

Oracle® Adaptive Access Manager
Developer's Guide

Release 10g (10.1.4.5)

E12052-03

May 2009

Oracle Adaptive Access Manager Developer's Guide, Release 10g (10.1.4.5)

E12052-03

Copyright © 2008, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Priscilla Lee

Contributors: Mandar Bhatkhande, Sree Chitturi, Josh Davis, Bosco Durai, Luke Harris, Prakash Hegde,
Daniel Joyce, Mark Karlstrand, Derick Leo, Karl Miller, Valarie Moore, Srinivas Nagandla, Madhan
Neethiraj, Paresh Raote, Jim Redfield, Uday Sambhara, Kamal Singh, Nandini Subramani, Vidhya
Subramanian, Sachin Vanungare, and Saphia Yunaeva

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... x

1 Supported Integrations

1.1 Integration Deployment Options ... 1-1
1.2 Features Integration Options... 1-2

Part I Native and SOAP Integrations

2 API Integration

2.1 Application (API) Integration ... 2-1
2.1.1 SOAP Services .. 2-2
2.1.2 Native API .. 2-2
2.1.2.1 Adaptive Risk Manager Online Native Client API - Web Services/ SOAP 2-2
2.1.2.2 Adaptive Risk Manager Online Native Client API - Static Linking 2-3
2.2 Integration Options... 2-4
2.2.1 Adaptive Risk Manager Only Scenario .. 2-4
2.2.1.1 User/Password Page (S1.1)... 2-5
2.2.1.2 Device Fingerprint Flow (F2) .. 2-5
2.2.1.3 Validate User/ Passwd (CP1) ... 2-6
2.2.1.4 Update Authentication Status (P5) .. 2-6
2.2.1.5 Password Status (C1) ... 2-7
2.2.1.6 Post Authentication Rules (R3)... 2-7
2.2.1.7 Lock Out Page (S2) ... 2-7
2.2.1.8 Landing or Splash Page (S3) ... 2-7
2.2.2 Adaptive Risk Manager, Adaptive Strong Authenticator and KBA Scenario............ 2-7
2.2.2.1 Username Page (S1).. 2-8
2.2.2.2 Device Fingerprint Flow (F2) .. 2-9
2.2.2.3 Pre Authentication Rules (R1) .. 2-9
2.2.2.4 Use AuthentiPad Rules (R2) .. 2-10
2.2.2.5 Generate Non-Personalized TextPad (P2) ... 2-10
2.2.2.6 Generate Personalized TextPad or KeyPad (P3) ... 2-11

iv

2.2.2.7 Display TextPad or KeyPad (S4 and S5) .. 2-13
2.2.2.8 Decode AuthentiPad Input (P4) .. 2-13
2.2.2.9 Validate User/ Passwd (CP1) .. 2-14
2.2.2.10 Update Authentication Status (P5) ... 2-14
2.2.2.11 Password Status (C1) .. 2-15
2.2.2.12 Post Authentication Rules (R3).. 2-15
2.2.2.13 Check Question Registration for User (C2) ... 2-16
2.2.2.14 Registration Required Rules (R4) .. 2-16
2.2.2.15 Challenge (QuestionPad) (S6).. 2-16
2.2.2.16 Check Challenge Question Answer (C3) ... 2-17
2.2.2.17 Run Challenge Rules (R5)... 2-18
2.2.2.18 Lock Out Page (S2) .. 2-18
2.2.2.19 Landing or Splash Page (S3) .. 2-18
2.2.3 Adaptive Risk Manager and KBA Scenario.. 2-18
2.3 Troubleshooting ... 2-19

3 Native Integration .net

3.1 Architecture ... 3-1
3.2 Installing SDK.. 3-1
3.3 Application Configuration .. 3-2
3.4 Properties ... 3-2
3.5 User-Defined Enumeration ... 3-3
3.6 Users ... 3-3
3.7 Adaptive Risk Manager ... 3-4
3.8 Rules Engine .. 3-5
3.8.1 Device ID Evaluation .. 3-6
3.8.2 Create Transactions in Bulk ... 3-6
3.8.3 Update Transactions in Bulk.. 3-6
3.9 Challenge Questions... 3-7
3.10 Reset Challenge Failure Counters .. 3-8
3.11 Authenticators ... 3-8
3.11.1 Creating an Authenticator.. 3-8
3.11.2 Embedding an Authenticator in a Web Page .. 3-9
3.11.3 Decoding User Input ... 3-9
3.12 Specifying Credentials to Access Adaptive Risk Manager SOAP Services........................ 3-9
3.13 Encrypting Property Values ... 3-10
3.14 Troubleshooting ... 3-10
3.15 ASP.NET Applications ... 3-11
3.16 SampleWebApp ... 3-11
3.17 SampleWebAppWithTracker ... 3-12
3.18 SampleWebAppAuthTracker... 3-13
3.19 SampleKBATracker ... 3-14

4 Native Integration Java

4.1 Installation ... 4-1
4.2 Adaptive Risk Manager ... 4-1
4.2.1 handleTrackerRequest .. 4-2

v

4.2.2 createTransaction ... 4-3
4.2.3 updateTransaction ... 4-3
4.2.4 handleTransactionLog .. 4-4
4.2.5 updateTransactionStatus .. 4-4
4.2.6 updateLog... 4-5
4.2.7 updateAuthStatus.. 4-6
4.2.8 processPatternAnalysis... 4-7
4.2.9 markDeviceSafe ... 4-8
4.2.10 IsDeviceMarkedSafe.. 4-8
4.2.11 clearSafeDeviceList.. 4-8
4.3 Rules Engine .. 4-9
4.3.1 processRules ... 4-9
4.3.1.1 Device ID Evaluation ... 4-9
4.4 Customer Care.. 4-10
4.4.1 getFinalAuthStatus ... 4-10
4.4.2 setTemporaryAllow.. 4-10
4.4.3 cancelAllTemporaryAllows .. 4-10
4.4.4 resetUser... 4-11
4.4.5 getRulesData.. 4-11
4.4.6 getActionCount... 4-11

Part II Universal Installation Option and Related Integrations

5 Oracle Adaptive Access Manager Proxy

5.1 Introduction ... 5-1
5.1.1 Important Terms .. 5-1
5.1.2 Architecture .. 5-2
5.1.3 References ... 5-3
5.2 Oracle Adaptive Access Manager Proxy for Microsoft ISA Installation 5-3
5.2.1 Proxy Web Publishing Configuration .. 5-4
5.2.1.1 Web Listener Creation ... 5-4
5.2.1.2 Web Publishing Rule Creation ... 5-4
5.2.2 Registering the Oracle Adaptive Access Manager Proxy for Microsoft ISA DLL 5-5
5.2.3 Settings .. 5-5
5.2.3.1 Configuration files.. 5-5
5.2.3.2 Configuration Reload... 5-5
5.2.3.3 Session Id Cookie.. 5-6
5.2.3.4 Session Inactive Interval .. 5-6
5.2.3.5 Settings for Troubleshooting... 5-6
5.3 Oracle Adaptive Access Manager Proxy for Apache .. 5-7
5.3.1 Package Contents... 5-7
5.3.1.1 Windows.. 5-8
5.3.1.2 Linux... 5-8
5.3.2 Apache httpd Requirements .. 5-9
5.3.2.1 Windows.. 5-9
5.3.2.2 Linux... 5-9

vi

5.3.3 Copying the Oracle Adaptive Access Manager Proxy for Apache and Supported Files
to Apache 5-9

5.3.3.1 Windows.. 5-9
5.3.3.2 Linux.. 5-10
5.3.4 Configuring Memcache (for Linux only) .. 5-11
5.3.5 Configuring httpd.conf .. 5-12
5.3.5.1 Basic Configuration without SSL .. 5-12
5.3.5.2 Configuration with SSL .. 5-13
5.3.6 Modifying the Oracle Adaptive Access Manager Proxy for Apache Settings......... 5-14
5.3.6.1 UIO_Settings.xml... 5-14
5.3.6.2 UIO_log4j.xml .. 5-16
5.3.6.3 Application configuration XMLs .. 5-17
5.4 Setting Up Rules and User Groups ... 5-17
5.5 Setting Up Models ... 5-17
5.6 Oracle Adaptive Access Manager Proxy Configuration .. 5-17
5.6.1 Interceptors .. 5-17
5.6.2 Conditions.. 5-18
5.6.3 Filters .. 5-20
5.6.4 Filter Examples - ProcessString .. 5-23
5.6.5 Actions.. 5-23
5.6.6 Variables... 5-24
5.6.7 Application .. 5-26
5.7 Interception process... 5-26
5.8 Adaptive Strong Authenticator Interface ... 5-26
5.9 Application Discovery... 5-28
5.9.1 Application Information .. 5-29
5.9.2 Setting Up the Oracle Adaptive Access Manager Proxy for Microsoft ISA............. 5-29
5.9.3 Setting Up the Oracle Adaptive Access Manager Proxy for Apache........................ 5-30
5.9.4 Scenarios... 5-30
5.10 Samples.. 5-32
5.11 Troubleshooting ... 5-38

6 Configuring Adaptive Strong Authenticator

6.1 Architecture ... 6-1
6.2 Setting Adaptive Strong Authenticator Settings .. 6-2
6.3 First Steps ... 6-2
6.3.1 Determining the Application ID.. 6-2
6.3.2 Determining Default User Groups.. 6-3
6.4 Customizing User Interface Branding ... 6-3
6.4.1 Custom Header / Footer .. 6-3
6.4.2 Custom CSS .. 6-4
6.4.3 Custom Content and Messaging ... 6-4
6.5 How Properties Work .. 6-5
6.5.1 Property Extension .. 6-5
6.5.2 User-Defined Enums ... 6-6
6.5.3 Overriding Existing User-Defined Enums... 6-6
6.5.4 Disabling Elements .. 6-7

vii

6.6 Authenticator Properties.. 6-7
6.6.1 TextPad.. 6-7
6.6.2 KeyPad .. 6-7
6.6.3 PinPad ... 6-8
6.6.4 QuestionPad ... 6-8
6.7 Enabling Device Registration.. 6-8

7 Authenticator Properties

7.1 Property Files... 7-1
7.2 What Authenticator Interfaces Should My Organization Use? ... 7-2
7.3 What Elements of the Authenticator User Interface Can Be Configured? 7-2
7.3.1 The Frame ... 7-2
7.3.2 Features Configuration ... 7-2
7.3.2.1 TextPad .. 7-2
7.3.2.2 QuestionPad .. 7-4
7.3.2.3 Keypad ... 7-6
7.3.2.4 PinPad ... 7-7
7.4 Authenticator Specifications ... 7-9
7.5 Accessibility ... 7-9
7.6 KeysSets... 7-10
7.6.1 User Defined Enums Overview.. 7-10
7.6.2 KeySet Definition.. 7-10

Part III Integration with Oracle Access Manager

8 Oracle Access Manager Integration

8.1 Prerequisites .. 8-1
8.2 Integration Overview ... 8-2
8.3 Configure Oracle Access Manager AccessGate for Adaptive Strong Authenticator

Embedded AccessGate 8-2
8.4 Configure Oracle Access Manager AccessGate for Adaptive Strong Authenticator

Front-End Web Server 8-4
8.5 Configure Oracle Access Manager Authentication Scheme for the Adaptive Strong

Authenticator 8-5
8.6 Configure Oracle Access Manager Host Identifiers for Adaptive Strong Authenticator

(Optional) 8-7
8.7 Install ASDK for Adaptive Strong Authenticator .. 8-7
8.8 Configure ASDK AccessGate for Adaptive Strong Authenticator 8-7
8.9 Install Web Server to Implement WebGate... 8-7
8.10 Install WebGate for Adaptive Strong Authenticator Front-End Web Server 8-7
8.11 Unpack and Install Oracle Adaptive Access Manager Plug-In to Adaptive Strong

Authenticator for Oracle Access Manager Integration 8-8
8.12 Copy ASDK JAR Files to Adaptive Strong Authenticator.. 8-9
8.13 Add ASDK Library Path to Adaptive Strong Authenticator Application Properties 8-9
8.14 Add ASDK Library Path to Adaptive Strong Authenticator Server Properties 8-9
8.15 Configure Oracle Access Manager Domain to use Adaptive Strong Authenticator

Authentication 8-9

viii

8.16 Testing Oracle Adaptive Access Manager-Oracle Access Manager Integration 8-10

Part IV Features Integrations

9 Auto-learning

9.1 Pattern Data Processing (On-Line and Scheduled).. 9-2
9.2 APIs for Triggering Pattern Data Processing.. 9-2
9.2.1 updateTransactionStatus .. 9-3
9.2.2 updateAuthStatus.. 9-3
9.2.3 processPatternAnalysis... 9-3

10 Configurable Actions

10.1 Integration... 10-1
10.2 Executing Configurable Actions in a Particular Order and Data Sharing 10-2
10.3 How to Test Configurable Actions Triggering .. 10-3
10.4 Sample JUnit Code .. 10-3

11 Configuring Expiry/Overdue for Cases

11.1 CSR Cases.. 11-1
11.1.1 Set the "Expiry" Behavior for CSR Cases (Default Setting)... 11-1
11.1.2 Disable "Expiry/Overdue" Behavior for CSR Cases ... 11-1
11.1.3 Set "Overdue" Behavior for CSR Cases.. 11-1
11.2 Agent Cases .. 11-2
11.2.1 Set "Overdue" Behavior for Agent Cases (Default Setting) .. 11-2
11.2.2 Disable "Overdue/Expiry" Behavior for Agent Cases .. 11-2
11.2.3 Set "Expiry" Behavior for Agent Cases .. 11-2

Index

ix

Preface

This Developer's Guide provides information about Oracle Adaptive Access Manager
integrations.

The Preface covers the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This guide is intended for administrators and developers who are responsible for
integrating Oracle Adaptive Access Manager.

This guide assumes that you are familiar with your Web servers, Oracle Adaptive
Access Manager, .net and Java, and the product that you are integrating.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

x

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following documents in the Oracle Adaptive Access
Manager 10.1.4.5 documentation set:

■ Oracle Adaptive Access Manager Release Notes

■ Oracle Adaptive Access Manager Administrator's Guide

■ Oracle Adaptive Access Manager Reference Guide

■ Oracle Adaptive Access Manager Developer's Guide

■ Oracle Adaptive Access Manager Concepts

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Supported Integrations 1-1

1Supported Integrations

This chapter contains a brief introduction to the deployment integration options and
the feature integration options available in Oracle Adaptive Access Manager.

1.1 Integration Deployment Options
All the integration deployment options are listed below. For detailed information,
please refer to the chapters in this guide.

Native and Web Services Integration
The web application communicates with Adaptive Risk Manager Online using the
Adaptive Risk Manager Online Native Client API or through Web Services.

For an introduction to API integration, refer to Chapter 2, "API Integration."

For information on native and web services integration, refer to Chapter 3, "Native
Integration .net," and Chapter 4, "Native Integration Java."

Static Linked Integration
Most of the native API are wrappers over the SOAP API that is published by the
Adaptive Risk Manager Online Server and written in the client's native application
language. The static-linked integration is another option available for integrations
using Java language. There will be no SOAP calls to Adaptive Risk Manager in this
option; instead the API implementation runs within the client application itself.

For an introduction to API integration, refer to Chapter 2, "API Integration."

For information on static linked integration, refer to Chapter 4, "Native Integration
Java."

Universal Installation Option Integration
Oracle Adaptive Access Manager's Universal Installation Option (UIO) is a
proxy-based deployment of Adaptive Risk Manager and Adaptive Strong
Authenticator that requires little or no integration with client web applications.

A proxy intercepts site traffic and routes it through Adaptive Risk Manager Online for
Strong Authentication.

For information on the integration of the Oracle Adaptive Access Manager's
Installation Option, refer to the following chapters:

■ Chapter 5, "Oracle Adaptive Access Manager Proxy"

■ Chapter 6, "Configuring Adaptive Strong Authenticator"

■ Chapter 7, "Authenticator Properties"

Features Integration Options

1-2 Oracle Adaptive Access Manager Developer's Guide

Oracle Access Manager
Oracle Adaptive Access Manager is integrated with Oracle Access Manager to allow
Adaptive Strong Authenticator's authentication pads to identify users attempting to
access Oracle Access Manager's protected applications.

For information on integrating Oracle Adaptive Access Manager with Oracle Access
Manager, refer to Chapter 8, "Oracle Access Manager Integration."

1.2 Features Integration Options
The available features integration options are documented below.

Auto-learning
Auto-learning is a set of features that perform adaptive evaluations of risk.

For information on how to integrate it with Adaptive Risk Manager, refer to Chapter 9,
"Auto-learning."

Configurable Actions
Oracle Adaptive Access Manager provides Configurable Actions, a feature which
allows users to create new supplementary actions that are triggered based on the result
action and/or based on the risk scoring after a Runtime execution.

For information on how to add a Configurable Action and integrate it with the
Adaptive Risk Manager software, refer to Chapter 10, "Configurable Actions."

Cases
The expiry/overdue behavior can be configured for cases.

For information on how to change the default behavior, refer to Chapter 11,
"Configuring Expiry/Overdue for Cases."

Part I
Part I Native and SOAP Integrations

Part I contains the following chapters:

■ Chapter 2, "API Integration"

■ Chapter 3, "Native Integration .net"

■ Chapter 4, "Native Integration Java"

2

API Integration 2-1

2API Integration

This chapter contains the guidelines to natively integrate the client portion of
Adaptive Risk Manager Online solutions. In an API integration, the client application
invokes the Adaptive Risk Manager Online APIs directly and manages the
authentication and challenge flows.

Oracle provides the APIs to fingerprint the devices, collect authentication/transaction
logs, run security and business rules, and challenge the user by using Adaptive Risk
Manager Online's KBA. Adaptive Risk Manager Online also provides the utility APIs
to generate authentication pads like KeyPad, TextPad, and QuestionPad.

API integration of Adaptive Risk Manager Online provides various advantages--some
of which are highlighted below:

■ Flexibility in managing and controlling the authentication process flow.

■ Ability to change the default user registration flow.

■ Capability to share session data between existing applications and the Adaptive
Risk Manager Online application. For example, the existing login session ID can be
passed on to Adaptive Risk Manager Online API calls.

This chapter contains the guidelines for integrating:

■ Only the Adaptive Risk Manager

■ Adaptive Risk Manager and KBA

■ Adaptive Risk Manager, KBA and Authentication devices

■ AuthentiPad (Keypad, PinPad, and other pads)

■ Customer Care API

2.1 Application (API) Integration
Adaptive Risk Manager Online's components are software- and
hardware-independent when deployed in a stand-alone environment using the
published Web services API over SOAP. Support is also available for native
(Java/.NET) environments.

Basic familiarity with SOAP, Java, or .NET is the skill set requirement for integration.

Note: Adaptive Strong Authenticator is not used in this integration;
all of the related screens need coding into the client application using
the API.

Application (API) Integration

2-2 Oracle Adaptive Access Manager Developer's Guide

API integration is available in two flavors:

■ SOAP Service

■ Native APIs

– SOAP Service wrapper (in Java or .NET)

– Static-linked libraries (in Java)

2.1.1 SOAP Services
Adaptive Risk Manager Online SOAP services consists of five major modules:

■ VCryptCommon contains the common APIs.

■ VCryptTracker contains the APIs for fingerprinting and collecting authentication
and transaction logs.

■ VCryptAuth contains the APIs for accessing the Adaptive Strong Authenticator
and KBA modules.

■ VCryptRulesEngine contains the APIs for running the rules.

■ VCryptCC contains the APIs for invoking customer-care-related requests.

Using direct SOAP services is preferred if the client does not want to include any of
the Adaptive Risk Manager Online client jars or DLL within their application.
However, to use the Adaptive Strong Authenticator functionality, native Java or .NET
you must use the native Java or .NET integration.

2.1.2 Native API
The native API consists of a wrapper over the SOAP API that is published by the
Adaptive Risk Manager Online Server and written in the client's native application
language. The native APIs construct the SOAP bodies for the Adaptive Risk Manager
Online request and also invoke the SOAP requests.

API integration can be done using the SOAP as the underlying mechanism or statically
linking (available only for Java integration) the Adaptive Risk Manager Online jars.

2.1.2.1 Adaptive Risk Manager Online Native Client API - Web Services/ SOAP
The construction of SOAP bodies and the SOAP calls help in abstracting the SOAP
WSDL and other Web Services related issues.

Using native API, which is preferred over making direct SOAP calls, has a lot of
advantages. A few advantages are listed below:

■ The client library constructs the SOAP body and abstracts the SOAP nuances from
the client application developer.

■ Changes to any SOAP API signature does not require any code change from the
application developer.

■ Higher-level utility methods are available to extract parameters required by
Adaptive Risk Manager Online directly from the HTTP Request and HTTP Session
objects.

■ APIs for encoding and decoding of some fingerprint data are available in native
integration.

Application (API) Integration

API Integration 2-3

API libraries are available in Java, .NET and C++. In the Web Service configuration,
these libraries have utility methods which make direct SOAP calls. The option requires
lightweight client libraries (jars or dll) to be added to the client library part.

Figure 2–1 Web Services/SOAP Integration

2.1.2.2 Adaptive Risk Manager Online Native Client API - Static Linking
Clients using Java have the option to choose static linking. In static linking, the API
doesn't make SOAP calls, instead they statically call the Adaptive Risk Manager
Online engine APIs. With the static linking option, the client must include the
Adaptive Risk Manager Online server jars and configure appropriate properties.

Although this option may provide slightly better performance, it may not be suitable
for all clients.

Advantages of static linking are

■ No SOAP calls; eliminates creating and tearing down of TCP/IP connections.

■ No network latencies.

■ Load balancer not required.

Disadvantages of static linking are

■ The client server/application server has to accommodate the extra resource
required by the Adaptive Risk Manager Online engine.

■ The client server/application server may not be able to load balance the requests.

Integration Options

2-4 Oracle Adaptive Access Manager Developer's Guide

Figure 2–2 Static linking

2.2 Integration Options
Clients can integrate Adaptive Risk Manager in a relatively short time frame and have
their site secure from most fraud attacks. Integrating only the Adaptive Risk Manager
doesn't require any change to the user experience.

2.2.1 Adaptive Risk Manager Only Scenario
A diagram of the Adaptive Risk Manager only scenario is shown below.

Note: In this integration, Adaptive Strong Authenticator is not used.

Integration Options

API Integration 2-5

Figure 2–3 Adaptive Risk Manager Only Scenario

2.2.1.1 User/Password Page (S1.1)
The User/Password Page is the existing page currently used by the client. It contains
the text box for both the username and password. There are no changes required for
this page; however, the post from this page should display a transient (intermediate)
refresh page.

Figure 2–4 Username/Password Page

2.2.1.2 Device Fingerprint Flow (F2)
This is the flow for fingerprinting the device.

Integration Options

2-6 Oracle Adaptive Access Manager Developer's Guide

updateLog(): For information on updateLog(), the parameters, and how to use the
parameters, refer to Chapter 4, "Native Integration Java."

handleJump.jsp:

■ sets the client's time zone

■ sets a secure cookie

■ sets the browserfingerprint, sets status to "pending"

■ calls the pre-auth rules. Expects an "allow" action to proceed, else "block" or "error"
due to unrecognized action or server error

■ stores bharosaSession

■ forwards to password.jsp

handleFlash.jsp sets the flashCookie if browser is flash enabled

2.2.1.3 Validate User/ Passwd (CP1)
This is the client's existing process. The client invokes the local API to validate the
user. The result of the authentication is passed on to the Adaptive Risk Manager
Online Server.

handlePassword.jsp

■ retrieves the password from the pad

■ decodes the password

■ validates the user

2.2.1.4 Update Authentication Status (P5)
After validating the user password, the status is updated in the Adaptive Risk
Manager.

handlePassword.jsp:

■ updates the status to "success" if user is valid, else to "invalid," "error," or "bad
password"

Table 2–1 Device fingerprint Flow (F2) Reference APIs

Module APIs

Server VCryptTracker::updateLog()

Sample handleJump.jsp and handleFlash.jsp

Table 2–2 Validate User/ Passwd (CP1) Reference API

Module API

Sample handlePassword.jsp

Table 2–3 Update Authentication Status (P5) Reference APIs

Module APIs

Sample handlePassword.jsp

BharosaHelper BharosaHelper::updateStatus()

Integration Options

API Integration 2-7

2.2.1.5 Password Status (C1)
Based on the authentication status, the user is either taken to the retry page or to post
authentication rule processing.

2.2.1.6 Post Authentication Rules (R3)
The post authentication rules are run after the user password is authenticated. The
post authentication runtime contains security rules.

For example, common actions returned are

■ Allow: Allow the authentication.

■ Block: Block the user.

■ Challenge: Challenge is returned if the user has registered questions. The option
may not be available for Adaptive Risk Manager Only deployments.

processRules(): For information on processRules(), the parameters, and how to use the
parameters, refer to Chapter 4, "Native Integration Java."

handlePassword.jsp

■ runs post-auth rules and one of the following actions:

– REGISTER_USER_OPTIONAL

– REGISTER_QUESTIONS

– REGISTER_USER

– CHALLENGE

– BLOCK

– ALLOW

– SYSTEM_ERROR

■ forwards to registerImageandPhrase during registration or challenge if the user is
registered

2.2.1.7 Lock Out Page (S2)
The Lock Out Page is the page that the user is generally redirected to if he is blocked
from authentication or if he is carrying out a transaction.

2.2.1.8 Landing or Splash Page (S3)
The Landing or Splash Page is the page where the user lands after a successful login.

2.2.2 Adaptive Risk Manager, Adaptive Strong Authenticator and KBA Scenario
This flow is a consolidation of the Adaptive Risk Manager, AuthentiPads and KBA
solutions. The flows are determined by the rules that are run at different runtimes.

Table 2–4 Post Authentication Rules (R3) Reference APIs

Module APIs

Server VCryptRulesEngine::processRules()

Sample handlePassword.jsp

BharosaHelper BharosaHelper::runPostAuthRules()

Integration Options

2-8 Oracle Adaptive Access Manager Developer's Guide

Figure 2–5 Adaptive Risk Manager, Adaptive Strong Authenticator and KBA Scenario

2.2.2.1 Username Page (S1)
When personalization (image and/or phrase) is used, the login page must be split into
two pages. The username (login ID) is accepted from the first page and stored in the
HTTP session. The username page is followed by a transient page for capturing the
flash and secure cookies and for fingerprinting the device.

Note: The flows with models suggested in this section are example
scenarios; there are other models and rules and other scenarios
available.

Integration Options

API Integration 2-9

Figure 2–6 Username Page

2.2.2.2 Device Fingerprint Flow (F2)
This is the flow for fingerprinting the device.

updateLog(): For information on updateLog(), the parameters, and how to use the
parameters, refer to Chapter 4, "Native Integration Java."

handleJump.jsp:

■ sets the client's time zone

■ sets a secure cookie

■ sets the browserfingerprint, sets status to "pending"

handleFlash.jsp sets the flashCookie if browser is flash enabled

2.2.2.3 Pre Authentication Rules (R1)
Pre Authentication rules are run before the user is authenticated or shown his personal
device and/or phrase.

The common actions are

■ Allow: Allow the authentication flow to proceed.

■ Block: Block the user.

Table 2–5 Device Fingerprint Flow (F2) Reference APIs

Module APIs

Server VCryptTracker::updateLog()

Sample handleJump.jsp and handleFlash.jsp

Table 2–6 Pre Authentication Rules Reference APIs

Module APIs

Server VCryptRulesEngine::processRules()

Sample handleJump.jsp

BharosaHelper BharosaHelper::runPreAuthRules()

Integration Options

2-10 Oracle Adaptive Access Manager Developer's Guide

processRules(): For information on processRules(), the parameters, and how to use the
parameters, refer to Chapter 4, "Native Integration Java."

handleJump.jsp:

■ calls the pre-auth rules. Expects an "allow" action to proceed, else "block" or "error"
due to unrecognized action or server error

■ stores bharosaSession

■ forwards to password.jsp

2.2.2.4 Use AuthentiPad Rules (R2)
This runtime runs the rules for determining which AuthentiPad is used. If the user has
not registered, the rule returns the Generic TextPad. If the user is registered with
Adaptive Risk Manager Online, either the personalized TextPad or KeyPad action will
be returned.

The common actions are

■ Generic TextPad: Use default generic TextPad.

■ TextPad: Use personalized TextPad with phrase.

■ KeyPad: Use personalized KeyPad with phrase.

processRules(): For information on processRules(), the parameters, and how to use the
parameters, refer to Chapter 4, "Native Integration Java."

password.jsp:

■ invokes rules to identify user's pad type, else uses the default KeyPad

■ creates the pad, names it, and sets all initial background frames, buttons, and so on

■ invokes kbimage.jsp as configured in the bharosa_client.properties

■ forwards to handlePassword.jsp

2.2.2.5 Generate Non-Personalized TextPad (P2)
Generic TextPad and non-personalized TextPad are used for users who have not yet
registered with Adaptive Risk Manager Online. A non-personalized textpad is shown
below.

Table 2–7 Use AuthentiPad Rules (R2) Reference APIs

Module APIs

Server VCryptRulesEngine::processRules()

Sample password.jsp

BharosaHelper BharosaHelper::getAuthentiPad()

Integration Options

API Integration 2-11

Figure 2–7 Non-Personalized TextPad

getUserByLoginId(): For information on getUserByLoginId(), the parameters, and how
to use the parameters, refer to Chapter 4, "Native Integration Java."

password.jsp:

■ invokes rules to identify user's pad type, else uses the default KeyPad

■ creates the pad, names it, and sets all initial background frames, buttons, and so on

■ invokes kbimage.jsp as configured in the bharosa_client.properties

■ forwards to handlePassword.jsp

2.2.2.6 Generate Personalized TextPad or KeyPad (P3)
A textpad and a keypad are shown below.

Table 2–8 Generate Non-Personalized TextPad (P2) Reference APIs

Module APIs

Server VCryptAuth::getUserByLoginId()

Sample Password.jsp

BharosaHelper BharosaHelper:: createPersonalizedAuthentiPad ()

BharosaHelper::createAuthentiPad()

Client AuthentiPad::getHTML()

Integration Options

2-12 Oracle Adaptive Access Manager Developer's Guide

Figure 2–8 Personalized TextPad

Figure 2–9 Personalized KeyPad

Personalized KeyPad or TextPad are similar to the Generic TextPad, except they use
user-selected phrases and background images.

getUserByLoginId(): For information on getUserByLoginId(), the parameters, and how
to use the parameters, refer to Chapter 4, "Native Integration Java."

password.jsp:

■ invokes rules to identify user's pad type, else uses the default KeyPad

■ creates the pad, names it, and sets all initial background frames, buttons, and so on

■ invokes kbimage.jsp as configured in the bharosa_client.properties

Table 2–9 Generate Personalized TextPad or KeyPad Reference APIs

Module APIs

Server VCryptAuth::getUserByLoginId()

Sample password.jsp

BharosaHelper BharosaHelper:: createPersonalizedAuthentiPad ()

BharosaHelper::createAuthentiPad()

Client AuthentiPad::getHTML()

Integration Options

API Integration 2-13

■ forwards to handlePassword.jsp

2.2.2.7 Display TextPad or KeyPad (S4 and S5)
The HTML snippet should be embedded in the password page. The HTML renders the
TextPad or KeyPad using Javascript. There is a tag, which makes a HTTP
request to the server to get the TextPad or KeyPad image.

getUserByLoginId(): For information on getUserByLoginId(), the parameters, and how
to use the parameters, refer to Chapter 4, "Native Integration Java."

password.jsp:

■ invokes rules to identify user's pad type, else uses the default KeyPad

■ creates the pad, names it, and sets all initial background frames, buttons, and so on

■ invokes kbimage.jsp as configured in the bharosa_client.properties

■ forwards to handlePassword.jsp

kbimage.jsp is the page that outputs the authenticator

2.2.2.8 Decode AuthentiPad Input (P4)
The data entered by the user is decoded by the Adaptive Risk Manager Online Utility
API. The decoded value is in raw text format. The AuthentiPad, which had been used
to generate the image, is used during the decoding. It is recommended that it be saved
in the HTTP Session. The AuthentiPad object is serializable and can be stored in the
database or file system.

handlePassword.jsp

■ retrieves the password from the pad

■ decodes the password

Table 2–10 Display TextPad or KeyPad Reference APIs

Module APIs

Server VCryptAuth::getUserByLoginId()

Sample password.jsp

kbimage.jsp

BharosaHelper BharosaHelper:: createPersonalizedAuthentiPad ()

BharosaHelper::createAuthentiPad()

BharosaHelper::imageToStream()

Client AuthentiPad::getHTML()

KeyPadUtil::encryptImageToStream()

Table 2–11 Decode AuthentiPad Input Reference APIs

Module APIs Notes

Sample handlePassword.jsp

BharosaHelper BharosaHelper::decodePadInput() This method removes the
AuthentiPad object from
the HTTP Session

Client KeyPadUtil::decodeKeyPadCode

Integration Options

2-14 Oracle Adaptive Access Manager Developer's Guide

■ validates the user

2.2.2.9 Validate User/ Passwd (CP1)
This is the client's existing process. The client invokes the local API to validate the
user. The result of the authentication is passed on to the Adaptive Risk Manager
Online Server.

handlePassword.jsp

■ retrieves the password from the pad

■ decodes the password

■ updates the status to "success" if user is valid, else to "invalid," "error," or "bad
password"

■ runs post-auth rules and one of the following actions:

– REGISTER_USER_OPTIONAL

– REGISTER_QUESTIONS

– REGISTER_USER

– CHALLENGE

– BLOCK

– ALLOW

– SYSTEM_ERROR

■ forwards to registerImageandPhrase during registration or challenge if the user is
registered

2.2.2.10 Update Authentication Status (P5)
After validating the user password, the status is updated in the Adaptive Risk
Manager.

updateAuthStatus(): For information on updateAuthStatus(), the parameters, and how
to use the parameters, refer to Chapter 4, "Native Integration Java."

handlePassword.jsp

■ retrieves the password from the pad

■ decodes the password

■ validates the user

Table 2–12 Validate User/Passwd Reference APIs

Module APIs

Sample handlePassword.jsp

Table 2–13 Update Authentication Status Reference APIs

Module APIs

Server VCryptTracker::updateAuthStatus()

Sample handlePassword.jsp

BharosaHelper BharosaHelper::updateStatus()

Integration Options

API Integration 2-15

■ runs post-auth rules and one of the following actions:

– REGISTER_USER_OPTIONAL

– REGISTER_QUESTIONS

– REGISTER_USER

– CHALLENGE

– BLOCK

– ALLOW

– SYSTEM_ERROR

■ forwards to registerImageandPhrase during registration or challenge if the user is
registered

2.2.2.11 Password Status (C1)
Based on the authentication status, the user is either taken to the retry page or to post
authentication rule processing.

