_cr H_TOT_CR,
 J.je_line_num Je_Line_Num,
 decode(nvl(CC.code_combination_id, -1), -1, 'A',null)
 FLEXDATA_H,
 J.effective_date Line_Effective_Date,
 J.description Line_Description,
 J.accounted_dr Line_Acc_Dr,
 J.accounted_cr Line_Acc_Cr,
 D.currency_code Currency_Code,
 D.external_reference Header_Reference,
 &POSTING_STATUS_SELECT Recerence1_4,
 nvl(J.stat_amount,0) Line_Stat_Amount,
 GLL.description Batch_Type,
 B.actual_flag Actual_Flag,
 GLL2.meaning Journal_Type,
 SOB.consolidation_sob_flag Cons_Sob_Flag,
 &FLEXDATA_DSP FLEXDATA_DSP,
 &FLEXDATA_SECURE FLEXDATA_SECURE
 FROM gl_lookups GLL, gl_je_sources S, gl_je_categories C,
 gl_je_lines J, gl_code_combinations CC, gl_je_headers D,
 gl_je_batches B, gl_lookups GLL2, gl_sets_of_books SOB
 WHERE GLL.lookup_code = B.actual_flag
 AND GLL.lookup_type = 'BATCH_TYPE'
 AND GLL2.lookup_type = 'AB_JOURNAL_TYPE'
 AND GLL2.lookup_code = B.average_journal_flag
 AND SOB.set_of_books_id = :P_SET_OF_BOOKS_ID
 AND S.je_source_name = D.je_source
 AND C.je_category_name = D.je_category
AND J.code_combination_id = CC.code_combination_id(+)
AND J.je_header_id = D.je_header_id
AND &CURRENCY_WHERE
AND D.je_source = NVL(:P_JE_SOURCE_NAME, D.je_source)
AND D.je_batch_id = B.je_batch_id
AND &POSTING_STATUS_WHERE
AND B.name = NVL(:P_BATCH_NAME, B.name)
AND &PERIOD_WHERE
AND B.set_of_books_id = :P_SET_OF_BOOKS_ID
ORDER BY S.user_je_source_name,
B.actual_flag,
B.name,
B.default_effective_date,
D.name,
J.je_line_num
]]>
 </sqlStatement>
</dataQuery>- The original report had an AfterParameter
- and Before report triggers
<dataTrigger name="afterParameterFormTrigger"
 source="GLRGNJ.afterpform"/>
<dataTrigger name="beforeReportTrigger"
 source="GLRGNJ.beforereport"/>
<dataStructure>- A very complex XML hierarchy can be built with summary
- columns referring to lower level elements
<group name="G_SOURCE" dataType="varchar2" source="Q_MAIN">

4-36 Oracle Business Intelligence Publisher User's Guide

<element name="Source" dataType="varchar2" value="Source"/>
 <element name="SOU_SUM_ACC_DR" function="sum" dataType="number"
 value="G_BATCHES.B_TOTAL_DR"/>
 <element name="SOU_SUM_ACC_CR" function="sum" dataType="number"
 value="G_BATCHES.B_TOTAL_CR"/>
 <element name="SOU_SUM_STAT_AMT" function="sum"
 dataType="number" value="G_BATCHES.B_TOT_STAT_AMT"/>
 <group name="G_BATCHES" dataType="varchar2" source="Q_MAIN">
 <element name="Actual_Flag" dataType="varchar2"
 value="Actual_Flag"/>
 <element name="Batch_Id" dataType="number" value="Batch_Id"/>
 <element name="Batch_Name" dataType="varchar2"
 value="Batch_Name"/>
 <element name="Batch_Eff_date" dataType="date"
 value="Batch_Eff_date"/>
 <element name="Journal_Type" dataType="varchar2"
 value="Journal_Type"/>
 <element name="Cons_Sob_Flag" dataType="varchar2"
 value="Cons_Sob_Flag"/>
 <element name="Batch_Type" dataType="varchar2"
 value="Batch_Type"/>
 <element name="Batch_Posted_Date" dataType="date"
 value="Batch_Posted_Date"/>
 <element name="B_TOT_DR" dataType="number" value="B_TOT_DR"/>
 <element name="B_TOTAL_DR" function="sum" dataType="number"
 value="G_HEADERS.H_Total_Dr"/>
 <element name="B_TOT_CR" dataType="number" value="B_TOT_CR"/>
 <element name="B_TOTAL_CR" function="sum" dataType="number"
 value="G_HEADERS.H_Total_Cr"/>
 <element name="B_TOT_STAT_AMT" function="sum" dataType="number"
 value="G_HEADERS.H_TOT_STAT_AMT"/>
 <element name="B_TOTAL_STAT" function="sum" dataType="number"
 value="G_HEADERS.H_Total_Stat"/>
 <group name="G_HEADERS" dataType="varchar2" source="Q_MAIN">
 <element name="Header_id" dataType="number"
 value="Header_id"/>
 <element name="Header_Name" dataType="varchar2"
 value="Header_Name"/>
 <element name="Category" dataType="varchar2"
 value="Category"/>
 <element name="Header_Reference" dataType="varchar2"
 value="Header_Reference"/>
 <element name="Currency_Code" dataType="varchar2"
 value="Currency_Code"/>
 <element name="H_TOT_DR" dataType="number" value="H_TOT_DR"/>
 <element name="H_Total_Dr" function="sum" dataType="number"
 value="G_LINES.Line_Acc_Dr"/>
 <element name="H_TOT_CR" dataType="number" value="H_TOT_CR"/>
 <element name="H_Total_Cr" function="sum" dataType="number"
 value="G_LINES.Line_Acc_Cr"/>
 <element name="H_TOT_STAT_AMT" function="sum"
 dataType="number"
 value="G_LINES.Line_Stat_Amount"/>
 <element name="H_Total_Stat" function="sum" dataType="number"
 value="G_LINES.Line_Stat_Amount"/>
 <group name="G_LINES" dataType="varchar2" source="Q_MAIN"
groupFilter="GLRGNJ.g_linesgroupfilter(:G_LINES.FLEXDATA_SECURE)">
 <element name="Je_Line_Num" dataType="number"
 value="Je_Line_Num"/>
 <element name="FLEXDATA_H" dataType="varchar2"
 value="FLEXDATA_H"/>

Building a Data Template 4-37

<element name="FLEXDATA_DSP" dataType="varchar2"
 value="FLEXDATA_DSP"/>
 <element name="Line_Description" dataType="varchar2"
 value="Line_Description"/>
 <element name="Recerence1_4" dataType="varchar2"
 value="Recerence1_4"/>
 <element name="Line_Acc_Dr" dataType="number"
 value="Line_Acc_Dr"/>
 <element name="Line_Acc_Cr" dataType="number"
 value="Line_Acc_Cr"/>
 <element name="Line_Stat_Amount" dataType="number"
 value="Line_Stat_Amount"/>
 <element name="Line_Effective_Date" dataType="date"
 value="Line_Effective_Date"/>
 <element name="FLEXDATA_SECURE" dataType="varchar2"
 value="FLEXDATA_SECURE"/>
 </group>
 </group>
 </group>
 </group>
<element name="R_TOT_DR" function="sum" dataType="number"
 value="G_SOURCE.SOU_SUM_ACC_DR"/>
<element name="R_TOT_CR" function="sum" dataType="number"
 value="G_SOURCE.SOU_SUM_ACC_CR"/>
<element name="R_TOT_STAT_AMT" function="sum" dataType="number"
 value="G_SOURCE.SOU_SUM_STAT_AMT"/>
<element name="JE_SOURCE_DSP" function="first" dataType="number"
 value="G_SOURCE.Source"/>
<element name="REP_BATCH_ID" function="first" dataType="number"
 value="G_BATCHES.Batch_Id"/>
<element name="C_DATEFORMAT" dataType="varchar2"
 value="C_DATEFORMAT"/>
</dataStructure>- There is an after fetch trigger, this can be used to
clean up
- data or update records to report that they have been reported
<dataTrigger name="afterReportTrigger"
 source="GLRGNJ.afterreport"/>
</dataTemplate>

Employee XML Datasource Data Template
This data template combines data that exists in a table called "dept" with data from an
xml file called "employee.xml". It follows the same format as the Employee data
template but the employee data comes from an xml file instead of from the emp table.

4-38 Oracle Business Intelligence Publisher User's Guide

<?xml version="1.0" encoding="WINDOWS-1252" ?>
<dataTemplate name="Employee Listing" description="List of Employees" v
 ersion="1.0">
 <parameters>- Defines a single parameter for the Department Number
 - with default of 20:
 <parameter name="p_DEPTNO" dataType="character"
 defaultValue="20"/>
 </parameters>
 <dataQuery>
 <sqlStatement name="Q1">
 <![CDATA[SELECT DEPTNO,DNAME,LOC from dept
 order by deptno]]>
 </sqlStatement>
 <xml name="empxml" expressionPath=".//ROW[DEPTNO=$DEPTNO]">- Defines
name
 - and link to DEPTNO in Q1
 <url method="GET" realm="" username="" password="">
 file:///d:/dttest/employee.xml</url>- Defines url for xml data
 </xml>
</dataQuery>-
 <dataStructure>- The following section specifies the XML hierarchy-
for the returning data:
 <group name="G_DEPT" source="Q1"
 <element name="DEPT_NUMBER" value="DEPTNO" />
 <element name="DEPT_NAME" value="DNAME"/>
- This creates a summary total at the department level based
- on the salaries at the employee level for each department:

 <element name="DEPTSAL" value="G_EMP.SALARY"
 function="SUM()"/>
 <element name="LOCATION" value="LOC" />
 <group name="G_EMP" source="empxml">
 <element name="EMPLOYEE_NUMBER" value="EMPNO" />
 <element name="NAME" value="ENAME"/>
 <element name="JOB" value="JOB" />
 <element name="MANAGER" value="MGR"/>
 <element name= "HIREDATE" value="HIREDATE"/>
 <element name="SALARY" value="SAL"/>
 </group>
 </group>
 </dataStructure>
</dataTemplate>

Creating an RTF Template 5-1

5
Creating an RTF Template

Introduction
Rich Text Format (RTF) is a specification used by common word processing
applications, such as Microsoft Word. When you save a document, RTF is a file type
option that you select.

BI Publisher's RTF Template Parser converts documents saved as the RTF file type to
XSL-FO. You can therefore create report designs using many of your standard word
processing application's design features and BI Publisher will recognize and maintain
the design.

During design time, you add data fields and other markup to your template using BI
Publisher's simplified tags for XSL expressions. These tags associate the XML report
data to your report layout. If you are familiar with XSL and prefer not to use the
simplified tags, BI Publisher also supports the use of pure XSL elements in the template.

In addition to your word processing application's formatting features, BI Publisher
supports other advanced reporting features such as conditional formatting, dynamic
data columns, running totals, and charts.

If you wish to include code directly in your template, you can include any XSL element,
many FO elements, and a set of SQL expressions extended by BI Publisher.

Supported Modes
BI Publisher supports two methods for creating RTF templates:

• Basic RTF Method

Use any word processing application that supports RTF version 1.6 writer (or later)
to design a template using BI Publisher's simplified syntax.

• Form Field Method

Using Microsoft Word's form field feature allows you to place the syntax in hidden

5-2 Oracle Business Intelligence Publisher User's Guide

form fields, rather than directly into the design of your template. BI Publisher
supports Microsoft Word 2000 (or later) with Microsoft Windows version 2000 (or
later).

Note: If you use XSL or XSL:FO code rather than the simplified
syntax, you must use the form field method.

This guide describes how to create RTF templates using both methods.

Prerequisites
Before you design your template, you must:

• Know the business rules that apply to the data from your source report.

• Generate a sample of your source report in XML.

• Be familiar with the formatting features of your word processing application.

Overview
Creating an RTF template file consists of two basic steps:

1. Design your template layout.

Use the formatting features of your word processing application and save the file as
RTF.

2. Mark up your template layout.

Insert the BI Publisher simplified tags.

When you design your template layout, you must understand how to associate the
XML input file to the layout. This chapter presents a sample template layout with its
input XML file to illustrate how to make the proper associations to add the markup tags
to the template.

Using the BI Publisher Template Builder
The Template Builder is an extension to Microsoft Word that simplifies the
development of RTF templates. It automates many of the manual steps that are covered
in this chapter. Use it in conjunction with this manual to increase your productivity.

The Template Builder is tightly integrated with Microsoft Word and allows you to
perform the following functions:

• Insert data fields

Creating an RTF Template 5-3

• Insert data-driven tables

• Insert data-driven forms

• Insert data-driven charts

• Preview your template with sample XML data

• Browse and update the content of form fields

• Extract boilerplate text into an XLIFF translation file and test translations

Manual steps for performing these functions are covered in this chapter. Instructions
and tutorials for using the Template Builder are available from the readme and help
files delivered with the tool.

Associating the XML Data to the Template Layout
The following is a sample layout for a Payables Invoice Register:

Sample Template Layout

Note the following:

• The data fields that are defined on the template

For example: Supplier, Invoice Number, and Invoice Date

• The elements of the template that will repeat when the report is run.

For example, all the fields on the template will repeat for each Supplier that is

5-4 Oracle Business Intelligence Publisher User's Guide

reported. Each row of the invoice table will repeat for each invoice that is reported.

XML Input File
Following is the XML file that will be used as input to the Payables Invoice Register
report template:

Note: To simplify the example, the XML output shown below has been
modified from the actual output from the Payables report.

<?xml version="1.0" encoding="WINDOWS-1252" ?>
 - <VENDOR_REPORT>
 - <LIST_G_VENDOR_NAME>
 - <G_VENDOR_NAME>
 <VENDOR_NAME>COMPANY A</VENDOR_NAME>
 - <LIST_G_INVOICE_NUM>
 - <G_INVOICE_NUM>
 <SET_OF_BOOKS_ID>124</SET_OF_BOOKS_ID>
 <GL_DATE>10-NOV-03</GL_DATE>
 <INV_TYPE>Standard</INV_TYPE>
 <INVOICE_NUM>031110</INVOICE_NUM>
 <INVOICE_DATE>10-NOV-03</INVOICE_DATE>
 <INVOICE_CURRENCY_CODE>EUR</INVOICE_CURRENCY_CODE>
 <ENT_AMT>122</ENT_AMT>
 <ACCTD_AMT>122</ACCTD_AMT>
 <VAT_CODE>VAT22%</VAT_CODE>
 </G_INVOICE_NUM>
 </LIST_G_INVOICE_NUM>
 <ENT_SUM_VENDOR>1000.00</ENT_SUM_VENDOR>
 <ACCTD_SUM_VENDOR>1000.00</ACCTD_SUM_VENDOR>
 </G_VENDOR_NAME>
 </LIST_G_VENDOR_NAME>
 <ACCTD_SUM_REP>108763.68</ACCTD_SUM_REP>
 <ENT_SUM_REP>122039</ENT_SUM_REP>
 </VENDOR_REPORT>

XML files are composed of elements. Each tag set is an element. For example
<INVOICE_DATE></INVOICE_DATE> is the invoice date element. "INVOICE_DATE"
is the tag name. The data between the tags is the value of the element. For example, the
value of INVOICE_DATE is "10-NOV-03".

The elements of the XML file have a hierarchical structure. Another way of saying this
is that the elements have parent-child relationships. In the XML sample, some elements
are contained within the tags of another element. The containing element is the parent
and the included elements are its children.

Every XML file has only one root element that contains all the other elements. In this
example, VENDOR_REPORT is the root element. The elements
LIST_G_VENDOR_NAME, ACCTD_SUM_REP, and ENT_SUM_REP are contained
between the VENDOR_REPORT tags and are children of VENDOR_REPORT. Each
child element can have child elements of its own.

Creating an RTF Template 5-5

Identifying Placeholders and Groups
Your template content and layout must correspond to the content and hierarchy of the
input XML file. Each data field in your template must map to an element in the XML
file. Each group of repeating elements in your template must correspond to a
parent-child relationship in the XML file.

To map the data fields you define placeholders. To designate the repeating elements, you
define groups.

Note: BI Publisher supports regrouping of data if your report requires
grouping that does not follow the hierarchy of your incoming XML
data. For information on using this feature, see Regrouping the XML
Data, page 5-81.

Placeholders
Each data field in your report template must correspond to an element in the XML file.
When you mark up your template design, you define placeholders for the XML
elements. The placeholder maps the template report field to the XML element. At
runtime the placeholder is replaced by the value of the element of the same name in the
XML data file.

For example, the "Supplier" field from the sample report layout corresponds to the XML
element VENDOR_NAME. When you mark up your template, you create a placeholder
for VENDOR_NAME in the position of the Supplier field. At runtime, this placeholder
will be replaced by the value of the element from the XML file (the value in the sample
file is COMPANY A).

Identifying the Groups of Repeating Elements
The sample report lists suppliers and their invoices. There are fields that repeat for each
supplier. One of these fields is the supplier's invoices. There are fields that repeat for
each invoice. The report therefore consists of two groups of repeating fields:

• Fields that repeat for each supplier

• Fields that repeat for each invoice

The invoices group is nested inside the suppliers group. This can be represented as
follows:

Suppliers

• Supplier Name

• Invoices

5-6 Oracle Business Intelligence Publisher User's Guide

• Invoice Num

• Invoice Date

• GL Date

• Currency

• Entered Amount

• Accounted Amount

• Total Entered Amount

• Total Accounted Amount

Compare this structure to the hierarchy of the XML input file. The fields that belong to
the Suppliers group shown above are children of the element G_VENDOR_NAME. The
fields that belong to the Invoices group are children of the element G_INVOICE_NUM.

By defining a group, you are notifying BI Publisher that for each occurrence of an
element (parent), you want the included fields (children) displayed. At runtime, BI
Publisher will loop through the occurrences of the element and display the fields each
time.

Designing the Template Layout
Use your word processing application's formatting features to create the design.

For example:

• Select the size, font, and alignment of text

• Insert bullets and numbering

• Draw borders around paragraphs

• Include a watermark

• Include images (jpg, gif, or png)

• Use table autoformatting features

• Insert a header and footer

For additional information on inserting headers and footers, see Defining Headers
and Footers, page 5-15.

For a detailed list of supported formatting features in Microsoft Word, see Supported

Creating an RTF Template 5-7

Native Formatting Features, page 5-40. Additional formatting and reporting features
are described at the end of this section.

Adding Markup to the Template Layout
BI Publisher converts the formatting that you apply in your word processing
application to XSL-FO. You add markup to create the mapping between your layout
and the XML file and to include features that cannot be represented directly in your
format.

The most basic markup elements are placeholders, to define the XML data elements;
and groups, to define the repeating elements.

BI Publisher provides tags to add markup to your template.

Note: For the XSL equivalents of the BI Publisher tags, see XSL
Equivalent Syntax, page 6-6.

Creating Placeholders
The placeholder maps the template field to the XML element data field. At runtime the
placeholder is replaced by the value of the element of the same name in the XML data
file.

Enter placeholders in your document using the following syntax:

<?XML element tag name?>

Note: The placeholder must match the XML element tag name exactly.
It is case sensitive.

There are two ways to insert placeholders in your document:

1. Basic RTF Method: Insert the placeholder syntax directly into your template
document.

2. Form Field Method: (Requires Microsoft Word) Insert the placeholder syntax in
Microsoft Word's Text Form Field Options window. This method allows you to
maintain the appearance of your template.

Basic RTF Method
Enter the placeholder syntax in your document where you want the XML data value to
appear.

Enter the element's XML tag name using the syntax:

<?XML element tag name?>

5-8 Oracle Business Intelligence Publisher User's Guide

In the example, the template field "Supplier" maps to the XML element
VENDOR_NAME. In your document, enter:

<?VENDOR_NAME?>

The entry in the template is shown in the following figure:

Form Field Method
Use Microsoft Word's Text Form Field Options window to insert the placeholder tags:

1. Enable the Forms toolbar in your Microsoft Word application.

2. Position your cursor in the place you want to create a placeholder.

3. Select the Text Form Field toolbar icon. This action inserts a form field area in your
document.

4. Double-click the form field area to invoke the Text Form Field Options dialog box.

5. (Optional) Enter a description of the field in the Default text field. The entry in this
field will populate the placeholder's position on the template.

For the example, enter "Supplier 1".

6. Select the Add Help Text button.

7. In the help text entry field, enter the XML element's tag name using the syntax:

<?XML element tag name?>

You can enter multiple element tag names in the text entry field.

In the example, the report field "Supplier" maps to the XML element
VENDOR_NAME. In the Form Field Help Text field enter:

<?VENDOR_NAME?>

The following figure shows the Text Form Field Options dialog box and the Form
Field Help Text dialog box with the appropriate entries for the Supplier field.

Creating an RTF Template 5-9

Tip: For longer strings of BI Publisher syntax, use the Help Key (F1)
tab instead of the Status Bar tab. The text entry field on the Help
Key (F1) tab allows more characters.

8. Select OK to apply.

The Default text is displayed in the form field on your template.

The figure below shows the Supplier field from the template with the added form
field markup.

5-10 Oracle Business Intelligence Publisher User's Guide

Complete the Example
The following table shows the entries made to complete the example. The Template
Field Name is the display name from the template. The Default Text Entry is the value
entered in the Default Text field of the Text Form Field Options dialog box (form field
method only). The Placeholder Entry is the XML element tag name entered either in the
Form Field Help Text field (form field method) or directly on the template.

Template Field Name Default Text Entry (Form
Field Method)

Placeholder Entry (XML Tag
Name)

Invoice Num 1234566 <?INVOICE_NUM?>

Invoice Date 1-Jan-2004 <?INVOICE_DATE?>

GL Date 1-Jan-2004 <?GL_DATE?>

Curr USD <?INVOICE_CURRENCY_CO
DE?>

Entered Amt 1000.00 <?ENT_AMT?>

Accounted Amt 1000.00 <?ACCTD_AMT?>

(Total of Entered Amt
column)

1000.00 <?ENT_SUM_VENDOR?>

(Total of Accounted Amt
column)

1000.00 <?ACCTD_SUM_VENDOR?>

Creating an RTF Template 5-11

The following figure shows the Payables Invoice Register with the completed form field
placeholder markup.

See the Payables Invoice Register with Completed Basic RTF Markup, page 5-12 for the
completed basic RTF markup.

Defining Groups
By defining a group, you are notifying BI Publisher that for each occurrence of an
element, you want the included fields displayed. At runtime, BI Publisher will loop
through the occurrences of the element and display the fields each time.

In the example, for each occurrence of G_VENDOR_NAME in the XML file, we want
the template to display its child elements VENDOR_NAME (Supplier Name),
G_INVOICE_NUM (the Invoices group), Total Entered Amount, and Total Accounted
Amount. And, for each occurrence of G_INVOICE_NUM (Invoices group), we want the
template to display Invoice Number, Invoice Date, GL Date, Currency, Entered
Amount, and Accounted Amount.

To designate a group of repeating fields, insert the grouping tags around the elements
to repeat.

Insert the following tag before the first element:

<?for-each:XML group element tag name?>

Insert the following tag after the final element:

<?end for-each?>

Grouping scenarios
Note that the group element must be a parent of the repeating elements in the XML

5-12 Oracle Business Intelligence Publisher User's Guide

input file.

• If you insert the grouping tags around text or formatting elements, the text and
formatting elements between the group tags will be repeated.

• If you insert the tags around a table, the table will be repeated.

• If you insert the tags around text in a table cell, the text in the table cell between the
tags will be repeated.

• If you insert the tags around two different table cells, but in the same table row, the
single row will be repeated.

• If you insert the tags around two different table rows, the rows between the tags
will be repeated (this does not include the row that contains the "end group" tag).

Basic RTF Method
Enter the tags in your document to define the beginning and end of the repeating
element group.

To create the Suppliers group in the example, insert the tag

<?for-each:G_VENDOR_NAME?>

before the Supplier field that you previously created.

Insert <?end for-each?> in the document after the summary row.

The following figure shows the Payables Invoice Register with the basic RTF grouping
and placeholder markup:

Creating an RTF Template 5-13

Form Field Method
1. Insert a form field to designate the beginning of the group.

In the help text field enter:

<?for-each:group element tag name?>

To create the Suppliers group in the example, insert a form field before the
Suppliers field that you previously created. In the help text field enter:

<?for-each:G_VENDOR_NAME?>

For the example, enter the Default text "Group: Suppliers" to designate the
beginning of the group on the template. The Default text is not required, but can
make the template easier to read.

2. Insert a form field after the final placeholder element in the group. In the help text
field enter <?end for-each?>.

For the example, enter the Default text "End: Suppliers" after the summary row to
designate the end of the group on the template.

The following figure shows the template after the markup to designate the
Suppliers group was added.

5-14 Oracle Business Intelligence Publisher User's Guide

Complete the Example
The second group in the example is the invoices group. The repeating elements in this
group are displayed in the table. For each invoice, the table row should repeat. Create a
group within the table to contain these elements.

Note: For each invoice, only the table row should repeat, not the entire
table. Placing the grouping tags at the beginning and end of the table
row will repeat only the row. If you place the tags around the table,
then for each new invoice the entire table with headings will be
repeated.

To mark up the example, insert the grouping tag <?for-each:G_INVOICE_NUM?> in
the table cell before the Invoice Num placeholder. Enter the Default text
"Group:Invoices" to designate the beginning of the group.

Insert the end tag inside the final table cell of the row after the Accounted Amt
placeholder. Enter the Default text "End:Invoices" to designate the end of the group.

The following figure shows the completed example using the form field method:

Creating an RTF Template 5-15

Defining Headers and Footers

Native Support
BI Publisher supports the use of the native RTF header and footer feature. To create a
header or footer, use the your word processing application's header and footer insertion
tools. As an alternative, or if you have multiple headers and footers, you can use
start:body and end body tags to distinguish the header and footer regions from the
body of your report.

Inserting Placeholders in the Header and Footer
At the time of this writing, Microsoft Word does not support form fields in the header
and footer. You must therefore insert the placeholder syntax directly into the template
(basic RTF method), or use the start body/end body syntax described in the next section.

Multiple or Complex Headers and Footers
If your template requires multiple headers and footers, create them by using BI
Publisher tags to define the body area of your report. You may also want to use this
method if your header and footer contain complex objects that you wish to place in
form fields. When you define the body area, the elements occurring before the
beginning of the body area will compose the header. The elements occurring after the
body area will compose the footer.

Use the following tags to enclose the body area of your report:

<?start:body?>

<?end body?>

5-16 Oracle Business Intelligence Publisher User's Guide

Use the tags either directly in the template, or in form fields.

The Payables Invoice Register contains a simple header and footer and therefore does
not require the start body/end body tags. However, if you wanted to add another
header to the template, define the body area as follows:

1. Insert <?start:body?> before the Suppliers group tag:
<?for-each:G_VENDOR_NAME?>

2. Insert <?end body?> after the Suppliers group closing tag: <?end for-each?>

The following figure shows the Payables Invoice Register with the start body/end body
tags inserted:

Different First Page and Different Odd and Even Page Support
If your report requires a different header and footer on the first page of your report; or,
if your report requires different headers and footers for odd and even pages, you can
define this behavior using Microsoft Word's Page Setup dialog.

1. Select Page Setup from the File menu.

2. In the Page Setup dialog, select the Layout tab.

3. In the Headers and footers region of the dialog, select the appropriate check box:

Different odd and even

Different first page

4. Insert your headers and footers into your template as desired.

At runtime your generated report will exhibit the defined header and footer behavior.

Creating an RTF Template 5-17

Inserting Images and Charts

Images
BI Publisher supports several methods for including images in your published
document:

Direct Insertion
Insert the jpg, gif, or png image directly in your template.

URL Reference
URL Reference

1. Insert a dummy image in your template.

2. In Microsoft Word's Format Picture dialog box select the Web tab. Enter the
following syntax in the Alternative text region to reference the image URL:

url:{'http://image location'}

For example, enter:
url:{'http://www.oracle.com/images/ora_log.gif'}

Element Reference from XML File
1. Insert a dummy image in your template.

2. In Microsoft Word's Format Picture dialog box select the Web tab. Enter the
following syntax in the Alternative text region to reference the image URL:

url:{IMAGE_LOCATION}

where IMAGE_LOCATION is an element from your XML file that holds the full
URL to the image.

You can also build a URL based on multiple elements at runtime. Just use the
concat function to build the URL string. For example:

url:{concat(SERVER,'/',IMAGE_DIR,'/',IMAGE_FILE)}

where SERVER, IMAGE_DIR, and IMAGE_FILE are element names from your XML
file that hold the values to construct the URL.

This method can also be used with the OA_MEDIA reference as follows:

url:{concat('${OA_MEDIA}','/',IMAGE_FILE)}

Rendering an Image Retrieved from BLOB Data
If your data source is a Data Template (for information, see Data Templates, page 4-1)
and your results XML contains image data that had been stored as a BLOB in the

5-18 Oracle Business Intelligence Publisher User's Guide

database, use the following syntax in a form field inserted in your template where you
want the image to render at runtime:
<fo:instream-foreign-object content type="image/jpg">
<xsl:value-of select="IMAGE_ELEMENT"/>
</fo:instream-foreign-object>

where

image/jpg is the MIME type of the image (other options might be: image/gif and
image/png)

and

IMAGE_ELEMENT is the element name of the BLOB in your XML data.

Note that you can specify height and width attributes for the image to set its size in
the published report. BI Publisher will scale the image to fit the box size that you define.
For example, to set the size of the example above to three inches by four inches, enter
the following:
<fo:instream-foreign-object content type="image/jpg" height="3 in"
width="4 in">
<xsl:value-of select="IMAGE_ELEMENT"/>
</fo:instream-foreign-object>

Specify in pixels as follows:
<fo:instream-foreign-object content type="image/jpg" height="300 px"
width="4 px">
...

or in centimeters:
<fo:instream-foreign-object content type="image/jpg" height="3 cm"
width="4 cm">
...

or as a percentage of the original dimensions:
<fo:instream-foreign-object content type="image/jpg" height="300%"
width="300%">
...

Chart Support
BI Publisher leverages the graph capabilities of Oracle Business Intelligence Beans (BI
Beans) to enable you to define charts and graphs in your RTF templates that will be
populated with data at runtime. BI Publisher supports all the graph types and
component attributes available from the BI Beans graph DTD.

The BI Beans graph DTD is fully documented in the following technical note available
from the Oracle Technology Network [http://www.oracle.com/technology/index.html]
(OTN): "DTD for Customizing Graphs in Oracle Reports
[http://www.oracle.com/technology/products/reports/htdocs/getstart/whitepapers/grap
hdtd/graph_dtd_technote_2.html]."

The following summarizes the steps to add a chart to your template. These steps will be

http://www.oracle.com/technology/index.html
http://www.oracle.com/technology/products/reports/htdocs/getstart/whitepapers/graphdtd/graph_dtd_technote_2.html

Creating an RTF Template 5-19

discussed in detail in the example that follows:

1. Insert a dummy image in your template to define the size and position of your
chart.

2. Add the definition for the chart to the Alternative text box of the dummy image.
The chart definition requires XSL commands.

3. At runtime BI Publisher calls the BI Beans applications to render the image that is
then inserted into the final output document.

Adding a Sample Chart
Following is a piece of XML data showing total sales by company division.
<sales year=2004>
 <division>
 <name>Groceries</name>
 <totalsales>3810</totalsales>
 <costofsales>2100</costofsales>
 </division>
 <division>
 <name>Toys</name>
 <totalsales>2432</totalsales>
 <costofsales>1200</costofsales>
 </division>
 <division>
 <name>Cars</name>
 <totalsales>6753</totalsales>
 <costofsales>4100</costofsales>
 </division>
 <division>
 <name>Hardware</name>
 <totalsales>2543</totalsales>
 <costofsales>1400</costofsales>
 </division>
 <division>
 <name>Electronics</name>
 <totalsales>5965</totalsales>
 <costofsales>3560</costofsales>
 </division>
</sales>

This example will show how to insert a chart into your template to display it as a
vertical bar chart as shown in the following figure:

5-20 Oracle Business Intelligence Publisher User's Guide

Note the following attributes of this chart:

• The style is a vertical bar chart.

• The chart displays a background grid.

• The components are colored.

• Sales totals are shown as Y-axis labels.

• Divisions are shown as X-axis labels.

• The chart is titled.

• The chart displays a legend.

Each of these properties can be customized to suit individual report requirements.

Inserting the Dummy Image
The first step is to add a dummy image to the template in the position you want the
chart to appear. The image size will define how big the chart image will be in the final
document.

Creating an RTF Template 5-21

Important: You must insert the dummy image as a "Picture" and not
any other kind of object.

The following figure shows an example of a dummy image:

The image can be embedded inside a for-each loop like any other form field if you want
the chart to be repeated in the output based on the repeating data. In this example, the
chart is defined within the sales year group so that a chart will be generated for each
year of data present in the XML file.

Right-click the image to open the Format Picture palette and select the Web tab. Use the
Alternative text entry box to enter the code to define the chart characteristics and data
definition for the chart.

Adding Code to the Alternative Text Box
The following graphic shows an example of the BI Publisher code in the Format Picture
Alternative text box:

5-22 Oracle Business Intelligence Publisher User's Guide

The content of the Alternative text represents the chart that will be rendered in the final
document. For this chart, the text is as follows:
chart:
<Graph graphType = "BAR_VERT_CLUST">
 <Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>
 <Y1Title text="Sales in Thousands" visible="true"/>
 <O1Title text="Division" visible="true"/>
 <LocalGridData colCount="{count(//division)}" rowCount="1">
 <RowLabels>
 <Label>Total Sales $1000s</Label>
 </RowLabels>
 <ColLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </ColLabels>
 <DataValues>
 <RowData>
 <xsl:for-each select="//division">
 <Cell>
 <xsl:value-of select="totalsales"/>
 </Cell>
 </xsl:for-each>
 </RowData>
 </DataValues>
 </LocalGridData>
</Graph>

Creating an RTF Template 5-23

The first element of your chart text must be the chart: element to inform the RTF
parser that the following code describes a chart object.

Next is the opening <Graph> tag. Note that the whole of the code resides within the
tags of the <Graph> element. This element has an attribute to define the chart type:
graphType. If this attribute is not declared, the default chart is a vertical bar chart. BI
Beans supports many different chart types. Several more types are presented in this
section. For a complete listing, see the BI Beans graph DTD documentation.

The following code section defines the chart type and attributes:
<Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>
 <Y1Title text="Sales in Thousands" visible="true"/>
 <O1Title text="Division" visible="true"/>

All of these values can be declared or you can substitute values from the XML data at
runtime. For example, you can retrieve the chart title from an XML tag by using the
following syntax:
<Title text="{CHARTTITLE}" visible="true" horizontalAlighment="CENTER"/>

where "CHARTTITLE" is the XML tag name that contains the chart title. Note that the
tag name is enclosed in curly braces.

The next section defines the column and row labels:
<LocalGridData colCount="{count(//division)}" rowCount="1">
 <RowLabels>
 <Label>Total Sales $1000s</Label>
 </RowLabels>
 <ColLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </ColLabels>

The LocalGridData element has two attributes: colCount and rowCount. These
define the number of columns and rows that will be shown at runtime. In this example,
a count function calculates the number of columns to render:
colCount="{count(//division)}"

The rowCount has been hard-coded to 1. This value defines the number of sets of data
to be charted. In this case it is 1.

Next the code defines the row and column labels. These can be declared, or a value
from the XML data can be substituted at runtime. The row label will be used in the
chart legend (that is, "Total Sales $1000s").

The column labels for this example are derived from the data: Groceries, Toys, Cars,
and so on. This is done using a for-each loop:

5-24 Oracle Business Intelligence Publisher User's Guide

<ColLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </ColLabels>

This code loops through the <division> group and inserts the value of the <name>
element into the <Label> tag. At runtime, this will generate the following XML:
<ColLabels>
 <Label>Groceries</Label>
 <Label>Toys</Label>
 <Label>Cars</Label>
 <Label>Hardware</Label>
 <Label>Electronics</Label>
</ColLabels>

The next section defines the actual data values to chart:
<DataValues>
 <RowData>
 <xsl:for-each select="//division">
 <Cell>
 <xsl:value-of select="totalsales"/>
 </Cell>
 </xsl:for-each>
 </RowData>
 </DataValues>

Similar to the labels section, the code loops through the data to build the XML that is
passed to the BI Beans rendering engine. This will generate the following XML:
<DataValues>
 <RowData>
 <Cell>3810</Cell>
 <Cell>2432</Cell>
 <Cell>6753</Cell>
 <Cell>2543</Cell>
 <Cell>5965</Cell>
 </RowData>
</DataValues>

Additional Chart Samples
You can also display this data in a pie chart as shown in the following figure:

Creating an RTF Template 5-25

The following is the code added to the template to render this chart at runtime:
chart:
<Graph graphType="PIE">
 <Title text="Company Sales 2004" visible="true"
 horizontalAlignment="CENTER"/>
 <LocalGridData rowCount="{count(//division)}" colCount="1">
 <RowLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </RowLabels>
 <DataValues>
 <xsl:for-each select="//division">
 <RowData>
 <Cell>
 <xsl:value-of select="totalsales"/>
 </Cell>
 </RowData>
 </xsl:for-each>
 </DataValues>
 </LocalGridData>
</Graph>

Horizontal Bar Chart Sample
The following example shows total sales and cost of sales charted in a horizontal bar
format. This example also adds the data from the cost of sales element (
<costofsales>) to the chart:

5-26 Oracle Business Intelligence Publisher User's Guide

The following code defines this chart in the template:
chart:
<Graph graphType = "BAR_HORIZ_CLUST">
 <Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>
 <LocalGridData colCount="{count(//division)}" rowCount="2">
 <RowLabels>
 <Label>Total Sales ('000s)</Label>
 <Label>Cost of Sales ('000s)</Label>
 </RowLabels>
 <ColLabels>
 <xsl:for-each select="//division">
 <Label><xsl:value-of select="name"/></Label>
 </xsl:for-each>
 </ColLabels>
 <DataValues>
 <RowData>
 <xsl:for-each select="//division">
 <Cell><xsl:value-of select="totalsales"/></Cell>
 </xsl:for-each>
 </RowData>
 <RowData>
 <xsl:for-each select="//division">
 <Cell><xsl:value-of select="costofsales"/></Cell>
 </xsl:for-each>
 </RowData>
 </DataValues>
 </LocalGridData>
</Graph>

To accommodate the second set of data, the rowCount attribute for the

Creating an RTF Template 5-27

LocalGridData element is set to 2. Also note the DataValues section defines two
sets of data: one for Total Sales and one for Cost of Sales.

Changing the Appearance of Your Chart
There are many attributes available from the BI Beans graph DTD that you can
manipulate to change the look and feel of your chart. For example, the previous chart
can be changed to remove the grid, place a graduated background, and change the bar
colors and fonts as shown in the following figure:

The code to support this is as follows:

5-28 Oracle Business Intelligence Publisher User's Guide

chart:
<Graph graphType = "BAR_HORIZ_CLUST">
<SeriesItems>
 <Series id="0" color="#ffcc00"/>
 <Series id="1" color="#ff6600"/>
</SeriesItems>
<O1MajorTick visible="false"/>
<X1MajorTick visible="false"/>
<Y1MajorTick visible="false"/>
<Y2MajorTick visible="false"/>
<MarkerText visible="true" markerTextPlace="MTP_CENTER"/>
<PlotArea borderTransparent="true">
 <SFX fillType="FT_GRADIENT" gradientDirection="GD_LEFT"
 gradientNumPins="300">
 <GradientPinStyle pinIndex="1" position="1"
 gradientPinLeftColor="#999999"
 gradientPinRightColor="#cc6600"/>
 </SFX>
</PlotArea>
<Title text="Company Sales 2004" visible="true">
 <GraphFont name="Tahoma" bold="false"/>
</Title>
. . .
</Graph>

The colors for the bars are defined in the SeriesItems section. The colors are defined
in hexadecimal format as follows:
<SeriesItems>
 <Series id="0" color="#ffcc00"/>
 <Series id="1" color="#ff6600"/>
</SeriesItems>

The following code hides the chart grid:
<O1MajorTick visible="false"/>
 <X1MajorTick visible="false"/>
 <Y1MajorTick visible="false"/>
 <Y2MajorTick visible="false"/>

The MarkerText tag places the data values on the chart bars:
<MarkerText visible="true" markerTextPlace="MTP_CENTER"/>

The PlotArea section defines the background. The SFX element establishes the
gradient and the borderTransparent attribute hides the plot border:
<PlotArea borderTransparent="true">
 <SFX fillType="FT_GRADIENT" gradientDirection="GD_LEFT"
 gradientNumPins="300">
 <GradientPinStyle pinIndex="1" position="1"
 gradientPinLeftColor="#999999"
 gradientPinRightColor="#cc6600"/>
 </SFX>
</PlotArea>

The Title text tag has also been updated to specify a new font type and size:
<Title text="Company Sales 2004" visible="true">
 <GraphFont name="Tahoma" bold="false"/>
</Title>

Creating an RTF Template 5-29

Drawing, Shape, and Clip Art Support
BI Publisher supports Microsoft Word drawing, shape, and clip art features. You can
add these objects to your template and they will be rendered in your final PDF output.

The following AutoShape categories are supported:

• Lines - straight, arrowed, connectors, curve, free form, and scribble

• Connectors - straight connectors only are supported. Curved connectors can be
achieved by using a curved line and specifying the end styles to the line.

• Basic Shapes - all shapes are supported.

• Block arrows - all arrows are supported.

• Flowchart - all flowchart objects are supported.

• Stars and Banners - all objects are supported.

• Callouts - the "line" callouts are not supported.

• Clip Art - add images to your templates using the Microsoft Clip Art libraries

Freehand Drawing
Use the freehand drawing tool in Microsoft Word to create drawings in your template
to be rendered in the final PDF output.

Hyperlinks
You can add hyperlinks to your shapes. See Hyperlinks, page 5-53.

Layering
You can layer shapes on top of each other and use the transparency setting in Microsoft
Word to allows shapes on lower layers to show through. The following graphic shows
an example of layered shapes:

5-30 Oracle Business Intelligence Publisher User's Guide

3-D Effects
BI Publisher does not currently support the 3-D option for shapes.

Microsoft Equation
Use the equation editor to generate equations in your output. The following figure
shows an example of an equation:

Organization Chart
Use the organization chart functionality in your templates and the chart will be
rendered in the output. The following image shows an example of an organization
chart:

WordArt
You can use Microsoft Word's WordArt functionality in your templates. The following
graphic shows a WordArt example:

Creating an RTF Template 5-31

Note: Some Microsoft WordArt uses a bitmap operation that currently
cannot be converted to SVG. To use the unsupported WordArt in your
template, you can take a screenshot of the WordArt then save it as an
image (gif, jpeg, or png) and replace the WordArt with the image.

Data Driven Shape Support
In addition to supporting the static shapes and features in your templates, BI Publisher
supports the manipulation of shapes based on incoming data or parameters, as well.
The following manipulations are supported:

• Replicate

• Move

• Change size

• Add text

• Skew

• Rotate

These manipulations not only apply to single shapes, but you can use the group feature
in Microsoft Word to combine shapes together and manipulate them as a group.

Placement of Commands
Enter manipulation commands for a shape in the Web tab of the shape's properties
dialog as shown in the following example figure:

5-32 Oracle Business Intelligence Publisher User's Guide

Replicate a Shape
You can replicate a shape based on incoming XML data in the same way you replicate
data elements in a for-each loop. To do this, use a for-each@shape command in
conjunction with a shape-offset declaration. For example, to replicate a shape down the
page, use the following syntax:
<?for-each@shape:SHAPE_GROUP?>
 <?shape-offset-y:(position()-1)*100?>
<?end for-each?>

where

for-each@shape opens the for-each loop for the shape context

SHAPE_GROUP is the name of the repeating element from the XML file. For each
occurrence of the element SHAPE_GROUP a new shape will be created.

shape-offset-y: - is the command to offset the shape along the y-axis.

(position()-1)*100) - sets the offset in pixels per occurrence. The XSL position
command returns the record counter in the group (that is 1,2,3,4); one is subtracted
from that number and the result is multiplied by 100. Therefore for the first occurrence
the offset would be 0: (1-1) * 100. The offset for the second occurrence would be 100
pixels: (2-1) *100. And for each subsequent occurrence the offset would be another 100
pixels down the page.

Creating an RTF Template 5-33

Add Text to a Shape
You can add text to a shape dynamically either from the incoming XML data or from a
parameter value. In the property dialog enter the following syntax:
<?shape-text:SHAPETEXT?>

where SHAPETEXT is the element name in the XML data. At runtime the text will be
inserted into the shape.

Add Text Along a Path
You can add text along a line or curve from incoming XML data or a parameter. After
drawing the line, in the property dialog enter:
<?shape-text-along-path:SHAPETEXT?>

where SHAPETEXT is the element from the XML data. At runtime the value of the
element SHAPETEXT will be inserted above and along the line.

Moving a Shape
You can move a shape or transpose it along both the x and y-axes based on the XML
data. For example to move a shape 200 pixels along the y-axis and 300 along the x-axis,
enter the following commands in the property dialog of the shape:
<?shape-offset-x:300?>
<?shape-offset-y:200?>

Rotating a Shape
To rotate a shape about a specified axis based on the incoming data, use the following
command:
<?shape-rotate:ANGLE;'POSITION'?>

where

ANGLE is the number of degrees to rotate the shape. If the angle is positive, the
rotation is clockwise; if negative, the rotation is counterclockwise.

POSITION is the point about which to carry out the rotation, for example, 'left/top'
. Valid values are combinations of left, right, or center with center, top, or bottom. The
default is left/top. The following figure shows these valid values:

5-34 Oracle Business Intelligence Publisher User's Guide

To rotate this rectangle shape about the bottom right corner, enter the following syntax:
<?shape-rotate:60,'right/bottom'?>

You can also specify an x,y coordinate within the shape itself about which to rotate.

Skewing a Shape
You can skew a shape along its x or y axis using the following commands:
<?shape-skew-x:ANGLE;'POSITION'?>
<?shape-skew-y:ANGLE;'POSITION'?>

where

ANGLE is the number of degrees to skew the shape. If the angle is positive, the skew is
to the right.

POSITION is the point about which to carry out the rotation, for example, 'left/top'
. Valid values are combinations of left, right, or center with center, top, or bottom. See
the figure under Rotating a Shape, page 5-33. The default is 'left/top'.

For example, to skew a shape by 30 degrees about the bottom right hand corner, enter
the following:
<?shape-skew-x:number(.)*30;'right/bottom'?>

Changing the Size of a Shape
You can change the size of a shape using the appropriate commands either along a
single axis or both axes. To change a shape's size along both axes, use:
<?shape-size:RATIO?>

where RATIO is the numeric ratio to increase or decrease the size of the shape.
Therefore a value of 2 would generate a shape twice the height and width of the

Creating an RTF Template 5-35

original. A value of 0.5 would generate a shape half the size of the original.

To change a shape's size along the x or y axis, use:
<?shape-size-x:RATIO?>
<?shape-size-y:RATIO?>

Changing only the x or y value has the effect of stretching or shrinking the shape along
an axis. This can be data driven.

Combining Commands
You can also combine these commands to carry out multiple transformations on a shape
at one time. For example, you can replicate a shape and for each replication, rotate it by
some angle and change the size at the same time.

The following example shows how to replicate a shape, move it 50 pixels down the
page, rotate it by five degrees about the center, stretch it along the x-axis and add the
number of the shape as text:
<for-each@shape:SHAPE_GROUP?>
 <?shape-text:position()?>
 <?shape-offset-y:position()*50?>
 <?shape-rotate:5;'center/center'?>
 <?shape-size-x:position()+1?>
<end for-each?>

This would generate the output shown in the following figure:

CD Ratings Example
This example demonstrates how to set up a template that will generate a star-rating
based on data from an incoming XML file.

Assume the following incoming XML data:

5-36 Oracle Business Intelligence Publisher User's Guide

<CATALOG>
 <CD>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <COMPANY>Columbia</COMPANY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 <USER_RATING>4</USER_RATING>
 </CD>
 <CD>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>CBS Records</COMPANY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 <USER_RATING>3</USER_RATING>
 </CD>
 <CD>
 <TITLE>Still got the blues</TITLE>
 <ARTIST>Gary More</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>10.20</PRICE>
 <YEAR>1990</YEAR>
 <USER_RATING>5</USER_RATING>
 </CD>
 <CD>
 <TITLE>This is US</TITLE>
 <ARTIST>Gary Lee</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>12.20</PRICE>
 <YEAR>1990</YEAR>
 <USER_RATING>2</USER_RATING>
 </CD>
<CATALOG>

Notice there is a USER_RATING element for each CD. Using this data element and the
shape manipulation commands, we can create a visual representation of the ratings so
that the reader can compare them at a glance.

A template to achieve this is shown in the following figure:

The values for the fields are shown in the following table:

Creating an RTF Template 5-37

Field Form Field Entry

F <?for-each:CD?>

TITLE <?TITLE?>

ARTIST <?ARTIST?>

E <?end for-each?>

(star shape) Web Tab Entry:

<?for-each@shape:xdoxslt:foreach_number($_XDOCTX,0
,USER_RATING,1)?>

<?shape-offset-x:(position()-1)*25?>

<?end for-each?>

The form fields hold the simple element values. The only difference with this template
is the value for the star shape. The replication command is placed in the Web tab of the
Format AutoShape dialog.

In the for-each@shape command we are using a command to create a "for...next loop"
construct. We specify 1 as the starting number; the value of USER_RATING as the final
number; and 1 as the step value. As the template loops through the CDs, we create an
inner loop to repeat a star shape for every USER_RATING value (that is, a value of 4
will generate 4 stars). The output from this template and the XML sample is shown in
the following graphic:

Grouped Shape Example
This example shows how to combine shapes into a group and have them react to the
incoming data both individually and as a group. Assume the following XML data:

5-38 Oracle Business Intelligence Publisher User's Guide

<SALES>
 <SALE>
 <REGION>Americas</REGION>
 <SOFTWARE>1200</SOFTWARE>
 <HARDWARE>850</HARDWARE>
 <SERVICES>2000</SERVICES>
 </SALE>
 <SALE>
 <REGION>EMEA</REGION>
 <SOFTWARE>1000</SOFTWARE>
 <HARDWARE>800</HARDWARE>
 <SERVICES>1100</SERVICES>
 </SALE>
 <SALE>
 <REGION>APAC</REGION>
 <SOFTWARE>900</SOFTWARE>
 <HARDWARE>1200</HARDWARE>
 <SERVICES>1500</SERVICES>
 </SALE>
</SALES>

You can create a visual representation of this data so that users can very quickly
understand the sales data across all regions. Do this by first creating the composite
shape in Microsoft Word that you wish to manipulate. The following figure shows a
composite shape made up of four components:

The shape consists of three cylinders: red, yellow, and blue. These will represent the
data elements software, hardware, and services. The combined object also contains a
rectangle that is enabled to receive text from the incoming data.

The following commands are entered into the Web tab:

Red cylinder: <?shape-size-y:SOFTWARE div 1000;'left/bottom'?>

Yellow cylinder: <?shape-size-y:HARDWARE div 1000;'left/bottom'?>

Blue cylinder: <?shape-size-y:SERVICES div 1000;'left/bottom'?>

The shape-size command is used to stretch or shrink the cylinder based on the values of
the elements SOFTWARE, HARDWARE, and SERVICES. The value is divided by 1000
to set the stretch or shrink factor. For example, if the value is 2000, divide that by 1000
to get a factor of 2. The shape will generate as twice its current height.

The text-enabled rectangle contains the following command in its Web tab:
<?shape-text:REGION?>

Creating an RTF Template 5-39

At runtime the value of the REGION element will appear in the rectangle.

All of these shapes were then grouped together and in the Web tab for the grouped
object, the following syntax is added:
<?for-each@shape:SALE?>
<?shape-offset-x:(position()-1)*110?>
<?end for-each?>

In this set of commands, the for-each@shape loops over the SALE group. The
shape-offset command moves the next shape in the loop to the right by a specific
number of pixels. The expression (position()-1) sets the position of the object. The
position() function returns a record counter while in the loop, so for the first shape, the
offset would be 1-1*100, or 0, which would place the first rendering of the object in the
position defined in the template. Subsequent occurrences would be rendered at a 100
pixel offset along the x-axis (to the right).

At runtime three sets of shapes will be rendered across the page as shown in the
following figure:

To make an even more visually representative report, these shapes can be
superimposed onto a world map. Just use the "Order" dialog in Microsoft Word to layer
the map behind the grouped shapes.

Microsoft Word 2000 Users: After you add the background map and overlay the shape
group, use the Grouping dialog to make the entire composition one group.

Microsoft Word 2002/3 Users: These versions of Word have an option under Tools >
Options, General tab to "Automatically generate drawing canvas when inserting
autoshapes". Using this option removes the need to do the final grouping of the map
and shapes. We can now generate a visually appealing output for our report as seen in
the following figure:

5-40 Oracle Business Intelligence Publisher User's Guide

Supported Native Formatting Features
In addition to the features already listed, BI Publisher supports the following features of
Microsoft Word.

General Features
• Large blocks of text

• Page breaks

To insert a page break, insert a Ctrl-Enter keystroke just before the closing tag of a
group. For example if you want the template to start a new page for every Supplier
in the Payables Invoice Register:

1. Place the cursor just before the Supplier group's closing <?end for-each?> tag.

2. Press Ctrl-Enter to insert a page break.

At runtime each Supplier will start on a new page.

Using this Microsoft Word native feature will cause a single blank page to print at
the end of your report output. To avoid this single blank page, use BI Publisher's
page break alias. See Special Features: Page Breaks, page 5-48.

Creating an RTF Template 5-41

• Page numbering

Insert page numbers into your final report by using the page numbering methods of
your word processing application. For example, if you are using Microsoft Word:

1. From the Insert menu, select Page Numbers...

2. Select the Position, Alignment, and Format as desired.

At runtime the page numbers will be displayed as selected.

• Hidden text

You can format text as "hidden" in Microsoft Word and the hidden text will be
maintained in RTF output reports.

Alignment
Use your word processor's alignment features to align text, graphics, objects, and tables.

Note: Bidirectional languages are handled automatically using your
word processing application's left/right alignment controls.

Tables
Supported table features include:

• Nested Tables

• Cell Alignment

You can align any object in your template using your word processing application's
alignment tools. This alignment will be reflected in the final report output.

• Row spanning and column spanning

You can span both columns and rows in your template as follows:

1. Select the cells you wish to merge.

2. From the Table menu, select Merge Cells.

3. Align the data within the merged cell as you would normally.

At runtime the cells will appear merged.

• Table Autoformatting

BI Publisher recognizes the table autoformats available in Microsoft Word.

5-42 Oracle Business Intelligence Publisher User's Guide

1. Select the table you wish to format.

2. From the Table menu, select Autoformat.

3. Select the desired table format.

At runtime, the table will be formatted using your selection.

• Cell patterns and colors

You can highlight cells or rows of a table with a pattern or color.

1. Select the cell(s) or table.

2. From the Table menu, select Table Properties.

3. From the Table tab, select the Borders and Shading... button.

4. Add borders and shading as desired.

• Repeating table headers

If your data is displayed in a table, and you expect the table to extend across
multiple pages, you can define the header rows that you want to repeat at the start
of each page.

1. Select the row(s) you wish to repeat on each page.

2. From the Table menu, select Heading Rows Repeat.

• Prevent rows from breaking across pages.

If you want to ensure that data within a row of a table is kept together on a page,
you can set this as an option using Microsoft Word's Table Properties.

1. Select the row(s) that you want to ensure do not break across a page.

2. From the Table menu, select Table Properties.

3. From the Row tab, deselect the check box "Allow row to break across pages".

• Fixed-width columns

To set the widths of your table columns:

1. Select a column and then select Table >Table Properties.

2. In the Table Properties dialog, select the Column tab.

3. Enable the Preferred width checkbox and then enter the width as a Percent or

Creating an RTF Template 5-43

in Inches.

4. Select the Next Column button to set the width of the next column.

Note that the total width of the columns must add up to the total width of the table.

The following figure shows the Table Properties dialog:

• Text truncation

By default, if the text within a table cell will not fit within the cell, the text will be
wrapped. To truncate the text instead, use the table properties dialog.

1. Place your cursor in the cell in which you want the text truncated.

2. Right-click your mouse and select Table Properties... from the menu, or
navigate to Table >Table Properties...

3. From the Table Properties dialog, select the Cell tab, then select Options...

4. Deselect the Wrap Text check box.

The following figure shows the Cell Options dialog.

5-44 Oracle Business Intelligence Publisher User's Guide

An example of truncation is shown in the following graphic:

Date Fields
Insert dates using the date feature of your word processing application. Note that this
date will correspond to the publishing date, not the request run date.

Multicolumn Page Support
BI Publisher supports Microsoft Word's Columns function to enable you to publish
your output in multiple columns on a page.

Select Format >Columns to display the Columns dialog box to define the number of

Creating an RTF Template 5-45

columns for your template. The following graphic shows the Columns dialog:

Multicolumn Page Example: Labels
To generate address labels in a two-column format:

1. Divide your page into two columns using the Columns command.

2. Define the repeatable group in the first column. Note that you define the repeatable
group only in the first column, as shown in the following figure:

Tip: To prevent the address block from breaking across pages or
columns, embed the label block inside a single-celled table. Then
specify in the Table Properties that the row should not break across
pages. See Prevent rows from breaking across pages, page 5-42.

5-46 Oracle Business Intelligence Publisher User's Guide

This template will produce the following multicolumn output:

Background and Watermark Support
BI Publisher supports the "Background" feature in Microsoft Word. You can specify a
single, graduated color or an image background for your template to be displayed in
the PDF output. Note that this feature is supported for PDF output only.

To add a background to your template, use the Format > Background menu option.

Add a Background Using Microsoft Word 2000
From the Background pop up menu, you can:

• Select a single color background from the color palette

• Select Fill Effects to open the Fill Effects dialog. The Fill Effects dialog is shown in
the following figure:

Creating an RTF Template 5-47

From this dialog select one of the following supported options:

• Gradient - this can be either one or two colors

• Texture - choose one of the textures provided, or load your own

• Pattern - select a pattern and background/foreground colors

• Picture - load a picture to use as a background image

Add a Text or Image Watermark Using Microsoft Word 2002 or later
These versions of Microsoft Word allow you to add either a text or image watermark.

Use the Format > Background > Printed Watermark dialog to select either:

• Picture Watermark - load an image and define how it should be scaled on the
document

• Text Watermark - use the predefined text options or enter your own, then specify
the font, size and how the text should be rendered.

The following figure shows the Printed Watermark dialog completed to display a
text watermark:

5-48 Oracle Business Intelligence Publisher User's Guide

Template Features

Page Breaks
To create a page break after the occurrence of a specific element use the
"split-by-page-break" alias. This will cause the report output to insert a hard page break
between every instance of a specific element.

To insert a page break between each occurrence of a group, insert the
"split-by-page-break" form field within the group immediately before the <?end
for-each?> tag that closes the group. In the Help Text of this form field enter the
syntax:

<?split-by-page-break:?>

Example
For the following XML, assume you want to create a page break for each new supplier:

Creating an RTF Template 5-49

<SUPPLIER>
 <NAME>My Supplier</NAME>
 <INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>1-Jan-2005</INVDATE>
 <INVAMT>100</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-2</INVNUM>
 <INVDATE>10-Jan-2005</INVDATE>
 <INVAMT>200</INVOICEAMT>
 </INVOICE>
 </INVOICES>
</SUPPLIER>
<SUPPLIER>
 <NAME>My Second Supplier</NAME>
 <INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>11-Jan-2005</INVDATE>
 <INVAMT>150</INVOICEAMT>
 </INVOICE>
…

In the template sample shown in the following figure, the field called PageBreak
contains the split-by-page-break syntax:

Place the PageBreak field with the <?split-by-page-break:?> syntax
immediately before the <?end for-each?> field. The PageBreak field sits inside the
end of the SUPPLIER loop. This will ensure a page break is inserted before the
occurrence of each new supplier. This method avoids the ejection of an extra page at the
end of the group when using the native Microsoft Word page break after the group.

Initial Page Number
Some reports require that the initial page number be set at a specified number. For
example, monthly reports may be required to continue numbering from month to
month. BI Publisher allows you to set the page number in the template to support this
requirement.

Use the following syntax in your template to set the initial page number:
<?initial-page-number:pagenumber?>

where pagenumber is the XML element or parameter that holds the numeric value.

