Contents

Preface
- Audience ... xix
- Documentation Accessibility .. xix
- Related Documents .. xx
- Conventions ... xx

What’s New in Oracle Clusterware Administration and Deployment?
- Oracle Database 11g Release 2 (11.2.0.4) New Features in Oracle Clusterware xxi
- Oracle Database 11g Release 2 (11.2) New Features in Oracle Clusterware xxi
- Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle Clusterware xxiii

1 Introduction to Oracle Clusterware

What is Oracle Clusterware? .. 1-1
Understanding System Requirements for Oracle Clusterware 1-3
- Oracle Clusterware Hardware Concepts and Requirements .. 1-3
- Oracle Clusterware Operating System Concepts and Requirements 1-4
- Oracle Clusterware Software Concepts and Requirements .. 1-4
- Oracle Clusterware Network Configuration Concepts .. 1-5
 - Implementing GNS .. 1-6
 - Single Client Access Name (SCAN) ... 1-6
 - Configuring Addresses Manually ... 1-6
Overview of Oracle Clusterware Platform-Specific Software Components 1-7
- The Oracle Clusterware Stack .. 1-7
- The Cluster Ready Services Stack ... 1-7
- The Oracle High Availability Services Stack ... 1-8
- Oracle Clusterware Processes on Windows Systems .. 1-10
Overview of Installing Oracle Clusterware ... 1-10
- Oracle Clusterware Version Compatibility ... 1-11
Overview of Upgrading Oracle Clusterware .. 1-12
Overview of Managing Oracle Clusterware Environments 1-12
Overview of Cloning and Extending Oracle Clusterware in Grid Environments 1-14
Overview of the Oracle Clusterware High Availability Framework and APIs 1-15

2 Administering Oracle Clusterware

Policy-Based Cluster and Capacity Management ... 2-1
Managing Oracle Cluster Registry and Voting Disks

Overview of Server Pools and Policy-Based Management ... 2-1
Server Attributes Assigned by Oracle Clusterware ... 2-2
Understanding Server Pools .. 2-4
 How Server Pools Work ... 2-4
 The Free Server Pool ... 2-7
 The Generic Server Pool ... 2-7
How Oracle Clusterware Assigns New Servers .. 2-8
 Servers Moving from Server Pool to Server Pool ... 2-9
Role-Separated Management .. 2-10
 About Role-Separated Management .. 2-10
 About the CRS Administrator ... 2-10
 Managing CRS Administrators in the Cluster ... 2-11
 Configuring Horizontal Role Separation .. 2-11
Configuring Oracle Grid Infrastructure ... 2-12
 Configuring a Single Node .. 2-13
 Configuring Multiple Nodes ... 2-13
 Upgrading Grid Infrastructure ... 2-14
 Running the Configuration Wizard in Silent Mode ... 2-14
Configuring IPMI for Failure Isolation ... 2-14
 About Using IPMI for Failure Isolation ... 2-14
 Configuring Server Hardware for IPMI .. 2-15
 Postinstallation Configuration of IPMI-based Failure Isolation Using CRSCTL 2-15
 IPMI Postinstallation Configuration with Oracle Clusterware .. 2-15
 Modifying IPMI Configuration Using CRSCTL .. 2-16
 Removing IPMI Configuration Using CRSCTL .. 2-17
Cluster Time Management .. 2-17
Changing Network Addresses on Manually Configured Networks ... 2-18
 Understanding When You Must Configure Network Addresses 2-19
 Understanding SCAN Addresses and Client Service Connections 2-19
 Changing the Virtual IP Addresses ... 2-19
 Changing Oracle Clusterware Private Network Configuration .. 2-21
 About Private Networks and Network Interfaces .. 2-22
 Redundant Interconnect Usage .. 2-22
 Consequences of Changing Interface Names Using OIFCFG 2-23
 Changing a Network Interface .. 2-23

3 Managing Oracle Cluster Registry and Voting Disks

Managing Oracle Cluster Registry and Oracle Local Registry ... 3-2
 Migrating Oracle Cluster Registry to Oracle Automatic Storage Management 3-3
 Migrating Oracle Cluster Registry from Oracle ASM to Other Types of Storage 3-5
 Adding, Replacing, Repairing, and Removing Oracle Cluster Registry Locations 3-5
 Adding an Oracle Cluster Registry Location ... 3-7
 Removing an Oracle Cluster Registry Location ... 3-7
 Replacing an Oracle Cluster Registry Location ... 3-8
 Repairing an Oracle Cluster Registry Configuration on a Local Node 3-8
 Overriding the Oracle Cluster Registry Data Loss Protection Mechanism 3-9
 Backing Up Oracle Cluster Registry .. 3-10
4 Adding and Deleting Cluster Nodes

Prerequisite Steps for Adding Cluster Nodes ... 4-1

Adding and Deleting Cluster Nodes on Linux and UNIX Systems 4-3
- Adding a Cluster Node on Linux and UNIX Systems... 4-3
- Deleting a Cluster Node on Linux and UNIX Systems .. 4-6

Adding and Deleting Cluster Nodes on Windows Systems ... 4-9
- Adding a Node to a Cluster on Windows Systems... 4-9
- Deleting a Cluster Node on Windows Systems.. 4-10

5 Cloning Oracle Clusterware

Introduction to Cloning Oracle Clusterware ... 5-1

Preparing the Oracle Grid Infrastructure Home for Cloning .. 5-3
- Step 1: Install Oracle Clusterware.. 5-3
- Step 2: Shut Down Running Software.. 5-3
- Step 3: Create a Copy of the Oracle Grid Infrastructure Home 5-3

Creating a Cluster by Cloning Oracle Clusterware ... 5-4
- Step 1: Prepare the New Cluster Nodes.. 5-4
- Step 2: Deploy the Oracle Grid Infrastructure Home on the Destination Nodes 5-7
- Step 3: Run the clone.pl Script on Each Destination Node .. 5-8
 - Suppliing input to the clone.pl script on the command line .. 5-8
 - Suppliing Input to the clone.pl Script in a File ... 5-9
- Step 4: Launch the Configuration Wizard ... 5-10

Using Cloning to Add Nodes to a Cluster ... 5-11

Locating and Viewing Log Files Generated During Cloning 5-13

6 Making Applications Highly Available Using Oracle Clusterware

Oracle Clusterware Resources and Agents .. 6-1
- Resources ... 6-2
- Resource Types ... 6-3
- Agents .. 6-3
- Action Scripts .. 6-6
- Building an Agent .. 6-7
About Cluster Verification Utility

Managing Resources

Managing Automatic Restart of Oracle Clusterware Resources

A Cluster Verification Utility Reference

About Cluster Verification Utility

Overview

Operational Notes

Special Topics

Cluster Verification Utility Command Reference
B Oracle Clusterware Resource Reference

Resource Attributes ... B-2
 Configurable Resource Attributes .. B-3
 ACL .. B-3
 ACTION_SCRIPT ... B-4
 ACTIVE_PLACEMENT ... B-4
 AGENT_FILENAME ... B-5
 AUTO_START ... B-5
 CARDINALITY ... B-5
 CHECK_INTERVAL .. B-5
 DEGREE .. B-5
 DESCRIPTION ... B-6
 ENABLED .. B-6
 FAILURE_INTERVAL ... B-6
 FAILURE_THRESHOLD .. B-6
 HOSTING_MEMBERS ... B-6
Examples of Action Scripts for Third-Party Applications .. B-16

C OLSNODES Command Reference

Using OLSNODES ... C-2
 Overview ... C-3
 Operational Notes .. C-4
 Summary of the OLSNODES Command ... C-5

D Oracle Interface Configuration Tool (OIFCFG) Command Reference

Starting the OIFCFG Command-Line Interface ... D-2
 Summary of the OIFCFG Usage .. D-3

E CRSCTL Utility Reference

CRSCTL Overview .. E-2
 Clusterized (Cluster Aware) Commands .. E-3
 Operational Notes ... E-4
 Deprecated Subprograms or Commands .. E-5
 CRSCTL Command Reference .. E-7
 Dual Environment CRSCTL Commands .. E-8
 crsctl add resource .. E-8
 crsctl add type ... E-11
 crsctl check css .. E-12
crsctl check evm .. E-13
crsctl delete resource .. E-13
crsctl delete type.. E-14
crsctl get hostname ... E-14
crsctl getperm resource .. E-14
crsctl getperm type .. E-15
crsctl modify resource ... E-16
crsctl modify type .. E-18
crsctl setperm resource ... E-19
crsctl setperm type .. E-20
crsctl start resource .. E-21
crsctl status resource .. E-23
crsctl status type ... E-24
crsctl stop resource ... E-25
Oracle RAC Environment CRSCTL Commands ... E-27
 crsctl add crs administrator .. E-28
 crsctl add css votedisk .. E-29
 crsctl add serverpool ... E-30
 crsctl check cluster .. E-32
 crsctl check css ... E-32
 crsctl check resource .. E-32
 crsctl check ctss ... E-33
 crsctl config crs .. E-34
 crsctl delete crs administrator ... E-34
 crsctl delete css votedisk .. E-35
 crsctl delete node ... E-35
 crsctl delete serverpool .. E-36
 crsctl disable crs .. E-36
 crsctl discover dhcp ... E-36
 crsctl enable crs ... E-37
 crsctl get clientid dhcp .. E-37
 crsctl get css ... E-38
 crsctl get css ipmiaddr .. E-39
 crsctl get nodename ... E-39
 crsctl getperm serverpool .. E-39
 crsctl lsmodules ... E-40
 crsctl modify serverpool ... E-41
 crsctl pin css ... E-42
 crsctl query crs administrator .. E-42
 crsctl query crs activeversion ... E-43
 crsctl query crs releaseversion ... E-43
 crsctl query crs softwareversion ... E-43
 crsctl query css ipmiconfig ... E-43
 crsctl query css ipmidevice .. E-44
 crsctl query css votedisk ... E-44
 crsctl query dns ... E-45
 crsctl release dhcp ... E-46
Oracle Clusterware C Application Program Interfaces

Troubleshooting and Diagnostic Output

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>crsctl relocate resource</td>
<td>E-46</td>
</tr>
<tr>
<td>crsctl relocate server</td>
<td>E-48</td>
</tr>
<tr>
<td>crsctl replace discoverystring</td>
<td>E-49</td>
</tr>
<tr>
<td>crsctl replace votedisk</td>
<td>E-49</td>
</tr>
<tr>
<td>crsctl request dhcp</td>
<td>E-50</td>
</tr>
<tr>
<td>crsctl set css</td>
<td>E-50</td>
</tr>
<tr>
<td>crsctl set css ipmiaddr</td>
<td>E-51</td>
</tr>
<tr>
<td>crsctl set css ipmiadmin</td>
<td>E-51</td>
</tr>
<tr>
<td>crsctl setperm serverpool</td>
<td>E-52</td>
</tr>
<tr>
<td>crsctl start cluster</td>
<td>E-53</td>
</tr>
<tr>
<td>crsctl start crs</td>
<td>E-54</td>
</tr>
<tr>
<td>crsctl start ip</td>
<td>E-54</td>
</tr>
<tr>
<td>crsctl start testdns</td>
<td>E-55</td>
</tr>
<tr>
<td>crsctl status ip</td>
<td>E-55</td>
</tr>
<tr>
<td>crsctl status server</td>
<td>E-56</td>
</tr>
<tr>
<td>crsctl status serverpool</td>
<td>E-57</td>
</tr>
<tr>
<td>crsctl status serverpool</td>
<td>E-58</td>
</tr>
<tr>
<td>crsctl stop cluster</td>
<td>E-58</td>
</tr>
<tr>
<td>crsctl stop crs</td>
<td>E-59</td>
</tr>
<tr>
<td>crsctl stop ip</td>
<td>E-60</td>
</tr>
<tr>
<td>crsctl stop testdns</td>
<td>E-60</td>
</tr>
<tr>
<td>crsctl unpin css</td>
<td>E-61</td>
</tr>
<tr>
<td>crsctl unset css</td>
<td>E-61</td>
</tr>
<tr>
<td>crsctl unset css ipmiconfig</td>
<td>E-62</td>
</tr>
</tbody>
</table>

Oracle Restart Environment CRSCTL Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>crsctl check has</td>
<td>E-63</td>
</tr>
<tr>
<td>crsctl config has</td>
<td>E-63</td>
</tr>
<tr>
<td>crsctl disable has</td>
<td>E-63</td>
</tr>
<tr>
<td>crsctl enable has</td>
<td>E-64</td>
</tr>
<tr>
<td>crsctl query has releaseversion</td>
<td>E-64</td>
</tr>
<tr>
<td>crsctl query has softwareversion</td>
<td>E-65</td>
</tr>
<tr>
<td>crsctl start has</td>
<td>E-65</td>
</tr>
<tr>
<td>crsctl stop has</td>
<td>E-65</td>
</tr>
</tbody>
</table>

Troubleshooting and Diagnostic Output

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Debugging</td>
<td>E-68</td>
</tr>
<tr>
<td>crsctl set log</td>
<td>E-68</td>
</tr>
<tr>
<td>Component Level Debugging</td>
<td>E-69</td>
</tr>
<tr>
<td>Enabling Debugging for Oracle Clusterware Modules</td>
<td>E-69</td>
</tr>
<tr>
<td>Creating an Initialization File to Contain the Debugging Level</td>
<td>E-72</td>
</tr>
<tr>
<td>Enabling Debugging for Oracle Clusterware Resources</td>
<td>E-73</td>
</tr>
<tr>
<td>Enabling Additional Tracing for Oracle Clusterware Components</td>
<td>E-74</td>
</tr>
</tbody>
</table>
G Oracle Cluster Registry Utility Reference

About OCRCONFIG ... G-2
OCRCONFIG Command Reference .. G-3
Troubleshooting Oracle Cluster Registry and Diagnostic Output ... G-10
 Troubleshooting Oracle Cluster Registry ... G-11
 Using the OCRCHECK Utility .. G-12
 Using the OCRDUMP Utility to View Oracle Cluster Registry Content .. G-15
 OCRDUMP Utility Syntax and Options ... G-15
 OCRDUMP Utility Examples .. G-16
 Sample OCRDUMP Utility Output ... G-16

H Troubleshooting Oracle Clusterware

Monitoring Oracle Clusterware .. H-1
 Cluster Health Monitor ... H-3
 CHM Services .. H-3
 CHM Repository .. H-3
 Collecting CHM Data .. H-3
 OCLUMON Command Reference .. H-4
 oclumon debug... H-5
 oclumon dumpnodeview .. H-5
 oclumon manage... H-11
 oclumon version... H-13
Clusterware Log Files and the Unified Log Directory Structure .. H-13
Testing Zone Delegation ... H-14
Oracle Trace File Analyzer Collector ... H-15
 Managing the TFA Daemon ... H-16
TFA Control Utility Command Reference H-16
 tfactl print ... H-17
 tfactl purge .. H-18
 tfactl directory .. H-18
 tfactl host ... H-19
 tfactl set ... H-20
 tfactl diagcollect ... H-21
Data Redaction with TFA ... H-22
Diagnostics Collection Script ... H-23
Oracle Clusterware Alerts .. H-23
 Alert Messages Using Diagnostic Record Unique IDs H-24

Glossary

Index
List of Tables

1–1 List of Processes and Services Associated with Oracle Clusterware Components........ 1-9
2–1 Server Attributes.. 2-2
2–2 Server Pool Attributes.. 2-6
2–3 Sample Server Pool Attributes Configuration.. 2-9
2–4 Post Processing Server Pool Configuration... 2-9
2–5 Storage for the Network Interface, Private IP Address, and Private Host Name 2-22
5–1 Parameters for the clone.pl Script... 5-8
5–2 Environment Variables Passed to the clone.pl Script... 5-10
5–3 Cloning Log Files and their Descriptions... 5-13
5–4 Finding the Location of the Oracle Inventory Directory... 5-14
6–1 Agent Framework Monitoring Characteristics... 6-5
6–2 Possible Resource States.. 6-9
A–1 Performing Various CVU Verifications... A-3
A–2 cluvfy comp acfs Command Parameters... A-13
A–3 cluvfy comp admprv Command Parameters... A-14
A–4 cluvfy comp asm Command Parameters.. A-16
A–5 cluvfy comp cf s Command Parameters.. A-17
A–6 cluvfy comp clocksync Command Parameters.. A-18
A–7 cluvfy comp clu Command Parameters... A-19
A–8 cluvfy comp clumgr Command Parameters.. A-20
A–9 cluvfy comp crs Command Parameters.. A-21
A–10 cluvfy comp dhcp Command Parameters... A-22
A–11 cluvfy comp dns Command Parameters... A-23
A–12 cluvfy comp gns Command Parameters... A-25
A–13 cluvfy comp gppn Command Parameters... A-26
A–14 cluvfy comp healthcheck Command Parameters.. A-28
A–15 cluvfy comp nodeapp Command Parameters... A-30
A–16 cluvfy comp nodecon Command Parameters... A-31
A–17 cluvfy comp nodeeach Command Parameters.. A-33
A–18 cluvfy comp ocr Command Parameters.. A-34
A–19 cluvfy comp ohasd Command Parameters... A-36
A–20 cluvfy comp peer Command Parameters.. A-38
A–21 cluvfy comp software Command Parameters... A-41
A–22 cluvfy comp space Command Parameters.. A-42
A–23 cluvfy comp ssa Command Parameters... A-43
A–24 cluvfy comp sys Command Parameters.. A-45
A–25 cluvfy comp vdisk Command Parameters... A-46
A–26 cluvfy stage [-pre | -post] acfscfg Command Parameters..................................... A-47
A–27 cluvfy stage [-pre | -post] cf s Command Parameters... A-48
A–28 cluvfy stage [-pre | -post] crsinst Command Parameters...................................... A-49
A–29 cluvfy stage -pre dbcfg Command Parameters... A-51
A–30 cluvfy stage -pre dbinst Command Parameters... A-52
A–31 cluvfy stage [-pre | -post] hafcg Command Parameters.. A-53
A–32 cluvfy stage -post hwos Command Parameters... A-54
A–33 cluvfy stage [-pre | -post] nodeadd Command Parameters.................................... A-55
A–34 cluvfy stage -post nodedel Command Parameters... A-56
C-1 OLSNODES Command Options.. C-5
D–1 OIFCFG Commands.. D-3
E–1 Deprecated CRSCTL Commands and Replacements.. E-5
E–2 crsctl add resource Command Parameters.. E-8
E–3 crsctl add type Command Parameters.. E-11
E–4 crsctl delete resource Command Parameters.. E-13
E–5 crsctl getperm resource Command Parameters.. E-14
<table>
<thead>
<tr>
<th>Page</th>
<th>Command and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-6</td>
<td>crsctl getperm type Command Parameters .. E-15</td>
</tr>
<tr>
<td>E-7</td>
<td>crsctl modify resource Command Parameters ... E-16</td>
</tr>
<tr>
<td>E-8</td>
<td>crsctl modify type Command Parameters ... E-18</td>
</tr>
<tr>
<td>E-9</td>
<td>crsctl setperm resource Command Parameters ... E-19</td>
</tr>
<tr>
<td>E-10</td>
<td>crsctl setperm type Command Parameters .. E-20</td>
</tr>
<tr>
<td>E-11</td>
<td>crsctl start resource Command Parameters ... E-22</td>
</tr>
<tr>
<td>E-12</td>
<td>crsctl status resource Command Parameters .. E-23</td>
</tr>
<tr>
<td>E-13</td>
<td>crsctl status type Command Parameters ... E-24</td>
</tr>
<tr>
<td>E-14</td>
<td>crsctl stop resource Command Parameters .. E-25</td>
</tr>
<tr>
<td>E-15</td>
<td>crsctl add crs administrator Command Parameters E-29</td>
</tr>
<tr>
<td>E-16</td>
<td>crsctl add css votedisk Command Parameters ... E-29</td>
</tr>
<tr>
<td>E-17</td>
<td>crsctl add serverpool Command Parameters ... E-30</td>
</tr>
<tr>
<td>E-18</td>
<td>crsctl check resource Command Parameters ... E-33</td>
</tr>
<tr>
<td>E-19</td>
<td>crsctl delete crs administrator Command Parameters E-34</td>
</tr>
<tr>
<td>E-20</td>
<td>crsctl delete css votedisk Command Parameters .. E-35</td>
</tr>
<tr>
<td>E-21</td>
<td>crsctl discover dhcp Command Parameters .. E-37</td>
</tr>
<tr>
<td>E-22</td>
<td>crsctl get clientid dhcp Command Parameters .. E-38</td>
</tr>
<tr>
<td>E-23</td>
<td>crsctl getperm serverpool Command Parameters .. E-39</td>
</tr>
<tr>
<td>E-24</td>
<td>crsctl modify serverpool Command Parameters .. E-41</td>
</tr>
<tr>
<td>E-25</td>
<td>crsctl query dns Command Parameters .. E-45</td>
</tr>
<tr>
<td>E-26</td>
<td>crsctl release dhcp Command Parameters ... E-46</td>
</tr>
<tr>
<td>E-27</td>
<td>crsctl relocate resource Command Parameters .. E-47</td>
</tr>
<tr>
<td>E-28</td>
<td>crsctl relocate server Command Parameters .. E-48</td>
</tr>
<tr>
<td>E-29</td>
<td>crsctl replace discoverystring Command Parameters E-49</td>
</tr>
<tr>
<td>E-30</td>
<td>crsctl replace votedisk Command Parameters ... E-49</td>
</tr>
<tr>
<td>E-31</td>
<td>crsctl request dhcp Command Parameters ... E-50</td>
</tr>
<tr>
<td>E-32</td>
<td>crsctl setperm serverpool Command Parameters .. E-52</td>
</tr>
<tr>
<td>E-33</td>
<td>crsctl start ip Command Parameters .. E-54</td>
</tr>
<tr>
<td>E-34</td>
<td>crsctl start testdns Command Parameters ... E-55</td>
</tr>
<tr>
<td>E-35</td>
<td>crsctl status ip Command Parameters .. E-55</td>
</tr>
<tr>
<td>E-36</td>
<td>crsctl status server Command Parameters ... E-56</td>
</tr>
<tr>
<td>E-37</td>
<td>crsctl status serverpool Command Parameters .. E-57</td>
</tr>
<tr>
<td>E-38</td>
<td>crsctl status testdns Command Parameters .. E-58</td>
</tr>
<tr>
<td>E-39</td>
<td>crsctl stop ip Command Parameters .. E-60</td>
</tr>
<tr>
<td>E-40</td>
<td>crsctl stop testdns Command Parameters .. E-60</td>
</tr>
<tr>
<td>E-41</td>
<td>Components for the CRS, CSS, and EVM Modules E-70</td>
</tr>
<tr>
<td>E-42</td>
<td>Cluster Synchronization Services (CSS) Modules and Functions E-70</td>
</tr>
<tr>
<td>E-43</td>
<td>Communication (COMM) Modules and Functions .. E-71</td>
</tr>
<tr>
<td>E-44</td>
<td>Oracle Clusterware (CRS) Modules and Functions E-71</td>
</tr>
<tr>
<td>E-45</td>
<td>Oracle Cluster Registry (OCR) Component Names E-71</td>
</tr>
<tr>
<td>E-46</td>
<td>OCRCONFIG Modules and Functions .. E-72</td>
</tr>
<tr>
<td>F-1</td>
<td>Deprecated CLSCRS APIs ... F-7</td>
</tr>
<tr>
<td>F-2</td>
<td>Summary of Interactive CLSCRS APIs for Oracle Clusterware F-8</td>
</tr>
<tr>
<td>F-3</td>
<td>Non-Interactive CLSCRS APIs .. F-9</td>
</tr>
<tr>
<td>G-1</td>
<td>Common Oracle Cluster Registry Problems and Solutions G-11</td>
</tr>
<tr>
<td>G-2</td>
<td>OCRDUMP Options and Option Descriptions .. G-15</td>
</tr>
<tr>
<td>H-1</td>
<td>oclumon debug Command Parameters .. H-5</td>
</tr>
<tr>
<td>H-2</td>
<td>oclumon dumpnodeview Command Parameters ... H-6</td>
</tr>
<tr>
<td>H-3</td>
<td>SYSTEM View Metric Descriptions .. H-7</td>
</tr>
<tr>
<td>H-4</td>
<td>PROCESSES View Metric Descriptions .. H-8</td>
</tr>
<tr>
<td>H-5</td>
<td>DEVICES View Metric Descriptions .. H-8</td>
</tr>
<tr>
<td>H-6</td>
<td>NICS View Metric Descriptions ... H-9</td>
</tr>
<tr>
<td>H-7</td>
<td>FILESFSYSTEMS View Metric Descriptions .. H-9</td>
</tr>
<tr>
<td>H-8</td>
<td>PROTOCOL ERRORS View Metric Descriptions ... H-10</td>
</tr>
<tr>
<td>H-9</td>
<td>oclumon manage Command Parameters .. H-12</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>H-10</td>
<td>Locations of Oracle Clusterware Component Log Files</td>
</tr>
<tr>
<td>H-11</td>
<td>tfactl print Command Parameters</td>
</tr>
<tr>
<td>H-12</td>
<td>tfactl directory Command Parameters</td>
</tr>
<tr>
<td>H-13</td>
<td>tfactl set Command Parameters</td>
</tr>
<tr>
<td>H-14</td>
<td>tfactl diagcollect Command Parameters</td>
</tr>
</tbody>
</table>
The Oracle Clusterware Administration and Deployment Guide describes the Oracle Clusterware architecture and provides an overview of this product. This book also describes administrative and deployment topics for Oracle Clusterware.

Information in this manual applies to Oracle Clusterware as it runs on all platforms unless otherwise noted. In addition, the content of this manual supplements administrative and deployment topics for Oracle single-instance databases that appear in other Oracle documentation. Where necessary, this manual refers to platform-specific documentation. This Preface contains these topics:

- Audience
- Documentation Accessibility
- Related Documents
- Conventions

Audience

The Oracle Clusterware Administration and Deployment Guide is intended for database administrators, network administrators, and system administrators who perform the following tasks:

- Install and configure Oracle Real Application Clusters (Oracle RAC) databases
- Administer and manage Oracle RAC databases
- Manage and troubleshoot clusters and networks that use Oracle RAC

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Related Documents

For more information, see the Oracle resources listed in this section.

- Platform-specific Oracle Clusterware and Oracle RAC installation guides

 Each platform-specific Oracle Database 11g installation media contains a copy of an Oracle Clusterware and Oracle RAC platform-specific installation and configuration guide in HTML and PDF formats. These installation books contain the preinstallation, installation, and postinstallation information for the various UNIX, Linux, and Windows platforms on which Oracle Clusterware and Oracle RAC operate.

- Oracle Database 2 Day + Real Application Clusters Guide

 This task-oriented guide helps you understand the basic steps required to install, configure, and administer Oracle Clusterware and Oracle Real Application Clusters on a two-node system using Oracle Linux 5.0.

- Oracle Real Application Clusters Administration and Deployment Guide

 This is an essential companion book that describes topics including instance management, tuning, backup and recovery, and managing services.

- Oracle Database 2 Day DBA
- Oracle Database Administrator’s Guide
- Oracle Database Net Services Administrator’s Guide
- Oracle Database Platform Guide for Microsoft Windows
- Oracle Database Administrator’s Reference for Linux and UNIX-Based Operating Systems
- Oracle Database Error Messages

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated</td>
</tr>
<tr>
<td></td>
<td>with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables</td>
</tr>
<tr>
<td></td>
<td>for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in</td>
</tr>
<tr>
<td></td>
<td>examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
What’s New in Oracle Clusterware Administration and Deployment?

This chapter lists new features in Oracle Clusterware for Oracle Database 11g release 2 (11.2) and 11g release 2 (11.2.0.1).

Oracle Database 11g Release 2 (11.2.0.4) New Features in Oracle Clusterware

This section describes the Oracle Database 11g release 2 (11.2.0.4) features for Oracle Clusterware administration and deployment.

- **Oracle RAC Configuration Audit Tool**

 The Oracle Real Application Clusters (Oracle RAC) Configuration Audit Tool (RACcheck) assesses single instance and Oracle RAC database installations for known configuration issues, best practices, regular health checks, and pre- and post-upgrade best practices.

 See Also: *Oracle Real Application Clusters Administration and Deployment Guide* for more information

- **Oracle Trace File Analyzer Collector**

 The Oracle Trace File Analyzer (TFA) Collector is a diagnostic collection utility to simplify diagnostic data collection for Oracle Clusterware, Oracle Grid Infrastructure, and Oracle Real Application Clusters (Oracle RAC) systems.

 See Also: "Oracle Trace File Analyzer Collector” on page H-15

Oracle Database 11g Release 2 (11.2) New Features in Oracle Clusterware

This section describes administration and deployment features for Oracle Clusterware starting with Oracle Database 11g release 2 (11.2).

See Also: *Oracle Database New Features Guide* for a complete description of the features in Oracle Database 11g release 2 (11.2)

- **Oracle Real Application Clusters One Node (Oracle RAC One Node)**

 Oracle Real Application Clusters One Node (Oracle RAC One Node) provides enhanced high availability for single-instance databases, protecting them from
both planned and unplanned downtime. Oracle RAC One Node provides the following:

– Always-on single-instance database services
– Better consolidation for database servers
– Enhanced server virtualization
– Lower cost development and test platform for full Oracle RAC

In addition, Oracle RAC One Node facilitates the consolidation of database storage, standardizes your database environment, and, when necessary, enables you to upgrade to a full, multinode Oracle RAC database without downtime or disruption.

Use online database relocation to migrate an Oracle RAC One Node database from one node to another while maintaining service availability.

This feature includes enhancements to the Server Control Utility (SRVCTL) for both Oracle RAC One Node and online database relocation.

See Also: *Oracle Real Application Clusters Administration and Deployment Guide* for more information about Oracle RAC One Node

- **Configuration Wizard for the Oracle Grid Infrastructure Software**

 This Configuration Wizard enables you to configure the Oracle Grid Infrastructure software after performing a software-only installation. You no longer have to manually edit the `config_params` configuration file as this wizard takes you through the process, step by step.

 See Also: *"Configuring Oracle Grid Infrastructure"* on page 2-12 for more information

- **Cluster Health Monitor (CHM)**

 The Cluster Health Monitor (CHM) gathers operating system metrics in real time and stores them in its repository for later analysis to determine the root cause of many Oracle Clusterware and Oracle RAC issues with the assistance of Oracle Support. It also works together with Oracle Database Quality of Service Management (Oracle Database QoS Management) by providing metrics to detect memory over-commitment on a node. With this information, Oracle Database QoS Management can take action to relieve the stress and preserve existing workloads.

 See Also:
 - "Cluster Health Monitor" on page H-3 for more information
 - *Oracle Database Quality of Service Management User’s Guide* for more information about Oracle Database QoS Management

- **Enhancements to SRVCTL for Grid Infrastructure Management**

 Enhancements to the Server Control utility (SRVCTL) simplify the management of various new Oracle Grid Infrastructure and Oracle RAC resources.

 See Also: *Oracle Real Application Clusters Administration and Deployment Guide* for more information about SRVCTL

- **Redundant Interconnect Usage**
In previous releases, to make use of redundant networks for the interconnect, bonding, trunking, teaming, or similar technology was required. Oracle Grid Infrastructure and Oracle RAC can now make use of redundant network interconnects, without the use of other network technology, to enhance optimal communication in the cluster.

Redundant Interconnect Usage enables load-balancing and high availability across multiple (up to four) private networks (also known as interconnects).

See Also: "Redundant Interconnect Usage" on page 2-22 for more information

- Oracle Database Quality of Service Management Server

The Oracle Database Quality of Service Management server allows system administrators to manage application service levels hosted in Oracle Database clusters by correlating accurate run-time performance and resource metrics and analyzing with an expert system to produce recommended resource adjustments to meet policy-based performance objectives.

See Also: Oracle Database Quality of Service Management User’s Guide for more information

Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle Clusterware

This section describes administration and deployment features for Oracle Clusterware starting with Oracle Database 11g Release 2 (11.2.0.1).

- Oracle Restart

Oracle Restart provides automatic restart of Oracle Database and listeners.

For standalone servers, Oracle Restart monitors and automatically restarts Oracle processes, such as Oracle Automatic Storage Management (Oracle ASM), Oracle Database, and listeners, on the server. Oracle Restart and Oracle ASM provide the Grid Infrastructure for a standalone server.

See Also: Oracle Database Administrator’s Guide for more information about Oracle Restart

- Improved Oracle Clusterware resource modeling

Oracle Clusterware can manage different types of applications and processes, including third-party applications. You can create dependencies among the applications and processes and manage them as one entity.

Oracle Clusterware uses different entities to manage your applications and processes, including resources, resource types, servers, and server pools. In addition to revised application programming interfaces (APIs), Oracle has created a new set of APIs to manage these entities.
Policy-based cluster and capacity management

Server capacity management is improved through logical separation of a cluster into server pools. You can determine where and how resources run in the cluster using a cardinality-based approach. Subsequently, nodes become anonymous, eliminating the need to identify the nodes when placing resources on them.

Server pools are assigned various levels of importance. When a failure occurs, Oracle Clusterware efficiently reallocates and reassigns capacity for applications to another, less important server pool within the cluster based on user-defined policies. This feature enables faster resource failover and dynamic capacity assignment.

Clusters can host resources (defined as applications and databases) in server pools, which are isolated with respect to their resource consumption by the user-defined policies. For example, you can choose to run all human resources applications, accounting applications, and email applications in separate server pools.

Role-separated management

Role-separated management enables multiple applications and databases to share the same cluster and hardware resources, but ensures that different administration groups do not interfere with each other.

Cluster time synchronization service

Cluster time synchronization service synchronizes the system time on all nodes in a cluster when vendor time synchronization software (such as NTP on UNIX and Window Time Service) is not installed. Synchronized system time across the cluster is a prerequisite to successfully run an Oracle cluster, improving the reliability of the entire Oracle cluster environment.

Oracle Cluster Registry and voting disks can be stored using Oracle Automatic Storage Management

OCR and voting disks can be stored in Oracle Automatic Storage Management (Oracle ASM). The Oracle ASM partnership and status table (PST) is replicated on multiple disks and is extended to store OCR. Consequently, OCR can tolerate the
loss of the same number of disks as are in the underlying disk group and be relocated in response to disk failures.

Oracle ASM reserves several blocks at a fixed location on every Oracle ASM disk for storing the voting disk. Should the disk holding the voting disk fail, Oracle ASM selects another disk on which to store this data.

Storing OCR and the voting disk on Oracle ASM eliminates the need for third-party cluster volume managers and eliminates the complexity of managing disk partitions for OCR and voting disks in Oracle Clusterware installations.

Note: The `dd` commands used to back up and recover voting disks in previous versions of Oracle Clusterware are not supported in Oracle Clusterware 11g release 2 (11.2).

See Also: Chapter 3, "Managing Oracle Cluster Registry and Voting Disks" for more information about OCR and voting disks

Oracle Automatic Storage Management Cluster File System

The Oracle Automatic Storage Management Cluster File System (Oracle ACFS) extends Oracle ASM by providing a robust, general purpose extent-based and journaling file system for files other than Oracle database files. Oracle ACFS provides support for files such as Oracle binaries, report files, trace files, alert logs, and other application data files. With the addition of Oracle ACFS, Oracle ASM becomes a complete storage management solution for both Oracle database and non-database files.

Additionally, Oracle ACFS

- Supports large files with 64-bit file and file system data structure sizes leading to exabyte-capable file and file system capacities.
- Uses extent-based storage allocation for improved performance.
- Uses a log-based metadata transaction engine for file system integrity and fast recovery.
- Can be exported to remote clients through industry standard protocols such as Network File System and Common Internet File System.

Oracle ACFS eliminates the need for third-party cluster file system solutions, while streamlining, automating, and simplifying all file type management in both a single node and Oracle Real Application Clusters (Oracle RAC) and Grid computing environments.

Oracle ACFS supports dynamic file system expansion and contraction without downtime. It is also highly available, leveraging the Oracle ASM mirroring and striping features in addition to hardware RAID functionality.

See Also: Oracle Automatic Storage Management Administrator’s Guide for more information about Oracle ACFS

Oracle Clusterware out-of-place upgrade

You can install a new version of Oracle Clusterware into a separate home. Installing Oracle Clusterware in a separate home before the upgrade reduces planned outage time required for cluster upgrades, which assists in meeting availability service level agreements. After the Oracle Clusterware software is
installed, you can then upgrade the cluster by stopping the previous version of the Oracle Clusterware software and starting the new version node by node (known as a rolling upgrade).

See Also: *Oracle Grid Infrastructure Installation Guide* for more information about out-of-place upgrades

- **Enhanced Cluster Verification Utility**

 Enhancements to the Cluster Verification Utility (CVU) include the following checks on the cluster:
 - Before and after node addition
 - After node deletion
 - Before and after storage addition
 - Before and after storage deletion
 - After network modification
 - Oracle ASM integrity

 In addition to command-line commands, these checks are done through the Oracle Universal Installer, Database Configuration Assistant, and Oracle Enterprise Manager. These enhancements facilitate implementation and configuration of cluster environments and provide assistance in diagnosing problems in a cluster environment, improving configuration and installation.

 See Also:
 - *Appendix A, “Cluster Verification Utility Reference”* for more information about CVU commands
 - *Oracle Grid Infrastructure Installation Guide* for more information about CVU checks done during installation

- **Enhanced Integration of Cluster Verification Utility and Oracle Universal Installer**

 This feature fully integrates the CVU with Oracle Universal Installer so that multi-node checks are done automatically. This ensures that any problems with cluster setup are detected and corrected before installing Oracle software.

 The CVU validates cluster components and verifies the cluster readiness at different stages of Oracle RAC deployment, such as installation of Oracle Clusterware and Oracle RAC databases, and configuration of Oracle RAC databases. It also helps validate the successful completion of a specific stage of Oracle RAC deployment.

 See Also: *Oracle Grid Infrastructure Installation Guide* for more information about CVU checks done during installation

- **Grid Plug and Play**

 Grid Plug and Play enables you to move your data center toward a dynamic Grid Infrastructure. This enables you to consolidate applications and lower the costs of managing applications, while providing a highly available environment that can easily scale when the workload requires. There are many modifications in Oracle RAC 11g release 2 (11.2) to support the easy addition of servers in a cluster and therefore a more dynamic grid.
In the past, adding or removing servers in a cluster required extensive manual preparation. With this release, Grid Plug and Play reduces the costs of installing, configuring, and managing server nodes by automating the following tasks:

- Adding an Oracle RAC database instance
- Negotiating appropriate network identities for itself
- Acquiring additional information it needs to operate from a configuration profile
- Configuring or reconfiguring itself using profile data, making host names and addresses resolvable on the network

Additionally, the number of steps necessary to add and remove nodes is reduced. Oracle Enterprise Manager immediately reflects Grid Plug and Play-enabled changes.

Oracle Enterprise Manager support for Oracle ACFS

This feature provides a comprehensive management solution that extends Oracle ASM technology to support general purpose files not directly supported by ASM, and in both single-instance Oracle Database and Oracle Clusterware configurations. It also enhances existing Oracle Enterprise Manager support for Oracle ASM, and adds new features to support the Oracle ASM Dynamic Volume Manager (ADVM) and Oracle ASM Cluster File System technology (ACFS).

Oracle Automatic Storage Management Cluster File System (Oracle ACFS) is a scalable file system and storage management design that extends Oracle ASM technology. It supports all application data in both single host and cluster configurations and leverages existing Oracle ASM functionality to achieve the following:

- Dynamic file system resizing
- Maximized performance through Oracle ASM’s automatic distribution
- Balancing and striping of the file system across all available disks
- Storage reliability through Oracle ASM’s mirroring and parity protection

Oracle ACFS provides a multiplatform storage management solution to access clusterwide, non-database customer files.

See Also: Oracle Automatic Storage Management Administrator’s Guide for more information about Oracle ACFS

Oracle Enterprise Manager-based Oracle Clusterware resource management

You can use Oracle Enterprise Manager to manage Oracle Clusterware resources. You can create and configure resources in Oracle Clusterware and also monitor and manage resources after they are deployed in the cluster.

See Also: "Adding Resources Using Oracle Enterprise Manager" on page 6-20

Zero downtime for patching Oracle Clusterware

Patching Oracle Clusterware and Oracle RAC can be completed without taking the entire cluster down. This also allows for out-of-place upgrades to the cluster software and Oracle Database, reducing the planned maintenance downtime required in an Oracle RAC environment.
- **Improvements to provisioning of Oracle Clusterware and Oracle RAC**

 This feature offers a simplified solution for provisioning Oracle RAC systems. Oracle Enterprise Manager Database Control enables you to extend Oracle RAC clusters by automating the provisioning tasks on the new nodes.
What is Oracle Clusterware?

Oracle Clusterware enables servers to communicate with each other, so that they appear to function as a collective unit. This combination of servers is commonly known as a cluster. Although the servers are standalone servers, each server has additional processes that communicate with other servers. In this way the separate servers appear as if they are one system to applications and end users.

Oracle Clusterware provides the infrastructure necessary to run Oracle Real Application Clusters (Oracle RAC). Oracle Clusterware also manages resources, such as virtual IP (VIP) addresses, databases, listeners, services, and so on. These resources are generally named ora.host_name.resource_name. Oracle does not support editing these resources except under the explicit direction of My Oracle Support.

See Also: Chapter 2, "Administering Oracle Clusterware" and Chapter 6, "Making Applications Highly Available Using Oracle Clusterware" for more information

Figure 1–1 shows a configuration that uses Oracle Clusterware to extend the basic single-instance Oracle Database architecture. In Figure 1–1, the cluster is running Oracle Database and is actively servicing applications and users. Using Oracle Clusterware, you can use the same high availability mechanisms to make your Oracle database and your custom applications highly available.
What is Oracle Clusterware?

The benefits of using a cluster include:

- Scalability of applications
- Reduce total cost of ownership for the infrastructure by providing a scalable system with low-cost commodity hardware
- Ability to fail over
- Increase throughput on demand for cluster-aware applications, by adding servers to a cluster to increase cluster resources
- Increase throughput for cluster-aware applications by enabling the applications to run on all of the nodes in a cluster
- Ability to program the startup of applications in a planned order that ensures dependent processes are started
- Ability to monitor processes and restart them if they stop
- Eliminate unplanned downtime due to hardware or software malfunctions
- Reduce or eliminate planned downtime for software maintenance
You can program Oracle Clusterware to manage the availability of user applications and Oracle databases. In an Oracle RAC environment, Oracle Clusterware manages all of the resources automatically. All of the applications and processes that Oracle Clusterware manages are either **cluster resources** or **local resources**.

Oracle Clusterware is required for using Oracle RAC; it is the only clusterware that you need for platforms on which Oracle RAC operates. Although Oracle RAC continues to support many third-party clusterware products on specific platforms, you must also install and use Oracle Clusterware. Note that the servers on which you want to install and run Oracle Clusterware must use the same operating system.

Using Oracle Clusterware eliminates the need for proprietary vendor clusterware and provides the benefit of using only Oracle software. Oracle provides an entire software solution, including everything from disk management with Oracle Automatic Storage Management (Oracle ASM) to data management with Oracle Database and Oracle RAC. In addition, Oracle Database features, such as Oracle Services, provide advanced functionality when used with the underlying Oracle Clusterware high availability framework.

Oracle Clusterware has two stored components, besides the binaries: The voting disk files, which record node membership information, and the Oracle Cluster Registry (OCR), which records cluster configuration information. Voting disks and OCRs must reside on shared storage available to all cluster member nodes.

Understanding System Requirements for Oracle Clusterware

To use Oracle Clusterware, you must understand the hardware and software concepts and requirements as described in the following sections:

- Oracle Clusterware Hardware Concepts and Requirements
- Oracle Clusterware Operating System Concepts and Requirements
- Oracle Clusterware Software Concepts and Requirements
- Oracle Clusterware Network Configuration Concepts
- Overview of Upgrading Oracle Clusterware

Oracle Clusterware Hardware Concepts and Requirements

Note: Many hardware providers have validated cluster configurations that provide a single part number for a cluster. If you are new to clustering, then use the information in this section to simplify your hardware procurement efforts when you purchase hardware to create a cluster.

A cluster consists of one or more servers. The hardware in a server in a cluster (or cluster member or node) is similar to a standalone server. However, a server that is part of a cluster, otherwise known as a node or a cluster member, requires a second network. This second network is referred to as the interconnect. For this reason, cluster member nodes require at least two network interface cards: one for a public network and one for a private network. The interconnect network is a private network using a switch (or multiple switches) that only the nodes in the cluster can access.¹

¹ Oracle Clusterware supports up to 100 nodes in a cluster on configurations running Oracle Database 10g release 2 (10.2) and later releases.
Cluster size is determined by the requirements of the workload running on the cluster and the number of nodes that you have configured in the cluster. If you are implementing a cluster for high availability, then configure redundancy for all of the components of the infrastructure as follows:

- At least two network interfaces for the public network, bonded to provide one address
- At least two network interfaces for the private interconnect network

The cluster requires cluster-aware storage\(^2\) that is connected to each server in the cluster. This may also be referred to as a multihost device. Oracle Clusterware supports NFS, iSCSI, Direct Attached Storage (DAS), Storage Area Network (SAN) storage, and Network Attached Storage (NAS).

To provide redundancy for storage, generally provide at least two connections from each server to the cluster-aware storage. There may be more connections depending on your I/O requirements. It is important to consider the I/O requirements of the entire cluster when choosing your storage subsystem.

Most servers have at least one local disk that is internal to the server. Often, this disk is used for the operating system binaries; you can also use this disk for the Oracle software binaries. The benefit of each server having its own copy of the Oracle binaries is that it increases high availability, so that corruption to a one binary does not affect all of the nodes in the cluster simultaneously. It also allows rolling upgrades, which reduce downtime.

Oracle Clusterware Operating System Concepts and Requirements

Each server must have an operating system that is certified with the Oracle Clusterware version you are installing. Refer to the certification matrices available in the Oracle Grid Infrastructure Installation Guide for your platform or on My Oracle Support (formerly OracleMetaLink) for details, which are available from the following URL:

When the operating system is installed and working, you can then install Oracle Clusterware to create the cluster. Oracle Clusterware is installed independently of Oracle Database. Once Oracle Clusterware is installed, you can then install Oracle Database or Oracle RAC on any of the nodes in the cluster.

See Also: Your platform-specific Oracle database installation documentation

Oracle Clusterware Software Concepts and Requirements

Oracle Clusterware uses voting disk files to provide fencing and cluster node membership determination. OCR provides cluster configuration information. You can place the Oracle Clusterware files on either Oracle ASM or on shared common disk storage. If you configure Oracle Clusterware on storage that does not provide file

\(^2\) Cluster-aware storage may also be referred to as a multihost device.
redundancy, then Oracle recommends that you configure multiple locations for OCR and voting disks. The voting disks and OCR are described as follows:

- **Voting Disks**

 Oracle Clusterware uses voting disk files to determine which nodes are members of a cluster. You can configure voting disks on Oracle ASM, or you can configure voting disks on shared storage.

 If you configure voting disks on Oracle ASM, then you do not need to manually configure the voting disks. Depending on the redundancy of your disk group, an appropriate number of voting disks are created.

 If you do not configure voting disks on Oracle ASM, then for high availability, Oracle recommends that you have a minimum of three voting disks on physically separate storage. This avoids having a single point of failure. If you configure a single voting disk, then you must use external mirroring to provide redundancy.

 You should have at least three voting disks, unless you have a storage device, such as a disk array that provides external redundancy. Oracle recommends that you do not use more than five voting disks. The maximum number of voting disks that is supported is 15.

- **Oracle Cluster Registry**

 Oracle Clusterware uses the Oracle Cluster Registry (OCR) to store and manage information about the components that Oracle Clusterware controls, such as Oracle RAC databases, listeners, virtual IP addresses (VIPs), and services and any applications. OCR stores configuration information in a series of key-value pairs in a tree structure. To ensure cluster high availability, Oracle recommends that you define multiple OCR locations. In addition:

 - You can have up to five OCR locations
 - Each OCR location must reside on shared storage that is accessible by all of the nodes in the cluster
 - You can replace a failed OCR location online if it is not the only OCR location
 - You must update OCR through supported utilities such as Oracle Enterprise Manager, the Oracle Clusterware Control Utility (CRSCTL), the Server Control Utility (SRVCTL), the OCR configuration utility (OCRCONFIG), or the Database Configuration Assistant (DBCA)

 See Also: Chapter 2, "Administering Oracle Clusterware" for more information about voting disks and OCR

Oracle Clusterware Network Configuration Concepts

Oracle Clusterware enables a dynamic Grid Infrastructure through the self-management of the network requirements for the cluster. Oracle Clusterware 11g release 2 (11.2) supports the use of dynamic host configuration protocol (DHCP) for the VIP addresses and the SCAN address, but not the public address. DHCP provides dynamic configuration of the host’s IP address, but it does not provide an optimal method of producing names that are useful to external clients.

When you are using Oracle RAC, all of the clients must be able to reach the database. This means that all the cluster’s public addresses, the VIP and SCAN addresses, must be resolved by the clients. This problem is solved by the addition of the Oracle Grid Naming Service (GNS) to the cluster. GNS is linked to the corporate domain name service (DNS), so that clients can resolve these dynamic addresses and transparently
connect to the cluster and the databases. Activating GNS in a cluster requires a DHCP service on the public network.

Implementing GNS
To implement GNS, you must collaborate with your network administrator to obtain an IP address on the public network for the GNS VIP. DNS uses the GNS VIP to forward requests for access to the cluster to GNS. You must also collaborate with your DNS administrator to delegate a domain to the cluster. This can be a separate domain or a subdomain of an existing domain. The DNS server must be configured to forward all requests for this new domain to the GNS VIP. Since each cluster has its own GNS, it must be allocated a unique domain of which to be in control.

GNS and the GNS VIP run on one node in the cluster. The GNS daemon listens on the GNS VIP using port 53 for DNS requests. Oracle Clusterware manages the GNS and the GNS VIP to ensure that they are always available. If the server on which GNS is running fails, then Oracle Clusterware fails GNS over, along with the GNS VIP, to another node in the cluster.

With DHCP on the network, Oracle Clusterware obtains an IP address from the DHCP server along with other network information, such as what gateway to use, what DNS servers to use, what domain to use, and what NTP server to use. Oracle Clusterware initially obtains the necessary IP addresses during cluster configuration and it updates the Oracle Clusterware resources with the correct information obtained from the DHCP server, including the GNS.

Single Client Access Name (SCAN)
Oracle RAC 11g release 2 (11.2) introduces the Single Client Access Name (SCAN). SCAN is a domain name registered to at least one and up to three IP addresses, either in DNS or GNS. When using GNS and DHCP, Oracle Clusterware configures the VIP addresses for the SCAN name that is provided during cluster configuration.

The node VIP and the three SCAN VIPs are obtained from the DHCP server when using GNS. If a new server joins the cluster, then Oracle Clusterware dynamically obtains the required VIP address from the DHCP server, updates the cluster resource, and makes the server accessible through GNS.

Example 1–1 shows the DNS entries that delegate a domain to the cluster.

Example 1–1 DNS Entries

```
# Delegate to gns on mycluster
mycluster.example.com NS myclustergns.example.com
# Let the world know to go to the GNS vip
myclustergns.example.com. 10.9.8.7
```

See Also: Oracle Grid Infrastructure Installation Guide for details about establishing resolution through DNS

Configuring Addresses Manually
Alternatively, you can choose manual address configuration, in which you configure the following:

- One public host name for each node.
- One VIP address for each node.
You must assign a VIP address to each node in the cluster. Each VIP address must be on the same subnet as the public IP address for the node and should be an address that is assigned a name in the DNS. Each VIP address must also be unused and unpingable from within the network before you install Oracle Clusterware.

- Up to three SCAN addresses for the entire cluster.

Note: The SCAN must resolve to at least one address on the public network. For high availability and scalability, Oracle recommends that you configure the SCAN to resolve to three addresses.

See Also: Your platform-specific Oracle Grid Infrastructure Installation Guide installation documentation for information about system requirements and configuring network addresses

Overview of Oracle Clusterware Platform-Specific Software Components

When Oracle Clusterware is operational, several platform-specific processes or services run on each node in the cluster. This section describes these various processes and services.

The Oracle Clusterware Stack

Oracle Clusterware consists of two separate stacks: an upper stack anchored by the Cluster Ready Services (CRS) daemon (crsd) and a lower stack anchored by the Oracle High Availability Services daemon (ohasd). These two stacks have several processes that facilitate cluster operations. The following sections describe these stacks in more detail:

- The Cluster Ready Services Stack
- The Oracle High Availability Services Stack

The Cluster Ready Services Stack

The list in this section describes the processes that comprise CRS. The list includes components that are processes on Linux and UNIX operating systems, or services on Windows.

- **Cluster Ready Services (CRS):** The primary program for managing high availability operations in a cluster.

 The CRS daemon (crsd) manages cluster resources based on the configuration information that is stored in OCR for each resource. This includes start, stop, monitor, and failover operations. The crsd process generates events when the status of a resource changes. When you have Oracle RAC installed, the crsd process monitors the Oracle database instance, listener, and so on, and automatically restarts these components when a failure occurs.

- **Cluster Synchronization Services (CSS):** Manages the cluster configuration by controlling which nodes are members of the cluster and by notifying members when a node joins or leaves the cluster. If you are using certified third-party clusterware, then CSS processes interface with your clusterware to manage node membership information.

 The cssdagent process monitors the cluster and provides I/O fencing. This service formerly was provided by Oracle Process Monitor Daemon (oprocd), also
known as OraFenceService on Windows. A cssdagent failure may result in Oracle Clusterware restarting the node.

- **Oracle ASM**: Provides disk management for Oracle Clusterware and Oracle Database.
- **Cluster Time Synchronization Service (CTSS)**: Provides time management in a cluster for Oracle Clusterware.
- **Event Management (EVM)**: A background process that publishes events that Oracle Clusterware creates.
- **Oracle Notification Service (ONS)**: A publish and subscribe service for communicating Fast Application Notification (FAN) events.
- **Oracle Agent (oraagent)**: Extends clusterware to support Oracle-specific requirements and complex resources. This process runs server callout scripts when FAN events occur. This process was known as RACG in Oracle Clusterware 11g release 1 (11.1).
- **Oracle Root Agent (orarootagent)**: A specialized oraagent process that helps crsd manage resources owned by root, such as the network, and the Grid virtual IP address.

The Cluster Synchronization Service (CSS), Event Management (EVM), and Oracle Notification Services (ONS) components communicate with other cluster component layers on other nodes in the same cluster database environment. These components are also the main communication links between Oracle Database, applications, and the Oracle Clusterware high availability components. In addition, these background processes monitor and manage database operations.

The Oracle High Availability Services Stack

This section describes the processes that comprise the Oracle High Availability Services stack. The list includes components that are processes on Linux and UNIX operating systems, or services on Windows.

- **Cluster Logger Service (ologgerd)**: Receives information from all the nodes in the cluster and persists in a CHM repository-based database. This service runs on only two nodes in a cluster.
- **System Monitor Service (osysmond)**: The monitoring and operating system metric collection service that sends the data to the cluster logger service. This service runs on every node in a cluster.
- **Grid Plug and Play (GPNPD)**: Provides access to the Grid Plug and Play profile, and coordinates updates to the profile among the nodes of the cluster to ensure that all of the nodes have the most recent profile.
- **Grid Interprocess Communication (GIPC)**: A support daemon that enables Redundant Interconnect Usage.
- **Multicast Domain Name Service (mDNS)**: Used by Grid Plug and Play to locate profiles in the cluster, as well as by GNS to perform name resolution. The mDNS process is a background process on Linux and UNIX and on Windows.
- **Oracle Grid Naming Service (GNS)**: Handles requests sent by external DNS servers, performing name resolution for names defined by the cluster.

Table 1–1 lists the processes and services associated with Oracle Clusterware components. In Table 1–1, if a UNIX or a Linux system process has an (r) beside it, then the process runs as the root user.
Overview of Oracle Clusterware Platform-Specific Software Components

Introduction to Oracle Clusterware

Table 1–1 **List of Processes and Services Associated with Oracle Clusterware Components**

<table>
<thead>
<tr>
<th>Oracle Clusterware Component</th>
<th>Linux/UNIX Process</th>
<th>Windows Services</th>
<th>Windows Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS</td>
<td>crsd.bin (r)</td>
<td>OracleOHService</td>
<td>crsd.exe</td>
</tr>
<tr>
<td>CSS</td>
<td>ocssd.bin, cssdagent, csssdagent</td>
<td>OracleOHService</td>
<td>csssdagent.exe, cssdagent.exe, csssdmonitor.exe, csssd.exe</td>
</tr>
<tr>
<td>CTSS</td>
<td>octssd.bin (r)</td>
<td></td>
<td>octssd.exe</td>
</tr>
<tr>
<td>EVM</td>
<td>evmd.bin, evmlogger.bin</td>
<td>OracleOHService</td>
<td>evmd.exe</td>
</tr>
<tr>
<td>GIPC</td>
<td>gipcd.bin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNS</td>
<td>gnsd (r)</td>
<td></td>
<td>gnsd.exe</td>
</tr>
<tr>
<td>Grid Plug and Play</td>
<td>gpnpd.bin</td>
<td>OracleOHService</td>
<td>gpnpd.exe</td>
</tr>
<tr>
<td>LOGGER</td>
<td>ologgerd.bin (r)</td>
<td></td>
<td>ologgerd.exe</td>
</tr>
<tr>
<td>Master Diskmon</td>
<td>diskmon.bin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mDNS</td>
<td>mdnsd.bin</td>
<td></td>
<td>mDNSResponder.exe</td>
</tr>
<tr>
<td>Oracle agent</td>
<td>oraagent.bin (11.2), racgmain and racgimon (11.1)</td>
<td></td>
<td>oraagent.exe</td>
</tr>
<tr>
<td>Oracle High Availability Services</td>
<td>ohasd.bin (r)</td>
<td>OracleOHService</td>
<td>ohasd.exe</td>
</tr>
<tr>
<td>ONS</td>
<td>ons</td>
<td></td>
<td>ons.exe</td>
</tr>
<tr>
<td>Oracle root agent</td>
<td>orarootagent (r)</td>
<td></td>
<td>orarootagent.exe</td>
</tr>
<tr>
<td>SYSMON</td>
<td>osysmond.bin (r)</td>
<td></td>
<td>osysmond.exe</td>
</tr>
</tbody>
</table>

See Also: "Clusterware Log Files and the Unified Log Directory Structure" on page H-13 for information about the location of log files created for processes

Note: Oracle Clusterware on Linux platforms can have multiple threads that appear as separate processes with unique process identifiers.

Figure 1–2 illustrates cluster startup.
Oracle Clusterware Processes on Windows Systems

Oracle Clusterware processes on Microsoft Windows systems include the following:

- `mDNSResponder.exe`: Manages name resolution and service discovery within attached subnets
- `OracleOHSService`: Starts all of the Oracle Clusterware daemons

Overview of Installing Oracle Clusterware

The following section introduces the installation processes for Oracle Clusterware.

Note: Install Oracle Clusterware with the Oracle Universal Installer.
Oracle Clusterware Version Compatibility

You can install different releases of Oracle Clusterware, Oracle ASM, and Oracle Database on your cluster. Follow these guidelines when installing different releases of software on your cluster:

- You can only have one installation of Oracle Clusterware running in a cluster, and it must be installed into its own home (Grid_home). The release of Oracle Clusterware that you use must be equal to or higher than the Oracle ASM and Oracle RAC versions that are running in the cluster. You cannot install a version of Oracle RAC that was released after the version of Oracle Clusterware that you run on the cluster. In other words:
 - Oracle Clusterware 11g release 2 (11.2) supports Oracle ASM release 11.2 only, because Oracle ASM is in the Grid Infrastructure home, which also includes Oracle Clusterware
 - Oracle Clusterware release 11.2 supports Oracle Database 11g release 2 (11.2), release 1 (11.1), Oracle Database 10g release 2 (10.2), and release 1 (10.1)
 - Oracle ASM release 11.2 requires Oracle Clusterware release 11.2 and supports Oracle Database 11g release 2 (11.2), release 1 (11.1), Oracle Database 10g release 2 (10.2), and release 1 (10.1)
 - Oracle Database 11g release 2 (11.2) requires Oracle Clusterware 11g release 2 (11.2)

For example:

* If you have Oracle Clusterware 11g release 2 (11.2) installed as your clusterware, then you can have an Oracle Database 10g release 1 (10.1) single-instance database running on one node, and separate Oracle Real Application Clusters 10g release 1 (10.1), release 2 (10.2), and Oracle Real Application Clusters 11g release 1 (11.1) databases also running on the cluster. However, you cannot have Oracle Clusterware 10g release 2 (10.2) installed on your cluster, and install Oracle Real Application Clusters 11g. You can install Oracle Database 11g single-instance on a node in an Oracle Clusterware 10g release 2 (10.2) cluster.

* When using different Oracle ASM and Oracle Database releases, the functionality of each is dependent on the functionality of the earlier software release. Thus, if you install Oracle Clusterware 11g and you later configure Oracle ASM, and you use Oracle Clusterware to support an existing Oracle Database 10g release 10.2.0.3 installation, then the Oracle ASM functionality is equivalent only to that available in the 10.2 release version. Set the compatible attributes of a disk group to the appropriate release of software in use.

See Also: Oracle Automatic Storage Management Administrator’s Guide
for information about compatible attributes of disk groups

- There can be multiple Oracle homes for the Oracle database (both single instance and Oracle RAC) in the cluster. The Oracle homes for all nodes of an Oracle RAC database must be the same.
- You can use different users for the Oracle Clusterware and Oracle database homes if they belong to the same primary group.
- As of Oracle Clusterware 11g release 2 (11.2), there can only be one installation of Oracle ASM running in a cluster. Oracle ASM is always the same version as Oracle
Clusterware, which must be the same (or higher) release than that of the Oracle database.

- For Oracle RAC running Oracle9i you must run an Oracle9i cluster. For UNIX systems, that is HACMP, Serviceguard, Sun Cluster, or Veritas SF. For Windows and Linux systems, that is the Oracle Cluster Manager. To install Oracle RAC 10g, you must also install Oracle Clusterware.

- You cannot install Oracle9i RAC on an Oracle Database 10g cluster. If you have an Oracle9i RAC cluster, you can add Oracle RAC 10g to the cluster. However, when you install Oracle Clusterware 10g, you can no longer install any new Oracle9i RAC databases.

- Oracle recommends that you do not run different cluster software on the same servers unless they are certified to work together. However, if you are adding Oracle RAC to servers that are part of a cluster, either migrate to Oracle Clusterware or ensure that:
 - The clusterware you run is supported to run with Oracle RAC 11g release 2 (11.2).
 - You have installed the correct options for Oracle Clusterware and the other vendor clusterware to work together.

See Also: Oracle Grid Infrastructure Installation Guide for more version compatibility information

Overview of Upgrading Oracle Clusterware

Oracle supports in-place and out-of-place upgrades. Both strategies facilitate rolling upgrades. For Oracle Clusterware 11g release 2 (11.2), in-place upgrades are supported for patches only. Patch bundles and one-off patches are supported for in-place upgrades but patch sets and major point releases are supported for out-of-place upgrades only.

An in-place upgrade replaces the Oracle Clusterware software with the newer version in the same Grid home. Out-of-place upgrade has both versions of the same software present on the nodes at the same time, in different Grid homes, but only one version is active.

Rolling upgrades avoid downtime and ensure continuous availability of Oracle Clusterware while the software is upgraded to the new version. When you upgrade to 11g release 2 (11.2), Oracle Clusterware and Oracle ASM binaries are installed as a single binary called the Grid Infrastructure. You can upgrade Oracle Clusterware in a rolling manner from Oracle Clusterware 10g and Oracle Clusterware 11g, however you can only upgrade Oracle ASM in a rolling manner from Oracle Database 11g release 1 (11.1).

Oracle supports force upgrades in cases where some nodes of the cluster are down.

See Also: Oracle Grid Infrastructure Installation Guide for more information about upgrading Oracle Clusterware

Overview of Managing Oracle Clusterware Environments

The following list describes the tools and utilities for managing your Oracle Clusterware environment:

- Oracle Enterprise Manager: Oracle Enterprise Manager has both the Database Control and Grid Control GUI interfaces for managing both single instance and
Overview of Managing Oracle Clusterware Environments

Oracle RAC database environments. It also has GUI interfaces to manage Oracle Clusterware and all components configured in the Oracle Grid Infrastructure installation. Oracle recommends that you use Oracle Enterprise Manager to perform administrative tasks.

See Also: *Oracle Database 2 Day + Real Application Clusters Guide*, *Oracle Real Application Clusters Administration and Deployment Guide*, and Oracle Enterprise Manager online documentation for more information about administering Oracle Clusterware with Oracle Enterprise Manager

- **Cluster Verification Utility (CVU):** CVU is a command-line utility that you use to verify a range of cluster and Oracle RAC specific components. Use CVU to verify shared storage devices, networking configurations, system requirements, and Oracle Clusterware, and operating system groups and users.

 Install and use CVU for both preinstallation and postinstallation checks of your cluster environment. CVU is especially useful during preinstallation and during installation of Oracle Clusterware and Oracle RAC components to ensure that your configuration meets the minimum installation requirements. Also use CVU to verify your configuration after completing administrative tasks, such as node additions and node deletions.

 See Also: Your platform-specific Oracle Clusterware and Oracle RAC installation guide for information about how to manually install CVU, and Appendix A, "Cluster Verification Utility Reference" for more information about using CVU

- **Server Control (SRVCTL):** SRVCTL is a command-line interface that you can use to manage Oracle resources, such as databases, services, or listeners in the cluster.

 Note: You can only manage server pools that have names prefixed with `ora.*` by using SRVCTL.

 See Also: Server Control Utility reference appendix in the *Oracle Real Application Clusters Administration and Deployment Guide*

- **Oracle Clusterware Control (CRSCTL):** CRSCTL is a command-line tool that you can use to manage Oracle Clusterware. CRSCTL should be used for general clusterware management and management of individual resources.

 Oracle Clusterware 11g release 2 (11.2) introduces cluster-aware commands with which you can perform operations from any node in the cluster on another node in the cluster, or on all nodes in the cluster, depending on the operation.

 You can use `crsctl` commands to monitor cluster resources (`crsctl status resource`) and to monitor and manage servers and server pools other than server pools that have names prefixed with `ora.*`, such as `crsctl status server, crsctl status serverpool, crsctl modify serverpool, and crsctl relocate server`. You can also manage Oracle High Availability Services on the entire cluster (`crsctl start | stop | enable | disable | config crs`), using the optional node-specific arguments `-n` or `-all`. You also can use CRSCTL to manage Oracle Clusterware on individual nodes (`crsctl start | stop | enable | disable | config crs`).
Overview of Cloning and Extending Oracle Clusterware in Grid Environments

Cloning nodes is the preferred method of creating new clusters. The cloning process copies Oracle Clusterware software images to other nodes that have similar hardware and software. Use cloning to quickly create several clusters of the same configuration. Before using cloning, you must install an Oracle Clusterware home successfully on at least one node using the instructions in your platform-specific Oracle Clusterware installation guide.

For new installations, or if you must install on only one cluster, Oracle recommends that you use the automated and interactive installation methods, such as Oracle Universal Installer or the Provisioning Pack feature of Oracle Enterprise Manager. These methods perform installation checks to ensure a successful installation. To add or delete Oracle Clusterware from nodes in the cluster, use the addNode.sh and rootcrs.pl scripts.

See Also:
- Chapter 2, "Administering Oracle Clusterware" for more information about using crsctl commands to manage Oracle Clusterware
- Appendix E, "CRSCTL Utility Reference" for a complete list of CRSCTL commands

Oracle Interface Configuration Tool (OIFCFG): OIFCFG is a command-line tool for both single-instance Oracle databases and Oracle RAC environments. Use OIFCFG to allocate and deallocate network interfaces to components. You can also use OIFCFG to direct components to use specific network interfaces and to retrieve component configuration information.

See Also: Appendix D, "Oracle Interface Configuration Tool (OIFCFG) Command Reference"

Oracle Cluster Registry Configuration Tool (OCRCFG): OCRCFG is a command-line tool for OCR administration. You can also use the OCRCHECK and OCRDUMP utilities to troubleshoot configuration problems that affect OCR.

See Also: Chapter 2, "Administering Oracle Clusterware" for more information about managing OCR

Cluster Health Monitor (CHM): CHM detects and analyzes operating system and cluster resource-related degradation and failures to provide more details to users for many Oracle Clusterware and Oracle RAC issues, such as node eviction. The tool continuously tracks the operating system resource consumption at the node, process, and device levels. It collects and analyzes the clusterwide data. In real-time mode, when thresholds are met, the tool shows an alert to the user. For root-cause analysis, historical data can be replayed to understand what was happening at the time of failure.

See Also: "Cluster Health Monitor" on page H-3 for more information about CHM
See Also:
- Chapter 5, "Cloning Oracle Clusterware" for step-by-step cloning procedures
- Oracle Enterprise Manager online Help system for more information about the Provisioning Pack
- Chapter 4, "Adding and Deleting Cluster Nodes"

Overview of the Oracle Clusterware High Availability Framework and APIs

Oracle Clusterware provides many high availability application programming interfaces called CLSCRS APIs that you use to enable Oracle Clusterware to manage applications or processes that run in a cluster. The CLSCRS APIs enable you to provide high availability for all of your applications.

See Also: Appendix F, "Oracle Clusterware C Application Program Interfaces" for more detailed information about the CLSCRS APIs

You can define a VIP address for an application to enable users to access the application independently of the node in the cluster on which the application is running. This is referred to as the application VIP. You can define multiple application VIPs, with generally one application VIP defined for each application running. The application VIP is related to the application by making it dependent on the application resource defined by Oracle Clusterware.

To maintain high availability, Oracle Clusterware components can respond to status changes to restart applications and processes according to defined high availability rules. You can use the Oracle Clusterware high availability framework by registering your applications with Oracle Clusterware and configuring the clusterware to start, stop, or relocate your application processes. That is, you can make custom applications highly available by using Oracle Clusterware to create profiles that monitor, relocate, and restart your applications.
This chapter describes how to administer Oracle Clusterware and includes the following topics:

- Policy-Based Cluster and Capacity Management
- Role-Separated Management
- Configuring Oracle Grid Infrastructure
- Configuring IPMI for Failure Isolation
- Cluster Time Management
- Changing Network Addresses on Manually Configured Networks

Policy-Based Cluster and Capacity Management

Oracle Clusterware 11g release 2 (11.2) introduces a different method of managing nodes and resources used by a database called policy-based management.

This section contains the following topics:

- Overview of Server Pools and Policy-Based Management
- Server Attributes Assigned by Oracle Clusterware
- Understanding Server Pools
- How Oracle Clusterware Assigns New Servers

Overview of Server Pools and Policy-Based Management

With Oracle Clusterware 11g release 2 (11.2) and later, resources managed by Oracle Clusterware are contained in logical groups of servers called server pools. Resources are hosted on a shared infrastructure and are contained within server pools. The resources are restricted with respect to their hardware resource (such as CPU and memory) consumption by policies, behaving as if they were deployed in a single-system environment.

You can choose to manage resources dynamically using server pools to provide policy-based management of resources in the cluster, or you can choose to manage resources using the traditional method of physically assigning resources to run on particular nodes.

Policy-based management:

- Enables dynamic capacity assignment when needed to provide server capacity in accordance with the priorities you set with policies
Enables allocation of resources by importance, so that applications obtain the required minimum resources, whenever possible, and so that lower priority applications do not take resources from more important applications.

Ensures isolation where necessary, so that you can provide dedicated servers in a cluster for applications and databases.

Applications and databases running in server pools do not share resources. Because of this, server pools isolate resources where necessary, but enable dynamic capacity assignments as required. Together with role-separated management, this capability addresses the needs of organizations that have standardized cluster environments, but allow multiple administrator groups to share the common cluster infrastructure.

See Also: Appendix B, "Oracle Clusterware Resource Reference" for more information about resource attributes.

Oracle Clusterware efficiently allocates different resources in the cluster. You need only to provide the minimum and maximum number of nodes on which a resource can run, combined with a level of importance for each resource that is running on these nodes.

Server Attributes Assigned by Oracle Clusterware

Oracle Clusterware assigns each server a set of attributes as soon as you add a server to a cluster. If you remove the server from the cluster, then Oracle Clusterware revokes those settings. Table 2–1 lists and describes server attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>The node name of the server. A server name can contain any platform-supported characters except the exclamation point (!) and the tilde (~). A server name cannot begin with a period, or with ora. This attribute is required.</td>
</tr>
<tr>
<td>ACTIVE_POOLS</td>
<td>A space-delimited list of the names of the server pools to which a server belongs. Oracle Clusterware manages this list, automatically.</td>
</tr>
</tbody>
</table>
A server can be in one of the following states:

ONLINE
The server is a member of the cluster and is available for resource placement.

OFFLINE
The server is not currently a member of the cluster. Subsequently, it is not available for resource placement.

JOINING
When a server joins a cluster, Oracle Clusterware processes the server to ensure that it is valid for resource placement. Oracle Clusterware also checks the state of resources configured to run on the server. Once the validity of the server and the state of the resources are determined, the server transitions out of this state.

LEAVING
When a planned shutdown for a server begins, the state of the server transitions to **LEAVING**, making it unavailable for resource placement.

VISIBLE
Servers that have Oracle Clusterware running, but not the Cluster Ready Services daemon (crsd), are put into the **VISIBLE** state. This usually indicates an intermittent issue or failure and Oracle Clusterware trying to recover (restart) the daemon. Oracle Clusterware cannot manage resources on servers while the servers are in this state.

RECONFIGURING
When servers move between server pools due to server pool reconfiguration, a server is placed into this state if resources that ran on it in the current server pool must be stopped and relocated. This happens because resources running on the server may not be configured to run in the server pool to which the server is moving. As soon as the resources are successfully relocated, the server is put back into the **ONLINE** state.