2.2.2.12 Post Authentication Rules (R3)
The post authentication rules are run after the user password is authenticated. The
post authentication runtime contains security rules.

Some common actions returned are

■ Allow: Allow the authentication.

■ Block: Block the user.

■ Challenge: Challenge is returned if the user has registered questions. The option
may not be available for Adaptive Risk Manager Only deployments.

processRules(): For information on processRules(), the parameters, and how to use the
parameters, refer to Chapter 4, "Native Integration Java."

handlePassword.jsp

■ run post-auth rules which might return one of the following actions:

– REGISTER_USER_OPTIONAL

– REGISTER_QUESTIONS

– REGISTER_USER

– CHALLENGE

– BLOCK

– ALLOW

– SYSTEM_ERROR

Table 2–14 Post Authentication Rules Reference APIs

Module APIs

Server VCryptRulesEngine::processRules()

Sample handlePassword.jsp

BharosaHelper BharosaHelper::runPostAuthRules()

Integration Options

2-16 Oracle Adaptive Access Manager Developer's Guide

■ forwards to registerImageandPhrase during registration or challenge if the user is
registered

2.2.2.13 Check Question Registration for User (C2)
If the user is already verified, it is not necessary to continue to Registration Required
Rules.

2.2.2.14 Registration Required Rules (R4)
This runtime runs the rules for determining whether the user is asked to register. The
registration requirement is based on the business and security requirements. The
business requirement dictates whether the registration is mandatory or optional.

The common actions are

■ Register: Force the user to register.

■ Registration Optional: Make the registration optional for the user.

■ Skip Registration: Skip registration for this session.

processRules(): For information on processRules(), the parameters, and how to use the
parameters, refer to Chapter 4, "Native Integration Java."

password.jsp:

■ invokes rules to identify user's pad type, else uses the default KeyPad

■ creates the pad, names it, and sets all initial background frames, buttons, and so on

■ invokes kbimage.jsp as configured in the bharosa_client.properties

■ forwards to handlePassword.jsp

2.2.2.15 Challenge (QuestionPad) (S6)
Challenge pad is similar to TextPad, only the question is embedded in the pad.

Table 2–15 Registration Required Rules Reference APIs

Module APIs

Server VCryptRulesEngine::processRules()

Sample password.jsp

BharosaHelper BharosaHelper::getAuthentiPad()

Integration Options

API Integration 2-17

Figure 2–10 Question Pad

getSecretQuestions(): For information on getSecretQuestions(), the parameters, and
how to use the parameters, refer to Chapter 4, "Native Integration Java."

Challenge.jsp

■ gets the question

■ gets the QuestionPad

■ displays the Question on the QuestionPad

■ submits user answer to handleChallenge.jsp

2.2.2.16 Check Challenge Question Answer (C3)
This step calls the server to validate whether the answer provided by the user is
correct.

Table 2–16 Challenge Reference APIs

Module APIs

Server VCryptAuth::getSecretQuestions()

Sample Challenge.jsp

BharosaHelper BharosaHelper:: createPersonalizedAuthentiPad ()

BharosaHelper::createAuthentiPad()

Client AuthentiPad::getHTML()

Table 2–17 Check Challenge Question Answer Reference APIs

Module APIs

Server VCryptAuth::authenticateQuestion()

VCryptRulesEngine::processRules()

VCryptTracker::updateAuthStatus()

Sample handleChallenge.jsp

BharosaHelper BharosaHelper:: validateAnswer()

Integration Options

2-18 Oracle Adaptive Access Manager Developer's Guide

authenticateQuestion(), processRules(), and updateAuthStatus(): For information on
the APIs, the parameters, and how to use the parameters, refer to Chapter 4, "Native
Integration Java."

handleChallenge.jsp

■ validates answer

■ if answer is "valid," updates status to "success" and forwards to success

■ else if answer is "invalid," runs Challenge Rules to determine what needs to be
done

2.2.2.17 Run Challenge Rules (R5)
If the user fails to answer the question correctly, this runtime is invoked to determine
whether the user is given another chance to answer the question or to block the user.

Common rule actions are

■ Challenge: Challenge the user again.

■ Block: Block the user.

processRules(): For information on processRules(), the parameters, and how to use the
parameters, refer to Chapter 4, "Native Integration Java."

handleChallenge.jsp

■ validates answer

■ if answer is "valid," updates status to "success" and forwards to success

■ else if answer is "invalid," runs Challenge Rules to determine what needs to be
done

2.2.2.18 Lock Out Page (S2)
The Lock Out Page is the page the user is generally redirected to if he is blocked from
authentication or if he is carrying out a transaction.

2.2.2.19 Landing or Splash Page (S3)
The Landing or Splash Page is the page the user lands on after a successful login.

2.2.3 Adaptive Risk Manager and KBA Scenario
This scenario is the same as the previous scenario, except it doesn't have a split login
flow and there are no personalizations or AuthentiPads.

Table 2–18 Run Challenge Rules Reference APIs

Module APIs

Server VCryptRulesEngine::processRules()

Sample handleChallenge.jsp

BharosaHelper BharosaHelper::validateAnswer()

Troubleshooting

API Integration 2-19

Figure 2–11 Adaptive Risk Manager and KBA Scenario

2.3 Troubleshooting
This section describes the steps to take if you experience any problems with Adaptive
Risk Manager after the integration.

1. Confirm that bharosa_properties is in the classes directory.

2. Confirm that you have customized bharosa_client.properties.

3. Make sure only one copy of the bharosa_client.properties appears in the classpath.
If multiple property files are needed, ensure that they are all are identical.

4. Make sure the directory specified in log4j.xml for logfiles is present and
write-accessible.

5. Update log4j.xml to different levels of logging for troubleshooting application
issues.

6. Check the log levels in log4j.xml for recommended levels in case of space issues.

Troubleshooting

2-20 Oracle Adaptive Access Manager Developer's Guide

3

Native Integration .net 3-1

3Native Integration .net

ASP.NET applications can integrate with Oracle Adaptive Access Manager using the
.NET API provided by Oracle Adaptive Access Manager to add multi-factor
authentication.

3.1 Architecture
The Oracle Adaptive Access Manager .NET APIs can be called by the client
applications natively in the .NET language of their choice. The Oracle Adaptive Access
Manager .NET APIs communicate with the Adaptive Risk Manager server using the
SOAP protocol. Details on installing and configuring Oracle Adaptive Access Manager
.NET APIs are covered later in this chapter.

Figure 3–1 .Net API Communication

3.2 Installing SDK
Oracle Adaptive Access Manager .NET API contents are packaged in a zip file,
Bharosa_SDK_DotNet2.0.zip. Contents of this zip file should be extracted to the
virtual directory of the web application in which Oracle Adaptive Access Manager
should be integrated. The application (project files) must be updated to add references
to the SDK DLLS.

Application Configuration

3-2 Oracle Adaptive Access Manager Developer's Guide

3.3 Application Configuration
Web.config, located in the virtual/root directory of the web application, is the
configuration file for web applications. Update Web.config to include the
BharosaSOAPURL setting in the <appSettings> section. The BharosaSOAPURL setting
should be set to the SOAP URL to access the Adaptive Risk Manager SOAP services,
as shown below:

<appSettings>
 <add key="BharosaSOAPURL" value="http://localhost:9090/fauio/services"/>
</appSettings>

3.4 Properties
The Oracle Adaptive Access Manager .NET SDK contains properties files that contain
the default values. Each deployment can update certain properties to specify
deployment specific values.

The Oracle Adaptive Access Manager .NET API uses properties to read configurable
values at runtime, like the location of images for authenticators, and others. Properties
are read and cached from a list of files at startup and also whenever one of the loaded
properties files is updated. Details of how the properties files are loaded by Oracle
Adaptive Access Manager .NET API is given below:

■ First the lookup.properties file will be loaded, if it exists.

■ If the properties.filelist property is defined, all the files listed in this property will
be added to the queue.

■ Now, all the files in the queue will be loaded in the order they are listed in the
properties.filelist property.

■ When any of the properties files loaded is changed, the properties will be reloaded
using the above algorithm

The properties files, including lookup.properties, will be searched in the
following directories, in the given order. The search will stop when the file is found in
one of these directories.

Table 3–1 Directories Searched for Properties Files

Directory description Example

<ApplicationDirectory>/ c:/Inetpub/wwwroot/MyApp/

<CallingAssemblyDirectory>/ c:/Windows/System32/

<CurrentAssemblyDirectory>/ c:/Inetpub/wwwroot/MyApp/bin/

<CurrentAssemblyDirectory>/../ c:/Inetpub/wwwroot/MyApp/

<CurrentDirectory>/ c:/Windows/System32/

<ApplicationDirectory>/bharosa_properties/ c:/Inetpub/wwwroot/MyApp/bharosa_properties/

<CallingAssemblyDirectory>/bharosa_properties/ c:/Windows/System32/bharosa_properties/

<CurrentAssemblyDirectory>/bharosa_properties/ c:/Inetpub/wwwroot/MyApp/bin/bharosa_properties/

<CurrentAssemblyDirectory>/../bharosa_
properties/

c:/Inetpub/wwwroot/MyApp/bharosa_properties/

<CurrentDirectory>/bharosa_properties/ c:/Windows/System32/bharosa_properties/

Users

Native Integration .net 3-3

3.5 User-Defined Enumeration
User-defined enums are a collection of properties that represent a list of items. Each
element in the list may contain several different attributes. The definition of a
user-defined enum begins with a property ending in the keyword ".enum" and has a
value describing the use of the user-defined enum. Each element definition then starts
with the same property name as the enum, and adds on an element name and has a
value of a unique integer as an ID. The attributes of the element follow the same
pattern, beginning with the property name of the element, followed by the attribute
name, with the appropriate value for that attribute.

API Usage sample

UserDefEnumFactory factory = UserDefEnumFactory.getInstance();

UserDefEnum statusEnum = factory.getEnum("auth.status.enum");

int statusSuccess = statusEnum.getElementValue("success");
int statusWrongPassword = statusEnum.getElementValue("wrong_password");

3.6 Users
Oracle Adaptive Access Manager stores various details of users in its database and
uses this information for example, to determine the risk rules to run for a user, to find
user specific authenticator attributes, to present the user with a challenge question and
validate the answer, and so on.

The client application is responsible for populating Oracle Adaptive Access Manager
with the user details at runtime. For example, when a user logs in, the client
application should first determine whether the user record exists in Oracle Adaptive
Access Manager; if the user record does not exist, appropriate APIs should be called to
create the user record and set the user's status. The sample below demonstrates an
application calling Oracle Adaptive Access Manager APIs to deal with the user data.

For more usage scenarios and the details, please refer to the sample applications at the
end of this chapter.

API Usage sample:

string loginId = "testuser"; // loginId of the user logging in

IBharosaProxy proxy = BharosaClientFactory.getProxyInstance();

//
// find the user record in OAAM
//
VCryptAuthUser user = proxy.getUserByLoginId(loginId);

//
// if user does not exist in OAAM - create
//
if(user == null || StringUtil.IsEmpty(user.LoginId))
{
 string customerId = loginId;
 string userGroupId = "PremiumCustomer";
 string password = "_"; // this value is not used for now

 user = new VCryptAuthUser(loginId, customerId,
 userGroupId, password);
 user = proxy.createUser(user);

Adaptive Risk Manager

3-4 Oracle Adaptive Access Manager Developer's Guide

 //
 // set the status of the new user to Invalid; once the user is
 // authenticated, set the status to PendingActivation; after the
 // user succssfully completes registration, set the status to Valid
 //
 proxy.setUserStatus(user.CustomerId, (int)UserStatus.Invalid);
}

//
// save the user record in the session for later reference
//
AppSessionData sessionData = AppSessionData.GetInstance(Session);

sessionData.CurrentUser = user;

The Proxy is the interface to access Adaptive Risk Manager SOAP server services.

3.7 Adaptive Risk Manager
Adaptive Risk Manager is a component of Oracle Adaptive Access Manager. Adaptive
Risk Manager provides APIs to capture user login information, user login status, and
various attributes of the user session to determine device and location information.
Adaptive Risk Manager also provides APIs to collect transaction details.

API Usage sample:

//
// record a user login attempt in OAAM
//
string requestId = sessionData.RequestId;
string remoteIPAddr = Request.UserHostAddress;
string remoteHost = Request.UserHostName;
bool isFlashRequest = Request.Params["client"].Equals("vfc");
string secureCookie = (Request.Cookies["vsc"] != null)
 ? Request.Cookies["vsc"].Value : null;
string digitalCookie = isFlashRequest
 ? Request.Params["v"] : null;
object[] browserFpInfo = HttpUtil.GetBrowserFingerPrint();
object[] flashFpInfo = HttpUtil.GetFlashFingerPrint();

int browserFingerPrintType =
 browserFpInfo == null ? 0 : (int) browserFpInfo [0];
string browserFingerPrint =
 browserFpInfo == null ? "" : (string) browserFpInfo [1];
int flashFingerPrintType =
 flashFpInfo == null ? 0 : (int) flashFpInfo[0];
string flashFingerPrint =
 flashFpInfo == null ? "" : (string) flashFpInfo[1];

//
// if username/password has been validated by now, set the status
// below to appropriate value: success/wrong_Password/invalid_user.
// if username/password has not yet been validated, set the status to
// pending; after validation is done call updateLog() again with
// the updated status
//
int status = statusEnum.getElementValue("pending");

//

Rules Engine

Native Integration .net 3-5

// Call updateLog() to record the user login attempt
//
CookieSet cs = proxy.updateLog(requestId, remoteIPAddr, remoteHost,
 secureCookie, digitalCookie, user.CustomerGroupId,
 user.CustomerId, user.LoginId, false,
 status, ClientTypeEnum.Normal,
 "1.0", browserFingerPrintType, browserFingerPrint,
 flashFingerPrintType, flashFingerPrint);

//
// Update secure cookie in the browser with the new value from OAAM
//
if (cs != null)
{
 HttpUtil.UpdateSecureCookie(Response, cs);
}

3.8 Rules Engine
The Rules Engine component of Adaptive Risk Manager provides APIs for policy
execution and enforcement. The Rules Engine can be viewed as an enforcement
component of the Adaptive Risk Manager. Based on the calling context, various
policies and models are evaluated and the results are provided. The policies and
models are configured by the administrators.

API Usage sample:

The following sample code demonstrates the use of APIs to run rules in post-auth
runtime and process the rule result.

AppSessionData sessionData = AppSessionData.GetInstance(Session);
IBharosaProxy proxy = BharosaClientFactory.getProxyInstance();
UserDefEnumFactory factory = UserDefEnumFactory.getInstance();
UserDefEnum profileTypeEnum = factory.getEnum("profile.type.enum");

string requestId = sessionData.RequestId;
BharosaStringList profileTypes = new BharosaStringList();
BharosaStringTable contextList = new BharosaStringTable();

int postAuthType = profileTypeEnum.getElementValue("postauth");

profileTypes.Add(postAuthType.ToString());

//
// Run postauth rules
//
VCryptRulesResult res = proxy.processRules(requestId,
 profileTypes, contextList);

//
// process the rule result
//
if (StringUtil.EqualsIgnoreCase(res.Result, "Allow"))
{
// Allow the user login
}
else if (StringUtil.EqualsIgnoreCase(res.Result, "Block"))
{
// Block the user login
}

Rules Engine

3-6 Oracle Adaptive Access Manager Developer's Guide

else if (res.Result.StartsWith("Challenge"))
{
// Take the user through challenge question flow
}
else if (res.Result.StartsWith("RegisterUser"))
{
// Take the user through registration flow
}

3.8.1 Device ID Evaluation
Along with rule results, the Rules Engine component can return a Device Id. The
Device Id that is returned by the Rules Engine API is an internal identifier within
Adaptive Risk Manager. It is the same Id shown in Adaptive Risk Manager for the
user session.

A sample algorithm to get the Device Id is shown below:

VCryptRulesResult rulesResult = new
VCryptRulesEngineImpl().processRules(<params..>);

If (!rulesResult.getVCryptResponse().isSuccess()) {

 Logger.error("Error running rules " +
rulesResult.getVCryptResponse().getErrorMessage());

}

Long deviceId = VCryptRulesResult#getDeviceId();

Troubleshooting:
■ Make sure the Adaptive Risk Manager version is 10.1.4.5 or above

■ The following property must be set to true for the Device Id to be captured.

bharosa.tracker.send.deviceId=true

3.8.2 Create Transactions in Bulk
The Rules Engine component can create transactions in bulk.

A sample algorithm to create transactions in bulk is shown below:

/**
 * API To create a Transactions in bulk
 * Return response object for each create request
 *
 * @param transactionCreateRequestData requestId / Session Id, required
 * @return VCryptResponse Array of response objects. Each request will have
corresponding response. Check isSuccess on each response object
 * @since 10.1.4.5.2
 */
 public VCryptResponse[] createTransactions(TransactionCreateRequestData[]
transactionCreateRequestData);

3.8.3 Update Transactions in Bulk
The Rules Engine component can update transactions in bulk.

Challenge Questions

Native Integration .net 3-7

A sample algorithm to update transactions in bulk is shown below:

/**
 * API to update Transactions in bulk
 * If there are errors in any update, will proceed with next transaction and
return response for each request
 *
 * @param transactionUpdateRequestData array of update Request object
 * @return VCryptResponse Array of response objects. Each request will have
corresponding response. Check isSuccess on each response object
 * @since 10.1.4.5.2
 */
 public VCryptResponse[] updateTransactions(TransactionUpdateRequestData[]
transactionUpdateRequestData);

3.9 Challenge Questions
Oracle Adaptive Access Manager can be configured to challenge the user with
pre-registered questions during high risk/suspicious scenarios. In a typical
deployment, users will be asked to pick three questions from a given set of questions
and register answers for them. Oracle Adaptive Access Manager expects the user to
enter a correct answer for one of the registered questions at the time of the challenge.

The following sample code shows the API to be used during the registration and
challenge process. Please refer to the sample application for more details on using
various Oracle Adaptive Access Manager APIs to support Knowledge Based
Authentication (KBA) scenarios.

API Usage sample:

//
// Retrieve a question-pickset, containing groups of questions from
// which the user would pick one question from each group for
// registration
//
VCryptQuestionList[] groups = proxy.getSignOnQuestions(
 user.CustomerId);

//
// Please refer to the sample application for details on displaying the
// questions in the UI and processing the user input; let us assume
// that user selected questions and answers are now in questions object
//

//
// Register the questions and answers with OAAM
//
VCryptResponse response = proxy.addQuestions(
 user.CustomerId, questions);

//
// Retrive the question to show the user during challenge
//
VCryptQuestion secretQuestion = proxy.getSecretQuestion(
 user.CustomerId);
//
// Create QuestionPad authenticator to display the question text.
// Please refer to the sample application for details; let us here
// assume that the user entered answer is stroed in string answer

Reset Challenge Failure Counters

3-8 Oracle Adaptive Access Manager Developer's Guide

//

//
// Validate the user entered answer
//
VCryptAuthResult res = proxy.authenticateQuestion(customerId, answer);

bool isValid = (res != null && res.ResultCode == 0);

3.10 Reset Challenge Failure Counters
The API to reset failure counters for a given user or user and question combination is
shown below. It is applicable when the KBA module is enabled. Adaptive Risk
Manager stores the failure counters for the user questions. Failure counters are used to
enforce lock. If a question id is sent, failure counters associated with the question are
reset. If no question id is sent, failure counters for all questions are reset.

/**

 * Reset Challenge failure counters for the given customerid

 * @param requestId to track the request

 * @param customerId external customer id, required and used to identify
customer uniquely, it is not login Id

 * @param questionId optional, if sent, failure counters for the given
question id are reset

 * @return The response from the server. check isSuccess() for success

 */

 public VCryptResponse resetChallengeFailureCounters(final String requestId,
final String customerId, final Long questionId);

3.11 Authenticators
This section gives details on creating and using the authenticators in ASP.NET
applications.

3.11.1 Creating an Authenticator
Use BharosaClient.getAuthentiPad() to generate the .NET authenticator
object, as shown below:

IBharosaClient client = BharosaClientFactory.getClientInstance();

String padName = "passwordPad";

if (! IsPostBack)
{
 AuthentiPadType padType = AuthentiPadType.TYPE_ALPHANUMERICPAD;
 String bgFile = proxy.getImage(user.CustomerId);
 String captionText = proxy.getCaption(user.CustomerId);
 String frameFile = BharosaConfig.get(
"bharosa.authentipad.alphanumeric.frame.file",
"alphanumpad_bg/kp_v2_frame_nologo.png");

Specifying Credentials to Access Adaptive Risk Manager SOAP Services

Native Integration .net 3-9

 AuthentiPad authPad = client.getAuthentiPad(padType, padName,
 frameFile, bgFile,
 captionText, false,
 true, true);

 //
 // save the authenticator object in sessData; this will be needed
 // - in GetImage.aspx.cs to generate the authenticator image
 // - while decoding the user input
 //
 sessionData[padName] = authPad;
}

3.11.2 Embedding an Authenticator in a Web Page
The .ASPX file and the code behind file (ASPX.CS for C#) need to be updated, as
shown below, to display the authenticator created in the previous section:

1. Include JavaScript bharosa_web/js/bharosa_pad.js in the ASPX file.

2. Create a label in the ASPX file where the authenticator is to be displayed, as
shown below:

<asp:Label ID="authenticator" runat="server"></asp:Label>

3. Generate the HTML in the code behind file (ASPX.CS) from the authenticator
object and assign to the label, as shown below:

this.authenticator.Text = client.getAuthentiPadHTML(authPad,false, false);

3.11.3 Decoding User Input
The user-entered input in the authenticator is posted to the application in the HTTP
parameter named padName + "DataField". This input should be decoded using the
authenticator as shown below:

if (IsPostBack)
{
 AuthentiPad authPad = sessionData[padName];
 String encodedPasswd = Request.Params[padName + "DataField"];
 String passwd = authPad.decodeInput(encodedPasswd);

 // validate the password..
}

3.12 Specifying Credentials to Access Adaptive Risk Manager SOAP
Services

The credentials to access Adaptive Risk Manager Soap services can be specified in one
of the following ways.

■ By adding the following settings to application configuration file (web.config for
web applications)

 <appSettings>
 <add key="BharosaSOAPUser" value="soapUser"/>
 <add key="BharosaSOAPPassword" value="soapUserPassword"/>
 <add key="BharosaSOAPDomain" value="soapUserDomain"/>
 </appSettings>

Encrypting Property Values

3-10 Oracle Adaptive Access Manager Developer's Guide

■ By adding the following properties to one of the properties files used by the
application:

 BharosaSOAPUser=soapUser
 BharosaSOAPPassword=soapUserPassword
 BharosaSOAPDomain=soapUserDomain

When the second option above is used to specify SOAP credentials, the encrypted
value can be specified. For details on encrypting the property values, please refer to
the section below.

3.13 Encrypting Property Values
Property value in the properties files used by Oracle Adaptive Access Manager .NET
DLLs can be encrypted using command-line utility BharosaUtils.exe, which is
included in the Oracle Adaptive Access Manager .NET API package. A user-selected
encryption key is required to encrypt and decrypt the properties. The key used to
encrypt the properties must be available to Oracle Adaptive Access Manager .NET API
through the property, "bharosa.cipher.client.key," that is, this property must be set in
one of the properties files used by the application. BharosaUtil.exe prompts the user to
interactively enter the encryption key and the value to be encrypted. The encrypted
value is output to the console. The encrypted value can be used in the properties file,
instead of the plain text value.

C:\> BharosaUtil.exe -enc
Enter key (min 14 characters len):
Enter key again:
Enter text to be encrypted:
Enter text to be encrypted again:
vCCKC19d14a39hQSKSirXSiWfgbaVG5SKIg==

3.14 Troubleshooting
The Oracle Adaptive Access Manager .NET API can be configured to print trace
messages of various levels using diagnostics switches in Web.config. The tracing can
be configured to print to a file by configuring appropriate listeners. The following
XML demonstrates the trace switches supported by the Oracle Adaptive Access
Manager .NET API and a sample listener configuration that writes to a file.

 <system.diagnostics>
 <switches>
 <add name="debug" value="0"/>
 <add name="info" value="0"/>
 <add name="soap" value="0"/>
 <add name="perf" value="0"/>
 <add name="warning" value="1"/>
 <add name="error" value="1"/>
 <add name="traceTimestamp" value="1"/>
 <add name="traceThreadId" value="1"/>
 </switches>
 <trace autoflush="true" indentsize="2">
 <listeners>
 <add name="BharosaTraceListener"
 type="System.Diagnostics.TextWriterTraceListener, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"
 initializeData="BharosaTrace.log"/>
 </listeners>
 </trace>
 </system.diagnostics>

SampleWebApp

Native Integration .net 3-11

3.15 ASP.NET Applications
The following four ASP.NET applications are included in the sample package to
demonstrate the integration of various Oracle Adaptive Access Manager features in
ASP.NET based applications.

The source code for each application is placed in a directory of its own. Visual Studio
Solution files for each of these applications can be found in the root directory. The
solutions file, "SampleWebApps," can be used to load and view all applications
together. This section highlights the content of each application.

A few tips are listed below to set up the environment to successfully run the samples.

Ensure that the SOAP URL to access the Adaptive Risk Manager server is set correctly
in the web.config file of the application, as per your deployment configuration. A
sample is shown below:

 <appSettings>
 <add key="BharosaSOAPURL"
 value="http://localhost:9090/fauio/services"/>
 </appSettings>

Make sure that the Adaptive Risk Manager server used with these applications is
loaded with the models contained in models.zip.

Make sure that both the Adaptive Risk Manager server and the web applications are
configured to look for authenticator images in the same directory paths. The following
properties should be set:

 bharosa.authentipad.full.background.dirlist
 bharosa.authentipad.alphanumeric.background.dirlist
 bharosa.authentipad.numeric.background.dirlist
 bharosa.authentipad.textpad.background.dirlist
 bharosa.authentipad.textpadreset.background.dirlist
 bharosa.authentipad.questionpad.background.dirlist

3.16 SampleWebApp
This application contains the following pages, which demonstrates a web application
before an Oracle Adaptive Access Manager integration.

Table 3–2 ASP.NET applications samples

Application name Description

SampleWebApp This is a plain ASP.NET application with no Oracle Adaptive Access
Manager integration. This application is provided so that the reader can
easily see incremental changes required to integrate various Oracle
Adaptive Access Manager features - like Adaptive Risk Manager,
authenticator, KBA.

SampleWebAppWithTracker This application demonstrates the integration of the Oracle Adaptive
Access Manager-Adaptive Risk Manager functionality with
SampleWebApp, which is listed above.

SampleWebAppWithAuthTracker This application demonstrates the integration of the Oracle Adaptive
Access Manager-Adaptive Risk Manager and authenticator functionalities
with SampleWebApp, which is listed above.

SampleWebAppWithKBATracker This application demonstrates the integration of the Oracle Adaptive
Access Manager-Adaptive Risk Manager and KBA functionalities with
SampleWebApp, which is listed above.

SampleWebAppWithTracker

3-12 Oracle Adaptive Access Manager Developer's Guide

■ LoginPage.aspx

– Collects the username and password using a simple HTML form

– Validates the login and password information

– Depending upon the validation result, the user will be redirected to either
Success.aspx or to LoginPage.aspx with the appropriate error message

■ Success.aspx

– Displays the "Successfully logged in" message with a link for logout

■ LogoutPage.aspx

– Logs out the user session and redirects to login page

3.17 SampleWebAppWithTracker
This application contains the following pages, which demonstrate the integration of
Oracle Adaptive Access Manager-Adaptive Risk Manager functionality with the
sample application listed above.

This application requires the integration of the Oracle Adaptive Access Manager .NET
APIs found in the SDK package, Bharosa_SDK_DotNet2.0.zip. The content of the
archive needs to be extracted to the root directory of the web application.

■ LoginPage.aspx

– Collects the username and password using a simple HTML form

– Saves the login and password in the session

– Redirects the user to LoginJumpPage.aspx to collect the flash finger print of
the user device

■ LoginJumpPage.aspx

– Loads the user from Adaptive Risk Manager by calling
AppUtil.InitUser() (AppUtil is included in the SDK package). If the
user is not found, a new user record will be created

– Returns HTML to load flash object bharosa_web/flash/bharosa.swf in
the browser. The flash object calls CookieManager.aspx (included in the
SDK package) with flash finger print details. CookieManager.aspx records
the finger print in Adaptive Risk Manager and in return sets a flash cookie on
the user's device.

– After a brief wait (to allow time to get the flash cookie from Adaptive Risk
Manager), redirects the browser to LoginHandlerPage.aspx

■ LoginHandlerPage.aspx

– Records the user login attempt with Adaptive Risk Manager by calling
AppUtil.InitTracker()

– Validates the login and password information

– Updates Adaptive Risk Manager with the password validation status
(success/wrong user/wrong password/disabled user, etc) by calling
AppUtil.UpdateAuthStatus()

– If password validation succeeds, runs post-authentication rules by calling
AppUtil.RunPostAuthRules()

SampleWebAppAuthTracker

Native Integration .net 3-13

– If the post-authentication rules return block, blocks the user login after
updating Adaptive Risk Manager with this information

– Depending upon the validation result and/or the rules result, redirects the
user to either Success.aspx or to LoginPage.aspx with appropriate error
message

■ Success Page

– Displays "Successfully logged in" message with a link for logout

■ Logout Page

– Logs out the user session and redirects to login page

3.18 SampleWebAppAuthTracker
This application contains the following pages that demonstrate integration of Oracle
Adaptive Access Manager authenticator and Adaptive Risk Manager functionalities to
the sample application listed above. This application collects the password using
authenticators offered by Oracle Adaptive Access Manager.

This application requires the integration of the Oracle Adaptive Access Manager .NET
APIs found in the SDK package, Bharosa_SDK_DotNet2.0.zip. The content of the
archive needs to be extracted to the root directory of the web application.

■ LoginPage.aspx

– Collects the username using simple HTML form

– Saves the login in the session

– Redirects the user to LoginJumpPage.aspx to collect the flash finger print of
the user device

■ LoginJumpPage.aspx

– Loads the user from Adaptive Risk Manager by calling
AppUtil.InitUser() (AppUtil is included in the SDK package). If the
user is not found, a new user record will be created

– Returns HTML to load flash object bharosa_web/flash/bharosa.swf in
the browser. The flash object calls CookieManager.aspx (included in the
SDK package) with flash finger print details. CookieManager.aspx records
the finger print in Adaptive Risk Manager and in return sets a flash cookie on
the user's device

– After a brief wait (to allow time to get the flash cookie from Adaptive Risk
Manager), redirects the browser to LoginHandlerPage.aspx

■ LoginHandlerPage.aspx

– Records the user login attempt with Adaptive Risk Manager by calling
AppUtil.InitTracker()

– Redirects the user to PasswordPage.aspx to collect the password using
Oracle Adaptive Access Manager authenticator.

■ PasswordPage.aspx

On Load:

1. Sets the session authentication status to "Pending" in Adaptive Risk Manager.

SampleKBATracker

3-14 Oracle Adaptive Access Manager Developer's Guide

2. Runs pre-authentication rules by calling the
AppUtil.RunPreAuthRules().

3. If the pre-authentication rules return block, blocks the user login after
updating Adaptive Risk Manager with this information

4. If the pre-authentication rules return allow, runs another set of rules to
determine the authenticator to use for this user, by calling
AppUtil.RunAuthentiPadRules()

5. Creates appropriate authenticator by calling
AppUtil.CreateAuthentiPad() and renders the authenticator into HTML
by using AppUtil.getAuthentiPadHTML(). The authenticator HTML
would fetch the authenticator image by calling GetImage.aspx (included in
the SDK package)

6. Stores the authenticator object in the session for later use during image
generation and password decode

On PostBack

1. Decodes the password using the authenticator object stored in the session

2. Validates the login and password information

3. Updates Adaptive Risk Manager with the password validation status
(success/wrong user/wrong password/disabled user, etc) by calling
AppUtil.UpdateAuthStatus()

4. If password validation succeeds, runs post-authentication rules by calling
AppUtil.RunPostAuthRules()

5. If the post-authentication rules return block, blocks the user login after
updating Adaptive Risk Manager with this information

6. Depending upon the validation result and/or the rules result, redirects the
user to either Success.aspx or to LoginPage.aspx with appropriate error
message

■ Success Page

– Displays "Successfully logged in" message with a link for logout

■ Logout Page

– Logs out the user session and redirects to login page

3.19 SampleKBATracker
This application contains the following pages that demonstrate integration of Oracle
Adaptive Access Manager authenticator, Adaptive Risk Manager and KBA
(Knowledge Based Authentication) functionalities to the sample application listed
above. This application shows authentication mechanisms using password and KBA
authenticators offered by Oracle Adaptive Access Manager.

This application requires the integration of the Oracle Adaptive Access Manager .NET
APIs found in the SDK package Bharosa_SDK_DotNet2.0.zip. The content of the
archive needs to be extracted to the root directory of the web application.