Example 1 - Set page number from XML data element
If your XML data contains an element to carry the initial page number, for example:

5-50 Oracle Business Intelligence Publisher User's Guide

<REPORT>
 <PAGESTART>200<\PAGESTART>

</REPORT>

Enter the following in your template:
<?initial-page-number:PAGESTART?>

Your initial page number will be the value of the PAGESTART element, which in this
case is 200.

Example 2 - Set page number by passing a parameter value
If you define a parameter called PAGESTART, you can pass the initial value by calling
the parameter.

Enter the following in your template:
<?initial-page-number:$PAGESTART?>

Note: You must first declare the parameter in your template. See
Defining Parameters in Your Template, page 5-88.

Last Page Only Content
BI Publisher supports the Microsoft Word functionality to specify a different page
layout for the first page, odd pages, and even pages. To implement these options,
simply select Page Setup from the File menu, then select the Layout tab. BI Publisher
will recognize the settings you make in this dialog.

However, Microsoft Word does not provide settings for a different last page only. This
is useful for documents such as checks, invoices, or purchase orders on which you may
want the content such as the check or the summary in a specific place only on the last
page.

BI Publisher provides this ability. To utilize this feature, you must:

1. Create a section break in your template to ensure the content of the final page is
separated from the rest of the report.

2. Insert the following syntax on the final page:

<?start@last-page:body?>

<?end body?>

Any content on the page that occurs above or below these two tags will appear only on
the last page of the report. Also, note that because this command explicitly specifies the
content of the final page, any desired headers or footers previously defined for the
report must be reinserted on the last page.

Example
This example uses the last page only feature for a report that generates an invoice
listing with a summary to appear at the bottom of the last page.

Creating an RTF Template 5-51

Assume the following XML:
<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICELIST>
 <VENDOR>
 <VENDOR_NAME>Nuts and Bolts Limited</VENDOR_NAME>
 <ADDRESS>1 El Camino Real, Redwood City, CA 94065</ADDRESS>
 <INVOICE>
 <INV_TYPE>Standard</INV_TYPE>
 <INVOICE_NUM>981110</INVOICE_NUM>
 <INVOICE_DATE>10-NOV-04</INVOICE_DATE>
 <INVOICE_CURRENCY_CODE>EUR</INVOICE_CURRENCY_CODE>
 <ENT_AMT>122</ENT_AMT>
 <ACCTD_AMT>122</ACCTD_AMT>
 <VAT_CODE>VAT22%</VAT_CODE>
 </INVOICE>
 <INVOICE>
 <INV_TYPE>Standard</INV_TYPE>
 <INVOICE_NUM>100000</INVOICE_NUM>
 <INVOICE_DATE>28-MAY-04</INVOICE_DATE>
 <INVOICE_CURRENCY_CODE>FIM</INVOICE_CURRENCY_CODE>
 <ENT_AMT>122</ENT_AMT>
 <ACCTD_AMT>20.33</ACCTD_AMT>
 <VAT_CODE>VAT22%</VAT_CODE>
 </INVOICE>
 </VENDOR>
 <VENDOR>
 ...
<INVOICE>
 ...
 </INVOICE>
 </VENDOR>
 <SUMMARY>
 <SUM_ENT_AMT>61435</SUM_ENT_AMT>
 <SUM_ACCTD_AMT>58264.68</SUM_ACCTD_AMT>
 <TAX_CODE>EU22%</TAX_CODE>
 </SUMMARY>
</INVOICELIST>

The report should show each VENDOR and their INVOICE data with a SUMMARY
section that appears only on the last page, placed at the bottom of the page. The
template for this is shown in the following figure:

5-52 Oracle Business Intelligence Publisher User's Guide

Template Page One

Insert a Microsoft Word section break (type: next page) on the first page of the template.
For the final page, insert new line characters to position the summary table at the
bottom of the page. The summary table is shown in the following figure:

Last Page Only Layout

In this example:

• The F and E components contain the for-each grouping statements.

• The grayed report fields are placeholders for the XML elements.

• The "Last Page Placeholder" field contains the syntax:

<?start@last-page:body?><?end body?>

to declare the last page layout. Any content above or below this statement will
appear on the last page only. The content above the statement is regarded as the
header and the content below the statement is regarded as the footer.

Creating an RTF Template 5-53

If your reports contains headers and footers that you want to carry over onto the last
page, you must reinsert them on the last page. For more information about headers and
footers see Defining Headers and Footers, page 5-15.

You must insert a section break (type: next page) into the document to specify the last
page layout. This example is available in the samples folder of the Oracle BI Publisher
Template Builder for Word installation.

It is important to note that if the report is only one page in length, the first page layout
will be used. If your report requires that a single page report should default to the last
page layout (such as in a check printing implementation) then you can use the
following alternate syntax for the "Last Page Placeholder" on the last page:

<?start@last-page-first:body?><?end body?>

Substituting this syntax will result in the last page layout for reports that are only one
page long.

End on Even or End on Odd Page
If your report has different odd and even page layouts, you may want to force your
report to end specifically on an odd or even page. For example, you may include the
terms and conditions of a purchase order in the footer of your report using the different
odd/even footer functionality (see Different First Page and Different Odd and Even
Page Support, page 5-16) and you want to ensure that the terms and conditions are
printed on the final page.

Or, you may have binding requirements to have your report end on an even page,
without specific layout.

To end on an even page with layout:

Insert the following syntax in a form field in your template:
<?section:force-page-count;'end-on-even-layout'?>

To end on an odd page layout:
<?section:force-page-count;'end-on-odd-layout'?>

If you do not have layout requirements for the final page, but would like a blank page
ejected to force the page count to the preferred odd or even, use the following syntax:
<?section:force-page-count;'end-on-even'?>

or
<?section:force-page-count;'end-on-odd'?>

Hyperlinks
BI Publisher supports several different types of hyperlinks. The hyperlinks can be fixed
or dynamic and can link to either internal or external destinations. Hyperlinks can also
be added to shapes.

5-54 Oracle Business Intelligence Publisher User's Guide

• To insert static hyperlinks to either text or a shape, use your word processing
application's insert hyperlink feature:

1. Select the text or shape.

2. Use the right-mouse menu to select Hyperlink; or, select Hyperlink from the
Insert menu.

3. Enter the URL using any of the methods provided on the Insert Hyperlink
dialog box.

The following screenshot shows the insertion of a static hyperlink using Microsoft
Word's Insert Hyperlink dialog box.

• If your input XML data includes an element that contains a hyperlink or part of one,
you can create dynamic hyperlinks at runtime. In the Type the file or Web page
name field of the Insert Hyperlink dialog box, enter the following syntax:

{URL_LINK}

where URL_LINK is the incoming data element name.

If you have a fixed URL that you want to add elements from your XML data file to
construct the URL, enter the following syntax:

http://www.oracle.com?product={PRODUCT_NAME}

where PRODUCT_NAME is the incoming data element name.

In both these cases, at runtime the dynamic URL will be constructed.

Creating an RTF Template 5-55

The following figure shows the insertion of a dynamic hyperlink using Microsoft
Word's Insert Hyperlink dialog box. The data element SUPPLIER_URL from the
incoming XML file will contain the hyperlink that will be inserted into the report at
runtime.

• You can also pass parameters at runtime to construct a dynamic URL.

Enter the parameter and element names surrounded by braces to build up the URL
as follows:
{$SERVER_URL}{REPORT}/cstid={CUSTOMER_ID}

where SERVER_URL and REPORT are parameters passed to the template at runtime
(note the $ sign) and CUSTOMER_ID is an XML data element. This link may render
as:

http://myserver.domain:8888/CustomerReport/cstid=1234

Inserting Internal Links
Insert internal links into your template using Microsoft Word's Bookmark feature.

1. Position your cursor in the desired destination in your document.

2. Select Insert >Bookmark...

3. In the Bookmark dialog, enter a name for this bookmark, and select Add.

4. Select the text or shape in your document that you want to link back to the

5-56 Oracle Business Intelligence Publisher User's Guide

Bookmark target.

5. Use the right-mouse menu to select Hyperlink; or select Hyperlink from the Insert
menu.

6. On the Insert Hyperlink dialog, select Bookmark.

7. Choose the bookmark you created from the list.

At runtime, the link will be maintained in your generated report.

Table of Contents
BI Publisher supports the table of contents generation feature of the RTF specification.
Follow your word processing application's procedures for inserting a table of contents.

BI Publisher also provides the ability to create dynamic section headings in your
document from the XML data. You can then incorporate these into a table of contents.

To create dynamic headings:

1. Enter a placeholder for the heading in the body of the document, and format it as a
"Heading", using your word processing application's style feature. You cannot use
form fields for this functionality.

For example, you want your report to display a heading for each company
reported. The XML data element tag name is <COMPANY_NAME>. In your
template, enter <?COMPANY_NAME?> where you want the heading to appear. Now
format the text as a Heading.

2. Create a table of contents using your word processing application's table of contents
feature.

At runtime the TOC placeholders and heading text will be substituted.

Generating Bookmarks in PDF Output
If you have defined a table of contents in your RTF template, you can use your table of
contents definition to generate links in the Bookmarks tab in the navigation pane of
your output PDF. The bookmarks can be either static or dynamically generated.

For information on creating the table of contents, see Table of Contents, page 5-56.

• To create links for a static table of contents:

Enter the syntax:

<?copy-to-bookmark:?>

directly above your table of contents and

<?end copy-to-bookmark:?>

Creating an RTF Template 5-57

directly below the table of contents.

• To create links for a dynamic table of contents:

Enter the syntax:

<?convert-to-bookmark:?>

directly above the table of contents and

<?end convert-to-bookmark:?>

directly below the table of contents.

Check Boxes
You can include a check box in your template that you can define to display as checked
or unchecked based on a value from the incoming data.

To define a check box in your template:

1. Position the cursor in your template where you want the check box to display, and
select the Check Box Form Field from the Forms tool bar (shown in the following
figure).

2. Right-click the field to open the Check Box Form Field Options dialog.

3. Specify the Default value as either Checked or Not Checked.

4. In the Form Field Help Text dialog, enter the criteria for how the box should
behave. This must be a boolean expression (that is, one that returns a true or false
result).

For example, suppose your XML data contains an element called <population>. You
want the check box to appear checked if the value of <population> is greater than
10,000. Enter the following in the help text field:
<?population>10000?>

This is displayed in the following figure:

5-58 Oracle Business Intelligence Publisher User's Guide

Note that you do not have to construct an "if" statement. The expression is treated
as an "if" statement.

See the next section for a sample template using a check box.

Drop Down Lists
BI Publisher allows you to use the drop-down form field to create a cross-reference in
your template from your XML data to some other value that you define in the
drop-down form field.

For example, suppose you have the following XML:

Creating an RTF Template 5-59

<countries>
 <country>
 <name>Chad</name>
 <population>7360000</population>
 <continentIndex>5</continentIndex>
 </country>
 <country>
 <name>China</name>
 <population>1265530000</population>
 <continentIndex>1</continentIndex>
 </country>
 <country>
 <name>Chile</name>
 <population>14677000</population>
 <continentIndex>3</continentIndex>
 </country>
. . .
</countries>

Notice that each <country> entry has a <continentindex> entry, which is a
numeric value to represent the continent. Using the drop-down form field, you can
create an index in your template that will cross-reference the <continentindex>
value to the actual continent name. You can then display the name in your published
report.

To create the index for the continent example:

1. Position the cursor in your template where you want the value from the drop-down
list to display, and select the Drop-Down Form Field from the Forms tool bar
(shown in the following figure).

2. Right-click the field to display the Drop-Down Form Field Options dialog.

3. Add each value to the Drop-down item field and the click Add to add it to the
Items in drop-down list group. The values will be indexed starting from one for the
first, and so on. For example, the list of continents will be stored as follows:

Index Value

1 Asia

2 North America

5-60 Oracle Business Intelligence Publisher User's Guide

Index Value

3 South America

4 Europe

5 Africa

6 Australia

4. Now use the Help Text box to enter the XML element name that will hold the index
for the drop-down field values.

For this example, enter
<?continentIndex?>

The following figure shows the Drop-Down Form Field Options dialogs for this
example:

Using the check box and drop-down list features, you can create a report to display
population data with check boxes to demonstrate figures that reach a certain limit. An
example is shown in the following figure:

Creating an RTF Template 5-61

The template to create this report is shown in the next figure:

where the fields have the following values:

Field Form Field Entry Description

FE <?for-each:country?> Begins the country repeating group.

China <?name?> Placeholder for the name element.

1,000,000 <?population?> Placeholder for the population element.

(check box) <?population>1000000?> Establishes the condition for the check box. If the
value for the population element is greater than
1,000,000, the check box will display as checked.

Asia <?contintentIndex?> The drop-down form field for the
continentIndex element. See the preceding
description for its contents. At runtime, the value of
the XML element is replaced with the value it is
cross-referenced to in the drop-down form field.

EFE <?end for-each?> Ends the country group.

Conditional Formatting
Conditional formatting occurs when a formatting element appears only when a certain
condition is met. BI Publisher supports the usage of simple "if" statements, as well as
more complex "choose" expressions.

The conditional formatting that you specify can be XSL or XSL:FO code, or you can
specify actual RTF objects such as a table or data. For example, you can specify that if
reported numbers reach a certain threshold, they will display shaded in red. Or, you

5-62 Oracle Business Intelligence Publisher User's Guide

can use this feature to hide table columns or rows depending on the incoming XML
data.

If Statements
Use an if statement to define a simple condition; for example, if a data field is a specific
value.

1. Insert the following syntax to designate the beginning of the conditional area.

<?if:condition?>

2. Insert the following syntax at the end of the conditional area: <?end if?>.

For example, to set up the Payables Invoice Register to display invoices only when the
Supplier name is "Company A", insert the syntax <?if:VENDOR_NAME='COMPANY
A'?> before the Supplier field on the template.

Enter the <?end if?> tag after the invoices table.

This example is displayed in the figure below. Note that you can insert the syntax in
form fields, or directly into the template.

If Statements in Boilerplate Text
Assume you want to incorporate an "if" statement into the following free-form text:

The program was (not) successful.

You only want the "not" to display if the value of an XML tag called <SUCCESS> equals
"N".

To achieve this requirement, you must use the BI Publisher context command to place

Creating an RTF Template 5-63

the if statement into the inline sequence rather than into the block (the default
placement).

Note: For more information on context commands, see Using Context
Commands, page 5-121.

For example, if you construct the code as follows:
The program was <?if:SUCCESS='N'?>not<?end if?> successful.

The following undesirable result will occur:
The program was
not
successful.

because BI Publisher applies the instructions to the block by default. To specify that the
if statement should be inserted into the inline sequence, enter the following:
The program was <?if@inlines:SUCCESS='N'?>not<?end if?>
successful.

This construction will result in the following display:
The program was successful.

If SUCCESS does not equal 'N';

or
The program was not successful.

If SUCCESS equals 'N'.

If-then-Else Statements
BI Publisher supports the common programming construct "if-then-else". This is
extremely useful when you need to test a condition and conditionally show a result. For
example:
IF X=0 THEN
 Y=2
ELSE
 Y=3
END IF

You can also nest these statements as follows:
IF X=0 THEN
 Y=2
ELSE
 IF X=1 THEN
 Y=10
 ELSE Y=100
END IF

Use the following syntax to construct an if-then-else statement in your RTF template:
<?xdofx:if element_condition then result1 else result2 end if?>

5-64 Oracle Business Intelligence Publisher User's Guide

For example, the following statement tests the AMOUNT element value. If the value is
greater than 1000, show the word "Higher"; if it is less than 1000, show the word
"Lower"; if it is equal to 1000, show "Equal":
<?xdofx:if AMOUNT > 1000 then 'Higher'
 else
 if AMOUNT < 1000 then 'Lower'
 else
 'Equal'
end if?>

Choose Statements
Use the choose, when, and otherwise elements to express multiple conditional tests.
If certain conditions are met in the incoming XML data then specific sections of the
template will be rendered. This is a very powerful feature of the RTF template. In
regular XSL programming, if a condition is met in the choose command then further
XSL code is executed. In the template, however, you can actually use visual widgets in
the conditional flow (in the following example, a table).

Use the following syntax for these elements:

<?choose:?>

<?when:expression?>

<?otherwise?>

"Choose" Conditional Formatting Example
This example shows a choose expression in which the display of a row of data
depends on the value of the fields EXEMPT_FLAG and POSTED_FLAG. When the
EXEMPT_FLAG equals "^", the row of data will render light gray. When
POSTED_FLAG equals "*" the row of data will render shaded dark gray. Otherwise, the
row of data will render with no shading.

In the following figure, the form field default text is displayed. The form field help text
entries are shown in the table following the example.

Creating an RTF Template 5-65

Default Text Entry in Example Form Field Help Text Entry in Form Field

<Grp:VAT <?for-each:VAT?>

<Choose <?choose?>

<When EXEMPT_FLAG='^' <?When EXEMPT_FLAG='^'?>

End When> <?end When?>

<When EXEMPT_FLAG='^' <?When EXEMPT_FLAG='^'?>

End When> <?end When?>

Column Formatting
You can conditionally show and hide columns of data in your document output. The
following example demonstrates how to set up a table so that a column is only
displayed based on the value of an element attribute.

This example will show a report of a price list, represented by the following XML:

5-66 Oracle Business Intelligence Publisher User's Guide

<items type="PUBLIC"> <! - can be marked 'PRIVATE' - >
 <item>
 <name>Plasma TV</name>
 <quantity>10</quantity>
 <price>4000</price>
 </item>
 <item>
 <name>DVD Player</name>
 <quantity>3</quantity>
 <price>300</price>
 </item>
 <item>
 <name>VCR</name>
 <quantity>20</quantity>
 <price>200</price>
 </item>
 <item>
 <name>Receiver</name>
 <quantity>22</quantity>
 <price>350</price>
 </item>
</items>

Notice the type attribute associated with the items element. In this XML it is marked
as "PUBLIC" meaning the list is a public list rather than a "PRIVATE" list. For the
"public" version of the list we do not want to show the quantity column in the output,
but we want to develop only one template for both versions based on the list type.

The following figure is a simple template that will conditionally show or hide the
quantity column:

The following table shows the entries made in the template for the example:

Default Text Form Field Entry Description

grp:Item <?for-each:item?> Holds the opening for-each loop for
the item element.

Plasma TV <?name?> The placeholder for the name
element from the XML file.

Creating an RTF Template 5-67

Default Text Form Field Entry Description

IF <?if@column:/items/@type="P
RIVATE"?>

The opening of the if statement to
test for the attribute value
"PRIVATE". Note that this syntax
uses an XPath expression to
navigate back to the "items" level of
the XML to test the attribute. For
more information about using XPath
in your templates, see XPath
Overview, page 5-118.

Quantity N/A Boilerplate heading

end-if <?end if?> Ends the if statement.

20 <?if@column:/items/@type="P
RIVATE"?><?quantity?><?end
if?>

The placeholder for the quantity
element surrounded by the "if"
statement.

1,000.00 <?price?> The placeholder for the price
element.

end grp <?end for-each?> Closing tag of the for-each loop.

The conditional column syntax is the "if" statement syntax with the addition of the
@column clause. It is the @column clause that instructs BI Publisher to hide or show the
column based on the outcome of the if statement.

If you did not include the @column the data would not display in your report as a
result of the if statement, but the column still would because you had drawn it in your
template.

Note: The @column clause is an example of a context command. For
more information, see Using Context Commands, page 5-121.

The example will render the output shown in the following figure:

5-68 Oracle Business Intelligence Publisher User's Guide

If the same XML data contained the type attribute set to "PRIVATE" the following
output would be rendered from the same template:

Row Formatting
BI Publisher allows you to specify formatting conditions as the row-level of a table.
Examples of row-level formatting are:

• Highlighting a row when the data meets a certain threshold.

• Alternating background colors of rows to ease readability of reports.

• Showing only rows that meet a specific condition.

Conditionally Displaying a Row
To display only rows that meet a certain condition, insert the <?if:condition?> <?end if?>
tags at the beginning and end of the row, within the for-each tags for the group. This is
demonstrated in the following sample template.

Note the following fields from the sample figure:

Default Text Entry Form Field Help Text Description

for-each SALE <?for-each:SALE?> Opens the for-each loop to repeat
the data belonging to the SALE
group.

if big <?if:SALES>5000?> If statement to display the row only
if the element SALES has a value
greater than 5000.

INDUSTRY <?INDUSTRY?> Data field

YEAR <?YEAR?> Data field

Creating an RTF Template 5-69

Default Text Entry Form Field Help Text Description

MONTH <?MONTH?> Data field

SALES end if <?end if?> Closes the if statement.

end SALE <?end for-each?> Closes the SALE loop.

Conditionally Highlighting a Row
This example demonstrates how to set a background color on every other row. The
template to create this effect is shown in the following figure:

The following table shows values of the form fields in the template:

Default Text Entry Form Field Help Text Description

for-each SALE <?for-each:SALE?> Defines the opening of the for-each loop
for the SALE group.

format; <?if@row:position() mod 2=0?>
<xsl:attribute
name="background-color"
xdofo:ctx="incontext">lightgray</xsl:att
ribute><?end if?>

For each alternate row, the background
color attribute is set to gray for the row.

INDUSTRY <?INDUSTRY?> Data field

YEAR <?YEAR?> Data field

MONTH <?MONTH?> Data field

SALES <?SALES?> Data field

end SALE <?end for-each?> Closes the SALE for-each loop.

In the preceding example, note the "format;" field. It contains an if statement with a
"row" context (@row). This sets the context of the if statement to apply to the current
row. If the condition is true, then the <xsl:attribute> for the background color of the row
will be set to light gray. This will result in the following output:

5-70 Oracle Business Intelligence Publisher User's Guide

Note: For more information about context commands, see Using
Context Commands, page 5-121.

Cell Highlighting
The following example demonstrates how to conditionally highlight a cell based on a
value in the XML file.

For this example we will use the following XML:
<accounts>
 <account>
 <number>1-100-3333</number>
 <debit>100</debit>
 <credit>300</credit>
 </account>
 <account>
 <number>1-101-3533</number>
 <debit>220</debit>
 <credit>30</credit>
 </account>
 <account>
 <number>1-130-3343</number>
 <debit>240</debit>
 <credit>1100</credit>
 </account>
 <account>
 <number>1-153-3033</number>
 <debit>3000</debit>
 <credit>300</credit>
 </account>
</accounts>

The template lists the accounts and their credit and debit values. In the final report we
want to highlight in red any cell whose value is greater than 1000. The template for this
is shown in the following figure:

The field definitions for the template are shown in the following table:

Creating an RTF Template 5-71

Default Text Entry Form Field Entry Description

FE:Account <?for-each:account?> Opens the for each-loop for the
element account.

1-232-4444 <?number?> The placeholder for the number
element from the XML file.

CH1 <?if:debit>1000?><xsl:attri
bute xdofo:ctx="block"
name="background-color">red
</xsl:attribute><?end if?>

This field holds the code to highlight
the cell red if the debit amount is
greater than 1000.

100.00 <?debit?> The placeholder for the debit
element.

CH2 <?if:credit>1000?><xsl:attr
ibute xdofo:ctx="block"
name="background-color">red
</xsl:attribute><?end if?>

This field holds the code to highlight
the cell red if the credit amount is
greater than 1000.

100.00 <?credit?> The placeholder for the credit
element.

EFE <?end for-each?> Closes the for-each loop.

The code to highlight the debit column as shown in the table is:
<?if:debit>1000?>
 <xsl:attribute
 xdofo:ctx="block" name="background-color">red
 </xsl:attribute>
<?end if?>

The "if" statement is testing if the debit value is greater than 1000. If it is, then the next
lines are invoked. Notice that the example embeds native XSL code inside the "if"
statement.

The "attribute" element allows you to modify properties in the XSL.

The xdofo:ctx component is an BI Publisher feature that allows you to adjust XSL
attributes at any level in the template. In this case, the background color attribute is
changed to red.

To change the color attribute, you can use either the standard HTML names (for
example, red, white, green) or you can use the hexadecimal color definition (for
example, #FFFFF).

The output from this template is displayed in the following figure:

5-72 Oracle Business Intelligence Publisher User's Guide

Page-Level Calculations

Displaying Page Totals
BI Publisher allows you to display calculated page totals in your report. Because the
page is not created until publishing time, the totaling function must be executed by the
formatting engine.

Note: Page totaling is performed in the PDF-formatting layer. Therefore
this feature is not available for other outputs types: HTML, RTF, Excel.

Note: Note that this page totaling function will only work if your
source XML has raw numeric values. The numbers must not be
preformatted.

Because the page total field does not exist in the XML input data, you must define a
variable to hold the value. When you define the variable, you associate it with the
element from the XML file that is to be totaled for the page. Once you define total fields,
you can also perform additional functions on the data in those fields.

To declare the variable that is to hold your page total, insert the following syntax
immediately following the placeholder for the element that is to be totaled:
<?add-page-total:TotalFieldName;'element'?>

where

TotalFieldName is the name you assign to your total (to reference later) and

'element' is the XML element field to be totaled.

You can add this syntax to as many fields as you want to total.

Then when you want to display the total field, enter the following syntax:
<?show-page-total:TotalFieldName;'Oracle-number-format'?>

where

TotalFieldName is the name you assigned to give the page total field above and

Oracle-number-format is the format you wish to use to for the display, using the
Oracle format mask (for example: C9G999D00). For the list of Oracle format mask

Creating an RTF Template 5-73

symbols, see Using the Oracle Format Mask, page 5-110.

The following example shows how to set up page total fields in a template to display
total credits and debits that have displayed on the page, and then calculate the net of
the two fields.

This example uses the following XML:
<balance_sheet>
 <transaction>
 <debit>100</debit>
 <credit>90</credit>
 </transaction>
 <transaction>
 <debit>110</debit>
 <credit>80</credit>
 </transaction>
…
<\balance_sheet>

The following figure shows the table to insert in the template to hold the values:

The following table shows the form field entries made in the template for the example
table:

Default Text Entry Form Field Help Text Entry Description

FE <?for-each:transaction?> This field defines the opening
"for-each" loop for the transaction
group.

100.00 <?debit?><?add-page-total:dt;'debit
'?>

This field is the placeholder for the
debit element from the XML file.
Because we want to total this field by
page, the page total declaration syntax
is added. The field defined to hold the
total for the debit element is dt.

90.00 <?credit?>
<?add-page-total:ct;'credit'?>

This field is the placeholder for the
credit element from the XML file.
Because we want to total this field by
page, the page total declaration syntax
is added. The field defined to hold the
total for the credit element is ct.

5-74 Oracle Business Intelligence Publisher User's Guide

Default Text Entry Form Field Help Text Entry Description

Net <add-page-total:net;'debit -
credit'?>

Creates a net page total by subtracting
the credit values from the debit values.

EFE <?end for-each?> Closes the for-each loop.

Note that on the field defined as "net" we are actually carrying out a calculation on the
values of the credit and debit elements.

Now that you have declared the page total fields, you can insert a field in your template
where you want the page totals to appear. Reference the calculated fields using the
names you supplied (in the example, ct and dt). The syntax to display the page totals
is as follows:

For example, to display the debit page total, enter the following:

<?show-page-total:dt;'C9G990D00';'(C9G990D00)'?>

Therefore to complete the example, place the following at the bottom of the template
page, or in the footer:

Page Total Debit: <?show-page-total:dt;'C9G990D00';'(C9G990D00)'?>

Page Total Credit: <?show-page-total:ct;'C9G990D00';'(C9G990D00)'?>

Page Total Balance: <?show-page-total:net;'C9G990D00';'(C9G990D00)'?>

The output for this report is shown in the following graphic:

Brought Forward/Carried Forward Totals
Many reports require that a page total be maintained throughout the report output and
be displayed at the beginning and end of each page. These totals are known as "brought

Creating an RTF Template 5-75

forward/carried forward" totals.

Note: The totaling for the brought forward and carried forward fields is
performed in the PDF-formatting layer. Therefore this feature is not
available for other outputs types: HTML, RTF, Excel.

An example is displayed in the following figure:

At the end of the first page, the page total for the Amount element is displayed as the
Carried Forward total. At the top of the second page, this value is displayed as the
Brought Forward total from the previous page. At the bottom of the second page, the
brought forward value plus the total for that page is calculated and displayed as the
new Carried Forward value, and this continues throughout the report.

This functionality is an extension of the Page Totals, page 5-72 feature. The following
example walks through the syntax and setup required to display the brought forward
and carried forward totals in your published report.

Assume you have the following XML:
<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>1-Jan-2005</INVDATE>
 <INVAMT>100</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-2</INVNUM>
 <INVDATE>10-Jan-2005</INVDATE>
 <INVAMT>200</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>11-Jan-2005</INVDATE>
 <INVAMT>150</INVOICEAMT>
 </INVOICE>
. . .
</INVOICES>

The following sample template creates the invoice table and declares a placeholder that
will hold your page total:

5-76 Oracle Business Intelligence Publisher User's Guide

The fields in the template have the following values:

Field Form Field Help Text Entry Description

Init PTs <?init-page-total: InvAmt?> Declares "InvAmt" as the placeholder that
will hold the page total.

FE <?for-each:INVOICE?> Begins the INVOICE group.

10001-1 <?INVNUM?> Placeholder for the Invoice Number tag.

1-Jan-2005 <?INVDATE?> Placeholder for the Invoice Date tag.

100.00 <?INVAMT?> Placeholder for the Invoice Amount tag.

InvAmt <?add-page-total:InvAmt;INVAMT?> Assigns the "InvAmt" page total object to
the INVAMT element in the data.

EFE <?end for-each?> Closes the INVOICE group.

End PTs <?end-page-total:InvAmt?> Closes the "InvAmt" page total.

To display the brought forward total at the top of each page (except the first), use the
following syntax:
<xdofo:inline-total
 display-condition="exceptfirst"
 name="InvAmt">
 Brought Forward:
<xdofo:show-brought-forward
 name="InvAmt"
 format="99G999G999D00"/>
</xdofo:inline-total>

The following table describes the elements comprising the brought forward syntax:

Creating an RTF Template 5-77

Code Element Description and Usage

inline-total This element has two properties:

• name - name of the variable you declared for the field.

• display-condition - sets the display condition. This is an
optional property that takes one of the following values:

• first - the contents appear only on the first page

• last - the contents appear only on the last page

• exceptfirst - contents appear on all pages except first

• exceptlast - contents appear on all pages except last

• everytime - (default) contents appear on every page

In this example, display-condition is set to "exceptfirst" to
prevent the value from appearing on the first page where the
value would be zero.

Brought Forward: This string is optional and will display as the field name on the
report.

show-brought-forward Shows the value on the page. It has the following two properties:

• name - the name of the field to show. In this case, "InvAmt".
This property is mandatory.

• format - the Oracle number format to apply to the value at
runtime. This property is optional, but if you want to supply a
format mask, you must use the Oracle format mask. For more
information, see Using the Oracle Format Mask, page 5-110 .

Insert the brought forward object at the top of the template where you want the brought
forward total to display. If you place it in the body of the template, you can insert the
syntax in a form field.

If you want the brought forward total to display in the header, you must insert the full
code string into the header because Microsoft Word does not support form fields in the
header or footer regions. However, you can alternatively use the start body/end body
syntax which allows you to define what the body area of the report will be. BI Publisher
will recognize any content above the defined body area as header content, and any
content below as the footer. This allows you to use form fields. See Multiple or Complex

5-78 Oracle Business Intelligence Publisher User's Guide

Headers and Footers, page 5-15 for details.

Place the carried forward object at the bottom of your template where you want the
total to display. The carried forward object for our example is as follows:
<xdofo:inline-total
 display-condition="exceptlast"
 name="InvAmt">
 Carried Forward:
<xdofo:show-carry-forward
 name="InvAmt"
 format="99G999G999D00"/>
</xdofo:inline-total>

Note the following differences with the brought-forward object:

• The display-condition is set to exceptlast so that the carried forward total
will display on every page except the last page.

• The display string is "Carried Forward".

• The show-carry-forward element is used to show the carried forward value. It
has the same properties as brought-carried-forward, described above.

You are not limited to a single value in your template, you can create multiple brought
forward/carried forward objects in your template pointing to various numeric elements
in your data.

Running Totals
Example
The variable functionality (see Using Variables, page 5-87) can be used to add a
running total to your invoice listing report. This example assumes the following XML
structure:
<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>1-Jan-2005</INVDATE>
 <INVAMT>100</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-2</INVNUM>
 <INVDATE>10-Jan-2005</INVDATE>
 <INVAMT>200</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>11-Jan-2005</INVDATE>
 <INVAMT>150</INVOICEAMT>
 </INVOICE>
</INVOICES>

Using this XML, we want to create the report that contains running totals as shown in
the following figure:

Creating an RTF Template 5-79

To create the Running Total field, define a variable to track the total and initialize it to 0.
The template is shown in the following figure:

The values for the form fields in the template are shown in the following table:

Form Field Syntax Description

RtotalVar <?xdoxslt:set_variable($_XDO
CTX, 'RTotalVar', 0)?>

Declares the "RTotalVar"
variable and initializes it to 0.

FE <?for-each:INVOICE?> Starts the Invoice group.

10001-1 <?INVNUM?> Invoice Number tag

1-Jan-2005 <?INVDATE?> Invoice Date tag

100.00 <?xdoxslt:set_variable($_XDO
CTX, 'RTotalVar',
xdoxslt:get_variable($_XDOC
TX, 'RTotalVar') +
INVAMT)?>

xdoxslt:get_variable($_XDOC
TX, 'RTotalVar')?>

Sets the value of RTotalVar to
the current value plus the
new Invoice Amount.

Retrieves the RTotalVar value
for display.

EFE <?end for-each?> Ends the INVOICE group.

5-80 Oracle Business Intelligence Publisher User's Guide

Data Handling

Sorting
You can sort a group by any element within the group. Insert the following syntax
within the group tags:

<?sort:element name?>

For example, to sort the Payables Invoice Register (shown at the beginning of this
chapter) by Supplier (VENDOR_NAME), enter the following after the
<?for-each:G_VENDOR_NAME?> tag:

<?sort:VENDOR_NAME?>

To sort a group by multiple fields, just insert the sort syntax after the primary sort field.
To sort by Supplier and then by Invoice Number, enter the following

<?sort:VENDOR_NAME?> <?sort:INVOICE_NUM?>

Checking for Nulls
Within your XML data there are three possible scenarios for the value of an element:

• The element is present in the XML data, and it has a value

• The element is present in the XML data, but it does not have a value

• The element is not present in the XML data, and therefore there is no value

In your report layout, you may want to specify a different behavior depending on the
presence of the element and its value. The following examples show how to check for
each of these conditions using an "if" statement. The syntax can also be used in other
conditional formatting constructs.

• To define behavior when the element is present and the value is not null, use the
following:

<?if:element_name!=?>desired behavior <?end if?>

• To define behavior when the element is present, but is null, use the following:

<?if:element_name and element_name="?>desired behavior <?end
if?>

• To define behavior when the element is not present, use the following:

<?if:not(element_name)?>desired behavior <?end if?>

Creating an RTF Template 5-81

Regrouping the XML Data
The RTF template supports the XSL 2.0 for-each-group standard that allows you to
regroup XML data into hierarchies that are not present in the original data. With this
feature, your template does not have to follow the hierarchy of the source XML file. You
are therefore no longer limited by the structure of your data source.

XML Sample
To demonstrate the for-each-group standard, the following XML data sample of a CD
catalog listing will be regrouped in a template:
<CATALOG>
 <CD>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <COMPANY>Columbia</COMPANY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 </CD>
 <CD>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>CBS Records</COMPANY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 </CD>
 <CD>
 <TITLE>Still got the blues</TITLE>
 <ARTIST>Gary More</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>10.20</PRICE>
 <YEAR>1990</YEAR>
 </CD>
 <CD>
 <TITLE>This is US</TITLE>
 <ARTIST>Gary Lee</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>12.20</PRICE>
 <YEAR>1990</YEAR>
 </CD>

Using the regrouping syntax, you can create a report of this data that groups the CDs by
country and then by year. You are not limited by the data structure presented.

Regrouping Syntax
To regroup the data, use the following syntax:
<?for-each-group: BASE-GROUP;GROUPING-ELEMENT?>

For example, to regroup the CD listing by COUNTRY, enter the following in your
template:

5-82 Oracle Business Intelligence Publisher User's Guide

<?for-each-group:CD;COUNTRY?>

The elements that were at the same hierarchy level as COUNTRY are now children of
COUNTRY. You can then refer to the elements of the group to display the values
desired.

To establish nested groupings within the already defined group, use the following
syntax:
<?for-each:current-group(); GROUPING-ELEMENT?>

For example, after declaring the CD grouping by COUNTRY, you can then further
group by YEAR within COUNTRY as follows:
<?for-each:current-group();YEAR?>

At runtime, BI Publisher will loop through the occurrences of the new groupings,
displaying the fields that you defined in your template.

Note: This syntax is a simplification of the XSL for-each-group syntax.
If you choose not to use the simplified syntax above, you can use the
XSL syntax as shown below. The XSL syntax can only be used within a
form field of the template.
<xsl:for-each-group
 select=expression
 group-by="string expression"
 group-adjacent="string expression"
 group-starting-with=pattern>
 <!--Content: (xsl:sort*, content-constructor) -->
</xsl:for-each-group>

Template Example
The following figure shows a template that displays the CDs by Country, then Year,
and lists the details for each CD:

The following table shows the BI Publisher syntax entries made in the form fields of the
preceding template:

Creating an RTF Template 5-83

Default Text Entry Form Field Help Text Entry Description

Group by Country <?for-each-group:CD;CO
UNTRY?>

The
<?for-each-group:CD;CO
UNTRY?> tag declares the
new group. It regroups the
existing CD group by the
COUNTRY element.

USA <?COUNTRY?> Placeholder to display the
data value of the COUNTRY
tag.

Group by Year <?for-each-group:curre
nt-group();YEAR?>

The
<?for-each-group:curre
nt-group();YEAR?> tag
regroups the current group
(that is, COUNTRY), by the
YEAR element.

2000 <?YEAR?> Placeholder to display the
data value of the YEAR tag.

Group: Details <?for-each:current-gro
up()?>

Once the data is grouped by
COUNTRY and then by
YEAR, the
<?for-each:current-gro
up()?>command is used to
loop through the elements of
the current group (that is,
YEAR) and render the data
values (TITLE, ARTIST, and
PRICE) in the table.

My CD <?TITLE?> Placeholder to display the
data value of the TITLE tag.

John Doe <?ARTIST?> Placeholder to display the
data value of the ARTIST tag.

1.00 <?PRICE?> Placeholder to display the
data value of the PRICE tag.

End Group <?end for-each?> Closes out the
<?for-each:current-gro
up()?> tag.

5-84 Oracle Business Intelligence Publisher User's Guide

Default Text Entry Form Field Help Text Entry Description

End Group by Year <?end for-each-group?> Closes out the
<?for-each-group:curre
nt-group();YEAR?> tag.

End Group by Country <?end for-each-group?> Closes out the

<?for-each-group:CD;CO
UNTRY?> tag.

This template produces the following output when merged with the XML file:

Regrouping by an Expression
Regrouping by an expression allows you to apply a function or command to a data
element, and then group the data by the returned result.

To use this feature, state the expression within the regrouping syntax as follows:
<?for-each:BASE-GROUP;GROUPING-EXPRESSION?>

Example
To demonstrate this feature, an XML data sample that simply contains average

Creating an RTF Template 5-85

temperatures per month will be used as input to a template that calculates the number
of months having an average temperature within a certain range.

The following XML sample is composed of <temp> groups. Each <temp> group
contains a <month> element and a <degree> element, which contains the average
temperature for that month:
<temps>
 <temp>
 <month>Jan</month>
 <degree>11</degree>
 </temp>
 <temp>
 <month>Feb</month>
 <degree>14</degree>
 </temp>
 <temp>
 <month>Mar</month>
 <degree>16</degree>
 </temp>
 <temp>
 <month>Apr</month>
 <degree>20</degree>
 </temp>
 <temp>
 <month>May</month>
 <degree>31</degree>
 </temp>
 <temp>
 <month>Jun</month>
 <degree>34</degree>
 </temp>
 <temp>
 <month>Jul</month>
 <degree>39</degree>
 </temp>
 <temp>
 <month>Aug</month>
 <degree>38</degree>
 </temp>
 <temp>
 <month>Sep</month>
 <degree>24</degree>
 </temp>
 <temp>
 <month>Oct</month>
 <degree>28</degree>
 </temp>
 <temp>
 <month>Nov</month>
 <degree>18</degree>
 </temp>
 <temp>
 <month>Dec</month>
 <degree>8</degree>
 </temp>
</temps>

You want to display this data in a format showing temperature ranges and a count of
the months that have an average temperature to satisfy those ranges, as follows:

5-86 Oracle Business Intelligence Publisher User's Guide

Using the for-each-group command you can apply an expression to the <degree>
element that will enable you to group the temperatures by increments of 10 degrees.
You can then display a count of the members of each grouping, which will be the
number of months having an average temperature that falls within each range.

The template to create the above report is shown in the following figure:

The following table shows the form field entries made in the template:

Default Text Entry Form Field Help Text Entry

Group by TmpRng <?for-each-group:temp;floor(degree div 10?>

<?sort:floor(degree div 10)?>

Range <?concat(floor(degree div 10)*10,' F to ',floor(degree
div 10)*10+10, F')?>

Months <?count(current-group())?>

End TmpRng <?end for-each-group?>

Note the following about the form field tags:

• The <?for-each-group:temp;floor(degree div 10)?> is the regrouping
tag. It specifies that for the existing <temp> group, the elements are to be
regrouped by the expression, floor(degree div 10). The floor function is an
XSL function that returns the highest integer that is not greater than the argument

Creating an RTF Template 5-87

(for example, 1.2 returns 1, 0.8 returns 0).

In this case, it returns the value of the <degree> element, which is then divided by
10. This will generate the following values from the XML data: 1, 1, 1, 2, 3, 3, 3, 3, 2,
2, 1, and 0.

These are sorted, so that when processed, the following four groups will be created:
0, 1, 2, and 3.

• The <?concat(floor(degree div 10)*10,'F to ', floor(degree div
10)*10+10,'F'?> displays the temperature ranges in the row header in
increments of 10. The expression concatenates the value of the current group times
10 with the value of the current group times 10 plus 10.

Therefore, for the first group, 0, the row heading displays 0 to (0 +10), or "0 F to 10
F".

• The <?count(current-group())?> uses the count function to count the
members of the current group (the number of temperatures that satisfy the range).

• The <?end for-each-group?> tag closes out the grouping.

Using Variables
Updateable variables differ from standard XSL variables <xsl:variable> in that they are
updateable during the template application to the XML data. This allows you to create
many new features in your templates that require updateable variables.

The variables use a "set and get" approach for assigning, updating, and retrieving
values.

Use the following syntax to declare/set a variable value:
<?xdoxslt:set_variable($_XDOCTX, 'variable name', value)?>

Use the following syntax to retrieve a variable value:
<?xdoxslt:get_variable($_XDOCTX, 'variable name')?>

You can use this method to perform calculations. For example:
<?xdoxslt:set_variable($_XDOCTX, 'x', xdoxslt:get_variable($_XDOCTX, 'x'
+ 1)?>

This sets the value of variable 'x' to its original value plus 1, much like using "x = x +
1".

The $_XDOCTX specifies the global document context for the variables. In a
multi-threaded environment there may be many transformations occurring at the same
time, therefore the variable must be assigned to a single transformation.

See the section on Running Totals, page 5-78 for an example of the usage of updateable
variables.

5-88 Oracle Business Intelligence Publisher User's Guide

Defining Parameters
You can pass runtime parameter values into your template. These can then be
referenced throughout the template to support many functions. For example, you can
filter data in the template, use a value in a conditional formatting block, or pass
property values (such as security settings) into the final document.

Note: For BI Publisher Enterprise users, all name-value parameter pairs
are passed to the template. You must register the parameters that you
wish to utilize in your template using the syntax described below.

Using a parameter in a template
1. Declare the parameter in the template.

Use the following syntax to declare the parameter:
<?param@begin:parameter_name;parameter_value?>

where

parameter_name is the name of the parameter

parameter_value is the default value for the parameter (the parameter_value is
optional)

param@begino: is a required string to push the parameter declaration to the top
of the template at runtime so that it can be referred to globally in the template.

The syntax must be declared in the Help Text field of a form field. The form field
can be placed anywhere in the template.

2. Refer to the parameter in the template by prefixing the name with a "$" character.
For example, if you declare the parameter name to be "InvThresh", then reference
the value using "$InvThresh".

3. If you are not using BI Publisher Enterprise, but only the core libraries:

At runtime, pass the parameter to the BI Publisher engine programmatically.

Prior to calling the FOProcessor API create a Properties class and assign a property
to it for the parameter value as follows:
Properties prop = new Properties();
prop.put("xslt.InvThresh", "1000");

Example: Passing an invoice threshold parameter
This example illustrates how to declare a parameter in your template that will filter
your data based on the value of the parameter.

The following XML sample lists invoice data:

Creating an RTF Template 5-89

<INVOICES>
 <INVOICE>
 <INVOICE_NUM>981110</INVOICE_NUM>
 <AMOUNT>1100</AMOUNT>
 </INVOICE>
 <INVOICE>
 <INVOICE_NUM>981111</INVOICE_NUM>
 <AMOUNT>250</AMOUNT>
 </INVOICE>
 <INVOICE>
 <INVOICE_NUM>981112</INVOICE_NUM>
 <AMOUNT>8343</AMOUNT>
 </INVOICE>
. . .
</INVOICES>

The following figure displays a template that accepts a parameter value to limit the
invoices displayed in the final document based on the parameter value.

Field Form Field Help Text Entry Description

InvThreshDeclaration <?param@begin:InvThresh?> Declares the parameter InvThresh.

FE <?for-each:INVOICE?> Begins the repeating group for the INVOICE
element.

IF <?if:AMOUNT>$InvThresh?> Tests the value of the AMOUNT element to
determine if it is greater than the value of
InvThresh.

13222-2 <?INVOICE_NUM?> Placeholder for the INVOICE_NUM
element.

$100.00 <?AMOUNT?> Placeholder for the AMOUNT element.

EI <?end if?> Closing tag for the if statement.

EFE <?end for-each?> Closing tag for the for-each loop.

In this template, only INVOICE elements with an AMOUNT greater than the InvThresh

5-90 Oracle Business Intelligence Publisher User's Guide

parameter value will be displayed. If we pass in a parameter value of 1,000, the
following output shown in the following figure will result:

Notice the second invoice does not display because its amount was less than the
parameter value.

Setting Properties
BI Publisher properties that are available in the BI Publisher Configuration file can
alternatively be embedded into the RTF template. The properties set in the template are
resolved at runtime by the BI Publisher engine. You can either hard code the values in
the template or embed the values in the incoming XML data. Embedding the properties
in the template avoids the use of the configuration file.

Note: See BI Publisher Configuration File, page D-1 for more
information about the BI Publisher Configuration file and the available
properties.

For example, if you use a nonstandard font in your template, rather than specify the
font location in the configuration file, you can embed the font property inside the
template. If you need to secure the generated PDF output, you can use the BI Publisher
PDF security properties and obtain the password value from the incoming XML data.

To add an BI Publisher property to a template, use the Microsoft Word Properties
dialog (available from the File menu), and enter the following information:

Name - enter the BI Publisher property name prefixed with "xdo-"

Type - select "Text"

Value - enter the property value. To reference an element from the incoming XML data,
enter the path to the XML element enclosed by curly braces. For example:
{/root/password}

The following figure shows the Properties dialog:

Creating an RTF Template 5-91

Embedding a Font Reference
For this example, suppose you want to use a font in the template called "XMLPScript".
This font is not available as a regular font on your server, therefore you must tell BI
Publisher where to find the font at runtime. You tell BI Publisher where to find the font
by setting the "font" property. Assume the font is located in "/tmp/fonts", then you
would enter the following in the Properties dialog:

Name: xdo-font.XMLPScript.normal.normal

Type: Text

Value: truetype./tmp/fonts/XMLPScript.ttf

When the template is applied to the XML data on the server, BI Publisher will look for
the font in the /tmp/fonts directory. Note that if the template is deployed in multiple
locations, you must ensure that the path is valid for each location.

For more information about setting font properties, see Font Definitions, page D-4.

Securing a PDF Output
For this example, suppose you want to use a password from the XML data to secure the
PDF output document. The XML data is as follows:

5-92 Oracle Business Intelligence Publisher User's Guide

<PO>
 <security>true</security>
 <password>welcome</password>
 <PO_DETAILS>
 ..
</PO>

In the Properties dialog set two properties: pdf-security to set the security feature as
enabled or not, and pdf-open-password to set the password. Enter the following in
the Properties dialog:

Name: xdo-pdf-security

Type: Text

Value: {/PO/security}

Name: xdo-pdf-open-password

Type: Text

Value: {/PO/password}

Storing the password in the XML data is not recommended if the XML will persist in
the system for any length of time. To avoid this potential security risk, you can use a
template parameter value that is generated and passed into the template at runtime.

For example, you could set up the following parameters:

• PDFSec - to pass the value for the xdo-pdf-security property

• PDFPWD - to pass the value for the password

You would then enter the following in the Properties dialog:

Name: xdo-pdf-security

Type: Text

Value: {$PDFSec}

Name: xdo-pdf-open-password

Type: Text

Value: {$PDFPWD}

For more information about template parameters, see Defining Parameters in Your
Template, page 5-88.

Advanced Report Layouts

Batch Reports
It is a common requirement to print a batch of documents, such as invoices or purchase
orders in a single PDF file. Because these documents are intended for different

Creating an RTF Template 5-93

customers, each document will require that the page numbering be reset and that page
totals are specific to the document. If the header and footer display fields from the data
(such as customer name) these will have to be reset as well.

BI Publisher supports this requirement through the use of a context command. This
command allows you to define elements of your report to a specific section. When the
section changes, these elements are reset.

The following example demonstrates how to reset the header and footer and page
numbering within an output file:

The following XML sample is a report that contains multiple invoices:
...
<LIST_G_INVOICE>
 <G_INVOICE>
 <BILL_CUST_NAME>Vision, Inc. </BILL_CUST_NAME>
 <TRX_NUMBER>2345678</TRX_NUMBER>
 ...
 </G_INVOICE>
 <G_INVOICE>
 <BILL_CUST_NAME>Oracle, Inc. </BILL_CUST_NAME>
 <TRX_NUMBER>2345685</TRX_NUMBER>
 ...
 </G_INVOICE>
 ...
</LIST_G_INVOICE>
...

Each G_INVOICE element contains an invoice for a potentially different customer. To
instruct BI Publisher to start a new section for each occurrence of the G_INVOICE
element, add the @section command to the opening for-each statement for the group,
using the following syntax:

<?for-each@section:group name?>

where group_name is the name of the element for which you want to begin a new
section.

For example, the for-each grouping statement for this example will be as follows:

<?for-each@section:G_INVOICE?>

The closing <?end for-each?> tag is not changed.

The following figure shows a sample template. Note that the G_INVOICE group
for-each declaration is still within the body of the report, even though the headers will
be reset by the command.

5-94 Oracle Business Intelligence Publisher User's Guide

The following table shows the values of the form fields from the example:

Default Text Entry Form Field Help Text Description

for-each G_INVOICE <?for-each@section:G_INVOI
CE?>

Begins the G_INVOICE
group, and defines the
element as a Section. For each
occurrence of G_INVOICE, a
new section will be started.

<?TRX_NUMBER?> N/A Microsoft Word does not
support form fields in the
header, therefore the
placeholder syntax for the
TRX_NUMBER element is
placed directly in the
template.

end G_INVOICE <?end for-each?> Closes the G_INVOICE
group.

Now for each new occurrence of the G_INVOICE element, a new section will begin. The
page numbers will restart, and if header or footer information is derived from the data,
it will be reset as well.

Cross-Tab Support
The columns of a cross-tab report are data dependent. At design-time you do not know
how many columns will be reported, or what the appropriate column headings will be.
Moreover, if the columns should break onto a second page, you need to be able to
define the row label columns to repeat onto subsequent pages. The following example

Creating an RTF Template 5-95

shows how to design a simple cross-tab report that supports these features.

This example uses the following XML sample:
<ROWSET>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2005</YEAR>
 <QUARTER>Q1</QUARTER>
 <SALES>1000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2005</YEAR>
 <QUARTER>Q2</QUARTER>
 <SALES>2000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2004</YEAR>
 <QUARTER>Q1</QUARTER>
 <SALES>3000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2004</YEAR>
 <QUARTER>Q2</QUARTER>
 <SALES>3000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2003</YEAR>
 ...
 </RRESULTS>
 <RESULTS>
 <INDUSTRY>Home Furnishings</INDUSTRY>
 ...
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Electronics</INDUSTRY>
 ...
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Food and Beverage</INDUSTRY>
 ...
 </RESULTS>

</ROWSET>

From this XML we will generate a report that shows each industry and totals the sales
by year as shown in the following figure:

5-96 Oracle Business Intelligence Publisher User's Guide

The template to generate this report is shown in the following figure. The form field
entries are shown in the subsequent table.

The form fields in the template have the following values:

Default Text Entry Form Field Help Text Description

header column <?horizontal-break-table:1?> Defines the first column as a header that should repeat
if the table breaks across pages. For more information
about this syntax, see Defining Columns to Repeat
Across Pages, page 5-98.

for: <?for-each-group@column:RES
ULTS;YEAR?>

Uses the regrouping syntax (see Regrouping the XML
Data, page 5-81) to group the data by YEAR; and the
@column context command to create a table column
for each group (YEAR). For more information about
context commands, see Using the Context Commands,
page 5-121.

YEAR <?YEAR?> Placeholder for the YEAR element.

end <?end for-each-group?> Closes the for-each-group loop.

for: <?for-each-group:RESULTS;IN
DUSTRY?>

Begins the group to create a table row for each
INDUSTRY.

INDUSTRY <?INDUSTRY?> Placeholder for the INDUSTRY element.

Creating an RTF Template 5-97

Default Text Entry Form Field Help Text Description

for: <?for-each-group@cell:current-
group();YEAR?>

Uses the regrouping syntax (see Regrouping the XML
Data, page 5-81) to group the data by YEAR; and the
@cell context command to create a table cell for each
group (YEAR).

sum(Sales) <?sum(current-group()//SALE
S)?>

Sums the sales for the current group (YEAR).

end <?end for-each-group?> Closes the for-each-group statement.

end <?end for-each-group?> Closes the for-each-group statement.

Note that only the first row uses the @column context to determine the number of
columns for the table. All remaining rows need to use the @cell context to create the
table cells for the column. (For more information about context commands, see Using
the Context Commands, page 5-121.)

Dynamic Data Columns
The ability to construct dynamic data columns is a very powerful feature of the RTF
template. Using this feature you can design a template that will correctly render a table
when the number of columns required by the data is variable.

For example, you are designing a template to display columns of test scores within
specific ranges. However, you do not how many ranges will have data to report. You
can define a dynamic data column to split into the correct number of columns at
runtime.

Use the following tags to accommodate the dynamic formatting required to render the
data correctly:

• Dynamic Column Header

<?split-column-header:group element name?>

Use this tag to define which group to split for the column headers of a table.

• Dynamic Column <?split-column-data:group element name?>

Use this tag to define which group to split for the column data of a table.

• Dynamic Column Width

<?split-column-width:name?> or

<?split-column-width:@width?>

5-98 Oracle Business Intelligence Publisher User's Guide

Use one of these tags to define the width of the column when the width is described
in the XML data. The width can be described in two ways:

• An XML element stores the value of the width. In this case, use the syntax
<?split-column-width:name?>, where name is the XML element tag name
that contains the value for the width.

• If the element defined in the split-column-header tag, contains a width
attribute, use the syntax <?split-column-width:@width?> to use the
value of that attribute.

• Dynamic Column Width's unit value (in points) <?split-column-width-unit:
value?>

Use this tag to define a multiplier for the column width. If your column widths are
defined in character cells, then you will need a multiplier value of ~6 to render the
columns to the correct width in points. If the multiplier is not defined, the widths of
the columns are calculated as a percentage of the total width of the table. This is
illustrated in the following table:

Width Definition Column 1

(Width = 10)

Column 2

(Width = 12)

Column 3

(Width = 14)

Multiplier not
present -% width

10/10+12+14*100 28% %Width = 33% %Width =39%

Multiplier = 6 -
width

60 pts 72 pts 84 pts

Defining Columns to Repeat Across Pages
If your table columns expand horizontally across more than one page, you can define
how many row heading columns you want to repeat on every page. Use the following
syntax to specify the number of columns to repeat:

<?horizontal-break-table:number?>

where number is the number of columns (starting from the left) to repeat.

Note that this functionality is supported for PDF output only..

Example of Dynamic Data Columns
A template is required to display test score ranges for school exams. Logically, you
want the report to be arranged as shown in the following table:

Creating an RTF Template 5-99

Test Score Test Score
Range 1

Test Score
Range 2

Test Score
Range 3

...Test Score
Range n

Test Category # students in
Range 1

students in
Range 2

students in
Range 3

of students in
Range n

but you do not know how many Test Score Ranges will be reported. The number of Test
Score Range columns is dynamic, depending on the data.

The following XML data describes these test scores. The number of occurrences of the
element <TestScoreRange> will determine how many columns are required. In this
case there are five columns: 0-20, 21-40, 41-60, 61-80, and 81-100. For each column there
is an amount element (<NumOfStudents>) and a column width attribute (
<TestScore width="15">).
<?xml version="1.0" encoding="utf-8"?>
 <TestScoreTable>
 <TestScores>
 <TestCategory>Mathematics</TestCategory>
 <TestScore width ="15">
 <TestScoreRange>0-20</TestScoreRange>
 <NumofStudents>30</NumofStudents>
 </TestScore>
 <TestScore width ="20">
 <TestScoreRange>21-40</TestScoreRange>
 <NumofStudents>45</NumofStudents>
 </TestScore>
 <TestScore width ="15">
 <TestScoreRange>41-60</TestScoreRange>
 <NumofStudents>50</NumofStudents>
 </TestScore>
 <TestScore width ="20">
 <TestScoreRange>61-80</TestScoreRange>
 <NumofStudents>102</NumofStudents>
 </TestScore>
 <TestScore width ="15">
 <TestScoreRange>81-100</TestScoreRange>
 <NumofStudents>22</NumofStudents>
 </TestScore>
 </TestScores>
 <TestScoreTable>

Using the dynamic column tags in form fields, set up the table in two columns as shown
in the following figure. The first column, "Test Score" is static. The second column,
"Column Header and Splitting" is the dynamic column. At runtime this column will
split according to the data, and the header for each column will be appropriately
populated. The Default Text entry and Form Field Help entry for each field are listed in
the table following the figure. (See Form Field Method, page 5-8 for more information
on using form fields).

5-100 Oracle Business Intelligence Publisher User's Guide

Default Text Entry Form Field Help Text Entry

Group:TestScores <?for-each:TestScores?>

Test Category <?TestCategory?>

Column Header and Splitting <?split-column-header:TestScore?>
<?split-column-width:@width?>
<?TestScoreRange?>%

Content and Splitting <?split-column-data:TestScore?>
<?NumofStudents?>

end:TestScores <?end for-each?>

• Test Score is the boilerplate column heading.

• Test Category is the placeholder for the<TestCategory> data element, that is,
"Mathematics," which will also be the row heading.

• The second column is the one to be split dynamically. The width you specify will be
divided by the number of columns of data. In this case, there are 5 data columns.

• The second column will contain the dynamic "range" data. The width of the column
will be divided according to the split column width. Because this example does not
contain the unit value tag (<?split-column-width-unit:value?>), the
column will be split on a percentage basis. Wrapping of the data will occur if
required.

Note: If the tag (<?split-column-width-unit:value?>) were
present, then the columns would have a specific width in points. If
the total column widths were wider than the allotted space on the
page, then the table would break onto another page.

The "horizontal-break-table" tag could then be used to specify how
many columns to repeat on the subsequent page. For example, a
value of "1" would repeat the column "Test Score" on the
subsequent page, with the continuation of the columns that did not
fit on the first page.

Creating an RTF Template 5-101

The template will render the output shown in the following figure:

Number and Formatting

Number Formatting
BI Publisher supports two methods for specifying the number format:

• Microsoft Word's Native number format mask

• Oracle's format-number function

Note: You can also use the native XSL format-number function to
format numbers. See: Native XSL Number Formatting, page 5-126.

