

Oracle® Database Lite
Developer's Guide

Release 10.3
E12090-02

February 2010

Oracle Database Lite Developer's Guide Release 10.3

E12090-02

Copyright © 1997, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Send Us Your Comments .. xviii

1 Overview for Designing Mobile Applications
1.1 Introduction ... 1-1
1.2 Oracle Database Lite 10g Application Model and Architecture .. 1-3
1.2.1 Mobile Client Database... 1-4
1.2.1.1 SQLite Database.. 1-4
1.2.1.2 Oracle Lite Database .. 1-5
1.2.2 Mobile Sync .. 1-5
1.2.3 Mobile Server ... 1-5
1.2.4 Message Generator and Processor (MGP) ... 1-7
1.2.5 Mobile Server Repository ... 1-8
1.2.6 Device Manager ... 1-8
1.3 Creating the Publish-Subscribe Model for Mobile Users.. 1-8
1.3.1 Defining the Weight and Conflict Resolution for Publication Items 1-10
1.3.2 Behavior and Requirements for Primary Keys, Foreign Keys and Not Null Fields in

Publication Items ... 1-11
1.4 Mobile Development Kit (MDK) ... 1-11
1.4.1 Mobile SQL (mSQL) ... 1-12
1.4.2 Using the Mobile Database Workbench .. 1-12
1.4.3 Using the Packaging Wizard... 1-13
1.5 Mobile Application Design... 1-13
1.5.1 Steps for Designing Your Mobile Application ... 1-13
1.5.1.1 Read the Documentation Before Design .. 1-15
1.5.1.2 Gather Mobile Requirements... 1-15
1.5.1.3 Proof of Concept .. 1-15
1.5.1.4 Prototype... 1-15
1.5.1.5 Design for Data Subsets.. 1-16
1.5.1.6 Design for Indexing... 1-16
1.5.1.7 Design for Sequences .. 1-16
1.5.1.8 Design for Synchronization.. 1-17
1.5.1.9 Design for Administration ... 1-17
1.5.1.10 Design for the Language Utilized for Handheld Devices 1-17

iv

1.5.2 Application Programming Interfaces .. 1-18
1.5.3 Application Deployment into the Mobile Environment... 1-19
1.6 Supported Languages for Application Development .. 1-19
1.6.1 Native Applications.. 1-20
1.6.2 Standalone Java Applications ... 1-20
1.6.3 Web Applications ... 1-21

2 Synchronization
2.1 How Oracle Database Lite Synchronizes .. 2-1
2.1.1 Oracle Lite Mobile Client Database Created on First Synchronization 2-4
2.1.2 Using Multiple Databases for Application Data ... 2-5
2.1.3 Deciding on Automatic or Manual Synchronization .. 2-5
2.1.4 Deciding on Synchronization Refresh Option... 2-7
2.1.4.1 Fast Refresh ... 2-8
2.1.4.2 Complete Refresh ... 2-8
2.1.4.3 Queue-Based Refresh ... 2-8
2.1.4.4 Forced Refresh... 2-8
2.1.5 Synchronizing to a File With File-Based Sync ... 2-9
2.1.6 How Downloaded Data is Processed on the Mobile Client .. 2-9
2.1.7 How Updates Are Propagated to the Back-End Database ... 2-10
2.1.8 How Modified BLOB Data is Synchronized... 2-11
2.2 Enabling Automatic Synchronization... 2-11
2.2.1 Enable Automatic Synchronization at the Publication Item Level............................ 2-12
2.2.2 Enable/Disable Automatic Synchronization on the Mobile Client........................... 2-12
2.2.2.1 Start or Stop Automatic Synchronization .. 2-12
2.2.2.2 Enable or Disable Automatic Synchronization ... 2-13
2.2.2.3 Sync Control APIs to Start or Enable Automatic Synchronization 2-13
2.2.2.3.1 C/C++ Sync Control APIs to Start or Enable Automatic Synchronization 2-14
2.2.2.3.2 C# Sync Control APIs to Start or Enable Automatic Synchronization 2-14
2.2.2.3.3 Java Sync Control APIs to Start or Enable Automatic Synchronization 2-15
2.2.3 Define the Rules Under Which the Automatic Synchronization Starts.................... 2-15
2.2.3.1 Configure Publication-Level Automatic Synchronization Rules 2-16
2.2.3.2 Configure Platform-Level Automatic Synchronization Rules 2-17
2.2.3.2.1 Event Rules for Platforms ... 2-17
2.2.3.2.2 Condition Rules for Platforms.. 2-18
2.2.3.2.3 Network Configuration for the Client Platform .. 2-18
2.2.4 Setting Data as High Priority in Automatic Synchronization.................................... 2-19
2.2.5 Enable the Server to Notify the Client to Initiate a Synchronization to Download Data .

.. 2-19
2.2.6 Notify Application on Completion of Automatic Synchronization Cycle 2-19
2.2.7 Request Status for Automatic Synchronization Cycle... 2-22
2.3 What is The Process for Setting Up a User For Synchronization? 2-24
2.3.1 Creating a Snapshot Definition Declaratively .. 2-25
2.3.1.1 Manage Snapshots... 2-25
2.3.1.1.1 Read-only Snapshots.. 2-26
2.3.1.1.2 Updatable Snapshots ... 2-26
2.3.1.1.3 Refresh a Snapshot ... 2-26

v

2.3.1.1.4 Snapshot Template Variables ... 2-27
2.3.2 Creating the Snapshot Definition Programmatically .. 2-28
2.4 Creating Publications Using Oracle Database Lite APIs.. 2-28
2.4.1 Defining a Publication With Java Consolidator Manager APIs................................. 2-29
2.4.1.1 Create the Mobile Server User... 2-30
2.4.1.1.1 Change Password... 2-31
2.4.1.1.2 Create Member Users for Sharing Application and Data on Device.......... 2-31
2.4.1.2 Create Publications.. 2-32
2.4.1.3 Create Publication Items... 2-34
2.4.1.3.1 Defining Publication Items for Updatable Multi-Table Views.................... 2-36
2.4.1.4 Define Publication-Level Automatic Synchronization Rules 2-36
2.4.1.4.1 Retrieve All Publications Associated with a Rule ... 2-38
2.4.1.4.2 Retrieve Rule Text ... 2-38
2.4.1.4.3 Check if Rule is Modified.. 2-38
2.4.1.4.4 Remove Rule ... 2-38
2.4.1.5 Data Subsetting: Defining Client Subscription Parameters for Publications.... 2-39
2.4.1.6 Create Publication Item Indexes.. 2-39
2.4.1.6.1 Define Client Indexes... 2-40
2.4.1.7 Adding Publication Items to Publications ... 2-40
2.4.1.7.1 Defining Conflict Rules ... 2-40
2.4.1.7.2 Using Table Weight.. 2-40
2.4.1.8 Creating Client-Side Sequences for the Downloaded Snapshot......................... 2-41
2.4.1.9 Subscribing Users to a Publication.. 2-42
2.4.1.10 Instantiate the Subscription ... 2-42
2.4.1.11 Bringing the Data From the Subscription Down to the Client............................ 2-42
2.4.1.12 Modifying a Publication Item ... 2-42
2.4.1.13 Callback Customization for DML Operations .. 2-43
2.4.1.13.1 DML Procedure Example.. 2-44
2.4.1.14 Restricting Predicate ... 2-45
2.5 Client Device Database DDL Operations ... 2-45
2.6 Customize the Compose Phase Using MyCompose .. 2-46
2.6.1 Create a Class That Extends MyCompose to Perform the Compose........................ 2-46
2.6.2 Implement the Extended MyCompose Methods in the User-Defined Class........... 2-47
2.6.2.1 Implement the needCompose Method .. 2-47
2.6.2.2 Implement the doCompose Method... 2-48
2.6.2.3 Implement the init Method .. 2-49
2.6.2.4 Implement the destroy Method... 2-49
2.6.3 Use Get Methods to Retrieve Information You Need in the User-Defined Compose

Class .. 2-50
2.6.3.1 Retrieve the Publication Name With the getPublication Method 2-50
2.6.3.2 Retrieve the Publication Item Name With the getPublicationItem Method..... 2-50
2.6.3.3 Retrieve the DML Table Name With the getPubItemDMLTableName Method

.. 2-50
2.6.3.4 Retrieve the Primary Key With the getPubItemPK Method 2-51
2.6.3.5 Retrieve All Base Tables With the getBaseTables Method 2-51
2.6.3.6 Retrieve the Primary Key With the getBaseTablePK Method 2-51
2.6.3.7 Discover If Base Table Has Changed With the baseTableDirty Method........... 2-51

vi

2.6.3.8 Retrieve the Name for DML Log Table With the getBaseTableDMLLogName
Method ... 2-51

2.6.3.9 Retrieve View of the Map Table With the getMapView Method....................... 2-52
2.6.4 Register the User-Defined Class With the Publication Item 2-52
2.7 Customize What Occurs Before and After Synchronization Phases 2-53
2.7.1 Customize What Occurs Before and After Every Phase of Each Synchronization . 2-53
2.7.1.1 NullSync.. 2-54
2.7.1.2 BeforeProcessApply .. 2-54
2.7.1.3 AfterProcessApply .. 2-54
2.7.1.4 BeforeProcessCompose... 2-54
2.7.1.5 AfterProcessCompose... 2-54
2.7.1.6 BeforeProcessLogs... 2-54
2.7.1.7 AfterProcessLogs ... 2-54
2.7.1.8 BeforeClientCompose ... 2-54
2.7.1.9 AfterClientCompose ... 2-54
2.7.1.10 BeforeSyncMapCleanup ... 2-55
2.7.1.11 AfterSyncMapCleanup ... 2-55
2.7.1.12 Example Using the Customize Package... 2-55
2.7.1.13 Error Handling For CUSTOMIZE Package ... 2-56
2.7.2 Customize What Occurs Before and After Compose/Apply Phases for a Single

Publication Item ... 2-56
2.8 Initiating Client Synchronization With Synchronization APIs ... 2-59
2.8.1 Starting Synchronization Upload and Download Phases With C or C++ Applications...

.. 2-59
2.8.2 Starting Synchronization Upload and Download Phases With Java Applications 2-59
2.8.3 Starting Synchronization Upload and Download Phases With the ADO.NET Provider .

.. 2-60
2.9 Understanding Your Refresh Options ... 2-60
2.9.1 Fast Refresh.. 2-61
2.9.2 Complete Refresh for Views ... 2-61
2.9.3 Queue-Based Refresh ... 2-62
2.9.4 Forced Refresh... 2-62
2.10 Synchronizing With Database Constraints .. 2-62
2.10.1 Synchronization And Database Constraints... 2-63
2.10.2 Primary Key is Unique... 2-63
2.10.3 Foreign Key Constraints .. 2-63
2.10.3.1 Set Update Order for Tables With Weights ... 2-64
2.10.3.2 Defer Constraint Checking Until After All Transactions Are Applied 2-64
2.10.4 Unique Key Constraint .. 2-65
2.10.5 Not Null Constraint.. 2-65
2.10.6 Generating Constraints on the Mobile Client... 2-65
2.10.6.1 The assignWeights Method.. 2-66
2.11 Resolving Conflicts with Winning Rules.. 2-66
2.11.1 Resolving Errors and Conflicts on the Mobile Server Using the Error Queue 2-68
2.11.2 Viewing Client-Side Synchronization Conflicts from Automatic Synchronization 2-68
2.11.3 Customizing Synchronization Conflict Resolution Outcomes 2-69
2.12 Using the Sync Discovery API to Retrieve Statistics .. 2-69
2.12.1 getDownloadInfo Method... 2-69

vii

2.12.2 DownloadInfo Class Access Methods ... 2-70
2.12.3 PublicationSize Class.. 2-70
2.13 Customizing Synchronization With Your Own Queues.. 2-73
2.13.1 Customizing Apply/Compose Phase of Synchronization with a Queue-Based

Publication Item ... 2-74
2.13.1.1 Queue Creation.. 2-76
2.13.1.2 Queue-Based PL/SQL Callouts... 2-79
2.13.1.2.1 In Queue Apply Phase Processing... 2-80
2.13.1.2.2 Out Queue Compose Phase Processing .. 2-81
2.13.1.3 Create a Publication Item as a Queue... 2-82
2.13.1.4 Register the PL/SQL Package Outside the Repository.. 2-83
2.13.2 Creating Data Collection Queues for Uploading Client Collected Data 2-83
2.13.2.1 Creating a Data Collection Queue .. 2-85
2.13.3 Selecting How/When to Notify Clients of Composed Data 2-86
2.14 Synchronization Performance.. 2-88
2.15 Troubleshooting Synchronization Errors ... 2-88
2.15.1 Foreign Key Constraints in Updatable Publication Items .. 2-88
2.15.1.1 Foreign Key Constraint Violation Example... 2-88
2.15.1.2 Avoiding Constraint Violations with Table Weights... 2-89
2.15.1.3 Avoiding Constraint Violations with BeforeApply and After Apply 2-89

3 APIs for Client and Database Administration
3.1 Deleting a Client Device... 3-1
3.2 Register a Remote Oracle Database for Application Data .. 3-2
3.2.1 Set up a Remote Application Repository With the APPREPWIZARD Script 3-2
3.2.2 Register or Deregister a Remote Oracle Database for Application Data..................... 3-3
3.2.3 Create Publication, Publication Item, Hints and Virtual Primary Keys on a Remote

Database ... 3-4
3.2.4 Using Callbacks on Remote Databases... 3-6
3.2.4.1 Customize Callbacks on the Remote Database .. 3-6
3.2.4.2 Publication Item Level Callbacks for the MGP Apply/Compose Phases............ 3-6
3.2.4.3 Customizing the Apply/Compose Phase for a Queue-Based Publication Item on a

Remote Database ... 3-6
3.3 Create a Synonym for Remote Database Link Support For a Publication Item 3-7
3.3.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem.............. 3-7
3.3.2 Creating or Removing a Dependency Hint .. 3-8
3.4 Parent Tables Needed for Updateable Views ... 3-8
3.4.1 Creating a Parent Hint .. 3-8
3.4.2 INSTEAD OF Triggers .. 3-9
3.5 Manipulating Application Tables... 3-9
3.5.1 Creating Secondary Indexes on Client Device .. 3-9
3.5.2 Virtual Primary Key .. 3-9
3.6 Facilitating Schema Evolution.. 3-10
3.6.1 Schema Evolution Involving a Primary Key .. 3-11
3.7 Set DBA or Operational Privileges for the Mobile Server.. 3-12
3.8 Datatype Conversion Between the Oracle Server and the Oracle Lite Database 3-12

viii

4 Invoking Synchronization in Applications With the Mobile Sync APIs
4.1 Synchronization APIs For C or C++ Applications ... 4-1
4.1.1 Overview of C/C++ Synchronization API .. 4-2
4.1.2 Initializing the Environment With ocSessionInit .. 4-2
4.1.3 Managing the C/C++ Data Structures ... 4-3
4.1.3.1 ocEnv Data Structure ... 4-3
4.1.3.2 ocTransportEnv Data Structure.. 4-6
4.1.4 Retrieving Publication Information With ocGetPublication ... 4-7
4.1.5 Managing User Settings With ocSaveUserInfo ... 4-8
4.1.6 Manage What Tables Are Synchronized With ocSetTableSyncFlag 4-9
4.1.7 Configure Proxy Information.. 4-10
4.1.8 Start the Synchronization With the ocDoSynchronize Method 4-10
4.1.8.1 See Progress of Synchronization with Progress Listening 4-11
4.1.9 Clear the Synchronization Environment Using ocSessionTerm................................ 4-12
4.1.10 Retrieve Synchronization Error Message with ocGetLastError 4-12
4.1.11 Enable File-Based Synchronization through C or C++ APIs...................................... 4-13
4.2 Synchronization API for Java Applications ... 4-14
4.2.1 Overview.. 4-14
4.2.2 Sync Class .. 4-14
4.2.3 SyncException Class... 4-15
4.2.4 SyncOption Class .. 4-16
4.2.5 Java Interface SyncParam Settings ... 4-18
4.2.6 Java Interface TransportParam Parameters .. 4-19
4.2.7 SyncProgressListener Service ... 4-19
4.2.8 Manage What Tables Are Synchronized With Selective Sync 4-21
4.2.9 Enable File-Based Synchronization through Java APIs .. 4-22
4.3 Synchronization API for Java Applications on SQLite Mobile Clients............................ 4-23
4.3.1 Overview.. 4-23
4.3.2 OSESession Class .. 4-23
4.3.3 OSEProgressListener Interface ... 4-26
4.3.4 Enable Selective Synchronization... 4-26
4.3.5 OSEException Class.. 4-27
4.4 Synchronization API for C#.. 4-29
4.4.1 Use the OracleSync Class for Synchronization... 4-29
4.4.2 Using the OracleEngine to Synchronize.. 4-32
4.4.2.1 Launch the MSYNC Tool for User Input ... 4-32
4.4.2.2 Set the Environment and Synchronize With the OracleEngine.......................... 4-32
4.4.3 Exception Handling and Reading Log Files ... 4-33
4.4.4 Monitor Synchronization Progress With the SyncEventHandler.............................. 4-34
4.4.4.1 Using the SyncEventArgs Object .. 4-34
4.4.4.2 Executing the SetEventHandler Method.. 4-36
4.4.4.3 Creating the SyncEventHandler Object ... 4-36
4.4.5 Manage What Tables Are Synchronized With Selective Sync 4-37
4.4.6 Enable File-Based Synchronization through C# APIs ... 4-38
4.5 mSync/OCAPIs/mSyncCom... 4-39

ix

5 Application Development
5.1 Data Access APIs... 5-1
5.1.1 Data Source Name ... 5-2
5.1.2 JDBC... 5-2
5.1.3 ODBC... 5-2
5.1.4 ADO.NET.. 5-3
5.1.4.1 Data Synchronization With the OracleSync or Oracle Engine Classes................. 5-3
5.1.4.2 Creating a Database for Testing ... 5-3
5.1.4.3 Developing an ADO.NET Application on WinCE .. 5-3
5.2 Supported Native APIs for Oracle Database Lite .. 5-3
5.3 Developing Java Applications.. 5-4
5.3.1 Java Support for Applications ... 5-4
5.3.1.1 JDBC Drivers ... 5-4
5.3.2 Oracle Database Lite Java Development Environment.. 5-5
5.3.2.1 Setting Variables for the JDK .. 5-5
5.3.3 Java Development Tools ... 5-6
5.4 Using Stored Procedures in Oracle Database Lite ... 5-6
5.4.1 Load and Define Java Stored Procedures... 5-6
5.4.1.1 Load and Define Java Stored Procedures on the Mobile Client in an Oracle Lite

Database .. 5-6
5.4.1.2 Load and Define Java Stored Procedures in an Enterprise Mobile Server

Environment .. 5-6
5.4.1.2.1 Using MDW to Store Java Stored Procedure in the Repository 5-7
5.4.1.2.2 Using the Consolidator Manager API to Store the Java Stored Procedure in the

Repository ... 5-7
5.4.2 Load and Define C, C++, or C# Stored Procedures .. 5-7
5.4.2.1 Defining the C, C++, or C# Stored Procedure .. 5-8
5.4.2.2 Loading the C, C++ or C# Stored Procedure to the Oracle Lite Database 5-8
5.5 Developing Mobile Web-to-Go Applications ... 5-8
5.5.1 Choose the Type of Web-to-Go Mobile Client to Use .. 5-9
5.5.2 Developing and Testing the Application ... 5-9
5.5.2.1 Building Web-to-Go Applications .. 5-10
5.5.2.2 Database Connections... 5-10
5.5.2.3 Application Roles .. 5-10
5.5.2.4 Developing Java Server Pages ... 5-11
5.5.2.4.1 Mobile Server or Mobile Development Kit Web Server 5-11
5.5.2.4.2 Mobile Client for Web-to-Go .. 5-11
5.5.2.5 Developing Java Servlets for Web-to-Go ... 5-11
5.5.2.5.1 Using Mobile Development Kit for Web-to-Go for Development.............. 5-12
5.5.2.5.2 Creating a Servlet ... 5-12
5.5.2.5.3 Obtaining Database Connectivity from a Servlet .. 5-13
5.5.2.5.4 Web-to-Go User Context for Authentication ... 5-14
5.5.2.5.5 Web-to-Go Servlet Uses Applet Package When Communicating With an

Applet .. 5-14
5.5.2.5.6 Accessing the Mobile Server Repository from a Servlet............................... 5-14
5.5.2.5.7 Debugging the Servlet Using WTGDEBUG.EXE... 5-15
5.5.2.6 Using Web-to-Go Applets .. 5-15

x

5.5.2.6.1 Creating the Web-to-Go Applet ... 5-15
5.5.2.6.2 Creating the HTML Page for the Applet .. 5-16
5.5.2.7 Developing Applets to use JDBC Communication .. 5-17
5.5.2.8 Developing Applet Servlet Communication ... 5-18
5.5.2.8.1 Extend HttpServlet Class .. 5-18
5.5.2.8.2 Communicate With the getResultObject Method.. 5-18
5.5.2.8.3 Add SessionID With the setSessionID Method.. 5-18
5.5.2.8.4 Display Static Documents With the showDocument Method..................... 5-19
5.5.2.9 Debugging Web-to-Go Applications .. 5-19
5.5.2.9.1 Creating a Debug Project... 5-20
5.5.2.9.2 Creating a Library .. 5-21
5.5.2.9.3 Adding Files to the Project.. 5-22
5.5.2.9.4 Running and Debugging... 5-22
5.5.2.9.5 Troubleshooting.. 5-22
5.5.2.10 Customizing the Workspace Application ... 5-23
5.5.2.10.1 Web-to-Go Parameters .. 5-24
5.5.2.10.2 Sample Workspace ... 5-24
5.5.2.11 Using the Mobile Server Admin API.. 5-25

6 Using Mobile Database Workbench to Create Publications
6.1 Use MDW to Create Publications ... 6-1
6.1.1 Set Access Privileges to SYSTEM Tables for Your Application Schema 6-2
6.1.2 Launch MDW ... 6-2
6.2 Create a Project.. 6-2
6.3 Use the Quick Wizard to Create Your Publication .. 6-4
6.4 Create a Publication Item... 6-9
6.4.1 Create SQL Statement for Publication Item .. 6-13
6.4.2 Create a Dependency Hint .. 6-13
6.4.3 Specify Parent Table and Primary Key Hints ... 6-14
6.5 Define the Rules Under Which the Automatic Synchronization Starts 6-14
6.5.1 Configure Publication-Level Automatic Synchronization Rules 6-15
6.5.2 Configure Platform-Level Automatic Synchronization Rules 6-16
6.5.2.1 Define System Event Rules for the Platform ... 6-16
6.5.2.2 Define Automatic Synchronization Conditions for the Platform 6-17
6.6 Create a Sequence .. 6-18
6.6.1 Configuring Sequences in MDW.. 6-19
6.6.2 Configuration Scenarios for Sequence Generation .. 6-20
6.6.3 Example of a Sequence .. 6-20
6.6.4 Example of a Client and Server Sharing a Sequence ... 6-21
6.7 Create and Load a Script Into The Project.. 6-21
6.7.1 Writing SQL Scripts.. 6-22
6.7.2 Test SQL Scripts .. 6-22
6.7.2.1 Connect to the Database ... 6-22
6.7.2.2 Load and Execute SQL Scripts... 6-23
6.7.3 Load the Script Into the Project .. 6-23
6.8 Load a Resource Into the Project ... 6-24
6.9 Create a Publication... 6-24

xi

6.9.1 General Tab Configures Publication Name .. 6-24
6.9.2 Publication Item Tab Associates Publication Items With the Publication 6-25
6.9.2.1 Associating a Publication Item to this Publication ... 6-25
6.9.3 Sequence Tab Associates Existing Sequences With the Publication 6-27
6.9.4 Script Tab Associates Existing Scripts With the Publication...................................... 6-28
6.9.5 Resource Tab Associates Existing Resources With the Publication 6-28
6.9.6 Event Tab Configures Automatic Synchronization Rules for this Publication 6-28
6.10 Import Existing Publications and Objects from Repository .. 6-28
6.10.1 Import Existing Publication from Repository .. 6-29
6.10.2 Import Existing Publication Item From the Repository.. 6-29
6.10.3 Import Existing Sequence From the Repository... 6-29
6.10.4 Import Existing Resource From the Repository ... 6-30
6.10.5 Import an Existing Script From the Repository ... 6-30
6.11 Create a Virtual Primary Key... 6-31
6.12 Test a Publication by Performing a Synchronization ... 6-31
6.13 Deploy the Publications in the Project to the Repository... 6-32