■ LoginPage.aspx

– Collects the username using simple HTML form

– Saves the login in the session

SampleKBATracker

Native Integration .net 3-15

– Redirects the user to LoginJumpPage.aspx to collect the flash finger print of
the user device

■ LoginJumpPage.aspx

– Loads the user from Adaptive Risk Manager by calling
AppUtil.InitUser() (AppUtil is included in the SDK package). If the
user is not found, a new user record will be created

– Returns HTML to load flash object bharosa_web/flash/bharosa.swf in
the browser. The flash object calls CookieManager.aspx (included in the
SDK package) with flash finger print details. CookieManager.aspx records
the finger print in Adaptive Risk Manager and in return sets a flash cookie on
the user's device

– After a brief wait (to allow time to get the flash cookie from Adaptive Risk
Manager), redirects the browser to LoginHandlerPage.aspx

■ LoginHandlerPage.aspx

– Records the user login attempt with Adaptive Risk Manager by calling
AppUtil.InitTracker()

– Redirects the user to PasswordPage.aspx to collect the password using
Oracle Adaptive Access Manager authenticator

■ PasswordPage.aspx

On Load:

1. Sets the session authentication status to "Pending" in Adaptive Risk Manager

2. Runs pre-authentication rules by calling the AppUtil.RunPreAuthRules()

3. If the pre-authentication rules return block, blocks the user login after
updating Adaptive Risk Manager with this information

4. If the pre-authentication rules return allow, runs another set of rules to
determine the authenticator to use for this user, by calling
AppUtil.RunAuthentiPadRules()

5. Creates appropriate authenticator by calling
AppUtil.CreateAuthentiPad() and renders the authenticator into HTML
by using the AppUtil.getAuthentiPadHTML(). The authenticator HTML
would fetch the authenticator image by calling GetImage.aspx (included in
the SDK package)

6. Stores the authenticator object in the session for later use during image
generation and password decode

On PostBack:

1. Decodes the password using the authenticator object stored in the session

2. Validates the login and password information

3. Updates Adaptive Risk Manager with the password validation status
(success/wrong user/wrong password/disabled user, etc) by calling
AppUtil.UpdateAuthStatus()

4. If the password validation fails, the user will be redirected to
LoginPage.aspx with appropriate error message

5. If password validation succeeds, runs post-authentication rules by calling
AppUtil.RunPostAuthRules()

SampleKBATracker

3-16 Oracle Adaptive Access Manager Developer's Guide

6. The user will be taken through different flows, as shown below, depending
upon the action from post-authenticator rules result:

■ PersonalizationPage.aspx

– Introduces the user to device personalization explaining the steps that would
follow to create a new Security Profile for the user

– If the post authentication rule returns RegistrationOptional, the user is
allowed to skip the registration process by clicking the "Skip" button to
proceed to the Success.aspx page directly

– If registration is not optional, the user must register by clicking "Continue" to
proceed to the RegisterImagePhrase.aspx page

■ RegisterImagePhrase.aspx

– Allows the user to customize the randomly generated background image,
caption and the type of security device used during authentication

– A new background image and caption is assigned by calling
AppUtil.AssignNewImageAndCaption()

– The user selected security device is assigned by calling
AppUtil.SetAuthMode()

■ RegisterQuestionsPage.aspx

– Displays sets of questions which the user can choose and register the correct
answer for each.

– The sets of questions are fetched by calling proxy.getSignOnQuestions()

■ ChallengeUser.aspx

– Challenges the user by displaying a question-pad with one of the questions
already registered by the user

– The answer is validated by calling proxy.authenticateQuestion() and
the result is updated in Adaptive Risk Manager by calling
AppUtil.UpdateAuthStatus()

– If the answer is wrong, a call to AppUtil.RunChallengeUserRules() is
made and based on the result of which, the user will either be allowed to
reenter the answer or be redirected to the block page after updating the block
status in Adaptive Risk Manager

– The number of attempts that a user gets to answer a question correctly is set
by the rule administrator for Adaptive Risk Manager

– On successfully answering the question correctly, the user is forwarded to the
Success.aspx page

Post-Auth Action Target URL

Block LoginPage.aspx

Allow Success.aspx

ChallengeUser ChallengeUser.aspx

RegisterQuestions RegisterQuestionsPage.aspx

RegisterUser PersonalizationPage.aspx

RegisterUserOptional PersonalizationPage.aspx

SampleKBATracker

Native Integration .net 3-17

■ Success Page

– Displays "Successfully logged in" message with a link for logout

■ Logout Page

– Logs out the user session and redirects to login page

SampleKBATracker

3-18 Oracle Adaptive Access Manager Developer's Guide

4

Native Integration Java 4-1

4Native Integration Java

This document provides information on the available APIs for integrations using Java.
Refer to Chapter 2, "API Integration" for guidelines for integration options and flows.

4.1 Installation
The installation package will provide the required jars and property files. Sun Java 1.4
and above is supported for the integrations.

Property files of interest are listed below.

4.2 Adaptive Risk Manager
Adaptive Risk Manager is a component of Oracle Adaptive Access Manager.

Table 4–1 Property Files of Interest

File name Description

bharosa_app.properties This file is designated for installation-specific properties. Refer
to the Oracle Adaptive Access Manager Installation and
Configuration Guide for information on configuring Adaptive
Risk Manager and Chapter 6, "Configuring Adaptive Strong
Authenticator," for configuring Adaptive Strong Authenticator.

bharosa_client.properties This file is designated for client side properties.

The sample file, bharosa_client.properites.sample, is provided
with the installation package.

Copy bharosa_client.properites.sample to bharosa_
client.properites. Update the properties as per your
environment.

1. Set the "vcrypt.tracker.soap.useSOAPServer" property. If
SOAP is used, set the value to true. If static linking is used,
set the value to false.

2. Set the "vcrypt.tracker.soap.url" property to the Adaptive
Risk Manager URL if "vcrypt.tracker.soap.useSOAPServer"
is set to true. For example,

vcrypt.tracker.soap.url=http://localhost:9090/oarm/servic
es

3. Set "bharosa.image.dirlist" if Adaptive Strong Authenticator
is used. Refer to the Oracle Adaptive Access Manager
Installation and Configuration Guide for more information on
setting "bharosa.image.dirlist."

bharosa_common_
keypad.properties

This file contains properties to customize various aspects of
authenticators. This file is not to be modified by the clients.

Adaptive Risk Manager

4-2 Oracle Adaptive Access Manager Developer's Guide

Adaptive Risk Manager provides APIs to

■ collect/track information from the client application

■ capture user login information, user login status, and various attributes of the user
session to determine device and location information

■ collect transaction details

The sample application and the BharosaHelper class provide some of the usage
scenarios.

For examples of usage scenarios and flows, refer to Chapter 2, "API Integration."

4.2.1 handleTrackerRequest
API handleTrackerRequest: API to capture fingerprint details and identify the device.
Variations of the same API is provided to capture details with the time of the request.
The time of request can be in the past.

■ public CookieSet handleTrackerRequest(String requestId, String remoteIPAddr,
String remoteHost, String secureCookie, int secureClientType, String
secureClientVersion, String digitalCookie, int digitalClientType, String
digitalClientVersion, int fingerPrintType, String fingerPrint, int fingerPrintType2,
String fingerPrint2);

■ public CookieSet handleTrackerRequest(String requestId, Date requestTime, String
remoteIPAddr, String remoteHost, String secureCookie, int secureClientType,
String secureClientVersion, String digitalSigCookie, int digitalClientType, String
digitalClientVersion, int fingerPrintType, String fingerPrint, int fingerPrintType2,
String fingerPrint2);

Table 4–2 API handleTrackerRequest Parameters

Parameter Description

requestId The ID for the login session. The same ID is necessary for all the calls to the Oracle
Adaptive Access Manager API for the login session.

remoteIPAddr The IP from where the request came in. This is extracted from the HTTP request.

remoteHost The host name from where the request came in. This is optional

secureCookie The secure cookie. This is passed only if it is received from the browser

secureClientType The secure cookie client type. This is an enum value defined to identify the client used
for authentication.

secureClientVersion The version of the secure cookie client. This is an optional parameter to specify the
version of the client used

digitalCookie The digital signature cookie. This could be the flash cookie. This parameter is sent
only if it is sent by the browser

digitalClientType The digital cookie client type. The type of flash client used. If not available, please use
the value 0

digitalClientVersion The version of the digital cookie client. The version of the flash client.

fingerPrintType The type of finger printing. The value for defined in the properties file.

fingerPrint The finger print. If it is browser characteristics, then the header is parsed into this
string. This is the name value representation of the browser header information.

Adaptive Risk Manager

Native Integration Java 4-3

4.2.2 createTransaction
API createTransaction: API to create new transaction

■ public VCryptResponse createTransaction(TransactionCreateRequestData
transactionCreateRequestData);

4.2.3 updateTransaction
API updateTransaction: API to update previously created transaction

■ public VCryptResponse updateTransaction(TransactionUpdateRequestData
transactionUpdateRequestData);

fingerPrintType2 This is used in case the same request has multiple finger prints. It is like a flash
request. The value is defined in the properties file

fingerPrint2 The second finger print value. If it is from the flash, it is passed as it is. This is an
optional parameter.

requestTime The time when this request was made. Used by simulator

Table 4–3 API createTransaction Parameters

Parameter Description

TransactionCreateRequestData Data object to create a new transaction. A description of the structure is as
follows:

■ requestId is required to identify the user session

■ requestTime request time can be null. The server uses the current time if a
null requestTime is sent

■ transactionKey is required data. It is the key to the transaction definition.
This is the key used when creating a transaction definition

■ externalTransactionId is optional if there is external transaction Id. It can
also be used to update the transaction later

■ status of the transaction can be null

■ The keys should map to the source keys defined in the transaction
definition

■ BharosaException is thrown if fails validations

VCryptResponse Response object. Make sure to check isSuccess() before obtaining the
transaction Id.

getTransactionResponse() method provides the transaction id.

Table 4–2 (Cont.) API handleTrackerRequest Parameters

Parameter Description

Adaptive Risk Manager

4-4 Oracle Adaptive Access Manager Developer's Guide

4.2.4 handleTransactionLog
 API handleTransactionLog: API to capture transaction details.

■ public VCryptResponse handleTransactionLog(String requestId, Map[]);

■ public VCryptResponse handleTransactionLog(String requestId, Date
requestTime, Map[] contextMap);

■ public VCryptResponse handleTransactionLog(String requestId, Date
requestTime, Integer status, Map[] contextMap);

4.2.5 updateTransactionStatus
API updateTransactionStatus: API to update the given transaction status and, if
appropriate, trigger the pattern data analysis.

Table 4–4 API updateTransaction Parameters

Parameter Description

TransactionUpdateRequestData Data object to update transaction. Either transaction Id is returned during
createTransaction API call or external transaction Id is sent during
createTrasnaction API call to get the handle to the existing transaction. The
description of the structure is as follows:

■ requestId is required to identify the user session

■ requestTime request time can be null. The server uses the current time if
null requestTime is sent

■ transactionId id of the previously created transaction (createTransaction
API call)

■ status of the transaction

■ The keys should map to the source keys defined in the transaction
definition and can be null

■ analyzePatterns if true triggers pattern analysis

■ externalTransactionId external transaction id should be the same as the id
provided during the transaction creation

■ BharosaException is thrown if fails validations

VCryptResponse Response object. Make sure to check isSuccess() before obtaining the
transaction Id.

getTransactionResponse() method provides transaction id.

Note: Deprecated as of 10.1.4.5.1, use createTransaction API.

Table 4–5 API handleTransactionLog Parameters

Parameter Description

requestId The ID for the login session. The same ID is necessary for all the calls to the Oracle
Adaptive Access Manager API for the login session.

requestTime The time when this request was made. Used by simulator

contextMap The array of contextMap. Multiple transactions can be created with a single API call.
It is expected to have "transactionType" key in each context map for the creation of the
appropriate transaction.

status The transaction status for this transaction, client specific transaction status.

Adaptive Risk Manager

Native Integration Java 4-5

■ public VCryptResponse updateTransactionStatus(String requestId, long
transactionId, int status);

■ public VCryptResponse updateTransactionStatus(String requestId, Date
requestTime, long transactionId, int status);

■ public VCryptResponse updateTransactionStatus(String requestId, long
transactionId, int status, Map[] contextMap);

■ public VCryptResponse updateTransactionStatus(String requestId, Date
requestTime, long transactionId, int status, Map[] contextMap);

■ public VCryptResponse updateTransactionStatus(java.lang.String requestId, long
transactionId, int status, boolean analyzePatterns)

■ public VCryptResponse updateTransactionStatus(java.lang.String requestId,
java.util.Date requestTime, long transactionId, int status, java.util.Map[]
contextMap, boolean analyzePatterns)

4.2.6 updateLog
API updateLog: API to update the user node log and, if required, to create the
CookieSet also.

■ public CookieSet updateLog(String requestId, String remoteIPAddr, String
remoteHost, String secureCookie, String digitalCookie, String groupId, String
userId, String loginId, boolean isSecure, int result, int clientType, String
clientVersion, int fingerPrintType, String fingerPrint, int digFingerPrintType,
String digFingerPrint);

■ public CookieSet updateLog(String requestId, Date requestTime, String
remoteIPAddr, String remoteHost, String secureCookie, String digitalCookie,
String groupId, String userId, String loginId, boolean isSecure, int result, int
clientType, String clientVersion, int fingerPrintType, String fingerPrint, int
fingerPrintType2, String fingerPrint2);

Note: Deprecated as of 10.1.4.5.1, use updateTransaction API.

Table 4–6 API updateTransactionStatus Parameters

Parameter Description

requestId The ID for the login session. The same ID is necessary for all the calls to the Oracle
Adaptive Access Manager API for the login session.

requestTime The time when this request was made. Used by simulator

contextMap The array of contextMap. Multiple transactions can be created with a single API call.
It is expected to have "transactionType" key in each context map for the creation of the
appropriate transaction.

Status The transaction status for this transaction, client specific transaction status.

transactionId The ID of the transaction to be updated. If null, it uses the last transaction in the given
session.

analyzePatterns Boolean to indicate if the pattern analysis should be done. When passed in as true the
pattern analysis is done for this transaction.

Adaptive Risk Manager

4-6 Oracle Adaptive Access Manager Developer's Guide

4.2.7 updateAuthStatus
API updateAuthStatus: API to update the User node log auth status and, if
appropriate, trigger pattern data analysis.

■ public VCryptResponse updateAuthStatus(String requestId, int resultStatus, int
clientType, String clientVersion);

■ public VCryptResponse updateAuthStatus(String requestId, Date requestTime, int
resultStatus, int clientType, String clientVersion);

■ public VCryptResponse updateAuthStatus(java.lang.String requestId, int
resultStatus, int clientType, java.lang.String clientVersion, boolean
analyzePatterns)

Table 4–7 API updateLog Parameters

Parameter Description

requestId The ID for the login session. The same ID is necessary for all the calls to the Oracle
Adaptive Access Manager API for the login session.

remoteIPAddr The IP from where the request came in. This is extracted from the HTTP request.

remoteHost The host name from where the request came in. This is optional

secureCookie The secure cookie. This is passed only if it is received from the browser

secureClientType The secure cookie client type. This is an enum value defined to identify the client used
for authentication.

secureClientVersion The version of the secure cookie client. This is an optional parameter to specify the
version of the client used

digitalCookie The digital signature cookie. This could be the flash cookie. This parameter is sent
only if it is sent by the browser

digitalClientType The digital cookie client type. The type of flash client used. If not available, please use
the value 0

digitalClientVersion The version of the digital cookie client. The version of the flash client.

fingerPrintType The type of finger printing. The value for defined in the properties file.

fingerPrint The finger print. If it is browser characteristics, the header is parsed into this string.
This is the name value representation of the browser header information.

digFingerPrintType The type of the digital finger printing

digFingerPrint The digital fingerprint

requestTime The time when this request was made. Used by simulator

groupId The groupId of this user. This is the primary group to which this user belongs to.

userId The ID of the user. This is the primary key ID of the user. It should be null for users
who are invalid.

loginId The loginId used by the user for login in. This is mandatory parameter.

isSecure Whether this node is secure and can be registered. This is to indicate the login is from
a secure or registered device. If there is no concept of device, then send false value for
this parameter.

result The authentication result. This is the enumeration value of the authentication result.

clientType This is an enum value defined to identify the client type used for authentication.

clientVersion The version of the client. This is an optional parameter to specify the version of the
client used

Adaptive Risk Manager

Native Integration Java 4-7

■ public VCryptResponse updateAuthStatus(java.lang.String requestId,
java.util.Date requestTime, int resultStatus, int clientType, java.lang.String
clientVersion, boolean analyzePatterns)

upateAuthStatus API needs to be called when there is a change in the user's
authentication status.

Prerequisite: Make sure to call updateLog before making changes to the
authentication status.

The list of possible authentication status values are maintained on the server-side with
"auth.status.enum". Make sure to match the status value with one of those values. The
list of statuses can be installation-specific. You can add or remove the standard status
definitions that came with the product by updating "auth.status.enum".

Scenarios:

1. Send login status along with updateLog call

a. updateLog API call takes status as one of the parameters, send login status
with updateLog API, and avoid calling updateAuthStatus calls.

2. Login and then update authentication status

a. Set status to "pending" with updateLog API call

b. Call updateAuthStatus with actual status value.

3. Challenge flow

a. Challenge is considered a second factor authentication. It is recommended to
set the status to

1. "Pending" before challenging

2. After the user's response, set the status to "success" or "wrong_answer"

4. Run rules

a. Usually, there is no need to call update auth status after running the rules API.
Run rules API internally handles known actions, "Block" and "Locked," and
updates the authentication status appropriately.

4.2.8 processPatternAnalysis
API processPatternAnalysis: API to trigger the processing of data for pattern
matching. This call will only trigger the processing of data for pattern matching. The

Table 4–8 API updateAuthStatus Parameters

Parameter Description

requestId The ID for the login session. The same ID is necessary for all the calls to the Oracle
Adaptive Access Manager API for the login session.

requestTime The time when this request was made. Used by simulator

resultStatus The authentication result. This is the enumeration value of the authentication result

clientType An enum value defined to identify the client type used for authentication.

clientVersion An optional parameter to specify the version of the client used

analyzePatterns Boolean to indicate if the pattern analysis should be done. When passed in as true the
pattern analysis is done for this transaction.

Adaptive Risk Manager

4-8 Oracle Adaptive Access Manager Developer's Guide

last parameter transactionType can be used by authentication type user interactions,
since auth (or login) are not first-class transactions.

■ public VCryptResponse processPatternAnalysis(java.lang.String requestId, long
transactionId, int status, java.lang.String transactionType)

4.2.9 markDeviceSafe
API markDeviceSafe: API to mark the device as safe for the user.

■ public boolean markDeviceSafe(String requestId, boolean isSafe);

4.2.10 IsDeviceMarkedSafe
API IsDeviceMarkedSafe: API to verify that the device associated with this request is
safe

■ public VCryptBooleanResponse IsDeviceMarkedSafe(String requestId);

4.2.11 clearSafeDeviceList
API clearSafeDeviceList: API to clear the safe device list of the user associated with
this request

■ public VCryptBooleanResponse IsDeviceMarkedSafe(String requestId);

Table 4–9 processPatternAnalysis

Parameter Description

requestId request Id

transactionId Transaction Id to be updated.

status New Status

transactionType String that indicates the type of transaction. Has to be "auth" for
authentication type. For other types it can be "bill_pay,",;
basically the type name of the transaction.

Table 4–10 API markDeviceSafe Parameters

Parameter Description

requestId The ID for the login session. The same ID is necessary for all the calls to the Oracle
Adaptive Access Manager API for the login session.

isSafe Is this device safe for the user

Table 4–11 API IsDeviceMarkedSafe Parameters

Parameter Description

requestId The ID for the login session. The same ID is necessary for all the calls to the Oracle
Adaptive Access Manager API for the login session.

Table 4–12 API clearSafeDeviceList Parameters

Parameter Description

requestId The ID for the login session. The same Id is necessary for all the calls to Bharosa API
for the login session.

Rules Engine

Native Integration Java 4-9

4.3 Rules Engine
The Rules Engine component of Adaptive Risk Manager provides APIs for policy
execution and enforcement.

The Rules Engine can be viewed as an enforcement component of the Adaptive Risk
Manager. Based on the calling context, various policies and models configured by the
administrators are evaluated and the results are provided.

4.3.1 processRules
API processRules: API to process policy sets for the given runtimes.

A Policy Set consists of policies and rules. The API processes the policy set for each
runtime and returns VCryptRulesResult. There has to be at least one updateLog call
before calling processRules.

■ public VCryptRulesResult processRules(String requestId, List runtimeTypes, Map
contextMap);

■ public VCryptRulesResult processRules(String requestId, Date requestTime, List
runtimeTypes, Map contextMap);

■ public VCryptRulesResult processRules(String requestId, Long transactionId,
String extTransactionId, Date requestTime, List runtimeTypes, Map contextMap);

4.3.1.1 Device ID Evaluation
Along with rule results, the Rules Engine component can return a Device Id. The
Device Id that is returned by the Rules Engine API is an internal identifier within
Adaptive Risk Manager. It is the same Id shown in Adaptive Risk Manager for the
user session.

A sample algorithm to get the Device Id is shown below:

VCryptRulesResult rulesResult = new
VCryptRulesEngineImpl().processRules(<params..>);

If (!rulesResult.getVCryptResponse().isSuccess()) {

 Logger.error("Error running rules " +
rulesResult.getVCryptResponse().getErrorMessage());

Table 4–13 API processRules Parameters

Parameter Description

requestId The ID for the login session. The same ID is necessary for all the calls to the Oracle
Adaptive Access Manager API for the login session.

runtimeTypes The list of runtimes to be evaluated. Each runtime in the given list is evaluated and
result is returned.

requestTime The time when this request was made. Used by simulator

transactionId Transaction Id, to be treated as the current transaction for this process rules call. Can
be null, if no transaction Id is sent, API will check for extTransactionId, else will use
the last transaction in the login session as current transaction.

extTransactionId Handle to the external transaction id to be used as the current transaction. Optional,
will use last transaction in the login session as the current transaction, if no
transactionId or extTransactionId are sent.

contextMap The data for the context. Rules in models can make decisions based on this data. Key,
value pairs

Customer Care

4-10 Oracle Adaptive Access Manager Developer's Guide

}

Long deviceId = VCryptRulesResult#getDeviceId();

Troubleshooting:
■ Make sure the Adaptive Risk Manager version is 10.1.4.5 or above

■ The following property must be set to true for the Device Id to be captured.

bharosa.tracker.send.deviceId=true

4.4 Customer Care
Customer Care provides APIs for limited customer care functionality, typically used in
customer care portals. These APIs will not use audit feature and access control.

4.4.1 getFinalAuthStatus
API getFinalAuthStatus: API to return the final authentication status of a user given
the user ID of the user. This method can only go back up to 30 days.

■ public VCryptIntResponse getFinalAuthStatus(String requestId, String userId);

4.4.2 setTemporaryAllow
API setTemporaryAllow: This API call sets a temporary allow for the given user. A
temporary allow can override the final rule action.

■ public VCryptResponse setTemporaryAllow(String customerId, int
tempAllowType, Date expirationDate);

4.4.3 cancelAllTemporaryAllows
API cancelAllTemporaryAllows: API to cancel any temporary allows associated with
the customer ID.

■ public VCryptResponse cancelAllTemporaryAllows(String customerId);

Table 4–14 API getFinalAuthStatus Parameters

Parameter Description

requestId requestId for tracking purpose

userId Unique identifier to the user, can't be null

Table 4–15 API setTemporaryAllow Parameter

Parameter Description

customerId Id of the customer

tempAllowType Type of the temporary allow. The User Defined Enum for this type is
customercare.case.tempallow.level.enum

expirationDate Expiration date if the tempAllowType is "userset". Otherwise it can be null or empty.

Customer Care

Native Integration Java 4-11

4.4.4 resetUser
API resetUser: API to reset all the profiles set for the user. This includes registration,
questions, images and phrases, selected or assigned to the user

■ public VCryptResponse resetUser(String customerId);

4.4.5 getRulesData
API getRulesData: API to return all the rules executed for the given session ID, and
provide basic information on what rules got triggered. It does not provide complete
hierarchy information.

■ public VCryptSessionRuleData getRulesData(String requestId);

4.4.6 getActionCount
API getActionCount: API to get the action count for the given actionEnumId and
consult the configuration for the available action enums

■ public VCryptIntResponse getActionCount(String requestId, String customerId,
Integer);

Table 4–16 API cancelAllTemporaryAllows Parameters

Parameter Description

customerId The ID of the customer

Table 4–17 API resetUser Parameters

Parameter Description

customerId The ID of the customer

Table 4–18 API getRulesData Parameters

Parameter Description

requestId requestId for logging and tracing with client requests in case of errors

Table 4–19 API getActionCount Parameters

Parameter Description

requested requestId for logging and tracing with client requests in case of errors

customerId The unique identifier to the user, required

actionEnumId actionEnum, required, rule.action.enum to be counted

Customer Care

4-12 Oracle Adaptive Access Manager Developer's Guide

Part II
Part II Universal Installation Option and Related

Integrations

Part II contains the following chapters:

■ Chapter 5, "Oracle Adaptive Access Manager Proxy"

■ Chapter 6, "Configuring Adaptive Strong Authenticator"

■ Chapter 7, "Authenticator Properties"

5

Oracle Adaptive Access Manager Proxy 5-1

5Oracle Adaptive Access Manager Proxy

The Oracle Adaptive Access Manager's Universal Installation Option (UIO) offers
multi-factor authentication to Web applications without requiring any change to the
application code.

The purpose of this chapter is to explain the Oracle Adaptive Access Manager Proxy,
one of the components in the Oracle Adaptive Access Manager UIO deployment. This
chapter provides programming information and instructions on the installation and
configuration of the Oracle Adaptive Access Manager Proxy.

The Oracle Adaptive Access Manager Proxy is available for the Apache Web server
and Microsoft Internet Security and Acceleration (ISA) Server.

Instructions for both Microsoft ISA and Apache implementations are provided in this
chapter.

The chapter is intended for integrators who configure the Oracle Adaptive Access
Manager Proxy to add multi-factor authentication to Web applications. An
understanding of HTTP request/response paradigm is required to understand the
material presented in this document.

For information on configuring the Adaptive Strong Authenticator, the client-facing
multi-factor authentication Web application specific to the UIO deployment, refer to
Chapter 6, "Configuring Adaptive Strong Authenticator."

5.1 Introduction
The Introduction section of this chapter contains the following topics:

■ Important Terms

■ Architecture

■ References

5.1.1 Important Terms
For your reference, important terms are defined below.

Microsoft ISA
From the Microsoft Web site: "the Internet Security and Acceleration (ISA) Server is the
integrated edge security gateway that helps protect IT environments from
Internet-based threats while providing users with fast and secure remote access to
applications and data."

Introduction

5-2 Oracle Adaptive Access Manager Developer's Guide

Universal Installation Option (UIO)
The Universal Installation Option (UIO) is the Oracle Adaptive Access Manager
integration strategy that does not require any code modification to the protected Web
applications. The Universal Installation Option involves placing the Oracle Adaptive
Access Manager Proxy in front of the protected Web applications

Proxy
A proxy is a server that services the requests of its clients by forwarding requests to
other servers. This chapter is concerned with the Web proxy, where the proxy handles
Web Protocols, mainly HTTP.

Forward Proxy
A forward proxy is an intermediate server that sits between the client and the origin
server. To get content from the origin server, the client sends a request to the proxy
naming the origin server as the target, and the proxy then requests the content from
the origin server and returns it to the client. The client must be specially configured to
use the forward proxy to access other sites.

Reverse Proxy
A reverse proxy appears to the client just like an ordinary Web server. No special
configuration on the client is necessary. The client makes ordinary requests for content
in the name-space of the reverse proxy. The reverse proxy then decides where to send
those requests and returns the content as if it were itself the origin. The Oracle
Adaptive Access Manager Proxy running in the Microsoft Internet Security and
Acceleration (ISA) Server is an example of a reverse proxy.

Adaptive Strong Authenticator
The Adaptive Strong Authenticator is the Web application component of Oracle
Adaptive Access Manager. The Oracle Adaptive Access Manager Proxy redirects the
client browser to Adaptive Strong Authenticator for tracking and authentication
purposes as defined by the Oracle Adaptive Access Manager UIO Proxy XML
configuration.

5.1.2 Architecture
The following diagrams show a typical Oracle Adaptive Access UIO deployment.

The first diagram shows a Web application before the Oracle Adaptive Access UIO is
deployed to provide multi-factor authentication.

Figure 5–1 Before the Oracle Adaptive Access UIO

The second diagram shows various components added after the Oracle Adaptive
Access UIO deployment.

Oracle Adaptive Access Manager Proxy for Microsoft ISA Installation

Oracle Adaptive Access Manager Proxy 5-3

Figure 5–2 After UIO Deployment

The Oracle Adaptive Access Manager Proxy intercepts the HTTP traffic between the
client (browser) and the server (Web application) and performs the appropriate
actions, such as redirecting the traffic to the Adaptive Strong Authenticator to provide
multi-factor authentication and authorization. The Adaptive Strong Authenticator, in
turn, communicates with Adaptive Risk Manager to assess the risk, and then takes the
appropriate actions, such as permitting the login, challenging the user, blocking the
user, and other actions.

The Oracle Adaptive Access Manager Proxy is available for the Apache Web server
and Microsoft Internet Security and Acceleration (ISA) Server.

5.1.3 References
For detailed information on installing and configuring the Microsoft ISA server, refer
to the Microsoft ISA Server setup documentation. Web publishing rule creation and
listener creation are explained further in this document.

For more information about the Apache HTTP Server, refer to the Apache HTTP
Server 2.2 documentation (http://httpd.apache.org/docs/2.2).

5.2 Oracle Adaptive Access Manager Proxy for Microsoft ISA Installation
The Oracle Adaptive Access Manager Proxy for Microsoft ISA uses the API provided
by Microsoft ISA Server to monitor the HTTP traffic and perform various actions.
Microsoft ISA Server 2006 Standard Edition should be installed before installing the
Oracle Adaptive Access Manager Proxy for Microsoft ISA. Please refer to the Microsoft
ISA Server setup documentation for the details on installing and configuring the ISA
server. For a successful installation of the proxy, a .NET framework 2.0 or better should
to be installed. We also advise you to install all the recommended updates from
Microsoft on the machine.

Microsoft ISA Server 2006 Standard Edition should be installed and Web publishing
rules for Web applications should be created before installing the Oracle Adaptive
Access Manager Proxy.

This section provides:

■ information on creating Web publishing rules and listeners so that Web
applications and Adaptive Strong Authenticator can be accessible from the
Internet.

Oracle Adaptive Access Manager Proxy for Microsoft ISA Installation

5-4 Oracle Adaptive Access Manager Developer's Guide

■ programming information and instructions on the installation of the Oracle
Adaptive Access Manager Proxy for Microsoft ISA.

5.2.1 Proxy Web Publishing Configuration
The purpose of this section is to explain the creation of Web publishing rules and
listeners in Microsoft ISA for Adaptive Access Manager Applications. It is intended for
integrators who install and configure Microsoft ISA to support multiple Web
applications.

5.2.1.1 Web Listener Creation
For details on creating a Web listener, refer the Microsoft Web site.

1. For the Web Listener Name, enter Bharosa Proxy Listener.

2. Select SSL secure connection as the type of connection the Web listener will
establish with clients.

3. For the Web Listener IP Addresses, choose external, internal, and local host.

4. Choose to use a single certificate for the Web Listener and select the certificate.

5. Select no authentication for how clients will validate their credentials.

5.2.1.2 Web Publishing Rule Creation
In a typical deployment, Web applications and the Adaptive Access Manager
Adaptive Strong Authenticator run on machines in an internal network and are not
directly accessible from the Internet. In the case of the Oracle Adaptive Access
Manager Proxy for Microsoft ISA, only the Oracle Adaptive Access Manager Proxy
machine, which runs Microsoft ISA Server, will be accessible from the Internet. Web
applications, including Adaptive Strong Authenticator, should be published via Web
publishing rules in the Microsoft ISA Server.

To create a new Web publishing rule you will need to access Microsoft ISA Server's
Web publishing rule wizard and follow the on-screen instructions.

1. For the name of the rule, enter a name such as "Bharosa Adaptive Strong
Authenticator" or "Online Banking Application."

2. Choose to allow incoming requests matching the rule conditions.

3. Choose to publish a single Web site or a load balancer in front of several servers.

4. Choose SSL as a connection option if the Web application is listening on SSL;
otherwise, choose the non-secured connection option.

5. For the internal site name, provide the machine name where the Web server runs.

6. If the IP address or the machine name of the Web application to be published is
known, select the option to use the computer name or IP address and provide that
information.

7. If you want to include all files and subfolders within a folder, enter /* for the
name of the file or folder you want to publish. If you need to publish more than
one file or folder, enter only the first file/folder instead. The remaining files can be
entered later by editing the rule. Later you will enter the path you entered here for
your public details.

8. For your Web listener, select Bharosa Proxy Listener.

9. For authentication delegation, select no delegation and that client cannot
authenticate directly.

Oracle Adaptive Access Manager Proxy for Microsoft ISA Installation

Oracle Adaptive Access Manager Proxy 5-5

10. Make sure you're able to apply the rule to requests from all users.

Check the properties for your newly created rule by accessing the rule properties.