Use the `crsctl status server` command to obtain server information.
Understanding Server Pools

This section contains the following topics:

- How Server Pools Work
- The Free Server Pool
- The Generic Server Pool

How Server Pools Work

Server pools divide the cluster into groups of servers hosting the same or similar resources. They distribute a uniform workload (a set of Oracle Clusterware resources) over several servers in the cluster. For example, you can restrict Oracle databases to run only in certain server pools. When you enable role-separated management, you can explicitly grant permission to operating system users to change attributes of certain server pools.

Top-level server pools:

- Logically divide the cluster

Table 2-1 (Cont.) Server Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE_DETAILS</td>
<td>This is a read-only attribute that Oracle Clusterware manages. The attribute provides additional details about the state of a server. Possible additional details about a server state are:</td>
</tr>
<tr>
<td></td>
<td>Server state: ONLINE:</td>
</tr>
<tr>
<td></td>
<td>■ AUTOSTARTING RESOURCES</td>
</tr>
<tr>
<td></td>
<td>Indicates that the resource autostart procedure (performed when a server reboots or the Oracle Clusterware stack is restarted) is in progress for the server.</td>
</tr>
<tr>
<td></td>
<td>■ AUTOSTART QUEUED</td>
</tr>
<tr>
<td></td>
<td>The server is waiting for the resource autostart to commence. Once that happens, the attribute value changes to AUTOSTARTING RESOURCES.</td>
</tr>
<tr>
<td></td>
<td>Server state: RECONFIGURING:</td>
</tr>
<tr>
<td></td>
<td>■ STOPPING RESOURCES</td>
</tr>
<tr>
<td></td>
<td>Resources that are restricted from running in a new server pool are stopping.</td>
</tr>
<tr>
<td></td>
<td>■ STARTING RESOURCES</td>
</tr>
<tr>
<td></td>
<td>Resources that can run in a new server pool are starting.</td>
</tr>
<tr>
<td></td>
<td>■ RECONFIG FAILED</td>
</tr>
<tr>
<td></td>
<td>One or more resources did not stop and thus the server cannot transition into the ONLINE state. At this point, manual intervention is required. You must stop or unregister resources that did not stop. After that, the server automatically transitions into the ONLINE state.</td>
</tr>
<tr>
<td></td>
<td>Server state: JOINING:</td>
</tr>
<tr>
<td></td>
<td>■ CHECKING RESOURCES</td>
</tr>
<tr>
<td></td>
<td>Whenever a server reboots, the Oracle Clusterware stack restarts, or crsd on a server restarts, the policy engine must determine the current state of the resources on the server. While that procedure is in progress, this value is returned.</td>
</tr>
</tbody>
</table>
Server pools each have three attributes that they are assigned when they are created:

- **MIN_SIZE**: The minimum number of servers the server pool should contain. If the number of servers in a server pool is below the value of this attribute, then Oracle Clusterware automatically moves servers from elsewhere into the server pool until the number of servers reaches the attribute value.

- **MAX_SIZE**: The maximum number of servers the server pool should contain.

- **IMPORTANCE**: A number from 0 to 1000 (0 being least important) that ranks a server pool among all other server pools in a cluster.

Table 2–2 lists and describes all server pool attributes.
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Values and Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>String in the following format:</td>
<td>Defines the owner of the server pool and which privileges are granted to various operating system users and groups. The server pool owner defines the operating system user of the owner, and which privileges that user is granted. The value of this optional attribute is populated at the time a server pool is created based on the identity of the process creating the server pool, unless explicitly overridden. The value can subsequently be changed, if such a change is allowed based on the existing privileges of the server pool. By default, the identity of the client that creates the server pool is the owner. Also by default, root, and the user specified in owner have full privileges. You can grant required operating system users and operating system groups their privileges by adding the following lines to the ACL attribute: user:username:rwx group:group_name:rwx.</td>
</tr>
<tr>
<td>ACTIVE_SERVERS</td>
<td>A string of server names in the following format:</td>
<td>Oracle Clusterware automatically manages this attribute, which contains the space-delimited list of servers that are currently assigned to a server pool.</td>
</tr>
<tr>
<td>EXCLUSIVE_POOLS</td>
<td>String</td>
<td>This optional attribute indicates if servers assigned to this server pool are shared with other server pools. A server pool can explicitly state that it is exclusive of any other server pool that has the same value for this attribute. Two or more server pools are mutually exclusive when the sets of servers assigned to them do not have a single server in common. For example, server pools A and B must be exclusive if they both set the value of this attribute to foo_A_B. Top-level server pools are mutually exclusive, by default.</td>
</tr>
<tr>
<td>IMPORTANCE</td>
<td>Any integer from 0 to 1000</td>
<td>Relative importance of the server pool, with 0 denoting the lowest level of importance and 1000, the highest. This optional attribute is used to determine how to reconfigure the server pools when a node joins or leaves the cluster. The default value is 0.</td>
</tr>
<tr>
<td>MAX_SIZE</td>
<td>Any nonnegative integer or -1 (no limit)</td>
<td>The maximum number of servers a server pool can contain. This attribute is optional and is set to -1 (no limit), by default. Note: A value of -1 for this attribute spans the entire cluster.</td>
</tr>
</tbody>
</table>
You manage server pools that are managing Oracle RAC databases with the Server Control (SRVCTL) utility. Use the Oracle Clusterware Control (CRSCTL) utility to manage all other server pools. Only cluster administrators have permission to create top-level server pools.

When Oracle Clusterware is installed, two server pools are created automatically: *Generic* and *Free*. All servers in a new installation are assigned to the Free server pool, initially. Servers move from Free to newly defined server pools automatically. When you upgrade Oracle Clusterware from a previous release, all nodes are assigned to the Generic server pool, to ensure compatibility with database releases before Oracle Database 11g release 2 (11.2).

The Free Server Pool

The Free server pool contains servers that are not assigned to any other server pools. The attributes of the Free server pool are restricted, as follows:

- **SERVER_NAMES, MIN_SIZE, and MAX_SIZE** cannot be edited by the user
- **IMPORTANCE** and **ACL** can be edited by the user

The Generic Server Pool

The Generic server pool stores pre-11g release 2 (11.2) Oracle Databases and administrator-managed databases that have fixed configurations. Additionally, the Generic server pool contains servers that match either of the following:

Table 2–2 (Cont.) Server Pool Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Values and Format</th>
<th>Description</th>
</tr>
</thead>
</table>
| MIN_SIZE | Any nonnegative integer | The minimum size of a server pool. If the number of servers contained in a server pool is below the number you specify in this attribute, then Oracle Clusterware automatically moves servers from other pools into this one until that number is met.
Note: The value of this optional attribute does not set a hard limit. It governs the priority for server assignment whenever the cluster is reconfigured. The default value is 0. |
| NAME | String | The name of the server pool, which you must specify when you create the server pool. Server pool names must be unique within the domain of names of user-created entities, such as resources, types, and servers. A server pool name can contain any platform-supported characters except the exclamation point (!) and the tilde (~). A server pool name cannot begin with a period nor with *ora*. |
| PARENT_POOLS | A string of space-delimited server pool names in the following format:
sp1 sp2 ... | Use of this attribute makes it possible to create nested server pools. Server pools listed in this attribute are referred to as parent server pools. A server pool included in a parent server pool is referred to as a child server pool. |
| SERVER_NAMES | A string of space-delimited server names in the following format:
server1 server2 ... | A list of candidate node names that may be associated with a server pool. If this optional attribute is empty, Oracle Clusterware assumes that any server may be assigned to any server pool, to the extent allowed by values of other attributes, such as PARENT_POOLS.
The server names identified as candidate node names are not validated to confirm that they are currently active cluster members. Cluster administrators can use this attribute to define servers as candidates that have not yet been added to the cluster. |
- Servers that you specified in the `HOSTING_MEMBERS` resource attribute of all resources of the application resource type

See Also:
- "HOSTING_MEMBERS" on page B-6 for more information about this attribute
- "Resource Types" on page 6-3 for more information about resource types

- Servers with names you specified in the `SERVER_NAMES` attribute of the server pools that list the Generic server pool as a parent server pool

The Generic server pool’s attributes are restricted, as follows:

- No one can modify configuration attributes of the Generic server pool (all attributes are read-only)

- When you specify a server name in the `HOSTING_MEMBERS` resource attribute, Oracle Clusterware only allows it if the server is:
 - Online and exists in the Generic server pool
 - Online and exists in the Free server pool, in which case Oracle Clusterware moves the server into the Generic server pool
 - Online and exists in any other server pool and the client is either a cluster administrator or is allowed to use the server pool’s servers, in which case, the server is moved into the Generic server pool
 - Offline and the client is a cluster administrator

- When you register a child server pool with the Generic server pool, Oracle Clusterware only allows it if the server names pass the same requirements as previously specified for the resources.

Servers are initially considered for assignment into the Generic server pool at cluster startup time or when a server is added to the cluster, and only after that to other server pools.

How Oracle Clusterware Assigns New Servers

Oracle Clusterware assigns new servers to server pools in the following order:

1. Generic server pool
2. User-created server pool
3. Free server pool

Oracle Clusterware continues to assign servers to server pools until the following conditions are met:

1. Until all server pools are filled in order of importance to their minimum (`MIN_SIZE`).
2. Until all server pools are filled in order of importance to their maximum (`MAX_SIZE`).
3. By default, any servers not placed in a server pool go into the Free server pool.

You can modify the `IMPORTANCE` attribute for the Free server pool.

When a server joins a cluster, several things occur.
Consider the server pools configured in Table 2–3:

| Table 2–3 Sample Server Pool Attributes Configuration |
|---------------------------------|-------------|-------------|-------------|-------------|
| NAME | IMPORTANCE | MIN_SIZE | MAX_SIZE | PARENT_ |
| | | | | POOLS | EXCLUSIVE_|
| | | | | | POOLS |
| sp1 | 1 | 1 | 10 | | |
| sp2 | 3 | 1 | 6 | | |
| sp3 | 2 | 1 | 2 | | |
| sp2_1 | 2 | 1 | 5 | sp2 | |
| | | | | | S123 |
| sp2_2 | 1 | 1 | 5 | sp2 | |
| | | | | | S123 |

For example, assume that there are no servers in a cluster; all server pools are empty. When a server, named server1, joins the cluster:

2. Oracle Clusterware only processes top-level server pools (those that have no parent server pools), first. In this example, the top-level server pools are sp1, sp2, and sp3.
3. Oracle Clusterware lists the server pools in order of IMPORTANCE, as follows: sp2, sp3, sp1.
4. Oracle Clusterware assigns server1 to sp2 because sp2 has the highest IMPORTANCE value and its MIN_SIZE value has not yet been met.
5. Oracle Clusterware processes the remaining two server pools, sp2_1 and sp2_2. The sizes of both server pools are below the value of the MIN_SIZE attribute (both server pools are empty and have MIN_SIZE values of 1).
6. Oracle Clusterware lists the two remaining pools in order of IMPORTANCE, as follows: sp2_1, sp2_2.
7. Oracle Clusterware assigns server1 to sp2_1 but cannot assign server1 to sp2_2 because sp2_1 is configured to be exclusive with sp2_2.

After processing, the cluster configuration appears, as follows:

| Table 2–4 Post Processing Server Pool Configuration |
|----------------------------------|-------------|
| Server Pool Name | Assigned Servers |
| sp1 | |
| sp2 | server1 |
| sp3 | |
| sp2_1 | server1 |
| sp2_2 | |

Servers Moving from Server Pool to Server Pool

If the number of servers in a server pool falls below the value of the MIN_SIZE attribute for the server pool (such as when a server fails), based on values you set for the MIN_SIZE and IMPORTANCE attributes for all server pools, Oracle Clusterware can move servers from other server pools into the server pool whose number of servers has fallen below the value for MIN_SIZE. Oracle Clusterware selects servers
from other server pools to move into the deficient server pool that meet the following criteria:

- For server pools that have a lower IMPORTANCE value than the deficient server pool, Oracle Clusterware can take servers from those server pools even if it means that the number of servers falls below the value for the MIN_SIZE attribute.

- For server pools with equal or greater IMPORTANCE, Oracle Clusterware only takes servers from those server pools if the number of servers in a server pool is greater than the value of its MIN_SIZE attribute.

Role-Separated Management

This section contains the following topics

- About Role-Separated Management
- Managing CRS Administrators in the Cluster
- Configuring Horizontal Role Separation

About Role-Separated Management

Role-separated management is a feature you can implement that enables multiple resources to share the same cluster and hardware resources. This is done by setting permissions on server pools or resources, and then using access control lists (ACLs) to provide access. By default, this feature is not enabled during installation. Resource allocation is controlled by a user assigned the CRS Administrator role. You can implement role-separated management in one of the following ways:

- **Vertical implementation**: Access permissions to server pools or resources are granted by assigning ownership of them to different users for each layer in the enterprise architecture, and using ACLs assigned to those users. Oracle ASM provides an even more granular approach using groups. Careful planning is required to enable overlapping tasks.

 See Also: Oracle Grid Infrastructure Installation Guide for Linux for more information about using groups

- **Horizontal implementation**: Access permissions for resources are granted using ACLs assigned to server pools and policy-managed databases or applications.

About the CRS Administrator

Caution: To restrict the operating system users that have this privilege, Oracle strongly recommends that you add specific users to the CRS Administrators list.

The CRS Administrator is a predefined administrator role in Oracle Clusterware that controls the creation of server pools. Users to whom you grant the CRS Administrator role can grant or revoke access to system resources only for server pools. The CRS Administrator role does not influence administrative rights on the server.

Additionally, the CRS Administrator can create resources with restricted placement, that use the asterisk (*) as the value for the SERVER_POOLS attribute to control placement, and grant and revoke access to those resources managed by Oracle Clusterware.
The set of users that have the CRS Administrator role is managed by a list of named CRS Administrators within Oracle Clusterware, as opposed to that set of users being members of an operating system group. Server pool creation enables the CRS Administrator to divide the cluster into groups of servers used by different groups of users in the organization (a horizontal implementation, as described in the preceding section), thereby enabling role-separated management.

By default, after installing Oracle Grid Infrastructure for a cluster, or after an upgrade, all users are CRS Administrators (as denoted by the asterisk (*) in the CRS Administrators list), assuming all users sharing the same infrastructure are equally privileged to manage the cluster. This default configuration allows any named operating system user to create server pools within Oracle Clusterware.

Restricting CRS Administrator privileges to the Grid user and root can prevent subsequently created policy-managed databases from being automatically created in newly created server pools. If you enable role-separated management, then a CRS Administrator must create the required server pools in advance.

The user (Grid user) that installed Oracle Clusterware in the Grid Infrastructure home (Grid home) and the system superuser (root on Linux and UNIX, or Administrator on Windows) are permanent CRS Administrators, and only these two users can add or remove users from the CRS Administrators list, enabling role-separated management.

If the cluster is shared by various users, then the CRS Administrator can restrict access to certain server pools and, consequently, to certain hardware resources to specific users in the cluster. The permissions are stored for each server pool in the ACL attribute, described in Table 2–2.

Managing CRS Administrators in the Cluster

Use the following commands to manage CRS Administrators in the cluster:

- To query the list of users that are CRS Administrators:

  ```
  $ crsctl query crs administrator
  ```

- To enable role-separated management and grant privileges to non-permanent CRS Administrators, you must add specific users to the CRS Administrators list. As a permanent CRS Administrator, run the following command:

  ```
  # crsctl add crs administrator -u user_name
  ```

 The default asterisk (*) value is replaced by the user or users you add using this command.

- To remove specific users from the group of CRS Administrators:

  ```
  # crsctl delete crs administrator -u user_name
  ```

- To make all users CRS Administrators, add the asterisk (*) value back to the list, as follows:

  ```
  # crsctl add crs administrator -u *
  ```

 The asterisk (*) value must be enclosed in double quotation marks ("*"). This value replaces any previously specified users in the CRS Administrators list.

Configuring Horizontal Role Separation

Use the `crsctl setperm` command to configure horizontal role separation using ACLs that are assigned to server pools, resources, or both. The CRSCTL utility is
located in the path Grid_home/bin, where Grid_home is the Oracle Grid Infrastructure home.

The command uses the following syntax, where you can choose to set permissions on either a resource, a resource type, or a server pool:

```bash
 crsctl setperm {resource | type | serverpool} {-u acl_string | -x acl_string | -o user_name | -g group_name}
```

The flag options are:
- `-u`: Update the entity ACL
- `-x`: Delete the entity ACL
- `-o`: Change the entity owner
- `-g`: Change the entity primary group

The ACL strings are:

```
{ user:user_name::readPermwritePermexecPerm |  
  group:group_name::readPermwritePermexecPerm |  
  other::readPermwritePermexecPerm }
```

where:
- `user`: Designates the user ACL (access permissions granted to the designated user)
- `group`: Designates the group ACL (permissions granted to the designated group members)
- `other`: Designates the other ACL (access granted to users or groups not granted particular access permissions)
- `readperm`: Location of the read permission (r grants permission and "-" forbids permission)
- `writeperm`: Location of the write permission (w grants permission and "-" forbids permission)
- `execperm`: Location of the execute permission (x grants permission, and "-" forbids permission)

For example, as the CRS Administrator, you can set permissions on a database server pool called testadmin for the oracle user and the oinstall group, where only the CRS Administrator (owner) has read, write, and execute privileges, and the user, as well as the members of the oinstall group, have only read and execute privileges. All other users outside of the group have no access. The following command, run as the CRS Administrator, shows how this is done:

```
# crsctl setperm serverpool ora.testadmin -u user:oracle:r-x,group:oinstall:r-x, 
  other::---
```

Note: The preceding example is an explicitly granted exception of using a CRSCTL command on an Oracle (ora.*) resource (the ora.testadmin server pool) for the purpose of enabling horizontal role separation.

Configuring Oracle Grid Infrastructure

After performing a software-only installation of the Oracle Grid Infrastructure, you can configure the software using Configuration Wizard. This wizard assists you with
Configuring Oracle Grid Infrastructure

Administering Oracle Clusterware 2-13

Before running the Configuration Wizard, ensure that the Grid Infrastructure home is current, with all necessary patches applied.

To launch the Configuration Wizard in the following procedures:

On Linux and UNIX, run the following command:

```
 Oracle_home/crs/config/config.sh
```

On Windows, run the following command:

```
 Oracle_home\crs\config\config.bat
```

This section includes the following topics:

- Configuring a Single Node
- Configuring Multiple Nodes
- Upgrading Grid Infrastructure
- Running the Configuration Wizard in Silent Mode

Configuring a Single Node

To use the Configuration Wizard to configure a single node:

1. Start the Configuration Wizard, as follows:

   ```
   $ Oracle_home/crs/config/config.sh
   ```

2. On the Select Installation Option page, select Configure Grid Infrastructure for a Cluster.

3. On the Cluster Node Information page, select only the local node and corresponding VIP name.

4. Continue adding your information on the remaining wizard pages.

5. Review your inputs on the Summary page and click Finish.

6. Run the root.sh script as instructed by the Configuration Wizard.

Configuring Multiple Nodes

To use the Configuration Wizard to configure multiple nodes:

1. Start the Configuration Wizard, as follows:

   ```
   $ Oracle_home/crs/config/config.sh
   ```

2. On the Select Installation Option page, select Configure Grid Infrastructure for a Cluster.
3. On the Cluster Node Information page, select the nodes you want to configure and their corresponding VIP names. The Configuration Wizard validates the nodes you select to ensure that they are ready.

4. Continue adding your information on the remaining wizard pages.

5. Review your inputs on the Summary page and click **Finish**.

6. Run the `root.sh` script as instructed by the Configuration Wizard.

Upgrading Grid Infrastructure

To use the Configuration Wizard to upgrade the Grid Infrastructure:

1. Start the Configuration Wizard, as follows:

 `$ Oracle_home/crs/config/config.sh`

2. On the Select Installation Option page, select **Upgrade Grid Infrastructure**.

3. On the Grid Infrastructure Node Selection page, select the nodes you want to upgrade.

4. Continue adding your information on the remaining wizard pages.

5. Review your inputs on the Summary page and click **Finish**.

6. Run the `rootupgrade.sh` script as instructed by the Configuration Wizard.

Running the Configuration Wizard in Silent Mode

To use the Configuration Wizard in silent mode to configure or upgrade nodes, start the Configuration Wizard from the command line with `-silent -responseFile file_name`. The wizard validates the response file and proceeds with the configuration. If any of the inputs in the response file are found to be invalid, then the Configuration Wizard displays an error and exits. Run the `root` and `configToolAllCommands` scripts as prompted.

Configuring IPMI for Failure Isolation

This section contains the following topics:

- About Using IPMI for Failure Isolation
- Configuring Server Hardware for IPMI
- Postinstallation Configuration of IPMI-based Failure Isolation Using CRSCTL

About Using IPMI for Failure Isolation

Failure isolation is a process by which a failed node is isolated from the rest of the cluster to prevent the failed node from corrupting data. The ideal fencing involves an external mechanism capable of restarting a problem node without cooperation either from Oracle Clusterware or from the operating system running on that node. To provide this capability, Oracle Clusterware 11g release 2 (11.2) supports the Intelligent Management Platform Interface specification (IPMI) (also known as Baseboard Management Controller (BMC)), an industry-standard management protocol.

Typically, you configure failure isolation using IPMI during Grid Infrastructure installation, when you are provided with the option of configuring IPMI from the Failure Isolation Support screen. If you do not configure IPMI during installation, then you can configure it after installation using the Oracle Clusterware Control utility.
To use IPMI for failure isolation, each cluster member node must be equipped with an IPMI device running firmware compatible with IPMI version 1.5, which supports IPMI over a local area network (LAN). During database operation, failure isolation is accomplished by communication from the evicting Cluster Synchronization Services daemon to the failed node's IPMI device over the LAN. The IPMI-over-LAN protocol is carried over an authenticated session protected by a user name and password, which are obtained from the administrator during installation.

In order to support dynamic IP address assignment for IPMI using DHCP, the Cluster Synchronization Services daemon requires direct communication with the local IPMI device during Cluster Synchronization Services startup to obtain the IP address of the IPMI device. (This is not true for HP-UX and Solaris platforms, however, which require that the IPMI device be assigned a static IP address.) This is accomplished using an IPMI probe command (OSD), which communicates with the IPMI device through an IPMI driver, which you must install on each cluster system.

If you assign a static IP address to the IPMI device, then the IPMI driver is not strictly required by the Cluster Synchronization Services daemon. The driver is required, however, to use `ipmitool` or `ipmiutil` to configure the IPMI device but you can also do this with management consoles on some platforms.

Configuring Server Hardware for IPMI

Install and enable the IPMI driver, and configure the IPMI device, as described in the Oracle Grid Infrastructure Installation Guide for your platform.

Postinstallation Configuration of IPMI-based Failure Isolation Using CRSCTL

This section contains the following topics:

- IPMI Postinstallation Configuration with Oracle Clusterware
- Modifying IPMI Configuration Using CRSCTL
- Removing IPMI Configuration Using CRSCTL

IPMI Postinstallation Configuration with Oracle Clusterware

When you install IPMI during Oracle Clusterware installation, you configure failure isolation in two phases. Before you start the installation, you install and enable the IPMI driver in the server operating system, and configure the IPMI hardware on each node (IP address mode, admin credentials, and so on), as described in Oracle Grid Infrastructure Installation Guide. When you install Oracle Clusterware, the installer collects the IPMI administrator user ID and password, and stores them in an Oracle Wallet in node-local storage, in OLR.

After you complete the server configuration, complete the following procedure on each cluster node to register IPMI administrators and passwords on the nodes.

Note: If IPMI is configured to obtain its IP address using DHCP, it may be necessary to reset IPMI or restart the node to cause it to obtain an address.
1. Start Oracle Clusterware, which allows it to obtain the current IP address from IPMI. This confirms the ability of the clusterware to communicate with IPMI, which is necessary at startup.

If Oracle Clusterware was running before IPMI was configured, you can shut Oracle Clusterware down and restart it. Alternatively, you can use the IPMI management utility to obtain the IPMI IP address and then use CRSCTL to store the IP address in OLR by running a command similar to the following:

```
crsctl set css ipmiaddr 192.168.10.45
```

2. Use CRSCTL to store the previously established user ID and password for the resident IPMI in OLR by running the `crsctl set css ipmiadmin` command, and supplying password at the prompt. For example:

```
crsctl set css ipmiadmin
ADMINISTRATOR_NAME
IPMI BMC password: PASSWORD
```

This command validates the supplied credentials and fails if another cluster node cannot access the local IPMI using them.

After you complete hardware and operating system configuration, and register the IPMI administrator on Oracle Clusterware, IPMI-based failure isolation should be fully functional.

Modifying IPMI Configuration Using CRSCTL

To modify an existing IPMI-based failure isolation configuration (for example to change IPMI passwords, or to configure IPMI for failure isolation in an existing installation), use CRSCTL with the IPMI configuration tool appropriate to your platform. For example, to change the administrator password for IPMI, you must first modify the IMPI configuration as described in *Oracle Grid Infrastructure Installation Guide*, and then use CRSCTL to change the password in OLR.

The configuration data needed by Oracle Clusterware for IPMI is kept in an Oracle Wallet in OCR. Because the configuration information is kept in a secure store, it must be written by the Oracle Clusterware installation owner account (the Grid user), so you must log in as that installation user.

Use the following procedure to modify an existing IPMI configuration:

1. **Enter the `crsctl set css ipmiadmin` **command. For example, with the user IPMIadm:

```
crsctl set css ipmiadmin IPMIadm
```

 Provide the administrator password. Oracle Clusterware stores the administrator name and password for the local IPMI in OLR.

 After storing the new credentials, Oracle Clusterware can retrieve the new credentials and distribute them as required.

2. **Enter the `crsctl set css ipmiaddr` **command. For example:

```
crsctl set css ipmiaddr 192.0.2.244
```

 This command stores the new IPMI IP address of the local IPMI in OLR. After storing the IP address, Oracle Clusterware can retrieve the new configuration and distribute it as required.

3. **Enter the `crsctl get css ipmiaddr` **command. For example:
crsctl get css ipmiaddr

This command retrieves the IP address for the local IPMI from OLR and displays it on the console.

4. Remove the IPMI configuration information for the local IPMI from OLR and delete the registry entry, as follows:

 crsctl unset css ipmiconfig

 See Also: "Oracle RAC Environment CRSCTL Commands" on page E-27 for descriptions of these CRSCTL commands

Removing IPMI Configuration Using CRSCTL
You can remove an IPMI configuration from a cluster using CRSCTL if you want to stop using IPMI completely or if IPMI was initially configured by someone other than the user that installed Oracle Clusterware. If the latter is true, then Oracle Clusterware cannot access the IPMI configuration data and IPMI is not usable by the Oracle Clusterware software, and you must reconfigure IPMI as the user that installed Oracle Clusterware.

To completely remove IPMI, perform the following steps. To reconfigure IPMI as the user that installed Oracle Clusterware, perform steps 3 and 4, then repeat steps 2 and 3 in "Modifying IPMI Configuration Using CRSCTL" on page 2-16.

1. Disable the IPMI driver and eliminate the boot-time installation, as follows:

 /sbin/modprobe –r

 See Also: Oracle Grid Infrastructure Installation Guide for your platform for more information about the IPMI driver

2. Disable IPMI-over-LAN for the local IPMI using either ipmitool or ipmiutil, to prevent access over the LAN or change the IPMI administrator user ID and password.

3. Ensure that Oracle Clusterware is running and then use CRSCTL to remove the IPMI configuration data from OLR by running the following command:

 crsctl unset css ipmiconfig

4. Restart Oracle Clusterware so that it runs without the IPMI configuration by running the following commands as root:

 # crsctl stop crs
 # crsctl start crs

Cluster Time Management
The Cluster Time Synchronization Service (CTSS) is installed as part of Oracle Clusterware and runs in observer mode if it detects a time synchronization service or a time synchronization service configuration, valid or broken, on the system.

If CTSS detects that there is no time synchronization service or time synchronization service configuration on any node in the cluster, then CTSS goes into active mode and takes over time management for the cluster.

When nodes join the cluster, if CTSS is in active mode, then it compares the time on those nodes to a reference clock located on one node in the cluster. If there is a discrepancy between the two times and the discrepancy is within a certain stepping
limit, then CTSS performs step time synchronization, which is to step the time of the nodes joining the cluster to synchronize them with the reference.

When Oracle Clusterware starts, if CTSS is running in active mode and the time discrepancy is outside the stepping limit (the limit is 24 hours), then CTSS generates an alert in the alert log, exits, and Oracle Clusterware startup fails. You must manually adjust the time of the nodes joining the cluster to synchronize with the cluster, after which Oracle Clusterware can start and CTSS can manage the time for the nodes.

Clocks on the nodes in the cluster become desynchronized with the reference clock (a time CTSS uses as a basis and is on the first node started in the cluster) periodically for various reasons. When this happens, CTSS performs slew time synchronization, which is to speed up or slow down the system time on the nodes until they are synchronized with the reference system time. In this time synchronization method, CTSS does not adjust time backward, which guarantees monotonic increase of the system time.

When performing slew time synchronization, CTSS never runs time backward to synchronize with the reference clock. CTSS periodically writes alerts to the alert log containing information about how often it adjusts time on nodes to keep them synchronized with the reference clock.

To activate CTSS in your cluster, you must stop and deconfigure the vendor time synchronization service on all nodes in the cluster. CTSS detects when this happens and assumes time management for the cluster.

For example, to deconfigure NTP, you must remove or rename the ntp.conf file.

Note: In Windows, CTSS does not check whether the ntp.conf file exists, rather, it only detects whether there is a time synchronization service.

Similarly, if you want to deactivate CTSS in your cluster, then do the following:

1. Configure the vendor time synchronization service on all nodes in the cluster. CTSS detects this change and reverts back to observer mode.
2. Use the crsctl check ctss command to ensure that CTSS is operating in observer mode.
3. Start the vendor time synchronization service on all nodes in the cluster.
4. Use the cluvfy comp clocksync -n all command to verify that the vendor time synchronization service is operating.

See Also: Oracle Grid Infrastructure Installation Guide for your platform for information about configuring NTP for Oracle Clusterware, or disabling it to use CTSS

Changing Network Addresses on Manually Configured Networks

This section contains the following topics:

- Understanding When You Must Configure Network Addresses
- Understanding SCAN Addresses and Client Service Connections
- Changing the Virtual IP Addresses
- Changing Oracle Clusterware Private Network Configuration
Understanding When You Must Configure Network Addresses

An Oracle Clusterware configuration requires at least two interfaces:

- A public network interface, on which users and application servers connect to access data on the database server
- A private network interface for internode communication.

If you use Grid Naming Service and DHCP to manage your network connections, then you may not need to configure address information on the cluster. Using GNS allows public Virtual Internet Protocol (VIP) addresses to be dynamic, DHCP-provided addresses. Clients submit name resolution requests to your network’s Domain Name Service (DNS), which forwards the requests to the grid naming service (GNS), managed within the cluster. GNS then resolves these requests to nodes in the cluster.

If you do not use GNS, and instead configure networks manually, then public VIP addresses must be statically configured in the DNS, VIPs must be statically configured in the DNS and hosts file, and private IP addresses require static configuration.

Understanding SCAN Addresses and Client Service Connections

Public network addresses are used to provide services to clients. If your clients are connecting to the Single Client Access Name (SCAN) addresses, then you may need to change public and virtual IP addresses as you add or remove nodes from the cluster, but you do not need to update clients with new cluster addresses.

SCANs function like a cluster alias. However, SCANs are resolved on any node in the cluster, so unlike a VIP address for a node, clients connecting to the SCAN no longer require updated VIP addresses as nodes are added to or removed from the cluster. Because the SCAN addresses resolve to the cluster, rather than to a node address in the cluster, nodes can be added to or removed from the cluster without affecting the SCAN address configuration.

The SCAN is a fully qualified name (host name+domain) that is configured to resolve to all the addresses allocated for the SCAN. The addresses resolve using Round Robin DNS either on the DNS server, or within the cluster in a GNS configuration. SCAN listeners can run on any node in the cluster. SCANs provide location independence for the databases, so that client configuration does not have to depend on which nodes run a particular database.

Oracle Database 11g release 2 (11.2) and later instances only register with SCAN listeners as remote listeners. Upgraded databases register with SCAN listeners as remote listeners, and also continue to register with all node listeners.

Note: Because of the Oracle Clusterware installation requirement that you provide a SCAN name during installation, if you resolved at least one IP address using the server `/etc/hosts` file to bypass the installation requirement but you do not have the infrastructure required for SCAN, then, after the installation, you can ignore the SCAN and connect to the databases in the cluster using VIPs.

Oracle does not support removing the SCAN address.

Changing the Virtual IP Addresses

Clients configured to use public VIP addresses for Oracle Database releases before Oracle Database 11g release 2 (11.2) can continue to use their existing connection...
addresses. Oracle recommends that you configure clients to use SCANs, but it is not required that you use SCANs. When an earlier version of Oracle Database is upgraded, it is registered with the SCAN, and clients can start using the SCAN to connect to that database, or continue to use VIP addresses for connections.

If you continue to use VIP addresses for client connections, you can modify the VIP address while Oracle Database and Oracle ASM continue to run. However, you must stop services while you modify the address. When you restart the VIP address, services are also restarted on the node.

This procedure cannot be used to change a static public subnet to use DHCP. Only the `srvctl add network -S` command creates a DHCP network.

Note: The following instructions describe how to change only a VIP address, and assume that the host name associated with the VIP address does not change. Note that you do not need to update VIP addresses manually if you are using GNS, and VIPs are assigned using DHCP.

If you are changing only the VIP address, then update the DNS and the client hosts files. Also, update the server hosts files, if those are used for VIP addresses.

Perform the following steps to change a VIP address:

1. Stop all services running on the node whose VIP address you want to change using the following command syntax, where `database_name` is the name of the database, `service_name_list` is a list of the services you want to stop, and `my_node` is the name of the node whose VIP address you want to change:

   ```
srvctl stop service -d database_name -s service_name_list -n my_node
   
   This example specifies the database name (`grid`) using the `-d` option and specifies the services (`sales,oltp`) on the appropriate node (`mynode`).
   
   $ srvctl stop service -d grid -s sales,oltp -n mynode
   ```

2. Confirm the current IP address for the VIP address by running the `srvctl config vip` command. This command displays the current VIP address bound to one of the network interfaces. The following example displays the configured VIP address:

   ```
   $ srvctl config vip -n stbdp03
   VIP exists.:stbdp03
   VIP exists.: /stbdp03-vip/192.168.2.20/255.255.255.0/eth0
   ```

3. Stop the VIP resource using the `srvctl stop vip` command:

   ```
   $ srvctl stop vip -n mynode
   ```

4. Verify that the VIP resource is no longer running by running the `ifconfig -a` command on Linux and UNIX systems (or issue the `ipconfig /all` command on Windows systems), and confirm that the interface (in the example it was `eth0:1`) is no longer listed in the output.

5. Make any changes necessary to the `/etc/hosts` files on all nodes on Linux and UNIX systems, or the `%windir%\system32\drivers\etc\hosts` file on Windows systems, and make any necessary DNS changes to associate the new IP address with the old host name.
6. To use a different subnet or NIC for the default network before you change any VIP resource, you must use the `srvctl modify network -S subnet/netmask/interface` command as `root` to change the network resource, where `subnet` is the new subnet address, `netmask` is the new netmask, and `interface` is the new interface. After you change the subnet, then you must change each node’s VIP to an IP address on the new subnet, as described in the next step.

7. Modify the node applications and provide the new VIP address using the following `srvctl modify nodeapps` syntax:

   ```
   $ srvctl modify nodeapps -n node_name -A new_vip_address
   ```

 The command includes the following flags and values:

 - `-n node_name` is the node name
 - `-A new_vip_address` is the node-level VIP address:
 `name|ip/netmask/[if1][|if2]|...]

 For example, issue the following command as the `root` user:

   ```
   srvctl modify nodeapps -n mynode -A 192.168.2.125/255.255.255.0/eth0
   ```

 Attempting to issue this command as the installation owner account may result in an error. For example, if the installation owner is `oracle`, then you may see the error `PRCN-2018: Current user oracle is not a privileged user`.

 To avoid the error, run the command as the `root` or system administrator account.

8. Start the node VIP by running the `srvctl start vip` command:

   ```
   $ srvctl start vip -n node_name
   ```

 The following command example starts the VIP on the node named `mynode`:

   ```
   $ srvctl start vip -n mynode
   ```

9. Repeat the steps for each node in the cluster.

 Because the SRVCTL utility is a clusterwide management tool, you can accomplish these tasks for any specific node from any node in the cluster, without logging in to each of the cluster nodes.

10. Run the following command to verify node connectivity between all of the nodes for which your cluster is configured. This command discovers all of the network interfaces available on the cluster nodes and verifies the connectivity between all of the nodes by way of the discovered interfaces. This command also lists all of the interfaces available on the nodes which are suitable for use as VIP addresses.

    ```
    $ cluvfy comp nodecon -n all -verbose
    ```

Changing Oracle Clusterware Private Network Configuration

This section contains the following topics:

- About Private Networks and Network Interfaces
- Redundant Interconnect Usage
- Consequences of Changing Interface Names Using OIFCFG
Changing a Network Interface

About Private Networks and Network Interfaces
Oracle Clusterware requires that each node is connected through a private network (in addition to the public network). The private network connection is referred to as the *cluster interconnect*. Table 2–5 describes how the network interface card (NIC) and the private IP address are stored.

Oracle only supports clusters in which all of the nodes use the same network interface connected to the same subnet (defined as a global interface with the `oifcfg` command). You cannot use different network interfaces for each node (node-specific interfaces). Refer to Appendix D, "Oracle Interface Configuration Tool (OIFCFG) Command Reference" for more information about global and node-specific interfaces.

Table 2–5 Storage for the Network Interface, Private IP Address, and Private Host Name

<table>
<thead>
<tr>
<th>Entity</th>
<th>Stored In...</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network interface name</td>
<td>Operating system For example: <code>eth1</code></td>
<td>You can use wildcards when specifying network interface names. For example: <code>eth*</code></td>
</tr>
<tr>
<td>Private network Interfaces</td>
<td>Oracle Clusterware, in the Grid Plug and Play (GPnP) Profile</td>
<td>Configure an interface for use as a private interface during installation by marking the interface as <code>Private</code>, or use the <code>oifcfg setif</code> command to designate an interface as a private interface. See Also: "OIFCFG Commands" on page D-3 for more information about the <code>oifcfg setif</code> command</td>
</tr>
</tbody>
</table>

Redundant Interconnect Usage
You can define multiple interfaces for Redundant Interconnect Usage by classifying the interfaces as private either during installation or after installation using the `oifcfg setif` command. When you do, Oracle Clusterware creates from one to four (depending on the number of interfaces you define) highly available IP (HAIP) addresses, which Oracle Database and Oracle ASM instances use to ensure highly available and load balanced communications.

The Oracle software (including Oracle RAC, Oracle ASM, and Oracle ACFS, all 11g release 2 (11.2.0.2), or later), by default, uses these HAIP addresses for all of its traffic, allowing for load balancing across the provided set of cluster interconnect interfaces. If one of the defined cluster interconnect interfaces fails or becomes non-communicative, then Oracle Clusterware transparently moves the corresponding HAIP address to one of the remaining functional interfaces.

Note: Oracle Clusterware uses at most four interfaces at any given point, regardless of the number of interfaces defined. If one of the interfaces fails, then the HAIP address moves to another one of the configured interfaces in the defined set.

When there is only a single HAIP address and multiple interfaces from which to select, the interface to which the HAIP address moves is no longer the original interface upon which it was configured. Oracle Clusterware selects the interface with the *lowest* numerical subnet to which to add the HAIP address.
Consequences of Changing Interface Names Using OIFCFG

The consequences of changing interface names depend on which name you are changing, and whether you are also changing the IP address. In cases where you are only changing the interface names, the consequences are minor. If you change the name for the public interface that is stored in OCR, then you also must modify the node applications for the cluster. Therefore, you must stop the node applications for this change to take effect.

See Also: My Oracle Support (formerly OracleMetaLink) note 276434.1 for more details about changing the node applications to use a new public interface name, available at the following URL:

https://metalink.oracle.com

Changing a Network Interface

You can change a network interface and its associated subnet address using the following procedure. You must perform this change on all nodes in the cluster.

This procedure changes the network interface and IP address on each node in the cluster used previously by Oracle Clusterware and Oracle Database.

Caution: The interface that the Oracle RAC (RDBMS) interconnect uses must be the same interface that Oracle Clusterware uses with the host name. Do not configure the private interconnect for Oracle RAC on a separate interface that is not monitored by Oracle Clusterware.

1. Ensure that Oracle Clusterware is running on all of the cluster nodes by running the following command:

 $ olsnodes -s

 The command returns output similar to the following, showing that Oracle Clusterware is running on all of the nodes in the cluster:

 ./olsnodes -s
 myclustera Active
 myclusterb Active
 myclusterb Active

2. Ensure that the replacement interface is configured and operational in the operating system on all of the nodes. Use the ifconfig command (or ipconfig on Windows) for your platform. For example, on Linux, use:

 $ /sbin/ifconfig

3. Add the new interface to the cluster as follows, providing the name of the new interface and the subnet address, using the following command:

 $ oifcfg setif -global if_name/subnet:cluster_interconnect

 You can use wildcards with the interface name. For example, oifcfg setif -global "eth*/192.168.0.0:cluster_interconnect is valid syntax. However, be careful to avoid ambiguity with other addresses or masks used with
other cluster interfaces. If you use wildcards, then the command returns a warning similar to the following:

```
eth*/192.168.0.0 global cluster_interconnect
PRIF-29: Warning: wildcard in network parameters can cause mismatch among GPNP profile, OCR, and system
```

Note: Legacy network configuration does not support wildcards; thus wildcards are resolved using current node configuration at the time of the update.

See Also: Appendix D, "Oracle Interface Configuration Tool (OIFCFG) Command Reference" for more information about using OIFCFG commands

4. After the previous step completes, you can remove the former subnet, as follows, by providing the name and subnet address of the former interface:

```
oifcfg delif -global if_name/subnet
```

For example:

```
$ oifcfg delif -global eth1/10.10.0.0
```

Caution: This step should be performed only after a replacement interface is committed into the Grid Plug and Play configuration. Simple deletion of cluster interfaces without providing a valid replacement can result in invalid cluster configuration.

5. Verify the current configuration using the following command:

```
oifcfg getif
```

For example:

```
$ oifcfg getif
eth2 10.220.52.0 global cluster_interconnect
eth0 10.220.16.0 global public
```

6. Stop Oracle Clusterware on all nodes by running the following command as root on each node:

```
# crsctl stop crs
```

Note: With cluster network configuration changes, the cluster must be fully stopped; do not use rolling stops and restarts.

7. When Oracle Clusterware stops, deconfigure the deleted network interface in the operating system using the `ifconfig` command. For example:

```
$ ifconfig down
```

At this point, the IP address from network interfaces for the former subnet is deconfigured from Oracle Clusterware. This command does not affect the configuration of the IP address on the operating system.
You must update the operating system configuration changes, because changes made using `ifconfig` are not persistent.

See Also: Your operating system documentation for more information about how to make `ifconfig` commands persistent

8. Restart Oracle Clusterware by running the following command on each node in the cluster as the root user:

```
# crsctl start crs
```

The changes take effect when Oracle Clusterware restarts.

If you use the `CLUSTER_INTERCONNECTS` initialization parameter, then you must update it to reflect the changes.
Managing Oracle Cluster Registry and Voting Disks

Oracle Clusterware includes two important components that manage configuration and node membership: Oracle Cluster Registry (OCR), which also includes the local component Oracle Local Registry (OLR), and voting disks.

- OCR manages Oracle Clusterware and Oracle RAC database configuration information
- OLR resides on every node in the cluster and manages Oracle Clusterware configuration information for each particular node
- Voting disks manage information about node membership. Each voting disk must be accessible by all nodes in the cluster for nodes to be members of the cluster

You can store OCR and voting disks on Oracle Automatic Storage Management (Oracle ASM), or a certified cluster file system.

Oracle Universal Installer for Oracle Clusterware 11g release 2 (11.2), does not support the use of raw or block devices. However, if you upgrade from a previous Oracle Clusterware release, then you can continue to use raw or block devices. Oracle recommends that you use Oracle ASM to store OCR and voting disks.

Oracle recommends that you configure multiple voting disks during Oracle Clusterware installation to improve availability. If you choose to put the voting disks into an Oracle ASM disk group, then Oracle ASM ensures the configuration of multiple voting disks if you use a normal or high redundancy disk group. If you choose to store the voting disks on a cluster file system, then select the option to configure multiple voting disks, in which case you will have to specify three different file systems based on different disks.

If necessary, you can dynamically add or replace voting disks after you complete the Oracle Clusterware installation process without stopping the cluster.
Managing Oracle Cluster Registry and Oracle Local Registry

This chapter includes the following topics:

- Managing Oracle Cluster Registry and Oracle Local Registry
- Managing Voting Disks

Managing Oracle Cluster Registry and Oracle Local Registry

This section describes how to manage OCR and the Oracle Local Registry (OLR) with the following utilities: OCRCONFIG, OCRDUMP, and OCRCHECK.

OCR contains information about all Oracle resources in the cluster.

OLR is a registry similar to OCR located on each node in a cluster, but contains information specific to each node. It contains manageability information about Oracle Clusterware, including dependencies between various services. Oracle High Availability Services uses this information. OLR is located on local storage on each node in a cluster. Its default location is in the path Grid_home/cdata/host_name.olr, where Grid_home is the Oracle Grid Infrastructure home, and host_name is the host name of the node.

This section describes how to administer OCR in the following topics:

- Migrating Oracle Cluster Registry to Oracle Automatic Storage Management
- Adding, Replacing, Repairing, and Removing Oracle Cluster Registry Locations
- Backing Up Oracle Cluster Registry
- Restoring Oracle Cluster Registry
- Diagnosing Oracle Cluster Registry Problems
- Administering Oracle Cluster Registry with Oracle Cluster Registry Export and Import Commands
- Oracle Local Registry
- Upgrading and Downgrading the Oracle Cluster Registry Configuration

Note: If you use CRSCTL to add a new voting disk to a raw device after installation, then the file permissions of the new voting disk on remote nodes may be incorrect. On each remote node, check to ensure that the file permissions for the voting disk are correct (owned by the Grid Infrastructure installation owner and by members of the OINSTALL group). If the permissions are incorrect, then change them manually.

For example:

```
grid@myserver>$ ls -l /dev/rhdisk18
crwxrwxrwx 1 root oinstall 36, 02 Feb 10 20:28 /dev/rhdisk18
$ su root
root@myserver> # chown grid:oinstall /dev/rhdisk18
# exit
$ ls -l /dev/rhdisk18
crwxrwxrwx 1001 grid oinstall 36, 19 Sep 09 20:29 /dev/rhdisk18
```
Managing Oracle Cluster Registry and Oracle Local Registry

Managing Oracle Cluster Registry and Voting Disks

Migrating Oracle Cluster Registry to Oracle Automatic Storage Management

To improve Oracle Clusterware storage manageability, OCR is configured, by default, to use Oracle ASM in Oracle Database 11g release 2 (11.2). With the Oracle Clusterware storage residing in an Oracle ASM disk group, you can manage both database and clusterware storage using Oracle Enterprise Manager.

However, if you upgrade from a previous version of Oracle Clusterware, you can migrate OCR to reside on Oracle ASM, and take advantage of the improvements in managing Oracle Clusterware storage.

Note: If you upgrade from a previous version of Oracle Clusterware to 11g release 2 (11.2) and you want to store OCR in an Oracle ASM disk group, then you must set the **ASM Compatibility** compatibility attribute to 11.2.0.0.

See Also: Oracle Automatic Storage Management Administrator’s Guide for more information about setting Oracle ASM compatibility attributes.

To migrate OCR to Oracle ASM using OCRCONFIG:

1. Ensure the upgrade to Oracle Clusterware 11g release 2 (11.2) is complete. Run the following command to verify the current running version:

   ```
   $ crsctl query crs activeversion
   ```

2. Use the Oracle ASM Configuration Assistant (ASMCA) to configure and start Oracle ASM on all nodes in the cluster.

 See Also: Oracle Automatic Storage Management Administrator’s Guide for more information about using ASMCA

3. Use ASMCA to create an Oracle ASM disk group that is at least the same size of the existing OCR and has at least normal redundancy.
4. To add OCR to an Oracle ASM disk group, ensure that the Oracle Clusterware stack is running and run the following command as root:

```
# ocrconfig -add +new_disk_group
```

You can run this command more than once if you add multiple OCR locations. You can have up to five OCR locations. However, each successive run must point to a different disk group.

5. To remove storage configurations no longer in use, run the following command as root:

```
# ocrconfig -delete old_storage_location
```

Run this command for every configured OCR.

The following example shows how to migrate two OCRs to Oracle ASM using OCRCONFIG.

```
# ocrconfig -add +new_disk_group
# ocrconfig -delete /dev/raw/raw2
# ocrconfig -delete /dev/raw/raw1
```

Notes:

- If OCR is stored in an Oracle ASM disk group with external redundancy, then Oracle recommends that you add another OCR location to another disk group to avoid the loss of OCR, if a disk fails in the disk group.

 Oracle does not support storing OCR on different storage types simultaneously, such as storing OCR on both Oracle ASM and a shared file system, except during a migration.

- If an Oracle ASM instance fails on any node, then OCR becomes unavailable on that particular node.

 If the crsd process running on the node affected by the Oracle ASM instance failure is the OCR writer, the majority of the OCR locations are stored in Oracle ASM, and you attempt I/O on OCR during the time the Oracle ASM instance is down on this node, then crsd stops and becomes inoperable. Cluster management is now affected on this particular node.

 Under no circumstances will the failure of one Oracle ASM instance on one node affect the whole cluster.

- Ensure that Oracle ASM disk groups that you create are mounted on all of the nodes in the cluster.

See Also: Oracle Grid Infrastructure Installation Guide for more detailed sizing information

Note: OCR inherits the redundancy of the disk group. If you want high redundancy for OCR, you must configure the disk group with high redundancy when you create it.
Migrating Oracle Cluster Registry from Oracle ASM to Other Types of Storage

To migrate OCR from Oracle ASM to another storage type:

1. Ensure the upgrade to Oracle Clusterware 11g release 2 (11.2) is complete. Run the following command to verify the current running version:

   ```bash
   $ crsctl query crs activeversion
   ```

2. Create a file in a shared or cluster file system with the following permissions:

   ```
   root,oinstall,640.
   ```

 Note: Create at least two mirrors of the primary storage location to eliminate a single point of failure for OCR. OCR supports up to five locations.

3. Ensure there is at least 280 MB of space on the mount partition.

4. Ensure that the file you created is visible from all nodes in the cluster.

5. To add the file as an OCR location, ensure that the Oracle Clusterware stack is running and run the following command as root:

   ```bash
   # ocrconfig -add file_location
   ```

 You can run this command more than once if you add more than one OCR location. Each successive run of this command must point to a different file location.

6. To remove storage configurations no longer in use, run the following command as root:

   ```bash
   # ocrconfig -delete +asm_disk_group
   ```

 You can run this command more than once if there is more than one OCR location configured.

 The following example shows how to migrate OCR from Oracle ASM to block devices using OCRCONFIG. For OCRs not stored on Oracle ASM, Oracle recommends that you mirror OCR on different devices.

   ```bash
   # ocrconfig -add /dev/sdd1
   # ocrconfig -add /dev/sde1
   # ocrconfig -add /dev/sdf1
   # ocrconfig -delete +unused_disk_group
   ```

Adding, Replacing, Repairing, and Removing Oracle Cluster Registry Locations

The Oracle installation process for Oracle Clusterware gives you the option of automatically mirroring OCR. You can manually put the mirrored OCRs on a shared network file system (NFS), or on any cluster file system that is certified by Oracle. Alternatively, you can place OCR on Oracle ASM and allow it to create mirrors automatically, depending on the redundancy option you select.

This section includes the following topics:

- Adding an Oracle Cluster Registry Location
- Removing an Oracle Cluster Registry Location
- Replacing an Oracle Cluster Registry Location
- Repairing an Oracle Cluster Registry Configuration on a Local Node
Overriding the Oracle Cluster Registry Data Loss Protection Mechanism

You can manually mirror OCR, as described in the "Adding an Oracle Cluster Registry Location" on page 3-7 section, if you:

- Upgraded to Oracle Clusterware 11g release 2 (11.2) but did not choose to mirror OCR during the upgrade
- Created only one OCR location during the Oracle Clusterware installation

Oracle recommends that you configure:

- At least three OCR locations, if OCR is configured on non-mirrored or non-redundant storage. Oracle strongly recommends that you mirror OCR if the underlying storage is not RAID. Mirroring can help prevent OCR from becoming a single point of failure.
- At least two OCR locations if OCR is configured on an Oracle ASM disk group. You should configure OCR in two independent disk groups. Typically this is the work area and the recovery area.
- At least two OCR locations if OCR is configured on mirrored hardware or third-party mirrored volumes.

Notes:

- If the original OCR location does not exist, then you must create an empty (0 byte) OCR location with appropriate permissions before you run the `ocrconfig -add` or `ocrconfig -replace` commands.
- Ensure that the OCR devices that you specify in the OCR configuration exist and that these OCR devices are valid.
- Ensure that the Oracle ASM disk group that you specify exists and is mounted.
- The new OCR file, device, or disk group must be accessible from all of the active nodes in the cluster.

See Also:

- Oracle Grid Infrastructure Installation Guide for information about creating OCRs
- Oracle Automatic Storage Management Administrator’s Guide for more information about Oracle ASM disk group management

In addition to mirroring OCR locations, you can also:

- Replace an OCR location if there is a misconfiguration or other type of OCR error, as described in the "Replacing an Oracle Cluster Registry Location" on page 3-8 section.
- Repair an OCR location if Oracle Database displays an OCR failure alert in Oracle Enterprise Manager or in the Oracle Clusterware alert log file, as described in the "Repairing an Oracle Cluster Registry Configuration on a Local Node" on page 3-8 section.
- Remove an OCR location if, for example, your system experiences a performance degradation due to OCR processing or if you transfer your OCR to RAID storage devices and choose to no longer use multiple OCR locations, as described in the
“Removing an Oracle Cluster Registry Location” on page 3-7 section.

Note: The operations in this section affect OCR clusterwide: they change the OCR configuration information in the `ocr.loc` file on Linux and UNIX systems and the Registry keys on Windows systems. However, the `ocrconfig` command cannot modify OCR configuration information for nodes that are shut down or for nodes on which Oracle Clusterware is not running.

Adding an Oracle Cluster Registry Location

Use the procedure in this section to add an OCR location. Oracle Clusterware can manage up to five redundant OCR locations.

Note: If OCR resides on a cluster file system file or a network file system, create an empty (0 byte) OCR location file before performing the procedures in this section.

As the `root` user, run the following command to add an OCR location to either Oracle ASM or other storage device:

```bash
# ocrconfig -add +asm_disk_group | file_name
```

Note: On Linux and UNIX systems, you must be `root` to run `ocrconfig` commands. On Windows systems, the user must be a member of the Administrator's group.

Removing an Oracle Cluster Registry Location

To remove an OCR location or a failed OCR location, at least one other OCR must be online. You can remove an OCR location to reduce OCR-related overhead or to stop mirroring your OCR because you moved OCR to redundant storage such as RAID.

Perform the following procedure as the `root` user to remove an OCR location from your Oracle Clusterware environment:

1. Ensure that at least one OCR location other than the OCR location that you are removing is online.

 Caution: Do not perform this OCR removal procedure unless there is at least one other active OCR location online.

2. Run the following command on any node in the cluster to remove an OCR location from either Oracle ASM or other location:

   ```bash
   # ocrconfig -delete +ASM_disk_group | file_name
   ```

 The `file_name` variable can be a device name or a file name. This command updates the OCR configuration on all of the nodes on which Oracle Clusterware is running.
Replacing an Oracle Cluster Registry Location

If you must change an existing OCR location, or change a failed OCR location to a working location, then you can use the following procedure, as long as all remaining OCR locations remain online. The `ocrconfig -replace` command requires that at least two OCR locations are configured.

To change an Oracle Cluster Registry location:

Complete the following procedure:

1. Use the OCRCHECK utility to verify that a copy of OCR other than the one you are going to replace is online, using the following command:

   ```
   $ ocrcheck
   ```

 OCRCHECK displays all OCR locations that are registered and whether they are available (online). If an OCR location suddenly becomes unavailable, then it might take a short period for Oracle Clusterware to show the change in status.

 Note: The OCR location that you are replacing can be either online or offline.

2. Use the following command to verify that Oracle Clusterware is running on the node on which the you are going to perform the replace operation:

   ```
   $ crsctl check crs
   ```

3. Run the following command as `root` to replace the current OCR location using either `destination_file` or `+ASM_disk_group` to indicate the current and target OCR locations:

   ```
   # ocrconfig -replace current_OCR_location -replacement new_OCR_location
   ```

 The preceding command fails if you have less than two configured OCR locations that are online.

 If you have only one OCR location configured and online, then you must first add a new location and then delete the failed location, as follows:

   ```
   # ocrconfig -add new_OCR_location
   # ocrconfig -delete current_OCR_location
   ```

 Note: If your cluster configuration changes while the node on which OCR resides is stopped, and the Oracle Clusterware stack is running on the other nodes, then OCR detects configuration changes and self-corrects the configuration by changing the contents of the `ocr.loc` file.

 See Also: *Oracle Automatic Storage Management Administrator’s Guide* for more information about migrating storage

Repairing an Oracle Cluster Registry Configuration on a Local Node

It may be necessary to repair OCR if your cluster configuration changes while that node is stopped and this node is the only member in the cluster. Repairing an OCR involves either adding, deleting, or replacing an OCR location. For example, if any node that is part of your current Oracle RAC cluster is shut down, then you must
update the OCR configuration on the stopped node to let that node rejoin the cluster
after the node is restarted. Use the following command syntax as root on the
restarted node where you use either a `destination_file` or `+ASM_disk_group` to
indicate the current and target OCR locations:

```
ocrconfig -repair -replace current_OCR_location -replacement target_OCR_location
```

This operation only changes OCR on the node on which you run this command. For
example, if the OCR location is `/dev/sde1`, then use the command syntax

```
ocrconfig -repair -add /dev/sde1
```

on this node to repair OCR on that node.

Notes:

- You cannot repair the OCR configuration on a node on which the
 Oracle Cluster Ready Services daemon is running.
- When you repair OCR on a stopped node using `ocrconfig -repair`, you must provide the same OCR file name (which should be case-sensitive) as the OCR file names on other nodes.
- If you run the `ocrconfig -add | -repair | -replace` command, then the device, file, or Oracle ASM disk group that
 you are adding must be accessible. This means that a device must exist. You must create an empty (0 byte) OCR location, or the
 Oracle ASM disk group must exist and be mounted.

See Also:

- "OCRCONFIG Command Reference" on page G-3 for more information about OCRCONFIG commands
- *Oracle Automatic Storage Management Administrator’s Guide* for more information about Oracle ASM disk group management

Overriding the Oracle Cluster Registry Data Loss Protection Mechanism

OCR has a mechanism that prevents data loss due to accidental overwrites. If you
configure a mirrored OCR and if Oracle Clusterware cannot access the mirrored OCR
locations and also cannot verify that the available OCR location contains the most
recent configuration, then Oracle Clusterware prevents further modification to the
available OCR location. In addition, the process prevents overwriting by prohibiting
Oracle Clusterware from starting on the node on which only one OCR is available. In
such cases, Oracle Database displays an alert message in either Oracle Enterprise
Manager, the Oracle Clusterware alert log files, or both. If this problem is local to only
one node, you can use other nodes to start your cluster database.

However, if you are unable to start any cluster node in your environment and if you
can neither repair OCR nor restore access to all OCR locations, then you can override
the protection mechanism. The procedure described in the following list enables you
to start the cluster using the available OCR location. However, overriding the
protection mechanism can result in the loss of data that was not available when the
previous known good state was created.
Perform the following procedure to overwrite OCR if a node cannot start \textit{and} if the alert log contains CLSD-1009 and CLSD-1011 messages.

1. Attempt to resolve the cause of the CLSD-1009 and CLSD-1011 messages.

 Compare the node's OCR configuration (\texttt{ocr.loc} on Linux and UNIX systems and the Registry on Windows systems) with other nodes on which Oracle Clusterware is running.

 ■ If the configurations do not match, run \texttt{ocrconfig -repair}.

 ■ If the configurations match, ensure that the node can access all of the configured OCRs by running an \texttt{ls} command on Linux and UNIX systems. On Windows, use a \texttt{dir} command if the OCR location is a file and run \texttt{GuiOracleObjectManager.exe} to verify that the part of the cluster with the name exists.

2. Ensure that the most recent OCR contains the latest OCR updates.

 Look at output from the \texttt{ocrdump} command and determine whether it has your latest updates.

3. If you cannot resolve the problem that caused the CLSD message, then run the command \texttt{ocrconfig -overwrite} to start the node.

Backing Up Oracle Cluster Registry

This section describes how to back up OCR content and use it for recovery. The first method uses automatically generated OCR copies and the second method enables you to issue a backup command manually:

- **Automatic backups:** Oracle Clusterware automatically creates OCR backups every four hours. At any one time, Oracle Database always retains the last three backup copies of OCR. The CRS process that creates the backups also creates and retains an OCR backup for each \textit{full day} and \textit{at the end of each week}. You cannot customize the backup frequencies or the number of files that Oracle Database retains.

- **Manual backups:** Run the \texttt{ocrconfig -manualbackup} command on a node where the Oracle Clusterware stack is up and running to force Oracle Clusterware to perform a backup of OCR at any time, rather than wait for the automatic backup. You must run the command as a user with administrative privileges. The \texttt{-manualbackup} option is especially useful when you want to obtain a binary backup on demand, such as before you make changes to OCR. The OLR only supports manual backups.

When the clusterware stack is down on all nodes in the cluster, the backups that are listed by the \texttt{ocrconfig -showbackup} command may differ from node to node.
Managing Oracle Cluster Registry and Oracle Local Registry

Listing Backup Files

Run the following command to list the backup files:

```
ocrconfig -showbackup
```

The `ocrconfig -showbackup` command displays the backup location, timestamp, and the originating node name of the backup files that Oracle Clusterware creates. By default, the `-showbackup` option displays information for both automatic and manual backups but you can include the `auto` or `manual` flag to display only the automatic backup information or only the manual backup information, respectively.

Run the following command to inspect the contents and verify the integrity of the backup file:

```
ocrdump -backupfile backup_file_name
```

You can use any backup software to copy the automatically generated backup files at least once daily to a different device from where the primary OCR resides.

The default location for generating backups on Linux or UNIX systems is `Grid_home/cdata/cluster_name`, where `cluster_name` is the name of your cluster. The Windows default location for generating backups uses the same path structure. Because the default backup is on a local file system, Oracle recommends that you include the backup file created with the OCRCONFIG utility as part of your operating system backup using standard operating system or third-party tools.

Tip: You can use the `ocrconfig -backuploc` option to change the location where OCR creates backups. Appendix G, "Oracle Cluster Registry Utility Reference" describes the OCRCONFIG utility options.

Note: On Linux and UNIX systems, you must be root user to run most but not all of the `ocrconfig` command options. On Windows systems, the user must be a member of the Administrator’s group.

See Also:

- "Administering Oracle Cluster Registry with Oracle Cluster Registry Export and Import Commands" on page 3-16 to use manually created OCR export files to copy OCR content and use it for recovery
- "OCRCONFIG Command Reference" on page G-3 for more information about OCRCONFIG commands

Restoring Oracle Cluster Registry

If a resource fails, then before attempting to restore OCR, restart the resource. As a definitive verification that OCR failed, run `ocrcheck` and if the command returns a failure message, then both the primary OCR and the OCR mirror have failed. Attempt to correct the problem using the OCR restoration procedure for your platform.
Restoring the Oracle Cluster Registry on Linux or UNIX Systems

If you are storing OCR on an Oracle ASM disk group, and that disk group is corrupt, then you must restore the Oracle ASM disk group using Oracle ASM utilities, and then mount the disk group again before recovering OCR. Recover OCR by running the `ocrconfig -restore` command, as instructed in the following procedure.

Use the following procedure to restore OCR on Linux or UNIX systems:

1. List the nodes in your cluster by running the following command on one node:
   ```
   $ olsnodes
   ```

2. Stop Oracle Clusterware by running the following command as `root` on all of the nodes:
   ```
   # crsctl stop crs
   ```
 If the preceding command returns any error due to OCR corruption, stop Oracle Clusterware by running the following command as `root` on all of the nodes:
   ```
   # crsctl stop crs -f
   ```

3. If you are restoring OCR to a cluster file system or network file system, then run the following command as `root` to restore OCR with an OCR backup that you can identify in "Listing Backup Files" on page 3-11:

Notes:

- You cannot restore your configuration from an OCR backup file using the `-import` option, which is explained in "Administering Oracle Cluster Registry with Oracle Cluster Registry Export and Import Commands" on page 3-16. You must instead use the `-restore` option, as described in the following sections.

- If you store OCR on an Oracle ASM disk group and the disk group is not available, then you must recover and mount the Oracle ASM disk group.

See Also: Oracle Automatic Storage Management Administrator’s Guide for more information about managing Oracle ASM disk groups

- Restoring the Oracle Cluster Registry on Linux or UNIX Systems
- Restoring the Oracle Cluster Registry on Windows Systems
- Restoring the Oracle Cluster Registry in an Oracle Restart Environment

Restoring the Oracle Cluster Registry on Linux or UNIX Systems

If you are storing OCR on an Oracle ASM disk group, and that disk group is corrupt, then you must restore the Oracle ASM disk group using Oracle ASM utilities, and then mount the disk group again before recovering OCR. Recover OCR by running the `ocrconfig -restore` command, as instructed in the following procedure.

Note: If the original OCR location does not exist, then you must create an empty (0 byte) OCR location with the same name as the original OCR location before you run the `ocrconfig -restore` command.
ocrconfig -restore file_name

After you complete this step, proceed to step 10.

4. Start the Oracle Clusterware stack on one node in exclusive mode by running the following command as root:

   ```
   # crsctl start crs -excl -nocrs
   ``

   The `-nocrs` option ensures that the `crsd` process and OCR do not start with the rest of the Oracle Clusterware stack.

   Ignore any errors that display.

   Check whether `crsd` is running. If it is, then stop it by running the following command as root:

   ```
 # crsctl stop resource ora.crsd -init
 ``

 Caution: Do not use the `-init` flag with any other command.

5. If you want to restore OCR to an Oracle ASM disk group, then you must first create a disk group using SQL*Plus that has the same name as the disk group you want to restore and mount it on the local node.

 If you cannot mount the disk group locally, then run the following SQL*Plus command:

   ```
   SQL> drop diskgroup disk_group_name force including contents;
   ``

   Optionally, if you want to restore OCR to a raw device, then you must run the `ocrconfig -repair -replace` command as root, assuming that you have all the necessary permissions on all nodes to do so and that OCR was not previously on Oracle ASM.

6. Restore OCR with an OCR backup that you can identify in "Listing Backup Files" on page 3-11 by running the following command as root:

   ```
 # ocrconfig -restore file_name
 ``

 Notes:

 - Ensure that the OCR devices that you specify in the OCR configuration exist and that these OCR devices are valid.
 - If you configured OCR in an Oracle ASM disk group, then ensure that the Oracle ASM disk group exists and is mounted.

 See Also:

 - *Oracle Grid Infrastructure Installation Guide* for information about creating OCRs
 - *Oracle Automatic Storage Management Administrator’s Guide* for more information about Oracle ASM disk group management

7. Verify the integrity of OCR:

   ```
   # ocrcheck
   ```
8. Stop Oracle Clusterware on the node where it is running in exclusive mode:

 # crsctl stop crs -f

9. Run the `ocrconfig -repair -replace` command as root on all the nodes in
 the cluster where you did not the `ocrconfig -restore` command. For example,
 if you ran the `ocrconfig -restore` command on node 1 of a four-node cluster,
 then you must run the `ocrconfig -repair -replace` command on nodes 2,
 3, and 4.

10. Begin to start Oracle Clusterware by running the following command as root on
 all of the nodes:

 # crsctl start crs

11. Verify OCR integrity of all of the cluster nodes that are configured as part of your
 cluster by running the following CVU command:

 $ cluvfy comp ocr -n all -verbose

 See Also: Appendix A, "Cluster Verification Utility Reference" for
 more information about enabling and using CVU

Restoring the Oracle Cluster Registry on Windows Systems

If you are storing OCR on an Oracle ASM disk group, and that disk group is corrupt,
then you must restore the Oracle ASM disk group using Oracle ASM utilities, and then
mount the disk group again before recovering OCR. Recover OCR by running the
`ocrconfig -restore` command, as instructed in the following procedure.

See Also: Oracle Automatic Storage Management Administrator’s Guide
for information about how to restore Oracle ASM disk groups

Use the following procedure to restore OCR on Windows systems:

1. List the nodes in your cluster by running the following command on one node:

 C:\>olsnodes

2. Stop Oracle Clusterware by running the following command as a member of the
 Administrators group on all of the nodes:

 C:\>crsctl stop crs

 If the preceding command returns any error due to OCR corruption, stop Oracle
 Clusterware by running the following command as a member of the
 Administrators group on all of the nodes:

 C:\>crsctl stop crs -f

3. Start the Oracle Clusterware stack on one node in exclusive mode by running the
 following command as a member of the Administrators group:

 C:\>crsctl start crs -excl -nocrs
The -nocrs option ensures that the crsd process and OCR do not start with the rest of the Oracle Clusterware stack.

Ignore any errors that display.

4. Restore OCR with the OCR backup file that you identified in “Listing Backup Files” on page 3-11 by running the following command as a member of the Administrators group:

C:\>ocrconfig -restore file_name

Make sure that the OCR devices that you specify in the OCR configuration exist and that these OCR devices are valid.

Notes:

- Ensure that the OCR devices that you specify in the OCR configuration exist and that these OCR devices are valid.
- Ensure that the Oracle ASM disk group you specify exists and is mounted.

See Also:

- *Oracle Grid Infrastructure Installation Guide* for information about creating OCRs
- *Oracle Automatic Storage Management Administrator’s Guide* for more information about Oracle ASM disk group management

5. Verify the integrity of OCR:

C:\>ocrcheck

6. Stop Oracle Clusterware on the node where it is running in exclusive mode:

C:\>crsctl stop crs -f

7. Begin to start Oracle Clusterware by running the following command as a member of the Administrators group on all of the nodes:

C:\>crsctl start crs

8. Run the following Cluster Verification Utility (CVU) command to verify OCR integrity of all of the nodes in your cluster database:

C:\>cluvfy comp ocr -n all -verbose

See Also: *Appendix A, ”Cluster Verification Utility Reference”* for more information about enabling and using CVU
Restoring the Oracle Cluster Registry in an Oracle Restart Environment

Notes:
- OCR is present for backward compatibility.
- Once an OCR location is created, it does not get updated in the Oracle Restart environment.
- If the Oracle Restart home has been backed up, and if there is a failure, then restoring the Oracle Restart home restores OCR.

Use the following procedure to restore OCR in an Oracle Restart environment:

1. Stop Oracle High Availability Services by running the following command on all of the nodes:

 $$ crsctl stop has [-f] $$

2. Run the `ocrcheck -config` command to determine the OCR location and then create an empty (0 byte) OCR location with appropriate permissions in that location.

3. Restore OCR by running the following command as `root`:

 `# crsctl pin css -n host_name`

 Notes: Ensure that the OCR devices that you specify in the OCR configuration exist and that these OCR devices are valid.

 See Also: Oracle Grid Infrastructure Installation Guide for information about creating OCRs

4. Run the `ocrcheck` command to verify the integrity of OCR:

5. Start Oracle High Availability Services by running the following command on all of the nodes:

 $$ crsctl start has $$

Diagnosing Oracle Cluster Registry Problems

You can use the OCRDUMP and OCRCHECK utilities to diagnose OCR problems.

See Also:
- "OCRDUMP Utility Syntax and Options" on page G-15 for more information about the OCRDUMP utility
- "Using the OCRCHECK Utility" on page G-12 for more information about the OCRCHECK utility

Administering Oracle Cluster Registry with Oracle Cluster Registry Export and Import Commands

In addition to using the automatically created OCR backup files, you should also export OCR contents before and after making significant configuration changes, such
as adding or deleting nodes from your environment, modifying Oracle Clusterware resources, and upgrading, downgrading or creating a database. Do this by using the `ocrconfig -export` command, which exports OCR content to a file format.

Caution: Note the following restrictions for restoring OCR:

- The file format generated by `ocrconfig -restore` is incompatible with the file format generated by `ocrconfig -export`. The `ocrconfig -export` and `ocrconfig -import` commands are compatible. The `ocrconfig -manualbackup` and `ocrconfig -restore` commands are compatible. The two file formats are incompatible and must not be interchangeably used.

- When exporting OCR, Oracle recommends including "ocr", the cluster name, and the timestamp in the name string. For example:

 `ocr_mycluster1_20090521_2130_export`

Using the `ocrconfig -export` command also enables you to restore OCR using the `-import` option if your configuration changes cause errors. For example, if you have configuration problems that you cannot resolve, or if you are unable to restart Oracle Clusterware after such changes, then restore your configuration using the procedure for your platform.

Oracle recommends that you use either automatic or manual backups, and the `ocrconfig -restore` command instead of the `ocrconfig -export` and `ocrconfig -import` commands to restore OCR for the following reasons:

- A backup is a consistent snapshot of OCR, whereas an export is not.
- Backups are created when the system is online. You must shut down Oracle Clusterware on all nodes in the cluster to get a consistent snapshot using the `ocrconfig -export` command.
- You can inspect a backup using the OCRDUMP utility. You cannot inspect the contents of an export.
- You can list backups with the `ocrconfig -showbackup` command, whereas you must keep track of all generated exports.