7 Using the Packaging Wizard
7.1 Using the Packaging Wizard... 7-1
7.1.1 Starting the Packaging Wizard .. 7-2
7.1.2 Specifying New Application Definition Details.. 7-4
7.1.3 Listing Application Files... 7-7
7.1.3.1 Compile JSP (For Web-to-Go Applications Only) ... 7-8
7.1.3.2 Filters .. 7-9
7.1.4 Adding Servlets (For OC4J and Web-to-Go Applications Only).................................. 7-9
7.1.5 Entering Database Information .. 7-10
7.1.6 Defining Application Roles ... 7-11
7.1.7 Defining Snapshots for Replication ... 7-12
7.1.7.1 Creating New Snapshots .. 7-14
7.1.7.2 Creating Indexes for Snapshots... 7-15
7.1.7.3 Importing Snapshots ... 7-17
7.1.7.4 Editing Snapshots .. 7-18
7.1.8 Defining Sequences for Replication ... 7-20
7.1.8.1 Importing Sequences... 7-21
7.1.9 Defining Application DDLs .. 7-23
7.1.9.1 Importing Views and Index Definitions .. 7-24
7.1.10 Editing Application Definition ... 7-25
7.1.11 Troubleshooting.. 7-25
7.2 Packaging Wizard Synchronization Support... 7-25

8 Create and Manage Jobs with APIs
8.1 Managing Scheduled Jobs Using ConsolidatorManager APIs .. 8-1
8.2 Start a Standalone Job Engine In Separate JVM ... 8-1
8.3 Using the ConsolidatorManager APIs to Create Jobs ... 8-2

xii

9 Using Symbian Devices
9.1 Installing Oracle Database Lite on Symbian Devices .. 9-1
9.1.1 Supported Platforms and Environment ... 9-1
9.1.1.1 Supported Devices for Symbian Platform .. 9-1
9.1.1.2 Symbian Operating System Support .. 9-2
9.1.1.3 Supported Development Environments for the Symbian Platform...................... 9-2
9.1.2 Prerequisites for Installation .. 9-2
9.1.3 Installing Oracle Database Lite .. 9-3
9.1.3.1 Installing Oracle Database Lite for Symbian on the Development PC 9-3
9.1.3.1.1 For the Symbian 7 or 8 Development Environment... 9-3
9.1.3.1.2 For Symbian 9 Development Environment ... 9-3
9.1.3.2 Installing Oracle Database Lite on the Symbian Device ... 9-4
9.2 Developing Applications for Symbian Devices to Use Oracle Database Lite.................... 9-5
9.3 Using CSQL, ODBC or JDBC to Access Oracle Database Lite ... 9-5
9.3.1 Using CSQL to Connect to the Database on Symbian.. 9-5
9.3.2 Using ODBC to Connect to the Database on Symbian .. 9-5
9.3.3 Using JDBC to Connect to the Database on Symbian... 9-6
9.4 Invoking Synchronization from Applications on Symbian Devices 9-7
9.4.1 Using MSync UI to Invoke Synchronization ... 9-7
9.4.2 Invoking Synchronization through Programmatic APIs ... 9-7
9.4.2.1 Prepare Your Application for Synchronization ... 9-8
9.4.2.2 How to Use the Synchronization API for Symbian Devices 9-8
9.5 Use the Utility Tools on Symbian Devices .. 9-8
9.5.1 Using Utility Tools on Symbian 7 and 8... 9-8
9.5.2 Using Utility Tools on Symbian 9.. 9-9

10 Customizing Oracle Database Lite Security
10.1 Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile

Server ... 10-1
10.1.1 Implementing Your External Authenticator... 10-1
10.1.1.1 Initialization for the External Authenticator ... 10-2
10.1.1.2 Destruction of the External Authenticator... 10-2
10.1.1.3 The Authentication Method for the External Authenticator............................... 10-2
10.1.1.4 The User Instantiation Method for the External Authenticator 10-2
10.1.1.5 Retrieve the User Name or the User Global Unique ID....................................... 10-3
10.1.1.6 Log Off User ... 10-3
10.1.1.7 Change User Password... 10-3
10.1.2 Registering External Authenticator.. 10-3
10.1.3 User Initialization Scripts .. 10-4

11 Tutorial for Building Mobile Web-to-Go Applications
11.1 Develop the Application ... 11-2
11.1.1 Create Database Objects in the Oracle Server... 11-2
11.1.1.1 Create the Table Owner Account .. 11-3
11.1.1.2 Create the Database Objects in the Oracle Database .. 11-3
11.1.2 Compile the Application.. 11-4

xiii

11.2 Create Publication for Application.. 11-4
11.2.1 Create a Project.. 11-5
11.2.2 Create Publication Items.. 11-5
11.2.2.1 Create Publication Item .. 11-5
11.2.2.2 Create Sequence... 11-6
11.2.2.3 Create Script ... 11-6
11.2.3 Create Publication... 11-6
11.3 Package the Application Using the Packaging Wizard.. 11-7
11.4 Administer the Application.. 11-13
11.4.1 Start the Mobile Server and the Mobile Manager .. 11-14
11.4.2 Using the Mobile Manager to Create a New User ... 11-15
11.4.3 Setting Application Properties.. 11-16
11.4.4 Granting User Access to the Application .. 11-17
11.4.5 Defining Snapshot Template Values for the User.. 11-18
11.5 Execute the Application on the Mobile Client for Web-to-Go .. 11-19
11.5.1 Install the Mobile Client for Web-to-Go.. 11-19
11.5.2 Log into the Mobile Client for Web-to-Go .. 11-21
11.5.3 Manually Synchronize the Mobile Client for Web-to-Go... 11-22

12 Tutorial for Building Mobile Web Applications Using ADF/BC4J
12.1 Overview... 12-1
12.1.1 Before You Start .. 12-2
12.2 Creating a Database Connection.. 12-2
12.2.1 Creating a Database Connection to Oracle Database .. 12-2
12.2.2 Specify The Connection To The Oracle Lite Database .. 12-5
12.3 Develop the ADF/BC4J Application... 12-9
12.3.1 Build the Data Model with ADF Business Components... 12-9
12.3.1.1 Create a New Application and Projects ... 12-9
12.3.1.2 Create Business Components .. 12-11
12.3.2 Customize the Business Components Views.. 12-17
12.3.3 Create a Master-Detail JavaServer Faces Page ... 12-19
12.3.4 Run the JSF Page ... 12-27
12.3.5 Configure the ADF/BC4J Application for the Oracle Database Lite Environment...........

.. 12-29
12.3.6 Deploy the Application as WAR file.. 12-30
12.4 Package the ADF/BC4J Application... 12-30
12.4.1 Include the ADF Runtime Libraries with the ADF/BC4J Application................... 12-30
12.4.2 Package the Application from the Packaging Wizard .. 12-31
12.5 Publish and Configure the ADF/BC4J Application from the Mobile Manager........... 12-32
12.6 Test the ADF/BC4J Application .. 12-32
12.7 Run the ADF/BC4J Application on the Mobile Client for Oracle Lite WEB OC4J 12-33

13 Tutorial for Building Mobile Applications for Win32
13.1 Plan the Mobile Application Demo for Win32 .. 13-1
13.2 Description of Tasks for Win32 Demo.. 13-2
13.2.1 Create TASK Table on the Server Database.. 13-3

xiv

13.2.2 Create Publication for Application .. 13-3
13.2.2.1 Create a Project .. 13-4
13.2.2.2 Create Publication Item .. 13-4
13.2.2.3 Create Publication ... 13-5
13.2.3 Package the Application Using the Packaging Wizard... 13-5
13.3 Administer the Application.. 13-9
13.3.1 Start the Mobile Server and the Mobile Manager .. 13-10
13.3.2 Using the Mobile Manager to Create New Users for the Task Application 13-11
13.3.3 Setting Application Properties.. 13-12
13.3.4 Granting User Access to the Application .. 13-13
13.3.5 Defining Snapshot Template Values for the User.. 13-13
13.4 Execute the Application on the Mobile Client for Web-to-Go .. 13-14
13.4.1 Install the Mobile Client on the Win32 Device... 13-14
13.4.2 Browse the TASK Snapshot and Update a Row... 13-16
13.4.3 Develop your Mobile Field Service Application Using Oracle Database Lite....... 13-16
13.4.4 Republish the Application with the Application Program....................................... 13-17

14 Tutorial for Building Mobile Applications for Windows CE
14.1 Overview of the WinCE Sample Application .. 14-1
14.1.1 Before You Start .. 14-2
14.1.1.1 Application Development Computer Requirements ... 14-2
14.1.1.2 Client Device Requirements... 14-2
14.2 Develop the Application ... 14-2
14.2.1 Create Database Objects in the Oracle Server... 14-2
14.2.1.1 The WinCE Transport Application Database Objects.. 14-2
14.2.2 Write the Application Code .. 14-4
14.2.2.1 Transport Module (Transport.vb) ... 14-4
14.2.2.2 Main Form (frmMain.vb) ... 14-5
14.2.2.3 View Packages (frmView.vb)... 14-5
14.2.2.4 Create Package (frmNew.vb)... 14-6
14.2.3 Compile the Application.. 14-7
14.2.3.1 Create CAB Files .. 14-7
14.2.3.2 Install the Application from the CAB File ... 14-7
14.3 Create Publication for Application.. 14-7
14.3.1 Create a Project.. 14-8
14.3.2 Create Publication Items.. 14-8
14.3.2.1 Create Packages Publication Item ... 14-8
14.3.2.2 Create Routes Publication Item ... 14-8
14.3.2.3 Create Trucks Publication Item ... 14-9
14.3.3 Create Publication... 14-9
14.4 Package and Publish the Application ... 14-10
14.4.1 Define the Application Using the Packaging Wizard ... 14-10
14.4.1.1 Create a New Application.. 14-10
14.4.2 Publish the Application ... 14-12
14.5 Administer the Application.. 14-13
14.5.1 Start the Mobile Server... 14-13
14.5.2 Launch the Mobile Manager ... 14-13

xv

14.5.3 Create a New User.. 14-14
14.5.4 Set the Application Properties .. 14-15
14.5.5 Grant User Access to the Application.. 14-15
14.6 Run the Application on the Windows Mobile/Pocket PC Device 14-16
14.6.1 Install the Oracle Database Lite Mobile client for Pocket PC................................... 14-16
14.6.2 Install and Synchronize the Transport Application and Data 14-18

Index

xvi

xvii

Preface

This preface introduces you to the Oracle Database Lite Developer’s Guide, discussing the
intended audience, documentation accessibility, and structure of this document.

Audience
This manual is intended for application developers as the primary audience and for
database administrators who are interested in application development as the
secondary audience.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

xviii

Send Us Your Comments
Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: olitedoc_us@oracle.com

■ FAX: (650) 506-7355. Attn: Oracle Database Lite

■ Postal service:

Oracle Corporation
Oracle Database Lite Documentation
500 Oracle Parkway, Mailstop 1op2
Redwood Shores, CA 94065
U.S.A.

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Overview for Designing Mobile Applications 1-1

1
Overview for Designing Mobile Applications

The following sections provide an introduction to Oracle Database Lite 10g and an
overview of the application development process:

■ Section 1.1, "Introduction"

■ Section 1.2, "Oracle Database Lite 10g Application Model and Architecture"

■ Section 1.3, "Creating the Publish-Subscribe Model for Mobile Users"

■ Section 1.4, "Mobile Development Kit (MDK)"

■ Section 1.5, "Mobile Application Design"

■ Section 1.6, "Supported Languages for Application Development"

1.1 Introduction
Oracle Database Lite 10g facilitates the development, deployment, and management of
Mobile database applications for a large number of mobile users. A Mobile application
is an application that can run on mobile devices without requiring constant
connectivity to the server. The application requires a small, local database on the
mobile device, whose content is a subset of data that is stored in the enterprise data
server. This database can either be a SQLite database or the Oracle Lite database. Each
database type stores data in files with an ODB extension. Modifications made to the
local database by the application are reconciled with the back-end server data through
data synchronization.

The Mobile client component in Oracle Database Lite is a preconfigured component to
facilitate running a Mobile application. It contains synchronization and software
components to manage the device.

Mobile database applications can be developed in many ways, as follows:

■ Web-to-Go applications can be built using Web technologies, such as servlet, Java
Sever Pages (JSP), applet, HTML, and JDBC.

■ Applications that need a standard interface and work with multiple database
engines can use either the Open Database Connectivity (ODBC) interface, Active
Data Object (ADO) interface, or some other interface built on top of ODBC.
ADO.NET can be used on Win32 and Windows CE. Another way to develop a
Mobile database application is to use Java and the Java Database Connectivity
(JDBC) interface. Oracle Database Lite 10g also offers a third way to develop
Mobile database applications using the servlet based Web model called
Web-to-Go.

■ The most common way is to develop native C or C++ applications for specific
Mobile platforms. C++ applications can access the Oracle Database Lite database

Introduction

1-2 Oracle Database Lite Developer's Guide

using the Simple Object Data Access API (SODA), an easy-to-use C++ interface
that is optimized for the object-oriented and SQL functionality of Oracle Database
Lite. For more information about SODA, refer the SODA API documentation,
which is installed as part of the Mobile Development Kit.

■ Symbian applications that need a standard interface and work with multiple
database engines can use either the Open Database Connectivity (ODBC) interface
or some other interface built on top of ODBC.

Once the application has been developed, it has to be deployed. Deployment of
applications is concerned with setting up the server system so that end users can easily
install and use the applications. The nerve center of the server system for Oracle
Database Lite 10g applications is the Mobile Server which is where the Mobile
applications are deployed. Deployment consists of five major steps:

1. Designing the server system to achieve the required level of performance,
scalability, security, availability, and connectivity. Oracle Database Lite 10g
provides tools such as the Consperf utility to tune the performance of data
synchronization. It also provides benchmark data that can be used for capacity
planning for scalability. Security measures such as authentication, authorization,
and encryption are supported using the appropriate standards. Availability and
scalability are also supported by means of load balancing, caching, and the
transparent switch-over technologies of the Oracle Application Server (Oracle AS)
and the Oracle database server.

2. Publishing the application to the server. This refers to installing all the
components for an application on the Mobile Server. Oracle Database Lite 10g
provides a tool called the Packaging Wizard that can be used to publish
applications to the Mobile Server.

3. Provisioning the applications to the Mobile users. This phase includes determining
user accesses to applications with a specified subset of data. Oracle Database Lite
10g provides a tool called the Mobile Manager to create users, grant privileges to
execute applications, and define the data subsets for them, among others. You can
also use the Java API to provision applications.

4. Testing for functionality and performance in a real deployment environment. A
Mobile application system is a complex system involving many Mobile device
client technologies (such as, operating systems, and form factors), many
connectivity options (such as, LAN, Wireless LAN, cellular, and wireless data),
and many server configuration options. Nothing can substitute for the real life
testing and performance tuning of the system before it is rolled out. Particular
attention should be paid to tuning the performance of the data subsetting queries,
as it is the most frequent cause of performance problems.

5. Determining the method of initial installation of applications on Mobile devices
(application delivery). Initial installation involves installing the Oracle Database
Lite 10g client, the application code, and the initial database. The volume of data
required to install applications on a Mobile device for the first time could be quite
high, necessitating the use of either a high-speed reliable connection between the
Mobile device and the server, or using a technique known as offline instantiation.
In offline instantiation, everything needed to install an application on a Mobile
device is put on a CD or a floppy disk and physically mailed to the user. The user
then uses this media to install the application on the device by means of a desktop
machine. Oracle Database Lite 10g provides a tool for offline instantiation.

After deployment, both the application and the data schema may change because of
enhancements or defect resolution. The Oracle Database Lite Mobile Server takes care
of managing application updates and data schema evolution. The only requirement is

Oracle Database Lite 10g Application Model and Architecture

Overview for Designing Mobile Applications 1-3

that the administrator must republish the application and the schema. The Mobile
Server automatically updates the Mobile clients that have older version of the
application or the data.

Oracle Database Lite 10g installation provides you with an option to install the Mobile
Server or the Mobile Development Kit. For application development, you will need to
install the Mobile Development Kit on your development machine. However, as
discussed later in this document, the development examples require the Mobile Server
to be running. Hence, if you intend to recreate the sample applications on your system,
you must install the Mobile Server, preferably on a different machine. The installation
of the Mobile Server requires an Oracle database to be running. You can use an
existing test database as well. The Mobile Server stores its metadata in this database.

1.2 Oracle Database Lite 10g Application Model and Architecture
In the Oracle Database Lite 10g application model, each application defines its data
requirements using a publication. A publication is akin to a database schema and it
contains one or more publication items. A publication item is like a parameterized
view definition and defines a subset of data, using a SQL query with bind variables in
it. These bind variables are called subscription parameters or template variables.

A subscription defines the relationship between a user and a publication. This is
analogous to a newspaper or magazine subscription. Accordingly, once you subscribe
to a particular publication, you begin to receive information associated with that
publication. With a newspaper you receive the daily paper or the Sunday paper, or
both. With Oracle Database Lite you receive snapshots, and, depending on your
subscription parameter values, those snapshots are partitioned with data tailored for
you.

When a user synchronizes the Mobile client for the first time, the Mobile client creates
the Mobile client database on the client machine for each subscription that is
provisioned to the user. The Mobile client database could be a SQLite database or an
Oracle Lite database, as set in the publication. The Mobile client then creates a
snapshot in this database for each publication item contained in the subscription, and
populates it with data retrieved from the server database by running the SQL query
(with all the variables bound) associated with the publication item. Once installed,
Oracle Database Lite is transparent to the end user; it requires minimal tuning or
administration.

As the user accesses and uses the application, changes made to the Mobile client
database are captured by the snapshots. At a certain time when the connection to the
Mobile Server is available, the user may synchronize the changes with the Mobile
Server. Synchronization may be initiated by the user using the Oracle Database Lite
10g Mobile Synchronization application (msync) directly, by programmatically calling
the Mobile Synchronization API from the application, or in the case of Web
applications, the synchronization option can be used from the Web-to-Go workspace
to synchronize the data. The Mobile Synchronization application communicates with
the Mobile Server and uploads the changes made in the client machine. It then
downloads the changes for the client that are already prepared by the Mobile Server.

A background process called the Message Generator and Processor (MGP), which runs
in the same tier as the Mobile Server, periodically collects all the uploaded changes
from many Mobile users and then applies them to the server database. Next, MGP
prepares changes that need to be sent to each Mobile user. This step is essential
because the next time the Mobile user synchronizes with the Mobile Server, these
changes can be downloaded to the client and applied to the client database.

Figure 1–1 illustrates the architecture of Oracle Database Lite 10g applications.

Oracle Database Lite 10g Application Model and Architecture

1-4 Oracle Database Lite Developer's Guide

Figure 1–1 Oracle Database Lite 10g Architecture

The following sections describe the separate components of Oracle Database Lite:

■ Section 1.2.1, "Mobile Client Database"

■ Section 1.2.2, "Mobile Sync"

■ Section 1.2.3, "Mobile Server"

■ Section 1.2.4, "Message Generator and Processor (MGP)"

■ Section 1.2.5, "Mobile Server Repository"

■ Section 1.2.6, "Device Manager"

1.2.1 Mobile Client Database
The Mobile client uses a client database, which can be either a SQLite database or
Oracle Lite database, to store the relational data in one or more data files on the file
system on the client. While the SQLite database is already installed on many client
devices, you can install the Oracle Lite database on most any device from the Mobile
Manager.

Both Mobile client databases are described in the following sections:

■ Section 1.2.1.1, "SQLite Database"

■ Section 1.2.1.2, "Oracle Lite Database"

1.2.1.1 SQLite Database
If you are using the SQLite database as the Mobile client database, if may already be
installed on your device or you must install this independently. All details about the
SQLite database are documented on the SQLite database Web site at
http://www.sqlite.org/. After installing the SQLite database, install the SQLite
Mobile client, which includes the Sync Engine for managing synchronization between
the SQLite database and the back-end Oracle database.

Note: Web-to-Go clients have one additional component, a light
weight HTTP listener that is not shown in the diagram.

Mobile Client�
Database�

(ODB)

Mobile�
Server

E1

E2

E3 �

�

�

�

Message Generator�
and Processor (MGP

Mobile Server�
Repository

Middle Tier Oracle Database�
 Server

Mobile�
Application

Mobile�
Synchronization�

Module

Mobile Client�
RDBMS

Client System

Oracle Database Lite 10g Application Model and Architecture

Overview for Designing Mobile Applications 1-5

1.2.1.2 Oracle Lite Database
The Oracle Database Lite database is a small footprint, Java-enabled, secure, relational
database management system created specifically for laptop computers, handheld
computers, PDAs, and information appliances. The Oracle Database Lite RDBMS runs
on Windows 2003/XP, Windows CE/Windows Mobile, Linux, and Symbian. Oracle
Database Lite RDBMS provides JDBC, ODBC, and SODA interfaces to build database
applications from a variety of programming languages such as Java, C/C++, and
Visual Basic. These database applications can be used while the user is disconnected
from the Oracle database server.

When you install the Mobile Development Kit, the Oracle Lite RDBMS and the utilities
are installed on your development machine. In a production system, when the Mobile
Server installs Oracle Database Lite 10g applications, only the RDBMS, the Mobile
Sync, and Mobile SQL applications are installed on the client machine.

Oracle Database Lite has its own JDBC driver on the client. With this driver, you can
connect to the client Oracle Lite database.

1.2.2 Mobile Sync
Mobile Sync (msync) is a small footprint application that resides on the Mobile device.
Mobile Sync enables you to synchronize data between handheld devices, desktop and
laptop computers and Oracle databases. Mobile Sync authenticates locally, collects
changes from the Oracle Lite database and sends them to the server, where the user is
authenticated before the changes are uploaded. Mobile Sync runs on Windows
2003/XP, Windows CE/Windows Mobile, and Linux.

Use the msync executable for Mobile Sync.

Mobile Sync synchronizes the snapshots in Oracle Database Lite with the data in
corresponding Oracle data server. These snapshots are created by the Mobile Server
for each user from the publication items associated with a Mobile application. The
Mobile Server also coordinates the synchronization process.

The Mobile Sync application communicates with the Mobile Server using any of the
supported protocols (that is, HTTP or HTTPS). When called by the Mobile user, the
Mobile Sync application first collects the user information and authenticates the users
with the Mobile Server. It then collects the changes made to Oracle Database Lite
(from the snapshot change logs) and uploads them to the Mobile Server. It then
downloads the changes for the user from the Mobile Server and applies them to the
Oracle Database Lite.

In addition to this basic function, the Mobile Sync application can also encrypt,
decrypt, and compress transmitted data.

When you install the Mobile Development Kit, the Mobile Sync application is also
installed on your development machine. The Mobile Server also installs the Mobile
Sync on the client machine as part of application installation.

Unlike base tables and views, snapshots cannot be created in Oracle Database Lite by
using SQL statements. They can only be created by the Mobile Server based on
subscriptions which are derived from publication items associated with an application.

1.2.3 Mobile Server
The installation of the Mobile Server requires an Oracle database to be running. You
can use an existing test database as well. The Mobile Server stores its metadata in this
database.

Oracle Database Lite 10g Application Model and Architecture

1-6 Oracle Database Lite Developer's Guide

The Mobile Server is a Web middle-tier server that can exist on Windows, Solaris,
HP-UX, AIX, and Linux. The Mobile Server uses the Oracle Containers for Java (OC4J)
Web engine and provides the interface between the mobile infrastructure and the
enterprise database. Most administration tasks are accomplished through the Mobile
Server Web application—the Mobile Manager.

The Mobile Server provides the following features.