1. If more than one file or folders need to be published, add all paths.

2. If you have more than one domain name to access the application, add all the
domain names.

5.2.2 Registering the Oracle Adaptive Access Manager Proxy for Microsoft ISA DLL
The Oracle Adaptive Access Manager Proxy for Microsoft ISA is installed as a Web
filter in Microsoft ISA Server. Please follow the steps below to install the Oracle
Adaptive Access Manager Proxy for Microsoft ISA:

1. Copy the BharosaProxy.dll to the Microsoft ISA Server installation directory, which
is by default, %ProgramFiles%\Microsoft ISA Server

2. Open the command prompt and navigate to the Microsoft ISA Server installation
directory

3. Register the BharosaProxy.dll with the following command:

regsvr32 .\BharosaProxy.dll

5.2.3 Settings
Various aspects of the Oracle Adaptive Access Manager Proxy for Microsoft ISA can be
controlled using the registry values. All Oracle Adaptive Access Manager Proxy for
Microsoft ISA settings are stored under HKLM\SOFTWARE\Bharosa\Proxy key.
Changes to most of the registry values are picked up by the proxy immediately
without requiring a proxy restart.

5.2.3.1 Configuration files
During startup (and during config reload), the proxy loads the configuration from the
files listed under the HKLM\SOFTWARE\Bharosa\Proxy\ConfigFiles key.

■ The type of each value under this key should be REG_DWORD.

■ The name of each value under this key should be the filename containing the
proxy configuration.

■ The filename can either be fully qualified or relative to the location of the
BharosaProxy.dll

■ The proxy will load a configuration file only if the data has a nonzero value. This
can be used to dynamically load and unload proxy configuration files.

■ The files will be loaded in the lexicographic order of the filenames in the registry.

■ Changes under the ConfigFiles key will not be effective until either the proxy is
restarted or HKLM\SOFTWARE\Bharosa\Proxy\ReloadConfig is set to 1.

5.2.3.2 Configuration Reload
The proxy configuration can dynamically be changed while the proxy is running; new
configuration files can be added and currently loaded files can be updated or
removed. These changes will not be applied until ReloadConfig registry value is set to
a nonzero value. Upon setting ReloadConfig to a nonzero value, the proxy will load
configuration files. After loading the files, the proxy will reset the ReloadConfig value
to 0.

Oracle Adaptive Access Manager Proxy for Microsoft ISA Installation

5-6 Oracle Adaptive Access Manager Developer's Guide

Please note that the new configuration will be used only for new client (browser)
connections. Clients already connected will continue to use the previous configuration.

5.2.3.3 Session Id Cookie
The Oracle Adaptive Access Manager Proxy for Microsoft ISA uses a cookie to
associate multiple requests from a client. The name of this cookie can be configured in
the registry value, SessionIdCookieName (of type REG_SZ). If this value is not present
or empty, the Oracle Adaptive Access Manager Proxy for Microsoft ISA will use the
cookie name, BharosaProxy_SessionId.

5.2.3.4 Session Inactive Interval
Sessions in the Oracle Adaptive Access Manager Proxy for Microsoft ISA will be
removed after a certain period of inactivity. This period, in number of seconds, is
specified in the MaxSessionInactiveInterval registry value. If this value is not specified,
the Oracle Adaptive Access Manager Proxy for Microsoft ISA will remove a session
after 1200 seconds (20 minutes) of inactivity. This value should be set to at least a few
seconds higher than the Web application session timeout value.

5.2.3.5 Settings for Troubleshooting
Trace messages from the Oracle Adaptive Access Manager Proxy for Microsoft ISA can
be used for trouble shooting any issues with the proxy configuration and operation.
Trace settings, like trace level and destinations, can be controlled using the following
registry values under HKLM\SOFTWARE\Bharosa\Proxy:

Table 5–1 Settings for Troubleshooting

Name Type Description

TraceFilename REG_SZ Full path to the file in which the trace messages
should be written to

TraceFileMaxLength REG_DWORD Maximum length of the trace file in bytes. Once the
trace file reaches this size, the proxy will rename the
file by adding the timestamp to the filename and
create a new trace file to write subsequent trace
messages.

TraceToFile REG_DWORD Trace messages will be written to file only if this
value is nonzero.

TraceToDebugTerminal REG_DWORD Trace messages will be written to debug the terminal
only if this value is nonzero. Tools like DbgView can
be used to view these trace messages in real time.

Oracle Adaptive Access Manager Proxy for Apache

Oracle Adaptive Access Manager Proxy 5-7

5.3 Oracle Adaptive Access Manager Proxy for Apache
To install the Oracle Adaptive Access Manager Proxy for Apache, a new Apache httpd
has to be installed into which the Oracle Adaptive Access Manager Proxy for Apache
will be installed. This Apache httpd will use mod_proxy to reverse-proxy to the
backend application that has to be protected.

The Installation section contains information for installing the Oracle Adaptive Access
Manager Proxy for Apache for Windows and Linux platforms.

The procedure involves:

■ ensuring that the Apache httpd requirements are met

■ copying the proxy dlls and supported dlls to specific directories in Apache

■ creating a new user to run the UIO Proxy Apache process (on Linux only)

■ configuring memcache (for Linux only)

■ editing the httpd.conf to activate the proxy

■ modifying the settings of the proxy using application configuration xml files

■ Optionally install the mod_proxy_html, which is needed to rewrite the HTML
links in a proxy situation, to ensure that links work for the users outside the proxy

5.3.1 Package Contents
The Oracle Adaptive Access Manager Proxy for Apache package binaries for Windows
and Linux are different. Since the proxy is in C/C++, the same binary will not work on
different platforms (unlike Java).

The typical package names are:

■ oaam_win_apache_uio.zip

■ oaam_rhel4_apache_uio.zip

TraceLevel REG_DWORD Each trace level (debug, info, warning, error) has an
integer value associated. The registry value should
be set to the sum of desired the trace level values.

FATAL 0x1, ERROR 0x2, WARN 0x4

INFO 0x8, DEBUG 0x10, HTML 0x80,

FLOW 0x80000

IgnoreUrlMappings REG_DWORD If this value is nonzero, the proxy will ignore all the
interceptors defined in the proxy configuration.
Essentially this will put the Oracle Adaptive Access
Manager Proxy for Microsoft ISA in "pass-through"
mode.

CaptureTraffic REG_DWORD The proxy does not handle (save, inspect) the HTTP
traffic for URLs that do not have interceptors
defined in the configuration. But during application
discovery process, it will be necessary to get a dump
of all the HTTP traffic thorough the proxy. On such
occasion, this registry value should be set to
nonzero.

Table 5–1 (Cont.) Settings for Troubleshooting

Name Type Description

Oracle Adaptive Access Manager Proxy for Apache

5-8 Oracle Adaptive Access Manager Developer's Guide

5.3.1.1 Windows
For Windows, the Oracle Adaptive Access Manager Proxy for Apache Package, oaam_
win_apache_uio.zip, contains the binary files listed below.

The package contains the following data files.

5.3.1.2 Linux
For Linux, the Oracle Adaptive Access Manager Proxy for Apache Packages contain
the binary files listed below.

It contains the following data files.

Name Description

mod_uio.so Oracle Adaptive Access Manager Proxy for Apache module

log4cxx.dll Apache Log4cxx library

libxml2.dll XML/HTML Parser

apr_memcache.dll APR Memcache client library. For 10.1.4.5.1 and onward.

Name Description

UIO_Settings.xml Oracle Adaptive Access Manager Proxy for Apache Settings
XML file

UIO_log4j.xml Oracle Adaptive Access Manager Proxy for Apache Log4j
(log4cxx) configuration XML file

TestConfig.xml Oracle Adaptive Access Manager Proxy for Apache Sample
application configuration file

UIO_Settings.rng Relax NG grammar for UIO_Settings.xml

UIO_Config.rng Relax NG grammar for application configuration XML files

Name Description

mod_uio.so Oracle Adaptive Access Manager Proxy for Apache module

liblog4cxx.so.0.10.0.0 Apache Log4cxx library

libxml2.so.2.6.32 XML/HTML parser

libapr_memcache.so.0.0.1 APR Memcache client library. For 10.1.4.5.1 and later.

Name Description

UIO_Settings.xml Oracle Adaptive Access Manager Proxy for Apache Settings
XML file

UIO_log4j.xml Oracle Adaptive Access Manager Proxy for Apache Sample
Log4j (log4cxx) configuration XML file

TestConfig.xml Oracle Adaptive Access Manager Proxy for Apache Sample
application configuration files

UIO_Settings.rng Relax NG grammar for UIO_Settings.xml

UIO_Config.rng Relax NG grammar for application configuration XML files

Oracle Adaptive Access Manager Proxy for Apache

Oracle Adaptive Access Manager Proxy 5-9

5.3.2 Apache httpd Requirements
The pre-installation steps involve for downloading or building the Apache httpd,
depend on whether you are on the Windows or Linux platform, and on whether
certain requirements are met.

5.3.2.1 Windows
You can download the latest Apache httpd (2.2.8) build for Windows from the Apache
Web site.

Ensure that:

■ the Apache httpd (2.2.8) build is version 2.2.8

■ the mod_proxy support is enabled (the standard installation contains the mod_
proxy)

■ the mod_ssl support is enabled (required for 10.1.4.5.1 and above)

5.3.2.2 Linux
Instructions to build the Apache httpd are available on the Apache Web site. When
you build Apache, ensure that

■ the Apache httpd (2.2.8) build is version 2.2.8

■ the mod_so is enabled (for dynamically loading modules)

■ the mod_proxy is enabled

■ the mod_ssl support is enabled (required for 10.1.4.5.1 and above)

5.3.3 Copying the Oracle Adaptive Access Manager Proxy for Apache and Supported
Files to Apache

Instructions are provided below for copying the Oracle Adaptive Access Manager
Proxy for Apache and support files to specific directories in Apache for both Windows
and Linux platforms.

5.3.3.1 Windows
The table shown below summarizes:

■ the directories you have to copy the Oracle Adaptive Access Manager Proxy for
Apache files to after installation

■ the tree structure of the Oracle Adaptive Access Manager Proxy for Apache
libraries and configuration files, assuming that you installed the files in
C:\Apache2.2

■ the directories the Oracle Adaptive Access Manager Proxy for Apache binary files
go into

Directories File Descriptions

C:\Apache2.2\modules\mod_uio.so Oracle Adaptive Access Manager
Proxy for Apache module

C:\Apache2.2\bin\log4cxx.dll Apache Log4cxx library

C:\Apache2.2\bin\libxml2.dll XML/HTML Parser

Oracle Adaptive Access Manager Proxy for Apache

5-10 Oracle Adaptive Access Manager Developer's Guide

The data files will go in the directories summarized in the table below.

If you want to change the location of the various configuration files, refer to the
"Configuring httpd.conf" section.

5.3.3.2 Linux
After the installation of the Apache httpd, you will have to copy the Oracle Adaptive
Access Manager Proxy for Apache binary files into (assuming Apache httpd is
installed in /usr/local/apache2) the directories shown below.

Then, create soft links to the libraries as follows:

cd /usr/local/apache2/lib
ln -s liblog4cxx.so.10.0.0 liblog4cxx.so.10
ln -s libxml2.so.2.6.32 libxml2.so.2
ln -s libapr_memcache.so.0.0.1 libapr_memcache.so.0

Also, ensure that the binary files have executable permission.

Apache httpd is typically run as root so that it creates a parent process that listens on
port 80, and it spawns handler processes that run as the user given in the User
directive in httpd.conf

C:\Apache2.2\bin\apr_memcache.dll APR Memcache library. For 10.1.4.5.1
and onward.

Directories File Descriptions

C:\OAAMUIO\UIO_Settings.xml Oracle Adaptive Access Manager
Proxy for Apache settings XML file

C:\OAAMUIO\UIO_log4j.xml Oracle Adaptive Access Manager
Proxy for Apache Log4j (log4cxx)
configuration XML file

C:\OAAMUIO\TestConfig.xml Oracle Adaptive Access Manager
Proxy for Apache application
configuration files (any number)

C:\OAAMUIO\UIO_Settings.rng Relax NG grammar for UIO_
Settings.xml

C:\OAAMUIO\UIO_Config.rng Relax NG grammar for application
configuration XML files

C:\OAAMUIO\logs\uio.log Oracle Adaptive Access Manager
Proxy for Apache log

Directories Description

/usr/local/apache2/modules/mod_uio.so Oracle Adaptive Access Manager Proxy
for Apache Module

/usr/local/apache2/lib/liblog4cxx.so.0.10.0.0 Apache Log4cxx Library

/usr/local/apache2/lib/libxml2.so.2.6.32 XML/HTML Parser

/usr/local/apache2/lib/libapr_memcache.so.0.0.1 APR Memcache client library. For
10.1.4.5.1 and later

Directories File Descriptions

Oracle Adaptive Access Manager Proxy for Apache

Oracle Adaptive Access Manager Proxy 5-11

For this reason, create a user called oaamuio that will be the runtime user for the
Oracle Adaptive Access Manager UIO for Apache. The Oracle Adaptive Access
Manager UIO configuration and log files will be accessible by this user. Ensure that
only this user can access the log files. Assuming /home/oaamuio is the home
directory for this user, the directory structure will look like the one presented in the
table below.

The Oracle Adaptive Access Manager UIO for Apache data files should follow the
directory structure shown in the table below.

If you want to change the location of the various configuration files, refer to the
"Configuring httpd.conf" section.

The run-time user of httpd should have the appropriate permissions to access all these
files.

5.3.4 Configuring Memcache (for Linux only)
On Linux, httpd can run with two different MPMs (the httpd kernel): httpd with
prefork MPM (httpd kernel) or with worker MPM. The MPM is built into the httpd
and is not a run-time option. Usually, the binary distribution of Apache httpd is with
prefork MPM. If you need to use worker MPM, you will have to build Apache httpd
using the instructions from the Apache Web site.

With prefork MPM, httpd maintains a pool of single-threaded process, where each
request is handled by a single process. With worker MPM, httpd maintains a pool of
multi-threaded processes, where every process could be handling multiple requests at
a time. (On Windows, httpd MPM is always in multi-threading mode with a single
process.)

On Linux, in the case where the httpd runs multiple processes, the Oracle Adaptive
Access Manager Proxy for Apache session data must be maintained in a common store
(db or cache) so that multiple processes can access the session data. The Oracle
Adaptive Access Manager Proxy uses memcache (a memory based very fast cache) to
store the session data.

At startup, the Oracle Adaptive Access Manager Proxy auto-detects whether httpd is
running with a single process or multiple processes. If httpd is running with multiple
processes (which is the case with prefork or worker mpm on Linux), it will try to
connect to the memcache daemon using default connection parameters (that are

Directories Description

/home/oaamuio/uio/UIO_Settings.xml Oracle Adaptive Access Manager
Proxy for Apache settings XML file

/home/oaamuio/uio/UIO_log4j.xml Oracle Adaptive Access Manager
Proxy for Apache Log4j (log4cxx)
configuration XML file

/home/oaamuio/uio/TestConfig.xml Oracle Adaptive Access Manager
Proxy for Apache application
configuration files (any number)

/home/oaamuio/uio/UIO_Settings.rng Relax NG grammar for UIO_
Settings.xml

/home/oaamuio/uio/UIO_Config.rng Relax NG grammar for application
configuration XML files

/home/oaamuio/uio/logs/uio.log Oracle Adaptive Access Manager
Proxy for Apache log

Oracle Adaptive Access Manager Proxy for Apache

5-12 Oracle Adaptive Access Manager Developer's Guide

defined below in the "UIO_Settings.xml" section). On Windows, by default, the Oracle
Adaptive Access Manager Proxy will use local sessions and not try to connect to the
memcache daemon; however it can be configured to maintain session data in
memcache daemon (explained in the "UIO_Settings.xml" section).

For the scenarios where the Oracle Adaptive Access Manager Proxy for Apache will be
connecting to memcache daemon, you will have to install memcache on your system
using the instructions from the memcache Web site and run the memcache daemon(s)
before running the Apache httpd.

Install memcache using instructions from the Web site,
http://www.danga.com/memcached/. You may already have a binary installation
available from your Linux distribution. The Oracle Adaptive Access Manager Proxy
for Apache has been tested with version 1.2.5 of memcache.

In the simple configuration, you can run a single memcache daemon on the machine
that is running your Apache httpd.

You can choose to have a highly scalable installation, where you run more than one
memcache daemon-- all of which are accessed by multiple machines running Apache
httpds.

5.3.5 Configuring httpd.conf
This section provides information on how to edit the httpd.conf file to activate the
Oracle Adaptive Access Manager Proxy for Apache.

5.3.5.1 Basic Configuration without SSL
In the sample installation, the Apache httpd has been installed in
c:\ProgramFiles\Apache2.2 or /usr/local/apache2.

Also, in the sample installation, BigBank40 and BharosaUIO40 are running on
test.dummy.com.

Follow the procedure below to ensure that http.conf is correctly set up in your
environment.

1. Ensure that the lines shown below are uncommented to enable mod_proxy.

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so

2. Add the following line to the end of the LoadModule group of lines to activate the
Oracle Adaptive Access Manager Proxy for Apache.

LoadModule uio_module modules/mod_uio.so

3. Add a line to point to the UIO_Settings.xml file that has the settings for the Oracle
Adaptive Access Manager Proxy for Apache.

On Windows (all paths should be with forward slashes),

UioProxySettingsFile c:/OAAMUIO/UIO_Settings.xml

On Linux,

UioProxySettingsFile /home/oaamuio/uio/UIO_Settings.xml

Note: This should be an absolute path to the UIO_Settings.xml file.

Oracle Adaptive Access Manager Proxy for Apache

Oracle Adaptive Access Manager Proxy 5-13

4. Disable mod_proxy's forward-proxy-ing capability since it is not needed.

ProxyRequests Off
<Proxy *>
 Order deny,allow
 Allow from all
</Proxy>

5. Enable the mod_proxy configuration to reverse-proxy to the protected
applications (BigBank40 and BharosaUIO40 in our sample installation).

ProxyPass / http://uio-dev.oracle.com:9090/
ProxyPassReverse / http://uio-dev.oracle.com:9090/

6. Set the user/group of httpd using User and Group directives to oaamuio.

The actual settings for #4 and #5 above are installation-specific. They are only
examples of the settings you must set. For information on setting details, refer to the
Apache Web site.

With the above changes and by properly setting up UIO_Settings.xml, you should be
able to access BigBank40 and run Phase One scenarios. The URL for BigBank40 is

http://<apache-host>:<apache-port>/bigbank40

So far in this chapter, we have performed the configuration to the proxy without using
SSL.

5.3.5.2 Configuration with SSL
To enable SSL, refer to the Apache Web site for Tomcat and for Apache procedures.

Note that the Oracle Adaptive Access Manager Proxy for Apache requires mod_ssl to
be part of httpd. This ensures that the OpenSSL library is linked in and is properly
configured for the Oracle Adaptive Access Manager Proxy for Apache to generate
session ids. You need to ensure that mod_ssl is loaded and you do not need to do any
configuration if you are not using SSL.

mod_proxy_html module (optional)
Optionally, you may need to install the mod_proxy_html
(http://apache.webthing.com/mod_proxy_html/) Apache module. This module is
needed only if the protected application has web pages that have hard-coded URL
links to itself. If the application has relative URLs, you do not need this module.

From their Web site, the executive summary of this module is as follows:

"mod_proxy_html is an output filter to rewrite HTML links in a proxy situation, to
ensure that links work for users outside the proxy. It serves the same purpose as
Apache's ProxyPassReverse directive does for HTTP headers, and is an essential
component of a reverse proxy.

For example, if a company has an application server at appserver.example.com that is
only visible from within the company's internal network, and a public webserver
www.example.com, they may wish to provide a gateway to the application server at
http://www.example.com/appserver/. When the application server links to itself,
those links need to be rewritten to work through the gateway. mod_proxy_html serves
to rewrite foobar to foobar making it
accessible from outside."

Oracle Adaptive Access Manager Proxy for Apache

5-14 Oracle Adaptive Access Manager Developer's Guide

5.3.6 Modifying the Oracle Adaptive Access Manager Proxy for Apache Settings

5.3.6.1 UIO_Settings.xml

<UIO_ProxySettings xmlns="http://bharosa.com/">

 <Log4jProperties location="C:/OAAMUIO/UIO_log4j.xml"/>

Or

 <Log4jProperties location="/home/oaamuio/uio/UIO_log4j.xml"/>

 <GlobalVariable name="one" value="something"/>

 <ConfigFile location="/home/oaamuio/uio/TestConfig1.xml" enabled="false"/>
 <ConfigFile location="/home/oaamuio/uio/TestConfig.xml" enabled="false"/>

 <ConfigFile location="C:/OAAMUIO/TestConfig1.xml" enabled="false"/>
 <ConfigFile location="C:/OAAMUIO/TestConfig.xml" enabled="true"/>

 <Setting name="GarbageCollectorInterval_ms" value="5"/>
 <Setting name="MaxSessionInactiveInterval_ms" value="5"/>
 <Setting name="SessionIdCookieName_str" value="UIOSessionId"/>

 <Setting name="IgnoreUrlMappings" value="0"/>
 <Setting name="CaptureTraffic" value="0"/>

 </UIO_ProxySettings>

Log4jProperties
Set the location of log4j.xml file that defines the logging configuration for the Oracle
Adaptive Access Manager Proxy for Apache. The location should be an absolute path;
it cannot be ServerRoot relative. On Linux, you have to ensure that the httpd process
can access the directory.

When using httpd in a multi-processing mode, do not use FileAppender; use
SocketAppender instead to log the logs from the different processes. Refer to the log4j
documentation on the Internet for more information.

GlobalVariable
GlobalVariable is a global variable that is used in the application configuration. You
can have any number of such name-value pairs.

ConfigFile
ConfigFile is the absolute path to an application configuration. You can have any
number of such configurations. Again, you need to make sure, on Linux, that the httpd
process has the permissions to access these files. Refer to "Oracle Adaptive Access
Manager Proxy Configuration" to understand how to perform a configuration for an
application.

Memcache
Memcache has the IP address and port of a memcache server. You can have multiple
Memcache elements in the settings file if you have multiple memcache servers

Oracle Adaptive Access Manager Proxy for Apache

Oracle Adaptive Access Manager Proxy 5-15

running. If you have a single local memcache running, you do not need to have this
element at all. By default, the Oracle Adaptive Access Manager Proxy for Apache will
try to connect to memcache on IP address 127.0.0.1 and port 11211.

Settings
These are flags to control the behavior of the Oracle Adaptive Access Manager Proxy
for Apache. Various settings are listed in the table below.

Flags Description

MaxSessionInactiveInterval_sec Session expiry time in sec (default = 30
minutes)

For example, <Setting
name="MaxSessionInactiveInterval_sec"
value="1800"/>

GarbageCollectorInterval_ms Interval for running session expiry thread
(default = 5 minutes)

For example, <Setting
name="GarbageCollectorInterval_ms"
value="300000"/>

FileWatcherInterval_ms Interval for checking if the settings or any
config file has changed (default = 1minute)

For example, <Setting
name="FileWatcherInterval_ms"
value="60000"/>

(After modifying the configuration XML file,
even though the proxy will update the
configuration on the fly, it is advisable to
restart the httpd server.)

SessionIdCookieName_str Name of the cookie used by UIO to maintain
its session (default = OAAM_UIOProxy_
SessionId

For example, <Setting
name="SessionIdCookieName_str"
value="SessionId"/>

SessionCookie_DomainLevelCount Domain level for the Sessions cookie

For example, <Setting
name="SessionCookie_DomainLevelCount"
value="2"/>

IgnoreUrlMappings Ignore the application configuration XML
files; the proxy behaves as a flow-through
proxy

For example, <Setting
name="IgnoreUrlMappings" value="0"/>.
The value of 0 disables this mode and the
value of 1 enables capture traffic mode.

The value of 1 will make the proxy act as
flow-through and the value of 0 will enable
the configuration XML interceptors.

Oracle Adaptive Access Manager Proxy for Apache

5-16 Oracle Adaptive Access Manager Developer's Guide

5.3.6.2 UIO_log4j.xml
For actual log4j format details, refer to log4j manual available on the Internet.
Apache::log4cxx is a C++ implementation of the log4j framework and the XML file
format is common to log4cxx and log4j.

CaptureTraffic Capture the HTTP traffic - headers and
content in the log files. This mode is for
debugging purpose. Note that it captures the
headers and contents as is and could contain
customer's personal data. Use this mode
with caution and only for debugging/test !

For example, <Setting
name="CaptureTraffic" value="0"/>. Value
of 1 enables capture traffic and 0 disables it.

MaxReqBodyBytes Maximum request body size to cache while
processing requests. This is necessary when
the application has POSTs with big files
getting uploaded.

For example, <Setting
name="MaxReqBodyBytes"
value="10240"/>

UseMemcache Force the use of memcache even when httpd
is running in single process mode. Has no
effect when running in multiple process
mode. Applies at startup and requires
restarting httpd for change to apply.

For example, <Setting
name="UseMemcache" value="1"/>". Value
of 1 enables use of memcache for a single
process httpd. Value of 0 is ignored.

For 10.1.4.5.1 and above.

CachedConfigExpiry_sec Expiry time for unused config XML data in
memory, if multiple config XML
configurations have been loaded into
memory. This happens when config XML
files are automatically loaded when they are
modified. (Default = 60 minutes).

For example, <Setting
name="CachedConfigExpiry_sec"
value="3600"/>

For 10.1.4.5.1 and above.

AutoLoadConfig Set to 1 to enable auto-loading of config
XML files when they are modified by user.
Set to 0 to turn this feature off. It is OK to
enable this feature when using
single-process mode of httpd. Do not enable
this feature for multiple process mode of
httpd for production use, since individual
processes could have different versions of
the config XML files.

For example, <Setting
name="AutoLoadCOnfig" value="1"/>.
Value of 1 enables auto-load and 0 disables
it.

For 10.1.4.5.1 and above.

Flags Description

Oracle Adaptive Access Manager Proxy Configuration

Oracle Adaptive Access Manager Proxy 5-17

5.3.6.3 Application configuration XMLs
These XML files are the application configuration files that are defined in the
ConfigFile element of UIO_Settings.xml file.

5.4 Setting Up Rules and User Groups
For information on setting up rules and user groups, refer to the Oracle Adaptive Access
Manager Administrator's Guide.

5.5 Setting Up Models
To set up models for UIO, import the out-of-the-box models. Information about
importing models is available in the Oracle Adaptive Access Manager Administrator's
Guide.

5.6 Oracle Adaptive Access Manager Proxy Configuration
The Oracle Adaptive Access Manager Proxy intercepts all HTTP traffic between the
client browser and the Web application and performs actions specified in the
configuration files. The configuration files are in XML format that comply with the
Oracle Adaptive Access Manager Proxy configuration XML schema 2. The following
sections describe various elements of the Oracle Adaptive Access Manager Proxy
configuration file.

5.6.1 Interceptors
Interceptors are the most important elements in the Oracle Adaptive Access Manager
Proxy configuration. You will see that authoring the Oracle Adaptive Access Manager
Proxy configuration file is all about defining interceptors.

There are two types of interceptors: request interceptors and response interceptors. As
the names suggest, request interceptors are used when the Oracle Adaptive Access
Manager Proxy receives HTTP requests from the client browser and response
interceptors are used when the Oracle Adaptive Access Manager Proxy receives HTTP
response from the server, that is, Web application or Adaptive Strong Authenticator.

There are four components to an interceptor and all of them are optional.

1. List of URLs - the interceptor will be evaluated if the interceptor URL list contains
the current request URL or if the URL list is empty.

2. List of conditions - conditions can inspect the request/response contents, such as
checking for the presence of an HTTP header/parameter/cookie, and so on, or
testing whether a header/parameter/cookie has a specific value or not. Filters and
action defined in the interceptor will be executed only if all the conditions
specified are met or if no condition is specified.

3. List of filters - filters perform an action that might modify the request/response
contents or modify some state information in the Oracle Adaptive Access Manager
Proxy. For example, a filter can add/remove HTTP headers, save HTTP
header/parameter/cookie value in a proxy variable, and so on.

4. Action - after executing the filters the interceptor will perform the action, if one is
specified. Actions can be one of:

a. redirect the client to a different URL

b. send a saved response to the client

Oracle Adaptive Access Manager Proxy Configuration

5-18 Oracle Adaptive Access Manager Developer's Guide

c. perform a HTTP get on server

d. perform a HTTP post on server

e. send a saved request to the server

5.6.2 Conditions
Conditions are used in the Oracle Adaptive Access Manager Proxy to inspect HTTP
request/response or the state information saved in the proxy (variables). Each
condition evaluates to either true or false. Conditions are evaluated in the order they
are listed in the configuration file until a condition evaluates to false or all conditions
are evaluated. Here is the list of conditions that can be defined in an interceptor:

Table 5–2 Conditions Defined in an Interceptor

Condition name Attributes Description

HeaderPresent id, enabled, name Checks the presence of the specified header in
request/response. The header name should be terminated
by a colon (":").

Example:

<HeaderPresent name="userid:"/>

ParamPresent id, enabled, name Checks the presence of the specified parameter in request.

Example:

<ParamPresent name="loginID"/>

QueryParamPresent id, enabled, name Checks the presence of the specified query parameter in
the URL.

Example:

<QueryParamPresent name="TraceID"/>

VariablePresent id, enabled, name Checks whether the specified proxy variable has been set.

Example:

<VariablePresent name="$userid"/>

RequestCookiePresent id, enabled, name Checks the presence of the specified cookie in request

Example:

<RequestCookiePresent name="SESSIONID"/>

ResponseCookiePresent id, enabled, name Checks the presence of the specified cookie in response

Example:

<ResponseCookiePresent name="MCWUSER"/>

HeaderValue id, enabled, name,
value, mode,
ignore-case

Checks whether the specified request/response header
value matches the given value. The header name should be
terminated by a colon (":").

Example:

<HeaderValue name="Rules-Result:"

 value="allow"/>

ParamValue id, enabled, name,
value, mode,
ignore-case

Checks whether the specified request parameter value
matches the given value.

Example:

<ParamValue name="cancel" value="Cancel"/>

Oracle Adaptive Access Manager Proxy Configuration

Oracle Adaptive Access Manager Proxy 5-19

QueryParamValue id, enabled, name,
value, mode,
ignore-case

Checks whether the specified URL query parameter value
matches the given value.

Example:

<QueryParamValue name="requestID"

 value="Logout"/>

VariableValue id, enabled, name,
value, mode,
ignore-case

Checks whether the specified proxy variable value matches
the given value.

Example:

<VariableValue name="%REQUEST_METHOD"

 value="post"/>

RequestCookieValue id, enabled, name,
value, mode,
ignore-case

Checks whether the specified request cookie value matches
the given value.

Example:

<RequestCookieValue name="CurrentPage"

 value="/onlineserv/"

 mode="begins-with"

 ignore-case="true"/>

ResponseCookieValue id, enabled, name,
value, mode,
ignore-case

Checks whether the specified response cookie value
matches the given value.

Example:

<ResponseCookieValue name="CurrentPage"

 value="/onlineserv/"

 mode="begins-with"

 ignore-case="true"/>

HttpStatus id, enabled, status Checks whether the status code of the response matches
the given value.

Example:

<HttpStatus status="302"/>

HtmlElementPresent id, enabled, name,

attrib-name,
attrib-value,

attrib-name1,
attrib-value1,

…

attrib-name9,
attrib-value9,

Checks presence of a html element to match the specified
conditions:

<name attrib-name="attrib-value"
attrib-name1="attrib-value1" …/>

Example:

<HtmlElementPresent name="form"

 attrib-name="name"

 attrib-value="signon"/>

PageContainsText id, enabled, text Checks whether the response contains the given text.

Example:

<PageContainsText text="You have entered an invalid
Login Id"/>

Table 5–2 (Cont.) Conditions Defined in an Interceptor

Condition name Attributes Description

Oracle Adaptive Access Manager Proxy Configuration

5-20 Oracle Adaptive Access Manager Developer's Guide

Attribute "id" is optional and is used only in trace messages. If no value is specified,
the condition name (like HeaderPresent) will be used.

Attribute "enabled" is optional and the default value is "true". This attribute can be
used to enable/disable a condition. The value of this attribute can be set to the name of
a global variable; in such case, the condition will be enabled or disabled according to
the value of the global variable.

Attribute "value" can be set to the name of a proxy variable. In such a case, the proxy
will evaluate the variable at runtime and use that value in the condition.

Attribute "mode" can be set to one of the following: begins-with, ends-with, contains.

Attribute "ignore-case" can be set to one of the following: true, false.

5.6.3 Filters
Filters are used in the Oracle Adaptive Access Manager Proxy to modify HTTP
request/response contents or modify the state information saved in the proxy
(variables). Filters are executed in the order they are listed in the configuration file.
Here is the list of filters that can be defined in an interceptor:

NotVariableValue id, enabled, name,
value, mode,
ignore-case

Checks whether the specified proxy variable value does
not match the given value.

Example:

<NotVariableValue name="$Login-Status"

 value="In-Session"/>

And id, enabled Evaluates to true only if all the child conditions evaluate to
true.

Example:

<And>

 <PageContainsText text="Your password must be"/>

 <PageContainsText text="Please re-enter your
password"/>

</And>

Or id, enabled Evaluates to true if one of the child conditions evaluates to
true.

Example:

<Or>

 <ParamValue name="register"

 value="Continue"/>

 <ParamValue name="cancel"

 value="Cancel"/>

</Or>

Not id, enabled Reverses the result of the child condition(s).

Example:

<Not>

 <HttpStatus status="200"/>

</Not>

Table 5–2 (Cont.) Conditions Defined in an Interceptor

Condition name Attributes Description

Oracle Adaptive Access Manager Proxy Configuration

Oracle Adaptive Access Manager Proxy 5-21

Table 5–3 Filters Defined in an Interceptor

Filter name Attributes Description

AddHeader id, enabled, name, value Adds the specified header with a given value to
request/response. The header name should be
terminated by a colon (":").

Example:

<AddHeader name="userid:" value="$userid"/>

SaveHeader id, enabled, name, variable Saves the specified request/response header
value in the given proxy variable. The header
name should be terminated by a colon (":").

Example:

<SaveHeader name="userid:"
variable="$userid"/>

RemoveHeader id, enabled, name Removes the specified header from
request/response. The header name should be
terminated by a colon (":").