This section includes the following topics:

- **Importing Oracle Cluster Registry Content on Linux or UNIX Systems**
- **Importing Oracle Cluster Registry Content on Windows Systems**

Note: Most configuration changes that you make not only change OCR contents, the configuration changes also cause file and database object creation. Some of these changes are often not restored when you restore OCR. Do not restore OCR as a correction to revert to previous configurations, if some of these configuration changes should fail. This may result in an OCR location that has contents that do not match the state of the rest of your system.

Importing Oracle Cluster Registry Content on Linux or UNIX Systems
Use the following procedure to import OCR on Linux or UNIX systems:

1. List the nodes in your cluster by running the following command on one node:

   ```bash
   $ olsnodes
   ```

2. Stop Oracle Clusterware by running the following command as user root on all of the nodes:

   ```bash
   # crsctl stop crs
   ```

 If the preceding command returns any error due to OCR corruption, stop Oracle Clusterware by running the following command as user root on all of the nodes:

   ```bash
   # crsctl stop crs -f
   ```

3. Start the Oracle Clusterware stack on one node in exclusive mode by running the following command as user root:

   ```bash
   # crsctl start crs -excl
   ```

 Ignore any errors that display.

 Check whether crsd is running. If it is, stop it by running the following command as user root:

   ```bash
   # crsctl stop resource ora.crsd -init
   ```

 Caution: Do not use the `-init` flag with any other command.

4. Import OCR by running the following command as user root:

   ```bash
   # ocrconfig -import file_name
   ```

 If you are importing OCR to a cluster or network file system, then skip to step 7.

Notes:

- If the original OCR location does not exist, then you must create an empty (0 byte) OCR location before you run the `ocrconfig -import` command.
- Ensure that the OCR devices that you specify in the OCR configuration exist and that these OCR devices are valid.
- If you configured OCR in an Oracle ASM disk group, then ensure that the Oracle ASM disk group exists and is mounted.
5. Verify the integrity of OCR:
 # ocrcheck

6. Stop Oracle Clusterware on the node where it is running in exclusive mode:
 # crsctl stop crs -f

7. Begin to start Oracle Clusterware by running the following command as root on all of the nodes:
 # crsctl start crs

8. Verify OCR integrity of all of the cluster nodes that are configured as part of your cluster by running the following CVU command:
 $ cluvfy comp ocr -n all -verbose

See Also:

- *Oracle Grid Infrastructure Installation Guide* for information about creating OCRs
- *Oracle Automatic Storage Management Administrator's Guide* for more information about Oracle ASM disk group management

Importing Oracle Cluster Registry Content on Windows Systems

Use the following procedure to import OCR on Windows systems:

1. List the nodes in your cluster by running the following command on one node:
   ```
   C:\>olsnodes
   ```

2. Stop Oracle Clusterware by running the following command as a member of the Administrators group on all of the nodes:
   ```
   C:\>crsctl stop crs
   ```
 If the preceding command returns any error due to OCR corruption, stop Oracle Clusterware by running the following command as a member of the Administrators group on all of the nodes:
   ```
   C:\>crsctl stop crs -f
   ```

Note: You can only import an exported OCR. To restore OCR from a backup, you must instead use the `-restore` option, as described in “Backing Up Oracle Cluster Registry” on page 3-10.

See Also: Appendix A, "Cluster Verification Utility Reference" for more information about enabling and using CVU

Note: This procedure assumes default installation of Oracle Clusterware on all nodes in the cluster, where Oracle Clusterware autostart is enabled.
Managing Oracle Cluster Registry and Oracle Local Registry

3. Start the Oracle Clusterware stack on one node in exclusive mode by running the following command as a member of the Administrators group:

```
C:\>crsctl start crs -excl
```

Ignore any errors that display.

Check whether `crsd` is running. If it is, stop it by running the following command as a member of the Administrators group:

```
C:\>crsctl stop resource ora.crsd -init
```

Caution: Do not use the `-init` flag in any other command.

4. Import OCR by running the following command as a member of the Administrators group:

```
C:\>ocrconfig -import file_name
```

Make sure that the OCR devices that you specify in the OCR configuration exist and that these OCR devices are valid.

Notes:

- If the original OCR location does not exist, then you must create an empty (0 byte) OCR location before you run the `ocrconfig -import` command.
- Ensure that the OCR devices that you specify in the OCR configuration exist and that these OCR devices are valid.
- Ensure that the Oracle ASM disk group you specify exists and is mounted.

See Also:

- *Oracle Grid Infrastructure Installation Guide* for information about creating OCRs
- *Oracle Automatic Storage Management Administrator’s Guide* for more information about Oracle ASM disk group management

5. Verify the integrity of OCR:

```
C:\>ocrcheck
```

6. Stop Oracle Clusterware on the node where it is running in exclusive mode:

```
C:\>crsctl stop crs -f
```

7. Begin to start Oracle Clusterware by running the following command as a member of the Administrators group on all of the nodes:

```
C:\>crsctl start crs
```

8. Run the following Cluster Verification Utility (CVU) command to verify OCR integrity of all of the nodes in your cluster database:

```
C:\>cluvfy comp ocr -n all -verbose
```
Managing Oracle Cluster Registry and Oracle Local Registry

Oracle Local Registry

In Oracle Clusterware 11g release 2 (11.2), each node in a cluster has a local registry for node-specific resources, called an Oracle Local Registry (OLR), that is installed and configured when Oracle Clusterware installs OCR. Multiple processes on each node have simultaneous read and write access to the OLR particular to the node on which they reside, regardless of whether Oracle Clusterware is running or fully functional.

By default, OLR is located at Grid_home/cdata/host_name.olr on each node.

Manage OLR using the OCRCHECK, OCRDUMP, and OCRCONFIG utilities as root with the -local option.

- You can check the status of OLR on the local node using the OCRCHECK utility, as follows:

 # ocrcheck -local

 Status of Oracle Cluster Registry is as follows:
 Version: 3
 Total space (kbytes): 262132
 Used space (kbytes): 9200
 Available space (kbytes): 252932
 ID: 604793089
 Device/File Name: /private2/crs/cdata/localhost/dg1nx6.olr
 Device/File integrity check succeeded

 Local OCR integrity check succeeded

- You can display the content of OLR on the local node to the text terminal that initiated the program using the OCRDUMP utility, as follows:

 # ocrdump -local -stdout

- You can perform administrative tasks on OLR on the local node using the OCRCONFIG utility.
 - To export OLR to a file:

 # ocrconfig -local -export file_name

 Notes:

 - Oracle recommends that you use the -manualbackup and -restore commands and not the -import and -export commands.
 - When exporting OLR, Oracle recommends including "olr", the host name, and the timestamp in the name string. For example:

 olr_myhost1_20090603_0130_export

 - To import a specified file to OLR:

 # ocrconfig -local -import file_name

 - To manually back up OLR:

 # ocrconfig -local -manualbackup

See Also: Appendix A, “Cluster Verification Utility Reference” for more information about enabling and using CVU
Managing Voting Disks

Note: The OLR is backed up at the end of an installation or an upgrade. After that time, you can only manually back up the OLR. Automatic backups are not supported for the OLR. You should create a new backup when you migrate OCR from Oracle ASM to other storage, or when you migrate OCR from other storage to Oracle ASM.

The default backup location for the OLR is in the path `Grid_home/cdata/host_name`.

- To view the contents of the OLR backup file:
  ```
ode
  ocrdump -local -backupfile olr_backup_file_name
  ```

- To change the OLR backup location:
  ```
ode
  ocrconfig -local -backuploc new_olr_backup_path
  ```

- To restore OLR:
  ```
ode
  # crsctl stop crs
  # ocrconfig -local -restore file_name
  # ocrcheck -local
  # crsctl start crs
  $ cluvfy comp olr
  ```

Upgrading and Downgrading the Oracle Cluster Registry Configuration

When you upgrade Oracle Clusterware, it automatically runs the `ocrconfig -upgrade` command. To downgrade, follow the downgrade instructions for each component and also downgrade OCR using the `ocrconfig -downgrade` command. If you are upgrading OCR, then you can use the OCRCHECK utility to verify the integrity of OCR.

Managing Voting Disks

This section includes the following topics for managing voting disks in your cluster:

- **Storing Voting Disks on Oracle ASM**
- **Backing Up Voting Disks**
- **Restoring Voting Disks**
- **Adding, Deleting, or Migrating Voting Disks**

Caution: The `dd` commands used to back up and recover voting disks in previous versions of Oracle Clusterware are not supported in Oracle Clusterware 11g release 2 (11.2). Restoring voting disks that were copied using `dd` or `cp` commands can prevent the Oracle Clusterware 11g release 2 (11.2) stack from coming up. Use the backup and restore procedures described in this chapter to ensure proper voting disk functionality.
Managing Voting Disks

Managing Oracle Cluster Registry and Voting Disks

3-23

Storing Voting Disks on Oracle ASM

Oracle ASM manages voting disks differently from other files that it stores. If you choose to store your voting disks in Oracle ASM, then Oracle ASM stores all the voting disks for the cluster in the disk group you choose. You cannot use voting disks stored in Oracle ASM and voting disks not stored in Oracle ASM in the same cluster.

Once you configure voting disks on Oracle ASM, you can only make changes to the voting disks' configuration using the crsctl replace votedisk command. This is true even in cases where there are no working voting disks. Despite the fact that crsctl query css votedisk reports zero vote disks in use, Oracle Clusterware remembers the fact that Oracle ASM was in use and the replace verb is required. Only after you use the replace verb to move voting disks back to non-Oracle ASM storage are the verbs add css votedisk and delete css votedisk again usable.

The number of voting files you can store in a particular Oracle ASM disk group depends upon the redundancy of the disk group.

- **External redundancy**: A disk group with external redundancy can store only one voting disk
- **Normal redundancy**: A disk group with normal redundancy stores three voting disks
- **High redundancy**: A disk group with high redundancy stores five voting disks

By default, Oracle ASM puts each voting disk in its own failure group within the disk group. A failure group is a subset of the disks in a disk group. Failure groups define disks that share components, such that if one fails then other disks sharing the component might also fail. An example of what you might define as a failure group would be a set of SCSI disks sharing the same SCSI controller. Failure groups are used to determine which Oracle ASM disks to use for storing redundant data. For example, if two-way mirroring is specified for a file, then redundant copies of file extents must be stored in separate failure groups.

If voting disks are stored on Oracle ASM with normal or high redundancy, and the storage hardware in one failure group suffers a failure, then if there is another disk available in a disk group in an unaffected failure group, Oracle ASM recovers the voting disk in the unaffected failure group.

Notes:

- Voting disk management requires a valid and working OCR. Before you add, delete, replace, or restore voting disks, run the ocrcheck command as root. If OCR is not available or it is corrupt, then you must restore OCR as described in "Restoring Oracle Cluster Registry" on page 3-11.

- If you upgrade from a previous version of Oracle Clusterware to Oracle Clusterware 11g release 2 (11.2) and you want to store voting disks in an Oracle ASM disk group, then you must set the **ASM Compatibility** (COMPATIBLE.ASM) compatibility attribute to 11.2.0.0.

See Also: Oracle Automatic Storage Management Administrator’s Guide for information about setting Oracle ASM compatibility attributes
A normal redundancy disk group must contain at least two failure groups but if you are storing your voting disks on Oracle ASM, then a normal redundancy disk group must contain at least three failure groups. A high redundancy disk group must contain at least three failure groups. However, Oracle recommends using several failure groups. A small number of failure groups, or failure groups of uneven capacity, can create allocation problems that prevent full use of all of the available storage.

You must specify enough failure groups in each disk group to support the redundancy type for that disk group.

Using the `crsctl replace votedisk` command, you can move a given set of voting disks from one Oracle ASM disk group into another, or onto a certified file system. If you move voting disks from one Oracle ASM disk group to another, then you can change the number of voting disks by placing them in a disk group of a different redundancy level as the former disk group.

Notes:

- You cannot directly influence the number of voting disks in one disk group.
- You cannot use the `crsctl add | delete votedisk` commands on voting disks stored in Oracle ASM disk groups because Oracle ASM manages the number of voting disks according to the redundancy level of the disk group.
- You cannot add a voting disk to a cluster file system if the voting disks are stored in an Oracle ASM disk group. Oracle does not support having voting disks in Oracle ASM and directly on a cluster file system for the same cluster at the same time.

See Also:

- *Oracle Automatic Storage Management Administrator’s Guide* for more information about disk group redundancy and quorum failure groups
- "Adding, Deleting, or Migrating Voting Disks" on page 3-25 for information about migrating voting disks

Backing Up Voting Disks

In Oracle Clusterware 11g release 2 (11.2), you no longer have to back up the voting disk. The voting disk data is automatically backed up in OCR as part of any configuration change and is automatically restored to any voting disk added. If all voting disks are corrupted, however, you can restore them as described in "Restoring Voting Disks" on page 3-24.

Restoring Voting Disks

If all of the voting disks are corrupted, then you can restore them, as follows:

1. Restore OCR as described in "Restoring Oracle Cluster Registry" on page 3-11, if necessary.

 This step is necessary only if OCR is also corrupted or otherwise unavailable, such as if OCR is on Oracle ASM and the disk group is no longer available.
2. Run the following command as root from only one node to start the Oracle Clusterware stack in exclusive mode, which does not require voting files to be present or usable:

```
# crsctl start crs -excl
```

3. Run the `crsctl query css votedisk` command to retrieve the list of voting files currently defined, similar to the following:

```
$ crsctl query css votedisk
-- ------ -----------------                --------- ---------
## STATE File Universal Id                File Name Disk group
1. ONLINE 7c54856e9847f6d6b349401e7c9fb95 (/dev/sdb1) [DATA]
```

This list may be empty if all voting disks were corrupted, or may have entries that are marked as status 3 or OFF.

4. Depending on where you store your voting files, do one of the following:

 - If the voting disks are stored in Oracle ASM, then run the following command to migrate the voting disks to the Oracle ASM disk group you specify:

     ```
     crsctl replace votedisk +asm_disk_group
     ```

 The Oracle ASM disk group to which you migrate the voting files must exist in Oracle ASM. You can use this command whether the voting disks were stored in Oracle ASM or some other storage device.

 - If you did not store voting disks in Oracle ASM, then run the following command using the File Universal Identifier (FUID) obtained in the previous step:

     ```
     $ crsctl delete css votedisk FUID
     ```

 Add a voting disk, as follows:

     ```
     $ crsctl add css votedisk path_to_voting_disk
     ```

5. Stop the Oracle Clusterware stack as root:

```
# crsctl stop crs
```

Note: If the Oracle Clusterware stack is running in exclusive mode, then use the `-f` option to force the shutdown of the stack.

6. Restart the Oracle Clusterware stack in normal mode as root:

```
# crsctl start crs
```

Adding, Deleting, or Migrating Voting Disks

You can add, remove, and migrate voting disks after you install Oracle Clusterware. Note that the commands you use to do this are different, depending on whether your voting disks are located in Oracle ASM, or are located in another storage option.
Modifying voting disks that are stored in Oracle ASM

- To display the voting disk FUID and file path of each current voting disk, run the `crsctl query css votedisk` command to display output similar to the following:

  ```bash
  $ crsctl query css votedisk
  -- ------ ------------------ ---------------
  ## STATE File Universal Id File Name Disk group
  1. ONLINE 7c54856e9847f61bf349401e7c9fb95 (/dev/sdb1) [DATA]
  ```

 This command returns a disk sequence number, the status of the disk, the FUID, the path of the disk, and the name of the Oracle ASM disk group on which the disk is stored.

- To migrate voting disks from Oracle ASM to an alternative storage device, specify the path to the non-Oracle ASM storage device with which you want to replace the Oracle ASM disk group using the following command:

  ```bash
  $ crsctl replace votedisk path_to_voting_disk
  ```

 You can run this command on any node in the cluster.

- To replace all voting disks not stored in Oracle ASM with voting disks managed by Oracle ASM in an Oracle ASM disk group, run the following command:

  ```bash
  $ crsctl replace votedisk +asm_disk_group
  ```

Modifying voting disks that are not stored on Oracle ASM:

- To display the voting disk FUID and file path of each current voting disk, run the following command:

  ```bash
  $ crsctl query css votedisk
  ## STATE File Universal Id File Name
  -- ------ ------------------ ---------------
  1. ONLINE 7c54856e9847f61bf349401e7c9fb95 (/cfs/host09_vd3) []
  ```

 This command returns a disk sequence number, the status of the disk, the FUID, and the path of the disk and no name of an Oracle ASM disk group.

- To add one or more voting disks, run the following command, replacing the `path_to_voting_disk` variable with one or more space-delimited, complete paths to the voting disks you want to add:

  ```bash
  $ crsctl add css votedisk path_to_voting_disk [...] 
  ```

 To replace voting disk A with voting disk B, you must add voting disk B, and then delete voting disk A. To add a new disk and remove the existing disk, run the following command, replacing the `path_to_voting_diskB` variable with the fully qualified path name of voting disk B:

  ```bash
  $ crsctl add css votedisk path_to_voting_diskB -purge
  ```

 The `-purge` option deletes existing voting disks.

- To remove a voting disk, run the following command, specifying one or more space-delimited, voting disk FUIDs or comma-delimited directory paths to the voting disks you want to remove:

  ```bash
  $ crsctl delete css votedisk {FUID | path_to_voting_disk[...]} 
  ```
Managing Voting Disks

Migrating voting disks to Oracle ASM
To migrate voting disks to Oracle ASM, specify the Oracle ASM disk group name in the following command:

$ crsctl replace votedisk +asm_disk_group

You can run this command on any node in the cluster.

Verifying the voting disk location
After modifying the voting disk, verify the voting disk location, as follows:

$ crsctl query css votedisk

See Also: Appendix E, "CRSCTL Utility Reference" for more information about CRSCTL commands
Adding and Deleting Cluster Nodes

This chapter describes how to add nodes to an existing cluster, and how to delete nodes from clusters. This chapter provides procedures for these tasks for Linux, UNIX, and Windows systems.

Prerequisite Steps for Adding Cluster Nodes

Complete the following steps to prepare nodes to add to the cluster:

1. **Make physical connections.**

 Connect the nodes' hardware to the network infrastructure of your cluster. This includes establishing electrical connections, configuring network interconnects, configuring shared disk subsystem connections, and so on. See your hardware vendor documentation for details about this step.

2. **Install the operating system.**

 Install a cloned image of the operating system that matches the operating system on the other nodes in your cluster. This includes installing required service
patches, updates, and drivers. See your operating system vendor documentation for details about this process.

Note: Oracle recommends that you use a cloned image. However, if the installation fulfills the installation requirements, then install the operating system according to the vendor documentation.

3. Create Oracle users.

You must create all Oracle users on the new node that exist on the existing nodes. For example, if you are adding a node to a cluster that has two nodes, and those two nodes have different owners for the Grid Infrastructure home and the Oracle home, then you must create those owners on the new node, even if you do not plan to install an Oracle home on the new node.

Note: Perform this step only for Linux and UNIX systems.

As root, create the Oracle users and groups using the same user ID and group ID as on the existing nodes.

4. Ensure that SSH is configured on the node.

Note: SSH is configured when you install Oracle Clusterware 11g release 2 (11.2). If SSH is not configured, then see *Oracle Grid Infrastructure Installation Guide* for information about configuring SSH.

5. Verify the hardware and operating system installations with the Cluster Verification Utility (CVU).

After you configure the hardware and operating systems on the nodes you want to add, you can run the following command to verify that the nodes you want to add are reachable by other nodes in the cluster. You can also use this command to verify user equivalence to all given nodes from the local node, node connectivity among all of the given nodes, accessibility to shared storage from all of the given nodes, and so on.

From the `Grid_home/bin` directory on an existing node, run the CVU command to obtain a detailed comparison of the properties of the reference node with all of the other nodes that are part of your current cluster environment. Replace `ref_node` with the name of a node in your existing cluster against which you want CVU to compare the nodes to be added. Specify a comma-delimited list of nodes after the `-n` option. In the following example, `orainventory_group` is the name of the Oracle Inventory group, and `osdba_group` is the name of the OSDBA group:

```
$ cluvfy comp peer [-refnode ref_node] -n node_list [-orainv orainventory_group] [-osdba osdba_group] [-verbose]
```

Note: For the reference node, select a cluster node against which you want CVU to compare, for example, the nodes that you want to add that you specify with the `-n` option.
After completing the procedures in this section, you are ready to add the nodes to the cluster.

Note: Avoid changing host names after you complete the Oracle Clusterware installation, including adding or deleting domain qualifications. Nodes with changed host names must be deleted from the cluster and added back with the new name.

Adding and Deleting Cluster Nodes on Linux and UNIX Systems

This section explains cluster node addition and deletion on Linux and UNIX systems. The procedure in the section for adding nodes assumes that you have performed the steps in the "Prerequisite Steps for Adding Cluster Nodes" section.

The last step of the node addition process includes extending the Oracle Clusterware home from an Oracle Clusterware home on an existing node to the nodes that you want to add.

This section includes the following topics:

- Adding a Cluster Node on Linux and UNIX Systems
- Deleting a Cluster Node on Linux and UNIX Systems

Note: Beginning with Oracle Clusterware 11g release 1 (11.1), Oracle Universal Installer defaults to silent mode when adding nodes.

Adding a Cluster Node on Linux and UNIX Systems

This procedure describes how to add a node to your cluster. This procedure assumes that:

- There is an existing cluster with two nodes named `node1` and `node2`
- You are adding a node named `node3` using a virtual node name, `node3-vip`, that resolves to an IP address, if you are not using Grid Naming Service (GNS)
- You have successfully installed Oracle Clusterware on `node1` and `node2` in a local (non-shared) home, where `Grid_home` represents the successfully installed home

To add a node:

1. Ensure that you have successfully installed Oracle Clusterware on at least one node in your cluster environment. To perform the following procedure, `Grid_home` must identify your successfully installed Oracle Clusterware home.

 See Also: *Oracle Grid Infrastructure Installation Guide* for Oracle Clusterware installation instructions

2. Verify the integrity of the cluster and `node3`:

   ```sh
   $ cluvfy stage -pre nodeadd -n node3 [-fixup [-fixupdir fixup_dir]] [-verbose]
   ```

 You can specify the `-fixup` option and a directory into which CVU prints instructions to fix the cluster or node if the verification fails.

3. To extend the Grid Infrastructure home to the `node3`, navigate to the `Grid_home/oui/bin` directory on `node1` and run the `addNode.sh` script as the user.
that installed Oracle Clusterware using the following syntax, where node3 is the name of the node that you are adding and node3-vip is the VIP name for the node:

If you are using Grid Naming Service (GNS), run the following command:

```
$ ./addNode.sh "CLUSTER_NEW_NODES={node3}"
```

If you are not using GNS, run the following command:

```
$ ./addNode.sh "CLUSTER_NEW_NODES={node3}" "CLUSTER_NEW_VIRTUAL_HOSTNAMES={node3-vip}"
```

Note: You can specify multiple nodes for the CLUSTER_NEW_NODES and the CLUSTER_NEW_VIRTUAL_HOSTNAMES parameters by entering a comma-separated list of nodes between the braces. For example:

```
"CLUSTER_NEW_NODES={node3,node4,node5}"
"CLUSTER_NEW_VIRTUAL_HOSTNAMES={node3-vip,node4-vip,node5-vip}"
```

Alternatively, you can specify the entries shown in Example 4–1 in a response file, where file_name is the name of the file, and run the addNode.sh script, as follows:

```
$ ./addNode.sh -responseFile file_name
```

Example 4–1 Response File Entries for Adding Oracle Clusterware Home

```
RESPONSEFILE_VERSION=2.2.1.0.0

CLUSTER_NEW_NODES={node3}
CLUSTER_NEW_VIRTUAL_HOSTNAMES={node3-vip}
```

See Also: Oracle Universal Installer and OPatch User’s Guide for details about how to configure command-line response files

Notes:

- If you are not using Oracle Grid Naming Service (GNS), then you must add the name and IP address of node3 to DNS.
- Command-line values always override response file values.

4. If you have an Oracle RAC or Oracle RAC One Node database configured on the cluster and you have a local Oracle home, then do the following to extend the Oracle database home to node3:

 a. Navigate to the Oracle_home/oui/bin directory on node1 and run the addNode.sh script as the user that installed Oracle RAC using the following syntax:

      ```
      $ ./addNode.sh "CLUSTER_NEW_NODES={node3}"
      ```

 b. Run the Oracle_home/root.sh script on node3 as root, where Oracle_home is the Oracle RAC home.
If you have a shared Oracle home that is shared using Oracle Automatic Storage Management Cluster File System (Oracle ACFS), then do the following as the user that installed Oracle RAC to extend the Oracle database home to node3:

a. Run the `Grid_home/root.sh` script on node3 as root, where `Grid_home` is the Oracle Grid Infrastructure home.

b. Start the Oracle ACFS resource on the new node by running the following command as root from the `Grid_home/bin` directory:

   ```
   # srvctl start filesystem -d volume_device_name [-n node_name]
   ```

 Note: Make sure the Oracle ACFS resources, including Oracle ACFS registry resource and Oracle ACFS file system resource where the `ORACLE_HOME` is located, are online on the newly added node.

 c. Navigate to the `Oracle_home/oui/bin` directory on node1 and run the `addNode.sh` script as the user that installed Oracle RAC using the following syntax:

   ```
   $ ./addNode.sh -noCopy "CLUSTER_NEW_NODES={node3}"
   ```

 Note: Use the `-noCopy` option because the Oracle home on the destination node is already fully populated with software.

If you have a shared Oracle home on a shared file system that is not Oracle ACFS, then you must first create a mount point for the Oracle RAC database home on the target node, mount and attach the Oracle RAC database home, and update the Oracle Inventory, as follows:

a. Run the `srvctl config db -d db_name` command on an existing node in the cluster to obtain the mount point information.

b. Run the following command as root on node3 to create the mount point:

   ```
   # mkdir -p mount_point_path
   ```

c. Mount the file system that hosts the Oracle RAC database home.

d. Run the following command as the user that installed Oracle RAC from the `Oracle_home/oui/bin` directory on the node you are adding to add the Oracle RAC database home:

   ```
   $ ./runInstaller -attachHome ORACLE_HOME="ORACLE_HOME" "CLUSTER_NODES={node_list}" LOCAL_NODE="node_name"
   ```

e. Update the Oracle Inventory as the user that installed Oracle RAC, as follows:

   ```
   $ ./runInstaller -updateNodeList ORACLE_HOME="mount_point_path" "CLUSTER_NODES={node_list}"
   ```

 In the preceding command, `node_list` refers to a list of all nodes where the Oracle RAC database home is installed, including the node you are adding.

5. Run the `Grid_home/root.sh` script on the node3 as root and run the subsequent script, as instructed.

6. Run the following CVU command as the user that installed Oracle Clusterware to check cluster integrity. This command verifies that any number of specified nodes
Adding and Deleting Cluster Nodes on Linux and UNIX Systems

has been successfully added to the cluster at the network, shared storage, and clusterware levels:

```
$ cluvfy stage -post nodeadd -n node3 [-verbose]
```

See Also: "cluvfy stage [-pre | -post] nodeadd" on page A-55 for more information about this CVU command

Check whether either a policy-managed or administrator-managed Oracle RAC database is configured to run on node3 (the newly added node). If you configured an administrator-managed Oracle RAC database, you may need to use DBCA to add an instance to the database to run on this newly added node.

See Also:
- Oracle Real Application Clusters Administration and Deployment Guide for more information about using DBCA to add administrator-managed Oracle RAC database instances
- Oracle Real Application Clusters Administration and Deployment Guide to add an Oracle RAC database instance to the target node if you configured a policy-managed Oracle RAC database

Deleting a Cluster Node on Linux and UNIX Systems

This section describes the procedure for deleting a node from a cluster.

Notes:
- You can remove the Oracle RAC database instance from the node before removing the node from the cluster but this step is not required. If you do not remove the instance, then the instance is still configured but never runs. Deleting a node from a cluster does not remove a node's configuration information from the cluster. The residual configuration information does not interfere with the operation of the cluster.

See Also: Oracle Real Application Clusters Administration and Deployment Guide for more information about deleting an Oracle RAC database instance

- If you run a dynamic Grid Plug and Play cluster using DHCP and GNS, then you need only perform step 3 (remove VIP resource), step 4 (delete node), and step 7 (update inventory on remaining nodes).

Also, in a Grid Plug and Play cluster, if you have nodes that are unpinned, Oracle Clusterware forgets about those nodes after a time and there is no need for you to remove them.

- If one creates node-specific configuration for a node (such as disabling a service on a specific node, or adding the node to the candidate list for a server pool) that node-specific configuration is not removed when the node is deleted from the cluster. Such node-specific configuration must be removed manually.

- Voting disks are automatically backed up in OCR after any changes you make to the cluster.
To delete a node from a cluster:

1. Ensure that Grid_home correctly specifies the full directory path for the Oracle Clusterware home on each node, where Grid_home is the location of the installed Oracle Clusterware software.

2. Run the following command as either root or the user that installed Oracle Clusterware to determine whether the node you want to delete is active and whether it is pinned:

   ```
   $ olsnodes -s -t
   ```

 If the node is pinned, then run the `crsctl unpin css` command. Otherwise, proceed to the next step.

3. Disable the Oracle Clusterware applications and daemons running on the node. Run the `rootcrs.pl` script as root from the Grid_home/crs/install directory on the node to be deleted, as follows:

   ```
   # ./rootcrs.pl -deconfig -force
   ```

 If you are deleting multiple nodes, then run the `rootcrs.pl` script on each node that you are deleting.

 If you are deleting all nodes from a cluster, then append the `-lastnode` option to the preceding command to clear OCR and the voting disks, as follows:

   ```
   # ./rootcrs.pl -deconfig -force -lastnode
   ```

 Caution: Only use the `-lastnode` option if you are deleting all cluster nodes because that option causes the `rootcrs.pl` script to clear OCR and the voting disks of data.

 Note: If you do not use the `-force` option in the preceding command or the node you are deleting is not accessible for you to execute the preceding command, then the VIP resource remains running on the node. You must manually stop and remove the VIP resource using the following commands as root from any node that you are not deleting:

   ```
   # srvctl stop vip -i vip_name -f
   # srvctl remove vip -i vip_name -f
   ```

 Where `vip_name` is the VIP for the node to be deleted. If you specify multiple VIP names, then separate the names with commas and surround the list in double quotation marks (" ").

4. From any node that you are not deleting, run the following command from the Grid_home/bin directory as root to delete the node from the cluster:

   ```
   # crsctl delete node -n node_to_be_deleted
   ```
5. On the node you want to delete, run the following command as the user that installed Oracle Clusterware from the Grid_home/oui/bin directory where node_to_be_deleted is the name of the node that you are deleting:

```
$ ./runInstaller -updateNodeList ORACLE_HOME=Grid_home "CLUSTER_NODES=(node_to_be_deleted)" CRS=TRUE -silent -local
```

Caution: Before you proceed to the next step, check the inventory.xml to ensure that it has not been updated. If you perform this step and mistakenly update the inventory.xml file, or you fail to complete this step and move on to the next step, then the next step will deinstall the entire cluster.

6. Depending on whether you have a shared or local Oracle home, complete one of the following procedures as the user that installed Oracle Clusterware:

- If you have a shared home, then run the following commands in the following order on the node you want to delete.

 Run the following command to deconfigure Oracle Clusterware:

 `$ Grid_home/perl/bin/perl Grid_home/crs/install/rootcrs.pl -deconfig`

 Run the following command from the Grid_home/oui/bin directory to detach the Grid home:

 `$./runInstaller -detachHome ORACLE_HOME=Grid_home -silent -local`

 Manually delete the following files:

 `/etc/oraInst.loc`
 `/etc/oratab`
 `/etc/oracle/`
 `/opt/ORCLfmap/`
 `$/OraInventory/`

- For a local home, deinstall the Oracle Clusterware home from the node that you want to delete, as follows, by running the following command, where Grid_home is the path defined for the Oracle Clusterware home:

 `$ Grid_home/deinstall/deinstall -local`

 Caution: If you do not specify the -local flag, then the command removes the Grid Infrastructure home from every node in the cluster.

7. On any node other than the node you are deleting, run the following command from the Grid_home/oui/bin directory where remaining_nodes_list is a comma-delimited list of the nodes that are going to remain part of your cluster:

```
$ ./runInstaller -updateNodeList ORACLE_HOME=Grid_home "CLUSTER_NODES=(remaining_nodes_list)" CRS=TRUE -silent
```
Adding and Deleting Cluster Nodes on Windows Systems

This section explains cluster node addition and deletion on Windows systems. This section includes the following topics:

- Adding a Node to a Cluster on Windows Systems
- Deleting a Cluster Node on Windows Systems

See Also: Oracle Grid Infrastructure Installation Guide for more information about deleting an entire cluster.

Adding a Node to a Cluster on Windows Systems

Ensure that you complete the prerequisites listed in "Prerequisite Steps for Adding Cluster Nodes" on page 4-1 before adding nodes.

This procedure describes how to add a node to your cluster. This procedure assumes that:

- There is an existing cluster with two nodes named node1 and node2
- You are adding a node named node3
- You have successfully installed Oracle Clusterware on node1 and node2 in a local home, where Grid_home represents the successfully installed home.

Note: Do not use the procedures described in this section to add cluster nodes in configurations where the Oracle database has been upgraded from Oracle Database 10g release 1 (10.1) on Windows systems.

To add a node:

1. Verify the integrity of the cluster and node3:

 C:\>cluvfy stage -pre nodeadd -n node3 [-fixup [-fixupdir fixup_dir]]

Notes:

- You must run this command a second time where ORACLE_HOME=ORACLE_HOME, and CRS=TRUE -silent is omitted from the syntax, as follows:

 $./runInstaller -updateNodeList ORACLE_HOME=ORACLE_HOME "CLUSTER_NODES={remaining_nodes_list}"

- If you have a shared Oracle Grid Infrastructure home, then append the -cfs option to the command example in this step and provide a complete path location for the cluster file system.

8. Run the following CVU command to verify that the specified nodes have been successfully deleted from the cluster:

 $ cluvfy stage -post nodedel -n node_list [-verbose]

See Also: "cluvfy stage -post nodedel" on page A-56 for more information about this CVU command.
Adding and Deleting Cluster Nodes on Windows Systems

2. On node1, go to the Grid_home\oui\bin directory and run the addNode.bat script, as follows:

 C:\>addNode.bat "CLUSTER_NEW_NODES={node3}"
 "CLUSTER_NEW_VIRTUAL_HOSTNAMES={node3-vip}"

 You can alternatively specify the entries shown in Example 4-2 in a response file and run addNode.bat as follows:

 C:\>addNode.bat -responseFile filename

Example 4-2 Response File Entries for Adding a Node

 CLUSTER_NEW_NODES={"node3"}
 CLUSTER_NEW_VIRTUAL_HOSTNAMES={"node3-vip"}

 Command-line values always override response file values.

 See Also: *Oracle Universal Installer and OPatch User’s Guide* for details about how to configure command-line response files

3. Run the following command on the new node:

 C:\>Grid_home\crs\config\gridconfig.bat

4. Run the following command to verify the integrity of the Oracle Clusterware components on all of the configured nodes, both the preexisting nodes and the nodes that you have added:

 C:\>cluvfy stage -post crsinst -n all [-verbose]

After you complete the procedure in this section for adding nodes, you can optionally extend Oracle Database with Oracle Real Application Clusters (Oracle RAC) components to the new nodes, making them members of an existing Oracle RAC database.

 See Also: *Oracle Real Application Clusters Administration and Deployment Guide* for more information about extending Oracle Database with Oracle RAC to new nodes

Deleting a Cluster Node on Windows Systems

This section describes how to delete a cluster node on Windows systems. This procedure assumes that Oracle Clusterware is installed on node1, node2, and node3, and that you are deleting node3 from the cluster.
To delete a cluster node on Windows systems:

1. Before you delete a node, you must disable the Oracle Clusterware applications and services running on the node.
 On the node you want to delete, run the `rootcrs.pl -deconfig` script as a member of the Administrators groups, as follows:

   ```
   C:\>Grid_home\bin\perl\perl -I$Grid_home\perl\lib -I$Grid_home\crs\install Grid_home\crs\install\rootcrs.pl -deconfig -force
   ```

 If you are deleting multiple nodes, then run this script on each node that you are deleting.

2. On a node that you are not deleting, run the following command:

   ```
   C:\>Grid_home\bin\crsctl delete node -n node_to_be_deleted
   ```

3. Only if you have a local home, on the node you want to delete, run the following command with `-local` option to update the node list:

   ```
   C:\>Grid_home\oui\bin\setup.exe -updateNodeList ORACLE_HOME=Grid_home "CLUSTER_NODES={node_to_be_deleted}" CRS=TRUE -local
   ```

4. Run the deinstall tool located in the `Grid_home\deinstall` directory to deinstall and deconfigure the Oracle Clusterware home, as follows:

   ```
   C:\>deinstall.bat
   ```

5. On any node that you are not deleting, run the following command from the `Grid_home\oui\bin` directory where `remaining_nodes_list` is a comma-delimited list of the nodes that are going to remain part of your cluster:

   ```
   C:\>setup.exe -updateNodeList ORACLE_HOME=Grid_home "CLUSTER_NODES={remaining_nodes_list}" CRS=TRUE -silent
   ```
6. Run the following CVU command to verify that the specified nodes have been successfully deleted from the cluster:

```
C:\>cluvfy stage -post nodedel -n node_list [-verbose]
```

See Also: "cluvfy stage -post nodedel" on page A-56
This chapter describes how to clone an Oracle Grid Infrastructure home and use the cloned home to create a cluster. You perform the cloning procedures in this chapter by running scripts in silent mode. The cloning procedures are applicable to Linux and UNIX systems. Although the examples in this chapter use Linux and UNIX commands, the cloning concepts and procedures apply generally to all platforms.

Note: This chapter assumes that you are cloning an Oracle Clusterware 11g release 2 (11.2) installation configured as follows:

- No Grid Naming Service (GNS)
- No Intelligent Platform Management Interface specification (IPMI)
- Voting disk and Oracle Cluster Registry (OCR) are stored in Oracle Automatic Storage Management (ASM)
- Single Client Access Name (SCAN) resolves through DNS

This chapter contains the following topics:

- Introduction to Cloning Oracle Clusterware
- Preparing the Oracle Grid Infrastructure Home for Cloning
- Creating a Cluster by Cloning Oracle Clusterware
- Using Cloning to Add Nodes to a Cluster
- Locating and Viewing Log Files Generated During Cloning

Introduction to Cloning Oracle Clusterware

Cloning is the process of copying an existing Oracle Clusterware installation to a different location and then updating the copied installation to work in the new environment. Changes made by one-off patches applied on the source Oracle Grid Infrastructure home are also present after cloning. During cloning, you run a script that replays the actions that installed the Oracle Grid Infrastructure home.

Cloning requires that you start with a successfully installed Oracle Grid Infrastructure home. You use this home as the basis for implementing a script that extends the Oracle Grid Infrastructure home to create a cluster based on the original Grid home.

Manually creating the cloning script can be error prone because you prepare the script without interactive checks to validate your input. Despite this, the initial effort is worthwhile for scenarios where you run a single script to configure tens or even
hundreds of clusters. If you have only one cluster to install, then you should use the traditional, automated and interactive installation methods, such as Oracle Universal Installer (OUI) or the Provisioning Pack feature of Oracle Enterprise Manager.

Note: Cloning is not a replacement for Oracle Enterprise Manager cloning that is a part of the Provisioning Pack. During Oracle Enterprise Manager cloning, the provisioning process simplifies cloning by interactively asking for details about the Oracle home. The interview questions cover such topics as the location to which you want to deploy the cloned environment, the name of the Oracle database home, a list of the nodes in the cluster, and so on.

The Provisioning Pack feature of Oracle Enterprise Manager Grid Control provides a framework that automates the provisioning of nodes and clusters. For data centers with many clusters, the investment in creating a cloning procedure to provision new clusters and new nodes to existing clusters is worth the effort.

The following list describes some situations in which cloning is useful:

- Cloning prepares an Oracle Grid Infrastructure home once and deploys it to many hosts simultaneously. You can complete the installation in silent mode, as a noninteractive process. You do not need to use a graphical user interface (GUI) console, and you can perform cloning from a Secure Shell (SSH) terminal session, if required.

- Cloning enables you to create an installation (copy of a production, test, or development installation) with all patches applied to it in a single step. Once you have performed the base installation and applied all patch sets and patches on the source system, cloning performs all of these individual steps as a single procedure. This is in contrast to going through the installation process to perform the separate steps to install, configure, and patch the installation on each node in the cluster.

- Installing Oracle Clusterware by cloning is a quick process. For example, cloning an Oracle Grid Infrastructure home to a cluster with more than two nodes requires a few minutes to install the Oracle software, plus a few minutes more for each node (approximately the amount of time it takes to run the `root.sh` script).

- Cloning provides a guaranteed method of accurately repeating the same Oracle Clusterware installation on multiple clusters.

A cloned installation acts the same as its source installation. For example, you can remove the cloned Oracle Grid Infrastructure home using OUI or patch it using OPatch. You can also use the cloned Oracle Grid Infrastructure home as the source for another cloning operation. You can create a cloned copy of a test, development, or production installation by using the command-line cloning scripts.

The default cloning procedure is adequate for most cases. However, you can also customize some aspects of cloning, for example, to specify custom port assignments or to preserve custom settings.

The cloning process works by copying all of the files from the source Oracle Grid Infrastructure home to the destination Oracle Grid Infrastructure home. You can clone either a local (non-shared) or shared Oracle Grid Infrastructure home. Thus, any files used by the source instance that are located outside the source Oracle Grid Infrastructure home’s directory structure are not copied to the destination location.

The size of the binary files at the source and the destination may differ because these files are relinked as part of the cloning operation, and the operating system patch
levels may also differ between these two locations. Additionally, the number of files in
the cloned home would increase because several files copied from the source,
specifically those being instantiated, are backed up as part of the clone operation.

Preparing the Oracle Grid Infrastructure Home for Cloning

To prepare the source Oracle Grid Infrastructure home to be cloned, create a copy of an
installed Oracle Grid Infrastructure home and then use it to perform the cloning
procedure on other nodes. Use the following step-by-step procedure to prepare the
copy of the Oracle Grid Infrastructure home:

■ Step 1: Install Oracle Clusterware
■ Step 2: Shut Down Running Software
■ Step 3: Create a Copy of the Oracle Grid Infrastructure Home

Step 1: Install Oracle Clusterware

Use the detailed instructions in the Oracle Grid Infrastructure Installation Guide to
perform the following steps on the source node:

1. Install Oracle Clusterware 11g release 2 (11.2). This installation puts Oracle Cluster
Registry (OCR) and the voting disk on Oracle Automatic Storage Management
(Oracle ASM).

 Note: Either install and configure the Grid Infrastructure for a
c cluster or install just the Oracle Clusterware software, as described in
 your platform-specific Oracle Grid Infrastructure Installation Guide.

If you installed and configured Grid Infrastructure for a cluster, then you must
stop Oracle Clusterware before performing the cloning procedures. If you
performed a software-only installation, then you do not have to stop Oracle
Clusterware.

2. Install any patches that are required (for example, a Grid Infrastructure bundle
patch), if necessary.

3. Apply one-off patches, if necessary.

 See Also: Oracle Grid Infrastructure Installation Guide for Oracle
 Clusterware installation instructions

Step 2: Shut Down Running Software

Before copying the source Oracle Grid Infrastructure home, shut down all of the
services, databases, listeners, applications, Oracle Clusterware, and Oracle ASM
instances that run on the node. Oracle recommends that you use the Server Control
(SRVCTL) utility to first shut down the databases, and then the Oracle Clusterware
Control (CRSCTL) utility to shut down the rest of the components.

See Also:

■ Appendix E, "CRSCTL Utility Reference" for more information
 about CRSCTL

■ Oracle Real Application Clusters Administration and Deployment
 Guide for more information about SRVCTL
Step 3: Create a Copy of the Oracle Grid Infrastructure Home

To keep the installed Oracle Grid Infrastructure home as a working home, make a full copy of the source Oracle Grid Infrastructure home for cloning.

Tip: When creating the copy, a best practice is to include the release number in the name of the file.

Use one of the following methods to create a compressed copy of the Oracle Grid Infrastructure home.

Method 1: Create a copy of the Oracle Grid Infrastructure home and remove the unnecessary files from the copy:

1. On the source node, create a copy of the Oracle Grid Infrastructure home. To keep the installed Oracle Grid Infrastructure home as a working home, make a full copy of the source Oracle Grid Infrastructure home and remove the unnecessary files from the copy. For example, as root on Linux systems, run the cp command:

```bash
# cp -prf Grid_home copy_path
```

The preceding command copies the entire contents of Grid_home (for example, /u01/app/grid/11.2.0) to a new location (for example, /home/grid/gridcopy).

2. Delete unnecessary files from the copy.

The Oracle Grid Infrastructure home contains files that are relevant only to the source node, so you can remove the unnecessary files from the copy of the Grid Infrastructure home in the log, crs/init, crf, and cdata directories. The following example for Linux and UNIX systems shows the commands to run to remove the unnecessary files from the copy of the Oracle Grid Infrastructure home:

```
[root@node1 root]# cd copy_path
[root@node1 grid]# rm -rf crs/install/crsconfig_addparams
[root@node1 grid]# rm -rf host_name
[root@node1 grid]# rm -rf log/host_name
[root@node1 grid]# rm -rf gpnp/host_name
[root@node1 grid]# find gpnp -type f -exec rm -f {} \;
[root@node1 grid]# find cfgtoollogs -type f -exec rm -f {} \;
[root@node1 grid]# rm -rf crs/init/*
[root@node1 grid]# rm -rf cdata/*
[root@node1 grid]# rm -rf crf/*
[root@node1 grid]# rm -rf network/admin/*/*
[root@node1 grid]# find . -name '*.ouibak' -exec rm {} \;
[root@node1 grid]# find . -name '*.ouibak.1' -exec rm {} \;
[root@node1 grid]# rm -rf root.sh*
```

3. Create a compressed copy of the previously copied Oracle Grid Infrastructure home using tar or gzip on Linux and UNIX systems. Ensure that the tool you use preserves the permissions and file timestamps. For example:

On Linux and UNIX systems:

```
[root@node1 root]# cd copy_path
[root@node1 grid]# tar -zcvpf /copy_path/gridHome.tgz .
```

In the preceding example, the cd command changes the location to the copy of the Oracle Grid Infrastructure home with the unnecessary files removed that you created in the first two steps of this procedure, and the tar command creates a file
named gridHome.tgz. In the tar command, *copy_path* represents the location of the copy of the Oracle Grid Infrastructure home.

On AIX or HPUX systems:

tar cpf - . | compress -fv > temp_dir/gridHome.tar.Z

On Windows systems, use WinZip to create a zip file.

Method 2: Create a compressed copy of the Oracle Grid Infrastructure home using the -X option:

1. Create a file that lists the unnecessary files in the Oracle Grid Infrastructure home. For example, list the following file names, using the asterisk (*) wildcard, in a file called *excludeFileList*:

 - Grid_home/host_name
 - Grid_home/log/host_name
 - Grid_home/gpnp/host_name
 - Grid_home/crs/init/*
 - Grid_home/cdata/*
 - Grid_home/crf/*
 - Grid_home/network/admin/*.ora
 - Grid_home/root.sh*
 - *.ouibak
 - *.ouibak1

2. Use the tar command or WinZip to create a compressed copy of the Oracle Grid Infrastructure home. For example, on Linux and UNIX systems, run the following command to archive and compress the source Oracle Grid Infrastructure home:

 tar cpfx - excludeFileList Grid_home | compress -fv > temp_dir/gridHome.tar.Z

Note: Do not use the jar utility to copy and compress the Oracle Grid Infrastructure home.

Creating a Cluster by Cloning Oracle Clusterware

This section explains how to create a cluster by cloning a successfully installed Oracle Clusterware environment and copying it to the nodes on the destination cluster. The procedures in this section describe how to use cloning for Linux, UNIX, and Windows systems. OCR and voting disks are not shared between the two clusters after you successfully create a cluster from a clone.

For example, you can use cloning to quickly duplicate a successfully installed Oracle Clusterware environment to create a cluster. Figure 5–1 shows the result of a cloning procedure in which the Oracle Grid Infrastructure home on Node 1 has been cloned to Node 2 and Node 3 on Cluster 2, making Cluster 2 a new two-node cluster.
The steps to create a cluster through cloning are as follows:

- **Step 1: Prepare the New Cluster Nodes**
- **Step 2: Deploy the Oracle Grid Infrastructure Home on the Destination Nodes**
- **Step 3: Run the clone.pl Script on Each Destination Node**
- **Step 4: Launch the Configuration Wizard**

Step 1: Prepare the New Cluster Nodes

On each destination node, perform the following preinstallation steps:

- Specify the kernel parameters
- Configure block devices for Oracle Clusterware devices
- Ensure that you have set the block device permissions correctly
- Use short, nondomain-qualified names for all of the names in the `/etc/hosts` file
- Test whether the interconnect interfaces are reachable using the `ping` command
- Verify that the VIP addresses are not active at the start of the cloning process by using the `ping` command (the `ping` command of the VIP address must fail)
- Copy the following Oracle Automatic Storage Management Cluster File System tunable files from the source node to each destination node:
 - On Linux and UNIX: `/etc/sysconfig/advmtunables` and `/etc/sysconfig/acfstunables`
 - On AIX: `/etc/advmtunables` and `/etc/acfstunables`
 - On Solaris: `/etc/advmtunables` and `/etc/acfstunables`
 - On Windows: `C:\windows\system32\drivers\advm\tunables` and `C:\windows\system32\drivers\acfs\tunables`

- On AIX systems, and on Solaris x86-64-bit systems running vendor clusterware, if you add a node to the cluster, then you must run the `rootpre.sh` script (located at the mount point it you install Oracle Clusterware from a DVD or in the directory where you unzip the tar file if you download the software) on the node before you add the node to the cluster
- Run CVU to verify your hardware and operating system environment

Refer to your platform-specific Oracle Clusterware installation guide for the complete preinstallation checklist.
Step 2: Deploy the Oracle Grid Infrastructure Home on the Destination Nodes

Before you begin the cloning procedure that is described in this section, ensure that you have completed the prerequisite tasks to create a copy of the Oracle Grid Infrastructure home, as described in the section titled "Preparing the Oracle Grid Infrastructure Home for Cloning" on page 5-3.

1. On each destination node, deploy the copy of the Oracle Grid Infrastructure home that you created in "Step 3: Create a Copy of the Oracle Grid Infrastructure Home" on page 5-4, as follows:

 If you do not have a shared Oracle Grid Infrastructure home, then restore the copy of the Oracle Grid Infrastructure home on each node in the destination cluster. Use the equivalent directory structure as the directory structure that was used in the Oracle Grid Infrastructure home on the source node. Skip this step if you have a shared Oracle Grid Infrastructure home.

 For example, on Linux or UNIX systems, run commands similar to the following:

   ```
   [root@node1 root]# mkdir -p location_of_the_copy_of_the_Grid_home
   [root@node1 root]# cd location_of_the_copy_of_the_Grid_home
   [root@node1 crs]# tar -zxvf /path_name/gridHome.tgz
   ```

 In this example, `path_name` represents the directory structure in which you want to install the Oracle Grid Infrastructure home. Note that you can change the Grid home location as part of the clone process.

 On Windows systems, unzip the Oracle Grid Infrastructure home on the destination node in the equivalent directory structure as the directory structure in which the Oracle Grid Infrastructure home resided on the source node.

2. If you have not already deleted unnecessary files from the Oracle Grid Infrastructure home, then repeat step 2 in "Method 1: Create a copy of the Oracle Grid Infrastructure home and remove the unnecessary files from the copy:" on page 5-4.

3. Create a directory for the Oracle Inventory on the destination node and, if necessary, change the ownership of all of the files in the Oracle Grid Infrastructure home to be owned by the Oracle Grid Infrastructure installation owner and by the Oracle Inventory (`oinstall` privilege) group. If the Oracle Grid Infrastructure installation owner is `oracle`, and the Oracle Inventory group is `oinstall`, then the following example shows the commands to do this on a Linux system:

   ```
   [root@node1 crs]# mkdir /u01
   [root@node1 crs]# chown oracle:oinstall /u01
   [root@node1 crs]# mkdir -p /u01/app/oraInventory
   [root@node1 crs]# mkdir -p /u01/app/11.2.0/grid
   ```

 When you run the last of the preceding commands on the Grid home, it clears `setuid` and `setgid` information from the Oracle binary. It also clears `setuid` from the following binaries:

Note: Unlike traditional methods of installation, the cloning process does not validate your input during the preparation phase. (By comparison, during the traditional method of installation using OUI, various checks occur during the interview phase.) Thus, if you make errors during the hardware setup or in the preparation phase, then the cloned installation fails.
Run the following commands to restore the cleared information:

```bash
chmod u+s Grid_home/bin/oracle
chmod g+s Grid_home/bin/oracle
chmod u+s Grid_home/bin/extjob
chmod u+s Grid_home/bin/jssu
chmod u+s Grid_home/bin/oradism
```

4. It is important to remove any Oracle network files from the `Grid_home` directory on both the source and destination nodes before continuing. For example, remove any `tnsnames.ora`, `listener.ora`, or `sqlnet.ora` files.

See Also: "Locating and Viewing Log Files Generated During Cloning" on page 5-13

Step 3: Run the `clone.pl` Script on Each Destination Node

To set up the new Oracle Clusterware environment, the `clone.pl` script requires you to provide several setup values for the script. You can provide the variable values by either supplying input on the command line when you run the `clone.pl` script, or by creating a file in which you can assign values to the cloning variables. The following discussions describe these options.

Note: After you run `clone.pl`, the script prompts you to run `orainstRoot.sh` and `root.sh`. Run only `orainstRoot.sh` and then proceed to "Step 4: Launch the Configuration Wizard" on page 5-10. The configuration wizard will prompt you to run `root.sh`.

Supplying input to the `clone.pl` script on the command line

If you do not have a shared Oracle Grid Infrastructure home, navigate to the `Grid_home/clone/bin` directory on each destination node and run the `clone.pl` script, which performs the main Oracle Clusterware cloning tasks. To run the script, you must supply input to several parameters. Table 5-1 describes the `clone.pl` script parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ORACLE_BASE=ORACLE_BASE</code></td>
<td>The complete path to the Oracle base to be cloned. If you specify an invalid path, then the script exits. This parameter is required.</td>
</tr>
<tr>
<td><code>ORACLE_HOME=GRID_HOME</code></td>
<td>The complete path to the Grid Infrastructure home for cloning. If you specify an invalid path, then the script exits. This parameter is required.</td>
</tr>
<tr>
<td><code>ORACLE_HOME_NAME=Oracle_home_name (or) -defaultHomeName</code></td>
<td>The Oracle home name of the home to be cloned. Optionally, you can specify the <code>-defaultHomeName</code> flag. This parameter is not required.</td>
</tr>
<tr>
<td><code>INVENTORY_LOCATION=location_of_inventory</code></td>
<td>The location for the Oracle Inventory.</td>
</tr>
</tbody>
</table>
Creating a Cluster by Cloning Oracle Clusterware

Cloning Oracle Clusterware

For example, on Linux and UNIX systems:

```
$ perl clone.pl -silent ORACLE_BASE=/u01/app/oracle ORACLE_HOME=/u01/app/11.2.0/grid ORACLE_HOME_NAME=OraHome1Grid INVENTORY_LOCATION=/u01/app/oraInventory -O"" CLUSTER_NODES={node1, node2}" -O"" LOCAL_NODE=node1" CRS=TRUE
```

On Windows systems:

```
C:\>perl clone.pl ORACLE_BASE=D:\u01\app\grid ORACLE_HOME=D:\u01\app\grid\11.2.0 ORACLE_HOME_NAME=OraHome1Grid "CLUSTER_NODES={node1, node2}" -O"" LOCAL_NODE=node1" CRS=TRUE
```

Refer to Table 5–1 for descriptions of the various parameters in the preceding example.

If you have a shared Oracle Grid Infrastructure home, then append the -cfs option to the command example in this step and provide a complete path location for the cluster file system.

Supplying Input to the clone.pl Script in a File

Because the clone.pl script is sensitive to the parameter values that it receives, you must be accurate in your use of brackets, single quotation marks, and double quotation marks. To avoid errors, create a file that is similar to the start.sh script shown in Example 5–1 in which you can specify environment variables and cloning parameters for the clone.pl script.

Example 5–1 shows an excerpt from an example script called start.sh that calls the clone.pl script; the example is configured for a cluster named crscluster. Run the script as the operating system user that installed Oracle Clusterware.

Table 5–1 (Cont.) Parameters for the clone.pl Script

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O""CLUSTER NODES={node name, node name, ...}"</td>
<td>A comma-delimited list of short node names for the nodes that are included in this new cluster.</td>
</tr>
<tr>
<td>-O""LOCAL_NODE=node name"</td>
<td>The short node name for the node on which clone.pl is running.</td>
</tr>
<tr>
<td>CRS=TRUE</td>
<td>This parameter is necessary to set this property on the Oracle Universal Installer inventory.</td>
</tr>
<tr>
<td>OSDBA_GROUP=OSDBA privileged_group</td>
<td>Specify the operating system group you want to use as the OSDBA privileged group. This parameter is optional if you do not want the default value.</td>
</tr>
<tr>
<td>OSASM_GROUP=OSASM privileged_group</td>
<td>Specify the operating system group you want to use as the OSASM privileged group. This parameter is optional if you do not want the default value.</td>
</tr>
<tr>
<td>OSOPER_GROUP=OSOPER privileged_group</td>
<td>Specify the operating system group you want to use as the OSOPER privileged group. This parameter is optional if you do not want the default value.</td>
</tr>
<tr>
<td>-debug</td>
<td>Specify this option to run the clone.pl script in debug mode.</td>
</tr>
<tr>
<td>-help</td>
<td>Specify this option to obtain help for the clone.pl script.</td>
</tr>
</tbody>
</table>

For example, on Linux and UNIX systems:

$ perl clone.pl -silent ORACLE_BASE=/u01/app/oracle ORACLE_HOME=/u01/app/11.2.0/grid ORACLE_HOME_NAME=OraHome1Grid INVENTORY_LOCATION=/u01/app/oraInventory -O"" CLUSTER_NODES={node1, node2}" -O"" LOCAL_NODE=node1" CRS=TRUE

Note: Do not use the -O option when you run this command on Windows.
Example 5–1 Excerpt From the start.sh Script to Clone Oracle Clusterware

```bash
#!/bin/sh
ORACLE_BASE=/u01/app/oracle
GRID_HOME=/u01/app/11.2.0/grid
THIS_NODE='hostname -s'

E01=ORACLE_BASE=${ORACLE_BASE}
E02=ORACLE_HOME=${GRID_HOME}
E03=ORACLE_HOME_NAME=OraGridHome1
E04=INVENTORY_LOCATION=${ORACLE_BASE}/oraInventory

#C00="-O'-debug'
C01="-O'"CLUSTER_NODES={node1,node2}"'"
C02="-O'"LOCAL_NODE=${THIS_NODE}"'"

perl ${GRID_HOME}/clone/bin/clone.pl -silent $E01 $E02 $E03 $E04 $C01 $C02
```

The `start.sh` script sets several environment variables and cloning parameters, as described in Table 5–2. Table 5–2 describes the environment variables E01, E02, E03, and E04 that are shown in bold typeface in Example 5–1, and C01 and C02.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>ORACLE_BASE</td>
<td>The location of the Oracle base directory.</td>
</tr>
<tr>
<td>E02</td>
<td>ORACLE_HOME</td>
<td>The location of the Oracle Grid Infrastructure home. This directory location must exist and must be owned by the Oracle operating system group: oinstall.</td>
</tr>
<tr>
<td>E03</td>
<td>ORACLE_HOME_NAME</td>
<td>The name of the Oracle Grid Infrastructure home. This is stored in the Oracle Inventory.</td>
</tr>
<tr>
<td>E04</td>
<td>INVENTORY_LOCATION</td>
<td>The location of the Oracle Inventory. This directory location must exist and must initially be owned by the Oracle operating system group: oinstall.</td>
</tr>
<tr>
<td>C01</td>
<td>CLUSTER_NODES</td>
<td>This list of short node names for the nodes in the cluster.</td>
</tr>
<tr>
<td>C02</td>
<td>LOCAL_NODE</td>
<td>The short name of the local node.</td>
</tr>
</tbody>
</table>

Step 4: Launch the Configuration Wizard

The Configuration Wizard helps you to prepare the `crsconfig_params` file, prompts you to run the `root.sh` script (which calls the `rootcrs.pl` script), relinks Oracle binaries, and runs cluster verifications.

Start the Configuration Wizard, as follows:
```
$ Oracle_home/crs/config/config.sh
```

Optionally, you can run the Configuration Wizard silently, as follows, providing a response file:
```
$ Oracle_home/crs/config/config.sh -silent -responseFile file_name
```

See Also: Oracle Grid Infrastructure Installation Guide for Linux for information about preparing response files

To use GNS, Oracle recommends that you add GNS to the cluster after your cloned cluster is running. Add GNS using the `srvctl` add gns command.
Using Cloning to Add Nodes to a Cluster

You can also use cloning to add nodes to a cluster. Figure 5–2 shows the result of a cloning procedure in which the Oracle Grid Infrastructure home on Node 1 has been cloned to Node 2 in the same cluster, making it a two-node cluster. Newly added nodes to the cluster share the same OCR and voting disks.

Using Figure 5–2 as an example, the following procedure explains how to add nodes to a cluster using cloning. In this procedure, Node 1 is the source node from which you obtain the cloned copy, and Node 2 is the destination node, to which you copy the clone of Node 1:

1. Prepare Node 2 as described in “Step 1: Prepare the New Cluster Nodes” on page 5-6.
2. Deploy the Oracle Grid Infrastructure home on Node 2, as described in “Step 2: Deploy the Oracle Grid Infrastructure Home on the Destination Nodes” on page 5-7.
3. Run the `clone.pl` script located in the Grid_home/clone/bin directory on Node 2.

 The following example is for Linux or UNIX systems:

   ```bash
   $ perl clone.pl ORACLE_HOME=/u01/app/11.2.0/grid ORACLE_HOME_NAME=OraHome1Grid ORACLE_BASE=/u01/app/oracle -O "CLUSTER_NODES={node1, node2}" -O "LOCAL_NODE=node2" CRS=TRUE SHOW_ROOTSH_CONFIRMATION=false INVENTORY_LOCATION=/u01/app/oraInventory
   
   In the preceding command, `node_list` is a comma-delimited list of all nodes in the cluster.
   
   The following example is for Windows systems:

   ```powershell
 $ perl clone.pl ORACLE_HOME=C:\app\11.2.0\grid ORACLE_HOME_NAME=OraHome1Grid ORACLE_BASE=C:\app\oracle -O "CLUSTER_NODES={node1, node2}" -O "LOCAL_NODE=node2" CRS=TRUE SHOW_ROOTSH_CONFIRMATION=false INVENTORY_LOCATION=C:\app\oraInventory

 In the preceding command, `node_list` is a comma-delimited list of all nodes in the cluster.

 Note: Do not use the `-O` option when you run this command on Windows.

See Also: Oracle Real Application Clusters Administration and Deployment Guide for more information about the `srvctl add gns` command.
C:\perl clone.pl ORACLE_BASE=D:\u01\app\grid ORACLE_HOME=D:\u01\app\grid\11.2.0
ORACLE_HOME_NAME=OraHome1Grid "CLUSTER_NODES=(node1, node2)"
"LOCAL_NODE=node1" CRS=TRUE

If you are prompted to run root.sh, then ignore the prompt and proceed to the next step.

4. This step does not apply to Windows.

In the Central Inventory directory on Node 2, run the orainstRoot.sh script as root. This script populates the /etc/oraInst.loc directory with the location of the central inventory. For example:

[root@node2 root]# /opt/oracle/oraInventory/orainstRoot.sh

You can run the script on more than one destination node simultaneously.

5. Run the addNode.sh (addNode.bat on Windows) script, located in the Grid_home/oui/bin directory, on Node 1, as follows:

$ addNode.sh -silent -noCopy ORACLE_HOME=Grid_home "CLUSTER_NEW_NODES={node2}"
"CLUSTER_NEW_VIRTUAL_HOSTNAMES={node2-vip}" "CLUSTER_NEW_VIPS={node2-vip}" CRS_ADDNODE=true CRS_DHCP_ENABLED=false

Notes:

- Because you already ran the clone.pl script on Node 2, this step only updates the inventories on the node and instantiates scripts on the local node.
- If you use the -noCopy option with the addNode.sh script, then a copy of the password file may not exist on Node 2, in which case you must copy a correct password file to Node 2.
- The addNode.sh script runs the cluvfy stage -pre nodeadd verification.

6. Copy the following two files and the gpnp directory from Node 1, on which you ran addnode.sh, to Node 2:

Grid_home/crs/install/crsconfig_addparams
Grid_home/crs/install/crsconfig_params
Grid_home/gpnp

7. On Node 2, run the Grid_home/root.sh script.

Note: The cluster in this example has only two nodes. When you add multiple nodes to a cluster, you can run root.sh concurrently on all of the nodes.

The following example is for a Linux or UNIX system. On Node 2, run the following command:

[root@node2 root]# Grid_home/root.sh

The root.sh script automatically configures the following node applications:

- Global Services Daemon (GSD)
Locating and Viewing Log Files Generated During Cloning

- Oracle Notification Service (ONS)
- Virtual IP (VIP) resources in the Oracle Cluster Registry (OCR)
- Single Client Access Name (SCAN) VIPs and SCAN listeners
- Oracle ASM

On Windows, run the following command on Node 2:

```
C:\>Grid_home\crs\config\gridconfig.bat
```

8. Navigate to the `Oracle_home/oui/bin` directory on the Node 1 and run the `addNode.sh` script using the following syntax:

```
$ ./addNode.sh -silent -noCopy "CLUSTER_NEW_NODES={node2}"
```

Note: Use the `-noCopy` option only if the Oracle home on the destination node is fully populated with software. Otherwise, omit the `-noCopy` option to copy the software to the destination node when you run the `addNode.sh` script.

9. Run the `Oracle_home/root.sh` script on Node 2 as `root`, where `Oracle_home` is the Oracle RAC home.

10. Run the `Grid_home/crs/install/rootcrs.pl` script on Node 2 as `root`, following the instructions generated when you ran `root.sh` in the previous step.

11. Run the following cluster verification utility (CVU) command on Node 1:

```
$ cluvfy stage -post nodeadd -n destination_node_name [-verbose]
```

See Also: "cluvfy stage [-pre | -post] nodeadd" on page A-55 for more information about this CVU command

Locating and Viewing Log Files Generated During Cloning

The cloning script runs multiple tools, each of which can generate log files. After the `clone.pl` script finishes running, you can view log files to obtain more information about the status of your cloning procedures. **Table 5–3** lists the log files that are generated during cloning that are the key log files for diagnostic purposes.

Note: `Central_inventory` in **Table 5–3** refers to the Oracle Inventory directory.

Table 5–3 Cloning Log Files and their Descriptions

<table>
<thead>
<tr>
<th>Log File Name and Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central_inventory/logs/cloneActions/timestamp.log</td>
<td>Contains a detailed log of the actions that occur during the OUI part of the cloning.</td>
</tr>
<tr>
<td>Central_inventory/logs/oraInstall/timestamp.err</td>
<td>Contains information about errors that occur when OUI is running.</td>
</tr>
<tr>
<td>Central_inventory/logs/oraInstall/timestamp.out</td>
<td>Contains other miscellaneous information.</td>
</tr>
</tbody>
</table>

Table 5–4 lists the location of the Oracle Inventory directory for various platforms.
Table 5–4 Finding the Location of the Oracle Inventory Directory

<table>
<thead>
<tr>
<th>Type of System</th>
<th>Location of the Oracle Inventory Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>All UNIX computers except Linux and IBM AIX</td>
<td>/var/opt/oracle/oraInst.loc</td>
</tr>
<tr>
<td>IBM AIX and Linux</td>
<td>/etc/oraInst.loc</td>
</tr>
<tr>
<td>Windows</td>
<td>C:\Program Files\Oracle\Inventory</td>
</tr>
</tbody>
</table>
Making Applications Highly Available Using Oracle Clusterware

When an application, process, or server fails in a cluster, you want the disruption to be as short as possible, if not completely unknown to users. For example, when an application fails on a server, that application can be restarted on another server in the cluster, minimizing or negating any disruption in the use of that application. Similarly, if a server in a cluster fails, then all of the applications and processes running on that server must be able to fail over to another server to continue providing service to the users. Using customizable action scripts and application agent programs, as well as resource attributes that you assign to applications and processes, Oracle Clusterware can manage all these entities to ensure high availability.

This chapter explains how to use Oracle Clusterware to start, stop, monitor, restart, and relocate applications. Oracle Clusterware is the underlying cluster solution for Oracle Real Application Clusters (Oracle RAC). The same functionality and principles you use to manage Oracle RAC databases are applied to the management of applications.

This chapter includes the following topics:

- Oracle Clusterware Resources and Agents
- Overview of Using Oracle Clusterware to Enable High Availability
- Registering an Application as a Resource
- Managing Resources
- Managing Automatic Restart of Oracle Clusterware Resources

Oracle Clusterware Resources and Agents

This section discusses the framework that Oracle Clusterware uses to monitor and manage resources, in order to ensure high application availability.

This section includes the following topics:

- Resources
- Resource Types
- Agents
- Action Scripts
- Building an Agent
- Registering a Resource in Oracle Clusterware
Resources

Oracle Clusterware manages applications and processes as resources that you register with Oracle Clusterware. The number of resources you register with Oracle Clusterware to manage an application depends on the application. Applications that consist of only one process are usually represented by only one resource. More complex applications, built on multiple processes or components, may require multiple resources.

When you register an application as a resource in Oracle Clusterware, you define how Oracle Clusterware manages the application using resource attributes you ascribe to the resource. The frequency with which the resource is checked and the number of attempts to restart a resource on the same server after a failure before attempting to start it on another server (failover) are examples of resource attributes. The registration information also includes a path to an action script or application-specific action program that Oracle Clusterware calls to start, stop, check, and clean up the application.

An action script is a shell script (a batch script in Windows) that a generic script agent provided by Oracle Clusterware calls. An application-specific agent is usually a C or C++ program that calls Oracle Clusterware-provided APIs directly.

Oracle Clusterware 11g release 2 (11.2) uses agent programs (agents) to manage resources and includes the following built-in agents so that you can use scripts to protect an application:

- **scriptagent**: Use this agent (scriptagent.exe in Windows) to use shell or batch scripts to protect an application. Both the cluster_resource and local_resource resource types are configured to use this agent, and any resources of these types automatically take advantage of this agent.

- **appagent**: This agent (appagent.exe in Windows) automatically protects any resources of the application resource type used in previous versions of Oracle Clusterware. You are not required to configure anything to take advantage of the agent. It invokes action scripts in the manner done with previous versions of Oracle Clusterware and should only be used for the application resource type.

Note: Oracle recommends that you use scriptagent for all resources of types other than application. Oracle provides the application agent for backward compatibility with the deprecated application resource type.

By default, all resources not of the application resource type, use the script agent, unless you override this behavior by creating a new resource type and specifying a different agent as part of the resource type specification (using the AGENT_FILENAME attribute).

Additionally, you can create your own agents to manage your resources in any manner you want.

See Also: "Resource Types" on page 6-3 for more information about resource types and "Building an Agent" on page 6-7 for more information about building custom agents
Resource Types

Generally, all resources are unique but some resources may have common attributes. Oracle Clusterware uses resource types to organize these similar resources. Benefits that resource types provide are:

- Manage only necessary resource attributes
- Manage all resources based on the resource type

Every resource that you register in Oracle Clusterware must have a certain resource type. In addition to the resource types included in Oracle Clusterware, you can define custom resource types using the Oracle Clusterware Control (CRSCTL) utility. The included resource types are:

- **Local resource**: Instances of local resources—type name is `local_<resource>”—run on each server of the cluster. When a server joins the cluster, Oracle Clusterware automatically extends local resources to have instances tied to the new server. When a server leaves the cluster, Oracle Clusterware automatically sheds the instances of local resources that ran on the departing server. Instances of local resources are pinned to their servers; they do not fail over from one server to another.

- **Cluster resource**: Cluster-aware resource types—type name is `cluster_<resource>”—are aware of the cluster environment and are subject to cardinality and cross-server switchover and failover.

See Also:

- Appendix E, "CRSCTL Utility Reference" for more information about using CRSCTL to add resource types
- "Resource States" on page 6-9 for more information about resource state

Note: Previous versions of Oracle Clusterware only supported the `application` resource type. This resource type still exists, but only for backward compatibility. Oracle recommends that you register application-type resources using the `cluster_resource` resource type in Oracle Clusterware 11g release 2 (11.2). If you decide not to register your application-type resources using the `cluster_resource` resource type, then consult the documentation that corresponds to those applications for administration information.

Agents

Oracle Clusterware manages applications when they are registered as resources with Oracle Clusterware. Oracle Clusterware has access to application-specific primitives that have the ability to start, stop, and monitor a specific resource. Oracle Clusterware runs all resource-specific commands through an entity called an `agent`.

An agent is a process that contains the agent framework and user code to manage resources. The `agent framework` is a library that enables you to plug in your application-specific code to manage customized applications. You program all of the actual application management functions, such as starting, stopping and checking the health of an application, into the agent. These functions are referred to as `entry points`.

The agent framework is responsible for invoking these entry point functions on behalf of Oracle Clusterware. Agent developers can use these entry points to plug in the
required functionality for a specific resource regarding how to start, stop, and monitor a resource. Agents are capable of managing multiple resources.

Agent developers can set the following entry points as callbacks to their code:

- **START**: The START entry point acts to bring a resource online. The agent framework calls this entry point whenever it receives the start command from Oracle Clusterware.

- **STOP**: The STOP entry point acts to gracefully bring down a resource. The agent framework calls this entry point whenever it receives the stop command from Oracle Clusterware.

- **CHECK**: The CHECK (monitor) entry point acts to monitor the health of a resource. The agent framework periodically calls this entry point. If it notices any state change during this action, then the agent framework notifies Oracle Clusterware about the change in the state of the specific resource.