■ application publishing

■ application provisioning

■ application installation and update

■ data synchronization

The Mobile Manager application provides the capability to manage users, devices,
publications and applications. This utility can provides the following:

■ Monitors and manages synchronization between the client data store and the
enterprise data store.

■ Sends administrative commands to the Mobile clients. These commands capture
data and logs from the client or instructs the client to carry out necessary tasks. For
example, the Mobile Manager could send a command to a client to perform
synchronization or to remove the entire client data store, if a device may have
been compromised.

As with any Web server tier, the Mobile Server may be configured within a Web farm
for improved performance within the mobile infrastructure. This enables the use of a
load balancer, such as the balancer included with Oracle Internet Application Server
(OracleAS), or with one provided by a 3rd party vendor. The Mobile Server is
designed to be fully integrated with OracleAS to take advantage of the features within
OracleAS, such as the Oracle Internet Directory (OID) capabilities.

The Mobile Server has two major modules called the Resource Manager and the
Consolidator Manager. The Resource Manager is responsible for application
publishing, application provisioning, and application installation. The Consolidator
Manager is responsible for data and application synchronization.

Application publishing refers to uploading your application to the Mobile Server so
that it can be provisioned to the Mobile users. Once you have finished developing
your application, you can publish it to the Mobile Server.

Application provisioning is concerned with creating subscriptions for users and
assigning application execution privilege to them. Application provisioning can also
be done in one of two ways.

■ Using the administration tool called the Mobile Manager, you can create users and
groups, create subscriptions for users by assigning values to subscription
parameters, and give users or groups privileges to use the application.

Note: If you wish, you can also accomplish the same tasks as the
Mobile Manager with the Application Programming Interfaces (APIs).

Note: As the Mobile Server is a Web-based environment, it is
important to design for a proper security environment as would be
done with any Web server.

Oracle Database Lite 10g Application Model and Architecture

Overview for Designing Mobile Applications 1-7

■ Using the Resource Manager API, you can programmatically perform the above
tasks.

End users install Mobile applications in two steps.

1. As the Mobile user, browse the setup page on the Mobile Server and choose the
setup program for the platform you want to use.

2. Run the Mobile Sync (mSync) command on your Mobile device, which prompts
for the Mobile username and password. The Mobile Sync application
communicates with the Consolidator Manager module of the Mobile Server and
downloads the applications and the data provisioning for the user.

After the installation of the applications and data, you can start using the application.
Periodically, use msync or a custom command to synchronize your local database with
the server database. This synchronization updates all applications that have changed.

1.2.4 Message Generator and Processor (MGP)
The Consolidator Manager module of the Mobile Server uploads the changes from the
client database to the server, and it downloads the relevant server changes to the
client. But it does not reconcile the changes. The reconciliation of changes and the
resolution of any conflicts arising from the changes are handled by MGP. MGP runs as
a background process which can be controlled to start its cycle at certain intervals.

Each cycle of MGP consists of two phases: Apply and Compose.

The Apply Phase
In the apply phase, MGP collects the changes that were uploaded by the users since
the last apply phase and applies them to the server database. For each user that has
uploaded his changes, the MGP applies the changes for each subscription in a single
transaction. If the transaction fails, MGP will log the reason in the log file and stores
the changes in the error file.

The Compose Phase
When the apply phase is finished, MGP goes into the compose phase, where it starts
preparing the changes that need to be downloaded for each client.

Applying Changes to the Server Database
Because of the asynchronous nature of data synchronization, the Mobile user may
sometimes get an unexpected result. A typical case is when the user updates a record
that is also updated by someone else on the server. After a round of synchronization,
the user may not get the server changes.

This happens because the user's changes have not been reconciled with the server
database changes yet. In the next cycle of MGP, the changes will be reconciled with the
server database, and any conflicts arising from the reconciliation will be resolved.
Then a new record will be prepared for downloading the changes to the client. When
the user synchronizes again (the second time), the user will get the record that reflects
the server changes. If there is a conflict between the server changes and the client

Note: The mobile infrastructure may allow for multiple Mobile
Servers to be configured within a Web farm. However, there may only
be one MGP application utilized for the entire Web farm.

Creating the Publish-Subscribe Model for Mobile Users

1-8 Oracle Database Lite Developer's Guide

changes, the user will get the record that reflects either the server changes or the client
changes, depending on how the conflict resolution policy is defined.

1.2.5 Mobile Server Repository
The Mobile Server Repository contains all the application data as well as all
information needed to run the Mobile Server. The Mobile Repository contains the
repository schema under which all the data mapping and internal tables utilized to
maintain data synchronization exist. This schema also stores the application,
application tables and its data published for use with a Mobile client.

The information is normally stored in the same database where the application data
resides. The only exception to this is in cases where the application data resides in a
remote instance and there is a synonym defined in the Mobile Server to this remote
instance.

The Mobile Repository contains some internal tables that the Mobile Server uses to
perform its functions. You may query these tables to gain more details about the
current state of the environment; however, most of the information needed from these
tables is already accessible from the Mobile Manager. You should never alter any of
the internal tables and their contents unless explicitly directed to by Oracle Support
Services or Oracle Development.

Administration, backup, and recovery of the repository are no different then for any
other Oracle database requiring standard Database Administrator (DBA) skills

Changes to the repository should only be made using the Mobile Server Mobile
Manager or the Resource Manager API.

1.2.6 Device Manager
The Device Manager manages client devices. On install of the Mobile client, the Device
Manager registers a device with the Mobile Server. The Device Manager invokes the
update executable after synchronization completes to determine if any mobile
application updates are available, then downloads and installs these application
updates to a Mobile client. You can request—through the Mobile Manager—that
certain commands are invoked on the client. The Device Manager executes these
commands. The Device Manager is responsible for most administrative actions
between the Mobile Server and the Mobile client.

1.3 Creating the Publish-Subscribe Model for Mobile Users
ITo enable users to access their data, you need to first define the data in the snapshot.
Then, subscribe the appropriate users to access only their data. On the client device,
data is stored in a special type of relational table, called a snapshot table. A snapshot
table behaves identical to a regular relational table, but has functionality that enables
tracking changes made to the table.

A SQL query, called the publication item, can determine the record set that is
downloaded to the snapshot table. The publication item is executed against the server
database. The result set of the query defines the structure (columns) of the snapshot
table on the client device as well as its contents.

A collection of publication items is called a publication, which corresponds to a single
Oracle Lite database on a client device. All snapshot tables based that are based on
publication items part of a single publication are stored in the same Oracle Lite
database.

Creating the Publish-Subscribe Model for Mobile Users

Overview for Designing Mobile Applications 1-9

Oracle Database Lite operates within a publish-subscribe model. We use the example
of the magazine as an effective way to explain the publish-subscribe model. A
magazine is created with specific data that would be of interest to readers, such as
sports, hunting, automobiles, and so on. Readers request a subscription for the specific
magazine they feel would be in their interest to read. Once this subscription is created
only the magazines to which the reader has been subscribed are sent to the reader.

For Oracle Database Lite, the publication is the magazine, the publication items are the
specific articles of data and the subscription is the granting of access to the publication
for specific users. In the Oracle Database Lite 10g application model, each application
defines its data requirements using a publication. Data subsets, known as publications
items, are created and added to a publication. Application files are also uploaded to
the same publication. Once these publications are deployed to the Mobile Server, any
user may be granted a subscription to the publication.

Technically, a publication is like a database schema and it contains one or more
publication items. A publication item is like a parameterized view definition and
defines a subset of data, using a SQL query with bind variables in it. These bind
variables are called subscription parameters or template variables.

As shown in Figure 1–2, a subscription defines the relationship between a user and a
publication. Once you subscribe to a particular publication, you begin to receive
information associated with that publication. With a newspaper you receive the daily
paper or the Sunday paper, or both. With Oracle Database Lite you receive snapshots,
and, depending on your subscription parameter values, those snapshots are
partitioned with data tailored for you.

Subscription parameter values can be set by the administrator in order to tailor the
snapshot data for each user.

Figure 1–2 Subscription Defines Relationship Between User and Publication

The subscription is the definition of how to retrieve data from the back-end database;
the snapshot is the actual data that conforms to the definition within the subscription
and which belongs to the user.

This process really forms a simple development cycle for mobile applications, as
follows:

1. Create the publication and its publication items that contains the data subset for a
particular application.

2. Grant users a subscription to a publication. This forms the specific dataset that is
used on a Mobile client.

3. Develop and test the Mobile application to work with the specific data set.

4. Deploy the application to the Mobile Server and install it on the client.

Publication

Publication Item

Publication Item

Subscription

USER

Creating the Publish-Subscribe Model for Mobile Users

1-10 Oracle Database Lite Developer's Guide

Two of the more common questions and sources of confusion that comes up are what
has to be done first:

1. Do you create the publication first or the publication items?

It does not matter. You can create either the publication or the publication item
first. Consider an article for a magazine. That article may have been written by a
freelance author. The article exists before it belongs to any publication. The author
submits this to two or three magazine publishers since it is relevant to the content
they advertise. Two decide it is appropriate for the publication they are
distributing currently while one does not include it since the content is not quite
what their readers want.

2. Do you have to create a separate publication item for each publication?

No, you can have one or more publication items in a publication.

The following sections describes other pertinent information for publication items:

■ Section 1.3.1, "Defining the Weight and Conflict Resolution for Publication Items"

■ Section 1.3.2, "Behavior and Requirements for Primary Keys, Foreign Keys and
Not Null Fields in Publication Items"

1.3.1 Defining the Weight and Conflict Resolution for Publication Items
The following important aspects of the publication item should be taken into account
when you are designing your application:

■ Weight—The publication item weight is used to control the order in processing
publication items, which avoids conflicts. Changes made on the client are
processed according to weight in order to prevent conflicts, such as foreign key
violations. The weight determines what tables are applied to the enterprise
database first. For example, the scott.emp table has a foreign key constraint to
the scott.dept table. If a new department number is added to the dept table
and a new record utilizing the new department number were added to the emp
table, then the transaction would be placed in the error queue if the new record
utilizing the new department in the emp table was applied to the repository before
the new department in the dept table was applied. To prevent the violation of the
foreign key constraint on the enterprise server, you set the dept snapshot to a
weight of 1 and the emp snapshot to a weight of 2, which applies all updates to the
dept table prior to any updates to the emp table as the lower weight is always
processed first.

■ Conflict Resolution—In the same scenario, what if someone already updated the
enterprise server with the new department number? This causes a conflict when
the client attempts to synchronize with the new department that utilizes the same
number. To handle this, conflict resolution may be set to either "client wins" or
"server wins". If set to "server wins", then the setting on the server takes
precedence to the setting on the client. The client transaction is sent to the error
queue. However, if "client wins" is set, then the new department number from the
client overrides the setting on the server.

Note: You can create publications with the Mobile Database
Workbench or the Java APIs.

Mobile Development Kit (MDK)

Overview for Designing Mobile Applications 1-11

1.3.2 Behavior and Requirements for Primary Keys, Foreign Keys and Not Null Fields
in Publication Items

Only primary keys and not null fields are replicated down to the client. Publication
items require a primary key field or, as in the case of a view, primary key hints.

If a foreign key needs to be applied to the client, then the script for the foreign key
needs to be added to the publication, so that it will be executed when the client
synchronizes the first time. You can set the script for the foreign key within either the
MDW scripts section or the API.

Constraints are not the only type of script that may be executed on the client. The
script could execute any valid SQL DDL statement on the client.

1.4 Mobile Development Kit (MDK)
Before you develop an application using Oracle Database Lite 10g, you should install
the Oracle Database Lite 10g Mobile Development Kit (MDK) on the machine on
which you intend to develop your application. For instructions on how to install the
Mobile Development Kit, see Section 4.3, "Installing Oracle Databse Lite" in the Oracle
Database Lite Getting Started Guide.

The Oracle Database Lite 10g Mobile Development Kit includes the following
components.

■ Oracle Database Lite RDBMS—A lightweight, object-relational database
management system, including Mobile SQL (msql.exe). Mobile SQL is written in
Java. It requires the Java runtime environment JRE to be installed on your system
before you can use it.

■ Mobile Database Workbench (MDW)—A development tool for creating a
publication.

■ Packaging Wizard—A tool to publish applications to the Mobile Server.

■ Mobile Sync—A transactional synchronization engine that includes the executable
(msync.exe) and the Java wrapper for it.

■ mSQL—An interactive tool to create, access, and manipulate Oracle Database Lite
on laptops and handheld devices

Using any C, C++, or Java development tool in conjunction with the Mobile
Development Kit for Windows, you can develop your Mobile applications for
Windows against Oracle Database Lite, and then publish the applications to the
Mobile Server by using the Packaging Wizard. See Section 4.3, "Installing Oracle
Database Lite" in the Oracle Database Lite Getting Started Guide for instructions on how
to install the Mobile Server.

Once you have published the applications to the Mobile Server, you can use the
Mobile Manager to provision the applications to the Mobile users. Provisioning
involves specifying the values of the subscription parameters used for subsetting the
data needed by the application for a particular user. A user to whom an application
has been provisioned can then log in to the Mobile Server and request it to set up
everything the user needs to run the applications on the user's device.

When you install the MDK, it performs the following:

■ Installs a starter database file in the <ORACLE_HOME>\Mobile\Sdk\OLDB40
directory named polite.odb.

Mobile Development Kit (MDK)

1-12 Oracle Database Lite Developer's Guide

■ Sets the PATH environment variable to include the bin directory of the Mobile
Development Kit. You can use the Command Prompt on your Windows 32
machine to do the following quick test.

At the command prompt, enter the following.

msql system/manager@jdbc:polite:polite
...
SQL>create table test (c1 int, c2 int);
Table created
SQL>insert into test values(1,2)
1 row(s) created
SQL>select * from test;

 C1 | C2
 ----+----
 1 | 2
SQL>rollback;
Rollback completed
SQL>exit

1.4.1 Mobile SQL (mSQL)
Mobile SQL is an interactive tool that allows you to create, access, and manipulate the
Oracle Lite database on laptops and handheld devices. The mSQL installations on
laptops cannot be used to create an Oracle Lite database, but can create an Oracle Lite
database on hand-held devices. Using mSQL, you can perform the following actions.

■ Create Oracle Lite database objects such as tables and views

■ View tables

■ Execute SQL statements

The mSQL tool is installed with the Mobile Development Kit installation. It is also
installed by the Mobile Server as part of application installation. If the Oracle Lite
database was created in the Mobile Server environment, then the default username is
SYSTEM and the password is the same as the Mobile user password.

The mSQL tool for the Windows 32 platform is a command line tool that is similar to
the Oracle SQL*Plus tool, but does not provide compatibility with SQL*Plus. The
mSQL tool for Windows CE supports a graphical user interface. See Appendix C.1,
"The mSQL Tool in the Oracle Database Lite Client Guide for details.

1.4.2 Using the Mobile Database Workbench
The Mobile Database Workbench (MDW) is a new tool that enables you to iteratively
create and test publications—testing each object as you add it to a publication.
Publications are stored within a project, which can be saved and restored from your

Note: The polite.odb starter database is not the name of the
Mobile client database. For information on what Oracle Lite database
(ODB) files are installed on the client, see "Section 6.3, "Synchronize or
Execute Applications on the Mobile Client" in the Oracle Database Lite
Client Guide.

Note: UTF8 SQL Scripts are not supported in mSQL.

Mobile Application Design

Overview for Designing Mobile Applications 1-13

file system, so that you can continue to add and modify any of the contained objects
within it.

All work is created within a project, which can be saved to the file system and
retrieved for further modifications later. Once you create the project, start creating the
publication items, sequences, scripts and resources that are to be associated with the
publication. You can create the publication and associated objects in any order, but
you always associate an existing object with the publication. Thus, it saves time to start
with creating the objects first and associating it with the publication afterwards.

For detailed information on how to use MDW, see Chapter 6, "Using Mobile Database
Workbench to Create Publications".

1.4.3 Using the Packaging Wizard
The Packaging Wizard is a graphical tool that enables you to perform the following
tasks.

1. Create a new Mobile application.

2. Edit an existing Mobile application.

3. Publish an application to the Mobile Server.

When you create a new Mobile application, you must define its components and files.
In some cases, you may want to edit the definition of an existing Mobile application's
components. For example, if you develop a new version of your application, you can
use the Packaging Wizard to update your application definition. The Packaging
Wizard also enables you to package application components in a JAR file which can be
published using the Mobile Manager. The Packaging Wizard also enables you to create
SQL scripts which can be used to execute any SQL statements in the Oracle database.

For detailed information on how to use the Packaging Wizard, see Chapter 7, "Using
the Packaging Wizard".

1.5 Mobile Application Design
Before you start to design your Mobile application, it is important to read the
following sections to understand the differences between an enterprise application
and the mobile application as well as the choices you have in designing your
application:

■ Section 1.5.1, "Steps for Designing Your Mobile Application"

■ Section 1.5.2, "Application Programming Interfaces"

■ Section 1.5.3, "Application Deployment into the Mobile Environment"

1.5.1 Steps for Designing Your Mobile Application
With a proper design, you can avoid the most common causes for mobile project
failure, not meeting the needs of the business, poor performance, or issues occurring
within a production environment. Proper design of the Mobile System includes the
infrastructure and the mobile application. Without proper design, a mobile
architecture could end up costing more then it saves.

The following assumption is one of the most common misconceptions for taking an
enterprise application and incorporating it into a mobile component:

The mobile application is a scaled down version of the enterprise application.

Mobile Application Design

1-14 Oracle Database Lite Developer's Guide

By taking an existing enterprise application, you may intend to provide the same
functionality in remote or disconnected locations. Since the enterprise application has
already undergone thorough requirements gathering, design, development, testing,
and successful implementation, you may assume that it will automatically work
seamlessly as a mobile application and so do not test it in this environment. This
assumption may lead to project failure.

For example, take an enterprise form-based client/server application. You have a
client connecting through a middle-tier connecting to a database on the back-end.
Taking this to a mobile infrastructure, such as with Oracle Database Lite, adds a
completely new tier that did not exist within the original infrastructure. The Mobile
Server tier introduces new concerns, such as the following:

■ Security—There is now a system in the infrastructure that potentially gives any
outsider access to the entire organization if proper security configuration and
implementation is not performed.

■ Bandwidth—The Mobile Server may become a bottleneck for all remote locations
without the implementation of a Web farm.

■ Scalability—The applications are performing synchronization of hundreds to
millions of records, which is not the same as providing static Web pages to a large
number of users. A system that is fine for serving static Web pages may not be
capable of servicing hundreds of users performing synchronization.

A complete redesign of the system specifications may be in order.

You may also need to re-evaluate the original design of the enterprise application. The
following lists a few design considerations for the mobile application:

■ Memory—An application designed, tested, and implemented on a multiprocessor
system with several gigabytes of memory will not perform the same on a standard
PC with only a single processor and maybe 512 megabytes of memory.

■ Resource Limitations—Several years ago, limitations of available resources made
the usage of data types an extreme concern. The storage space saved by using a
small integer over an integer was crucial due to limited memory available. With
advances in memory and system resources, this has not been a concern to most
modern developers. Now, the mobile infrastructure brings resource limitations
back to the list of chief concerns for the design and development of mobile
applications. One of the most significant of these limitations is the bandwidth
available for the mobile client. If a Mobile client is only able to synchronize over a
cell phone network, you may not wish to bring a million records down to a client
that only needs a few thousand records. This decision impacts the synchronization
performance, as well as the costs associated with the synchronization. If the
mobile client was only utilized to collect data, then you can create a data collection
queue for synchronization and avoid the whole download phase of
synchronization.

■ Use of Indexes—You use indexes for avoiding full-table scans. So, if you use the
same data subset originally designed for a Windows machine down on a client
device and do not use an index, then the performance may be adversely effected.
Oracle Database Lite uses two types of scans for queries: full table scans and index
based scans.

Thus, we recommend the following steps:

■ Section 1.5.1.1, "Read the Documentation Before Design"

■ Section 1.5.1.2, "Gather Mobile Requirements"

■ Section 1.5.1.3, "Proof of Concept"

Mobile Application Design

Overview for Designing Mobile Applications 1-15

■ Section 1.5.1.4, "Prototype"

■ Section 1.5.1.5, "Design for Data Subsets"

■ Section 1.5.1.6, "Design for Indexing"

■ Section 1.5.1.7, "Design for Sequences"

■ Section 1.5.1.8, "Design for Synchronization"

■ Section 1.5.1.9, "Design for Administration"

■ Section 1.5.1.10, "Design for the Language Utilized for Handheld Devices"

1.5.1.1 Read the Documentation Before Design
To ensure that you develop your applications correctly, we recommend that you start
with a light scan of all of the documentation followed by detailed reading of pertinent
areas related to the specific project that are to be undertaken.

1.5.1.2 Gather Mobile Requirements
Gathering requirements is the key to successful project development; a mobile project
is no exception.

Mobile users have a specific task they perform. Gather the specific requirements of
each mobile user type that will use the mobile application. For example, an insurance
application may have two types of mobile users:

■ The insurance investigator may only drive to locations to photograph an incident
for an insurance claim before any required evidence is altered or vanishes. This
user needs a mobile application that captures and uploads the images of the
incident.

■ A claims agent may later be sent to the site to process a claim for the client. This
user needs more details for the client, such as their account information and what
they are covered for in order to properly process a claim.

Each user requires a different subset of the enterprise data and functionality within the
mobile application.

1.5.1.3 Proof of Concept
Proof of concept testing determines if the Oracle Database Lite mobile architecture
meets the needs of the business before architectural design starts.

When an aspect of the mobile solution is determined to meet a requirement, a quick
proof of concept test ensures that the requirement may be satisfied by the potential
solution. There is a difference in what can be done in a mobile environment versus
what can be accomplished in the enterprise environment.

1.5.1.4 Prototype
Prototyping may be seen as too costly to utilize for the proper design of a mobile
architecture and application. However, consider that a prototype may be anything
from sketching out a design on paper to writing a full application prototype.

You may use one of the sample applications included with the Oracle Database Lite
product, such as the transport demo, to gain a full understanding of the infrastructure
and the design considerations it involves. Take the application through the setup of
the environment, the creation of users, the deployment of the mobile application to
multiple clients, the synchronization of multiple clients, and the testing of updates

Mobile Application Design

1-16 Oracle Database Lite Developer's Guide

made to the application. This provides a better understanding of the infrastructure as
actual hands on experience.

1.5.1.5 Design for Data Subsets
Data subsetting reduces data to be downloaded, which has a direct impact on
performance.

What is Data Subsetting? Data subsets are a crucial part of the design for a mobile
application. Data sub-setting is accomplished through variables that limit the data to a
specific requirement, such as by region or department. An easy way to conceptualize
data subsets is to consider a subset that is limited through a WHERE clause that uses
bind variables—also known as snapshot template variables—to limit the snapshot
data.

When you set up your publication item, you may have set up an input parameter that
defines what snapshot of data is to be retrieved for this user. For example, if you have
an application that retrieves the customer base for each sales manager, the application
needs to know the sales manager’s identification number to retrieve the data specific
to each manager. Thus, if you set up each sales manager as a unique user and set their
identification number in the data subsetting screen, then the application is provided
that unique information for retrieving data.

1.5.1.6 Design for Indexing
Oracle Database Lite maintains two basic methods for accessing data within a table:
full table scan and index-based access. The performance of an application can be
affected if the design does not include the appropriate indexing. Use indexes to avoid
full table scans.

You can execute the Explain Plan and SQL Trace capabilities within the product to
determine the access method used by a statement and to determine if indexes are
being utilized. Analyze your statements throughout the design and development
cycles to ensure that they are being designed and developed for maximum efficiency.

1.5.1.7 Design for Sequences
Sequences guarantee uniqueness of a value, such as a primary key. Design how the
sequences are generated within the mobile infrastructure. For example, if the
enterprise database generates a sequence number and the Mobile client generates the
same sequence number a conflict with the data occurs and causes an error.