Example:

<RemoveHeader name="InternalHeader:"/>

AddParam id, enabled, name, value Adds a request parameter with a specified name
and value.

Example:

<AddParam name="loginID" value="$userid"/>

SaveParam id, enabled, name, variable Saves the specified request parameter value in to
the given proxy variable.

Example:

<SaveParam name="loginID"
variable="$userid"/>

AddRequestCookie id, enabled, name, value Adds the specified cookie with a given value to
request

Example:

<AddRequestCookie name="JSESSIONID"

 value="$JSESSIONID"/>

SaveRequestCookie id, enabled, name Saves the specified request cookie value in the
given proxy variable

AddResponseCookie id, enabled, name Adds the specified cookie with a given value to
response

Example:

<AddResponseCookie name="JSESSIONID"

 value="$JSESSIONID"/>

SaveResponseCookie id, enabled, name Saves the specified response cookie value in the
given proxy variable.

Example:

<SaveResponseCookie name="JSESSIONID"

 variable="$JSESSIONID"/>

Oracle Adaptive Access Manager Proxy Configuration

5-22 Oracle Adaptive Access Manager Developer's Guide

SaveHiddenFields id, enabled, form, variable,
save-submit-fields

Saves all the hidden, submit fields value, in the
given form if form name is specified to the given
proxy variable. To not save submit fields, set
save-submit-fields attribute to false.

Example:

<SaveHiddenFields form="pageForm"

 variable="%lg_HiddenParams"/>

AddHiddenFieldsParams id, enabled, variable Adds request parameters for each hidden field
saved in the variable.

Example:

<AddHiddenFieldsParams

 variable="%lg_HiddenParams"/>

SetVariable id, enabled, name, value Sets the proxy variable with the given name to the
specified value.

Example:

<SetVariable name="$Login-Status"

 value="In-Session"/>

UnsetVariable id, enabled, name Removes the proxy variable with the given name.

Example:

<UnsetVariable name="$Login-Status"/>

ClearSession id, enabled, name Removes all session variables in the current
session.

Example:

<ClearSession/>

SaveQueryParam id, enabled, name, variable Saves the specified query parameter in the given
proxy variable.

Example:

<SaveQueryParam name="search"
variable="$search"/>

SaveRequest id, enabled, variable Saves the entire request content in the given proxy
variable.

Example:

<SaveRequest variable="$billPayRequest"/>

Table 5–3 (Cont.) Filters Defined in an Interceptor

Filter name Attributes Description

Oracle Adaptive Access Manager Proxy Configuration

Oracle Adaptive Access Manager Proxy 5-23

5.6.4 Filter Examples - ProcessString
Find the sub-string between the given start-tag and end-tag in the source string,
extract the sub-string found and save extracted sub-string in the given variable.

<ProcessString source="%RESPONSE_CONTENT"
 find="sub-string"
 start-tag="var traceID = '" end-tag="';"
 action="extract"
 variable="$TRACE_ID"/>

Find the given search-string in the source string, replace it with the replace string and
save the updated string in the given variable.

<ProcessString
 source="/bfb/accounts/accounts.asp?TraceID=$TRACE_ID"
 find="string" search-str="$TRACE_ID"
 action="replace"
 replace="$TRACE_ID"
 variable="%POST_URL"/>

Find the sub-string between the given start-tag and end-tag in the source string,
replace it (including the start and end tags) with the evaluated value of the sub string
found and save the updated string in the given variable.

<ProcessString
 source="/cgi-bin/mcw055.cgi?TRANEXIT[$UrlSuffix]"
 find="sub-string" start-tag="[" end-tag="]"
 action="eval"
 variable="%LogoffUrl"/>

5.6.5 Actions
An interceptor can optionally perform one of the following actions after executing all
the filters. No further interceptors will be attempted after executing an action.

SaveResponse id, enabled, variable Saves the entire response content in the given
proxy variable.

Example:

<SaveResponse variable="$BillPay-Response"/>

ReplaceText id, enabled, find, replace Updates the response by replacing the text
specified in "find" attribute with the value given
in "replace" attribute.

Example:

<ReplaceText find="string-to-find"

 replace="string-to-replace"/>

ProcessString id, enabled, source, find,
action, count, search-str,
start-tag, end-tag, ignore-case,
replace

This filter can be used to extract a sub-string from
a string (like request, response contents) and save
it to a proxy variable. This filter can also be used
to dynamically format strings. Please see the
examples below on how to use this filter.

Table 5–3 (Cont.) Filters Defined in an Interceptor

Filter name Attributes Description

Oracle Adaptive Access Manager Proxy Configuration

5-24 Oracle Adaptive Access Manager Developer's Guide

redirect-client
Often the proxy would need to redirect the client to load another URL; redirect-client
is the action to use in such cases. The proxy will send a 302 HTTP response to request
the client to load the specified URL.

If the display-url attribute is specified in the interceptor, the proxy will send a HTTP
302 response to the browser to load the URL specified in display-url attribute. When
the proxy receives this request, it will do a HTTP-GET on the server to get the URL
specified in "url" attribute.

send-to-client
Often a response from the server would have to be saved in the proxy and sent to the
client later after performing a few other HTTP requests; send-to-client is the action to
use in such cases. The proxy will send the client the contents of specified variable.

If the display-url attribute is specified in the interceptor, the proxy will send a HTTP
302 response to the browser to load the URL specified in display-url attribute. When
the proxy receives this request, it will send the response specified in the interceptor.

get-server
Sometimes the proxy would need to get a URL from the server; get-server is the action
to use in such cases. The proxy will send a HTTP-GET request for the specified URL to
the server.

If the display-url attribute is specified in the interceptor or if this action is specified in
a response interceptor, the proxy will send a HTTP 302 response to the browser. When
the proxy receives this request it will do a HTTP-GET on the server to get the URL
specified in "url" attribute.

post-server
Sometimes the proxy would need to post to a URL in the server; post-server is the
action to use in such cases. The proxy will send a HTTP-POST request for the specified
URL to the server.

If display-url attribute is specified in the interceptor or if this action is specified in a
response interceptor, the proxy will send a HTTP 302 response to the browser. When
the proxy receives this request it will do a HTTP-POST to the server to the URL
specified in "url" attribute.

send-to-server
In certain situations the request from client needs to be saved in the proxy and sent to
the server later after performing a few other HTTP requests; send-to-server is the
action to use in such cases. The proxy will send the contents of the specified variable to
the server.

If display-url attribute is specified in the interceptor or if this action is specified in a
response interceptor, the proxy will send a HTTP 302 response to the browser. When
the proxy receives this request it will send the request specified in the interceptor to
the server.

5.6.6 Variables
The proxy variables can store string data in the proxy memory. Variables can be used
in conditions, filters and actions. For example, SaveHeader filter can be used to save
the value a specific header in the given proxy variable. This variable value could later

Oracle Adaptive Access Manager Proxy Configuration

Oracle Adaptive Access Manager Proxy 5-25

be used, for example, to add a parameter to the request. Variables can also be used in
conditions to determine whether to execute an interceptor or not.

The proxy variables are of 3 types, depending upon the lifespan of the variable. The
type of variable is determined by the first letter of the variable name, which can be one
of: %, $, @.

All types of variables can be set using filters like SetVariable SaveHeader, SaveParam,
SaveResponse, and so on.

All types of variables can be unset/deleted by UnsetVariable filter. ClearSession filter
can be used to remove all session variables.

Request variables
Request variables - these variable names start with %. These variables are associated
with the current request and are deleted at the completion of the current request.
Request variables are used where the value is not needed across requests.

Session variables
Session variables - these variable names start with $. These variables are associated
with the current proxy session and are deleted when the proxy session is cleaned up.
Session variables are used where the value should be preserved across requests from a
client.

Global variables
Global variables - these variable names start with @. These variables associated with
the current proxy configuration and are deleted when the proxy configuration is
unloaded. Global variables are used where the value needs to be preserved across
requests and across clients.

Global variables can be set at the proxy configuration load time using SetGlobal in the
configuration file. Global variables can also be set by adding registry values under key
HKLM\Software\Bharosa\Proxy\Globals. Name of each entry under this key should
be the variable name, starting with @. And the data of the entry should be the value of
the variable. The registry-type of the value can be REG_DWORD, REG_SZ or REG_
EXPAND_SZ.

Pre-defined variables
The Oracle Adaptive Access Manager Proxy supports the following pre-defined
request variables:

Table 5–4 Pre-defined Variables Supported by the Proxy

Variable name Description

%RESPONSE_CONTENT This variable contains the contents of the entire response from the Web server for the
current request.

%REQUEST_CONTENT This variable contains the contents of the entire request from the client.

%QUERY_STRING This variable contains the query string, starting with ?, for the current request URL.

%REQUEST_METHOD HTTP method verb for the request: GET, POST, etc

%REMOTE_HOST Hostname of the client or agent of the client

%REMOTE_ADDR IP address of the client or agent of the client

%HTTP_HOST The content of HTTP Host header

%URL URL for the current request

Interception process

5-26 Oracle Adaptive Access Manager Developer's Guide

5.6.7 Application
A single Oracle Adaptive Access Manager Proxy installation can be used to provide
multi-factor authentication for multiple Web application that run in one or more Web
servers. In the Oracle Adaptive Access Manager Proxy configuration, an application is
a grouping of interceptors defined for a single Web application.

Request and response interceptors can be defined outside of an application in the
Oracle Adaptive Access Manager Proxy configuration file. These interceptors are
called "global" interceptors and will be evaluated and executed prior to interceptors
defined in applications.

5.7 Interception process
When a request arrives, the Oracle Adaptive Access Manager Proxy evaluates request
interceptors defined for the URL in the order they are defined in the configuration file.
Similarly when on receiving response from the Web server, the Oracle Adaptive Access
Manager Proxy evaluates response interceptors defined for the URL in the order
defined in the configuration file.

If the conditions in an interceptor evaluate to true, the Oracle Adaptive Access
Manager Proxy will execute that interceptor, that is, execute the filters and action.
After executing an interceptor, the Oracle Adaptive Access Manager Proxy will
continue with the next interceptor only if the following conditions are met:

■ no action is specified for the current interceptor

■ post-exec-action attribute for the current interceptor is continue

Even if one of the above conditions is not met the Oracle Adaptive Access Manager
Proxy will stop evaluating subsequent interceptors.

It is highly recommended that "post-exec-action" attribute is specified for interceptors
that do not define an action. For global interceptors (for example, the interceptors
defined outside of any application), the default value of "post-exec-action" attribute is
continue. For non-global interceptors, the default value is stop-intercept.

As mentioned earlier the Oracle Adaptive Access Manager Proxy configuration can
contain multiple applications. While finding the list of interceptors to evaluate for a
URL, only the following interceptors are considered:

■ global interceptors that are defined outside of any application

■ interceptors defined in the application associated with the current session

Each session will be associated with at most one application. If no application is
associated with the current session (yet) when the proxy finds an interceptor in an
application for the URL, it will associate the application with the current session.

If the current session already has an application associated, and if no interceptor is
found in that application for the URL, the proxy will then look for intercepts in other
applications. If an interceptor is found in another application for the URL, a new
session will be created and the request will be associated with the new session.

5.8 Adaptive Strong Authenticator Interface
The Oracle Adaptive Access Manager Proxy redirects the user to Adaptive Strong
Authenticator pages at appropriate times, for example to collect the password using
the Adaptive Strong Authenticator, to run risk rules, and so on. HTTP headers are
used to exchange data between the Oracle Adaptive Access Manager Proxy and

Adaptive Strong Authenticator Interface

Oracle Adaptive Access Manager Proxy 5-27

Adaptive Strong Authenticator. The following table lists the Adaptive Strong
Authenticator pages referenced in the proxy configuration along with the details of
HTTP headers used to pass data. It also lists the expected action to be taken by the
proxy on the given conditions.

Table 5–5 Adaptive Strong Authenticator Interface

URL Condition Action

Any request to Adaptive
Strong Authenticator page

On receiving request Set header "BharosaAppId". Adaptive Strong
Authenticator will use this header value to
select appropriate customizations (UI, rules,
etc).

 loginPage.jsp or login.do On receiving request to application
login page

Redirect to this URL to use the Oracle
Adaptive Access Manager login page instead
of the application's login page.

password.do Response contains headers userid,
password (could be more
depending upon the application)

Save the credentials from the response
headers and post to the application

login.do Phase-1 only:

After validating the credentials
entered by the user.

Redirect to this URL to update the status in
the Adaptive Risk Manager and run
appropriate risk rules.

login.do Phase-1 only:

On receiving the request.

Set "userid" header to the userid entered by
the user.

Set "Login-Status" header to one of the
following: success, wrong_password,
invalid_user, user_disabled, system_error.

Set "Adaptive Strong AuthenticatorPhase"
header to "one".

updateLoginStatus.do Phase-2 only:

After validating the credentials
entered by the user.

Redirect to this URL to update the status in
Adaptive Risk Manager and run appropriate
risk rules

updateLoginStatus.do Phase-2 only:

On receiving request

Set "Login-Status" header to one of the
following: success, wrong_password,
invalid_user, user_disabled, system_error

updateLoginStatus.do

challengeUser.do

registerQuestions.do

userPreferencesDone.do

Response header

"Rules-Result" has value "allow"

The Oracle Adaptive Access Manager rules
evaluated to permit the login. The proxy can
permit access to the protected application
URLs after this point.

updateLoginStatus.do

challengeUser.do

registerQuestions.do

userPreferencesDone.do

Response header

"Rules-Result" has value "block"

Either the application did not accept the login
credentials or the Oracle Adaptive Access
Manager rules evaluated to block the login.
The proxy should logoff the session in the
application, if login was successful. Then a
login blocked message should be sent to the
browser.

changePassword.do Response contains headers
"password", "newpassword" and
"confirmpassword"

Save the passwords from the response
headers and post to the application

loginFail.do To display error message in
Adaptive Strong Authenticator
page, like to display login blocked
message

Redirect to this URL with appropriate
"action" query parameter, like
loginFail.do?action=block

Application Discovery

5-28 Oracle Adaptive Access Manager Developer's Guide

5.9 Application Discovery
Application discovery is the process of studying an existing Web application to author
the proxy configuration to add multi-factor authentication using the Oracle Adaptive
Access Manager UIO. Few logins attempts to the application would be made via the
proxy to capture the HTTP traffic in each attempt. The captured HTTP traffic would be
then be analyzed to author the proxy configuration. The Oracle Adaptive Access
Manager Proxy should be set up to dump all the HTTP traffic through it to a file. Then
a few logins/login attempts to the application should be made via the proxy. The
captured HTTP traffic should be then be analyzed to author the proxy configuration.

logout.do On completion of application
session logout

Redirect to this URL to logout Adaptive
Strong Authenticator session

logout.do On receiving response Redirect to application logout URL to logoff
application session, if it is not done already

resetPassword.do Response contains headers
"newpassword" and
"confirmpassword"

Save the passwords from the response
headers and post to the application

getUserInput.do Response contains headers "BH_
UserInput"

Save the user input and take appropriate
action (like post to application, etc)

changeUserId.do On receiving request Add "newUserId" header

changeUserId.do On receiving response Redirect to appropriate application page or
send back saved application response

updateForgotPasswordStat
us.do

Phase-2 only:

After validating the forgot-
password-credentials entered by
the user.

Redirect to this URL to update the status in
Adaptive Risk Manager and run appropriate
risk rules.

updateForgotPasswordStat
us.do

Phase-2 only:

On receiving request

Set "BH_FP-Status" header to one of the
following: success, wrong_password,
invalid_user, user_disabled, system_error.

updateForgotPasswordStat
us.do

challengeForgotPasswordU
ser.do

Response header

"BH_FP-Rules-Result" has value
"allow"

The Oracle Adaptive Access Manager rules
evaluated to permit the forgot-password
flow. The proxy can permit continuation of to
forgot-password flow, perhaps to reset the
password or allow the user login, depending
on the application.

updateForgotPasswordStat
us.do

challengeForgotPasswordU
ser.do

Response header

"BH_FP-Rules-Result" has value
"block"

Either the application did not accept the
forgot-password credentials or the Oracle
Adaptive Access Manager rules evaluated to
block the forgot-password flow. A login
blocked message should be sent to the
browser.

Any request to Adaptive
Strong Authenticator page

If the proxy needs to get a property
value from Adaptive Strong
Authenticator.

On receiving request

 "BH_PropKeys" request header should be set
to list of property names (separated by
comma).

Adaptive Strong Authenticator will return
the values in multiple response headers, one
for each property. The return response header
names will be of format: "BH_
Property-<name>"

Table 5–5 (Cont.) Adaptive Strong Authenticator Interface

URL Condition Action

Application Discovery

Oracle Adaptive Access Manager Proxy 5-29

5.9.1 Application Information
For application discovery process it is preferable to work with the Web application in
customer's test environment, rather than the live application being used by users. If
the test environment is not available for some reason, the live application can be used.

The following information is needed from the client for the application discovery
process:

1. URL to login to the application.

2. Test user account credentials, including the data required in forgot password
scenario. It will be best to get as many test accounts as possible, preferably at least
5 accounts, for uninterrupted discovery and testing. Please note that during
discovery process some accounts could become disabled, perhaps due to multiple
invalid login attempts.

3. Contact (phone, email) to enable/reset test accounts

5.9.2 Setting Up the Oracle Adaptive Access Manager Proxy for Microsoft ISA
The Microsoft ISA server should be set up to publish the Web application under
discovery, that is, creating a Web site publishing rule with appropriate parameters.
During the application discovery process, the application will be accessed via
Microsoft ISA, which hosts the Oracle Adaptive Access Manager Proxy for Microsoft
ISA. Please refer to the Microsoft ISA configuration document for details of setting up
Microsoft ISA.

The Oracle Adaptive Access Manager Proxy for Microsoft ISA settings (registry values
under HKLM\SOFTWARE\Bharosa\Proxy key) should be set as given below for the
proxy to capture the HTTP traffic to the specified file. This HTTP traffic captured will
later be used for analysis to author the proxy configuration.

It might be useful to capture the HTTP traffic for each scenario (like successful login
attempt, wrong password, wrong username, disabled user, etc) in separate files.
TraceFilename setting should be updated to the desired filename before start of the
scenario.

After application discovery is done, the proxy settings should be set as given below to
restore the default Oracle Adaptive Access Manager Proxy for Microsoft ISA behavior.

Table 5–6 Setting up the proxy

Setting Value

IgnoreUrlMappings 1

CaptureTraffic 1

TraceFilename <filename>

TraceLevel 0x87

TraceToFile 1

Table 5–7 Proxy settings after application discovery

Setting Value

IgnoreUrlMappings 0

CaptureTraffic 0

TraceFilename <filename>

Application Discovery

5-30 Oracle Adaptive Access Manager Developer's Guide

5.9.3 Setting Up the Oracle Adaptive Access Manager Proxy for Apache
For application discovery, the HTTP traffic needs to be captured through the proxy.

The following table shows the settings (in UIO_Settings.xml) to enable this mode of
operation.

The IgnoreUrlMappings setting is used to disable URL interception of the HTTP traffic
through the proxy.

The CaptureTraffic setting captures the HTTP traffic through the logger name http set
to log level of info.

It might be useful to capture the HTTP traffic for each scenario (like successful login
attempt, wrong password, wrong username, disabled user, and so on) in separate files.
The log file name setting should be updated to the desired filename before the start of
the scenario.

After application discovery is performed, the proxy settings should be set, as shown
below, to restore the default Oracle Adaptive Access Manager Proxy for Apache
behavior.

5.9.4 Scenarios
Information should be collected for the following scenarios during the discovery
process:

Login
1. URL that starts the login process

2. URL that contains the login form

3. Names of the input fields like username, password used to submit the credentials

4. URL to which the login form submits the credentials

5. Identifying successful login. The HTTP traffic dump needs to be studied carefully
to derive this information. Here are few ways applications respond on successful
login:

TraceLevel 0x7

TraceToFile 1

Table 5–8 Settings for Capturing HTTP

Settings Value

IgnoreUrlMappings 1

CaptureTraffic 1

Table 5–9 Settings to restore detault proxy behavior

Settings Value

IgnoreUrlMappings 0

CaptureTraffic 0

Table 5–7 (Cont.) Proxy settings after application discovery

Setting Value

Application Discovery

Oracle Adaptive Access Manager Proxy 5-31

a. by setting a specific cookie in the credential submit response

b. by redirecting to a specific URL (like account summary, welcome page)

c. by responding with specific text

6. Identifying failure login with the reason for failure. This would often be derived
by looking for certain text in the response to credential submit request.

Logout
1. URL that starts the logout process

2. URL that completes the logout process. In most cases the logout completes on
receiving response to the logout start URL.

Change password
1. URL that starts the change password process

2. URL that contains the change password form

3. Names of the input fields like password, new-password, confirm-password used
to submit the change password request

4. URL to which the change password form submits the passwords

5. Identifying the status (success/failure) of the change password request. This
would often be derived by looking for certain text in the response.

Reset password
Follow the same process as above for Change password.

Change LoginId
1. URL to which the login-id change is posted to the application

2. Names of the input fields like new-login used to submit the change password
request.

3. Identifying the status (success/failure) of the change login-id request. On
successful change login-id request, changeUserId.do page in Adaptive Strong
Authenticator should be called to update the login-id in the Oracle Adaptive
Access Manager database.

Forgot password
Forgot-password options provided by the application should first be understood. Most
applications ask for alternate ways to identity the user (account number/pin,
SSN/pin, question/answer, etc); some applications provide more than one option.
Some applications let the user reset the password on successfully entering alternate
credentials; others send a new password to the user by mail/email; and some other
applications would require the user to call customer care. For each of the supported
scenarios, the following data should be captured:

1. URL that starts the forgot-password process

2. URL that contains the forgot-password form

3. Names of the input fields and URLs to submit the forgot-password request

4. Identifying the status (success/failure) of the forgot-password request.

Samples

5-32 Oracle Adaptive Access Manager Developer's Guide

5.10 Samples
The Oracle Adaptive Access Manager Proxy configuration to add multi-factor
authenticator to BigBank Web application is listed below.

For ISA proxy use:

<?xml version="1.0" encoding="utf-8"?>
<BharosaProxyConfig xmlns="http://bharosa.com/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://bharosa.com/ BharosaProxy.xsd ">

For Apache proxy use:

<?xml version="1.0" encoding="utf-8"?>
<BharosaProxyConfig xmlns="http://bharosa.com/">

 <Application id="BigBank">

 <RequestInterceptor id="AddAppIdTobharosauioRequests"
 desc="Add BharosaAppId header to each request to bharosauio"
 post-exec-action="continue">
 <Conditions>
 <VariableValue name="%URL"
 value="/bharosauio/"
 mode="begins-with"
 ignore-case="true"/>
 </Conditions>

 <Filters>
 <AddHeader name="BharosaAppId:" value="BigBank"/>
 </Filters>
 </RequestInterceptor>

 <!-- Phase-1: Use BigBank login form to collect credentials -->
 <!-- Phase-2: Use BharosaUIO login forms to collect credentials -->

 <!-- Disable this interceptor after phase one is retired -->
 <RequestInterceptor id="Phase1BigBankLoginPostRequest"
 desc="get the loginid from the post parameters"
 post-exec-action="continue" enabled="true">
 <RequestUrl url="/bigbank/login.do"/>

 <Conditions>
 <VariableValue name="%REQUEST_METHOD" value="post"/>
 </Conditions>

 <Filters>
 <ClearSession/>
 <SetVariable name="$WebUIOPhase" value="one"/>
 <SaveParam name="userid" variable="$userid"/>
 </Filters>
 </RequestInterceptor>

 <!-- Enable this interceptor after phase one is retired -->
 <RequestInterceptor id="Phase2RedirectBigBankLoginPageRequest"
 desc="Redirect BigBank login page requests to UIO login page"
 enabled="false">
 <RequestUrl url="/bigbank"/>
 <RequestUrl url="/bigbank/"/>

Samples

Oracle Adaptive Access Manager Proxy 5-33

 <RequestUrl url="/bigbank/loginPage.jsp"/>

 <Target action="redirect-client" url="/bharosauio/login.do"/>
 </RequestInterceptor>

 <RequestInterceptor id="Phase2BharosaLoginPageRequest"
 desc="Phase-2 loginid post request"
 post-exec-action="continue">
 <RequestUrl url="/bharosauio/login.do"/>

 <Conditions>
 <VariableValue name="%REQUEST_METHOD" value="post"/>
 <ParamPresent name="userid"/>
 <Not>
 <ParamPresent name="password"/>
 </Not>
 </Conditions>

 <Filters>
 <ClearSession/>
 <SetVariable name="$WebUIOPhase" value="two"/>
 </Filters>
 </RequestInterceptor>

 <ResponseInterceptor id="Phase2PassowrdPageResponse"
 desc="Save userid, decoded password from Bharosa response">
 <ResponseUrl url="/bharosauio/password.do"/>

 <Conditions>
 <HeaderPresent name="userid:"/>
 <HeaderPresent name="password:"/>
 </Conditions>

 <Filters>
 <SaveHeader name="userid:" variable="$userid"/>
 <SaveHeader name="password:" variable="$password"/>
 </Filters>

 <Target action="redirect-client"
 url="/bigbank/login.do"
 display-url="/bigbank/GetLoginPage"/>
 </ResponseInterceptor>

 <ResponseInterceptor id="GetBigBankLoginPageResponse"
 desc="Save hidden fields; then post login crdentials">
 <ResponseUrl url="/bigbank/GetLoginPage"/>

 <Filters>
 <SaveHiddenFields variable="%LoginPageHiddenParams"/>

 <AddHiddenFieldsParams variable="%LoginPageHiddenParams"/>
 <AddParam name="userid" value="$userid"/>
 <AddParam name="password" value="$password"/>

 <UnsetVariable name="$password"/>
 </Filters>

 <Target action="post-server" url="/bigbank/login.do"/>
 </ResponseInterceptor>

Samples

5-34 Oracle Adaptive Access Manager Developer's Guide

 <ResponseInterceptor id="InvalidLoginResponse"
 desc="Invalid login response from BigBank">
 <ResponseUrl url="/bigbank/login.do"/>

 <Conditions>
 <PageContainsText text="You have entered an invalid Login Id"/>
 </Conditions>

 <Filters>
 <SetVariable name="$Login-Credentials-Status"
 value="invalid_user"/>
 <SetVariable name="$Login-Continue-Url"
 value="%URL"/>
 <SaveResponse variable="$Submit-Credentials-Response"/>
 </Filters>

 <Target action="redirect-client"
 url="/bharosauio/UpdateLoginStatusPage"/>
 </ResponseInterceptor>

 <ResponseInterceptor id="WrongPasswordResponse"
 desc="Invalid login response from BigBank">
 <ResponseUrl url="/bigbank/login.do"/>

 <Conditions>
 <PageContainsText text="We do not recognize your password"/>
 </Conditions>

 <Filters>
 <SetVariable name="$Login-Credentials-Status"
 value="wrong_password"/>
 <SetVariable name="$Login-Continue-Url"
 value="%URL"/>
 <SaveResponse variable="$Submit-Credentials-Response"/>
 </Filters>

 <Target action="redirect-client"
 url="/bharosauio/UpdateLoginStatusPage"/>
 </ResponseInterceptor>

 <ResponseInterceptor id="LoginSuccessResponse"
 desc="Login success response from BigBank">
 <ResponseUrl url="/bigbank/activity.do"/>
 <ResponseUrl url="/bigbank/login.do"/>

 <Conditions>
 <NotVariableValue name="$Login-Status" value="In-Session"/>
 <PageContainsText text="/bigbank/images/success.gif"/>
 </Conditions>

 <Filters>
 <SetVariable name="$Login-Credentials-Status" value="success"/>
 <SetVariable name="$Login-Continue-Url" value="%URL"/>
 <SaveResponse variable="$Submit-Credentials-Response"/>
 </Filters>

 <Target action="redirect-client"
 url="/bharosauio/UpdateLoginStatusPage"/>
 </ResponseInterceptor>

Samples

Oracle Adaptive Access Manager Proxy 5-35

 <RequestInterceptor id="Phase1UpdateLoginStatusPageRequest"
 desc="Update Bharosa Tracker with the login status">
 <RequestUrl url="/bharosauio/UpdateLoginStatusPage"/>

 <Conditions>
 <VariableValue name="$WebUIOPhase" value="one"/>
 </Conditions>

 <Filters>
 <AddHeader name="WebUIOPhase:" value="$WebUIOPhase"/>
 <AddHeader name="userid:" value="$userid"/>
 <AddHeader name="Login-Status:"
 value="$Login-Credentials-Status"/>
 </Filters>

 <!-- Any interceptors for /bigbank/login.do will not run because we are
doing get-server. -->
 <Target action="get-server" url="/bharosauio/login.do"/>
 </RequestInterceptor>

 <RequestInterceptor id="Phase2UpdateLoginStatusPageRequest"
 desc="Update Bharosa Tracker with the login status">
 <RequestUrl url="/bharosauio/UpdateLoginStatusPage"/>

 <Filters>
 <AddHeader name="Login-Status:"
 value="$Login-Credentials-Status"/>
 </Filters>

 <Target action="get-server"
 url="/bharosauio/updateLoginStatus.do"/>
 </RequestInterceptor>

 <ResponseInterceptor id="AllowLoginResponse"
 desc="Tracker returned 'allow' - continue with login">
 <ResponseUrl url="/bharosauio/UpdateLoginStatusPage"/>
 <ResponseUrl url="/bharosauio/updateLoginStatus.do"/>
 <ResponseUrl url="/bharosauio/challengeUser.do"/>
 <ResponseUrl url="/bharosauio/registerQuestions.do"/>
 <ResponseUrl url="/bharosauio/userPreferencesDone.do"/>

 <Conditions>
 <HeaderValue name="Rules-Result:" value="allow"/>
 </Conditions>

 <Filters>
 <SetVariable name="$Login-Status" value="In-Session"/>
 </Filters>

 <Target action="send-to-client"
 html="$Submit-Credentials-Response"
 display-url="$Login-Continue-Url"/>
 </ResponseInterceptor>

 <ResponseInterceptor id="Phase1FailLoginResponse"
 desc="BigBank failed the login">
 <ResponseUrl url="/bharosauio/UpdateLoginStatusPage"/>
 <ResponseUrl url="/bharosauio/updateLoginStatus.do"/>
 <ResponseUrl url="/bharosauio/challengeUser.do"/>
 <ResponseUrl url="/bharosauio/registerQuestions.do"/>

Samples

5-36 Oracle Adaptive Access Manager Developer's Guide

 <ResponseUrl url="/bharosauio/userPreferencesDone.do"/>

 <Conditions>
 <VariableValue name="$WebUIOPhase" value="one"/>
 <NotVariableValue name="$Login-Credentials-Status"
 value="success"/>
 <HeaderValue name="Rules-Result:" value="block"/>
 </Conditions>

 <Filters>
 <UnsetVariable name="$Login-Status"/>
 </Filters>

 <Target action="send-to-client"
 html="$Submit-Credentials-Response"
 display-url="$Login-Continue-Url"/>
 </ResponseInterceptor>

 <ResponseInterceptor id="FailLoginResponse"
 desc="BigBank failed the login">
 <ResponseUrl url="/bharosauio/UpdateLoginStatusPage"/>
 <ResponseUrl url="/bharosauio/updateLoginStatus.do"/>
 <ResponseUrl url="/bharosauio/challengeUser.do"/>
 <ResponseUrl url="/bharosauio/registerQuestions.do"/>
 <ResponseUrl url="/bharosauio/userPreferencesDone.do"/>

 <Conditions>
 <HeaderValue name="Rules-Result:" value="block"/>
 <NotVariableValue name="$Login-Credentials-Status"
 value="success"/>
 </Conditions>

 <Filters>
 <UnsetVariable name="$Login-Status"/>
 </Filters>

 <Target action="redirect-client"
 url="/bharosauio/loginPage.jsp?action=invalid_user"/>
 </ResponseInterceptor>

 <ResponseInterceptor id="BlockLoginResponse"
 desc="BigBank passed login but tracker returned 'block'">
 <ResponseUrl url="/bharosauio/UpdateLoginStatusPage"/>
 <ResponseUrl url="/bharosauio/updateLoginStatus.do"/>
 <ResponseUrl url="/bharosauio/challengeUser.do"/>
 <ResponseUrl url="/bharosauio/registerQuestions.do"/>
 <ResponseUrl url="/bharosauio/userPreferencesDone.do"/>

 <Conditions>
 <HeaderValue name="Rules-Result:" value="block"/>
 </Conditions>

 <Filters>
 <UnsetVariable name="$Login-Status"/>
 </Filters>

 <!-- /bigbank/LoginBlockedPage isn't a real page. The request will be
intercepted and redirected. -->
 <Target action="redirect-client" url="/bigbank/LoginBlockedPage"/>
 </ResponseInterceptor>

Samples

Oracle Adaptive Access Manager Proxy 5-37

 <RequestInterceptor id="LoginBlockedPageRequest"
 desc="logoff the session in BigBank">
 <RequestUrl url="/bigbank/LoginBlockedPage"/>

 <Target action="get-server" url="/bigbank/logout.do"/>
 </RequestInterceptor>

 <ResponseInterceptor id="Phase1LoginBlockedPageResponse"
 desc="BigBank approved; but Bharosa blocked the login"
 post-exec-action="stop-intercept">
 <ResponseUrl url="/bigbank/LoginBlockedPage"/>

 <Conditions>
 <VariableValue name="$WebUIOPhase" value="one"/>
 </Conditions>

 <Filters>
 <ClearSession/>
 </Filters>

 <Target action="redirect-client"
 url="/bharosauio/loginFail.do?action=block"/>
 </ResponseInterceptor>

 <ResponseInterceptor id="Phase2LoginBlockedPageResponse"
 desc="BigBank approved; but Bharosa blocked the login">
 <ResponseUrl url="/bigbank/LoginBlockedPage"/>

 <Filters>
 <ClearSession/>
 </Filters>

 <Target action="redirect-client"
 url="/bharosauio/loginPage.jsp?action=block"/>
 </ResponseInterceptor>

 <ResponseInterceptor id="LogoutPageResponse"
 desc="Bharosa logout selected; logoff BigBank session ">
 <ResponseUrl url="/bharosauio/logout.do"/>

 <Target action="redirect-client" url="/bigbank/logout.do"/>
 </ResponseInterceptor>

 <ResponseInterceptor id="Phase1LogoffPageResponse"
 desc="Logoff - clear Bharosa proxy session"
 post-exec-action="stop-intercept">
 <ResponseUrl url="/bigbank/logout.do"/>

 <Conditions>
 <VariableValue name="$WebUIOPhase" value="one"/>
 </Conditions>

 <Filters>
 <ClearSession/>
 </Filters>
 </ResponseInterceptor>

 <ResponseInterceptor id="Phase2LogoffPageResponse"
 desc="Logoff - clear Bharosa proxy session">

Troubleshooting

5-38 Oracle Adaptive Access Manager Developer's Guide

 <ResponseUrl url="/bigbank/logout.do"/>

 <Filters>
 <ClearSession/>
 </Filters>

 <Target action="redirect-client"
 url="/bharosauio/loginPage.jsp"/>
 </ResponseInterceptor>
 </Application>
</BharosaProxyConfig>

5.11 Troubleshooting
This section covers common troubleshooting issues and tips to resolve them.

Microsoft ISA
For Proxy Web publishing:

■ .Net2.0 Framework should be installed and enabled to successfully register the
Bharosa Proxy DLL.