- **CLEAN**: The CLEAN entry point acts whenever there is a need to clean up a resource. It is a non-graceful operation that is invoked when users must forcefully terminate a resource. This command cleans up the resource-specific environment so that the resource can be restarted.

- **ABORT**: If any of the other entry points hang, the agent framework calls the ABORT entry point to abort the ongoing action. If the agent developer does not supply an abort function, then the agent framework exits the agent program.

START, STOP, CHECK, and CLEAN are mandatory entry points and the agent developer must provide these entry points when building an agent. Agent developers have several options to implement these entry points, including using C, C++, or scripts. It is also possible to develop agents that use both C or C++ and script-type entry points. When initializing the agent framework, if any of the mandatory entry points are not provided, then the agent framework invokes a script pointed to by the ACTION_SCRIPT resource attribute.

See Also: "ACTION_SCRIPT" on page B-4 for information about this resource attribute.

At any given time, the agent framework invokes only one entry point per application. If that entry point hangs, then the agent framework calls the ABORT entry point to abort the current operation. The agent framework periodically invokes the CHECK entry point to determine the state of the resource. This entry point must return one of the following states as the resource state:

- **CLSAGFW_ONLINE**: The CHECK entry point returns ONLINE if the resource was brought up successfully and is currently in a functioning state. The agent framework continues to monitor the resource when it is in this state. This state has a numeric value of 0 for the scriptagent.

- **CLSAGFW_UNPLANNED_OFFLINE/CLSAGFW_PLANNED_OFFLINE**: The OFFLINE state indicates that the resource is not currently running. These two states have numeric values of 1 and 2, respectively, for the scriptagent.

Two distinct categories exist to describe an resource’s offline state: planned and unplanned.

When the state of the resource transitions to OFFLINE through Oracle Clusterware, then it is assumed that the intent for this resource is to be offline (TARGET=OFFLINE), regardless of which value is returned from the CHECK entry point. However, when an agent detects that the state of a resource has changed independent of Oracle Clusterware (such as somebody stopping the resource...
through a non-Oracle interface), then the intent must be carried over from the agent to the Cluster Ready Services daemon (crsd). The intent then becomes the determining factor for the following:

- Whether to keep or to change the value of the resource’s TARGET resource attribute. PLANNED_OFFLINE indicates that the TARGET resource attribute must be changed to OFFLINE only if the resource was running before. If the resource was not running (STATE=OFFLINE, TARGET=OFFLINE) and a request comes in to start it, then the value of the TARGET resource attribute changes to ONLINE. The start request then goes to the agent and the agent reports back to Oracle Clusterware a PLANNED_OFFLINE resource state, and the value of the TARGET resource attribute remains ONLINE. UNPLANNED_OFFLINE does not change the TARGET attribute.

- Whether to leave the resource’s state as UNPLANNED_OFFLINE or attempt to recover the resource by restarting it locally or failing it over to another server in the cluster. The PLANNED_OFFLINE state makes crsd leave the resource as is, whereas the UNPLANNED_OFFLINE state prompts resource recovery.

- **CLSAGFW_UNKNOWN**: The CHECK entry point returns UNKNOWN if the current state of the resource cannot be determined. In response to this state, Oracle Clusterware does not attempt to failover or to restart the resource. The agent framework continues to monitor the resource if the previous state of the resource was either ONLINE or PARTIAL. This state has a numeric value of 3 for the scriptagent.

- **CLSAGFW_PARTIAL**: The CHECK entry point returns PARTIAL when it knows that a resource is partially ONLINE and some of its services are available. Oracle Clusterware considers this state as partially ONLINE and does not attempt to failover or to restart the resource. The agent framework continues to monitor the resource in this state. This state has a numeric value of 4 for the scriptagent.

- **CLSAGFW_FAILED**: The CHECK entry point returns FAILED whenever it detects that a resource is not in a functioning state and some of its components have failed and some clean up is required to restart the resource. In response to this state, Oracle Clusterware calls the CLEAN action to clean up the resource. After the CLEAN action finishes, the state of the resource is expected to be OFFLINE. Next, depending on the policy of the resource, Oracle Clusterware may attempt to failover or restart the resource. Under no circumstances does the agent framework monitor failed resources. This state has a numeric value of 5 for the scriptagent.

The agent framework implicitly monitors resources in the states listed in Table 6–1 at regular intervals, as specified by the CHECK_INTERVAL or OFFLINE_CHECK_INTERVAL resource attributes.

See Also: "CHECK_INTERVAL" on page B-5 and "OFFLINE_CHECK_INTERVAL" on page B-7 for more information about these resource attributes

<table>
<thead>
<tr>
<th>Table 6–1 Agent Framework Monitoring Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
</tr>
<tr>
<td>ONLINE</td>
</tr>
<tr>
<td>PARTIAL</td>
</tr>
</tbody>
</table>
Whenever an agent starts, the state of all the resources it monitors is set to UNKNOWN. After receiving an initial probe request from Oracle Clusterware, the agent framework executes the CHECK entry point for all of the resources to determine their current states.

Once the CHECK action successfully completes for a resource, the state of the resource transitions to one of the previously mentioned states. The agent framework then starts resources based on commands issued from Oracle Clusterware. After the completion of every action, the agent framework invokes the CHECK action to determine the current resource state. If the resource is in one of the monitored states listed in Table 6–1, then the agent framework periodically executes the CHECK entry point to check for changes in resource state.

By default, the agent framework does not monitor resources that are offline. However, if the value of the OFFLINE_CHECK_INTERVAL attribute is greater than 0, then the agent framework monitors offline resources.

Action Scripts

An action script defines one or more actions to start, stop, check, or clean resources. The agent framework invokes these actions in the absence of the C/C++ actions. Using action scripts, you can build an agent that contains the C/C++ entry points, as well as the script entry points. If all of the actions are defined in the action script, then you can use the script agent to invoke the actions defined in any action scripts.

Before invoking the action defined in the action script, the agent framework exports all the necessary attributes from the resource profile to the environment. Action scripts can log messages to the stdout/stderr, and the agent framework prints those messages in the agent logs. However, action scripts can use special tags to send the progress, warning, or error messages to the crs* client tools by prefixing one of the following tags to the messages printed to stdout/stderr:

- `CRS_WARNING`
- `CRS_ERROR`
- `CRS_PROGRESS`

The agent framework strips out the prefixed tag when it sends the final message to the crs* clients.

Resource attributes can be accessed from within an action script as environment variables prefixed with `_CRS_`. For example, the START_TIMEOUT attribute becomes an environment variable named `_CRS_START_TIMEOUT`.

<table>
<thead>
<tr>
<th>State</th>
<th>Condition</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFLINE</td>
<td>Only if the value of the OFFLINE_CHECK_INTERVAL resource attribute is greater than 0.</td>
<td>OFFLINE_CHECK_INTERVAL</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>Only monitored if the resource was previously being monitored as a result of any one of the previously mentioned conditions.</td>
<td>Whatever the value of either the CHECK_INTERVAL or OFFLINE_CHECK_INTERVAL attributes.</td>
</tr>
</tbody>
</table>
Building an Agent

Building an agent for a specific application involves the following steps:

1. Implement the agent framework entry points either in scripts, C, or C++.
2. Build the agent executable (for C and C++ agents).
3. Collect all the parameters needed by the entry points and define a new resource type. Set the `AGENT_FILENAME` attribute to the absolute path of the newly built executable.

Registering a Resource in Oracle Clusterware

Register resources in Oracle Clusterware 11g release 2 (11.2) using the `crsctl add resource` command.

To register an application as a resource:

```
$ crsctl add resource resource_name -type resource_type [-file file_path] | [-attr 'attribute_name='attribute_value', attribute_name='attribute_value', ...']
```

Choose a name for the resource based on the application for which it is being created. For example, if you create a resource for an Apache Web server, then you might name the resource `myApache`.

The name of the resource type follows the `-type` option. You can specify resource attributes in either a text file specified with the `-file` option or in a comma-delimited list of resource attribute-value pairs enclosed in double quotation marks (`""`) following the `-attr` option. You must enclose space- or comma-delimited attribute names and values enclosed in parentheses in single quotation marks (`' '`).

The following is an example of an attribute file:

```
PLACEMENT=favored
HOSTING_MEMBERS=node1 node2 node3
RESTART_ATTEMPTS@CARDINALITYID(1)=0
RESTART_ATTEMPTS@CARDINALITYID(2)=0
FAILURE_THRESHOLD@CARDINALITYID(1)=2
FAILURE_THRESHOLD@CARDINALITYID(2)=4
FAILURE_INTERVAL@CARDINALITYID(1)=300
FAILURE_INTERVAL@CARDINALITYID(2)=500
CHECK_INTERVAL=2
CARDINALITY=2
```

The following is an example of using the `-attr` option:
Overview of Using Oracle Clusterware to Enable High Availability

Oracle Clusterware manages resources based on how you configure them to increase their availability. You can configure your resources so that Oracle Clusterware:

- Starts resources during cluster or server start
- Restarts resources when failures occur
- Relocates resources to other servers, if the servers are available

To manage your applications with Oracle Clusterware:

1. Create an action script or use an existing agent.
2. Register your applications as resources with Oracle Clusterware.
 - If a single application requires that you register multiple resources, you may be required to define relevant dependencies between the resources.
3. Assign the appropriate privileges to the resource.
4. Start or stop your resources.

When a resource fails, Oracle Clusterware attempts to restart the resource based on attribute values that you provide when you register an application or process as a resource. If a server in a cluster fails, then you can configure your resources so that processes that were assigned to run on the failed server restart on another server.

Based on various resource attributes, Oracle Clusterware supports a variety of configurable scenarios.

When you register a resource in Oracle Clusterware, the relevant information about the application and the resource-relevant information, is stored in the Oracle Cluster Registry (OCR). This information includes:

- **Path to the action script or application-specific agent**: This is the absolute path to the script or application-specific agent that defines the start, stop, check, and clean actions that Oracle Clusterware performs on the application.

 See Also: "Agents" on page 6-3 for more information about these actions

- **Privileges**: Oracle Clusterware has the necessary privileges to control all of the components of your application for high availability operations, including the right to start processes that are owned by other user identities. Oracle Clusterware must run as a privileged user to control applications with the correct start and stop processes.

```bash
$ crsctl add resource resource_name -type resource_type [-attr "PLACEMENT='favored', HOSTING_MEMBERS='node1 node2 node3', ..."]
```

See Also:

- "Adding User-defined Resources" on page 6-18 for examples of using the `crsctl add resource` command
- "crsctl add resource" on page E-8 for more information about using the `crsctl add resource` command
- "Resource Attributes" on page B-2 for more information about resource attributes
Resource Dependencies: You can create relationships among resources that imply an operational ordering or that affect the placement of resources on servers in the cluster. For example, Oracle Clusterware can only start a resource that has a hard start dependency on another resource if the other resource is running. Oracle Clusterware prevents stopping a resource if other resources that depend on it are running. However, you can force a resource to stop using the `crsctl stop resource -f` command, which first stops all resources that depend on the resource being stopped.

This section includes the following topics:

- Resource Attributes
- Resource States
- Resource Dependencies
- Resource Placement

Resource Attributes

Resource attributes define how Oracle Clusterware manages resources of a specific resource type. Each resource type has a unique set of attributes. Some resource attributes are specified when you register resources, while others are internally managed by Oracle Clusterware.

Note: Where you can define new resource attributes, you can only use US-7 ASCII characters.

See Also: Appendix B, "Oracle Clusterware Resource Reference" for complete details of resource attributes

Resource States

Every resource in a cluster is in a particular state at any time. Certain actions or events can cause that state to change.

Table 6–2 lists and describes the possible resource states.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONLINE</td>
<td>The resource is running.</td>
</tr>
<tr>
<td>OFFLINE</td>
<td>The resource is not running.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>An attempt to stop the resource has failed. Oracle Clusterware does not actively monitor resources that are in this state. You must perform an application-specific action to ensure that the resource is offline, such as stop a process, and then run the <code>crsctl stop resource</code> command to reset the state of the resource to OFFLINE.</td>
</tr>
</tbody>
</table>
You can configure resources to be dependent on other resources, so that the dependent resources can only start or stop when certain conditions of the resources on which they depend are met. For example, when Oracle Clusterware attempts to start a resource, it is necessary for any resources on which the initial resource depends to be running and in the same location. If Oracle Clusterware cannot bring the resources online, then the initial (dependent) resource cannot be brought online, either. If Oracle Clusterware stops a resource or a resource fails, then any dependent resource is also stopped.

Some resources require more time to start than others. Some resources must start whenever a server starts, while other resources require a manual start action. These and many other examples of resource-specific behavior imply that each resource must be described in terms of how it is expected to behave and how it relates to other resources (resource dependencies).

You can configure resources so that they depend on Oracle resources. When creating resources, however, do not use an ora prefix in the resource name. This prefix is reserved for Oracle use only.

Previous versions of Oracle Clusterware included only two dependency specifications: the REQUIRED_RESOURCES resource attribute and the OPTIONAL_RESOURCES
resource attribute. The REQUIRED_RESOURCES resource attribute applied to both start and stop resource dependencies.

Note: The REQUIRED_RESOURCES and OPTIONAL_RESOURCES resource attributes are still available only for resources of application type. Their use to define resource dependencies in Oracle Clusterware 11g release 2 (11.2) is deprecated.

In Oracle Clusterware 11g release 2 (11.2) resource dependencies are separated into start and stop categories. This separation improves and expands the start and stop dependencies between resources and resource types.

This section includes the following topics:

- Start Dependencies
- Stop Dependencies

Start Dependencies

Oracle Clusterware considers start dependencies contained in the profile of a resource when the start effort evaluation for that resource begins. You specify start dependencies for resources using the START_DEPENDENCIES resource attribute. You can use modifiers on each dependency to further configure the dependency.

See Also: "START_DEPENDENCIES" on page B-9 for more information about the resource attribute, modifiers, and usage.

This section includes descriptions of the following START dependencies:

- **hard**
- **weak**
- **attraction**
- **pullup**
- **dispersion**

hard

Define a hard start dependency for a resource if another resource must be running before the dependent resource can start. For example, if resource A has a hard start dependency on resource B, then resource B must be running before resource A can start.

Note: Oracle recommends that resources with hard start dependencies also have pullup start dependencies.

You can configure the hard start dependency with the following constraints:

- **START_DEPENDENCIES=hard(global:resourceB)**

By default, resources A and B must be located on the same server (co-located). Use the global modifier to specify that resources need not be co-located. For example, if resource A has a hard(global:resourceB) start dependency on resource B, then, if resource B is running on any node in the cluster, resource A can start.
■ START_DEPENDENCIES=hard(intermediate:resourceB)

Use the intermediate modifier to specify that the dependent resource can start if a resource on which it depends is in either the ONLINE or INTERMEDIATE state.

■ START_DEPENDENCIES=hard(type:resourceB.type)

Use the type modifier to specify whether the hard start dependency acts on a particular resource or a resource type. For example, if you specify that resource A has a hard start dependency on the resourceB.type type, then if any resource of the resourceB.type type is running, resource A can start.

You can combine modifiers and specify multiple resources in the START_DEPENDENCIES resource attribute.

Note: Separate modifier clauses with commas. The type modifier clause must always be the last modifier clause in the list and the type modifier must always directly precede the type.

weak

If resource A has a weak start dependency on resource B, then an attempt to start resource A attempts to start resource B, if resource B is not running. The result of the attempt to start resource B is, however, of no consequence to the result of starting resource A.

You can configure the weak start dependency with the following constraints:

■ START_DEPENDENCIES=weak(global:resourceB)

By default, resources A and B must be co-located. Use the global modifier to specify that resources need not be co-located. For example, if resource A has a weak(global:resourceB) start dependency on resource B, then, if resource B is running on any node in the cluster, resource A can start.

■ START_DEPENDENCIES=weak(concurrent:resourceB)

Use the concurrent modifier to specify that resource A and resource B can start concurrently, instead of waiting for resource B to start, first.

■ START_DEPENDENCIES=weak(type:resourceB.type)

Use the type modifier to specify that the dependency acts on a resource of a particular resource type, such as resourceB.type.

attraction

If resource A has an attraction dependency on resource B, then Oracle Clusterware prefers to place resource A on servers hosting resource B. Dependent resources, such as resource A in this case, are more likely to run on servers on which resources to which they have attraction dependencies are running. Oracle Clusterware places dependent resources on servers with resources to which they are attracted.

You can configure the attraction start dependency with the following constraints:

■ START_DEPENDENCIES=attraction(intermediate:resourceB)

Use the intermediate modifier to specify whether the resource is attracted to resources that are in the INTERMEDIATE state.
START_DEPENDENCIES=attraction(type:resourceB.type)

Use the type modifier to specify whether the dependency acts on a particular resource type. The dependent resource is attracted to the server hosting the greatest number of resources of a particular type.

Note: Previous versions of Oracle Clusterware used the now deprecated OPTIONAL_RESOURCES attribute to express attraction dependency.

pullup

Use the pullup start dependency if resource A must automatically start whenever resource B starts. This dependency only affects resource A if it is not running. As is the case for other dependencies, pullup may cause the dependent resource to start on any server. Use the pullup dependency whenever there is a hard stop dependency, so that if resource A depends on resource B and resource B fails and then recovers, then resource A is restarted.

Note: Oracle recommends that resources with hard start dependencies also have pullup start dependencies.

You can configure the pullup start dependency with the following constraints:

- **START_DEPENDENCIES=pullup(intermediate:resourceB)**

 Use the intermediate modifier to specify whether resource B can be either in the ONLINE or INTERMEDIATE state to start resource A.

 If resource A has a pullup dependency on multiple resources, then resource A starts only when all resources upon which it depends, start.

- **START_DEPENDENCIES=pullup:always(resourceB)**

 Use the always modifier to specify whether Oracle Clusterware starts resource A despite the value of its TARGET attribute, whether it is ONLINE or OFFLINE. By default, without using the always modifier, pullup only starts resources if the value of the TARGET attribute of the dependent resource is ONLINE.

- **START_DEPENDENCIES=pullup(type:resourceB.type)**

 Use the type modifier to specify that the dependency acts on a particular resource type.

dispersion

If you specify the dispersion start dependency for a resource, then Oracle Clusterware starts this resource on a server that has the fewest number of resources to which this resource has dispersion. Resources with dispersion may still end up running on the same server if there are not enough servers to disperse them to.

You can configure the dispersion start dependency with the following modifiers:

- **START_DEPENDENCIES=dispersion(intermediate:resourceB)**

 Use the intermediate modifier to specify that Oracle Clusterware disperses resource A whether resource B is either in the ONLINE or INTERMEDIATE state.

- **START_DEPENDENCIES=dispersion:active(resourceB)**

Typically, dispersion is only applied when starting resources. If at the time of starting, resources that disperse each other start on the same server (because there are not enough servers at the time the resources start), then Oracle Clusterware leaves the resources alone once they are running, even when more servers join the cluster. If you specify the active modifier, then Oracle Clusterware reapsplies dispersion on resources later when new servers join the cluster.

Stop Dependencies

Oracle Clusterware considers stop dependencies between resources whenever a resource is stopped (the resource state changes from ONLINE to any other state).

hard

If resource A has a hard stop dependency on resource B, then resource A must be stopped when B stops running. The two resources may attempt to start or relocate to another server, depending upon how they are configured. Oracle recommends that resources with hard stop dependencies also have hard start dependencies.

You can configure the hard stop dependency with the following modifiers:

- **STOP_DEPENDENCIES=hard(intermedite:resourceB)**

 Use the intermediate modifier to specify whether resource B must be in either the ONLINE or INTERMEDIATE state for resource A to stay online.

- **STOP_DEPENDENCIES=hard(global:resourceB)**

 Use the global modifier to specify whether resource A requires that resource B be present on the same server or on any server in the cluster to remain online. If this constraint is not specified, then resources A and B must be running on the same server. Oracle Clusterware stops resource A when that condition is no longer met.

- **STOP_DEPENDENCIES=hard(shutdown:resourceB)**

 Use the shutdown modifier to stop the resource only when you shut down the Oracle Clusterware stack using either the crsctl stop crs or crsctl stop cluster commands.

See Also: "STOP_DEPENDENCIES" on page B-11 for more information about modifiers

Affect of Resource Dependencies on Resource State Recovery

When a resource goes from a running to a non-running state, while the intent to have it running remains unchanged, this transition is called a resource failure. At this point, Oracle Clusterware applies a resource state recovery procedure that may try to restart the resource locally, relocate it to another server, or just stop the dependent resources, depending on the high availability policy for resources and the state of entities at the time.

When two or more resources depend on each other, a failure of one of them may end up causing the other to fail, as well. In most cases, it is difficult to control or even predict the order in which these failures are detected. For example, even if resource A depends on resource B, Oracle Clusterware may detect the failure of resource B after the failure of resource A.

This lack of failure order predictability can cause Oracle Clusterware to attempt to restart dependent resources in parallel, which, ultimately, leads to the failure to restart some resources, because the resources upon which they depend are being restarted out of order.
In this case, Oracle Clusterware reattempts to restart the dependent resources locally if either or both the hard stop and pullup dependencies are used. For example, if resource A has either a hard stop dependency or pullup dependency, or both, on resource B, and resource A fails because resource B failed, then Oracle Clusterware may end up trying to restart both resources at the same time. If the attempt to restart resource A fails, then as soon as resource B successfully restarts, Oracle Clusterware reattempts to restart resource A.

Resource Placement

As part of the start effort evaluation, the first decision that Oracle Clusterware must make is where to start (or place) the resource. Making such a decision is easy when the caller specifies the target server by name. If a target server is not specified, however, then Oracle Clusterware attempts to locate the best possible server for placement given the resource’s configuration and the current state of the cluster.

Oracle Clusterware considers a resource’s placement policy first and filters out servers that do not fit with that policy. Oracle Clusterware sorts the remaining servers in a particular order depending on the value of the PLACEMENT resource attribute of the resource.

See Also: "Application Placement Policies" on page 6-22 for more information about the PLACEMENT resource attribute

The result of this consideration is a maximum of two lists of candidate servers on which Oracle Clusterware can start the resource. One list contains preferred servers and the other contains possible servers. The list of preferred servers will be empty if the value of the PLACEMENT resource attribute for the resource is set to balanced or restricted. The placement policy of the resource determines on which server the resource wants to run. Oracle Clusterware considers preferred servers over possible servers, if there are servers in the preferred list.

Oracle Clusterware then considers the resource’s dependencies to determine where to place the resource, if any exist. The attraction and dispersion start dependencies affect the resource placement decision, as do some of the dependency modifiers. Oracle Clusterware applies these placement hints to further order the servers in the two previously mentioned lists. Note that Oracle Clusterware processes each list of servers independently, so that the effect of the resource’s placement policy is not confused by that of dependencies.

Finally, Oracle Clusterware chooses the first server from the list of preferred servers, if any servers are listed. If there are no servers on the list of preferred servers, then Oracle Clusterware chooses the first server from the list of possible servers, if any servers are listed. When no servers exist in either list, Oracle Clusterware generates a resource placement error.

Note: Neither the placement policies nor the dependencies of the resources related to the resource Oracle Clusterware is attempting to start affect the placement decision.

Registering an Application as a Resource

This section presents examples of the procedures for registering an application as a resource in Oracle Clusterware. The procedures instruct you how to add an Apache Web server as a resource to Oracle Clusterware.
The examples in this section assume that the Oracle Clusterware administrator has full administrative privileges over Oracle Clusterware and the user or group that owns the application that Oracle Clusterware is going to manage. Once the registration process is complete, Oracle Clusterware can start any application on behalf of any operating system user.

Oracle Clusterware distinguishes between an owner of a registered resource and a user. The owner of a resource is the operating system user under which the agent runs. The ACL resource attribute of the resource defines permissions for the users and the owner. Only root can modify any resource.

See Also: "Role-Separated Management" on page 2-10

Notes:

- Oracle Clusterware commands prefixed with crs_ are deprecated with this release. CRSCTL commands replace those commands. See Appendix E, "CRSCTL Utility Reference" for a list of CRSCTL commands and their corresponding crs_ commands.
- Do not use CRSCTL commands on any resources that have names prefixed with ora (because these are Oracle resources), unless My Oracle Support directs you to do so.

To configure Oracle resources, use the server control utility, SRVCTL, which provides you with all configurable options.

This section includes the following topics:

- Creating an Application VIP Managed by Oracle Clusterware
- Adding User-defined Resources
- Adding Resources Using Oracle Enterprise Manager
- Changing Resource Permissions
- Application Placement Policies
- Unregistering Applications and Application Resources

Creating an Application VIP Managed by Oracle Clusterware

If clients of an application access the application through a network, and the placement policy for the application allows it to fail over to another node, then you must register a virtual internet protocol address (VIP) on which the application depends. An application VIP is a cluster resource that Oracle Clusterware manages (Oracle Clusterware provides a standard VIP agent for application VIPs). You should base any new application VIPs on this VIP type to ensure that your system experiences consistent behavior among all of the VIPs that you deploy in your cluster.

While you can add a VIP in the same way that you can add any other resource that Oracle Clusterware manages, Oracle recommends using the script Grid_home/bin/appvipcfg to create or delete an application VIP.

To create an application VIP, use the following syntax:

appvipcfg create -network=network_number -ip=ip_address -vipname=vip_name
-user=user_name [-group=group_name] [-failback=0 | 1]
To delete an application VIP, use the following syntax:

```bash
appvipcfg delete -vipname=vip_name
```

Where `network_number` is the number of the network, `ip_address` is the IP address, `vip_name` is the name of the VIP, `user_name` is the name of the user who installed Oracle Database, and `group_name` is the name of the group. The default value of the `-failback` option is 0. If you set the option to 1, then the VIP (and therefore any resources that depend on VIP) fails back to the original node when it becomes available again.

For example, as `root`, run the following command:

```bash
# Grid_home/bin/appvipcfg create -network=1 -ip=148.87.58.196 -vipname=appsVIP -user=root
```

The script only requires a network number (default is 1), the IP address, and a name for the VIP resource, as well as the user that owns the application VIP resource. A VIP resource is typically owned by `root` because VIP related operations require root privileges.

To delete an application VIP, use the same script with the `delete` option. This option accepts the VIP name as a parameter. For example:

```bash
# Grid_home/bin/appvipcfg delete -vipname=appsVIP
```

After you have created the application VIP using this configuration script, you can view the VIP profile using the following command:

```bash
Grid_home/bin/crsctl status res appsVIP -p
```

Verify and, if required, modify the following parameters using the `Grid_home/bin/crsctl modify res` command.

See Also:
Appendix B, "Oracle Clusterware Resource Reference" for detailed information about using CRSCTL commands

The `appvipcfg` script assumes that the default `ora.vip` network resource (`ora.net1.network`) is used as the default. In addition, it also assumes that a default `app.appvip_net1.type` is used for those purposes.

As the Oracle Database installation owner, start the VIP resource:

```
$ crsctl start resource appsVIP
```

Adding an Application VIP with Oracle Enterprise Manager

To add an application VIP with Oracle Enterprise Manager:

1. Log into Oracle Enterprise Manager Database Control.
2. Click the Cluster tab.
3. Click Administration.
4. Click Manage Resources.
5. Enter a cluster administrator user name and password to display the Manage Resources page.
6. Click Add Application VIP.
7. Enter a name for the VIP in the Name field.
8. Enter a network number in the Network Number field.
9. Enter an IP address for the VIP in the **Internet Protocol Address** field.

10. Enter `root` in the **Primary User** field. Oracle Enterprise Manager defaults to whatever user name you are logged in as.

11. Select **Start the resource after creation** if you want the VIP to start immediately.

12. Click **Continue** to display the Confirmation: Add VIP Resource page.

13. Enter `root` and the root password as the cluster credentials.

14. Click **Continue** to create the application VIP.

Adding User-defined Resources

You can add resources to Oracle Clusterware at any time. However, if you add a resource that is dependent on another resource, then you must first add the resource upon which it is dependent.

In the examples in this section, assume that an action script, `myApache.scr`, resides in the `/opt/cluster/scripts` directory on each node to facilitate adding the resource to the cluster. It is also assumed that a server pool has been created to host an application. This server pool is not a sub-pool of Generic, but instead it is used to host the application in a top-level server pool.

See Also: "Examples of Action Scripts for Third-Party Applications" on page B-16 to see an example of an action script

Note: Oracle recommends that you use shared storage, such as Oracle Automatic Storage Management Cluster File System (Oracle ACFS), to store action scripts to decrease script maintenance.

This section includes the following topics:

- Deciding on a Deployment Scheme
- Adding a Resource to a Specified Server Pool
- Adding a Resource Using a Server-Specific Deployment

Deciding on a Deployment Scheme

You must decide whether to use administrator or policy management for the application. Use administrator management for smaller, two-node configurations, where your cluster configuration is not likely to change. Use policy management for more dynamic configurations when your cluster consists of more than two nodes. For example, if a resource only runs on node 1 and node 2 because only those nodes have the necessary files, then administrator management is probably more appropriate.

Oracle Clusterware supports the deployment of applications in access-controlled server pools made up of anonymous servers and strictly based on the desired pool size. Cluster policies defined by the administrator can and must be used in this case to govern the server assignment with desired sizes and levels of importance. Alternatively, a strict or preferred server assignment can be used, in which resources run on specifically named servers. This represents the pre-existing model available in earlier releases of Oracle Clusterware now known as administrator management.

Conceptually, a cluster hosting applications developed and deployed in both of the deployment schemes can be viewed as two logically separated groups of servers. One server group is used for server pools, enabling role separation and server capacity...
control. The other server group assumes a fixed assignment based on named servers in the cluster.

To manage an application using either deployment scheme, you must create a server pool before adding the resource to the cluster. A built-in server pool named *Generic* always owns the servers used by applications of administrator-based management. The Generic server pool is a logical division and can be used to separate the two parts of the cluster using different management schemes.

For third party developers to use the model to deploy applications, server pools must be used. To take advantage of the pre-existing application development and deployment model based on named servers, sub-pools of Generic (server pools that have Generic as their parent pool, defined by the server pool attribute `PARENT_POOLS`) must be used. By creating sub-pools that use Generic as their parent and enumerating servers by name in the sub-pool definitions, applications ensure that named servers are in Generic and are used exclusively for applications using the named servers model.

Adding a Resource to a Specified Server Pool

To add the Apache Web server to a specific server pool as a resource using the policy-based deployment scheme, run the following command as the user that is supposed to run the Apache Server. For an Apache Server this is typically the `root` user:

```bash
$ crsctl add resource myApache -type cluster_resource -attr "ACTION_SCRIPT=/opt/cluster/scripts/myapache.scr, PLACEMENT=restricted, SERVER_POOLS=server_pool_list, CHECK_INTERVAL=30, RESTART_ATTEMPTS=2, START_DEPENDENCIES=hard(appsvip), STOP_DEPENDENCIES=hard(appsvip)"
```

See Also: ["Examples of Action Scripts for Third-Party Applications"](on page B-16)

In the preceding example, *myApache* is the name of the resource added to the cluster.

Note: A resource name cannot begin with a period nor with the character string "ora".

Notice that attribute values are enclosed in single quotation marks ('). Configure the resource as follows:

- The resource is a `cluster_resource` type.
- `ACTION_SCRIPT=/opt/cluster/scripts/myapache.scr`: The path to the required action script.
- `PLACEMENT=restricted`

See Also: ["Application Placement Policies"](on page 6-22) for more information about the `PLACEMENT` resource attribute

- `SERVER_POOLS=server_pool_list`: This resource can only run in the server pools specified in a space-separated list.
- `CHECK_INTERVAL=30`: Oracle Clusterware checks this resource every 30 seconds to determine its status.
- `RESTART_ATTEMPTS=2`: Oracle Clusterware attempts to restart this resource twice before failing it over to another node.
Registering an Application as a Resource

- **START_DEPENDENCIES=hard(appsvip)**: This resource has a hard START dependency on the appsvip resource. The appsvip resource must be online in order for myApache to start.

- **STOP_DEPENDENCIES=hard(appsvip)**: This resource has a hard STOP dependency on the appsvip resource. The myApache resource stops if the appsvip resource goes offline.

Adding a Resource Using a Server-Specific Deployment

To add the Apache Web server as a resource that uses a named server deployment, it is assumed that the resource is added to a server pool that is by definition a sub-pool of the Generic server pool. Server pools that represent sub-pools of Generic are created using the `crsctl add serverpool` command. These server pools define the Generic server pool as their parent in the server pool attribute `PARENT_POOLS`. In addition, they include a list of server names in the `SERVER_NAMES` parameter to specify the servers that should be assigned to the respective pool. For example:

```bash
$ crsctl add serverpool myApache_sp -attr "PARENT_POOLS=Generic, SERVER_NAMES=host36 host37"
```

Once this sub-pool has been created, you can add the resource, as in the previous example:

```bash
$ crsctl add resource myApache -type cluster_resource
-attr "ACTION_SCRIPT=/opt/cluster/scripts/myapache.scr, PLACEMENT='restricted', SERVER_POOLS=myApache_sp, CHECK_INTERVAL='30', RESTART_ATTEMPTS='2', START_DEPENDENCIES='hard(appsvip)', STOP_DEPENDENCIES='hard(appsvip)"
```

Note: A resource name cannot begin with a period nor with the character string "ora".

In addition, note that when adding a resource using a server-specific deployment, the server pools listed in the `SERVER_POOLS` resource parameter must be sub-pools under Generic.

See Also: "Policy-Based Cluster and Capacity Management" on page 2-1

Adding Resources Using Oracle Enterprise Manager

To add resources to Oracle Clusterware using Oracle Enterprise Manager:

1. Log into Oracle Enterprise Manager Database Control.
2. Click the Cluster tab.
3. Click Administration.
4. Click Add Resource.
5. Enter a cluster administrator user name and password to display the Add Resource page.
6. Enter a name for the resource in the Name field.

Note: A resource name cannot begin with a period nor with the character string "ora".
7. Choose either `cluster_resource` or `local_resource` from the Resource Type drop down.
8. Optionally, enter a description of the resource in the Description field.
9. Select Start the resource after creation if you want the resource to start immediately.
10. The optional parameters in the Placement section define where in a cluster Oracle Clusterware places the resource.

 See Also: "Application Placement Policies" on page 6-22 for more information about placement

 The attributes in this section correspond to the attributes described in Appendix B, "Oracle Clusterware Resource Reference".

11. In the Action Program section, choose from the Action Program drop down whether Oracle Clusterware calls an action script, an agent file, or both to manage the resource.

 You must also specify a path to the script, file, or both, depending on what you select from the drop down.

 If you choose Action Script, then you can click Create New Action Script to use the Oracle Enterprise Manager action script template to create an action script for your resource, if you have not yet done so.

12. To further configure the resource, click Attributes. On this page, you can configure start, stop, and status attributes, and offline monitoring and any attributes that you define.

13. Click Advanced Settings to enable more detailed resource attribute configurations.

14. Click Dependencies to configure start and stop dependencies between resources.

 See Also: "Resource Dependencies" on page 6-10 for more information about dependencies

15. Click Submit when you finish configuring the resource.

Changing Resource Permissions

Oracle Clusterware manages resources based on the permissions of the user who added the resource. The user who first added the resource owns the resource and the resource runs as the resource owner. Certain resources must be managed as root. If a user other than root adds a resource that must be run as root, then the permissions must be changed as root so that root manages the resource, as follows:

1. Change the permission of the named resource to root by running the following command as root:

   ```
   # crsctl setperm resource resource_name -o root
   ```

2. As the user who installed Oracle Clusterware, enable the Oracle Database installation owner (oracle, in the following example) to run the script, as follows:

   ```
   $ crsctl setperm resource resource_name -u user:oracle:r-x
   ```

3. Start the resource:
$ crsctl start resource resource_name

Application Placement Policies

A resource can be started on any server, subject to the placement policies, the resource start dependencies, and the availability of the action script on that server.

The `PLACEMENT` resource attribute determines how Oracle Clusterware selects a server on which to start a resource and where to relocate the resource after a server failure. The `HOSTING_MEMBERS` and `SERVER_POOLS` attributes determine eligible servers to host a resource and the `PLACEMENT` attribute further refines the placement of resources.

See Also: Appendix B, "Oracle Clusterware Resource Reference" for more information about the `HOSTING_MEMBERS` and `SERVER_POOLS` resource attributes.

The value of the `PLACEMENT` resource attribute determines how Oracle Clusterware places resources when they are added to the cluster or when a server fails. Together with either the `HOSTING_MEMBERS` or `SERVER_POOLS` attributes, you can configure how Oracle Clusterware places the resources in a cluster. When the value of the `PLACEMENT` attribute is:

- **balanced**: Oracle Clusterware uses any online server for placement. Less loaded servers are preferred to servers with greater loads. To measure how loaded a server is, Oracle Clusterware uses the `LOAD` resource attribute of the resources that are in an `ONLINE` state on the server. Oracle Clusterware uses the sum total of the `LOAD` values to measure the current server load.

- **favored**: If values are assigned to either the `SERVER_POOLS` or `HOSTING_MEMBERS` resource attribute, then Oracle Clusterware considers servers belonging to the member list in either attribute first. If no servers are available, then Oracle Clusterware places the resource on any other available server. If there are values for both the `SERVER_POOLS` and `HOSTING_MEMBERS` attributes, then the `SERVER_POOLS` attribute restricts the choices to the servers within the preference indicated by the value of `HOSTING_MEMBERS`.

- **restricted**: Oracle Clusterware only considers servers that belong to server pools listed in the `SERVER_POOLS` resource attribute or servers listed in the `HOSTING_MEMBERS` resource attribute for resource placement. Only one of these resource attributes can have a value, otherwise it results in an error.

See Also: "SERVER_POOLS" on page B-8 for more information.

Unregistering Applications and Application Resources

To unregister a resource, use the `crsctl delete resource` command. You cannot unregister an application or resource that is `ONLINE` or required by another resource, unless you use the `-force` option. The following example unregisters the Apache Web server application:

```bash
$ crsctl delete resource myApache
```

Run the `crsctl delete resource` command as a clean-up step when a resource is no longer managed by Oracle Clusterware. Oracle recommends that you unregister any unnecessary resources.
Managing Resources

This section includes the following topics:

- Registering Application Resources
- Starting Application Resources
- Relocating Applications and Application Resources
- Stopping Applications and Application Resources
- Displaying Clusterware Application and Application Resource Status Information

Registering Application Resources

Each application that you manage with Oracle Clusterware is stored as a resource in OCR. Use the `crsctl add resource` command to register applications in OCR. For example, enter the following command to register the Apache Web server application from the previous example:

```
$ crsctl add resource myApache -type cluster_resource -attr "ACTION_SCRIPT=/opt/cluster/scripts/myapache.scr, PLACEMENT=restricted, SERVER_POOLS=server_pool_list, CHECK_INTERVAL=30, RESTART_ATTEMPTS=2, START_DEPENDENCIES=hard(appsvip), STOP_DEPENDENCIES=hard(appsvip)"
```

If you modify a resource, then update OCR by running the `crsctl modify resource` command.

Starting Application Resources

Start and stop resources with the `crsctl start resource` and `crsctl stop resource` commands. Manually starting or stopping resources outside of Oracle Clusterware can invalidate the resource status. In addition, Oracle Clusterware may attempt to restart a resource on which you perform a manual stop operation.

To start an application resource that is registered with Oracle Clusterware, use the `crsctl start resource` command. For example:

```
$ crsctl start resource myApache
```

The command waits to receive a notification of success or failure from the action program each time the action program is called. Oracle Clusterware can start application resources if they have stopped due to exceeding their failure threshold values. You must register a resource using `crsctl add resource` before you can start it.

Running the `crsctl start resource` command on a resource sets the resource TARGET value to ONLINE. Oracle Clusterware attempts to change the state to match the TARGET by running the action program with the start action.

If a cluster server fails while you are starting a resource on that server, then check the state of the resource on the cluster by using the `crsctl status resource` command.

See Also: Appendix E, "CRSCTL Utility Reference" for usage information and examples of CRSCTL command output

The command waits to receive a notification of success or failure from the action program each time the action program is called. Oracle Clusterware can start application resources if they have stopped due to exceeding their failure threshold values. You must register a resource using `crsctl add resource` before you can start it.

Running the `crsctl start resource` command on a resource sets the resource TARGET value to ONLINE. Oracle Clusterware attempts to change the state to match the TARGET by running the action program with the start action.

If a cluster server fails while you are starting a resource on that server, then check the state of the resource on the cluster by using the `crsctl status resource` command.
Relocating Applications and Application Resources

Use the crsctl relocate resource command to relocate applications and application resources. For example, to relocate the Apache Web server application to a server named `rac2`, run the following command:

```
# crsctl relocate resource myApache -n rac2
```

Each time that the action program is called, the `crsctl relocate resource` command waits for the duration specified by the value of the `SCRIPT_TIMEOUT` resource attribute to receive notification of success or failure from the action program. A relocation attempt fails if:

- The application has required resources that run on the initial server
- Applications that require the specified resource run on the initial server

To relocate an application and its required resources, use the `-f` option with the `crsctl relocate resource` command. Oracle Clusterware relocates or starts all resources that are required by the application regardless of their state.

Stopping Applications and Application Resources

Stop application resources with the `crsctl stop resource` command. The command sets the resource `TARGET` value to `OFFLINE`. Because Oracle Clusterware always attempts to match the state of a resource to its target, the Oracle Clusterware subsystem stops the application. The following example stops the Apache Web server:

```
# crsctl stop resource myApache
```

You cannot stop a resource if another resource has a hard stop dependency on it, unless you use the force (`-f`) option. If you use the `crsctl stop resource resource_name -f` command on a resource upon which other resources depend, and if those resources are running, then Oracle Clusterware stops the resource and all of the resources that depend on the resource that you are stopping.

Displaying Clusterware Application and Application Resource Status Information

To display status information about applications and resources that are on cluster servers, use the `crsctl status resource` command. The following example displays the status information for the Apache Web server application:

```
# crsctl status resource myApache
```

```
NAME=myApache
TYPE=cluster_resource
TARGET=ONLINE
STATE=ONLINE on server010
```

Other information this command returns includes the following:

- How many times the resource has been restarted
- How many times the resource has failed within the failure interval
- The maximum number of times that a resource can restart or fail
- The target state of the resource and the normal status information

Use the `-f` option with the `crsctl status resource resource_name` command to view full information of a specific resource.
Enter the following command to view information about all applications and resources in tabular format:

```
# crsctl status resource
```

See Also: Appendix E, "CRSCTL Utility Reference" for detailed information about CRSCTL commands

Managing Automatic Restart of Oracle Clusterware Resources

Managing Automatic Restart of Oracle Clusterware Resources

You can prevent Oracle Clusterware from automatically restarting a resource by setting several resource attributes. You can also control how Oracle Clusterware manages the restart counters for your resources. In addition, you can customize the timeout values for the start, stop, and check actions that Oracle Clusterware performs on resources.

This section includes the following topics:

- Preventing Automatic Restarts
- Automatically Manage Restart Attempts Counter for Resources

Preventing Automatic Restarts

When a server restarts, Oracle Clusterware attempts to start the resources that run on the server as soon as the server starts. Resource startup might fail, however, if system components on which a resource depends, such as a volume manager or a file system, are not running. This is especially true if Oracle Clusterware does not manage the system components on which a resource depends. To manage automatic restarts, use the AUTO_START resource attribute to specify whether Oracle Clusterware should automatically start a resource when a server restarts.

Note: Regardless of the value of the AUTO_START resource attribute for a resource, the resource can start if another resource has a hard or weak start dependency on it or if the resource has a pullup start dependency on another resource.

Automatically Manage Restart Attempts Counter for Resources

When a resource fails, Oracle Clusterware attempts to restart the resource the number of times specified in the RESTART_ATTEMPTS resource attribute, regardless of how often the resource fails. The crsd process maintains an internal counter to track how often Oracle Clusterware restarts a resource. The number of times Oracle Clusterware has attempted to restart a resource is reflected in the RESTART_COUNT resource attribute. Oracle Clusterware can automatically manage the restart attempts counter based on the stability of a resource. The UPTIME_THRESHOLD resource attribute determines the time period that a resource must remain online, after which the RESTART_COUNT attribute gets reset to 0. In addition, the RESTART_COUNT resource attribute gets reset to 0 if the resource is relocated or restarted by the user, or the resource fails over to another server.
Cluster Verification Utility Reference

The Cluster Verification Utility (CVU) performs system checks in preparation for installation, patch updates, or other system changes. Using CVU ensures that you have completed the required system configuration and preinstallation steps so that your Oracle Grid Infrastructure or Oracle Real Application Clusters (Oracle RAC) installation, update, or patch operation completes successfully.

With Oracle Clusterware 11g release 2 (11.2), Oracle Universal Installer is fully integrated with CVU, automating many CVU prerequisite checks. Oracle Universal Installer runs all prerequisite checks and associated fixup scripts when you run the installer.

See Also:

- Oracle Real Application Clusters Administration and Deployment Guide for information about using the Server Control utility (SRVCTL) to manage CVU
- Oracle Grid Infrastructure Installation Guide and Oracle Real Application Clusters Installation Guide for information about how to manually install CVU

Note: Check for and download updated versions of CVU on Oracle Technology Network at
http://www.oracle.com/technology/index.html

This appendix describes CVU under the following topics:

- About Cluster Verification Utility
 - Overview
 - Operational Notes
 - Special Topics
- Cluster Verification Utility Command Reference
- Troubleshooting and Diagnostic Output for CVU
About Cluster Verification Utility

This section includes topics which relate to using CVU.

- Overview
- Operational Notes
- Special Topics
Overview

CVU can verify the primary cluster components during an operational phase or stage. A component can be basic, such as free disk space, or it can be complex, such as checking Oracle Clusterware integrity. For example, CVU can verify multiple Oracle Clusterware subcomponents across Oracle Clusterware layers. Additionally, CVU can check disk space, memory, processes, and other important cluster components. A stage could be, for example, database installation, for which CVU can verify whether your system meets the criteria for an Oracle Real Application Clusters (Oracle RAC) installation. Other stages include the initial hardware setup and the establishing of system requirements through the fully operational cluster setup.

Table A–1 lists verifications you can perform using CVU.

<table>
<thead>
<tr>
<th>Verification to Perform</th>
<th>CVU Commands to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>System requirements verification</td>
<td>cluvfy comp sys</td>
</tr>
<tr>
<td>Oracle ACFS verification</td>
<td>cluvfy stage [-pre</td>
</tr>
<tr>
<td>Storage verifications</td>
<td>cluvfy comp cfs</td>
</tr>
<tr>
<td></td>
<td>cluvfy comp space</td>
</tr>
<tr>
<td></td>
<td>cluvfy comp ssa</td>
</tr>
<tr>
<td></td>
<td>cluvfy stage [-pre</td>
</tr>
<tr>
<td>Network verification</td>
<td>cluvfy stage -post hwos</td>
</tr>
<tr>
<td>Connectivity verifications</td>
<td>cluvfy comp nodecon</td>
</tr>
<tr>
<td></td>
<td>cluvfy comp nodereach</td>
</tr>
<tr>
<td>Cluster Time Synchronization Services verification</td>
<td>cluvfy comp clocksync</td>
</tr>
<tr>
<td>User and Permissions verification</td>
<td>cluvfy comp admprv</td>
</tr>
<tr>
<td>Node comparison and verification</td>
<td>cluvfy comp peer</td>
</tr>
<tr>
<td>Installation verification</td>
<td>cluvfy stage -pre dbcfg</td>
</tr>
<tr>
<td></td>
<td>cluvfy stage -pre dbinst</td>
</tr>
<tr>
<td></td>
<td>cluvfy stage [-pre</td>
</tr>
<tr>
<td></td>
<td>cluvfy stage [-pre</td>
</tr>
<tr>
<td></td>
<td>cluvfy stage [-pre</td>
</tr>
<tr>
<td>Deletion verification</td>
<td>cluvfy stage -post nodedel</td>
</tr>
<tr>
<td>Cluster Integrity verification</td>
<td>cluvfy comp clu</td>
</tr>
</tbody>
</table>
Table A–1 (Cont.) Performing Various CVU Verifications

<table>
<thead>
<tr>
<th>Verification to Perform</th>
<th>CVU Commands to Use</th>
</tr>
</thead>
</table>
| Oracle Clusterware and Oracle ASM Component verifications | cluvfy comp acfs
| | cluvfy comp asm
| | cluvfy comp clumgr
| | cluvfy comp crs
| | cluvfy comp dhcp
| | cluvfy comp dns
| | cluvfy comp gns
| | cluvfy comp gpnp
| | cluvfy comp ha
| | cluvfy comp nodeapp
| | cluvfy comp ocr
| | cluvfy comp ohasd
| | cluvfy comp ohasd
| | cluvfy comp scan
| | cluvfy comp software
| | cluvfy comp vdisk |
Operational Notes

This section includes the following topics:

- Installation Requirements
- Usage Information
- CVU Configuration File
- Privileges and Security
- Using CVU Help

Installation Requirements

CVU installation requirements are:

- At least 30 MB free space for the CVU software on the node from which you run CVU

- A work directory with at least 25 MB free space on each node. The default location of the work directory is /tmp on Linux and UNIX systems, and the value specified in the TEMP environment variable on Windows systems. You can specify a different location by setting the CV_DESTLOC environment variable.

When using CVU, the utility attempts to copy any needed information to the CVU work directory. It checks for the existence of the work directory on each node. If it does not find one, then it attempts to create one. Make sure that the CVU work directory either exists on all nodes in your cluster or proper permissions are established on each node for the user running CVU to create that directory.

- Java 1.4.1 on the local node

Usage Information

CVU includes two scripts: runcluvfy.sh (runcluvfy.bat on Windows), which you use before installing Oracle software, and cluvfy (cluvfy.bat on Windows), located in the Grid_home/bin directory. The runcluvfy.sh script contains temporary variable definitions which enable it to run before you install Oracle Grid Infrastructure or Oracle Database. After you install Oracle Grid Infrastructure, use the cluvfy command to check prerequisites and perform other system readiness checks.

Note: Oracle Universal Installer runs cluvfy to check all prerequisites during Oracle software installation.

Before installing Oracle software, run runcluvfy.sh from the mountpoint path of the software installation media, as follows:

cd /mntpoint
./runcluvfy.sh options

In the preceding example, the options variable represents CVU command options that you select. For example:

$ cd /mnt/dvdrom
$./runcluvfy.sh comp nodereach -n node1,node2 -verbose

When you enter a CVU command, it provides a summary of the test. During preinstallation, Oracle recommends that you obtain detailed output by using the
-verbose argument with the CVU command. The -verbose argument produces
detailed output of individual checks. Where applicable, it shows results for each node
in a tabular layout.

Run the CVU command-line tool using the cluvfy command. Using cluvfy does
not adversely affect your cluster environment or your installed software. You can run
cluvfy commands at any time, even before the Oracle Clusterware installation. In
fact, CVU is designed to assist you as soon as your hardware and operating system are
operational. If you run a command that requires Oracle Clusterware on a node, then
CVU reports an error if Oracle Clusterware is not yet installed on that node.

The node list that you use with CVU commands should be a comma-delimited list of
host names without a domain. CVU ignores domains while processing node lists. If a
CVU command entry has duplicate node entries after removing domain information,
then CVU eliminates the duplicate node entries. Wherever supported, you can use the
-n all option to verify all of your cluster nodes that are part of a specific Oracle RAC
installation.

For network connectivity verification, CVU discovers all of the available network
interfaces if you do not specify an interface on the CVU command line. For storage
accessibility verification, CVU discovers shared storage for all of the supported storage
types if you do not specify a particular storage identification on the command line.
CVU also discovers the Oracle Clusterware home if one is available.

CVU Configuration File

You can use the CVU configuration file to define specific inputs for the execution of
CVU. The path for the configuration file is Grid_home/cv/admin/cvu_config (or
Staging_area/clusterware/stage/cvu/cv/admin on Windows platforms).
You can modify this file using a text editor. The inputs to CVU are defined in the form
of key entries. You must follow these rules when modifying the CVU configuration
file:
■ Key entries have the syntax name=value
■ Each key entry and the value assigned to the key only defines one property
■ Lines beginning with the number sign (#) are comment lines and are ignored
■ Lines that do not follow the syntax name=value are ignored

The following is the list of keys supported by CVU:
■ CV_NODE_ALL: If set, it specifies the list of nodes that should be picked up when
Oracle Clusterware is not installed and a -n all option has been used in the
command line. By default, this entry is commented out.
■ CV_ORACLE_RELEASE: If set, it specifies the specific Oracle release (10gR1,
10gR2, 11gR1, or 11gR2) for which the verifications have to be performed. If set,
you do not have to use the -r release option wherever it is applicable. The
default value is 11gR2.
■ CV_RAW_CHECK_ENABLED: If set to TRUE, it enables the check for accessibility of
shared disks on Linux and Unix systems. This shared disk accessibility check
requires that you install the cvuqdisk RPM Package Manager (rpm) on all of the
nodes. By default, this key is set to TRUE and shared disk check is enabled.
■ CV_ASSUME_DISTID: This property is used in cases where CVU cannot detect or
support a particular platform or a distribution. Oracle does not recommend that
you change this property as this might render CVU non-functional.
■ **CV_XCHK_FOR_SSH_ENABLED**: If set to `TRUE`, it enables the X-Windows check for verifying user equivalence with `ssh`. By default, this entry is commented out and X-Windows check is disabled.

■ **ORACLE_SRVM_REMOTECOPY**: If set, it specifies the location for the `scp` or `rcp` command to override the CVU default value. By default, this entry is commented out and CVU uses `/usr/bin/scp` and `/usr/sbin/rcp`.

■ **ORACLE_SRVM_REMOTESHELL**: If set, it specifies the location for `ssh/rsh` command to override the CVU default value. By default, this entry is commented out and the tool uses `/usr/sbin/ssh` and `/usr/sbin/rsh`.

■ **CV_ASSUME_CL_VERSION**: By default, the command line parser uses `crs activeversion` for the display of command line syntax usage and syntax validation. Use this property to pass a version other than `crs activeversion` for command line syntax display and validation. By default, this entry is commented out.

If CVU does not find a key entry defined in the configuration file, then CVU searches for the environment variable that matches the name of the key. If the environment variable is set, then CVU uses its value, otherwise CVU uses a default value for that entity.

Privileges and Security

CVU assumes that the current user is the user that owns the Oracle software installation, for example, `oracle`. For most CVU commands, you do not have to be the `root` user.

Using CVU Help

The `cluvfy` commands have context sensitive help that shows their usage based on the command-line arguments that you enter. For example, if you enter `cluvfy`, then CVU displays high-level generic usage text describing the stage and component syntax. The following is a list of context help commands:

■ `cluvfy -help`: CVU displays detailed CVU command information.

■ `cluvfy -version`: CVU displays the version of Oracle Clusterware.

■ `cluvfy comp -list`: CVU displays a list of components that can be checked, and brief descriptions of how the utility checks each component.

■ `cluvfy comp -help`: CVU displays detailed syntax for each of the valid component checks.

■ `cluvfy stage -list`: CVU displays a list of valid stages.

■ `cluvfy stage -help`: CVU displays detailed syntax for each of the valid stage checks.

You can also use the `-help` option with any CVU command. For example, `cluvfy stage -pre nodeadd -help` returns detailed information for that particular command.

If you enter an invalid CVU command, then CVU shows the correct usage for that command. For example, if you type `cluvfy stage -pre dbinst`, then CVU shows the correct syntax for the precheck command for the `dbinst` stage. Enter the `cluvfy -help` command to see detailed CVU command information.
Special Topics

This section includes the following topics:

- Generating Fixup Scripts
- Using CVU to Determine if Installation Prerequisites are Complete
- Using CVU with Oracle Database 10g Release 1 or 2
- Entry and Exit Criteria
- Verbose Mode and UNKNOWN Output
- CVU Node List Shortcuts

Generating Fixup Scripts

You can use the -fixup flag with certain CVU commands to generate fixup scripts before installation. Oracle Universal Installer can also generate fixup scripts during installation. The installer then prompts you to run the script as root in a separate terminal session. If you generate a fixup script from the command line, then you can run it as root after it is generated. When you run the script, it raises kernel values to required minimums, if necessary, and completes other operating system configuration.

By default, fixup scripts are generated in the /tmp directory on Linux and UNIX systems and in the location specified in the TEMP environment variable on Windows systems. You can use the cluvfy stage -pre crsinst command to specify a different location in which to generate fixup scripts. For example:

```
cluvfy stage -pre crsinst -n node1 -fixup -fixupdir /db11202/fixit.sh
```

Using CVU to Determine if Installation Prerequisites are Complete

You can use CVU to determine which system prerequisites for installation are completed. Use this option if you are installing Oracle 11g release 2 (11.2) software on a system with a pre-existing Oracle software installation. In using this option, note the following:

- You must run CVU as the user account you plan to use to run the installation. You cannot run CVU as root, and running CVU as another user other than the user that is performing the installation does not ensure the accuracy of user and group configuration for installation or other configuration checks.
- Before you can complete a clusterwide status check, SSH must be configured for all cluster nodes. You can use the installer to complete SSH configuration, or you can complete SSH configuration yourself between all nodes in the cluster. You can also use CVU to generate a fixup script to configure SSH connectivity.
- CVU can assist you by finding preinstallation steps that must be completed, but it cannot perform preinstallation tasks.

Use the following syntax to determine what preinstallation steps are completed, and what preinstallation steps you must perform; running the command with the -fixup flag generates a fixup script to complete kernel configuration tasks as needed:

```
$ ./runcluvfy.sh stage -pre crsinst -fixup -n node_list
```

In the preceding syntax example, replace the `node_list` variable with the names of the nodes in your cluster, separated by commas. On Windows, you must enclose the comma-delimited node list in double quotation marks (" ").
For example, for a cluster with mountpoint `/mnt/dvdrom/`, and with nodes `node1`, `node2`, and `node3`, enter the following command:

```
$ cd /mnt/dvdrom/
$ ./runcluvfy.sh stage -pre crsinst -fixup -n node1,node2,node3
```

Review the CVU report, and complete additional steps as needed.

See Also: Your platform-specific installation guide for more information about installing your product

Using CVU with Oracle Database 10g Release 1 or 2

You can use CVU on the Oracle Database 11g release 2 (11.2) media to check system requirements for Oracle Database 10g Release 1 (10.1) and later installations. To use CVU to check Oracle Clusterware installations, append the command `-r release_code` flag to the standard CVU system check commands.

For example, to perform a verification check prior to installing Oracle Clusterware version 10.2 on a system where the media mountpoint is `/mnt/dvdrom` and the cluster nodes are `node1`, `node2`, and `node3`, enter the following command:

```
$ cd /mnt/dvdrom
$ ./runcluvfy.sh stage -pre crsinst -n node1,node2,node3 -r 10gR2
```

Note: If you do not specify a release version to check, then CVU checks for 11g release 2 (11.2) requirements.

Entry and Exit Criteria

When verifying stages, CVU uses entry and exit criteria. Each stage has entry criteria that define a specific set of verification tasks to be performed before initiating that stage. This check prevents you from beginning a stage, such as installing Oracle Clusterware, unless you meet the Oracle Clusterware prerequisites for that stage.

The exit criteria for a stage define another set of verification tasks that you must perform after the completion of the stage. Post-checks ensure that the activities for that stage have been completed. Post-checks identify stage-specific problems before they propagate to subsequent stages.

Verbose Mode and UNKNOWN Output

Although by default CVU reports in nonverbose mode by only reporting the summary of a test, you can obtain detailed output by using the `-verbose` argument. The `-verbose` argument produces detailed output of individual checks and where applicable shows results for each node in a tabular layout.

If a `cluvfy` command responds with `UNKNOWN` for a particular node, then this is because CVU cannot determine whether a check passed or failed. The cause could be a loss of reachability or the failure of user equivalence to that node. The cause could also be any system problem that was occurring on that node when CVU was performing a check.

The following is a list of possible causes for an `UNKNOWN` response:

- The node is down
- Executables that CVU requires are missing in `Grid_home/bin` or the `Oracle home` directory
The user account that ran CVU does not have privileges to run common operating system executables on the node

The node is missing an operating system patch or a required package

The node has exceeded the maximum number of processes or maximum number of open files, or there is a problem with IPC segments, such as shared memory or semaphores

CVU Node List Shortcuts

To provide CVU a list of all of the nodes of a cluster, enter `-n all`. CVU attempts to obtain the node list in the following order:

1. If vendor clusterware is available, then CVU selects all of the configured nodes from the vendor clusterware using the `lsnodes` utility.

2. If Oracle Clusterware is installed, then CVU selects all of the configured nodes from Oracle Clusterware using the `olsnodes` utility.

3. If neither the vendor clusterware nor Oracle Clusterware is installed, then CVU searches for a value for the `CV_NODE_ALL` key in the configuration file.

4. If vendor clusterware and Oracle Clusterware are not installed and no key named `CV_NODE_ALL` exists in the configuration file, then CVU searches for a value for the `CV_NODE_ALL` environmental variable. If you have not set this variable, then CVU reports an error.

To provide a partial node list, you can set an environmental variable and use it in the CVU command. For example, on Linux or UNIX systems you can enter:

```bash
setenv MYNODES node1,node3,node5
cluvfy comp nodecon -n $MYNODES [-verbose]
```
Cluster Verification Utility Command Reference

This section lists and describes the following CVU commands:

- `cluvfy comp acfs`
- `cluvfy comp admprv`
- `cluvfy comp asm`
- `cluvfy comp cfs`
- `cluvfy comp clocksync`
- `cluvfy comp clu`
- `cluvfy comp clumgr`
- `cluvfy comp crs`
- `cluvfy comp dhcp`
- `cluvfy comp dns`
- `cluvfy comp freespace`
- `cluvfy comp gns`
- `cluvfy comp gpnp`
- `cluvfy comp ha`
- `cluvfy comp healthcheck`
- `cluvfy comp nodeapp`
- `cluvfy comp nodecon`
- `cluvfy comp nodereach`
- `cluvfy comp ocr`
- `cluvfy comp ohasd`
- `cluvfy comp olr`
- `cluvfy comp peer`
- `cluvfy comp scan`
- `cluvfy comp software`
- `cluvfy comp space`
- `cluvfy comp ssa`
- `cluvfy comp sys`
- `cluvfy comp vdisk`
- `cluvfy stage [-pre | -post] acfscfg`
- `cluvfy stage [-pre | -post] cfs`
- `cluvfy stage [-pre | -post] crsinst`
- `cluvfy stage -pre dbcfg`
- `cluvfy stage -pre dbinst`
- `cluvfy stage [-pre | -post] hacfg`
- `cluvfy stage -post hwos`
- `cluvfy stage [-pre | -post] nodeadd`
- `cluvfy stage -post nodedel`
cluvfy comp acfs

Use the cluvfy comp acfs component verification command to check the integrity of Oracle ASM Cluster File System on all nodes in a cluster.

Syntax

cluvfy comp acfs [-n [node_list] | [all]] [-f file_system] [-verbose]

Parameters

Table A–2 cluvfy comp acfs Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td>-f file_system</td>
<td>The name of the file system to check.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy comp admprv

Use the cluvfy comp admprv command to verify user accounts and administrative permissions for installing Oracle Clusterware and Oracle RAC software, and for creating an Oracle RAC database or modifying an Oracle RAC database configuration.

Syntax

cluvfy comp admprv [-n node_list]
{ -o user_equiv [-sshonly] | -o crs_inst [-orainv orainventory_group] | -o db_inst [-osdba osdba_group] [-fixup [-fixupdir fixup_dir]] | -o db_config -d oracle_home [-fixup [-fixupdir fixup_dir]] } [-verbose]

Parameters

Table A–3 cluvfy comp admprv Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td>-o user_equiv [-sshonly]</td>
<td>Checks user equivalence between the nodes. On Linux and UNIX platforms, this command verifies user equivalence first using ssh and then using rsh, if the ssh check fails. To verify the equivalence only through ssh, use the -sshonly option.</td>
</tr>
<tr>
<td>-o crs_inst</td>
<td>Checks administrative privileges for installing Oracle Clusterware.</td>
</tr>
<tr>
<td>-orainv orainventory_group</td>
<td>The name of the Oracle Inventory group. If you do not specify this option, then CVU uses oinstall as the inventory group.</td>
</tr>
<tr>
<td>-o db_inst</td>
<td>Checks administrative privileges for installing Oracle RAC.</td>
</tr>
<tr>
<td>-osdba osdba_group</td>
<td>The name of the OSDBA group. If you do not specify this option, then CVU uses dba as the OSDBA group.</td>
</tr>
<tr>
<td>-o db_config</td>
<td>Checks administrative privileges for creating or configuring an Oracle RAC database.</td>
</tr>
<tr>
<td>-d oracle_home</td>
<td>The directory where the Oracle software is installed.</td>
</tr>
<tr>
<td>-fixup [-fixupdir fixup_dir]</td>
<td>Specifies that if the verification fails, then CVU generates fixup instructions, if feasible. Use the -fixupdir option to specify a specific directory in which CVU generates the fixup instructions. If you do not specify a directory, CVU uses its work directory.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

- By default, the equivalence check does not verify X-Windows configurations, such as whether you have disabled X-forwarding, whether you have the proper setting for the DISPLAY environment variable, and so on.
To verify X-Windows aspects during user equivalence checks, set the `CV_XCHK_FOR_SSH_ENABLED` key to `TRUE` in the configuration file that resides in the `CV_HOME/cv/admin/cvu_config` directory before you run the `cluvfy comp admprv -o user_equiv` command.

Examples

Example 1: Verifying User Equivalence for All Nodes
You can verify user equivalence for all of the nodes by running the following command:

```
cluvfy comp admprv -n all -o user_equiv -verbose
```

Example 2: Verifying Permissions Required to Install Oracle Clusterware
You can verify that the permissions required for installing Oracle Clusterware have been configured on the nodes `racnode1` and `racnode2` by running the following command:

```
cluvfy comp admprv -n racnode1,racnode2 -o crs_inst -verbose
```

Example 3: Verifying Permissions Manage Oracle RAC Databases
You can verify that the permissions required for creating or modifying an Oracle RAC database using the `C:\app\oracle\product\11.2.0\dbhome_1` Oracle home directory, and generate a script to configure the permissions by running the following command:

```
cluvfy comp admprv -n all -o db_config -d C:\app\oracle\product\11.2.0\dbhome_1 -fixup -verbose
```
Use the `cluvfy comp asm` component verification command to check the integrity of Oracle Automatic Storage Management (Oracle ASM) on all nodes in the cluster. This check ensures that the ASM instances on the specified nodes are running from the same Oracle home and that `asmlib`, if it exists, has a valid version and ownership.

Syntax

```
cluvfy comp asm [-n node_list | all ] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`-n node_list</td>
<td>all`</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Examples

Verifying the Integrity of Oracle ASM on All Nodes

To verify the integrity of Oracle ASM on all of the nodes in the cluster, use the following command:

```
cluvfy comp asm -n all
```

This command produces output similar to the following:

Verifying ASM Integrity

```
Task ASM Integrity check started...

Starting check to see if ASM is running on all cluster nodes...

ASM Running check passed. ASM is running on all specified nodes

Starting Disk Groups check to see if at least one Disk Group configured...
Disk Group Check passed. At least one Disk Group configured

Task ASM Integrity check passed...

Verification of ASM Integrity was successful.
```
cluvfy comp cfs

Use the `cluvfy comp cfs` component verification command to check the integrity of the clustered file system (OCFS for Windows or OCFS2) you provide using the `-f` option. CVU checks the sharing of the file system from the nodes in the node list.

Syntax

```
cluvfy comp cfs [-n node_list] -f file_system [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td><code>-f file_system</code></td>
<td>The name of the file system.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

- This check is supported for OCFS2 version 1.2.1, or higher.

Examples

Verifying the Integrity of a Cluster File System on All the Nodes

To verify the integrity of the cluster file system `/oradbshare` on all of the nodes, use the following command:

```
cluvfy comp cfs -f /oradbshare -n all -verbose
```
cluvfy comp clocksync

Use the cluvfy comp clocksync component verification command to clock synchronization across all the nodes in the node list. CVU verifies a time synchronization service is running (Oracle Cluster Time Synchronization Service (CTSS) or Network Time Protocol (NTP)), that each node is using the same reference server for clock synchronization, and that the time offset for each node is within permissible limits.

Syntax

cluvfy comp clocksync [-noctss] [-n node_list [all]] [-verbose]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-noctss</td>
<td>If you specify this option, then CVU does not perform a check on CTSS. Instead, CVU checks the platform's native time synchronization service, such as NTP.</td>
</tr>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy comp clu

Use the `cluvfy comp clu` component verification command to check the integrity of the cluster on all the nodes in the node list.

Syntax

```
cluvfy comp clu [-n node_list] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Example

Verifying the Integrity of a Cluster

To verify the integrity of the cluster on all of the nodes, use the following command:

```
cluvfy comp clu -n all
```

This command produces output similar to the following:

Verifying cluster integrity

Checking cluster integrity...

Cluster integrity check passed

Verification of cluster integrity was successful.
cluvfy comp clumgr

Use the `cluvfy comp clumgr` component verification command to check the integrity of cluster manager subcomponent, or Oracle Cluster Synchronization Services (CSS), on all the nodes in the node list.

Syntax

`cluvfy comp clumgr [-n node_list] [-verbose]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
Run the `cluvfy comp crs` component verification command to check the integrity of the Cluster Ready Services (CRS) daemon on the specified nodes.

Syntax

```
cluvfy comp crs [-n node_list] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify <code>all</code>, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
Starting with Oracle Database 11g release 2 (11.2.0.2), use the `cluvfy comp dhcp` component verification command to verify that the DHCP server exists on the network and is capable of providing a required number of IP addresses. This verification also verifies the response time for the DHCP server. You must run this command as `root`.

Syntax

```
# cluvfy comp dhcp -clustername cluster_name [-vipresname vip_resource_name] [-port dhcp_port] [-n node_list] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-clustername</code></td>
<td>The name of the cluster of which you want to check the integrity of DHCP.</td>
</tr>
<tr>
<td><code>-vipresname</code></td>
<td>The name of the VIP resource.</td>
</tr>
<tr>
<td><code>-port</code></td>
<td>The port on which DHCP listens. The default port is 67.</td>
</tr>
<tr>
<td><code>-n</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify <code>all</code>, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

Before running this command, ensure that the network resource is offline. Use the `srvctl stop nodeapps` command to bring the network resource offline, if necessary.

See Also: *Oracle Real Application Clusters Administration and Deployment Guide* for more information about the `srvctl stop nodeapps` command
Cluvfy comp dns

Starting with Oracle Database 11g release 2 (11.2.0.2), use the cluvfy comp dns component verification command to verify that the Grid Naming Service (GNS) subdomain delegation has been properly set up in the Domain Name Service (DNS) server.

Run cluvfy comp dns -server on one node of the cluster. On each node of the cluster run cluvfy comp dns -client to verify the DNS server setup for the cluster.

Syntax

cluvfy comp dns -server -domain gns_sub_domain -vipaddress gns_vip_address] [-port dns_port] [-verbose]

cluvfy comp dns -client -domain gns_sub_domain -vip gns_vip [-port dns_port] [-last] [-verbose]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-server</td>
<td>Start a test DNS server that listens on the domain specified by the -domain option.</td>
</tr>
<tr>
<td>-client</td>
<td>Validate connectivity to a test DNS server started on specified address. You must specify the same information you specified when you started the DNS server.</td>
</tr>
<tr>
<td>-domain gns_sub_domain</td>
<td>The GNS subdomain name.</td>
</tr>
<tr>
<td>-vipaddress gns_vip_address</td>
<td>GNS virtual IP address in the form {IP_name</td>
</tr>
<tr>
<td>-vip gns_vip</td>
<td>GNS virtual IP address, which is either a name that resolves to an IP address or a dotted decimal numeric IP address.</td>
</tr>
<tr>
<td>-port dns_port</td>
<td>The port on which DNS listens. The default port is 53.</td>
</tr>
<tr>
<td>-last</td>
<td>Send a termination request to the test DNS server after all the validations are complete.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

- This command is not supported on Windows operating systems.
- On the last node specify the -last option to terminate the cluvfy comp dns -server instance.
- If the port number is lower than 1024, then you must run CVU as root.
- Do not run this check while the GNS Oracle Clusterware resource is online.
cluvfy comp freespace

Use the `cluvfy comp freespace` component verification command to check the free space available in the Oracle Clusterware home storage and ensure that there is at least 5% of the total space available. For example, if the total storage is 10GB, then the check ensures that at least 500MB of it is free.

Syntax

```
cluvfy comp freespace [-n node_list | all]
```

If you choose to include the `-n` option, then enter a comma-delimited list of node names on which to run the command. Alternatively, you can specify `all` after `-n` to check all of the nodes in the cluster.
cluvfy comp gns

Use the `cluvfy comp gns` component verification command to verify the integrity of the Oracle Grid Naming Service (GNS) on the cluster.

Syntax

```
cluvfy comp gns -precrsinst -domain gns_domain -vip gns_vip [-n node_list] [-verbose]
```

```
cluvfy comp gns -postcrsinst [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-precrsinst</td>
<td>Perform checks on GNS domain name and GNS VIP before Oracle Clusterware is installed.</td>
</tr>
<tr>
<td>-domain gns_domain</td>
<td>The GNS sub domain name</td>
</tr>
<tr>
<td>-vip gns_vip</td>
<td>The GNS virtual IP address</td>
</tr>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td>-postcrsinst</td>
<td>Check the integrity of GNS on all nodes in the cluster</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output</td>
</tr>
</tbody>
</table>
Use the `cluvfy comp gpnp` component verification command to check the integrity of Grid Plug and Play on all of the nodes in a cluster.