Native sequences may be formed specifically for the Mobile clients. These sequences
would never populate on the enterprise database itself, so there is no risk of a conflict
occurring. This works well when data updates only occur from the Mobile clients and
input to the database does not come from any other source. However, it is often
necessary to have the sequences generated by both the database and the clients. To
accomplish this, sequences must be designed so the database uses a range separate
from the range used by the clients. For example, you could define the sequences where
the database uses all odd numbers and the clients uses all even numbers.

You must also design sequences for the Mobile clients, so that each client uses a
unique range of values without any two clients using the same range. For this you
specify the sequence range for each client, such as sequences 1 through 1000 for client
A and sequences 1001 through 2000 for client B. Using these ranges for the sequence
numbers prevents each client from using the same sequence number as used by
another client.

For full details on sequences, see Section 6.6, "Create a Sequence".

Mobile Application Design

Overview for Designing Mobile Applications 1-17

1.5.1.8 Design for Synchronization
If you are using the Mobile option, synchronization holds the mobile infrastructure
together.

Analyze all of the data needed by the mobile user, as follows:

■ Most snapshots are created where the data can be modified on either the client or
the server, where the modifications are propagated to the other side through
synchronization.

■ If any snapshots require only the ability to read the data—that is, all modifications
to the data are made on the server-level and not by the user—then create
read-only snapshots.

■ If all or a majority of the users use the same read-only snapshots, then create a
cached user that shares the read-only data across multiple clients.

Analyze the type of synchronization that is appropriate for the user’s needs, as
described below:

■ For optimal performance, use fast refresh for all publications, if appropriate.

■ Only design publication items for a complete refresh if the following is true:

– If it is absolutely critical for all changes to be processed and applied to the data
store immediately.

– If it is critical that any enterprise updates are immediately brought down to
the client.

■ If a mobile user is only performing data collection and it is not necessary for server
updates to be brought down to the user, then implement a push-only
synchronization model for those publication items. For more information, see
Section 2.13.2, "Creating Data Collection Queues for Uploading Client Collected
Data".

■ When a mobile user only requires specific table to be updated or synchronized,
perform a selective synchronization methodology limiting the synchronization
process to specific tables or specific publications.

1.5.1.9 Design for Administration
When designing for administration, you may create standardized groups and assign
users to these groups. It is much easier to administer groups of users then it is to
administer several thousand users each as individuals. The situations where groups
simplify your administration is when your organizational architecture has data and
the environment is structured into a hierarchy, such as by region or department. In
this situation, all properties, access settings, and template variables may be set for
groups of users and not the users individually.

1.5.1.10 Design for the Language Utilized for Handheld Devices
Any language selected for handheld development has limitations not existing in their
fuller counterparts. The mobile application must be designed to meet these limitations.
For example, when developing with WinCE utilizing the Microsoft Compact

Note: The complete refresh is the most resource intensive method
and should only be utilized after full consideration of the performance
hit is analyzed. Only time critical publication items should be
specified for a complete refresh synchronization type.

Mobile Application Design

1-18 Oracle Database Lite Developer's Guide

Framework with C# or VB.Net, forms are not maintained the same way as they are in
the full framework when running on a normal PC. Without designing for this
limitation, it would be easy to accidentally leave forms sitting in the background that
should have been closed when the application exits. This prevents crucial memory
from being freed and also prevents any application updates from downloading and
installing correctly.

When you properly research and design for the device platform, everything done on
the device may be performed on the larger non-mobile applications. Thus, you can
reuse and update code simply as it uses the same coding for both environments.
Designing in the reverse may result in functionality being utilized in the non-mobile
applications that does not have a matching functionality in the mobile version.

1.5.2 Application Programming Interfaces
When you are developing your application, you may decide that you want to control
more aspects of Oracle Database Lite within your application—rather than relying on
user interaction. In this case, you can use the Oracle Database Lite Application
Programming Interfaces (APIs). Almost any task performed by the tools and utilities
included with Oracle Database Lite may also be accomplished with the APIs. Some of
the more advanced functionality within the product is only available through the use
of the APIs. Except for the synchronization APIs which are provided for most
languages utilized for application development, most of the APIs are Java interfaces
that must be developed with the Java programming language.

The most common APIs utilized and their uses are as follows:

■ Synchronization APIs: These APIs provide all of the basic synchronization
functionality that is found within the mSync utility. The advantages of using these
APIs are that the synchronization process can be fully integrated within the actual
Mobile application. The APIs also provide the ability for a push-only
synchronization, which allows Mobile clients to only upload data skipping the
downloading of new data or applications. The push-only model is useful when
bandwidth is limited and when the client just collects data—that is, it is not
necessary for a remote client to have updated data from the enterprise.

■ Consolidator APIs: The Consolidator APIs provide administrative functionality
for creating users, setting the user properties, working with applications, and so
on. You can automate common administration tasks and speed up some of the
administration tasks required, such as the creation of a large amount of users. The
only limitation is that application and user settings are not displayed in the Mobile
Manager Web administration tool as these APIs directly access the Mobile
Repository.

■ Mobile Resource Manager APIs: The Mobile Resource Manager APIs also provides
administration functionality for users and applications; however, this API actually
updates the Mobile Manager administration tool as well as the repository. This
utility may be used to create users, set user access, set the user template variables,
and many other tasks.

■ Device Manager APIs: The Device Manager APIs provide the ability customize the
management of devices. These APIs may be used to gather information on
devices, send commands to devices, register devices, and so on.

Supported Languages for Application Development

Overview for Designing Mobile Applications 1-19

1.5.3 Application Deployment into the Mobile Environment
Deployment of applications includes setting up the server system so that end users can
easily install and use the applications. Mobile applications are deployed to the Mobile
Server.

Deployment consists of the following steps:

1. Create the publication with the Mobile Database Workbench (MDW). See
Section 1.4.2, "Using the Mobile Database Workbench" for more information.

2. Publishing the application to the server includes installing all the components for
an application on the Mobile Server with the Packaging Wizard tool. See
Section 1.4.3, "Using the Packaging Wizard" for details.

3. Provisioning the applications to the Mobile users through the Mobile Manager,
which is a GUI interface for the Mobile Server. This phase includes determining
user accesses to applications with a specified subset of data. The Mobile Manager
can create users, grant privileges to execute applications, and define the data
subsets for them, among others. You can also use the Java API to provision
applications.

4. Testing for functionality and performance in a real deployment environment. A
Mobile application system is a complex system involving the following:

■ Multiple Mobile device client technologies—such as, operating systems, form
factors, and so on.

■ Multiple connectivity options—such as, LAN, Wireless LAN, cellular, wireless
data, and other technologies.

■ Multiple server configuration options.

When testing, pay particular attention to tuning the performance of the data
subsetting queries, as it is the most frequent cause of performance problems.

5. Determining the method of initial installation of applications on Mobile devices
(application delivery). Initial installation involves installing the Oracle Database
Lite 10g client, the application code, and the initial Oracle Lite database. The
volume of data required to install applications on a Mobile device for the first time
could be quite high, necessitating the use of either a high-speed reliable connection
between the Mobile device and the server, or using a technique known as offline
instantiation. In offline instantiation, everything needed to install an application
on a Mobile device is put on a CD or a floppy disk and physically given to the
user. The user then uses this media to install the application on the device by
means of a desktop machine. Oracle Database Lite 10g provides a tool for offline
instantiation.

After deployment, both the application and the data schema may change because of
enhancements or defect resolution. The Mobile Server manages application updates
and data schema evolution. The only requirement is that the administrator must
republish the application and the schema. The Mobile Server automatically updates
the Mobile clients that have older version of the application or the data.

1.6 Supported Languages for Application Development
Oracle Database Lite is an integrated framework that simplifies the development,
management, and deployment of mobile applications. For a list of the supported on
mobile platforms, operating systems, and hardware, see Chapter 3, "Requirements
before Installation or Development" in the Oracle Database Lite Getting Started Guide.

Supported Languages for Application Development

1-20 Oracle Database Lite Developer's Guide

Oracle Database Lite provides the Mobile Development Kit, which includes facilities,
tools, APIs, and sample code for you to develop your applications. There are three
application models:

■ Section 1.6.1, "Native Applications"

■ Section 1.6.2, "Standalone Java Applications"

■ Section 1.6.3, "Web Applications"

1.6.1 Native Applications
Native applications are built using C, C++, Visual C++, Visual Basic, Embedded
Visual tools, ActiveX Data Objects (ADO), and MetroWerks CodeWarrior. The
application must be compiled against the mobile device operating system, such as the
Windows CE platform.

Use ODBC to access the Oracle Lite database on the client. Alternatively, you could
use JDBC to access the local client database. See Section 5.1.2, "JDBC" and Section 5.1.3,
"ODBC" for more information on accessing the database with either of these interfaces.

See Section 5.1, "Data Access APIs" for more information on C and C++.

1.6.2 Standalone Java Applications
Standalone Java applications do not include Web and J2EE technology—such as
Servlets and JSPs. Instead, Java applications revolve around using JDBC driver to
access the Oracle Lite database on the client platform, and use AWT and SWING
classes to build the application UI. In addition, the database supports Java stored
procedures and triggers.

Your Java/JDBC application must be compiled for the particular mobile device JVM
environment, which can be different across various client devices. Thus, when you are
developing your Java application, do the following:

Platform Programming Languages

Win32 on a
laptop or
notebook

When you develop on a laptop, you are using one of the Windows
operating systems. You can use any of the languages mentioned in this
book. However, C, C++ are better for creating applications with a good
user interface.

The languages available are C, C++, C#, Java, Visual Basic, JSPs and
Servlets.

You can use Visual Studio.Net 2003 or 2005 for development. If you use
Visual Studio.Net 2005, you must install the ODBC 3.5 driver. See
Section 5.1.3, "ODBC" for details.

PocketPC C, C++, Visual Basic, Java applications (no Servlet or JSP support), SODA,
ADO.NET.

You can use Visual Studio.Net 2005 for development. If you use Visual
Studio.Net 2005, you must install the ODBC 3.5 driver. See Section 5.1.3,
"ODBC" for details.

Linux Java, C, C++

Symbian OS on
Nokia and
Motorola

C, C++

Supported Languages for Application Development

Overview for Designing Mobile Applications 1-21

1. Check the environment: Verify that the olite40.jar, which is located in
OLITE_HOME/bin, is in your CLASSPATH, which should have been modified
during installation.

2. Load the JDBC driver in to your applications. The following is an example:

Class.forName("oracle.lite.poljdbc.POLJDBCDriver");

3. Connect to the Oracle Lite database installed on the client. If your database is on
the same machine as the JDBC application, connect using the native driver
connection URL syntax, as follows:

jdbc:polite:<dsn>

Or if not local, connect as follows:

jdbc:polite@[hostname]:[port]:dsn

See Chapter 5, "Application Development" and Chapter 7, "JDBC Programming" in the
Oracle Database Lite Client Guide for more information.

1.6.3 Web Applications
You can execute existing Web applications using the J2EE Java technologies, such as
servlets and JSPs, in a disconnected mode without modifying the code base.
Web-to-Go is a development option for Web applications, and can be executed on
laptops using Windows 2003 or XP. Web-to-Go applications use Java servlets and JSPs
that may invoke JDBC to access the database, as opposed to using application APIs,
such as C or C++.

For more information, see Chapter 5.5, "Developing Mobile Web-to-Go Applications".

Supported Languages for Application Development

1-22 Oracle Database Lite Developer's Guide

Synchronization 2-1

2
Synchronization

The Mobile client database contains a subset of data stored in the Oracle database. This
subset is stored in snapshots in the Mobile client database. Unlike a base table, a
snapshot keeps track of changes made to it in a change log. Users can make changes in
the Mobile client database and can synchronize these with the Oracle database.

The following sections describe how synchronization functions between the Mobile
clients and an Oracle database using the Mobile Server. This chapter discusses how
you can programmatically initiate the synchronization both from the client or the
server side.

■ Section 2.1, "How Oracle Database Lite Synchronizes"

■ Section 2.2, "Enabling Automatic Synchronization"

■ Section 2.3, "What is The Process for Setting Up a User For Synchronization?"

■ Section 2.4, "Creating Publications Using Oracle Database Lite APIs"

■ Section 2.5, "Client Device Database DDL Operations"

■ Section 2.6, "Customize the Compose Phase Using MyCompose"

■ Section 2.7, "Customize What Occurs Before and After Synchronization Phases"

■ Section 2.8, "Initiating Client Synchronization With Synchronization APIs"

■ Section 2.9, "Understanding Your Refresh Options"

■ Section 2.10, "Synchronizing With Database Constraints"

■ Section 2.11, "Resolving Conflicts with Winning Rules"

■ Section 2.12, "Using the Sync Discovery API to Retrieve Statistics"

■ Section 2.13, "Customizing Synchronization With Your Own Queues"

■ Section 2.14, "Synchronization Performance"

■ Section 2.15, "Troubleshooting Synchronization Errors"

2.1 How Oracle Database Lite Synchronizes
When most people think of synchronizing data, they think of their Palm Pilot. When
you hit the synchronization button for the Palm Pilot, any changes are added to the
database of information on the Windows machine immediately. This is not the case for
Oracle Database Lite, in that the synchronization is used for multiple clients—rather
than a single user. In order to accommodate a large number of concurrent users, the
application tables on the back-end database cannot be locked by a single user. Thus,

How Oracle Database Lite Synchronizes

2-2 Oracle Database Lite Developer's Guide

the synchronization process involves using queues to manage the information
between the Mobile clients and the application tables in the database.

Oracle Database Lite uses a synchronization model that maintains data integrity
between the Mobile Server and the Mobile client. In addition, the synchronization is
asynchronous and that as a result, change propagation is not immediate. The benefit,
however, is that the clients do not stay connected for long while the changes are being
applied.

You can specify if the synchronization occurs automatically or by manual request. For
more details, see Section 2.1.3, "Deciding on Automatic or Manual Synchronization".

A simplified view of Mobile synchronization is as follows:

■ On the client—The Mobile application communicates through the Mobile Sync
Server with the Mobile Server and uploads the changes made in the client
machine. It then downloads the changes for the client that are already prepared by
the Mobile Server.

■ On the Mobile Server—A background process called the Message Generator and
Processor (MGP), which runs in the same tier as the Mobile Server, periodically
collects all the uploaded changes from many Mobile users and then applies them
to the server database. Next, MGP prepares changes that need to be sent to each
Mobile user. This step is essential because the next time the Mobile user
synchronizes with the Mobile Server, these changes can be downloaded to the
client and applied to the client database.

Figure 2–1 illustrates the architecture for Oracle Database Lite 10g applications.

Figure 2–1 Oracle Database Lite 10g Architecture

Note: This section describes how the synchronization is performed
across several components and enterprise tiers to complete
successfully. For more details on each component, see Section 1.2,
"Oracle Database Lite 10g Application Model and Architecture".

Note: Web-to-Go clients have one additional component, a light
weight HTTP listener that is not shown in the diagram.

Mobile �
Client�

Database

Mobile�
Server

Mobile Server�
Repository

Middle Tier

Oracle Database�
 Server

Mobile�
Application

Client System: Mobile Device

How Oracle Database Lite Synchronizes

Synchronization 2-3

Oracle Database Lite uses the Mobile Server to replicate data between the Mobile
clients with their client databases and the application tables, which are stored on a
back-end Oracle database.

Thus, the more detailed description of how synchronization is performed within the
separate components of Oracle Database Lite is demonstrated by Figure 2–2.

Figure 2–2 Data Synchronization Architecture

1. A synchronization is initiated on the Mobile client either by the user or from
automatic synchronization. Note that the Mobile client may be a PDA, a Windows
platform client, or a supported Linux platform client.

2. Mobile client software gathers all of the client changes into a transaction and the
Sync Client uploads the transaction to the Sync Server on the Mobile Server.

3. Sync Server places the transaction into the In-Queue.

4. Sync Server gathers all transactions destined for the Mobile client from the
Out-Queue.

5. Sync client downloads all changes for client database.

6. Mobile client applies all changes for client database. For Oracle Lite Mobile clients,
if this is the first synchronization, the Oracle Lite database is created.

Note: When packaging your application, you can specify if the
transaction is to be applied at the same time as the synchronization. If
you set this option, then the transaction is immediately applied to the
application tables. However, note that this may not be scaleable and
you should only do this if the application of the transaction
immediately is important and you have enough resources to handle
the load.

Note: For information on what Oracle Lite database (ODB) files are
installed on the client, see Section 6.3, "Synchronize or Execute
Applications on the Mobile Client"in the Oracle Database Lite Client
Guide.

In Queue

�

Database

Error Queue

Out Queue

Mobile client

1. Synchronize�
client �

database
Sync�
Client

Sync�
Server

Mobile Server

2. Upload �
changes

E1

E2

E3 �

�

�

�

MGP

3. Place client �
transaction in�
the In Queue

7. MGP executes, �
grabs the client �

transaction 8. MGP applies �
client �

transaction to�
application tables

9. MGP composes �
updates destined�

for the client

10. Updates for client�
placed in Out Queue

**Any errors during�
steps 7-10 are

placed in the �
error queue.

4. Grab transaction �
for client database

5. Download�
changes

6. Execute changes�
 against database

�

Steps 1 through 6 occur between�
the Mobile Server and the client

Steps 7-10 occur between�
the Mobile Server �
and the Database�

when the MGP executes

How Oracle Database Lite Synchronizes

2-4 Oracle Database Lite Developer's Guide

7. All transactions uploaded by all Mobile clients are gathered by the MGP out of the
In-Queue. The MGP executes independently and periodically based upon an
interval specified in the Job Scheduler in the Mobile Server.

8. The MGP executes the apply phase by applying all transactions for the Mobile
clients to their respective application tables to the back-end Oracle database. The
MGP commits after processing each publication. If any conflicts occur during this
phase, most are resolved by the MGP or by the conflict resolution rules. If the
conflict cannot be resolved, the transaction is moved into the Error Queue. See
Section 1.3.1, "Defining the Weight and Conflict Resolution for Publication Items"
for more information.

9. MGP executes the compose phase by gathering the client data into outgoing
transactions for Mobile clients.

10. MGP places the composed data for Mobile clients into the Out-Queue, where the
Sync Server downloads these updates to the client on the next client
synchronization.

Overall, synchronization involves two parties: the Mobile client using the Sync
Client/Server to upload and download changes and the MGP process interacting with
the queues and the application tables to apply and compose transactions. These are
displayed separately in the Data Synchronization section of the Mobile Manager.

The following sections describe synchronization activity:

■ Section 2.1.1, "Oracle Lite Mobile Client Database Created on First
Synchronization"

■ Section 2.1.2, "Using Multiple Databases for Application Data"

■ Section 2.1.3, "Deciding on Automatic or Manual Synchronization"

■ Section 2.1.4, "Deciding on Synchronization Refresh Option"

■ Section 2.1.5, "Synchronizing to a File With File-Based Sync"

■ Section 2.1.6, "How Downloaded Data is Processed on the Mobile Client"

■ Section 2.1.7, "How Updates Are Propagated to the Back-End Database"

■ Section 2.1.8, "How Modified BLOB Data is Synchronized"

2.1.1 Oracle Lite Mobile Client Database Created on First Synchronization
When a user synchronizes an Oracle Lite Mobile client for the first time, the Mobile
client creates an Oracle Lite database on the client machine for each subscription that
is provisioned to the user. The Mobile client then creates a snapshot in this database
for each publication item contained in the subscription, and populates it with data
retrieved from the server database by running the SQL query (with all the variables
bound) associated with the publication item. Once installed, Oracle Database Lite is
transparent to the end user; it requires minimal tuning or administration.

Note: The behavior of the apply/compose phase can be modified.
See Section 6.1.1, "Defining Behavior of Apply/Compose Phase for
Synchronization" in the Oracle Database Lite Administration and
Deployment Guide for more information.

How Oracle Database Lite Synchronizes

Synchronization 2-5

As the user accesses and uses the application, changes made to the data in the Oracle
Lite database are captured by the snapshots. When the connection to the Mobile Server
is available, the changes can be synchronized with the Mobile Server.

2.1.2 Using Multiple Databases for Application Data
By default, the Mobile repository metadata and the application data are stored on the
same database. However, if for performance or other reasons, you may store
application data on a separate database other than the main database where the
Mobile repository exists. In this manner, the Mobile repository exists on the main
database and the data for one or more applications may exist on the main database or
another database of your choosing.

Figure 2–3 Separating Application Data from Mobile Repository

You can register one or more databases to host the application data. Once registered,
you can specify during publication creation where to host the application data.
Synchronization is executed on a per publication basis rotating through the databases.
For more information, see Section 3.2, "Register a Remote Oracle Database for
Application Data".

2.1.3 Deciding on Automatic or Manual Synchronization
In the past, all that was available was manual synchronization. That is, a client
manually requests a synchronization either through an application program executing
an API or by a user manually pushing the Sync button.

Currently, you can configure for synchronization to automatically occur under specific
circumstances and conditions. When these conditions are met, then Oracle Database
Lite automatically performs the synchronization for you without locking your
database, so you can continue to work while the synchronization happens in the
background. This way, synchronization can happen seamlessly without the client’s
knowledge.

Note: Within a publication, you can have one or more publication
items. You can define both manual and automatic publication items
within the same publication.

Mobile�
Server

Middle Tier

Application 1�
Data

Oracle�
Database�
 Server

Application 2�
Data

Oracle�
Database�
 Server

Mobile Server�
Repository

Oracle�
Database�
 Server

MAIN

Client 1

Client 5

Client 4

Client 3

Client 2

How Oracle Database Lite Synchronizes

2-6 Oracle Database Lite Developer's Guide

Manual Synchronization may be initiated, as follows:

■ The user initiates the Oracle Database Lite 10g Mobile Synchronization (mSync)
application directly.

■ The application programmatically invokes the Mobile Synchronization API.

■ Oracle Database Lite has a Web-based application model, known as Web-to-Go.
For this type of application, the synchronization option can be defined from the
Web-to-Go workspace to synchronize the data. See Section 1.6, "Supported
Languages for Application Development" for more information.

Automatic Synchronization can be configured to automatically occur under specific
circumstances and conditions. When these conditions are met, then Oracle Database
Lite automatically performs the synchronization for you without locking your
database, so you can continue to work while the synchronization happens in the
background. This way, synchronization can happen seamlessly without the client’s
knowledge.

For example, you may choose to enable automatic synchronization for the following
scenarios:

■ If you have a user who changes data on their handheld device, but does not sync
as often as you would prefer.

■ If you have multiple users who all sync at the same time and overload your
system.

These are just a few examples of how automatic synchronization can make managing
your data easier, be more timely, and occur at the moment you need it to be uploaded.

Synchronization is closely tied to how you define the snapshot for your application.
See Section 1.3, "Creating the Publish-Subscribe Model for Mobile Users" for a
description of a snapshot and its components. One of the components is a publication
item. If you want automatic synchronization, you define it at the publication item
level.

The differences between the two types of synchronization are as follows:

Note: When a manual synchronization is requested by the client,
ALL publication items are synchronized at that time—including those
defined as manual and automatic synchronization. However, if an
automatic synchronization is currently executing, the manual
synchronization request is delayed until the automatic
synchronization completes. Alternatively, you can stop the automatic
synchronization to allow the manual synchronization to occur. If you
choose to do this, then after the manual synchronization is finished,
re-start the automatic synchronization.

How Oracle Database Lite Synchronizes

Synchronization 2-7

Automatic synchronization is based on a different model than manual
synchronization. Automatic synchronization operates on a transactional basis. Thus,
when the conditions are correct, any new data transactions are uploaded to the server,
in the order of the specified priority for the data. In the manual synchronization
model, you can synchronize all data or use the selective sync option, where you can
detail only certain portions of the data to be synchronized. The selective sync option is
not supported in automatic synchronization, since we are no longer concerned with
synchronization of only a subset of data.

To enable high priority synchronization for automatic synchronization, Oracle
Database Lite adds a hidden column (MSG$PRIO) to all automatic synchronization
snapshots to designate if this data has a higher priority for synchronization if
conditions are right. If users need to indicate that a particular record is high priority,
they can set the column value to (0). Then the sync agent automatically schedules a
high priority synchronization for the transaction that contains this record.