■ Ensure the database access credentials are correct when the Firewall logging
properties in Microsoft ISA use SQL Database as the Log Storage Format.

■ Define IP Exceptions for Trusted IPs (like Router IP) when Flood Mitigation
settings are enabled to mitigate flood attacks and worm propagation.

For Proxy configuring, enable tracing to file and set the trace level to 0x8008f. This will
print detailed interceptor evaluation and execution information to the log file.

Apache
■ On launching httpd, it gives an error for loading mod_uio.so. Ensure that mod_

uio.so and all the libraries are placed in the proper directories. On Linux, use the
'ldd' command to confirm that mod_uio.so can load all the dynamic libraries that
it depends upon. On Windows, use Dependency Walker to find out any missing
DLLs and in some cases, you may have to install the "Microsoft Visual C++ 2005
Redistributable Package" from the Microsoft Web site, if your server does not have
these libraries pre-installed.

■ Nothing is working - no logs, and so on. Ensure that the user of httpd has
permissions to read the uio directory. Typically httpd is run as a daemon user.
Ensure the daemon user has write permissions for the logs directory.

■ In case of a parsing error in UIO_Settings.xml or any configuration XML, an error
log will be created in httpd's logs directory with the name UIO_Settings.xml.log.

■ For errors, look in uio.log. Use log level of error for production use; info for more
details; debug for debugging issues and trace for verbose logs.

■ Ensure that the config XML and settings XML are conforming to the RNG schema.
You can use the UIO_Settings.rng and UIO_Config.rng in any XML editor to edit
the UIO_Settings.xml and application configuration XML files.

■ You can change the Apache httpd log level to debug for testing, or keep it at info
to reduce log file size. The Apache httpd log is separate from Oracle Adaptive
Access Manager Proxy for Apache log.

■ When migrating ISA config XML to be used with the Apache Universal
Installation Option Proxy, you need to do the following:

Troubleshooting

Oracle Adaptive Access Manager Proxy 5-39

1. Change the header of the XML file to use

<?xml version="1.0" encoding="utf-8"?>
<BharosaProxyConfig xmlns="http://bharosa.com/">

2. Run your config XML file through libxml2's xmllint utility.

For Windows, download from http://www.zlatkovic.com/pub/libxml/ the
latest libxml2-2.x.x.win32.zip file and unzip it.

For Linux, if you have libxml2 installed then xmllint command should be
available, or check with your Linux System Administrator.

Copy the UIO_Config.rng file from the Apache UIO distribution and run
following command:

xmllint --noout --relaxng UIO_Config.rng <your config xml file>

And fix any errors that are reported.

■ The Oracle Adaptive Access Manager Proxy for Apache is not working or
intercepting request.

Problem: The following error appears:

Failed to create session in memcached, err = 70015(Could not find specified
socket in poll list.) proxy - Failed to create session, cannot process this
request distsessions - memcache server localhost create failed 111

Possible Solutions:

■ Make sure "memcache" is installed and configured.

■ Make sure "memcache" process is up and running before creating the session.

Troubleshooting

5-40 Oracle Adaptive Access Manager Developer's Guide

6

Configuring Adaptive Strong Authenticator 6-1

6Configuring Adaptive Strong Authenticator

This chapter provides information on customizing the client-facing Adaptive Strong
Authenticator Web application. The Oracle Adaptive Access Manager's Universal
Installation Option (UIO) offers multi-factor authentication to Web applications
without requiring any change to the application code. The Adaptive Strong
Authenticator configuration is specific to the UIO deployment. Please refer to the
architectural diagram below for the components involved.

The user interface provided by the Adaptive Strong Authenticator Web application can
be easily customized to achieve the look-n-feel of the customer applications. This
chapter is intended for integrators who install and configure Adaptive Strong
Authenticator to support one or more Web application authentication and user
registration flows.

6.1 Architecture
The following diagram shows an Adaptive Risk Manager UIO deployment.

The Adaptive Strong Authenticator proxy intercepts the HTTP traffic between the
client (browser) and the server (Web application) and performs appropriate actions,
such as redirecting to the Adaptive Strong Authenticator, to provide multi-factor
authentication and authorization. The Adaptive Strong Authenticator in turn
communicates with Adaptive Risk Manager to assess the risk and takes the
appropriate actions, such as permitting the login, challenging the user, blocking the
user, and other actions.

Setting Adaptive Strong Authenticator Settings

6-2 Oracle Adaptive Access Manager Developer's Guide

6.2 Setting Adaptive Strong Authenticator Settings
The Adaptive Strong Authenticator configuration is controlled through property files.

Configuration Files
The property files used to configure the Adaptive Strong Authenticator are listed
below:

■ The bharosauio_client.properties file contains the client-configured properties (any
properties that have been customized for a specific deployment). These
client-configured properties will override the default configurations contained in
the bharosauio.properties file.

■ The bharosauio.properties file contains the default UIO system /device
configurations. The file deals with the structural changes in the overall
application. It is where the header, footer, and CSS properties are located.

■ The asa_msg_resource.properties file contains the default UIO messaging and
page content configuration. For example, page titles, links at the bottom of the
pages, page messages, error message, and confirmation messages.

■ The client_resource_<locale>.properties file contains the client-configured
properties that are configurable for each locale being supported. <locale> is the
locale string for which you wish to use the custom values (en, es, etc). These client
configured properties will override the default configurations contained in the
asa_msg_resource.properties and asa_resource.properties files.

In the deployed application, these property files are located in the web-inf/classes
directory.

6.3 First Steps
The first steps of Adaptive Strong Authenticator configuration and customization are:

1. Determine the application ID of each application being secured.

2. Assign default user groups for each application being secured.

6.3.1 Determining the Application ID
UIO can be placed in front of multiple applications, and customized to work with each
one as required. Determine how many applications are going to be configured, assign
each application an Application ID. This Application ID should be the same one used
to configure the Proxy (see Chapter 5, "Oracle Adaptive Access Manager Proxy"). In
many cases applications are referred to internally by some name or abbreviation, so a
person configuring Adaptive Strong Authenticator might want to use that name. For
an example if the client has two applications, one wholesale banking application and
one retail banking application, the integrator might choose to use "wholesale" and
"retail" as the Application IDs for the two applications.

The Proxy will send the AppId to the Adaptive Strong Authenticator as needed via
HTTP header. This AppId is then used to determine which configuration is used when
displaying pages to the client. Adaptive Strong Authenticator is configured by a set of
properties which we will discuss in more detail later. An example of how AppId is
used in a property definition is shown below.

bharosauio.appId1.default.user.group=app1Group

Customizing User Interface Branding

Configuring Adaptive Strong Authenticator 6-3

The bold "appId1" is the location in the property where the AppId is used to configure
application specific values.

6.3.2 Determining Default User Groups
Each application can be configured to have a unique default user group. This is the
group that a user of that application will be associated with as their primary user
group when first created in the Adaptive Risk Manager Online database. Similarly, it
will be the group used to attempt to load user information from the database when a
user attempts to log in to the application.

As used in the previous example the property for default user group looks as follows:

bharosauio.appId1.default.user.group=app1Group
bharosauio.appId2.default.user.group=app2Group

In this case you can see that we have defined two user groups to two different
applications. The application with an AppId of "appId 1" has been assigned the default
user group of "app1Group" and the application with an AppId of "appId2" has been
assigned the default user group of "app2Group".

6.4 Customizing User Interface Branding
The Adaptive Strong Authenticator user interface branding is customized in several
ways.

■ Custom header / footer files

■ Custom CSS file

■ Custom properties for page content and messaging

6.4.1 Custom Header / Footer
Adaptive Strong Authenticator provides the ability to create a custom header and / or
footer file for applications being secured. The header and footer files are JSP and can
contain any HTML or JSP code required to replicate the look of the application being
secured. All the customer resources (JSP files, image files, HTML, and others) should
be copied into the deployed application directories along with the Adaptive Strong
Authenticator Web application.

The header (header.jsp) and footer (footer.jsp) files should contain only content html,
all page related tags (<html>, <head>, <body>, etc) are already provided by the
Adaptive Strong Authenticator. As a simple example we will create a header and
footer that contain a single image each, to be used as the header and footer of an
application called "appId1".

Copy the following code into a file called header.jsp for the header.

/client/app1/header.jsp

Copy the following code into a file called footer.jsp for the footer.

/client/app1/footer.jsp

These files will be housed in the "/client/app1/" directory within the Web application.

Customizing User Interface Branding

6-4 Oracle Adaptive Access Manager Developer's Guide

To associate these files with the application we would add the following properties to
client_resource_<locale>.properties:

bharosa.uio.appId1.header = /client/app1/header.jsp
bharosa.uio.appId1.footer = /client/app1/footer.jsp

6.4.2 Custom CSS
The Adaptive Strong Authenticator styles are controlled through a single CSS file,
bharosa_uio.css, located in the css directory. These styles can be overridden by
including a custom CSS file. Much like the header and footer example above, you can
create your own file and include that file on an application or global level through
properties (see "How the Properties Work" in this document).

In this example we will override the font-family of the default body style definition.

The body style in bharosa_uio.css is defined as follows:

body{
 background-color:#ffffff;
 font-size:12px;
 color:#000000;
 font-family:arial,helvetica,sans-serif;
 margin:0px 0px 0px 0px
}

Now to use our newly created file, we will add the following property to bharosauio_
client.properties:

bharosa.uio.appId1.custom.css=/client/app1/css/app1.css

In this case, all we did was change helvetica to the primary font-family in our "appId1"
application. Any style defined in bharosa_uio.css can be overridden in this manner if
required.

6.4.3 Custom Content and Messaging
Adaptive Strong Authenticator pages have a variety of content and messaging
sections. These sections can be customized by properties; the default values for these
are found in asa_msg_resource.properties. Some customizable items, like page title
and message, are applicable for each page. While other items, like login blocked
message, are specific to a particular page.

To change the page title on the login page in our example "appId1" application, we
would add the following line to client_resource_<locale>.properties. <locale> is the
locale string for which you wish to use the custom values. (en, es, etc).

bharosa.uio.appId1.signon.page.title=Welcome to App1, please sign in.

Please refer to the asa_msg_resource.properties for additional properties.

The contents of error messages are also controlled in the same way. In the following
example we will customize the error message displayed when a user has been blocked
by security rules.

bharosa.uio.appId1.login.user.blocked = You are not authorized to login. Please
contact customer service at 1-888-555-1234.

How Properties Work

Configuring Adaptive Strong Authenticator 6-5

6.5 How Properties Work
An application in Adaptive Strong Authenticator is made up of a grouping or set of
properties. You can configure the Adaptive Strong Authenticator properties on a
global or application specific level.

The Adaptive Strong Authenticator property names are prefixed with bharosa.uio.
They are followed by the Application ID or "default" if the setting is global.

An "application-level" property is one that only effects a single application when there
are more than one application defined in the properties.

For example,

Global or Default header and footer definitions
- Apply to all applications that do not specifically define their own
bharosa.uio.default.header = /globalHeader.jsp
bharosa.uio.default.footer = /globalFooter.jsp
Application specific definitions
- These values override the default settings
bharosa.uio.app1.header = /app1Header.jsp
bharosa.uio.app1.footer = /app1Footer.jsp
bharosa.uio.app2.footer = /app2Footer.jsp

In this example, app1 uses an "application-level" defined header and footer file, but
app2 uses an "application-level" defined footer but a "global" or "default" defined
header file.

The bharosa.uio.default.header property, shown below, defines the location of the
header file.

bharosa.uio.default.header = /globalHeader.jsp

The property is used across all applications of the Adaptive Strong Authenticator
installation unless the specific application has another location specified.

In the case shown above, "default" is used instead of the Application ID to designate
the property as a global default. If the same property is not defined for an application;
then, this value will be used.

6.5.1 Property Extension
In addition to configuring properties for each application, you can configure a set of
properties that several applications have in common. You can then extend that set to
customize the parameters that differ between the set of applications.

If you were to configure three applications that all use a single footer, but each has a
unique header, you can include the following properties:

bharosa.uio.myAppGroup.footer = /myAppGroup/header.jsp

bharosa.uio.appId1.extends=myAppGroup
bharosa.uio.appId1.header=/client/app1/header.jsp

bharosa.uio.appId2.extends=myAppGroup
bharosa.uio.appId2.header==/client/app2/header.jsp

bharosa.uio.appId3.extends=myAppGroup
bharosa.uio.appId3.header==/client/app3/header.jsp

How Properties Work

6-6 Oracle Adaptive Access Manager Developer's Guide

6.5.2 User-Defined Enums
User-defined enums are a collection of properties that represent a list of items. Each
element in the list may contain several different attributes. The definition of a
user-defined enum begins with a property ending in the keyword ".enum" and has a
value describing the use of the user-defined enum. Each element definition then starts
with the same property name as the enum, and adds on an element name and has a
value of a unique integer as an ID. The attributes of the element follow the same
pattern, beginning with the property name of the element, followed by the attribute
name, with the appropriate value for that attribute.

The following is an example of an enum defining credentials displayed on the login
screen of an Adaptive Strong Authenticator implementation:

bharosa.uio.default.credentials.enum = Enum for Login Credentials
bharosa.uio.default.credentials.enum.companyid=0
bharosa.uio.default.credentials.enum.companyid.name=CompanyID
bharosa.uio.default.credentials.enum.companyid.description=Company ID
bharosa.uio.default.credentials.enum.companyid.inputname=comapanyid
bharosa.uio.default.credentials.enum.companyid.maxlength=24
bharosa.uio.default.credentials.enum.companyid.order=0
bharosa.uio.default.credentials.enum.username=1
bharosa.uio.default.credentials.enum.username.name=Username
bharosa.uio.default.credentials.enum.username.description=Username
bharosa.uio.default.credentials.enum.username.inputname=userid
bharosa.uio.default.credentials.enum.username.maxlength=18
bharosa.uio.default.credentials.enum.username.order=1

This set of properties defines one user-defined enum that contains two elements, each
of which with five attributes. The "name" and "description" attributes are required to
define any user-defined enum, other attributes are defined and used as needed by
each individual use of a user-defined enum.

6.5.3 Overriding Existing User-Defined Enums
Overriding existing user-defined enums has some special cases. You may override any
existing enum element's attribute value of the default application ID just as you would
any other property, but to change the value of an element's attribute in a single
application using an appId, you must create the entire enum in that application using
the appropriate appId.

For example, using the User Defined Enum defined above, if we wanted to change
"Company ID" to "Profile ID" for only one application (appId1), we would need to do
the following:

bharosa.uio.appId1.credentials.enum = Enum for Login Credentials
bharosa.uio.appId1.credentials.enum.profileid=0
bharosa.uio.appId1.credentials.enum.profileid.name=ProfileID
bharosa.uio.appId1.credentials.enum.profileid.description=Profile ID
bharosa.uio.appId1.credentials.enum.profileid.inputname=profileid
bharosa.uio.appId1.credentials.enum.profileid.maxlength=20
bharosa.uio.appId1.credentials.enum.profileid.order=0
bharosa.uio.appId1.credentials.enum.username=1
bharosa.uio.appId1.credentials.enum.username.name=Username
bharosa.uio.appId1.credentials.enum.username.description=Username
bharosa.uio.appId1.credentials.enum.username.inputname=userid
bharosa.uio.appId1.credentials.enum.username.maxlength=18
bharosa.uio.appId1.credentials.enum.username.order=1

Authenticator Properties

Configuring Adaptive Strong Authenticator 6-7

6.5.4 Disabling Elements
To disable any already defined element in a user-defined enum, simply add an
"enabled" attribute with a value of "false". Using the appId1 credentials enum from
above, we would add the following line to remove "Profile ID" from the elements used
by the application:

bharosa.uio.appId1.credentials.enum.profileid.enabled=false

6.6 Authenticator Properties
Each Authenticator interface (device) has its own unique security features. Some of
these features can be enabled and disabled by editing a properties file. The following
properties can be configured by adding them to client_resource_<locale>.properties.
The default properties can be found in asa_resource.properties.

For details on the visual elements for each device, refer to Chapter 7, "Authenticator
Properties."

6.6.1 TextPad
The TextPad is a personalized device for entering passwords or PINs using a regular
keyboard. Like other Adaptive Strong Authentication devices, the TextPad helps in
solving phishing problems.

6.6.2 KeyPad
The KeyPad is a customizable graphics keyboard that can be used to enter
alphanumeric and special character like a traditional keyboard. KeyPad is ideal for
entering passwords and other sensitive data. For example, credit card numbers can be
entered.

Feature Property

Default BG (Can be application specific) bharosa.uio.<appId>.DeviceTextPad.default.image =
textpad_bg/UIO_BG.jpg

Password Frame File (Can be application
specific)

bharosa.uio.<appId>.password.DeviceTextPad.frame =

Challenge Frame File (Can be application
specific)

bharosa.uio.<appId>.challenge.DeviceTextPad.frame =

Registration Frame File (Can be application
specific)

bharosa.uio.<appId>.register.DeviceTextPad.frame =
textpad_bg/TP_O_preview.png

User Preferences Frame File (Can be application
specific)

bharosa.uio.<appId>.userpreferences.DeviceTextPad.frame =
textpad_bg/TP_O_preview.png

Feature Property

Default BG (Can be application specific) bharosa.uio.<appId>.DeviceKeyPadFull.default.image =
keypad_bg/UIO_BG.jpg

Password Frame File (Can be application
specific)

bharosa.uio.<appId>.password.DeviceKeyPadFull.frame =

Challenge Frame File (Can be application
specific)

bharosa.uio.<appId>.challenge.DeviceKeyPadFull.frame =

Enabling Device Registration

6-8 Oracle Adaptive Access Manager Developer's Guide

6.6.3 PinPad
The PinPad is a lightweight authentication device to enter a numeric PIN.

6.6.4 QuestionPad
The QuestionPad is a personalized device for entering answers to challenge questions
using a regular keyboard. The QuestionPad is capable of incorporating the challenge
question into the QuesitonPad image. Like other Adaptive Strong Authentication
devices, QuestionPad also helps in solving the phishing problem.

6.7 Enabling Device Registration
Device registration is a feature that allows a user to flag the computer he is using as a
safe device. The customer can then configure the rules to challenge a user that is not
coming from one of his registered devices.

Device registration is available as a standard feature in Oracle Adaptive Access
Manager. The feature can be turned on, although it is off by default in the product.

To enable the device registration features for all applications, add the following lines to
the bharosauio_client.properties file

Enables device registration
bharosa.uio.default.registerdevice.enabled=true

Enables user to be able to unregister current device in user preferences
bharosa.uio.default.userpreferences.unregister.this.enabled=true

Enables user to be able to unregister all devices in user preferences

Registration Frame File (Can be application
specific)

bharosa.uio.<appId>.register.DeviceKeyPadFull.frame =
alphapad_bg/kp_O_preview.png

User Preferences Frame File (Can be application
specific)

bharosa.uio.<appId>.userpreferences.DeviceKeyPadFull.fram
e = alphapad_bg/kp_O_preview.png

Feature Property

Default BG (Can be application specific) bharosa.uio.default.DevicePinPad.default.image = pinpad_
bg/UIO_BG.jpg

Password Frame File (Can be application
specific)

bharosa.uio.<appId>.password.DevicePinPad.frame =

Challenge Frame File (Can be application
specific)

bharosa.uio.<appId>.challenge.DevicePinPad.frame =

Registration Frame File (Can be application
specific)

bharosa.uio.<appId>.register.DevicePinPad.frame = pinpad_
bg/PP_v02_frame_preview.png

User Preferences Frame File (Can be application
specific)

bharosa.uio.<appId>.userpreferences.DevicePinPad.frame =
pinpad_bg/PP_v02_frame_preview.png

Feature Property

Default BG (Can be application specific) bharosa.uio.<appId>.DeviceQuestionPad.default.imag
e = textpad_bg/UIO_BG.jpg

Challenge Frame File (Can be application specific) bharosa.uio.<appId>.challenge.DeviceQuestionPad.fra
me =

Feature Property

Enabling Device Registration

Configuring Adaptive Strong Authenticator 6-9

bharosa.uio.default.userpreferences.unregister.all.enabled=true

To enable the features on an application-specific bases, "default" can be replaced with
the appropriate appId in each of the prior property names.

You do not need to configure models for Device Registration, but there are two rules
specific to Device Registration that you will need to set up: "Device: Is registered" and
"Device used but not registered."

Enabling Device Registration

6-10 Oracle Adaptive Access Manager Developer's Guide

7

Authenticator Properties 7-1

7Authenticator Properties

Adaptive Strong Authenticator provides end users a secure method to enter sensitive
credentials online. Adaptive Strong Authenticator is comprised of multiple secure
interfaces. There are many security technologies employed in the Adaptive Strong
Authenticator user interfaces.

Each Adaptive Strong Authenticator interface is a Virtual Authentication Device
(VAD). Each VAD has its own unique set of security features that make it much more
than a mere image on a web page.

Details on the Authenticator properties are provided in this chapter for your reference
only. Changes are not supported.

■ Property Files

■ Features Configuration

■ KeysSets

7.1 Property Files
Authenticator uses the files listed below:

■ authentipad_resource.properties - contains all default Authenticator properties
other than KeySets.

■ authentipad_keyset_enums.properties - contains default KeySet definitions used
in the KeyPad and PinPad devices.

■ bharosa_client.properties - contains configuration properties that are not localized
(translated).

■ client_resource_<locale>.properties - files to be created by the person
customizing the application to contain locale-specific properties such as translated
displayed messages. The locale identifier consists of at least a language identifier,
and a region identifier (if required). For example, the custom properties file for US
English is client_resource_en_US.properties.

Note: Many of the properties related to the authenticators are in
resource bundles so that they are capable of being localized. If the
default value is in a "resource" file like asa_resource.properties, then
the override value should be placed in the client override file for
resource bundle values (client_resource_<locale>.properties).

What Authenticator Interfaces Should My Organization Use?

7-2 Oracle Adaptive Access Manager Developer's Guide

7.2 What Authenticator Interfaces Should My Organization Use?
The business and security units in your organization should work together with
Oracle to determine which Authenticator interfaces should be deployed to your end
users. This decision should be based on finding a proper balance between usability
and security. For recommendations on which Authenticator interfaces might be best
for your organization please consult with your Oracle representative.

7.3 What Elements of the Authenticator User Interface Can Be
Configured?

The Virtual Authentication Device concept is integral to the Authenticator component
and must be preserved in all circumstances. All graphical configurations of
Authenticator need to take the VAD concept into account. This document will
illustrate some examples to show what may and may not be changed graphically. For
the examples in this document we will use the TextPad interface.

7.3.1 The Frame
Each of the Authenticator "Pad" interfaces (TextPad, PinPad, and so on) has a frame.
The frame marks the outer boundary of the Authenticator user interface and
delineates the VAD from the rest of the page. The frame must always be apparent
regardless of the graphical treatment to preserve the appearance of a device. The frame
may not blend into the surrounding elements of an HTML page to the point were it
disappears visually. The overall size and aspect of each Pad is fixed and may not be
altered. All elements of the interface must be contained within the frame. These
elements include buttons, fields, personal phrase and personal image. The individual
elements of the Authenticator may not have their size or position altered. A single
PNG file contains the branding, frame and button images. Oracle can develop a
custom frame for you once your requirements are finalized. All configurations of
Authenticator are subject to review by Oracle to ensure proper security, usability and
product identity.

The frame may be altered only in the following ways:

■ Colors may be altered for the outline and fill of the frame

■ Colors of the buttons on the frame may be altered (enter, back, and so on)

■ Branding may be altered

7.3.2 Features Configuration
Each Authenticator interface has its own unique security features. Some of these
features can be enabled or disabled by adding/editing properties. For 10.1.4.5 or later,
the properties will need to be added to the client_resource_<locale>.properties file.
For versions earlier than 10.1.4.5, the property will need to be added to the
bharosa_client.properties file.

7.3.2.1 TextPad
TextPad is a personalized device for entering passwords or PIN using a regular
keyboard. An example TextPad is shown below.

What Elements of the Authenticator User Interface Can Be Configured?

Authenticator Properties 7-3

This section provides information on the visual elements of TextPad.

Phrase (Caption)
bharosa.authentipad.textpad.caption.personalize = true
bharosa.authentipad.textpad.caption.x = 14
bharosa.authentipad.textpad.caption.y = 203
bharosa.authentipad.textpad.caption.frame = false
bharosa.authentipad.textpad.caption.wrap = false
bharosa.authentipad.textpad.caption.width = 130
bharosa.authentipad.textpad.caption.height = 16
bharosa.authentipad.textpad.caption.font.name = Arial
bharosa.authentipad.textpad.caption.font.color = 000000
bharosa.authentipad.textpad.caption.font.type= 0
bharosa.authentipad.textpad.caption.font.size = 9

Timestamp
bharosa.authentipad.textpad.timestamp.x = 25
bharosa.authentipad.textpad.timestamp.y = 165
bharosa.authentipad.textpad.timestamp.width = 132
bharosa.authentipad.textpad.timestamp.height = 16
bharosa.authentipad.textpad.timestamp.frame = false
bharosa.authentipad.textpad.timestamp.wrap = false
bharosa.authentipad.textpad.timestamp.font.name = Arial
bharosa.authentipad.textpad.timestamp.font.color = ffffff
bharosa.authentipad.textpad.timestamp.font.type= 0
bharosa.authentipad.textpad.timestamp.font.size = 9

Enter Key Hotspot
bharosa.authentipad.textpad.enterkey.x=98
bharosa.authentipad.textpad.enterkey.y=181
bharosa.authentipad.textpad.enterkey.width=45
bharosa.authentipad.textpad.enterkey.height=19
bharosa.authentipad.textpad.enterkey.label=enter

What Elements of the Authenticator User Interface Can Be Configured?

7-4 Oracle Adaptive Access Manager Developer's Guide

bharosa.authentipad.textpad.enterkey.enable=true

Password MaxLength
bharosa.authentipad.textpad.datafield.maxLength=25

Default Background
bharosa.authentipad.textpad.background.file=textpad_bg/UIO_BG.jpg

Display Font Size for iPhone
The property to customize the font size for TextPad on an iPhone is shown below:

bharosa.authentipad.textpad.datafield.font.size=12

For 10.1.4.5 or later, the property will need to be added to the
client_resource_<locale>.properties file. For versions earlier than 10.1.4.5, the property
will need to be added to the bharosa_client.properties file.

7.3.2.2 QuestionPad
QuestionPad is a personalized device for entering answers to challenge questions
using a regular keyboard. An example QuestionPad is shown below.

This section provides information on the visual elements of QuestionPad.

Phrase (Caption)
bharosa.authentipad.questionpad.caption.personalize = true
bharosa.authentipad.questionpad.caption.x = 14
bharosa.authentipad.questionpad.caption.y = 203
bharosa.authentipad.questionpad.caption.frame = false
bharosa.authentipad.questionpad.caption.wrap = false

Note: In 10.1.4.5 and above, the QuestionPad is a single line field.

What Elements of the Authenticator User Interface Can Be Configured?

Authenticator Properties 7-5

bharosa.authentipad.questionpad.caption.width = 130
bharosa.authentipad.questionpad.caption.height = 16
bharosa.authentipad.questionpad.caption.font.name = Arial
bharosa.authentipad.questionpad.caption.font.color = 000000
bharosa.authentipad.questionpad.caption.font.type= 0
bharosa.authentipad.questionpad.caption.font.size = 9

Timestamp
bharosa.authentipad.questionpad.timestamp.x = 25
bharosa.authentipad.questionpad.timestamp.y = 165
bharosa.authentipad.questionpad.timestamp.width = 132
bharosa.authentipad.questionpad.timestamp.height = 16
bharosa.authentipad.questionpad.timestamp.frame = false
bharosa.authentipad.questionpad.timestamp.wrap = false
bharosa.authentipad.questionpad.timestamp.font.name = Arial
bharosa.authentipad.questionpad.timestamp.font.color = ffffff
bharosa.authentipad.questionpad.timestamp.font.type= 0
bharosa.authentipad.questionpad.timestamp.font.size = 9

Question Text
bharosa.authentipad.questionpad.question.x = 9
bharosa.authentipad.questionpad.question.y = 32
bharosa.authentipad.questionpad.question.width = 132
bharosa.authentipad.questionpad.question.height = 62
bharosa.authentipad.questionpad.question.frame = false
bharosa.authentipad.questionpad.question.wrap = true
bharosa.authentipad.questionpad.question.font.name = Arial
bharosa.authentipad.questionpad.question.font.color = 000000
bharosa.authentipad.questionpad.question.font.type= 0
bharosa.authentipad.questionpad.question.font.size = 9

Enter Key Hotspot
bharosa.authentipad.questionpad.enterkey.x=98
bharosa.authentipad.questionpad.enterkey.y=181
bharosa.authentipad.questionpad.enterkey.width=45
bharosa.authentipad.questionpad.enterkey.height=19
bharosa.authentipad.questionpad.enterkey.label=enter
bharosa.authentipad.questionpad.enterkey.enable=true

Visible Text Input or Password (Non-Visible) Input Setting
The following resource bundle property (client_resource_<locale>.properties) in
10.1.4.5 and above determines whether the QuestionPad is set for visible text input or
password (non-visible) input.

bharosa.authentipad.questionpad.datafield.input.type

Valid values are text and password.

Display Font Size for iPhone
The property to customize the font size for QuestionPad on an iPhone is shown below:

bharosa.authentipad.questionpad.datafield.font.size=12

For 10.1.4.5 or later, the property will need to be added to the c
client_resource_<locale>.properties file. For versions earlier than 10.1.4.5, the property
will need to be added to the bharosa_client.properties file.

What Elements of the Authenticator User Interface Can Be Configured?

7-6 Oracle Adaptive Access Manager Developer's Guide

7.3.2.3 Keypad
KeyPad is a personalized graphics keyboard, which can be used to enter alphanumeric
and special character that can be enter using a traditional keyboard. An example
KeyPad is shown below.

This section provides information on the visual elements of KeyPad.

Phrase (Caption)
bharosa.authentipad.keypad.caption.personalize = true
bharosa.authentipad.keypad.caption.x = 240
bharosa.authentipad.keypad.caption.y = 206
bharosa.authentipad.keypad.caption.frame = false
bharosa.authentipad.keypad.caption.wrap = false
bharosa.authentipad.keypad.caption.width = 130
bharosa.authentipad.keypad.caption.height = 16
bharosa.authentipad.keypad.caption.font.name = Arial
bharosa.authentipad.keypad.caption.font.color = 000000
bharosa.authentipad.keypad.caption.font.type= 0
bharosa.authentipad.keypad.caption.font.size = 9
bharosa.authentipad.full.caption.font.color = 000000

Timestamp
bharosa.authentipad.keypad.timestamp.x = 110
bharosa.authentipad.keypad.timestamp.y = 202
bharosa.authentipad.keypad.timestamp.width = 132
bharosa.authentipad.keypad.timestamp.height = 16
bharosa.authentipad.keypad.timestamp.frame = false
bharosa.authentipad.keypad.timestamp.wrap = false
bharosa.authentipad.keypad.timestamp.font.name = Arial
bharosa.authentipad.keypad.timestamp.font.color = ffffff
bharosa.authentipad.keypad.timestamp.font.type= 0
bharosa.authentipad.keypad.timestamp.font.size = 9
bharosa.authentipad.full.timestamp.font.color = ffffff

Enter Key Hotspot
bharosa.authentipad.keypad.enterkey.x=292
bharosa.authentipad.keypad.enterkey.y=8

What Elements of the Authenticator User Interface Can Be Configured?

Authenticator Properties 7-7

bharosa.authentipad.keypad.enterkey.width=50
bharosa.authentipad.keypad.enterkey.height=20
bharosa.authentipad.keypad.enterkey.label=enter
bharosa.authentipad.keypad.enterkey.enable=true

Backspace Key Hotspot
bharosa.authentipad.keypad.backspace.x=164
bharosa.authentipad.keypad.backspace.y=8
bharosa.authentipad.keypad.backspace.width=20
bharosa.authentipad.keypad.backspace.height=20
bharosa.authentipad.keypad.backspace.enable=true

Caps States
bharosa.authentipad.keypad.capslock.x=188
bharosa.authentipad.keypad.capslock.y=0
bharosa.authentipad.keypad.capslock.width=43
bharosa.authentipad.keypad.capslock.height=29
bharosa.authentipad.keypad.capslock.capsonimg=kp_v2_all_caps.jpg
bharosa.authentipad.keypad.capslock.capsshiftimg=kp_v2_first_caps.jpg

Password MaxLength
bharosa.authentipad.full.datafield.maxLength=8

Jitter
bharosa.authentipad.full.encrypt.jitter=true

Sub-jitter
bharosa.authentipad.full.keyWidthJitter=0
bharosa.authentipad.full.keyHeightJitter=0

Scramble
bharosa.authentipad.full.randomizeKeys=false

Multi-shape key
bharosa.authentipad.full.skins.dirlist=alphapad_skins/square

Default Background
bharosa.authentipad.full.background.file=alphapad_bg/UIO_BG.jpg

7.3.2.4 PinPad
PinPad is a lightweight authentication device for entering a numeric PIN. An example
PinPad is shown below.