Syntax

```
cluvfy comp gpnp [-n node_list] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy comp ha

Use the cluvfy comp ha component verification command to check the integrity of Oracle Restart on the local node.

Syntax

cluvfy comp ha [-verbose]

If you include the -verbose option, then CVU prints detailed output.
cluvfy comp healthcheck

Use the `cluvfy comp healthcheck` component verification command to check your Oracle Clusterware and Oracle Database installations for their compliance with mandatory requirements and best practices guidelines, and to ensure that they are functioning properly.

Syntax

```
cluvfy comp healthcheck [-collect {cluster|database}] [-db db_unique_name] [-bestpractice|-mandatory] [-deviations] [-html] [-save [-savedir directory_path]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`-collect {cluster</td>
<td>database}`</td>
</tr>
<tr>
<td><code>-db db_unique_name</code></td>
<td>Use <code>-db</code> to specify checks on the specific database that you enter after the <code>-db</code> flag. CVU uses JDBC to connect to the database as the user <code>cvusys</code> to verify various database parameters. For this reason, if you want CVU to perform checks for the database you specify with the <code>-db</code> flag, then you must first create the <code>cvusys</code> user on that database, and grant that user the CVU-specific role, <code>cvusapp</code>. You must also grant members of the <code>cvusapp</code> role select permissions on system tables. Use the <code>cvusys.sql</code> script included in the <code>CVU_home/cv/admin</code> directory to facilitate the creation of this user. This SQL script creates the <code>cvusys</code> user on all the databases that you want to verify using CVU. If you use the <code>-db</code> flag but do not provide a unique database name, then CVU discovers all the Oracle Databases on the cluster. To perform best practices checks on these databases, you must create the <code>cvusys</code> user on each database, and grant that user the <code>cvusapp</code> role with the select privileges needed to perform the best practice checks.</td>
</tr>
<tr>
<td>`[-bestpractice</td>
<td>-mandatory] [-deviations] [-html] [-save [-savedir directory_path]]`</td>
</tr>
</tbody>
</table>
Use the `-html` flag to generate a detailed report in HTML format.

If you specify the `-html` flag, and a browser CVU recognizes is available on the system, then CVU starts the browser and displays the report on the browser when the checks are complete.

If you do not specify the `-html` flag, then CVU generates the detailed report in a text file.

Use the `-save` or `-save -savedir` flags to save validation reports (`cvuchekreport_timestamp.txt` and `cvucheckreport_timestamp.htm`), where `timestamp` is the time and date of the validation report.
cluvfy comp nodeapp

Use the component cluvfy comp nodeapp command to check for the existence of node applications, namely VIP, NETWORK, ONS, and GSD, on all of the specified nodes.

Syntax

```
cluvfy comp nodeapp [-n node_list] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy comp nodecon

Use the `cluvfy comp nodecon` component verification command to check the connectivity among the nodes specified in the node list. If you provide an interface list, then CVU checks the connectivity using only the specified interfaces.

Syntax

```bash
cluvfy comp nodecon -n node_list [-i interface_list] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td><code>-i interface_list</code></td>
<td>The comma-delimited list of interface names. If you do not specify this option, then CVU discovers the available interfaces and checks connectivity using each of them.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

- You can run this command in verbose mode to identify the mappings between the interfaces, IP addresses, and subnets.
- Use the `nodecon` command without the `-i` option and with `-n` set to `all` to use CVU to:
 - Discover all of the network interfaces that are available on the cluster nodes
 - Review the interfaces’ corresponding IP addresses and subnets
 - Obtain the list of interfaces that are suitable for use as VIPs and the list of interfaces to private interconnects
 - Verify the connectivity between all of the nodes through those interfaces

Examples

Example 1: Verifying the connectivity between nodes through specific network interfaces:

You can verify the connectivity between the nodes `node1` and `node3` through interface `eth0` by running the following command:

```bash
cluvfy comp nodecon -n node1,node3 -i eth0 -verbose
```

Example 2: Discovering all available network interfaces and verifying the connectivity between the nodes in the cluster through those network interfaces:

Use the following command to discover all of the network interfaces that are available on the cluster nodes. CVU then reviews the interfaces’ corresponding IP addresses and subnets. Using this information, CVU obtains a list of interfaces that are suitable for use as VIPs and a list of interfaces to private interconnects. Finally, CVU verifies the connectivity between all of the nodes in the cluster through those interfaces.
cluvfy comp nodecon -n all -verbose
cluvfy comp nodereach

Use the `cluvfy comp nodereach` component verification command to check the reachability of specified nodes from a source node.

Syntax

```
cluvfy comp nodereach -n node_list [-srcnode node] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td><code>-srcnode node</code></td>
<td>The name of the source node from which CVU performs the reachability test. If you do not specify a source node, then the node on which you run the command is used as the source node.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Example

Verifying the network connectivity between nodes in the cluster:

To verify that node3 is reachable over the network from the local node, use the following command:

```
cluvfy comp nodereach -n node3
```

This command produces output similar to the following:

Verifying node reachability

Checking node reachability...
Node reachability check passed from node "node1"

Verification of node reachability was successful.
Use the cluvfy comp ocr component verification command to check the integrity of Oracle Cluster Registry (OCR) on all the specified nodes.

Syntax

cluvfy comp ocr [-n node_list] [-verbose]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of non-domain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td></td>
<td>If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

This command does not verify the integrity of OCR contents. You must use the OCRCHECK utility to verify the contents of OCR.

Example

Verifying the integrity of OCR on the local node

To verify the integrity of OCR on the local node, run the following command:

cluvfy comp ocr

This command produces output similar to the following:

Verifying OCR integrity

Checking OCR integrity...

Checking the absence of a non-clustered configuration...

All nodes free of non-clustered, local-only configurations

ASM Running check passed. ASM is running on all specified nodes

Checking OCR config file "/etc/oracle/ocr.loc"...

OCR config file "/etc/oracle/ocr.loc" check successful

Disk group for ocr location "+DATA" available on all the nodes

NOTE:

This check does not verify the integrity of the OCR contents. Execute 'ocrcheck' as a privileged user to verify the contents of OCR.
OCR integrity check passed

Verification of OCR integrity was successful.
cluvfy comp ohasd

Use the cluvfy comp ohasd component verification command to check the integrity of the Oracle High Availability Services daemon.

Syntax

cluvfy comp ohasd [-n node_list] [-verbose]

Parameters

Table A–19 cluvfy comp ohasd Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Example

Verifying the integrity of the Oracle high availability services daemon on all nodes in the cluster

To verify that the Oracle High Availability Services daemon is operating correctly on all nodes in the cluster, use the following command:

cluvfy comp ohasd -n all -verbose

This command produces output similar to the following:

Verifying OHASD integrity

Checking OHASD integrity...
ohasd is running on node "node1"
ohasd is running on node "node2"
ohasd is running on node "node3"
ohasd is running on node "node4"

OHASD integrity check passed

Verification of OHASD integrity was successful.
cluvfy comp olr

Use the `cluvfy comp olr` component verification command to check the integrity of Oracle Local Registry (OLR) on the local node.

Syntax

```
cluvfy comp olr [-verbose]
```

If you include the `-verbose` option, then CVU prints detailed output.

Usage Notes

This command does not verify the integrity of the OLR contents. You must use the `ocrcheck -local` command to verify the contents of OCR.

Example

Verifying the integrity of the OLR on a node

To verify the integrity of the OLR on the current node, run the following command:

```
cluvfy comp olr -verbose
```

This command produces output similar to the following:

Verifying OLR integrity

Checking OLR integrity...

Checking OLR config file...

OLR config file check successful

Checking OLR file attributes...

OLR file check successful

WARNING:

This check does not verify the integrity of the OLR contents. Execute `ocrcheck -local` as a privileged user to verify the contents of OLR.

OLR integrity check passed

Verification of OLR integrity was successful.
Use the **cluvfy comp peer** component verification command to check the compatibility and properties of the specified nodes against a reference node. You can check compatibility for non-default user group names and for different releases of the Oracle software. This command compares physical attributes, such as memory and swap space, as well as user and group values, kernel settings, and installed operating system packages.

Syntax

```
cluvfy comp peer -n node_list [-refnode node]
[-r {10gR1 | 10gR2 | 11gR1 | 11gR2}] [-orainv orainventory_group]
[-osdba osdba_group] [-verbose]
```

Parameters

Table A–20 cluvfy comp peer Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-refnode</td>
<td>The node that CVU uses as a reference for checking compatibility with other nodes. If you do not specify this option, then CVU reports values for all the nodes in the node list.</td>
</tr>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td>-r {10gR1</td>
<td>10gR2</td>
</tr>
<tr>
<td>-orainv orainventory_group</td>
<td>The name of the Oracle Inventory group. If you do not specify this option, then CVU uses oinstall as the inventory group.</td>
</tr>
<tr>
<td></td>
<td>Note: This parameter is not available on Windows systems.</td>
</tr>
<tr>
<td>-osdba osdba_group</td>
<td>The name of the OSDBA group. If you do not specify this option, then CVU uses dba as the OSDBA group.</td>
</tr>
<tr>
<td></td>
<td>Note: This parameter is not available on Windows systems.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

Peer comparison with the `-refnode` option compares the system properties of other nodes against the reference node. If the value does not match (the value is not equal to reference node value), then CVU flags that comparison as a deviation from the reference node. If a group or user does not exist on reference node as well as on the other node, CVU reports this comparison as ‘passed’ because there is no deviation from the reference node. Similarly, CVU reports as ‘failed’ a comparison with a node that has more total memory than the reference node.
Example

Comparing the configuration of select cluster nodes
The following command lists the values of several preselected properties on different nodes from Oracle Database 11g release 2 (11.2):

```
cluvfy comp peer -n node1,node2,node4,node7 -verbose
```
cluvfy comp scan

Use the cluvfy comp scan component verification command to check the Single Client Access Name (SCAN) configuration.

Syntax

cluvfy comp scan [-verbose]

If you include the -verbose option, then CVU prints detailed output.

Example

Verifying the SCAN configuration
To verify that the SCAN and SCAN listeners are configured and operational on all nodes in the cluster, use the following command:

cluvfy comp scan

This command produces output similar to the following:

Verifying scan

Checking Single Client Access Name (SCAN)...

Checking TCP connectivity to SCAN Listeners...
TCP connectivity to SCAN Listeners exists on all cluster nodes

Checking name resolution setup for "node1.example.com"

Verification of SCAN VIP and Listener setup passed

Verification of scan was successful.
cluvfy comp software

Use the cluvfy comp software component verification command to check the files and attributes installed with the Oracle software.

Syntax

cluvfy comp software [-n node_list] [-d oracle_home]
[-r {10gR1 | 10gR2 | 11gR1 | 11gR2}] [-verbose]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td>-d oracle_home</td>
<td>The directory where the Oracle Database software is installed. If you do not specify this option, then the files installed in the Grid home are verified.</td>
</tr>
<tr>
<td>-r (10gR1</td>
<td>10gR2</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Example

Verifying the software configuration on all nodes in the cluster for the Oracle Clusterware home directory.

To verify that the installed files for Oracle Clusterware 11g release 2 are configured correctly, use a command similar to the following:

cluvfy comp software -n all -verbose

This command produces output similar to the following:

Verifying software

Check: Software

1021 files verified

Software check passed

Verification of software was successful.
cluvfy comp space

Use the `cluvfy comp space` component verification command to check for free disk space at the location you specify in the `-l` option on all the specified nodes.

Syntax

```bash
cluvfy comp space [-n node_list] -l storage_location
-z disk_space {B | K | M | G} [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td><code>-l storage_location</code></td>
<td>The directory path to the storage location to check</td>
</tr>
<tr>
<td>`-z disk_space {B</td>
<td>K</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

The `space` component does not support block or raw devices.

See Also: The Oracle Certification site on My Oracle Support for the most current information about certified storage options:

https://support.oracle.com

Examples

Verifying the availability of free space on all nodes

You can verify that each node has 5 GB of free space in the `/home/dbadmin/products` directory by running the following command:

```bash
cluvfy comp space -n all -l /home/dbadmin/products -z 5G -verbose
```
Use the `cluvfy comp ssa` component verification command to discover and check the sharing of the specified storage locations. CVU checks sharing for nodes in the node list.

Syntax

```
cluvfy comp ssa [-n node_list] [-s storageID_list]
[-t {software | data | ocr_vdisk}] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td>-s storageID_list</td>
<td>A comma-delimited list of storage IDs, for example, /dev/sda,/dev/sdb. If you do not specify the -s option, then CVU discovers supported storage types and checks sharing for each of them.</td>
</tr>
<tr>
<td>-t {software</td>
<td>data</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

- The current release of `cluvfy` has the following limitations on Linux regarding shared storage accessibility check.
 - Currently NAS storage and OCFS2 (version 1.2.1 or higher) are supported.
 - **See Also:** `Oracle Grid Infrastructure Installation Guide` for more information about NAS mount options
 - For sharedness checks on NAS, `cluvfy` commands require that you have write permission on the specified path. If the `cluvfy` user does not have write permission, `cluvfy` reports the path as not shared.

- To perform discovery and shared storage accessibility checks for SCSI disks on Linux systems, CVU requires the CVUQDISK package. If you attempt to use CVU and the CVUQDISK package is not installed on all of the nodes in your Oracle RAC environment, then CVU responds with an error. See “Shared Disk Discovery on Red Hat Linux” on page A-59 for information about how to install the CVUQDISK package.
Examples

Example 1: Discovering All of the Available Shared Storage Systems on Your System
To discover all of the shared storage systems available on your system, run the following command:

```
clувfy comp ssa -n all -verbose
```

Example 2: Verifying the Accessibility of a Specific Storage Location
You can verify the accessibility of specific storage locations, such as `/dev/sda`, for storing data files for all the cluster nodes by running a command similar to the following:

```
clувfy comp ssa -n all -s /dev/sda,/dev/sdb,/dev/sdc
```

This command produces output similar to the following:

Verifying shared storage accessibility

Checking shared storage accessibility...

"/dev/sda" is shared
"/dev/sdb" is shared
"/dev/sdc" is shared

Shared storage check was successful on nodes "node1,node2,node3,node4"

Verification of shared storage accessibility was successful.
cluvfy comp sys

Use the `cluvfy comp sys` component verification command to check that the minimum system requirements are met for the specified product on all the specified nodes.

Syntax

```
cluvfy comp sys [-n node_list] -p {crs | ha | database} [-r {10gR1 | 10gR2 | 11gR1 | 11gR2}] [-osdba osdba_group] [-orainv orainventory_group] [-fixup [-fixupdir fixup_dir]] [-verbose]
```

Parameters

Table A–24 cluvfy comp sys Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of non-domain qualified node names on which to</td>
</tr>
<tr>
<td></td>
<td>conduct the verification. If you specify all, then CVU checks all of the</td>
</tr>
<tr>
<td></td>
<td>nodes in the cluster. If you do not specify this option, then CVU checks</td>
</tr>
<tr>
<td></td>
<td>only the local node.</td>
</tr>
<tr>
<td>-p {crs</td>
<td>ha</td>
</tr>
<tr>
<td></td>
<td>Oracle Restart (HA), or Oracle RAC.</td>
</tr>
<tr>
<td>-r {10gR1</td>
<td>10gR2</td>
</tr>
<tr>
<td></td>
<td>installation of Oracle Clusterware or Oracle RAC. If you do not specify</td>
</tr>
<tr>
<td></td>
<td>this option, then CVU assumes Oracle Database 11g release 2 (11.2).</td>
</tr>
<tr>
<td>-osdba osdba_group</td>
<td>The name of the OSDBA group. If you do not specify this option, then CVU</td>
</tr>
<tr>
<td></td>
<td>uses dba as the OSDBA group.</td>
</tr>
<tr>
<td>-orainv orainventory_group</td>
<td>The name of the Oracle Inventory group. If you do not specify this option,</td>
</tr>
<tr>
<td></td>
<td>then CVU uses oinstall as the inventory group.</td>
</tr>
<tr>
<td>-fixup [-fixupdir fixup_dir]</td>
<td>Specifies that if the verification fails, then CVU generates fixup</td>
</tr>
<tr>
<td></td>
<td>instructions, if feasible. Use the -fixupdir option to specify a specific</td>
</tr>
<tr>
<td></td>
<td>directory in which CVU generates the fixup instructions. If you do not</td>
</tr>
<tr>
<td></td>
<td>specify a directory, CVU uses its work directory.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Examples

Verifying the system requirements for installing Oracle Clusterware

To verify the system requirements for installing Oracle Clusterware 11g release 2 on the cluster nodes node1, node2 and node3, run the following command:

```
cluvfy comp sys -n node1,node2,node3 -p crs -verbose
```
cluvfy comp vdisk

Use the `cluvfy comp vdisk` component verification command to check the voting disks configuration and the `udev` settings for the voting disks on all the specified nodes.

See Also: *Oracle Grid Infrastructure Installation Guide for Linux* for more information about `udev` settings

Syntax

```
cluvfy comp vdisk [\[-n node_list\] \[-verbose\]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster. If you do not specify this option, then CVU checks only the local node.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy stage [-pre | -post] acfscfg

Use the `cluvfy stage -pre acfscfg` command to verify your cluster nodes are set up correctly before configuring Oracle ASM Cluster File System (Oracle ACFS).

Use the `cluvfy stage -post acfscfg` to check an existing cluster after you configure Oracle ACFS.

Syntax

```
cluvfy stage -pre acfscfg -n node_list [-asmdev asm_device_list] [-verbose]
```

```
cluvfy stage -post acfscfg -n node_list [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td><code>-asmdev asm_device_list</code></td>
<td>The list of devices you plan for Oracle ASM to use. If you do not specify this option, then CVU uses an internal operating system-dependent value, for example, <code>/dev/raw/*</code> on Linux systems.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy stage [-pre | -post] cfs

Use the `cluvfy stage -pre cfs` stage verification command to verify your cluster nodes are set up correctly before setting up OCFS2 or OCFS for Windows.

Use the `cluvfy stage -post cfs` stage verification command to perform the appropriate checks on the specified nodes after setting up OCFS2 or OCFS for Windows.

See Also: Oracle Grid Infrastructure Installation Guide for your platform for a list of supported shared storage types

Syntax

```
cluvfy stage -pre cfs -n node_list -s storageID_list [-verbose]
```

```
cluvfy stage -post cfs -n node_list -f file_system [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td>-s storageID_list</td>
<td>The comma-delimited list of storage locations to check.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Examples

Example 1: Check that a specific shared device is configured correctly before configuring OCFS2

To check that a shared device is configured correctly before setting up OCFS2, use a command similar to the following, where you replace `/dev/sdd5` with the name of the shared device on your system:

```
cluvfy stage -pre cfs -n node1,node2,node3,node4 -s /dev/sdd5
```

Example 2: Check that an OCFS for Windows file system was configured correctly

To check that the configuration of OCFS for Windows completely successfully and that all nodes have access to this new file system, use a command similar to the following, where you replace `E:\ocfs\db1` with the location of the OCFS for Windows file system for your cluster:

```
cluvfy stage -post cfs -n all -f E:\ocfs\db1
```
cluvfy stage [-pre | -post] crsinst

Use the `cluvfy stage -pre crsinst` command to check the specified nodes before installing Oracle Clusterware. CVU performs additional checks on OCR and voting disks if you specify the `-c` and `-q` options.

Use the `cluvfy stage -post crsinst` command to check the specified nodes after installing Oracle Clusterware.

Syntax

```
cluvfy stage -pre crsinst -n node_list [-r {10gR1 | 10gR2 | 11gR1 | 11gR2}] [-c ocr_location_list] [-q voting_disk_list] [-osdba osdba_group] [-orainv orainventory_group] [-asm [-asmgrp asmadmin_group] [-asmdev asm_device_list]] [-crshome Grid_home] [-fixup [-fixupdir fixup_dir]] [-networks network_list] [-verbose]
```

```
cluvfy stage -post crsinst -n node_list [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td>`-r {10gR1</td>
<td>10gR2</td>
</tr>
<tr>
<td><code>-c ocr_location_list</code></td>
<td>A comma-delimited list of directory paths for OCR locations or files that CVU checks for availability to all nodes. If you do not specify this option, then the OCR locations are not checked.</td>
</tr>
<tr>
<td><code>-q voting_disk_list</code></td>
<td>A comma-delimited list of directory paths for voting disks that CVU checks for availability to all nodes. If you do not specify this option, then the voting disk locations are not checked.</td>
</tr>
<tr>
<td><code>-osdba osdba_group</code></td>
<td>The name of the OSDBA group. If you do not specify this option, then CVU uses <code>dba</code> as the OSDBA group.</td>
</tr>
<tr>
<td><code>-orainv orainventory_group</code></td>
<td>The name of the Oracle Inventory group. If you do not specify this option, then CVU uses <code>oinstall</code> as the inventory group.</td>
</tr>
<tr>
<td><code>-asm</code></td>
<td>Indicates that Oracle ASM is used for storing the Oracle Clusterware files.</td>
</tr>
<tr>
<td><code>-asmgrp asmadmin_group</code></td>
<td>The name of the OSASM group. If you do not specify this option, then CVU uses <code>dba</code> as the OSASM group.</td>
</tr>
<tr>
<td><code>-asm -asmdev asm_device_list</code></td>
<td>A list of devices you plan for Oracle ASM to use that CVU checks for availability to all nodes. If you do not specify this option, then CVU uses an internal operating system-dependent value.</td>
</tr>
</tbody>
</table>
The location of the Oracle Grid Infrastructure or Oracle Clusterware home directory. If you do not specify this option, then the supplied file system location is checked for sufficient free space for an Oracle Clusterware installation.

Specifies that if the verification fails, then CVU generates fixup instructions, if feasible. Use the \texttt{-fixupdir} option to specify a specific directory in which CVU generates the fixup instructions. If you do not specify a directory, CVU uses its work directory.

Checks the network parameters of a comma-delimited list of networks in the form of "\texttt{if_name} [\texttt{:subnet_id} [\texttt{:public | :cluster_interconnect}]].

- You can use the asterisk (*) wildcard character when you specify the network interface name (\texttt{if_name}), such as eth*, to match interfaces.
- Specify a subnet number for the network interface for the \texttt{subnet_id} variable and choose the type of network interface.

CVU prints detailed output.
cluvfy stage -pre dbcfg

Use the `cluvfy stage -pre dbcfg` command to check the specified nodes before configuring an Oracle RAC database to verify whether your system meets all of the criteria for creating a database or for making a database configuration change.

Syntax

```
cluvfy stage -pre dbcfg -n node_list -d Oracle_home [-fixup [-fixupdir fixup_dir]] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td><code>-d Oracle_home</code></td>
<td>The location of the Oracle home directory for the database that is being checked.</td>
</tr>
<tr>
<td><code>-fixup [-fixupdir fixup_dir]</code></td>
<td>Specifies that if the verification fails, then CVU generates fixup instructions, if feasible. Use the <code>-fixupdir</code> option to specify a specific directory in which CVU generates the fixup instructions. If you do not specify a directory, CVU uses its work directory.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy stage -pre dbinst

Use the `cluvfy stage -pre dbinst` command to check the specified nodes before installing or creating an Oracle RAC database to verify that your system meets all of the criteria for installing or creating an Oracle RAC database.

Syntax

```
cluvfy stage -pre dbinst -n node_list [-r {10gR1 | 10gR2 | 11gR1 | 11gR2}]
    [-osdba osdba_group] [-d Oracle_home] [-fixup [-fixupdir fixup_dir] [-verbose]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td>`-r {10gR1</td>
<td>10gR2</td>
</tr>
<tr>
<td><code>-osdba osdba_group</code></td>
<td>The name of the OSDBA group. If you do not specify this option, then CVU uses dba as the OSDBA group.</td>
</tr>
<tr>
<td><code>-d Oracle_home</code></td>
<td>The location of the Oracle home directory where you are installing Oracle RAC and creating the Oracle RAC database. If you specify this option, then the specified location is checked for sufficient free disk space for a database installation.</td>
</tr>
<tr>
<td><code>-fixup [-fixupdir fixup_dir]</code></td>
<td>Specifies that if the verification fails, then CVU generates fixup instructions, if feasible. Use the <code>-fixupdir</code> option to specify a specific directory in which CVU generates the fixup instructions. If you do not specify a directory, CVU uses its work directory.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy stage [-pre | -post] hacfg

Use the `cluvfy stage -pre hacfg` command to check a local node before configuring Oracle Restart.

Use the `cluvfy stage -post hacfg` command to check the local node after configuring Oracle Restart.

Syntax

```
cluvfy stage -pre hacfg [-osdba osdba_group] [-orainv orainventory_group] [-fixup [-fixupdir fixup_dir]] [-verbose]

cluvfy stage -post hacfg [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-osdba osdba_group</code></td>
<td>The name of the OSDBA group. If you do not specify this option, then CVU uses <code>dba</code> as the OSDBA group.</td>
</tr>
<tr>
<td><code>-orainv orainventory_group</code></td>
<td>The name of the Oracle Inventory group. If you do not specify this option, then CVU uses <code>oinstall</code> as the inventory group.</td>
</tr>
<tr>
<td><code>-fixup [-fixupdir fixup_dir]</code></td>
<td>Specifies that if the verification fails, then CVU generates fixup instructions, if feasible. Use the <code>-fixupdir</code> option to specify a specific directory in which CVU generates the fixup instructions. If you do not specify a directory, CVU uses its work directory.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy stage -post hwos

Use the cluvfy stage -post hwos stage verification command to perform network and storage verifications on the specified nodes in the cluster before installing Oracle software. This command also checks for supported storage types and checks each one for sharing.

Syntax

```
cluvfy stage -post hwos -n node_list [-s storageID_list] [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td>-s storageID_list</td>
<td>Checks the comma-delimited list of storage locations for sharing of supported storage types. If you do not provide the <code>-s</code> option, then CVU discovers supported storage types and checks sharing for each of them.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
cluvfy stage [-pre | -post] nodeadd

Use the `cluvfy stage -pre nodeadd` command to verify the specified nodes are configured correctly before adding them to your existing cluster, and to verify the integrity of the cluster before you add the nodes.

This command verifies that the system configuration, such as the operating system version, software patches, packages, and kernel parameters, for the nodes that you want to add, is compatible with the existing cluster nodes, and that the clusterware is successfully operating on the existing nodes. Run this command on any node of the existing cluster.

Use the `cluvfy stage -post nodeadd` command to verify that the specified nodes have been successfully added to the cluster at the network, shared storage, and clusterware levels.

Syntax

```
cluvfy stage -pre nodeadd -n node_list [-vip vip_list]
               [-fixup [-fixupdir fixup_dir]] [-verbose]

cluvfy stage -post nodeadd -n node_list [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n node_list</code></td>
<td>A comma-delimited list of nondomain qualified node names on which to conduct the verification. These are the nodes you are adding or have added to the cluster.</td>
</tr>
<tr>
<td><code>-v vip_list</code></td>
<td>A comma-delimited list of virtual IP addresses to be used by the new nodes.</td>
</tr>
<tr>
<td><code>-fixup [-fixupdir fixup_dir]</code></td>
<td>Specifies that if the verification fails, then CVU generates fixup instructions, if feasible. Use the <code>-fixupdir</code> option to specify a specific directory in which CVU generates the fixup instructions. If you do not specify a directory, CVU uses its work directory.</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>
Use the `cluvfy stage -post nodedel` command to verify that specific nodes have been successfully deleted from a cluster. Typically, this command verifies that the node-specific interface configuration details have been removed, the nodes are no longer a part of cluster configuration, and proper Oracle ASM cleanup has been performed.

Syntax

```
cluvfy stage -post nodedel -n node_list [-verbose]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n node_list</td>
<td>The comma-delimited list of nondomain qualified node names on which to conduct the verification. If you specify all, then CVU checks all of the nodes in the cluster.</td>
</tr>
<tr>
<td>-verbose</td>
<td>CVU prints detailed output.</td>
</tr>
</tbody>
</table>

Usage Notes

If the `cluvfy stage -post nodedel` check fails, then repeat the node deletion procedure.

See Also: Chapter 4, "Adding and Deleting Cluster Nodes"
Troubleshooting and Diagnostic Output for CVU

This section describes the following troubleshooting topics for CVU:

- Enabling Tracing
- Known Issues for the Cluster Verification Utility
Enabling Tracing

You can enable tracing by setting the environment variable `SRVM_TRACE` to true. For example, in `tcsh` an entry such as `setenv SRVM_TRACE true` enables tracing.

The CVU trace files are created in the `CV_HOME/cv/log` directory by default. Oracle Database automatically rotates the log files and the most recently created log file has the name `cvutrace.log.0`. You should remove unwanted log files or archive them to reclaim disk space if needed.

CVU does not generate trace files unless you enable tracing. To use a non-default location for the trace files, set the `CV_TRACELOC` environment variable to the absolute path of the desired trace directory.
Known Issues for the Cluster Verification Utility

This section describes the following known limitations for Cluster Verification Utility (CVU):

- **Database Versions Supported by Cluster Verification Utility**
- **Linux Shared Storage Accessibility (ssa) Check Reports Limitations**
- **Shared Disk Discovery on Red Hat Linux**

Database Versions Supported by Cluster Verification Utility

The current CVU release supports only Oracle Database 10g or higher, Oracle RAC, and Oracle Clusterware; CVU is not backward compatible. CVU cannot check or verify Oracle Database products for releases prior to Oracle Database 10g.

Linux Shared Storage Accessibility (ssa) Check Reports Limitations

The current release of `cluvfy` has the following limitations on Linux regarding shared storage accessibility check.

- OCFS2 (version 1.2.1 or higher) is supported.
- For sharedness checks on NAS, `cluvfy` commands require you to have write permission on the specified path. If the user running the `cluvfy` command does not have write permission, then `cluvfy` reports the path as not shared.

Shared Disk Discovery on Red Hat Linux

To perform discovery and shared storage accessibility checks for SCSI disks on Red Hat Linux 4.0 (or higher) and SUSE Linux Enterprise Server, CVU requires the CVUQDISK package. If you attempt to use CVU and the CVUQDISK package is not installed on all of the nodes in your Oracle RAC environment, then CVU responds with an error.

Perform the following procedure to install the CVUQDISK package:

1. Login as the root user.
2. Copy the package, `cvuqdisk-1.0.6-1.rpm` (or higher version) to a local directory. You can find this rpm in the `rpm` subdirectory of the top-most directory in the Oracle Clusterware installation media. For example, you can find `cvuqdisk-1.0.6-1.rpm` in the directory `/mountpoint/clusterware/rpm/` where `mountpoint` is the mount point for the disk on which the directory is located.

   ```bash
   # cp /mount_point/clusterware/rpm/cvuqdisk-1.0.6-1.rpm /u01/oradba
   ```

3. Set the `CVUQDISK_GRP` environment variable to the operating system group that should own the CVUQDISK package binaries. If `CVUQDISK_GRP` is not set, then, by default, the `oinstall` group is the owner’s group.

   ```bash
   # set CVUQDISK_GRP=oinstall
   ```

4. Determine whether previous versions of the CVUQDISK package are installed by running the command `rpm -q cvuqdisk`. If you find previous versions of the CVUQDISK package, then remove them by running the command `rpm -e cvuqdisk previous_version` where `previous_version` is the identifier of the previous CVUQDISK version, as shown in the following example:
5. Install the latest CVUQDISK package by running the command `rpm -iv cvuqdisk-1.0.6-1.rpm`.

 # cd /u01/oradba
 # rpm -iv cvuqdisk-1.0.6-1.rpm
This appendix is a reference for Oracle Clusterware resources. It includes descriptions and usage examples of all resource attributes and a detailed description and examples of action scripts.

This appendix includes the following topics:

- Resource Attributes
- Examples of Action Scripts for Third-Party Applications
Resource Attributes

This section lists and describes attributes used when you register applications as resources in Oracle Clusterware. Use these attributes with the `crsctl add resource` command, as follows:

```
$ crsctl add resource resource_name -type resource_type
{[-attr "attribute_name='attribute_value', attribute_name='attribute_value'
, ..."] | [-file file_name]}
```

List attribute-value pairs in a comma-delimited list after the `-attr` flag and enclose the value of each attribute in single quotation marks (`'`). Some resource attributes you cannot configure and are read only.

Alternatively, you can create a text file that contains the attribute-value pairs. For example:

```
PLACEMENT=favored
HOSTING_MEMBERS=node1 node2 node3
RESTART_ATTEMPTS@CARDINALITYID(1)=0
RESTART_ATTEMPTS@CARDINALITYID(2)=0
FAILURE_THRESHOLD@CARDINALITYID(1)=2
FAILURE_THRESHOLD@CARDINALITYID(2)=4
FAILURE_INTERVAL@CARDINALITYID(1)=300
FAILURE_INTERVAL@CARDINALITYID(2)=500
CHECK_INTERVAL=2
CARDINALITY=2
```

This section includes the following topics:

- Configurable Resource Attributes
- Read-Only Resource Attributes
Configurable Resource Attributes

This section describes the following resource attributes that you can configure when registering an application as a resource in Oracle Clusterware:

Note: Values for all attributes must be in lowercase. Attribute names must be in all uppercase letters.

- **ACL**
- **ACTION_SCRIPT**
- **ACTIVE_PLACEMENT**
- **AGENT_FILENAME**
- **AUTO_START**
- **CARDINALITY**
- **CHECK_INTERVAL**
- **DEGREE**
- **DESCRIPTION**
- **ENABLED**
- **FAILURE_INTERVAL**
- **FAILURE_THRESHOLD**
- **HOSTING_MEMBERS**
- **LOAD**
- **NAME**
- **OFFLINE_CHECK_INTERVAL**
- **PLACEMENT**
- **RESTART_ATTEMPTS**
- **SCRIPT_TIMEOUT**
- **SERVER_POOLS**
- **START_DEPENDENCIES**
- **START_TIMEOUT**
- **STOP_DEPENDENCIES**
- **STOP_TIMEOUT**
- **TYPE**
- **UPTIME_THRESHOLD**

ACL

Defines the owner of a resource and the access privileges granted to various operating system users and groups. The resource owner defines the operating system user of the owner and its privileges. You configure this optional attribute when you create a resource. If you do not configure this attribute, then the value is based on the identity
of the process creating the resource. You can change the value of the attribute if such a change is allowed based on the existing privileges of the resource.

Note: All operating system user names and user groups, including `owner`, `pgrp`, `user`, and `group`, must be registered on all servers in the cluster.

In the string:

- **owner**: The operating system user that owns a resource and the user under which the action script or application-specific agent runs, followed by the privileges of the owner.
- **pgrp**: The operating system group that is the primary group of the owner of a resource, followed by the privileges of members of the primary group.
- **other**: Operating system users that are neither the owner nor member of the primary group.
- **r**: The read option, which gives the ability to only see a resource, its state, and configuration.
- **w**: The write option, which gives the ability to modify a resource's attributes and to delete the resource.
- **x**: The execute option, which gives the ability to start, stop, and relocate a resource.

By default, the identity of the client that creates a resource is the `owner`. Also by default, `root`, and the user specified in `owner` have full privileges. You can grant required operating system users and operating system groups their privileges by adding the following lines to the `ACL` attribute:

```
user: user_name: rwx
group: group_name: rwx
```

Usage Example

```
ACL=owner: user_1: rwx, pgrp: osdba: rwx, other:: r-
```

In the preceding example, the owner of the resource is `user_1`, whose primary group is `osdba`. The user, `user_1`, has all privileges, as does the `osdba` group, while other users can only view the resource.

ACTION_SCRIPT

An absolute file name that includes the path and file name of an action script. The agent specified in the `AGENT_FILENAME` attribute calls the script specified in the `ACTION_SCRIPT` attribute.

Usage Example

```
ACTION_SCRIPT=fully_qualified_path_to_action_script
```

ACTIVE_PLACEMENT

When set to `1`, Oracle Clusterware uses this attribute to reevaluate the placement of a resource during addition or restart of a cluster server. For resources where `PLACEMENT=favored`, Oracle Clusterware may relocate running resources if the resources run on a non-favored server when a favored one joins the cluster.
Usage Example
ACTIVE_PLACEMENT=1

AGENT_FILENAME
A fully qualified file name of an agent program that a resource type uses to manage its resources. Every resource type must have an agent program to manage its resources. Resource types use agent programs by either specifying a value for this attribute or inheriting it from their base resource type. There are two script agents included with Oracle Clusterware 11g release 2 (11.2): application and scriptagent. Oracle Clusterware uses the application script agent for resources of the deprecated application resource type. The default value for this attribute is scriptagent.

Usage Example
AGENT_FILENAME=%Grid_home%/bin/application

AUTO_START
Indicates whether Oracle Clusterware automatically starts a resource after a cluster server restart. Valid AUTO_START values are:
- always: Restarts the resource when the server restarts regardless of the state of the resource when the server stopped.
- restore: Restores the resource to the same state that it was in when the server stopped. Oracle Clusterware attempts to restart the resource if the value of TARGET was ONLINE before the server stopped.
- never: Oracle Clusterware never restarts the resource regardless of the state of the resource when the server stopped.

CARDINALITY
The number of servers on which a resource can run, simultaneously. This is the upper limit for resource cardinality.

Usage Example
CARDINALITY=1

CHECK_INTERVAL
The time interval, in seconds, between repeated executions of the check action. Shorter intervals enable more frequent checks but also increase resource consumption if you use the script agent. Use an application-specific agent to reduce resource consumption.

Usage Example
CHECK_INTERVAL=60

DEGREE
The number of instances of a cluster resource that can run on a single server.

Usage Example
DEGREE=1
DESCRIPTION

Enter a description of the resource you are adding.

Usage Example

DESCRIPTION=Apache Web server

ENABLED

Oracle Clusterware uses this attribute to manage the state of the resource. Oracle Clusterware does not attempt to manage a disabled (ENABLED=0) resource either directly or because of a dependency to another resource. A disabled resource cannot be started but it can be stopped.

Oracle Clusterware does not actively monitor disabled resources, meaning that Oracle Clusterware does not check their state. However, when Oracle Clusterware starts, it does query the state of disabled resources.

Usage Example

ENABLED=1

FAILURE_INTERVAL

The interval, in seconds, before which Oracle Clusterware stops a resource if the resource has exceeded the number of failures specified by the FAILURE_THRESHOLD attribute. If the value is zero (0), then tracking of failures is disabled.

Usage Example

FAILURE_INTERVAL=30

FAILURE_THRESHOLD

The number of failures of a resource detected within a specified FAILURE_INTERVAL for the resource before Oracle Clusterware marks the resource as unavailable and no longer monitors it. If a resource fails the specified number of times, then Oracle Clusterware stops the resource. If the value is zero (0), then tracking of failures is disabled. The maximum value is 20.

Usage Example

FAILURE_THRESHOLD=3

HOSTING_MEMBERS

A space-separated, ordered list of cluster server names that can host a resource. This attribute is required only when using administrator management, and when the value of the PLACEMENT attribute is set to favored or restricted. When registering applications as Oracle Clusterware resources, use the SERVER POOLS attribute, instead.

Note: For resources of application type, Oracle Clusterware places servers listed in the HOSTING_MEMBERS attribute in the Generic server pool.
See Also:
- "Understanding Server Pools" on page 2-4 for more information about the Generic server pool
- "LOAD" on page B-7 for more information about this attribute
- "PLACEMENT" on page B-7 for more information about this attribute

To obtain a list of candidate node names, run the olsnodes command to display a list of your server names.

Usage Example
HOSTING_MEMBERS=server1 server2 server3

LOAD
Oracle Clusterware interprets the value of this attribute along with that of the PLACEMENT attribute. When the value of PLACEMENT is balanced, the value of LOAD determines where best to place a resource. A nonnegative, numeric value that quantitatively represents how much server capacity an instance of a resource consumes relative to other resources. Oracle Clusterware attempts to place resources on servers with the least total load of running resources.

Usage Example
LOAD=1

NAME
A case-sensitive alphanumeric string that names the resource. Oracle recommends a naming convention that starts with an alphanumeric prefix, such as myApache, and complete the name with an identifier to describe it. A resource name can contain any platform-supported characters except the exclamation point (!) and the tilde (~). A resource name cannot begin with a period (.) nor with the string ora.

Usage Example
NAME=myApache

OFFLINE_CHECK_INTERVAL
Controls offline monitoring of a resource. The value represents the interval (in seconds) that Oracle Clusterware monitors a resource when its state is OFFLINE. Monitoring is disabled if the value is 0.

Usage Example
OFFLINE_CHECK_INTERVAL=30

PLACEMENT
Specifies how Oracle Clusterware selects a cluster server on which to start a resource. Valid values are balanced, favored, or restricted.
If you set the PLACEMENT attribute to favored or restricted, then you must also assign values to the SERVER_POOLS and HOSTING_MEMBERS attributes. If you set the value of the PLACEMENT attribute to balanced, then the HOSTING_MEMBERS attribute is not required.
Configurable Resource Attributes

See Also:
- "Application Placement Policies" on page 6-22 for more information about the PLACEMENT attribute
- "HOSTING_MEMBERS" on page B-6 for more information about this attribute
- "SERVER_POOLS" on page B-8 for more information about this attribute

Usage Example
PLACEMENT=favored

RESTART_ATTEMPTS
The number of times that Oracle Clusterware attempts to restart a resource on the resource's current server before attempting to relocate it. A value of 1 indicates that Oracle Clusterware only attempts to restart the resource once on a server. A second failure causes Oracle Clusterware to attempt to relocate the resource. A value of 0 indicates that there is no attempt to restart but Oracle Clusterware always tries to fail the resource over to another server.

Usage Example
RESTART_ATTEMPTS=2

SCRIPT_TIMEOUT
The maximum time (in seconds) for an action to run. Oracle Clusterware returns an error message if the action script does not complete within the time specified. The timeout applies to all actions (start, stop, check, and clean).

Usage Example
SCRIPT_TIMEOUT=45

SERVER_POOLS
A space-separated list of the server pools to which a particular resource can belong. If a resource can run on any server in a cluster, then use the default value, *, unless the resource is a cluster_resource type, in which case, the default value for the SERVER_POOLS attribute is empty. Only cluster administrators can specify * as the value for this attribute.

- Use the PLACEMENT attribute with the SERVER_POOLS attribute, as follows: If you set the value of the PLACEMENT attribute to either restricted or favored, then you must also provide a value for the SERVER_POOLS attribute when using policy management for the resource.
- If the value for PLACEMENT is set to balanced, then the resource only runs in the Generic and Free pools, unless SERVER_POOLS=*

This attribute creates an affinity between a resource and one or more server pools regarding placement, and is dependent on the value of the PLACEMENT attribute.
Usage Example
SERVER_POOLS=pool1 pool2 pool3

START_DEPENDENCIES
Specifies a set of relationships that Oracle Clusterware considers when starting a resource. You can specify a space-separated list of dependencies on several resources and resource types on which a particular resource can depend.

Syntax
START_DEPENDENCIES=dependency(resource_set) [dependency(resource_set)] [...]

In the preceding syntax example the variables are defined, as follows:

- **dependency**: Possible values are hard, weak, attraction, pullup, and dispersion. You can specify each dependency only once, except for pullup, which you can specify multiple times.
- **resource_set**: A comma-delimited list of resource entities—either individual resources or resource types—enclosed in parentheses (), in the form of res1[, res2[, ...]], upon which the resource you are configuring depends.

Each resource entity is defined, as follows:

$[modifier1:[modifier2:]] {resource_name | type:resource_type}$

In the preceding syntax example, **resource_name** is the name of a specific resource and **type:resource_type** is the name of a specific resource type. The resource type must be preceded by **type** and the **type** modifier must be the last resource entity in the list.

Optionally, you can specify modifiers to further configure resource entity dependencies. You can modify each dependency by prefixing the following modifiers to the resource entity:

- **hard([intermediate:][global:]{resource_name | type:resource_type})**—Specify a hard start dependency for a resource when you want the resource to start only when a particular resource or resource of a particular type starts.

Use **intermediate** to specify that Oracle Clusterware can start this resource if a resource on which it depends is in either the ONLINE or INTERMEDIATE state. If not specified, then resources must be in the ONLINE state for Oracle Clusterware to start this resource.

Use **global** to specify that resources are not required to reside on the same server as a condition to Oracle Clusterware starting this resource. If not specified, then resources must reside on the same server for Oracle Clusterware to start this resource.
If you specify the hard dependency on a resource type for a resource, then the resource can start if any resource of that particular type is running.

Note: Oracle recommends that resources with hard start dependencies also have pullup start dependencies.

- weak([concurrent:][global:][uniform:]{resource_name | type:resource_type})—Specify a weak start dependency for a resource when you want that resource to start despite whether named resources are running, or not. An attempt to start this resource also attempts to start any resources on which this resource depends if they are not running.

Use concurrent to specify that Oracle Clusterware can start a dependent resource while a resource on which it depends is in the process of starting. If concurrent is not specified, then resources must complete startup before Oracle Clusterware can start the dependent resource.

Use global to specify that resources are not required to reside on the same server as a condition to Oracle Clusterware starting the dependent resource.

Use uniform to start all instances of the resource everywhere the resource can run. If you do not specify a modifier (the default), then the resource starts on the same server as the resource on which it depends.

If you specify the weak start dependency on a resource type for a resource, then the resource can start if any resource of that particular type is running.

- attraction([intermediate:]{resource_name | type:resource_type})—Use the attraction start dependency when you want this resource to run on the same server with a particular named resource or any resource of a particular type.

Use intermediate to specify that this resource is attracted to resource entities on which it depends that are in the INTERMEDIATE state. If not specified, then resources must be in the ONLINE state to attract the dependent resource.

If you specify the attraction dependency on a resource type for a resource, then any resource of that particular type attracts the dependent resource.

- pullup[:always]([intermediate:][global:]{resource_name | type:resource_type})—When you specify the pullup start dependency for a resource, then this resource starts as a result of named resources starting.

Use the always modifier for pullup so that Oracle Clusterware starts this resource despite the value of its TARGET attribute, whether that value is ONLINE or OFFLINE. Otherwise, if you do not specify the always modifier, then Oracle Clusterware starts this resource only if the value of the TARGET attribute is ONLINE for this resource.

Use intermediate to specify that Oracle Clusterware can start this resource if a resource on which it depends is in either the ONLINE or INTERMEDIATE state. If not specified, then resources must be in the ONLINE state for Oracle Clusterware to start this resource.

Use global to specify that resources on which this resource depends are not required to reside on the same server as a condition to Oracle Clusterware starting this resource. If not specified, then resources on which this resource depends must reside on the same server for Oracle Clusterware to start this
resource.

If you specify the pullup dependency on a resource type for a resource, then, when any resource of that particular type starts, Oracle Clusterware can start this resource.

Note: Oracle recommends that resources with hard start dependencies also have pullup start dependencies.

- dispersion[:active][[intermediate:]\{resource_name | type:resource_type\}]
 — Specify the dispersion start dependency for a resource that you want to run on a server that is different from the named resources or resources of a particular type. Resources may still end up running on the same server, depending on availability of servers.

 Use the active modifier to configure the dispersion dependency so that Oracle Clusterware attempts to relocate the dependent resource to another server if it is co-located with another resource and another server comes online. Oracle Clusterware does not relocate resources to newly available servers unless you specify the active modifier.

 Use intermediate to specify that Oracle Clusterware can relocate the dependent resource if a resource is in either the ONLINE or INTERMEDIATE state. If not specified, then resources must be in the ONLINE state for dispersion of the dependent resource to occur.

 See Also: "Start Dependencies" on page 6-11 for more details about start dependencies

START_TIMEOUT

The maximum time (in seconds) in which a start action can run. Oracle Clusterware returns an error message if the action does not complete within the time specified. If you do not specify a value for this attribute or you specify 0 seconds, then Oracle Clusterware uses the value of the SCRIPT_TIMEOUT attribute.

Usage Example

```
START_TIMEOUT=30
```

See Also: "SCRIPT_TIMEOUT" on page B-8 for more information about this attribute

STOP_DEPENDENCIES

Specifies a set of relationships that Oracle Clusterware considers when stopping a resource.

Syntax

```
STOP_DEPENDENCIES=dependency(resource_set) [dependency(resource_set)] ...
```

In the preceding syntax example the variables are defined, as follows:

- **dependency:** The only possible value is hard.
- **resource_set:** A comma-delimited list, in the form of res1[, res2 [,...]], of resource entities—either individual resources or resource types—upon which the resource you are configuring depends.
Each resource entity is defined, as follows:

```
[modifier1:[modifier2:[modifier3:]] resource_name | type:resource_type
```

In the preceding syntax example, `resource_name` is the name of a specific resource and `type:resource_type` is the name of a specific resource type. The resource type must be preceded by `type:`.

Optionally, you can specify modifiers to further configure resource entity dependencies. You can modify each dependency by prefixing the following modifiers to the resource entity:

```
hard([intermediate:][global:][shutdown:]{resource_name | type:resource_type})
```

—Specify a hard stop dependency for a resource that you want to stop when named resources or resources of a particular resource type stop.

Use `intermediate` to specify that the dependent resource can remain in an `ONLINE` state if a resource is in either the `ONLINE` or `INTERMEDIATE` state. If not specified, then Oracle Clusterware stops the dependent resource unless resources are in the `ONLINE` state.

Use `global` to specify that the dependent resource remains in an `ONLINE` state if a resource is in an `ONLINE` state on any node in the cluster. If not specified, then when resources residing on the same server go offline, Oracle Clusterware stops the dependent resource.

Use `shutdown` to apply this dependency when the Oracle Clusterware stack is shut down. This is a convenient way to affect the order of stopping resources when stopping the stack, without having any affect on planned or unplanned events on the individual resources. This dependency, when used with the `shutdown` modifier, does not go into effect if somebody stops the resource directly, but only when the stack is shut down.

See Also: "Stop Dependencies" on page 6-14 for more details about stop dependencies

STOP_TIMEOUT

The maximum time (in seconds) in which a `stop` or `clean` action can run. Oracle Clusterware returns an error message if the action does not complete within the time specified. If you do not specify this attribute or if you specify 0 seconds, then Oracle Clusterware uses the value of the `SCRIPT_TIMEOUT` attribute.

Usage Example

```
STOP_TIMEOUT=30
```

See Also:
- "SCRIPT_TIMEOUT" on page B-8 for more information about this attribute
- "START_TIMEOUT" on page B-11 for more information about this attribute

TYPE

The type of resource indicated when you create a resource. This attribute is required when creating a resource.
Usage Example

See Also: "Resource Types" on page 6-3 for details of resource types

UPTIME_THRESHOLD

The value for UPTIME_THRESHOLD represents the length of time that a resource must be up before Oracle Clusterware considers the resource to be stable. By setting a value for the UPTIME_THRESHOLD attribute, you can indicate the stability of a resource.

Enter values for this attribute as a number followed by a letter that represents seconds (s), minutes (m), hours (h), days (d), or weeks (w). For example, a value of 7h represents an uptime threshold of seven hours.

After the time period you specify for UPTIME_THRESHOLD elapses, Oracle Clusterware resets the value for RESTART_COUNT to 0 at the next resource state change event, such as stop, start, relocate, or failure. Oracle Clusterware can alert you when the value for RESTART_COUNT reaches the value that you set for RESTART_ATTEMPTS. The counter is effectively reset the next time the resource fails or restarts. The threshold represents the amount of time that restarts are to be counted and discarded. If the resource fails after the threshold, it will still restart.

Note: Oracle Clusterware writes an alert to the clusterware alert log file when the value for RESTART_COUNT reaches the value that you set for RESTART_ATTEMPTS.

See Also:

- "RESTART_ATTEMPTS" on page B-8 for more information about this attribute
- "RESTART_COUNT" on page B-15 for more information about this attribute
Read-Only Resource Attributes

You can view these attributes when you run the `crsctl status resource` command on a particular resource. Oracle Clusterware sets these attributes when you register resources.

- **ACTION_FAILURE_EVENT_TEMPLATE**
- **INTERNAL_STATE**
- **LAST_SERVER**
- **LAST_STATE_CHANGE**
- **PROFILE_CHANGE_EVENT_TEMPLATE**
- **RESTART_COUNT**
- **STATE**
- **STATE_CHANGE_EVENT_TEMPLATE**
- **STATE_DETAILS**
- **TARGET**

ACTION_FAILURE_EVENT_TEMPLATE

This is an internally-managed attribute for an ora.* resource. You cannot edit this attribute.

INTERNAL_STATE

An internally managed, read-only attribute that describes what, if any, action the policy engine is currently executing on the resource. Possible values and their meanings are as follows:

- **STARTING**: The policy engine is currently starting the resource
- **STOPPING**: The policy engine is currently stopping the resource
- **CLEANING**: The policy engine is currently cleaning the resource
- **STABLE**: The policy engine is not currently executing any action on the resource

Note, however, that the resource can still be locked as part of some other command.

LAST_SERVER

For cluster_resource-type resources, this is an internally managed, read-only attribute that contains the name of the server on which the last start action for the resource succeeded.

For local_resource-type resources, this is the name of the server to which the resource instance is pinned.

LAST_STATE_CHANGE

An internally managed, read-only attribute that describes when the policy engine registers the current state of the resource. Note that this may either be the timestamp of when state of the resource changed or when the policy engine discovered the state, as occurs when crsd restarts.
PROFILE_CHANGE_EVENT_TEMPLATE

This is an internally-managed attribute for an ora.* resource. You cannot edit this attribute.

RESTART_COUNT

An internally-managed attribute used by the Oracle Clusterware daemon to count the number of attempts to restart a resource, starting from zero up to the value specified in the RESTART_ATTEMPTS attribute. You cannot edit this attribute.

STATE

An internally-managed attribute that reflects the current state of the resource as reported by Oracle Clusterware. The state of a resource can be one of the following:

- ONLINE: The resource is online and resource monitoring is enabled (see CHECK_INTERVAL).
- OFFLINE: The resource is offline and only offline resource monitoring is enabled, if configured (see OFFLINE_CHECK_INTERVAL).
- INTERMEDIATE: The resource is either partially online or was known to be online before and subsequent attempts to determine its state have failed; resource monitoring is enabled (see CHECK_INTERVAL).
- UNKNOWN: The resource is unmanageable and its current state is unknown; manual intervention is required to resume its operation. A resource in this state is not monitored.

STATE_CHANGE_EVENT_TEMPLATE

This is an internally-managed attribute for an ora.* resource. You cannot edit this attribute.

STATE_DETAILS

An internally managed, read-only attribute that contains details about the state of a resource.

The four resource states—ONLINE, OFFLINE, UNKNOWN, and INTERMEDIATE—may map to different resource-specific values, such as mounted, unmounted, and open. Resource agent developers can use the STATE_DETAILS attribute to provide a more detailed description of this mapping, resource to the resource state.

Providing details is optional. If details are not provided, then Oracle Clusterware uses only the four possible resource states. Additionally, if the agent cannot provide these details (as may also happen to the value of the resource state), then Oracle Clusterware sets the value of this attribute to provide minimal details about why the resource is in its current state.

TARGET

An internal, read-only attribute that describes the desired state of a resource. Using the crsct1 start resource_name or crsct1 stop resource_name commands, however, can affect the value of this attribute.
Examples of Action Scripts for Third-Party Applications

This section includes examples of third-party applications using script agents. Example B–1 shows an action script that fails over the Apache Web server.

Example B–1 Apache Action Script

```bash
#!/bin/sh

HTTPDCONFLOCATION=/etc/httpd/conf/httpd.conf
WEBPAGECHECK=http://<MyVIP>:80/icons/apache_pb.gif

case $1 in
 'start')
   /usr/sbin/apachectl -k start -f $HTTPDCONFLOCATION
   RET=$?
   ;;
sleep(10)
   ;;
 'stop')
   /usr/sbin/apachectl -k stop
   RET=$?
   ;;
 'clean')
   /usr/sbin/apachectl -k stop
   RET=$?
   ;;
 'check')
   /usr/bin/wget -q --delete-after $WEBPAGECHECK
   RET=$?
   ;;
*)
   RET=0
   ;;
esac

# 0: success; 1 : error
if [ $RET -eq 0 ]; then
  exit 0
else
  exit 1
fi
```

Example B–2 shows the xclock script, which is a simple action script using xclock available as a default binary on all Linux and UNIX platforms.

Example B–2 xclock Action Script

```bash
#!/bin/bash

# start/stop/check script for xclock example
# To test this change BIN_DIR to the directory where xclock is based
# and set the DISPLAY variable to a server within your network.

BIN_DIR=/usr/X11R6/bin
LOG_DIR=/tmp
BIN_NAME=xclock
DISPLAY=yourhost.domain.com:0.0
export DISPLAY
exit_code=0
```
if [! -d $BIN_DIR]
then
 echo 'start failed'
 exit 2
fi

PID1=`ps -ef | grep $BIN_NAME | grep -v grep | grep -v xclock_app | awk '{ print $2 }'``

case $1 in
 'start')
 if ["$PID1" != ""]
 then
 status_p1="running"
 else
 if [! -x $BIN_DIR/$BIN_NAME]
 then
 umask 002
 ${BIN_DIR}/${BIN_NAME} & 2>${LOG_DIR}/${BIN_NAME}.log
 status_p1="started"
 else
 echo `basename $0"*: $BIN_NAME: Executable not found"
 exit_code=1
 fi
 fi
 fi
 echo "$BIN_NAME: $status_p1"
 exit $exit_code
 ;;
 'stop')
 if ["$PID1" != ""]
 then
 kill -9 ${PID1} && echo "$BIN_NAME daemon killed"
 else
 echo "$BIN_NAME: no running Process!"
 fi
 exit $exit_code
 ;;
 'check')
 if ["$PID1" != ""]
 then
 echo "running"
 exit 0
 else
 echo "not running"
 exit 1
 fi
 ;;*
 echo "Usage: `basename $0"*: $start|stop|check"
 ;;
esac

Example B–3 shows an example of a shell script for an agent to monitor a file. When the agent is started, it creates the file (which is specified through an attribute) and when it is stopped, it deletes the file. The CHECK action consists of merely checking if the file exists or not. The variables with the _CRS_ prefix are attribute values that are provided to the script in its environment.
Example B–3 Action Script Example

```bash
#!/bin/sh
TOUCH=/bin/touch
RM=/bin/rm
PATH_NAME=/tmp/$_CRS_NAME

#
# These messages go into the CRSD agent log file.
# echo " *******  `date`  ********** 
# echo "Action script \$$_CRS_ACTION_SCRIPT\" for resource[\$$_CRS_NAME\] called for action \$1\"
#

case "\$1" in
  'start')
    echo "START entry point has been called.."
    echo "Creating the file: \$PATH_NAME"
    $TOUCH \$PATH_NAME
    exit 0
  ;;

  'stop')
    echo "STOP entry point has been called.."
    echo "Deleting the file: \$PATH_NAME"
    \$RM \$PATH_NAME
    exit 0
  ;;

  'check')
    echo "CHECK entry point has been called.."
    if [ -e \$PATH_NAME ]; then
      echo "Check -- SUCCESS"
      exit 0
    else
      echo "Check -- FAILED"
      exit 1
    fi
  ;;

  'clean')
    echo "CLEAN entry point has been called.."
    echo "Deleting the file: \$PATH_NAME"
    \$RM -f \$PATH_NAME
    exit 0
  ;;

esac
```
This appendix describes the syntax and command options for the olsnodes command.

This appendix contains the following topics:

- **Using OLSNODES**
 - Overview
 - Operational Notes
- **Summary of the OLSNODES Command**
Using OLSNODES

This section contains topics which relate to using the OLSNODES command.

- Overview
- Operational Notes
Overview

The `olsnodes` command provides the list of nodes and other information for all nodes participating in the cluster.

You can use this command to quickly check that your cluster is operational, and all nodes are registered as members of the cluster. This command also provides an easy method for obtaining the node numbers.
Operational Notes

Usage Information
This command is used by the Cluster Verification Utility (CLUVFY) to obtain a list of node names when the `-n all` option is used.

This command utility is located in the `$ORA_CRS_HOME/bin` directory. You can only use this command if the CRS daemon is started.

Privileges and Security
You can run this command as either the `root` user, the user that installed Oracle Clusterware, or the user that installed Oracle Database.
Summary of the OLSNODES Command

The `olsnodes` command does not use keywords, but accepts one or more options. The available options are described in Table C–1.

Syntax

```
olsnodes [[-n] [-i] [-s] [-t] [node_name | -l [-p]] | [-c]] [-g] [-v]
```

If you issue the `olsnodes` command without any command parameters, the command returns a listing of the nodes in the cluster:

```
[root@node1]# olsnodes
node1
node2
node3
node4
```

Table C–1 OLSNODES Command Options

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n</code></td>
<td>Lists all nodes participating in the cluster and includes the assigned node numbers.</td>
</tr>
<tr>
<td><code>-i</code></td>
<td>Lists all nodes participating in the cluster and includes the Virtual Internet Protocol (VIP) address assigned to each node.</td>
</tr>
<tr>
<td><code>-s</code></td>
<td>Displays the status of the node: active or inactive.</td>
</tr>
<tr>
<td><code>-t</code></td>
<td>Displays node type: pinned or unpinned.</td>
</tr>
<tr>
<td><code>node_name</code></td>
<td>Displays information for a particular node.</td>
</tr>
<tr>
<td><code>-l [-p]</code></td>
<td>Lists the local node and includes the private interconnect for the local node. The <code>-p</code> option is only valid when you specify along with the <code>-l</code> option.</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>Displays the name of the cluster.</td>
</tr>
<tr>
<td><code>-g</code></td>
<td>Logs cluster verification information with more details.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Logs cluster verification information in verbose mode. Use in debug mode and only at the direction of My Oracle Support.</td>
</tr>
</tbody>
</table>

Usage Notes

Examples

Include here the most common uses of this command. For example:

Example 1: List the VIP addresses for all nodes currently in the cluster

To list the VIP addresses for each node that is currently a member of the cluster, use the command:

```
[root@node1]# olsnodes -i
node1 168.92.1.1
```
Example 2: List the node names and node numbers for cluster members
To list the node name and the node number for each node in the cluster, use the command:

[root@node1]# olsnodes -n
node1 1
node2 2
node3 3
node4 4
The Oracle Interface Configuration Tool (OIFCFG) command-line interface helps you to define and administer network interfaces. You can use OIFCFG commands Oracle Clusterware environments to:

- Allocate and deallocate network interfaces to components
- Direct components to use specific network interfaces
- Retrieve component configuration information

This appendix includes the following topics:

- Starting the OIFCFG Command-Line Interface
- Summary of the OIFCFG Usage
Starting the OIFCFG Command-Line Interface

Before you invoke OIFCFG, ensure that you have started Oracle Clusterware on at least the local node and preferably on all nodes if you intend to include the -global option on the command.

Note: To change the global network interface, Oracle Clusterware must be running on all cluster nodes.

Run OIFCFG from the Grid_home/bin/ directory as the user who installed the Oracle Clusterware software. For example:

```
$ ./oifcfg
```

Run the oifcfg -help command to display online help for OIFCFG.

```
$ ./oifcfg -help
```

Name: oifcfg - Oracle Interface Configuration Tool.

Usage:

```
oifcfg iflist [-p [-n]]
oifcfg setif (-node nodename | -global) [if_name/subnet:if_type]...
oifcfg getif [-node nodename | -global] [-if if_name] [subnet] [-type if_type]
oifcfg delif {{-node nodename | -global} [if_name][subnet]} [-force] |
oifcfg [-help]
```

- **nodename** - name of the host, as known to a communications network
- **if_name** - name by which the interface is configured in the system
- **subnet** - subnet address of the interface
- **if_type** - type of the interface (cluster_interconnect | public)
Summary of the OIFCFG Usage

This section contains the following topics:

- OIFCFG Command Format
- OIFCFG Commands
- OIFCFG Command Parameters
- OIFCFG Usage Notes
- OIFCFG Examples

OIFCFG Command Format

```
oifcfg iflist [-p [-n]]
oifcfg setif {-node nodename | -global} {if_name/subnet:if_name}...
oifcfg getif {-node nodename | -global} {if_name/subnet} [-type if_type]
oifcfg delif {{-node nodename | -global} {if_name/subnet} [-force]}
oifcfg [-help]
```

OIFCFG Commands

You can enter any of the OIFCFG commands listed in Table D-1.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| oifcfg iflist [-p [-n]] | Shows the available interfaces that you can configure with setif. The iflist command queries the operating system to find which network interfaces are present on this node. You can specify two options with this command:
| | -p: Displays a heuristic assumption of the interface type (PRIVATE, PUBLIC, or UNKNOWN) |
| | -n: Displays the netmask |
| oifcfg setif | Sets an interface type (public or cluster interconnect) for an interface. |
| oifcfg getif | Displays the interfaces for which an interface type has been defined with the setif command, along with the type for that interface. |
| oifcfg delif | Deletes the stored network configuration for global or node-specific interfaces. You can use the -force option without specifying the -node or -global options to delete the stored network configurations from all nodes in the cluster. |

OIFCFG Command Parameters

This section lists the parameters for the OIFCFG commands. Note that some parameters are optional, depending on which command you run.

- **-node nodename**

The name of the Oracle Clusterware node as listed in the output from the olsnodes command. Appendix C, "OLSNODES Command Reference" describes the OLSNODES command.
A network interface can be stored as a global interface (as reported by the `iflist` command) or as a node-specific interface:

- An interface is stored as a global interface when all of the nodes of an Oracle Real Application Clusters (Oracle RAC) cluster have the same interface connected to the same subnet. The global interface (and configuring all nodes with the same network interface for each public subnet and the same network interface for each private subnet) is not only the recommended configuration, but it is also the default installation configuration.

- An interface can be stored as a node-specific (local) interface.

Note: Oracle currently does not support having different network interfaces for each node in the cluster. The best practice is to configure all nodes with the same network interface for each public subnet and the same network interface for each private subnet.

-If if_name
The name by which the interface is configured in the system.

subnet
The subnet number of the interface.

-type if_type
The type of interface: public or cluster_interconnect.

-help
Display online help for OIFCFG commands.

OIFCFG Usage Notes

- A network interface specification takes the following form:

 \[if_name/subnet:if_type \]

 The specification uniquely identifies the network interface using the:

 - Interface name

 When using the `oifcfg setif` command, you can specify interface names that contain wildcard characters, such as an asterisk (*), which matches any string. However, you must surround interface names that contain wildcards with double quotation marks (" ").

 Note: If you use wildcards on pre-Oracle Database 11g release 2 (11.2.0.2) databases, then Oracle resolves the interface name by expanding the wildcard on the local node. Therefore, using wildcards is not recommended on clusters with pre-Oracle Database 11g release 2 (11.2.0.2) databases. If you use wildcards with pre-Oracle Database 11g release 2 (11.2.0.2) databases, then those databases must use the `CLUSTER_INTERCONNECTS` parameter instead.

 - Associated subnet
 - Interface type
The interface type indicates the purpose for which the network is configured. The supported interface types are:

- **public**: An interface that can be used for communication with components external to Oracle RAC instances, such as Oracle Net and Virtual Internet Protocol (VIP) addresses.

- **cluster_interconnect**: A private interface used for the cluster interconnect to provide interinstance or Cache Fusion communication.

If you set the interface type to `cluster_interconnect`, then it affects instances as they start and changes do not take effect until you restart the instances.

For example, the following specification identifies `qfe0` as a cluster interconnect located at the address 204.152.65.0:

```
qfe0/204.152.65.0:cluster_interconnect
```

- The Oracle Universal Installer uses OIFCFG to identify and display available interfaces.

- The effect of changing the interface names depends on which name you are changing, and whether you are also changing the IP address. In cases where you change only the interface names, the ramifications are minor. If you change the name for the public interface that is stored in the Oracle Cluster Registry (OCR), you must modify the nodeapps for each node. Therefore, you must stop the nodeapps for this change to take effect.

- You must restart Oracle Clusterware on all members of the cluster when you make global changes. For local changes, you need only to perform a node restart. Interconnect changes for the database occur at instance startup. However, the interconnect for Oracle Clusterware might be different.

- Because interconnects are chosen when instances start, just issuing OIFCFG commands does not have an immediate effect on the running system. Instead, changes take effect after restarting the component that might be affected by the command.

- Changes you make to cluster-wide network classifications with OIFCFG require all known cluster nodes to be up so that their Grid Plug and Play profiles can be updated.

OIFCFG Examples

The following examples show some common uses for the OIFCFG commands.

Example 1 Listing the Names of Network Interfaces

You can use OIFCFG to list the interface names and the subnets of all of the interfaces available on the local node by executing the `iflist` keyword, as shown in this example:

```
oifcfg iflist
eth0  172.19.141.0
eth1  172.21.65.0
```

1 Cache Fusion is a diskless cache coherency mechanism that provides copies of blocks directly from a holding instance's memory cache to a requesting instance's memory cache.
Example 2 Retrieving Network Information
You can also retrieve specific OIFCFG information with a `getif` command.
For example, after you install Oracle Clusterware, you can verify that the public and cluster interconnect have been set to the desired values by entering the following command:

```
$ oifcfg getif
```

This command returns values for global public and global cluster interconnect, similar to the following:
```
et0 172.19.141.0 global public
net1 172.21.65.0 global cluster_interconnect
```

Example 3 Storing a Global Interface
To store an interface, use the `setif` keyword. For example, to store the interface `eth0`, with the subnet `172.19.141.0`, as a global interface (to be used as an interconnect for all of the Oracle RAC instances in your cluster and Oracle Clusterware), use the command:

```
oifcfg setif -global eth0/172.19.141.0:cluster_interconnect
```

Note: Ensure that all nodes are running when you run the `setif` command because Oracle cannot update Grid Plug and Play profiles on nodes that are not running.

Example 4 Deleting the Stored Interface
Use the `oifcfg delif` command to delete the stored configuration for global or node-specific interfaces. A specific node-specific or global interface can be deleted by supplying the interface name, with an optional subnet, on the command line.