2.1.4 Deciding on Synchronization Refresh Option
How or when data changes are applied to either the Mobile Server or the Mobile client
depends upon the synchronization refresh option at the publication item level.
Synchronization refresh options may ease the cost burden for resources, such as
wireless connectivity, bandwidth and network availability, personnel loss of time
during the synchronization process, and so on.

Oracle Database Lite employs synchronization refresh options that may be utilized to
synchronize data between the Oracle enterprise database and the Mobile client. With
the following Oracle Database Lite refresh options, you can maintain data accuracy
and integrity between the Oracle database and Mobile client:

■ Section 2.1.4.1, "Fast Refresh"

Table 2–1 Difference Between Automatic and Manual Synchronization

Manual Synchronization Automatic Synchronization

Initiation After the snapshot is set up, you can
initiate either by the user initiating
mSync or by an application invoking
one of the synchronization APIs.

All of the set up for automatic
synchronization is configured. Once
configured, it happens
automatically, so there is no
synchronization API.

Configuration for automatic
synchronization can be defined
when you create the publication
item, publication or the platform.

Controlling
synchronization

Synchronization occurs exactly
when the user/application requests
it.

Synchronization occurs without the
user being aware of it occuring. You
may have to manage
synchronization through the Sync
Control API if you have publications
that contain both manual and
automatic synchronization
publication items.

Objects
synchronized

All The following objects are not
synchronized by an automatic
synchronization: sequences, DDL
scripts, resources—such as Java
stored procedures—indexes and
automatic synchronization rules and
conditions.

How Oracle Database Lite Synchronizes

2-8 Oracle Database Lite Developer's Guide

■ Section 2.1.4.2, "Complete Refresh"

■ Section 2.1.4.3, "Queue-Based Refresh"

■ Section 2.1.4.4, "Forced Refresh"

2.1.4.1 Fast Refresh
The most common method of synchronization is a fast refresh publication item where
changes are uploaded and downloaded by the client. Meanwhile, the MGP
periodically collects changes uploaded by all clients and applies them to the back-end
Oracle database tables. Then, the MGP composes new data, ready to be downloaded
to each client during the next synchronization, based on pre-defined subscriptions.

2.1.4.2 Complete Refresh
During a complete refresh, all data for a publication is downloaded to the client. For
example, during the first synchronization session, all data on the client is refreshed
from the Oracle database. This form of synchronization takes longer because all rows
that qualify for a subscription are transferred to the client device, regardless of existing
client data.

The complete refresh model is resource intensive as all aspects of synchronization are
performed. This model should only be utilized for snapshots/publication items where
it is an absolute requirement.

2.1.4.3 Queue-Based Refresh
The developer creates their own queues to handle the synchronization data transfer.
There is no synchronization logic created with a queue-based refresh; instead, the
synchronization logic is implemented solely by the developer. A queue-based
publication item is ideally suited for scenarios that require synchronization to behave
in a different manner than normally executed. For instance, data collection on the
client; all data is collected on the client and pushed to the server.

With data collection, there is no need to worry about conflict detection, client state
information, or server-side updates. Therefore, there is no need to add the additional
overhead normally associated with a fast refresh or complete refresh publication item.

2.1.4.4 Forced Refresh
This is not a refresh option; however, we discuss it here because it is often mistaken for
a refresh option—specifically, it is often confused with the complete refresh option.
The Forced Refresh is a one-time execution request made from within Mobile
Manager, the GUI interface for the Mobile Server. The forced refresh option may result
in a loss of critical data on the client.

The forced refresh option is an emergency only synchronization option. This option is
used when a client is corrupt or malfunctioning, so that you decide to replace the
Mobile client data with a fresh copy of data from the enterprise data store with the
forced refresh. When this option is selected, any data transactions that have been made
on the client are lost.

When a forced refresh is initiated all data on the client is removed. The client then
brings down an accurate copy of the client data from the enterprise database to start
fresh with exactly what is currently stored in the enterprise data store.

How Oracle Database Lite Synchronizes

Synchronization 2-9

2.1.5 Synchronizing to a File With File-Based Sync
There are times when you do not have network access to the Mobile Server, but there
is a way you can use removable media to transport a file between the Mobile Server
and the client. In this instance, you may want to use File-Based Sync, which saves all
transactions in an encrypted file either for the upload from the client for the Mobile
Server or the download from the Mobile Server for the client.

Once saved within the encrypted file, the file is manually transported and copied onto
the desired recipient—whether Mobile client or Mobile Server. This file is uploaded
and the normal synchronization steps are performed. The only difference is that the
interim transmission of the data is through a file copied to the correct machine—rather
than transmitted over a network.

For full details on file-based synchronization, see Section 6.8, "Synchronizing to a File
with File-Based Sync" in the Oracle Database Lite Administration and Deployment Guide.
To enable and perform file-based synchronization through the APIs, see Chapter 4,
"Invoking Synchronization in Applications With the Mobile Sync APIs".

2.1.6 How Downloaded Data is Processed on the Mobile Client
The client processes the downloaded data. By default, the steps taken to process the
received data on the client is as follows:

1. Process each publication item

2. Commit

3. Process each DDL statement

4. Commit

Alternatively, the configuration could effect how the data is processed on the client.
The following are two scenarios where the commit may occur before all of the
publication items are processed:

■ Auto commit—Invoke the auto_commit_count feature for publication items
that use manual synchronization. If this parameter is set to 0, Oracle Database Lite
calls a commit at the end of processing for each publication.

If you set the auto_commit_count variable in the [SYNC] section in the
polite.ini file and the number of records in a transaction is greater than the
auto_commit_count, then a commit is issued at that time. This occurs only on
the first synchronization, complete refresh, or a low memory condition. However,
for the fast refresh option, if the auto commit is performed, then a data mismatch
will happen between client and server.

If this parameter is set to 1000, Oracle Database Lite calls commits for every 1000
inserts. This value should be more than 100. The default value for auto_commit_
count is 250 records on WINCE; this variable is not valid on WIN32 and LINUX
platforms.

Note: The acknowledgment is sent only in the subsequent
synchronization.

Note: During synchronization when auto_commit_count is set,
the user should not add, update, or delete a database record.

How Oracle Database Lite Synchronizes

2-10 Oracle Database Lite Developer's Guide

■ Low memory—If the client is on a WIN32 device and available memory is running
low, then an auto commit is performed.

If the client is on a WinCE device, then if memory is getting low, the
synchronization throws and error and exits error. In this situation, the commit is
not performed.

2.1.7 How Updates Are Propagated to the Back-End Database
The synchronization process applies client operations to the tables in the back-end
database, as follows:

1. The operations for each publication item are processed according to table weight.
The publication creator assigns the table weight to publication items within a
specific publication. This value can be an integer between 1 and 1023. For example,
a publication can have more than one publication item of weight "2" which would
have INSERT operations performed after those for any publication item of a lower
weight within the same publication. You define the order weight for tables when
you add a publication item to the publication. See Section 2.4.1.7.2, "Using Table
Weight" for more information.

2. Within each publication item being processed, the SQL operations are processed
as follows:

a. Client INSERT operations are executed first, from lowest to highest table
weight order.

b. Client DELETE operations are executed next, from highest to lowest table
weight order.

c. Client UPDATE operations are executed last, from highest to lowest table
weight order.

For details and an example of exactly how the weights and SQL operations are
processed, see Section 2.4.1.7.2, "Using Table Weight".

In addition, the order in which SQL statements are executed against the client Oracle
Lite database is not the same as how synchronization propagates these modifications.
Instead, synchronization captures the end result of all SQL modifications as follows:

1. Insert an employee record 4 with name of Joe Judson.

2. Update employee record 4 with address.

3. Update employee record 4 with salary.

4. Update employee record 4 with office number

5. Update employee record 4 with work email address.

When synchronization occurs, all modifications are captured and only a single insert is
performed on the back-end database. The insert contains the primary key, name,
address, salary, office number and email address. Even though the data was created
with multiple updates, the Sync Server only takes the final result and makes a single
insert.

Note: This order of executing operations can cause constraint
violations. See Section 2.10, "Synchronizing With Database
Constraints" for more information.

Enabling Automatic Synchronization

Synchronization 2-11

2.1.8 How Modified BLOB Data is Synchronized
If you update the contents of a BLOB belonging to a particular row in particular table,
then the row is not synchronized. The row only stores a handle to the BLOB
object—not the object itself. So, the handle does not change. Therefore, the changes
made to the BLOB are not propagated to the server. To cause the BLOB contents to be
synchronized to the server, the row must be explicitly updated by the application. Any
update of the row should be sufficient—even updating the column to the same value.

2.2 Enabling Automatic Synchronization
Automatic synchronization occurs in the background, so that the user does not have to
perform a synchronization; thus, the client appears continually connected to the
back-end database without user interaction. All modifications to each record are saved
in a log within the client database. When you requested synchronization manually,
Oracle Database Lite locked the database while processing your request. However,
with automatic synchronization, it could be occurring while you are performing other
tasks to the client database.

When synchronization occurs, all of the modified records stored in the log are
uploaded to the server. In addition, any modified records from the server are
downloaded into the client database. This occurs in the same manner as manual
synchronization. The only difference is when the synchronization is executed and how
the modified records are stored.

The following are details about automatic synchronization:

The following sections detail how you can configure for automatic synchronization:

■ Section 2.2.1, "Enable Automatic Synchronization at the Publication Item Level"

■ Section 2.2.2, "Enable/Disable Automatic Synchronization on the Mobile Client"

■ Section 2.2.3, "Define the Rules Under Which the Automatic Synchronization
Starts"

■ Section 2.2.4, "Setting Data as High Priority in Automatic Synchronization"

■ Section 2.2.5, "Enable the Server to Notify the Client to Initiate a Synchronization
to Download Data"

■ Section 2.2.6, "Notify Application on Completion of Automatic Synchronization
Cycle"

Table 2–2 Automatic Synchronization

Steps for Automatic Synchronization See the Following for Details

The developer enables the publication item to
use automatic synchronization.

Section 2.2.1, "Enable Automatic
Synchronization at the Publication Item Level"

The client can disable and enable automatic
synchronization through the client Workspace
or with the Sync Control API.

Section 2.2.2, "Enable/Disable Automatic
Synchronization on the Mobile Client"

You can configure under what rules the
automatic synchronization occurs.

Section 2.2.3, "Define the Rules Under Which
the Automatic Synchronization Starts"

The server can notify the client of data
waiting for download.

Section 2.13.3, "Selecting How/When to Notify
Clients of Composed Data"

The client application can request status of the
outcome of an automatic synchronization.

Section 2.2.6, "Notify Application on
Completion of Automatic Synchronization
Cycle"

Enabling Automatic Synchronization

2-12 Oracle Database Lite Developer's Guide

2.2.1 Enable Automatic Synchronization at the Publication Item Level
Automatic synchronization can be enabled at publication item level. It is only the
"enabled" publication items within a snapshot that can have automatic
synchronization. All other publication items use manual synchronization. See
Section 6.4, "Create a Publication Item" for details of how to enable synchronization in
a publication item using MDW or Section 2.4.1.3, "Create Publication Items" using the
API.

Within a publication, you can have one or more publication items. You can define both
manual and automatic synchronization publication items within the same publication.
However, if you have automatic synchronization enabled, then an automatic
synchronization may be occurring when the client asks for a manual synchronization.
In this case, the manual synchronization stops the automatic synchronization so that
all snapshots are synchronized, unless the synchronization in in the middle of a large
data commit or is executing over a slow network . If the automatic synchronization
does not stop immediately due to these exceptions and you want the manual
synchronization to start immediately, you can stop the automatic synchronization to
allow the manual synchronization to occur. After the manual synchronization is
finished, re-start the automatic synchronization. You can start and stop automatic
synchronization either programmatically or through the client Workspace. See
Section 2.2.2, "Enable/Disable Automatic Synchronization on the Mobile Client" for
full details.

2.2.2 Enable/Disable Automatic Synchronization on the Mobile Client
Automatic synchronization is enabled by default if a publication is enabled for
automated synchronization. However, you may turn on and off automatic
synchronization—either temporarily or permanently—as follows:

■ Start/Stop—If you decide to stop automatic synchronization temporarily; then, if
you restart the client, automatic synchronization is restarted. Use start/stop for
temporarily stopping automatic synchronization.

■ Enable/Disable—If you decide to disable the automatic synchronization; then,
even if you restart the client, automatic synchronization will not occur. Use
enable/disable for permanently disabling automatic synchronization—until
enabled again.

The following control APIs can be used to manage the automatic synchronization or
enable/disable automatic synchronization:

■ Section 2.2.2.1, "Start or Stop Automatic Synchronization"

■ Section 2.2.2.2, "Enable or Disable Automatic Synchronization"

■ Section 2.2.2.3, "Sync Control APIs to Start or Enable Automatic Synchronization"

2.2.2.1 Start or Stop Automatic Synchronization
Use the start/stop methods to temporarily start or stop the Sync Agent. The user may
want to stop the Sync Agent for many reasons, such as aborting an automatic
synchronization that may be running longer than desired, freeing up system
resources, or de-fragmenting or backing up an Oracle Lite database. If the automatic
synchronization is not re-started with the control API, then it restarts by either a
manual synchronization or the device management agent after reboot.

By default, if you are using the mSync GUI to initiate a synchronization, the
underlying code stops and restarts the automatic synchronization for you, as
described below:

Enabling Automatic Synchronization

Synchronization 2-13

1. Stops the automatic synchronization with the Sync Control API.

2. Initiates a manual synchronization with the programmatic API.

3. Starts the automatic synchronization with the Sync Control API.

You can stop or start automatic synchronization using the Sync Control API. The stop
API has one parameter for input, which is a timeout. You can supply one of the
following values for the timeout, which is a long that specifies a time in milliseconds
to wait for any current activity in the automatic synchronization to complete.

■ BG_STOP_TIMEOUT: A value in seconds that allows the automatic
synchronization process to complete before stopping the service. By default, this is
set to 5 seconds.

■ BG_KILL_AGENT: A value of -1 that makes the automatic synchronization service
stop immediately, even if it is in the middle of a synchronization. If an automatic
synchronization is in process, it will be terminated. NO errors or messages are
returned.

■ Any long value in milliseconds: If the automatic synchronization does not stop
within the time designated, then the method returns with an error of BG_ERROR_
TIMEOUT. At this point, you reissue the stop method to terminate the automatic
synchronization immediately by supplying BG_KILL_AGENT or -1 as the input
value.

2.2.2.2 Enable or Disable Automatic Synchronization
The start and stop methods only control the automatic synchronization temporarily.
Use the disable method to fully disable automatic synchronization, so that it is not
restarted when a device is powered on. Turn the automatic synchronization engine
back on with the enable method. You can enable or disable automatic synchronization
in one of three ways, as described below:

■ Enable/disable automatic synchronization using the Client Workspace. For
details, see Section 6.4.1.1.2 "Configuration Tab" in the Oracle Database Lite Client
Guide.

■ Enable/disable automatic synchronization in the polite.ini file. Set the
ENABLE parameter, which is a part of the SYNC_AGENT section, in the
polite.ini to Yes to enable and No to disable. This can also be accomplished
through the syncagent executable UI. See the following sections for details:
Section E.4.1, "SYNC_AGENT" or Section 6.4.2, "Start, Stop, or Get Status for
Automatic Synchronization," which are located in the Oracle Database Lite
Administration and Deployment Guide.

■ Enable/disable automatic synchronization by invoking the enable or disable
methods, as described in Section 2.2.2.3, "Sync Control APIs to Start or Enable
Automatic Synchronization".

2.2.2.3 Sync Control APIs to Start or Enable Automatic Synchronization
The following sections describe how to start/stop or enable/disable automatic
synchronization from the Sync Control API:

Note: There is also a GUI for starting, stopping the automatic
synchronization process. See Section 6.4.2, "Start, Stop, or Get Status
for Automatic Synchronization" in the Oracle Database Lite
Administration and Deployment Guide for more details.

Enabling Automatic Synchronization

2-14 Oracle Database Lite Developer's Guide

■ Section 2.2.2.3.1, "C/C++ Sync Control APIs to Start or Enable Automatic
Synchronization"

■ Section 2.2.2.3.2, "C# Sync Control APIs to Start or Enable Automatic
Synchronization"

■ Section 2.2.2.3.3, "Java Sync Control APIs to Start or Enable Automatic
Synchronization"

2.2.2.3.1 C/C++ Sync Control APIs to Start or Enable Automatic Synchronization The
following sections describe the Sync Control APIs for C/C++ applications.

To start or stop the Sync Agent, use the following APIs:

olError olStartSyncAgent() ;
olError olStopSyncAgent(long timeout);

To enable or disable the Sync Agent, use the following APIs:

typedef struct _olSyncOpt {
olBool bDisable;
} olSyncOpt;
olError olGetSyncOptions(olSyncOpt *opt);
olError olSetSyncOptions(const olSyncOpt *opt);

The olGetSyncOptions and olSetSyncOptions methods take a pointer to the
olSyncOpt structure as a parameter. The olSyncOpt structure contains the
bDisable boolean, which is true if the Sync Agent is disabled.

To enable the Sync Agent, perform the following:

olSyncOpt opt.bDisable = FALSE;
olSetSyncOptions(&opt);

To disable the Sync Agent, perform the following:

olSyncOpt opt.bDisable = TRUE;
olSetSyncOptions(&opt);

Use olGetSyncOptions method to retrieve the current value of the bDisable
boolean.

2.2.2.3.2 C# Sync Control APIs to Start or Enable Automatic Synchronization The following
BGSyncControl class has the following methods:

■ Start—Start automatic synchronization that was previously stopped.

■ Stop—Stop automatic synchronization. Normally, this is used to stop automatic
synchronization before a manual synchronization is invoked. Then, use the start
method to restart automatic synchronization.

■ Enabled property—Set Enable to TRUE to enable automatic synchronization that
was previously disabled. Set to FALSE to disable automatic synchronization. Even
if the client is restarted, automatic synchronization is not enabled unless you
enable synchronization. This property returns a boolean where true states that
automatic synchronization is enabled and false that it is disabled.

public class BGSyncControl
{
 public void Start();
 public void Stop(int timeout);
public bool Enabled{)
}

Enabling Automatic Synchronization

Synchronization 2-15

All methods throw an OracleException in case of failure.

2.2.2.3.3 Java Sync Control APIs to Start or Enable Automatic Synchronization The following
BGSyncControl class has the following methods:

■ start—Start automatic synchronization that was previously stopped.

■ stop—Stop automatic synchronization. Normally, this is used to stop automatic
synchronization before a manual synchronization is invoked. Then, use the start
method to restart automatic synchronization.

■ enable—Enables automatic synchronization that was previously disabled.

■ disable—Disables automatic synchronization on a client. Even if the client is
restarted, automatic synchronization is not enabled unless you enable
synchronization.

■ isEnabled—Returns a boolean where true states that automatic synchronization
is enabled.

package oracle.lite.msync;
class BGSyncControl {
 public void start() throws SyncException;
 public void stop(long timeout) throws SyncException;
void enable();
void disable();
bool isEnabled();
}

2.2.3 Define the Rules Under Which the Automatic Synchronization Starts
You can configure under what circumstances a synchronization should occur and then
Oracle Database Lite performs the synchronization for you automatically. The
circumstances under which an automatic synchronization occurs is defined within the
synchronization rules, which includes the following:

■ Events—An event is variable, as follows:

■ Data events: For example, you can specify that a synchronization occurs when
there are a certain number of modified records in the client database.

■ System events: For example, you can specify that if the battery drops below a
predefined minimum, you want to synchronize before the battery is depleted.

■ Conditions—A condition is an aspect of the client that needs to be present for a
synchronization to occur. This includes conditions such as battery life or network
availability.

The relationship between events and conditions when evaluating if an automatic
synchronization occurs is as follows:

when EVENT and if (CONDITIONS), then SYNC

So, if an event occurs, the conditions are evaluated. If the conditions are valid, then the
synchronization occurs; if the conditions are not met, then the synchronization is
queued until the conditions are valid.

For example, if the event for new data inserted and the condition specified is that the
network must be available, then a synchronization occurs when the network is
available and there is new data.

You can define the rules for automatic synchronization within certain parts of the
normal snapshot setup and platform configuration, as follows:

Enabling Automatic Synchronization

2-16 Oracle Database Lite Developer's Guide

■ Publication level: Within the publication, you specify the rules under which the
synchronization occurs for all publication items in that publication.

■ Platform level: Some of the rules are specific to the platform of the client, such as
battery life, network bandwidth, and so on. These rules apply to all enabled
publication items that exist on this particular platform, such as WinCE.

By default, the client will automatically synchronize after every commit if network
bandwidth is detected. To change these defaults, you must modify the Client commit
condition in the publication rules and the event rule for network bandwidth in either
the platform or publication rules.

If after defining these rules and publishing the application, you want to modify the
rules, you can do so through MDW. However, you must perform a manual
synchronization. The manual synchronization restarts the automatic Sync Agent,
which will then use the new rules The new settings will NOT be applied during
automatic synchronization.

The following sections detail all of the rules you can configure for automatic
synchronization:

■ Section 2.2.3.1, "Configure Publication-Level Automatic Synchronization Rules"

■ Section 2.2.3.2, "Configure Platform-Level Automatic Synchronization Rules"

2.2.3.1 Configure Publication-Level Automatic Synchronization Rules
Within the publication, you specify the rules under which the synchronization occurs
for all publication items in that publication. These rules are defined when you create
the publication either using MDW or programmatically with the APIs. To create this
through MDW, see Section 6.5, "Define the Rules Under Which the Automatic
Synchronization Starts" ; to add publication-level automatic synchronization rules
with the API, see Section 2.4.1.4, "Define Publication-Level Automatic Synchronization
Rules".

When you are creating the publication, you can define events that will cause an
automatic synchronization. Although these are defined at the publication level, they
enable only the publication items within this publication that has automatic
synchronization enabled.

Table 2–3 describes the publication level events for automatic synchronization. The
lowest value that can be provided is 1.

Table 2–3 Automatic Events for the Publication

Events Description

Client commit For Oracle Lite Mobile client only. Upon commit to the Oracle Lite database,
the Oracle Lite Mobile client detects the total number of record changes in the
automatic synchronization log. If the number of modifications is equal to or
greater than your pre-defined number, automatic synchronization occurs. This
rule is on by default and set to start an automatic synchronization if only one
record is changed. You must modify this rule if you do not want the automatic
synchronization to occur after every commit.

Server MGP
compose

If after the MGP compose cycle, the number of modified records for a user is
equal to or greater than your pre-defined number, then an automatic
synchronization occurs. Thus, if there are a certain number of records
contained in an Out Queue destined for a client on the server, these
modifications are synchronized to the client.

Enabling Automatic Synchronization

Synchronization 2-17

2.2.3.2 Configure Platform-Level Automatic Synchronization Rules
Some of the rules are specific to the platform of the client, such as battery life, network
bandwidth, and so on. These rules apply to all enabled publication items that exist on
this particular platform, such as WinCE. You configure these rules through Mobile
Manager or MDW. This section describes Mobile Manager.

The platform-level synchronization rules apply to a selected client platform and all
publications that exist on that platform. You can specify both platform events and
conditions using the Mobile Manager.

To assign platform-level automatic synchronization rules, perform the following in
Mobile Manager:

1. Click Data Synchronization.

2. Click Platform Settings, which brings up a page with the list of all the platforms
that support automatic synchronization.

3. Click on the desired platform.

4. You can modify the following for each platform:

■ Event Rules—See Section 2.2.3.2.1, "Event Rules for Platforms".

■ Conditions—See Section 2.2.3.2.2, "Condition Rules for Platforms".

■ Network settings—See Section 2.2.3.2.3, "Network Configuration for the Client
Platform".

2.2.3.2.1 Event Rules for Platforms Table 2–4 shows the platform events for automatic
synchronization.

Note: If you want to modify the publication-level automatic
synchronization rules after you publish the appliation, you can do so
through the Mobile Manager, as follows:

1. Click Data Synchronization.

2. Click Repository.

3. Click Publications.

4. Select the publication and click Automatic Synchronization Rules.

Table 2–4 Automatic Event Rules for the Client Platform

Event Description

Network
bandwidth

If the Mobile client detects that it is connected to a network with a
pre-defined minimum bandwidth, then automatic synchronization occurs.