Use only one of these methods. If the number format mask is specified using both
methods, the data will be formatted twice, causing unexpected behavior.

The group separator and the number separator will be set at runtime based on the
template locale. This is applicable for both the Oracle format mask and the MS format
mask.

Data Source Requirements
To use the Oracle format mask or the Microsoft format mask, the numbers in your data
source must be in a raw format, with no formatting applied (for example: 1000.00). If
the number has been formatted for European countries (for example: 1.000,00) the
format will not work.

Note: The BI Publisher parser requires the Java BigDecimal string
representation. This consists of an optional sign ("-") followed by a
sequence of zero or more decimal digits (the integer), optionally
followed by a fraction, and optionally followed by an exponent. For
example: -123456.3455e-3.

Translation Considerations
If you are designing a template to be translatable, using currency in the Microsoft
format mask is not recommended unless you want the data reported in the same
currency for all translations. Using the MS format mask sets the currency in the
template so that it cannot be updated at runtime.

Instead, use the Oracle format mask. For example, L999G999G999D99, where "L" will be

5-102 Oracle Business Intelligence Publisher User's Guide

replaced by the currency symbol based on the locale at runtime.

Do not include "%" in the format mask because this will fix the location of the percent
sign in the number display, while the desired position could be at the beginning or the
end of a number, depending on the locale.

Using the Microsoft Number Format Mask
To format numeric values, use Microsoft Word's field formatting features available
from the Text Form Field Options dialog box. The following graphic displays an
example:

To apply a number format to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Number.

3. Select the appropriate Number format from the list of options.

Supported Microsoft Format Mask Definitions
The following table lists the supported Microsoft format mask definitions:

Creating an RTF Template 5-103

Symbol Location Meaning

0 Number Digit. Each explicitly set 0 will appear, if no other number
occupies the position.

Example:

Format mask: 00.0000

Data: 1.234

Display: 01.2340

Number Digit. When set to #, only the incoming data is displayed.

Example:

Format mask: ##.####

Data: 1.234

Display: 1.234

. Number Determines the position of the decimal separator. The decimal
separator symbol used will be determined at runtime based on
template locale.

For example:

Format mask: #,##0.00

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

- Number Determines placement of minus sign for negative numbers.

, Number Determines the placement of the grouping separator. The
grouping separator symbol used will be determined at runtime
based on template locale.

For example:

Format mask: #,##0.00

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

5-104 Oracle Business Intelligence Publisher User's Guide

Symbol Location Meaning

E Number Separates mantissa and exponent in a scientific notation.

Example:

0.###E+0 plus sign always shown for positive numbers

0.###E-0 plus sign not shown for positive numbers

; Subpattern boundary Separates positive and negative subpatterns. See Note below.

% Prefix or Suffix Multiply by 100 and show as percentage

' Prefix or Suffix Used to quote special characters in a prefix or suffix.

Note: Subpattern boundary: A pattern contains a positive and negative
subpattern, for example, "#,##0.00;(#,##0.00)". Each subpattern has a
prefix, numeric part, and suffix. The negative subpattern is optional. If
absent, the positive subpattern prefixed with the localized minus sign
("-" in most locales) is used as the negative subpattern. That is, "0.00"
alone is equivalent to "0.00;-0.00". If there is an explicit negative
subpattern, it serves only to specify the negative prefix and suffix. The
number of digits, minimal digits, and other characteristics are all the
same as the positive pattern. That means that "#,##0.0#;(#)" produces
precisely the same behavior as "#,##0.0#;(#,##0.0#)".

Using the Oracle Format Mask
To apply the Oracle format mask to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to "Regular text".

3. In the Form Field Help Text field, enter the mask definition according to the
following example:

<?format-number:fieldname;'999G999D99'?>

where

fieldname is the XML tag name of the data element you are formatting and

999G999D99 is the mask definition.

The following graphic shows an example Form Field Help Text dialog entry for the data
element "empno":

Creating an RTF Template 5-105

The following table lists the supported Oracle number format mask symbols and their
definitions:

Symbol Meaning

0 Digit. Each explicitly set 0 will appear, if no other number occupies the position.

Example:

Format mask: 00.0000

Data: 1.234

Display: 01.2340

9 Digit. Returns value with the specified number of digits with a leading space if positive or
a leading minus if negative. Leading zeros are blank, except for a zero value, which returns
a zero for the integer part of the fixed-point number.

Example:

Format mask: 99.9999

Data: 1.234

Display: 1.234

C Returns the ISO currency symbol in the specified position.

5-106 Oracle Business Intelligence Publisher User's Guide

Symbol Meaning

D Determines the placement of the decimal separator. The decimal separator symbol used
will be determined at runtime based on template locale.

For example:

Format mask: 9G999D99

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

EEEE Returns a value in scientific notation.

G Determines the placement of the grouping (thousands) separator. The grouping separator
symbol used will be determined at runtime based on template locale.

For example:

Format mask: 9G999D99

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

L Returns the local currency symbol in the specified position.

MI Displays negative value with a trailing "-".

PR Displays negative value enclosed by <>

PT Displays negative value enclosed by ()

S (before number) Displays positive value with a leading "+" and negative values with a leading "-"

S (after number) Displays positive value with a trailing "+" and negative value with a trailing "-"

Date Formatting
BI Publisher supports three methods for specifying the date format:

• Specify an explicit date format mask using Microsoft Word's native date format
mask.

Creating an RTF Template 5-107

• Specify an explicit date format mask using Oracle's format-date function.

• Specify an abstract date format mask using Oracle's abstract date format masks.
(Recommended for multilingual templates.)

Only one method should be used. If both the Oracle and MS format masks are specified,
the data will be formatted twice causing unexpected behavior.

Data Source Requirements
To use the Microsoft format mask or the Oracle format mask, the date from the XML
data source must be in canonical format. This format is:

YYYY-MM-DDThh:mm:ss+HH:MM

where

• YYYY is the year

• MM is the month

• DD is the day

• T is the separator between the date and time component

• hh is the hour in 24-hour format

• mm is the minutes

• ss is the seconds

• +HH:MM is the time zone offset from Universal Time (UTC), or Greenwich Mean
Time

An example of this construction is:

2005-01-01T09:30:10-07:00

The data after the "T" is optional, therefore the following date: 2005-01-01 can be
formatted using either date formatting option. Note that if you do not include the time
zone offset, the time will be formatted to the UTC time.

Translation Considerations
date_format

Using the Microsoft Date Format Mask
To apply a date format to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

5-108 Oracle Business Intelligence Publisher User's Guide

2. Set the Type to Date, Current Date, or Current Time.

3. Select the appropriate Date format from the list of options.

If you do not specify the mask in the Date format field, the abstract format mask
"MEDIUM" will be used as default. See Oracle Abstract Format Masks, page 5-113 for
the description.

The following figure shows the Text Form Field Options dialog box with a date format
applied:

The following table lists the supported Microsoft date format mask components:

Symbol Meaning

d The day of the month. Single-digit days will not have a leading zero.

dd The day of the month. Single-digit days will have a leading zero.

ddd The abbreviated name of the day of the week, as defined in AbbreviatedDayNames.

dddd The full name of the day of the week, as defined in DayNames.

M The numeric month. Single-digit months will not have a leading zero.

MM The numeric month. Single-digit months will have a leading zero.

MMM The abbreviated name of the month, as defined in AbbreviatedMonthNames.

Creating an RTF Template 5-109

Symbol Meaning

MMMM The full name of the month, as defined in MonthNames.

yy The year without the century. If the year without the century is less than 10, the year
is displayed with a leading zero.

yyyy The year in four digits.

gg The period or era. This pattern is ignored if the date to be formatted does not have
an associated period or era string.

h The hour in a 12-hour clock. Single-digit hours will not have a leading zero.

hh The hour in a 12-hour clock. Single-digit hours will have a leading zero.

H The hour in a 24-hour clock. Single-digit hours will not have a leading zero.

HH The hour in a 24-hour clock. Single-digit hours will have a leading zero.

m The minute. Single-digit minutes will not have a leading zero.

mm The minute. Single-digit minutes will have a leading zero.

s The second. Single-digit seconds will not have a leading zero.

ss The second. Single-digit seconds will have a leading zero.

f Displays seconds fractions represented in one digit.

ff Displays seconds fractions represented in two digits.

fff Displays seconds fractions represented in three digits.

ffff Displays seconds fractions represented in four digits.

fffff Displays seconds fractions represented in five digits.

ffffff Displays seconds fractions represented in six digits.

fffffff Displays seconds fractions represented in seven digits.

5-110 Oracle Business Intelligence Publisher User's Guide

Symbol Meaning

tt The AM/PM designator defined in AMDesignator or PMDesignator, if any.

z Displays the time zone offset for the system's current time zone in whole hours only.
(This element can be used for formatting only)

zz Displays the time zone offset for the system's current time zone in whole hours only.
(This element can be used for formatting only)

zzz Displays the time zone offset for the system's current time zone in hours and
minutes.

: The default time separator defined in TimeSeparator.

/ The default date separator defined in DateSeparator.

' Quoted string. Displays the literal value of any string between two ' characters.

" Quoted string. Displays the literal value of any string between two " characters.

Using the Oracle Format Mask
To apply the Oracle format mask to a date field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Regular Text.

3. Select the Add Help Text... button to open the Form Field Help Text dialog.

4. Insert the following syntax to specify the date format mask:

<?format-date:date_string;
'ABSTRACT_FORMAT_MASK';'TIMEZONE'?>

or

<?format-date-and-calendar:date_string;
'ABSTRACT_FORMAT_MASK';'CALENDAR_NAME';'TIMEZONE'?>

where time zone is optional. The detailed usage of format mask, calendar and time
zone is described below.

If no format mask is specified, the abstract format mask "MEDIUM" will be used as
default.

Example form field help text entry:

Creating an RTF Template 5-111

<?format-date:hiredate;'YYYY-MM-DD'?>

The following table lists the supported Oracle format mask components:

Symbol Meaning

-

/

,

.

;

:

"text"

Punctuation and quoted text are reproduced in the result.

AD

A.D.

AD indicator with or without periods.

AM

A.M.

Meridian indicator with or without periods.

BC

B.C.

BC indicator with or without periods.

CC Century. For example, 2002 returns 21; 2000 returns 20.

DAY Name of day, padded with blanks to length of 9 characters.

D Day of week (1-7).

DD Day of month (1-31).

DDD Day of year (1-366).

DL Returns a value in the long date format.

DS Returns a value in the short date format.

DY Abbreviated name of day.

5-112 Oracle Business Intelligence Publisher User's Guide

Symbol Meaning

E Abbreviated era name.

EE Full era name.

FF[1..9] Fractional seconds. Use the numbers 1 to 9 after FF to specify the number of digits in the
fractional second portion of the datetime value returned.

Example:

'HH:MI:SS.FF3'

HH Hour of day (1-12).

HH12 Hour of day (1-12).

HH24 Hour of day (0-23).

MI Minute (0-59).

MM Month (01-12; JAN = 01).

MON Abbreviated name of month.

MONTH Name of month, padded with blanks to length of 9 characters.

PM

P.M.

Meridian indicator with or without periods.

RR Lets you store 20th century dates in the 21st century using only two digits.

RRRR Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same return as
RR. If you don't want this functionality, then simply enter the 4-digit year.

SS Seconds (0-59).

TZD Daylight savings information. The TZD value is an abbreviated time zone string with
daylight savings information. It must correspond to the region specified in TZR.

Example:

PST (for Pacific Standard Time)

PDT (for Pacific Daylight Time)

Creating an RTF Template 5-113

Symbol Meaning

TZH Time zone hour. (See TZM format element.)

TZM Time zone minute. (See TZH format element.)

Example:

'HH:MI:SS.FFTZH:TZM'

TZR Time zone region information. The value must be one of the time zone regions supported in
the database. Example: PST (Pacific Standard Time)

WW Week of year (1-53) where week 1 starts on the first day of the year and continues to the
seventh day of the year.

W Week of month (1-5) where week 1 starts on the first day of the month and ends on the
seventh.

X Local radix character.

YYYY 4-digit year.

YY

Y

Last 2, or 1 digit(s) of year.

Default Format Mask
If you do not want to specify a format mask with either the MS method or the Oracle
method, you can omit the mask definition and use the default format mask. The default
format mask is the MEDIUM abstract format mask from Oracle. (See Oracle Abstract
Format Masks, page 5-113 for the definition.)

To use the default option using the Microsoft method, set the Type to Date, but leave
the Date format field blank in the Text Form Field Options dialog.

To use the default option using the Oracle method, do not supply a mask definition to
the "format-date" function call, for example:

<?format-date:hiredate?>

Oracle Abstract Format Masks
The abstract date format masks reflect the default implementations of date/time
formatting in the I18N library. When you use one of these masks, the output generated
will depend on the locale associated with the report.

5-114 Oracle Business Intelligence Publisher User's Guide

Specify the abstract mask using the following syntax:
<?format-date:fieldname;'MASK'?>

where fieldname is the XML element tag and

MASK is the Oracle abstract format mask name

For example:
<?format-date:hiredate;'SHORT'?>
<?format-date:hiredate;'LONG_TIME_TZ'?>

The following table lists the abstract format masks and the sample output that would be
generated for US locale:

Mask Output for US Locale

SHORT 2/31/99

MEDIUM Dec 31, 1999

LONG Friday, December 31, 1999

SHORT_TIME 12/31/99 6:15 PM

MEDIUM_TIME Dec 31, 1999 6:15 PM

LONG_TIME Friday, December 31, 1999 6:15 PM

SHORT_TIME_TZ 12/31/99 6:15 PM GMT

MEDIUM_TIME_TZ Dec 31, 1999 6:15 PM GMT

LONG_TIME_TZ Friday, December 31, 1999 6:15 PM GMT

Calendar and Timezone Support

Calendar Specification
The term "calendar" refers to the calendar date displayed in the published report. The
following types are supported:

• GREGORIAN

• ARABIC_HIJRAH

Creating an RTF Template 5-115

• ENGLISH_HIJRAH

• JAPANESE_IMPERIAL

• THAI_BUDDHA

• ROC_OFFICIAL (Taiwan)

Use one of the following methods to set the calendar type:

• Call the format-date-and-calendar function and declare the calendar type.

For example:
<?format-date-and-calendar:hiredate;'LONG_TIME_TZ';'ROC_OFFIC
IAL';?>

The following graphic shows the output generated using this definition with locale
set to zh-TW and time zone set to Asia/Taipei:

• Set the calendar type using the profile option XDO: Calendar Type
(XDO_CALENDAR_TYPE).

Note: The calendar type specified in the template will override the
calendar type set in the profile option.

Time Zone Specification
There are two ways to specify time zone information:

• Call the format-date or format-date-and-calendar function with the Oracle format.

• Set the user profile option Client Timezone (CLIENT_TIMEZONE_ID) in Oracle
Applications.

If no time zone is specified, UTC is used.

In the template, the time zone must be specified as a Java time zone string, for example,
America/Los Angeles. The following example shows the syntax to enter in the help text
field of your template:

<?format-date:hiredate;'LONG_TIME_TZ';'Asia/Shanghai'?>

Using External Fonts
BI Publisher enables you to use fonts in your output that are not normally available on
the server. To set up a new font for your report output, use the font to design your

5-116 Oracle Business Intelligence Publisher User's Guide

template on your client machine, then make it available on the server, and configure BI
Publisher to access the font at runtime.

1. Use the font in your template.

1. Copy the font to your <WINDOWS_HOME>/fonts directory.

2. Open Microsoft Word and build your template.

3. Insert the font in your template: Select the text or form field and then select the
desired font from the font dialog box (Format > Font) or font drop down list.

The following graphic shows an example of the form field method and the text
method:

2. Place the font on the server.

Place the font in a directory accessible to the formatting engine at runtime.

3. Set the BI Publisher "font" property.

You can set the font property for the report in the BI Publisher Font Mappings page,
or in the configuration file.

To set the property in the configuration file:

Update the BI Publisher configuration file "fonts" section with the font name and its
location on the server. For example, the new entry for a TrueType font is structured
as follows:

 <truetype path="\user\fonts\MyFontName.ttf"/>

See BI Publisher Configuration File, page D-1 for more information.

To set the property in the template:

See Setting Runtime Properties, page 11-13.

Now you can run your report and BI Publisher will use the font in the output as
designed. For PDF output, the advanced font handling features of BI Publisher embed
the external font glyphs directly into the final document. The embedded font only
contains the glyphs required for the document and not the complete font definition.

Creating an RTF Template 5-117

Therefore the document is completely self-contained, eliminating the need to have
external fonts installed on the printer.

Advanced Barcode Formatting
BI Publisher offers the ability to execute preprocessing on your data prior to applying a
barcode font to the data in the output document. For example, you may need to
calculate checksum values or start and end bits for the data before formatting them.

The solution requires that you register a barcode encoding class with BI Publisher that
can then be instantiated at runtime to carry out the formatting in the template. This is
covered in Advanced Barcode Font Formatting Class Implementation, page A-59.

To enable the formatting feature in your template, you must use two commands in your
template. The first command registers the barcode encoding class with BI Publisher.
This must be declared somewhere in the template prior to the encoding command. The
second is the encoding command to identify the data to be formatted.

Register the Barcode Encoding Class
Use the following syntax in a form field in your template to register the barcode
encoding class:
<?register-barcode-vendor:java_class_name;barcode_vendor_id?>

This command requires a Java class name (this will carry out the encoding) and a
barcode vendor ID as defined by the class. This command must be placed in the
template before the commands to encode the data in the template. For example:
<?register-barcode-vendor:'oracle.apps.xdo.template.rtf.util.barcoder.Ba
rcodeUtil';'XMLPBarVendor'?>

where

oracle.apps.xdo.template.rtf.util.barcoder.BarcodeUtil is the Java
class and

XMLPBarVendor is the vendor ID that is defined by the class.

Encode the Data
To format the data, use the following syntax in a form field in your template:
<?format-barcode:data;'barcode_type';'barcode_vendor_id'?>

where

data is the element from your XML data source to be encoded. For example:
LABEL_ID

barcode_type is the method in the encoding Java class used to format the data (for
example: Code128a).

barcode_vendor_id is the ID defined in the register-barcode-vendor field of
the first command you used to register the encoding class.

5-118 Oracle Business Intelligence Publisher User's Guide

For example:
<?format-barcode:LABEL_ID;'Code128a';'XMLPBarVendor'?>

At runtime, the barcode_type method is called to format the data value and the
barcode font will then be applied to the data in the final output.

Advanced Design Options
XPath is an industry standard developed by the World Wide Web Consortium (W3C). It
is the method used to navigate through an XML document. XPath is a set of syntax
rules for addressing the individual pieces of an XML document. You may not know it,
but you have already used XPath; RTF templates use XPath to navigate through the
XML data at runtime.

This section contains a brief introduction to XPath principles. For more information, see
the W3C Web site: http://www.w3.org/TR/xpath

XPath follows the Document Object Model (DOM), which interprets an XML document
as a tree of nodes. A node can be one of seven types:

• root

• element

• attribute

• text

• namespace

• processing instruction

• comment

Many of these elements are shown in the following sample XML, which contains a
catalog of CDs:

http://www.w3.org/TR/xpath

Creating an RTF Template 5-119

<?xml version="1.0" encoding="UTF-8"?>
<! - My CD Listing - >
<CATALOG>
 <CD cattype=Folk>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 </CD>
 <CD cattype=Rock>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 </CD>
</CATALOG>

The root node in this example is CATALOG. CD is an element, and it has an attribute
cattype. The sample contains the comment My CD Listing. Text is contained within
the XML document elements.

Locating Data
Locate information in an XML document using location-path expressions.

A node is the most common search element you will encounter. Nodes in the example
CATALOG XML include CD, TITLE, and ARTIST. Use a path expression to locate nodes
within an XML document. For example, the following path returns all CD elements:
//CATALOG/CD

where

the double slash (//) indicates that all elements in the XML document that match the
search criteria are to be returned, regardless of the level within the document.

the slash (/) separates the child nodes. All elements matching the pattern will be
returned.

To retrieve the individual TITLE elements, use the following command:
/CATALOG/CD/TITLE

This example will return the following XML:
<CATALOG>
 <CD cattype=Folk>
 <TITLE>Empire Burlesque</TITLE>
 </CD>
 <CD cattype=Rock>
 <TITLE>Hide Your Heart</TITLE>
 </CD>
</CATALOG>

Further limit your search by using square brackets. The brackets locate elements with
certain child nodes or specified values. For example, the following expression locates all
CDs recorded by Bob Dylan:

5-120 Oracle Business Intelligence Publisher User's Guide

/CATALOG/CD[ARTIST="Bob Dylan"]

Or, if each CD element did not have an PRICE element, you could use the following
expression to return only those CD elements that include a PRICE element:
/CATALOG/CD[PRICE]

Use the bracket notation to leverage the attribute value in your search. Use the @
symbol to indicate an attribute. For example, the following expression locates all Rock
CDs (all CDs with the cattype attribute value Rock):
//CD[@cattype="Rock"]

This returns the following data from the sample XML document:
<CD cattype=Rock>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 </CD>

You can also use brackets to specify the item number to retrieve. For example, the first
CD element is read from the XML document using the following XPath expression:
/CATALOG/CD[1]

The sample returns the first CD element:
<CD cattype=Folk>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 </CD>

XPath also supports wildcards to retrieve every element contained within the specified
node. For example, to retrieve all the CDs from the sample XML, use the following
expression:
/CATALOG/*

You can combine statements with Boolean operators for more complex searches. The
following expression retrieves all Folk and Rock CDs, thus all the elements from the
sample:
//CD[@cattype="Folk"]|//CD[@cattype="Rock"]

The pipe (|) is equal to the logical OR operator. In addition, XPath recognizes the logical
OR and AND, as well as the equality operators: <=, <, >, >=, ==, and !=. For example, we
can find all CDs released in 1985 or later using the following expression:
/CATALOG/CD[YEAR >=1985]

Starting Reference
The first character in an XPath expression determines the point at which it should start
in the XML tree. Statements beginning with a forward slash (/) are considered absolute.
No slash indicates a relative reference. An example of a relative reference is:

Creating an RTF Template 5-121

CD/*

This statement begins the search at the current reference point. That means if the
example occurred within a group of statements the reference point left by the previous
statement would be utilized.

A noted earlier, double forward slashes (//) retrieve every matching element regardless
of location in the document.

Context and Parent
To select current and parent elements, XPath recognizes the dot notation commonly
used to navigate directories. Use a single period (.) to select the current node and use
double periods (..) to return the parent of the current node. For example, to retrieve all
child nodes of the parent of the current node, use:
../*

Therefore, to access all CDs from the sample XML, use the following expression:
/CATALOG/CD/..

You could also access all the CD tittles released in 1988 using the following:
/CATALOG/CD/TITLE[../YEAR=1988]

The .. is used to navigate up the tree of elements to find the YEAR element at the same
level as the TITLE, where it is then tested for a match against "1988". You could also use
// in this case, but if the element YEAR is used elsewhere in the XML document, you
may get erroneous results.

XPath is an extremely powerful standard when combined with RTF templates allowing
you to use conditional formatting and filtering in your template.

Namespace Support
If your XML data contains namespaces, you must declare them in the template prior to
referencing the namespace in a placeholder. Declare the namespace in the template
using either the basic RTF method or in a form field. Enter the following syntax:

<?namespace:namespace name= namespace url?>

For example:

<?namespace:fsg=http://www.oracle.com/fsg/2002-30-20/?>

Once declared, you can use the namespace in the placeholder markup, for example:
<?fsg:ReportName?>

Using the Context Commands
The BI Publisher syntax is simplified XSL instructions. This syntax, along with any
native XSL commands you may use in your template, is converted to XSL-FO when you
upload the template to the Template Manager. The placement of these instructions
within the converted stylesheet determines the behavior of your template.

5-122 Oracle Business Intelligence Publisher User's Guide

BI Publisher's RTF processor places these instructions within the XSL-FO stylesheet
according to the most common context. However, sometimes you need to define the
context of the instructions differently to create a specific behavior. To support this
requirement, BI Publisher provides a set of context commands that allow you to define
the context (or placement) of the processing instructions. For example, using context
commands, you can:

• Specify an if statement in a table to refer to a cell, a row, a column or the whole
table.

• Specify a for-each loop to repeat either the current data or the complete section (to
create new headers and footers and restart the page numbering)

• Define a variable in the current loop or at the beginning of the document.

You can specify a context for both processing commands using the BI Publisher syntax
and those using native XSL.

• To specify a context for a processing command using the simplified BI Publisher
syntax, simply add @context to the syntax instruction. For example:

• <?for-each@section:INVOICE?> - specifies that the group INVOICE
should begin a new section for each occurrence. By adding the section context,
you can reset the header and footer and page numbering.

• <?if@column:VAT?> - specifies that the if statement should apply to the VAT
column only.

• To specify a context for an XSL command, add the xdofo:ctx="context"
attribute to your tags to specify the context for the insertion of the instructions. The
value of the context determines where your code is placed.

For example:

<xsl:for-each xdofo:ctx="section" select ="INVOICE">

<xsl:attribute xdofo:ctx="inblock"
name="background-color">red</xsl:attribute>

BI Publisher supports the following context types:

Context Description

section The statement affects the whole section including the header and footer. For
example, a for-each@section context command creates a new section for each
occurrence - with restarted page numbering and header and footer.

See Batch Reports, page 5-92 for an example of this usage.

Creating an RTF Template 5-123

Context Description

column The statement will affect the whole column of a table. This context is typically used
to show and hide table columns depending on the data.

See Column Formatting, page 5-65 for an example.

cell The statement will affect the cell of a table. This is often used together with
@column in cross-tab tables to create a dynamic number of columns.

See Cross-Tab Support, page 5-94 for an example.

block The statement will affect multiple complete fo:blocks (RTF paragraphs). This
context is typically used for if and for-each statements. It can also be used to apply
formatting to a paragraph or a table cell.

See Cell Highlighting, page 5-70 for an example.

inline The context will become the single statement inside an fo:inline block. This context
is used for variables.

incontext The statement is inserted immediately after the surrounding statement. This is the
default for <?sort?> statements that need to follow the surrounding for-each
as the first element.

inblock The statement becomes a single statement inside an fo:block (RTF paragraph). This
is typically not useful for control statements (such as if and for-each) but is
useful for statements that generate text, such as call-template.

inlines The statement will affect multiple complete inline sections. An inline section is text
that uses the same formatting, such as a group of words rendered as bold.

See If Statements in Boilerplate Text, page 5-62.

begin The statement will be placed at the beginning of the XSL stylesheet. This is
required for global variables. See Defining Parameters, page 5-88.

end The statement will be placed at the end of the XSL stylesheet.

The following table shows the default context for the BI Publisher commands:

Command Context

apply-template inline

5-124 Oracle Business Intelligence Publisher User's Guide

Command Context

attribute inline

call-template inblock

choose block

for-each block

if block

import begin

param begin

sort incontext

template end

value-of inline

variable end

Using XSL Elements
You can use any XSL element in your template by inserting the XSL syntax into a form
field.

If you are using the basic RTF method, you cannot insert XSL syntax directly into your
template. BI Publisher has extended the following XSL elements for use in RTF
templates.

To use these in a basic-method RTF template, you must use the BI Publisher Tag form of
the XSL element. If you are using form fields, use either option.

Apply a Template Rule
Use this element to apply a template rule to the current element's child nodes.

XSL Syntax: <xsl:apply-templates select="name">

BI Publisher Tag: <?apply:name?>

This function applies to <xsl:template-match="n"> where n is the element name.

Creating an RTF Template 5-125

Copy the Current Node
Use this element to create a copy of the current node.

XSL Syntax: <xsl:copy-of select="name">

BI Publisher Tag: <?copy-of:name?>

Call Template
Use this element to call a named template to be inserted into or applied to the current
template. For example, use this feature to render a table multiple times.

XSL Syntax: <xsl:call-template name="name">

BI Publisher Tag: <?call-template:name?>

Template Declaration
Use this element to apply a set of rules when a specified node is matched.

XSL Syntax: <xsl:template name="name">

BI Publisher Tag: <?template:name?>

Variable Declaration
Use this element to declare a local or global variable.

XSL Syntax: <xsl:variable name="name">

BI Publisher Tag: <?variable:name?>

Example:
<xsl:variable name="color" select="'red'"/>

Assigns the value "red" to the "color" variable. The variable can then be referenced in
the template.

Import Stylesheet
Use this element to import the contents of one style sheet into another.

Note: An imported style sheet has lower precedence than the importing
style sheet.

XSL Syntax: <xsl:import href="url">

BI Publisher Tag: <?import:url?>

Define the Root Element of the Stylesheet
This and the <xsl:stylesheet> element are completely synonymous elements. Both

5-126 Oracle Business Intelligence Publisher User's Guide

are used to define the root element of the style sheet.

Note: An included style sheet has the same precedence as the including
style sheet.

XSL Syntax: <xsl:stylesheet xmlns:x="url">

BI Publisher Tag: <?namespace:x=url?>

Note: The namespace must be declared in the template. See Namespace
Support, page 5-121.

Native XSL Number Formatting
The native XSL format-number function takes the basic format:
format-number(number,format,[decimalformat])

Parameter Description

number Required. Specifies the number to be formatted.

format Required. Specifies the format pattern. Use the following
characters to specify the pattern:

• # (Denotes a digit. Example: ####)

• 0 (Denotes leading and following zeros. Example: 0000.00)

• . (The position of the decimal point Example: ###.##)

• , (The group separator for thousands. Example: ###,###.##)

• % (Displays the number as a percentage. Example: ##%)

• ; (Pattern separator. The first pattern will be used for
positive numbers and the second for negative numbers)

decimalformat Optional. For more information on the decimal format please
consult any basic XSLT manual.

Using FO Elements
You can use the native FO syntax inside the Microsoft Word form fields.

Creating an RTF Template 5-127

For more information on XSL-FO see the W3C Website at
http://www.w3.org/2002/08/XSLFOsummary.html

The full list of FO elements supported by BI Publisher can be found in the Appendix:
Supported XSL-FO Elements, page C-1.

http://www.w3.org/2002/08/XSLFOsummary.html

Extended Function Support in RTF Templates 6-1

6
Extended Function Support in RTF

Templates

Extended SQL and XSL Functions
BI Publisher has extended a set of SQL and XSL functions for use in RTF templates. The
syntax for these extended functions is

<?xdofx:expression?>

for extended SQL functions or

<?xdoxslt:expression?>

for extended XSL functions.

Note: You cannot mix xdofx statements with XSL expressions in the
same context. For example, assume you had two elements,
FIRST_NAME and LAST_NAME that you wanted to concatenate into a
30-character field and right pad the field with the character "x", you
could NOT use the following:

INCORRECT:
<?xdofx:rpad(concat(FIRST_NAME,LAST_NAME),30, 'x')?>

because concat is an XSL expression. Instead, you could use the
following:

CORRECT:
<?xdofx:rpad(FIRST_NAME||LAST_NAME),30,'x')?>

The supported functions are shown in the following table:

6-2 Oracle Business Intelligence Publisher User's Guide

SQL Statement or XSL
Expression

Usage Description

2+3 <?xdofx:2+3?> Addition

2-3 <?xdofx:2-3?> Subtraction

2*3 <?xdofx:2*3?> Multiplication

2/3 <?xdofx:2/3?> Division

2**3 <?xdofx:2**3?> Exponential

3||2 <?xdofx:3||2?> Concatenation

lpad('aaa',10,'.') <?xdofx:lpad('aaa',10,'.')?> The lpad function pads the left side of a string
with a specific set of characters. The syntax for
the lpad function is:

lpad(
string1,padded_length,[pad_string]
)

string1 is the string to pad characters to (the
left-hand side).

padded_length is the number of characters to
return.

pad_string is the string that will be padded to
the left-hand side of string1 .

rpad('aaa',10,'.') <?xdofx:rpad('aaa',10,'.')?> The rpad function pads the right side of a
string with a specific set of characters.

The syntax for the rpad function is:

rpad(
string1,padded_length,[pad_string]
).

string1 is the string to pad characters to (the
right-hand side).

padded_length is the number of characters to
return.

pad_string is the string that will be padded to
the right-hand side of string1

Extended Function Support in RTF Templates 6-3

SQL Statement or XSL
Expression

Usage Description

decode('xxx','bbb','ccc','xxx'
,'ddd')

<?xdofx:decode('xxx','bbb','ccc','xxx','
ddd')?>

The decode function has the functionality of
an IF-THEN-ELSE statement. The syntax for
the decode function is:

decode(expression, search, result
[,search, result]...[, default])

expression is the value to compare.

search is the value that is compared against
expression.

result is the value returned, if expression is
equal to search.

default is returned if no matches are found.

Instr('abcabcabc','a',2) <?xdofx:Instr('abcabcabc','a',2)?> The instr function returns the location of a
substring in a string. The syntax for the instr
function is:

instr(string1,string2,[start_posit
ion],[nth_appearance])

string1 is the string to search.

string2 is the substring to search for in string1.

start_position is the position in string1 where
the search will start. The first position in the
string is 1. If the start_position is negative, the
function counts back start_position number of
characters from the end of string1 and then
searches towards the beginning of string1.

nth appearance is the nth appearance of string2.

substr('abcdefg',2,3) <?xdofx:substr('abcdefg',2,3)?> The substr function allows you to extract a
substring from a string. The syntax for the
substr function is:

substr(string, start_position,
[length])

string is the source string.

start_position is the position for extraction. The
first position in the string is always 1.

length is the number of characters to extract.

6-4 Oracle Business Intelligence Publisher User's Guide

SQL Statement or XSL
Expression

Usage Description

replace(name,'John','Jon') <?xdofx:replace(name,'John','Jon')?> The replace function replaces a sequence of
characters in a string with another set of
characters. The syntax for the replace function
is:

replace(string1,string_to_replace,[replacement
_string])

string1 is the string to replace a sequence of
characters with another set of characters.

string_to_replace is the string that will be
searched for in string1.

replacement_string is optional. All occurrences
of string_to_replace will be replaced with
replacement_string in string1.

to_number('12345') <?xdofx:to_number('12345')?> Function to_number converts char, a value of
CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype containing a number
in the format specified by the optional format
model fmt, to a value of NUMBER datatype.

to_char(12345) <?xdofx:to_char('12345')?> Use the TO_CHAR function to translate a
value of NUMBER datatype to VARCHAR2
datatype.

to_date <?xdofx:to_date (char [, fmt [,
'nlsparam']])

TO_DATE converts char of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of DATE datatype. The fmt
is a date format specifying the format of char.
If you omit fmt, then char must be in the
default date format. If fmt is 'J', for Julian, then
char must be an integer.

sysdate() <?xdofx:sysdate()?> SYSDATE returns the current date and time.
The datatype of the returned value is DATE.
The function requires no arguments.

minimum <?xdoxslt:minimum(ELEMENT_NA
ME)?>

Returns the minimum value of the element in
the set.

maximum <?xdoxslt:maximum(ELEMENT_NA
ME)?>

Returns the maximum value of the element in
the set.

Extended Function Support in RTF Templates 6-5

SQL Statement or XSL
Expression

Usage Description

chr <?xdofx:chr(n)?> CHR returns the character having the binary
equivalent to n in either the database
character set or the national character set.

ceil <?xdofx:ceil(n)?> CEIL returns smallest integer greater than or
equal to n.

floor <?xdofx:floor(n)?> FLOOR returns largest integer equal to or less
than n.

round <?xdofx:round (number [, integer]
)?>

ROUND returns number rounded to integer
places right of the decimal point. If integer is
omitted, then number is rounded to 0 places.
integer can be negative to round off digits left
of the decimal point. integer must be an
integer.

lower <?xdofx:lower (char)?> LOWER returns char, with all letters
lowercase. char can be any of the datatypes
CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The return
value is the same datatype as char.

upper <?xdofx:upper(char)?> UPPER returns char, with all letters uppercase.
char can be any of the datatypes CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The return value is the same
datatype as char.

length <?xdofx:length(char)?> The "length" function returns the length of
char. LENGTH calculates length using
characters as defined by the input character
set.

greatest <?xdofx:greatest (expr [, expr]...)?> GREATEST returns the greatest of the list of
exprs. All exprs after the first are implicitly
converted to the datatype of the first expr
before the comparison.

least <?xdofx:least (expr [, expr]...)?> LEAST returns the least of the list of exprs. All
exprs after the first are implicitly converted to
the datatype of the first expr before the
comparison.

6-6 Oracle Business Intelligence Publisher User's Guide

The following table shows supported combination functions:

SQL Statement Usage

(2+3/4-6*7)/8 <?xdofx:(2+3/4-6*7)/8?>

lpad(substr('1234567890',5,3),10,'^') <?xdofx:lpad(substr('1234567890',5,3),10,'^')?>

decode('a','b','c','d','e','1')||instr('321',1,1) <?xdofx:decode('a','b','c','d','e','1')||instr('321',1,
1)?>

XSL Equivalents
The following table lists the BI Publisher simplified syntax with the XSL equivalents.

Supported XSL Elements Description BI Publisher Syntax

<xsl:value-of select=
"name">

Placeholder syntax <?name?>

<xsl:apply-templates
select="name">

Applies a template rule to the
current element's child nodes.

<?apply:name?>

<xsl:copy-of select="name"> Creates a copy of the current node. <?copy-of:name?>

<xsl:call-template
name="name">

Calls a named template to be
inserted into/applied to the current
template.

<?call:name?>

<xsl:sort select="name"> Sorts a group of data based on an
element in the dataset.

<?sort:name?>

<xsl:for-each select="name"
>

Loops through the rows of data of a
group, used to generate tabular
output.

<?for-each:name?>

<xsl:choose> Used in conjunction with when and
otherwise to express multiple
conditional tests.

<?choose?>

Extended Function Support in RTF Templates 6-7

Supported XSL Elements Description BI Publisher Syntax

<xsl:when test="exp"> Used in conjunction with choose
and otherwise to express multiple
conditional tests

<?when:expression?>

<xsl:otherwise> Used in conjunction with choose
and when to express multiple
conditional tests

<?otherwise?>

<xsl:if test="exp"> Used for conditional formatting. <?if:expression?>

<xsl:template name="name"> Template declaration <?template:name?>

<xsl:variable name="name"> Local or global variable declaration <?variable:name?>

<xsl:import href="url"> Import the contents of one stylesheet
into another

<?import:url?>

<xsl:include href="url"> Include one stylesheet in another <?include:url?>

<xsl:stylesheet
xmlns:x="url">

Define the root element of a
stylesheet

<?namespace:x=url?>

Using FO Elements
You can use most FO elements in an RTF template inside the Microsoft Word form
fields. The following FO elements have been extended for use with BI Publisher RTF
templates. The BI Publisher syntax can be used with either RTF template method.

The full list of FO elements supported by BI Publisher can be found in the Appendix:
Supported XSL-FO Elements, page C-1.

FO Element BI Publisher Syntax

<fo:page-number-citation
ref-id="id">

<?fo:page-number-citation:id?>

<fo:page-number> <?fo:page-number?>

<fo:ANY NAME WITHOUT ATTRIBUTE> <?fo:ANY NAME WITHOUT ATTRIBUTE?>

Translating Reports 7-1

7
Translating Reports

This chapter covers the following topics:

• Template Translations

• Report File Translations

Template Translations
There are two options for adding translated templates to your report definition:

• Create a separate RTF template that is translated (a localized template)

• Generate an XLIFF file from the original template (at runtime the original template
is applied for the layout and the XLIFF file is applied for the translation)

Use the first option if the translated template requires a different layout from the
original template.

If you only require translation of the text strings of the template layout, use the XLIFF
option.

Important: Regardless of which option you choose, you must name
your translated templates according to the naming standard for BI
Publisher to recognize it at runtime. See Naming Standards for
Translated Files, page 7-6.

The following diagrams illustrate the translation concepts

7-2 Oracle Business Intelligence Publisher User's Guide

Translating Reports 7-3

Using the XLIFF Option

To generate an XLIFF file from an RTF template:
1. Open your template in Microsoft Word with the Template Builder for Word

installed.

2. From the Template Builder menu, select Tools > Translations > Extract Text.

BI Publisher extracts the translatable strings from the template and exports them to
an XLIFF (.xlf) file.

3. Save the file to the desired location.

This XLIFF file can then be sent to a translation provider, or using a text editor, you can
enter the translation for each string. See Structure of the XLIFF File, page 7-4 for
instructions on how to edit the XLIFF file.

Note: XLIFF is the XML Localization Interchange File Format. It is the
standard format used by localization providers. For more information
about the XLIFF specification, see
http://www.oasis-open.org/committees/xliff/documents/xliff-specificati
on.htm

A "translatable string" is any text in the template that is intended for display in the
published report, such as table headers and field labels. Text supplied at runtime from

http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm

7-4 Oracle Business Intelligence Publisher User's Guide

the data is not translatable, nor is any text that you supply in the Microsoft Word form
fields.

You can translate the template XLIFF file into as many languages as desired and then
associate these translations to the original template. See Uploading Translated Files,
page 7-6.

Structure of the XLIFF File
The XLIFF file generated by BI Publisher has the following structure:
<xliff>
 <file>
 <header>
 <body>
 <trans-unit>
 <source>
 <target>
 <note>

The following figure shows an excerpt from an untranslated XLIFF file:

source-language and target-language attributes
The <file> element includes the attributes source-language and
target-language. The valid value for source-language and target-language is a
combination of the language code and country code as follows:

• the two-letter ISO 639 language code

• the two-letter ISO 3166 country code

Translating Reports 7-5

Note: For more information on the International Organization for
Standardization (ISO) and the code lists, see International Organization
for Standardization [http://www.iso.org/iso/en/ISOOnline.frontpage].

For example, the value for English-United States is "en-US". This combination is also
referred to as a locale.

When you edit the exported XLIFF file you must change the target-language
attribute to the appropriate locale value of your target language. The following table
shows examples of source-language and target-language attribute values appropriate
for the given translations:

Translation
(Language/Territory)

source-language value target-language value

From English/US

To English/Canada

en-US en-CA

From English/US

To Chinese/China

en-US zh-CN

From Japanese/Japan

To French/France

ja-JP fr-FR

Embedded Data Fields
Some templates contain placeholders for data fields embedded in the text display
strings of the report. For example, the title of the sample report is

Italian Purchase VAT Register - (year)

where (year) is a placeholder in the RTF template that will be populated at runtime by
data from an XML element. These fields are not translatable, because the value comes
from the data at runtime.

To identify embedded data fields, the following token is used in the XLIFF file:

[&n]

where n represents the numbered occurrence of a data field in the template.

For example, in the preceding XLIFF sample, the first translatable string is
<source>Italian Purchase VAT Register - [&1]<source>

Warning: Do not edit or delete the embedded data field tokens or you

http://www.iso.org/iso/en/ISOOnline.frontpage
http://www.iso.org/iso/en/ISOOnline.frontpage

7-6 Oracle Business Intelligence Publisher User's Guide

will affect the merging of the XML data with the template.

<source> and <target> Elements
Each <source> element contains a translatable string from the template in the source
language of the template. For example,
<source>Total</source>

When you initially export the XLIFF file for translation, the source and target elements
are all identical. To create the translation for this template, enter the appropriate
translation for each source element string in its corresponding <target> element.

Therefore if you were translating the sample template into German, you would enter
the following for the Total string:
<source>Total</source>
<target>Gesamtbetrag</target>

The following figure shows the sample XLIFF file from the previous figure updated
with the Chinese translation:

Naming Standards for Translated Files
Your translated XLIFF and RTF files must be named according to the following
standard:

TemplateName_<language code>_<TERRITORY CODE>.xlf or .rtf

or

TemplateName_<language code>.xlf or .rtf

Translating Reports 7-7

where TemplateName is the original template name

language code is the two-letter ISO language code (in lower case)

TERRITORY CODE is the two-letter ISO country code (must be in upper case)

For example, if your original template is named EmployeeTemplate and you are
uploading a translation for Japanese-Japan, name the file:

EmployeeTemplate_ja_JP.xlf

Uploading Translated Files
In the report Editor, select the Layouts page to upload the translated XLIFF files. See
Define Layouts, page 3-25.

Locale Selection Logic
BI Publisher applies a translation based on the user's selected Report Locale. BI
Publisher will first try to match an RTF template named for the locale, then an XLIFF
file named for the locale. If an exact match on language-territory is not found, BI
Publisher will try to match on language only.

For example, if you have a report for which the base template is called
EmployeeTemplate.rtf and the locale selected is French (France), BI Publisher will select
the translation to apply according to the following hierarchy:

EmployeeTemplate_fr_FR.rtf

EmployeeTemplate_fr_FR.xlf

EmployeeTemplate_fr.rtf

EmployeeTemplate_fr.xlf

EmployeeTemplate.rtf

Note that with the same set of translations, if the locale selected is French (Switzerland),
the EmployeeTemplate_fr.rtf would be applied. Now if the available translations were
limited to the following set:

EmployeeTemplate_fr_FR.rtf

EmployeeTemplate_fr_FR.xlf

EmployeeTemplate.rtf

and the locale selected is French (Switzerland), then the EmployeeTemplate.rtf will be
applied. Even though there is a language match, BI Publisher will not match the
different locales.

Therefore, if you want to ensure that a French language translation is used when French
is the selected language, regardless of the selected locale, then you must include either
an rtf or xlf file named for the language only (that is, EmployeeTemplate_fr.rtf or
EmployeeTemplate_fr.xlf).

7-8 Oracle Business Intelligence Publisher User's Guide

Report File Translations
You can add translated report description files so that your users can view the report
description and any parameter labels in the language they selected for their UI
preference. Upload translated report description files to the same location as the
translated template files. Note that the translated report description files follow a
naming standard that is slightly different than the translated template file standard.

For information on setting the UI language preference, see Setting Preferences, page 1-2.

To add a report file translation:
1. In the report Editor, select Generate XLIFF.

2. Save the .xlf file to a local directory.

3. Send the file to a localization provider, or add the translated text (see Structure of
the XLIFF File, page 7-4 for information on editing the XLIFF file).

4. Name the translated report file according to the following standard for all
languages except Chinese and Portuguese (Brazil):

ReportName_<language_code>.xlf

Where ReportName is the report file name and

language_code is the two-letter ISO language code (in lower case).

Important: Except for the three locales noted below, do not include
the territory code in the file name.

For Chinese (China), Chinese (Taiwan), and Portuguese (Brazil) you must use the
language code and territory code in the translated file name as follows:

ReportName_zh_CN.xlf

ReportName_zh_TW.xlf

ReportName_pt_BR.xlf

5. In the report Editor, select the Layouts page to upload the translated XLIFF files.
See Define Layouts, page 3-25.

Creating a PDF Template 8-1

8
Creating a PDF Template

Overview
To create a PDF template, take any existing PDF document and apply the BI Publisher
markup. Because the source of the PDF document does not matter, you have multiple
design options. For example:

• Design the layout of your template using any application that generates documents
that can be converted to PDF

• Scan a paper document to use as a template

• Download a PDF document from a third-party Web site

Note: The steps required to create a template from a third-party PDF
depend on whether form fields have been added to the document. For
more information, see Creating a Template from a Predefined PDF
Form, page 8-17.

If you are designing the layout, note that once you have converted to PDF, your layout
is treated like a set background. When you mark up the template, you draw fields on
top of this background. To edit the layout, you must edit your original document and
then convert back to PDF.

For this reason, the PDF template is not recommended for documents that will require
frequent updates to the layout. However, it is appropriate for forms that will have a
fixed layout, such as invoices or purchase orders.

Supported Modes
BI Publisher supports Adobe Acrobat 5.0 (PDF specification version 1.4). If you are
using Adobe Acrobat Professional 6.0 (or later), use the Reduce File Size Option (from
the File menu) to save your file as Adobe Acrobat 5.0 compatible.

8-2 Oracle Business Intelligence Publisher User's Guide

For PDF conversion, BI Publisher supports any PDF conversion utility, such as Adobe
Acrobat Distiller.

Designing the Layout
To design the layout of your template you can use any desktop application that
generates documents that can be converted to PDF. Or, scan in an original paper
document to use as the background for the template.

The following is the layout for a sample purchase order. It was designed using
Microsoft Word and converted to PDF using Adobe Acrobat Distiller.

Creating a PDF Template 8-3

The following is the XML data that will be used as input to this template:
<?xml version="1.0"?>
<POXPRPOP2>
 <G_HEADERS>
 <POH_PO_NUM>1190-1</POH_PO_NUM>
 <POH_REVISION_NUM>0</POH_REVISION_NUM>
 <POH_SHIP_ADDRESS_LINE1>3455 108th Avenue</POH_SHIP_ADDRESS_LINE1>
<POH_SHIP_ADDRESS_LINE2></POH_SHIP_ADDRESS_LINE2>
<POH_SHIP_ADDRESS_LINE3></POH_SHIP_ADDRESS_LINE3>
<POH_SHIP_ADR_INFO>Seattle, WA 98101</POH_SHIP_ADR_INFO>
<POH_SHIP_COUNTRY>United States</POH_SHIP_COUNTRY>
<POH_VENDOR_NAME>Allied Manufacturing</POH_VENDOR_NAME>
<POH_VENDOR_ADDRESS_LINE1>1145 Brokaw Road</POH_VENDOR_ADDRESS_LINE1>
<POH_VENDOR_ADR_INFO>San Jose, CA 95034</POH_VENDOR_ADR_INFO>
<POH_VENDOR_COUNTRY>United States</POH_VENDOR_COUNTRY>
<POH_BILL_ADDRESS_LINE1>90 Fifth Avenue</POH_BILL_ADDRESS_LINE1>
<POH_BILL_ADR_INFO>New York, NY 10022-3422</POH_BILL_ADR_INFO>
<POH_BILL_COUNTRY>United States</POH_BILL_COUNTRY>
<POH_BUYER>Smith, J</POH_BUYER>
<POH_PAYMENT_TERMS>45 Net (terms date + 45)</POH_PAYMENT_TERMS>
<POH_SHIP_VIA>UPS</POH_SHIP_VIA>
<POH_FREIGHT_TERMS>Due</POH_FREIGHT_TERMS>
<POH_CURRENCY_CODE>USD</POH_CURRENCY_CODE>
<POH_CURRENCY_CONVERSION_RATE></POH_CURRENCY_CONVERSION_RATE>
<LIST_G_LINES>
<G_LINES>
<POL_LINE_NUM>1</POL_LINE_NUM>
<POL_VENDOR_PRODUCT_NUM></POL_VENDOR_PRODUCT_NUM>
<POL_ITEM_DESCRIPTION>PCMCIA II Card Holder</POL_ITEM_DESCRIPTION>
<POL_QUANTITY_TO_PRINT></POL_QUANTITY_TO_PRINT>
<POL_UNIT_OF_MEASURE>Each</POL_UNIT_OF_MEASURE>
<POL_PRICE_TO_PRINT>15</POL_PRICE_TO_PRINT>
<C_FLEX_ITEM>CM16374</C_FLEX_ITEM>
<C_FLEX_ITEM_DISP>CM16374</C_FLEX_ITEM_DISP>
<PLL_QUANTITY_ORDERED>7500</PLL_QUANTITY_ORDERED>
<C_AMOUNT_PLL>112500</C_AMOUNT_PLL>
<C_AMOUNT_PLL_DISP>112,500.00 </C_AMOUNT_PLL_DISP>
</G_LINES>
</LIST_G_LINES>
<C_AMT_POL_RELEASE_TOTAL_ROUND>312420/<C_AMT_POL_RELEASE_TOTAL_ROUND>
</G_HEADERS>
</POXPRPOP2>

Adding Markup to the Template Layout
After you have converted your document to PDF, you define form fields that will
display the data from the XML input file. These form fields are placeholders for the
data.

The process of associating the XML data to the PDF template is the same as the process
for the RTF template. See: Associating the XML Data to the Template Layout:
Associating the XML data to the template layout, page 5-3.

When you draw the form fields in Adobe Acrobat, you are drawing them on top of the
layout that you designed. There is not a relationship between the design elements on
your template and the form fields. You therefore must place the fields exactly where

8-4 Oracle Business Intelligence Publisher User's Guide

you want the data to display on the template

Creating a Placeholder
You can define a placeholder as text, a check box, or a radio button, depending on how
you want the data presented.

Note: If you are using Adobe Acrobat 5.0, the Form Tool is available
from the standard toolbar. If you are using Adobe Acrobat 6.0 or later,
display the Forms Toolbar from the Tools menu by selecting Tools >
Advanced Editing > Forms > Show Forms Toolbar.

Naming the Placeholder
The name of the placeholder must match the XML source field name.

Creating a Text Placeholder
To create a text placeholder in your PDF document:

Acrobat 5.0 Users:
1. Select the Form Tool from the Acrobat toolbar.

2. Draw a form field box in the position on the template where you want the field to
display. Drawing the field opens the Field Properties dialog box.

3. In the Name field of the Field Properties dialog box, enter a name for the field.

4. Select Text from the Type drop down menu.

You can use the Field Properties dialog box to set other attributes for the
placeholder. For example, enforce maximum character size, set field data type, data
type validation, visibility, and formatting.

5. If the field is not placed exactly where desired, drag the field for exact placement.

Acrobat 6.0 (and later) Users:
1. Select the Text Field Tool from the Forms Toolbar.

2. Draw a form field box in the position on the template where you want the field to
display. Drawing the field opens the Text Field Properties dialog box.

3. On the General tab, enter a name for the placeholder in the Name field.

You can use the Text Field Properties dialog box to set other attributes for the
placeholder. For example, enforce maximum character size, set field data type, data

Creating a PDF Template 8-5

type validation, visibility, and formatting.

4. If the field is not placed exactly where desired, drag the field for exact placement.

Supported Field Properties Options
BI Publisher supports the following options available from the Field Properties dialog
box. For more information about these options, see the Adobe Acrobat documentation.

• General

• Read Only

The setting of this check box in combination with a set of configuration
properties control the read-only/updateable state of the field in the output PDF.
See Setting Fields as Updateable or Read Only, page 8-16.

• Appearance

• Border Settings: color, background, width, and style

• Text Settings: color, font, size

• Common Properties: read only, required, visible/hidden, orientation (in
degrees)

(In Acrobat 6.0, these are available from the General tab)

• Border Style

• Options tab

• Multi-line

• Scrolling Text

• Format tab - Number category options only

• Calculate tab - all calculation functions

Creating a Check Box
A check box is used to present options from which more than one can be selected. Each
check box represents a different data element. You define the value that will cause the
check box to display as "checked."

For example, a form contains a check box listing of automobile options such as Power
Steering, Power Windows, Sunroof, and Alloy Wheels. Each of these represents a
different element from the XML file. If the XML file contains a value of "Y" for any of
these fields, you want the check box to display as checked. All or none of these options

8-6 Oracle Business Intelligence Publisher User's Guide

may be selected.

To create a check box field:

Acrobat 5.0 Users:
1. Draw the form field.

2. In the Field Properties dialog box, enter a Name for the field.

3. Select Check Box from the Type drop down list.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "checked" state.

For the example, enter "Y" for each check box field.

Acrobat 6.0 (and later) Users:
1. Select the Check Box Tool from the Forms Toolbar.

2. Draw the check box field in the desired position.

3. On the General tab of the Check Box Properties dialog box, enter a Name for the
field.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "checked" state.

For the example, enter "Y" for each check box field.

Creating a Radio Button Group
A radio button group is used to display options from which only one can be selected.

For example, your XML data file contains a field called <SHIPMENT_METHOD>. The
possible values for this field are "Standard" or "Overnight". You represent this field in
your form with two radio buttons, one labeled "Standard" and one labeled "Overnight".
Define both radio button fields as placeholders for the <SHIPMENT_METHOD> data
field. For one field, define the "on" state when the value is "Standard". For the other,
define the "on" state when the value is "Overnight".

To create a radio button group:

Acrobat 5.0 Users:
1. Draw the form field.

Creating a PDF Template 8-7

2. On the Field Properties dialog box, enter a Name for the field. Each radio button
you define to represent this value can be named differently, but must be mapped to
the same XML data field.

3. Select Radio Button from the Type drop down list.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "on" state.

For the example, enter "Standard" for the field labeled "Standard". Enter
"Overnight" for the field labeled "Overnight".

Acrobat 6.0 (and later) Users:
1. Select the Radio Button Tool from the Forms Toolbar.

2. Draw the form field in the position desired on the template.

3. On the General tab of the Radio Button Properties dialog, enter a Name for the
field. Each radio button you define to represent this value can be named differently,
but must be mapped to the same XML data field.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "on" state.

For the example, enter "Standard" for the field labeled "Standard". Enter
"Overnight" for the field labeled "Overnight".

Defining Groups of Repeating Fields
In the PDF template, you explicitly define the area on the page that will contain the
repeating fields. For example, on the purchase order template, the repeating fields
should display in the block of space between the Item header row and the Total field.

To define the area to contain the group of repeating fields:

1. Insert a form field at the beginning of the area that is to contain the group. (Acrobat
6.0 users select the Text Field Tool, then draw the form field.)

2. In the Name field of the Field Properties window, enter any unique name you
choose. This field is not mapped.

3. Acrobat 5.0 users: Select Text from the Type drop down list.

4. In the Short Description field (Acrobat 5.0) or the Tooltip field (Acrobat 6.0) of the

8-8 Oracle Business Intelligence Publisher User's Guide

Field Properties window, enter the following syntax:

<?rep_field="BODY_START"?>

5. Define the end of the group area by inserting a form field at the end of the area the
that is to contain the group.

6. In the Name field of the Field Properties window, enter any unique name you
choose. This field is not mapped. Note that the name you assign to this field must
be different from the name you assigned to the "body start" field.

7. Acrobat 5.0 users: Select Text from the Type drop down list.

8. In the Short Description field (Acrobat 5.0) or the Tooltip field (Acrobat 6.0) of the
Field Properties window, enter the following syntax:

<?rep_field="BODY_END"?>

To define a group of repeating fields:

1. Insert a placeholder for the first element of the group.

Note: The placement of this field in relationship to the
BODY_START tag defines the distance between the repeating rows
for each occurrence. See Placement of Repeating Fields, page 8-15.

2. For each element in the group, enter the following syntax in the Short Description
field (Acrobat 5.0) or the Tooltip field (Acrobat 6.0):

<?rep_field="T1_Gn"?>

where n is the row number of the item on the template.

For example, the group in the sample report is laid out in three rows.

• For the fields belonging to the row that begins with "PO_LINE_NUM" enter

<?rep_field="T1_G1"?>

• For the fields belonging to the row that begins with "C_FLEX_ITEM_DISP"
enter

<?rep_field="T1_G2"?>

• For the fields belonging to the row that begins with "C_SHIP_TO_ADDRESS"
enter

<?rep_field="T1_G3"?>

The following graphic shows the entries for the Short Description/Tooltip field:

Creating a PDF Template 8-9

3. (Optional) Align your fields. To ensure proper alignment of a row of fields, it is
recommended that you use Adobe Acrobat's alignment feature.

Adding Page Numbers
This section describes how to add the following page-features to your PDF template:

• Page Numbers

• Page Breaks

Adding Page Numbers
To add page numbers, define a field in the template where you want the page number
to appear and enter an initial value in that field as follows:

1. Decide the position on the template where you want the page number to be
displayed.

2. Create a placeholder field called @pagenum@ (see Creating a Text Placeholder, page
8-4).

3. Enter a starting value for the page number in the Default field. If the XML data
includes a value for this field, the start value assigned in the template will be
overridden. If no start value is assigned, it will default to 1.

The figure below shows the Field Properties dialog for a page number field:

8-10 Oracle Business Intelligence Publisher User's Guide

Adding Page Breaks
You can define a page break in your template to occur after a repeatable field. To insert
a page break after the occurrence of a specific field, add the following to the syntax in
the Short Description field of the Field Properties dialog box (use the Tooltip field for
Acrobat 6.0):

page_break="yes"

For example:

<?rep_field="T1_G3", page_break="yes"?>

The following example demonstrates inserting a page break in a template. The XML
sample contains salaries of employees by department:

Creating a PDF Template 8-11

<?xml version="1.0"?>
<! - Generated by Oracle Reports version 6.0.8.22.0 - >
<ROOT>
 <LIST_G_DEPTNO>
 <G_DEPTNO>
 <DEPTNO>10</DEPTNO>
 <LIST_G_EMPNO>
 <G_EMPNO>
 <EMPNO>7782</EMPNO>
 <ENAME>CLARK</ENAME>
 <JOB>MANAGER</JOB>
 <SAL>2450</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>7839</EMPNO>
 <ENAME>KING</ENAME>
 <JOB>PRESIDENT</JOB>
 <SAL>5000</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>125</EMPNO>
 <ENAME>KANG</ENAME>
 <JOB>CLERK</JOB>
 <SAL>2000</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>7934</EMPNO>
 <ENAME>MILLER</ENAME>
 <JOB>CLERK</JOB>
 <SAL>1300</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>123</EMPNO>
 <ENAME>MARY</ENAME>
 <JOB>CLERK</JOB>
 <SAL>400</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>124</EMPNO>
 <ENAME>TOM</ENAME>
 <JOB>CLERK</JOB>
 <SAL>3000</SAL>
 </G_EMPNO>
 </LIST_G_EMPNO>
 <SUMSALPERDEPTNO>9150</SUMSALPERDEPTNO>
 </G_DEPTNO>

 <G_DEPTNO>
 <DEPTNO>30</DEPTNO>
 <LIST_G_EMPNO>
 .
 .
 .