What Elements of the Authenticator User Interface Can Be Configured?

7-8 Oracle Adaptive Access Manager Developer's Guide

This section provides information on the visual elements of PinPad.

Phrase (Caption)
bharosa.authentipad.pinpad.caption.personalize = true
bharosa.authentipad.pinpad.caption.x = 5
bharosa.authentipad.pinpad.caption.y = 206
bharosa.authentipad.pinpad.caption.frame = false
bharosa.authentipad.pinpad.caption.wrap = false
bharosa.authentipad.pinpad.caption.width = 130
bharosa.authentipad.pinpad.caption.height = 16
bharosa.authentipad.pinpad.caption.font.name = Arial
bharosa.authentipad.pinpad.caption.font.color = 000000
bharosa.authentipad.pinpad.caption.font.type= 0
bharosa.authentipad.pinpad.caption.font.size = 9
bharosa.authentipad.numeric.caption.font.color = 000000

Timestamp
bharosa.authentipad.pinpad.timestamp.x = 15
bharosa.authentipad.pinpad.timestamp.y = 165
bharosa.authentipad.pinpad.timestamp.width = 132
bharosa.authentipad.pinpad.timestamp.height = 16
bharosa.authentipad.pinpad.timestamp.frame = false
bharosa.authentipad.pinpad.timestamp.wrap = false
bharosa.authentipad.pinpad.timestamp.font.name = Arial
bharosa.authentipad.pinpad.timestamp.font.color = ffffff
bharosa.authentipad.pinpad.timestamp.font.type= 0
bharosa.authentipad.pinpad.timestamp.font.size = 9
bharosa.authentipad.numeric.timestamp.font.color = ffffff

Enter Key Hotspot
bharosa.authentipad.pinpad.enterkey.x=78
bharosa.authentipad.pinpad.enterkey.y=182
bharosa.authentipad.pinpad.enterkey.width=49

Accessibility

Authenticator Properties 7-9

bharosa.authentipad.pinpad.enterkey.height=20
bharosa.authentipad.pinpad.enterkey.label=enter
bharosa.authentipad.pinpad.enterkey.enable=true

Backspace Key Hotspot
bharosa.authentipad.pinpad.backspace.x=86
bharosa.authentipad.pinpad.backspace.y=8
bharosa.authentipad.pinpad.backspace.width=20
bharosa.authentipad.pinpad.backspace.height=20
bharosa.authentipad.pinpad.backspace.label=<
bharosa.authentipad.pinpad.backspace.enable=true

Pin MaxLength
bharosa.authentipad.numeric.datafield.maxLength=8

Jitter
bharosa.authentipad.numeric.encrypt.jitter =true

Sub-jitter
bharosa.authentipad.numeric.keyWidthJitter=50
bharosa.authentipad.numeric.keyHeightJitter=15

Scramble
bharosa.authentipad.numeric.randomizeKeys=false

Multi-shape key
bharosa.authentipad.numeric.skins.dirlist=pinpad_skins/square,pinpad_skins/oval,pi
npad_skins/hexa

Default Background
bharosa.authentipad.numeric.background.file=pinpad_bg/UIO_BG.jpg

7.4 Authenticator Specifications
Each Authenticator interface has its own specifications.

7.5 Accessibility
End users who access using assistive techniques will need to use the accessible
versions of the virtual authentication devices. Accessible versions of the TextPad,
QuestionPad, KeyPad and PinPad are not enabled by default. If accessible versions
will be needed in a deployment, they can be enabled via properties.

To enable these versions, set the "is ADA compliant" flag to true.

For native integration the property to control the pads is
desertref.authentipad.isADACompliant.

Interface Phrase Max Question Max Field Max Size (pixels)

TextPad 21 NA 21 (visible) 148 X 223

KeyPad 21 NA 18 (visible) 368 X 223

PinPad 21 NA 8 (visible) 128 X 223

QuestionPad 21 55 33 (visible) 148 X 223

KeysSets

7-10 Oracle Adaptive Access Manager Developer's Guide

The accessible versions of the pads contain tabbing, directions and alt text necessary
for navigation via screen reader and other assistive technologies.

7.6 KeysSets
A KeySet is the configuration that defines what character keys are present on the
authenticator. KeySets are used by the KeyPad and PinPad authenticators.

7.6.1 User Defined Enums Overview
KeySets are defined by a series user defined enums.

User-defined enums are a collection of properties that represent a list of items. Each
element in the list may contain several different attributes. The definition of a
user-defined enum begins with a property ending in the keyword ".enum" and has a
value describing the use of the user-defined enum. Each element definition then starts
with the same property name as the enum, and adds on an element name and has a
value of a unique integer as an ID. The attributes of the element follow the same
pattern, beginning with the property name of the element, followed by the attribute
name, with the appropriate value for that attribute.

The following is an example of an enum defining credentials displayed on the login
screen of an Adaptive Strong Authenticator implementation:

bharosa.uio.default.credentials.enum = Enum for Login Credentials
bharosa.uio.default.credentials.enum.companyid=0
bharosa.uio.default.credentials.enum.companyid.name=CompanyID
bharosa.uio.default.credentials.enum.companyid.description=Company ID
bharosa.uio.default.credentials.enum.companyid.inputname=comapanyid
bharosa.uio.default.credentials.enum.companyid.maxlength=24
bharosa.uio.default.credentials.enum.companyid.order=0
bharosa.uio.default.credentials.enum.username=1
bharosa.uio.default.credentials.enum.username.name=Username
bharosa.uio.default.credentials.enum.username.description=Username
bharosa.uio.default.credentials.enum.username.inputname=userid
bharosa.uio.default.credentials.enum.username.maxlength=18
bharosa.uio.default.credentials.enum.username.order=1

This set of properties defines one user-defined enum that contains two elements, each
of which with five attributes. The "name" and "description" attributes are required to
define any user-defined enum, other attributes are defined and used as needed by
each individual use of a user-defined enum.

7.6.2 KeySet Definition
The first enum defines the rows of the KeySet and points to an another enum
describing the keys present in that row.

For example, the following enum defines the rows of keys in a PinPad:

bharosa.authentipad.pinpad.default.keyset.enum=Default PinPad Keyset Enum
bharosa.authentipad.pinpad.default.keyset.enum.row1=0
bharosa.authentipad.pinpad.default.keyset.enum.row1.name=Default PinPad Keyset Row
1
bharosa.authentipad.pinpad.default.keyset.enum.row1.description=Default PinPad
Keyset Row 1
bharosa.authentipad.pinpad.default.keyset.enum.row1.keys=bharosa.authentipad.pinpa
d.default.keyset.row1.enum
bharosa.authentipad.pinpad.default.keyset.enum.row1.order=1

KeysSets

Authenticator Properties 7-11

bharosa.authentipad.pinpad.default.keyset.enum.row2=1
bharosa.authentipad.pinpad.default.keyset.enum.row2.name=Default PinPad Keyset Row
2
bharosa.authentipad.pinpad.default.keyset.enum.row2.description=Default PinPad
Keyset Row 2
bharosa.authentipad.pinpad.default.keyset.enum.row2.keys=bharosa.authentipad.pinpa
d.default.keyset.row2.enum
bharosa.authentipad.pinpad.default.keyset.enum.row2.order=2

bharosa.authentipad.pinpad.default.keyset.enum.row3=2
bharosa.authentipad.pinpad.default.keyset.enum.row3.name=Default PinPad Keyset Row
3
bharosa.authentipad.pinpad.default.keyset.enum.row3.description=Default PinPad
Keyset Row 3
bharosa.authentipad.pinpad.default.keyset.enum.row3.keys=bharosa.authentipad.pinpa
d.default.keyset.row3.enum
bharosa.authentipad.pinpad.default.keyset.enum.row3.order=3

bharosa.authentipad.pinpad.default.keyset.enum.row4=3
bharosa.authentipad.pinpad.default.keyset.enum.row4.name=Default PinPad Keyset Row
4
bharosa.authentipad.pinpad.default.keyset.enum.row4.description=Default PinPad
Keyset Row 4
bharosa.authentipad.pinpad.default.keyset.enum.row4.keys=bharosa.authentipad.pinpa
d.default.keyset.row4.enum
bharosa.authentipad.pinpad.default.keyset.enum.row4.order=4

Each row is made of the following properties:

In this case, the row1 enum is defined as follows:

bharosa.authentipad.pinpad.default.keyset.row1.enum=Default Pinpad Keyset Row 1
bharosa.authentipad.pinpad.default.keyset.row1.enum.key1=0
bharosa.authentipad.pinpad.default.keyset.row1.enum.key1.name=1
bharosa.authentipad.pinpad.default.keyset.row1.enum.key1.description=1
bharosa.authentipad.pinpad.default.keyset.row1.enum.key1.value=1
bharosa.authentipad.pinpad.default.keyset.row1.enum.key1.shiftvalue=1
bharosa.authentipad.pinpad.default.keyset.row1.enum.key1.image=kp_v2_1.png
bharosa.authentipad.pinpad.default.keyset.row1.enum.key1.order=1

bharosa.authentipad.pinpad.default.keyset.row1.enum.key2=1
bharosa.authentipad.pinpad.default.keyset.row1.enum.key2.name=2
bharosa.authentipad.pinpad.default.keyset.row1.enum.key2.description=2
bharosa.authentipad.pinpad.default.keyset.row1.enum.key2.value=2
bharosa.authentipad.pinpad.default.keyset.row1.enum.key2.shiftvalue=2
bharosa.authentipad.pinpad.default.keyset.row1.enum.key2.image=kp_v2_2.png
bharosa.authentipad.pinpad.default.keyset.row1.enum.key2.order=2

bharosa.authentipad.pinpad.default.keyset.row1.enum.key3=2

Table 7–1 Properties of Rows

Property Description

name Name of the row.

description Description of the row.

keys Enum identifier of the enum that defines the keys in the row.

order The order the key resides in the row of keys.

KeysSets

7-12 Oracle Adaptive Access Manager Developer's Guide

bharosa.authentipad.pinpad.default.keyset.row1.enum.key3.name=3
bharosa.authentipad.pinpad.default.keyset.row1.enum.key3.description=3
bharosa.authentipad.pinpad.default.keyset.row1.enum.key3.value=3
bharosa.authentipad.pinpad.default.keyset.row1.enum.key3.shiftvalue=3
bharosa.authentipad.pinpad.default.keyset.row1.enum.key3.image=kp_v2_3.png
bharosa.authentipad.pinpad.default.keyset.row1.enum.key3.order=3

Each key is made of the following properties:

Table 7–2 Properties of Each Key

Property Description

name Name of the key.

description Description of the key.

value The character value the key represents when clicked.

shiftvalue The character value the key represents when in caps mode.

image The image file name that will be used to display the visual
representation of the key.

order The order the key resides in the row of keys.

Part III
Part III Integration with Oracle Access Manager

Part III contains a chapter on Oracle Adaptive Access Manager and Oracle Access
Manager integration.

8

Oracle Access Manager Integration 8-1

8Oracle Access Manager Integration

This chapter describes the process for integrating Oracle Adaptive Access Manager's
Adaptive Strong Authenticator with Oracle Access Manager. Integrating the two will
allow you to use Oracle Adaptive Access Manager's Adaptive Strong Authenticator
virtual authentication pads to identify users attempting to access Oracle Access
Manager's protected applications.

Using these products in combination will allow you fine control over the
authentication process and full capabilities of pre-/post- authentication checking
against Adaptive Risk Manager models.

8.1 Prerequisites
This integration process assumes that the Oracle Access Manager environment has
been configured to protect simple HTML resources using two different authentication
schemes. Authentication schemes protect the client application's url.

■ The first authentication scheme uses Basic Over LDAP.

Integration Overview

8-2 Oracle Adaptive Access Manager Developer's Guide

■ The second authentication scheme is a higher-security level and integrates
Adaptive Strong Authenticator by using a custom form-based authentication
scheme.

For more information, refer to the Oracle Access Manager Integration Guide.

The following set of components is required for this implementation:

■ Oracle Adaptive Access Manager

■ Oracle Access Manager 10_1_4_01 with Patch 6158232

■ an Application Server

■ Oracle Access Manager SDK

8.2 Integration Overview
Except where specified, the following procedures are required to complete the
integration of Oracle Access Adaptive Manager and Oracle Access Manager.

■ Configure Oracle Access Manager AccessGate for Adaptive Strong Authenticator
Embedded AccessGate

■ Configure Oracle Access Manager AccessGate for Adaptive Strong Authenticator
Front-End Web Server

■ Configure Oracle Access Manager Authentication Scheme for the Adaptive Strong
Authenticator

■ Configure Oracle Access Manager Host Identifiers for Adaptive Strong
Authenticator (Optional)

■ Install ASDK for Adaptive Strong Authenticator

■ Configure ASDK AccessGate for Adaptive Strong Authenticator

■ Install WebGate for Adaptive Strong Authenticator Front-End Web Server

■ Unpack and Install Oracle Adaptive Access Manager Plug-In to Adaptive Strong
Authenticator for Oracle Access Manager Integration

■ Copy ASDK JAR Files to Adaptive Strong Authenticator

■ Add ASDK Library Path to Adaptive Strong Authenticator Application Properties

■ Add ASDK Library Path to Adaptive Strong Authenticator Server Properties

■ Configure Oracle Access Manager Domain to use Adaptive Strong Authenticator
Authentication

8.3 Configure Oracle Access Manager AccessGate for Adaptive Strong
Authenticator Embedded AccessGate

Before installing the Access Server SDK (ASDK), you must define the Oracle Access
Manager server-side settings for the AccessGate that the ASDK will use for
communication.

This section shows you how to define the new AccessGate for the embedded Adaptive
Strong Authenticator AccessGate.

Note: This chapter will not explain in detail all of the settings
involved with Oracle Access Manager AccessGates.

Configure Oracle Access Manager AccessGate for Adaptive Strong Authenticator Embedded AccessGate

Oracle Access Manager Integration 8-3

Steps
1. Launch Internet Explorer.

2. Log in to Oracle Access Manager.

For example, http://<oam_hostname>/access/oblix.

3. Click Access System Console.

4. Log in as <Administrator>.

5. Click Access System Configuration.

6. Click Add New AccessGate.

7. Using the oaamAccessGate configuration settings shown below, create a new
AccessGate and assign it to an Access Server.

Table 8–1 oaamAccessGate Configuration

Parameter Value

AccessGate Name oaamAccessGate

Description AccessGate for Oracle Adaptive Access Manager-Adaptive Strong
Authenticator authentication

Hostname <hostname>

Port <port>

AccessGate Password <passwd>

Debug <Off>

Maximum user session time (seconds) 3600

Idle Session Time (seconds) 3600

Maximum Connections 1

Transport Security <Open>

IP Validation <On>

IP Validation Exception <leave blank>

Maximum Client Session Time (hours) 24

Failover Threshold 1

Access server timeout threshold <leave blank>

Sleep for (seconds) 60

Maximum elements in cache 10000

Cache timeout (seconds) 1800

Impersonation Username <leave blank>

Impersonation Password <leave blank>

Access Management Service <On>

Preferred HTTP Cookie Domain <domain_name>

Preferred HTTP Host <hostname>:<port>

Deny on not protected <Off>

CachePragmaHeader no-cache

CacheControlHeader no-cache

Configure Oracle Access Manager AccessGate for Adaptive Strong Authenticator Front-End Web Server

8-4 Oracle Adaptive Access Manager Developer's Guide

8.4 Configure Oracle Access Manager AccessGate for Adaptive Strong
Authenticator Front-End Web Server

The Oracle Adaptive Access Manager's Adaptive Strong Authenticator/Oracle Access
Manager integration involves two Oracle Access Manager AccessGates: one for
fronting the Web server (a traditional WebGate) to Adaptive Strong Authenticator and
one for the embedded AccessGate. This section explains how to configure the Oracle
Access Manager AccessGate that fronts the Web server to Adaptive Strong
Authenticator.

Steps
1. Click Add New AccessGate.

2. Use the settings in the table below to create a new AccessGate and assign it an
Access Server

LogOutURLs <leave blank>

User Defined Parameters <leave blank>

Assign An Access Server (Primary <hostname>:<port>

Number of Connections 1

Note: The Adaptive Strong Authenticator AccessGate settings
(described in the Configure Oracle Access Manager AccessGate for
Adaptive Strong Authenticator Embedded AccessGate section) and
the OHS WebGate settings are identical (except for the AccessGate
names) because OHS is also a server for the Adaptive Strong
Authenticator application. In some deployments, these might differ.

Table 8–2 ohsWebGate Configuration

Parameter Value

AccessGate Name ohsWebGate

Description AccessGate for Web server hosting Adaptive Strong Authenticator application

Hostname <hostname>

Port <port>

AccessGate Password <passwd>

Debug <Off>

Maximum user session
time (seconds)

3600

Idle Session Time
(seconds)

3600

Maximum Connections 1

Transport Security <Open>

IP Validation <On>

Table 8–1 (Cont.) oaamAccessGate Configuration

Parameter Value

Configure Oracle Access Manager Authentication Scheme for the Adaptive Strong Authenticator

Oracle Access Manager Integration 8-5

3. Click AccessGate Configuration.

4. Click OK to search for all AccessGates.

The new AccessGate is now listed

8.5 Configure Oracle Access Manager Authentication Scheme for the
Adaptive Strong Authenticator

To leverage Adaptive Strong Authenticator as an authentication mechanism, Oracle
Access Manager must have a defined Authentication Scheme to understand how to
direct authentications to Adaptive Strong Authenticator.

Steps
1. Click Authentication Management.

2. Click New.

IP Validation Exception <leave blank>

Maximum Client Session
Time (hours)

24

Failover Threshold 1

Access server timeout
threshold

<leave blank>

Sleep for (seconds) 60

Maximum elements in
cache

10000

Cache timeout (seconds) 1800

Impersonation Username <leave blank>

Impersonation Password <leave blank>

Access Management
Service

<On>

Preferred HTTP Cookie
Domain

.<domain_name>

Preferred HTTP Host <hostname>:<port>

Deny on not protected <Off>

CachePragmaHeader no-cache

CacheControlHeader no-cache

LogOutURLs <leave blank>

User Defined Parameters <leave blank>

Assign An Access Server
(Primary)

<oam_hostname>:<port>

Number of Connections 1

Table 8–2 (Cont.) ohsWebGate Configuration

Parameter Value

Configure Oracle Access Manager Authentication Scheme for the Adaptive Strong Authenticator

8-6 Oracle Adaptive Access Manager Developer's Guide

3. Using the settings in the table below, begin creating the new Adaptive Strong
Authenticator authentication scheme:

4. Click Save.

5. Click Ok to confirm the saved operation.

6. Click Plugins.

7. Click Modify.

8. Click Add.

9. Create the plugin configurations using the information presented in the table
below.

10. Click Save.

11. Click General.

12. Click Modify.

13. Set Enabled to Yes.

14. Click Save.

Table 8–3 OAAM ASA Authentication Scheme Configuration

Parameter Value

Name Adaptive Strong Authentication

Description Oracle Adaptive Access Manager-Adaptive Strong Authenticator virtual
authentication pad auth scheme

Level 3

Challenge Method Form

Challenge Parameter(s) form:/oasa/loginPage.jsp

creds:userid password

action:/oasa/dummy.jsp

SSL Required <No>

Challenge Redirect <Redirect Url>

Enabled <Disabled/Greyed Out>

Note: For the challenge parameter, do not use "action:/oasa". Use
"action:/oasa/dummy.jsp". If you do not do this, you will receive a
"technical error" message from Oracle Adaptive Access Manager
authentication. "dummy.jsp" does not need to exist.

Table 8–4 OAAM ASA Authentication Scheme Configuration - Plugins

Plugin Name Plugin Parameters

credential_mapping obMappingBase="dc=<domain>,dc=com",obMappingFilter="(uid=%userid%)"

validate_password obCredentialPassword="password"

Install WebGate for Adaptive Strong Authenticator Front-End Web Server

Oracle Access Manager Integration 8-7

8.6 Configure Oracle Access Manager Host Identifiers for Adaptive
Strong Authenticator (Optional)

The AccessGates used by Adaptive Strong Authenticator must have host identifier
entries. Use the Host Identifiers feature to enter the official name for the host, and
every other name by which the host can be addressed by users.

A request sent to any address on the list is mapped to the official host name, and
applicable rules and policies are implemented. This is primarily used in virtual site
hosting environments.

8.7 Install ASDK for Adaptive Strong Authenticator
Install the ASDK that will be used by the Adaptive Strong Authenticator for
communication with the Oracle Access Manager Access Server.

Adaptive Strong Authenticator requires ASDK to communicate with the Oracle Access
Manager Access Server.

8.8 Configure ASDK AccessGate for Adaptive Strong Authenticator
After installing the ASDK for the Adaptive Strong Authenticator, the ASDK must be
configured for use.

Use a command-line tool (configureAccessGate) to specify the settings for the
ASDK to use for communication with the Oracle Access Manager Access Server.

Steps
1. Navigate to the configureAccessGate directory at <ASDK install

dir>\AccessServerSDK\oblix\tools\configureAccessGate.

2. Run following command and press Enter.

configureAccessGate -i < Installation directory of the AccessServerSDK> -t
AccessGate -w <Enter the name of the defined oaamAccessGate> -p <port> -h
<hostname> -a <Name of the Access Server> -m open

For example:

configureAccessGate -i E:\oracle\oaam\AccessServerSDK -t AccessGate -w
oaamAccessGate -p 6021 -h www.otherdomain.com -a accessSvr1 -m open

8.9 Install Web Server to Implement WebGate
Install an Apache HTTP server 2.x and configure it with the WebLogic Server Plug-in.

For instructions on installing and configuring the Apache HTTP Server Plug-In, refer
to:

http://e-docs.bea.com/wls/docs92/plugins/apache.html

8.10 Install WebGate for Adaptive Strong Authenticator Front-End Web
Server

To correctly handle the cookies for authentication and the required HTTP headers for
the Adaptive Strong Authenticator application, Adaptive Strong Authenticator must
be protected with a standard WebGate and Web server.

Unpack and Install Oracle Adaptive Access Manager Plug-In to Adaptive Strong Authenticator for Oracle Access Manager Inte-

8-8 Oracle Adaptive Access Manager Developer's Guide

Steps
1. Stop the application server (and Web server).

2. Run the WebGate installation program

3. For the WebGate configuration, use the following settings:

8.11 Unpack and Install Oracle Adaptive Access Manager Plug-In to
Adaptive Strong Authenticator for Oracle Access Manager Integration

Unpack the Adaptive Strong Authenticator plug-in for Oracle Access Manager from
the oaam_plugins folder and copy the required files to the Adaptive Strong
Authenticator installation.

Steps
1. Copy oasa_oam_override.jar from … oaam_plugins\oaam_oam_

plugin\oasa\war\WEB-INF\lib to <OASA_HOME>\WEB-INF\lib.

2. Copy the client folder to <OASA_HOME>\.

3. Rename <OASA_HOME>\WEB-INF\struts-config.xml to <OASA_
HOME>\WEB-INF\struts-config.xml.bak.

4. Copy struts-config.xml from … oaam_plugins\oaam_oam_
plugin\oasa\war\WEB-INF to <OASA_HOME>\WEB-INF\.

5. Copy bharosauio_client.properties from … oaam_plugins\oaam_
oam_plugin\oasa\war\WEB-INF\classe to <OASA_
HOME>\WEB-INF\classes\bharosauio_client.properties.

6. Copy bharosauio_client.properties from plugin.zip to <OASA_
HOME>\WEB-INF\classes\bharosauio_client.properties

7. Check lookup.properties under <OASA_HOME>\WEB-INF \classes to
verify that bharosauio_client.properties is listed.

Table 8–5 ohsWebGate Configuration

Attribute Value

WebGate ID ohsWebGate

Password for WebGate <password>

Access Server ID <Access ServerId>

Host Name <hostname>

Port <port

Note: Oracle Application Server installs an Oracle HTTP Server
(OHS) with the application server and OC4J container.

If a different application server or servlet container (for example, BEA
WebLogic, JBoss, or Tomcat) is used for Adaptive Strong
Authenticator/Adaptive Risk Manager, a front-end Web server with
the appropriate proxy plug-in (for example, mod_wl_20.so or mod_jk)
would be necessary before installing the WebGate on the Web server.

Installation instructions for "mod_wl_20.so" is documented at:

http://e-docs.bea.com/wls/docs92/plugins/apache.html

Configure Oracle Access Manager Domain to use Adaptive Strong Authenticator Authentication

Oracle Access Manager Integration 8-9

8.12 Copy ASDK JAR Files to Adaptive Strong Authenticator
Copy the key Java AccessGate library file from the ASDK to the Adaptive Strong
Authenticator installation for use.

For example, copy <ASDK install>oblix\lib\jobaccess.jar to <OASA_
HOME>\WEB-INF\lib.

If the jar files are not copied, the Adaptive Strong Authenticator installation will not
identify the ASDK Java Access Gate library.

8.13 Add ASDK Library Path to Adaptive Strong Authenticator
Application Properties

Modify bharosa_client.properties under <OASA_HOME>\WEB-INF\classes
to include the path of the Oracle Access Manager Java AccessGate (jobaccess.jar).
The application properties for Adaptive Strong Authenticator must be updated to
locate the AccessGate configuration information you specified with the
configureAccessGate utility previously.

For example

bharosa.accesserversdk.path=E:\\oracle\\oaam\\AccessServerSDK

If we do not have this in our path, Adaptive Strong Authenticator will not be able to
located the Access Gate configuration.

8.14 Add ASDK Library Path to Adaptive Strong Authenticator Server
Properties

The Oracle Adaptive Access Manager AccessGate used by Adaptive Strong
Authenticator must use the supporting library files from the ASDK directories. Please
update your Application Server PATH variable to include the libraries from the ASDK.

For example,

Add E:\oracle\oaam\AccessServerSDK\oblix\lib to your Environment
Variables

If this setting is not there, Adaptive Strong Authenticator will not be able to identify
the AccessGate libraries during startup.

8.15 Configure Oracle Access Manager Domain to use Adaptive Strong
Authenticator Authentication

The Adaptive Strong Authenticator authentication should now be operable for Oracle
Access Manager policy domains. Please modify your application Oracle Access
Manager policy domain to use the Adaptive Strong Authenticator authentication
scheme (Adaptive Strong Authentication).

Steps
1. Log in to the Oracle Access Manager host. For example,

http://<hostname>/access/oblix.

Note: There are 2 s's in a row in "accesserversdk" not 3 s's.

Testing Oracle Adaptive Access Manager-Oracle Access Manager Integration

8-10 Oracle Adaptive Access Manager Developer's Guide

2. Click Policy Manager.

3. Log in as an admin user

4. Click My Policy Domains

5. Click <ApplicationPolicy >.

6. Click Default Rules.

7. Click Modify

8. From the Authentication Scheme drop-down selector, select Adaptive Strong
Authentication.

9. Click OK to confirm the change in authentication schemes.

10. Ensure that Update Cache is checked.

11. Click Save.

12. Close Internet Explorer.

8.16 Testing Oracle Adaptive Access Manager-Oracle Access Manager
Integration

To test the configuration, try accessing your application. The Oracle Access Manager
will intercept your un-authenticated request and redirect you to the Adaptive Strong
Authenticator to challenge for credentials.

Part IV
Part IV Features Integrations

Part IV contains the following chapters:

■ Chapter 9, "Auto-learning"

■ Chapter 10, "Configurable Actions"

■ Chapter 11, "Configuring Expiry/Overdue for Cases"

9

Auto-learning 9-1

9Auto-learning

Auto-learning is the application of a number of Oracle Adaptive Access Manager
features to dynamically profile behavior of user, device, locations, and transaction
entities. Patterns are defined by an administrator to automatically capture behavior.
These patterns are in turn used by Adaptive Risk Manager to dynamically create and
populate buckets based on the pattern parameters. Adaptive Risk Manager
automatically records/maintains the bucket memberships of the
users/devices/locations/entities over time so that the overall profile can be used to
evaluate risk. As well, dynamic actions are used to populate groups based on rule
outcomes to further profile behavior. The memberships of these automatically
managed groups are also used to evaluate risk.

The Auto-learning feature profiles transactions and authentications being performed
by different actors (entities). This process establishes what is normal or average
behavior for an individual or a population. In turn this allows evaluations to be made
that can determine if a situation is an anomaly and therefore potentially fraudulent.
The task is accomplished by

■ capturing the transaction and authentication data and passing it through various
patterns thereby creating/populating various buckets to profile behavior in a
granular way.

An example scenario is when we want to find out what the typical log in times
(time of the day) are for users. To find out the login times, we would set up an
Auto-learning pattern that has the user as a member and time as a parameter. We
would choose to have a multi-bucket pattern and set start time=00 and
endtime=23 (these are hours of the day).

When users log in, we will have profiles for each user on log in time. When we
gather this data for a few days or months, we can use this data to challenge the
user if he logs in at a time at which he does not usually log in.

■ capturing the behavioral and transaction data, based on the actors (entities), and
then creating the statistics for the entities based on their memberships to various
patterns and hour/day/month/year time samples.

An example: we will have several patterns in the system.

– one capturing the login name (user) and the time of log in

– another capturing the login device and the city of the log in

When the data is analyzed and tabulated, we will have created records to tell us

– user "U1" exhibited the behavior of Pattern A. The user "U1" is a member of
Pattern A

Pattern Data Processing (On-Line and Scheduled)

9-2 Oracle Adaptive Access Manager Developer's Guide

– if the user, or IP, or device exhibited a behavior that matched the configured
pattern, then that user (entity) is a member of the pattern.

This document provides information on pattern data processing and the APIs for
triggering pattern data processing.

9.1 Pattern Data Processing (On-Line and Scheduled)
If the system load is light and if the pattern is configured, the data will be processed as
soon as the clients calls the API that is used for triggering the data processing. The
system load is the number of authentication, transaction, rule processing (and other)
reports and requests served by the Oracle Adaptive Access Manager server.

The logic for processing the data is as follows.

For each (successful) transaction record, the following process occurs:

1. Get all the attributes of the transaction from the database.

2. Determine the transaction type and if any of the patterns have the same
transaction type as the one we have at hand.

3. If there are no patterns having the same transaction type as the one at hand, the
process is stopped at this point and returns to the caller with nothing.

4. If there are patterns that have the same transaction type as the one at hand, then
the following process is performed for each pattern.

a. Get the parameters for that pattern and determine if the parameter values for
the transaction at hand satisfy the requirements (like range for example). If
not, move to next pattern.

b. If the parameters satisfy the requirements, then go to the fingerprint table.

c. If the fingerprint exists for such a combination, then go ahead and update the
counters in workflow tables (hour, day, month, year).

d. If the fingerprint does not exist, then create a fingerprint and create entries in
the workflow table for that fingerprint and put the count there.

e. After this determine if the pattern is configured to capture the one-time or
lifetime values for the parameters, if set to do so. Then go and update the
correct profile table. While doing this, if the profile table does not have an
entry for this entity, create the entry. Data1 thru Data10 fields from entity
profile tables will be used to capture the pattern membership and the values.

f. Repeat steps a through e for rest of the patterns.

5. Repeat steps 1 through 4 for each transaction.

9.2 APIs for Triggering Pattern Data Processing
The APIs for triggering patterning data processing are

■ updateTransactionStatus

■ updateAuthStatus

■ processPatternAnalysis

APIs for Triggering Pattern Data Processing

Auto-learning 9-3

9.2.1 updateTransactionStatus
API to update the given transaction status and trigger the pattern data analysis if
appropriate. A nonzero value of analyzePatterns will result in triggering the pattern
analysis if not already done for this transaction.

■ public VCryptResponse updateTransactionStatus(java.lang.String requestId, long
transactionId, int status, boolean analyzePatterns)

■ public VCryptResponse updateTransactionStatus(java.lang.String requestId,
java.util.Date requestTime, long transactionId, int status, java.util.Map[]
contextMap, boolean analyzePatterns)

9.2.2 updateAuthStatus
API to update the user node log auth status and trigger the pattern data analysis if
appropriate. A nonzero value of analyzePatterns will result in triggering the pattern
analysis if not already done for this transaction.

■ public VCryptResponse updateAuthStatus(java.lang.String requestId, int
resultStatus, int clientType, java.lang.String clientVersion, boolean
analyzePatterns)

■ public VCryptResponse updateAuthStatus(java.lang.String requestId,
java.util.Date requestTime, int resultStatus, int clientType, java.lang.String
clientVersion, boolean analyzePatterns)

9.2.3 processPatternAnalysis
API to trigger the processing of data for pattern matching. This call will only trigger
the processing of data for pattern matching. The last parameter transactionType can be

Table 9–1 updateTransactionStatus Parameters

Parameter Description

requestId Request Identifier

requestTime The time when this request was made.

transactionId Transaction Id to be updated.

status New Status

contextMap array of contextMap

analyzePatterns Boolean to indicate if the pattern analysis should be done. When
passed in as true the pattern analysis is done for this transaction.

Table 9–2 updateAuthStatus Parameters

Parameter Description

requestId request Id

requestTime Time of update

resultStatus The authentication result. This is the enumeration value of the
authentication result.

clientType This is an enum value defined to identify the client type used for
authentication.

clientVersion Optional parameter to specify the version of the client used

analyzePatterns Boolean to indicate if the pattern analysis should be done. When
passed in as true the pattern analysis is done for this transaction.