Battery life If the battery life drops below a pre-defined minimum, then
synchronization is automatically triggered.

AC Power As soon as AC power is detected, then synchronization is automatically
triggered.

Enabling Automatic Synchronization

2-18 Oracle Database Lite Developer's Guide

2.2.3.2.2 Condition Rules for Platforms Table 2–5 shows the platform conditions for
automatic synchronization.

2.2.3.2.3 Network Configuration for the Client Platform You can set proxy information for
your network provider, if required for accessing the internet.

You could have two types of networks, as follows:

■ Always-on: Define the proxy and port number. Click Apply when finished.

■ Dial-up:

– Click Add Dial-up Network to add a a new entry for dial-up configuration.

– To edit an existing configuration, select the name of the existing configuration.

– To delete an existing configuration, select the checkbox next to the desired
configuration and click Delete.

If the platform has an always-on network, then this network is always tried first for
the connection. If this network is not available, then the dial-up networks are tried in
the order specified. You can rearrange the order of the dial-up networks by selecting
one of the networks and clicking the up or down button. For dial-up, Oracle Database

Time Synchronize at a specific time or time interval. You can configure an
automatic synchronization to occur at a specific time each day or as an
interval.

■ Select Specify Time if you want to automatically synchronize at a
specific hour, such as 8:00 AM, everyday.

■ Select Specify Time Interval if you want to synchronize at a specific
interval. For example, if you want to synchronize every hour, then
specify how long to wait in-between synchronization attempts.

Table 2–5 Automatic Condition Rules for Client Platform

Condition Description

Battery level Specify the minimum battery level required in order for an
automatic synchronization to start. The battery level is specified
as a percentage.

Network conditions Network quality can be specified using several properties. This
condition enables you to specify a minimum value for the
following network properties:

■ Minimum network bandwidth, which is measured in bits
per second.

■ Maximum ping delay, which is measured in milliseconds.

■ Data priority, which is either high or regular. You can
specify the priority of your data in the table row.

For example, you can define a rule where all high priority data is
automatically synchronized at a specified network bandwidth.
The ping delay is optional. If not specified, the ping is not
calculated.

Note: If you are not using a proxy, then you do not need to define
proxy information on this page.

Table 2–4 (Cont.) Automatic Event Rules for the Client Platform

Event Description

Enabling Automatic Synchronization

Synchronization 2-19

Lite can automatically establish the network connection before initiating the
synchronization.

2.2.4 Setting Data as High Priority in Automatic Synchronization
Oracle Database Lite adds a hidden column (MSG$PRIO) to all automatic
synchronization snapshots to designate if this data has a higher priority for
synchronization if conditions are right. If users need to indicate that a particular
record is high priority, they can set the column value to (0). Then sync agent
automatically schedules a high priority synchronization for the transaction that
contains this record.

2.2.5 Enable the Server to Notify the Client to Initiate a Synchronization to Download
Data

If you have designed the compose yourself—that is, you do not use the MGP—then,
you can notify the client if any data exists on the server that can be downloaded to the
client through enqueue notification APIs. You can also use these APIs to manage the
automatic synchronization schedule for your clients.

For more information on enqueue notification APIs, see Section 2.13.3, "Selecting
How/When to Notify Clients of Composed Data".

2.2.6 Notify Application on Completion of Automatic Synchronization Cycle
You can develop your client application to be notified when an automatic
synchronization cycle occurs. The application is notified from the Sync Agent when
the automatic synchronization completes as well as when a critical event occurs in the
client device. For example, when the device battery runs critically low, Oracle
Database Lite can notify the application.

In the client application, create a procedure that executes one of the following message
APIs. When your application calls the get message API, it blocks until an event occurs
within an automatic synchronization. It returns a structure that describes this event.

The following sections provide implementation details for each development
language:

■ Automatic Synchronization Notification for C/C++ Application

■ Automatic Synchronization Notification for C# Application

■ Automatic Synchronization Notification for Java Application

■ Input Parameters for Automatic Synchronization Notification

Automatic Synchronization Notification for C/C++ Application
Use the olGetSyncMsg method in your client application to receive the automatic
synchronization notification when implementing for C/C++ applications. In order to
block for the status, you need to perform the following:

1. Start the application messaging service with the olStartSyncMsg method,
providing a queue handle of type olAppMsgQ. This message starts the messaging
service and returns the queue handle in the olAppMsgQ.

2. Execute the olGetSyncMsg with the olAppMsgQ message handle and the
defined olSyncMsg structure for the returned automatic synchronization
information.

The following provides the method definitions:

Enabling Automatic Synchronization

2-20 Oracle Database Lite Developer's Guide

typedef void *olAppMsgQ
/* start application messaging, get queue handle */
olError olStartSyncMsg(olAppMsgQ *q);
/*Provide the queue handle and block to retrieve automatic sync event */
olError olGetSyncMsg(olAppMsgQ q, olSyncMsg *m);

The olGetSyncMsg method blocks until an event occurs, then the Sync Agent returns
the olSyncMsg class, which you provide as an input parameter, with the information
on what happened, as follows:

typedef struct _olSyncMsg {
 ol2B type;
 ol2B id;
 char msg[BG_MAX_MSG];
} olSyncMsg;

See "Input Parameters for Automatic Synchronization Notification" for a description of
the input parameters in the structure.

The C/C++ application performs in a different manner than the Java and C# versions
in that this creates a message service with its own message queue. Thus, when finished
you must perform some cleanup to ensure that the message queue handle is released.
Use the olStopSyncMsg method to stop the messaging service and release the
handle. This must be performed for every message queue that is opened with the
olStartSyncMsg method.

olError olStopSyncMsg(olAppMsgQ q);

If you want to force an existing olGetSyncMsg to return, use the olCancelSyncMsg
from another thread in the application. This causes the olGetSyncMsg to return with
the BG_ERR_APP_MSG_CANCEL error.

olError olCancelSyncMsg(olAppMsgQ q);

Automatic Synchronization Notification for C# Application
Use the GetMessage method in your client application to receive the automatic
synchronization notification when implementing for C# applications, as follows:

public BGSyncMsg GetMessage();

This method blocks until an event occurs, then the Sync Agent returns the BGSyncMsg
class with the information on what happened, as follows:

public class BGSyncMsg
{
 public int Type;
 public int Id;
 public string Msg;
}

See "Input Parameters for Automatic Synchronization Notification" for a description of
the input parameters in the class.

Automatic Synchronization Notification for Java Application
Use the getMessage method in your client application to receive the automatic
synchronization notification when implementing for Java applications, as follows:

public class BGSyncControl
{
 public BGSyncMsg getMessage() throws SyncException;

Enabling Automatic Synchronization

Synchronization 2-21

}
This method blocks until an event occurs, then the Sync Agent returns the BGSyncMsg
class with the information on what happened, as follows:

public class BGSyncMsg{
 public int type;
 public int id;
 public String msg;
}

See "Input Parameters for Automatic Synchronization Notification" for a description of
the input parameters in the class.

Input Parameters for Automatic Synchronization Notification
The input parameters in the input structure/class are as follows:

Table 2–6 The Sync Message Variables

Variable Description

Event type The event can be of three types, each of which indicate the level
of severity of this notification:

■ INFO

■ ERROR

■ WARNING

Event identifier for INFO
types:

The INFO event identifer describes what occurred, as follows:

■ SYNC_STARTED: The Sync Agent has started the
synchronization task.

■ SYNC_SUCCEEDED: Data synchronization completed
successfully.

■ APPLY_STARTED: The Sync Agent has started the apply
task.

■ APPLY_SUCCEEDED: The apply phase completed
successfully.

■ SVR_NOTIF: The Sync Agent has received a server
notification. The message contains information about the
server notification, such as publication name, number of
modified records and the record priority (high priority or
normal).

■ NETWORK_CHANGED: Device has moved into a different
network

■ AGENT_STARTED: The Sync Agent started.

■ AGENT_STOPPED: The Sync Agent stopped.

Event identifier for the
WARNING type:

The WARNING event identifier describes in more detail what
occurred, as follows:

■ BATTERY_LOW: Device’s battery is running low

■ MEMORY_LOW: Device’s memory is running low

Enabling Automatic Synchronization

2-22 Oracle Database Lite Developer's Guide

2.2.7 Request Status for Automatic Synchronization Cycle
If you want to know at what stage the automatic synchronization cycle is, you can
request status from the Sync Agent. In the client application, execute the get status
API, which will return immediately with at what stage the automatic synchronization
cycle is executing. This is different from the notification message API, which only
returns when an event is completed within the synchronization cycle.

The get status API returns a structure that describes this event.

The following sections provide implementation details for each development
language:

■ Retrieving Status for C/C++ Application

■ Retrieving Status for C# Application

■ Retrieving Status for Java Application

■ Input Parameters for Retrieving Messages

Retrieving Status for C/C++ Application
Use the olGetSyncStatus method in your C/C++ client application to retrieve
status on the automatic synchronization, as follows:

olError olGetSyncStatus(olSyncStatus *s);

The Sync Agent returns the olSyncStatus class, which you provide as an input
parameter, with the information on what happened, as follows:

typedef struct _olSyncStatus {
 char clientId[BG_MAX_USERNAME];
 ol2B syncState;
 ol2B syncProgress;
 char syncStateStr[BG_MAX_STATUS_STR];
 olError lastSyncError;
 ol2B lastSyncType;
 ol8B lastSyncTime;
 ol2B applyState;
 ol2B applyProgress;
 char applyStateStr[BG_MAX_STATUS_STR];
 olError lastApplyError;
 olU2B _reserved;

Event identifier for the
ERROR type:

The ERROR event identifier describes in more detail what
occurred, as follows:

■ APPLY_FAILED: The apply failed. In this case, ‘message'
contains the reason for failure.

■ SYNC_FAILED: Data synchronization failed. In this case,
‘message' contains the reason for failure.

■ AGENT_ERROR: An internal error condition occurred. The
message contains the actual error message. Examples would
be failure to load a rule, failure to process server
notification, failure to evaluate system power, and so on. In
spite of this error, the Sync Agent continues to execute. Fatal
errors are written to the olSyncAgent.err file.

Event Message String message that expounds on the information provided by
the event type and identifier.

Table 2–6 (Cont.) The Sync Message Variables

Variable Description

Enabling Automatic Synchronization

Synchronization 2-23

 ol8B lastApplyTime;
 char networkName[BG_MAX_STATUS_STR];
 ol4B networkSpeed;
 ol4B batteryPower;
} olSyncStatus;

See "Input Parameters for Retrieving Messages" for a description of the input
parameters in the structure.

Retrieving Status for C# Application
Use the GetStatus method in your C/C++ client application to retrieve status on the
automatic synchronization, as follows:

public BGSyncStatus GetStatus();

This method returns the BGSyncStatus class with the status information on the
automatic synchronization, as follows:

public class BGSyncStatus
{
 public string clientId;
 public short syncState;
 public string syncStateStr;
 public short syncProgress;
 public short lastSyncError;
 public short lastSyncType;
 public long lastSyncTime;
 public short applyState;
 public string applyStateStr;
 public short applyProgress;
 public short lastApplyError;
 public ushort _reserved;
 public long lastApplyTime;
 public string networkName;
 public int networkSpeed;
 public int batteryPower;
}

See "Input Parameters for Retrieving Messages" for a description of the input
parameters in the structure.

Retrieving Status for Java Application
Use the getStatus method in your Java client application to retrieve status on the
automatic synchronization, as follows:

public BGSyncStatus getStatus() throws SyncException

This method returns the BGSyncStatus class with the status information on the
automatic synchronization, as follows:

public class BGSyncStatus
{
 public String clientId;
 public short syncState;
 public String syncStateStr;
 public short syncProgress;
 public short lastSyncError;
 public short lastSyncType;
 public Date lastSyncTime;

What is The Process for Setting Up a User For Synchronization?

2-24 Oracle Database Lite Developer's Guide

 public short applyState;
 public String applyStateStr;
 public short applyProgress;
 public short lastApplyError;
 public Date lastApplyTime;

 public String networkName;
 public int networkSpeed;
 public int batteryPower;
}

See "Input Parameters for Retrieving Messages" for a description of the input
parameters in the structure.

Input Parameters for Retrieving Messages
The input parameters in the input structure/class are as follows:

2.3 What is The Process for Setting Up a User For Synchronization?
Before you can perform the synchronization, the publication must be created, the user
created and granted access to the publication, and optionally, the publication
packaged up with an application and published to the Mobile Server. This is referred
to as the publish and subscribe model, which can be implemented in one of two ways:

Table 2–7 Status Class Fields

Field Description

clientId Username

syncState A numeric value that denotes the current synchronization stage,
such as compose, send, or receive.

syncStateStr String describing the state, as denoted in the syncState, for the
automatic synchronization.

syncProgress A percentage that indicates the current progress for the
automatic synchronization.

lastSyncError If an error occurred in the last synchronization, this is the error
code. If no error, this value is zero.

lastSyncType The priority of the data for the last synchronization. If 1, then
high priority data; if 0, then regular priority data was
synchronized.

lastSyncTime Time of the last automatic synchronization.

applyState Code that indicates the state for the apply phase.

applyStateStr String describing the state for the apply phase, as denoted in the
applyState variable.

applyProgress A percentage that indicates the current progress for the apply
phase.

lastApplyError If an error occurred in the last apply phase, this is the error code.
If no error, this value is zero.

lastApplyTime Time of the last apply phase.

networkName The network name assigned to this network.

networkSpeed Current bandwidth of the network.

batteryPower Current battery power percentage.

What is The Process for Setting Up a User For Synchronization?

Synchronization 2-25

■ Declaratively, using MDW to create the publication and the Packaging Wizard to
package and publish the applications. This is the recommended method. See
Section 2.3.1, "Creating a Snapshot Definition Declaratively" for details.

■ Programmatically, using the Resource Manager and the Consolidator Manager
APIs to invoke certain advanced features or customize an implementation. This
technique is recommended for advanced users requiring specialized functionality.
See Section 2.3.2, "Creating the Snapshot Definition Programmatically" for details.

Once created and subscribed, the user can be synchronized, as follows:

■ Using manual synchronization where the user initiates it from the device or
programmatically from within an application. This chapter discusses how to start
the synchronization programmatically in Section 2.8, "Initiating Client
Synchronization With Synchronization APIs".

■ Using automatic synchronization which is enabled within the publication item
itself or the platform configuration.

On the back-end of the synchronization process, you have the option to customize
how the apply and compose phase are executed. See Section 2.6, "Customize the
Compose Phase Using MyCompose".

2.3.1 Creating a Snapshot Definition Declaratively
Use the Mobile Database Workbench (MDW), a GUI based tool of Oracle Database
Lite—described fully in Chapter 6, "Using Mobile Database Workbench to Create
Publications"—to create snapshots declaratively. The convenience of a graphical tool is
a safer and less error prone technique for developers to create a Mobile application.
Before actual application programming begins, the following steps must be executed:

1. Verify that the base tables exist on the server database; if not, create the base table.

2. Use MDW to define an application and the snapshot with the necessary
publicatino and its publication items. See Chapter 6, "Using Mobile Database
Workbench to Create Publications" for details.

3. Use the Packaging Wizard to publish the application to the Mobile Server. This
creates the publication items associated with the application. See Chapter 7,
"Using the Packaging Wizard" for details.

4. Use the Mobile Manager to create a subscription for a given user.

5. Install the application on the development machine.

6. If using manual synchronization, then initiate synchronization for the Mobile
client with the Mobile Server to create the client-side snapshots. In addition, for
Oracle Lite Mobile client, create the Oracle Lite database automatically.

2.3.1.1 Manage Snapshots
The Mobile Server administrator can manage a snapshot, which is a full set or a subset
of rows of a table or view. Create the snapshot by executing a SQL query against the
base table. Snapshots are either read-only or updatable.

The following sections describes how to manage snapshots using MDW:

■ Section 2.3.1.1.1, "Read-only Snapshots"

■ Section 2.3.1.1.2, "Updatable Snapshots"

■ Section 2.3.1.1.3, "Refresh a Snapshot"

■ Section 2.3.1.1.4, "Snapshot Template Variables"

What is The Process for Setting Up a User For Synchronization?

2-26 Oracle Database Lite Developer's Guide

2.3.1.1.1 Read-only Snapshots Read-only snapshots are used for querying purposes
only. The data is downloaded from the Oracle server to the client; no data on the client
is ever uploaded to the server. Any data added on the client in a read-only snapshot
can be lost, since it is never uploaded to the server. Changes made to the master table
in the back-end Oracle database server are replicated to the Mobile client. See
Section 6.9.2, "Publication Item Tab Associates Publication Items With the Publication"
for instructions on how to define the publication item as read-only.

2.3.1.1.2 Updatable Snapshots When you define a snapshot as updatable, then the data
propagated within a synchronization is bi-directional. That is, any modifications made
on the client are uploaded to the server; any modifications made on the back-end
Oracle server are downloaded to the client. See Section 6.9.2, "Publication Item Tab
Associates Publication Items With the Publication" for instructions on how to define
the publication item as updatable.

A snapshot can only be updated when all the base tables that the snapshot is based on
have a primary key or virtual primary key. If the base tables do not have a primary
key, a snapshot cannot be updated and becomes read-only. Table 2–8 shows each
refresh method type and whether it is updatable or read-only depending on primary
key or virtual primary key:

2.3.1.1.3 Refresh a Snapshot Your snapshot definition determines whether an
updatable snapshot uses the complete or fast refresh method.

■ The complete refresh method recreates the snapshot every time it is refreshed.
Note that when it recreates the snapshot, all of the data on the client Oracle Lite
database is erased and then the snapshot for this user on the back-end Oracle
database is brought down to the client.

■ The fast refresh method refreshes only the modified data within the snapshot
definition on both the client and server. In general, the simpler your snapshot
definition, the faster it is updated. All fast refresh methods require a primary key
or a virtual primary key.

Note: A subscription created as complete refresh and read-only is
light weight; thus, to keep the subscription light weight, the primary
keys are not included in the replication. If you want to include
primary keys, then create them with the
createPublicationItemIndex API.

Also, because read-only does not upload any data from the client,
there are no conflicts. Thus, when specified within MDW, you will
only be able to select Custom for conflict resolution.

Table 2–8 Which Refresh Methods Can Be Updatable or Read-Only

Fast Complete Queue-Based

Table Uses a Primary
Key

Updatable or
Read-Only

Updatable or
Read-Only

Updatable or
Read-Only

Table Uses a Virtual
Primary Key

Updatable or
Read-Only

Updatable or
Read-Only

Updatable or
Read-Only

No Primary Key or
Virtual Primary Key
Used

Not applicable since
all Fast Refresh tables
use a primary or
virtual primary key.

Read-Only Read-Only

What is The Process for Setting Up a User For Synchronization?

Synchronization 2-27

See Section 6.4, "Create a Publication Item" and Section 2.9, "Understanding Your
Refresh Options"

2.3.1.1.4 Snapshot Template Variables Snapshots are application-based. In some cases,
you may quantify the data that your application downloads for each user by
specifying all of the returned data match a predicate. You can accomplish this by using
snapshot templates.

A snapshot template is an SQL query that contains data subsetting parameters. A data
subsetting parameter is a colon (:), followed by an identifier name, as follows:

:var1

When the Mobile client creates snapshots on the client machine, the Mobile Server
replaces the snapshot variables with user-specific values. By specifying different
values for different users, you can control the data returned by the query for each user.

You can use MDW to specify a snapshot template variable in the same way that you
create a snapshot definition for any platform.

Data subsetting parameters are bind variables and so should not be enclosed in
quotation marks (’). If you want to specify a string as the value of the data subsetting
parameter, then the string contains single quotation marks. You can specify the values
for the template variables within the Mobile Manager.

The following examples specify a different value for every user. By specifying a
different value for every user, the administrator controls the behavior and output of
the snapshot template.

select * from emp where deptno = :dno

You define this select statement in your publication item. See Section 6.4.1, "Create
SQL Statement for Publication Item" for instructions. Then, modify the user in the
Mobile Manager to add the value for :dno. Then, when the user synchronizes, the
value defined for the user is replaced in the select script. See Section 5.5, "Managing
Application Parameter Input (Data Subsetting)" in the Oracle Database Lite
Administration and Deployment Guide for information on how to define the value of the
variable. This value can only be defined after the application is published and the user
is associated with it.

Table 2–9 provides a sample set of snapshot query values specified for separate users.

select * from emp where ename = :ename

Table 2–10 provides another sample snapshot query value.

Note: If the subsetting parameter is on a CHAR column of a
specified length, then you should either preset all characters to spaces
before setting the value or pad for the length of the column with
spaces after setting the parameter.

Table 2–9 Snapshot Query Values for Separate Users

User Value Snapshot Query

John 10 select * from emp where deptno = 10

Jane 20 select * from emp where deptno = 20

Creating Publications Using Oracle Database Lite APIs

2-28 Oracle Database Lite Developer's Guide

2.3.2 Creating the Snapshot Definition Programmatically
You can use the Resource Manager or Consolidator Manager APIs to
programmatically create the publication items on the Mobile Server. Create
publication items from views and customize code to construct snapshots.

The base tables must exist before the Consolidator Manager API can be invoked. The
following steps are required to create a a subscription:

■ Create a publication

■ Create a publication item and add it to the publication

■ Create a user

■ Creating a subscription for the user based on the publication

The details of how to create a publication are documented in Chapter 6, "Using Mobile
Database Workbench to Create Publications". Anything that you can do with the
MDW tool, you can also perform programmatically using the Consolidator Manager
API. Refer to the Javadoc for the syntax.

2.4 Creating Publications Using Oracle Database Lite APIs
Mobile Server uses a publish and subscribe model to centrally manage data
distribution between Oracle database servers and Mobile clients. Basic functions, such
as creating publication items and publications, can be implemented easily using the
Mobile Development Workspace (MDW). See Chapter 6, "Using Mobile Database
Workbench to Create Publications" for more information.

These functions can also be performed using the Consolidator Manager or Resource
Manager APIs by writing Java programs to customize the functions as needed. Some
of the advanced functionality can only be enabled programmatically using the
Consolidator Manager or Resource Manager APIs.

The publish and subscribe model can be implemented one of two ways:

■ Declaratively, using MDW to create the publication and the Packaging Wizard to
package and publish the applications. This is the recommended method. This
method is described fully in Chapter 6, "Using Mobile Database Workbench to
Create Publications" and Chapter 7, "Using the Packaging Wizard".

Table 2–10 Snapshot Query Value for User Names

User Value Snapshot Query

John ’KING’ select * from emp where ename = ’KING’

Note: The Consolidator Manager API can only create a publication,
which cannot be packaged with an application. In addition, a
publication created with the Consolidator Manager API cannot be
packaged with an application. See Section 2.4, "Creating Publications
Using Oracle Database Lite APIs" for information on the Consolidator
Manager API. Use the Resource Manager APIs to create the
publication, package it with an application, and publish it to the
Mobile Server. See the oracle.mobile.admin.ResourceManager
Javadoc in the Oracle Database Lite API Specification, which you can link
to off the ORACLE_HOME/Mobile/index.htm page.

Creating Publications Using Oracle Database Lite APIs

Synchronization 2-29

■ Programmatically, using the Consolidator Manager or Resource Manager APIs to
invoke certain advanced features or customize an implementation. This technique
is recommended for advanced users requiring specialized functionality.

■ Publications created with the Consolidator Manager API cannot be packaged
with an application. See Section 2.4.1, "Defining a Publication With Java
Consolidator Manager APIs".

■ Use the Resource Manager APIs to create the publication, package it with an
application, and publish it to the Mobile Server. See the
oracle.mobile.admin.MobileResourceManager Javadoc in the API
Specification section, which is located off the
ORACLE_HOME/Mobile/index.htm page.

2.4.1 Defining a Publication With Java Consolidator Manager APIs
While we recommend that you use MDW (see Chapter 6, "Using Mobile Database
Workbench to Create Publications") for creating your publications, you can also create
them, including the publication items and the user, with the Consolidator Manager
API. Choose this option if you are performing more advanced techniques with your
publications.