```
oifcfg delif -global eth1/172.21.65.0
```

Note: If you only enter `oifcfg delif`, with no other arguments given on the command line, then OIFCFG deletes all interfaces on all nodes in the cluster.

For example, the following command deletes the global interface named `eth1` for the subnet `172.21.65.0`:

```
oifcfg delif -global eth1/172.21.65.0
```

The following command deletes all of the global interfaces assigned with OIFCFG:

```
oifcfg delif -global
```
This appendix describes how to administer Oracle Clusterware using the Oracle Clusterware Control (CRSCTL) utility.

Note: Do not use CRSCTL commands on Oracle entities (such as resources, resource types, and server pools) that have names beginning with `ora` unless you are directed to do so by My Oracle Support. The Server Control utility (SRVCTL) is the correct utility to use on Oracle entities.

This appendix includes the following topics:

- **CRSCTL Overview**
 - Operational Notes
 - Deprecated Subprograms or Commands
- **CRSCTL Command Reference**
 - Dual Environment CRSCTL Commands
 - Oracle RAC Environment CRSCTL Commands
 - Oracle Restart Environment CRSCTL Commands
- **Troubleshooting and Diagnostic Output**
CRSCTL Overview

CRSCTL is an interface between you and Oracle Clusterware, parsing and calling Oracle Clusterware APIs for Oracle Clusterware objects.

Oracle Clusterware 11g release 2 (11.2) introduces cluster-aware commands with which you can perform check, start, and stop operations on the cluster. You can run these commands from any node in the cluster on another node in the cluster, or on all nodes in the cluster, depending on the operation.

You can use CRSCTL commands to perform several operations on Oracle Clusterware, such as:

- Starting and stopping Oracle Clusterware resources
- Enabling and disabling Oracle Clusterware daemons
- Checking the health of the cluster
- Managing resources that represent third-party applications
- Integrating Intelligent Platform Management Interface (IPMI) with Oracle Clusterware to provide failure isolation support and to ensure cluster integrity
- Debugging Oracle Clusterware components
Clusterized (Cluster Aware) Commands

You can run clusterized commands on one node to perform operations on another node in the cluster. These are referred to as remote operations. This simplifies administration because, for example, you no longer have to log in to each node to check the status of the Oracle Clusterware on all of your nodes.

Clusterized commands are completely operating system independent; they rely on the OHASD (Oracle High Availability Services daemon). If this daemon is running, then you can perform remote operations, such as the starting, stopping, and checking the status of remote nodes.

Clusterized commands include the following:

- `crsctl check cluster`
- `crsctl start cluster`
- `crsctl stop cluster`
Operational Notes

Usage Information

■ The CRSCTL utility is located in the Grid_home/bin directory. To run CRSCTL commands, type in crsctl at the operating system prompt followed by the command and arguments, as shown in the following example:

```bash
crsctl stop crs
```

■ There are three categories of CRSCTL commands:
 – Those that you use in either the Oracle Real Application Clusters (Oracle RAC) environment or in the Oracle Restart environment
 – Those that you use in the Oracle RAC environment, only
 – Those that you use in the Oracle Restart environment, only

■ Many CRSCTL commands use the `-f` option to force the command to run and ignore any checks.

For example, if you specify the force option for the `crsctl stop resource` command on a resource that is running and has dependent resources that are also running, then the force option omits the error message and instead stops or relocates all the dependent resources before stopping the resource you reference in the command.

■ *Do not* use versions of CRSCTL earlier than 11g release 2 (11.2) to manage Oracle Clusterware 11g release 2 (11.2).

Using CRSCTL Help

To print the help information for CRSCTL, use the following command:

```bash
crsctl -help
```

If you want help for a specific command, such as `start`, then enter the command and append `-help` to the end, as shown in the following example:

```bash
crsctl start -help
```

You can also use the abbreviations `-h` or `-?` (this option functions in Linux, UNIX, and Windows environments) instead of `-help`.
Table E–1 lists the commands that are deprecated in Oracle Clusterware 11g release 2 (11.2) and their replacements that you can use to perform the same or similar functionality. These commands are not supported in an Oracle Restart environment:

<table>
<thead>
<tr>
<th>Deprecated Command</th>
<th>Replacement Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>crs_stat</td>
<td>crsctl check cluster -all</td>
</tr>
<tr>
<td></td>
<td>crsctl stat res -t</td>
</tr>
<tr>
<td>crs_register</td>
<td>crsctl add resource</td>
</tr>
<tr>
<td></td>
<td>crsctl add type</td>
</tr>
<tr>
<td></td>
<td>crsctl modify resource</td>
</tr>
<tr>
<td></td>
<td>crsctl modify type</td>
</tr>
<tr>
<td>crs_unregister</td>
<td>crsctl stop resource</td>
</tr>
<tr>
<td></td>
<td>crsctl modify resource resource_name -attr</td>
</tr>
<tr>
<td></td>
<td>"AUTO_START=never"</td>
</tr>
<tr>
<td>crs_start</td>
<td>crsctl start resource</td>
</tr>
<tr>
<td></td>
<td>crsctl start crs</td>
</tr>
<tr>
<td></td>
<td>crsctl start cluster</td>
</tr>
<tr>
<td>crs_stop</td>
<td>crsctl stop resource</td>
</tr>
<tr>
<td></td>
<td>crsctl stop crs</td>
</tr>
<tr>
<td></td>
<td>crsctl stop cluster</td>
</tr>
<tr>
<td>crs_getperm</td>
<td>crsctl getperm resource</td>
</tr>
<tr>
<td></td>
<td>crsctl getperm type</td>
</tr>
<tr>
<td>crs_profile</td>
<td>crsctl add resource</td>
</tr>
<tr>
<td></td>
<td>crsctl add type</td>
</tr>
<tr>
<td></td>
<td>crsctl status resource</td>
</tr>
<tr>
<td></td>
<td>crsctl status type</td>
</tr>
<tr>
<td></td>
<td>crsctl modify resource</td>
</tr>
<tr>
<td></td>
<td>crsctl modify type</td>
</tr>
<tr>
<td>crs_relocate</td>
<td>crsctl relocate resource</td>
</tr>
<tr>
<td>crs_setperm</td>
<td>crsctl setperm resource</td>
</tr>
<tr>
<td></td>
<td>crsctl setperm type</td>
</tr>
<tr>
<td>crsctl check crsd</td>
<td>crsctl check crs</td>
</tr>
<tr>
<td>crsctl check cssd</td>
<td>crsctl check css</td>
</tr>
<tr>
<td>crsctl check evmd</td>
<td>crsctl check evm</td>
</tr>
<tr>
<td>crsctl debug res log</td>
<td>crsctl set log</td>
</tr>
<tr>
<td>resource_name:level</td>
<td></td>
</tr>
<tr>
<td>crsctl set css votedisk</td>
<td>crsctl add css votedisk</td>
</tr>
<tr>
<td></td>
<td>crsctl delete css votedisk</td>
</tr>
<tr>
<td></td>
<td>crsctl query css votedisk</td>
</tr>
<tr>
<td></td>
<td>crsctl replace votedisk</td>
</tr>
</tbody>
</table>
Table E-1 (Cont.) Deprecated CRSCCTL Commands and Replacements

<table>
<thead>
<tr>
<th>Deprecated Command</th>
<th>Replacement Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>crsctl start resources</td>
<td>crsctl start resource -all</td>
</tr>
<tr>
<td>crsctl stop resources</td>
<td>crsctl stop resource -all</td>
</tr>
</tbody>
</table>
This section is separated into three categories of CRSCTL commands:

- Dual Environment CRSCTL Commands
- Oracle RAC Environment CRSCTL Commands
- Oracle Restart Environment CRSCTL Commands
You can use the following commands in either the Oracle RAC or the Oracle Restart environments:

- `crsctl add resource`
- `crsctl add type`
- `crsctl check css`
- `crsctl check evm`
- `crsctl delete resource`
- `crsctl delete type`
- `crsctl get hostname`
- `crsctl getperm resource`
- `crsctl getperm type`
- `crsctl modify resource`
- `crsctl modify type`
- `crsctl setperm resource`
- `crsctl setperm type`
- `crsctl start resource`
- `crsctl status resource`
- `crsctl status type`
- `crsctl stop resource`

`crsctl add resource`

Use the `crsctl add resource` command to register a resource to be managed by Oracle Clusterware. A resource could be an application process, a database, a service, a listener, and so on.

Syntax

```
crsctl add resource resource_name -type resource_type [-file file_path | -attr "attribute_name=attribute_value,attribute_name=attribute_value,..."] [-i] [-f]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>resource_name</code></td>
<td>A short, descriptive name for the resource.</td>
</tr>
<tr>
<td><code>-type</code> resource_type</td>
<td>The type of resource that you are adding preceded by the <code>-type</code> flag.</td>
</tr>
<tr>
<td><code>-file</code> file_path</td>
<td>Path name (either absolute or relative) for a text file containing line-separated attribute name-value pairs that define the resource.</td>
</tr>
</tbody>
</table>
You can specify attributes for a resource you are adding in two different ways:

- Following the -attr flag, you can specify one or more comma-delimited attribute name-value pairs enclosed in double quotations marks (" "). For example:

 `-attr "CHECK_INTERVAL=30,START_TIMEOUT=25"

 Additionally, you can specify attribute values for resource instances with a particular cardinality value, and with a particular degree value. This method can be useful for applications that are tied to a particular server. Following the -attr flag, the syntax is as follows:

 `attribute_name@SERVERNAME(server_name)[@DEGREEID(did)] | @CARDINALITYID(cid)[@DEGREEID(did)] = attribute_value`

 If you specify the @SERVERNAME(server_name) syntax, then the attribute value you specify for the attribute you specify is limited to resource instances residing on the server you specify.

 Alternatively, if you specify the @CARDINALITYID(cid) syntax, then the attribute value you specify for the attribute you specify is limited to resource instances with a specific cardinality ID (cid).

 Optionally, you can combine the @DEGREEID(did) syntax with either the SERVERNAME or CARDINALITYID syntax, or both, to limit the attribute value to resources with the specific DEGREE.

 Examples:

 `-attr "CHECK_INTERVAL@SERVERNAME(node1)=45"
 `-attr "STOP_TIMEOUT@CARDINALITYID(2)=65"
 `-attr "STOP_TIMEOUT@SERVERNAME(node1)@DEGREEID(2)=65"
 `-attr "STOP_TIMEOUT@CARDINALITYID(3)@DEGREEID(2)=65"

- i

If you specify -i, then the command returns an error if processing this command requires waiting for Oracle Clusterware to unlock the resource or its dependents. Sometimes, Oracle Clusterware locks resources or other objects to prevent commands from interfering with each other.

- f

Use the force option:

- To add a resource that has dependencies on other resources that do not yet exist. The force option overrides checks that would prevent a command from being completed.

- To add a resource if the resource has hard dependencies on other resources and the owner of the resources does not execute permissions on one or more of the dependencies. If you do not specify the force option in this case, an error displays.

- To add resources of application type because you may need to move servers into the Generic server pool. If the servers currently host resources that must be stopped, then the force option is required.

Table E–2 (Cont.) crsctl add resource Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-attr 'attribute_name=attribute_value'</td>
<td>You can specify attributes for a resource you are adding in two different ways:</td>
</tr>
<tr>
<td>-i</td>
<td>If you specify -i, then the command returns an error if processing this command requires waiting for Oracle Clusterware to unlock the resource or its dependents. Sometimes, Oracle Clusterware locks resources or other objects to prevent commands from interfering with each other.</td>
</tr>
<tr>
<td>-f</td>
<td>Use the force option:</td>
</tr>
<tr>
<td></td>
<td>- To add a resource that has dependencies on other resources that do not yet exist. The force option overrides checks that would prevent a command from being completed.</td>
</tr>
<tr>
<td></td>
<td>- To add a resource if the resource has hard dependencies on other resources and the owner of the resources does not execute permissions on one or more of the dependencies. If you do not specify the force option in this case, an error displays.</td>
</tr>
<tr>
<td></td>
<td>- To add resources of application type because you may need to move servers into the Generic server pool. If the servers currently host resources that must be stopped, then the force option is required.</td>
</tr>
</tbody>
</table>
Usage Notes

- Both the `resource_name` and `-type resource_type` parameters are required. You can create an associated resource type using the `crsctl add type` command.

- Any user can create a resource but only clusterware administrators can create resources of type `local_resource` or resources of type `cluster_resource` that have `SERVER_POOLS=*`. Once a resource is defined, its ACL controls who can perform particular operations with it. The Oracle Clusterware administrator list is no longer relevant. On Windows, a member of the Administrators group has full control over everything.

 See Also: "crsctl setperm resource" on page E-19 for more information about setting ACLs

- If an attribute value for an attribute name-value pair contains commas, then the value must be enclosed in single quotation marks (`'`).

- Following is an example of an attribute file:

  ```
  PLACEMENT=favored
  HOSTING_MEMBERS=node1 node2 node3
  RESTART_ATTEMPTS@CARDINALITYID(1)=0
  RESTART_ATTEMPTS@CARDINALITYID(2)=0
  FAILURE_THRESHOLD@CARDINALITYID(1)=2
  FAILURE_THRESHOLD@CARDINALITYID(2)=4
  FAILURE_INTERVAL@CARDINALITYID(1)=300
  FAILURE_INTERVAL@CARDINALITYID(2)=500
  CHECK_INTERVAL=2
  CARDINALITY=2
  ```

- Do not use this command for any resources with names that begin with `ora` because these resources are Oracle resources.

Example

Example 1

To register a VIP as a resource with Oracle Clusterware:

```bash
$ crsctl add resource app.appvip -type app.appvip.type -attr "RESTART_ATTEMPTS=2,
START_TIMEOUT=100,STOP_TIMEOUT=100,CHECK_INTERVAL=10,
USRORA_VIP=172.16.0.0,
START_DEPENDENCIES=hard(ora.net1.network)pullup(ora.net1.network),
STOP_DEPENDENCIES=hard(ora.net1.network)"
```

Example 2

To register a resources based on the `test_type1` resource type:

```bash
$ crsctl add resource r1 -type test_type1 -attr "PATH_NAME=/tmp/r1.txt"
$ crsctl add resource r1 -type test_type1 -attr "PATH_NAME=/tmp/r2.txt"
```

See Also: Appendix B, "Oracle Clusterware Resource Reference" for more information about resources and resource attributes
crsctl add type

Use the `crsctl add type` command to create a resource type in Oracle Clusterware.

Syntax

```
crsctl add type type_name -basetype base_type_name {-attr
  'ATTRIBUTE=attribute_name | -file file_path,TYPE={string | int}
  [,DEFAULT_VALUE=default_value],FLAGS={READONLY | REQUIRED}"
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type_name</code></td>
<td>A name for the resource type in the form of <code>xxx.yyy.type</code>. Resource type names must be unique and cannot be changed after the resource type is registered.</td>
</tr>
<tr>
<td><code>-basetype base_type_name</code></td>
<td>The name of an existing base type. Any resource type that you create must either have <code>local_resource</code> or <code>cluster_resource</code> as its base resource type.</td>
</tr>
</tbody>
</table>
| `-attr` | You can specify the resource type attributes using the `-attr` argument. Each type attribute definition can contain up to four type attribute keywords that must be displayed in the order shown. Enter a comma-delimited description of one or more resource type attributes enclosed in double quotation marks (`"`). The keywords for an attribute include:
1. **ATTRIBUTE**: Specify a name for the attribute. The name is case-sensitive and cannot contain spaces.
2. **TYPE**: Specify whether the attribute type is `integer` or `string`.
3. **DEFAULT_VALUE**: (Optional) If the attribute is required, then a default value is not required. For attributes that are not required, you must specify a default value that Oracle Clusterware uses when you create resources based on this resource type. If you specify that this attribute is not required, then Oracle Clusterware uses the default value of this attribute that you specify.
4. **FLAGS**: (Optional) Specify whether the attribute is `READONLY` or `REQUIRED`. `READONLY` means that after you register a resource with this resource type, you cannot modify this attribute. `REQUIRED` means that you must specify the name and value of this attribute when you create a resource that is based on this resource type. If you specify that this attribute is not required, then Oracle Clusterware uses the default value of this attribute that you specify.

You cannot use multiple `-attr` arguments to define multiple arguments for the resource type. Instead, you can specify multiple types within the double quotation marks after the `-attr` flag. For example:

```
"ATTRIBUTE=FOO,TYPE=integer,DEFAULT_VALUE=0,FLAGS=REQUIRED,ATTRIBUTE=BAR,TYPE=string"
```

The preceding example defines two type attributes, `FOO` and `BAR`. When you specify the `ATTRIBUTE` keyword, it ends the previous type attribute (if any) and begins a new type attribute.
Usage Notes

- Both the `type_name` and `base_type_name` parameters are required.
- You can either specify a file containing the type information or you can specify the type information on the command line.
- Do not use this command for any resource types with names that begin with `ora` because these resource types are Oracle resource types.
- You must have read permissions on the base type.

Example

To create a resource type for `demoActionScript`:

```
# crsctl add type test_type1 -basetype cluster_resource
  -attr "ATTRIBUTE=FOO,TYPE=integer,DEFAULT_VALUE=0"
```

Note:
The keywords must be in the following order: `ATTRIBUTE`, `TYPE`, `DEFAULT_VALUE`, and `FLAGS`. When you specify the `ATTRIBUTE` keyword, it ends the previous type attribute (if any) and begins a new type attribute.

The preceding example defines two type attributes, `FOO` and `BAR`.

See Also: "Resource Types" on page 6-3 for more information about resource types.

Table E–3 (Cont.) crsctl add type Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-file file_path</td>
<td>Path name (either absolute or relative) for a text file containing line-separated resource type keyword-value pairs that define the resource type. An example of the contents of the file is:</td>
</tr>
</tbody>
</table>
| | `ATTRIBUTE=FOO`
| | `TYPE=integer`
| | `DEFAULT_VALUE=0`
| | `FLAGS=REQUIRED`
| | `ATTRIBUTE=BAR`
| | `TYPE=string`

Note: The keywords must be in the following order: `ATTRIBUTE`, `TYPE`, `DEFAULT_VALUE`, and `FLAGS`. When you specify the `ATTRIBUTE` keyword, it ends the previous type attribute (if any) and begins a new type attribute.

The preceding example defines two type attributes, `FOO` and `BAR`.

Example

The **crsctl check css** command returns output similar to the following:

```
Use the crsctl check css command to check the status of Cluster Synchronization Services. This command is most often used when Oracle Automatic Storage Management (Oracle ASM) is installed on the local server.
```

Syntax

```
crsctl check css
```

Usage Notes

-

Example

The **crsctl check css** command returns output similar to the following:
CRS-4529: Cluster Synchronization Services is online

crsctl check evm

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl check evm` command to check the status of the Event Manager.

Syntax

```
crsctl check evm
```

Usage Notes

-

Example

The `crsctl check evm` command returns output similar to the following:

CRS-4533: Event Manager is online

crsctl delete resource

Use the `crsctl delete resource` command to remove resources from the Oracle Clusterware configuration.

Syntax

```
crsctl delete resource resource_name [-i] [-f]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource_name</td>
<td>Specify the name of the resource you want to remove.</td>
</tr>
<tr>
<td>-i</td>
<td>If you specify <code>-i</code>, then the command returns an error if processing this command requires waiting for Oracle Clusterware to unlock the resource or its dependents. Sometimes, Oracle Clusterware locks resources or other objects to prevent commands from interfering with each other.</td>
</tr>
<tr>
<td>-f</td>
<td>Use the force option to remove either running resources, or remove this resource even though other resources have a hard dependency on it.</td>
</tr>
</tbody>
</table>

Usage Notes

- The `resource_name` parameter is required
- You must have read and write permissions to delete the specified resources
- Do not use this command for any resources with names that begin with `ora` because these resources are Oracle resources

Example

To delete a resource from Oracle Clusterware:

```
# crsctl delete resource myResource
```
Dual Environment CRSCTL Commands

crsctl delete type

Use the `crsctl delete type` command to remove a resource type from the Oracle Clusterware configuration.

Syntax

```
crsctl delete type type_name [-i]
```

Usage Notes

- The `type_name` parameter is required
- If you specify `-i`, then the command fails if Oracle Clusterware cannot process the request immediately
- Do not use this command for any resource types with names that begin with `ora` because these resource types are Oracle resource types

Example

To delete a resource type, run the following command as who has write permissions on the resource type:

```
$ crsctl delete type app.appvip.type
```

crsctl get hostname

Use the `crsctl get hostname` command to retrieve the host name of the local server.

Syntax

```
crsctl get hostname
```

Example

Oracle Clusterware returns the host name of the local server:

```
$ crsctl get hostname
node2
```

crsctl getperm resource

Use the `crsctl get perm resource` command to display the user and group permissions for the specified resource.

Syntax

```
crsctl getperm resource resource_name [ {-u user_name | -g group_name} ]
```

See Also: Appendix B, "Oracle Clusterware Resource Reference" for more information about resources and resource attributes

Parameters

<table>
<thead>
<tr>
<th>Table E–5</th>
<th>crsctl getperm resource Command Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td><code>resource_name</code></td>
<td>Specify the name of the resource for which you want to obtain permissions.</td>
</tr>
</tbody>
</table>
Usage Notes

- The resource_name parameter is required
- You must have read permission on the specified resources to obtain their permissions
- Do not use this command for any resources with names that begin with ora because these resources are Oracle resources

Example

The crsctl getperm resource command returns output similar to the following, depending on the command option you choose:

$ crsctl getperm resource app.appvip

Name: app.appvip
owner:root:rwx,pgrp:oinstall:rwx,other::r--

$ crsctl getperm resource app.appvip -u oracle

Name: app.appvip
rwx

$ crsctl getperm resource app.appvip -g dba

Name: app.appvip
r--

crsctl getperm type

Use the crsctl getperm type command to obtain permissions for a particular resource type.

Syntax

crsctl getperm type resource_type [-u user_name] | [-g group_name]

See Also: "Resource Types" on page 6-3 for more information about resource types

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource_type</td>
<td>Specify the resource type for which you want to obtain permissions.</td>
</tr>
<tr>
<td>-u user_name</td>
<td>If you specify -u, then Oracle Clusterware obtains permissions for a particular user.</td>
</tr>
</tbody>
</table>
Usage Notes

- The `resource_type` parameter is required
- Do not use this command for any resource types with names that begin with `ora` because these resource types are Oracle resource types

Example

The `crsctl getperm type` command returns output similar to the following:

```bash
$ crsctl getperm type app.appvip.type
Name: app.appvip.type
owner:root:rwx,pgrp:oinstall:rwx,other::r--
```

`crsctl modify resource`

Use the `crsctl modify resource` command to modify the attributes of a particular resource in Oracle Clusterware.

Syntax

```
crsctl modify resource resource_name -attr "attribute_name=attribute_value"
[-i] [-f] [-delete]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource_name</td>
<td>The name of the resource you want to modify.</td>
</tr>
</tbody>
</table>
You can specify attributes for a resource you want to modify in two different ways:

- Following the `-attr` flag, you can specify one or more comma-delimited attribute name-value pairs to modify enclosed in double quotations marks (`"`). For example:

 `-attr "CHECK_INTERVAL=30, START_TIMEOUT=25"

- Alternatively, you can specify attribute values for resources on a particular server, with a particular cardinality value, and with a particular degree value. This method can be useful for applications that are somehow tied to a particular server. Following the `-attr` flag, the syntax is as follows:

 `attribute_name[@SERVERNAME(server_name)][@DEGREEID(did)] | @CARDINALITYID(cid)[@DEGREEID(did)] = attribute_value`

If you specify the `@SERVERNAME(server_name)` syntax, then the attribute value you specify for the attribute you specify is limited to resources residing on the server you specify.

Alternatively, if you specify the `@CARDINALITYID(cid)` syntax, then the attribute value you specify for the attribute you specify is limited to resource instances with a specific cardinality ID (`cid`).

Optionally, you can combine the `@DEGREEID(did)` syntax with either the `SERVERNAME` or `CARDINALITYID` syntax, or both, to limit the attribute value to resources with the specific `DEGREE`.

Examples:

 `CHECK_INTERVAL@SERVERNAME(node1)=45`
 `STOP_TIMEOUT@CARDINALITYID(2)=65`
 `STOP_TIMEOUT@SERVERNAME(node1)@DEGREEID(2)=65`
 `STOP_TIMEOUT@CARDINALITYID(3)@DEGREEID(2)=65`

- If you specify `-i`, then the command returns an error if processing this command requires waiting for Oracle Clusterware to unlock the resource or its dependents. Sometimes, Oracle Clusterware locks resources or other objects to prevent commands from interfering with each other.

- Use the `-f` option when:

 - The resource has a hard dependency on a non-existing resource
 - The owner of the resource does not have execute permissions on one or more hard dependencies
 - The modification results in servers being moved into the Generic pool and resources being stopped or relocated to accomplish the server move

- If you specify the `-delete` option, then Oracle Clusterware deletes the named attribute.

See Also: Appendix B, "Oracle Clusterware Resource Reference" for more information about resources and resource attributes.
Usage Notes

- The **resource_name** parameter is required
- If an attribute value for an attribute name-value pair contains commas, then the value must be enclosed in single quotation marks (" "). For example:

 "START_DEPENDENCIES='hard(res1,res2,res3)"

- You must have read and write permissions on the specified resources to modify them
- Do not use this command for any resources with names that begin with *ora* because these resources are Oracle resources

Example

To modify the attributes of the **appsvip** resource:

$ crsctl modify resource appsvip -attr USRORA_VIP=10.1.220.17 -i

crsctl modify type

Use the *crsctl modify type* command to modify an existing resource type.

Syntax

```
crsctl modify type type_name -attr 'ATTRIBUTE=attribute_name,TYPE={string | int}
[,DEFAULT_VALUE=default_value [,FLAGS={READONLY}|| REQUIRED]]' [-i] [-f]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type_name</td>
<td>Specify the name of the resource type you want to modify. You cannot modify resource type names.</td>
</tr>
<tr>
<td>-attr</td>
<td>You can modify the following resource type keywords:</td>
</tr>
<tr>
<td></td>
<td>- TYPE</td>
</tr>
<tr>
<td></td>
<td>- DEFAULT_VALUE</td>
</tr>
<tr>
<td></td>
<td>- FLAGS</td>
</tr>
<tr>
<td></td>
<td>*Note: Although you must specify the ATTRIBUTE keyword, you cannot modify it.</td>
</tr>
<tr>
<td></td>
<td>See Also: Table E–3, " crsctl add type Command Parameters" for descriptions of these keywords</td>
</tr>
<tr>
<td>-i</td>
<td>If you specify the -i option, then the command fails if Oracle Clusterware cannot process the request immediately.</td>
</tr>
</tbody>
</table>

See Also: "Resource Types" on page 6-3 for more information about resource types

Usage Notes

- The **type_name** parameter is required
- Do not use this command for any resource types with names that begin with *ora* because these resource types are Oracle resource types
Example

The following example modifies the two type attributes FOO and BAR:

```
$ crsctl modify type myType.type -attr "ATTRIBUTE=FOO,DEFAULT_VALUE=0
ATTRIBUTE=BAR,DEFAULT_VALUE=baz"
```

crsctl setperm resource

Use the `crsctl setperm resource` command to set permissions for a particular resource.

Syntax

```
crsctl setperm resource resource_name {-u acl_string | -x acl_string | -o user_name | -g group_name}
```

Parameters

<table>
<thead>
<tr>
<th>Table E–9 crsctl setperm resource Command Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>resource_name</td>
</tr>
<tr>
<td>(-u</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

See Also: Appendix B, “Oracle Clusterware Resource Reference” for more information about resources and resource attributes
Usage Notes

- Do not use this command for any resources with names that begin with *ora* because these resources are Oracle resources.
- You must have read and write permissions on the specified resources to set their permissions.

Example

To grant read, write, and execute permissions on a resource for user Scott:

```bash
$ crsctl setperm resource myResource -u user:scott:rwx
```

crsctl setperm type

Use the `crsctl setperm type` command to set permissions resources of a particular resource type.

Syntax

```bash
crsctl setperm type resource_type_name {-u acl_string | -x acl_string | 
-o user_name | -g group_name}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>resource_type_name</code></td>
<td>Specify the name of the resource type for which you want to set permissions.</td>
</tr>
</tbody>
</table>
Usage Notes

- The resource_type_name parameter is required
- You must have read and write permissions on the specified resources to set their permissions
- Do not use this command for any resource types with names that begin with ora because these resource types are Oracle resource types

Example

To grant read, write, and execute permissions on a resource type for user Scott:

$ crsctl setperm type resType -u user:scott:rwx

crsctl start resource

Use the crsctl start resource command to start many idle resources on a particular server in the cluster.

Syntax

crsctl start resource (resource_name [...] | -w filter | -all) [-n server_name] [-k cid] [-d did] [-env "env1=val1,env2=val2,..."] [-i] [-f]
Parameters

Table E–11 crsctl start resource Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource_name</td>
<td>One or more space-delimited resource names to start.</td>
</tr>
<tr>
<td>-w filter</td>
<td>Specify a resource filter that Oracle Clusterware uses to match resources.</td>
</tr>
<tr>
<td>-all</td>
<td>Use this option to start all resources in the cluster.</td>
</tr>
<tr>
<td>-n server_name</td>
<td>Specify the name of the server on which the resources you want to start reside. If you do not specify a server, then Oracle Clusterware starts the resources on the best server according to the attribute profile of each resource.</td>
</tr>
<tr>
<td>-k cid</td>
<td>Specify the resource cardinality ID. If you specify this parameter, then Oracle Clusterware starts the resource instances that have the cardinality you specify.</td>
</tr>
<tr>
<td>-d did</td>
<td>Specify the resource degree ID. If you specify this parameter and the degree ID is greater than 1, then Oracle Clusterware starts all resource instances that meet this criteria.</td>
</tr>
</tbody>
</table>

- **Note:** You cannot use the -d option without specifying the -k option.

| -env "env1=val1, env2=val2,..." | You can optionally override one or more resource profile attribute values with the -env command option. If you specify multiple environment name-value pairs, then you must separate each pair with a comma and enclose the entire list in double quotation marks (" "). |

| -i | If you specify -i, then the command returns an error if processing this command requires waiting for Oracle Clusterware to unlock the resource or its dependents. Sometimes, Oracle Clusterware locks resources or other objects to prevent commands from interfering with each other. |

| -f | Use the -f option to relocate a resource running on another server on which the resource you want to start has a hard start dependency. If you do not specify the force option in this case, then the start command fails. |

Usage Notes

- Any one of the three following options is required to specify which resources you want to start:
 - You can specify one or more resources to start
 - You can specify a resource filter that Oracle Clusterware uses to match resources to start
 - You can specify the -all option to start all resources on the specified server

- You must have read and execute permissions on the specified resources to start them

- Do not use this command for any resources with names that begin with `ora` because these resources are Oracle resources.

Example

To start a resource:
`# crsctl start resource myResource -n server1`

crsctl status resource

Use the `crsctl status resource` command to obtain the status and configuration information of many particular resources.

Syntax

```
crsctl status resource {resource_name [... | -w "filter"] [-p | -v [-e]] |
[-f | -l | -g] [[-k cid | -n server_name] [-d did]] | [-s -k cid [-d did]] [-t]
```

Parameters

Table E-12 `crsctl status resource` Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource_name [...</td>
<td>-w "filter"]</td>
</tr>
</tbody>
</table>

Or you can specify a resource filter that Oracle Clusterware uses to limit the number of resources displayed. The filter must be enclosed in double quotation marks (" "). Values that contain parentheses or spaces must be enclosed in single quotation marks ('). Operators must be surrounded by spaces. Examples of resource filters include:

- "TYPE == cluster_resource": This filter limits the display to only resources of `cluster_resource` type.
- "CHECK_INTERVAL > 10": This filter limits the display to resources that have a value greater than 10 for the `CHECK_INTERVAL` resource attribute.
- "(CHECK_INTERVAL > 10) AND (NAME co 2)": This filter limits the display to resources that have a value greater than 10 for the `CHECK_INTERVAL` resource attribute and the name of the resource contains the number 2.
- "START_DEPENDENCIES = 'hard(appsvip)'": This filter limits the display to resources that have a hard start dependency on the `appsvip` resource.

See Also: "Filters" on page F-5 for more information about filters.

```
[-p | -v [-e]] | [-f | -l | -g]
```

You can specify one of two options: `[-p | -v [-e]]` or `[-f | -l | -g]`, where:

- Specify the `-p` parameter to display the static configuration of the resource or specify the `-v` parameter to display the run-time configuration of the resource. Use the `-e` parameter with the `-v` parameter to evaluate the special values of the resource instance.
- Specify the `-f` parameter to display the full configuration of the resource; or specify the `-l` parameter to display all cardinal and degree values of the resource; or specify the `-g` parameter to check whether the specified resources are registered.
Dual Environment CRSCTL Commands

Usage Notes

- Either a space-delimited list of resources or a resource filter is required.
- You must have read permissions on the specified resources to obtain their status.
- Use `crsctl status resource` to query the status information of any resource deployed in the cluster. Oracle recommends, however, that you use the respective SRCVTL command to query the status information of Oracle (ora.*) resources.

Example

The `crsctl status resource` command returns output similar to the following:

```plaintext
$ crsctl status resource ora.stai14.vip
NAME=ora.stai14.vip
TYPE=ora.cluster_vip_net1.type
TARGET=ONLINE
STATE=ONLINE on stai14
```

`crsctl status type`

Use the `crsctl status type` command to obtain the configuration information of one or more particular resource types.

Syntax

```
crsctl status type resource_type_name [...] [-g] [-p] [-f]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>resource_type_name [...]</code></td>
<td>Specify one or more space-delimited resource type names of which you want to check the status.</td>
</tr>
</tbody>
</table>
Usage Notes

- The `resource_type_name` parameter or a filter is required.

Example

The `crsctl status type` command returns output similar to the following:

```bash
$ crsctl status type ora.network.type
```

```
TYPE_NAME=ora.network.type
BASE_TYPE=ora.local_resource.type
```

`crsctl stop resource`

Use the `crsctl stop resource` command to stop running resources.

Syntax

```
crsctl stop resource {resource_name [...] | -w "filter" | -all} [-n server_name] [-k cid] [-d did] [-env "env1=val1,env2=val2,..."] [-i] [-f]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>resource_name [...]</code></td>
<td>One or more space-delimited resource names to stop.</td>
</tr>
<tr>
<td><code>-w 'filter'</code></td>
<td>Specify a resource filter that Oracle Clusterware uses to limit the number of resources stopped. The filter must be enclosed in double quotation marks (" "). Examples of resource filters include:</td>
</tr>
<tr>
<td></td>
<td>- "TYPE == cluster_resource": This filter limits Oracle Clusterware to stop only resources of <code>cluster_resource</code> type</td>
</tr>
<tr>
<td></td>
<td>- "CHECK_INTERVAL > 10": This filter limits Oracle Clusterware to stop resources that have a value greater than 10 for the <code>CHECK_INTERVAL</code> resource attribute</td>
</tr>
<tr>
<td></td>
<td>- "(CHECK_INTERVAL > 10) AND (NAME co 2)" : This filter limits Oracle Clusterware to stop resources that have a value greater than 10 for the <code>CHECK_INTERVAL</code> resource attribute and the name of the resource contains the number 2</td>
</tr>
<tr>
<td><code>-all</code></td>
<td>Use this option to stop all resources in the cluster.</td>
</tr>
</tbody>
</table>
Usage Notes

- Any one of the three following options is required to specify which resources you want to stop:
 - You can specify one or more resources to stop
 - You can specify a resource filter that Oracle Clusterware uses to match resources to stop
 - You can specify the -all option with the -n server_name option to stop all resources on a particular server

- You must have read and execute permissions on the specified resources to stop them

- Do not use this command for any resources with names that begin with ora because these resources are Oracle resources.

Example

To stop a resource:

$ crsctl stop resource -n node1 -k 2
Oracle RAC Environment CRSCTL Commands

The commands listed in this section manage the Oracle Clusterware stack in an Oracle RAC environment, which consists of the following:

- Oracle Clusterware, the member nodes and server pools
- Oracle ASM (if installed)
- Cluster Synchronization Services
- Cluster Time Synchronization Services

You can use the following commands only in an Oracle RAC environment:

- `crsctl add crs administrator`
- `crsctl add css votedisk`
- `crsctl add serverpool`
- `crsctl check cluster`
- `crsctl check crs`
- `crsctl check resource`
- `crsctl check ctss`
- `crsctl config crs`
- `crsctl delete crs administrator`
- `crsctl delete css votedisk`
- `crsctl delete node`
- `crsctl delete serverpool`
- `crsctl disable crs`
- `crsctl discover dhcp`
- `crsctl enable crs`
- `crsctl get clientid dhcp`
- `crsctl get css`
- `crsctl get css ipmiaddr`
- `crsctl get nodename`
- `crsctl getperm serverpool`
- `crsctl lsmodules`
- `crsctl modify serverpool`
- `crsctl pin css`
- `crsctl query crs administrator`
- `crsctl query crs activeversion`
- `crsctl query crs releaseversion`
- `crsctl query crs softwareversion`
- `crsctl query css ipmiconfig`
- `crsctl query css ipmidevice`
- `crsctl query css votedisk`
- `crsctl query dns`
- `crsctl release dhcp`
- `crsctl relocate resource`
- `crsctl relocate server`
- `crsctl replace discoverystring`
- `crsctl replace votedisk`
- `crsctl request dhcp`
- `crsctl set css`
- `crsctl set css ipmiaddr`
- `crsctl set css ipmiadmin`
- `crsctl setperm serverpool`
- `crsctl start cluster`
- `crsctl start crs`
- `crsctl start ip`
- `crsctl start testdns`
- `crsctl status ip`
- `crsctl status server`
- `crsctl status serverpool`
- `crsctl status testdns`
- `crsctl stop cluster`
- `crsctl stop crs`
- `crsctl stop ip`
- `crsctl stop testdns`
- `crsctl unpin css`
- `crsctl unset css`
- `crsctl unset css ipmiconfig`

crsctl add crs administrator

Use the `crsctl add crs administrator` command to add a user to the list of cluster administrators.

Syntax

```
crsctl add crs administrator -u user_name [-f]
```
Parameters

You must run this command as root or a cluster administrator, or an administrator on Windows systems.

By default, root, the user that installed Oracle Clusterware, and the * wildcard are members of the list of users who have Oracle Clusterware administrative privileges. Run the crsctl delete crs administrator command to remove the wildcard and enable role-separated management of Oracle Clusterware.

See Also: "Role-Separated Management" on page 2-10 for more information

Example

To add a user to the list of Oracle Clusterware administrators:

```
# crsctl add crs administrator -u scott
```

crsctl add css votedisk

Use the crsctl add css votedisk command to add one or more voting disks to the cluster on storage devices other than an Oracle ASM disk group.

Syntax

```
crsctl add css votedisk path_to_voting_disk [path_to_voting_disk ...] [-purge]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path_to_voting_disk</td>
<td>A fully qualified path to the voting disk you want to add. To add multiple voting disks, separate each path with a space.</td>
</tr>
<tr>
<td>-purge</td>
<td>Removes all existing voting disks at once. You can replace the existing set of voting files in one operation.</td>
</tr>
</tbody>
</table>

Usage Notes

You should have at least three voting disks, unless you have a storage device, such as a disk array, that provides external redundancy. Oracle recommends that you do not use more than 5 voting disks. The maximum number of voting disks that is supported is 15.

See Also: "Adding, Deleting, or Migrating Voting Disks" on page 3-25 for more information
Example

To add a voting disk to the cluster:

$ crsctl add css votedisk /stor/grid/ -purge

crsctl add serverpool

Caution: By default, any named user may create a server pool. To restrict the operating system users that have this privilege, Oracle strongly recommends that you add specific users to the CRS Administrators list.

See Also: "Role-Separated Management" on page 2-10 for more information about adding users to the CRS Administrators list

Use the `crsctl add serverpool` command to add a server pool that is for hosting non-database resources (such as application servers) to Oracle Clusterware.

Syntax

```
crsctl add serverpool server_pool_name {-file file_path | -attr "attr_name=attr_value[,attr_name=attr_value[,...]]" [-i] [-f]}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>server_pool_name</code></td>
<td>A short, descriptive name for the server pool.</td>
</tr>
<tr>
<td><code>-file file_path</code></td>
<td>Fully-qualified path to an attribute file to define the server pool.</td>
</tr>
<tr>
<td>attribute_name</td>
<td>The name of a server pool attribute Oracle Clusterware uses to manage the server pool preceded by the <code>-attr</code> flag. The available attribute names include:</td>
</tr>
<tr>
<td></td>
<td>- IMPORTANCE</td>
</tr>
<tr>
<td></td>
<td>- MIN_SIZE</td>
</tr>
<tr>
<td></td>
<td>- MAX_SIZE</td>
</tr>
<tr>
<td></td>
<td>- SERVER_NAMES</td>
</tr>
<tr>
<td></td>
<td>- PARENT_POOLS</td>
</tr>
<tr>
<td></td>
<td>- EXCLUSIVE_POOLS</td>
</tr>
<tr>
<td></td>
<td>- ACL</td>
</tr>
<tr>
<td></td>
<td>- ACTIVE_SERVERS</td>
</tr>
<tr>
<td>attribute_value</td>
<td>A value for the server pool attribute.</td>
</tr>
</tbody>
</table>

Note: The `attribute_name` and `attribute_value` parameters must be enclosed in double quotation marks (""") and separated by commas. For example:

```
-attr "MAX_SIZE=30, IMPORTANCE=3"
```

- `i` If you specify `-i`, then the command fails if Oracle Clusterware cannot process the request immediately.
Usage Notes

- The `server_pool_name` parameter is required.
- If an attribute value for an attribute name-value pair contains commas, then the value must be enclosed in single quotation marks (' ').
- Do not use this command for any server pools with names that begin with `ora` because these server pools are Oracle server pools.
- Running this command may result in Oracle Clusterware relocating other servers between server pools to comply with the new configuration.
- You must run this command as `root` or a cluster administrator.
- Use the `crsctl add serverpool` command to create server pools that host non-database resources. To create server pools that host Oracle databases, use the SRVCTL command utility.

See Also: Oracle Real Application Clusters Administration and Deployment Guide for information about using the SRVCTL command utility to create server pools.

Example

Example 1
To add a server pool named `testsp` with a maximum size of 5 servers, run the following command as `root` or the Oracle Clusterware installation owner:

```bash
# crsctl add serverpool testsp -attr "MAX_SIZE=5"
```

Example 2
Create the `sp1_attr` file with the attribute values for the `sp1` serverpool, each on its own line, as shown in the following example:

```
IMPORTANCE=1
MIN_SIZE=1
MAX_SIZE=2
SERVER_NAMES=node3 node4 node5
PARENT_POOLS=Generic
EXCLUSIVE_POOLS=testsp
ACL=owner:oracle:rwx,pgrp:oinstall:rwx,other::r--
```

Use the following command to create the `sp1` server pool using the `sp1_attr` file as input:

```bash
$ crsctl add serverpool sp1 -file /tmp/sp1_attr
```
crsctl check cluster

Use the `crsctl check cluster` command on any node in the cluster to check the status of the Oracle Clusterware stack.

Syntax

```
crsctl check cluster [-all | [-n server_name [...]]
```

Usage Notes

- You can check the status of the Oracle Clusterware stack on all nodes in the cluster with the `-all` option or you can specify one or more space-delimited nodes. If you do not specify either option, Oracle Clusterware checks the status of the Oracle Clusterware stack on the local server.
- You can use this cluster-aware command on any node in the cluster.

Example

The `crsctl check cluster` command returns output similar to the following:

```
$ crsctl check cluster -all
*****************************************************************
node1:
CRS-4537: Cluster Ready Services is online
CRS-4529: Cluster Synchronization Services is online
CRS-4533: Event Manager is online
*****************************************************************
node2:
CRS-4537: Cluster Ready Services is online
CRS-4529: Cluster Synchronization Services is online
CRS-4533: Event Manager is online
*****************************************************************
```

crsctl check crs

Use the `crsctl check crs` command to check the status of Oracle High Availability Services and the Oracle Clusterware stack on the local server.

Syntax

```
crsctl check crs
```

Example

To check the health of Oracle Clusterware on the local server:

```
$ crsctl check crs
CRS-4638: Oracle High Availability Services is online
CRS-4537: Cluster Ready Services is online
CRS-4529: Cluster Synchronization Services is online
CRS-4533: Event Manager is online
```

crsctl check resource

Use the `crsctl check resource` command to initiate the check action inside the application-specific agent of a particular resource. Oracle Clusterware only provides output if something prevents the system from issuing the check request, such as a bad resource name.
Syntax

crsctl check resource {resource_name [...] | -w "filter" }
[-n node_name] [-k cardinality_id] [-d degree_id]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource_name</td>
<td>Specify a particular resource. You can check multiple resources by entering multiple resource names, with each name separated by a space.</td>
</tr>
<tr>
<td>-w 'filter'</td>
<td>Specify a resource filter that Oracle Clusterware uses to limit the number of resources checked. The filter must be enclosed in double quotation marks (" "). Examples of resource filters include:</td>
</tr>
<tr>
<td></td>
<td>■ "TYPE == cluster_resource": This filter limits Oracle Clusterware to check only resources of cluster_resource type</td>
</tr>
<tr>
<td></td>
<td>■ "CHECK_INTERVAL > 10": This filter limits Oracle Clusterware to check resources that have a value greater than 10 for the CHECK_INTERVAL resource attribute</td>
</tr>
<tr>
<td></td>
<td>■ "(CHECK_INTERVAL > 10) AND (NAME co 2)": This filter limits Oracle Clusterware to check resources that have a value greater than 10 for the CHECK_INTERVAL resource attribute and the name of the resource contains the number 2</td>
</tr>
<tr>
<td>-n node_name</td>
<td>Check the resource instance on a specific node. If you do not specify the -n option, then Oracle Clusterware checks the resource instances only on the local server.</td>
</tr>
<tr>
<td>-k cardinality_id</td>
<td>Specify the resource cardinality ID.</td>
</tr>
<tr>
<td>-d degree_id</td>
<td>Specify the resource degree ID.</td>
</tr>
</tbody>
</table>

Usage Notes

■ You must have read and execute permissions on the specified resources to check them
■ Do not use this command for any resources with names that begin with ora because these resources are Oracle resources
■ If this command is successful, it only means that a check was issued; it does not mean the CHECK action has been completed

Example

To initiate the check action inside the application-specific agent of a particular resource:

$ crsctl check resource appsvip

crsctl check ctss

Use the crsctl check ctss command to check the status of the Cluster Time Synchronization services.
Syntax

crsctl check ctss

Example

The `crsctl check ctss` command returns output similar to the following:

CRS-4700: The Cluster Time Synchronization Service is in Observer mode.

or

CRS-4701: The Cluster Time Synchronization Service is in Active mode.
CRS-4702: Offset from the reference node (in msec): 100

crsctl config crs

Use the `crsctl config crs` command to display Oracle High Availability Services automatic startup configuration.

Syntax

crsctl config crs

Example

The `crsctl config crs` command returns output similar to the following:

CRS-4622: Oracle High Availability Services autostart is enabled.

crsctl delete crs administrator

Use the `crsctl delete crs administrator` command to remove a user from the Oracle Clusterware administrator list.

Syntax

crsctl delete crs administrator -u user_name [-f]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-u user_name</code></td>
<td>The name of the user whose Oracle Clusterware administrative privileges you want to remove. By default, the list of users with Oracle Clusterware administrative privileges consists of the user who installed Oracle Clusterware, <code>root</code>, and <code>*</code>. The user who installed Oracle Clusterware and <code>root</code> are permanent members this list. The <code>*</code> value gives Oracle Clusterware administrative privileges to all users and must be removed to enable role-separated management. See Also: "Role-Separated Management" on page 2-10 for more information</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>Use this option to override the user name validity check</td>
</tr>
</tbody>
</table>

Usage Notes

- The `user_name` parameter is required
You must run this command as root or a cluster administrator, or an administrator on Windows systems.

To enable role-separated management, you must remove the * value enclosed in double quotation marks (" ")

Example

To remove a user from the list of cluster administrators:

```bash
# crsctl delete crs admin -u scott
```

crsctl delete css votedisk

Use the `crsctl delete css votedisk` to remove a voting disk from the Oracle Clusterware configuration.

Syntax

```bash
crsctl delete css votedisk voting_disk_GUID [voting_disk_GUID [...]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>voting_disk_GUID</code></td>
<td>Enter the file universal identifier (GUID) of the voting disk you want to remove. Specify multiple GUIDs in a space-delimited list.</td>
</tr>
</tbody>
</table>

Usage Notes

- You can use this command only to remove voting disks from non-Oracle ASM storage devices
- You can obtain the file universal identifiers of each current voting disk by running the `crsctl query css votedisk` command

Example

To remove a voting disk:

```bash
$ crsctl delete css votedisk 26f7271ca8b34fd0bfcd2031805581e
```

crsctl delete node

Use the `crsctl delete node` to remove a node from the cluster.

Syntax

```bash
crsctl delete node -n node_name
```

Usage Notes

- You must be root to run this command
- The `node_name` parameter is required

Example

To delete the node named `node06` from the cluster, run the following command as root:
crsctl delete node -n node06

crsctl delete serverpool

Use the `crsctl delete serverpool` command to remove a server pool from the Oracle Clusterware configuration.

Syntax

```
crsctl delete serverpool server_pool_name [server_pool_name [...]] [-i]
```

Usage Notes

- The `server_pool_name` parameter is required
- If you specify `-i`, then the command fails if Oracle Clusterware cannot process the request immediately
- Do not use this command for any server pools with names that begin with `ora` because these server pools are Oracle server pools
- While you can use this command in either environment, it is only useful in the Oracle RAC environment

Example

To delete a server pool, run the following command as `root` or the Oracle Clusterware installation owner:

```
# crsctl delete serverpool sp1
```

crsctl disable crs

Use the `crsctl disable crs` command to prevent the automatic startup of Oracle High Availability Services when the server boots.

Syntax

```
crsctl disable crs
```

Usage Notes

- This command only affects the local server
- If you disable Oracle High Availability Services automatic startup, you must use the `crsctl start crs` command to start Oracle High Availability Services

Example

The `crsctl disable crs` command returns output similar to the following:

```
CRS-4621: Oracle High Availability Services autostart is disabled.
```

crsctl discover dhcp

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl discover dhcp` command to send DHCP discover packets on the network at the specified port. If DHCP servers are present on the network, then they respond to the discovery message and the command succeeds.
Syntax

```
crsctl discover dhcp -clientid clientid [-port port]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-clientid</td>
<td>Specify the client ID for which you want to attempt discovery. Obtain the client ID by running the <code>crsctl get clientid dhcp</code> command.</td>
</tr>
<tr>
<td>-port port</td>
<td>The port to which CRSCTL sends the discovery packets.</td>
</tr>
</tbody>
</table>

Usage Notes

- You must run this command as `root`

Example

The `crsctl discover dhcp` command returns output similar to the following:

```
# crsctl discover dhcp -clientid stmjk0462clr-stmjk01-vip

CRS-10009: DHCP server returned server: 192.168.53.232,
loan address: 192.168.29.221/255.255.252.0, lease time: 43200
```

crsctl enable crs

Use the `crsctl enable crs` command to enable automatic startup of Oracle High Availability Services when the server boots.

Syntax

```
crsctl enable crs
```

Usage Notes

- This command only affects the local server

Example

The `crsctl enable crs` command returns output similar to the following:

```
CRS-4622: Oracle High Availability Services autostart is enabled.
```

crsctl get clientid dhcp

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl get clientid dhcp` command to display the client ID that the Oracle Clusterware agent uses to obtain the IP addresses from the DHCP server for configured cluster resources. The VIP type is required.

Syntax

```
crsctl get clientid dhcp -cluname cluster_name -viptype vip_type
[-vip vip_res_name] [-n node_name]
```
Parameters

| Table E–22 crsctl get clientid dhcp Command Parameters |
|-----------------|---------------------------------|
| Parameter | Description |
| -cluname cluster_name | Specify the name of the cluster where the cluster resources are configured. |
| -viptype vip_type | Specify the type of the VIP resource for which you want to display client IDs: HOSTVIP, SCANVIP, or APPVIP. |
| -vip vip_resource_name | Specify the name of the VIP resource. This parameter is required if you specify the APPVIP VIP type. |
| -n node_name | Specify the name of the node for which you want to obtain the client ID. This parameter is required if you specify the HOSTVIP VIP type. |

Example

The crsctl get clientid dhcp command returns output similar to the following:

```
$ crsctl get clientid dhcp -cluname stmjk0462clr -viptype HOSTVIP -n stmjk01
CRS-10007: stmjk0462clr-stmjk01-vip
```

crsctl get css

Use the crsctl get css command to obtain the value of a specific Cluster Synchronization Services parameter.

Syntax

crsctl get css parameter

Usage Notes

- Cluster Synchronization Services parameters and their default values include:
 - clusterguid
 - diagwait
 - disktimeout (200 (seconds))
 - misscount (30 (seconds))
 - reboottime (3 (seconds))
 - priority (4 (UNIX), 3 (Windows))
 - logfilesize (50 (MB))

- This command does not display default values
- This command only affects the local server

Example

The crsctl get css disktimeout command returns output similar to the following:

```
$ crsctl get css disktimeout
CRS-4678: Successful get disktimeout 200 for Cluster Synchronization Services.
```
crsctl get css ipmiaddr

Use the `crsctl get css ipmiaddr` command to get the address stored in the Oracle Local Registry of the local Intelligent Platform Management Interface (IPMI) device.

Syntax

```bash
  crsctl get css ipmiaddr
```

Usage Notes

- Run the command under the user account used to install Oracle Clusterware.
- This command only obtains the IP address stored in the Oracle Local Registry. It may not be the IP address actually used by IPMI.

 Use either `ipmiutil` or `ipmitool` as `root` on the local server to obtain the IP address used by the IPMI device.

Example

To obtain the IPMI device IP address:

```
  $ crsctl get css ipmiaddr
```

crsctl get nodename

Use the `crsctl get nodename` command to obtain the name of the local node.

Syntax

```bash
  crsctl get nodename
```

Example

The `crsctl get nodename` command returns output similar to the following:

```
  node2
```

crsctl getperm serverpool

Use the `crsctl getperm serverpool` command to obtain permissions for a particular server pool.

Syntax

```bash
  crsctl getperm serverpool server_pool_name [-u user_name | -g group_name]
```

See Also: "Understanding Server Pools" on page 2-4 for more information about server pools and server pool attributes

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>server_pool_name</code></td>
<td>Specify the name of the server pool for which you want to obtain permissions.</td>
</tr>
<tr>
<td><code>-u user_name</code></td>
<td>If you specify <code>-u</code>, then Oracle Clusterware obtains permissions for a particular user.</td>
</tr>
</tbody>
</table>
Usage Notes

- The `server_pool_name` parameter is required
- Do not use this command for any server pools with names that begin with `ora` because these server pools are Oracle server pools
- While you can use this command in either environment, it is only useful in the Oracle RAC environment

Example

The `crsctl getperm serverpool` command returns output similar to the following:

```
$ crsctl getperm serverpool sp1
NAME: sp1
owner:root:rwx,pgrp:root:r-x,other::r--
```

`crsctl lsmodules`

Use the `crsctl lsmodules` command to list the components of the modules that you can debug.

See Also: "Dynamic Debugging" on page E-68 for more information about debugging

Syntax

```
crsctl lsmodules (mdns | gpnp | css | crf | crs | ctss | evm | gipc)
```

Usage Notes

You can specify any of the following components:

- **mdns**: Multicast domain name server
- **gpnp**: Grid Plug and Play service
- **css**: Cluster Synchronization Services
- **crf**: Cluster Health Monitor
- **crs**: Cluster Ready Services
- **ctss**: Cluster Time Synchronization Service
- **evm**: Event Manager
- **gipc**: Grid Interprocess Communication

Example

The `crsctl lsmodules` command returns output similar to the following:

```
$ crsctl lsmodules evm
List EVMD Debug Module: CLSVER
List EVMD Debug Module: CLUCLS
List EVMD Debug Module: COMMCRS
List EVMD Debug Module: COMMNS
List EVMD Debug Module: CRSOCR
List EVMD Debug Module: CSSCLNT
```

Table E–23 (Cont.) crsctl getperm serverpool Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-g group_name</td>
<td>If you specify -g, then Oracle Clusterware obtains permissions for a particular group.</td>
</tr>
</tbody>
</table>
crsctl modify serverpool

Use the `crsctl modify serverpool` command to modify an existing server pool.

Syntax

```
crsctl modify serverpool server_pool_name -attr "attr_name=attr_value
[,attr_name=attr_value[, ...]]" [-i] [-f]
```

Parameters

Table E–24 crsctl modify serverpool Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>server_pool_name</code></td>
<td>The name of the server pool you want to modify.</td>
</tr>
<tr>
<td><code>attr_name</code></td>
<td>The name of a server pool attribute you want to modify preceded by the <code>-attr</code> flag.</td>
</tr>
<tr>
<td><code>attr_value</code></td>
<td>A value for the server pool attribute.</td>
</tr>
</tbody>
</table>

Note: The `attr_name` and `attr_value` parameters must be enclosed in double quotation marks ("") and separated by commas. For example:

```
attr "CHECK_INTERVAL=30,START_TIMEOUT=25"
```

See Also: Table 2–2, "Server Pool Attributes" for details about server pool attributes

- `i` If you specify `-i`, then the command fails if Oracle Clusterware cannot process the request immediately.

- `f` If you specify the `-f` option, then Oracle Clusterware stops resources running on a server in another server pool and relocates that server into the server pool you are adding. If you do not specify the `-f` option, then Oracle Clusterware checks whether the creation of the server pool results in stopping any resources on a server in another server pool that is going to give up a server to the server pool you are adding. If so, then Oracle Clusterware rejects the `crsctl add serverpool` command.

See Also: "Understanding Server Pools" on page 2-4 for more information about server pools and server pool attributes

Usage Notes

- You must run this command as `root`

- The `server_pool_name` parameter is required

- If an attribute value for an attribute name-value pair contains commas, then the value must be enclosed in single quotation marks (‘‘). For example:

 "START_DEPENDENCIES=’hard(res1, res2, res3)’"
Oracle RAC Environment CRSCTL Commands

- Running this command may result in Oracle Clusterware relocating other servers between server pools to comply with the new configuration.
- Do not use this command for any server pools with names that begin with `ora` because these server pools are Oracle server pools.
- While you can use this command in either environment, it is only useful in the Oracle RAC environment.

Example

To modify an existing server pool, run the following command as `root` or the Oracle Clusterware installation owner:

```
# crsctl modify serverpool spl -attr "MAX_SIZE=7"
```

crsctl pin css

Use the `crsctl pin css` command to pin many specific nodes. Pinning a node means that the association of a node name with a node number is fixed. If a node is not pinned, its node number may change if the lease expires while it is down. The lease of a pinned node never expires.

Syntax

```
crsctl pin css -n node_name [ node_name [..]]
```

Usage Notes

- You can specify a space-delimited list of servers.
- Any pre-11g release 2 (11.2) Oracle software must reside on a pinned server.
- A node may be unpinned with `crsctl unpin css`.
- Deleting a node with the `crsctl delete node` command implicitly unpins the node.

Example

To pin the node named `node2`:

```
# crsctl pin css -n node2
```

crsctl query crs administrator

Use the `crsctl query crs administrator` command to display the list of users with Oracle Clusterware administrative privileges.

Syntax

```
crsctl query crs administrator
```

Example

The `crsctl query crs administrator` command returns output similar to the following:

```
CRS Administrator List: scott
```
crsctl query crs activeversion

Use the `crsctl query crs activeversion` command to display the active version of the Oracle Clusterware software running in the cluster. During a rolling upgrade, however, the active version is not advanced until the upgrade is finished across the cluster, until which time the cluster operates at the pre-upgrade version.

Syntax

```bash
  crsctl query crs activeversion
```

Example

The `crsctl query crs activeversion` command returns output similar to the following:

Oracle Clusterware active version on the cluster is [11.2.0.2.0]

crsctl query crs releaseversion

Use the `crsctl query crs releaseversion` command to display the version of the Oracle Clusterware software stored in the binaries on the local node.

Syntax

```bash
  crsctl query crs releaseversion
```

Example

The `crsctl query crs releaseversion` command returns output similar to the following:

Oracle High Availability Services release version on the local node is [11.2.0.2.0]

crsctl query crs softwareversion

Use the `crsctl query crs softwareversion` command to display latest version of the software that has been successfully started on the specified node.

Syntax

```bash
  crsctl query crs softwareversion node_name
```

Usage Notes

- If you do not provide a node name, then Oracle Clusterware displays the version of Oracle Clusterware running on the local server.

Example

The `crsctl query crs softwareversion` command returns output similar to the following:

Oracle Clusterware version on node [node1] is [11.2.0.2.0]

crsctl query css ipmiconfig

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl query css ipmiconfig` command to determine whether Oracle Clusterware on the local server has been configured to use IPMI for failure isolation. Note that this command detects the presence of configuration data, but cannot not validate its correctness.
Syntax

```bash
crsctl query css ipmiconfig
```

Usage Notes

- This command attempts to locate and access the IPMI configuration stored in the Oracle Cluster Registry (OCR) and should be executed under the account used to install Oracle Clusterware, or an authorization failure may be reported.
- An authorization failure may not result when executed under another account, if the registry contains no IPMI configuration data.

Example

The `crsctl query css ipmiconfig` command returns output similar to the following:

CRS-4236: Oracle Clusterware configured to use IPMI

Or

CRS-4237: Oracle Clusterware is not fully configured to use IPMI

```bash
crsctl query css ipmidevice
```

Use the `crsctl query css ipmidevice` command to determine the presence of the Intelligent Platform Management Interface (IPMI) driver on the local system.

Syntax

```bash
crsctl query css ipmidevice
```

Usage Notes

- This command performs a pre-check during IPMI installation, and is normally issued only by the installer.
- This command performs a perfunctory check and a success return does not guarantee that the IPMI hardware is fully configured for use.
- There are no special privileges required to run this command.

Example

The `crsctl query css ipmidevice` command returns output similar to the following:

CRS-4231: IPMI device and/or driver found

Or

CRS-4218: Unable to access an IPMI device on this system

```bash
crsctl query css votedisk
```

Use the `crsctl query css votedisk` command to display the voting disks used by Cluster Synchronization Services, the status of the voting disks, and the location of the disks, whether they are stored on Oracle ASM or elsewhere.

Syntax

```bash
crsctl query css votedisk
```
Usage Notes

Example

The `crsctl query css votedisk` command returns output similar to the following:

```
$ crsctl query css votedisk
##  STATE    File Universal Id                File Name Disk group
--  -----    -----------------                --------- ---------
1. ONLINE   296641fd201f4f3fbf34521563b5881 (/ocfs2/host09_vd3) [ ]
2. ONLINE   8c16552bdd9a4fd9bf93e444223146f2 (/netapp/ocrvf/newvd) [ ]
3. ONLINE   8afeee6ae3ed4fe6fbb556996ca4da5 (/ocfs2/host09_vd1) [ ]
Located 3 voting disk(s).
```

`crsctl query dns`

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl query dns` command to obtain a list of addresses returned by DNS lookup of the name with the specified DNS server.

Syntax

```
crsctl query dns [-servers | -name name [-dnsserver DNS_server_address]
   [-port port] [-attempts number_of_attempts] [-timeout timeout_in_seconds] [-v])
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-servers</code></td>
<td>Use the <code>-servers</code> parameter to list the current DNS configuration of the node on which you run the command. Typically, on Linux/UNIX, CRSCTL reads the <code>/etc/resolv.conf</code> file at boot time and that is what the system configuration is until you reboot or until the resolver is restarted. CRSCTL gets its information from resolver. You can use this parameter or, optionally, you can specify the other parameters in the command syntax string.</td>
</tr>
<tr>
<td><code>-name name</code></td>
<td>Specify the fully-qualified domain name you want to look up.</td>
</tr>
<tr>
<td><code>-dnsserver DNS_server_address</code></td>
<td>Specify the address of the DNS server on which you want the domain name to be looked up.</td>
</tr>
<tr>
<td><code>-port port</code></td>
<td>The port on which the DNS server listens. If you do not specify a port, then it defaults to port 53.</td>
</tr>
<tr>
<td><code>-attempts number_of_attempts</code></td>
<td>Specify the number of retry attempts.</td>
</tr>
<tr>
<td><code>-timeout timeout_in_seconds</code></td>
<td>Specify the timeout length in seconds.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Verbose output.</td>
</tr>
</tbody>
</table>

Example

The `crsctl query dns` command returns output similar to the following for a DNS server named `stmjk07-vip.stmjk0462.foo.com`:

```
CRS-10024: DNS server returned 192.168.29.250 for name
```
stmjk07-vip.stmjk0462.foo.com

If you choose the -servers option, then the command returns output similar to the following:

CRS-10018: the following configuration was found on the system:
CRS-10019: There are 3 domains in search order. They are:
us.foo.com
foo.com
foocorp.com
CRS-10022: There are 3 name servers. They are:
192.168.249.41
192.168.249.52
192.168.202.15
CRS-10020: number of retry attempts for name lookup is: 2
CRS-10021: timeout for each name lookup is: 1

crsctl release dhcp

Starting with Oracle Database 11g release 2 (11.2.0.2), use the crsctl release dhcp command to send a DHCP lease release request to a specific client ID and send release packets on the network to a specific port.

Syntax

crsctl release dhcp -clientid clientid [-port port]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-clientid clientid</td>
<td>Specify the client ID for which you want to attempt release. Obtain the client ID by running the crsctl get clientid command.</td>
</tr>
<tr>
<td>-port port</td>
<td>The port to which CRSCTL sends the release packets. If you do not specify a port, then CRSCTL uses the default value 67.</td>
</tr>
</tbody>
</table>

Example

The crsctl release dhcp command returns output similar to the following:

$ crsctl release dhcp -clientid stmjk0462clr-stmjk01-vip

CRS-10012: released DHCP server lease for client ID stmjk0462clr-stmjk01-vip on port 67

crsctl relocate resource

Use the crsctl relocate resource command to relocate resources to another server in the cluster.

Syntax

crsctl relocate resource {resource_name | resource_name | -all -s source_server | -w "filter"} [-n destination_server] [-k cid] [-env "env1=val1,env2=val2,..."] [-i] [-f]
Parameters

Table E–27 crsctl relocate resource Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource_name</td>
<td>The name of a resource you want to relocate.</td>
</tr>
<tr>
<td>resource_name</td>
<td>all</td>
</tr>
<tr>
<td>-s source_server</td>
<td>Specify one particular or all resources located on a particular server from which you want to relocate those resources.</td>
</tr>
<tr>
<td>-w 'filter'</td>
<td>Specify a resource filter that Oracle Clusterware uses to limit the number of resources relocated. The filter must be enclosed in double quotation marks (" "). Examples of resource filters include:</td>
</tr>
<tr>
<td></td>
<td>■ "TYPE == cluster_resource": This filter limits Oracle Clusterware to relocate only resources of cluster_resource type</td>
</tr>
<tr>
<td></td>
<td>■ "CHECK_INTERVAL > 10": This filter limits Oracle Clusterware to relocate resources that have a value greater than 10 for the CHECK_INTERVAL resource attribute</td>
</tr>
<tr>
<td></td>
<td>■ "(CHECK_INTERVAL > 10) AND (NAME co 2)": This filter limits Oracle Clusterware to relocate resources that have a value greater than 10 for the CHECK_INTERVAL resource attribute and the name of the resource contains the number 2</td>
</tr>
<tr>
<td>-n destination_server</td>
<td>Specify the name of the server to which you want relocate resources. If you do not specify a destination server, then Oracle Clusterware relocates the resources to the best server according to the attribute profile of each resource.</td>
</tr>
<tr>
<td>-k cid</td>
<td>Specify the resource cardinality ID. If you specify this parameter, then Oracle Clusterware relocates the resource instance that have the cardinality you specify.</td>
</tr>
<tr>
<td>-env 'env1=val1,...'</td>
<td>You can optionally override one or more resource profile attribute values for this command. If you specify multiple environment name-value pairs, then you must separate each pair with a comma and enclose the entire list in double quotation marks (" ").</td>
</tr>
<tr>
<td>-i</td>
<td>If you specify -i, then the command returns an error if processing this command requires waiting for Oracle Clusterware to unlock the resource or its dependents. Sometimes, Oracle Clusterware locks resources or other objects to prevent commands from interfering with each other.</td>
</tr>
<tr>
<td>-f</td>
<td>Specify the -f option to force the relocating of the resource when it has other resources running that depend on it. Dependent resources are relocated or stopped when you use this option.</td>
</tr>
</tbody>
</table>

Usage Notes

- Any one of the three following options is required to specify which resources you want to relocate:
 - You can specify one particular resource to relocate.
- Or you can specify one particular or all the resources to relocate from a particular source server.
- Thirdly, you can specify a resource filter that Oracle Clusterware uses to match resources to relocate.

- If a resource has a degree ID greater than 1, then Oracle Clusterware relocates all instances of the resource.
- You must have read and execute permissions on the specified resources to relocate them.
- Do not use this command for any resources with names that begin with `ora` because these resources are Oracle resources.

Example

To relocate one particular resource from one server to another:

```
# crsctl relocate resource myResource1 -s node1 -n node3
```

crsctl relocate server

Use the `crsctl relocate server` command to relocate a server to a different server pool.

Syntax

```
crsctl relocate server server_name [...] -c server_pool_name [-i] [-f]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>server_name</code></td>
<td>The name of the server you want to relocate. You can provide a space-delimited list of servers if you want to relocate multiple servers.</td>
</tr>
<tr>
<td><code>-c server_pool_name</code></td>
<td>Specify the name of the server pool to which you want relocate the servers.</td>
</tr>
<tr>
<td><code>-i</code></td>
<td>If you specify <code>-i</code>, then the command fails if Oracle Clusterware cannot process the request immediately.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>If you specify the <code>-f</code> option, then Oracle Clusterware stops resources running on the servers in another server pool and relocates that server into the server pool you specified. If you do not specify the <code>-f</code> option, then Oracle Clusterware checks for resources that must be stopped on the servers that are being relocated. If it finds any, then Oracle Clusterware rejects the <code>crsctl relocate server</code> command.</td>
</tr>
</tbody>
</table>

Usage Notes

- The `server_name` and `-c server_pool_name` parameters are required

Example

To move the `node6` and `node7` servers into the `sp1` server pool without disrupting any active resources on those nodes, use the following command:

```
$ crsctl relocate server node6 node7 -c sp1
```
crsctl replace discoverystring

Use the `crsctl replace discoverystring` command to replace the existing discovery string used to locate voting disk files.

Syntax

```
crsctl replace discoverystring "absolute_path[,....]"
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>absolute_path</code></td>
<td>Specify one or more comma-delimited absolute paths that match one or more voting disk file locations. Wildcards may be used. The list of paths must be enclosed in double quotation marks (""").</td>
</tr>
</tbody>
</table>

Usage Notes

- You must be root, the Oracle Clusterware installation owner, or a member of the Administrators group to run this command.
- You can run this command on any node in the cluster.

Example

Assume the current discovery string is `/oracle/css1/*`. To also use voting disk files in the `/oracle/css2/` directory, replace the current discovery string using the following command:

```
# crsctl replace discoverystring "/oracle/css1/*,/oracle/css2/*"
```

crsctl replace votedisk

Use the `crsctl replace votedisk` command to move or replace the existing voting disks. This command creates voting disks in the specified locations, either in Oracle ASM or some other storage option. Oracle Clusterware copies existing voting disk information into the new locations and removes the voting disks from the former locations.

Syntax

```
crsctl replace votedisk [+asm_disk_group | path_to_voting_disk [...]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>+asm_disk_group</code></td>
<td>Specify the disk group in Oracle ASM where you want to locate the voting disk.</td>
</tr>
<tr>
<td><code>path_to_voting_disk [...]</code></td>
<td>A space-delimited list of voting disk file paths for voting disk files that reside outside of Oracle ASM.</td>
</tr>
</tbody>
</table>
Usage Notes

- You must be root, the Oracle Clusterware installation owner, or a member of the Administrators group to run this command.
- Specify to replace a voting disk in either an Oracle ASM disk group or in some other storage device.
- You can run this command on any node in the cluster.

Example

Example 1
To replace a voting disk that is located within Oracle ASM:

```
$ crsctl replace votedisk +diskgroup1
```

Example 2
To replace a voting disk that is located on a shared file system:

```
$ crsctl replace votedisk /mnt/nfs/disk1 /mnt/nfs/disk2
```

crsctl request dhcp

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl request dhcp` command to send DHCP request packets on the network at the specified port. If the DHCP server has an IP address it can provide, then it responds with the IP address for the client ID.

Syntax

```
crsctl request dhcp -clientid clientid [-port port]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-clientid clientid</td>
<td>Specify the client ID for which you want to attempt request. Obtain the client ID by running the <code>crsctl get clientid</code> command.</td>
</tr>
<tr>
<td>-port port</td>
<td>The port to which CRSCTL sends the request packets. If you do not specify a port, then CRSCTL uses the default value 67.</td>
</tr>
</tbody>
</table>

Example

The `crsctl request dhcp` command returns output similar to the following:

```
$ crsctl request dhcp -clientid stmjk0462clr-stmjk01-vip

CRS-10009: DHCP server returned server: 192.168.53.232, loan address : 192.168.29.228/255.255.252.0, lease time: 43200
```

crsctl set css

Use the `crsctl set css` command to set the value of a Cluster Synchronization Services parameter.
Syntax

```bash
crsctl set css parameter value
```

Usage Notes

- Do not use the `crsctl set css` command to set the following parameters unless instructed to do so by My Oracle Support.
- Cluster Synchronization Services parameters include:
 - diagwait
 - disktimout
 - logfilesize
 - misscount
 - priority
 - reboottime

crsctl set css ipmiaddr

Use the `crsctl set css ipmiaddr` command to store the address of the local Intelligent Platform Management Interface (IPMI) device in the Oracle Local Registry.

Syntax

```bash
crsctl set css ipmiaddr ip_address
```

Usage Notes

- Run the command under the user account used to install Oracle Clusterware
- Obtain the IP address used by the IPMI device using either `ipmiutil` or `ipmitool` as root on the local server
- Oracle Clusterware stores the IP address for IPMI in the configuration store, and distributes the address as required
- This command only stores the IPMI IP address on the server from which you run it
- This command fails if another server cannot access IPMI at the supplied address

Example

To store the IPMI IP address on a local server and distribute it to other cluster nodes:

```
$ crsctl set css ipmiaddr 192.0.2.244
```

crsctl set css ipmiadmin

Use the `crsctl set css ipmiadmin` command to store the login credentials of an Intelligent Platform Management Interface (IPMI) administrator in the Oracle Local Registry.

Syntax

```bash
crsctl set css ipmiadmin ipmi_administrator_name
```

Usage Notes

- This command must be run under the user account that installed Oracle Clusterware.
■ When prompted, provide the new password to associate with the new administrator account name. Oracle Clusterware stores the name and password for the local IPMI in the configuration store, and distributes the new credentials as required.

■ This command only modifies the IPMI administrator on the server from which you run it.

■ This command fails if another server cannot access the local IPMI at the supplied address.

Example

To modify the IPMI administrator scott:

$ crsctl set css ipmiadmin scott

crsctl setperm serverpool

Use the crsctl setperm serverpool command to set permissions for a particular server pool.

Syntax

crsctl setperm serverpool server_pool_name {-u acl_string | -x acl_string | -o user_name | -g group_name}

Parameters

Table E–32 crsctl setperm serverpool Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server_pool_name</td>
<td>Specify the name of the server pool for which you want to set permissions.</td>
</tr>
</tbody>
</table>
Usage Notes

- The `server_pool_name` parameter is required
- Do not use this command for any server pools with names that begin with `ora` because these server pools are Oracle server pools
- While you can use this command in either environment, it is only useful in the Oracle RAC environment

Example

To grant read, write, and execute permissions on a server pool for user Scott Tiger:

```
crsctl setperm serverpool sp3 -u user:scott.tiger:rwx
```

crsctl start cluster

Use the `crsctl start cluster` command on any node in the cluster to start the Oracle Clusterware stack.

Syntax

```
crsctl start cluster [-all | -n server_name [...]]
```
Usage Notes

- You can choose to start the Oracle Clusterware stack on all servers in the cluster, on one or more named servers in the cluster (separate multiple server names by a space), or the local server, if you do not specify either `-all` or `-n`.
- You can use this cluster-aware command on any node in the cluster.

Example

To start the Oracle Clusterware stack on two named servers run the following command as `root`:

```
# crsctl start cluster -n node1 node2
```

crsctl start crs

Use the `crsctl start crs` command to start Oracle High Availability Services on the local server.

Syntax

```
crsctl start crs
```

Usage Notes

- This command starts Oracle High Availability Services only on the local server.

Example

To start Oracle High Availability Services on the local server, run the following command as `root`:

```
# crsctl start crs
```

crsctl start ip

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl start ip` command to start a given IP name or IP address on a specified interface with a specified subnet mask. Run this command on the server on which you want to bring up the IP.

Syntax

```
crsctl start ip -A {IP_name | IP_address}/netmask/interface_name
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`{IP_name</td>
<td>IP_address}`</td>
</tr>
<tr>
<td><code>netmask</code></td>
<td>Specify a subnet mask for the IP to start.</td>
</tr>
<tr>
<td><code>interface_name</code></td>
<td>Specify an interface on which to start the IP.</td>
</tr>
</tbody>
</table>

Example

To start an IP on the local server, run the command similar to the following:
$ crsctl start ip -A 192.168.29.220/255.255.252.0/eth0

crsctl start testdns

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl start testdns` command to start a test DNS server that will listen on a specified IP address and port. The test DNS server does not respond to incoming packets but does display the packets it receives. Typically, use this command to check if domain forwarding is set up correctly for the GNS domain.

Syntax

```
crsctl start testdns [-address address [-port port]] [-once] [-v]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-address</td>
<td>Specify a server address in the form <code>IP_address/netmask</code></td>
</tr>
<tr>
<td></td>
<td>([/interface_name])</td>
</tr>
<tr>
<td>-port</td>
<td>The port on which the server listens. If you do not specify a</td>
</tr>
<tr>
<td></td>
<td>port, then it defaults to port 53.</td>
</tr>
<tr>
<td>-once</td>
<td>Specify this flag to indicate that the DNS server should exit</td>
</tr>
<tr>
<td></td>
<td>after it receives one DNS query packet.</td>
</tr>
<tr>
<td>-v</td>
<td>Verbose output.</td>
</tr>
</tbody>
</table>

Example

```
To start a test DNS server on the local server, run the command similar to the following:

$ crsctl start testdns -address 192.168.29.218 -port 63 -v
```

crsctl status ip

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl status ip` command to check if a given IP address is up on the network.