 </LIST_G_EMPNO>
 <SUMSALPERDEPTNO>9400</SUMSALPERDEPTNO>
 </G_DEPTNO>
 </LIST_G_DEPTNO>
 <SUMSALPERREPORT>29425</SUMSALPERREPORT>
</ROOT>

8-12 Oracle Business Intelligence Publisher User's Guide

We want to report the salary information for each employee by department as shown in
the following template:

To insert a page break after each department, insert the page break syntax in the Short
Description (or Tooltip field) for the SUMSALPERDEPTNO field as follows:
<?rep_field="T1_G3", page_break="yes"?>

The Field Properties dialog box for the field is shown in the following figure:

Note that in order for the break to occur, the field must be populated with data from the
XML file.

The sample report with data is shown in the following figure:

Creating a PDF Template 8-13

The page breaks after each department.

Performing Calculations
Adobe Acrobat provides a calculation function in the Field Properties dialog box. To

8-14 Oracle Business Intelligence Publisher User's Guide

create a field to display a calculated total on your report:

1. Create a text field to display the calculated total. Give the field any Name you
choose.

2. In the Field Properties dialog box, select the Format tab.

3. Select Number from the Category list.

4. Select the Calculate tab.

5. Select the radio button next to "Value is the operation of the following fields:"

6. Select sum from the drop down list.

7. Select the Pick... button and select the fields that you want totaled.

Completed PDF Template Example
The following figure shows the completed PDF template:

Creating a PDF Template 8-15

Runtime Behavior

Placement of Repeating Fields
As already noted, the placement, spacing, and alignment of fields that you create on the
template are independent of the underlying form layout. At runtime, BI Publisher
places each repeating row of data according to calculations performed on the placement
of the rows of fields that you created, as follows:

First occurrence:

8-16 Oracle Business Intelligence Publisher User's Guide

The first row of repeating fields will display exactly where you have placed them on the
template.

Second occurrence, single row:

To place the second occurrence of the group, BI Publisher calculates the distance
between the BODY_START tag and the first field of the first occurrence. The first field
of the second occurrence of the group will be placed this calculated distance below the
first occurrence.

Second occurrence, multiple rows:

If the first group contains multiple rows, the second occurrence of the group will be
placed the calculated distance below the last row of the first occurrence.

The distance between the rows within the group will be maintained as defined in the
first occurrence.

Setting Fields as Updateable or Read Only
When you define a field in the template you have the option of selecting "Read Only"
for the field, as shown in the following sample Text Field Properties dialog:

Regardless of what you choose at design time for the Read Only check box, the default
behavior of the PDF processing engine is to set all fields to read-only for the output
PDF. You can change this behavior using the following configuration properties in the
BI Publisher Configuration File, page D-1:

• all-field-readonly

Creating a PDF Template 8-17

• all-fields-readonly-asis

• remove-pdf-fields

Note that in the first two options, you are setting a state for the field in the PDF output.
The setting of individual fields can still be changed in the output using Adobe Acrobat
Professional. Also note that because the fields are maintained, the data is still separate
and can be extracted. In the third option, "remove-pdf-fields" the structure is flattened
and no field/data separation is maintained.

To make all fields updateable:

Set the "all-field-readonly" property to "false". This sets the Read Only state to "false" for
all fields regardless of the individual field settings at design time.

To make all fields read only:

This is the default behavior. No settings are required.

To maintain the Read Only check box selection for each field:

To maintain the setting of the Read Only check box on a field-by-field basis in the
output PDF, set the property "all-fields-readonly-asis" to "true". This property will
override the settings of "all-field-readonly".

To remove all fields from the output PDF:

Set the property "remove-pdf-fields" to "true".

Overflow Data
When multiple pages are required to accommodate the occurrences of repeating rows of
data, each page will display identically except for the defined repeating area, which will
display the continuation of the repeating data. For example, if the item rows of the
purchase order extend past the area defined on the template, succeeding pages will
display all data from the purchase order form with the continuation of the item rows.

Creating a Template from a Predefined PDF Form
There are many PDF forms available online that you may want to use as templates for
your report data. For example, government forms that your company is required to
submit. You can use these downloaded PDF files as your report templates, supplying
the XML data at runtime to fill the report out.

Some of these forms already have form fields defined, some do not. If the form already
has fields defined, you can either use BI Publisher's Mapping tool (see Adding a
Predefined Form as a Template, page 3-36) or name your data fields to match the form
field names (see Using a Predefined Form as a Template by Matching Form Fields, page
8-18). If the form fields are not already defined in the downloaded PDF, you must
create them. See Adding Markup to the Template Layout, page 8-3 for instructions on
inserting the form field placeholders.

8-18 Oracle Business Intelligence Publisher User's Guide

Using a Predefined PDF Form as a Template by Matching the Form Fields
1. Download or import the PDF file to your local system.

2. Open the file in Adobe Acrobat.

3. Select the Text Field Tool (Acrobat 6.0 users) or the Form Tool (Acrobat 5.0 users).
This will highlight text fields that have already been defined.

The following figure shows a sample W-4 PDF form after selecting the Text Field
Tool to highlight the text fields (in Acrobat 6.0).

To map the existing form fields to the data from your incoming XML file, you must
rename the fields to match the element names in your XML file.

4. Open the text form field Properties dialog by either double-clicking the field, or by
selecting the field then selecting Properties from the right-mouse menu.

5. In the Name field, enter the element name from your input XML file.

6. Repeat for all fields that you want populated by your data file.

Creating an eText Template 9-1

9
Creating an eText Template

This chapter covers the following topics:

• Introduction

• Outbound eText Templates

Introduction
An eText template is an RTF-based template that is used to generate text output for
Electronic Funds Transfer (EFT) and Electronic Data Interchange (EDI). At runtime, BI
Publisher applies this template to an input XML data file to create an output text file
that can be transmitted to a bank or other customer. Because the output is intended for
electronic communication, the eText templates must follow very specific format
instructions for exact placement of data.

Note: An EFT is an electronic transmission of financial data and
payments to banks in a specific fixed-position format flat file (text).

EDI is similar to EFT except it is not only limited to the transmission of
payment information to banks. It is often used as a method of
exchanging business documents, such as purchase orders and invoices,
between companies. EDI data is delimiter-based, and also transmitted
as a flat file (text).

Files in these formats are transmitted as flat files, rather than printed on paper. The
length of a record is often several hundred characters and therefore difficult to layout
on standard size paper.

To accommodate the record length, the EFT and EDI templates are designed using
tables. Each record is represented by a table. Each row in a table corresponds to a field
in a record. The columns of the table specify the position, length, and value of the field.

These formats can also require special handling of the data from the input XML file.
This special handling can be on a global level (for example, character replacement and

9-2 Oracle Business Intelligence Publisher User's Guide

sequencing) or on a record level (for example, sorting). Commands to perform these
functions are declared in command rows. Global level commands are declared in setup
tables.

At runtime, BI Publisher constructs the output file according to the setup commands
and layout specifications in the tables.

Prerequisites
This section is intended for users who are familiar with EDI and EFT transactions
audience for this section preparers of eText templates will require both functional and
technical knowledge. That is, functional expertise to understand bank and country
specific payment format requirements and sufficient technical expertise to understand
XML data structure and eText specific coding syntax commands, functions, and
operations.

Outbound eText Templates

Structure of eText Templates
There are two types of eText templates: fixed-position based (EFT templates) and
delimiter-based (EDI templates). The templates are composed of a series of tables. The
tables define layout and setup commands and data field definitions. The required data
description columns for the two types of templates vary, but the commands and
functions available are the same. A table can contain just commands, or it can contain
commands and data fields.

The following graphic shows a sample from an EFT template to display the general
structure of command and data rows:

Creating an eText Template 9-3

Commands that apply globally, or commands that define program elements for the
template, are "setup" commands. These must be specified in the initial table(s) of the
template. Examples of setup commands are Template Type and Character Set.

In the data tables you provide the source XML data element name (or static data) and
the specific placement and formatting definitions required by the receiving bank or
entity. You can also define functions to be performed on the data and conditional
statements.

The data tables must always start with a command row that defines the "Level." The
Level associates the table to an element from the XML data file, and establishes the
hierarchy. The data fields that are then defined in the table for the Level correspond to
the child elements of the XML element.

The graphic below illustrates the relationship between the XML data hierarchy and the
template Level. The XML element "RequestHeader" is defined as the Level. The data
elements defined in the table ("FileID" and "Encryption") are children of the
RequestHeader element.

9-4 Oracle Business Intelligence Publisher User's Guide

The order of the tables in the template determines the print order of the records. At
runtime the system loops through all the instances of the XML element corresponding
to a table (Level) and prints the records belonging to the table. The system then moves
on to the next table in the template. If tables are nested, the system will generate the
nested records of the child tables before moving on to the next parent instance.

Command Rows, Data Rows, and Data Column Header Rows
The following figure shows the placement of Command Rows, Data Rows, and Data
Column Header Rows:

Creating an eText Template 9-5

Command rows are used to specify commands in the template. Command rows always
have two columns: command name and command parameter. Command rows do not
have column headings. The commands control the overall setup and record structures
of the template.

Blank rows can be inserted anywhere in a table to improve readability. Most often they
are used in the setup table, between commands. Blank rows are ignored by BI Publisher
when the template is parsed.

Data Column Header Rows
Data column headers specify the column headings for the data fields (such as Position,
Length, Format, Padding, and Comments). A column header row usually follows the
Level command in a table (or the sorting command, if one is used). The column header
row must come before any data rows in the table. Additional empty column header
rows can be inserted at any position in a table to improve readability. The empty rows
will be ignored at runtime.

The required data column header rows vary depending on the template type. See
Structure of the Data Row, page 9-12.

Data Rows
Data rows contain the data fields to correspond to the column header rows.

The content of the data rows varies depending on the template type. See Structure of
the Data Row, page 9-12.

9-6 Oracle Business Intelligence Publisher User's Guide

Constructing the Data Tables
The data tables contain a combination of command rows and data field rows. Each data
table must begin with a Level command row that specifies its XML element. Each
record must begin with a New Record command that specifies the start of a new record,
and the end of a previous record (if any).

The required columns for the data fields vary depending on the Template Type.

Command Rows
The command rows always have two columns: command name and command
parameter. The supported commands are:

• Level

• New record

• Sort ascending

• Sort descending

• Display condition

The usage for each of these commands is described in the following sections.

Level Command
The level command associates a table with an XML element. The parameter for the level
command is an XML element. The level will be printed once for each instance the XML
element appears in the data input file.

The level commands define the hierarchy of the template. For example, Payment XML
data extracts are hierarchical. A batch can have multiple child payments, and a payment
can have multiple child invoices. This hierarchy is represented in XML as nested child
elements within a parent element. By associating the tables with XML elements through
the level command, the tables will also have the same hierarchical structure.

Similar to the closing tag of an XML element, the level command has a companion
end-level command. The child tables must be defined between the level and end-level
commands of the table defined for the parent element.

An XML element can be associated with only one level. All the records belonging to a
level must reside in the table of that level or within a nested table belonging to that
level. The end-level command will be specified at the end of the final table.

Following is a sample structure of an EFT file record layout:

• FileHeaderRecordA

• BatchHeaderRecordA

Creating an eText Template 9-7

• BatchHeaderRecordB

PaymentRecordA

PaymentRecordB

• InvoiceRecordA

• Batch FooterRecordC

• BatchFooterRecordD

• FileFooterRecordB

Following would be its table layout:

<LEVEL> RequestHeader

<NEW RECORD> FileHeaderRecordA

Data rows for the FileHeaderRecordA

<LEVEL> Batch

<NEW RECORD> BatchHeaderRecordA

Data rows for the BatchHeaderRecordA

<NEW RECORD> BatchHeaderRecordB

Data rows for the BatchHeaderRecordB

<LEVEL> Payment

<NEW RECORD> PaymentRecordA

Data rows for the PaymentRecordA

<NEW RECORD> PaymentRecordB

9-8 Oracle Business Intelligence Publisher User's Guide

Data rows for the PaymentRecordB

<LEVEL> Invoice

<NEW RECORD> InvoiceRecordA

Data rows for the InvoiceRecordA

<END LEVEL> Invoice

<END LEVEL> Payment

<LEVEL> Batch

<NEW RECORD> BatchFooterRecordC

Data rows for the BatchFooterRecordC

<NEW RECORD> BatchFooterRecordD

Data rows for the BatchFooterRecordD

<END LEVEL> Batch

<LEVEL> RequestHeader

<NEW RECORD> FileFooterRecordB

Data rows for the FileFooterRecordB

<END LEVEL> RequestHeader

Multiple records for the same level can exist in the same table. However, each table can
only have one level defined. In the example above, the BatchHeaderRecordA and
BatchHeaderRecordB are both defined in the same table. However, note that the END

Creating an eText Template 9-9

LEVEL for the Payment must be defined in its own separate table after the child
element Invoice. The Payment END LEVEL cannot reside in the same table as the
Invoice Level.

Note that you do not have to use all the levels from the data extract in your template.
For example, if an extract contains the levels: RequestHeader > Batch > Payment >
Invoice, you can use just the batch and invoice levels. However, the hierarchy of the
levels must be maintained.

The table hierarchy determines the order that the records are printed. For each parent
XML element, the records of the corresponding parent table are printed in the order
they appear in the table. The system loops through the instances of the child XML
elements corresponding to the child tables and prints the child records according to
their specified order. The system then prints the records of the enclosing (end-level)
parent table, if any.

For example, given the EFT template structure above, assume the input data file
contains the following:

• Batch1

• Payment1

• Invoice1

• Invoice2

• Payment2

• Invoice1

• Batch2

• Payment1

• Invoice1

• Invoice2

• Invoice3

This will generate the following printed records:

Record Order Record Type Description

1 FileHeaderRecordA One header record for the
EFT file

9-10 Oracle Business Intelligence Publisher User's Guide

Record Order Record Type Description

2 BatchHeaderRecordA For Batch1

3 BatchHeaderRecordB For Batch1

4 PaymentRecordA For Batch1, Payment1

5 PaymentRecordB For Batch1, Payment1

6 InvoiceRecordA For Batch1, Payment1,
Invoice1

7 InvoiceRecordA For Batch1, Payment1,
Invoice2

8 PaymentRecordA For Batch1, Payment2

9 PaymentrecordB For Batch1, Payment2

10 InvoiceRecordA For Batch1, Payment2,
Invoice1

11 BatchFooterRecordC For Batch1

12 BatchFooterRecordD For Batch1

13 BatchHeaderRecordA For Batch2

14 BatchHeaderRecordB For Batch2

15 PaymentRecordA For Batch2, Payment1

16 PaymentRecordB For Batch2, Payment1

17 InvoiceRecordA For Batch2, Payment1,
Invoice1

18 InvoiceRecordA For Batch2, Payment1,
Invoice2

19 InvoiceRecordA For Batch2, Payment1,
Invoice3

Creating an eText Template 9-11

Record Order Record Type Description

20 BatchFooterRecordC For Batch2

21 BatchFooterRecordD For Batch2

22 FileFooterRecordB One footer record for the EFT
file

New Record Command
The new record command signifies the start of a record and the end of the previous one,
if any. Every record in a template must start with the new record command. The record
continues until the next new record command, or until the end of the table or the end of
the level command.

A record is a construct for the organization of the elements belonging to a level. The
record name is not associated with the XML input file.

A table can contain multiple records, and therefore multiple new record commands. All
the records in a table are at the same hierarchy level. They will be printed in the order in
which they are specified in the table.

The new record command can have a name as its parameter. This name becomes the
name for the record. The record name is also referred to as the record type. The name
can be used in the COUNT function for counting the generated instances of the record.
See COUNT, page 9-28 function, for more information.

Consecutive new record commands (or empty records) are not allowed.

Sort Ascending and Sort Descending Commands
Use the sort ascending and sort descending commands to sort the instances of a level.
Enter the elements you wish to sort by in a comma-separated list. This is an optional
command. When used, it must come right after the (first) level command and it applies
to all records of the level, even if the records are specified in multiple tables.

Display Condition Command
The display condition command specifies when the enclosed record or data field group
should be displayed. The command parameter is a boolean expression. When it
evaluates to true, the record or data field group is displayed. Otherwise the record or
data field group is skipped.

The display condition command can be used with either a record or a group of data
fields. When used with a record, the display condition command must follow the new
record command. When used with a group of data fields, the display condition
command must follow a data field row. In this case, the display condition will apply to
the rest of the fields through the end of the record.

Consecutive display condition commands are merged as AND conditions. The merged
display conditions apply to the same enclosed record or data field group.

9-12 Oracle Business Intelligence Publisher User's Guide

Structure of the Data Rows
The output record data fields are represented in the template by table rows. In
FIXED_POSITION_BASED templates, each row has the following attributes (or
columns):

• Position

• Length

• Format

• Pad

• Data

• Comments

The first five columns are required and must appear in the order listed.

For DELIMITER_BASED templates, each data row has the following attributes
(columns):

• Maximum Length

• Format

• Data

• Tag

• Comments

The first three columns are required and must be declared in the order stated.

In both template types, the Comments column is optional and ignored by the system.
You can insert additional information columns if you wish, as all columns after the
required ones are ignored.

The usage rules for these columns are as follows:

Position
Specifies the starting position of the field in the record. The unit is in number of
characters. This column is only used with FIXED_POSITION_BASED templates.

Length/Maximum Length
Specifies the length of the field. The unit is in number of characters. For
FIXED_POSITION_BASED templates, all the fields are fixed length. If the data is less
than the specified length, it is padded. If the data is longer, it is truncated. The
truncation always occurs on the right.

For DELIMITER_BASED templates, the maximum length of the field is specified. If the

Creating an eText Template 9-13

data exceeds the maximum length, it will be truncated. Data is not padded if it is less
than the maximum length.

Format Column
Specifies the data type and format setting. There are three accepted data types:

• Alpha

• Number

• Date

Refer to Field Level Key Words, page 9-33 for their usage.

Number Data Type
Numeric data has three optional format settings: Integer, Decimal, or you can define a
format mask. Specify the optional settings with the Number data type as follows:

• Number, Integer

• Number, Decimal

• Number, <format mask>

For example:

Number, ###,###.00

The Integer format uses only the whole number portion of a numeric value and
discards the decimal. The Decimal format uses only the decimal portion of the numeric
value and discards the integer portion.

The following table shows examples of how to set a format mask. When specifying the
mask, # represents that a digit is to be displayed when present in the data; 0 represents
that the digit placeholder is to be displayed whether data is present or not.

When specifying the format mask, the group separator must always be "," and the
decimal separator must always be "." To alter these in the actual output, you must use
the Setup Commands NUMBER THOUSANDS SEPARATOR and NUMBER DECIMAL
SEPARATOR. See Setup Command Tables, page 9-16 for details on these commands.

The following table shows sample Data, Format Specifier, and Output. The Output
assumes the default group and decimal separators.

Data Format Specifier Output

123456789 ###,###.00 123,456,789.00

123456789.2 ###.00 123456789.20

9-14 Oracle Business Intelligence Publisher User's Guide

Data Format Specifier Output

1234.56789 ###.000 1234.568

123456789.2 # 123456789

123456789.2 #.## 123456789.2

123456789 #.## 123456789

Date Data Type
The Date data type format setting must always be explicitly stated. The format setting
follows the SQL date styles, such as MMDDYY.

Mapping EDI Delimiter-Based Data Types to eText Data Types
Some EDI (DELIMITER_BASED) formats use more descriptive data types. These are
mapped to the three template data types in the following table:

ASC X12 Data Type Format Template Data Type

A - Alphabetic Alpha

AN -Alphanumeric Alpha

B - Binary Number

CD - Composite data element N/A

CH - Character Alpha

DT - Date Date

FS - Fixed-length string Alpha

ID - Identifier Alpha

IV - Incrementing Value Number

Nn - Numeric Number

PW - Password Alpha

Creating an eText Template 9-15

ASC X12 Data Type Format Template Data Type

R - Decimal number Numer

TM - Time Date

Now assume you have specified the following setup commands:

NUMBER THOUSANDS SEPARATOR .

NUMBER DECIMAL SEPARATOR ,

The following table shows the Data, Format Specifier, and Output for this case. Note
that the Format Specifier requires the use of the default separators, regardless of the
setup command entries.

Data Format Specifier Output

123456789 ###,###.00 123.456.789,00

123456789.2 ###.00 123456789,20

1234.56789 ###.000 1234,568

123456789.2 # 123456789

123456789.2 #.## 123456789,2

123456789 #.## 123456789

Pad
This applies to FIXED_POSITION_BASED templates only. Specify the padding side (L =
left or R = right) and the character. Both numeric and alphanumeric fields can be
padded. If this field is not specified, Numeric fields are left-padded with "0"; Alpha
fields are right-padded with spaces.

Example usage:

• To pad a field on the left with a "0", enter the following in the Pad column field:

L, '0'

9-16 Oracle Business Intelligence Publisher User's Guide

• To pad a field on the right with a space, enter the following the Pad column field:

R, ' '

Data
Specifies the XML element from the data extract that is to populate the field. The data
column can simply contain the XML tag name, or it can contain expressions and
functions. For more information, see Expressions, Control Structure, and Functions,
page 9-27.

Tag
Acts as a comment column for DELIMITER_BASED templates. It specifies the reference
tag in EDIFACT formats, and the reference IDs in ASC X12.

Comments
Use this column to note any free form comments to the template. Usually this column is
used to note the business requirement and usage of the data field.

Setup Command Tables

Setup Command Table
A template always begins with a table that specifies the setup commands. The setup
commands define global attributes, such as template type and output character set and
program elements, such as sequencing and concatenation.

The setup commands are:

• Template Type

• Output Character Set

• New Record Character

• Invalid Characters

• Replace Characters

• Number Thousands Separator

• Number Decimal Separator

• Define Level

• Define Sequence

• Define Concatenation

Some example setup tables are shown in the following figures:

Creating an eText Template 9-17

9-18 Oracle Business Intelligence Publisher User's Guide

Template Type Command
This command specifies the type of template. There are two types:
FIXED_POSITION_BASED and DELIMITER_BASED.

Use the FIXED_POSITION_BASED templates for fixed-length record formats, such as
EFTs. In these formats, all fields in a record are a fixed length. If data is shorter than the
specified length, it will be padded. If longer, it will be truncated. The system specifies
the default behavior for data padding and truncation. Examples of fixed position based
formats are EFTs in Europe, and NACHA ACH file in the U.S.

In a DELIMITER_BASED template, data is never padded and only truncated when it
has reached a maximum field length. Empty fields are allowed (when the data is null).
Designated delimiters are used to separate the data fields. If a field is empty, two
delimiters will appear next to each other. Examples of delimited-based templates are
EDI formats such as ASC X12 820 and UN EDIFACT formats - PAYMUL, DIRDEB, and
CREMUL.

In EDI formats, a record is sometimes referred to as a segment. An EDI segment is
treated the same as a record. Start each segment with a new record command and give

Creating an eText Template 9-19

it a record name. You should have a data field specifying the segment name as part of
the output data immediately following the new record command.

For DELIMITER_BASED templates, you insert the appropriate data field delimiters in
separate rows between the data fields. After every data field row, you insert a delimiter
row. You can insert a placeholder for an empty field by defining two consecutive
delimiter rows.

Empty fields are often used for syntax reasons: you must insert placeholders for empty
fields so that the fields that follow can be properly identified.

There are different delimiters to signify data fields, composite data fields, and end of
record. Some formats allow you to choose the delimiter characters. In all cases you
should use the same delimiter consistently for the same purpose to avoid syntax errors.

In DELIMITER_BASED templates, the <POSITION> and <PAD> columns do not apply.
They are omitted from the data tables.

Some DELIMITER_BASED templates have minimum and maximum length
specifications. In those cases Oracle Payments validates the length.

Define Level Command
Some formats require specific additional data levels that are not in the data extract. For
example, some formats require that payments be grouped by payment date. Using the
Define Level command, a payment date group can be defined and referenced as a level
in the template, even though it is not in the input extract file.

When you use the Define Level command you declare a base level that exists in the
extract. The Define Level command inserts a new level one level higher than the base
level of the extract. The new level functions as a grouping of the instances of the base
level.

The Define Level command is a setup command, therefore it must be defined in the
setup table. It has three subcommands:

• Base Level Command - defines the level (XML element) from the extract that the
new level is based on. The Define Level command must always have one and only
one base level subcommand.

• Grouping Criteria - defines the XML extract elements that are used to group the
instances of the base level to form the instances of the new level. The parameter of
the grouping criteria command is a comma-separated list of elements that specify
the grouping conditions.

The order of the elements determines the hierarchy of the grouping. The instances
of the base level are first divided into groups according to the values of the first
criterion, then each of these groups is subdivided into groups according to the
second criterion, and so on. Each of the final subgroups will be considered as an
instance of the new level.

• Group Sort Ascending or Group Sort Descending - defines the sorting of the group.
Insert the <GROUP SORT ASCENDING> or <GROUP SORT DESCENDING>

9-20 Oracle Business Intelligence Publisher User's Guide

command row anywhere between the <DEFINE LEVEL> and <END DEFINE
LEVEL> commands. The parameter of the sort command is a comma-separated list
of elements by which to sort the group.

For example, the following table shows five payments under a batch:

Payment Instance PaymentDate (grouping
criterion 1)

PayeeName (grouping
criterion 2)

Payment1 PaymentDate1 PayeeName1

Payment2 PaymentDate2 PayeeName1

Payment3 PaymentDate1 PayeeName2

Payment4 PaymentDate1 PayeeName1

Payment5 PaymentDate1 PayeeName3

In the template, construct the setup table as follows to create a level called
"PaymentsByPayDatePayee" from the base level "Payment" grouped according to
PaymentDate and Payee Name. Add the Group Sort Ascending command to sort ea:

<DEFINE LEVEL> PaymentsByPayDatePayee

<BASE LEVEL> Payment

<GROUPING CRITERIA> PaymentDate, PayeeName

<GROUP SORT ASCENDING> PaymentDate, PayeeName

<END DEFINE LEVEL> PaymentsByPayDatePayee

The five payments will generate the following four groups (instances) for the new level:

Payment Group Instance Group Criteria Payments in Group

Group1 PaymentDate1, PayeeName1 Payment1, Payment4

Group2 PaymentDate1, PayeeName2 Payment3

Creating an eText Template 9-21

Payment Group Instance Group Criteria Payments in Group

Group3 PaymentDate1, PayeeName3 Payment5

Group4 PaymentDate2, PayeeName1 Payment2

The order of the new instances is the order that the records will print. When evaluating
the multiple grouping criteria to form the instances of the new level, the criteria can be
thought of as forming a hierarchy. The first criterion is at the top of the hierarchy, the
last criterion is at the bottom of the hierarchy.

Generally there are two kinds of format-specific data grouping scenarios in EFT
formats. Some formats print the group records only; others print the groups with the
individual element records nested inside groups. Following are two examples for these
scenarios based on the five payments and grouping conditions previously illustrated.

Example
First Scenario: Group Records Only

EFT File Structure:

• BatchRec

• PaymentGroupHeaderRec

• PaymentGroupFooterRec

Record Sequence Record Type Description

1 BatchRec

2 PaymentGroupHeaderRec For group 1 (PaymentDate1, PayeeName1)

3 PaymentGroupFooterRec For group 1 (PaymentDate1, PayeeName1)

4 PaymentGroupHeaderRec For group 2 (PaymentDate1, PayeeName2)

5 PaymentGroupFooterRec For group 2 (PaymentDate1, PayeeName2)

6 PaymentGroupHeaderRec For group 3 (PaymentDate1, PayeeName3)

7 PaymentGroupFooterRec For group 3 (PaymentDate1, PayeeName3)

8 PaymentGroupHeaderRec For group 4 (PaymentDate2, PayeeName1)

9-22 Oracle Business Intelligence Publisher User's Guide

Record Sequence Record Type Description

9 PaymentGroupFooterRec For group 4 (PaymentDate2, PayeeName1)

Example
Scenario 2: Group Records and Individual Records

EFT File Structure:

BatchRec

• PaymentGroupHeaderRec

• PaymentRec

• PaymentGroupFooterRec

Generated output:

Record Sequence Record Type Description

1 BatchRec

2 PaymentGroupHeaderRec For group 1 (PaymentDate1, PayeeName1)

3 PaymentRec For Payment1

4 PaymentRec For Payment4

5 PaymentGroupFooterRec For group 1 (PaymentDate1, PayeeName1)

6 PaymentGroupHeaderRec For group 2 (PaymentDate1, PayeeName2)

7 PaymentRec For Payment3

8 PaymentGroupFooterRec For group 2 (PaymentDate1, PayeeName2)

9 PaymentGroupHeaderRec For group 3 (PaymentDate1, PayeeName3)

10 PaymentRec For Payment5

11 PaymentGroupFooterRec For group 3 (PaymentDate1, PayeeName3)

Creating an eText Template 9-23

Record Sequence Record Type Description

12 PaymentGroupHeaderRec For group 4 (PaymentDate2, PayeeName1)

13 PaymentRec For Payment2

14 PaymentGroupFooterRec For group 4 (PaymentDate2, PayeeName1)

Once defined with the Define Level command, the new level can be used in the
template in the same manner as a level occurring in the extract. However, the records of
the new level can only reference the base level fields that are defined in its grouping
criteria. They cannot reference other base level fields other than in summary functions.

For example, the PaymentGroupHeaderRec can reference the PaymentDate and
PayeeName in its fields. It can also reference thePaymentAmount (a payment level
field) in a SUM function. However, it cannot reference other payment level fields, such
as PaymentDocName or PaymentDocNum.

The Define Level command must always have one and only one grouping criteria
subcommand. The Define Level command has a companion end-define level command.
The subcommands must be specified between the define level and end-define level
commands. They can be declared in any order.

Define Sequence Command
The define sequence command define a sequence that can be used in conjunction with
the SEQUENCE_NUMBER function to index either the generated EFT records or the
extract instances (the database records). The EFT records are the physical records
defined in the template. The database records are the records from the extract. To avoid
confusion, the term "record" will always refer to the EFT record. The database record
will be referred to as an extract element instance or level.

The define sequence command has four subcommands: reset at level, increment basis,
start at, and maximum:

Reset at Level
The reset at level subcommand defines where the sequence resets its starting number. It
is a mandatory subcommand. For example, to number the payments in a batch, define
the reset at level as Batch. To continue numbering across batches, define the reset level
as RequestHeader.

In some cases the sequence is reset outside the template. For example, a periodic
sequence may be defined to reset by date. In these cases, the PERIODIC_SEQUENCE
keyword is used for the reset at level. The system saves the last sequence number used
for a payment file to the database. Outside events control resetting the sequence in the
database. For the next payment file run, the sequence number is extracted from the
database for the start at number (see start at subcommand).

9-24 Oracle Business Intelligence Publisher User's Guide

Increment Basis
The increment basis subcommand specifies if the sequence should be incremented
based on record or extract instances. The allowed parameters for this subcommand are
RECORD and LEVEL.

Enter RECORD to increment the sequence for every record.

Enter LEVEL to increment the sequence for every new instance of a level.

Note that for levels with multiple records, if you use the level-based increment all the
records in the level will have the same sequence number. The record-based increment
will assign each record in the level a new sequence number.

For level-based increments, the sequence number can be used in the fields of one level
only. For example, suppose an extract has a hierarchy of batch > payment > invoice and
you define the increment basis by level sequence, with reset at the batch level. You can
use the sequence in either the payment or invoice level fields, but not both. You cannot
have sequential numbering across hierarchical levels.

However, this rule does not apply to increment basis by record sequences. Records can
be sequenced across levels.

For both increment basis by level and by record sequences, the level of the sequence is
implicit based on where the sequence is defined.

Define Concatenation Command
Use the define concatenation command to concatenate child-level extract elements for
use in parent-level fields. For example, use this command to concatenate invoice
number and due date for all the invoices belonging to a payment for use in a
payment-level field.

The define concatenation command has three subcommands: base level, element, and
delimiter.

Base Level Subcommand
The base level subcommand specifies the child level for the operation. For each
parent-level instance, the concatenation operation loops through the child-level
instances to generate the concatenated string.

Item Subcommand
The item subcommand specifies the operation used to generate each item. An item is a
child-level expression that will be concatenated together to generate the concatenation
string.

Delimiter Subcommand
The delimiter subcommand specifies the delimiter to separate the concatenated items in
the string.

Using the SUBSTR Function
Use the SUBSTR function to break down concatenated strings into smaller strings that
can be placed into different fields. For example, the following table shows five invoices
in a payment:

Creating an eText Template 9-25

Invoice InvoiceNum

1 car_parts_inv0001

2 car_parts_inv0002

3 car_parts_inv0003

4 car_parts_inv0004

5 car_parts_inv0005

Using the following concatenation definition:

<DEFINE CONCATENATION> ConcatenatedInvoiceInfo

<BASE LEVEL> Invoice

<ELEMENT> InvoiceNum

<DELIMITER> ','

<END DEFINE CONCATENATION> ConcatenatedInvoiceInfo

You can reference ConcatenatedInvoiceInfo in a payment level field. The string will be:

car_parts_inv0001,car_parts_inv0002,car_parts_inv0003,car_parts_
inv0004,car_parts_inv0005

If you want to use only the first forty characters of the concatenated invoice info, use
either TRUNCATE function or the SUBSTR function as follows:

TRUNCATE(ConcatenatedInvoiceInfo, 40)

SUBSTR(ConctenatedInvoiceInfo, 1, 40)

Either of these statements will result in:

car_parts_inv0001,car_parts_inv0002,car_

To isolate the next forty characters, use the SUBSTR function:

SUBSTR(ConcatenatedInvoiceInfo, 41, 40)

to get the following string:

parts_inv0003,car_parts_inv0004,car_par

9-26 Oracle Business Intelligence Publisher User's Guide

Invalid Characters and Replacement Characters Commands
Some formats require a different character set than the one that was used to enter the
data in Oracle Applications. For example, some German formats require the output file
in ASCII, but the data was entered in German. If there is a mismatch between the
original and target character sets you can define an ASCII equivalent to replace the
original. For example, you would replace the German umlauted "a" with "ao".

Some formats will not allow certain characters. To ensure that known invalid characters
will not be transmitted in your output file, use the invalid characters command to flag
occurrences of specific characters.

To use the replacement characters command, specify the source characters in the left
column and the replacement characters in the right column. You must enter the source
characters in the original character set. This is the only case in a format template in
which you use a character set not intended for output. Enter the replacement characters
in the required output character set.

For DELIMITER_BASED formats, if there are delimiters in the data, you can use the
escape character "?" to retain their meaning. For example,

First name?+Last name equates to Fist name+Last name

Which source?? equates to Which source?

Note that the escape character itself must be escaped if it is used in data.

The replacement characters command can be used to support the escape character
requirement. Specify the delimiter as the source and the escape character plus the
delimiter as the target. For example, the command entry for the preceding examples
would be:

<REPLACEMENT CHARACTERS>

+ ?+

? ??

<END REPLACEMENT CHARACTERS>

The invalid character command has a single parameter that is a string of invalid
characters that will cause the system to error out.

The replacement character process is performed before or during the character set
conversion. The character set conversion is performed on the XML extract directly,
before the formatting. After the character set conversion, the invalid characters will be
checked in terms of the output character set. If no invalid characters are found, the
system will proceed to formatting.

Output Character Set and New Record Character Commands
Use the new record character command to specify the character(s) to delimit the explicit

Creating an eText Template 9-27

and implicit record breaks at runtime. Each new record command represents an explicit
record break. Each end of table represents an implicit record break. The parameter is a
list of constant character names separated by commas.

Some formats contain no record breaks. The generated output is a single line of data. In
this case, leave the new record character command parameter field empty.

Number Thousands Separator and Number Decimal Separator
The default thousands (or group) separator is a comma (",") and the default decimal
separator is ".". Use the Number Thousands Separator command and the Number
Decimal Separator command to specify separators other than the defaults. For example,
to define "." as the group separator and "," as the decimal separator, enter the following:

NUMBER THOUSANDS SEPARATOR .

NUMBER DECIMAL SEPARATOR ,

For more information on formatting numbers, see Format Column, page 9-13.

Expressions, Control Structures, and Functions
This section describes the rules and usage for expressions in the template. It also
describes supported control structures and functions.

Expressions
Expressions can be used in the data column for data fields and some command
parameters. An expression is a group of XML extract fields, literals, functions, and
operators. Expressions can be nested. An expression can also include the "IF" control
structure. When an expression is evaluated it will always generate a result. Side effects
are not allowed for the evaluation. Based on the evaluation result, expressions are
classified into the following three categories:

• Boolean Expression - an expression that returns a boolean value, either true or false.
This kind expression can be used only in the "IF-THEN-ELSE" control structure and
the parameter of the display condition command.

• Numeric Expression - an expression that returns a number. This kind of expression
can be used in numeric data fields. It can also be used in functions and commands
that require numeric parameters.

• Character Expression - an expression that returns an alphanumeric string. This kind
of expression can be used in string data fields (format type Alpha). They can also be
used in functions and command that require string parameters.

9-28 Oracle Business Intelligence Publisher User's Guide

Control Structures
The only supported control structure is "IF-THEN-ELSE". It can be used in an
expression. The syntax is:
IF <boolean_expressionA> THEN
 <numeric or character expression1>
[ELSIF <boolean_expressionB THEN
 <numeric or character expression2>]
...
[ELSE
 <numeric or character expression3]
END IF

Generally the control structure must evaluate to a number or an alphanumeric string.
The control structure is considered to a numeric or character expression. The ELSIF and
ELSE clauses are optional, and there can be as many ELSIF clauses as necessary. The
control structure can be nested.

The IN predicate is supported in the IF-THEN-ELSE control structure. For example:
IF PaymentAmount/Currency/Code IN ('USD', 'EUR', 'AON', 'AZM') THEN

 PayeeAccount/FundsCaptureOrder/OrderAmount/Value * 100
ELSIF PaymentAmount/Currency/Code IN ('BHD', 'IQD', 'KWD') THEN
 PayeeAccount/FundsCaptureOrder/OrderAmount/Value * 1000
ELSE
 PayeeAccount/FundsCaptureOrder/OrderAmount/Value
END IF;

Functions
Following is the list of supported functions:

• SEQUENCE_NUMBER - is a record element index. It is used in conjunction with
the Define Sequence command. It has one parameter, which is the sequence defined
by the Define Sequence command. At runtime it will increase its sequence value by
one each time it is referenced in a record.

• COUNT - counts the child level extract instances or child level records of a specific
type. Declare the COUNT function on a level above the entity to be counted. The
function has one argument. If the argument is a level, the function will count all the
instances of the (child) level belonging to the current (parent) level instance.

For example, if the level to be counted is Payment and the current level is Batch,
then the COUNT will return the total number of payments in the batch. However, if
the current level is RequestHeader, the COUNT will return the total number of
payments in the file across all batches. If the argument is a record type, the count
function will count all the generated records of the (child level) record type
belonging to the current level instance.

• INTEGER_PART, DECIMAL_PART - returns the integer or decimal portion of a
numeric value. This is used in nested expressions and in commands (display
condition and group by). For the final formatting of a numeric field in the data

Creating an eText Template 9-29

column, use the Integer/Decimal format.

• IS_NUMERIC - boolean test whether the argument is numeric. Used only with the
"IF" control structure.

• TRUNCATE - truncate the first argument - a string to the length of the second
argument. If the first argument is shorter than the length specified by the second
argument, the first argument is returned unchanged. This is a user-friendly version
for a subset of the SQL substr() functionality.

• SUM - sums all the child instance of the XML extract field argument. The field must
be a numeric value. The field to be summed must always be at a lower level than
the level on which the SUM function was declared.

• MIN, MAX - find the minimum or maximum of all the child instances of the XML
extract field argument. The field must be a numeric value. The field to be operated
on must always be at a lower level than the level on which the function was
declared.

• FORMAT_DATE - Formats a date string to any desirable date format. For example:

FORMAT_DATE("1900-01-01T18:19:20", "YYYY/MM/DD HH24:MI:SS")

will produce the following output:

1900/01/01 18:19:20

• FORMAT_NUMBER – Formats a number to display in desired format. For
example:

FORMAT_NUMBER("1234567890.0987654321", "999,999.99")

produces the following output:

1,234,567,890.10

• MESSAGE_LENGTH - returns the length of the message in the EFT message.

• RECORD_LENGTH - returns the length of the record in the EFT message.

• INSTR – returns the numeric position of a named character within a text field.

• SYSDATE, DATE – gets Current Date and Time.

• POSITION – returns the position of a node in the XML document tree structure.

• REPLACE – replaces a string with another string.

• CONVERT_CASE – converts a string or a character to UPPER or LOWER case.

• CHR – gets the character representation of an argument, which is an ASCII value.

9-30 Oracle Business Intelligence Publisher User's Guide

• LPAD, RPAD – generates left or right padding for string values.

• AND, OR, NOT – operator functions on elements.

• Other SQL functions include the following. Use the syntax corresponding to the
SQL function.

• TO_DATE

• LOWER

• UPPER

• LENGTH

• GREATEST

• LEAST

• DECODE

• CEIL

• ABS

• FLOOR

• ROUND

• CHR

• TO_CHAR

• SUBSTR

• LTRIM

• RTRIM

• TRIM

• IN

• TRANSLATE

Identifiers, Operators, and Literals
This section lists the reserved key word and phrases and their usage. The supported

Creating an eText Template 9-31

operators are defined and the rules for referencing XML extract fields and using literals.

Key Words
There are four categories of key words and key word phrases:

• Command and column header key words

• Command parameter and function parameter key words

• Field-level key words

• Expression key words

Command and Column Header Key Words
The following key words must be used as shown: enclosed in <>s and in all capital
letters with a bold font.

• <LEVEL>- the first entry of a data table. Associates the table with an XML element
and specifies the hierarchy of the table.

• <END LEVEL> - declares the end of the current level. Can be used at the end of a
table or in a standalone table.

• <POSITION> - column header for the first column of data field rows, which
specifies the starting position of the data field in a record.

• <LENGTH> - column header for the second column of data field rows, which
specifies the length of the data field.

• <FORMAT> - column header for the third column of data field rows, which
specifies the data type and format setting.

• <PAD> - column header for the fourth column of data field rows, which specifies
the padding style and padding character.

• <DATA> - column header for the fifth column of data field rows, which specifies
the data source.

• <COMMENT> - column header for the sixth column of data field rows, which
allows for free form comments.

• <NEW RECORD> - specifies a new record.

• <DISPLAY CONDITION> - specifies the condition when a record should be
printed.

• <TEMPLATE TYPE> - specifies the type of the template, either
FIXED_POSITION_BASED or DELIMITER_BASED.

9-32 Oracle Business Intelligence Publisher User's Guide

• <OUTPUT CHARACTER SET> - specifies the character set to be used when
generating the output.

• <NEW RECORD CHARACTER> - specifies the character(s) to use to signify the
explicit and implicit new records at runtime.

• <DEFINE LEVEL> - defines a format-specific level in the template.

• <BASE LEVEL> - subcommand for the define level and define concatenation
commands.

• <GROUPING CRITERIA> - subcommand for the define level command.

• <END DEFINE LEVEL> - signifies the end of a level.

• <DEFINE SEQUENCE> - defines a record or extract element based sequence for use
in the template fields.

• <RESET AT LEVEL> - subcommand for the define sequence command.

• <INCREMENT BASIS> - subcommand for the define sequence command.

• <START AT> - subcommand for the define sequence command.

• <MAXIMUM> - subcommand for the define sequence command.

• <MAXIMUM LENGTH> - column header for the first column of data field rows,
which specifies the maximum length of the data field. For DELIMITER_BASED
templates only.

• <END DEFINE SEQUENCE> - signifies the end of the sequence command.

• <DEFINE CONCATENATION> - defines a concatenation of child level item that
can be referenced as a string the parent level fields.

• <ELEMENT> - subcommand for the define concatenation command.

• <DELIMITER> - subcommand for the define concatenation command.

• <END DEFINE CONCATENATION> - signifies the end of the define
concatenation command.

• <SORT ASCENDING> - format-specific sorting for the instances of a level.

• <SORT DESCENDING> - format-specific sorting for the instances of a level.

Command Parameter and Function Parameter Key Words
These key words must be entered in all capital letters, nonbold fonts.

Creating an eText Template 9-33

• PERIODIC_SEQUENCE - used in the reset at level subcommand of the define
sequence command. It denotes that the sequence number is to be reset outside the
template.

• FIXED_POSITION_BASED, DELIMITER_BASED - used in the template type
command, specifies the type of template.

• RECORD, LEVEL - used in the increment basis subcommand of the define sequence
command. RECORD increments the sequence each time it is used in a new record.
LEVEL increments the sequence only for a new instance of the level.

Field-Level Key Words
• Alpha - in the <FORMAT> column, specifies the data type is alphanumeric.

• Number - in the <FORMAT> column, specifies the data type is numeric.

• Integer - in the <FORMAT> column, used with the Number key word. Takes the
integer part of the number. This has the same functionality as the INTEGER
function, except the INTEGER function is used in expressions, while the Integer key
word is used in the <FORMAT> column only.

• Decimal - in the <FORMAT> column, used with the Number key word. Takes the
decimal part of the number. This has the same functionality as the DECIMAL
function, except the DECIMAL function is used in expressions, while the Decimal
key word is used in the <FORMAT> column only.

• Date - in the <FORMAT> column, specifies the data type is date.

• L, R- in the <PAD> column, specifies the side of the padding (Left or Right).

Expression Key Words
Key words and phrases used in expressions must be in capital letters and bold fonts.

• IF THEN ELSE IF THEN ELSE END IF - these key words are always used as a
group. They specify the "IF" control structure expressions.

• IS NULL, IS NOT NULL - these phrases are used in the IF control structure. They
form part of boolean predicates to test if an expression is NULL or not NULL.

Operators
There are two groups of operators: the boolean test operators and the expression
operators. The boolean test operators include: "=", "<>", "<", ">", ">=", and "<=". They can
be used only with the IF control structure. The expression operators include: "()", "||",
"+", "-", and "*". They can be used in any expression.

9-34 Oracle Business Intelligence Publisher User's Guide

Symbol Usage

= Equal to test. Used in the IF control structure
only.

<> Not equal to test. Used in the IF control
structure only.

> Greater than test. Used in the IF control
structure only.

< Less than test. Used in the IF control structure
only.

>= Greater than or equal to test. Used in the IF
control structure only.

<= Less than or equal to test. Used in the IF
control structure only.

() Function argument and expression group
delimiter. The expression group inside "()"
will always be evaluated first. "()" can be
nested.

|| String concatenation operator.

+ Addition operator. Implicit type conversion
may be performed if any of the operands are
not numbers.

- Subtraction operator. Implicit type conversion
may be performed if any of the operands are
not numbers.

* Multiplication operator. Implicit type
conversion may be performed if any of the
operands are not numbers.

DIV Division operand. Implicit type conversion
may be performed if any of the operands are
not numbers. Note that "/" is not used because
it is part of the XPATH syntax.

Creating an eText Template 9-35

Symbol Usage

IN Equal-to-any-member-of test.

NOT IN Negates the IN operator.
Not-Equal-to-any-member-of test.

Reference to XML Extract Fields and XPATH Syntax
XML elements can be used in any expression. At runtime they will be replaced with the
corresponding field values. The field names are case-sensitive.

When the XML extract fields are used in the template, they must follow the XPATH
syntax. This is required so that the BI Publisher engine can correctly interpret the XML
elements.

There is always an extract element considered as the context element during the BI
Publisher formatting process. When BI Publisher processes the data rows in a table, the
level element of the table is the context element. For example, when BI Publisher
processes the data rows in the Payment table, Payment is the context element. The
relative XPATH you use to reference the extract elements are specified in terms of the
context element.

For example if you need to refer to the PayeeName element in a Payment data table,
you will specify the following relative path:

Payee/PayeeInfo/PayeeName

Each layer of the XML element hierarchy is separated by a backslash "/". You use this
notation for any nested elements. The relative path for the immediate child element of
the level is just the element name itself. For example, you can use TransactionID
element name as is in the Payment table.

To reference a parent level element in a child level table, you can use the "../" notation.
For example, in the Payment table if you need to reference the BatchName element, you
can specify ../BatchName. The "../" will give you Batch as the context; in that context you
can use the BatchName element name directly as BatchName is an immediate child of
Batch. This notation goes up to any level for the parent elements. For example if you
need to reference the RequesterParty element (in the RequestHeader) in a Payment data
table, you can specify the following:

../../TrxnParties/RequesterParty

You can always use the absolute path to reference any extract element anywhere in the
template. The absolute path starts with a backslash "/". For the PayeeName in the
Payment table example above, you will have the following absolute path:
/BatchRequest/Batch/Payment/Payee/PayeeInfo/PayeeName

The absolute path syntax provides better performance.

The identifiers defined by the setup commands such as define level, define sequence

9-36 Oracle Business Intelligence Publisher User's Guide

and define concatenation are considered to be global. They can be used anywhere in the
template. No absolute or relative path is required. The base level and reset at level for
the setup commands can also be specified. BI Publisher will be able to find the correct
context for them.

If you use relative path syntax, you should specify it relative to the base levels in the
following commands:

• The element subcommand of the define concatenation command

• The grouping criteria subcommand of the define level command

The extract field reference in the start at subcommand of the define sequence command
should be specified with an absolute path.

The rule to reference an extract element for the level command is the same as the rule
for data fields. For example, if you have a Batch level table and a nested Payment level
table, you can specify the Payment element name as-is for the Payment table. Because
the context for evaluating the Level command of the Payment table is the Batch.

However, if you skip the Payment level and you have an Invoice level table directly
under the Batch table, you will need to specify Payment/Invoice as the level element for
the Invoice table.

The XPATH syntax required by the template is very similar to UNIX/LINUX directory
syntax. The context element is equivalent to the current directory. You can specify a file
relative to the current directory or you can use the absolute path which starts with a "/".

Finally, the extract field reference as the result of the grouping criteria sub-command of
the define level command must be specified in single quotes. This tells the BI Publisher
engine to use the extract fields as the grouping criteria, not their values.

Part 3
Administering BI Publisher

Defining a Security Model 10-1

10
Defining a Security Model

This chapter covers the following topics:

• Security Model Overview

• Understanding BI Publisher's Users and Roles

• Considerations When Deleting a User

• Integrating with LDAP

• Setting Up Oracle Single Sign-On

• Integrating with Oracle E-Business Suite Security

• Integrating with Oracle BI Server Security

Security Model Overview
BI Publisher offers the following security options:

• BI Publisher Security

Use BI Publisher's Users and Roles paradigm to control access to reports and data
sources. See Understanding BI Publisher's Users and Roles, page 10-2.

• LDAP

Set up the BI Publisher roles in your LDAP server then configure BI Publisher to
integrate with it. See Integrating with LDAP, page 10-6.

Oracle E-Business Suite

Upload a DBC file to recognize your Oracle E-Business Suite users. See Integrating
with E-Business Suite Security, page 10-25.

• Oracle BI Server

Set up the BI Publisher roles in your BI Server Administration tool then configure BI
Publisher to integrate with it. See Integrating with Oracle BI Server Security, page

10-2 Oracle Business Intelligence Publisher User's Guide

10-27.

Defining a Local Superuser
BI Publisher allows you to define an administration Superuser. Using the Superuser
credentials you can directly access the BI Publisher server administrative functions
without logging in through the defined security model.

Set up this Superuser to ensure access to all administrative functions in case of
problems with the current security setup.

1. Select the Admin tab.

2. Under Security Center select Security Configuration.

3. Under Local Superuser, select the box and enter the credentials for the Superuser.

Allowing Guest Access
BI Publisher allows you to set up a public access folder. Any user can access the reports
in this folder without entering credentials.

1. Select the Admin tab.

2. Under Security Center select Security Configuration.

3. Under Guest Access, select the Allow Guest Access and enter a name for the Guest
folder in the system.

Understanding BI Publisher's Users and Roles
A user is granted one or multiple Roles. A Role defines a user's access to Folders and
functions. A role can be assigned one or multiple Folders to which access is granted.
Reports are contained within the folders. You can create a hierarchy of roles by
assigning roles to other roles. In this way the privileges of multiple roles can roll up to
higher level roles. The following graphic shows an example of the hierarchy structure of
User, Role, and Folder:

Defining a Security Model 10-3

Functional Roles
BI Publisher provides five functional roles to grant access to specific tasks within the
application. Assign these roles to users based on their need to perform the associated
tasks. These roles cannot be updated or deleted.

The following table shows the privileges granted to each functional role:

Role Privileges

no roles assigned View (online reports only)

BI Publisher Excel Analyzer View

History

Grants access to the Excel Analyzer

BI Publisher Online Analyzer View

History

Grants access to the Analyzer

10-4 Oracle Business Intelligence Publisher User's Guide

Role Privileges

BI Publisher Scheduler View

Schedule

History

BI Publisher Template Designer View

History

Enables log on from Template Builder

BI Publisher Developer View

History

Edit

Configure

Folder and Report Tasks

Enables log on from the Template Builder

BI Publisher Administrator View

Edit

Schedule

History

Configure

Folder and Report Tasks

Excel Analyzer

Online Analyzer

Admin tab and all administration tasks

Enables log on from the Template Builder

Setting Up Users and Roles
There are two options for setting up users and roles:

• Set up users and roles in the BI Publisher Enterprise Security Center

For this option, follow the instructions in this section.

Defining a Security Model 10-5

• Integrate BI Publisher Enterprise with an existing LDAP server

For this option, See Integrating with LDAP, page 10-6.

Create a Role:
1. From the Security Center, select Roles and Permissions; this will invoke the

Security Center page. Here you can see the list of existing roles and permissions.

2. Select Create Role.

3. Enter a Role Name and Description and select Apply.

4. Grant access to data sources for the role. See Setting Up Data Sources, page 11-2.

Add a User:
1. From the Security Center, select Users. This will invoke the Security Center Users

page. Here you can see the list of existing users.

2. Select Create User.

3. Add the User Name and Password for the user.

Update a User:
1. From the Security Center, select Users. This will invoke the Security Center Users

page. Here you can see the list of existing users.

2. Select the user name. You can update both the user name and the password.

Add a Role to a User:
1. From the Security Center, select Users. This will invoke the Security Center Users

page. Here you can see the list of existing users.

2. Select the Assign Roles icon for the user.

3. From the Assign Roles page, select the role from the Available Roles list and then
select the Move shuttle button to move the role to the Assigned Roles list. When
done assigning all roles, select Apply.

Add a Folder to a Role:
1. From the Security Center, select Roles and Permissions; this will invoke the

Security Center page. Here you can see the list of existing roles and permissions.

10-6 Oracle Business Intelligence Publisher User's Guide

2. Select the Add Folders icon.

3. Select the desired folder from the Available Folders list and use the Move shuttle
button to move it to the Allowed Folders list.

Note that the folders are presented as the directory structure is set up in your
system. Selecting the top level folder will grant access to all subfolders. Selecting
just the subfolder entry will allow access only to the subfolder.

Add a Data Source to a Role
1. From the Security Center, select Roles and Permissions; this will invoke the

Security Center page. Here you can see the list of existing roles and permissions.

2. Select the Add Data Sources icon for the Role.

3. Move selections from the Available Data Sources list to the Allowed Data Sources
list.

Users with this role will only be allowed to run reports that access data sources on
the Allowed Data Sources list.

Add a Role to a Role:
1. From the Security Center, select Roles and Permissions; this will invoke the

Security Center page. Here you can see the list of existing roles and permissions.

2. Select the Add Roles icon for the Role.

3. Select the desired role from the Available Roles list and use the Move shuttle
button to move it to the Included Roles.

Considerations When Deleting a User
When you delete a user in any security model (built-in, LDAP, E-Business Suite, or BI
Server), ensure that you delete the user folder from the repository. If you are logged in
as an Administrator, the user folders are located on the Reports page under
Users/<username>. If the individual user folder is not deleted and a new user is created
with the same user name, then the new user will have access to the contents of the
existing user folder.

Integrating with LDAP
BI Publisher can be integrated with your LDAP server to manage users and report
access. Create the users and roles within your LDAP server, then configure the BI
Publisher server to access your LDAP server.

Defining a Security Model 10-7

In the BI Publisher security center module, assign folders to those roles. When a user
logs into the server they will have access to those folders and reports assigned to the
LDAP roles.

Integrating the BI Publisher server with Oracle LDAP consists of three main tasks:

1. Set up users and roles

2. Configure BI Publisher to recognize your LDAP server

3. Assign report folders and data sources to roles

These tasks can be performed through the Oracle Internet Directory (OID) Web UI, or
through the client application. Each method is described in detail.

Using the Client Application

Set Up Users and Roles
1. Use the Enterprise Security Manager login to access your LDAP Server.

An example Directory Server Login screen is shown in the following figure:

2. Create Roles.

Navigate to the Enterprise Roles node under the OracleDefaultDomain node.

A sample Enterprise Security Manager screen is shown in the following figure:

10-8 Oracle Business Intelligence Publisher User's Guide

3. To create a role, select the Enterprise Roles node, then select Create Enterprise
Role from the Operations menu.

You must create the following roles to integrate with BI Publisher: See
Understanding Users and Roles, page 10-2 for full descriptions of the required
functional roles.

• XMLP_ADMIN – this is the administrator role for the BI Publisher server.

• XMLP_DEVELOPER – allows users to build reports in the system.

• XMLP_SCHEDULER – allows users to schedule reports.

• XMLP_ANALYZER_EXCEL – allows users to use the Excel analysis feature.

• XMLP_ANALYZER_ONLINE – allows users to use the online analysis feature.

• XMLP_TEMPLATE_DESIGNER - allows users to connect to the BI Publisher
server from the Template Builder and to upload and download templates.

The following figure shows a sample Create Enterprise Role dialog:

Defining a Security Model 10-9

4. Create other functional roles as required by your implementation, for example: HR
Manager, Warehouse Clerk, or Sales Manager.

The following figure shows an example Enterprise Security Manager screen with
multiple roles defined:

10-10 Oracle Business Intelligence Publisher User's Guide

5. Assign roles to users.

• Select the role you wish to add a user to.

• Select Add.

• Navigate to the Users node and select Search to find users.

The following figure shows an example Add Enterprise Users dialog:

Defining a Security Model 10-11

• Select the user(s) you wish to add to the role and select OK.

This action will close the dialog. Select Apply on the main form to save your
changes.

Now if you expand the Users node under the role, the new users will appear.

Configure the BI Publisher Server to Recognize Your LDAP Server
To configure the BI Publisher server to recognize your LDAP server, update the
Security properties in the BI Publisher Admin interface as follows:

1. Navigate to the Security Configuration page: Select the Admin tab. Under Security
Center select Security Configuration.

2. Scroll down to the Security Model region. Select LDAP for the Security Model.

3. Enter the following:

• URL

For example: ldap://ldap.server.com:389/

• Admin Username

For example: orcladmin

10-12 Oracle Business Intelligence Publisher User's Guide

• Admin Password:

For example: welcome

• Distinguished Name for Users

For example: cn=users,dc=server,dc=com

Important: The distinguished name values are case-sensitive
and must match the settings in your LDAP server.

• JNDI Context Factory Class

The default value is com.sun.jndi.ldap.LdapCtxFactory

• Distinguished Name for Groups

For example: cn=Groups, dc=us,dc=oracle,dc=com

The default value is
cn=OracleDefaultDomain,cn=OracleDBSecurity,cn=Products,cn=
OracleContext,dc=example,dc=com

• Group Search Filter

The default values is (&(objectclass=groupofuniquenames)(cn=*))

• Group Attribute Name

The default value is cn

• Group Member Attribute Name

The default value is uniquemember

• Group Description Attribute Name

The default value is description

Important: You must restart the server for changes to the security
model to take effect.