After creating the database tables in the back-end database, create the Resource
Manager and Consolidator Manager objects to facilitate the creation of your
publication:

■ The Resource Manager object enables you to create users to associate with the
subscription.

■ The Consolidator Manager object enables you to create the subscription.

The order of creating the elements in the publication is the same as if you were using
MDW. You must create a publication first and then add the publication items and
other elements to it. Once the publications are created, subscribe users to them. See the
Javadoc for full details on each method. See Chapter 6, "Using Mobile Database
Workbench to Create Publications" for more details on the order of creating each
element.

1. Section 2.4.1.1, "Create the Mobile Server User"

2. Section 2.4.1.2, "Create Publications"

3. Section 2.4.1.3, "Create Publication Items"

4. Section 2.4.1.4, "Define Publication-Level Automatic Synchronization Rules"

5. Section 2.4.1.5, "Data Subsetting: Defining Client Subscription Parameters for
Publications"

6. Section 2.4.1.6, "Create Publication Item Indexes"

Note: The following sections use the sample11.java sample to
demonstrate the Resource Manager and Consolidator Manager
methods used to create the publication and the users for the
publication. The full source code for this sample can be found in the
following directories:

On UNIX: <ORACLE_HOME>/mobile/server/samples

On Windows: <ORACLE_HOME>\Mobile\Server\Samples

Creating Publications Using Oracle Database Lite APIs

2-30 Oracle Database Lite Developer's Guide

7. Section 2.4.1.7, "Adding Publication Items to Publications"

8. Section 2.4.1.8, "Creating Client-Side Sequences for the Downloaded Snapshot"

9. Section 2.4.1.9, "Subscribing Users to a Publication"

10. Section 2.4.1.10, "Instantiate the Subscription"

11. Section 2.4.1.11, "Bringing the Data From the Subscription Down to the Client"

12. Section 2.4.1.12, "Modifying a Publication Item"

13. Section 2.4.1.13, "Callback Customization for DML Operations"

14. Section 2.4.1.14, "Restricting Predicate"

2.4.1.1 Create the Mobile Server User
Use the createUser method of the MobileResourceManager object to create the
user for the publication.

1. Create the MobileResourceManager object. A connection is opened to the
Mobile Server. Provide the schema name, password, and JDBC URL for the
database the contains the schema (the repository).

2. Create one or more users with the createUser method. Provide the user name,
password, the user's real name, and privilege, which can be one of the one of the
following: "O" for publishing an application, "U" for connecting to Web-to-Go as
user, or "A" for administrating the Web-to-Go. If NULL, no privilege is assigned.

Note: To call the Publish and Subscribe methods, the following JAR
files must be specified in your CLASSPATH.

■ <ORACLE_HOME>\jdbc\lib\ojdbc14.jar

■ <ORACLE_HOME>\Mobile\classes\consolidator.jar

■ <ORACLE_HOME>\Mobile\classes\classgen.jar

■ <ORACLE_HOME>\Mobile\classes\servlet.jar

■ <ORACLE_HOME>\Mobile\classes\xmlparserv2.jar

■ <ORACLE_HOME>\Mobile\classes\jssl-1_2.jar

■ <ORACLE_HOME>\Mobile\classes\javax-ssl-1_2.jar

■ <ORACLE_HOME>\Mobile\Server\bin\devmgr.jar

■ <ORACLE_HOME>\Mobile\classes\share.jar

■ <ORACLE_HOME>\Mobile\classes\oracle_ice.jar

■ <ORACLE_HOME>\Mobile\classes\phaos.jar

■ <ORACLE_HOME>\Mobile\classes\jewt4.jar

■ <ORACLE_HOME>\Mobile\classes\jewt4-nls.jar

■ <ORACLE_HOME>\Mobile\classes\wtgpack.jar

■ <ORACLE_HOME>\Mobile\classes\jzlib.jar

■ <ORACLE_HOME>\Mobile\Server\bin\webtogo.jar

Creating Publications Using Oracle Database Lite APIs

Synchronization 2-31

3. If you want members to be created for this device, perform the tasks described in
Section 2.4.1.1.2, "Create Member Users for Sharing Application and Data on
Device".

4. Commit the transaction, which was opened when you created the
MobileResourceManager object, and close the connection.

MobileResourceManager mobileResourceManager =
 new MobileResourceManager(CONS_SCHEMA, DEFAULT_PASSWORD, JDBC_URL);
mobileResourceManager.createUser("S11U1", "manager", "S11U1", "U");
mobileResourceManager.commitTransaction();
mobileResourceManager.closeConnection();

2.4.1.1.1 Change Password You can change passwords for Mobile Server users with the
setPassword method, which has the following syntax:

public static void setPassword
 (String userName,
 String newpwd) throws Throwable

Execute the setPassword method before you commit the transaction and release the
connection. The following example changes the password for the user MOBILE:

mobileResourceManager.setPassword("MOBILE","MOBILENEW");

2.4.1.1.2 Create Member Users for Sharing Application and Data on Device The Member user
enables you to define multiple users on a device using the same application and data.
Each member is created and associated with a user. After the user grants access to the
member to its data, each member can log on with his/her username and password
and can access the data as defined by the user. This enables multiple people, such as
shift workers, to use the same device, without needing to use the same username and
password or the same access privileges. For more details on how the member is used
and instructions on how to create the member with the Mobile Manager, see Section
5.5.3, "Adding New Members and Associating Them With Users" in the Oracle
Database Lite Administration and Deployment Guide.

To create a member user and associate it with a user with the APIs, perform the
following:

1. After you have created the MobileResourceManager object described in
Section 2.4.1.1, "Create the Mobile Server User", you can issue the createUser
method to create a member. Provide member name, password, full name and ’M’
as the privilege parameter to designate the creation of a member.

2. After you have created all members, associate one or more members with the user
by executing the MobileResourceManager.associateMemberToUser

Note: Always request a drop user before you execute a create, in
case this user already exists.

Note: If you do not want to create any users, you do not need to
create the MobileResourceManager object.

Note: Both username and passwords are limited to a maximum of 28
characters.

Creating Publications Using Oracle Database Lite APIs

2-32 Oracle Database Lite Developer's Guide

method. Provide the existing user name and member name or a Vector containing
all member names.

After you complete creation of all users and members, end the transaction and close
the connection.

The following detail other methods that support member users:

■ Drop a member with the dropUser method.

■ Retrieve all members in a vector with the getUserMembers method.

■ Remove one or more members from a user with the removeMemberFromUser
method.

■ Batch initialize several members with the enableMembers method. You can
disable multiple members with the disableMembers method. To see which
members are initialized, use the initializeMembers method, which returns a
hashtable that indicates if the user was initialized successfully or not.

For full details on batch initialization, see Member Initialization in Section
6.4.1.1.2, "Configure the Mobile Client" in the Oracle Database Lite Client Guide.

The syntax for these methods are as follows:

Hashtable oracle.lite.web.client.enableMembers(String userName,
 String password, Vector members) throws ResException
Hashtable oracle.lite.web.client.disableMembers(String userName,
 String password, Vector members) throws ResException
Hashtable oracle.lite.web.client.initializeMembers(String userName,
 String password, Hashtable members) throws ResException

Where:

■ userName—Device owner username.

■ password—Password of the device owner.

■ members—For the enable/disableMembers methods, this contains a
vector with the list of member users that need to be enabled/disabled. For the
initializeMembers method, this contains a hashtable containing a list of
usernames and password represented as (key, value) pairs. The key is the
member name and value contains the member password.

■ Returns a hashtable containing a list of usernames and status codes
represented as (key, value) pairs. The key is the member-name and value
contains the status code indicating if the user was enabled, disabled, or is
initialized.

2.4.1.2 Create Publications
A subscription is an association of publications and the users who access the
information gathered by the publications. Create any publication through the
ConsolidatorManager object.

1. Create the ConsolidatorManager object.

2. Connect to the database using the openConnection method. Provide the schema
name, password, and JDBC URL for the database the contains the schema.

3. Create the publication with the createPublication method, which creates an
empty publication. An example of the createPublication method syntax is as
follows:

createPublication(

Creating Publications Using Oracle Database Lite APIs

Synchronization 2-33

 java.lang.String name,
 java.lang.String db_inst,
 int client_storage_type,
 java.lang.String client_name_template,
 java.lang.String enforce_ri,
 int dev_types_flg)

The createPublication method can have some of the following input
parameters:

■ name—A character string specifying the new publication name.

■ db_inst—Null, unless you are using a registered database for application data,
as described in Section 3.2, "Register a Remote Oracle Database for
Application Data". If using a registered database, provide the application
database name in this field.

■ client_storage_type—An integer specifying the client storage type for all
publication items in the new publication. If you are defining a publication
exclusively for a SQLite Mobile client, you must specify the
Consolidator.SQLITE_CREATOR_ID as the storage type.

Other values are Consolidator.DFLT_CREATOR_ID and
Consolidator.OKPI_CREATOR_ID.

■ client_name_template—A template for publication item instance names on
client devices. This parameter contains the following predefined values:

– %s—Default.

– DATABASE.%s—Causes all publication items to be instantiated inside an
OKAPI database with the name DATABASE.

– SFT-EE_%s—Must be used for Satellite Forms-based applications.

■ enforce_ri—Reserved for future use. Use null or an empty string.

■ dev_types_flg—Specifies which device types or platforms the publication
supports. The default flag is set to Consolidator.DEV_FLG_GEN, which
includes all device platforms. If a publication is for more than one platform,
use the sum of the platform flags.

Available platforms are as follows:

– SQLite DB: "SQLite LINUX", "SQLite WCE", "SQLite WIN32",
"SQLiteJava"

– Oracle Lite DB: "EPOC", "LINUX", "WCE", "WIN32", "WTG"

To retrieve the device flag for a platform, call the getPlatformDevFlg
function. The syntax for this function is as follows:

int getPlatformDevFlg(java.lang.String platform)

ConsolidatorManager consolidatorManager = new ConsolidatorManager();
consolidatorManager.openConnection(CONS_SCHEMA, DEFAULT_PASSWORD, JDBC_URL);
consolidatorManager.createPublication("T_SAMPLE11", null
 Consolidator.SQLITE_CREATOR_ID, "OrdersODB.%s", null);

Note: Always request a drop publication before you execute a create,
in case this publication already exists.

Creating Publications Using Oracle Database Lite APIs

2-34 Oracle Database Lite Developer's Guide

2.4.1.3 Create Publication Items
An empty publication does not have anything that is helpful until a publication item is
added to it. Thus, after creating the publication, it is necessary to create the publication
item, which defines the snapshot of the base tables that is downloaded for your user.

When you create each publication item, you can specify the following:

■ Column data: When you specify column data in the publication item, you should
first verify what data types are supported and how others are modified when
brought down to the Oracle Lite database. For example, the TIMESTAMP data type
is supported, but the TIMESTAMP WITH TIME ZONE data type is not. For details,
see Section 3.8, "Datatype Conversion Between the Oracle Server and the Oracle
Lite Database".

Also, the publication item query must select primary keys in the same order as
they are defined in the base table.

■ Automatic or Manual Synchronization: Whether the publication item is to be
synchronized automatically or manually.

■ Refresh Mode: The refresh mode of the publication item is specified during
creation to be either fast, complete-refresh, or queue-based.

■ Data-Subsetting Parameters: You can also establish the data-subsetting parameters
when creating the publication item, which provides a finer degree of control on
the data requirements for a given client.

■ If you are using a registered database for application data, as described in
Section 3.2, "Register a Remote Oracle Database for Application Data".

Publication item names are limited to twenty-six characters and must be unique across
all publications. The publication item name is case-sensitive. The following examples
create a publication item named P_SAMPLE11-M.

The following example uses the createPublicationItem method, which creates a
manual synchronization publication item P_SAMPLE11-M based on the
ORD_MASTER database table with fast refresh. Use the addPublicationItem
method to add this publication item to the publication.

Note: Special characters including spaces are supported in
publication names. The publication name is case-sensitive.

Note: You can create a publication using MDW. To see more details
on publications and publication items, refer to Section 6.4, "Create a
Publication Item".

Note: For full details on the method parameters, see the Javadoc.

Note: Always drop the publication item in case an item with the
same name already exists.

Note: For full details on the method parameters, see the Javadoc.

Creating Publications Using Oracle Database Lite APIs

Synchronization 2-35

consolidatorManager.createPublicationItem("P_SAMPLE11-M", "MASTER",
 "ORD_MASTER", "F", "SELECT * FROM MASTER.ORD_MASTER", null, null);

When you create a publication item that uses automatic synchronization through the
createPublicationItem method, you can also define the following:

■ Automatic Synchronization: Set the publication to use automatic synchronization
by setting the isLogBased flag to true.

■ Server-initiated change notifications: If you set the doChangeNtf flag to true,
then the Mobile Server sends a notification to the client if any changes are made on
the server for this publication item.

■ Set what constraints are replicated to the client: If you set the
setDfltColOptions flag to true, then the default values and not null
constraints are replicated to the client. However, if you are using a SQLite Mobile
client, then you need to set the setDfltColOptions flag to false, as SQLite does
not support the same SQL functions as Oracle. If setDfltColOptions is set to
true (default) when the publication item is created, synchronization automatically
uses the default clause from Oracle meta data, which is not supported by SQLite.
Alternatively, you can execute the
ConsolidatorManager.setPubItemColOption method to set a supported
SQLite expression.

■ Create a client sub-query to return unique client ids in the cl2log_rec_stmt
parameter. The client sub-query correlates the primary key of the changed records
in the log table with the Consolidator client id. The log table contains the changes
for the table and is named clg$<tablename>.

For example, if the publication item SQL query is as follows:

SELECT * FROM scott.emp a
 WHERE deptno in
 (select deptno from scott.emp b
 where b.empno = :empno)

Assuming that the Consolidator client id is empno and the snapshot table is emp,
then the client sub-query queries for data changes in the clg$emp log table as
follows:

SELECT empno as clid$$cs FROM scott.clg$emp
 UNION SELECT empno as clid$$cs FROM scott.emp

Notes:

■ If you are creating a fast refresh publication item on a table with a
composite primary key, the snapshot query must match the
primary key columns in the order that they are present in the
table definition. This automatically happens during the column
selection when MDW is used or when a SELECT * query is used.
Note that the order of the primary key columns in the table
definition may be different from those in the primary key
constraint definition.

■ A subscription created as complete refresh and read only is light
weight; thus, to keep the subscription light weight, the primary
keys are not included in the replication. If you want to include a
primary key, then you can create it with the
createPublicationItemIndex API.

Creating Publications Using Oracle Database Lite APIs

2-36 Oracle Database Lite Developer's Guide

 WHERE deptno in (select deptno from scott.clg$dept)

The following example uses the automatic synchronization version of
createPublicationItem method, which uses the PubItemProps class to define
all publication item definitions, including automatic synchronization, as follows:

PubItemProps pi_props = new PubItemProps();
pi_props.db_inst = null; // Provide registered db instance name or null
pi_props.owner = "MASTER"; // owner schema
pi_props.store = STORES[i][0]; // store
pi_props.refresh_mode = "F"; //default // uses fast refresh
pi_props.select_stmt = // specify select statement for snapshot
 "SELECT * FROM "+"MASTER"+"."+STORES[i][0]+ " WHERE C1 =:CLIENTID";
pi_props.cl2log_rec_stmt = "SELECT base.C1 FROM " // client sub-query to
 + "MASTER"+"."+STORES[i][0] + " base," // return unique clientids
 + "MASTER"+".CLG$"+STORES[i][0] + " log"
 + " WHERE base.ID = log.ID";
// Setting "isLogBased" to True enables automatic sync for this pub item.
pi_props.isLogBased = true;
// If doChangeNtf is true, automatic publication item sends notifications
// from server about new/modified records
pi_props.doChangeNtf = true;

cm.createPublicationItem(PUBITEMS[i], pi_props);
cm.addPublicationItem(PUB,PUBITEMS[i],null,null,"S",null,null);

2.4.1.3.1 Defining Publication Items for Updatable Multi-Table Views Publication items can be
defined for both tables and views. When publishing updatable multi-table views, the
following restrictions apply:

■ The view must contain a parent table with a primary key defined.

■ INSTEAD OF triggers must be defined for data manipulation language (DML)
operations on the view. See Section 2.9, "Understanding Your Refresh Options" for
more information.

■ All base tables of the view must be published.

2.4.1.4 Define Publication-Level Automatic Synchronization Rules
Once the publication is created, you can create and add automatic synchronization
rules that apply to all enabled publication items in this publication. Perform the
following to add a rule to a publication:

1. The rule is made up of a rule name and a String that contains the rule definition.
The rules can be created using the Rules classes and RuleInfo objects.

a. Define the rule and convert it to a String using the RuleInfo object and the
setSyncRuleParams method.

RuleInfo ri = Rules.RULE_MAX_DB_REC_ri;
ri.params.put(Rules.PARAM_NREC,"5");
String ruleText = cm.setSyncRuleParams(ri.type,ri.params);

There are RuleInfo objects for all of the main automatic synchronization
rules. So, in order to specify a rule, you obtain the appropriate RuleInfo
object from the Rules class and then define the variable. Table 2–11,
" Automatic Synchronization Rule Info Objects" describe the different types of
rules you can specify for triggering automatic synchronization:

Creating Publications Using Oracle Database Lite APIs

Synchronization 2-37

Note: See the Javadoc for examples and the parameters that you
need to set for each rule.

Table 2–11 Automatic Synchronization Rule Info Objects

Rule Info Object Description

RULE_MAX_DB_REC_ri For Oracle Lite Mobile clients only. Synchronize if the
client database for all publication items on the client
contains more than NREC modified records, where you
specify the NREC of modifed records in the client
database to trigger an automatic synchronization.

RULE_NOTIFY_MAX_PUB_REC_ri Synchronize if the Out Queue contains more than NREC
modified records, where you specify the NREC of
modifed records in the server database to trigger an
automatic synchronization.

RULE_MAX_PI_REC_ri Client automatically synchronizes if the number of
modified records for a publication item is greater than
NREC.

RULE_HIGH_BANDWIDTH_ri Synchronize when the network bandwidth is greater
than <number> bits/second. Where <number> is an
integer that indicates the bandwidth bits/seconds.
When the bandwidth is at this value, the
synchronization occurs.

RULE_LOW_PWR_ri Synchronize when the battery level drops to
<number>%, where <number> is a percentage. Often
you may wish to synchronize before you lose battery
power.

RULE_AC_PWR_ri Synchronize when the AC power is detected; that is,
when the device is plugged in.

RULE_MIN_MEM_ri Specify the minimum battery level required in order for
an automatic synchronization to start. The battery level
is specified as a percentage.

RULE_NET_PRIORITY_ri Network conditions can be specified using the following
properties: data priority, ping delay and network
bandwidth.

RULE_MIN_PWR_ri If the battery life drops below a pre-defined minimum,
then synchronization is automatically triggered.

NET_CONFIG_ri Configure network parameters (currently only the
network specific proxy configuration is supported) The
configuration rule contains a vector of hashtables with a
hashtable representing properties of each individual
network.

RULE_TIME_INTERVAL_ri Schedule sync at a given time of day with a certain
frequency (interval).

Specify the time (PARAM_START_TIME) for an
automatic synchronization to start. The format of time is
standard date string: H24:MI:SS e.g. 00:00:00 or 23:59:00
The time is GMT. If not set, the synchronization starts
when the Sync Agent starts and all other conditions are
satisfied Set the period (PARAM_PERIOD), in seconds, to
specify the frequency of scheduled synchronization
events.

Creating Publications Using Oracle Database Lite APIs

2-38 Oracle Database Lite Developer's Guide

b. Define a name for the rule, which should be a name not attached to any
particular publication, so you can use the rule for several publications.

2. Create the rule with the createSyncRule method, which creates the rule with
the name, the String containing the rule, and a boolean on whether to replace the
rule if it already exists. Once completed, then this rule can be associated with any
publication.

boolean replace = true;
cm.createSyncRule (ruleName, ruleText, replace);

3. Associate the rule with the desired publication or platform using the
addSyncRule method. This method can add any existing rule to a designated
publication. To add to a publication, use the publication name as the first
parameter, as follows:

cm.addSyncRule(PUB, ruleName);

To add a rule to a client platform—Win32 or WINCE platform—perform the
following:

cm.addSyncRule(Consolidator.DEFAULT_TEMPLATE_WIN32, rulename);

Where the platform name is a constant defined in the Consolidator class as either
DEFAULT_TEMPLATE_WIN32 or DEFAULT_TEMPLATE_WCE.

You can also perform the following:

■ Section 2.4.1.4.1, "Retrieve All Publications Associated with a Rule"

■ Section 2.4.1.4.2, "Retrieve Rule Text"

■ Section 2.4.1.4.3, "Check if Rule is Modified"

■ Section 2.4.1.4.4, "Remove Rule"

2.4.1.4.1 Retrieve All Publications Associated with a Rule Just as you can with resources,
scripts and sequences that are associated with publications, you can retrieve all
publications that are associated with a rule with the getPublicationNames method.
The following retrieves all publications that are associated with the rule within the
ruleName variable. The object type is defined as Consolidator.RULES_OBJECT.

String[] pubs = cm.getPublicationNames (ruleName , Consolidator.RULES_OBJECT);

2.4.1.4.2 Retrieve Rule Text You can retrieve the text of the rule using the
getSyncRule and providing the rule name. This is useful if you are not sure what the
rule is and need to discover the text before associating it with another publication.

String retStr = cm.getSyncRule (ruleName);

2.4.1.4.3 Check if Rule is Modified You can compare the rule within the repository with a
provided string to see if the rule has been modified with the isSyncRuleModified
method. A boolean value of true is returned if the provided ruleText is different
from what exists in the repository.

boolean ismod = cm.isSyncRuleModified (ruleName, ruleText);

2.4.1.4.4 Remove Rule You can remove the association of a rule from a publication by
using the removeSyncRule method. You can delete the entire rule from the
repository by using the dropSyncRule method. If you drop the rule and it is still
associated with one or more publications, the rule is automatically unassociated from
these publications.

Creating Publications Using Oracle Database Lite APIs

Synchronization 2-39

2.4.1.5 Data Subsetting: Defining Client Subscription Parameters for Publications
Data subsetting is the ability to create specific subsets of data and assign them to a
parameter name that can be assigned to a subscribing user. When creating publication
items, a parameterized Select statement can be defined. Subscription parameters
must be specified at the time the publication item is created, and are used during
synchronization to control the data published to a specific client.

Creating a Data Subset Example
consolidatorManager.createPublicationItem("CORP_DIR1",
 "DIRECTORY1", "ADDRLRL4P", "F" ,
 "SELECT LastName, FirstName, company, phone1, phone2, phone3, phone4,
 phone5, phone1id, phone2id, phone3id, displayphone, address, city, state,
 zipcode, country, title, custom1, custom2, custom3, note
 FROM directory1.addrlrl4p WHERE company = :COMPANY", null, null);

In this sample statement, data is being retrieved from a publication named CORP_
DIR1, and is subset by the variable COMPANY.

When a publication uses data subsetting parameters, set the parameters for each
subscription to the publication. For example, in the previous example, the parameter
COMPANY was used as an input variable to describe what data is returned to the client.
You can set the value for this parameter with the setSubscriptionParameter
method. The following example sets the subscription parameter COMPANY for the
client DAVIDL in the CORP_DIR1 publication to DAVECO:

consolidatorManager.setSubscriptionParameter("CORP_DIR1", "DAVIDL",
 "COMPANY", "'DAVECO'");

2.4.1.6 Create Publication Item Indexes
The Mobile Server supports automatic deployment of indexes in Oracle Database Lite
on clients. The Mobile Server automatically replicates primary key indexes from the
server database. The Consolidator Manager API provides calls to explicitly deploy
unique, regular, and primary key indexes to clients as well.

By default, the primary key index of a table is automatically replicated from the server.
You can create secondary indexes on the snapshot table for a publication item. If you
do not want the primary index, you must explicitly drop it from the publication item.

If you want to create and associate other indexes on any columns in your application
tables in the publication item, then use the createPublicationItemIndex
method. You can drop an index from the publication item and from the snapshot table
with the dropPublicationItemIndex method.