Syntax

```
crsctl status ip -A {IP_name | IP_address}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{IP_name</td>
<td>IP_address}</td>
</tr>
<tr>
<td></td>
<td>If you do not specify a fully-qualified domain name, then</td>
</tr>
<tr>
<td></td>
<td>CRSCTL uses a standard name search.</td>
</tr>
</tbody>
</table>

Example

```
The `crsctl status ip` command returns output similar to the following:

CRS-10003: IP address 192.168.29.220 could be reached from current node
```
crsctl status server

Use the `crsctl status server` command to obtain the status and configuration information of one or more particular servers.

Syntax

```
crsctl status server [-p | -v | -f]
crsctl status server { server_name [...] | -w "filter"} [-g | -p | -v | -f]
```

Parameters

- **server_name [...]**
 Specify one or more space-delimited server names.

- **-w "filter"**
 Specify a filter to determine which servers are displayed. The filter must be enclosed in double quotation marks (""). Values that contain parentheses or spaces must be enclosed in single quotation marks ('). For example, "STATE = ONLINE" limits the display to servers that are online.

 See Also: "Filters" on page F-5 for more information about filters

- **-g | -p | -v | -f**
 You can specify one of the following parameters when Oracle Clusterware checks the status of specific servers:
 - **-g**: Use this parameter to check if the specified servers are registered
 - **-p**: Use this parameter to display static configuration of the specified servers
 - **-v**: Use this parameter to display the run-time configuration of the specified servers
 - **-f**: Use this parameter to display the full configuration of the specified servers

Example

Example 1

The `crsctl status server` command returns output similar to the following:

```
NAME=node1
STATE=ONLINE

NAME=node2
STATE=ONLINE
```

Example 2

To display the full configuration of a specific server, enter a command similar to the following:

```
$ crsctl status server node2 -f
NAME=node2
STATE=ONLINE
ACTIVE_POOLS=Generic ora.orcl
STATEDETAILS=
```
crsctl status serverpool

Use the `crsctl status serverpool` command to obtain the status and configuration information of one or more particular server pools.

Syntax

```
crsctl status serverpool [-p | -v | -f]
crsctl status serverpool [server_pool_name [ ... ]][-w][-g | -p | -v | -f]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{server_pool_name [...]}</code></td>
<td>Specify one or more space-delimited server pool names.</td>
</tr>
<tr>
<td>`-g</td>
<td>-p</td>
</tr>
<tr>
<td></td>
<td>-w: Use this parameter to specify a filter, such as <code>MIN_SIZE > 3</code>, surrounded by double quotation marks (""")</td>
</tr>
<tr>
<td></td>
<td>-g: Use this parameter to check if the specified server pools are registered</td>
</tr>
<tr>
<td></td>
<td>-p: Use this parameter to display static configuration of the specified server pools</td>
</tr>
<tr>
<td></td>
<td>-v: Use this parameter to display the run-time configuration of the specified server pools</td>
</tr>
<tr>
<td></td>
<td>-f: Use this parameter to display the full configuration of the specified server pools</td>
</tr>
</tbody>
</table>

Usage Notes

- The `server_pool_name` parameter or a filter is required
- Do not use this command for any server pools with names that begin with `ora` because these server pools are Oracle server pools
- While you can use this command in either environment, it is only useful in the Oracle RAC environment

Examples

Example 1

To display the full configuration of the server pool `sp1`:

```
$ crsctl status serverpool sp1 -f
NAME=sp1
IMPORTANCE=1
MIN_SIZE=0
MAX_SIZE=-1
SERVER_NAMES=node3 node4 node5
PARENT_POOLS=Generic
EXCLUSIVE_POOLS=
ACL=owner:oracle:rwx,pgrp:oinstall:rwx,other::r--
ACTIVE_SERVERS=node3 node4
```
Example 2
To display all the server pools and the servers associated with them, use the following command:

```bash
$ crsctl status serverpool
NAME=Free
ACTIVE_SERVERS=

NAME=Generic
ACTIVE_SERVERS=node1 node2

NAME=ora.orcl
ACTIVE_SERVERS=node1 node2

NAME=sp1
ACTIVE_SERVERS=node3 node4
```

Example 3
To find a server pool that meets certain criteria, use the following command:

```bash
$ crsctl status serverpool -w "MAX_SIZE > 1"
NAME=sp2
ACTIVE_SERVERS=node3 node4
```

crsctl status testdns
Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl status testdns` command to query the test DNS server running on a specified address and local host name.

Syntax

```
crsctl status testdns [-server DNS_server_address] [-port port] [-v]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-server DNS_server_address</td>
<td>Specify the DNS server address for which you want to check the status.</td>
</tr>
<tr>
<td>-port port</td>
<td>The port on which the DNS server listens. If you do not specify a port, then it defaults to port 53.</td>
</tr>
<tr>
<td>-v</td>
<td>Verbose output.</td>
</tr>
</tbody>
</table>

Example
The `crsctl status testdns` command returns output similar to the following:

```
CRS-10024: DNS server returned 192.168.28.74 for name stmjk07-vip.stmjk0462.foo.com
```

crsctl stop cluster
Use the `crsctl stop cluster` command on any node in the cluster to stop the Oracle Clusterware stack on all servers in the cluster or specific servers.
Syntax

```
crsctl stop cluster [-all | -n server_name [...] [-f]
```

Usage Notes

- If you do not specify `-all` or one or more space-delimited server names, then Oracle Clusterware stops the Oracle Clusterware stack on the local server.
- You can use this cluster-aware command on any node in the cluster.
- This command attempts to gracefully stop resources managed by Oracle Clusterware while attempting to stop the Oracle Clusterware stack.

If any resources that Oracle Clusterware manages are still running after you run the `crsctl stop cluster` command, then the command fails. Use the `-f` option to unconditionally stop all resources and stop the Oracle Clusterware stack.

- If you intend to stop Oracle Clusterware on all or a list of nodes, then use the `crsctl stop cluster` command, because it prevents certain resources from being relocated to other servers in the cluster before the Oracle Clusterware stack is stopped on a particular server. If you must stop the Oracle High Availability Services on one or more nodes, then wait until the `crsctl stop cluster` command completes and then run the `crsctl stop crs` command on any particular nodes, as necessary.

Example

To stop the Oracle Clusterware stack on a particular server:

```
# crsctl stop cluster -n node1
```

crsctl stop crs

Use the `crsctl stop crs` command to stop Oracle High Availability Services on the local server.

Syntax

```
crsctl stop crs [-f]
```

Usage Notes

- This command attempts to gracefully stop resources managed by Oracle Clusterware while attempting to stop Oracle High Availability Services on the local server.

If any resources that Oracle Clusterware manages are still running after you run the `crsctl stop crs` command, then the command fails. Use the `-f` option to unconditionally stop all resources and stop Oracle High Availability Services on the local server.

- If you intend to stop Oracle Clusterware on all or a list of nodes, then use the `crsctl stop cluster` command, because it prevents certain resources from being relocated to other servers in the cluster before the Oracle Clusterware stack is stopped on a particular server. If you must stop the Oracle High Availability Services on one or more nodes, then wait until the `crsctl stop cluster` command completes and then run the `crsctl stop crs` command on any particular nodes, as necessary.
In Oracle Clusterware 11g release 2 (11.2.0.3), when you run this command in Solaris Sparc and Solaris X64 environments, drivers remain loaded on shutdown and subsequent startup. This does not happen in Linux environments.

Example

To stop Oracle High Availability Services on the local server:

```
# crsctl stop crs
```

crsctl stop ip

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl stop ip` command to stop a given IP name or IP address on a specified interface with a specified subnet mask. Run this command on the server on which you want to stop the IP.

Syntax

```
crsctl stop ip -A {IP_name | IP_address} /interface_name
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`{IP_name</td>
<td>IP_address}`</td>
</tr>
<tr>
<td>interface_name</td>
<td>Specify an interface on which to start the IP.</td>
</tr>
</tbody>
</table>

Example

To stop an IP on the local server, run the command similar to the following:

```
$ crsctl stop ip -A MyIP.domain.com/eth0
```

crsctl stop testdns

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl stop testdns` command to stop a test DNS server.

Syntax

```
crsctl stop testdns [-address address [-port port]] [-domain GNS_domain] [-v]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-address address</code></td>
<td>Specify the server address for which you started the test DNS server in the form <code>IP_address/netmask[/interface_name]</code>.</td>
</tr>
<tr>
<td><code>-port port</code></td>
<td>The port on which the DNS server listens. If you do not specify a port, then it defaults to port 53.</td>
</tr>
<tr>
<td><code>-domain GNS_domain</code></td>
<td>Domain for which the server should stop listening.</td>
</tr>
</tbody>
</table>
Example

The `crsctl stop testdns` command returns output similar to the following:

```
CRS-10032: successfully stopped the DNS listening daemon running on port 53 on local node
```

`crsctl unpin css`

Use the `crsctl unpin css` command to unpin many servers. If a node is not pinned, its node number may change if the lease expires while it is down.

Syntax

```
crsctl unpin css -n node_name [node_name [...exit]]
```

Usage Notes

- You can specify a space-delimited list of nodes.
- Unpinned servers that stop for longer than a week are no longer reported by `olsnodes`. These servers are dynamic when they leave the cluster, so you do not need to explicitly remove them from the cluster.
- Deleting a node with the `crsctl delete node` command implicitly unpins the node.
- During upgrade of Oracle Clusterware, all servers are pinned, whereas after a fresh installation of Oracle Clusterware 11g release 2 (11.2), all servers you add to the cluster are unpinned.
- You cannot unpin a server that has an instance of Oracle RAC that is older than 11g release 2 (11.2) if you installed Oracle Clusterware 11g release 2 (11.2) on that server.

Example

To unpin two nodes:

```
$ crsctl unpin css -n node1 node4
```

`crsctl unset css`

Use the `crsctl unset css` command to unset the value of a Cluster Synchronization Services parameter and restore it to its default value.

Syntax

```
crsctl unset css parameter
```

Usage Notes

- You can specify the following Cluster Synchronization Services parameters:
 - `diagwait`
 - `disktimeout`
- `misscount`
- `reboottime`
- `priority`
- `logfilesize`

Example

To restore the `reboottime` Cluster Synchronization Services parameter to its default value:

```
$ crsctl unset css reboottime
```

crsctl unset css ipmiconfig

Starting with Oracle Database 11g release 2 (11.2.0.2), use the `crsctl unset css ipmiconfig` command to clear all previously stored IPMI configuration (login credentials and IP address) from the Oracle Local Registry. This is appropriate when deconfiguring IPMI in your cluster or if IPMI configuration was previously stored by the wrong user.

Syntax

```
crsctl unset css ipmiconfig
```

Usage Notes

- This command must be run under the user account originally used to configure IPMI or by a privileged user.
- This command only clears the IPMI configuration on the server on which you run it.
- If Oracle Clusterware was able to access and use the configuration data to be deleted by this command, then it will continue to do so until you restart Oracle Clusterware.

Example

To clear the IPMI configuration data from the Oracle Local Registry and restart Oracle Clusterware to prevent further use of IPMI, log in as `root` or a member of the Administrator's group on Windows and run the following commands:

```
crsctl unset css ipmiconfig
crsctl stop crs
crsctl start crs
```
Oracle Restart Environment CRSCTL Commands

The commands listed in this section control Oracle High Availability Services. These commands manage the Oracle High Availability Services stack in the Oracle Restart environment, which consists of the Oracle High Availability Services daemon (ohasd), Oracle ASM (if installed), and Cluster Synchronization Services (if Oracle ASM is installed). These commands only affect the local server on which you run them.

Note: Oracle does not support using *crs_* commands in an Oracle Restart environment.

Each server in the cluster is in one of two possible states:
- The whole stack is up, which means that Oracle High Availability Services is active
- The whole stack is down, which means that Oracle High Availability Services is inactive

You can use the following commands in the Oracle Restart environment, only:

- `crsctl check has`
- `crsctl config has`
- `crsctl disable has`
- `crsctl enable has`
- `crsctl query has releaseversion`
- `crsctl query has softwareversion`
- `crsctl start has`
- `crsctl stop has`

`crsctl check has`

Use the `crsctl check has` command to check the status of `ohasd`.

Syntax

`crsctl check has`

Usage Notes

-

Example

The `crsctl check has` command returns output similar to the following:

```
CRS-4638: Oracle High Availability Services is online
```

`crsctl config has`

Use the `crsctl check has` command to display the automatic startup configuration of the Oracle High Availability Services stack on the server.
Oracle Restart Environment CRSCTL Commands

Syntax

crsctl config has

Usage Notes

Example

The `crsctl config has` command returns output similar to the following:
CRS-4622 Oracle High Availability Services autostart is enabled.

crsctl disable has

Use the `crsctl disable has` command to disable automatic startup of the Oracle High Availability Services stack when the server boots up.

Syntax

crsctl disable has

Usage Notes

Example

The `crsctl disable has` command returns output similar to the following:
CRS-4621 Oracle High Availability Services autostart is disabled.

crsctl enable has

Use the `crsctl enable has` command to enable automatic startup of the Oracle High Availability Services stack when the server boots up.

Syntax

crsctl enable has

Usage Notes

Example

The `crsctl enable has` command returns output similar to the following:
CRS-4622 Oracle High Availability Services autostart is enabled.

crsctl query has releaseversion

Use the `crsctl query has releaseversion` command to display the release version of the Oracle Clusterware software that is stored in the binaries on the local node.

Syntax

crsctl query has releaseversion
Usage Notes

Example

The `crsctl query has releaseversion` command returns output similar to the following:

Oracle High Availability Services release version on the local node is [11.2.0.2]

crsctl query has softwareversion

Use the `crsctl query has softwareversion` command to display the software version on the local node.

Syntax

`crsctl query has softwareversion`

Usage Notes

- If you do not provide a server name, then Oracle Clusterware displays the version of Oracle Clusterware running on the local server.

Example

The `crsctl query has softwareversion` command returns output similar to the following:

Oracle High Availability Services version on the local node is [11.2.0.2.0]

crsctl start has

Use the `crsctl start has` command to start Oracle High Availability Services on the local server.

Syntax

`crsctl start has`

Usage Notes

-

Example

To start Oracle High Availability Services on the local server:

```
# crsctl start has
```

crsctl stop has

Use the `crsctl stop has` command to stop Oracle High Availability Services on the local server.

Syntax

`crsctl stop has [-f]`
Usage Notes

- This command attempts to gracefully stop resources managed by Oracle Clusterware while attempting to stop Oracle High Availability Services.

If any resources that Oracle Clusterware manages are still running after you run the `crsctl stop has` command, then the command fails. Use the `-f` option to unconditionally stop all resources and stop Oracle High Availability Services.

Example

To stop Oracle High Availability Services on the local server:

```
# crsctl stop has
```
Troubleshooting and Diagnostic Output

You can use `crsctl set log` commands as the root user to enable dynamic debugging for Cluster Ready Services (CRS), Cluster Synchronization Services (CSS), and the Event Manager (EVM), and the clusterware subcomponents. You can dynamically change debugging levels using `crsctl debug` commands. Debugging information remains in the Oracle Cluster Registry (OCR) for use during the next startup. You can also enable debugging for resources.

This section covers the following topics:

- Dynamic Debugging
- Component Level Debugging
- Enabling Debugging for Oracle Clusterware Resources
- Enabling Additional Tracing for Oracle Clusterware Components
Dynamic Debugging

This section includes the following CRSCTL commands that aid in debugging:

- **crsctl set log**

crsctl set log

Use the `crsctl set log` command to set log levels for Oracle Clusterware.

Syntax

```
crsctl set log {{crs | css | evm "component_name=log_level, [...]", [all=log_level]} | [all=log_level]}
```

You can also set log levels for the agents of specific resources, as follows:

```
crsctl set log res "resource_name=log_level, [...]
```

Usage Notes

- You can set log levels for various components of the three modules, CRS, CSS, and EVM. If you choose the `all` option, then you can set log levels for all components of one module with one command. Use the `crsctl lsmodule` command to obtain a list of components for each module.

- Enter a comma-delimited list of component name-log level pairs enclosed in double quotation marks (" ").

Note: Separate component name-log level pairs with an equals sign (=) in Oracle Clusterware 11g release 2 (11.2). Previous Oracle Clusterware versions used a colon (:).

- The `log_level` is a number from 1 to 5 that sets the log level for the component or resource, where 1 is the least amount of log output and 5 provides the most detailed log output. The default log level is 2.

- To set log levels for resources, specify the name of a particular resource, or a comma-delimited list of resource name-log level pairs enclosed in double quotation marks (" ").

Examples

To set log levels for the CRSRTI and CRSCOMM components of the CRS module:

```
$ crsctl set log crs 'CRSRTI=1,CRSCOMM=2'
```

To set log levels for all components of the EVM module:

```
$ crsctl set log evm all=2
```

To set a log level for a resource:

```
$ crsctl set log res 'myResource1=3'
```
Component Level Debugging

You can use `crsctl set log` and `crsctl set trace` commands as the root user to enable dynamic debugging for the various Oracle Clusterware modules.

This section includes the following topics:

- **Enabling Debugging for Oracle Clusterware Modules**
- **Creating an Initialization File to Contain the Debugging Level**

Enabling Debugging for Oracle Clusterware Modules

You can enable debugging for Oracle Clusterware modules and their components, and for resources, by setting environment variables or by running `crsctl set log` commands, using the following syntax:

```
crsctl set {log | trace} module_name *component:debugging_level [,...]
```

Run the `crsctl set` command as the root user, and supply the following information:

- **module_name**: The name of one of the following modules:
 - mDNS: Multicast domain name server
 - gpnp: Grid Plug and Play service
 - css: Cluster Synchronization Services
 - crf: Cluster Health Monitor
 - crs: Cluster Ready Services
 - ctss: Cluster Time Synchronization Service
 - evm: Event Manager
 - gipc: Grid Interprocess Communication

- **component**: The name of a component for one of the modules. See Table E-41 for a list of all of the components.

- **debugging_level**: A number from 1 to 5 to indicate the level of detail you want the debug command to return, where 1 is the least amount of debugging output and 5 provides the most detailed debugging output. The default debugging level is 2.

You can dynamically change the debugging level in the `crsctl` command or you can configure an initialization file for changing the debugging level, as described in "Creating an Initialization File to Contain the Debugging Level" on page E-72.

The following commands show examples of how to enable debugging for the various modules:

- To enable debugging for Oracle Clusterware:
  ```
  crsctl set log crs 'CRSRTI:1,CRSCOMM:2'
  ```

- To enable debugging for OCR:
  ```
  crsctl set log crs 'CRSRTI:1,CRSCOMM:2,OCRSRV:4'
  ```

- To enable debugging for EVM:
  ```
  crsctl set log evm 'EVMCOMM:1'
  ```

- To enable debugging for resources
To obtain a list of components that can be used for debugging, run the `crsctl lsmodules` command, as follows:

```
    crsctl lsmodules (mdns | gpn | css | crf | crs | ctss | evm | gipc)
```

Note: You do not have to be the root user to run the `crsctl lsmodules` command.

Table E–41 shows the components for the CRS, CSS, and EVM modules, respectively. Note that some component names are common between the CRS, EVM, and CSS daemons and may be enabled on that specific daemon. For example, `COMMNS` is the NS layer and, because each daemon uses the NS layer, you can enable this specific module component on any of the daemons to get specific debugging information.

<table>
<thead>
<tr>
<th>CRS Components1</th>
<th>CSS Components2</th>
<th>EVM Components3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSUI</td>
<td>CLSF</td>
<td>EVMD</td>
</tr>
<tr>
<td>CRSCOMM</td>
<td>CSSD</td>
<td>EVMDMAIN</td>
</tr>
<tr>
<td>CRSRTI</td>
<td>GIPCCM</td>
<td>EVMCOMM</td>
</tr>
<tr>
<td>CRSPMAIN</td>
<td>GIPCGM</td>
<td>EVMEVT</td>
</tr>
<tr>
<td>CRSPLACE</td>
<td>GIPCM</td>
<td>EVMAPI</td>
</tr>
<tr>
<td>CRSAPP</td>
<td>GPNP</td>
<td>EVNAGENT</td>
</tr>
<tr>
<td>CRSRES</td>
<td>OLR</td>
<td>CRSCDR</td>
</tr>
<tr>
<td>CRSCOMM</td>
<td>SKGFD</td>
<td>CLUCPL</td>
</tr>
<tr>
<td>CRSCDR</td>
<td>CSSCMNT</td>
<td>COMMCRS</td>
</tr>
<tr>
<td>CRSEVT</td>
<td>CSSCMNT</td>
<td>COMMNS</td>
</tr>
<tr>
<td>CSSD</td>
<td>COMMNS</td>
<td></td>
</tr>
<tr>
<td>CLUCPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSSCMNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMCRS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMNS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Obtain the list of CRS components using the `crsctl lsmodules crs` command.
2 Obtain the list of CSS components using the `crsctl lsmodules css` command.
3 Obtain the list of EVM components using the `crsctl lsmodules evm` command.

Example 1

To set debugging levels on specific cluster nodes, include the `-nodelist` keyword and the names of the nodes, as follows:

```
    crsctl set log crs ‘CRSRTI:1,CRSCOMM:2’ -nodelist node1,node2
```

Table E–42 describes the Cluster Synchronization Services modules.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS</td>
<td>CSS client component</td>
</tr>
<tr>
<td>CSSD</td>
<td>CSS daemon component</td>
</tr>
</tbody>
</table>

Table E–43 describes the function of each communication (COMM) module.
Table E–43 Communication (COMM) Modules and Functions

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMCRS</td>
<td>Clusterware communication layer</td>
</tr>
<tr>
<td>COMMNS</td>
<td>NS communication layer</td>
</tr>
</tbody>
</table>

Table E–44 describes the functions performed by each CRS module.

Table E–44 Oracle Clusterware (CRS) Modules and Functions

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSUI</td>
<td>User interface module</td>
</tr>
<tr>
<td>CRSCOMM</td>
<td>Communication module</td>
</tr>
<tr>
<td>CRSRTI</td>
<td>Resource management module</td>
</tr>
<tr>
<td>CRSMAIN</td>
<td>Main module/driver</td>
</tr>
<tr>
<td>CRSPLACE</td>
<td>CRS placement module</td>
</tr>
<tr>
<td>CRSAPP</td>
<td>CRS application</td>
</tr>
<tr>
<td>CRSRES</td>
<td>CRS resources</td>
</tr>
<tr>
<td>CRSOCR</td>
<td>Oracle Cluster Registry interface</td>
</tr>
<tr>
<td>CRSTIMER</td>
<td>Various timers related to CRS</td>
</tr>
<tr>
<td>CRSEVT</td>
<td>CRS EVM/event interface module</td>
</tr>
<tr>
<td>CRSD</td>
<td>CRS daemon</td>
</tr>
</tbody>
</table>

Using the `crsctl set log crs` command, you can debug the OCR components listed in Table E–45. The components listed in Table E–45 can also be used for the Oracle Local Registry (OLR) except for OCRMAS and OCRASM. You can also use them for OCR and OLR clients, except for OCRMAS and OCRSRV. Some OCR and OLR clients are OCRCONFIG, OCRDUMP, and so on.

Table E–45 Oracle Cluster Registry (OCR) Component Names

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCRAPI</td>
<td>OCR abstraction component</td>
</tr>
<tr>
<td>OCRCLI</td>
<td>OCR client component</td>
</tr>
<tr>
<td>OCRSRV</td>
<td>OCR server component</td>
</tr>
<tr>
<td>OCRMAS</td>
<td>OCR master thread component</td>
</tr>
<tr>
<td>OCRMSG</td>
<td>OCR message component</td>
</tr>
<tr>
<td>OCRCAC</td>
<td>OCR cache component</td>
</tr>
<tr>
<td>OCRRAW</td>
<td>OCR raw device component</td>
</tr>
<tr>
<td>OCRUTL</td>
<td>OCR util component</td>
</tr>
<tr>
<td>OCROSD</td>
<td>OCR operating system dependent (OSD) layer</td>
</tr>
<tr>
<td>OCRASM</td>
<td>OCR ASM component</td>
</tr>
</tbody>
</table>

Table E–46 describes the OCR tool modules.
Creating an Initialization File to Contain the Debugging Level

This section describes how to specify the debugging level in an initialization file. This debugging information is stored for use during the next startup.

For each process to debug, you can create an initialization file that contains the debugging level.

The initialization file name includes the name of the process that you are debugging (process_name.ini). The file is located in the Grid_home/log/host_name/admin/ directory. For example, the name for the CLSCFG debugging initialization file on node1 would be:

Grid_home/log/node1/admin/clscfg.ini

You can also use an initialization file when using OCR utilities. The initialization file for ocrconfig, ocrdump, and ocrcheck is:

Grid_home/srvm/admin/ocrlog.ini

The format of the initialization file is as follows:

mesg_logging_level=2
complologlvl="OCRAPI:0;OCRSRV:0"
comptrclvl="OCRAPI:0;OCRSRV:0"

You can specify component names, logging, and tracing levels.

See Also: "Enabling Debugging for Oracle Clusterware Modules" on page E-69 for information about dynamically changing debugging levels by specifying the level number (from 1 to 5) on the crsctl command

Table E–46 OCRCONFIG Modules and Functions

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCRCONFIG</td>
<td>OCRCONFIG component for configuring OCR</td>
</tr>
<tr>
<td>OCRDUMP</td>
<td>OCRDUMP component that lists the Oracle Cluster Registry contents</td>
</tr>
<tr>
<td>OCRCHECK</td>
<td>OCRCHECK component that verifies all of the configured OCRs</td>
</tr>
</tbody>
</table>
Enabling Debugging for Oracle Clusterware Resources

You can enable debugging for Oracle Clusterware resources by running the `crsctl set log` command, using the following syntax:

```
crsctl set log res "resource_name=debugging_level"
```

Run the `crsctl set log` command as the root user, and supply the following information:

- `resource_name`: The name of the resource to debug.
- `debugging_level`: A number from 1 to 5 to indicate the level of detail you want the debug command to return, where 1 is the least amount of debugging output and 5 provides the most detailed debugging output. The default debugging level is 2.

You can dynamically change the debugging level in the `crsctl` command or you can configure an initialization file for changing the debugging level, as described in "Creating an Initialization File to Contain the Debugging Level" on page E-72.

To obtain a list of resources that can be used for debugging, run the `crsctl status resource` command.

Example 1

To generate a debugging log for the VIP resource on `node1`, issue the following command:

```
crsctl set log res 'ora.node1.vip:1'
```
Enabling Additional Tracing for Oracle Clusterware Components

My Oracle Support may ask you to enable tracing to capture additional information. Because the procedures described in this section may affect performance, only perform these activities with the assistance of My Oracle Support.

You can enable tracing for Oracle Clusterware resources by running the `crsctl set trace` command, using the following syntax:

```
crsctl set trace module_name "component_name=tracing_level,..."
```

Run the `crsctl set trace` command as the `root` user, and supply the following information:

- **module_name**: The name of one of the following modules:
 - mdns: Multicast domain name server
 - gpnp: Grid Plug and Play service
 - css: Cluster Synchronization Services
 - crf: Cluster Health Monitor
 - crs: Cluster Ready Services
 - ctss: Cluster Time Synchronization Service
 - evm: Event Manager
 - gipc: Grid Interprocess Communication

- **component_name**: The name of the component for one of the modules. See Table E-41 for a list of components.

- **tracing_level**: A number from 1 to 5 to indicate the level of detail you want the trace command to return, where 1 is the least amount of tracing output and 5 provides the most detailed tracing output.

Example 1

To generate a trace file for Cluster Synchronization Services, use the following command:

```
crsctl set trace 'css=3'
```
This appendix describes the Oracle Clusterware C application program interfaces (APIs). This appendix contains the following topics:

- About the Programming Interface (C API) to Oracle Clusterware
 - Overview
 - Operational Notes
 - Deprecated CLSCRS APIs
- Interactive CLSCRS APIs
- Non-Interactive CLSCRS APIs

See Also: Chapter 6, "Making Applications Highly Available Using Oracle Clusterware" for detailed information about using Oracle Clusterware to make applications highly available
About the Programming Interface (C API) to Oracle Clusterware

This section contains information about using the programming interface (C API) to Oracle Clusterware (CLSCRS).

- Overview
- Operational Notes
- Deprecated CLSCRS APIs

Overview

CLSCRS is a set of C-based APIs for Oracle Clusterware. The CLSCRS APIs enable you to manage the operation of entities that are managed by Oracle Clusterware. These entities include resources, resource types, servers, and server pools. You use the APIs to register user applications with Oracle Clusterware so that the clusterware can manage them and maintain high availability. Once an application is registered, you can manage it and query the application's status. If you no longer need the application, then you can stop it and unregister it from Oracle Clusterware.

Oracle Clusterware services are provided by Cluster Ready Services that runs as part of Oracle Clusterware. The CLSCRS API uses a context that is explicitly named in all function calls. The API does not store anything at the process or thread level. You can use the callbacks for diagnostic logging.

Note: You can install the Oracle Clusterware high availability API from the Oracle Database client installation media.

Operational Notes

This section includes the following topics:

- Context Initialization and Persistence
- Threading Support
- CLSCRS API Data Structures
- Memory Management
- Error Handling and Tracing
- Callback Mechanism
- Filters
- Script Agent Usage
- Help Interface

Context Initialization and Persistence

To use the CLSCRS APIs, you must first initialize the clscrs context. The calls to create and terminate this context are:

- `clscrs_init_crs`: Initializes the clscrs context
- `clscrs_term_crs`: Terminates the clscrs context

The caller is responsible for terminating the context when it is no longer needed.
Threading Support
If initialized with the CLSCRS_FLAG_USE_THREADS flag, then the CLSCRS API may spawn threads internally. Every API function executes in the context of the calling thread. The API context object may not be used concurrently by multiple threads. However, no thread-affinity on the part of the client is required. A process may create multiple API contexts and use those on different threads, subject to the one-thread-per-one-context-at-a-time rule.

CLSCRS API Data Structures
The following entities are passed into the API calls and contain return values from the API call:

- **clscrs_sp**: A stringpair (sp) contains a name and a value string. The value can be NULL. It is created and destroyed, and its contents can be examined and the value replaced. A stringpair can be a member of exactly one stringpair list (splist).

- **clscrs_splist**: A stringpair list (splist) is a list of zero or more stringpairs used in various contexts. An API can add stringpairs to or remove them from a stringpair list, or the API can iterate stringpairs.

- **clscrs_res**: A resource instance (res) represents an Oracle Clusterware entity, which contains the name and additional data appropriate to the context in which the Oracle Clusterware entity is used. Sometimes a resource instance contains Oracle Clusterware entity attribute data and other times it carries status and return messages about an operation. A single resource instance can be a member of exactly one clscrs_reslist.

- **clscrs_reslist**: A resource list (reslist) is a data structure that contains zero or more instances of clscrs_res. An API can add resources to or remove them from a resource list, or the API can iterate resources.

Memory Management
The CLSCRS APIs work on elements and lists. The elements are added to lists. The memory for both elements and lists is allocated and released through explicit API calls. It is the caller's responsibility to release the memory that they allocate. However, when elements are added to lists, only the list must be destroyed: the destruction of the list destroys its elements implicitly. The elements must be destroyed when they are not added to any list. For recursive lists, destroying the parent list also destroys any lists contained within it. The clscrs_sp and clscrs_res elements must be destroyed by the caller. If they are part of a clscrs_splist or clscrs_reslist, destroying the list destroys the respective clscrs_sp and clscrs_res entities.

For example, when a resource is created and added to a resource list, only the resource list must be destroyed, but not the individual resource. Destroying the resource list releases the memory for the individual resource, too.

Memory is allocated by the API through the following calls:

- clscrs_sp_create()
- clscrs_res_create()
- clscrs_serverpool_create()
- clscrs_type_create()
- clscrs_splist_create()
- clscrs_reslist_create()
- clscrs_entity_id_create()

Each of the calls in the preceding list has a corresponding clscrs_*_destroy() call.
Error Handling and Tracing
Interactive and non-interactive CLSCRS APIs each use a different error-handling mechanism.

For non-interactive CLSCRS APIs, the error code is returned as the return value of the function call. For example:

```c
clscrsret clscrs_sp_get_value(clscrs_sp *sp, oratext **value);
```

The error code is returned as a clscrsret value.

For interactive CLSCRS APIs, the output result is represented, as follows:

1. The return value of the function call provides a high-level output of the request. Did the request reach the server? Was it completely successful, or completely or only partially unsuccessful? A successful return value means the request was received, processed, and the outcome was successful for all entities requested.

2. For each entity on which the request operated, there is a programmatic completion code stored in the op_status list. If the value is not success, it indicates the high-level type of the problem specific to processing the request for the particular object.

3. Optionally, the API might indicate that it wants to receive localized, human-readable error, warning, or status messages by using the callback mechanism. Each invocation of the callback provides the message, message type (severity), and the ID of the object to which the callback invocation pertains.

For example:

```c
CLSCRS_STAT clscrs_register_resource2(clscrs_reslist *in_reslist, uword flags, clscrs_msgf2 msgf, void *msgarg, clscrs_reslist *op_status);
```

1. The function returns an error code of value CLSCRS_STAT.

2. The crsd sends error messages, warning messages, and progress messages back to the client through the clscrs_msgf2 callback. The client must implement the callback to process these messages returned by the crsd.

3. In previous Oracle Clusterware releases, the API also contained results of each operation on the Oracle Clusterware entities as part of the op_status list. You can access that information using the following API:

```c
clscrsret clscrs_res_get_op_status(clscrs_res *res, CLSCRS_STAT *status, oratext **msg);
```

The status argument contains a status code about the crsd operation on the Oracle Clusterware entity. Additionally, the msg argument contains a message from the crsd about the result of the operation. Though the op_status list continues to contain the results of the crsd operation for each Oracle Clusterware entity in the msg argument, usage of the msg argument to get the error codes and messages has now been deprecated and is not supported for any use of the API on a new entity. Only pre-existing use cases (for acting on resources, specifically) are supported. Use the callback function to process any messages returned by the crsd.

Callback Mechanism
Interactive CLSCRS APIs provide a callback mechanism that the clients can use to process error messages, warning messages, and progress messages sent by the crsd.
The signature of the callback mechanism is:

typedef void (*clscrs_msgf2)(void *usrp, const oratext *id, const oratext *msg,
 clscrs_msgtype msgtype);

In the preceding syntax:
- **usrp**: Is a user-supplied pointer that probably contains the context of the call
- **id**: Is the identifier of the entity to which the message corresponds
- **msg**: Is the output text
- **msgtype**: Is the type of the message; either error, warning, or progress

Example F-1 describes an example of the callback mechanism.

Example F–1 Callback Mechanism

```c
void myCallback(void *arg, const oratext *pId, const oratext *pMsg, 
               clscrs_msgtype msgType)
{
    if (pMsg != NULL)
    {
        cout << pMsg << endl;
    }
}
```

Example F-2 describes how to use the callback mechanism in an interactive API.

Example F–2 Using the Callback Mechanism In an Interactive API

```c
clscrs_start_resource2(pResIdList, NULL, 
                        env, myCallback, NULL, 
                        0, pOpStatus);
```

You can also print debug trace messages for the API, itself by passing the `CLSCRS_FLAG_TRACE` flag when creating the context. The signature for context creation is:

```c
CLSCRS_STAT clscrs_init_crs(clscrs_ctx **ctx, clscrs_msgf2 errf, void *errCtx, 
                            ub4 flags);
```

For the trace messages to work, you must specify both the `CLSCRS_FLAG_TRACE` flag and a `clscrs_msgf2` callback mechanism in the `clscrs_init_crs` API.

The `clscrs_msgf2` callback mechanism has the following signature:

```c
typedef  void (*clscrs_msgf)(void *usrp, const oratext *msg, sword msglen);
```

Filters

You can use filters to narrow down Oracle Clusterware entities upon which a CLSCRS API operates. Simple filters are attribute-value pairs with an operator. Operators must be surrounded by spaces, as shown in the examples. You can combine simple filters into expressions called expression filters using Boolean operators.

Supported filter operators are:

- =
- >
- <
- !=

- **co**: Contains
- **st**: Starts with
Supported Boolean operators are AND and OR.

Examples of filters are:

- \texttt{TYPE = type1}
- \texttt{((TYPE = type1) AND (CHECK_INTERVAL > 50))}
- \texttt{((TYPE = type1) AND ((CHECK_INTERVAL > 30) OR (AUTO_START never)))}
- \texttt{NAME en network.res}
- \texttt{TYPE st ora.db}

See Also: Use the \texttt{clscrs_comparator_enum} and the \texttt{clscrs_operator_enum} located in the $\texttt{ORA_CRS_HOME/crs/demo/clscrsx.h}$ file to get the correct type for the above comparators and operators, respectively, in the API calls.

There are two types of filters and CLSCRS has a set of APIs to create these filters:

- **Comparison filter:** A simple filter that compares two values. For example:
 \texttt{TYPE = ora.db.type}

 Use the \texttt{clscrs_compfilter_create} API to create a comparison filter. For example, to create the \texttt{(TYPE = ora.db.type)} comparison filter:

 \texttt{clscrs_compfilter_create_ctx, clscrs_TYPE,}
 \texttt{clscrs_comparator_eq, (const oratext *)"ora.db.type",}
 \texttt{&my_Comp_Filter};

- **Expression filter:** A filter that is created from either a set of comparison filters or expression filters, or both. For example:
 \texttt{((TYPE = ora.db.type) AND (CHECK_INTERVAL > 50))}

 Use the \texttt{clscrs_expfilter_create} API to create a comparison filter. For example, to create an expression filter:

 \texttt{clscrs_expfilter_create_my_Comp_Filter_1, clscrs_operator_or,}
 \texttt{my_Comp_Filter_2, &my_Expr_Filter};

See Also: The $\texttt{ORA_CRS_HOME/crs/demo/clscrsx.h}$ file for usage information for the \texttt{clscrs_compfilter_create} and \texttt{clscrs_expfilter_create} APIs.

Note: Both the \texttt{clscrs_compfilter_create} and \texttt{clscrs_expfilter_create} APIs allocate memory that must be freed by calling \texttt{clscrs_filter_destroy()}.

You can use filters in the following interactive CLSCRS APIs in place of an entity list:

\texttt{clscrs_start_resource2}
\texttt{clscrs_stat2}
\texttt{clscrs_stop_resource2}
\texttt{clscrs_check_resource2}
clscrs_relocate_resource2

Example F–3 describes using filters in an interactive CLSCRS API.

Example F–3 Filters In an Interactive CLSCRS API

```c
clscrs_start_resource2(myCompFilter, NULL,
    env, msgf2, NULL,
    0, pOpStatus);
```

Script Agent Usage
When you use CLSCRS APIs inside script agent entry points, keep the following in mind:

1. Some actions, such as start, stop, and clean, are executed under a lock on the resource instance. Thus, issuing a request to the server to act on the resource directly or by extension of a relation results in a dead-lock.

2. Issuing read-only (clscrs_stat2) is generally safe unless it is an initial check, where the script agent must not call back on the server, because that results in a dead-lock, as well. Use the clsagfw APIs to query the check entry point.

See Also: Appendix B, "Oracle Clusterware Resource Reference" for examples of script agents

Help Interface
You can find the entire list of CLSCRS APIs, including usage information for each, in the $ORA_CRS_HOME/crs/demo/clscrsx.h file, along with a demo called crsapp.c.

Deprecated CLSCRS APIs
Table F–1 lists the deprecated CLSCRS APIs and the corresponding new APIs for Oracle Clusterware 11g release 2 (11.2).

<table>
<thead>
<tr>
<th>Deprecated Command</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>clscrs_register_resource</td>
<td>clscrs_register_resource2</td>
</tr>
<tr>
<td>clscrs_start_resource</td>
<td>clscrs_start_resource2</td>
</tr>
<tr>
<td>clscrs_stop_resource</td>
<td>clscrs_stop_resource2</td>
</tr>
<tr>
<td>clscrs_check_resource</td>
<td>clscrs_check_resource2</td>
</tr>
<tr>
<td>clscrs_relocate_resource</td>
<td>clscrs_relocate_resource2</td>
</tr>
<tr>
<td>clscrs_unregister_resource</td>
<td>clscrs_unregister_resource2</td>
</tr>
<tr>
<td>clscrs_msgf</td>
<td>clscrs_msgf2</td>
</tr>
<tr>
<td>clscrs_fail_resource</td>
<td>No replacement.</td>
</tr>
</tbody>
</table>
Interactive CLSCRS APIs

The APIs listed in Table F–2 make calls to the Cluster Ready Services daemon (crsd) to run commands. The crsd must be up and running for these APIs to function.

Table F–2 Summary of Interactive CLSCRS APIs for Oracle Clusterware

<table>
<thead>
<tr>
<th>C API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clscrs_register_type</td>
<td>Registers the resource types in the input resource list.</td>
</tr>
<tr>
<td>clscrs_register_serverpool</td>
<td>Registers a server pool for the input list of servers.</td>
</tr>
<tr>
<td>clscrs_register_resource2</td>
<td>Registers the resources in the input resource list.</td>
</tr>
<tr>
<td>clscrs_start_resource2</td>
<td>Notifies Oracle Clusterware to start a named set of resources.</td>
</tr>
<tr>
<td>clscrs_stat2</td>
<td>Obtains information about the entities identified in rqlist.</td>
</tr>
<tr>
<td>clscrs_stop_resource2</td>
<td>Notifies Oracle Clusterware to stop a named set of resources.</td>
</tr>
<tr>
<td>clscrs_check_resource2</td>
<td>Notifies Oracle Clusterware to run the check entry points for the identified resources.</td>
</tr>
<tr>
<td>clscrs_relocate_resource2</td>
<td>Relocates the list of resource identifiers.</td>
</tr>
<tr>
<td>clscrs_unregister_resource2</td>
<td>Unregisters the resources in the input list of resource names.</td>
</tr>
<tr>
<td>clscrs_unregister_type</td>
<td>Unregisters the resource types in the input list.</td>
</tr>
<tr>
<td>clscrs_unregister_serverpool</td>
<td>Unregisters the given server pool.</td>
</tr>
<tr>
<td>clscrs_relocate_server</td>
<td>Relocates a list of servers.</td>
</tr>
</tbody>
</table>
Non-Interactive CLSCRS APIs

You can use non-interactive CLSCRS APIs for functions such as context initialization, preparing request payloads for interactive APIs, and post-processing output of the interactive APIs. The non-interactive CLSCRS APIs do not call crsd.

A callback error reporting mechanism is not available for the non-interactive CLSCRS APIs. All interactive CLSCRS APIs, except, clscrs_stat2, use this callback mechanism. Clients of these APIs also use the callback mechanism to receive error, warning, and progress messages from the crsd.

You can also use filters to reduce the list of CRS entities. You can also use filters in the interactive APIs to reduce the list of CRS entities.

Thread Safety
The routines provided to manage API data structures cannot be used with the same API context in multiple threads concurrently; however, no thread-affinity on the part of the client is required. A process may invoke these routines on multiple threads provided that a separate API context is used in each instance.

See Also: "Error Handling and Tracing" on page F-4, "Callback Mechanism" on page F-4, and "Filters" on page F-5 for more information

Table F–3 describes the non-interactive CLSCRS APIs.

<table>
<thead>
<tr>
<th>C API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clscrs_entity_id_destroy</td>
<td>Frees the memory associated with an entity identifier created from clscrs_entity_id_create().</td>
</tr>
<tr>
<td>clscrs_exprfilter_create</td>
<td>Constructs an expression filter from comparison and/or expression filters.</td>
</tr>
<tr>
<td>clscrs_filter_destroy</td>
<td>Frees the memory for a filter.</td>
</tr>
<tr>
<td>clscrs_get_entity_type</td>
<td>Obtains the entity type corresponding to the entity identifier provided.</td>
</tr>
<tr>
<td>clscrs_get_fixed_attrlist</td>
<td>Obtains the list of attributes that correspond to an attribute group identifier.</td>
</tr>
<tr>
<td>clscrs_get_resource_instance_details</td>
<td>Obtains the resource instance details, such as resource name, cardinality, and degree, from the resource instance identifier that is used.</td>
</tr>
<tr>
<td>clscrs_getnodename</td>
<td>Obtains the node name.</td>
</tr>
<tr>
<td>clscrs_init_crs</td>
<td>Initializes a context for communications with Oracle Clusterware.</td>
</tr>
<tr>
<td>clscrs_is_crs_admin</td>
<td>Checks whether the user is an Oracle Clusterware administrator.</td>
</tr>
<tr>
<td>clscrs_res_attr_count</td>
<td>Obtains the number of attributes for a resource.</td>
</tr>
<tr>
<td>clscrs_res_create</td>
<td>Creates a new resource.</td>
</tr>
<tr>
<td>clscrs_res_destroy</td>
<td>Frees the memory for a resource.</td>
</tr>
<tr>
<td>clscrs_res_get_attr</td>
<td>Obtains a resource attribute for a resource.</td>
</tr>
<tr>
<td>C API</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>clscrs_res_get_attr_list</td>
<td>Obtains the attribute list for a resource.</td>
</tr>
<tr>
<td>clscrs_res_get_name</td>
<td>Obtains the name of a resource.</td>
</tr>
<tr>
<td>clscrs_res_get_op_status</td>
<td>Obtains the status of an operation for an entity.</td>
</tr>
<tr>
<td>clscrs_res_get_registered</td>
<td>Obtains the registration status of a resource.</td>
</tr>
<tr>
<td>clscrs_res_get_reslist</td>
<td>Obtains the resource list for a resource.</td>
</tr>
<tr>
<td>clscrs_res_set_attr_list</td>
<td>Sets the attribute list for a resource.</td>
</tr>
<tr>
<td>clscrs_res_set_reslist</td>
<td>Sets the resource list for a resource.</td>
</tr>
<tr>
<td>clscrs_reslist_append</td>
<td>Adds a resource to a resource list.</td>
</tr>
<tr>
<td>clscrs_reslist_count</td>
<td>Counts the number of resources in a resource list.</td>
</tr>
<tr>
<td>clscrs_reslist_create</td>
<td>Creates a new resource list.</td>
</tr>
<tr>
<td>clscrs_reslist_delete_res</td>
<td>Deletes a resource from a resource list.</td>
</tr>
<tr>
<td>clscrs_reslist_destroy</td>
<td>Frees the memory for a resource list.</td>
</tr>
<tr>
<td>clscrs_reslist_find</td>
<td>Finds a resource in a resource list.</td>
</tr>
<tr>
<td>clscrs_reslist_first</td>
<td>Obtains the first resource on a resource list.</td>
</tr>
<tr>
<td>clscrs_reslist_next</td>
<td>Obtains the current next resource from the resource list.</td>
</tr>
<tr>
<td>clscrs_sp_get</td>
<td>Obtains the name and value components of a stringpair.</td>
</tr>
<tr>
<td>clscrs_sp_set</td>
<td>Changes the value part of a stringpair.</td>
</tr>
<tr>
<td>clscrs_spplist_append</td>
<td>Adds a new stringpair (sp) to a stringpair list (splist).</td>
</tr>
<tr>
<td>clscrs_spplist_create</td>
<td>Creates a new stringpair list.</td>
</tr>
<tr>
<td>clscrs_spplist_delete_sp</td>
<td>Deletes a stringpair (sp) from a stringpair list (splist).</td>
</tr>
<tr>
<td>clscrs_spplist_first</td>
<td>Obtains the first stringpair (sp) from a stringpair list (splist).</td>
</tr>
<tr>
<td>clscrs_spplist_replace</td>
<td>Replaces the value for a stringpair (sp) in a stringpair list (splist).</td>
</tr>
<tr>
<td>clscrs_term_crs</td>
<td>Releases a context for communications with CRS.</td>
</tr>
<tr>
<td>clscrs_type_create</td>
<td>Creates a new resource type.</td>
</tr>
<tr>
<td>clscrs_type_get_attr</td>
<td>Obtains the value/properties of a resource type attribute.</td>
</tr>
<tr>
<td>clscrs_type_set_attr</td>
<td>Adds an attribute to a resource type.</td>
</tr>
<tr>
<td>clscrs_compfilter_create</td>
<td>Constructs a simple filter that compares two values.</td>
</tr>
<tr>
<td>clscrs_entity_id_create</td>
<td>Creates an entity identifier that identifies a CRS entity such as a resource, resource type, server group, and so on.</td>
</tr>
<tr>
<td>clscrs_register_serverpool</td>
<td>Registers a server pool for the input list of servers.</td>
</tr>
<tr>
<td>clscrs_register_type</td>
<td>Registers the resource types in the input resource list.</td>
</tr>
<tr>
<td>C API</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>clscrs_relocate_server</td>
<td>Relocates a list of servers.</td>
</tr>
<tr>
<td>clscrs_res_get_node_list</td>
<td>Obtains the nodelist currently hosting the resource.</td>
</tr>
<tr>
<td>clscrs_res_set_attr</td>
<td>Sets a resource attribute for a resource.</td>
</tr>
<tr>
<td>clscrs_sp_get_value</td>
<td>Obtains the value component of a stringpair.</td>
</tr>
<tr>
<td>clscrs_splist_count</td>
<td>Counts the number of stringpairs (sp) in a stringpair list (splist).</td>
</tr>
<tr>
<td>clscrs_splist_create_and_set</td>
<td>Creates a new stringpair list (splist) and set the name and value for the first stringpair in the list.</td>
</tr>
<tr>
<td>clscrs_splist_destroy</td>
<td>Frees the memory for a stringpair list (splist).</td>
</tr>
<tr>
<td>clscrs_splist_find</td>
<td>Finds the value for a stringpair (sp) in a stringpair list (splist).</td>
</tr>
<tr>
<td>clscrs_splist_next</td>
<td>Obtains the current next stringpair (sp) from a stringpair list (splist). Current next SP is effectively the next SP in the SPLIST. The list iterator is stored within the API and is not exposed.</td>
</tr>
<tr>
<td>clscrs_stat2</td>
<td>Obtains information about the entities identified in rqlist.</td>
</tr>
</tbody>
</table>
This appendix describes the syntax of the Oracle Cluster Registry (OCR) configuration utility, OCRCONFIG, and troubleshooting OCR, which includes descriptions and usage information for OCRCHECK and OCRDUMP.

This appendix contains the following topics:

- About OCRCONFIG
 - Overview
 - Operational Notes
- OCRCONFIG Command Reference
- Troubleshooting Oracle Cluster Registry and Diagnostic Output
About OCRCONFIG

This section contains topics which relate to using the OCRCONFIG utility.

- Overview
- Operational Notes

Overview

Use the `ocrconfig` command to manage OCR. Using this utility you can import, export, add, delete, restore, overwrite, backup, repair, replace, move, upgrade, or downgrade OCR.

Operational Notes

Usage Information

- The OCRCONFIG executable is located in the `Grid_home/bin` directory
- The `ocrconfig` command syntax is as follows:

 `ocrconfig -option`

Using Utility Help

To display the help output for the OCRCONFIG utility:

`ocrconfig -help`

Privileges and Security

To use the OCRCONFIG utility you must be logged into the operating system as a user with administrative privileges.

Log Files

The OCRCONFIG utility creates a log file in `Grid_home/log/host_name/client`.

To change the amount of logging, edit the path in the `Grid_home/srvm/admin/ocrlog.ini` file.
OCRCONFIG Command Reference

This section lists the following OCRCONFIG commands:

- `ocrconfig -add`
- `ocrconfig -backuploc`
- `ocrconfig -delete`
- `ocrconfig -downgrade`
- `ocrconfig -export`
- `ocrconfig -import`
- `ocrconfig -manualbackup`
- `ocrconfig -overwrite`
- `ocrconfig -repair`
- `ocrconfig -replace`
- `ocrconfig -restore`
- `ocrconfig -showbackup`
- `ocrconfig -upgrade`

ocrconfig -add

Use the `ocrconfig -add` command to add an OCR location to a storage device or Oracle Automatic Storage Management (Oracle ASM) disk group. OCR locations that you add must exist, have sufficient permissions, and, in the case of Oracle ASM disk groups, must be mounted before you can add them.

Syntax

`ocrconfig -add location_name`

Usage Notes

- You must run this command as root.
- The `location_name` variable can be a device name, a file name, or the name of an Oracle ASM disk group. For example:

 - `/dev/raw/raw1`: Ensure that the device exists
 - `/oradbocfs/crs/data.ocr`: You must create an empty (0 byte) OCR location
 - `d:\oracle\mirror.ocr`: You must create an empty (0 byte) OCR location
 - `+newdg`: Ensure that the disk group exists and is mounted

 If you specify an Oracle ASM disk group, the name of the disk group must be preceded by a plus sign (+).
OCRCONFIG Command Reference

See Also:
- Oracle Grid Infrastructure Installation Guide for information about creating OCR locations and setting correct permissions
- Oracle Automatic Storage Management Administrator’s Guide for more information about Oracle ASM disk group management

Example
To add an OCR location to the default location in Oracle ASM, data:

```
# ocrconfig -add +data
```

ocrconfig -backuploc

Use the ocrconfig -backuploc command to specify an OCR backup directory location.

Syntax

```
ocrconfig [-local] -backuploc file_name
```

Usage Notes
- You must run this command as root.
- Use the -local option to specify an OLR backup directory location.
- The file_name variable can be a full directory path name that is accessible by all nodes. For example:
 - Grid_home/cdata/cluster3/: Ensure that the location exists
 - d:\cdata\cluster3: Ensure that the location exists
- The default location for generating OCR backups on Linux or UNIX systems is Grid_home/cdata/cluster_name, where cluster_name is the name of your cluster. The Windows default location for generating OCR backups uses the same path structure.
- The default location for generating OLR backups on Linux or UNIX systems is Grid_home/cdata/host_name, where host_name is the name of the node on which the OLR resides that you want to back up. The Windows default location for generating OLR backups uses the same path structure.

Example
To specify an OCR backup location in a directory:

```
# ocrconfig -backuploc $Grid_home/cdata/cluster3
```

ocrconfig -delete

Use the ocrconfig -delete command to remove an OCR device or file.

Syntax

```
ocrconfig -delete file_name
```

Usage Notes
- You must run this command as root.
- The file_name variable can be a device name, a file name, or the name of an Oracle ASM disk group. For example:
If you specify an Oracle ASM disk group, the name of the disk group must be preceded by a plus sign (+).

Example
To remove an OCR location:

ocrconfig -delete +olddg

ocrconfig -downgrade

Use the `ocrconfig -downgrade` command to downgrade OCR to an earlier specified version.

Syntax

`ocrconfig -downgrade [-version version_string]`

Usage Notes

- You must run this command as root.

Example
To downgrade OCR to an earlier version:

ocrconfig -downgrade -version

ocrconfig -export

Use the `ocrconfig -export` command to export the contents of OCR to a target file.

Syntax

`ocrconfig [-local] -export file_name`

Usage Notes

- You must run this command as root.
- Use the `-local` option to export the contents of OLR.
- The `file_name` variable can be a full path name that is accessible by all nodes.
 For example:
 - `/oradbocfs/crs/data.ocr`
 - `d:\oracle\`

Example
To export the contents of OCR to a file:

ocrconfig -export d:\tmp\a

ocrconfig -import

Use the `ocrconfig -import` command to import the contents of a target file into which you exported the contents of OCR back into OCR.
Syntax
ocrconfig [-local] -import file_name

Usage Notes
- You must run this command as root.
- Use the -local option to import the contents of OLR from a file.
- The file_name variable must be a full path name that is accessible by all nodes. For example:
 - /oradbocfs/crs/data.ocr
 - d:\oracle\n- You must shut down Oracle Clusterware before running this command.

Example
To import the contents a file back into OCR:

ocrconfig -import d:\tmp\a

ocrconfig -manualbackup

Use the ocrconfig -manualbackup command to back up OCR on demand in the location you specify with the -backuploc option.

Syntax
ocrconfig [-local] -manualbackup

Usage Notes
- You must run this command as root.
- Use the -local option to perform a manual backup of OLR.

Example
To back up OCR:

ocrconfig -manualbackup

ocrconfig -overwrite

Use the ocrconfig -overwrite command to overwrite an OCR configuration in the OCR metadata with the current OCR configuration information that is found on the node from which you run this command.

Syntax
ocrconfig -overwrite

Usage Notes
- You must run this command as root.

Example
To overwrite an OCR configuration:

ocrconfig -overwrite
ocrconfig -repair

Use the `ocrconfig -repair` command to repair an OCR configuration on the node from which you run this command. Use this command to add, delete, or replace an OCR location on a node that may have been stopped while you made changes to the OCR configuration in the cluster. OCR locations that you add must exist, have sufficient permissions, and, in the case of Oracle ASM disk groups, must be mounted before you can add them.

Syntax

```
ocoreconfig -repair -add file_name | -delete file_name | -replace current_file_name -replacement new_file_name
```

Usage Notes

- You must run this command as `root`.
- Oracle High Availability Services must be started to successfully complete the repair.
- The Cluster Ready Services daemon must be stopped before running `ocrconfig -repair`.
- The `file_name` variable can be a valid OCR and either a device name, an absolute path name of an existing file, or the name of an Oracle ASM disk group. For example:
 - `/dev/raw/raw1`
 - `/oradbocfs/crs/data.ocr`
 - `d:\oracle\mirror.ocr`
 - `+newdg`

 If you specify an Oracle ASM disk group, the name of the disk group must be preceded by a plus sign (`+`).

See Also:

- *Oracle Grid Infrastructure Installation Guide* for information about creating OCRs and setting correct permissions
- *Oracle Automatic Storage Management Administrator’s Guide* for more information about Oracle ASM disk group management

- You can only use one option with `ocrconfig -repair` at a time.
- Running this command only modifies the local configuration and it only affects the current node.

Example

To repair an OCR configuration:

```
# ocrconfig -repair -delete +olddg
```

ocrconfig -replace

Use the `ocrconfig -replace` command to replace an OCR device or file on the node from which you run this command. OCR locations that you add must exist, have sufficient permissions, and, in the case of Oracle ASM disk groups, must be mounted before you can add them.
Syntax
ocrconfig -replace current_location_name -replacement new_location_name

Usage Notes
- You must run this command as root.
- The new_location_name variable can be a device name, a file name, or the name of an Oracle ASM disk group. For example:
 - /dev/raw/raw1: Ensure that the device exists
 - /oradbocfs/crs/data.ocr: You must create an empty (0 byte) OCR location
 - d:\oracle\mirror.ocr: You must create an empty (0 byte) OCR location
 - +newdg: Ensure that the disk group exists and is mounted
 If you specify an Oracle ASM disk group, the name of the disk group must be preceded by a plus sign (+).

See Also:
- Oracle Grid Infrastructure Installation Guide for information about creating OCRs and setting correct permissions
- Oracle Automatic Storage Management Administrator’s Guide for more information about Oracle ASM disk group management

- You must have at least two OCR devices to use this command. If you do not have at least two OCR devices, then you must run the ocrconfig -add command to add a new OCR device followed by the ocrconfig -delete command to delete the OCR device you want to replace.

Example
To replace an OCR device or file:

ocrconfig -replace /dev/raw/raw1 -replacement +newdg

ocrconfig -restore
Use the ocrconfig -restore command to restore OCR from an automatically created OCR backup file.

Syntax
ocrconfig [-local] -restore file_name

Usage Notes
- You must run this command as root.
- Before running this command, ensure that the original OCR or OLR files exist. If the original file does not exist, then you must create an empty file.

Note: You cannot use a file generated by the ocrconfig -export to restore OCR. The file must be a manual or automatic backup.

- Use the -local option to restore a backup of OLR.
- Example file names are:
- /oradbocfs/crs/BACKUP00.ocr
- d:\oracle\BACKUP01.ocr

- Ensure that the storage devices that you specify exist and that those devices are valid.

Example
To restore OCR from a file:

```
# ocrconfig -restore /oradbocfs/crs/BACKUP00.ocr
```

ocrconfig -showbackup

Use the `ocrconfig -showbackup` command to display the backup location, timestamp, and the originating node name of the backup files. By default, this command displays information for both automatic and manual backups unless you specify `auto` or `manual`.

Syntax

```
ocrconfig [-local] -showbackup [auto | manual]
```

Usage Notes

- Use the `-local` option to show manual OLR backup information. The `-local` flag functions only with the `manual` option.
- You can optionally specify `auto` or `manual` to display information about only automatic backups or only manual backups, respectively:
 - `auto`: Displays information about automatic backups that Oracle Clusterware created in the past 4 hours, 8 hours, 12 hours, and in the last day and week.
 - `manual`: Displays information about manual backups that you invoke using the `ocrconfig -manualbackup` command.

Example
To display manual backup information for OLR:

```
$ ocrconfig -local -showbackup manual
```

ocrconfig -upgrade

Only root scripts use the `ocrconfig -upgrade` command to upgrade OCR from a previous version.
This section describes various methods for troubleshooting problems with OCR, and obtaining diagnostic information from the utilities used to manage OCR. You can use these utilities to troubleshoot OLR.

This section contains the following topics:

- Troubleshooting Oracle Cluster Registry
- Using the OCRCHECK Utility
- Using the OCRDUMP Utility to View Oracle Cluster Registry Content
Troubleshooting Oracle Cluster Registry

Table G–1 describes common OCR problems with corresponding resolution suggestions.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not currently using OCR mirroring and would like to enable it.</td>
<td>Run the <code>ocrconfig</code> command with the <code>-replace</code> option.</td>
</tr>
<tr>
<td>OCR failed and you must replace it. Error messages in Oracle Enterprise</td>
<td>Run the <code>ocrconfig</code> command with the <code>-replace</code> option.</td>
</tr>
<tr>
<td>Manager or OCR log file.</td>
<td></td>
</tr>
<tr>
<td>OCR has a misconfiguration.</td>
<td>Run the <code>ocrconfig</code> command with the <code>-repair</code> option as described.</td>
</tr>
<tr>
<td>You are experiencing a severe performance effect from OCR processing</td>
<td>Run the <code>ocrconfig</code> command with the <code>-replace</code> option as described.</td>
</tr>
<tr>
<td>or you want to remove OCR for other reasons.</td>
<td></td>
</tr>
<tr>
<td>OCR has failed and before you can fix it, the node must be rebooted</td>
<td>Run the <code>ocrconfig</code> with the <code>-repair</code> option to remove the bad OCR</td>
</tr>
<tr>
<td>with only one OCR.</td>
<td>location. Oracle Clusterware cannot start if it cannot find all OCRs</td>
</tr>
<tr>
<td></td>
<td>defined.</td>
</tr>
</tbody>
</table>
Using the OCRCHECK Utility

The OCRCHECK utility displays the version of the OCR’s block format, total space available and used space, OCRID, and the OCR locations that you have configured. OCRCHECK performs a block-by-block checksum operation for all of the blocks in all of the OCRs that you have configured. It also returns an individual status for each file and a result for the overall OCR integrity check.

Note: You can only use OCRCHECK when the Oracle Cluster Ready Services stack is ONLINE on all nodes in the cluster.

See Also: "The Oracle Clusterware Stack" on page 1-7 for more information about the Oracle Cluster Ready Services stack

You can run the `ocrcheck -help` command to display usage information about this utility.

The following example shows a sample of the OCRCHECK utility output:

```
# ocrcheck

Status of Oracle Cluster Registry is as follows :
Version                  :          3
Total space (kbytes)     :     262120
Used space (kbytes)      :        752
Available space (kbytes) :     261368
ID                       : 2098980155
Device/File Name         : +ocrdg1
  Device/File integrity check succeeded
Device/File Name         : +ocrdg2
  Device/File integrity check succeeded
  Device/File not configured
  Device/File not configured
  Device/File not configured
Cluster registry integrity check succeeded
Logical corruption check succeeded
```

Note: The logical corruption check is only performed if you run the `ocrcheck` command as root.

The following two examples show samples of the OCRCHECK utility output. Each example shows only configured OCRs located on an Oracle ASM disk group and on a raw device.

Example G–1 OCR Located on an Oracle ASM Disk Group

```
$ ocrcheck -config

Oracle Cluster Registry configuration is :
  Device/File Name       : +ocrvd11
  Device/File Name       : +ocrvd2

Status of Oracle Cluster Registry is as follows :
```

Note: You can only use OCRCHECK when the Oracle Cluster Ready Services stack is ONLINE on all nodes in the cluster.

See Also: "The Oracle Clusterware Stack" on page 1-7 for more information about the Oracle Cluster Ready Services stack
Version : 3
Total space (kbytes) : 262120
Used space (kbytes) : 2884
Available space (kbytes) : 259236
ID : 157485888
Device/File Name : /dev/raw/raw15
Device/File integrity check succeeded
Device/File Name : /dev/raw/raw17
Device/File integrity check succeeded
Device/File Name : /dev/raw/raw16
Device/File integrity check succeeded
Device/File not configured
Device/File not configured
Device/File not configured
Cluster registry integrity check succeeded
Logical corruption check succeeded

Status of Oracle Cluster Registry is as follows :
Version : 3
Total space (kbytes) : 262120
Used space (kbytes) : 2884
Available space (kbytes) : 259236
ID : 157485888
Device/File Name : /dev/raw/raw15
Device/File integrity check succeeded
Device/File Name : /dev/raw/raw17
Device/File integrity check succeeded
Device/File Name : /dev/raw/raw16
Device/File integrity check succeeded
Device/File not configured
Device/File not configured
Device/File not configured
Cluster registry integrity check succeeded
Logical corruption check succeeded

Run the ocrcheck -local -config command to obtain OLR information.

Note: You can use the ocrcheck -local command only when the Oracle Cluster Ready Services stack and Oracle High Availability Services stack are OFFLINE on the local node.

See Also: "The Oracle Clusterware Stack" on page 1-7 for more information about the Oracle Cluster Ready Services and the Oracle High Availability Services stacks
OCRCHECK creates a log file in the Grid_home/log/host_name/client directory. To change the log level, edit the Grid_home/srvm/admin/ocrlog.ini file.
Using the OCRDUMP Utility to View Oracle Cluster Registry Content

This section explains how to use the OCRDUMP utility to view OCR and Oracle Local Registry (OLR) content for troubleshooting. The OCRDUMP utility enables you to view OCR and OLR contents by writing the content to a file or stdout in a readable format.

You can use several options for OCRDUMP. For example, you can limit the output to a key and its descendents. You can also write the contents to an XML file that you can view using a browser. OCRDUMP writes the OCR keys as ASCII strings and values in a data type format. OCRDUMP retrieves header information based on a best effort basis.

OCRDUMP also creates a log file in Grid_home/log/host_name/client. To change the log level, edit the Grid_home/srvm/admin/ocrlog.ini file.

To change the logging component, edit the entry containing the comploglvc entry. For example, to change the log level of the OCRAPI component to 3 and to change the log level of the OCRRAW component to 5, make the following entry in the ocrlog.ini file:

comploglvc='OCRAPI:3;OCRRAW:5'

Note: Make sure that you have file creation privileges in the Grid_home directory before using the OCRDUMP utility.

This section includes the following topics:

- OCRDUMP Utility Syntax and Options
- OCRDUMP Utility Examples
- Sample OCRDUMP Utility Output

OCRDUMP Utility Syntax and Options

This section describes the OCRDUMP utility command syntax and usage. Run the ocrdump command with the following syntax where file_name is the name of a target file to which you want Oracle Database to write the Oracle Cluster Registry output and where key_name is the name of a key from which you want Oracle Database to write Oracle Cluster Registry subtree content:

Table G–2 describes the OCRDUMP utility options and option descriptions.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file_name</td>
<td>The name of a file to which you want OCRDUMP to write output. By default, OCRDUMP writes output to a predefined output file named OCRDUMPFILE. The file_name option redirects OCRDUMP output to a file that you specify.</td>
</tr>
<tr>
<td>-stdout</td>
<td>Use this option to redirect the OCRDUMP output to the text terminal that initiated the program. If you do not redirect the output, OCRDUMP writes output to a predefined output file named OCRDUMPFILE.</td>
</tr>
</tbody>
</table>
OCR Dump Utility Examples

The following ocrdump utility examples extract various types of OCR information and write it to various targets:

```plaintext
ocrdump

Wrote OCR content to a file called OCRDUMPFILE in the current directory.

ocrdump MYFILE

Wrote OCR content to a file called MYFILE in the current directory.

ocrdump -stdout -keyname SYSTEM

Displays OCR content from the subtree of the key SYSTEM in the terminal window.

ocrdump -stdout -xml

Displays OCR content in the terminal window in XML format.

ocrdump -stdout -backupfile Grid_home/cdata/cluster_name/file_name

Displays the content of the in the Grid_home/cdata/cluster_name/file_name directory. You must run this command as root to be able to view all of the keys. Be sure to name the file appropriately so that it can be recognized by anyone as an OCR backup file, such as BACKUPOO.ocr.

Sample OCR Dump Utility Output

The following OCRDUMP examples show the KEYNAME, VALUE TYPE, VALUE, permission set (user, group, world) and access rights for two sample runs of the ocrdump command. The following shows the output for the SYSTEM.language key that has a text value of AMERICAN_AMERICA.WE8ASCII37.

```
[SYSTEM.language]
ORATEXT : AMERICAN_AMERICA.WE8ASCII37
SECURITY : {USER_PERMISSION : PROCR_ALL_ACCESS, GROUP_PERMISSION : PROCR_READ,
OTHER_PERMISSION : PROCR_READ, USER_NAME : user, GROUP_NAME : group}
```

The following shows the output for the SYSTEM.version key that has integer value of 3:

```
[SYSTEM.version]
UB4 (10) : 3
```
SECURITY : (USER_PERMISSION : PROCR_ALL_ACCESS, GROUP_PERMISSION : PROCR_READ,
OTHER_PERMISSION : PROCR_READ, USER_NAME : user, GROUP_NAME : group)
This appendix introduces monitoring the Oracle Clusterware environment and explains how you can enable dynamic debugging to troubleshoot Oracle Clusterware processing, and enable debugging and tracing for specific components and specific Oracle Clusterware resources to focus your troubleshooting efforts.

This appendix includes the following topics:
- Monitoring Oracle Clusterware
- Clusterware Log Files and the Unified Log Directory Structure
- Testing Zone Delegation
- Oracle Trace File Analyzer Collector
- Diagnostics Collection Script
- Oracle Clusterware Alerts

Monitoring Oracle Clusterware

You can use Oracle Enterprise Manager to monitor the Oracle Clusterware environment. When you log in to Oracle Enterprise Manager using a client browser, the Cluster Database Home page appears where you can monitor the status of both Oracle Clusterware environments. Monitoring can include such things as:
- Notification if there are any VIP relocations
- Status of the Oracle Clusterware on each node of the cluster using information obtained through the Cluster Verification Utility (cluvfy)
- Notification if node applications (nodeapps) start or stop
- Notification of issues in the Oracle Clusterware alert log for the Oracle Cluster Registry, voting disk issues (if any), and node evictions

The Cluster Database Home page is similar to a single-instance Database Home page. However, on the Cluster Database Home page, Oracle Enterprise Manager displays the system state and availability. This includes a summary about alert messages and job activity, and links to all the database and Automatic Storage Management (Oracle ASM) instances. For example, you can track problems with services on the cluster including when a service is not running on all of the preferred instances or when a service response time threshold is not being met.

You can use the Oracle Enterprise Manager Interconnects page to monitor the Oracle Clusterware environment. The Interconnects page shows the public and private interfaces on the cluster, the overall throughput on the private interconnect, individual
throughput on each of the network interfaces, error rates (if any) and the load contributed by database instances on the interconnect, including:

- Overall throughput across the private interconnect
- Notification if a database instance is using public interface due to misconfiguration
- Throughput and errors (if any) on the interconnect
- Throughput contributed by individual instances on the interconnect

All of this information also is available as collections that have a historic view. This is useful with cluster cache coherency, such as when diagnosing problems related to cluster wait events. You can access the Interconnects page by clicking the Interconnect tab on the Cluster Database home page.

Also, the Oracle Enterprise Manager Cluster Database Performance page provides a quick glimpse of the performance statistics for a database. Statistics are rolled up across all the instances in the cluster database in charts. Using the links next to the charts, you can get more specific information and perform any of the following tasks:

- Identify the causes of performance issues.
- Decide whether resources must be added or redistributed.
- Tune your SQL plan and schema for better optimization.
- Resolve performance issues

The charts on the Cluster Database Performance page include the following:

- **Chart for Cluster Host Load Average**: The Cluster Host Load Average chart in the Cluster Database Performance page shows potential problems that are outside the database. The chart shows maximum, average, and minimum load values for available nodes in the cluster for the previous hour.

- **Chart for Global Cache Block Access Latency**: Each cluster database instance has its own buffer cache in its System Global Area (SGA). Using Cache Fusion, Oracle RAC environments logically combine each instance’s buffer cache to enable the database instances to process data as if the data resided on a logically combined, single cache.

- **Chart for Average Active Sessions**: The Average Active Sessions chart in the Cluster Database Performance page shows potential problems inside the database. Categories, called wait classes, show how much of the database is using a resource, such as CPU or disk I/O. Comparing CPU time to wait time helps to determine how much of the response time is consumed with useful work rather than waiting for resources that are potentially held by other processes.

- **Chart for Database Throughput**: The Database Throughput charts summarize any resource contention that appears in the Average Active Sessions chart, and also show how much work the database is performing on behalf of the users or applications. The Per Second view shows the number of transactions compared to the number of logons, and the amount of physical reads compared to the redo size for each second. The Per Transaction view shows the amount of physical reads compared to the redo size for each transaction. Logons is the number of users that are logged on to the database.

In addition, the Top Activity drilldown menu on the Cluster Database Performance page enables you to see the activity by wait events, services, and instances. Plus, you can see the details about SQL/sessions by going to a prior point in time by moving the slider on the chart.
This section includes the following topics:

- Cluster Health Monitor
- OCLUMON Command Reference
- Alert Messages Using Diagnostic Record Unique IDs

### Cluster Health Monitor

The Cluster Health Monitor (CHM) stores real-time operating system metrics in the CHM repository that you can use for later triage with the help of Oracle Support should you have cluster issues.