The following figure shows a sample of the LDAP security model entry fields from the
Security Configuration page:

Defining a Security Model 10-13

Assign Folders and Data Sources to Roles
1. Log in with an Administrator role.

2. Navigate to the Admin tab. From Security Center select Roles and Permissions.

You will see the roles you created and assigned in the security manager application.
Note the following:

• The XMLP_X roles are not shown because these are controlled through the
LDAP interface.

• The Users tab is no longer available under the Security Center because users are
now managed through your LDAP interface.

• Roles are not updateable in the BI Publisher interface, with the exceptions of
adding folders and adding data sources.

3. Select Add Folders to add folders to a particular role using the tree shuttle. Select
Add Data Sources to add BI Publisher data sources to the role. A role must be
assigned access to a data source to run reports from that data source.

Users can now log in using their LDAP username/password and will have access to
reports in the folders assigned to their roles set up in LDAP.

Using the OID Web UI
1. Log in to OID. The URL is typically http://(AS host):(AS port)/oiddas/

2. Create users for BI Publisher. Select the Directory tab, then the Users subtab, and

10-14 Oracle Business Intelligence Publisher User's Guide

then click the Create button.

3. Create the following roles to integrate with BI Publisher: See Understanding Users
and Roles, page 10-2 for full descriptions of the required functional roles.

• XMLP_ADMIN – this is the administrator role for the BI Publisher server.

• XMLP_DEVELOPER – allows users to build reports in the system.

• XMLP_SCHEDULER – allows users to schedule reports.

• XMLP_ANALYZER_EXCEL – allows users to use the Excel analysis feature.

• XMLP_ANALYZER_ONLINE – allows users to use the online analysis feature.

• XMLP_TEMPLATE_DESIGNER - allows users to connect to the BI Publisher
server from the Template Builder and to upload and download templates.

To create the Group, select the Groups subtab, then click Create.

Defining a Security Model 10-15

4. Assign users to the group.

Select each group and click Manage, then click Edit.

10-16 Oracle Business Intelligence Publisher User's Guide

5. Click the Add User button to add users to the Group.

Setting Up Oracle Single Sign-On
This section describes how to set up Oracle Single Sign-On with Oracle 10g Application

Defining a Security Model 10-17

Server (OracleAS). These guidelines are written based on the Oracle 10g Application
Server 10.1.3 release.

Prerequisites
• OracleAS 10g Infrastructure installation (including SSO server)

• The BI Publisher xmlpserver is set up with Oracle Internet Directory (OID) LDAP
server.

Note: If you want to set up the BI Publisher server on a different
server, that server must also be OracleAS 10g and must be
registered in the main OracleAS 10g Infrastructure. This can be
done by installing the new OracleAS 10g J2EE and Web Cache. The
procedure for this installation is as follows (for AS 10.1.3):

• Run the AS installer

• Choose Oracle Application Server 10g 10.1.3

• Choose J2EE and Web Cache

• Follow the installer instructions. In the OID section, point to the
master OracleAS 10g Infrastructure installation on your main
server.

Setup Procedure
1. Navigate to the SSO Server home page. Select SSO Server Administration.

Typically, the URL is: http://host:port/pls/orasso.

2. From the SSO Server Administration page, select Administer Partner Applications.

3. From the Administer Partner Applications page, select Add Partner Application.

4. On the Create Partner Application page, under Partner Application Login, enter
the following and select OK:

• Name : xmlpserver

• Home URL : http://<xmlpserver host>:<xmlpserver port>/xmlpserver

• Success URL : http://<xmlpserver host>:<xmlpserver port>/xmlpserver/login.jsp

• Logout URL : http://<xmlpserver host>:<xmlpserver port>/xmlpserver/signout.jsp

The following figure shows a sample Create Partner Application page:

10-18 Oracle Business Intelligence Publisher User's Guide

5. If the process was successful, you will see the entry "xmlpserver" on the Administer
Partner Applications page. Select the Edit icon

6. From the Edit Partner Application page, note the value of Single Sign-Off URL.

The following figure shows a sample Edit Partner Application page:

Defining a Security Model 10-19

7. Modify the application server configuration file. Navigate to Application Server
Control (ASC). Choose HTTP Server and then choose Advanced Server Properties.

The following figure shows a sample Advanced Server Properties page:

10-20 Oracle Business Intelligence Publisher User's Guide

Select mod_osso.conf to open the file for editing. To protect the server, add a new
"Location" directive as follows:
<!-- Protect xmlpserver -->
<Location /xmlpserver>
 require valid-user
 AuthType Basic
</Location>

8. (Optional) To allow access to the Guest Folder in BI Publisher for users not signed
on through SSO, you must make an additional modification to the
mod_osso.conf file to allow traffic to the Guest folder without checking the SSO
token. To do this, add the following directive:
<Location /xmlpserver/Guest/>
 require valid-user
 AuthType Basic
 Allow from All
 Satisfy any
</Location>

9. For integration with Oracle BI Presentation Services, you must disable SSO for Web
services between the BI Presentation Services server and the BI Publisher server.

To open up the xmlpserver to allow the Web service, enter the following directive
in the mod_osso.conf file:

Defining a Security Model 10-21

<Location /xmlpserver/services/>
 require valid-user
 AuthType Basic
 Allow from All
 Satisfy any
</Location>

You must make a similar entry to open the BI Presentation Services server. For
more information on required configuration for BI Publisher Enterprise and Oracle
BI Presentation services, see the Oracle Business Intelligence Enterprise Edition
Deployment Guide.

A sample mod_osso.conf file with the entries discussed in this section is shown
below:

10-22 Oracle Business Intelligence Publisher User's Guide

LoadModule osso_module libexec/mod_osso.so

 <IfModule mod_osso.c>
 OssoIpCheck off
 OssoIdleTimeout off
 OssoConfigFile
/home/as1013/ohome/Apache/Apache/conf/osso/osso.conf

 <Location /xmlpserver>
 require valid-user
 AuthType Basic
 </Location>

 <Location /xmlpserver/services>
 require valid-user
 AuthType Basic
 Allow from All
 Satisfy any
 </Location>

<Location /xmlpserver/Guest/>
 require valid-user
 AuthType Basic
 Allow from All
 Satisfy any
</Location>
 #
 # Insert Protected Resources: (see Notes below for how to protect
resources)
 #

 #______-
 #
 # Notes
 #
 #______-
 #
 # 1. Here's what you need to add to protect a resource,
 # e.g. <ApacheServerRoot>/htdocs/private:
 #
 # <Location /private>
 # require valid-user
 # AuthType Basic
 # </Location>
 #
 </IfModule>

 #
 # If you would like to have short hostnames redirected to
 # fully qualified hostnames to allow clients that need
 # authentication via mod_osso to be able to enter short
 # hostnames into their browsers uncomment out the following
 # lines
 #
 #PerlModule Apache::ShortHostnameRedirect
 #PerlHeaderParserHandler Apache::ShortHostnameRedirect

A sample of edit page is shown in the following figure:

Defining a Security Model 10-23

10. Restart the HTTP server.

11. Set up the Single Sign-Off URL on the BI Publisher Security Configuration page.

From the Admin tab, select Security Configuration. Enter the following in the
Oracle Single Sign-On region:

• Select Use Oracle Single Sign-On

• Enter the Single Sign-Off URL with the value you wrote down in the preceding
step.

A sample BI Publisher Security Configuration page is shown in the following
figure:

10-24 Oracle Business Intelligence Publisher User's Guide

12. Restart the application through the Application Server Control page.

13. Enter the URL to access the BI Publisher Enterprise application, and you will be
redirected to the SSO login page.

A sample SSO login page is shown in the following figure:

Defining a Security Model 10-25

Integrating with Oracle E-Business Suite Security
BI Publisher can leverage your E-Business Suite security to enable your E-Business Suite
users to log in to BI Publisher using their E-Business Suite credentials. When you
integrate with the E-Business Suite security, your E-Business Suite responsibilities
become available as roles in the BI Publisher security center. You can then associate BI
Publisher report folders to the imported roles/responsibilities to allow access as you
would using the BI Publisher native security. See Understanding Users and Roles, page
10-2.

Note: In this release your users will not be able to access or execute
reports stored on the E-Business Suite instance.

Setting Up the E-Business Suite Security in BI Publisher
Upload the dbc File
1. In the Oracle E-Business Suite, log in as a System Administrator and create the

following responsibilities to correspond to the BI Publisher functional roles:

• XMLP_ADMIN – this is the administrator role for the BI Publisher server.

• XMLP_DEVELOPER – allows users to build reports in the system.

10-26 Oracle Business Intelligence Publisher User's Guide

• XMLP_SCHEDULER – allows users to schedule reports.

• XMLP_ANALYZER_EXCEL – allows users to use the Excel analysis feature.

• XMLP_ANALYZER_ONLINE – allows users to use the online analysis feature.

• XMLP_TEMPLATE_DESIGNER - allows users to connect to the BI Publisher
server from the Template Builder and to upload and download templates.

2. Add the new BI Publisher responsibilities to the appropriate Users.

Note: Ensure to assign at least one user to the XMLP_ADMIN
group.

3. Log in to BI Publisher Enterprise. From the Admin tab, select Security
Configuration.

4. In the Security Model section of the page, select Oracle E-Business Suite from the
list.

5. Load your dbc file from the E-Business Suite instance. This is typically located
under the $FND_SECURE directory. If you do not have access to this file, contact
your E-Business Suite system administrator. This file specifies how BI Publisher
should access the E-Business Suite instance.

6. It is recommended that you create a local super user for the system to allow you to
access the Administrator pages once the changes take effect. Select the Enable Local
Superuser check box and enter a username and password for the user under the
Local Superuser section of the Security Configuration tab.

7. Restart the BI Publisher server for the security changes to take effect.

Once you restart the system, all your E-Business Suite responsibilities will be visible as
roles in the BI Publisher security center. Add folders to the E-Business Suite roles.

Add Folders to the E-Business Suite Roles
1. From the Admin tab select Roles and Permissions.

2. All of the responsibilities from your E-Business Suite instance will display as
available roles.

3. Find the responsibility (role) that you wish to attach folders to and select Add
Folders.

Now when EBS users log in using their EBS credentials they will have access to the
folders and reports that have been attached to their responsibilities.

Defining a Security Model 10-27

Integrating with Oracle BI Server Security
BI Publisher offers integration with Oracle BI Server security so that you can administer
the BI Publisher users through the BI Server Administration tool. To accomplish this
you must define the BI Publisher functional roles within the Oracle BI Server
Administration tool, assign users to these groups, and then specify Oracle BI Security as
your security model in the BI Publisher Admin interface.

Note: For information on setting up Oracle BI security, see the Oracle
Business Server Aministration Guide.

1. In the BI Server Administration tool, create the following groups to correspond to
the BI Publisher functional roles:

• XMLP_ADMIN – this is the administrator role for the BI Publisher server.

• XMLP_DEVELOPER – allows users to build reports in the system.

• XMLP_SCHEDULER – allows users to schedule reports.

• XMLP_ANALYZER_EXCEL – allows users to use the Excel analysis feature.

• XMLP_ANALYZER_ONLINE – allows users to use the online analysis feature.

• XMLP_TEMPLATE_DESIGNER - allows users to connect to the BI Publisher
server from the Template Builder and to upload and download templates.

2. Add the appropriate users to the BI Publisher groups in the BI Server
Administration tool.

Note: Ensure to assign at least one user to the XMLP_ADMIN
group.

3. In the BI Publisher Enterprise application, log in with Administration privileges.
From the Admin tab select Security Configuration.

4. In the Security Model section of the page, select Oracle BI Server from the list.
Provide the following connection information for the BI Server:

• JDBC Connection String - example: jdbc:oraclebi://host:port/

Note that if your Oracle BI Server is SSL-enabled, you must copy the keystore to
the BI Publisher server and provide it in the connection string.

If your Oracle BI servers are set up in a clustered configuration, the connection
string must use the appropriate syntax. See Adding the Oracle BI Server as a

10-28 Oracle Business Intelligence Publisher User's Guide

JDBC Data Source, page 11-3 for a description of the required syntax.

An example connection string for a clustered, SSL-enabled instance follows:
jdbc:oraclebi://mycompanyserver.com:9706/PrimaryCCS=BIdb01
;PrimaryCCSPort=9706;ssl=true;sslKeystorefilename=c:\mycom
pany\SSL\OracleBI\sslc\javahost.keystore;sslKeystorepasswo
rd=admin;trustanyserver=true;

For more information on SSL and on clustered configurations, see the Oracle
Business Intelligence Enterprise Edition Deployment Guide.

• Administrator Username and Administrator Password

• Database Driver Class - example: oracle.bi.jdbc.AnaJdbcDriver

5. It is recommended that you create a local super user for the system to allow you to
access the Administrator pages once the changes take effect. Select the Enable Local
Superuser check box and enter a username and password for the user under the
Local Superuser section of the Security Configuration tab.

6. Restart the BI Publisher server for the security changes to take effect.

Add Folders to the Oracle BI Server Roles
1. Log in to BI Publisher as a user with the XMLP_ADMIN role.

2. From the Admin tab select Roles and Permissions.

3. All of the groups from your Oracle BI instance will display as available roles.

4. Find the group (role) that you wish to attach folders to and select Add Folders.

Using the Admin Functions 11-1

11
Using the Admin Functions

This chapter covers the following topics:

• Overview

• Setting Up Data Sources

• Setting Up Integration with Oracle BI Presentation Services

• Setting System Maintenance Options

• Setting Up Delivery Options

• Setting Runtime Properties

• Defining Font Mappings

• Managing Reports and Folders

Overview
Use the Admin interface to set up the following:

• Data Sources

• Security Center Options

Note: For the description of the Security Center options, see
Defining a Security Model, page 10-1.

• System Maintenance Options, including Server and Scheduler Configuration

• Delivery Options

• Runtime Configuration

• Integration with BI Presentation Services

11-2 Oracle Business Intelligence Publisher User's Guide

Setting Up Data Sources
BI Publisher supports three types of data sources:

• JDBC driver database connections

• JNDI datasource connections

• Files

The files data source option enables you to define a directory to which BI Publisher
can connect. You can then place XML files in this directory to use as data input to
your reports.

When you set up data sources, you can also define security for the data source by
selecting which BI Publisher roles can access the data source.

This security mechanism is intended for use with the BI Publisher Developer role to
restrict developer use of data sources. For example, suppose you have two datasources:
a database containing Financials data and a database containing Human Resources
data. The Financials developers should only have access to the Financials data. You can
create a role called Financials Developer and assign it the BI Publisher Developer role.
You can then assign the Financials Developer to the Financials data source. When the
user assigned this role logs in to create reports, he can only see the Financials data
source.

By default, BI Publisher Administrators can access all data sources.

If you have not set up the user roles yet, you can assign data sources to a role from the
Create Role interface. See Understanding Users and Roles, page 10-2 for more
information.

Adding a JDBC Data Source:
1. From the Admin page select JDBC Connection. This will display the list of existing

JDBC connections.

2. Select the Add Data Source button.

3. Enter the following fields for the new connection:

• Data Source Name - enter a display name for the data source.

• Connection String - enter the database connect string.

For an Oracle database the connect string will have the following format:

jdbc:oracle:thin@server:port:sid

For example:
jdbc:oracle:thin@myserver.mycompany.com:1521:prod

Using the Admin Functions 11-3

For a Microsoft SQL Server, the connect string will have the following format:

jdbc:sqlserver://server

For example:

jdbc:sqlserver://myserver.mycompany.com

Note that if your Oracle BI Server is SSL-enabled, you must copy the keystore to
the BI Publisher server and provide it in the connection string.

• User Name - enter the user name required to access the data source on the
database.

• Password - enter the password associated with the user name for access to the
data source on the database.

• Database Driver Class - enter the database driver class for the connection.

For example: oracle.jdbc.driver.OracleDriver or

com.microsoft.jdbc.sqlserver.SQLServerDriver

Important: The JDBC connection library must be placed under
[JRE_TOP]/lib. If you are using OC4J, the Oracle driver library
will be present with your OC4J install. For other JDBC database
libraries you must place them there manually, and restart the
server to make them available.

• Use Proxy Authentication - select this box to enable Proxy Authentication. This
applies to Oracle 10g deployments only. For more information, see Oracle
Database Security Guide 10g.

4. If you would like to test the connection, select Test Connection. If the test is
successful, the confirmation message, "Connection established successfully" will
display. If connection error occurs, the message "Could not establish connection,"
will display.

5. Define security for this data source. Use the shuttle buttons to move roles from the
Available Roles list to the Allowed Roles list. Only users assigned the roles on the
Allowed Roles list will be able to create reports from this the data source.

Adding the Oracle BI Server as a JDBC Data Source:
Note: If you included BI Publisher Enterprise in your Oracle BI
Enterprise Edition installation, this data source will be automatically
added. You must configure the settings appropriately for your
deployment.

11-4 Oracle Business Intelligence Publisher User's Guide

To add the Oracle BI Enterprise Edition server as a JDBC data source, follow the
guidelines in Adding a JDBC Data Source, page 11-2.

Note that if your Oracle BI Server is SSL-enabled, you must copy the keystore to the BI
Publisher server and provide it in the connection string. If your Oracle BI servers are set
up in a clustered configuration, the connection string must use the appropriate syntax
described in this section.

The entries for Database Driver Class and Connection String must be as follows:

Database Driver Class: oracle.bi.jdbc.AnaJdbcDriver

Connection String: The appropriate connection string depends on your specific
deployment. For example, if your BI Servers are clustered and/or SSL is enabled, you
must construct the URL to include the required properties. For more information on
SSL and on clustered configurations, see the Oracle Business Intelligence Enterprise Edition
Deployment Guide.

The URL for the connection string requires the following format:
<URL>:= <Prefix>: [//<Host>:<Port>/][<Property Name>=<Property Value>;]*

where

<Prefix>: is the string jdbc:oraclebi

<Host>: is the hostname of the analytics server. It can be an IP Address or hostname.
The default is localhost.

<Port> is he port number that the server is listening on. The default is 9703.
<Property Name>:=
<Catalog>|<User>|<Password>|<SSL>|<SSLKeyStoreFileName>
|<SSLKeyStorePassword>|<TrustAnyServer>|<TrustStoreFileName
>|<TrustStorePassword>|<LogLevel>|<LogFilePath>|<PrimaryCCS>|<PrimaryCCS
Port>| <SecondaryCCS>|<SecondaryCCSPort>

Valid property values are:

<Catalog> - can be any catalog name that is available on the server. If the catalog is
not specified, then it will default to the default catalog specified by the server. If the
catalog name is not found in the server, it will still use the default catalog and issue a
warning during connect.

<User> - specifies the username for the BI Server. The default is "Administrator".

<Password>- specifies the password for the BI Server for the username. The password
will be encrypted using 3DES.

<SSL>True|False - default is False. Specifies if the JDBC driver will use SSL or not. If
true, the driver will check if SSLKeyStoreFileName is readable; if not, it will issue an
error message.

<SSLKeyStoreFileName> - the name of the file that store the SSL Keys. This file must
exist in the local file system and be readable by the driver.

<SSLKeyStorePassword> - the password to open the file pointed to by
SSLKeyStoreFileName.

Using the Admin Functions 11-5

<TrustAnyServer> - True | False - the default is False. If SSL is set to "True" the
property specifies whether to check the trust store for the server. If TrustAnyServer
is set to "False", the driver will verify that TrustStoreFileName is readable.

<TrustStoreFileName> - if TrustAnyServer is set to false, this property is
required to specify the trust store file name.

<TrustStorePassword> - if TrustAnyServer and TrustStoreFileName are
specified, this property specifies the password to open up the file specified by
TrustStoreFileName.

<LogLevel> - specify the log level. Valid values are

SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST

<LogFilePath> - specifies the file path of the desired logging destination. Default is
%TEMP% on windows, $TMP on UNIX. Driver needs to have write permission on the
file. It will create a new entry marked as _0, _1 if the same file name already exists.

<PrimaryCCS> -(For clustered configurations) specifies the primary CCS machine
name instead of using the "host" to connect. If this property is specified, the "host"
property value is ignored. The jdbc driver will try to connect to the CCS to obtain the
load-balanced machine. Default is localhost.

<PrimaryCCSPort> - specifies the primary CCS port number running on the
PrimaryCCS machine. Default is 9706.

<SecondaryCCS> - specifies the secondary CCS machine name instead of using the "
host" to connect. If this property is specified, then the jdbc driver will try to connect to
the CCS to obtain the load-balanced machine. Default is localhost.

<SecondaryCCSPort> - specifies the secondary CCS port number running on the
secondary machine. Default is 9706.

Following is an example connection string for a clustered deployment with SSL
enabled:
jdbc:oraclebi://machine01.domain:9706/PrimaryCCS=machine01;PrimaryCCSPor
t=9706;SecondaryCCS=machine02;SecondaryCCSPort=9706;user=admin;password=
welcome;ssl=true;sslKeystorefilename=c:\mycompany\OracleBI\sslc\javahost
.keystore;sslKeystorepassword=welcome;trustanyserver=true;

Adding a JNDI Data Source:
1. From the Admin page select JNDI Connection. This will display the list of existing

JNDI connections.

2. Select the Add Data Source button.

3. Enter the following fields for the new connection:

• Data Source Name - enter a display name for the data source.

• JNDI Name - enter the JNDI name of the data source.

11-6 Oracle Business Intelligence Publisher User's Guide

• Use Proxy Authentication - select this box to enable Proxy Authentication. This
applies to Oracle 10g deployments only. For more information, see Oracle
Database Security Guide 10g.

4. If you would like to test the connection, select Test Connection. If the test is
successful, the confirmation message, "Connection established successfully" will
display. If connection error occurs, the message "Could not establish connection,"
will display.

5. Define security for this data source. Use the shuttle buttons to move roles from the
Available Roles list to the Allowed Roles list. Only users assigned the roles on the
Allowed Roles list will be able to create reports from this the data source.

Adding a File Data Source:
1. From the Admin page select File. This will display the list of existing file sources.

2. Select the Add Data Source button.

3. Enter the following fields for the new data source:

• Data Source Name - enter a display name for the data source.

• Path - enter the full path to the top-level directory on your server.

4. Define security for this data source. Use the shuttle buttons to move roles from the
Available Roles list to the Allowed Roles list. Only users assigned the roles on the
Allowed Roles list will be able to create reports from this the data source.

Viewing or Updating a Data Source:
1. From the Admin page select the Data Source type to update.

2. Select the name of the connection to view or update. All fields are updateable.

3. Select Apply to apply any changes or Cancel to exit the update page.

Setting Up Integration with Oracle BI Presentation Services
By setting up integration with Oracle BI Presentation Services you enable connection to
Oracle BI Answers requests as data sources for your reports.

The Oracle BI installer when installing BI Publisher, performs integration with
Presentation Services if Presentation Services is also installed with BI Publisher. This
means that the Oracle BI installer sets the Presentation Services hostname, port, url
values in BI Publisher configuration file xmlp-server-config.xml. But the user still needs

Using the Admin Functions 11-7

to set the Presentation Services username and password in BI Publisher configuration
since those are not known at install time.

Note: If you included BI Publisher Enterprise in your Oracle BI
Enterprise Edition installation, the Oracle BI installer will set the
Presentation Services hostname, port, and url values. However, you
must manually enter the Presentation Services username and password
here.

1. From the Admin page, under Integration, select Oracle BI Presentation Services.

2. Enter the following information about your BI Presentation Services server:

• Server Protocol - select http or https

• Server Version - select v4

• Server - enter the server host name. For example: server01.mycompany.com

• Port for the server

• Administrator Username and Password

• URL Suffix - default value is: analytics/saw.dll

Note: If your deployment is configured for SSO, ensure that
this suffix matches the non-SSO application you set up to allow
the Web service between the BI Publisher and BI Presentation
Services servers. For example: analyticsSOAP/saw.dll. For
more information, see Setting Up Oracle Single Sign-On, page
10-16.

• Session time out in minutes

Setting System Maintenance Options
Under System Maintenance, you can perform the following administration tasks:

• Set Server Configuration Options

• Set Scheduler Configuration Options

• Refresh Metadata

11-8 Oracle Business Intelligence Publisher User's Guide

Setting Server Configuration Options
Use the Server Configuration tab to define

• Your report repository

• General properties for the server

• Caching specifications

Defining Your Report Repository
The report repository can be set up in either the file system or the database.

Defining a File System-Based Repository
1. Under Report Repository, select File System as the Repository Type.

2. Enter the absolute Path.

For example: /home/bipublisher/repository

Defining a Database-Based Repository

Important: If you stop and start or restart the database that contains
your BI Publisher repository, you must restart you BI Publisher
Enterprise server.

1. Under Report Repository, select XML DB as the Repository Type.

2. Enter the absolute Path. For example: /public/Reports

3. Select the Connection Type: JDBC or JNDI.

Important: Connection type JDBC is not recommended for the
repository.

• If you select JNDI, enter the JNDI connection pool Name

• If you select JDBC (not recommended), enter the following:

• URL

Example: jdbc:oracle:thin:@rpts.mycompany.com:1525:ora10g

• Username

• Password

Using the Admin Functions 11-9

• Database Driver Class

Example: oracle.jdbc.driver.oracleDriver

Defining General Properties
• Debug Level - Controls the amount of debug information generated by the system.

It set to Exception (the default setting), only error information is generated. If set
to Debug, all system output is generated.

• Report Viewer Height - sets the size of the report viewing frame in your browser.
Enter a value in pixels. The default is 600.

• Report Scalable Threshold - sets the threshold at which data is cached on the disk.
When the data volume is very large, caching the data will save memory, but will
result in slower processing. Enter a value in kilobytes. The default is 10000000 (10
megabytes).

• Output Formats - select the formats that you want displayed to the user by default
for every RTF template-based report. This server-level setting is overridden by the
Output Format types selected in the report definition. See Adding Layouts to the
Report Definition, page 3-25.

Setting Cache Specifications
Set the following properties to configure the BI Publisher cache:

• Cache Expiration - Enter the expiration period for the dataset cache in minutes. The
default is 30.

For datasets returned by a SQL query, HTTP, or Oracle BI Answers, you have the
option of caching the dataset returned by the query. The returned dataset will
remain in cache for the period specified by this property. For more information
about setting this property, see Defining the Data Model, page 3-5.

• Cache Size Limit - Enter the maximum number of datasets to maintain in the cache.
The default is 1000.

• Maximum Cached Reports - Enter the maximum number of reports to maintain in
the cache. The default is 50.

Setting Scheduler Configuration Options
Important: If you stop and start or restart the database that contains
your BI Publisher Scheduler tables, you must restart you BI Publisher
Enterprise server.

11-10 Oracle Business Intelligence Publisher User's Guide

Select the Scheduler Configuration tab and enter the details for your scheduler
database:

• Select the Database Type to be used for the BI Publisher scheduler from the list of
supported databases.

• Enter the database Connection String. For example:
jdbc:oracle:thin:@mydatabase:1525:ora10g

• Enter the Username and Password for the database.

• Enter the Database Driver Class. For example:
oracle.jdbc.driver.OracleDriver

Select Test Connection to ensure that BI Publisher can successfully connect to your
scheduler database.

Select Install Schema to install the BI Publisher scheduler schema to your database.

Important: You must restart the application for changes in the
Scheduler settings to take effect.

Scheduler Properties
If you have enabled clustering for your BI Publisher application, you must select Enable
Clustering for the scheduler.

Refresh Metadata
If you copy reports as files or folders directly to the file system or XML database
repository, you must refresh the metadata to make these reports available via the user
interface.

Setting Up Delivery Options

Set Delivery Configuration Options:
1. From the Admin page select Delivery Configuration.

2. Enter the following properties:

• SSL Certificate File - if SSL is enabled for your installation, you can leave this
field empty to use the default certificates built-in with BI Publisher. SSL will
work with the default certificate if the server uses the certificate signed by a
trusted certificate authority such as Verisign. This field is mandatory only if the
user uses the SSL with a self-signed certificate. The self-signed certificate means
the certificate is signed by a non-trusted certificate authority (usually the user).

Using the Admin Functions 11-11

• Email From Address - enter the From address that you want to appear on email
report deliveries from the BI Publisher server. The default value is
bipublisher-report@oracle.com.

• Delivery Notification Email From Address - enter the From address that you
want to appear on notifications delivered from the BI Publisher server. The
default value is bipublisher-notification@oracle.com.

• Notification Subject - enter the subject line you want to appear on the email for
each of the following delivery types: Success, Warning, and Failure.

Set Up Print or Fax Server:
Printing is only supported through Internet Printing Protocol (IPP). You must set up
CUPS or Windows Print Server for IPP. See Print Server Setup, page 12-1.

1. From the Admin page select Printer or Fax. Select Add Server.

2. Enter the required fields Server Name and URI for the new server.

Important: You must enter a unique name for each server
regardless of the type (printer, fax, email, WebDAV, or FTP).

3. Optionally enter a Filter.

A filter enables you to call a conversion utility to convert PDF to Postscript or PDF
to TIFF (for fax) for Windows-based print servers. To specify the filter, pass the
native OS command string with the 2 placeholders for the input and output
filename, {infile} and {outfile}.

This is useful especially if you are trying to call IPP printers directly or IPP printers
on Microsoft Internet Information Service (IIS). Unlike CUPS, those print servers do
not translate the print file to a format the printer can understand, therefore only
limited document formats are supported. With the filter functionality, you can call
any of the native OS commands to transform the document to the format that the
target printer can understand.

For example, to transform a PDF document to a Postscript format, enter the
following PDF to PS command in the Filter field:

pdftops {infile} {outfile}

To call an HP LaserJet printer setup on a Microsoft IIS from Linux, you can set
Ghostscript as a filter to transform the PDF document into the format that the HP
LaserJet can understand. To do this, enter the following Ghostscript command in
the Filter field:
gs -q -dNOPAUSE -dBATCH -sDEVICE=laserjet -sOutputFile={outfile}
{infile}

11-12 Oracle Business Intelligence Publisher User's Guide

For fax servers, you can use the filter to transform the file to Tag Image File Format
(TIFF).

4. Optionally enter the following fields if appropriate:

• Security fields: Username and Password, Authentication Type (None, Basic,
Digest) and Encryption Type (None, SSL).

• Proxy Server fields: Host, Port, User Name, Password, Authentication Type
(None, Basic, Digest)

Set Up WebDAV Server:
1. From the Admin page select WebDAV. This will show the list of servers already

added. Select Add Server.

2. Enter the Name and Host for the new server.

Important: You must enter a unique name for each server
regardless of the type (printer, fax, email, WebDAV, or FTP).

3. Optionally enter the following fields if appropriate:

• General fields: Port

• Security fields: Authentication Type (None, Basic, Digest) and Encryption Type
(None, SSL).

• Proxy Server fields: Host, Port, User Name, Password, Authentication Type
(None, Basic, Digest)

Set Up Email or FTP Server:
1. From the Admin page select Email or FTP. This will show the list of servers already

added. Select Add Server.

2. Enter the Name and Host for the Email or FTP server.

Important: You must enter a unique name for each server
regardless of the type (printer, fax, email, WebDAV, or FTP).

3. Optionally enter the following fields if appropriate:

• General fields: Port

Using the Admin Functions 11-13

• Security fields: Username and Password.

Set Up Common Unix Printing System (CUPS) Server:
1. From the Admin page select CUPS. This will show the list of servers already added.

Select Add Server.

2. Enter the Server Name and Host and Port for the CUPS server.

For more information see Setting Up Cups, page 12-1.

Setting Runtime Properties
The Runtime Configuration page enables you to set runtime properties at the server
level. You can also set properties at the report level. If conflicting values are set for a
property at each level, the report level will take precedence.

To set a property at the report level, select the report, and then select the Configure
link. This will launch the Runtime Configuration page, displaying a column to enable
update to the properties for the report and a column that displays the read-only values
set for the server.

Note: In versions prior to 10.1.3.2 the Runtime Configuration properties
administered through this page were set in a configuration file. This file
is still used as a fallback if values are not set through this interface.
However, please note that the file is not updated when you update the
Runtime Configuration Properties page. For details about the file, see
Configuration File Reference, page D-1.

PDF Output Properties
The following properties are available for PDF output:

Property Name Internal Name Default Value Description

Compress PDF output pdf-compressi
on

True Specify "True" or "False" to control
compression of the output PDF file.

11-14 Oracle Business Intelligence Publisher User's Guide

Property Name Internal Name Default Value Description

Hide PDF viewer's
menu bars

pdf-hide-menu
bar

False Specify "True" to hide the viewer application's
menu bar when the document is active. The
menu bar option is only effective when using
the Export button, which displays the output
in a standalone Acrobat Reader application
outside of the browser.

Hide PDF viewer's tool
bars

pdf-hide-tool
bar

False Specify "True" to hide the viewer application's
toolbar when the document is active.

Replace smart quotes pdf-replace-s
martquotes

True Set to "False" if you do not want curly quotes
replaced with straight quotes in your PDF
output.

PDF Security
Use the following properties to control the security settings for your output PDF
documents:

Property Name Internal Name Default Value Description

Enable PDF Security pdf-security False If you specify "True," the output PDF file
will be encrypted. You must also specify
the following properties:

• Open document password

• Modify permissions password

• Encryption Level

Open document
password

pdf-open-passw
ord

N/A This password will be required for
opening the document. It will enable users
to open the document only. This property
is enabled only when "Enable PDF
Security" is set to "True".

Modify permissions
password

pdf-permission
s-password

N/A This password enables users to override
the security setting. This property is
effective only when "Enable PDF Security"
is set to "True".

Using the Admin Functions 11-15

Property Name Internal Name Default Value Description

Encryption level pdf-encryption
-level

0 - low Specify the encryption level for the output
PDF file. The possible values are:

• 0: Low (40-bit RC4, Acrobat 3.0 or
later)

• 1: High (128-bit RC4, Acrobat 5.0 or
later)

This property is effective only when
"Enable PDF Security" is set to "True".
When Encryption level is set to 0, you can
also set the following properties:

• Disable printing

• Disable document modification

• Disable context copying, extraction,
and accessibility

• Disable adding or changing
comments and form fields

When Encryption level is set to 1, the
following properties are available:

• Enable text access for screen readers

• Enable copying of text, images, and
other content

• Allowed change level

• Allowed printing level

Disable document
modification

pdf-no-changin
g-the-document

False Permission available when "Encryption
level" is set to 0. When set to "True", the
PDF file cannot be edited.

Disable printing pdf-no-printin
g

False Permission available when "Encryption
level" is set to 0. When set to "True",
printing is disabled for the PDF file.

11-16 Oracle Business Intelligence Publisher User's Guide

Property Name Internal Name Default Value Description

Disable adding or
changing comments and
form fields

pdf-no-accff False Permission available when "Encryption
level" is set to 0. When set to "True", the
ability to add or change comments and
form fields is disabled.

Disable context copying,
extraction, and
accessibility

pdf-no-cceda False Permission available when "Encryption
level" is set to 0. When set to "True", the
context copying, extraction, and
accessibility features are disabled.

Enable text access for
screen readers

pdf-enable-acc
essibility

True Permission available when "Encryption
level" is set to 1. When set to "True", text
access for screen reader devices is enabled.

Enable copying of text,
images, and other
content

pdf-enable-cop
ying

False Permission available when "Encryption
level" is set to 1. When set to "True",
copying of text, images, and other content
is enabled.

Allowed change level pdf-changes-al
lowed

0 Permission available when "Encryption
level" is set to 1. Valid Values are:

• 0: none

• 1: Allows inserting, deleting, and
rotating pages

• 2: Allows filling in form fields and
signing

• 3: Allows commenting, filling in form
fields, and signing

• 4: Allows all changes except
extracting pages

Using the Admin Functions 11-17

Property Name Internal Name Default Value Description

Allowed printing level pdf-printing-a
llowed

0 Permission available when "Encryption
level" is set to 1. Valid values are:

• 0: None

• 1: Low resolution (150 dpi)

• 2: High resolution

RTF Output
The following properties can be set to govern RTF output files:

Property Name Internal Name Default Value Description

Enable change
tracking

rtf-track-chang
es

False Set to "True" to enable change tracking in
the output RTF document.

Protect document for
tracked changes

rtf-protect-doc
ument-for-track
ed-changes

False Set to "True" to protect the document for
tracked changes.

HTML Output
The following properties can be set to govern HTML output files:

Property Name Internal Name Default Value Description

Show header html-show-heade
r

True Set to "False" to suppress the template
header in HTML output.

Show footer html-show-foote
r

True Set to "False" to suppress the template
footer in HTML output.

Replace smart quotes html-replace-sm
artquotes

True Set to "False" if you do not want curly
quotes replaced with straight quotes in
your HTML output.

11-18 Oracle Business Intelligence Publisher User's Guide

Property Name Internal Name Default Value Description

Character set html-output-cha
rset

UTF-8 Specify the output HTML character set.

Make HTML output
accessible

make-accessible False Specify true if you want to make the HTML
output accessible.

Base image URI html-image-base
-uri

N/A Base URI which is inserted into the src
attribute of the image tag before the image
file name. This works only when the image
is embedded in the template.

Image file directory html-image-dir N/A Enter the directory for BI Publisher to store
the image files that are embedded in the
template.

Base CSS URI html-css-base-u
ri

N/A Base URI which is inserted into the HTML
header to specify where the cascading
stylesheets (CSS) for your output HTML
documents will reside. You must set this
property when make-accessible is true.

CSS file directory html-css-dir N/A The CSS directory where BI Publisher stores
the css file. You must set this property
when make-accessible is true.

FO Processing Properties
The following properties can be set to govern FO processing:

Property Name Internal Name Default Value Description

Use BI Publisher's
XSLT processor

xslt-xdoparser True Controls BI Publisher's parser usage. If set
to False, XSLT will not be parsed.

Enable scalable feature
of XSLT processor

xslt-scalable False Controls the scalable feature of the XDO
parser. The property "Use BI Publisher's
XSLT processor" must be set to "True" for
this property to be effective.

Using the Admin Functions 11-19

Property Name Internal Name Default Value Description

Enable XSLT runtime
optimization

xslt-runtime-optimiz
ation

True When set to "True", the overall
performance of the FO processor is
increased and the size of the temporary
FO files generated in the temp directory is
significantly decreased. Note that for
small reports (for example 1-2 pages) the
increase in performance is not as marked.

To further enhance performance when
you set this property to True, it is
recommended that you set the property
Extract attribute sets to "False". See RTF
Template Properties, page 11-19.

Pages cached during
processing

system-cache-pa
ge-size

50 This property is enabled only when you
have specified a Temporary Directory
(under General properties). During table
of contents generation, the FO Processor
caches the pages until the number of
pages exceeds the value specified for this
property. It then writes the pages to a file
in the Temporary Directory.

Bidi language digit
substitution type

digit-substitut
ion

None Valid values are "None" and "National".
When set to "None", Eastern European
numbers will be used. When set to
"National", Hindi format (Arabic-Indic
digits) will be used. This setting is
effective only when the locale is Arabic,
otherwise it is ignored.

Disable variable
header support

fo-prevent-vari
able-header

False If "True", prevents variable header
support. Variable header support
automatically extends the size of the
header to accommodate the contents.

Add prefix to IDs
when merging FO

fo-merge-confli
ct-resolution

False When merging multiple XSL-FO inputs,
the FO Processor automatically adds
random prefixes to resolve conflicting IDs.
Setting this property to "True" disables
this feature.

RTF Template Properties
The following properties can be set to govern RTF templates:

11-20 Oracle Business Intelligence Publisher User's Guide

Property Name Internal Name Default Value Description

Extract attribute sets rtf-extract-att
ribute-sets

Auto The RTF processor will automatically
extract attribute sets within the
generated XSL-FO. The extracted sets
are placed in an extra FO block, which
can be referenced. This improves
processing performance and reduces file
size.

Valid values are:

• Enable - extract attribute sets for all
templates and subtemplates

• Auto - extract attribute sets for
templates, but not subtemplates

• Disable - do not extract attribute
sets

Enable XPath rewriting rtf-rewrite-pat
h

True When converting an RTF template to
XSL-FO, the RTF processor will
automatically rewrite the XML tag
names to represent the full XPath
notations. Set this property to "False" to
disable this feature.

Characters used for
checkbox

rtf-checkbox-gl
yph

Default value:
Albany WT
J;9746;9747/A

The BI Publisher default PDF output
font does not include a glyph to
represent a checkbox. If your template
contains a checkbox, use this property to
define a Unicode font for the
representation of checkboxes in your
PDF output. You must define the
Unicode font number for the "checked"
state and the Unicode font number for
the "unchecked" state using the
following syntax: fontname;<
unicode font number for true
value's glyph >;<unicode font
number for false value's
glyph>

Example: Albany WT J;9746;9747/A

Note that the font that you specify must
be made available to BI Publisher at
runtime.

Using the Admin Functions 11-21

PDF Form Template Properties
The following properties can be set to govern PDF templates:

Property Name Default Value Description

Remove PDF fields from
output

False Specify "true" to remove PDF fields from the
output. When PDF fields are removed, data
entered in the fields cannot be extracted. For more
information, see Setting Fields as Updateable or
Read Only, page 8-16.

Set all fields as read only in
output

true By default, BI Publisher sets all fields in the output
PDF of a PDF template to be read only. If you
want to set all fields to be updateable, set this
property to "false". For more information, see
Setting Fields as Updateable or Read Only, page 8-
16.

Maintain each field's read only
setting

False Set this property to "true" if you want to maintain
the "Read Only" setting of each field as defined in
the PDF template. This property overrides the
settings of "Set all fields as read only in output."
For more information, see Setting Fields as
Updateable or Read Only, page 8-16.

Defining Font Mappings
BI Publisher's Font Mapping feature enables you to map base fonts in RTF or PDF
templates to target fonts to be used in the published document. Font Mappings can be
specified at the site or report level. Font mapping is performed only for PDF output.

There are two types of font mappings:

• RTF Templates - for mapping fonts from RTF templates and XSL-FO templates to
PDF output fonts

• PDF Templates - for mapping fonts from PDF templates to different PDF output
fonts.

Making Fonts Available to BI Publisher
BI Publisher provides a set of Type1 fonts and a set of TrueType fonts. You can select
any of the fonts in these sets as a target font with no additional setup required. For a list
of the predefined fonts see BI Publisher's Predefined Fonts, page 11-22.

11-22 Oracle Business Intelligence Publisher User's Guide

The predefined fonts are located in $JAVA_HOME/jre/lib/fonts. If you wish to map
to another font, you must place the font in this directory to make it available to BI
Publisher at runtime. If your environment is clustered, you must place the font on every
server.

Setting Font Mapping at the Site Level or Report Level
A font mapping can be defined at the site level or the report level:

• To set a mapping at the site level, select the Font Mappings link from the Admin
page.

• To set a mapping at the report level, select the Configuration link for the report,
then select the Font Mappings tab. These settings will apply to the selected report
only.

The report-level settings will take precedence over the site-level settings.

Creating a Font Mapping
From the Admin page, under Runtime Configuration, select Font Mappings.

To create a Font Mapping
• Under RTF Templates or PDF Templates, select Add Font Mapping.

• Enter the following on the Add Font Mapping page:

• Base Font - enter the font family that will be mapped to a new font. Example:
Arial

• Select the Style: Normal or Italic (Not applicable to PDF Template font
mappings)

• Select the Weight: Normal or Bold (Not applicable to PDF Template font
mappings)

• Select the Target Font Type: Type 1 or TrueType

• Enter the Target Font

If you selected TrueType, you can enter a specific numbered font in the
collection. Enter the TrueType Collection (TTC) Number of the desired font.

For a list of the predefined fonts see BI Publisher's Predefined Fonts, page 11-
22

BI Publisher's Predefined Fonts
BI Publisher provides a set of Type1 fonts and a set of TrueType fonts. You can select

Using the Admin Functions 11-23

any of these fonts as a target font with no additional setup required.

The Type1 fonts are listed in the following table:

Type 1 Fonts

Number Font Family Style Weight Font Name

1 serif normal normal Time-Roman

1 serif normal bold Times-Bold

1 serif italic normal Times-Italic

1 serif italic bold Times-BoldItalic

2 sans-serif normal normal Helvetica

2 sans-serif normal bold Helvetica-Bold

2 sans-serif italic normal Helvetica-Oblique

2 sans-serif italic bold Helvetica-BoldObliq
ue

3 monospace normal normal Courier

3 monospace normal bold Courier-Bold

3 monospace italic normal Courier-Oblique

3 monospace italic bold Courier-BoldOblique

4 Courier normal normal Courier

4 Courier normal bold Courier-Bold

4 Courier italic normal Courier-Oblique

4 Courier italic bold Courier-BoldOblique

5 Helvetica normal normal Helvetica

11-24 Oracle Business Intelligence Publisher User's Guide

Number Font Family Style Weight Font Name

5 Helvetica normal bold Helvetica-Bold

5 Helvetica italic normal Helvetica-Oblique

5 Helvetica italic bold Helvetica-BoldObliq
ue

6 Times normal normal Times

6 Times normal bold Times-Bold

6 Times italic normal Times-Italic

6 Times italic bold Times-BoldItalic

7 Symbol normal normal Symbol

8 ZapfDingbats normal normal ZapfDingbats

The TrueType fonts are listed in the following table. All TrueType fonts will be
subsetted and embedded into PDF.

Number Font Family
Name

Style Weight Actual Font Actual Font
Type

1 Albany WT normal normal ALBANYWT.ttf TrueType
(Latin1 only)

2 Albany WT J normal normal ALBANWTJ.ttf TrueType
(Japanese flavor)

3 Albany WT K normal normal ALBANWTK.ttf TrueType
(Korean flavor)

4 Albany WT SC normal normal ALBANWTS.ttf TrueType
(Simplified
Chinese flavor)

Using the Admin Functions 11-25

Number Font Family
Name

Style Weight Actual Font Actual Font
Type

5 Albany WT TC normal normal ALBANWTT.ttf TrueType
(Traditional
Chinese flavor)

6 Andale
Duospace WT

normal normal ADUO.ttf TrueType
(Latin1 only,
Fixed width)

6 Andale
Duospace WT

bold bold ADUOB.ttf TrueType
(Latin1 only,
Fixed width)

7 Andale
Duospace WT J

normal normal ADUOJ.ttf TrueType
(Japanese flavor,
Fixed width)

7 Andale
Duospace WT J

bold bold ADUOJB.ttf TrueType
(Japanese flavor,
Fixed width)

8 Andale
Duospace WT K

normal normal ADUOK.ttf TrueType
(Korean flavor,
Fixed width)

8 Andale
Duospace WT K

bold bold ADUOKB.ttf TrueType
(Korean flavor,
Fixed width)

9 Andale
Duospace WT
SC

normal normal ADUOSC.ttf TrueType
(Simplified
Chinese flavor,
Fixed width)

9 Andale
Duospace WT
SC

bold bold ADUOSCB.ttf TrueType
(Simplified
Chinese flavor,
Fixed width)

10 Andale
Duospace WT
TC

normal normal ADUOTC.ttf TrueType
(Traditional
Chinese flavor,
Fixed width)

11-26 Oracle Business Intelligence Publisher User's Guide

Number Font Family
Name

Style Weight Actual Font Actual Font
Type

10 Andale
Duospace WT
TC

bold bold ADUOTCB.ttf TrueType
(Traditional
Chinese flavor,
Fixed width)

Managing Reports and Folders

Administration View
If you are assigned the BI Publisher Administrator role your Reports home will display
an additional Users folder. This folder will contain all the "My Folders" folders of all the
users in your system. Each user "My Folders" folder is named according to the User
name. The Administrator can see and update all the user folders.

Folder and Report Tasks
The Folder and Report Tasks menu is available to users assigned the BI Publisher
Administrator role or the BI Publisher Developer Role.

Report Tasks
Select the Report Actions icon to expand the menu of available report tasks. Report
Tasks include:

• Rename this report

• Copy this report

• Delete this report

• Download this report

Note: The Report Actions menu can be viewed only by the BI Publisher
Administrator role and the BI Publisher Developer role.

Using the Admin Functions 11-27

Rename a Report
1. Navigate to the report folder.

2. Select the Report Actions icon.

3. Select Rename this report from the Folder and Report Tasks region.

4. Enter the new name in the text box.

Upload a Report
You can upload a report definition directory as a zip file. The directory must include the
report definition file (.xdo file). The zip file must have the same name as the .xdo file
contained in the directory. You may also include template files (rtf, pdf, excel, and xsl-fo

11-28 Oracle Business Intelligence Publisher User's Guide

files), translation files (.xlf), PDF mapping files (.map files), and sample XML data files
(.xml).

1. Navigate to the report folder.

2. Select the Report Actions icon.

3. Select Upload a Report from the Folder and Report Tasks region.

4. Browse to locate the report, then select Upload.

Copy a Report
1. Navigate to the report folder.

2. Select the Report Actions icon.

3. Select Copy this report from the Folder and Report Tasks region to copy the report
to the clipboard.

4. Navigate to the location you want to copy the report to and select Paste from
clipboard.

Download a Report
1. Navigate to the report folder.

2. Select the Report Actions icon.

3. Select Download this report from the Folder and Report Tasks region. You will be
prompted to save the report definition zip file.

The report definition directory is downloaded to the specified location as a zip file. The
report definition directory contains all the files associated with the report, this may
include:

• The report definition file (.xdo file)

• All template files (rtf, pdf, and xls files)

• PDF mapping files (.map file)

• Sample data files (xml file)

• Translation files (.xlf files)

Using the Admin Functions 11-29

Delete a Report
Note: You must be assigned the BI Publisher Developer role or BI
Publisher Administration Role to delete reports.

1. Navigate to the report folder.

2. Select the Report Actions icon.

3. Select Delete this report from the Folder and Report Tasks region.

Folder Tasks
Select the Folder Actions icon to expand the menu of available folder tasks. Folder
Tasks include:

• Create a new folder

• Rename this folder

• Copy this folder

• Delete this folder

Note: The Report Actions menu can be viewed only by the BI Publisher
Administrator role and the BI Publisher Developer role.

Create a New Folder
You can create folders in My Folder, or navigate to the Shared folder in which you want
the new folder to reside.

1. From the Folder and Report Tasks menu, select Create a new folder

2. Enter the Folder Name in the text box that launches, and select Create.

Rename a Folder
1. Select the Folder icon to view all Folder Actions in the Folder and Report Tasks

menu.

2. Select Rename this folder.

3. Enter the new report name in the text box that launches, and select Rename.

11-30 Oracle Business Intelligence Publisher User's Guide

Delete a Folder
1. Select the Folder icon to view all Folder Actions in the Folder and Report Tasks

menu.

2. Select Delete this folder.

3. Confirm the deletion at the prompt.

Setting Up Print Servers 12-1

12
Setting Up Print Servers

This chapter covers the following topics:

• Setting Up CUPS

• Windows XP Setup

Setting Up CUPS
The delivery manager requires Common UNIX Printing System (CUPS) to print and fax
documents. This section describes how to set up CUPS for printing and faxing on
RedHat Linux.

The following diagram shows the integration between BI Publisher and CUPS:

The following procedures describe how to add a printer or fax to CUPS and how to test
your setup. For more information, see the CUPS Software Administrators Manual (
http://www.cups.org/doc-1.1/sam.html) and the Redhat Advanced Server online help.

http://www.cups.org/doc-1.1/sam.html

12-2 Oracle Business Intelligence Publisher User's Guide

Prerequisites
• RedHat Advanced Server 3.0

• Fax Modem connected to the Linux box

• Development Tools for the RedHat Advanced Server installed

• CUPS (Installed by default when installing RedHat AS 3.0)

Setting Up a Printer on CUPS
The RedHat Advanced Server provides a configuration wizard to help you set up your
printers. The RedHat process is summarized below:

Using the RedHat Printer Configuration Wizard:
1. Run "redhat-config-printer"

While logged on as the root user, open a terminal and execute
"redhat-config-printer". This invokes the Printer configuration window.

2. Select the New tab to launch the Add a new print queue wizard.

3. Follow the wizard prompts to:

• Enter a queue name.

• Select the queue type.

Select "Networked_JetDirect" to set up a network printer. For this selection, you
must also enter the following:

• Printer - enter a hostname or IP address.

• Port - enter a port.

If the printer driver is installed in Microsoft Windows, the Printer and Port
information is available from the Properties dialog for the printer (Settings >
Printers and Faxes > (select printer) > File > Properties).

• Select the printer model.

If your printer supports PostScript, select the following:

• Manufacturer: "Generic"

• Model: "PostScript Printer"

Setting Up Print Servers 12-3

• Review your selections and select "Apply" to create your new print queue.

4. Your new queue now displays in the Printer configuration window.

Test Your Printer on CUPS:
1. Launch a browser on RedHat and enter the following URL:

http://localhost:631

2. Select the Printers tab. The printer you just created will be listed.

To use your Windows browser to access this page, see Making CUPS Accessible
from Other Machines, page 12-5.

3. Select Print Test Page to test your printer setup. If the test page does not print,
repeat the configuration steps. Ensure that your printer type and model selections
are correct.

Installing and Setting Up Fax for CUPS
This section describes how to install efax-0.9 software and configure it for CUPS.

Install the Fax Software:
1. Download efax-0.9 from one of the following locations:

• http://www.cce.com/efax/download/

• ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz

2. Extract the files to a working directory using the following commands:

• gunzip efax-0.9.tar.gz

• tar xvf efax-0.9.tar

3. Compile and install using the following commands (refer to the Readme for more
information):

• make

• make install

Note: You must have make and gcc installed in your RedHat AS.

4. Test the fax.

http://www.cce.com/efax/download/
ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz

12-4 Oracle Business Intelligence Publisher User's Guide

Enter the following command:

fax send <fax_number><tiff file>

For example:

fax send 1234567 test.tiff

The fax is successful if you get the return code:

done, returning 0 (success)

5. Download fax4CUPs. It is available from the following site:

• http://www.gnu.org/directory/productivity/special/fax4CUPS.html

6. Install fax4CUPS as follows:

• Extract the tar file to a temporary directory

• Change the directory: cd fax4CUPS-1.23

• Open the INSTALL file and follow all steps.

7. Restart CUPS using the following command:
/etc/rc.d/init.d/cups restart

Setting Up a Fax on CUPS:
1. Launch a browser and go to the following URL: http://localhost:631/admin

2. Enter the admin username and password in the dialog that launches.

3. From the Admin page, select Add Printer.

4. Add a Fax queue as follows:

In the Add New Printer region, enter the following fields:

• Name - enter a meaningful name for the, such as "efaxserver". This will be
referred to as "ipp://serverName:631/printers/efaxserver".

• Location - optional.

• Description - optional.

5. Select a device for the fax queue.

Select "Faxmodem (efax on /dev/modem)". In some cases, "/dev/ttySxx" will be
shown instead.

6. Select a model for the fax queue.

http://www.gnu.org/directory/productivity/special/fax4CUPS.html

Setting Up Print Servers 12-5

Select "efax". You can also select either "HylaFAX" or "mgetty-fax" if these have
been installed.

7. Select the driver for the fax queue.

Select "efax (en)".

8. Verify that the new fax queue appears on the CUPS Admin Web page.

9. Text the fax on CUPS.

Enter the following command to test the fax:
/usr/bin/lp -d <printer name> -t <phone#> test.pdf

Example:
/usr/bin/lp -d efax1 -t 5556231 myfax.pdf

Making CUPS Accessible from Other Machines
By default, CUPS does not allow access from other network machines. However, it can
be configured to allow access, as follows:

1. Open a CUPS configuration file using the following command:
Open /etc/cups/cupsd.conf

2. Add a "Listen" instruction.

• Scroll to the bottom of the configuration file where the other Listen instructions
are declared.

• Copy "Listen 127.0.0.1:631" and paste it above or below the original.

• Replace "127.0.0.1" with the Linux server's IP address.

3. Configure each printer.

• In the configuration file, locate:

<Location /printers/your_printer_queue>

• Comment the instruction "Deny From All".

Example:

Deny From All

• Change "Allow from 127.0.0.1" to "Allow from All"

• Repeat for all printer or fax queues that you wan to make accessible.

4. Save the configuration file and restart CUPS.

12-6 Oracle Business Intelligence Publisher User's Guide

• Use the following command to stop CUPS:

/etc/rc.d/init.d/cups stop

• Use the following command to start CUPS:

/etc/rc.d/init.d/cups start

5. Test the accessibility from other machines.

Launch a browser from another machine and enter one of the following URLs to
ensure that the CUPS web page can be accessed:

• http://linux_server_name:631

• http://linux_ip_address:631

Windows XP Setup
This section describes how to set up Internet Printing Protocol (IPP) on a Windows XP
server.

Prerequisite:
Microsoft Windows XP

Setting Up IPP Printers on Windows XP Professional
1. Install Internet Information Services (IIS).

• Open the Control Panel. Select Add or Remove Programs, then Add/Remove
Windows Components.

• Select the check box for Internet Information Services (IIS) from the list of
available Windows Components (shown in the following figure).

Setting Up Print Servers 12-7

• With IIS highlighted, select Details. Ensure that World Wide Web Service is
selected (shown in the following figure).

12-8 Oracle Business Intelligence Publisher User's Guide

• With World Wide Web Service highlighted, select Details. Ensure that Printers
virtual directory is selected (shown in the following figure).

2. Restart Windows XP.

3. Share the printers.

• From the Start menu, select Settings, then Printers and Faxes.

• Right-click the printer icon and select Sharing.

• In the printer Properties dialog, select Share this printer and assign a Share
name (for example: myprinter1). An example is shown in the following figure.

Setting Up Print Servers 12-9

4. Configure the Windows Firewall to open a port to your XMLP Server:

• From the Start menu, select Settings, then Control Panel.

• From the Control Panel, select Windows Firewall.

• From the Windows Firewall dialog, select the Exceptions tab.

• Create an entry in the list of Programs and Services as follows:

1. Select Add Port.

2. Enter the Name: for example, Web

Enter the Port number: for example, 80

Select TCP.

An example is shown in the following figure:

12-10 Oracle Business Intelligence Publisher User's Guide

• To allow access from a specific IP address only:

1. Select your entry, then select Edit.

2. From the Edit a Program dialog, select Change Scope.

3. Choose Custom list, and enter the IP address of the XMLP Server.

Note that if you use the HTTP proxy server in BI Publisher Server, you
must enter the IP address of the proxy server.

An example is shown in the following figure.

Setting Up Print Servers 12-11

5. Change the virtual directory security setting.

• From the Control Panel, select Administrative Tools, then Internet
Information Service.

• Navigate the Internet Information Service directory hierarchy as follows:
Internet Information Services > [your server name] > Web Sites > Default Web
Site > Printers. Right-click Printers and choose Properties.

• From the Printers Properties dialog, select the Directory Security tab.

• In the Anonymous access and authentication control region, select Edit.

• In the Authentication Methods dialog, select the Anonymous access check box.
An example is shown in the following figure.

12-12 Oracle Business Intelligence Publisher User's Guide

6. Open a browser in a remote machine and enter the following URL: http://<your
server name>/printers

You will see the list of shared printers.

Using the BI Publisher APIs A-1

A
Using the BI Publisher APIs

This appendix covers the following topics:

• Introduction

• BI Publisher Core APIs

• PDF Form Processing Engine

• RTF Processor Engine

• FO Processor Engine

• PDF Document Merger

• PDF Book Binder Processor

• Document Processor Engine

• Bursting Engine

• BI Publisher Properties

• Advanced Barcode Font Formatting Implementation

Introduction
This chapter is aimed at developers who wish to create programs or applications that
interact with BI Publisher through its application programming interface. This
information is meant to be used in conjunction with the Javadocs available with your
installation files.

This section assumes the reader is familiar with Java programming, XML, and XSL
technologies.

BI Publisher Core APIs
BI Publisher is made up of the following core API components:

A-2 Oracle Business Intelligence Publisher User's Guide

• PDF Form Processing Engine

Merges a PDF template with XML data (and optional metadata) to produce PDF
document output.

• RTF Processor

Converts an RTF template to XSL in preparation for input to the FO Engine.

• FO Engine

Merges XSL and XML to produce any of the following output formats: Excel
(HTML), PDF, RTF, or HTML.

• PDF Document Merger

Provides optional postprocessing of PDF files to merge documents, add page
numbering, and set watermarks.

• eText Processor

Converts RTF eText templates to XSL and merges the XSL with XML to produce
text output for EDI and EFT transmissions.