APIs for Triggering Pattern Data Processing

9-4 Oracle Adaptive Access Manager Developer's Guide

used by authentication type user interactions, since auth (or login) are not first-class
transactions.

public VCryptResponse processPatternAnalysis(java.lang.String requestId, long
transactionId, int status, java.lang.String transactionType)

Table 9–3 processPatternAnalysis

Parameter Description

requestId request Id

transactionId Transaction Id to be updated.

status New Status

transactionType String that indicates the type of transaction. Has to be "auth" for
authentication type. For other types it can be "bill_pay,",;
basically the type name of the transaction.

10

Configurable Actions 10-1

10Configurable Actions

Oracle Adaptive Access Manager provides Configurable Actions, a feature which
allows users to create new supplementary actions that are triggered based on the result
action and/or based on the risk scoring after a Runtime execution. This section
describes how to integrate a Configurable Action with the Adaptive Risk Manager
software.

10.1 Integration
To add a new Configurable Action, please perform the tasks listed below.

1. Develop the Configurable Action by implementing the
com.bharosa.vcrypt.tracker.dynamicactions.intf.DynamicAction java interface.

While implementing the
com.bharosa.vcrypt.tracker.dynamicactions.intf.DynamicAction java interface, the
following two methods have to be coded:

■ getParameters() - In this method, the code has to be written that returns the
parameters used by the Configurable Action. Make sure that the size of the
parameters array returned is the same as the number of parameters. Look at
the sample configurable actions java code in Sample application.

■ execute() - In this method, code has to be written that performs the logic
required by the Configurable Action. Configurable Action parameter values
are passed in actionParamValueMap where the parameter name is the key and
the RuntimActionParamValue object is the value. Use the appropriate
getXXXValue() method to get the parameter value.

2. Make sure the java code is JDK 1.4-compliant. Do not use any language features of
JDK 1.5 or JDK 6.

For sample code, look at the java files in the sample application.

3. Test the implementation of the Configurable Action thoroughly.

Since Configurable Actions are standalone java classes, they can be tested with
Unit Testing Methodology using JUnit framework.

For sample JUnit code for testing dynamic action, refer to the "Sample JUnit Code"
section.

Note: In this step, implementing means writing java code based on
the contract specified by the Java interface
com.bharosa.vcrypt.tracker.dynamicactions.intf.DynamicAction.

Executing Configurable Actions in a Particular Order and Data Sharing

10-2 Oracle Adaptive Access Manager Developer's Guide

4. Compile the java class and create a jar file of the compiled class files.

5. Copy the jar file along with any other required libraries to the classpath of the
Adaptive Risk Manager Web application.

6. Restart the Adaptive Risk Manager application if required.

7. Log into Adaptive Risk Manager web application and create an action definition
entry for the newly deployed Configurable Action.

8. Make sure all the parameters required for the Configurable Action are displayed
in the user interface.

9. Use the newly available Configurable Action by adding it to the required
runtimes. For more information on configuring Configurable Actions, please refer
to the Oracle Adaptive Access Manager Administrator's Guide.

10.2 Executing Configurable Actions in a Particular Order and Data
Sharing

Configurable Actions can be used to implement chaining in such a way that

■ they execute in a particular order

■ data can be shared across these actions

To be able to execute Configurable Actions in a particular order and share data:

1. Configure Configurable Actions as synchronous actions with the required order of
execution in ascending order.

2. To share data, insert the data into the actionContextMap parameter of the
Configurable Action's execute() method. Since the actionContextMap is a Map, it
requires a key and value pair that represents the data to be shared.

3. Ensure that the code can handle the case where the key is not present in the
actionContextMap. This step must be performed to avoid errors or
NullPointerException when the other action do not insert the value into the
actionContextMap.

Note: Sharing data across Configurable Actions involves writing
java code and requires more effort than just a configuration task.

Note: A Configurable Action is executed only if the trigger criteria is
met; therefore, make sure the trigger criteria is correct.

Note: it is the implementer's responsibility to ensure that

■ the duplicate keys are not used while inserting data

■ the same key is used when trying to access this shared data from
another Configurable Action.

Sample JUnit Code

Configurable Actions 10-3

10.3 How to Test Configurable Actions Triggering

1. Make sure there is a way to identify if the code in the Configurable Action is
executed. This could be as simple as an entry in log file or an entry in database and
so on

2. Set the log-level for "com.bharosa.vcrypt.tracker.dynamicactions.ActionExecutor"
to "DEBUG" using the Environment->Logging screen.

3. Create an action template for the given Configurable Action.

4. Add the action to a Pre-Authentication runtime with trigger criteria as score
between 0 and 1000.

5. Try logging in from the Adaptive Strong Authenticator application or the sample
application that is connected to Adaptive Risk Manager.

6. Check the Adaptive Risk Manager logs for the entry "Enter: executeAction():
Executing Action Instance" from the class
"com.bharosa.vcrypt.tracker.dynamicactions.ActionExecutor."

7. If there is no error then you will see a related log statement like "Exit:
executeAction(): Action Instance".

8. If there is an error, you will see a log statement like "Error: executeAction()"

9. Apart from these, check for a log entry or a database entry that is created by the
Configurable Action itself

10.4 Sample JUnit Code
The sample JUnit code for testing dynamic action is provided below:

public class TestDynamicActionsExecution extends TestCase {
 static Logger logger =
Logger.getLogger(TestDynamicActionsExecution.class);
 private DynamicAction caseCreationAction = null;

 public void setUp()throws Exception {
 caseCreationAction = new CaseCreationAction();
 }

 public void testDynamicAction() {

 //RequestId
 String requestId = "testRequest";

 //Request Time
 Date requestTime = new Date();

 //Map that contains values passed to the rule/model execution
 Map ruleContextMap = new HashMap();

 //Result from rule execution
 VCryptRulesResultImpl rulesResult = new VCryptRulesResultImpl();
 rulesResult.setResult("Allow");
 rulesResult.setRuntimeType(new Integer(1));

 //Configurable action's parameter values

Sample JUnit Code

10-4 Oracle Adaptive Access Manager Developer's Guide

 Map actionParamValueMap = new HashMap();
 RuntimeActionParamValue caseTypeParamValue = new
RuntimeActionParamValue();
 caseTypeParamValue.setIntValue(CaseConstants.CASE_AGENT_TYPE);

 RuntimeActionParamValue caseSeverityParamValue = new
RuntimeActionParamValue();
 caseSeverityParamValue.setIntValue(1);

 RuntimeActionParamValue caseDescriptionParamValue = new
RuntimeActionParamValue();
 caseDescriptionParamValue.setStringValue("Testing CaseCreation
Action");

 //ActionContext Map for passing data to/from the dynamic action
execution
 Map actionContextMap = new HashMap();

 //Execute the action
 try {
 caseCreationAction.execute(requestId, requestTime,
ruleContextMap, rulesResult, actionParamValueMap, actionContextMap);
 }catch(Exception e) {
 Assert.fail("Exception occurred while executing dynamic
action");
 logger.error("Exception occcurred while executing dynamic
action", e);
 }

 //Write appropriate asserts to check if the configurable action
has executed properly
 }

 public void tearDown() throws Exception {

 }
}

11

Configuring Expiry/Overdue for Cases 11-1

11Configuring Expiry/Overdue for Cases

The expiry/overdue behavior can be configured using the customercare.properties
file, located in the WEB-INF\classes folder of Adaptive Risk Manager.

The default setting is for CSR cases to "expire" after 24 hours and Agent cases to
become "Overdue" after 24 hours. Once a CSR case expires, CSR Agents cannot access
them. CSR Managers have to extend the expiration time so that CSR Agents can access
them. Agent Users and their managers can access Agent cases even if they are
Overdue. Once accessed the "Overdue" time is automatically increased by 24 hours.

Information to change the default behavior is provided below.

11.1 CSR Cases
The CSR Cases section contains information to

■ Set the "Expiry" Behavior for CSR Cases (Default Setting)

■ Disable "Expiry/Overdue" Behavior for CSR Cases

■ Set "Overdue" Behavior for CSR Cases

11.1.1 Set the "Expiry" Behavior for CSR Cases (Default Setting)
To set "expiry"behavior for CSR cases (default setting), modify the following
properties as shown below.

customercare.case.expirybehavior.enum.csrcase.behavior = expiry
customercare.case.expirybehavior.enum.csrcase.label = Expired
customercare.case.expirybehavior.enum.csrcase.durationInHrs = 24
customercare.case.expirybehavior.enum.csrcase.resetonaccess = false

11.1.2 Disable "Expiry/Overdue" Behavior for CSR Cases
To disable the "expiry/overdue" behavior for CSR cases, modify the following
property as shown below.

customercare.case.expirybehavior.enum.csrcase.behavior = none

11.1.3 Set "Overdue" Behavior for CSR Cases
To set "overdue" behavior for CSR cases, modify the following properties as shown
below.

Note: You will not need to change the other parameters.

Agent Cases

11-2 Oracle Adaptive Access Manager Developer's Guide

customercare.case.expirybehavior.enum.csrcase.behavior = overdue
customercare.case.expirybehavior.enum.csrcase.label = Overdue
customercare.case.expirybehavior.enum.csrcase.durationInHrs = 24
customercare.case.expirybehavior.enum.csrcase.resetonaccess = true

11.2 Agent Cases
The Agent Cases section contains information to

■ Set "Overdue" Behavior for Agent Cases (Default Setting)

■ Disable "Overdue/Expiry" Behavior for Agent Cases

■ Set "Expiry" Behavior for Agent Cases

11.2.1 Set "Overdue" Behavior for Agent Cases (Default Setting)
To set "overdue" behavior for Agent cases, modify the following properties as shown
below.

customercare.case.expirybehavior.enum.agentcase.behavior = overdue
customercare.case.expirybehavior.enum.agentcase.label = Overdue
customercare.case.expirybehavior.enum.agentcase.durationInHrs = 24
customercare.case.expirybehavior.enum.agentcase.resetonaccess = true

11.2.2 Disable "Overdue/Expiry" Behavior for Agent Cases
To disable the "overdue/expiry" behavior for Agent cases, modify the following
property as shown below.

customercare.case.expirybehavior.enum.agentcase.behavior = none

11.2.3 Set "Expiry" Behavior for Agent Cases
To set "expiry"behavior for Agent cases, modify the following properties as shown
below.

customercare.case.expirybehavior.enum.agentcase.behavior = expiry
customercare.case.expirybehavior.enum.agentcase.label = Expired
customercare.case.expirybehavior.enum.agentcase.durationInHrs = 24
customercare.case.expirybehavior.enum.agentcase.resetonaccess = false

Note: You will not need to change the other parameters.

Index-1

Index

A
Access Server SDK (ASDK), 8-2
AccessGate, creating new, 8-4
Adaptive Risk Manager Online Native Client API

Static Linking, 2-3
Web Services/ SOAP, 2-2

Adaptive Strong Authentcator
KeyPad, 7-6
PinPad, 7-7
QuestionPad, 7-4
TextPad, 7-2

Adaptive Strong Authenticator
architecture, 6-1
configuration and customization, 6-2
configuration files, 6-2
custom content and messaging, 6-4
custom CSS, 6-4
custom header and footer, 6-3
customizing user interface branding, 6-3
determining application ID, 6-2
determining default user groups, 6-3
KeyPad, 6-7
PinPad

PinPad, 6-8
properties, 6-5
QuestionPad, 6-8
settings, 6-2
TextPad, 6-7
user-defined enums, 6-6

Adaptive Strong Authenticator as authentication
mechanism, 8-5

Adaptive Strong Authenticator authentication
scheme, creating, 8-6

Adaptive Strong Authenticator interface,
proxy, 5-26

Adaptive Strong Authenticator plug-in for Oracle
Access Manager, 8-8

Adaptive Strong Authenticator properties, 7-1
Adaptive Strong Authenticator Web application, 6-1
Agent cases, 11-2
API integration, 2-1
Application (API) Integration options, 2-4
apr_memcache.dll, 5-8
asa_msg_resource.properties, 6-2
asa_resource.properties, 6-2

ASDK AccessGate for Adaptive Strong Authenticator,
configuring, 8-7

ASDK for Adaptive Strong Authenticator,
installing, 8-7

ASDK JAR files to Adaptive Strong Authenticator,
copying, 8-9

ASDK library path to Adaptive Strong Authenticator
application properties, adding, 8-9

ASDK library path to Adaptive Strong Authenticator
server properties, adding, 8-9

ASP.NET applications, 3-1, 3-11
authenticator

creating, 3-8
embedding in a web page, 3-9

Authenticator "Pad" interfaces, 7-2
Authenticator accessibility, 7-9
Authenticator interface specifications, 7-9
Authenticator interfaces to use, 7-2
Authenticator KeySet, 7-10
Authenticator KeySet definition, 7-10
Authenticator properties, 7-1
Authenticator property files, 7-1
Authenticator user defined enums, 7-10
Authenticator user interface elements

configuration, 7-2
authentipad_keyset_enums.properties, 7-1
authentipad_resource.properties, 7-1
auth.status.enum, 4-7
Auto-Learning, 1-2
Auto-learning, 9-1

APIs for triggering pattern data processing, 9-2
pattern data processing (On-Line and

Scheduled), 9-2
AutoLoadConfig, 5-16

B
Backspace Key Hotspot

KeyPad, 7-7
PinPad, 7-9

bharosa_app.properties, 4-1
bharosa_client.properties, 4-1, 7-1
bharosa_common_keypad.properties, 4-1
bharosa.image.dirlist, 4-1
bharosauio_client.properties, 6-2
bharosauio.properties, 6-2

Index-2

C
CachedConfigExpiry_sec, 5-16
cancelAllTemporaryAllows API, 4-10
Caps States

KeyPad, 7-7
CaptureTraffic, 5-16
Cases, 1-2, 11-1
cases expiry/overdue behavior, 11-1
Challenge (QuestionPad) (S6), 2-16
Check Challenge Question Answer (C3), 2-17
Check Question Registration for User (C2), 2-16
clearSafeDeviceList API, 4-8
client_resource.properties, 6-2, 7-1
com.bharosa.vcrypt.tracker.dynamicactions.intf.Dyna

micAction java interface, 10-1
Configurable Actions, 1-2

executing in order and data sharing, 10-2
integration, 10-1
sample JUnit code, 10-3

Configurable Actions triggering, testing, 10-3
Create Transactions in Bulk API, 3-6
createTransaction API, 4-3
credentials to access Adaptive Risk Manager Soap

services, 3-9
CSR cases, 11-1

D
Decode AuthentiPad Input (P4), 2-13
Default Background

PinPad, 7-9
TextPad, 7-4

deployment, UIO, 5-2
Device Fingerprint Flow (F2), 2-5, 2-9
Device ID evaluation, 4-9
device registration, 6-8
device registration, enabling, 6-8
device, mark as safe for the user, 4-8
Display Font Size for iPhone

TextPad, 7-4
display font size for iPhone

QuestionPad, 7-5
Display TextPad or KeyPad (S4 and S5), 2-13

E
Enter Key Hotspot

KeyPad, 7-6
PinPad, 7-8
QuestionPad, 7-5
TextPad, 7-3

expiry behavior for Agent cases, setting, 11-2
expiry behavior for CSR cases, setting, 11-1
expiry/overdue behavior, 11-1
expiry/overdue behavior for CSR cases,

disabling, 11-1
expiry/overdue behavior, configuring, 11-1

F
FileWatcherInterval_ms, 5-15

G
GarbageCollectorInterval_ms, 5-15
Generate Non-Personalized TextPad (P2), 2-10
Generate Personalized TextPad or KeyPad (P3), 2-11
getActionCount API, 4-11
getFinalAuthStatus API, 4-10
getRulesData API, 4-11

H
handleTrackerRequest API, 4-2
handleTransactionLog API, 4-4

I
IgnoreUrlMappings, 5-15
integration

API, 2-1
native and web services, 1-1, 2-2
Oracle Access Manager, 1-2, 8-1
static linked, 1-1, 2-3
Universal Installation Option, 1-1

Integration options
Adaptive Risk Manager and KBA Scenario, 2-18
Adaptive Risk Manager Only Scenario, 2-4
Adaptive Risk Manager, Adaptive Strong

Authenticator, and KBA Scenario, 2-7
troubleshooting, 2-19

interceptor actions, 5-23
iPhone

QuestionPad customization, 7-5
TextPad customization, 7-4

IsDeviceMarkedSafe API, 4-8

J
Jitter

KeyPad, 7-7
PinPad, 7-9

K
KeyPad, 6-7, 7-6

L
Landing or Splash Page (S3), 2-7, 2-18
libapr_memcache.so.0.0.1, 5-8
liblog4cxx.so.0.10.0.0, 5-8
libxml2.dll, 5-8
libxml2.so.2.6.32, 5-8
Lock Out Page (S2), 2-7, 2-18
log4cxx.dll, 5-8

M
markDeviceSafe API, 4-8

Index-3

MaxReqBodyBytes, 5-16
MaxSessionInactiveInterval_sec, 5-15
memcache, configuring for Proxy, 5-11
mod_uio.so, 5-8
multi-factor authenticator, adding, 5-32
Multi-shape key

KeyPad, 7-7
PinPad, 7-9

N
native and web services integration, 1-1, 2-2
Native API, 2-2
native integration

java, 4-1
.net, 3-1

Native integration Java
Adaptive Risk Manager, 4-1
customer care, 4-10
installation, 4-1
rules engine, 4-9

Native Integration .net
Adaptive Risk Manager, 3-4
application configuration, 3-2
architecture, 3-1
authenticators, 3-8
challenge questions, 3-7
decoding user input, 3-9
Device Id evaluation, 3-6
encrypting property values, 3-10
installing SDK, 3-1
property files, 3-2
reset failure counters, 3-8
Rules Engine, 3-5
specifying credentials to access Adaptive Risk

Manager SOAP services, 3-9
troubleshooting, 3-10
user-defined enumerations, 3-3
users, 3-3

.NET API, 3-1

O
oaam_rhel4_apache_uio.zip, 5-7
oaam_win_apache_uio.zip, 5-7, 5-8
oaamAccessGate configuration settings, 8-3
Oracle Access Manager AccessGate for Adaptive

Strong Authenticator Embedded AccessGate,
configuring, 8-2

Oracle Access Manager AccessGate for Adaptive
Strong Authenticator Front-End Web Server,
configuring, 8-4

Oracle Access Manager Authentication Scheme for
the Adaptive Strong Authenticator,
configuring, 8-5

Oracle Access Manager domain to use Adaptive
Strong Authenticator Authentication,
configuring, 8-9

Oracle Access Manager Host Identifiers for Adaptive
Strong Authenticator, configuring, 8-7

Oracle Access Manager integration, 1-2, 8-1
Oracle Adaptive Access Manager Proxy, 5-1
Oracle Adaptive Access Manager-Oracle Access

Manager integration, testing, 8-10
overdue behavior for Agent cases, setting, 11-2
overdue behavior for CSR cases, setting, 11-1
overdue/expiry behavior for Agent cases,

disabling, 11-2

P
Password MaxLength

KeyPad, 7-7
TextPad, 7-4

Password Status (C1), 2-7, 2-15
Phrase (Caption)

KeyPad, 7-6
PinPad, 7-8
QuestionPad, 7-4
TextPad, 7-3

Pin MaxLength
PinPad, 7-9

PinPad, 7-7
Post Authentication Rules (R3), 2-7, 2-15
Pre Authentication Rules (R1), 2-9
processPatternAnalysis API, 4-7, 9-3
processRules API, 4-9
Proxy

filter Examples - ProcessString, 5-23
proxy

Adaptive Strong Authenticator interface, 5-26
application discovery, 5-28
get-server action, 5-24
global variables, 5-25
interception process, 5-26
post-server action, 5-24
pre-defined request variables, 5-25
redirect-client action, 5-24
request variables, 5-25
scenarios, 5-30
send-to-client action, 5-24
send-to-server action, 5-24
session variables, 5-25
troubleshooting, 5-38

proxy conditions, 5-18
proxy configuration, 5-17
proxy filters, 5-20
Proxy for Apache, 5-7

application configuration XMLs, 5-17
basic configuration without SSL, 5-12
ConfigFile, 5-14
configuration with SSL, 5-13
configuring httpd.conf, 5-12
configuring memcache, 5-11
GlobalVariable, 5-14
httpd requirements, 5-9
Linux, 5-8
log4j.xml, 5-14
Memcache, 5-14
mod_proxy_html module, 5-13

Index-4

package contents, 5-7
UIO_log4j.xml, 5-16
UIO_Settings.xml, 5-14
Windows, 5-8, 5-9

Proxy for Apache files, copying to Apache, 5-9
Proxy for Apache settings, 5-15
Proxy for Apache, setting up, 5-30
Proxy for Microsoft ISA

configuration files settings, 5-5
configuration reload settings, 5-5
proxy web publishing configuration, 5-4
registering for Microsoft ISA DLL, 5-5
session ID cookie settings, 5-6
session inactive interval settings, 5-6
troubleshooting settings, 5-6

Proxy for Microsoft ISA installation, 5-3
Proxy for Microsoft ISA, setting up, 5-29
proxy interceptors, 5-17
proxy scenarios

Change LoginId, 5-31
Change password, 5-31
Forgot password, 5-31
Login, 5-30
Logout, 5-31
Reset password, 5-31

proxy variables, 5-24

Q
Question Text

QuestionPad, 7-5
QuestionPad, 6-8, 7-4

R
Registration Required Rules (R4), 2-16
resetUser API, 4-11
Run Challenge Rules (R5), 2-18

S
SampleKBATracker, 3-14
SampleWebApp, 3-11
SampleWebAppAuthTracker, 3-13
SampleWebAppWithTracker, 3-12
Scramble

PinPad, 7-9
SessionCookie_DomainLevelCount, 5-15
SessionIdCookieName_str, 5-15
setTemporaryAllow API, 4-10
SOAP services, accessing, 3-9
SOAP Services, Adaptive Risk Manager Online, 2-2
static linked integration, 1-1, 2-3
Sub-jitter

KeyPad, 7-7
PinPad, 7-9

T
TestConfig.xml, 5-8
TextPad, 6-7, 7-2

Timestamp
KeyPad, 7-6
PinPad, 7-8
QuestionPad, 7-5
TextPad, 7-3

U
UIO deployment, 5-2
UIO_Config.rng, 5-8
UIO_log4j.xml, 5-8
UIO_Settings.rng, 5-8
UIO_Settings.xml, 5-8
Universal Installation Option (UIO), 5-1
Universal Installation Option integration, 1-1
Update Authentication Status (P5), 2-6, 2-14
Update Transactions in Bulk API, 3-6
updateAuthStatus API, 4-6, 9-3
updateLog API, 4-5
updateTransaction API, 4-3
updateTransactionStatus API, 4-4, 9-3
Use AuthentiPad Rules (R2), 2-10
UseMemcache, 5-16
Username Page (S1), 2-8
User/Password Page (S1.1), 2-5

V
Validate User/ Passwd (CP1), 2-6, 2-14
VCryptAuth, 2-2
VCryptCC, 2-2
VCryptCommon, 2-2
VCryptRulesEngine, 2-2
VCryptTracker, 2-2
vcrypt.tracker.soap.url, 4-1
vcrypt.tracker.soap.useSOAPServer, 4-1
Virtual Authentication Device (VAD), 7-1
visible text input setting

QuestionPad, 7-5

W
Web Server to Implement WebGate, 8-7
WebGate for Adaptive Strong Authenticator

front-end Web server, installing, 8-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Supported Integrations
	1.1 Integration Deployment Options
	1.2 Features Integration Options

	Part I Native and SOAP Integrations
	2 API Integration
	2.1 Application (API) Integration
	2.1.1 SOAP Services
	2.1.2 Native API
	2.1.2.1 Adaptive Risk Manager Online Native Client API - Web Services/ SOAP
	2.1.2.2 Adaptive Risk Manager Online Native Client API - Static Linking

	2.2 Integration Options
	2.2.1 Adaptive Risk Manager Only Scenario
	2.2.1.1 User/Password Page (S1.1)
	2.2.1.2 Device Fingerprint Flow (F2)
	2.2.1.3 Validate User/ Passwd (CP1)
	2.2.1.4 Update Authentication Status (P5)
	2.2.1.5 Password Status (C1)
	2.2.1.6 Post Authentication Rules (R3)
	2.2.1.7 Lock Out Page (S2)
	2.2.1.8 Landing or Splash Page (S3)

	2.2.2 Adaptive Risk Manager, Adaptive Strong Authenticator and KBA Scenario
	2.2.2.1 Username Page (S1)
	2.2.2.2 Device Fingerprint Flow (F2)
	2.2.2.3 Pre Authentication Rules (R1)
	2.2.2.4 Use AuthentiPad Rules (R2)
	2.2.2.5 Generate Non-Personalized TextPad (P2)
	2.2.2.6 Generate Personalized TextPad or KeyPad (P3)
	2.2.2.7 Display TextPad or KeyPad (S4 and S5)
	2.2.2.8 Decode AuthentiPad Input (P4)
	2.2.2.9 Validate User/ Passwd (CP1)
	2.2.2.10 Update Authentication Status (P5)
	2.2.2.11 Password Status (C1)
	2.2.2.12 Post Authentication Rules (R3)
	2.2.2.13 Check Question Registration for User (C2)
	2.2.2.14 Registration Required Rules (R4)
	2.2.2.15 Challenge (QuestionPad) (S6)
	2.2.2.16 Check Challenge Question Answer (C3)
	2.2.2.17 Run Challenge Rules (R5)
	2.2.2.18 Lock Out Page (S2)
	2.2.2.19 Landing or Splash Page (S3)

	2.2.3 Adaptive Risk Manager and KBA Scenario

	2.3 Troubleshooting

	3 Native Integration .net
	3.1 Architecture
	3.2 Installing SDK
	3.3 Application Configuration
	3.4 Properties
	3.5 User-Defined Enumeration
	3.6 Users
	3.7 Adaptive Risk Manager
	3.8 Rules Engine
	3.8.1 Device ID Evaluation
	3.8.2 Create Transactions in Bulk
	3.8.3 Update Transactions in Bulk

	3.9 Challenge Questions
	3.10 Reset Challenge Failure Counters
	3.11 Authenticators
	3.11.1 Creating an Authenticator
	3.11.2 Embedding an Authenticator in a Web Page
	3.11.3 Decoding User Input

	3.12 Specifying Credentials to Access Adaptive Risk Manager SOAP Services
	3.13 Encrypting Property Values
	3.14 Troubleshooting
	3.15 ASP.NET Applications
	3.16 SampleWebApp
	3.17 SampleWebAppWithTracker
	3.18 SampleWebAppAuthTracker
	3.19 SampleKBATracker

	4 Native Integration Java
	4.1 Installation
	4.2 Adaptive Risk Manager
	4.2.1 handleTrackerRequest
	4.2.2 createTransaction
	4.2.3 updateTransaction
	4.2.4 handleTransactionLog
	4.2.5 updateTransactionStatus
	4.2.6 updateLog
	4.2.7 updateAuthStatus
	4.2.8 processPatternAnalysis
	4.2.9 markDeviceSafe
	4.2.10 IsDeviceMarkedSafe
	4.2.11 clearSafeDeviceList

	4.3 Rules Engine
	4.3.1 processRules
	4.3.1.1 Device ID Evaluation

	4.4 Customer Care
	4.4.1 getFinalAuthStatus
	4.4.2 setTemporaryAllow
	4.4.3 cancelAllTemporaryAllows
	4.4.4 resetUser
	4.4.5 getRulesData
	4.4.6 getActionCount

	Part II Universal Installation Option and Related Integrations
	5 Oracle Adaptive Access Manager Proxy
	5.1 Introduction
	5.1.1 Important Terms
	5.1.2 Architecture
	5.1.3 References

	5.2 Oracle Adaptive Access Manager Proxy for Microsoft ISA Installation
	5.2.1 Proxy Web Publishing Configuration
	5.2.1.1 Web Listener Creation
	5.2.1.2 Web Publishing Rule Creation

	5.2.2 Registering the Oracle Adaptive Access Manager Proxy for Microsoft ISA DLL
	5.2.3 Settings
	5.2.3.1 Configuration files
	5.2.3.2 Configuration Reload
	5.2.3.3 Session Id Cookie
	5.2.3.4 Session Inactive Interval
	5.2.3.5 Settings for Troubleshooting

	5.3 Oracle Adaptive Access Manager Proxy for Apache
	5.3.1 Package Contents
	5.3.1.1 Windows
	5.3.1.2 Linux

	5.3.2 Apache httpd Requirements
	5.3.2.1 Windows
	5.3.2.2 Linux

	5.3.3 Copying the Oracle Adaptive Access Manager Proxy for Apache and Supported Files to Apache
	5.3.3.1 Windows
	5.3.3.2 Linux

	5.3.4 Configuring Memcache (for Linux only)
	5.3.5 Configuring httpd.conf
	5.3.5.1 Basic Configuration without SSL
	5.3.5.2 Configuration with SSL

	5.3.6 Modifying the Oracle Adaptive Access Manager Proxy for Apache Settings
	5.3.6.1 UIO_Settings.xml
	5.3.6.2 UIO_log4j.xml
	5.3.6.3 Application configuration XMLs

	5.4 Setting Up Rules and User Groups
	5.5 Setting Up Models
	5.6 Oracle Adaptive Access Manager Proxy Configuration
	5.6.1 Interceptors
	5.6.2 Conditions
	5.6.3 Filters
	5.6.4 Filter Examples - ProcessString
	5.6.5 Actions
	5.6.6 Variables
	5.6.7 Application

	5.7 Interception process
	5.8 Adaptive Strong Authenticator Interface
	5.9 Application Discovery
	5.9.1 Application Information
	5.9.2 Setting Up the Oracle Adaptive Access Manager Proxy for Microsoft ISA
	5.9.3 Setting Up the Oracle Adaptive Access Manager Proxy for Apache
	5.9.4 Scenarios

	5.10 Samples
	5.11 Troubleshooting

	6 Configuring Adaptive Strong Authenticator
	6.1 Architecture
	6.2 Setting Adaptive Strong Authenticator Settings
	6.3 First Steps
	6.3.1 Determining the Application ID
	6.3.2 Determining Default User Groups

	6.4 Customizing User Interface Branding
	6.4.1 Custom Header / Footer
	6.4.2 Custom CSS
	6.4.3 Custom Content and Messaging

	6.5 How Properties Work
	6.5.1 Property Extension
	6.5.2 User-Defined Enums
	6.5.3 Overriding Existing User-Defined Enums
	6.5.4 Disabling Elements

	6.6 Authenticator Properties
	6.6.1 TextPad
	6.6.2 KeyPad
	6.6.3 PinPad
	6.6.4 QuestionPad

	6.7 Enabling Device Registration

	7 Authenticator Properties
	7.1 Property Files
	7.2 What Authenticator Interfaces Should My Organization Use?
	7.3 What Elements of the Authenticator User Interface Can Be Configured?
	7.3.1 The Frame
	7.3.2 Features Configuration
	7.3.2.1 TextPad
	7.3.2.2 QuestionPad
	7.3.2.3 Keypad
	7.3.2.4 PinPad

	7.4 Authenticator Specifications
	7.5 Accessibility
	7.6 KeysSets
	7.6.1 User Defined Enums Overview
	7.6.2 KeySet Definition

	Part III Integration with Oracle Access Manager
	8 Oracle Access Manager Integration
	8.1 Prerequisites
	8.2 Integration Overview
	8.3 Configure Oracle Access Manager AccessGate for Adaptive Strong Authenticator Embedded AccessGate
	8.4 Configure Oracle Access Manager AccessGate for Adaptive Strong Authenticator Front-End Web Server
	8.5 Configure Oracle Access Manager Authentication Scheme for the Adaptive Strong Authenticator
	8.6 Configure Oracle Access Manager Host Identifiers for Adaptive Strong Authenticator (Optional)
	8.7 Install ASDK for Adaptive Strong Authenticator
	8.8 Configure ASDK AccessGate for Adaptive Strong Authenticator
	8.9 Install Web Server to Implement WebGate
	8.10 Install WebGate for Adaptive Strong Authenticator Front-End Web Server
	8.11 Unpack and Install Oracle Adaptive Access Manager Plug-In to Adaptive Strong Authenticator for Oracle Access Manager Integration
	8.12 Copy ASDK JAR Files to Adaptive Strong Authenticator
	8.13 Add ASDK Library Path to Adaptive Strong Authenticator Application Properties
	8.14 Add ASDK Library Path to Adaptive Strong Authenticator Server Properties
	8.15 Configure Oracle Access Manager Domain to use Adaptive Strong Authenticator Authentication
	8.16 Testing Oracle Adaptive Access Manager-Oracle Access Manager Integration

	Part IV Features Integrations
	9 Auto-learning
	9.1 Pattern Data Processing (On-Line and Scheduled)
	9.2 APIs for Triggering Pattern Data Processing
	9.2.1 updateTransactionStatus
	9.2.2 updateAuthStatus
	9.2.3 processPatternAnalysis

	10 Configurable Actions
	10.1 Integration
	10.2 Executing Configurable Actions in a Particular Order and Data Sharing
	10.3 How to Test Configurable Actions Triggering
	10.4 Sample JUnit Code

	11 Configuring Expiry/Overdue for Cases
	11.1 CSR Cases
	11.1.1 Set the "Expiry" Behavior for CSR Cases (Default Setting)
	11.1.2 Disable "Expiry/Overdue" Behavior for CSR Cases
	11.1.3 Set "Overdue" Behavior for CSR Cases

	11.2 Agent Cases
	11.2.1 Set "Overdue" Behavior for Agent Cases (Default Setting)
	11.2.2 Disable "Overdue/Expiry" Behavior for Agent Cases
	11.2.3 Set "Expiry" Behavior for Agent Cases

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