This section includes the following CHM topics:

- CHM Services
- CHM Repository
- Collecting CHM Data

#### CHM Services

CHM consists of the following services:

- System Monitor Service
- Cluster Logger Service

#### System Monitor Service

There is one system monitor service on every node. The system monitor service (osysmond) is the monitoring and operating system metric collection service that sends the data to the cluster logger service. The cluster logger service receives the information from all the nodes and persists in a CHM repository-based database.

#### Cluster Logger Service

There is one cluster logger service (ologgerd) on only one node in a cluster and another node is chosen by the cluster logger service to house the standby for the master cluster logger service. If the master cluster logger service fails (because the service is not able come up after a fixed number of retries or the node where the master was running is down), the node where the standby resides takes over as master and selects a new node for standby. The master manages the operating system metric database in the CHM repository and interacts with the standby to manage a replica of the master operating system metrics database.

#### CHM Repository

The CHM repository, by default, resides within the Grid Infrastructure home and requires 1 GB of disk space per node in the cluster. You can adjust its size and location, and Oracle supports moving it to shared storage. You manage the CHM repository with OCLUMON.

#### Collecting CHM Data

You can collect CHM data from any node in the cluster by running the `Grid_home/bin/diagcollection.pl` script on the node.

---

**See Also:** *Oracle Database 2 Day + Real Application Clusters Guide*
To run the data collection script on only the node where the cluster logger service is running:

1. Run the following command to identify the node running the cluster logger service:

   ```bash
 $ Grid_home/bin/oclumon manage -get master
   ```

2. Run the following command as a privileged user on the cluster logger service node to collect all the available data in the Grid Infrastructure Management Repository:

   ```bash
 # Grid_home/bin/diagcollection.pl
   ```

   The `diagcollection.pl` script creates a file called `chmosData_host_name_time_stamp.tar.gz`, similar to the following:

   ```bash
 chmosData_stact29_20121006_2321.tar.gz
   ```

To limit the amount of data you want collected:

```bash
Grid_home/bin/diagcollection.pl -collect -chmos -incidenttime inc_time -incidentduration duration
```

In the preceding command, the format for the `-incidenttime` parameter is `MM/DD/YYYY24HH:MM:SS` and the format for the `-incidentduration` parameter is `HH:MM`. For example:

```bash
Grid_home/bin/diagcollection.pl -collect -crshome
 Grid_home -chmoshome Grid_home -chmos -incidenttime 07/14/201201:00:00
 -incidentduration 00:30
```

**OCLUMON Command Reference**

The OCLUMON command-line tool is included with CHM and you can use it to query the CHM repository to display node-specific metrics for a specified time period. You can also use `oclumon` to query and print the durations and the states for a resource on a node during a specified time period. These states are based on predefined thresholds for each resource metric and are denoted as red, orange, yellow, and green, indicating decreasing order of criticality. For example, you can query to show how many seconds the CPU on a node named `node1` remained in the RED state during the last hour. You can also use OCLUMON to perform miscellaneous administrative tasks, such as changing the debug levels, querying the version of CHM, and changing the metrics database size.

This section details the following OCLUMON commands:

- `oclumon debug`
- `oclumon dumpnodeview`
- `oclumon manage`

---

**Notes:**

- Oracle recommends that, when you run the `Grid_home/bin/diagcollection.pl` script to collect CHM data, you run the script on all nodes in the cluster to ensure gathering all of the information needed for analysis.
- You must run this script as a privileged user.
- oclumon version

oclumon debug
Use the oclumon debug command to set the log level for the CHM services.

Syntax
oclumon debug [log daemon module:log_level] [version]

Parameters

Table H–1 oclumon debug Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log daemon module:log_level</td>
<td>Use this option change the log level of daemons and daemon modules. Supported daemons are:</td>
</tr>
<tr>
<td></td>
<td>osysmond</td>
</tr>
<tr>
<td></td>
<td>ologgerd</td>
</tr>
<tr>
<td></td>
<td>client</td>
</tr>
<tr>
<td></td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>Supported daemon modules are:</td>
</tr>
<tr>
<td></td>
<td>osysmond: CRFMOND, CRFM, and allcomp</td>
</tr>
<tr>
<td></td>
<td>ologgerd: CRFLOGD, CRFDBDB, CRFM, and allcomp</td>
</tr>
<tr>
<td></td>
<td>client: OCLUMON, CRFM, and allcomp</td>
</tr>
<tr>
<td></td>
<td>all: CRFM, allcomp</td>
</tr>
<tr>
<td></td>
<td>Supported log_level values are 0, 1, 2, and 3.</td>
</tr>
<tr>
<td>version</td>
<td>Use this option to display the versions of the daemons.</td>
</tr>
</tbody>
</table>

Example
The following example sets the log level of the system monitor service (osysmond):

$ oclumon debug log osysmond CRFMOND:3

oclumon dumpnodeview
Use the oclumon dumpnodeview command to view log information from the system monitor service in the form of a node view.

A node view is a collection of all metrics collected by CHM for a node at a point in time. CHM attempts to collect metrics every second on every node. Some metrics are static while other metrics are dynamic.

A node view consists of seven views when you display verbose output:

- **SYSTEM**: Lists system metrics such as CPU COUNT, CPU USAGE, and MEM USAGE
- **TOP CONSUMERS**: Lists the top consuming processes in the following format:
  
  metric_name: 'process_name(process_identifier) utilization'
- ** PROCESSES**: Lists process metrics such as PID, name, number of threads, memory usage, and number of file descriptors
- **DEVICES**: Lists device metrics such as disk read and write rates, queue length, and wait time per I/O
- **NICS**: Lists network interface card metrics such as network receive and send rates, effective bandwidth, and error rates
- **FILESYSTEMS**: Lists file system metrics, such as total, used, and available space

- **PROTOCOL ERRORS**: Lists any protocol errors

You can generate a summary report that only contains the SYSTEM and TOP CONSUMERS views.

"Metric Descriptions" on page H-7 lists descriptions for all the metrics associated with each of the views in the preceding list.

---

**Note**: Metrics displayed in the TOP CONSUMERS view are described in Table H-4, " PROCESSES View Metric Descriptions".

---

Example H–1 shows an example of a node view.

**Syntax**

oclumon dumpnodeview [-allnodes] | [-n node1 node2] [-last "duration"] | [-s "time_stamp" -e 'time_stamp'] [-v] [-warning] [-h]

**Parameters**

**Table H–2  oclumon dumpnodeview Command Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-allnodes</td>
<td>Use this option to dump the node views of all the nodes in the cluster.</td>
</tr>
<tr>
<td>-n node1 node2</td>
<td>Specify one node (or several nodes in a space-delimited list) for which you want to dump the node view.</td>
</tr>
<tr>
<td>-last &quot;duration&quot;</td>
<td>Use this option to specify a time, given in HH24:MM:SS format surrounded by double quotation marks (&quot;&quot;), to retrieve the last metrics. For example: &quot;23:05:00&quot;</td>
</tr>
</tbody>
</table>
| -s "time_stamp" -e 'time_stamp' | Use the -s option to specify a time stamp from which to start a range of queries and use the -e option to specify a time stamp to end the range of queries. Specify time in YYYY-MM-DD HH24:MM:SS format surrounded by double quotation marks (" "). "2011-05-10 23:05:00"

Note: You must specify these two options together to obtain a range.

-v	Displays verbose node view output. Without -v you only see SYSTEM and
-warning	Use this option to print the node views with warnings, only.
-h	Displays online help for the oclumon dumpnodeview command.

**Usage Notes**

- The default is to continuously dump node views. To stop continuous display, use Ctrl+C on Linux and Esc on Windows.

- Both the local system monitor service (osysmond) and the cluster logger service (ologgerd) must be running to obtain node view dumps.
Examples
The following example dumps node views from node1, node2, and node3 collected over the last twelve hours:

$ oclumon dumpnodeview -n node1 node2 node3 -last "12:00:00"

The following example displays node views from all nodes collected over the last fifteen minutes:

$ oclumon dumpnodeview -allnodes -last "00:15:00"

Metric Descriptions
This section includes descriptions of the metrics in each of the seven views that make up a node view listed in the following tables.

Table H–3 SYSTEM View Metric Descriptions

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#pcpus</td>
<td>Number of physical CPUs in the system</td>
</tr>
<tr>
<td>#vcpus</td>
<td>Number of logical compute units</td>
</tr>
<tr>
<td>chipname</td>
<td>Type of CPU</td>
</tr>
<tr>
<td>cpuht</td>
<td>CPU hyperthreading enabled (Y) or disabled (N)</td>
</tr>
<tr>
<td>cpu</td>
<td>Average CPU utilization per processing unit within the current sample interval (%)</td>
</tr>
<tr>
<td>cpuq</td>
<td>Number of processes waiting in the run queue within the current sample interval</td>
</tr>
<tr>
<td>physmemfree</td>
<td>Amount of free RAM (KB)</td>
</tr>
<tr>
<td>physmemtotal</td>
<td>Amount of total usable RAM (KB)</td>
</tr>
<tr>
<td>mcache</td>
<td>Amount of physical RAM used for file buffers plus the amount of physical RAM used as cache memory (KB)</td>
</tr>
<tr>
<td>swapfree</td>
<td>Amount of swap memory free (KB)</td>
</tr>
<tr>
<td>swaptotal</td>
<td>Total amount of physical swap memory (KB)</td>
</tr>
<tr>
<td>ior</td>
<td>Average total disk read rate within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>iow</td>
<td>Average total disk write rate within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>ios</td>
<td>Average total disk I/O operation rate within the current sample interval (I/O operations per second)</td>
</tr>
<tr>
<td>swpin</td>
<td>Average swap in rate within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>swpout</td>
<td>Average swap out rate within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>pgin</td>
<td>Average page in rate within the current sample interval (pages per second)</td>
</tr>
<tr>
<td>pgout</td>
<td>Average page out rate within the current sample interval (pages per second)</td>
</tr>
</tbody>
</table>

Note: This metric is not available on Solaris or Windows systems.
### Table H–3  (Cont.) SYSTEM View Metric Descriptions

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netr</td>
<td>Average total network receive rate within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>netw</td>
<td>Average total network send rate within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>procs</td>
<td>Number of processes</td>
</tr>
<tr>
<td>rtpros</td>
<td>Number of real-time processes</td>
</tr>
<tr>
<td>#fds</td>
<td>Number of open file descriptors</td>
</tr>
<tr>
<td>#sysfdlimit</td>
<td>System limit on number of file descriptors</td>
</tr>
<tr>
<td>#disks</td>
<td>Number of disks</td>
</tr>
<tr>
<td>#nics</td>
<td>Number of network interface cards</td>
</tr>
<tr>
<td>nicErrors</td>
<td>Average total network error rate within the current sample interval (errors per second)</td>
</tr>
</tbody>
</table>

**Note:** This metric is not available on Windows systems.

### Table H–4  PROCESSES View Metric Descriptions

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of the process executable</td>
</tr>
<tr>
<td>pid</td>
<td>The process identifier assigned by the operating system</td>
</tr>
<tr>
<td>#procfdlimit</td>
<td>Limit on number of file descriptors for this process</td>
</tr>
<tr>
<td>cpuusage</td>
<td>Process CPU utilization (%)</td>
</tr>
<tr>
<td>memusage</td>
<td>Process private memory usage (KB)</td>
</tr>
<tr>
<td>shm</td>
<td>Process shared memory usage (KB)</td>
</tr>
<tr>
<td>workingset</td>
<td>Working set of a program (KB)</td>
</tr>
<tr>
<td>#fd</td>
<td>Number of file descriptors open by this process</td>
</tr>
<tr>
<td>#threads</td>
<td>Number of threads created by this process</td>
</tr>
<tr>
<td>priority</td>
<td>The process priority</td>
</tr>
<tr>
<td>nice</td>
<td>The nice value of the process</td>
</tr>
</tbody>
</table>

**Note:** The utilization value can be up to 100 times the number of processing units. This metric is not available on Windows, Solaris, AIX, and HP-UX systems. This metric is only available on Windows.

### Table H–5  DEVICES View Metric Descriptions

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ior</td>
<td>Average disk read rate within the current sample interval (KB per second)</td>
</tr>
</tbody>
</table>
### Table H–5 (Cont.) DEVICES View Metric Descriptions

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iow</td>
<td>Average disk write rate within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>ios</td>
<td>Average disk I/O operation rate within the current sample interval (I/O operations per second)</td>
</tr>
<tr>
<td>qlen</td>
<td>Number of I/O requests in wait state within the current sample interval</td>
</tr>
<tr>
<td>wait</td>
<td>Average wait time per I/O within the current sample interval (msec)</td>
</tr>
<tr>
<td>type</td>
<td>If applicable, identifies what the device is used for. Possible values are SWAP, SYS, OCR, ASM, and VOTING.</td>
</tr>
</tbody>
</table>

### Table H–6 NICS View Metric Descriptions

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netrr</td>
<td>Average network receive rate within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>netwr</td>
<td>Average network sent rate within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>neteff</td>
<td>Average effective bandwidth within the current sample interval (KB per second)</td>
</tr>
<tr>
<td>nicerrors</td>
<td>Average error rate within the current sample interval (errors per second)</td>
</tr>
<tr>
<td>pktsin</td>
<td>Average incoming packet rate within the current sample interval (packets per second)</td>
</tr>
<tr>
<td>pktsout</td>
<td>Average outgoing packet rate within the current sample interval (packets per second)</td>
</tr>
<tr>
<td>errsin</td>
<td>Average error rate for incoming packets within the current sample interval (errors per second)</td>
</tr>
<tr>
<td>errsout</td>
<td>Average error rate for outgoing packets within the current sample interval (errors per second)</td>
</tr>
<tr>
<td>indiscarded</td>
<td>Average drop rate for incoming packets within the current sample interval (packets per second)</td>
</tr>
<tr>
<td>outdiscarded</td>
<td>Average drop rate for outgoing packets within the current sample interval (packets per second)</td>
</tr>
<tr>
<td>inunicast</td>
<td>Average packet receive rate for unicast within the current sample interval (packets per second)</td>
</tr>
<tr>
<td>type</td>
<td>Whether PUBLIC or PRIVATE</td>
</tr>
<tr>
<td>innonunicast</td>
<td>Average packet receive rate for multi-cast (packets per second)</td>
</tr>
<tr>
<td>latency</td>
<td>Estimated latency for this network interface card (msec)</td>
</tr>
</tbody>
</table>

### Table H–7 FILESYSTEMS View Metric Descriptions

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Name of the file system</td>
</tr>
<tr>
<td>mount</td>
<td>Mount point where the file system is mounted</td>
</tr>
</tbody>
</table>
### Table H–7 (Cont.) FILESYSTEMS View Metric Descriptions

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>Type of the file system that is mounted, whether it is Local or NTFS or EXT2</td>
</tr>
<tr>
<td>total</td>
<td>Total amount of space (KB)</td>
</tr>
<tr>
<td>used</td>
<td>Amount of used space (KB)</td>
</tr>
<tr>
<td>available</td>
<td>Amount of available space (KB)</td>
</tr>
<tr>
<td>used%</td>
<td>Percentage of used space (%)</td>
</tr>
<tr>
<td>mft%</td>
<td>Percentage of master file table utilization</td>
</tr>
<tr>
<td>ifree%</td>
<td>Percentage of free file nodes (%)</td>
</tr>
</tbody>
</table>

**Note:** This metric is not available on Windows systems.

### Table H–8 PROTOCOL ERRORS View Metric Descriptions

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPHdrErr</td>
<td>Number of input datagrams discarded due to errors in their IPv4 headers</td>
</tr>
<tr>
<td>IPAddrErr</td>
<td>Number of input datagrams discarded because the IPv4 address in their IPv4 header's destination field was not a valid address to be received at this entity</td>
</tr>
<tr>
<td>IPUnkProto</td>
<td>Number of locally-addressed datagrams received successfully but discarded because of an unknown or unsupported protocol</td>
</tr>
<tr>
<td>IPReasFail</td>
<td>Number of failures detected by the IPv4 reassembly algorithm</td>
</tr>
<tr>
<td>IPFragFail</td>
<td>Number of IPv4 discarded datagrams due to fragmentation failures</td>
</tr>
<tr>
<td>TCPFailedConn</td>
<td>Number of times that TCP connections have made a direct transition to the CLOSED state from either the SYN-SENT state or the SYN-RCVD state, plus the number of times that TCP connections have made a direct transition to the LISTEN state from the SYN-RCVD state</td>
</tr>
<tr>
<td>TCPEstRst</td>
<td>Number of times that TCP connections have made a direct transition to the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state</td>
</tr>
<tr>
<td>TCPRetraSeg</td>
<td>Total number of TCP segments retransmitted</td>
</tr>
<tr>
<td>UDPUnkPort</td>
<td>Total number of received UDP datagrams for which there was no application at the destination port</td>
</tr>
<tr>
<td>UDPRcvErr</td>
<td>Number of received UDP datagrams that could not be delivered for reasons other than the lack of an application at the destination port</td>
</tr>
</tbody>
</table>

1 All protocol errors are cumulative values since system startup.

### Example H–1 Sample Node View

```
Node: node1 Clock: '07-17-13 23.33.25' SerialNo:34836

SYSTEM:
#pcpus: 12 #vcpus: 12 cpuht: N chipname: Intel(R) cpu: 2.43 cpuq: 2
physmemfree: 56883116 physmemtotal: 74369536 mcache: 13615352 swapfree: 18480408
```
swaptotal: 18480408 ior: 170 iow: 37 ios: 37 swpin: 0 swpout: 0 pgin: 170
pgout: 37 netr: 40.301 netw: 57.211 procs: 437 rtprocs: 33 #fds: 15008
#sysfdlimit: 6815744 #disks: 9 #nics: 5 nicErrors: 0

**TOP CONSUMERS:**

topcpu: 'osymond.bin(9103) 2.59' topprivmem: 'java(26616) 296808'
topshm: 'ora_mman_orcl_4(32128) 1222220' topfd: 'ohasd.bin(7594) 150'
topthread: 'crsd.bin(9250) 43'

**PROCESSES:**

name: 'mdnsd' pid: 12875 #procfdlimit: 8192 cpuusage: 0.19 privmem: 9300
shm: 8604 #fd: 36 #threads: 3 priority: 15 nice: 0
name: 'ora_cjq0_rdbms3' pid: 12869 #procfdlimit: 8192 cpuusage: 0.39
privmem: 10572 shm: 77420 #fd: 23 #threads: 1 priority: 15 nice: 0
name: 'ora_lms0_rdbms2' pid: 12635 #procfdlimit: 8192 cpuusage: 0.19
privmem: 15832 shm: 49988 #fd: 24 #threads: 1 priority: 15 nice: 0
name: 'evmlogger' pid: 32355 #procfdlimit: 8192 cpuusage: 0.0 privmem: 4600
shm: 8756 #fd: 9 #threads: 3 priority: 15 nice: 0

**DEVICES:**

xvda ior: 0.798 iow: 193.723 ios: 33 qlen: 0 wait: 0 type: SWAP
xvda2 ior: 0.000 iow: 0.000 ios: 0 qlen: 0 wait: 0 type: SWAP
xvda1 ior: 0.798 iow: 193.723 ios: 33 qlen: 0 wait: 0 type: SYS

**NICS:**

lo netrr: 35.743 netwr: 35.743 neteff: 71.486 nicerrors: 0 pktsin: 22
pktsout: 22 errsinn: 0 errsqlout: 0 indiscarded: 0 outdiscarded: 0

eth0 netrr: 7.607 netwr: 1.363 neteff: 8.971 nicerrors: 0 pktsin: 41
pktsout: 18 errsinn: 0 errsqlout: 0 indiscarded: 0 outdiscarded: 0

**FILESYSTEMS:**

mount: / type: rootfs total: 155401100 used: 125927608 available: 21452240
used%: 85 ifree%: 93 [ORACLE_HOME CRF_HOME rdbms2 rdbms3 rdbms4 has51]

mount: /scratch type: ext3 total: 155401100 used: 125927608 available: 21452240
used%: 85 ifree%: 93 [rdbms2 rdbms3 rdbms4 has51]

mount: /net/adc6160173/scratch type: ext3 total: 155401100 used: 125927608
available: 21452240 used%: 85 ifree%: 93 [rdbms2 rdbms4 has51]

**PROTOCOL ERRORS:**

IPHdrErr: 0 IPAddrErr: 19568 IPUnkProto: 0 IPReasFail: 0 IPFragFail: 0
TCPFailedConn: 931776 TCPEstRst: 76506 TCPRetraSeg: 12258 UDPUnkPort: 29132
UDPRcvErr: 148

**oclumon manage**

Use the oclumon manage command to view log information from the system monitor service.
**Syntax**

```
oclumon manage [[-repos {resize size | changesize memory_size |
reploc new_location [[[-maxtime size] | [-maxspace memory_size]]]} |
[-get key1 key2 ...]]
```

**Parameters**

**Table H–9  oclumon manage Command Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| -repos {resize size | changesize memory_size | reploc new_location [[[-maxtime size] | [-maxspace memory_size]]} | | The -repos flag is required to specify the following CHM repository-related options:  
- **resize size**: Use this option to resize the CHM repository to a specified number of seconds between 3600 (one hour) and 259200 (three days)  
- **changesize memory_size**: Use this option to change the CHM repository space limit to a specified number of MB  
- **reploc new_location**: Use this option to change the location of the CHM repository to a specified directory path, and to specify the CHM repository size in terms of elapsed seconds of data capture and a space limit for the new location  

| -get key1 key2 ... | Use this option to obtain CHM repository information using the following keywords:  
- **repsize**: Current size of the CHM repository, in seconds  
- **reppath**: Directory path to the CHM repository  
- **master**: Name of the master node  
- **replica**: Name of the standby node  
You can specify any number of keywords in a space-delimited list following the -get flag.  

| -h | Displays online help for the oclumon manage command |

**Usage Notes**

Both the local system monitor service and the master cluster logger service must be running to resize the CHM repository.

**Example**

The following examples show commands and sample output:

```
$ oclumon manage -repos reploc /shared/oracle/chm
```

The preceding example moves the CHM repository to shared storage.

```
$ oclumon manage -get repath
CHM Repository Path = /opt/oracle/grid/crf/db/node1
Done

$ oclumon manage -get master
Master = node1
done

$ oclumon manage -get repsize
CHM Repository Size = 86400
Done
```
oclumon version
Use the oclumon version command to obtain the version of CHM that you are using.

Syntax
oclumon version

Example
This command produces output similar to the following:
Cluster Health Monitor (OS), Version 11.2.0.3.0 - Production Copyright 2011
Oracle. All rights reserved.

Clusterware Log Files and the Unified Log Directory Structure
Oracle Database uses a unified log directory structure to consolidate the Oracle Clusterware component log files. This consolidated structure simplifies diagnostic information collection and assists during data retrieval and problem analysis.

Alert files are stored in the directory structures shown in Table H–10.

<table>
<thead>
<tr>
<th>Component</th>
<th>Log File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Health Monitor (CHM)</td>
<td>The system monitor service and cluster logger service record log information in following locations, respectively:</td>
</tr>
<tr>
<td></td>
<td>Grid_home/log/host_name/crfmond</td>
</tr>
<tr>
<td></td>
<td>Grid_home/log/host_name/crflogd</td>
</tr>
<tr>
<td>Oracle Database Quality of Service Management (DBQOS)</td>
<td>Oracle Database QoS Management Grid Operations Manager logs:</td>
</tr>
<tr>
<td></td>
<td>Grid_home/oc4j/j2ee/home/log/dbwlm/auditing</td>
</tr>
<tr>
<td></td>
<td>Oracle Database QoS Management trace logs:</td>
</tr>
<tr>
<td></td>
<td>Grid_home/oc4j/j2ee/home/log/dbwlm/logging</td>
</tr>
<tr>
<td>Cluster Ready Services Daemon (CRSD) Log Files</td>
<td>Grid_home/log/host_name/crsd</td>
</tr>
<tr>
<td>Cluster Synchronization Services (CSS)</td>
<td>Grid_home/log/host_name/cssd</td>
</tr>
<tr>
<td>Cluster Time Synchronization Service (CTSS)</td>
<td>Grid_home/log/host_name/ctssd</td>
</tr>
<tr>
<td>Grid Plug and Play</td>
<td>Grid_home/log/host_name/gpnpd</td>
</tr>
<tr>
<td>Multicast Domain Name Service Daemon (MDNSD)</td>
<td>Grid_home/log/host_name/mdnsd</td>
</tr>
<tr>
<td>Oracle Cluster Registry</td>
<td>Oracle Cluster Registry tools (OCRDUMP, OCRCHECK, OCRCONFIG) record log information in the following location:</td>
</tr>
<tr>
<td></td>
<td>Grid_home/log/host_name/client</td>
</tr>
<tr>
<td></td>
<td>Cluster Ready Services records Oracle Cluster Registry log information in the following location:</td>
</tr>
<tr>
<td></td>
<td>Grid_home/log/host_name/crsd</td>
</tr>
<tr>
<td>Oracle Grid Naming Service (GNS)</td>
<td>Grid_home/log/host_name/gnsd</td>
</tr>
</tbody>
</table>
Use the following procedure to test zone delegation:

1. Start the GNS VIP by running the following command as root:
   
   ```
 # crsctl start ip -A IP_name/netmask/interface_name
   ```
   
   The `interface_name` should be the public interface and netmask of the public network.

2. Start the test DNS server on the GNS VIP by running the following command (you must run this command as root if the port number is less than 1024):
   
   ```
 # crsctl start testdns -address address [-port port]
   ```

---

**Table H–10 (Cont.) Locations of Oracle Clusterware Component Log Files**

<table>
<thead>
<tr>
<th>Component</th>
<th>Log File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle High Availability Services Daemon (OHASD)</td>
<td>Grid_home/log/host_name/ohasd</td>
</tr>
<tr>
<td>Oracle Automatic Storage Management Cluster File System (Oracle ACFS)</td>
<td>Grid_home/log/host_name/acfsrepl</td>
</tr>
<tr>
<td></td>
<td>Grid_home/log/host_name/acfsreplroot</td>
</tr>
<tr>
<td></td>
<td>Grid_home/log/host_name/acfsisec</td>
</tr>
<tr>
<td></td>
<td>Grid_home/log/host_name/acfs</td>
</tr>
<tr>
<td>Event Manager (EVM) information generated by evmd</td>
<td>Grid_home/log/host_name/evmd</td>
</tr>
<tr>
<td>Cluster Verification Utility (CVU)</td>
<td>Grid_home/log/host_name/cvu</td>
</tr>
<tr>
<td>Oracle RAC RACG</td>
<td>The Oracle RAC high availability trace files are located in the following two locations:</td>
</tr>
<tr>
<td></td>
<td>Grid_home/log/host_name/racg</td>
</tr>
<tr>
<td></td>
<td>$ORACLE_HOME/log/host_name/racg</td>
</tr>
<tr>
<td></td>
<td>Core files are in subdirectories of the log directory. Each RACG executable has a subdirectory assigned exclusively for that executable. The name of the RACG executable subdirectory is the same as the name of the executable. Additionally, you can find logging information for the VIP in Grid_home/log/host_name/agent/crsd/orarootagent_root and for the database in $ORACLE_HOME/log/host_name/racg.</td>
</tr>
<tr>
<td>Server Manager (SRVM)</td>
<td>Grid_home/log/host_name/srvm</td>
</tr>
<tr>
<td>Disk Monitor Daemon (diskmon)</td>
<td>Grid_home/log/host_name/diskmon</td>
</tr>
<tr>
<td>Grid Interprocess Communication Daemon (GIPCD)</td>
<td>Grid_home/log/host_name/gipcd</td>
</tr>
</tbody>
</table>

1. The directory structure is the same for Linux, UNIX, and Windows systems.
2. To change the amount of logging, edit the path in the Grid_home/srvm/admin/ocrlog.ini file.

---

**See Also:** Appendix E, "CRSCTL Utility Reference" for information about using the CRSCTL commands referred to in this procedure.
This command starts the test DNS server to listen for DNS forwarded packets at the specified IP and port.

3. Ensure that the GNS VIP is reachable from other nodes by running the following command as root:
   ```
 crsctl status ip -A IP_name
   ```

4. Query the DNS server directly by running the following command:
   ```
 crsctl query dns -name name -dnsserver DNS_server_address
   ```
   This command fails with the following error:
   **CRS-10023**: Domain name look up for name asdf.foo.com failed. Operating system error: Host name lookup failure
   
   Look at `Grid_home/log/host_name/client/odnsd_* .log` to see if the query was received by the test DNS server. This validates that the DNS queries are not being blocked by a firewall.

5. Query the DNS delegation of GNS domain queries by running the following command:
   ```
 crsctl query dns -name name
   ```

---

**Note:** The only difference between this step and the previous step is that you are not giving the `-dnsserver DNS_server_address` option. This causes the command to query name servers configured in `/etc/resolv.conf`. As in the previous step, the command fails with same error. Again, look at `odnsd*.log` to ensure that `odnsd` received the queries. If step 5 succeeds but step 6 does not, then you must check the DNS configuration.

6. Stop the test DNS server by running the following command:
   ```
 crsctl stop testdns -address address
   ```

7. Stop the GNS VIP by running the following command as root:
   ```
 crsctl stop ip -A IP_name/netmask/interface_name
   ```

---

**Oracle Trace File Analyzer Collector**

The Oracle Trace File Analyzer (TFA) Collector is a tool for targeted diagnostic collection that simplifies diagnostic data collection for Oracle Clusterware, Oracle Grid Infrastructure, and Oracle RAC systems. TFA collects and packages diagnostic data and also has the ability to centralize and automate the collection of diagnostic information.

TFA is installed into the Oracle Grid Infrastructure home when you install, or upgrade to, Oracle Database 11g release 2 (11.2.0.4). The TFA daemon discovers relevant trace file directories and then analyzes the trace files in those directories to determine their file type (whether they are database trace or log files, or Oracle Clusterware trace or log files, for example) and the first and last timestamps of those files. TFA stores this data in a Berkeley database in the Grid home owner’s `ORACLE_BASE` directory.
The TFA daemon periodically checks for new trace directories to add, such as when a new database instance is created, and also periodically checks whether the trace files metadata need updating. TFA uses this metadata when performing diagnostic data collections.

TFA can perform diagnostic collections in two ways, either on demand or automatically:

- Use `tfactl set` to enable automatic collection of diagnostics upon discovery of a limited set of errors in trace files
  
  **See Also:** "tfactl set" on page H-20

- The `tfactl diagcollect` command collects trimmed trace files for any component and specific time range

  **See Also:** "tfactl diagcollect" on page H-21

This section includes the following topics:

- Managing the TFA Daemon
- TFA Control Utility Command Reference
- Data Redaction with TFA

### Managing the TFA Daemon

TFA starts automatically whenever a node starts. You can manually start or stop TFA using the following commands:

- `/etc/init.d/init.tfa start`: Starts the TFA daemon
- `/etc/init.d/init.tfa stop`: Stops the TFA daemon
- `/etc/init.d/init.tfa restart`: Stops and then starts the TFA daemon
- `/etc/init.d/init.tfa shutdown`: Stops the TFA daemon and removes entries from the appropriate operating system configuration

If the TFA daemon fails, then the operating system restarts it, automatically.

### TFA Control Utility Command Reference

The TFA control utility, TFACTL, is the command-line interface for TFA, and is located in the `Grid_home/tfa/bin` directory. You must run TFACTL as root or sudo, because that gives access to trace files that normally allow only root access. Some commands, such as `tfactl host add`, require strict root access.

You can append the `-help` flag to any of the TFACTL commands to obtain online usage information.

This section lists and describes the following TFACTL commands:

- `tfactl print`
- `tfactl purge`

**Note:** Oracle does not support TFA with Oracle Database 11g release 2 (11.2.0.4).
tfactl directory

- tfactl host
- tfactl set
- tfactl diagcollect

**tfactl print**

Use the `tfactl print` command to print information from the Berkeley database.

**Syntax**

```bash
tfactl print [status | config | directories | hosts | actions | repository | cookie]
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>Prints the status of TFA across all nodes in the cluster, and also prints the TFA version and the port on which it is running.</td>
</tr>
<tr>
<td>config</td>
<td>Prints the current TFA configuration settings.</td>
</tr>
<tr>
<td>directories</td>
<td>Lists all the directories that TFA scans for trace or log file data, and shows the location of the trace directories allocated for the database, Oracle ASM, and instance.</td>
</tr>
<tr>
<td>hosts</td>
<td>Lists the hosts that are part of the TFA cluster, and that can receive clusterwide commands.</td>
</tr>
<tr>
<td>actions</td>
<td>Lists all the actions submitted to TFA, such as diagnostic collection. By default, <code>tfactl print actions</code> only shows actions that are running or that have completed in the last hour.</td>
</tr>
<tr>
<td>repository</td>
<td>Prints the current location and amount of used space of the repository directory. Initially, the maximum size of the repository directory is the smaller of either 10GB or 50% of available file system space. If the maximum size is exceeded or the file system space gets to 1GB or less, then TFA suspends operations and the repository is closed. Use the <code>tfactl purge</code> command to clear collections from the repository.</td>
</tr>
<tr>
<td>cookie</td>
<td>Generates and prints an identification code for use by the <code>tfactl set</code> command.</td>
</tr>
</tbody>
</table>

**Example**

The `tfactl print config` returns output similar to the following:

<table>
<thead>
<tr>
<th>Configuration parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA Version</td>
<td>2.5.1.5</td>
</tr>
<tr>
<td>Automatic diagnostic collection</td>
<td>OFF</td>
</tr>
<tr>
<td>Trimming of files during diagcollection</td>
<td>ON</td>
</tr>
<tr>
<td>Repository current size (MB) in nodel</td>
<td>526</td>
</tr>
<tr>
<td>Repository maximum size (MB) in nodel</td>
<td>10240</td>
</tr>
<tr>
<td>Trace Level</td>
<td>1</td>
</tr>
</tbody>
</table>

In the preceding sample output:
- **Automatic diagnostic collection**: When ON (default is OFF), if scanning an alert log, then finding specific events in those logs triggers diagnostic collection.

- **Trimming of files during diagcollection**: Determines if TFA will trim large files to contain only data that is within specified time ranges. When this is OFF, no trimming of trace files occurs for automatic diagnostic collection.

- **Repository current size in MB**: How much space in the repository is currently used.

- **Repository maximum size in MB**: The maximum size of storage space in the repository. Initially, the maximum size is set to the smaller of either 10GB or 50% of free space in the file system.

- **Trace Level**: 1 is the default, and the values 2, 3, and 4 have increasing verbosity. While you can set the trace level dynamically for the running TFA daemon, increasing the trace level significantly impacts the performance of TFA, and should only be done at the request of My Oracle Support.

**tfactl purge**

Use the `tfactl purge` command to delete diagnostic collections from the TFA repository that are older than a specific time.

**Syntax**

```
 tfactl purge -older number[h | d]
```

Specify a number followed by h or d (to specify a number of hours or days, respectively) to remove files older than the specified time constraint. For example:

```
 # tfactl purge -older 30d
```

The preceding command removes files older than 30 days.

**tfactl directory**

Use the `tfactl directory` command to add a directory to, or remove a directory from, the list of directories that will have their trace or log files analyzed. You can also use this command to change the directory permissions. When a directory is added by auto discovery, it is added as public, which means that any file in that directory can be collected by any user that has permission to run the `tfactl diagcollect` command. This is only important when `sudo` is used to allow users other than root to run TFACTL commands. If a directory is marked as private, then TFA determines which user is running TFACTL commands and verifies that the user has permissions to see the files in the directory before allowing any files to be collected.

**Note:** A user can only add a directory to TFA to which they have read access, and also that TFA auto collections, when configured, run as root, and so will always collect all available files.

**Syntax**

```
 tfactl directory [add directory | remove directory | modify directory -private | -public]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add directory</td>
<td>Adds a specific directory</td>
</tr>
<tr>
<td>remove directory</td>
<td>Removes a specific directory</td>
</tr>
<tr>
<td>modify directory</td>
<td>Modifies a specific directory to either be private or public, where</td>
</tr>
<tr>
<td>-private</td>
<td>-public</td>
</tr>
</tbody>
</table>

Usage Notes

You must add all trace directory names to the Berkeley database, so that TFA will collect file metadata in that directory. The discovery process finds most directories but if new or undiscovered directories are required, then you can add these manually using the tfactl directory command. When you add a directory using TFACTL, TFA attempts to determine whether the directory is for the database, Oracle Clusterware, operating system logs, or some other component, and for which database or instance. If TFA cannot determine this information, then it returns an error and requests that you enter the information, similar to the following:

```
tfactl directory add /tmp
Failed to add directory to TFA. Unable to determine parameters for directory: /tmp
Please enter component for this Directory [RDBMS|CRS|ASM|INSTALL|OS|CFGTOOLS] : RDBMS
Please enter database name for this Directory :MYDB
Please enter instance name for this Directory :MYDB1
```

**tfactl host**

Use the tfactl host command to add hosts to, or remove hosts from, the TFA cluster.

**Syntax**

```
tfactl host [add host_name | remove host_name]
```

Specify a host name to add or remove, as in the following example:

```
tfactl host add myhost.domain.com
```

**Usage Notes**

Using the tfactl host add command notifies the local TFA about other nodes on your network. When you add a host, TFA contacts that host and, if TFA is running on that host, then both hosts synchronize their host list. TFA authenticates that a host can be added using a cookie. If the host to be added does not have the correct cookie, then you must retrieve that cookie from an existing host in the cluster and set it on the host being added, similar to the following:

```
#tfactl host add node2
```

Failed to add host: node2 as the TFA cookies do not match.
To add the host successfully, try the following steps:
1. Get the cookie in node1 using:
```
./tfa_home/bin/tfactl print cookie
```
2. Set the cookie from Step 1 in node2 using:
   
   ./tfa_home/bin/tfactl set cookie=<COOKIE>

3. After Step 2, add host again:
   
   ./tfa_home/bin/tfactl host add node2

After you successfully add the host, all clusterwide commands will activate on all nodes registered in the Berkeley database.

**tfactl set**

Use the `tfactl set` command to adjust the manner in which TFA runs.

**Syntax**

```
tfactl set [autodiagcollect=ON | OFF | cookie=Xn | trimfiles=ON | OFF |
tracelevel=1 | 2 | 3 | 4 | reposizeMB=number | repositorydir=directory] [-c]
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>autodiagcollect=ON</td>
<td>OFF</td>
</tr>
<tr>
<td>cookie=UID</td>
<td>Use the <code>tfactl print cookie</code> command to generate the cookie identification.</td>
</tr>
<tr>
<td>trimfiles=ON</td>
<td>OFF</td>
</tr>
<tr>
<td>tracelevel=1</td>
<td>2</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>Specify this parameter to propagate these settings to all nodes in the TFA configuration.</td>
</tr>
</tbody>
</table>

**Automatic Diagnostic Collection**

After TFA initially gathers trace file metadata, the daemon monitors all files that are determined to be alert logs using `tail`, so that TFA can take action when certain strings occur.

By default, these logs are database alert logs, Oracle ASM alert logs, and Oracle Clusterware alert logs. When specific patterns occur in the logs saved to the Berkeley database, automatic diagnostic collection may take place.

Exactly what is collected depends on the pattern that is matched. TFA may just store information on the pattern matched or may initiate local diagnostic collection. Although TFA always monitors the logs and collects information into its database, automatic diagnostic collection only happens if it is enabled first using the `tfactl set` command.
tfactl diagcollect

Use the tfactl diagcollect command to perform on-demand diagnostic collection. You can configure a number of different parameters to determine how large or detailed a collection you want. You can specify a specific time of an incident or a time range for data to be collected, and determine if whole files that have relevant data should be collected or just a time interval of data from those files.

Note: If you specify no parameters, then the tfactl diagcollect command collects files from all nodes for all components where the file has been updated in the last four hours, and also trims excessive files. If an incident occurred prior to this period, then you can use the parameters documented in this section to target the correct data collection.

Syntax

```

tfactl diagcollect [-all | -database all | database_1,database_2,... | -asm | -crs | -os | -install]
[-node all | local | node_1,node_2,...][-tag description] [-z file_name]
[-since numberh | d | -from "mmm/dd/yyyy hh:mm:ss" -to "mmm/dd/yyyy hh:mm:ss"
| -for "mmm/dd/yyyy hh:mm:ss" [-nocopy] [-nomonitor]]
```

Parameters

Table H–14  tfactl diagcollect Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-all</td>
<td>-database all</td>
</tr>
<tr>
<td>-node all</td>
<td>local</td>
</tr>
<tr>
<td>-tag description</td>
<td>Use this parameter to create a subdirectory for the resulting collection in the TFA repository.</td>
</tr>
<tr>
<td>-z file_name</td>
<td>Use this parameter to specify an output file name.</td>
</tr>
<tr>
<td>-since numberh</td>
<td>d</td>
</tr>
<tr>
<td>-for &quot;mmm/dd/yyyy hh:mm:ss&quot;</td>
<td>Specify the -from and -to parameters (you must use these two parameters together) to collect files that have relevant data during a specific time interval, and trim data before this time where files are large.</td>
</tr>
<tr>
<td></td>
<td>Specify the -for parameter to collect files that have relevant data for the time given. The files TFACTL collects will have timestamps in between which the time you specify after -for is included. No data trimming is done for this option.</td>
</tr>
</tbody>
</table>

Note: If you specify both date and time, then you must enclose both values in double quotation marks (" "). If you specify only the date or the time, then you do not have to enclose the single value in quotation marks.
**Table H–14 (Cont.) tfactl diagcollect Command Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-nocopy</td>
<td>Specify this parameter to stop the resultant trace file collection from being copied back to the initiating node. The file remains in the TFA repository on the executing node.</td>
</tr>
<tr>
<td>-nomonitor</td>
<td>Specify this parameter to prevent the terminal on which you run the command from displaying the progress of the command.</td>
</tr>
</tbody>
</table>

**Examples**

- The following command trims and zips all files updated in the last four hours, including chmos and osw data, from across the cluster and collects it on the initiating node:
  
  ```
 # tfactl diagcollect
  ```

- The following command trims and zips all files updated in the last eight hours, including chmos and osw data, from across the cluster and collects it on the initiating node:
  
  ```
 # tfactl diagcollect -all -since 8h
  ```

- The following command trims and zips all files from databases hrdb and fdb updated in the last one day and collects it on the initiating node:
  
  ```
 # tfactl diagcollect -database hrdb,fdb -since 1d -z foo
  ```

- The following command trims and zips all Oracle Clusterware files, operating system logs, and chmos and osw data from node1 and node2 updated in the last six hours, and collects it on the initiating node.
  
  ```
 # tfactl diagcollect -crs -os -node node1,node2 -since 6h
  ```

- The following command trims and zips all Oracle ASM logs from node1 updated between July 4, 2013 and July 5, 2013 at 21:00, and collects it on the initiating node:
  
  ```
 # tfactl diagcollect -asm -node node1 -from Jul/4/2013 -to "Jul/5/2013 21:00:00"
  ```

- The following command trims and zips all log files updated on July 2, 2013 and collect at the initiating node:
  
  ```
 # tfactl diagcollect -for Jul/2/2013
  ```

- The following command trims and zips all log files updated from 09:00 on July 2, 2013, to 09:00 on July 3, 2013, which is 12 hours before and after the time specified in the command, and collects it on the initiating node:
  
  ```
 # tfactl diagcollect -for "Jul/2/2013 21:00:00"
  ```

**Data Redaction with TFA**

You can hide sensitive data by replacing data in files or paths in file names. To use this feature, place a file called `redaction.xml` in the `tfa_home/resources` directory. TFA uses the data contained within the `redaction.xml` file to replace strings in file names and contents. The format of the `redaction.xml` file is as follows:

```
<replacements>
<replace>
<before>securestring</before>
</replace>
</replacements>
```
Diagnostics Collection Script

Every time an Oracle Clusterware error occurs, run the diagcollection.pl script to collect diagnostic information from Oracle Clusterware into trace files. The diagnostics provide additional information so My Oracle Support can resolve problems. Run this script from the following location:

```
Grid_home/bin/diagcollection.pl
```

**Note:** You must run this script as the root user.

Oracle Clusterware Alerts

Oracle Clusterware posts alert messages when important events occur. The following is an example of an alert from the CRSD process:

```
2009-07-16 00:27:22.074
 [ctssd(12817)] CRS-2403: The Cluster Time Synchronization Service on host stnsp014 is in observer mode.
2009-07-16 00:27:22.146
 [ctssd(12817)] CRS-2407: The new Cluster Time Synchronization Service reference node is host stnsp013.
2009-07-16 00:27:22.753
 [ctssd(12817)] CRS-2401: The Cluster Time Synchronization Service started on host stnsp014.
2009-07-16 00:27:43.754
 [crsd(12975)] CRS-1012: The OCR service started on node stnsp014.
2009-07-16 00:27:46.339
 [crsd(12975)] CRS-1201: CRSD started on node stnsp014.
```

The location of this alert log on Linux, UNIX, and Windows systems is in the following directory path, where `Grid_home` is the name of the location where the Oracle Grid Infrastructure is installed: `Grid_home/log/host_name`.

The following example shows the start of the Oracle Cluster Time Synchronization Service (OCTSS) after a cluster reconfiguration:

```
 [ctssd(12813)] CRS-2403: The Cluster Time Synchronization Service on host stnsp014 is in observer mode.
 [ctssd(12813)] CRS-2407: The new Cluster Time Synchronization Service reference node is host stnsp013.
 [ctssd(12813)] CRS-2401: The Cluster Time Synchronization Service started on host stnsp014.
```
Alert Messages Using Diagnostic Record Unique IDs

Beginning with Oracle Database 11g release 2 (11.2), certain Oracle Clusterware messages contain a text identifier surrounded by "(:" and ":)". Usually, the identifier is part of the message text that begins with "Details in..." and includes an Oracle Clusterware diagnostic log file path and name similar to the following example. The identifier is called a DRUID, or Diagnostic Record Unique ID:

```
2009-07-16 00:18:44.472
[/scratch/11.2/grid/bin/orarootagent.bin(13098)]CRS-5822:Agent
'/scratch/11.2/grid/bin/orarootagent_root' disconnected from server. Details at
(:CRSAGF00117:) in /scratch/11.2/grid/log/stnsp014/agent/crsd/orarootagent_root/orarootagent_root.log.
```

DRUIDs are used to relate external product messages to entries in a diagnostic log file and to internal Oracle Clusterware program code locations. They are not directly meaningful to customers and are used primarily by My Oracle Support when diagnosing problems.

---

**Note:** Oracle Clusterware uses a file rotation approach for log files. If you cannot find the reference given in the file specified in the "Details in" section of an alert file message, then this file might have been rolled over to a rollover version, typically ending in 
*.1number* where *number* is a number that starts at 01 and increments to however many logs are being kept, the total for which can be different for different logs. While there is usually no need to follow the reference unless you are asked to do so by My Oracle Support, you can check the path given for roll over versions of the file. The log retention policy, however, foresees that older logs are to be purged as required by the amount of logs generated.

---
**action script**
A script that defines the start, stop and check actions for a resource. The start action is invoked while starting the resource, the stop action for stopping the resource, and the check action while checking the running status of a resource.

**administrator managed**
Database administrators define on which servers a database resource should run, and place resources manually as needed. This is the management strategy used in previous releases.

**availability directive**
Instructions to Oracle Clusterware to reconfigure the system when a server leaves or joins a cluster.

**cardinality**
The number of servers on which a **resource** can run, simultaneously.

**cluster**
Multiple interconnected computers or servers that appear as if they are one server to end users and applications.

**cluster-aware**
Any application designed to be deployed using clusterware.

**cluster resource**
A resource that is aware of the cluster environment and subject to cross-node switchover and failover.

**Cluster Time Synchronization Service**
A time synchronization mechanism that ensures that all internal clocks of all nodes in a cluster are synchronized.

**Cluster Verification Utility (CVU)**
A tool that verifies a wide range of Oracle RAC components such as shared storage devices, networking configurations, system requirements, Oracle Clusterware, groups, and users.

**CRS Administrator**
A predefined Oracle Clusterware administrator role intended to control the creation of server pools. A permanent CRS Administrator is either the user (Grid user) that
installed Oracle Clusterware in the Grid Infrastructure home or the system superuser (root in Linux and UNIX, and Administrator in Windows).

dependency
The relationship between two or more resources and the interaction expressed between them.

disk group
An Oracle ASM disk group is a collection of disks that Oracle ASM manages as a unit. Within a disk group, Oracle ASM exposes a file system interface for Oracle Database files. The content of files that is stored in a disk group is evenly distributed, or striped, to eliminate hot spots and to provide uniform performance across the disks. Oracle ASM files may also be optionally mirrored within a disk group. The performance of disks in a disk group is comparable to the performance of raw devices.

Grid Infrastructure
The software that provides the infrastructure for an enterprise grid architecture. In a cluster this software includes Oracle Clusterware and Oracle ASM. For a standalone server, this software includes Oracle Restart and Oracle ASM. Oracle Database 11g release 2 (11.2) combines these infrastructure products into one software installation called the Grid Infrastructure home (Grid_home).

fixup script
Oracle Universal Installer detects when minimum requirements for installation are not completed, and creates shell script programs, called fixup scripts, to resolve many incomplete system configuration requirements. If Oracle Universal Installer detects an incomplete task, it prompts you to create a fixup script and then to run the fixup script in a separate terminal session. You can also generate fixup scripts with certain CVU commands by using the -fixup flag.

local resource
A resource that runs on the nodes of a cluster but is unaware of anything outside of the scope of the node.

OCR writer
Each crsd process also acts as an OCR server. One of the crsd processes in the cluster is the OCR server that performs I/O to the disk group or file, or block or raw device.

Oracle Automatic Storage Management (Oracle ASM)
Oracle ASM manages the storage disks used by Oracle Clusterware and Oracle RAC in disk groups. By default, Oracle Clusterware uses Oracle ASM to store OCR and voting disks.

Oracle Cluster Registry (OCR)
The Oracle RAC configuration information repository that manages information about the cluster node list and instance-to-node mapping information. OCR also manages information about Oracle Clusterware resource profiles for customized applications.

Oracle Clusterware
Software that allows groups (clusters) of connected servers to operate or be controlled as a unit.
**Oracle Clusterware stack**
The Oracle Clusterware stack includes Oracle Clusterware, Event Manager, Cluster Synchronization Services, and Oracle ASM (if used).

**policy managed**
Database administrators specify the server pool (excluding generic or free) in which the database resource runs. Oracle Clusterware places the database resource on a server.

**resource**
A database, application, or process managed by Oracle Clusterware.

**resource state**
The state of a particular resource at any given time that determines its availability to the cluster.

**resource type**
Defines whether a resource is either a cluster resource or a local resource.

**server pool**
A logical division of servers in a cluster into a group that hosts applications, databases, or both.

**Single Client Access Name (SCAN)**
A single name that resolves to three IP addresses in the public network.

**start effort evaluation**
The process that Oracle Clusterware goes through when it starts a resource. During this process, Oracle Clusterware considers resource dependencies contained in the profile of the resource.

**state**
A set of values that describes what the condition of a particular resource.
Symbols
(OCR) Oracle Cluster Registry
log files, H-13

A
ACL
resource attribute, B-3
action entry points
defined, 6-8
action script, 6-6
action scripts
actions, 6-8
ACTION_FAILURE_EVENT_TEMPLATE
resource attribute, B-14
ACTION_SCRIPT
resource attribute, B-4
ACTIVE_PLACEMENT
resource attribute, B-4
addresses, configuring manually, 1-6
administrative tools
overview and concepts, 1-12
agent
defined, 6-3
agent framework
defined, 6-3
AGENT_FILENAME
resource attribute, B-5
agents
appagent, 6-2
appagent.exe, 6-2
scriptagent, 6-2
scriptagent.exe, 6-2
alert messages
CRSD, H-23
log file location, H-23
application agent, 6-2
application VIP
creating, 6-16
deleting, 6-17
applications
defining a VIP address, 1-15
highly available, 1-15
managing with CLSCRS commands, F-2
attraction start dependency, 6-12
modifiers, B-10
AUTO_START
resource attribute, B-5

B
background processes, 1-7
Baseboard Management Controller (BMC)
See Intelligent Platform Management Interface (IPMI)
block-by-block checksum operation, G-12

C
Cache Fusion
communication, D-5
CARDINALITY
resource attribute, B-5
cardinality, xxiv
changing a network interface
network interface changing, 2-23
changing interface names, consequences, 2-23
changing VIP addresses, 2-20
CHECK_INTERVAL
resource attribute, B-5
checksum operation
block-by-block, G-12
CHM
See Cluster Health Monitor (CHM)
client-side diagnosability infrastructure (CRSD)
alerts, H-23
cloning
Oracle Clusterware, 5-1
Oracle Grid Infrastructure, 5-1
cloning, overview for clusterware, 1-14
CLSCRS APIs
callback mechanism, F-4
data structures, F-3
deprecated, F-7
error handling and tracing, F-4
filters, F-5
comparison filter, F-6
expression filter, F-6
initialization and persistence, F-2
memory management, F-3
overview, F-2
threading support, F-3
CLSCRS commands
overview, F-2
CLSD-1009 message
resolving, 3-10
CLSD-1011 message
resolving, 3-10
Cluster Health Monitor (CHM), 1-14
daemons, H-3
log files, H-13
OCLUMON, H-4
services
cluster logger, H-3
system monitor, H-3
Cluster Health Monitor (crf)
debugging, E-69
cluster interconnect
Cache Fusion communication, D-5
changing private network addresses, 2-22
Cluster Manager (CSS)
log files, H-13
Cluster Ready Services (CRS)
defined, 1-7
Cluster Ready Services (crs)
debugging, E-69
Cluster Ready Services Daemon
log files, H-13
cluster resource, 6-3
cluster storage
recording with OCR, 1-5
Cluster Synchronization Services (CSS), 1-8
defined, 1-7
Cluster Synchronization Services (css)
debugging, E-69
cluster time management, 2-17
Cluster Time Synchronization Service (CTSS), 2-17
Cluster Time Synchronization Service (ctss)
debugging, E-69
Cluster Verification Utility (CVU)
log files, H-14
See CVU
CLUSTER_INTERCONNECT interface
specifying with OIFCFG, D-5
CLUSTER_INTERCONNECTS initialization
parameter, 2-25
cluster_resource, 6-3
cluster-aware resource, 6-3
clusterware, cloning overview, 1-14
cluvfy
See CVU
compatibility
Oracle Clusterware, Oracle ASM, and database, 1-11
component parameter
supplying to CRSCTL commands, E-69
component_name parameter
supplying to crsctl set trace command, E-74
components
initialization file for debugging purposes, E-72
configurations
reinitializing OCR, 3-17
configuring
voting disks, 3-1
CRS
See Cluster Ready Services (CRS)
CRS Administrator, 2-10
managing, 2-11
CRSCTL
checking the Oracle Clusterware status, 3-8
command reference, E-7
commands
add crs administrator, E-28
add css votedisk, E-29
add resource, E-8
add serverpool, E-30
add type, E-11
check cluster, E-32
check crs, E-32
check css, E-12
check ctss, E-33
check evm, E-13
check has, E-63
check resource, E-32
config crs, E-34
config has, E-63
delete crs administrator, E-34
delete css votedisk, E-35
delete node, E-35
delete resource, E-13
delete serverpool, E-36
delete type, E-14
disable crs, E-36
disable has, E-64
discover dhcp, E-36
enable crs, E-37
enable has, E-64
get clientid dhcp, E-37
get css, E-38
get css ipmiaddr, E-39
get hostname, E-14
get nodename, E-39
getperm resource, E-14
getperm serverpool, E-39
getperm type, E-15
lsmodules, E-40
modify resource, E-16
modify serverpool, E-41
modify type, E-18
pin css, E-42
query crs activeversion, E-43
query crs administrator, E-42
query crs releaserversion, E-43
query crs softwareversion, E-43
query css ipmiconfig, E-43
query css ipmidevice, E-44
query css votedisk, E-44
query dns, E-45
query has releaserversion, E-64
query has softwareversion, E-65
release dhcp, E-46
relocate resource, E-46
relocate server, E-48
replace discoverystring, E-49
replace votedisk, E-49
request dhcp, E-50
set css, E-50
set css ipmiaddr, E-51
set css ipmiadmin, E-51
set log, E-68
setperm resource, E-19
setperm serverpool, E-52
setperm type, E-20
start cluster, E-53
start crs, E-54
start has, E-65
start ip, E-54
start testdns, E-55
status ip, E-55
status resource, E-21, E-23
status server, E-56
status serverpool, E-57
status testdns, E-58
status type, E-24
stop cluster, E-58
stop crs, E-59
stop has, E-65
stop ip, E-60
stop resource, E-25
stop testdns, E-60
unpin css, E-61
unset css, E-61
unset css ipmiconfig, E-62
dual environment commands, E-8
Oracle RAC environment commands, E-27
Oracle Restart environment commands, E-63
CRSCTL commands
cluster aware, 1-13
component parameter, E-69
component_name parameter, E-74
debug log, E-69
debugging_level parameter, E-69, E-73
lsmodules, E-70
module_name parameter, E-69
overview, 1-13
resource_name parameter, E-73
set log, E-73
set trace, E-74
tracing_level parameter, E-74
crsctl set log, E-69
crsctl set trace, E-69
crsd background process
alert messages, H-23
log files, H-13
CSS
See Cluster Synchronization Services (CSS)
cssd
log files, H-13
CVU
about, A-1
commands
cluvfy comp acfs, A-13
cluvfy comp admprv, A-14
cluvfy comp asm, A-16
cluvfy comp cfs, A-17
cluvfy comp clocksync, A-18
cluvfy comp clu, A-19
cluvfy comp clumgr, A-20
cluvfy comp crs, A-21
cluvfy comp dns, A-23
cluvfy comp freespace, A-24
cluvfy comp gnp, A-25
cluvfy comp gpnp, A-26
cluvfy comp ha, A-27
cluvfy comp healthcheck, A-28
cluvfy comp nodeapp, A-30
cluvfy comp nodecon, 2-21, A-31
cluvfy comp nodereach, A-33
cluvfy comp ocr, A-34
cluvfy comp ohasd, A-36
cluvfy comp olr, A-37
cluvfy comp peer, A-38
cluvfy comp scan, A-40
cluvfy comp software, A-41
cluvfy comp space, A-42
cluvfy comp ssd, A-43
cluvfy comp sys, A-45
cluvfy comp vdisk, A-46
cluvfy stage -post acfscfg, A-47
cluvfy stage -post cfs, A-48
cluvfy stage -post crsinst, A-49
cluvfy stage -post hacfg, A-53
cluvfy stage -post hwos, A-54
cluvfy stage -post nodeadd, A-55
cluvfy stage -pre acfscfg, A-47
cluvfy stage -pre cfs, A-48
cluvfy stage -pre crsinst, A-49
cluvfy stage -pre hacfg, A-53
cluvfy stage -pre nodeadd, A-55
component verifications
checking Oracle Clusterware and Oracle Database installations, A-28
cluster integrity, A-19
Cluster Manager subcomponent, A-20
connectivity between cluster nodes, A-31
CTSS integrity, A-18
domain name service (DNS), A-23
free space, A-42
Grid Plug and Play service and profile, A-26
integrity of high availability, A-27
integrity of OCR, A-34
integrity of ohasd, A-36
integrity of OLR, A-37
integrity of Oracle ACFS, A-13, A-17
integrity of Oracle ASM, A-16
integrity of voting disks, A-46
node applications, A-30
node comparison, A-38

Index-3
Oracle Clusterware component, A-21
Oracle Grid Naming Service (GNS), A-25
reachability of nodes, A-33
SCAN configuration, A-40
software distribution across nodes, A-41
storage, A-43
system requirements, A-45
user and permissions, A-14
difference between runcluvfy.sh and cluvfy, A-5
installation requirements, A-5
known issues, A-59
node list shortcuts, A-10
online Help system, A-7
overview and concepts, 1-13
performing verifications, A-3
runcluvfy.sh, A-5
stage verifications
database configuration, A-51
high availability installation, A-53
network and storage on all nodes, A-54
node installation, A-55
Oracle ACFS, A-48
Oracle ACFS configuration, A-47
Oracle Clusterware installation, A-49
Oracle RAC installation, A-52
UNKNOWN output, A-9
verbose mode, A-9
debbuging
CRS, CSS, and EVM modules, E-69
debugging_level parameter
supplying to CRSCTL commands, E-69, E-73
defining network interfaces
OIFCFG command-line interface, D-1
DEGREE
resource attribute, B-5
delif command
OIFCFG command-line interface, D-6
deployment scheme
deciding, 6-18
DESCRIPTION
resource attribute, B-6
DEVICES
node view, H-5
diagcollection.pl script, H-23
diagnostics collection script, H-23
diagnostics data
collecting with the diagcollection.pl script, H-23
dispersion start dependency, 6-13
modifiers, B-11
DNS, entries example for GNS and SCAN, 1-6
dynamic host configuration protocol (DHCP), 1-6

E

ENABLED
resource attribute, B-6

enabling debugging for Oracle Clusterware resources, E-73
enabling debugging for the CRS, CSS, and EVM modules, E-69
enabling tracing for Oracle Clusterware components, E-74
entry points
ABORT, 6-4
CHECK, 6-4
CLSAGFW_FAILED state, 6-5
CLSAGFW_ONLINE state, 6-4
CLSAGFW_PARTIAL state, 6-5
CLSAGFW_PLANNED_OFFLINE state, 6-4
CLSAGFW_UNKNOWN state, 6-5
CLSAGFW_UNPLANNED_OFFLINE state, 6-4
CLEAN, 6-4
defined, 6-3
monitor, 6-4
START, 6-4
STOP, 6-4
Event Management (EVM)
defined, 1-8
Event Manager (evm)
debugging, E-69
EVM
log files, H-14
overview, 1-8
See Event Management (EVM)
extending Oracle database home
on non-shared storage, 4-4
on shared storage
network-attached storage, 4-5
Oracle ACFS, 4-5

F

failure groups, 3-23
failure isolation
configuring IPMI for, 2-15
FAILURE_INTERVAL
resource attribute, B-6
FAILURE_THRESHOLD
resource attribute, B-6
Fast Application Notification (FAN), 1-8
features, new, xxi, xxiii
FILESYSTEMS
node view, H-6
Free server pool, 2-7
described, 2-7

G

Generic server pool, 2-7
generic server pool
described, 2-7
getif command
OIFCFG command-line interface, D-6
global interface
network interface stored as, D-4
GNS, 1-5
See Oracle Grid Naming Service (GNS)
GNS, and SCAN, 1-6
GNS, GNS VIP, 1-6

Grid Infrastructure
- cloning Oracle Clusterware in, 5-1
  Configuration Wizard, 2-12
Grid Interprocess Communication (GIPC), 1-8
Grid Interprocess Communication (gipc)
  debugging, E-69
Grid Naming Service, 1-5
Grid Plug and Play, xxvi
Grid Plug and Play (gpnp)
  debugging, E-69
Grid Plug and Play (GPNPD), 1-8

H
HAIP
  highly available IP address, 2-22
hard start dependency, 6-11
  modifiers, B-9
hard stop dependency, 6-14
  modifiers, B-12
hardware requirements, 1-3
high availability
  and Oracle Clusterware, 1-8
  application programming interface, 1-15
  framework, 1-15
HOSTING_MEMBERS
  resource attribute, B-6

I
iffist command
  OIFCFG command-line interface, D-5
importing
  OCR, 3-17
initialization files
  creating for component-level debugging, E-72
initialization parameters
  CLUSTER_INTERCONNECTS, 2-25
installation
  introduction, 1-10
installations
  configuring voting disks, 3-1
Intelligent Management Platform Interface (IPMI), 2-14
  configuring for failure isolation, 2-15
  modifying IPMI configuration, 2-16
  removing IPMI configuration, 2-17
Intelligent Platform Management Interface (IPMI)
CRSCTL commands
  get css ipmiaddr, E-39
  query css ipmiconfig, E-43
  query css ipmidevice, E-44
  set css ipmiaddr, E-51
  set css ipmipassword, E-51
  unset css ipmiconfig, E-62
Interconnects page
  monitoring clusterware with Oracle Enterprise Manager, H-1
  interface names, consequences of changing, 2-23
INTERNAL_STATE
  resource attribute, B-14
IPMI
  modifying administrator, E-51
  obtaining IP address, E-39
See Intelligent Management Platform Interface (IPMI)
  storing IP address, E-51

L
LAST_SERVER
  resource attribute, B-14
LAST_STATE_CHANGE
  resource attribute, B-14
listeners
  in OCR, 1-5
LOAD
  resource attribute, B-7
local resource, 6-3
local_resource, 6-3
log files
  for Cluster Verification Utility (CVU), H-14
  for CSS, H-13
  for EVM, H-14
  for Oracle ACFS, H-13
  for Oracle Cluster Registry, H-13
log levels
  setting for Oracle Clusterware, E-68
lsmodules parameter
  with the CRSCTL command, E-70

M
managing applications
  CLSCRS commands, F-2
managing Oracle Clusterware
  with CRSCTL, 1-13
manual address configuration, 1-6
mDNS
See Multicast Domain Name Service (mDNS)
mDNSResponder
  purpose, 1-10
mirroring
  OCR (Oracle Cluster Registry), 3-5
module_name parameter
  supplying to CRSCTL commands, E-69
modules
  debugging
    crf, E-69
    crs, E-69
    css, E-69
crctss, E-69
evm, E-69
gipc, E-69
gpnp, E-69
Multicast Domain Name Service (mDNS)
defined, 1-8

N

NAME
resource attribute, B-7
network interface
global, D-4
node-specific, D-4
OIFCFG syntax, D-4
network interface card (NIC), 2-22
network interfaces
defining with OIFCFG, D-1
types, D-5
updating subnet classification, D-2
new features, xxi, xxiii
NICS
node view, H-5
node view
defined, H-5
node views
DEVICES, H-5
FILESYSTEMS, H-6
NICS, H-5
PROCESSES, H-5
PROTOCOL ERRORS, H-6
SYSTEM view, H-5
TOP CONSUMERS, H-5
nodes
adding to a cluster
on Linux or UNIX, 4-3
on Windows, 4-9
deleting from a cluster
on Linux or UNIX, 4-6
VIP address, 1-5
node-specific interface
network interface stored as, D-4

O

OCLUMON
commands
debug, H-5
dumpnodeview, H-5
manage, H-11
version, H-13
OCR (Oracle Cluster Registry)
adding, 3-5, 3-7
automatic backups, 3-10
backing up, 3-10
contents, 3-2
diagnosing problems with OCRDUMP, 3-16
downgrading, 3-22
exporting, 3-16
importing
on Windows systems, 3-19
importing content
on Linux and UNIX systems, 3-18
log file location, H-13
managing, 3-2
manual backups, 3-10
migrating from Oracle ASM, 3-5
migrating to Oracle ASM, 3-3
OCRDUMP utility command examples, G-16
ocr.loc file, 3-7
on Oracle ASM, xxiv
overriding data loss protection mechanism, 3-9
recording cluster configuration information, 1-3
recording cluster storage, 1-5
removing, 3-5, 3-7
repairing, 3-5, 3-8
replacing, 3-5, 3-8
restoring, 3-11
in Oracle Restart, 3-16
on Linux and UNIX systems, 3-12
on Windows systems, 3-14
using automatically generated OCR backups, 3-11
troubleshooting, 3-16, G-11
upgrading, 3-22
viewing content with OCRDUMP, G-15
OCR configuration tool
See OCRCONFIG utility
OCRCHECK utility
changing the amount of logging, G-14
check status of OLR, 3-21
diagnosing OCR problems with, 3-16
log files, G-14
sample output, G-12
OCRCONFIG utility
administering OLR, 3-21
commands
-add, G-3
-backuploc, G-4
-delete, G-4
-downgrade, G-5
-export, G-5
-import, 3-18, G-5
-manualbackup, G-6
-overwrite, G-6
-repair, G-7
-replace, G-7
-restore, G-8
-showbackup, G-9
-upgrade, G-9
log files, G-2
overview and concepts, 1-14
syntax, G-2
OCRDUMP utility
changing the amount of logging, G-15
command examples, G-16
commands, G-16
backup, G-16
diagnosing OCR problems with, 3-16, G-15
dump content of OLR, 3-21
log files, G-15
sample output, G-16
syntax and options, G-15
SYSTEM.language key output, G-16
SYSTEM.version key output, G-16
ocr.loc file, 3-7
ocrlcg.ini file editing, G-14, G-15
OFFLINE_CHECK_INTERVAL resource attribute, B-7
OIFCFG command-line interface commands, D-3 to D-6
interface types, D-5
invoking, D-2
overview and concepts, 1-14, D-1
syntax, D-3
OLR (Oracle Local Registry)
administering, 3-21
backing up, 3-21
check status of, 3-21
defined, 3-21
dump content of, 3-21
exporting to a file, 3-21
importing a file, 3-21
restoring, 3-22
viewing backup files, 3-22
viewing content with OCRDUMP, G-15
OLSNODES command reference, C-1
ONS See Oracle Notification Service (ONS)
operating systems requirements for Oracle Clusterware, 1-3
oraagent defined, 1-8
Oracle ACFS defined, xxv
log files, H-14
Oracle agent, 1-8
Oracle ASM disk groups redundancy, 3-23
failure group, 3-23
migrating OCR locations to, 3-3
OCR residing on, xxiv
Oracle Automatic Storage Management See Oracle ASM
Oracle Automatic Storage Management Cluster File System See Oracle ACFS
Oracle Cluster Registry See OCR (Oracle Cluster Registry)
Oracle Clusterware
adding a home to a new node, 4-3
background processes on Windows, 1-10
debugging component level, E-69
creating an initialization file, E-72
dynamic, E-68
defined, 1-1
OCR
migrating from Oracle ASM, 3-5
migrating to Oracle ASM, 3-3
processes
Cluster Ready Services (CRS), 1-7
Cluster Synchronization Services (CSS), 1-7
Event Management (EVM), 1-8
Grid Interprocess Communication (GIPC), 1-8
Multicast Domain Name Service (mDNS), 1-8
oraagent, 1-8
Oracle Grid Naming Service (GNS), 1-8
Oracle Notification Service (ONS), 1-8
oracleagent, 1-8
upgrade out-of-place, 1-12
Oracle Clusterware Control (CRSCTL)
See CRSCTL
Oracle Clusterware home adding, 4-3, 4-9
deleting manually, 4-6
Oracle Enterprise Manager adding resources with, 6-20
adding VIPs with, 6-17
overview and concepts, 1-12
using the Interconnects page to monitor Oracle Clusterware, H-1
Oracle Grid Infrastructure cloning, 5-1
Oracle Grid Naming Service (GNS)
defined, 1-8
described, 1-5
Oracle Interface Configuration tool see OIFCFG
Oracle Local Registry See OLR (Oracle Local Registry)
Oracle Notification Service (ONS) defined, 1-8
Oracle RAC One Node, xxi
Oracle Real Application Clusters overview of administration, 1-1
Oracle Real Application Clusters One Node, xxi
Oracle Restart restoring OCR, 3-16
Oracle root agent, 1-8
Oracle Trace File Analyzer (TFA) Collector See TFA
Oracle Universal Installer Oracle Clusterware installation, 1-10
OracleHAService purpose, 1-10
oracleagent defined, 1-8
out-of-place upgrade, 1-12
P
PLACEMENT resource attribute, B-7
private network address changing, 2-22
PROCESSES node view, H-5
PROFILE_CHANGE_EVENT_TEMPLATE resource attribute, B-15
START_TIMEOUT
resource attribute, B-11
starting the OIFCFG interface, D-2
STATE_CHANGE_EVENT_TEMPLATE
resource attribute, B-15
STATE_DETAILS
resource attribute, B-15
step time synchronization, 2-18
STOP_DEPENDENCIES
resource attribute, B-11
STOP_TIMEOUT
resource attribute, B-12
subnet
changing, 2-23
configuring for VIP address, 1-5
syntax
OCRDUMP utility, G-15
SYSTEM
node view, H-5
SYSTEM.language key
output, G-16
SYSTEM.version key
output, G-16

T
TARGET
resource attribute, B-15
TFA, H-15
automatic diagnostic collection, H-20
data redefinition feature, H-22
on-demand diagnostic collection, H-21
TFACTL
commands
tfactl diagcollect, H-21
tfactl directory, H-18
tfactl host, H-19
tfactl print, H-17
tfactl purge, H-18
tfactl set, H-20
TFA command-line utility, H-16
thread safety, F-9
TOP CONSUMERS
node view, H-5
tracing
enabling for Oracle Clusterware, E-69
enabling for Oracle Clusterware components, E-74
Oracle Clusterware components, E-74
tracing_level parameter
supplying to crsctl set trace command, E-74
troubleshooting
OCR, G-11
TYPE
resource attribute, B-12

U
upgrade
migrating storage after, 3-3, 3-5
out-of-place, 1-12
upgrades
and SCANs, 2-19
UPTIME_THRESHOLD
resource attribute, B-13

V
versions
compatibility for Oracle Clusterware, Oracle ASM,
and Oracle Database software, 1-11
VIP, 1-5, 6-16
adding
with Oracle Enterprise Manager, 6-17
address
changing, 2-20
defining for applications, 1-15
requirements, 1-5
virtual internet protocol address (VIP), 6-16
virtual IP
See VIP
voting disks, 1-5
adding, 3-25
adding to non-Oracle ASM storage, 3-26
adding to Oracle ASM, 3-26
administering, 3-1
backing up, 3-24
deleting, 3-25, 3-26
file universal identifier (FUID)
obtaining, 3-26
managing, 3-22
migrating, 3-25
migrating to Oracle ASM, 3-26, 3-27
modifying not stored on Oracle ASM, 3-26
modifying stored on Oracle ASM, 3-26
on Oracle ASM, xxiv
replacing in non-ASM storage, 3-26
restoring, 3-24
storing on Oracle ASM, 3-23

W
weak start dependency, 6-12
modifiers, B-10
Windows systems
services for clusterware, 1-10

Index-9