• Document Processor (XML APIs)

Provides batch processing functionality to access a single API or multiple APIs by
passing a single XML file to specify template names, data sources, languages,
output type, output names, and destinations.

The following diagram illustrates the template type and output type options for each
core processing engine:

Using the BI Publisher APIs A-3

PDF Form Processing Engine
The PDF Form Processing Engine creates a PDF document by merging a PDF template
with an XML data file. This can be done using file names, streams, or an XML data
string.

As input to the PDF Processing Engine you can optionally include an XML-based
Template MetaInfo (.xtm) file. This is a supplemental template to define the placement
of overflow data.

The FO Processing Engine also includes utilities to provide information about your PDF
template. You can:

• Retrieve a list of field names from a PDF template

• Generate the XFDF data from the PDF template

• Convert XML data into XFDF using XSLT

Merging a PDF Template with XML Data
XML data can be merged with a PDF template to produce a PDF output document in

A-4 Oracle Business Intelligence Publisher User's Guide

three ways:

• Using input/output file names

• Using input/output streams

• Using an input XML data string

You can optionally include a metadata XML file to describe the placement of overflow
data in your template.

Merging XML Data with a PDF Template Using Input/Output File Names
Input:

• Template file name (String)

• XML file name (String)

• Metadata XML file name (String)

Output:

• PDF file name (String)

Example
import oracle.apps.xdo.template.FormProcessor;
.
.
 FormProcessor fProcessor = new FormProcessor();

 fProcessor.setTemplate(args[0]); // Input File (PDF) name
 fProcessor.setData(args[1]); // Input XML data file name
 fProcessor.setOutput(args[2]); // Output File (PDF) name
 fProcessor.setMetaInfo(args[3]); // Metadata XML File name You
can omit this setting when you do not use Metadata.

 fProcessor.process();

Merging XML Data with a PDF Template Using Input/Output Streams
Input:

• PDF Template (Input Stream)

• XML Data (Input Stream)

• Metadata XML Data (Input Stream)

Output:

• PDF (Output Stream)

Using the BI Publisher APIs A-5

Example
import java.io.*;
import oracle.apps.xdo.template.FormProcessor;
.
.
.
 FormProcessor fProcessor = new FormProcessor();

 FileInputStream fIs = new FileInputStream(originalFilePath); // Input
File
 FileInputStream fIs2 = new FileInputStream(dataFilePath); // Input
Data
 FileInputStream fIs3 = new FileInputStream(metaData); // Metadata XML
Data
 FileOutputStream fOs = new FileOutputStream(newFilePath); // Output
File

 fProcessor.setTemplate(fIs);
 fProcessor.setData(fIs2); // Input Data
 fProcessor.setOutput(fOs);
 fProcessor.setMetaInfo(fIs3);
 fProcessor.process();

 fIs.close();
 fOs.close();

Merging an XML Data String with a PDF Template
Input:

• Template file name (String)

• XML data (String)

• Metadata XML file name (String)

Output:

• PDF file name (String)

Example
import oracle.apps.xdo.template.FormProcessor;
.
.
.
FormProcessor fProcessor = new FormProcessor();

fProcessor.setTemplate(originalFilePath); // Input File (PDF) name
fProcessor.setDataString(xmlContents); // Input XML string
fProcessor.setOutput(newFilePath); // Output File (PDF) name
fProcessor.setMetaInfo(metaXml); // Metadata XML File name You
can omit this setting when you do not use Metadata.
fProcessor.process();

A-6 Oracle Business Intelligence Publisher User's Guide

Retrieving a List of Field Names
Use the FormProcessor.getFieldNames() API to retrieve the field names from a PDF
template. The API returns the field names into an Enumeration object.

Input:

• PDF Template

Output:

• Enumeration Object

Example
import java.util.Enumeration;
import oracle.apps.xdo.template.FormProcessor;
.
.
.
FormProcessor fProcessor = new FormProcessor();
fProcessor.setTemplate(filePath); // Input File (PDF) name
Enumeration enum = fProcessor.getFieldNames();
while(enum.hasMoreElements()) {
 String formName = (String)enum.nextElement();
 System.out.println("name : " + formName + " , value : " +
fProcessor.getFieldValue(formName));
}

Generating XFDF Data
XML Forms Data Format (XFDF) is a format for representing forms data and
annotations in a PDF document. XFDF is the XML version of Forms Data Format (FDF),
a simplified version of PDF for representing forms data and annotations. Form fields in
a PDF document include edit boxes, buttons, and radio buttons.

Use this class to generate XFDF data. When you create an instance of this class, an
internal XFDF tree is initialized. Use append() methods to append a FIELD element to
the XFDF tree by passing a String name-value pair. You can append data as many times
as you want.

This class also allows you to append XML data by calling appendXML() methods. Note
that you must set the appropriate XSL stylesheet by calling setStyleSheet() method
before calling appendXML() methods. You can append XML data as many times as you
want.

You can retrieve the internal XFDF document at any time by calling one of the
following methods: toString(), toReader(), toInputStream(), or toXMLDocument().

The following is a sample of XFDF data:

Using the BI Publisher APIs A-7

Example
<?xml version="1.0" encoding="UTF-8"?>
<xfdf xmlns="http://ns.adobe.com/xfdf/" xml:space="preserve">
<fields>
 <field name="TITLE">
 <value>Purchase Order</value>
 </field>
 <field name="SUPPLIER_TITLE">
 <value>Supplie</value>
 </field>
 ...
 </fields>

The following code example shows how the API can be used:

Example
import oracle.apps.xdo.template.FormProcessor;
import oracle.apps.xdo.template.pdf.xfdf.XFDFObject;
.
.
.
FormProcessor fProcessor = new FormProcessor();
fProcessor.setTemplate(filePath); // Input File (PDF) name
XFDFObject xfdfObject = new XFDFObject(fProcessor.getFieldInfo());
System.out.println(xfdfObject.toString());

Converting XML Data into XFDF Format Using XSLT
Use an XSL stylesheet to convert standard XML to the XFDF format. Following is an
example of the conversion of sample XML data to XFDF:

Assume your starting XML has a ROWSET/ROW format as follows:
<ROWSET>
 <ROW num="0">
 <SUPPLIER>Supplier</SUPPLIER>
 <SUPPLIERNUMBER>Supplier Number</SUPPLIERNUMBER>
 <CURRCODE>Currency</CURRCODE>
 </ROW>
...
</ROWSET>

From this XML you want to generate the following XFDF format:
<fields>
 <field name="SUPPLIER1">
 <value>Supplier</value>
 </field>
 <field name="SUPPLIERNUMBER1">
 <value>Supplier Number</value>
 </field>
 <field name="CURRCODE1">
 <value>Currency</value>
 </field>
...
</fields>

The following XSLT will carry out the transformation:

A-8 Oracle Business Intelligence Publisher User's Guide

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<fields>
<xsl:apply-templates/>
</fields>
</xsl:template>
 <!-- Count how many ROWs(rows) are in the source XML file. -->
 <xsl:variable name="cnt" select="count(//row|//ROW)" />
 <!-- Try to match ROW (or row) element.
 <xsl:template match="ROW/*|row/*">
 <field>
 <!-- Set "name" attribute in "field" element. -->
 <xsl:attribute name="name">
 <!-- Set the name of the current element (column name)as a
value of the current name attribute. -->
 <xsl:value-of select="name(.)" />
 <!-- Add the number at the end of the name attribute value
if more than 1 rows found in the source XML file.-->
 <xsl:if test="$cnt > 1">
 <xsl:number count="ROW|row" level="single" format="1"/>
 </xsl:if>
 </xsl:attribute>
 <value>
 <!--Set the text data set in the current column data as a
text of the "value" element. -->
 <xsl:value-of select="." />
 </value>
 </field>
 </xsl:template>
</xsl:stylesheet>

You can then use the XFDFObject to convert XML to the XFDF format using an XSLT as
follows:

Example
import java.io.*;
import oracle.apps.xdo.template.pdf.xfdf.XFDFObject;
.
.
.
XFDFObject xfdfObject = new XFDFObject();

xfdfObject .setStylesheet(new BufferedInputStream(new
FileInputStream(xslPath))); // XSL file name
xfdfObject .appendXML(new File(xmlPath1)); // XML data file name
xfdfObject .appendXML(new File(xmlPath2)); // XML data file name

System.out.print(xfdfObject .toString());

RTF Processor Engine

Generating XSL
The RTF processor engine takes an RTF template as input. The processor parses the
template and creates an XSL-FO template. This can then be passed along with a data

Using the BI Publisher APIs A-9

source (XML file) to the FO Engine to produce PDF, HTML, RTF, or Excel (HTML)
output.

Use either input/output file names or input/output streams as shown in the following
examples:

Generating XSL with Input/Output File Names
Input:

• RTF file name (String)

Output:

• XSL file name (String)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {
RTFProcessor rtfProcessor = new RTFProcessor(args[0]); //input template
rtfProcessor.setOutput(args[1]); // output file
rtfProcessor.process();
 System.exit(0);
 }

Generating XSL with Input/Output Stream
Input:

• RTF (InputStream)

Output:

• XSL (OutputStream)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {
 FileInputStream fIs = new FileInputStream(args[0]); //input
template
 FileOutputStream fOs = new FileOutputStream(args[1]); // output

 RTFProcessor rtfProcessor = new RTFProcessor(fIs);
 rtfProcessor.setOutput(fOs);
 rtfProcessor.process();
 // Closes inputStreams outputStream
 System.exit(0);
 }

A-10 Oracle Business Intelligence Publisher User's Guide

FO Processor Engine

Generating Output from an XML File and an XSL File
The FO Processor Engine is BI Publisher's implementation of the W3C XSL-FO
standard. It does not represent a complete implementation of every XSL-FO component.
For a list of supported XSL-FO elements, see Supported XSL-FO Elements, page C-1.

The FO Processor can generate output in PDF, RTF, HTML, or Excel (HTML) from
either of the following two inputs:

• Template (XSL) and Data (XML) combination

• FO object

Both input types can be passed as file names, streams, or in an array. Set the output
format by setting the setOutputFormat method to one of the following:

• FORMAT_EXCEL

• FORMAT_HTML

• FORMAT_PDF

• FORMAT_RTF

An XSL-FO utility is also provided that creates XSL-FO from the following inputs:

• XSL file and XML file

• Two XML files and two XSL files

• Two XSL-FO files (merge)

The FO object output from the XSL-FO utility can then be used as input to the FO
processor.

Major Features of the FO Processor

Bidirectional Text
BI Publisher utilizes the Unicode BiDi algorithm for BiDi layout. Based on specific
values for the properties writing-mode, direction, and unicode bidi, the FO Processor
supports the BiDi layout.

The writing-mode property defines how word order is supported in lines and order of
lines in text. That is: right-to-left, top-to-bottom or left-to-right, top-to-bottom. The
direction property determines how a string of text will be written: that is, in a specific
direction, such as right-to-left or left-to-right. The unicode bidi controls and manages

Using the BI Publisher APIs A-11

override behavior.

Font Fallback Mechanism
The FO Processor supports a two-level font fallback mechanism. This mechanism
provides control over what default fonts to use when a specified font or glyph is not
found. BI Publisher provides appropriate default fallback fonts automatically without
requiring any configuration. BI Publisher also supports user-defined configuration files
that specify the default fonts to use. For glyph fallback, the default mechanism will only
replace the glyph and not the entire string.

Variable Header and Footer
For headers and footers that require more space than what is defined in the template,
the FO Processor extends the regions and reduces the body region by the difference
between the value of the page header and footer and the value of the body region
margin.

Horizontal Table Break
This feature supports a "Z style" of horizontal table break. The horizontal table break is
not sensitive to column span, so that if the column-spanned cells exceed the page (or
area width), the FO Processor splits it and does not apply any intelligent formatting to
the split cell.

The following figure shows a table that is too wide to display on one page:

The following figure shows one option of how the horizontal table break will handle the
wide table. In this example, a horizontal table break is inserted after the third column.

A-12 Oracle Business Intelligence Publisher User's Guide

The following figure shows another option. The table breaks after the third column, but
includes the first column with each new page.

Generating Output Using File Names
The following example shows how to use the FO Processor to create an output file
using file names.

Input:

• XML file name (String)

• XSL file name (String)

Output:

• Output file name (String)

Using the BI Publisher APIs A-13

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {

 FOProcessor processor = new FOProcessor();
 processor.setData(args[0]); // set XML input file
 processor.setTemplate(args[1]); // set XSL input file
 processor.setOutput(args[2]); //set output file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 System.exit(0);
 }

Generating Output Using Streams
The processor can also be used with input/output streams as shown in the following
example:

Input:

• XML data (InputStream)

• XSL data (InputStream)

Output:

• Output stream (OutputStream)

A-14 Oracle Business Intelligence Publisher User's Guide

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public void runFOProcessor(InputStream xmlInputStream,
 InputStream xslInputStream,
 OutputStream pdfOutputStream)
 {

 FOProcessor processor = new FOProcessor();
 processor.setData(xmlInputStream);
 processor.setTemplate(xslInputStream);
 processor.setOutput(pdfOutputStream);
 // Set output format (for PDF generation)
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 System.exit(0);

 }

Generating Output from an Array of XSL Templates and XML Data
An array of data and template combinations can be processed to generate a single
output file from the multiple inputs. The number of input data sources must match the
number of templates that are to be applied to the data. For example, an input of
File1.xml, File2.xml, File3.xml and File1.xsl, File2.xsl, and File3.xsl will produce a single
File1_File2_File3.pdf.

Input:

• XML data (Array)

• XSL data (template) (Array)

Output:

• File Name (String)

Using the BI Publisher APIs A-15

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {

 String[] xmlInput = {"first.xml", "second.xml", "third.xml"};
 String[] xslInput = {"first.xsl", "second.xsl", "third.xsl"};

 FOProcessor processor = new FOProcessor();
 processor.setData(xmlInput);
 processor.setTemplate(xslInput);

 processor.setOutput("/tmp/output.pdf); //set (PDF) output
file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
processor.process();
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 }

Using the XSL-FO Utility
Use the XSL-FO Utility to create an XSL-FO output file from input XML and XSL files,
or to merge two XSL-FO files. Output from this utility can be used to generate your
final output. See Generating Output from an XSL-FO file, page A-18.

Creating XSL-FO from an XML File and an XSL File
Input:

• XML file

• XSL file

Output:

• XSL-FO (InputStream)

A-16 Oracle Business Intelligence Publisher User's Guide

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.
 public static void main(String[] args)
 {
 InputStream foStream;

 // creates XSL-FO InputStream from XML(arg[0])
 // and XSL(arg[1]) filepath String
 foStream = FOUtility.createFO(args[0], args[1]);
 if (mergedFOStream == null)
 {
 System.out.println("Merge failed.");
 System.exit(1);
 }

 System.exit(0);
 }

Creating XSL-FO from Two XML Files and Two XSL files
Input:

• XML File 1

• XML File 2

• XSL File 1

• XSL File 2

Output:

• XSL-FO (InputStream)

Using the BI Publisher APIs A-17

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.
 public static void main(String[] args)
 {
 InputStream firstFOStream, secondFOStream, mergedFOStream;
 InputStream[] input = InputStream[2];

 // creates XSL-FO from arguments
 firstFOStream = FOUtility.createFO(args[0], args[1]);

 // creates another XSL-FO from arguments
 secondFOStream = FOUtility.createFO(args[2], args[3]);

 // set each InputStream into the InputStream Array
 Array.set(input, 0, firstFOStream);
 Array.set(input, 1, secondFOStream);

 // merges two XSL-FOs
 mergedFOStream = FOUtility.mergeFOs(input);

 if (mergedFOStream == null)
 {
 System.out.println("Merge failed.");
 System.exit(1);
 }
 System.exit(0);
 }

Merging Two XSL-FO Files
Input:

• Two XSL-FO file names (Array)

Output:

• One XSL-FO (InputStream)

A-18 Oracle Business Intelligence Publisher User's Guide

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.
 public static void main(String[] args)
 {
 InputStream mergedFOStream;

 // creates Array
 String[] input = {args[0], args[1]};

 // merges two FO files
 mergedFOStream = FOUtility.mergeFOs(input);
 if (mergedFOStream == null)
 {
 System.out.println("Merge failed.");
 System.exit(1);
 }
 System.exit(0);
 }

Generating Output from an FO file
The FO Processor can also be used to process an FO object to generate your final output.
An FO object is the result of the application of an XSL-FO stylesheet to XML data. These
objects can be generated from a third party application and fed as input to the FO
Processor.

The processor is called using a similar method to those already described, but a
template is not required as the formatting instructions are contained in the FO.

Generating Output Using File Names
Input:

• FO file name (String)

Output:

• PDF file name (String)

Using the BI Publisher APIs A-19

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args) {

 FOProcessor processor = new FOProcessor();
 processor.setData(args[0]); // set XSL-FO input file
 processor.setTemplate((String)null);
 processor.setOutput(args[2]); //set (PDF) output file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 System.exit(0);
 }

Generating Output Using Streams
Input:

• FO data (InputStream)

Output:

• Output (OutputStream)

A-20 Oracle Business Intelligence Publisher User's Guide

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public void runFOProcessor(InputStream xmlfoInputStream,
 OutputStream pdfOutputStream)
 {

 FOProcessor processor = new FOProcessor();
 processor.setData(xmlfoInputStream);
 processor.setTemplate((String)null);

 processor.setOutput(pdfOutputStream);
 // Set output format (for PDF generation)
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 }

Generating Output with an Array of FO Data
Pass multiple FO inputs as an array to generate a single output file. A template is not
required, therefore set the members of the template array to null, as shown in the
example.

Input:

• FO data (Array)

Output:

• Output File Name (String)

Using the BI Publisher APIs A-21

Example
import java.lang.reflect.Array;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {

 String[] xmlInput = {"first.fo", "second.fo", "third.fo"};
 String[] xslInput = {null, null, null}; // null needs for xsl-fo
input

 FOProcessor processor = new FOProcessor();
 processor.setData(xmlInput);
 processor.setTemplate(xslInput);

 processor.setOutput("/tmp/output.pdf); //set (PDF) output
file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
processor.process();
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 }

PDF Document Merger
The PDF Document Merger class provides a set of utilities to manipulate PDF
documents. Using these utilities, you can merge documents, add page numbering, set
backgrounds, and add watermarks.

Merging PDF Documents
Many business documents are composed of several individual documents that need to
be merged into a single final document. The PDFDocMerger class supports the merging
of multiple documents to create a single PDF document. This can then be manipulated
further to add page numbering, watermarks, or other background images.

Merging with Input/Output File Names
The following code demonstrates how to merge (concatenate) two PDF documents
using physical files to generate a single output document.

Input:

A-22 Oracle Business Intelligence Publisher User's Guide

• PDF_1 file name (String)

• PDF_2 file name (String)

Output:

• PDF file name (String)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public static void main(String[] args)
 {
 try
 {
 // Last argument is PDF file name for output
 int inputNumbers = args.length - 1;

 // Initialize inputStreams
 FileInputStream[] inputStreams = new
FileInputStream[inputNumbers];
 inputStreams[0] = new FileInputStream(args[0]);
 inputStreams[1] = new FileInputStream(args[1]);

 // Initialize outputStream
 FileOutputStream outputStream = new FileOutputStream(args[2]);

 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 // Closes inputStreams and outputStream
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 }
 }

Merging with Input/Output Streams
Input:

• PDF Documents (InputStream Array)

Output:

• PDF Document (OutputStream)

Using the BI Publisher APIs A-23

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public boolean mergeDocs(InputStream[] inputStreams, OutputStream
outputStream)
 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

Merging with Background to Place Page Numbering
The following code demonstrates how to merge two PDF documents using input
streams to generate a single merged output stream.

To add page numbers:

1. Create a background PDF template document that includes a PDF form field in the
position that you would like the page number to appear on the final output PDF
document.

2. Name the form field @pagenum@.

3. Enter the number in the field from which to start the page numbering. If you do not
enter a value in the field, the start page number defaults to 1.

Input:

• PDF Documents (InputStream Array)

• Background PDF Document (InputStream)

Output:

• PDF Document (OutputStream)

A-24 Oracle Business Intelligence Publisher User's Guide

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public static boolean mergeDocs(InputStream[] inputStreams, InputStream
backgroundStream, OutputStream outputStream)

 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // Set Background
 docMerger.setBackground(backgroundStream);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

Adding Page Numbers to Merged Documents
The FO Processor supports page numbering natively through the XSL-FO templates,
but if you are merging multiple documents you must use this class to number the
complete document from beginning to end.

The following code example places page numbers in a specific point on the page,
formats the numbers, and sets the start value using the following methods:

• setPageNumberCoordinates (x, y) - sets the x and y coordinates for the page
number position. The following example sets the coordinates to 300, 20.

• setPageNumberFontInfo (font name, size) - sets the font and size for the page
number. If you do not call this method, the default "Helvetica", size 8 is used. The
following example sets the font to "Courier", size 8.

• setPageNumberValue (n, n) - sets the start number and the page on which to begin
numbering. If you do not call this method, the default values 1, 1 are used.

Input:

• PDF Documents (InputStream Arrary)

Output:

Using the BI Publisher APIs A-25

• PDF Document (OutputStream)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public boolean mergeDocs(InputStream[] inputStreams, OutputStream
outputStream)
 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // Calls several methods to specify Page Number

 // Calling setPageNumberCoordinates() method is necessary to set
Page Numbering
 // Please refer to javadoc for more information
 docMerger.setPageNumberCoordinates(300, 20);

 // If this method is not called, then the default font"(Helvetica,
8)" is used.
 docMerger.setPageNumberFontInfo("Courier", 8);

 // If this method is not called, then the default initial value
"(1, 1)" is used.
 docMerger.setPageNumberValue(1, 1);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

Setting a Text or Image Watermark
Some documents that are in a draft phase require that a watermark indicating "DRAFT"
be displayed throughout the document. Other documents might require a background
image on the document. The following code sample shows how to use the
PDFDocMerger class to set a watermark.

Setting a Text Watermark
Use the SetTextDefaultWatermark() method to set a text watermark with the following
attributes:

A-26 Oracle Business Intelligence Publisher User's Guide

• Text angle (in degrees): 55

• Color: light gray (0.9, 0.9, 0.9)

• Font: Helvetica

• Font Size: 100

• The start position is calculated based on the length of the text

Alternatively, use the SetTextWatermark() method to set each attribute separately. Use
the SetTextWatermark() method as follows:

• SetTextWatermark ("Watermark Text", x, y) - declare the watermark text, and set
the x and y coordinates of the start position. In the following example, the
watermark text is "Draft" and the coordinates are 200f, 200f.

• setTextWatermarkAngle (n) - sets the angle of the watermark text. If this method is
not called, 0 will be used.

• setTextWatermarkColor (R, G, B) - sets the RGB color. If this method is not called,
light gray (0.9, 0.9, 0.9) will be used.

• setTextWatermarkFont ("font name", font size) - sets the font and size. If you do not
call this method, Helvetica, 100 will be used.

The following example shows how to set these properties and then call the
PDFDocMerger.

Input:

• PDF Documents (InputStream)

Output:

• PDF Document (OutputStream)

Using the BI Publisher APIs A-27

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public boolean mergeDocs(InputStream inputStreams, OutputStream
outputStream)
 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // You can use setTextDefaultWatermark() without these detailed
setting
 docMerger.setTextWatermark("DRAFT", 200f, 200f); //set text and
place
 docMerger.setTextWatermarkAngle(80); //set angle
 docMerger.setTextWatermarkColor(1.0f, 0.3f, 0.5f); // set RGB
Color

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

Setting Image Watermark
An image watermark can be set to cover the entire background of a document, or just to
cover a specific area (for example, to display a logo). Specify the placement and size of
the image using rectangular coordinates as follows:

float[] rct = {LowerLeft X, LowerLeft Y, UpperRight X,
UpperRight Y}

For example:

float[] rct = {100f, 100f, 200f, 200f}

The image will be sized to fit the rectangular area defined.

To use the actual image size, without sizing it, define the LowerLeft X and LowerLeft Y
positions to define the placement and specify the UpperRight X and UpperRight Y
coordinates as -1f. For example:

float[] rct = {100f, 100f, -1f, -1f}

Input:

A-28 Oracle Business Intelligence Publisher User's Guide

• PDF Documents (InputStream)

• Image File (InputStream)

Output:

• PDF Document (OutputStream)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public boolean mergeDocs(InputStream inputStreams, OutputStream
outputStream, String imageFilePath)
 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 FileInputStream wmStream = new FileInputStream(imageFilePath);
 float[] rct = {100f, 100f, -1f, -1f};
 pdfMerger.setImageWatermark(wmStream, rct);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 // Closes inputStreams
 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

PDF Book Binder Processor
The PDFBookBinder processor is useful for the merging of multiple PDF documents
into a single document consisting of a hierarchy of chapters, sections, and subsections
and a table of contents for the document. The processor also generates PDF style "
bookmarks"; the outline structure is determined by the chapter and section hierarchy.
The processor is extremely powerful allowing you complete control over the combined
document.

Usage
The table of contents formatting and style is created through the use of an RTF template
created in Microsoft Word. The chapters are passed into the program as separate PDF

Using the BI Publisher APIs A-29

files (one chapter, section, or subsection corresponds to one PDF file). Templates may
also be specified at the chapter level for insertion of dynamic or static content, page
numbering, and placement of hyperlinks within the document.

The templates can be in RTF or PDF format. RTF templates are more flexible by
allowing you to leverage BI Publisher's support for dynamic content. PDF templates are
much less flexible, making it difficult to achieve desirable effects such as the reflow of
text areas when inserting page numbers and other types of dynamic content.

The templates can be rotated (at right angles) or be made transparent. A PDF template
can also be specified at the book level, enabling the ability to specify global page
numbering, or other content such as backgrounds and watermarks. A title page can also
be passed in as a parameter, as well as cover and closing pages for each chapter or
section.

XML Control File
The structure of the book's chapters, sections, and subsections is represented as XML
and passed in as a command line parameter; or it can also be passed in at the API level.
All of the chapter and section files, as well as all the templates files and their respective
parameters, are specified inside this XML structure. Therefore, the only two required
parameters are an XML file and a PDF output file.

You can also specify volume breaks inside the book structure. Specifying volume breaks
will split the content up into separate output files for easier file and printer
management.

The structure of the XML control file is represented in the following diagram:

A-30 Oracle Business Intelligence Publisher User's Guide

To specify template and content file locations in your XML structure, you can specify a
path relative to your local file system or you can specify a URL referring to the template
or content location. Secure HTTP protocol is supported, as well as specially recognized
BI Publisher protocols, such as:

• "xdo://" - used to specify BI Publisher Template Manager-specific data.

• "fnd://" - used to specify data located in the FND_LOBS table.

• "blob://" - used for specifying data in any user-defined BLOB table.

The format for the "blob://" protocol is:
blob://[table_name].[blob_column_name]/[pk_datatype]:[pk_name]=[pk_v
alue]/../../..

Command Line Options
Following is an example of the command line usage:

Using the BI Publisher APIs A-31

java oracle.apps.template.pdf.book.PDFBookBinder [-debug <true or
false>] [-tmp <temp dir>] -xml <input xml> -pdf <output pdf>

where

-xml <file> is the file name of the input XML file containing the table of contents
XML structure.

-pdf <file> is the final generated PDF output file.

-tmp <directory> is the temporary directory for better memory management. (This
is optional, if not specified, the system environment variable "java.io.tmpdir" will
be used.)

-log <file> sets the output log file (optional, default is System.out).

-debug <true or false> turns debugging off or on.

API Method Call
The following is an example of an API method call:
String xmlInputPath = "c:\\tmp\\toc.xml";
String pdfOutputPath = "c:\\tmp\\final_book.pdf";
PDFBookBinder bookBinder = new PDFBookBinder(xmlInputPath,
 pdfOutputPath);

bookBinder.setConfig(new Properties());
bookBinder.process();

Document Processor Engine
The Document Processor Engine provides batch processing functionality to access a
single API or multiple APIs by passing a single XML instance document to specify
template names, data sources, languages, output type, output names, and destinations.

This solution enables batch printing with BI Publisher, in which a single XML document
can be used to define a set of invoices for customers, including the preferred output
format and delivery channel for those customers. The XML format is very flexible
allowing multiple documents to be created or a single master document.

This section:

• Describes the hierarchy and elements of the Document Processor XML file

• Provides sample XML files to demonstrate specific processing options

• Provides example code to invoke the processors

Hierarchy and Elements of the Document Processor XML File
The Document Processor XML file has the following element hierarchy:

A-32 Oracle Business Intelligence Publisher User's Guide

Requestset
 request
 delivery
 filesystem
 print
 fax
 number
 email
 message
 document
 background
 text
 pagenumber
 template
 data

This hierarchy is displayed in the following illustration:

The following table describes each of the elements:

Element Attributes Description

requestset xmlns

version

Root element must contain [
xmlns:xapi="http://xml
ns.oracle.com/oxp/xapi
/"] block

The version is not required,
but defaults to "1.0".

request N/A Element that contains the data
and template processing
definitions.

Using the BI Publisher APIs A-33

Element Attributes Description

delivery N/A Defines where the generated
output is sent.

document output-type Specify one output that can
have several template
elements. The output-type
attribute is optional. Valid
values are:

pdf (Default)

rtf

html

excel

text

filesystem output Specify this element to save
the output to the file system.
Define the directory path in
the output attribute.

print • printer

• server-alias

The print element can occur
multiple times under
delivery to print one
document to several printers.
Specify the printer
attribute as a URI, such as:
"ipp://myprintserver:6
31/printers/printernam
e"

fax • server

• server-alias

Specify a URI in the server
attribute, for example:
"ipp://myfaxserver1:63
1/printers/myfaxmachin
e"

number The number element can
occur multiple times to list
multiple fax numbers. Each
element occurrence must
contain only one number.

A-34 Oracle Business Intelligence Publisher User's Guide

Element Attributes Description

email • server

• port

• from

• reply-to

• server-alias

Specify the outgoing mail
server (SMTP) in the server
attribute.

Specify the mail server port in
the port attribute.

message • to

• cc

• bcc

• attachment

• subject

The message element can be
placed several times under
the email element. You can
specify character data in the
message element.

You can specify multiple
e-mail addresses in the to,
cc and bcc attributes
separated by a comma.

The attachment value is
either true or false (default). If
attachment is true, then a
generated document will be
attached when the e-mail is
sent.

The subject attribute is
optional.

background where If the background text is
required on a specific page,
then set the where value to
the page numbers required.
The page index starts at 1. The
default value is 0, which
places the background on all
pages.

Using the BI Publisher APIs A-35

Element Attributes Description

text • title

• default

Specify the watermark text in
the title value.

A default value of "yes"
automatically draws the
watermark with forward
slash type. The default value
is yes.

pagenumber • initial-page-index

• initial-value

• x-pos

• y-pos

The initial-page-index
default value is 0.

The initial-value default
value is 1.

"Helvetica" is used for the
page number font.

The x-pos provides lower
left x position.

The y-pos provides lower
left y position.

template • locale

• location

• type

Contains template
information.

Valid values for the type
attribute are

pdf

rtf

xsl-fo

etext

The default value is "pdf".

A-36 Oracle Business Intelligence Publisher User's Guide

Element Attributes Description

data location Define the location
attribute to specify the
location of the data, or attach
the actual XML data with
subelements. The default
value of location is
"inline". It the location
points to either an XML file or
a URL, then the data should
contain an XML declaration
with the proper encoding.

If the location attribute is
not specified, the data
element should contain the
subelements for the actual
data. This must not include an
XML declaration.

XML File Samples
Following are sample XML files that show:

• Simple XML shape

• Defining two data sets

• Defining multiple templates and data

• Retrieving templates over HTTP

• Retrieving data over HTTP

• Generating more than one output

• Defining page numbers

Simple XML sample
The following sample is a simple example that shows the definition of one template (
template1.pdf) and one data source (data1) to produce one output file (
outfile.pdf) delivered to the file system:

Using the BI Publisher APIs A-37

Example
<?xml version="1.0" encoding="UTF-8" ?>
 <xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\tmp\outfile.pdf" />
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:template type="pdf" location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>data1</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
 </xapi:requestset>

Defining two data sets
The following example shows how to define two data sources to merge with one
template to produce one output file delivered to the file system:

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\tmp\outfile.pdf"/>
 </xapi:delivery>

 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>The first set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second set of data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Defining multiple templates and data
The following example builds on the previous examples by applying two data sources
to one template and two data sources to a second template, and then merging the two
into a single output file. Note that when merging documents, the output-type must
be "pdf".

A-38 Oracle Business Intelligence Publisher User's Guide

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\tmp\outfile3.pdf"/>
 </xapi:delivery>

 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>The first set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second set of data</field1>
 </xapi:data>
 </xapi:template>

 <xapi:template type="pdf"
 location="d:\mywork\template2.pdf">
 <xapi:data>
 <field1>The third set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth set of data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Retrieving templates over HTTP
This sample is identical to the previous example, except in this case the two templates
are retrieved over HTTP:

Using the BI Publisher APIs A-39

<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out4.pdf"/>
 </xapi:delivery>

 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="http://your.server:9999/templates/template1.pdf">
 <xapi:data>
 <field1>The first page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second page data</field1>
 </xapi:data>
 </xapi:template>
 <xapi:template type="pdf"
 location="http://your.server:9999/templates/template2.pdf">
 <xapi:data>
 <field1>The third page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth page data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Retrieving data over HTTP
This sample builds on the previous example and shows one template with two data
sources, all retrieved via HTTP; and a second template retrieved via HTTP with its two
data sources embedded in the XML:

A-40 Oracle Business Intelligence Publisher User's Guide

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out5.pdf"/>
 </xapi:delivery>

 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="http://your.server:9999/templates/template1.pdf">
 <xapi:data location="http://your.server:9999/data/data_1.xml"/>
 <xapi:data location="http://your.server:9999/data/data_2.xml"/>
 </xapi:template>

 <xapi:template type="pdf"
 location="http://your.server:9999/templates/template2.pdf">
 <xapi:data>
 <field1>The third page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth page data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Generating more than one output
The following sample shows the generation of two outputs: out_1.pdf and
out_2.pdf. Note that a request element is defined for each output.

Using the BI Publisher APIs A-41

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out_1.pdf"/>
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>The first set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second set of data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>

 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out_2.pdf"/>
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:mywork\template2.pdf">
 <xapi:data>
 <field1>The third set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth set of data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>

</xapi:requestset>

Defining page numbers
The following sample shows the use of the pagenumber element to define page
numbers on a PDF output document. The first document that is generated will begin
with an initial page number value of 1. The second output document will begin with an
initial page number value of 3. The pagenumber element can reside anywhere within
the document element tags.

Note that page numbering that is applied using the pagenumber element will not
replace page numbers that are defined in the template.

A-42 Oracle Business Intelligence Publisher User's Guide

<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out7-1.pdf"/>
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:pagenumber initial-value="1" initial-page-index="1"
 x-pos="300" y-pos="20" />
 <xapi:template type="pdf"
 location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>The first page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second page data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>

 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out7-2.pdf"/>
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:\mywork\template2.pdf">
 <xapi:data>
 <field1>The third page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth page data</field1>
 </xapi:data>
 </xapi:template>
 <xapi:pagenumber initial-value="3" initial-page-index="1"
 x-pos="300" y-pos="20" />
 </xapi:document>
 </xapi:request>

</xapi:requestset>

Invoke Processors
The following code samples show how to invoke the document processor engine using
an input file name and an input stream.

Invoke Processors with Input File Name
Input:

• Data file name (String)

• Directory for Temporary Files (String)

Using the BI Publisher APIs A-43

Example
import oracle.apps.xdo.batch.DocumentProcessor;
.
.
.
 public static void main(String[] args)
 {
.
.
.
 try
 {
 // dataFile --- File path of the Document Processor XML
 // tempDir --- Temporary Directory path
 DocumentProcessor docProcessor = new DocumentProcessor(dataFile,
tempDir);
 docProcessor.process();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

Invoke Processors with InputStream
Input:

• Data file (InputStream)

• Directory for Temporary Files (String)

A-44 Oracle Business Intelligence Publisher User's Guide

Example
import oracle.apps.xdo.batch.DocumentProcessor;
import java.io.InputStream;
.
.
.
 public static void main(String[] args)
 {
.
.
.
 try
 {
 // dataFile --- File path of the Document Processor XML
 // tempDir --- Temporary Directory path
 FileInputStream fIs = new FileInputStream(dataFile);

 DocumentProcessor docProcessor = new DocumentProcessor(fIs,
tempDir);
 docProcessor.process();
 fIs.close();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

Bursting Engine
BI Publisher's bursting engine accepts a data stream and splits it based on multiple
criteria, generates output based on a template, then delivers the individual documents
through the delivery channel of choice. The engine provides a flexible range of
possibilities for document generation and delivery. Example implementations include:

• Invoice generation and delivery based on customer-specific layouts and delivery
preference

• Financial reporting to generate a master report of all cost centers, bursting out
individual cost center reports to the appropriate manager

• Generation of payslips to all employees based on one extract and delivered via
e-mail

Usage
The bursting engine is an extension of the Document Processor Engine, page A-31 and
has its own method be called to invoke it. The Document Processor XML structure has
been extended to handle the new components required by the bursting engine. It

Using the BI Publisher APIs A-45

supports all of the delivery functionality that the Document Processor supports using
the same format. It accepts the XML data to be burst and a control file that takes the
Document Processor XML format (see Hierarchy and Elements of the Document
Processor XML File, page A-31).

Control File
The control file takes the same format as the Document Processor XML, page A-31 with
a few extensions:

• Use the attribute select under the request element to specify the element in the
XML data that you wish to burst on.

Example
<xapi:request select="/EMPLOYEES/EMPLOYEE">

• Use the attribute id under the lowest level of the delivery structure (for example,
for the delivery element email, the id attribute belongs to the message element.
This assigns an ID to the delivery method to be referenced later in the XML file.

Example
<xapi:message id="123" to="jo.smith@company.com"

• Use the delivery attribute under the document element. This assigns the
delivery method for the generated document as defined in the id attribute for the
delivery element. You can specify multiple delivery channels separated by a
comma.

Example
<xapi:document output-type="pdf" delivery="123">

• Use the filter attribute on the template element. Use this to apply a layout
template based on a filter on your XML data.

Example
<xapi:template type="rtf" location="/usr/tmp/empGeneric.rtf">
<xapi:template type="rtf" location="usr\tmp\empDet.rtf"
filter=".//EMPLOYEE[ENAME='SMITH']"/>

This will apply the empDet template only to those employees with the name
"SMITH". All other employees will have the empGeneric template applied. This
filter can use any XPATH expression to determine the rules for the template
application.

Dynamic Delivery Destination
You can reference elements in the data to derive certain delivery attributes, such as an
e-mail address or fax number. Enter the value for the attribute using the following form:

${ELEMENT}

where ELEMENT is the element name from the XML data that holds the value for the
attribute.

A-46 Oracle Business Intelligence Publisher User's Guide

For example:
<xapi:message id="123" to="${EMAIL}"/>

At runtime the value of the to attribute will be set to the value of the EMAIL element
from the input XML file.

You can also set the value of an attribute by passing a parameter to API in a Properties
object.

Dynamic Delivery Content
You can reference information in the XML data to be put into the delivery content. This
takes the same format described above (that is, ${ELEMENT}).

For example, suppose you wanted to burst a document to employees via e-mail and
personalize the e-mail by using the employee's name in the subject line. Assuming the
employee's name is held in an element called ENAME, you could use ${ENAME} to
reference the employee's name in the control file as follows:
subject="Employee Details for ${ENAME}"

Sample Control File
The following sample control file shows an example control file to split data based on
an EMPLOYEE element and send an e-mail to each employee with their own data. The
sample file is annotated.
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request select="/EMPLOYEES/EMPLOYEE"><! - This sets the bursting
element i.e., EMPLOYEE - >
 <xapi:delivery>
 <xapi:email server="rgmamersmtp.oraclecorp.com" port="25"
 from="xmlpadmin1@oracle.com" reply-to ="reply@oracle.com">
 <xapi:message id="123" to="${EMAIL}" cc="${EMAIL_ALL}"
 attachment="true" subject="Employee Details
 for ${ENAME}"> Mr. ${ENAME}, Please review the
 attached document</xapi:message><! - This assigns a delivery id
of '123'. It also sets the e-mail
 address of the employee and a cc copy to a parameter value
 EMAIL_ALL; this might be a manager's e-mail. The employee's
 name (ENAME) can also be used in the subject/body
 of the email. - ></xapi:email>
 </xapi:delivery>
 <xapi:document output-type="pdf" delivery="123">
 <xapi:template type="rtf" location="/usr/tmp/empGeneric.rtf">
 <xapi:template type="rtf" location="/usr/tmp/empDet.rtf"
 filter=".//EMPLOYEE[ENAME='SMITH']" ><! - Employees with the name
SMITH will have
 the empDet template applied - >
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Using the BI Publisher APIs A-47

Multiple Bursting Options
The bursting engine can support multiple bursting criteria and delivery options.
Assume you have a report that generates data for all employees with their manager's
information. You can construct a control file that will:

• Burst the employee data to each employee

• Burst a report to each manager that contains the data about his employees

You can provide a different template for each bursting level. You can therefore generate
the employee report based on one template and the summary manager's report based
on a different template, but still use the same data set.

To achieve this multibursting result, you must add a second request element to the
control file structure.

Multibursting Example
The following sample shows how to construct a control file that will burst on the
EMPLOYEE level and the MANAGER level:

A-48 Oracle Business Intelligence Publisher User's Guide

?xml version="1.0" encoding="UTF-8" ?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi"><! -
First request to burst on employee - >
 <xapi:request select="/EMPLOYEES/EMPLOYEE">
 <xapi:delivery>
 <xapi:email <<server details removed>> />
 <xapi:message id="123" <<message details removed>>
 </xapi:message>
 </xapi:email>
 <xapi:fax server="ipp://mycupsserver:631/printers/fax2">
 <xapi:number id="FAX1">916505069560</xapi:number>
 </xapi:fax>
 <xapi:print id="printer1"
 printer="ipp://mycupsserver:631/printers/printer1"
 copies="2" />
 </xapi:delivery>
 <xapi:document output-type="pdf" delivery="123">
 <xapi:template type="rtf" location="usr\tmp\empDet.rtf" />
 </xapi:document>
 </xapi:request><!Second request to burst on department - >
<xapi:request select="/DATA/DEPT/MANAGER">
 <xapi:delivery>
 <xapi:email server="gmsmtp.oraclecorp.com" port=""
 from="XDOburstingTest@oracle.com" reply-to="reply@oracle.com">
 <xapi:message id="123" to="${MANAGER_EMAIL}"
 cc="${MANAGER_EMAIL}" attachment="true"
 subject="Department Summary for ${DEPTNO}">Please review
 the attached Department Summary for
 department ${DEPTNO}</xapi:message>
 </xapi:email>
 </xapi:delivery>
<xapi:document output-type="rtf" delivery="123">
 <xapi:template type="rtf"
 location="d:\burst_test\deptSummary.rtf" />
 </xapi:document>
 </xapi:request>
 </xapi:requestset>

Bursting Listeners
The bursting engine provides a listening interface that allows you to listen to the
various stages of the bursting process. Following are the supported modes that you can
subscribe to:

• beforeProcess() - before the bursting process starts.

• afterProcess() - after the bursting process completes.

• beforeProcessRequest(int requestIndex) - before the bursting request
starts. This interface provides an assigned request ID for the current request.

• afterProcessRequest(int requestIndex)- after the bursting request has
completed; provides the request ID for the current request.

• beforeProcessDocument(int requestIndex,int
documentIndex,String deliveryId) - before the document generation starts;

Using the BI Publisher APIs A-49

provides the request ID and a document ID.

• afterProcessDocument(int requestIndex,int
documentIndex,Vector documentOutputs) - after the document generation
completes; provides the request ID and document ID, plus a Vector list of the
document objects generated in the request.

• beforeDocumentDelivery(int requestIndex,int
documentIndex,String deliveryId) - before the documents in the request
are delivered; provides the request ID, the document ID, and a delivery ID.

• afterDocumentDelivery(int requestIndex,int
documentIndex,String deliveryId,Object deliveryObject,Vector
attachments) - after the document delivery completes; provides a request ID,
document ID, and delivery ID, plus a Vector list of the documents delivered in the
request.

You can subscribe to any of these interfaces in your calling Java class. The listeners are
useful to determine if the processing of individual documents is proceeding
successfully or to start another process based on the successful completion of a request.

Calling the Bursting API
To call the bursting API, instantiate an instance of DocumentProcessor class using on of
the following formats:
DocumentProcessor(xmlCtrlInput, xmlDataInput, tmpDir)

where

xmlCtrlInput - is the control file for the bursting process. This can be a string
reference to a file, an inputStream object, or a Reader object.

xmlDataInput - is the XML data to be burst. This can a string reference to a file, an
inputStream object, or a Reader object.

tmpDir - is a temporary working directory. This takes the format of a String object. This
is optional as long as the main BI Publisher temporary directory has been set.

Simple Example Java Class
The following is a sample Java class:

A-50 Oracle Business Intelligence Publisher User's Guide

public class BurstingTest
{
 public BurstingTest()
 {
 try
 {
 DocumentProcessor dp = new DocumentProcessor
 ("\burst\burstCtrl.xml", "\\burst\\empData.xml","\\burst");
 dp.process();
 }
 }
 catch (Exception e)
 { System.out.println(e);

 public static void main(String[] args)
 {
 BurstingTest burst1 = new BurstingTest();
 }

}

Example Java Class with Listeners
To take advantage of the bursting listeners, add the interface to the class declaration
and use the registerListener method. Then code for the listeners you want to
subscribe to as follows:

Using the BI Publisher APIs A-51

public class BurstingTest implements BurstingListener
{
 public BurstingTest()
 {
 try
 {
 DocumentProcessor dp = new DocumentProcessor
 ("\burst\burstCtrl.xml", "\\burst\\empData.xml","\\burst");
 dp.registerListener(this);
 dp.process();
 }
 }
 catch (Exception e)
 { System.out.println(e);

 public static void main(String[] args)
 {
 BurstingTest burst1 = new BurstingTest();
}

public void beforeProcess(){
 System.out.println("Start of Bursting Process");
 }
public void afterProcess()
 {
 System.out.println("End of Bursting Process");
 }

public void beforeProcessRequest(int requestIndex)
 {
 System.out.println("Start of Process Request ID"+requestIndex);
 }
 public void afterProcessRequest(int requestIndex)
 {
 System.out.println("End of Process Request ID"+requestIndex ");

 }
 public void beforeProcessDocument(int requestIndex,int
 documentIndex)
 {
 System.out.println("Start of Process Document");
 System.out.println(" Request Index "+requestIndex);
 System.out.println(" Document Index " +documentIndex);

 }
 public void afterProcessDocument(int requestIndex,int
 documentIndex,
 Vector documentOutputs)
 {
 System.out.println(" ========End of Process Document");
 System.out.println(" Outputs :"+documentOutputs);
 }
 public void beforeDocumentDelivery(int requestIndex,int
 documentIndex,
 String deliveryId)
 {
 System.out.println(" ========Start of Delivery");
 System.out.println(" Request Index "+requestIndex);
 System.out.println(" Document Index " +documentIndex);
 System.out.println(" DeliveryId " +deliveryId);
 }

A-52 Oracle Business Intelligence Publisher User's Guide

public void afterDocumentDelivery(int requestIndex,int documentIndex,
 String deliveryId,Object deliveryObject,Vector attachments)
 {
 System.out.println(" ========End of Delivery");
 System.out.println(" Attachments : "+attachments);

 }

}

Passing a Parameter
To pass a parameter holding a value to be used in the control file for delivery, add the
following code:
…
Properties prop= new Properties();
prop.put("user-variable:ADMIN_EMAIL","jo.smith@company.com");
dp.setConfig(prop);
dp.process();
…

Bursting Control File Examples
All of the examples in this section use the following XML data source:

Using the BI Publisher APIs A-53

<?xml version="1.0" encoding="UTF-8"?>
<DATA>
<DEPTS>
 <DEPT>
 <DEPTNO>20</DEPTNO>
 <NAME>Accounting</NAME>
 <MANAGER_EMAIL>tdexter@mycomp.com</MANAGER_EMAIL>
 <EMPLOYEES>
 <EMPLOYEE>
 <EMPNO>7369</EMPNO>
 <ENAME>SMITH</ENAME>
 <JOB>CLERK</JOB>
 <MGR>7902</MGR>
 <HIREDATE>1980-12-17T00:00:00.000-08:00</HIREDATE>
 <SAL>800</SAL>
 <DEPTNO>20</DEPTNO>
 <EMAIL>jsmith@mycomp.com</EMAIL>
 </EMPLOYEE>
 <EMPLOYEE>
 <EMPNO>7566</EMPNO>
 <ENAME>JONES</ENAME>
 <JOB>MANAGER</JOB>
 <MGR>7839</MGR>
 <HIREDATE>1981-04-02T00:00:00.000-08:00</HIREDATE>
 <SAL>2975</SAL>
 <DEPTNO>20</DEPTNO>
 <EMAIL>jjones@mycomp.com</EMAIL>
 </EMPLOYEE>
 </EMPLOYEES>
 </DEPT>
 <DEPT>
 <DEPTNO>30</DEPTNO>
 <NAME>Sales</NAME>
 <MANAGER_EMAIL>dsmith@mycomp.com</MANAGER_EMAIL>
 <EMPLOYEES>
 <EMPLOYEE>
 <EMPNO>7788</EMPNO>
 <ENAME>SCOTT</ENAME>
 <JOB>ANALYST</JOB>
 <MGR>7566</MGR>
 <HIREDATE>1982-12-09T00:00:00.000-08:00</HIREDATE>
 <SAL>3000</SAL>
 <DEPTNO>20</DEPTNO>
 <EMAIL>jscott@mycomp.com</EMAIL>
 </EMPLOYEE>
 <EMPLOYEE>
 <EMPNO>7876</EMPNO>
 <ENAME>ADAMS</ENAME>
 <JOB>CLERK</JOB>
 <MGR>7788</MGR>
 <HIREDATE>1983-01-12T00:00:00.000-08:00</HIREDATE>
 <SAL>1100</SAL>
 <EMAIL>jadams@mycomp.com</EMAIL>
 </EMPLOYEE>
 </EMPLOYEES>
 </DEPT>
</DEPTS>
</DATA>

Example 1 - Bursting Employee Data to Employees via E-mail
The following sample shows how to apply a template (empDet.rtf) to every employee's

A-54 Oracle Business Intelligence Publisher User's Guide

data, generate a PDF document, and deliver the document to each employee via e-mail.
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request select="/DATA/DEPTS/DEPT/EMPLOYEES/EMPLOYEE"> <! - Burst
on employee element - >
 <xapi:delivery>
 <xapi:email server="my.smtp.server" port="25"
 from="xmlpadmin@mycomp.com" reply-to ="">
 <xapi:message id="123" to="${EMAIL}"
<! - Set the id for the delivery method - ><! - Use the employees
EMAIL element to email the document to
 the employee - >cc="${ADMIN_EMAIL}"
<! - Use the ADMIN_EMAIL parameter to CC the document
 to the administrator - > attachment="true" subject="Employee
Details for ${ENAME}">
 Mr. ${ENAME}, Please review the attached document</xapi:message><! -
Embed the employees name into the email message - >
</xapi:email>
 </xapi:delivery>
 <xapi:document output-type="pdf" delivery="123"><!Specify the
delivery method id to be used - >
 <xapi:template type="rtf"
 location="\usr\empDet.rtf"></xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Example 2 - Bursting Employee Data to Employees via Multiple Delivery Channels
and Conditionally Using Layout Templates
This sample shows how to burst, check the employee name, and generate a PDF using
the appropriate template. The documents will then be e-mailed and printed.
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi" >
 <xapi:globalData location="stream">
 </xapi:globalData >
 <xapi:request select="/DATA/DEPTS/DEPT/EMPLOYEES/EMPLOYEE">
 <xapi:delivery>
 <xapi:email server="my.smtp.server" port=""
 from="xmlpserver@oracle.com"
 reply-to ="reply@oracle.com">
 <xapi:message id="123" to="${EMAIL}" cc="" attachment="true"
 subject="Employee Details for ${ENAME}"> Mr. ${ENAME},
 Please review the attached document</xapi:message>
</xapi:email>
<xapi:print id="printer1"
 printer="ipp://ipgpc1:631/printers/printer1" copies="2" /><! - Add an
id for this delivery method i.e. printer1 - > </xapi:delivery>
 <xapi:document output-type="pdf" delivery="printer1,123"><! -
Deliver to printer and email - > <xapi:template type="rtf"
location="/usr/empDetSmith.rtf"
 filter=".//EMPLOYEE[ENAME='SMITH']"><!- Specify template to be
used for employees called SMITH - >
 </xapi:template>
 <xapi:template type="rtf" location="/usr/empSummary.rtf"><! -
Default template to be used - >
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Using the BI Publisher APIs A-55

Example 3 - Bursting Employee Data to Employees and Their Manager
This sample shows how to burst an e-mail with a PDF attachment to all employees
using the empDet template. It will also burst an employee summary PDF to the
manager of each department via e-mail.
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request select="/DATA/DEPTS/DEPT/EMPLOYEES/EMPLOYEE">
 <xapi:delivery>
 <xapi:email server="my.smtp.server" port=""
 from="xmlpserver@oracle.com" reply-to ="">
 <xapi:message id="123" to="${EMAIL}" cc="${EMAIL}"
 attachment="true"
 subject="Employee Details for ${ENAME}"> Mr. ${ENAME},
 Please review the attached document</xapi:message>
</xapi:email>
 </xapi:delivery>
 <xapi:document output-type="pdf" delivery="123">
 <xapi:template type="rtf"
 location="/usr/empDet.rtf"</xapi:template>
 </xapi:document>
 </xapi:request>
<xapi:request select="/DATA/DEPTS/DEPT"><! - Second request created to
burst the same dataset to the
 manager based on the DEPT element - >
 <xapi:delivery>
 <xapi:email server="my.smtp.server" port=""
 from="xmlpserver@oracle.com" reply-to ="">
<xapi:message id="456" to="${MANAGER_EMAIL}"
 cc="${MANAGER_EMAIL}" attachment="true" subject="Department
 Summary for ${DEPTNO}"> Please review the attached
 Department Summary for department ${DEPTNO}</xapi:message>
</xapi:email>
 </xapi:delivery>
 <xapi:document output-type="rtf" delivery="456">
 <xapi:template type="rtf"
 location="\usr\deptSumm.rtf"></xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

BI Publisher Properties
The FO Processor supports PDF security and other properties that can be applied to
your final documents. Security properties include making a document unprintable and
applying password security to an encrypted document.

Other properties allow you to define font subsetting and embedding. If your template
uses a font that would not normally be available to BI Publisher at runtime, you can use
the font properties to specify the location of the font. At runtime BI Publisher will
retrieve and use the font in the final document. For example, this property might be
used for check printing for which a MICR font is used to generate the account and
routing numbers on the checks.

See Setting Runtime Properties, page 11-13 for the full list of properties.

A-56 Oracle Business Intelligence Publisher User's Guide

Setting Properties
The properties can be set in two ways:

• At runtime, specify the property as a Java Property object to pass to the FO
Processor.

• Set the property in a configuration file.

• Set the property in the template (RTF templates only). See Setting Properties, page
5-90 in the RTF template for this method.

Passing Properties to the FO Engine
To pass a property as a Property object, set the name/value pair for the property prior to
calling the FO Processor, as shown in the following example:

Input:

• XML file name (String)

• XSL file name (String)

Output:

• PDF file name (String)

Using the BI Publisher APIs A-57

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {

 FOProcessor processor = new FOProcessor();
 processor.setData(args[0]); // set XML input file
 processor.setTemplate(args[1]); // set XSL input file
 processor.setOutput(args[2]); //set (PDF) output file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 Properties prop = new Properties();
 /* PDF Security control: */
 prop.put("pdf-security", "true");
 /* Permissions password: */
 prop.put("pdf-permissions-password", "abc");
 /* Encryption level: */
 prop.put("pdf-encription-level", "0");
 processor.setConfig(prop);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 System.exit(0);
 }

Passing a Configuration File to the FO Processor
The following code shows an example of passing the location of a configuration file.

Input:

• XML file name (String)

• XSL file name (String)

Output:

• PDF file name (String)

A-58 Oracle Business Intelligence Publisher User's Guide

import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {
 FOProcessor processor = new FOProcessor();
 processor.setData(args[0]); // set XML input file
 processor.setTemplate(args[1]); // set XSL input file
 processor.setOutput(args[2]); //set (PDF) output file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 processor.setConfig("/tmp/xmlpconfig.xml");
 // Start processing
 try
 {
 processor.generate();
 } catch (XDOException e)
 { e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

Passing Properties to the Document Processor
Input:

• Data file name (String)

• Directory for Temporary Files (String)

Output:

• PDF FIle

Using the BI Publisher APIs A-59

Example
import oracle.apps.xdo.batch.DocumentProcessor;
.
.
.
 public static void main(String[] args)
 {
.
.
.
 try
 {
 // dataFile --- File path of the Document Processor XML
 // tempDir --- Temporary Directory path
 DocumentProcessor docProcessor = new DocumentProcessor(dataFile,
tempDir);
 Properties prop = new Properties();
 /* PDF Security control: */
 prop.put("pdf-security", "true");
 /* Permissions password: */
 prop.put("pdf-permissions-password", "abc");
 /* encryption level: */
 prop.put("pdf-encription-level", "0");
 processor.setConfig(prop);
 docProcessor.process();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

Advanced Barcode Font Formatting Implementation
For the advanced formatting to work in the template, you must provide a Java class
with the appropriate methods to format the data at runtime. Many font vendors offer
the code with their fonts to carry out the formatting; these must be incorporated as
methods into a class that is available to the BI Publisher formatting libraries at runtime.
There are some specific interfaces that you must provide in the class for the library to
call the correct method for encoding.

Note: See Advanced Barcode Formatting, page 5-117 for the setup
required in the RTF template.

You must implement the following three methods in this class:

A-60 Oracle Business Intelligence Publisher User's Guide

/**
 * Return a unique ID for this bacode encoder
 * @return the id as a string
 */
 public String getVendorID();

/**
 * Return true if this encoder support a specific type of barcode
 * @param type the type of the barcode
 * @return true if supported
 */
 public boolean isSupported(String type);

/**
 * Encode a barcode string by given a specific type
 * @param data the original data for the barcode
 * @param type the type of the barcode
 * @return the formatted data
 */
 public String encode(String data, String type);

Place this class in the classpath for the middle tier JVM in which BI Publisher is
running.

Note: For E-Business Suite users, the class must be placed in the
classpath for the middle tier and any concurrent nodes that are present.

If in the register-barcode-vendor command the barcode_vendor_id is not provided,
BI Publisher will call the getVendorID() and use the result of the method as the ID for
the vendor.

The following is an example class that supports the code128 a, b and c encodings:

Important: The following code sample can be copied and pasted for use
in your system. Note that due to publishing constraints you will need
to correct line breaks and ensure that you delete quotes that display as
"smart quotes" and replace them with simple quotes.

Using the BI Publisher APIs A-61

Example
package oracle.apps.xdo.template.rtf.util.barcoder;

import java.util.Hashtable;
import java.lang.reflect.Method;
import oracle.apps.xdo.template.rtf.util.XDOBarcodeEncoder;
import oracle.apps.xdo.common.log.Logger;
// This class name will be used in the register vendor
// field in the template.

public class BarcodeUtil implements XDOBarcodeEncoder
// The class implements the XDOBarcodeEncoder interface
{
// This is the barcode vendor id that is used in the
// register vendor field and format-barcode fields
 public static final String BARCODE_VENDOR_ID = "XMLPBarVendor";
// The hashtable is used to store references to
// the encoding methods
 public static final Hashtable ENCODERS = new Hashtable(10);
// The BarcodeUtil class needs to be instantiated
 public static final BarcodeUtil mUtility = new BarcodeUtil();
// This is the main code that is executed in the class,
// it is loading the methods for the encoding into the hashtable.
// In this case we are loading the three code128 encoding
// methods we have created.
 static {
 try {
 Class[] clazz = new Class[] { "".getClass() };

 ENCODERS.put("code128a",mUtility.getClass().getMethod("code128a",
clazz));
 ENCODERS.put("code128b",mUtility.getClass().getMethod("code128b",
clazz));
 ENCODERS.put("code128c",mUtility.getClass().getMethod("code128c",
clazz));
 } catch (Exception e) {
// This is using the BI Publisher logging class to push
// errors to the XMLP log file.
 Logger.log(e,5);
 }
 }

A-62 Oracle Business Intelligence Publisher User's Guide

// The getVendorID method is called from the template layer
// at runtime to ensure the correct encoding method are used
 public final String getVendorID()
 {
 return BARCODE_VENDOR_ID;
 }
//The isSupported method is called to ensure that the
// encoding method called from the template is actually
// present in this class.
// If not then XMLP will report this in the log.
 public final boolean isSupported(String s)
 {
 if(s != null)
 return ENCODERS.containsKey(s.trim().toLowerCase());
 else
 return false;
 }

// The encode method is called to then call the appropriate
// encoding method, in this example the code128a/b/c methods.

 public final String encode(String s, String s1)
 {
 if(s != null && s1 != null)
 {
 try
 {
 Method method =
(Method)ENCODERS.get(s1.trim().toLowerCase());
 if(method != null)
 return (String)method.invoke(this, new Object[] {
 s
 });
 else
 return s;
 }
 catch(Exception exception)
 {
 Logger.log(exception,5);
 }
 return s;
 } else
 {
 return s;
 }
 }

 /** This is the complete method for Code128a */

 public static final String code128a(String DataToEncode)
 {
 char C128_Start = (char)203;
 char C128_Stop = (char)206;
 String Printable_string = "";
 char CurrentChar;
 int CurrentValue=0;
 int weightedTotal=0;
 int CheckDigitValue=0;
 char C128_CheckDigit='w';

 DataToEncode = DataToEncode.trim();

Using the BI Publisher APIs A-63

weightedTotal = ((int)C128_Start) - 100;
 for(int i = 1; i <= DataToEncode.length(); i++)
 {
 //get the value of each character
 CurrentChar = DataToEncode.charAt(i-1);
 if(((int)CurrentChar) < 135)
 CurrentValue = ((int)CurrentChar) - 32;
 if(((int)CurrentChar) > 134)
 CurrentValue = ((int)CurrentChar) - 100;

 CurrentValue = CurrentValue * i;
 weightedTotal = weightedTotal + CurrentValue;
 }
 //divide the WeightedTotal by 103 and get the remainder,//this is
the CheckDigitValue
 CheckDigitValue = weightedTotal % 103;
 if((CheckDigitValue < 95) && (CheckDigitValue > 0))
 C128_CheckDigit = (char)(CheckDigitValue + 32);
 if(CheckDigitValue > 94)
 C128_CheckDigit = (char)(CheckDigitValue + 100);
 if(CheckDigitValue == 0){
 C128_CheckDigit = (char)194;
 }

 Printable_string = C128_Start + DataToEncode + C128_CheckDigit +
C128_Stop + " ";
 return Printable_string;
 }

A-64 Oracle Business Intelligence Publisher User's Guide

/** This is the complete method for Code128b ***/

 public static final String code128b(String DataToEncode)
 {
 char C128_Start = (char)204;
 char C128_Stop = (char)206;
 String Printable_string = "";
 char CurrentChar;
 int CurrentValue=0;
 int weightedTotal=0;
 int CheckDigitValue=0;
 char C128_CheckDigit='w';

 DataToEncode = DataToEncode.trim();
 weightedTotal = ((int)C128_Start) - 100;
 for(int i = 1; i <= DataToEncode.length(); i++)
 {
 //get the value of each character
 CurrentChar = DataToEncode.charAt(i-1);
 if(((int)CurrentChar) < 135)
 CurrentValue = ((int)CurrentChar) - 32;
 if(((int)CurrentChar) > 134)
 CurrentValue = ((int)CurrentChar) - 100;

 CurrentValue = CurrentValue * i;
 weightedTotal = weightedTotal + CurrentValue;
 }
 //divide the WeightedTotal by 103 and get the remainder,//this is
the CheckDigitValue
 CheckDigitValue = weightedTotal % 103;
 if((CheckDigitValue < 95) && (CheckDigitValue > 0))
 C128_CheckDigit = (char)(CheckDigitValue + 32);
 if(CheckDigitValue > 94)
 C128_CheckDigit = (char)(CheckDigitValue + 100);
 if(CheckDigitValue == 0){
 C128_CheckDigit = (char)194;
 }

 Printable_string = C128_Start + DataToEncode + C128_CheckDigit +
C128_Stop + " ";
 return Printable_string;
 }

 /** This is the complete method for Code128c **/

 public static final String code128c(String s)
 {
 char C128_Start = (char)205;
 char C128_Stop = (char)206;
 String Printable_string = "";
 String DataToPrint = "";
 String OnlyCorrectData = "";
 int i=1;
 int CurrentChar=0;
 int CurrentValue=0;
 int weightedTotal=0;
 int CheckDigitValue=0;
 char C128_CheckDigit='w';
 DataToPrint = "";
 s = s.trim();

Using the BI Publisher APIs A-65

for(i = 1; i <= s.length(); i++)
 {
 //Add only numbers to OnlyCorrectData string
 CurrentChar = (int)s.charAt(i-1);
 if((CurrentChar < 58) && (CurrentChar > 47))
 {
 OnlyCorrectData = OnlyCorrectData + (char)s.charAt(i-1);
 }
 }
 s = OnlyCorrectData;
 //Check for an even number of digits, add 0 if not even
 if((s.length() % 2) == 1)
 {
 s = "0" + s;
 }
 //<<<< Calculate Modulo 103 Check Digit and generate
 // DataToPrint >>>>//Set WeightedTotal to the Code 128 value of
// the start character
 weightedTotal = ((int)C128_Start) - 100;
 int WeightValue = 1;
 for(i = 1; i <= s.length(); i += 2)
 {
 //Get the value of each number pair (ex: 5 and 6 = 5*10+6 =56) //And
assign the ASCII values to DataToPrint
 CurrentChar = ((((int)s.charAt(i-1))-48)*10) + (((int)s.charAt(i))-48);
 if((CurrentChar < 95) && (CurrentChar > 0))
 DataToPrint = DataToPrint + (char)(CurrentChar + 32);
 if(CurrentChar > 94)
 DataToPrint = DataToPrint + (char)(CurrentChar + 100);
 if(CurrentChar == 0)
 DataToPrint = DataToPrint + (char)194;
 //multiply by the weighting character
 //add the values together to get the weighted total
 weightedTotal = weightedTotal + (CurrentChar * WeightValue);
 WeightValue = WeightValue + 1;
 }
 //divide the WeightedTotal by 103 and get the remainder,//this is
the CheckDigitValue
 CheckDigitValue = weightedTotal % 103;
 if((CheckDigitValue < 95) && (CheckDigitValue > 0))
 C128_CheckDigit = (char)(CheckDigitValue + 32);
 if(CheckDigitValue > 94)
 C128_CheckDigit = (char)(CheckDigitValue + 100);
 if(CheckDigitValue == 0){
 C128_CheckDigit = (char)194;
 }
 Printable_string = C128_Start + DataToPrint + C128_CheckDigit +
C128_Stop + " ";
 Logger.log(Printable_string,5);
 return Printable_string;
 }
}

Once you create the class and place it in the correct classpath, your template creators
can start using it to format the data for barcodes. You must give them the following
information to include in the template commands:

• The class name and path.

In this example:

A-66 Oracle Business Intelligence Publisher User's Guide

oracle.apps.xdo.template.rtf.util.barcoder.BarcodeUtil

• The barcode vendor ID you created.

In this example: XMLPBarVendor

• The available encoding methods.

In this example, code128a, code128b and code128c They can then use this
information to sucessfully encode their data for barcode output.

They can then use this information to successfully encode their data for barcode output.

Using the Delivery Manager APIs B-1

B
Using the Delivery Manager APIs

Introduction
The Delivery Manager is a set of Java APIs that allow you to control the delivery of
your BI Publisher documents. Use the Delivery Manager to:

• Deliver documents through established delivery channels (e-mail, fax, printer,
WebDAV, FTP, Secure FTP, AS2, or HTTP) or custom delivery channels

• Track the status of each delivery

• Redeliver documents

Using the Delivery Manager
To use the Delivery Manager follow these steps:

1. Create a DeliveryManager instance

2. Create a DeliveryRequest instance using the createRequest() method

3. Add the request properties (such as DeliveryRequest destination). Most properties
require a String value. See the supported properties for each delivery channel for
more information.

4. Set your document to the DeliveryRequest.

5. Call submit() to submit the delivery request.

One delivery request can handle one document and one destination. This facilitates
monitoring and resubmission, if necessary.

DeliveryRequest allows you to set the documents in three ways as follows:

B-2 Oracle Business Intelligence Publisher User's Guide

• Set InputStream of the document to DeliveryRequest. The DeliveryRequest will
read the InputStream when you call submit() for the first time. The DeliveryRequest
does not close the InputStream so you must ensure to close it.

• Set the file name of the document to DeliveryRequest.

The Delivery Manager supports streamlined delivery when you set the direct mode. See
Direct and Buffering Modes, page B-33.

The follow delivery channels are described in this document:

• E-mail

• Printer

• Fax

• WebDAV

• FTP

• Secure FTP

• HTTP

• AS2

Delivering Documents by e-Mail
The following sample demonstrates delivery via E-mail:

Using the Delivery Manager APIs B-3

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_SMTP_EMAIL);

 // set email subject
 req.addProperty(DeliveryPropertyDefinitions.SMTP_SUBJECT, "test
mail");
 // set SMTP server host
 req.addProperty(
 DeliveryPropertyDefinitions.SMTP_HOST, "mysmtphost");
 // set the sender email address
 req.addProperty(DeliveryPropertyDefinitions.SMTP_FROM,
"myname@mydomain.com");
 // set the destination email address
 req.addProperty(
 DeliveryPropertyDefinitions.SMTP_TO_RECIPIENTS,
"user1@mydomain.com, user2@mydomain.com");
 // set the content type of the email body
 req.addProperty(DeliveryPropertyDefinitions.SMTP_CONTENT_TYPE,
"application/pdf");
 // set the document file name appeared in the email
 req.addProperty(DeliveryPropertyDefinitions.SMTP_CONTENT_FILENAME,
"test.pdf");
 // set the document to deliver
 req.setDocument("/document/test.pdf");

 // submit the request
 req.submit();
 // close the request
 req.close();

The following table lists the supported properties:

Property Description

SMTP_TO_RECIPIENTS Required

Enter multiple recipients separated by a
comma (example: "user1@mydomain.com,
user2@mydomain.com")

SMTP_CC_RECIPIENTS Optional

Enter multiple recipients separated by a
comma.

SMTP_BCC_RECIPIENTS Optional

Enter multiple recipients separated by a
comma.

B-4 Oracle Business Intelligence Publisher User's Guide

Property Description

SMTP_FROM Required

Enter the e-mail address of the sending party.

SMTP_REPLY_TO Optional

Enter the reply-to e-mail address.

SMTP_SUBJECT Required

Enter the subject of the e-mail.

SMTP_CHARACTER_ENCODING Optional

Default is "UTF-8".

SMTP_ATTACHMENT Optional

If you are including an attachment, enter the
attachment object name.

SMTP_CONTENT_FILENAME Required

Enter the file name of the document (example:
invoice.pdf)

SMTP_CONTENT_TYPE Required

Enter the MIME type.

SMTP_SMTP_HOST Required

Enter the SMTP host name.

SMTP_SMTP_PORT Optional

Enter the SMTP port. Default is 25.

SMTP_SMTP_USERNAME Optional

If the SMTP server requires authentication,
enter your username for the server.

Using the Delivery Manager APIs B-5

Property Description

SMTP_SMTP_PASSWORD Optional

If the SMTP server requires authentication,
enter the password for the username you
entered.

SMTP_ATTACHMENT_FIRST Optional

If your e-mail contains an attachment and you
want the attachment to appear first, enter
"true". If you do not want the attachment to
appear first, enter "false".

Defining Multiple Recipients
The e-mail delivery server channel supports multiple documents and multiple
destinations per request. The following example demonstrates multiple TO and CC
addresses:

Example
// set the TO email addresses
 req.addProperty(
 DeliveryPropertyDefinitions.SMTP_TO_RECIPIENTS,
 "user1@mydomain.com", user2@mydomain.com, user3@mydomain.com");

 // set the CC email addresses
 req.addProperty(
 DeliveryPropertyDefinitions.SMTP_CC_RECIPIENTS,
 "user4@mydomain.com, user5@mydomain.com, user6@mydomain.com");

Attaching Multiple Documents into One Request
Use the Attachment utility class (oracle.apps.xdo.delivery.smtp.Attachment)
to attach multiple documents into one request. Sample usage is as follows:

B-6 Oracle Business Intelligence Publisher User's Guide

Example
:
 :
 // create Attachment instance
 Attachment m = new Attachment();

 // add PDF attachment
 m.addAttachment(
 "/pdf_doc/invoice.pdf", // file to deliver
 "invoice.pdf", // file name as appears in email
 "application/pdf"); // content type

 // add RTF attachment
 m.addAttachment(
 "/rtf_doc/product.rtf", // file to deliver
 "product.rtf", // file name appears in the email
 "application/rtf"); // content type

 // add XML attachment
 m.addAttachment(
 "/xml_doc/data.xml", // file to deliver
 "data.xml", // file name appears in the email
 "text/xml"); // content type

 // If you want to attach HTML doucments, use addHtmlAttachment().
 // This method automatically resolves the image references
 // in your HTML document and attaches those images.
 m.addHtmlAttachment("/html_doc/invoice.html");

 // add the attachment to the request
 req.addProperty(DeliveryPropertyDefinitions.SMTP_ATTACHMENT, m);

 :
 :

Attaching HTML Documents
You can attach HTML documents into one request. If you have references to image files
located in the local file system in your HTML document, the Attachment utility
automatically attaches those image files also. The sample usage is as follows:

Example
Attachment m = new Attachment();
 m.addHtmlAttachment("/path/to/my.html");
 :
 :

 req.addProperty(DeliveryPropertyDefinitions.SMTP_ATTACHMENT, m);

Displaying the Attachment at the top of the e-mail
If you want to show your attachment at the top of the e-mail, set the property
SMTP_ATTACHMENT_FIRST to "true". Sample usage is as follows.

Using the Delivery Manager APIs B-7

Example
Attachment m = new Attachment();
 m.addHtmlAttachment("/path/to/my.html");
 :
 :
 req.addProperty(DeliveryPropertyDefinitions.SMTP_ATTACHMENT_FIRST,
"true");
 :

Using a String Object as the e-Mail Body
You can use a String object for the e-mail body. This may be useful if you want to
include a message with your attached files. The following sample code will deliver the
message "Please find the attached invoice." in the e-mail body and one PDF document
"invoice.pdf" as an attachment.
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_SMTP_EMAIL);

 // set email subject
 req.addProperty(DeliveryPropertyDefinitions.SMTP_SUBJECT, "Invoice");
 // set SMTP server host
 req.addProperty(
 DeliveryPropertyDefinitions.SMTP_HOST, "mysmtphost");
 // set the sender email address
 req.addProperty(DeliveryPropertyDefinitions.SMTP_FROM,
"myname@mydomain.com");
 // set the destination email address
 req.addProperty(
 DeliveryPropertyDefinitions.SMTP_TO_RECIPIENTS,
"user1@mydomain.com, user2@mydomain.com");
 // set the document to deliver
 req.setDocument("Please find the attached invoice. ", "UTF-8");

 // create Attachment
 Attachment m = new Attachment();
 // add attachments
 m.addAttachment(
 "/pdf_doc/invoice.pdf", // file to deliver
 "invoice.pdf", // file name appears in the
email
 "application/pdf"); // content type
 // add the attachment to the request
 req.addProperty(DeliveryPropertyDefinitions.SMTP_ATTACHMENT, m);

 // submit the request
 req.submit();
 // close the request
 req.close();

 :
 :

Using an HTML Document as the e-Mail Body
You can also use an HTML document for the e-mail body. The utility automatically

B-8 Oracle Business Intelligence Publisher User's Guide

resolves the local image references in your HTML document and attaches those images
also.

Sample usage is as follows:
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_SMTP_EMAIL);

 // set email subject
 req.addProperty(DeliveryPropertyDefinitions.SMTP_SUBJECT, "Invoice");
 // set SMTP server host
 req.addProperty(
 DeliveryPropertyDefinitions.SMTP_HOST, "mysmtphost");
 // set the sender email address
 req.addProperty(DeliveryPropertyDefinitions.SMTP_FROM,
"myname@mydomain.com");
 // set the destination email address
 req.addProperty(
 DeliveryPropertyDefinitions.SMTP_TO_RECIPIENTS,
"user1@mydomain.com, user2@mydomain.com");

 // set the content type of the email body
 req.addProperty(DeliveryPropertyDefinitions.SMTP_CONTENT_TYPE,
"text/html");
 // set the document file name appeared in the email
 req.addProperty(DeliveryPropertyDefinitions.SMTP_CONTENT_FILENAME,
"body.html");
 // set the document to deliver
 req.setDocument("/document/invoice.html");

 // submit the request
 req.submit();
 // close the request
 req.close();

 :
 :

Providing Username and Password for Authentication
If the SMTP server requires authentication, you can specify the username and password
to the delivery request.

Example
:
 req.addProperty(DeliveryPropertyDefinitions.SMTP_USERNAME, "scott");
 req.addProperty(DeliveryPropertyDefinitions.SMTP_PASSWORD, "tiger");
 :

Delivering Your Document to a Printer
The Delivery Server supports Internet Printing Protocol (IPP) as defined in RFC 2910
and 2911 for the delivery of documents to IPP-supported printers or servers, such as
CUPS.

Using the Delivery Manager APIs B-9

Common Unix Printing System (CUPS) is a free, server-style, IPP-based software that
can accept IPP requests and dispatch those requests to both IPP and non-IPP based
devices, such as printers and fax machines. See http://www.cups.org/ for more
information about CUPS. See Setting Up Cups, page 12-1for additional information
about setting up CUPS in your system.

To print out your document with the IPP, you need to transform your document into
the format that the target IPP printers or servers can understand before the delivery. For
example, if the target printer is a Postscript printer, you must transform your document
to Postscript format. Usually, printers do not natively understand PDF, RTF, Excel or
Word document formats. The Delivery API itself does not provide the document format
transformation functionality, but it does offer document filter support for this purpose.
See Document Filter Support, page B-35 for more information.

Following is a code sample for delivery to a printer:

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_IPP_PRINTER);

 // set IPP printer host
 req.addProperty(DeliveryPropertyDefinitions.IPP_HOST, "myhost");
 // set IPP printer port
 req.addProperty(DeliveryPropertyDefinitions.IPP_PORT, "631");
 // set IPP printer name
 req.addProperty(DeliveryPropertyDefinitions.IPP_PRINTER_NAME,
"/printers/myprinter");
 // set the document format
 req.addProperty(DeliveryPropertyDefinitions.IPP_DOCUMENT_FORMAT,
 DeliveryPropertyDefinitions.IPP_DOCUMENT_FORMAT_POSTSCRIPT);
 // set the document
 req.setDocument("/document/invoice.ps");

 // submit the request
 req.submit();
 // close the request
 req.close();

The following properties are supported. A string value is required for each property,
unless otherwise noted. Note that printer-specific properties such as IPP_SIDES,
IPP_COPIES and IPP_ORIENTATION depend on the printer capabilities. For example,
if the target printer does not support duplex printing, the IPP_SIDES setting will have
no effect.

Property Description

IPP_HOST Required

Enter the host name.

http://www.cups.org/

B-10 Oracle Business Intelligence Publisher User's Guide

Property Description

IPP_PORT Optional

Default is 631.

IPP_PRINTER_NAME Required

Enter the name of the printer that is to receive
the output.

• If you use CUPS with the default setup,
enter the printer name as
/printers/<printer-name>

• If you use the Microsoft Internet
Information Service (IIS) with the default
setup, enter the printer name as
/printers/<printer-name>/.print
er

IPP_AUTHTYPE Optional

Valid values for authentication type are:

IPP_AUTHTYPE_NONE - no authentication
(default)

IPP_AUTHTYPE_BASIC - use HTTP basic
authentication

IPP_AUTHTYPE_DIGEST - use HTTP digest
authentication

IPP_USERNAME Optional

Enter the username for HTTP authentication.

IPP_PASSWORD Optional

Enter the password for HTTP authentication.

Using the Delivery Manager APIs B-11

Property Description

IPP_ENCTYPE Optional

The encryption type can be set to either of the
following:

IPP_ENCTYPE_NONE - no encryption
(default)

IPP_ENCTYPE_SSL - use Secure Socket Layer

IPP_USE_FULL_URL Optional

Set to "true" to send the full URL for the HTTP
request header. Valid values are "true" or
"false" (default).

IPP_USE_CHUNKED_BODY Optional

Valid values are "true" (default) to use HTTP
chunked transfer coding for the message
body, or "false".

IPP_ATTRIBUTE_CHARSET Optional

Attribute character set of the IPP request.
Default is "UTF-8".

IPP_NATURAL_LANGUAGE Optional

The natural language of the IPP request.
Default is "en".

IPP_JOB_NAME Optional

Job name of the IPP request.

IPP_COPIES Optional

Define the number of copies to print (example:
"1" , "5", "10"). Default is 1.

B-12 Oracle Business Intelligence Publisher User's Guide

Property Description

IPP_SIDES Optional

Enable two-sided printing. This setting will be
ignored if the target printer does not support
two-sided printing. Valid values are:

• IPP_SIDES_ONE_SIDED - default

• IPP_SIDES_TWO_SIDED_LONG_EDGE -
prints both sides of paper for binding
long edge.

• IPP_SIDES_TWO_SIDED_SHORT_EDGE
- prints both sides of paper for binding
short edge.

• IPP_SIDES_DUPLEX : Same as
IPP_SIDES_TWO_SIDED_LONG_EDGE.

• IPP_SIDES_TUMBLE : Same as
IPP_SIDES_TWO_SIDED_SHORT_EDGE
.

IPP_ORIENTATIONS Optional

Sets the paper orientation. This setting will be
ignored if the target printer does not support
orientation settings. Valid values are:

IPP_ORIENTATIONS_PORTRAIT (default)

IPP_ORIENTATIONS_LANDSCAPE

IPP_DOCUMENT_FORMAT Optional

The target printer must support the specified
format. Valid values are:

IPP_DOCUMENT_FORMAT_POSTSCRIPT

IPP_DOCUMENT_FORMAT_PLAINTEXT

IPP_DOCUMENT_FORMAT_PDF

IPP_DOCUMENT_FORMAT_OCTETSTREA
M (default)

Using the Delivery Manager APIs B-13

Property Description

IPP_MEDIA You can choose either the paper size or the
tray number. If you do not specify this option,
the default media of the target printer will be
used. It will be ignored if the target printer
doesn't support the media option. Valid
values are:

• IPP_MEDIA_TRAY1 : Media on tray 1

• IPP_MEDIA_TRAY2 : Media on tray 2

• IPP_MEDIA_TRAY3 : Media on tray 3

• IPP_MEDIA_A3 : A3 Media

• IPP_MEDIA_A4 : A4 Media

• IPP_MEDIA_A5 : A5 Media

• IPP_MEDIA_B4 : B4 Media

• IPP_MEDIA_B5 : B5 Media

IPP_PAGE_RANGES Specify page ranges to print. By default, all
pages are printed. Example valid values are:

• "3" : prints only page 3.

• "2-5" : prints pages 2-5.

• "1,3-5" : print page 1 and 3-5.

Printing over an HTTP Proxy Server
To deliver documents to IPP printers or fax machines over an HTTP proxy server, you
may encounter delivery problems due to differences in the HTTP implementations
between CUPS and the proxy servers. Setting the following two properties can resolve
most of these problems:

• DeliveryPropertyDefinitions.IPP_USE_FULL_URL - set to "true"

• DeliveryPropertyDefinitions.IPP_USE_CHUNKED_BODY - set to "false"

If you use CUPS with the default setup, the typical property settings are as follows:

B-14 Oracle Business Intelligence Publisher User's Guide

• IPP_HOST : <host-name>

• IPP_PORT : 631

• IPP_PRINTER_NAME : /printers/<printer-name>

If you use the Microsoft Internet Information Service (IIS) with the default setup, the
typical property settings are as follows:

• IPP_HOST : <host-name>

• IPP_PORT : 80

• IPP_PRINTER_NAME : /printers/<printer-name>/.printer

Delivering Your Documents by a Fax Server
The delivery system supports the delivery of documents to fax modems configured on
CUPS. You can configure fax modems on CUPS with efax (http://www.cce.com/efax/)
and FAX4CUPS (http://www.gnu.org/directory/productivity/special/fax4CUPS.html).

Sample code for fax delivery is as follows:

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_IPP_FAX);

 // set IPP fax host
 req.addProperty(DeliveryPropertyDefinitions.IPP_HOST, "myhost");
 // set IPP fax port
 req.addProperty(DeliveryPropertyDefinitions.IPP_PORT, "631");
 // set IPP fax name
 req.addProperty(DeliveryPropertyDefinitions.IPP_PRINTER_NAME,
"/printers/myfax");
 // set the document format
 req.addProperty(DeliveryPropertyDefinitions.IPP_DOCUMENT_FORMAT,
"application/postscript");
 // set the phone number to send
 req.addProperty(DeliveryPropertyDefinitions.IPP_PHONE_NUMBER,
"9999999");
 // set the document
 req.setDocument("/document/invoice.pdf");

 // submit the request
 req.submit();
 // close the request
 req.close();

The supported properties are the same as those supported for printer documents, plus
the following:

http://www.cce.com/efax/
http://www.gnu.org/directory/productivity/special/fax4CUPS.html

Using the Delivery Manager APIs B-15

Property Description

IPP_PHONE_NUMBER Required

Enter the fax number.

Delivering Your Documents to a WebDAV Server
The following is sample code for delivery to a Web-based Distributed Authoring and
Versioning (WebDAV) server:

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_WEBDAV);

 // set document content type
 req.addProperty(DeliveryPropertyDefinitions.WEBDAV_CONTENT_TYPE,
"application/pdf");
 // set the WebDAV server hostname
 req.addProperty(DeliveryPropertyDefinitions.WEBDAV_HOST,
"mywebdavhost");
 // set the WebDAV server port number
 req.addProperty(DeliveryPropertyDefinitions.WEBDAV_PORT, "80");
 // set the target remote directory

req.addProperty(DeliveryPropertyDefinitions.WEBDAV_REMOTE_DIRECTORY,
"/content/");
 // set the remote filename
 req.addProperty(DeliveryPropertyDefinitions.WEBDAV_REMOTE_FILENAME,
"xdotest.pdf");

 // set username and password to access WebDAV server
 req.addProperty(DeliveryPropertyDefinitions.WEBDAV_USERNAME,
"xdo");
 req.addProperty(DeliveryPropertyDefinitions.WEBDAV_PASSWORD,
"xdo");
 // set the document
 req.setDocument("/document/test.pdf");

 // submit the request
 req.submit();
 // close the request
 req.close();

The following properties are supported. A String value is required for each, unless
otherwise noted.

B-16 Oracle Business Intelligence Publisher User's Guide

Property Description

WEBDAV_CONTENT_TYPE Required

Enter the document content type (example:
"application/pdf").

WEBDAV_HOST Required

Enter the server host name.

WEBDAV_PORT Optional

Enter the server port number.

Default is 80.

WEBDAV_REMOTE_DIRECTORY Required.

Enter the remote directory name (example:
"/myreports/").

WEBDAV_REMOTE_FILENAME Required.

Enter the remote file name.

WEBDAV_AUTHTYPE Optional

Valid values for authentication type are:

WEBDAV_AUTHTYPE_NONE - no
authentication (default)

WEBDAV_AUTHTYPE_BASIC - use HTTP
basic authentication

WEBDAV_AUTHTYPE_DIGEST - use HTTP
digest authentication

WEBDAV_USERNAME Optional

Enter the username for HTTP authentication.

WEBDAV_PASSWORD Optional

Enter the password for HTTP authentication.

Using the Delivery Manager APIs B-17

Property Description

WEBDAV_ENCTYPE Optional

Valid values for encryption type are:

WEBDAV_ENCTYPE_NONE - no encryption
(default)

WEBDAV_ENCTYPE_SSL - use Secure Socket
Layer

WEBDAV_USE_FULL_URL Optional

Set to "true" to send the full URL for the HTTP
request header. Valid values are "true" or
"false" (default).

WEBDAV_USE_CHUNKED_BODY Optional

Valid values are "true" (default) to use HTTP
chunked transfer coding for the message
body, or "false".

WEBDAV_URL_CHARACTER_ENCODING Encoding of the URL. It will be used if you use
non-ASCII characters in the URL. Set the
Java-supported encoding string for the value.

Delivering Your Document Using FTP
The following is sample code for delivery to a FTP server:

B-18 Oracle Business Intelligence Publisher User's Guide

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_FTP);

 // set hostname of the FTP server
 req.addProperty(DeliveryPropertyDefinitions.FTP_HOST, "myftphost");
 // set port# of the FTP server
 req.addProperty(DeliveryPropertyDefinitions.FTP_PORT, "21");
 // set username and password to access WebDAV server
 req.addProperty(DeliveryPropertyDefinitions.FTP_USERNAME, "xdo");
 req.addProperty(DeliveryPropertyDefinitions.FTP_PASSWORD, "xdo");
 // set the remote directory that you want to send your document to
 req.addProperty(DeliveryPropertyDefinitions.FTP_REMOTE_DIRECTORY,
"pub");
 // set the remote file name
 req.addProperty(DeliveryPropertyDefinitions.FTP_REMOTE_FILENAME,
"test.pdf");
 // set the document
 req.setDocument("/document/test.pdf");

 // submit the request
 req.submit();
 // close the request
 req.close();

The following properties are supported. A String value is required unless otherwise
noted.

Property Description

FTP_HOST Required

Enter the server host name.

FTP_PORT Optional

Enter the server port number. Default is 21.

FTP_USERNAME Required

Enter the login user name to the FTP server.

FTP_PASSWORD Required

Enter the login password to the FTP server.

FTP_REMOTE_DIRECTORY Required

Enter the directory to which to deliver the
document (example: /pub/)

Using the Delivery Manager APIs B-19

Property Description

FTP_REMOTE_FILENAME Required

Enter the document file name for the remote
server.

FTP_BINARY_MODE Optional

Valid values are "true" (default) or "false".

Delivering Your Documents over Secure FTP
Secure FTP is the protocol based on the Secure Shell technology (ssh) and it is widely
used to transfer files in a secure manner. Both Secure Shell and Secure FTP are defined
by the Internet Engineering Task Force (IETF) and the specifications are available on
their Web site: http://www.ietf.org. The delivery system supports the delivery of
documents to secure FTP servers.

The following tables lists the supported properties. A string value is required for each
property unless otherwise noted.

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_SFTP);
 // set hostname of the SFTP server
 req.addProperty(DeliveryPropertyDefinitions.SFTP_HOST,
"mysftphost");
 // set username and password to access server
 req.addProperty(DeliveryPropertyDefinitions.SFTP_USERNAME,
"myname");
 req.addProperty(DeliveryPropertyDefinitions.SFTP_PASSWORD,
"mypassword");
 // set the remote directory that you want to send your document to
 req.addProperty(DeliveryPropertyDefinitions.SFTP_REMOTE_DIRECTORY,
"pub");
 // set the remote file name
 req.addProperty(DeliveryPropertyDefinitions.SFTP_REMOTE_FILENAME,
"test.pdf");
 // set the document
 req.setDocument("/document/test.pdf");

 // submit the request
 req.submit();
 // close the request
 req.close();

http://www.ietf.org

B-20 Oracle Business Intelligence Publisher User's Guide

Property Description

SFTP_HOST Required

Enter the target server host name.

SFTP_PORT Optional

Enter the target server SSH port number.
Default is 22.

SFTP_USERNAME Required

Enter the login user name.

SFTP_PASSWORD Required if you choose the
SFTP_AUTH_TYPE_PASSWORD
authentication type.

Enter the login password.

SFTP_REMOTE_DIRECTORY Enter the directory to which to deliver the
document (example: /pub/). If no value is
entered, the document will be delivered to the
login directory.

SFTP_REMOTE_FILENAME Required

Enter the document file name on the remote
server.

SFTP_AUTH_TYPE Set either of the following:

SFTP_AUTH_TYPE_PASSWORD (Default)
Requires providing password at login.

SFTP_AUTH_TYPE_PUBLIC_KEY - public
key authorization type.

SFTP_PRIVATE_KEY_FILE Enter the client private key file. Required if
you choose
SFTP_AUTH_TYPE_PUBLIC_KEY.

SFTP_PRIVATE_KEY_PASSWORD Enter the client private key password.
Required if you choose
SFTP_AUTH_TYPE_PUBLIC_KEY.

Using the Delivery Manager APIs B-21

Property Description

SFTP_FILE_PERMISSION Enter the permissions to set for the file being
created. Default is 0755.

Authentication Modes
The secure FTP delivery supports two authentication modes: password authentication
and public key authentication. Set the property SFTP_AUTH_TYPE to choose the mode.
The default mode is password authentication.
:
 :
 // set public key auth type
 req.addProperty(DeliveryPropertyDefinitions.SFTP_AUTH_TYPE,

DeliveryPropertyDefinitions.SFTP_AUTH_TYPE_PUBLIC_KEY);
 // set username
 req.addProperty(DeliveryPropertyDefinitions.SFTP_USERNAME,
"myname");
 // set the client's private key file
 req.addProperty(DeliveryPropertyDefinitions.SFTP_PRIVATE_KEY_FILE,
 "/path/to/the/key");
 // set the client's private key password

req.addProperty(DeliveryPropertyDefinitions.SFTP_PRIVATE_KEY_PASSWORD,
"myPrivateKeyPass");
 :
 :

The password authentication mode requires the username and password to log in to the
secure FTP server. The following example shows sample code:

Example
:
 :
 // set password auth type
 req.addProperty(DeliveryPropertyDefinitions.SFTP_AUTH_TYPE,

DeliveryPropertyDefinitions.SFTP_AUTH_TYPE_PASSWORD);
 // set username and password to access server
 req.addProperty(DeliveryPropertyDefinitions.SFTP_USERNAME,
"myname");
 req.addProperty(DeliveryPropertyDefinitions.SFTP_PASSWORD,
"mypassword");
 :
 :

The public key authorization mode requires the username, your private key and
password for the private key. This is a more secure method than the password
authentication. Note that in order to use the public key authentication mode, you must
set up the public key in the ssh/secure FTP server in advance. The following example
shows sample code:

B-22 Oracle Business Intelligence Publisher User's Guide

:
 :
 // set public key auth type
 req.addProperty(DeliveryPropertyDefinitions.SFTP_AUTH_TYPE,

DeliveryPropertyDefinitions.SFTP_AUTH_TYPE_PUBLIC_KEY);
 // set username
 req.addProperty(DeliveryPropertyDefinitions.SFTP_USERNAME,
"myname");
 // set the client's private key file
 req.addProperty(DeliveryPropertyDefinitions.SFTP_PRIVATE_KEY_FILE,
 "/path/to/the/key");
 // set the client's private key password

req.addProperty(DeliveryPropertyDefinitions.SFTP_PRIVATE_KEY_PASSWORD,
"myPrivateKeyPass");
 :
 :

Delivering Your Documents over HTTP
The Delivery Manager supports delivery of documents to HTTP servers. The following
sample sends a document through the HTTP POST method. Note that the receiving
HTTP server must be able to accept your custom HTTP request in advance (for example
via a custom servlet or CGI program).

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_HTTP);

 // set request method
 req.addProperty(DeliveryPropertyDefinitions.HTTP_METHOD,
DeliveryPropertyDefinitions.HTTP_METHOD_POST);
 // set document content type
 req.addProperty(DeliveryPropertyDefinitions.HTTP_CONTENT_TYPE,
"application/pdf");
 // set the HTTP server hostname
 req.addProperty(DeliveryPropertyDefinitions.HTTP_HOST, "myhost");
 // set the HTTP server port number
 req.addProperty(DeliveryPropertyDefinitions.HTTP_PORT, "80");
 // set the target remote directory
 req.addProperty(DeliveryPropertyDefinitions.HTTP_REMOTE_DIRECTORY,
"/servlet/");
 // set the remote filename (servlet class)
 req.addProperty(DeliveryPropertyDefinitions.HTTP_REMOTE_FILENAME,
"uploadDocument");

 // set the document
 req.setDocument("/document/test.pdf");

 // submit the request
 req.submit();
 // close the request
 req.close();

The following table lists the properties that are supported. A String value is required for

Using the Delivery Manager APIs B-23

each property unless otherwise noted.

Property Description

HTTP_METHOD Optional

Sets the HTTP request method. Valid values
are:

HTTP_METHOD_POST (Default)

HTTP_METHOD_PUT

HTTP_CONTENT_TYPE Optional

The document content type (example:
"application/pdf").

HTTP_HOST Required

Enter the server host name.

HTTP_PORT Optional

Enter the server port number. The default is
80.

HTTP_REMOTE_DIRECTORY Required

Enter the remote directory name (example:
"/home/").

HTTP_REMOTE_FILENAME Required

Enter the file name to save the document as in
the remote directory.

HTTP_AUTHTYPE Optional

Valid values for authentication type are:

HTTP_AUTHTYPE_NONE - no authentication
(default)

HTTP_AUTHTYPE_BASIC - use basic HTTP
authentication

HTTP_AUTHTYPE_DIGEST - use digest
HTTP authentication

B-24 Oracle Business Intelligence Publisher User's Guide

Property Description

HTTP_USERNAME Optional

If the server requires authentication, enter the
username.

HTTP_PASSWORD Optional

If the server requires authentication, enter the
password for the username.

HTTP_ENCTYPE Optional

Enter the encryption type:

HTTP_ENCTYPE_NONE - no encryption
(default)

HTTP_ENCTYPE_SSL - use Secure Socket
Layer

HTTP_USE_FULL_URL Optional

Set to "true" to send the full URL for the HTTP
request header. Valid values are "true" or
"false" (default).

HTTP_USE_CHUNKED_BODY Optional

Valid values are "true" (default) to use HTTP
chunked transfer coding for the message body,
or "false".

HTTP_TIMEOUT Optional

Enter a length of time in milliseconds after
which to terminate the request if a connection
is not made to the HTTP server. The default is
60000 (1 minute).

HTTP_URL_CHARACTER_ENCODING Encoding of the URL. It will be used if you use
non-ASCII characters in the URL. Set the
Java-supported encoding string for the value.

Delivering Documents over AS2
AS2 is one of the standard protocols defined in the Electronic Data Interchange-Internet

Using the Delivery Manager APIs B-25

Integration (EDI-INT). AS2 is based on HTTP and other internet standard technologies
and is designed to exchange data over the internet in a secure manner. The AS2
specification is defined in RFC4130 (available at http://www.ietf.org/). The delivery
system supports the delivery of documents to AS2 servers. Sample code is as follows:

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_AS2);

 // set AS2 message properties
 req.addProperty(DeliveryPropertyDefinitions.AS2_FROM, "Me");
 req.addProperty(DeliveryPropertyDefinitions.AS2_TO, "You");
 req.addProperty(DeliveryPropertyDefinitions.AS2_SUBJECT, "My EDI
Message");
 req.addProperty(DeliveryPropertyDefinitions.AS2_CONTENT_TYPE,
"applications/EDIFACT");

 // set HTTP properties
 req.addProperty(DeliveryPropertyDefinitions.AS2_HTTP_HOST,
"as2hsot");

req.addProperty(DeliveryPropertyDefinitions.AS2_HTTP_REMOTE_DIRECTORY,
"/");

req.addProperty(DeliveryPropertyDefinitions.AS2_HTTP_REMOTE_FILENAME,
"as2");

 // set the document
 req.setDocument("/document/myEDIdoc");
 // submit the request
 DeliveryResponse res = req.submit();
 // close the request
 req.close();

The following table lists the supported properties. A string value is required for each
property unless otherwise noted.

Property Description

AS2_FROM Required.

Enter the AS2 message sender.

AS2_TO Required.

Enter the AS2 message recipient.

AS2_SUBJECT Required.

Enter the message subject.

http://www.ietf.org/

B-26 Oracle Business Intelligence Publisher User's Guide

Property Description

AS2_MESSAGE_COMPRESSION Default value is False. Enter True to compress
the message.

AS2_MESSAGE_SIGNATURE Default value is False. Enter True to sign the
message.

AS2_MESSAGE_ENCRYPTION Default value is False. Enter True to encrypt
the message.

AS2_CONTENT_TYPE Required.

Enter the content type of the document. Valid
values are:

• application/EDIFACT

• application/xml

AS2_ENC_ALGO The AS2 encryption algorithm. Set one of the
following:

• AS2_ENC_ALGO_RC2_40

• AS2_ENC_ALGO_RC2_64

• AS2_ENC_ALGO_RC2_128

• AS2_ENC_ALGO_DES

• AS2_ENC_ALGO_DES_EDE3 (Defau

• AS2_ENC_ALGO_AES_128

• AS2_ENC_ALGO_AES_192

• AS2_ENC_ALGO_AES_256

AS2_DIGEST_ALGO Enter the AS2 digest algorithm for signing the
messages. Set either of the following:

• AS2_DIGEST_ALGO_MD5 (Default)

• AS2_DIGEST_ALGO_SHA1

Using the Delivery Manager APIs B-27

Property Description

AS2_ASYNC_ADDRESS Enter the asynchronous address to which
MDN notifications should be set.

AS2_ASYNC_EMAIL_SERVER_HOST Enter the email server host for asynchronous
email MDN.

AS2_ASYNC_EMAIL_SERVER_PORT Enter the email server port for asynchronous
email MDN.

AS2_ASYNC_EMAIL_SERVER_USERNAME Enter the email server USERNAME for
asynchronous email MDN.

AS2_ASYNC_EMAIL_SERVER_PASSWORD Enter the email server PASSWORD for
asynchronous email MDN.

AS2_ASYNC_EMAIL_SERVER_FOLDER_NA
ME

Enter the IMAP folder name for aynchronous
email MDN.

AS2_SENDER_PKCS12_FILE Location of the sender's PKCS12
(public/private key) file.

AS2_SENDER_PKCS12_PASSWORD Password for the sender's PKCS12
(public/private key).

AS2_RECEIVER_CERTIFICATES_FILE Location of the receiver's certificates file.

AS2_DELIVERY_RECEIPT_DIRECTORY Directory to store the delivery receipts. This
directory must be specified if you wish to
receive delivery receipts.

AS2_HTTP_HOST Required.

Enter the server host name.

AS2_HTTP_PORT Enter the server HTTP port number. The
default is 80.

AS2_HTTP_REMOTE_DIRECTORY Required.

Enter the remote directory name. (Example:
/home/)

B-28 Oracle Business Intelligence Publisher User's Guide

Property Description

AS2_HTTP_REMOTE_FILENAME Required.

Enter the remote file name.

AS2_HTTP_AUTHTYPE Enter the HTTP authentication type. Valid
values are:

• AS2_HTTP_AUTHTYPE_NONE - no
authentication (Default)

• AS2_HTTP_AUTHTYPE_BASIC - Use
HTTP basic authentication.

• AS2_HTTP_AUTHTYPE_DIGEST - user
HTTP digest authentication.

AS2_HTTP_USERNAME Enter the username for HTTP authentication.

AS2_HTTP_PASSWORD Enter the password for HTTP authentication.

AS2_HTTP_ENCTYPE Set the encryption type. Valid values are:

• AS2_HTTP_ENCTYPE_NONE - no
encryption (default)

• AS2_HTTP_ENCTYPE_SSL - use secure
socket layer (SSL)

AS2_HTTP_TIMEOUT Enter the time out allowance in milliseconds.
Default is 60,000 (1 minute)

AS2_HTTP_PROXY_HOST Required.

Enter the proxy server host name.

AS2_HTTP_PROXY_PORT Enter the proxy server port number. Default is
80.

Using the Delivery Manager APIs B-29

Property Description

AS2_HTTP_PROXY_AUTHTYPE • AS2_HTTP_AUTHTYPE_NONE - no
authentication (Default)

• AS2_HTTP_AUTHTYPE_BASIC - Use
HTTP basic authentication.

• AS2_HTTP_AUTHTYPE_DIGEST - user
HTTP digest authentication.

AS2_HTTP_PROXY_USERNAME Enter the username for proxy authentication.

AS2_HTTP_PROXY_PASSWORD Enter the password for HTTP proxy
authentication.

Delivery Receipt
The AS2 server always issues an AS2 delivery receipt for each AS2 request. Set the
AS2_DELIVERY_RECEIPT_DIRECTORY property to specify the location to store the
delivery receipts. If you do not specify this directory, delivery receipts will be ignored.
Example code for setting the delivery receipt directory is as follows:
:
 :
 // Set the delivery receipt directory

req.addProperty(DeliveryPropertyDefinitions.AS2_DELIVERY_RECEIPT_DIRECTO
RY, "/my/receipt/dir");
 :
 :

Synchrony
You can send either synchronous or asynchronous delivery requests to the AS2 servers.
By default, the request is synchronous so that you can see the Message Disposition
Notification (MDN) immediately in the DeliveryResponse.

If you set the AS2_ASYNC_ADDRESS to your request, the request will be
asynchronous. You can specify either an HTTP URL or an e-mail address where the
delivery receipt will be delivered after processing. You must set up the HTTP server or
e-mail address to receive the delivery receipts.

The Delivery API can track down the asynchronous request if you specify the e-mail
address for the AS2_ASYNC_ADDRESS. If you provide the e-mail account information
to the Delivery API, the Delivery API will periodically check the e-mail account to
obtain the delivery receipt. Sample code for this is as follows:

B-30 Oracle Business Intelligence Publisher User's Guide

Example
:
 :
 // Set the email address - async request
 req.addProperty(DeliveryPropertyDefinitions.AS2_ASYNC_ADDRESS,
"async_target@acme.com");

 // Set the delivery receipt directory

req.addProperty(DeliveryPropertyDefinitions.AS2_DELIVERY_RECEIPT_DIRECTO
RY, "/my/receipt/dir");

 // Set the email server information where the delivery receipt will be
delivered to.
 req.addProperty(
 DeliveryPropertyDefinitions.AS2_ASYNC_EMAIL_SERVER_HOST,
"mail.acme.com");
 req.addProperty(
 DeliveryPropertyDefinitions.AS2_ASYNC_EMAIL_SERVER_USERNAME,
"async_target");
 req.addProperty(
 DeliveryPropertyDefinitions.AS2_ASYNC_EMAIL_SERVER_PASSWORD,
"mypassword");
 req.addProperty(
 DeliveryPropertyDefinitions.AS2_ASYNC_EMAIL_SERVER_FOLDER_NAME,
"inbox");

 // set the document
 req.setDocument("/document/myEDIdoc");

 // submit the request with the DeliveryResponseListener
 req.submit(myDeliveryListener);
 :
 :

Note that as shown in the preceding code, you must use the Delivery API's
asynchronous delivery request mechanism to track down the asynchronous requests.
See Asynchronous Delivery Requests, page B-34 for more information.

Document Signing
The Delivery API allows you to sign a document for the secure transaction. This is
based on the public key architecture, so you must set up the following:

• Sender side: sender's public/private keys

Sender must have sender's public/private keys in a PKCS12 standard file. The file
extension is .p12. Place that file in your local system where you want to run the
Delivery API.

• Receiver side (AS2 server side) : sender's public key certificate

The receiver must have the sender's public key certificate. Installing certificates on
the AS2 server can vary depending on your server. Generally, you must copy the
.der or .cer certificates to a particular location. Consult your AS2 server manual for
the procedure.

Using the Delivery Manager APIs B-31

Once you have completed the setup, you can sign your document by setting properties
in the delivery request. Sample code for this is as follows:
:
 :
 // Signing the document
 req.addProperty(DeliveryPropertyDefinitions.AS2_MESSAGE_SIGNATURE,
"true");
 req.addProperty(DeliveryPropertyDefinitions.AS2_SENDER_PKCS12_FILE,
"/path/to/mykey.p12");
 req.addProperty(DeliveryPropertyDefinitions.AS2_SENDER_PKCS12_PASSWORD,
"welcome");
 :
 :

Document Encryption
The Delivery API allows you to encrypt documents for the secure transaction. This is
based on the public key architecture, so you need to set up the following:

• Sender's side: Receiver's public key certificate

The sender side must have the receiver's public key certificate file. The file
extension is .der or .cer. Place that file in your local system where you want to run
the Delivery API. Please consult the manual of your AS2 server for the procedure to
obtain the AS2 server's public key certificate.

• Receiver's side (AS2 server side): Receiver's public/private keys

The receiver side (AS2 Server) must have the receiver's public/private keys. Please
consult the manual of your AS2 server for the procedure to set up keys.

Once set up, you can encrypt your document by setting properties in the delivery
request. The sample code is as follows:
:
 :
 // Encrypting the document
 req.addProperty(DeliveryPropertyDefinitions.AS2_MESSAGE_ENCRYPTION,
"true");

req.addProperty(DeliveryPropertyDefinitions.AS2_RECEIVER_CERTIFICATES_FI
LE, "/path/to/server-certificate.der");
 :
 :

Delivering Documents Using an External Command
The Delivery API supports the use of external, Operating System (OS) native
commands to deliver documents.

Specify your OS native command with the {file} placeholder. At runtime, this
placeholder will be replaced with the document file name.

The delivery status is determined by the exit value of the OS command. If the value is
'0', the request is marked successful.

B-32 Oracle Business Intelligence Publisher User's Guide

Sample code is as follows:
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_EXTERNAL);
 // set the OS native command for delivery

req.addProperty(ExternalDeliveryPropertyDefinitions.EXTERNAL_DELIVERY_CO
MMAND,
 "/usr/bin/lp -d myprinter {file}");
 // set the document
 req.setDocument("/document/test.pdf");

 // submit the request
 req.submit();
 // close the request
 req.close();

The following property is supported and defined in DeliveryPropertyDefinitions:

Property Description

EXTERNAL_DELIVERY_COMMAND Required.

Enter the OS native command for delivery.

Delivering Documents to the Local File System
The Delivery API supports the delivery of documents to the local file system where the
Delivery API runs. The command copies the file to the location you specify.

The following sample code copies the file /document/test.pdf to
/destination/document.pdf.
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_LOCAL);
 // set the document destination in the local filesystem.

req.addProperty(ExternalDeliveryPropertyDefinitions.LOCAL_DESTINATION,
"/destination/document.pdf");
 // set the document to deliver.
 req.setDocument("/document/test.pdf");

 // submit the request
 req.submit();
 // close the request
 req.close();

The following property is supported and defined in DeliveryPropertyDefinitons:

Using the Delivery Manager APIs B-33

Property Description

LOCAL_DESTINATION Required.

Full path to the destination file name in the local file system.

Direct and Buffering Modes
The delivery system supports two modes: Direct mode and Buffering mode. Buffering
Mode is the default.

Direct Mode
Direct Mode offers full, streamlined delivery processing. Documents are delivered to
the connection streams that are directly connected to the destinations. This mode is fast,
and uses less memory and disk space. It is recommended for online interactive
processing.

To set the direct mode, set the BUFFERING_MODE property to "false". Following is a
code sample:

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();

 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_IPP_PRINTER);

 // set the direct mode
 req.addProperty(DeliveryPropertyDefinitions.BUFFERING_MODE,
"false");
 :
 :
 :

This mode does not offer document redelivery. For redelivery requirements, use the
buffering mode.

Buffering Mode
The buffering mode allows you to redeliver documents as many times as you want. The
delivery system uses temporary files to buffer documents, if you specify a temporary
directory (ds-temp-dir) in the delivery server configuration file. If you do not specify
a temporary directory, the delivery system uses the temporary memory buffer. It is
recommended that you define a temporary directory. For more information about the
configuration file, see Configuration File Support, page B-45.

You can explicitly clear the temporary file or buffer by calling
DeliveryRequest.close() after finishing your delivery request.

B-34 Oracle Business Intelligence Publisher User's Guide

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();

 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_IPP_PRINTER);

 // set buffering mode
 req.addProperty(DeliveryPropertyDefinitions.BUFFERING_MODE,
"true");
 req.addProperty(DeliveryPropertyDefinitions.TEMP_DIR, "/tmp");
 :
 :
 :
 // submit request
 req.submit();
 :
 :
 // submit request again
 req.submit();
 :
 :
 // close the request
 req.close();

Asynchronous Delivery Requests
The Delivery API provides the ability to run the delivery requests asynchronously by
registering the callback functions.

You can create your own callback logic by implementing the DeliveryResponseListener
interface. You must implement the resposeReceived() method. You can implement your
logic in this method so that it will be called when the delivery request is finished.
Sample code is as follows:
import oracle.apps.xdo.delivery.DeliveryResponseListener;

 class MyListener implements DeliveryResponseListener
 {

 public void responseReceived(DeliveryResponse pResponse)
 {
 // Show the status to the System.out
 System.out.println("Request done!");
 System.out.println("Request status id : " +
pResponse.getStatus());
 System.out.println("Request status msg : " +
pResponse.getStatusMessage());
 }

 }

Once you implement the callback, you can pass your callback when you call the
submit() method of your DeliveryRequest. If you call the submit() with the callback, the
delivery process will start in the background and the submit() method will immediately
return the control. Sample code follows:

Using the Delivery Manager APIs B-35

// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();

 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_IPP_PRINTER);
 :
 :
 // submit request with the callback logic
 req.submit(new MyListener());
 :
 :

Document Filter Support
The Delivery API supports the document filter functionality for all the supported
protocols. This functionality allows you to call the native OS command to transform the
document before each delivery request. To specify the filter, pass the native OS
command string with the two placeholders for the input and output filename:
{infile} and {outfile}. You can set your filter in your delivery request as a
delivery property. Following are two samples:
// The easiest filter, just copy the file :)
req.addProperty(DeliveryPropertyDefinitions.FILTER, "cp {infile}
{outfile}");

// Call "pdftops" utility to transform the PDF document into Postscript
format
 req.addProperty(DeliveryPropertyDefinitions.FILTER, "pdftops {infile}
{outfile}");

Alternatively, you can also specify the filter for each server in the configuration file (see
Configuration File Support, page B-45). In this case, the server will always use this
filter for the requests to this server:
:
 :

<server name="printer1" type="ipp_printer" default="true">
<uri>ipp://myserver:80/printers/MyPrinter1/.printer</uri>
<filter>pdftops {infile} {outfile}</filter>
</server>
 :
 :

This is useful especially if you are trying to call IPP printers directly or IPP printers on
Microsoft Internet Information Service (IIS) because those printers usually do not accept
PDF documents, but only limited document formats. With this functionality, you can
call any of the native OS commands to transform the document to the format that the
target printer can understand. For example, if you need to call the HP LaserJet printer
setup on the Microsoft IIS from Linux, you can set Ghostscript as a filter to transform
the PDF document into the format that the HP LaserJet can understand.

B-36 Oracle Business Intelligence Publisher User's Guide

// specify filter
 req.addProperty(DeliveryPropertyDefinitions.FILTER,
 "gs -q -dNOPAUSE -dBATCH -sDEVICE=laserjet -sOutputFile={outfile}
 {infile}");

Note that to use this functionality you must set the buffering mode must be enabled and
a temporary directory must be specified. See Configuration File Support, page B-45 for
information on setting these properties.

Date Expression Support
Three properties support date expressions. Use the date expression if you want to name
a file by the date, and have the date automatically set at runtime.

The properties that support date expressions are:

• SMTP_CONTENT_FILENAME

• FTP_REMOTE_FILENAME

• WEBDAV_REMOTE_FILENAME

The supported date expressions are:

• %y : 4 digit year (ex, 1972, 2005)

• %m : 2 digit month (00 - 12)

• %d : 2 digit date (00 - 31)

• %H : 24h based 2 digit hour (00 - 24)

• %M : 2 digit minute (00 - 59)

• %S : 2 digit sec (00 - 59)

• %l : 3 digit millisec (000 - 999)

For example, if you specify my_file_%y%m%d.txt for the filename, the actual
filename will would be my_file_20051108.txt for November 8, 2005. All undefined
expressions will be translated into 0 length string, for example, if you specify
my_file_%a%b%c.txt, it would generate my_file_.txt. You can escape the '%'
character by passing '%%'.

Internationalization Support
The Delivery Server API supports following internationalization features for the listed
delivery channels:

Using the Delivery Manager APIs B-37

SMTP
• Specify character encoding for the main document with SMTP_CONTENT_TYPE.

• Specify character encoding for the attachments by passing content type when you
call addAttachment() method.

• Specify the character encoding for email To/From/CC/Subject with
SMTP_CHARACTER_ENCODING property. The default value is "UTF-8".

IPP
• Specify character encoding for the IPP attributes by using

IPP_ATTRIBUTE_CHARSET property. The default value is "UTF-8".

• Specify IPP_URL_CHARACTER_ENCODING property for encoding non-ASCII
letters in a URL.

WebDAV
• Specify WEBDAV_URL_CHARACTER_ENCODING property for encoding

non-ASCII letters in a URL.

FTP
• The FTP delivery channel automatically detects the internationalization support in

the target FTP server. You can specify a non-ASCII directory name and file name
only if the FTP server supports internationalization (see RFC 2640 for more detail).
In that case, the UTF-8 encoding will be used automatically. If the server does not
support internationalization and you specify a non-ASCII value, an exception will
be thrown during the delivery process.

HTTP
• You can specify WEBDAV_URL_CHARACTER_ENCODING property for

encoding non-ASCII letters in a URL.

Monitoring Delivery Status
The delivery system allows you to check the latest delivery status of your request by
calling the getStatus() method. You can check the status of the request anytime, but
currently you must retain the delivery request object. Status definitions are defined in
the DeliveryRequest interface.

Monitoring delivery status is not available for the SMTP and HTTP delivery channels.

B-38 Oracle Business Intelligence Publisher User's Guide

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();

 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_IPP_PRINTER);
 :
 :
 // submit request
 req.submit();
 :
 :

 // get request status
 int status = req.getStatus();
 if (status == DeliveryRequest.STATUS_SUCCESSFUL)
 {
 System.out.println("Request has been delivered successfully.");
 }
 :
 :
 // get request status again...
 status = req.getStatus();
 :
 :

Setting Global Properties
You can define the global properties to the DeliveryManager so that all the delivery
requests inherit the global properties automatically.

The following global properties are supported:

Property Description

BUFFERING_MODE Valid values are "true" (default) and "false".
See Direct and Buffering Modes, page B-33 for
more information.

TEMP_DIR Define the location of the temporary directory.

CA_CERT_FILE Define the location of the CA Certificate file
generated by Oracle Wallet Manager. This is
used for SSL connection with the Oracle SSL
library. If not specified, the default CA
Certificates are used.

Using the Delivery Manager APIs B-39

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();

 // set global properties
 dm.addProperty(DeliveryPropertyDefinitions.TEMP_DIR, "/tmp");
 dm.addProperty(DeliveryPropertyDefinitions.BUFFERING_MODE, "true");

 // create delivery requests
 DeliveryRequest req1 =
dm.createRequest(DeliveryManager.TYPE_IPP_PRINTER);
 DeliveryRequest req2 =
dm.createRequest(DeliveryManager.TYPE_IPP_FAX);
 DeliveryRequest req3 =
dm.createRequest(DeliveryManager.TYPE_SMTP_EMAIL);
 :
 :

Adding a Custom Delivery Channel
You can add custom delivery channels to the system by following the steps below:

1. Define the delivery properties

2. Implement the DeliveryRequest interface

3. Implement the DeliveryRequestHandler interface

4. Implement the DeliveryRequestFactory interface

5. Register your custom DeliveryRequestFactory to the DeliveryManager

The following sections detail how to create a custom delivery channel by creating a
sample called "File delivery channel" that delivers documents to the local file system.

Define Delivery Properties
The first step to adding a custom delivery channel is to define the properties. These will
vary depending on what you want your channel to do. You can define constants for
your properties. Our example, a file delivery channel requires only one property, which
is the destination.

Sample code is:

Example
package oracle.apps.xdo.delivery.file;

public interface FilePropertyDefinitions
 {
 /** Destination property definition. */
 public static final String FILE_DESTINATION =
"FILE_DESTINATION:String";

 }

The value of each constant can be anything, as long as it is a String. It is recommend

B-40 Oracle Business Intelligence Publisher User's Guide

that you define the value in [property name]:[property value type]format
so that the delivery system automatically validates the property value at runtime. In the
example, the FILE_DESTINATION property is defined to have a String value.

Implement DeliveryRequest Interface
DeliveryRequest represents a delivery request that includes document information and
delivery metadata, such as destination and other properties. To implement
oracle.apps.xdo.delvery.DeliveryRequest you can extend the class
oracle.apps.xdo.delivery.AbstractDeliveryRequest.

For example, to create a custom delivery channel to deliver documents to the local file
system, the DeliveryRequest implementation will be as follows:
package oracle.apps.xdo.delivery.file;
import oracle.apps.xdo.delivery.AbstractDeliveryRequest;

public class FileDeliveryRequest extends AbstractDeliveryRequest
implements FilePropertyDefinitions
{
 private static final String[] MANDATORY_PROPS = {FILE_DESTINATION};

 /**
 * Returns mandatory property names
 */
 public String[] getMandatoryProperties()
 {
 return MANDATORY_PROPS;
 }
 /**
 * Returns optional property names
 */
 public String[] getOptionalProperties()
 {
 return null;
 }
}

Implement DeliveryRequestHandler Interface
DeliveryRequestHandler includes the logic for handling the delivery requests. A
sample implementation of oracle.apps.xdo.delivery.DeliveryRequestHandler for the file
delivery channel is as follows:

Using the Delivery Manager APIs B-41

Example
package oracle.apps.xdo.delivery.file;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;

import oracle.apps.xdo.delivery.DeliveryException;
import oracle.apps.xdo.delivery.DeliveryRequest;
import oracle.apps.xdo.delivery.DeliveryRequestHandler;
import oracle.apps.xdo.delivery.DeliveryStatusDefinitions;

public class FileDeliveryRequestHandler implements
DeliveryRequestHandler
{

 private FileDeliveryRequest mRequest;
 private boolean mIsOpen = false;
 private OutputStream mOut;

 /**
 * default constructor.
 */
 public FileDeliveryRequestHandler()
 {
 }

 /**
 * sets the request.
 */
 public void setRequest(DeliveryRequest pRequest)
 {
 mRequest = (FileDeliveryRequest) pRequest;
 }

 /**
 * returns the request.
 */
 public DeliveryRequest getRequest()
 {
 return mRequest;
 }

 /**
 * opens the output stream to the destination.
 */
 public OutputStream openRequest() throws DeliveryException
 {
 try
 {
 String filename =
 (String)
mRequest.getProperty(FileDeliveryRequest.FILE_DESTINATION);
 mOut = new BufferedOutputStream(new FileOutputStream(filename));

 mIsOpen = true;
 // set request status to open
 mRequest.setStatus(DeliveryStatusDefinitions.STATUS_OPEN);
 return mOut;

B-42 Oracle Business Intelligence Publisher User's Guide

}
 catch (IOException e)
 {
 closeRequest();
 throw new DeliveryException(e);
 }

 }

 /**
 * flushes and closes the output stream to submit the request.
 */
 public void submitRequest() throws DeliveryException
 {
 try
 {
 // flush and close
 mOut.flush();
 mOut.close();
 // set request status
 mRequest.setStatus(DeliveryStatusDefinitions.STATUS_SUCCESSFUL);
 mIsOpen = false;
 }
 catch (IOException e)
 {
 closeRequest();
 throw new DeliveryException(e);
 }
 }

 /**
 * checks the delivery status.
 */
 public void updateRequestStatus() throws DeliveryException
 {

 // check if the file is successfully delivered
 String filename =
 (String)
mRequest.getProperty(FileDeliveryRequest.FILE_DESTINATION);
 File f = new File(filename);

 // set request status
 if (f.exists())
 mRequest.setStatus(DeliveryStatusDefinitions.STATUS_SUCCESSFUL);
 else

mRequest.setStatus(DeliveryStatusDefinitions.STATUS_FAILED_IO_ERROR);

 }
 /**
 * returns the request status.
 */
 public boolean isRequestOpen()
 {
 return mIsOpen;
 }

 /**
 * closes the request, frees all resources.
 */

Using the Delivery Manager APIs B-43

public void closeRequest()
 {
 mIsOpen = false;
 try
 {
 if (mOut != null)
 {
 mOut.flush();
 mOut.close();
 }
 }
 catch (IOException e)
 {
 }
 finally
 {
 mOut = null;
 }
 }

}

Implement DeliveryRequestFactory Interface
Implement the DeliveryRequestFactory interface to register your custom delivery
channel to the delivery system.

A sample implementation of oracle.apps.xdo.delivery.DeliveryRequestFactory is as
follows:

B-44 Oracle Business Intelligence Publisher User's Guide

Example
package oracle.apps.xdo.delivery.file;

import oracle.apps.xdo.delivery.DeliveryRequest;
import oracle.apps.xdo.delivery.DeliveryRequestFactory;
import oracle.apps.xdo.delivery.DeliveryRequestHandler;

public class FileDeliveryRequestFactory
implements DeliveryRequestFactory
{
 /**
 * default constructor.
 */
 public FileDeliveryRequestFactory()
 {
 }
 /**
 * returns delivery request.
 */
 public DeliveryRequest createRequest()
 {
 return new FileDeliveryRequest();
 }
 /**
 * returns delivery request handler.
 */
 public DeliveryRequestHandler createRequestHandler()
 {
 return new FileDeliveryRequestHandler();
 }
 /**
 * returns this
 */
 public DeliveryRequestFactory getFactory()
 {
 return this;
 }
}

Register your custom DeliveryRequestFactory to DeliveryManager
The final step is to register your custom delivery channel to the delivery system. You
can register your delivery channel in two ways:

• Static method

Use this method to register your delivery channel to the whole delivery system by
specifying it in the configuration file. See Configuration File Support, page B-45 for
more information.

• Dynamic method

Register the delivery channel to the Java VM instance by calling the Register API
programmatically.

Sample code to register the file delivery channel using the dynamic method and call
the file delivery channel is as follows:

Using the Delivery Manager APIs B-45

Example
package oracle.apps.xdo.delivery.file;

import oracle.apps.xdo.delivery.DeliveryManager;
import oracle.apps.xdo.delivery.DeliveryRequest;

public class FileDeliverySample
{
 public static void main(String[] args) throws Exception
 {
 // register the file delivery channel
 DeliveryManager.addRequestFactory("file",
"oracle.apps.xdo.delivery.file.FileDeliveryRequestFactory");

 // create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req = dm.createRequest("file");

 // set the destination
 req.addProperty(
 FileDeliveryRequest.FILE_DESTINATION,
 "d:/Temp/testDocument_delivered.pdf");
 // set the document to deliver
 req.setDocument("D:/Temp/testDocument.pdf");

 // submit the request
 req.submit();
 // close the request
 req.close();
 }
}

Configuration File Support
The delivery systems supports a configuration file to set default servers, default
properties, and custom delivery channels. The location of the configuration file is

{XDO_TOP}/resource/xdodelivery.cfg

where {XDO_TOP} is a Java system property that points to the physical directory.

This system property can be set in two ways:

• Pass -DXDO_TOP=/path/to/xdotop to the Java startup parameter

• Use a Java API in your code, such as
java.lang.System.getProperties().put("XDO_TOP",
"/path/to/xdotop")

The system property must be defined before constructing a DeliveryManager object.

Following is a sample configuration file:

B-46 Oracle Business Intelligence Publisher User's Guide

Example
<?xml version='1.0' encoding='UTF-8'?>
 <config xmlns="http://xmlns.oracle.com/oxp/delivery/config">
 <! - == - >
 <! - servers section - >
 <! - List your pre-defined servers here. - >

 <! - == - >
 <servers>
 <server name="myprinter1" type="ipp_printer" default="true">
 <uri>ipp://myprinter1.oracle.com:631/printers/myprinter1</uri>

 </server>
 <server name="myprinter2" type="ipp_printer" >
 <host>myprinter2.oracle.com</host>
 <port>631</port>

 <uri>ipp://myprinter2.oracle.com:631/printers/myprinter2</uri>
 <authType>basic</authType>
 <username>xdo</username>
 <password>xdo</password>

 </server>
 <server name="myfax1" type="ipp_fax" default="true" >
 <host>myfax1.oracle.com</host>

 <port>631</port>
 <uri>ipp://myfax1.oracle.com:631/printers/myfax1</uri>
 </server>
 <server name="mysmtp1" type="smtp_email" default="true">

 <host>myprinter1.oracle.com</host>
 <port>25</port>
 </server>
 <server name="mysmtp2" type="smtp_email" >

 <host>mysmtp12.oracle.com</host>
 <port>25</port>
 <username>xdo</username>
 <password>xdo</password>

 </server>
 </servers>
 <! - == - >
 <! - properties section - >
 <! - List the system properties here. - >
 <! - == - >
 <properties>

 <property name="ds-temp-dir">/tmp</property>
 <property name="ds-buffering">true</property>
 </properties>
 <! - == - >
 <! - channels section - >

 <! - List the custom delivery channels here. - >
 <! - == - >
 <channels>
 <channel
name="file">oracle.apps.xdo.delivery.file.FileDeliveryRequestFactory</ch
annel>

Using the Delivery Manager APIs B-47

</channels>

 </config>

Defining Multiple Servers for a Delivery Channel
You can define multiple server entries for each delivery channel. For example, the
preceding sample configuration file has two server entries for the "ipp_printer" delivery
channel ("myprinter1" and "myprinter2").

Load a server entry for a delivery request by calling DeliveryRequest.setServer()
method. Following is an example:

Example
// create delivery manager instance
 DeliveryManager dm = new DeliveryManager();
 // create a delivery request
 DeliveryRequest req =
dm.createRequest(DeliveryManager.TYPE_IPP_PRINTER);

 // load myprinter1 setting
 req.setServer("myprinter1");

Specifying a Default Server for a Delivery Channel
To define a default server for a delivery channel, specify default="true". In the
configuration file example above, "myprinter1" is defined as the default sever for the
"ipp_printer" delivery channel. If a user does not specify the server properties for
"ipp_printer" delivery, the server properties under the default server will be used.

Supported Configuration File Properties and Elements
The following properties are supported in the <properties> section:

• ds-temp-dir: temporary directory location.

• ds-buffering: specify true or false for buffering mode.

• ds-ca-cert-file: specify the SSL certification file location.

The following elements are supported for <server type="ipp_printer">and
<server type="ipp_fax">

• <host>

• <port>

• <printerName>

• <uri>

• <username>

• <password>

B-48 Oracle Business Intelligence Publisher User's Guide

• <authType>

• <encType>

• <proxyHost>

• <proxyPort>

• <proxyUsername>

• <proxyPassword>

• <proxyAuthType>

• <filter>

The following elements are supported for <server type="smtp_email">

• <host>

• <port>

• <uri>

• <username>

• <password>

• <authType>

• <filter>

The following elements are supported for <server type="webdav">

• <host>

• <port>

• <uri>

• <username>

• <password>

• <authType>

• <encType>

• <proxyHost>

Using the Delivery Manager APIs B-49

• <proxyPort>

• <proxyUsername>

• <proxyPassword>

• <proxyAuthType>

• <filter>

The following elements are supported for <server type="ftp"> and <server
type="sftp">

• <host>

• <port>

• <uri>

• <username>

• <password>

• <filter>

The following elements are supported for <server type="external">

• <command>

• <filter>

Supported XSL-FO Elements C-1

C
Supported XSL-FO Elements

Supported XSL-FO Elements
The following table lists the XSL-FO elements supported in this release of BI Publisher.
For each element the supported content elements and attributes are listed. If elements
have shared supported attributes, these are noted as a group and are listed in the
subsequent table, Property Groups. For example, several elements share the content
element inline. Rather than list the inline properties each time, each entry notes
that "inline-properties" are supported. The list of inline-properties can then be found in
the Property Groups table.

Element Supported Content Elements Supported Attributes

basic-link external-graphic

inline

leader

page-number

page-number-citation

basic-link

block

block-container

table

list-block

wrapper

inline-properties

external-destination

internal-destination

C-2 Oracle Business Intelligence Publisher User's Guide

Element Supported Content Elements Supported Attributes

bidi-override bidi-override

external-graphic

instream-foreign-object

inline

leader

page-number

page-number-citation

basic-link

inline-properties

block external-graphic

inline

page-number

page-number-citation

basic-link

block

block-container

table

list-block

wrapper

block-properties

block-container block

block-container

table

list-block

wrapper

block-properties

bookmark-tree bookmark N/A

Supported XSL-FO Elements C-3

Element Supported Content Elements Supported Attributes

bookmark bookmark

bookmark-title

external-destination

internal-destination

starting-state

bookmark-title N/A color

font-style

font-weight

conditional-page-master-
reference

N/A master-reference

page-position

• first

• last

• rest

• any

• inherit

odd-or-even

• odd

• even

• any

• inherit

blank-or-not-blank

• blank

• not-blank

• any

• inherit

C-4 Oracle Business Intelligence Publisher User's Guide

Element Supported Content Elements Supported Attributes

external-graphic N/A graphic-properties

src

flow block

block-container

table

list-block

wrapper

flow-properties

inline external-graphic

inline

leader

page-number

page-number-citation

basic-link

block

block-container

table

wrapper

inline-properties

instream-foreign-object N/A graphic-properties

layout-master-set page-sequence-master

simple-page-master

simple-page-master

page-sequence-master

N/A

leader N/A inline-properties

list-block list-item block-properties

Supported XSL-FO Elements C-5

Element Supported Content Elements Supported Attributes

list-item list-item-label

list-item-body

block-properties

list-item-body block

block-container

table

list-block

wrapper

block-properties

list-item-label block

block-container

table

list-block

wrapper

block-properties

page-number N/A empty-inline-properties

page-number-citation N/A empty-inline-properties

ref-id

C-6 Oracle Business Intelligence Publisher User's Guide

Element Supported Content Elements Supported Attributes

page-sequence static-content

flow

inheritable-properties

id

master-reference

initial-page-number

force-page-count

• auto

• end-on-even

• end-on-odd

• end-on-even-layout

• end-on-odd-layout

• no-force

• inherit

format

page-sequence-master single-page-master-reference

repeatable-page-master-referenc
e

repeatable-page-master-alternati
ves

master-name

region-after N/A side-region-properties

region-before N/A side-region-properties

region-body N/A region-properties

margin-properties-CSS

column-count

region-end N/A side-region-properties

Supported XSL-FO Elements C-7

Element Supported Content Elements Supported Attributes

region-start N/A side-region-properties

repeatable-page-master-a
lternatives

conditional-page-master-referen
ce

maximum-repeats

repeatable-page-master-r
eference

N/A master-reference
maximum-repeats

root bookmark-tree

layout-master-set

page-sequence

inheritable-properties

C-8 Oracle Business Intelligence Publisher User's Guide

Element Supported Content Elements Supported Attributes

simple-page-master region-body

region-before

region-after

region-start

region-end

margin-properties-CSS

master-name

page-height

page-width

reference-orientation

• 0

• 90

• 180

• 270

• -90

• -180

• -270

• 0deg

• 90deg

• 180deg

• 270deg

• -90deg

• -180deg

• -270deg

• inherit

writing-mode

• lr-tb

Supported XSL-FO Elements C-9

Element Supported Content Elements Supported Attributes

single-page-master-refere
nce

N/A master-reference

static-content block

block-container

table

wrapper

flow-properties

table table-column

table-header

table-footer

table-body

block-properties

table-body table-row inheritable-properties

id

table-cell block

block-container

table

list-block

wrapper

block-properties

number-columns-spanned

number-rows-spanned

table-column N/A inheritable-properties

column-number

column-width

number-columns-repeated

table-footer table-row inheritable-properties

id

table-header table-row inheritable-properties

id

C-10 Oracle Business Intelligence Publisher User's Guide

Element Supported Content Elements Supported Attributes

table-row table-cell inheritable-properties

id

wrapper inline

page-number

page-number-citation

basic-link

block

block-container

table

wrapper

inheritable-properties

id

Property Groups Table
The following table lists the supported properties belonging to the attribute groups
defined in the preceding table.

Supported XSL-FO Elements C-11

Property Group Properties

area-properties overflow (visible, hidden)

reference-orientation

• 0

• 90

• 180

• 270

• -90

• -180

• -270

• 0deg

• 90deg

• 180deg

• 270deg

• -90deg

• -180deg

• -270deg

• inherit

writing-mode (lr-tb, rl-tb, lr, rl)

baseline-shift (baseline, sub, super)

vertical-align

block-properties inheritable-properties

id

C-12 Oracle Business Intelligence Publisher User's Guide

Property Group Properties

border-padding-background-properties background-color

background-image

background-position-vertical

background-position-horizontal

border

border-after-color

border-after-style (none, dotted, dashed, solid, double)

border-after-width

border-before-color

border-before-style (none, solid)

border-before-width

border-bottom

border-bottom-color

border-bottom-style (none, dotted, dashed, solid, double)

border-bottom-width

border-color

border-end-color

border-end-style (none, dotted, dashed, solid, double)

border-end-width

border-left

border-left-color

border-left-style (none, dotted, dashed, solid, double)

border-left-width

border-right

border-right-color

border-right-style (none, dotted, dashed, solid, double)

border-right-width

border-start-color

Supported XSL-FO Elements C-13

Property Group Properties

border-start-style (none, dotted, dashed, solid, double)

border-start-width

border-top

border-top-color

border-top-style (none, dotted, dashed, solid, double)

border-top-width

border-width

padding

padding-after

padding-before

padding-bottom

padding-end

padding-left

padding-right

padding-start

padding-top

box-size-properties height

width

character-properties font-properties

text-decoration

empty-inline-properties character-properties

border-padding-background-properties

id

color

C-14 Oracle Business Intelligence Publisher User's Guide

Property Group Properties

flow-properties inheritable-properties

id

flow-name

font-properties font-family

font-size

font-style (normal, italic, oblique)

font-weight (normal, bold)

table-omit-header-at-break (TRUE, FALSE, inherit)

table-omit-footer-at-break (TRUE, FALSE, inherit)

graphic-properties border-padding-background-properties

margin-properties-inline

box-size-properties

font-properties

keeps-and-breaks-properties-atomic

id

Supported XSL-FO Elements C-15

Property Group Properties

inheritable-properties border-padding-background-properties

box-size-properties

margin-properties-inline

area-properties

character-properties

line-related-properties

leader-properties

keeps-and-breaks-properties-block

color

absolute-position

• auto

• absolute

• fixed

• inherit

inline-properties inheritable-properties

id

keeps-and-breaks-properties-atomic break-after (auto, column, page)

break-before (auto,column)

keep-with-next

keep-with-next.within-page

keeps-and-breaks-properties-block keeps-and-breaks-properties-inline

C-16 Oracle Business Intelligence Publisher User's Guide

Property Group Properties

keeps-and-breaks-properties-inline keeps-and-breaks-properties-atomic

keep-together

keep-together.within-line

keep-together.within-column

keep-together.within-page

leader-properties leader-pattern (rule, dots)

leader-length

leader-length.optimum (dotted, dashed, solid, double)

rule-thickness

line-related-properties text-align (start, center, end, justify, left, right, inherit)

text-align-last (start, center, end, justify, left, right, inherit)

text-indent

linefeed-treatment (ignore, preserve, treat-as-space,
treat-as-zero-width-space, inherit)

white-space-treatment (ignore, preserve,
ignore-if-before-linefeed, ignore-if-after-linefeed,
ignore-if-surrounding-linefeed, inherit)

white-space-collapse (FALSE, TRUE, inherit)

wrap-option (no-wrap, wrap, inherit)

direction (ltr)

margin-properties-block margin-properties-CSS

space-after

space-after.optimum

space-before

space-before.optimum

start-indent

end-indent

Supported XSL-FO Elements C-17

Property Group Properties

margin-properties-CSS margin

margin-bottom

margin-left

margin-right

margin-top

margin-properties-inline margin-properties-block

space-start

space-start.optimum

space-end

space-end.optimum

position

• static

• relative

• absolute

• fixed

• inherit

top

left

region-properties border-padding-background-properties

area-properties

region-name

side-region-properties region-properties

extent

Configuration File Reference D-1

D
Configuration File Reference

BI Publisher Configuration Files
This chapter contains reference information about the following BI Publisher
configuration files:

• Runtime Configuration Properties File

• Server Configuration File

The properties in the Runtime Configuration file are set through the Runtime
Configuration Properties and Font Mappings pages (see Setting Runtime Properties,
page 11-13). The properties in the Server Configuration file are set through the
following Admin pages:

• System Maintenance Server Configuration

• System Maintenance Scheduler Configuration

• Security Center Security Configuration

Setting Properties in the Runtime Configuration File
As of the BI Publisher Enterprise version 10.1.3.2, the runtime properties are set through
the Runtime Configuration Properties page and the Font Mappings page in the Admin
interface.

If you do not use the Admin interface to set the properties, BI Publisher will fall back to
the properties set in this file. Therefore if you are upgrading from XML Publisher
Enterprise 5.6.2, you can use the settings in your existing xdo.cfg file, although it is
recommended that you migrate your settings in this file to the Admin interface. See
Upgrading from XML Publisher Enterprise 5.6.2 to BI Publisher Enterprise 10.1.3.2,
page E-1.

D-2 Oracle Business Intelligence Publisher User's Guide

It is important to note that the Admin interface does not update this file. Any settings in
the Admin interface will take precedence over the settings in the xdo.cfg file.

File Name and Location
The configuration file is named xdo.cfg.

The file is located under the <JRE_TOP>/jre/lib, for example: jdk/jre/lib.

Namespace
The namespace for this configuration file is:

http://xmlns.oracle.com/oxp/config/

Configuration File Example
Following is a sample configuration file:
<config version="1.0.0"
 xmlns="http://xmlns.oracle.com/oxp/config/"><!-- Properties -->
<properties>
 <!-- System level properties -->
 <property name="system-temp-dir">/tmp</property>

 <!-- PDF compression -->
 <property name="pdf-compression">true</property>

 <!-- PDF Security -->
 <property name="pdf-security">true</property>
 <property name="pdf-open-password">user</property>
 <property name="pdf-permissions-password">owner</property>
 <property name="pdf-no-printing">true</property>
 <property name="pdf-no-changing-the-document">true</property>
 </properties>

 <!-- Font setting -->
 <fonts>
 <!-- Font setting (for FO to PDF etc...) -->

 <truetype path="/fonts/Arial.ttf" />

 <truetype path="/fonts/ALBANWTJ.ttf" />

 <!--Font substitute setting (for PDFForm filling etc...) -->
 <font-substitute name="MSGothic">
 <truetype path="/fonts/msgothic.ttc" ttcno="0" />
 </font-substitute>
 </fonts>
</config>

How to Read the Element Specifications
The following is an example of an element specification:

Configuration File Reference D-3

<Element Name Attribute1="value"
 Attribute2="value"
 AttributeN="value"
 <Subelement Name1/>[occurrence-spec]
 <Subelement Name2>...</Subelement Name2>
 <Subelement NameN>...</Subelement NameN>
</Element Name>

The [occurrence-spec] describes the cardinality of the element, and corresponds
to the following set of patterns:

• [0..1] - indicates the element is optional, and may occur only once.

• [0..n] - indicates the element is optional, and may occur multiple times.

Structure
The <config> element is the root element. It has the following structure:
<config version="cdata" xmlns="http://xmlns.oracle.com/oxp/config/">
 <fonts> ... </fonts> [0..n]
 <properties> ... </properties> [0..n]
</config>

Attributes
version The version number of the configuration file format.

Specify 1.0.0.

xmlns The namespace for BI Publisher's configuration file. Must
be http://xmlns.oracle.com/oxp/config/

Description
The root element of the configuration file. The configuration file consists of two parts:

• Properties (<properties> elements)

• Font definitions (<fonts> elements)

The <fonts> and <properties> elements can appear multiple times. If conflicting
definitions are set up, the last occurrence prevails.

Properties
This section describes the <properties> element and the <property> element.

The <properties> element
The properties element is structured as follows:

D-4 Oracle Business Intelligence Publisher User's Guide

<properties locales="cdata">
 <property>...
 </property> [0..n]
</properties>

Description
The <properties> element defines a set of properties. You can specify the locales
attribute to define locale-specific properties. Following is an example:

Example
<!-- Properties for all locales -->
<properties>...Property definitions here...
</properties>

<!--Korean specific properties-->
<properties locales="ko-KR">
 ...Korean-specific property definitions here...
</properties>

The <property> element
The <property> element has the following structure:
<property name="cdata"> ...pcdata...
</property>

Attributes
name Specify the property name.

Description
Property is a name-value pair. Specify the internal property name (key) to the name
attribute and the value to the element value. See Setting Runtime Properties, page 11-13
for the list of the internal property names.

Example
<properties>
 <property name="system-temp-dir">d:\tmp</property>
 <property name="system-cache-page-size">50</property>
 <property name="pdf-replace-smart-quotes">false</property>
</properties>

Font Definitions
Font definitions include the following elements:

• <fonts>

•

• <font-substitute>

• <truetype>

Configuration File Reference D-5

• <type1>

For the list of Truetype and Type1 fonts, see Predefined Fonts, page 11-22.

<fonts> element
The <fonts> element is structured as follows:
<fonts locales="cdata">
 ... [0..n]
 <font-substitute> ... </font-substitute> [0..n]
</fonts>

Attributes
locales Specify the locales for this font definition. This attribute is

optional.

Description
The <fonts> element defines a set of fonts. Specify the locales attribute to define
locale-specific fonts.

Example
<!-- Font definitions for all locales -->
<fonts>
 ..Font definitions here...
</fonts>

<!-- Korean-specific font definitions -->
<fonts locales="ko-KR">
... Korean Font definitions here...
</fonts>

 element
Following is the structure of the element:
<font family="cdata" style="normalitalic"
weight="normalbold">
 <truetype>...</truetype>
or <type1> ... <type1>

Attributes
family Specify any family name for the font. If you specify

"Default" for this attribute, you can define a default fallback
font. The family attribute is case-insensitive.

style Specify "normal" or "italic" for the font style.

weight Specify "normal" or "bold" for the font weight.

D-6 Oracle Business Intelligence Publisher User's Guide

Description
Defines a BI Publisher font. This element is primarily used to define fonts for FO-to-PDF
processing (RTF to PDF). The PDF Form Processor (used for PDF templates) does not
refer to this element.

Example
<!-- Define "Arial" font -->

 <truetype path="/fonts/Arial.ttf"/>

<font-substitute> element
Following is the structure of the font-substitute element:
<font-substitute name="cdata">
 <truetype>...</truetype>
or <type1>...</type1>
</font-substitute>

Attributes
name Specify the name of the font to be substituted.

Description
Defines a font substitution. This element is used to define fonts for the PDF Form
Processor.

Example
<font-substitute name="MSGothic">
 <truetype path="/fonts/msgothic.ttc" ttccno=0"/>
</font-substitute>

<type1> element>
The form of the <type1> element is as follows:
<type1 name="cdata"/>

Attributes
name Specify one of the Adobe standard Latin1 fonts, such as

"Courier".

Description
<type1> element defines an Adobe Type1 font.

Example
<!--Define "Helvetica" font as "Serif" -->

 <type1 name="Helvetica"/>

Configuration File Reference D-7

Predefined Fonts
BI Publisher has several predefined fonts. These fonts do not require any additional
setup.

For the predefined fonts, see BI Publisher's Predefined Fonts, page 11-22.

The Server Configuration Files
The server configuration properties are set through the following pages under the
Admin tab:

• System Maintenance Server Configuration

• System Maintenance Scheduler Configuration

• Security Center Security Configuration

The Repository location defined under System Maintenance Server Configuration is
stored in WEB-INF/xmlp-server-config.xml.

All other server configuration properties are stored in a second instance of
xmlp-server-config.xml. This file is located in
Admin/Configuration/xmlp-server-config.xml in the repository.

The Admin user interface pages write the settings to these two files. Therefore the files
can be manually updated. However, this is not recommended because the user interface
ensures the validity of related property settings.

Important: Whenever you change any of the properties in this
configuration file, you must restart the server in order for the changes
to take effect.

Configuration File Structure
The file consists of the following sections: XML header, resource, scheduler, and general
properties.

XML Header
The header consists of the XML declaration and the root element with the namespace
attribute:
<?xml version="1.0" encoding="UTF-8"?>
<xmlpConfig xmlns="http://xmlns.oracle.com/oxp/xmlp">

D-8 Oracle Business Intelligence Publisher User's Guide

Resource Section
Note: The repository location is now set using the Server Configuration
page. See Setting Server Configuration Options, page 11-8.

The resource section defines the location of your repository. The resource section is
mandatory. The resource elements are enclosed within <resource> </resource>
tags.

Within the <resource> tags you must define either the <file> element or the <xdb>
element to specify the path to your reports repository.

The <file> Element
If your reports repository exists on your file system, declare the absolute file path using
the file element with its path attribute as follows:

<file path=""/>

Example: <file path="d:/reports"/>

The <xdb> element
If your reports repository is set up on your database, declare the absolute path using the
xdb element with its path attribute as follows:

<xdb path="">

Example: <xdb path="/public/Reports">

The xdb element requires the <connection> element. Within the <connection>
</connection> tags, define the <connectionType>. Valid values for
<connectionType> are "jdbc" or "jndi".

jdbc connectionType
If the <connectionType> is jdbc, the following elements are required:

<url>

<username>

<password>

<driver>

Example:

Configuration File Reference D-9

<resource>
 <xdb path="/public/Reports">
 <connection>
 <connectionType>jdbc</connectionType>
 <url>jdbc:oracle:thin:@rpts.mycompany.com:1525:ora10g</url>
 <username>scott</username>
 <password>tiger</password>
 <driver>oracle.jdbc.driver.oracleDriver</driver>
 </connection>
 </xdb>
</resource>

jndi connectionType
If the connection type is "jndi", the following element is required:

<jndiName>

Example:
<resource>
 <xdb path="/public/Reports">
 <connection>
 <connectionType>jndi</connectionType>
 <jndiName>jdbc/pool/mydb</jndiName>
 </connection>
 </xdb>
</resource>

General Properties
The following table lists the general properties that can be specified in the configuration
file. Specify the properties according to the following syntax:
<property name = "PROPERTY_NAME" value="value"/>

Example:
<property name = "CACHE_EXPIRATION" value="120"/>

Use the Admin Server Configuration page to set these properties (see Setting Server
Configuration Options, page 11-8), with the exception of Guest Folder access. Guest
Folder access is now set on the Security Configuration page (see Allowing Guest Access,
page 10-2).

The properties listed here are not required. If not specified, the default value will be
used. The following table lists the name, valid values, default value, and description of
each property.

D-10 Oracle Business Intelligence Publisher User's Guide

Property Name Values Description

CACHE_EXPIRATION Default: 30 Enter the expiration period for
the dataset cache in minutes.

For reports that execute a SQL
query, you have the option of
caching the dataset returned by
the query. The returned dataset
will remain in cache for the
period specified by this
property. For more information
about setting this option, see
Create a New Report, page 3-2.

CACHE_SIZE_LIMIT Default: 1000 Sets the maximum number of
datasets that will be maintained
in the cache at a given time.

CACHED_REPORT_LIMIT Default: 50 Specifies the number of reports
that can be cached in memory at
any given time.

OUTPUT_FORMAT html, pdf, rtf, excel, xml The output types specified in
this property will be displayed
to the user by default for every
report (PDF templates will still
only allow PDF output). Enter
each output type separated by a
comma. Valid values are: html,
pdf, rtf, excel, xml.

This value is overridden by the
Output Format types selected in
the report definition. See Create
a New Report, page 3-2.

DEBUG_LEVEL exception (Default), debug Controls the amount of debug
information generated by the
system. If set to exception,
only error information is
generated. If set to debug, all
system output is generated.

Configuration File Reference D-11

Property Name Values Description

GUEST_FOLDER true (Default), false Enables a "guest" folder for
your installation. A guest folder
is a public folder accessible to
anyone who can view the login
URL. No credentials are
required to view the reports in
the guest folder.

GUEST_FOLDER_NAME Default: Guest Sets the name of the guest
folder.

The following properties must be specified if you are using an LDAP server with BI
Publisher Enterprise. Set these properties from the Admin user interface. For more
information about LDAP integration, see Integrating with LDAP, page 10-6.

Property Name Values Description

LDAP_PROVIDER_URL Example:
ldap://myserver.myc
ompany.com:3060/

Enter the URL for the
LDAP server.

LDAP_PROVIDER_ADMIN_USERN
AME

Example: Admin Enter the administrator
user name for the LDAP
server.

LDAP_PROVIDER_ADMIN_PASSW
ORD

Example: welcome Enter the administrator
password for the
username entered.

LDAP_PROVIDER_USER_DN Example:
cn=xdo,dc=myserver,
dc=com

The LDAP distinguished
name user suffix that
distinguishes the group of
users to have access to BI
Publisher.

D-12 Oracle Business Intelligence Publisher User's Guide

Property Name Values Description

LDAP_PROVIDER_FACTORY Example:
com.sun.jndi.ldap.c
tl.LdapCtxFactory

The value of this property
is the fully qualified class
name of the factory class
which creates the initial
context for the LDAP
service provider. It is used
to select a particular
LDAP service provider; it
is not used by the
provider itself. This
property need not be set
when the name argument
to initial context methods
is a URL.

LDAP_PROVIDER_GROUP_SEARC
H

Example:
(&(objectclass=
groupofuniquenames)
(cn=*))

The search criteria to
locate the qualified
groups. This will be based
on your LDAP server
schema.

LDAP_PROVIDER_GROUP_SEARC
H_ROOT

Example:
cn=OracleDefaultDom
ain,cn=OracleDBSecu
rity,cn=Products,cn
=OracleContext,dc=m
ypc11,dc=com

Indicates where in the tree
structure to apply the
group search criteria.

LDAP_PROVIDER_GROUP_ATTR_
NAME

Example:

cn

Indicates which attribute
contains the Group name.

LDAP_PROVIDER_GROUP_ATTR_
MEMBER

Example:

uniquemember

Indicates which attribute
contains the member
names of the Group.

LDAP_PROVIDER_GROUP_ATTR_
DESCRIPTION

Example:description Indicates which attribute
contains the description of
the Group.

The Oracle Single Sign-On properties are listed in the following table. These properties
are now set through the Admin interface. For more information about setting up Single
Sign-On, see Setting Up Oracle Single Sign-On, page 10-16.

Configuration File Reference D-13

Property Name Values Description

SINGLE_SIGN_OFF_URL Example:
http://server1.myco
mpany.com:7777/pls/
orasso/orasso.wwsso
_app_admin.ls_logou
t

Enter the Single Sign-Off
URL retrieved from the
SSO Partner Application
Login page.

Sample Configuration Files
Following is a sample WEB-INF/xmlp-server-config.xml file containing
repository information:
<?xml version="1.0" encoding="UTF-8"?>
<xmlpConfig xmlns="http://xmlns.oracle.com/oxp/xmlp">
 <resource>
 <file path="d:/reports"/>
<! - <xdb path="/public/Reports"> - >
<! - <connection> - >
<! - <connectionType>jndi</connectionType> - >
<! - <jndiName>jdbc/pool/mydb</jndiName> - >
<! - </connection> - >
<! - </xdb> - >
 </resource>
</xmlpConfig>

Following is a sample Admin/Configuration/xmlp-server-config.xml file
containing the BI Publisher server general and LDAP properties:
<?xml version="1.0" encoding="UTF-8"?>
<xmlpConfig xmlns="http://xmlns.oracle.com/oxp/xmlp">

<property name="CACHE_EXPIRATION" value="120"/>
<property name="CACHE_SIZE_LIMIT" value="1000"/>
<property name="OUTPUT_FORMAT" value="html, pdf, rtf, excel, xml"/>
<property name="DEBUG_LEVEL" value="debug"/>
<property name="CACHED_REPORT_LIMIT" value="10"/>
<property name="LDAP_PROVIDER_URL"
 value="ldap://myldapserver.com:3060/"/>
<property name="LDAP_PROVIDER_ADMIN_USERNAME" value="orcladmin"/>
<property name="LDAP_PROVIDER_ADMIN_PASSWORD" value="welcome1"/>
<property name="LDAP_PROVIDER_USER_DN"
 value="cn=xdo,dc=myserver,dc=com"/>
</xmlpConfig>

Upgrading from XML Publisher Enterprise 5.6.2 to BI Publisher 10.1.3.2 E-1

E
Upgrading from XML Publisher Enterprise

5.6.2 to BI Publisher 10.1.3.2

Overview
The following steps are required to migrate the Oracle XML Publisher Enterprise
Edition version 5.6.2 to the Oracle Business Intelligence Publisher version 10.1.3.2:

1. Back up the existing data in the database.

2. Back up the configuration file (xmlp-server-config.xml).

3. Install BI Publisher 10.1.3.2 following the installation instructions in the Oracle
Business Intelligence Infrastructure Installation and Configuration Guide.

4. Migrate the server configuration properties.

5. Migrate the delivery configuration properties.

6. Set up the Scheduler database.

7. Run the migration script.

8. Migrate LDAP server settings.

9. Update User Interface (UI) translations.

10. Restart BI Publisher 10.1.3.2.

The following sections describe these steps in detail. Note that these upgrade steps from
XML Publisher Enterprise 5.6.2 are for Oracle database deployments only.

E-2 Oracle Business Intelligence Publisher User's Guide

Upgrade Steps
1. Backup the existing data in the database.

Refer to the Oracle Database Administrator's Guide 10g for information and guidelines
on backing up your data.

2. Back up the configuration file (xmlp-server-config.xml).

Backup the xmlp-server-config.xml under xmlpserver/WEB-INF in your
XML Publisher 5.6.2 installation. Ensure to copy the xmlp-server-config.xml
file to a location outside of the Web application area; otherwise the file will be
removed when you install BI Publisher 10.1.3.2.

Example
% cp
${ORACLE_HOME}/j2ee/home/applications/xmlpserver/xmlpserver/WEB-INF/
xmlp-server-config.xml /tmp

3. Install BI Publisher 10.1.3.2.

You can remove XML Publisher Enterprise 5.6.2 and install BI Publisher 10.1.3.2, or
you can install 10.1.3.2 in a separate location.

Important: In the installation process, specify the same repository
location used in XMLP 5.6.2.

Refer to the Oracle Business Intelligence Infrastructure Installation and Configuration
Guide for the installation steps.

Start up the server after the installation.

4. Migrate the server configuration properties.

BI Publisher 10.1.3.2 provides a user interface to enter server properties previously
entered in the xmlp-server-config.xml file. Use the
xmlp-server-config.xml file backed up in the previous step as a guide to
enter the properties in the BI Publisher 10.1.3.2 user interface as follows:

• Migrate general properties and properties from the <resource> section.

Select the Admin tab. Under System Maintenance, select Server Configuration
.

• Migrate properties from the <scheduler> section.

Select the Admin tab. Under System Maintenance, select Scheduler
Configuration.

5. Migrate the delivery configuration properties.

Delivery configurations set under Configuration on the Admin tab in XML

Upgrading from XML Publisher Enterprise 5.6.2 to BI Publisher 10.1.3.2 E-3

Publisher Enterprise 5.6.2 are now set on the Admin tab under Delivery
Configuration in BI Publisher 10.1.3.2.

Note that in XMLP 5.6.2 you had to specify the following properties to enable the
use of filters for printers and fax servers. In BI Publisher 10.1.3.2 you are no longer
required to set these properties.

• Temporary Directory - in 10.1.3.2 the system temporary directory is
automatically used.

• Buffering Mode - in 10.1.3.2 the buffering mode is always on.

6. Set up the scheduler database for BI Publisher 10.1.3.2

Perform the steps for setting up the BI Publisher Scheduler in the Oracle Business
Intelligence Infrastructure Installation and Configuration Guide, omitting the create user
step. Use the same user and database that you used for XMLP 5.6.2.

The database information you used in XMLP 5.6.2 is stored in the
xmlp-server-config.xml file that you backed up in the previous step. Note
that this process does not overwrite the existing data because the table names are
different in 10.1.3.2.
[5.6.2 xmlp-server-config.xml sample]
 :
 :

<scheduler>
 <connection>
 <connectionType>jdbc</connectionType>
 <url>jdbc:oracle:thin:@xmlp1:1521:oracle</url>
 <username>xmlpuser</username>
 <password>xmlpuser</password>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 </connection>
</scheduler>
 :
 :

Parameter in 5.6.2
Configuration File

Corresponding Field in
10.1.3.2 Scheduler
Configuration Page

Value in the Sample Configuration File

url Connection String jdbc:oracle:thin:@xmlp1:1521:oracle

driver Database Driver Class oracle.jdbc.driver.OracleDriver

username Username xmlpuser

password Password xmlpuser

E-4 Oracle Business Intelligence Publisher User's Guide

The following figure shows a sample Scheduler Configuration page:

7. Run the migration script.

Log in to the database as the existing user and run the SQL script
"migration_562to10132.sql". This script migrates all the data to the 10.1.3.2 tables.

To delete old data, you can run the SQL script "drop_562.sql".

Example
% sqlplus xmlpuser/xmlpuser@oracle
 SQL*Plus: Release 10.1.0.3.0 - Production on Thu Jun 29 11:41:52
2006

 Copyright (c) 1982, 2004, Oracle. All rights reserved.

 Connected to:
 Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 -
Production
 With the Partitioning, OLAP and Data Mining options

 SQL> @migrate_562to1013.sql

 SQL> @drop_562.sql

8. Migrate LDAP server settings.

If you have set up an LDAP server in 5.6.2, migrate the LDAP server configuration
in 10.1.3.2 through the BI Publisher Admin interface.

Note: Open the 5.6.2 xmlp-server-config.xml and search for

Upgrading from XML Publisher Enterprise 5.6.2 to BI Publisher 10.1.3.2 E-5

the LDAP server information. If the properties that start with
"LDAP_" are commented out, you are not using an LDAP server
and you can skip this step.

To migrate the LDAP settings:

• Select the Admin tab.

• Under Security Center, select Security Configuration.

• Under Security Model, choose LDAP from the list.

• Enter the LDAP server information based on the 5.6.2
xmlp-server-config.xml. See the following sample configuration file,
mappings table, and Admin page sample for more detail.

Example
[5.6.2 xmlp-server-config.xml sample]
 :
 :
 <property name="LDAP_PROVIDER_URL"
value="ldap://ldap.server.com:389/"/>
 <property name="LDAP_PROVIDER_ADMIN_USERNAME"
value="orcladmin"/>
 <property name="LDAP_PROVIDER_ADMIN_PASSWORD" value="welcome"/>
 <property name="LDAP_PROVIDER_USER_DN"
value="cn=Users,dc=server,dc=com"/>
 <property name="LDAP_PROVIDER_FACTORY"
value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <property name="LDAP_PROVIDER_GROUP_SEARCH"
value="(&(objectclass=groupofuniquenames)(cn=*))"/>
 <property name="LDAP_PROVIDER_GROUP_SEARCH_ROOT"

value="cn=OracleDefaultDomain,cn=OracleDBSecurity,cn=Products,cn=
OracleContext,dc=server,dc=com"/>
 <property name="LDAP_PROVIDER_GROUP_ATTR_NAME" value="cn"/>
 <property name="LDAP_PROVIDER_GROUP_ATTR_MEMBER"
value="uniquemember"/>
 <property name="LDAP_PROVIDER_GROUP_ATTR_DESCRIPTION"
value="description"/>
 :
 :

Parameter in the 5.6.2
Configuration File

Corresponding Field in the
Admin Security
Configuration Page

Value in the Sample Configuration
File

LDAP_PROVIDER_URL URL ldap://ldap.server.com:389/

E-6 Oracle Business Intelligence Publisher User's Guide

Parameter in the 5.6.2
Configuration File

Corresponding Field in the
Admin Security
Configuration Page

Value in the Sample Configuration
File

LDAP_PROVIDER_ADMIN_USE
RNAME

Administrator Username orcladmin

LDAP_PROVIDER_ADMIN_PAS
SWORD

Administrator Password welcome

LDAP_PROVIDER_USER_DN Distinguished Name for
Users

cn=Users,dc=server,dc=com

LDAP_PROVIDER_FACTORY JNDI Context Factory Class com.sun.jndi.ldap.LdapCtxFactory

LDAP_PROVIDER_GROUP_SEA
RCH

Group Search Filter (&(objectclass=groupofuniquenames)(cn
=*))

LDAP_PROVIDER_GROUP_SEA
RCH_ROOT

Distinguished Name for
Groups

cn=OracleDefaultDomain,cn=OracleDBS
ecurity,cn=Products,cn=OracleContext,d
c=server,dc=com

LDAP_PROVIDER_GROUP_ATT
R_NAME

Group Attribute Name cn

LDAP_PROVIDER_GROUP_ATT
R_MEMBER

Group Member Attribute
Name

uniquemember

LDAP_PROVIDER_GROUP_ATT
R_DESCRIPTION

Group Description Attribute
Name

description

Upgrading from XML Publisher Enterprise 5.6.2 to BI Publisher 10.1.3.2 E-7

9. Update User Interface (UI) translations.

To update the UI translation files, copy all the .xlf files under
Admin/Translation in the 10.1.3.2 repository template to your existing
repository.

Example
Assume you have the following:
* 10.1.3.2 repository template location : /new10132repository
* Your existing 5.6.2 repository : /my562repository

then execute:
% cp /new10132repository/Admin/Translation/*xlf
/my562repository/Admin/Translation

10. Restart BI Publisher 10.1.3.2

Restart the 10.1.3.2 server to make your changes effective.

Index-1

Index

A
administration interface, 11-1
alignment

RTF template, 5-41
Analyzer for Excel, 2-14

B
background support

RTF templates, 5-46
barcode formatting, 5-117

APIs, A-59
bidirectional language alignment

RTF template, 5-41
body tags

PDF template, 8-8
RTF template, 5-15

bookmarks
generating PDF bookmarks from an RTF
template, 5-56
inserting in RTF templates, 5-53

brought forward/carried forward page totals, 5-
74
buffering mode

delivery server, B-33
required setting, E-2

bursting
setting up, 3-41

bursting engine, A-44

C
calculations in PDF template, 8-13

calendar profile option, 5-114
calendar specification, 5-114
cell highlighting

conditional in RTF templates, 5-70
charts

building in RTF templates, 5-18
check box placeholder

creating in PDF template, 8-5
check box support

RTF templates, 5-57
choose statements, 5-64
clip art support, 5-29
columns

fixed width in tables, 5-42
conditional columns

rtf template, 5-65
conditional formatting, 5-61

table rows, 5-68
conditional formatting features, 5-61
configuration

setting runtime properties, 11-13
configuration file

<properties> element, D-3
<root> element, D-3
delivery manager, B-45
structure, D-3
xmlp-server-config.xml, D-7

configuration properties
precedence of levels, 11-13

context command, 5-121
cross-tab reports, 5-94
CUPS setup, 12-1

Index-2

D
data engine

api, 4-26
data sources

adding, 11-2
data template

calling, 4-26
constructing, 4-6

data template definition, 4-2
date fields in RTF templates, 5-44
delivery

using OS command, B-31
delivery channels

adding custom, B-39
delivery configuration

buffering mode, E-2
temporary directory, E-2

delivery manager
configuration file, B-45

delivery server, B-36
buffering mode, B-33
date expression, B-36
direct mode, B-33
document filter support, B-35
global properties, B-38
local file system delivery, B-32

delivery status, B-37
direct mode

delivery server, B-33
display

setting language, 1-2
download report, 11-28
drawing support, 5-29
drop-down form field support

RTF templates, 5-58
dynamic data columns, 5-97

example, 5-98
dynamic table of contents in RTF template, 5-56

E
e-mail delivery, B-2
end on even page, 5-53
etext data tables, 9-6
etext template command rows, 9-6
etext template setup command table, 9-16

even page
force report to end on, 5-53

Excel Analyzer, 2-14
prerequisites, 2-14

F
fax delivery, B-14
fixed-width columns

RTF templates, 5-42
FO

supported elements, C-1
FO elements

using in RTF templates, 5-126, 6-7
folders

accessing other user folders, 11-26
font definitions

configuration file, D-4
fonts

external, 5-115
mapping, 11-21
setting up, 5-115

footers
RTF template, 5-15

for-each-group XSL 2.0 standard, 5-81
formatting options in PDF templates, 8-5
form field method

inserting placeholders, 5-8
form field properties options in PDF template, 8-
5
form fields in the PDF template, 8-3
FTP delivery, B-17

G
Generate XLIFF button, 7-8
global properties

delivery server, B-38
groups

basic RTF method, 5-12
defining in PDF template, 8-7
defining in RTF template, 5-11

syntax, 5-11
defining in RTF templates, 5-5
form field method, 5-13
grouping scenarios in RTF template, 5-11
in RTF templates, 5-5

Index-3

H
headers and footers

different first page , 5-16
different odd and even pages, 5-16
inserting placeholders, 5-15
multiple, 5-15
resetting within one output file, 5-92
RTF template, 5-15

hidden text
support in RTF templates, 5-41

horizontal table break, 5-98
HTTP

delivering documents over, B-22
hyperlinks

bookmarks, 5-53
dynamic, 5-53
inserting in RTF template, 5-53
internal, 5-53
static, 5-53

I
if statements, 5-62, 5-62
IF statements

in free-form text, 5-62
if-then-else statements, 5-63
images

including in RTF template, 5-17
IN predicate

If-Then-Else control structure
e-text templates, 9-28

L
language

setting display language, 1-2
setting report preference, 1-2

last page
support for special content, 5-50

ldap
integration, 10-6

locale
setting report preference, 1-2

local superuser, 10-2

M

markup
adding to the PDF template, 8-3
adding to the RTF template, 5-7

merging PDF files, A-28
multicolumn page support, 5-44
multiple headers and footers

RTF template, 5-15

N
Namespace support in RTF template, 5-121
naming standards

translated files, 7-6
native page breaks and page numbering, 5-40
nulls

how to test for in XML data, 5-80

O
output formats

limiting by report, 3-32
overflow data in PDF templates, 8-17

P
page breaks

PDF templates, 8-9
RTF template, 5-40, 5-48

page breaks and page numbering
native support, 5-40

page number
setting initial

RTF templates, 5-49
page numbers

PDF templates, 8-9
restarting within one output file, 5-92
RTF template, 5-41

page totals
brought forward/carried forward, 5-74
inserting in RTF template, 5-72

password
changing, 1-3

PDF files
merging, A-28

PDF template
adding markup, 8-3
placeholders

types of, 8-4

Index-4

pdf template mapping file, 3-40
PDF templates

completed example, 8-14
creating from downloaded file, 8-17
defining groups, 8-7
definition of, 8-1
mapping form fields, 3-34
overflow data, 8-17
page breaks, 8-9
page numbering, 8-9
placeholders

check box, 8-5
radio button group, 8-6
text, 8-4

placement of repeating fields at runtime, 8-15
runtime behaviors, 8-15
sample purchase order template, 8-2
saving as Adobe Acrobat 5.0 compatible, 8-1
sources for document templates, 8-2
supported modes, 8-1
when to use, 8-1

placeholders
basic RTF method, 5-7, 5-7
form field RTF method, 5-7, 5-8
in PDF templates, 8-3
in RTF templates, 5-5

defining, 5-5, 5-7
inserting in the header and footer of RTF
template, 5-15
PDF templates

check box, 8-5
radio button group, 8-6
text, 8-4
types of, 8-4

predefined fonts, 11-22, D-7
preferences

setting, 1-2
setting display language, 1-2
setting passwords, 1-3
setting report locale, 1-2
SVG settings, 1-3

printers
setup

Unix/Linux, 12-1
Windows XP, 12-6

printing, B-8
properties

setting at template level, 5-90
properties element

configuration file, D-3

R
radio button group

creating in PDF templates, 8-6
refresh metadata, 11-10
regrouping, 5-81
rename report, 11-27
repeating elements

See groups
report actions

download, 11-28
rename, 11-27
upload, 11-27, 11-28

report actions icon, 11-26
report file, 7-8
repository

defining, 11-8
Rich Text Format (RTF)

definition, 5-1
row breaking

preventing in RTF templates, 5-42
row formatting

conditional, 5-68
RTF placeholders

syntax, 5-7
RTF template

adding markup, 5-7
applying design elements, 5-6
definition, 5-1
designing, 5-2
groups, 5-5
including images, 5-17
native formatting features, 5-40
placeholders, 5-5
prerequisites, 5-2
sample template design, 5-3
supported modes, 5-1

basic method, 5-1
form field method, 5-1
using XSL or XSL:FO, 5-2

RTF template design
headers and footers, 5-15

RTF template placeholders, 5-7

Index-5

running totals
RTF templates, 5-78

S
sample RTF template

completed markup, 5-11
section context command, 5-92
secure ftp

delivery, B-19
security

model, 10-2
options, 10-1
superuser, 10-2

setRowsetTag method, 4-28
setRowsTag method, 4-28
setSQL method, 4-29
setting the initial page number

RTF templates, 5-49
shape support, 5-29
single sign-on

setting up, 10-16
sorting

RTF template, 5-80
SQL functions

BI Publisher syntax for, 6-1
using in RTF templates, 5-118

SQL functions extended for BI Publisher, 6-1
superuser, 10-2
svg

enabling and disabling for HTML, 1-3
syntax

RTF template placeholder, 5-7

T
table features

fixed-width columns, 5-42
preventing rows breaking across pages

RTF template, 5-42
text truncation, 5-43

table features
repeating table headers

RTF template, 5-42
RTF template, 5-41

table of contents support
RTF template, 5-56

dynamic TOC, 5-56

tables
horizontal table break, 5-98

Template Builder, 3-29, 5-2
prerequisites, 3-29

temporary directory
delivery configuration, E-2

text placeholder
creating in PDF template, 8-4

text truncation in tables, 5-43
timezone

set for user, 1-2
totals

brought forward/carried forward, 5-74
inserting page totals in RTF template, 5-72
running

RTF templates, 5-78
translating, 7-8
translations, 7-8

naming standards, 7-6

U
updateable variables

RTF templates, 5-87
upgrading

5.6.2 config settings, D-1
from 5.6.2 to 10.1.3.2, E-1

upload report, 11-27, 11-28
URLs

accessing reports, 3-45

V
variables

RTF templates, 5-87

W
watermarks

RTF templates, 5-46
WebDAV delivery, B-15
Web service

defining as data source, 3-16
supported formats, 3-16

X
xdo.cfg

use in 10.1.3.2, D-1

Index-6

XLIFF files
naming, 7-6
report file, 7-8
uploading, 7-7

XML data file
example, 5-4

XML file
how to read, 5-4

XSL:FO elements
using in RTF templates, 5-118

XSL elements
apply a template rule, 5-124
BI Publisher syntax for , 6-6
call template, 5-125
copy the current node, 5-125
define the root element of the stylesheet, 5-125
import stylesheet, 5-125
template declaration, 5-125
using in RTF templates, 5-124
variable declaration, 5-125

	Oracle Business Intelligence Publisher User's Guide
	Preface
	Viewing and Scheduling Reports
	Getting Started
	Accessing Business Intelligence Publisher Enterprise
	Setting Preferences

	Viewing and Scheduling Reports
	Viewing a Report
	Scheduling a Report
	Scheduling a Report to Be Burst
	Managing Your Scheduled Reports
	Viewing Report History and Saved Output
	Using the Online Analyzer
	Using the BI Publisher Analyzer for Excel

	Creating Reports and Layouts
	Creating a New Report
	Process Overview
	Create the Report Entry and Specify General Properties
	Defining the Data Model
	Defining a SQL Query Data Set Type
	Using the Query Builder

	Defining an HTTP Data Set Type
	Defining a Web Service Data Set Type
	Defining a Data Template Data Set Type
	Defining an Oracle BI Answers Request Data Set Type
	Defining a File as a Data Set Type
	Adding Parameters and Lists of Values
	Adding Layouts to the Report Definition
	Creating an RTF Template Using the Template Builder for Word
	Adding a PDF Template to Your Report

	Enabling Bursting
	Accessing Reports via a URL

	Building a Data Template
	Introduction
	The Data Template Definition
	Constructing the Data Template
	Using the Data Engine Java API
	Calling a Data Template from the Java API

	Sample Data Templates

	Creating an RTF Template
	Introduction
	Supported Modes
	Prerequisites

	Overview
	Using the BI Publisher Template Builder
	Associating the XML Data to the Template Layout

	Designing the Template Layout
	Adding Markup to the Template Layout
	Creating Placeholders
	Defining Groups

	Defining Headers and Footers
	Native Support

	Inserting Images and Charts
	Images
	Chart Support

	Drawing, Shape, and Clip Art Support
	Supported Native Formatting Features
	General Features
	Alignment
	Tables
	Date Fields
	Multicolumn Page Support
	Background and Watermark Support

	Template Features
	Page Breaks
	Initial Page Number
	Last Page Only Content
	End on Even or End on Odd Page
	Hyperlinks
	Table of Contents
	Generating Bookmarks in PDF Output
	Check Boxes
	Drop Down Lists

	Conditional Formatting
	If Statements
	If Statements in Boilerplate Text

	If-then-Else Statements
	Choose Statements
	Column Formatting
	Row Formatting
	Cell Highlighting

	Page-Level Calculations
	Displaying Page Totals
	Brought Forward/Carried Forward Totals
	Running Totals

	Data Handling
	Sorting
	Checking for Nulls
	Regrouping the XML Data

	Using Variables
	Defining Parameters
	Setting Properties
	Advanced Report Layouts
	Batch Reports
	Cross-Tab Support
	Dynamic Data Columns

	Number and Formatting
	Calendar and Timezone Support
	Using External Fonts
	Advanced Barcode Formatting

	Advanced Design Options
	Namespace Support
	Using the Context Commands
	Using XSL Elements
	Using FO Elements

	Extended Function Support in RTF Templates
	Extended SQL and XSL Functions
	XSL Equivalents
	Using FO Elements

	Translating Reports
	Template Translations
	Report File Translations

	Creating a PDF Template
	Overview
	Supported Modes

	Designing the Layout
	Adding Markup to the Template Layout
	Creating a Placeholder
	Defining Groups of Repeating Fields

	Adding Page Numbers
	Performing Calculations
	Completed PDF Template Example
	Runtime Behavior
	Creating a Template from a Predefined PDF Form

	Creating an eText Template
	Introduction
	Outbound eText Templates
	Structure of eText Templates
	Constructing the Data Tables
	Command Rows
	Structure of the Data Rows

	Setup Command Tables
	Expressions, Control Structures, and Functions
	Identifiers, Operators, and Literals

	Administering BI Publisher
	Defining a Security Model
	Security Model Overview
	Understanding BI Publisher's Users and Roles
	Considerations When Deleting a User
	Integrating with LDAP
	Setting Up Oracle Single Sign-On
	Integrating with Oracle E-Business Suite Security
	Integrating with Oracle BI Server Security

	Using the Admin Functions
	Overview
	Setting Up Data Sources
	Setting Up Integration with Oracle BI Presentation Services
	Setting System Maintenance Options
	Setting Up Delivery Options
	Setting Runtime Properties
	Defining Font Mappings
	Managing Reports and Folders
	Folder Tasks

	Setting Up Print Servers
	Setting Up CUPS
	Windows XP Setup

	Using the BI Publisher APIs
	Introduction
	BI Publisher Core APIs
	PDF Form Processing Engine
	RTF Processor Engine
	FO Processor Engine
	PDF Document Merger
	PDF Book Binder Processor
	Document Processor Engine
	Bursting Engine
	BI Publisher Properties
	Advanced Barcode Font Formatting Implementation

	Using the Delivery Manager APIs
	Introduction
	Delivering Documents by e-Mail
	Delivering Your Document to a Printer
	Delivering Your Documents by a Fax Server
	Delivering Your Documents to a WebDAV Server
	Delivering Your Document Using FTP
	Delivering Your Documents over Secure FTP
	Delivering Your Documents over HTTP
	Delivering Documents over AS2
	Delivering Documents Using an External Command
	Delivering Documents to the Local File System
	Direct and Buffering Modes
	Asynchronous Delivery Requests
	Document Filter Support
	Date Expression Support
	Internationalization Support
	Monitoring Delivery Status
	Setting Global Properties
	Adding a Custom Delivery Channel
	Configuration File Support

	Supported XSL-FO Elements
	Supported XSL-FO Elements

	Configuration File Reference
	BI Publisher Configuration Files
	Setting Properties in the Runtime Configuration File
	Structure
	Properties
	Font Definitions
	Predefined Fonts
	The Server Configuration Files

	Upgrading from XML Publisher Enterprise 5.6.2 to BI Publisher 10.1.3.2
	Overview

	Index