The following demonstrates how to set up indexes on the name field in our
publication item P_SAMPLE11-M:

consolidatorManager.createPublicationItemIndex("P_SAMPLE11M-I3",
 "P_SAMPLE11-M", "I", "NAME");

Note: Within the select statement, the parameter name for the
data subset must be prefixed with a colon, for example:COMPANY.

Note: This method should only be used on publications created
using the Consolidator Manager API. To create template variables,
a similar technique is possible using MDW.

Creating Publications Using Oracle Database Lite APIs

2-40 Oracle Database Lite Developer's Guide

An index can contain more than one column. You can define an index with multiple
columns, as follows:

consolidatorManager.createPublicationItemIndex("P_SAMPLE11D-I1", "P_SAMPLE11-D",
 "I", "KEY,NAME");

2.4.1.6.1 Define Client Indexes Client-side indexes can be defined for existing
publication items. There are three types of indexes that can be specified:

■ P - Primary key is an index based off of the primary keys.

■ U - Unique enforces the unique constraint on the indexed columns, which ensures
that duplicate values will not exist in the columns being indexed.

■ I - Regular does not provide the UNIQUE constraint on the indexed columns.

2.4.1.7 Adding Publication Items to Publications
Once you create a publication item, you must associate it with a publication using the
addPublicationItem method, as follows:

consolidatorManager.addPublicationItem("T_SAMPLE11", "P_SAMPLE11-M",
 null, null, "S", null, null);

See Section 2.4.1.12, "Modifying a Publication Item" for details on how to change the
definition.

2.4.1.7.1 Defining Conflict Rules When adding a publication item to a publication, the
user can specify winning rules to resolve synchronization conflicts in favor of either
the client or the server. See Section 2.11, "Resolving Conflicts with Winning Rules" for
more information.

2.4.1.7.2 Using Table Weight Table weight is an integer associated with publication
items that determines in what order the transactions for all publication items within
the publication are processed. For example, if three publication items exist—one that
contains SQL to modify the emp table, one that modifies the dept table, and one that
modifies the mgr table, then you can define the order in which the transactions
associated with each publication item are executed. In our example, assign table
weight of 1 to the publication item that contains the dept table, table weight of 2 to
the publication item that contains the mgr table, and table weight of 3 to the
publication item that contains the emp table. In doing this, you ensure that the
publication item that contains the master table dept is always processed first,
followed by the publication item that modifies the mgr table, and lastly by the
publication item that modifies the emp table.

The insert, update, and delete client operations are executed in the following order:

Note: All indexes created by this API can be viewed within the
CV$ALL_PUBLICATIONS_INDEXES view.

Note: When an index of type 'U' or 'P' is defined on a publication
item, there is no check for duplicate keys on the server. If the same
constraints do not exist on the base object of the publication item,
synchronization may fail with a duplicate key violation. See the Oracle
Database Lite API Specification for more information.

Creating Publications Using Oracle Database Lite APIs

Synchronization 2-41

1. Client INSERT operations are executed first, from lowest to highest table weight
order. This ensures that the master table entries are added before the details table
entries.

2. Client DELETE operations are executed next, from highest to lowest table weight
order. Processing the delete operations ensures that the details table entries are
removed before the master table entries.

3. Client UPDATE operations are executed last, from highest to lowest table weight
order.

In our example with dept, mgr, and emp tables, the execution order would be as
follows:

1. All insert operations for dept are processed.

2. All insert operations for mgr are processed.

3. All insert operations for emp are processed.

4. All delete operations for emp are processed.

5. All delete operations for mgr are processed.

6. All delete operations for dept are processed.

7. All update operations for emp are processed.

8. All update operations for mgr are processed.

9. All update operations for dept are processed.

A publication can have more than one publication item of weight 2. In this case, it does
not matter which publication is executed first.

Define the order weight for publication items when you add it to the publication.

2.4.1.8 Creating Client-Side Sequences for the Downloaded Snapshot
A sequence is a database schema object that generates sequential numbers. After
creating a sequence, you can use it to generate unique sequence numbers for
transaction processing. These unique integers can include primary key values. If a
transaction generates a sequence number, the sequence is incremented immediately
whether you commit or roll back the transaction. For full details of what a sequence is
and how Oracle Database Lite creates them, see Section 6.6, "Create a Sequence".

If you do not want to use MDW to create a sequence, then use the Consolidator
Manager API to manage the sequences with methods that create/drop a sequence,
add/remove a sequence from a publication, modify a sequence, and advance a
sequence window for each user. All of the same behavior exists for the Consolidator
Manager APIs as are available through MDW.

Once you have created the sequence, you place it into the publication with the
publication item to which it applies.

Note: The sequence name is case-sensitive.

Creating Publications Using Oracle Database Lite APIs

2-42 Oracle Database Lite Developer's Guide

See the Oracle Database Lite API Specification for a complete listing of the APIs to define
and administrate sequences.

2.4.1.9 Subscribing Users to a Publication
Subscribe the users to a publication using the createSubscription function. The
following creates a subscription between the S11U1 user and the T_SAMPLE11
publication:

consolidatorManager.createSubscription("T_SAMPLE11", "S11U1");

2.4.1.10 Instantiate the Subscription
After you subscribe a user to a publication, you complete the subscription process by
instantiating the subscription, which associates the user with the publication in the
back-end database. The next time that the user synchronizes, the data snapshot from
the publication is provided to the user.

consolidatorManager.instantiateSubscription("T_SAMPLE11", "S11U1");

//Close the connection.
consolidatorManager.closeConnection();

2.4.1.11 Bringing the Data From the Subscription Down to the Client
You can perform the synchronization and bring down the data from the subscription
you just created. The client executes SQL queries against the client ODB to retrieve any
information. This subscription is not associated with any application, as it was created
using the low-level Consolidator Manager APIs.

2.4.1.12 Modifying a Publication Item
You can add additional columns to existing publication items. These new columns are
pushed to all subscribing clients the next time they synchronize. This is accomplished
through a complete refresh of all changed publication items.

■ An administrator can add multiple columns, modify the WHERE clause, add new
parameters, and change data type.

■ This feature is supported for all Mobile client platforms.

■ The client does not upload snapshot information to the server. This also means the
client cannot change snapshots directly on the client database, for example, you
could not alter a table using Mobile SQL.

■ Publication item upgrades will be deferred during high priority synchronizations.
This is necessary for low bandwidth networks, such as wireless, because all

Note: If the sequences do not work properly, check your parent
publications. All parent publications must have at least one
publication item. If you do not have any publication items for the
parent publication, then create a dummy publication item within the
parent.

Note: If you need to set subscription parameters for data
subsetting, this must be completed before instantiating the
subscription. See Section 2.4.1.5, "Data Subsetting: Defining Client
Subscription Parameters for Publications" for more information.

Creating Publications Using Oracle Database Lite APIs

Synchronization 2-43

publication item upgrades require a complete refresh of changed publication
items. While the high priority flag is set, high priority clients will continue to
receive the old publication item format.

■ The server needs to support a maximum of two versions of the publication item
which has been altered.

To change the definition, use one of the following:

■ If the publication item is read-only, then modify the publication item either with
the reCreatePublicationItem method or by dropping and creating the
publication item with the dropPublicationItem and
createPublicationItem APIs.

■ If the publication item is updatable, then you can use the
alterPublicationItem method. This method enables a smooth transition of
changing any table structure on both the client and the server for updatable
publications.

If you use the alterPublicationItem method, you must follow it up by
executing the resetCache method. The metadata cache should be reset every
time a change is made to the publication or publication items. If you make the
change though Mobile Manager, then the Mobile Manager calls the resetCache
method. You can reset the metadata cache from the Mobile Manager or execute the
resetCache method, part of the ConsolidatorManager class.

You may use the alterPublicationItem method for schema evolution to add
columns to an existing publication item. The WHERE clause may also be altered. If
additional parameters are added to the WHERE clause, then these parameters
must be set before the alter occurs. See the setSubscriptionParams method.
However, if you are creating a fast refresh publication item on a table with a
composite primary key, the snapshot query must match the primary key columns
in the order that they are present in the table definition. This automatically
happens during the column selection when MDW is used or when a SELECT *
query is used. Note that the order of the primary key columns in the table
definition may be different from those in the primary key constraint definition.

consolidatorManager.alterPublicationItem("P_SAMEPLE1", "select * from EMP");

See Section 3.6, "Facilitating Schema Evolution" and the
alterPublicationItem method definition in the Oracle Database Lite API
Specification for more information.

2.4.1.13 Callback Customization for DML Operations
Once a publication item has been created, a user can use the Consolidator Manager
API to specify a customized PL/SQL procedure that is stored in the Mobile Server
repository to be called in place of all DML operations for that publication item. There
can be only one Mobile DML procedure for each publication item. The procedure
should be created as follows:

AnySchema.AnyPackage.AnyName(DML in CHAR(1), COL1 in TYPE, COL2 in TYPE, COLn..,
PK1 in TYPE, PK2 in TYPE, PKn..)

Note: If the select statement does not change, then the call to the
alterPublicationItem() method has no effect.

Creating Publications Using Oracle Database Lite APIs

2-44 Oracle Database Lite Developer's Guide

The parameters for customizing a DML operation are listed in Table 2–12:

The following defines a DML procedure for publication item exp:

select A,B,C from publication_item_exp_table

Assuming A is the primary key column for exp, then your DML procedure would
have the following signature:

any_schema.any_package.any_name(DML in CHAR(1), A in TYPE, B in TYPE, C
 in TYPE,A_OLD in TYPE)

During runtime, this procedure is invoked with 'I', 'U', or 'D' as the DML type. For
insert and delete operations, A_OLD will be null. In the case of updates, it will be set to
the primary key of the row that is being updated. Once the PL/SQL procedure is
defined, it can be attached to the publication item through the following API call:

consolidatorManager.addMobileDmlProcedure("PUB_exp","exp",
 "any_schema.any_package.any_name")

where exp is the publication item name and PUB_exp is the publication name.

Refer to the Oracle Database Lite API Specification for more information.

2.4.1.13.1 DML Procedure Example The following piece of PL/SQL code defines an
actual DML procedure for a publication item in one of the sample publications. As
described below, the ORD_MASTER table. The query was defined as:

SELECT * FROM "ord_master", where ord_master has a single
 column primary key on "ID"

ord_master Table
SQL> desc ord_master
Name Null? Type
--- -------- -------------
ID NOT NULL NUMBER(9)
DDATE DATE
STATUS NUMBER(9)

Note: You can use the generateMobileDMLProcedure to
generate the procedure specification for a given publication item. This
specification can be used as a starting point in creating your own
custom DML handling logic in a PL/SQL procedure. See the Oracle
Database Lite API Specification for more information.

Table 2–12 Mobile DML Operation Parameters

Parameter Description

DML DML operation for each row. Values can be "D" for DELETE, "I" for
INSERT, or "U" for UPDATE.

COL1 ... COLn List of columns defined in the publication item. The column names
must be specified in the same order that they appear n the publication
item query. If the publication item was created with "SELECT * FROM
exp", the column order must be the same as they appear in the table
"exp".

PK1 ... PKn List of primary key columns. The column names must be specified in
the same order that they appear in the base or parent table.

Client Device Database DDL Operations

Synchronization 2-45

NAME VARCHAR2(20)
DESCRIPTION VARCHAR2(20)

Code Example
CREATE OR REPLACE PACKAGE "SAMPLE11"."ORD_UPDATE_PKG" AS
 procedure UPDATE_ORD_MASTER(DML CHAR,ID NUMBER,DDATE DATE,STATUS
NUMBER,NAME VARCHAR2,DESCRIPTION VARCHAR2, ID_OLD NUMBER);
END ORD_UPDATE_PKG;
/
CREATE OR REPLACE PACKAGE BODY "SAMPLE11"."ORD_UPDATE_PKG" as
 procedure UPDATE_ORD_MASTER(DML CHAR,ID NUMBER,DDATE DATE,STATUS
NUMBER,NAME VARCHAR2,DESCRIPTION VARCHAR2, ID_OLD NUMBER) is
 begin
 if DML = 'U' then
 execute immediate 'update ord_master set id = :id, ddate = :ddate,
status = :status, name = :name, description = '||''''||'from
ord_update_pkg'||''''||' where id = :id_old'
 using id,ddate,status,name,id_old;
 end if;
 if DML = 'I' then
 begin
 execute immediate 'insert into ord_master values(:id, :ddate,
:status, :name, '||''''||'from ord_update_pkg'||''''||')'
 using id,ddate,status,name;
 exception
 when others then
 null;
 end;
 end if;
 if DML = 'D' then
 execute immediate 'delete from ord_master where id = :id'
 using id;
 end if;
 end UPDATE_ORD_MASTER;
end ORD_UPDATE_PKG;
/

The API call to add this DML procedure is as follows:

consolidatorManager.addMobileDMLProcedure("T_SAMPLE11",
 "P_SAMPLE11-M","SAMPLE11.ORD_UPDATE_PKG.UPDATE_ORD_MASTER")

where T_SAMPLE11 is the publication name and P_SAMPLE11-M is the publication
item name.

2.4.1.14 Restricting Predicate
A restricting predicate can be assigned to a publication item as it is added to a
publication.The predicate is used to limit data downloaded to the client. The
parameter, which is for advanced use, can be null. For using a restricting predicate, see
Section 1.2.10 "Priority-Based Replication" in the Oracle Database Lite Troubleshooting
and Tuning Guide.

2.5 Client Device Database DDL Operations
The first time a client synchronizes, Oracle Database Lite automatically creates the
snapshot tables for the user subscriptions on the Mobile client. For the Oracle Lite
Mobile client, the Oracle Lite database is also created. If you would like to execute
additional DDL statements on the database, then add the DDL statements as part of

Customize the Compose Phase Using MyCompose

2-46 Oracle Database Lite Developer's Guide

your publication. Oracle Database Lite executes these DDL statements when the user
synchronizes.

This is typically used for adding constraints and check values.

For example, you can add a foreign key constraint to a publication item. In this
instance, if the Oracle Database Lite created snapshots S1 and S2 during the initial
synchronization, where the definition of S1 and S2 are as follows:

S1 (C1 NUMBER PRIMARY KEY, C2 VARCHAR2(100), C3 NUMBER);
S2 (C1 NUMBER PRIMARY KEY, C2 VARCHAR2(100), C3 NUMBER);

If you would like to create a foreign key constraint between C3 on S2 and the primary
key of S1 , then add the following DDL statement to your publication item:

ALTER TABLE S2
 ADD CONSTRAINT S2_FK FOREIGN KEY (C3)
 REFERENCES S1 (C1);

Then, Oracle Database Lite executes any DDL statements after the snapshot creation
or, if the snapshot has already been created, after the next synchronization.

See the Oracle Database Lite API Specification for more information on these APIs.

2.6 Customize the Compose Phase Using MyCompose
The compose phase takes a query for one or more server-side base tables and puts the
generated DML operations for the publication item into the Out Queue to be
downloaded into the client. The Consolidator Manager manages all DML operations
using the physical DML logs on the server-side base tables. This can be resource
intensive if the DML operations are complex—for example, if there are complex
data-subsetting queries being used. The tools to customize this process include an
extendable MyCompose with compose methods which can be overridden, and
additional ConsolidatorManager APIs to register and load the customized class.

When you want to customize the compose phase of the synchronization process, you
must perform the following:

1. Section 2.6.1, "Create a Class That Extends MyCompose to Perform the Compose"

2. Section 2.6.2, "Implement the Extended MyCompose Methods in the User-Defined
Class"

3. Section 2.6.3, "Use Get Methods to Retrieve Information You Need in the
User-Defined Compose Class"

4. Section 2.6.4, "Register the User-Defined Class With the Publication Item"

2.6.1 Create a Class That Extends MyCompose to Perform the Compose
The MyCompose class is an abstract class, which serves as the super-class for creating a
user-written sub-class, as follows:

public class ItemACompose extends oracle.lite.sync.MyCompose
{ ... }

Note: See the Oracle Database Lite API Specification for more
information on these APIs.

Customize the Compose Phase Using MyCompose

Synchronization 2-47

All user-written classes—such as ItemACompose—produce publication item DML
operations to be sent to a client device by interpreting the base table DML logs. The
sub-class is registered with the publication item, and takes over all compose phase
operations for that publication item. The sub-class can be registered with more than
one publication item—if it is generic—however, internally the Composer makes each
instance of the extended class unique within each publication item.

2.6.2 Implement the Extended MyCompose Methods in the User-Defined Class
The MyCompose class includes the following methods—needCompose, doCompose,
init, and destroy—which are used to customize the compose phase. One or more
of these methods can be overridden in the sub-class to customize compose phase
operations. Most users customize the compose phase for a single client. In this case,
only implement the doCompose and needCompose methods. The init and
destroy methods are only used when a process is performed for all clients, either
before or after individual client processing.

The following sections describe how to implement these methods:

■ Section 2.6.2.1, "Implement the needCompose Method"

■ Section 2.6.2.2, "Implement the doCompose Method"

■ Section 2.6.2.3, "Implement the init Method"

■ Section 2.6.2.4, "Implement the destroy Method"

2.6.2.1 Implement the needCompose Method
The needCompose method to identifies a client that has changes to a specific
publication item that is to be downloaded. Use this method as a way to trigger the
doCompose method.

public int needCompose(Connection conn, Connection rmt_conn, String clientid)
 throws Throwable

The parameters for the needCompose method are listed in Table 2–13:

The following example examines a client base table for changes—in this case, the
presence of dirty records. If there are changes, then the method returns
MyCompose.YES, which triggers the doCompose method.

public int needCompose(Connection conn, Connection rmtConn, String clientid)

Note: To retrieve information, use the methods described in
Section 2.6.3, "Use Get Methods to Retrieve Information You Need in
the User-Defined Compose Class".

Table 2–13 needCompose Parameters

Parameter Definition

conn Database connection to the Main Mobile Server repository.

rmt_conn Database connection to the remote database for application.
Set to NULL if the base tables are on the Main database
where the Mobile repository exists. For details on remote
databases, see Section 3.2, "Register a Remote Oracle
Database for Application Data".

clientid Specifies the client that is being composed.

Customize the Compose Phase Using MyCompose

2-48 Oracle Database Lite Developer's Guide

 throws Throwable{
 boolean baseDirty = false;
 String [][] baseTables = this.getBaseTables();

 for(int i = 0; i < baseTables.length; i++){
 if(this.baseTableDirty(baseTables[i][0], baseTables[i][1])){
 baseDirty = true;
 break;
 }
 }

 if(baseDirty){
 return MyCompose.YES;
 }else{
 return MyCompose.NO;
 }
 }

This sample uses subsidiary methods discussed in Section 2.6.3, "Use Get Methods to
Retrieve Information You Need in the User-Defined Compose Class" to check if the
publication item has any tables with changes that need to be sent to the client. In this
example, the base tables are retrieved, then checked for changed, or dirty, records. If
the result of that test is true, a value of Yes is returned, which triggers the call for the
doCompose method.

2.6.2.2 Implement the doCompose Method
The doCompose method populates the DML log table for a specific publication item,
which is subscribed to by a client.

public int doCompose(Connection conn, Connection rmt_conn,
 String clientid) throws Throwable

The parameters for the doCompose method are listed in Table 2–14:

The following example contains a publication item with only one base table where a
DML (Insert, Update, or Delete) operation on the base table is performed on the
publication item. This method is called for each client subscribed to the publication
item.

public int doCompose(Connection conn, Connection rmtConn, String clientid)
 throws Throwable {
 int rowCount = 0;

 Connection auxConn = rmtConn;
 if(auxConn == null)
 auxConn = rmtConn;

Table 2–14 doCompose Parameters

Parameter Definition

conn Database connection to the Main Mobile Server repository.

rmt_conn Database connection to the remote database for application.
Set to NULL if the base tables are on the Main database
where the Mobile repository exists. For details on remote
databases, see Section 3.2, "Register a Remote Oracle
Database for Application Data".

clientid Specifies the client that is being composed.

Customize the Compose Phase Using MyCompose

Synchronization 2-49

 String[][] baseTables = getBaseTables();
 String baseTableDMLLogName =
 getBaseTableDMLLogName(baseTables[0][0], baseTables[0][1]);
 String baseTablePK =
 getBaseTablePK(baseTables[0][0], baseTables[0][1]);
 String pubItemDMLTableName = getPubItemDMLTableName();
 String pubItemPK = getPubItemPK();
 String mapView = getMapView(clientid);

 Statement st = auxConn.createStatement();
 String sql = null;

 // insert
 sql = "INSERT INTO " + pubItemDMLTableName + " SELECT " + baseTablePK +
 ", DMLTYPE$$ FROM " + baseTableDMLLogName;

 rowCount += st.executeUpdate(sql);

 st.close();
 return rowCount;
 }

This code uses subsidiary methods discussed in Section 2.6.3, "Use Get Methods to
Retrieve Information You Need in the User-Defined Compose Class" to create a SQL
statement. The MyCompose method retrieves the base table, the base table primary
key, the base table DML log name and the publication item DML table name using the
appropriate get methods. You can use the table names and other information
returned by these methods to create a dynamic SQL statement, which performs an
insert into the publication item DML table of the contents of the base table primary
key and DML operation from the base table DML log.

2.6.2.3 Implement the init Method
The init method provides the framework for user-created compose preparation
processes. The init method is called once for all clients prior to the individual client
compose phase. The default implementation has no effect.

public void init(Connection conn)

The parameter for the init method is described in Table 2–15:

2.6.2.4 Implement the destroy Method
The destroy method provides the framework for compose cleanup processes. The
destroy method is called once for all clients after to the individual client compose
phase. The default implementation has no effect.

public void destroy(Connection conn)

The parameter for the destroy method is described in Table 2–16:

Table 2–15 init Parameters

Parameter Definition

conn Database connection to the Main Mobile Server repository.

Customize the Compose Phase Using MyCompose

2-50 Oracle Database Lite Developer's Guide

2.6.3 Use Get Methods to Retrieve Information You Need in the User-Defined Compose
Class

The following methods return information for use by primary MyCompose methods.

■ Section 2.6.3.1, "Retrieve the Publication Name With the getPublication Method"

■ Section 2.6.3.2, "Retrieve the Publication Item Name With the getPublicationItem
Method"

■ Section 2.6.3.3, "Retrieve the DML Table Name With the
getPubItemDMLTableName Method"

■ Section 2.6.3.4, "Retrieve the Primary Key With the getPubItemPK Method"

■ Section 2.6.3.5, "Retrieve All Base Tables With the getBaseTables Method"

■ Section 2.6.3.6, "Retrieve the Primary Key With the getBaseTablePK Method"

■ Section 2.6.3.7, "Discover If Base Table Has Changed With the baseTableDirty
Method"

■ Section 2.6.3.8, "Retrieve the Name for DML Log Table With the
getBaseTableDMLLogName Method"

■ Section 2.6.3.9, "Retrieve View of the Map Table With the getMapView Method"

2.6.3.1 Retrieve the Publication Name With the getPublication Method
The getPublication method returns the name of the publication.

public String getPublication()

2.6.3.2 Retrieve the Publication Item Name With the getPublicationItem Method
The getPublicationItem method returns the publication item name.

public String getPublicationItem()

2.6.3.3 Retrieve the DML Table Name With the getPubItemDMLTableName Method
The getPubItemDMLTableName method returns the name of the DML table or DML
table view, including schema name, which the doCompose or init methods are
supposed to insert into.

public String getPubItemDMLTableName()

You can embed the returned value into dynamic SQL statements. The table or view
structure is as follows:

<PubItem PK> DMLTYPE$$

The parameters for getPubItemDMLTableName are listed in Table 2–17:

Table 2–16 destroy Parameters

Parameter Definition

conn Database connection to the Main Mobile Server repository.

Table 2–17 getPubItemDMLTableName View Structure Parameters

Parameter Definition

PubItemPK The value returned by getPubItemPK()

Customize the Compose Phase Using MyCompose

Synchronization 2-51

2.6.3.4 Retrieve the Primary Key With the getPubItemPK Method
Returns the primary key for the listed publication in comma separated format in the
form of <col1>,<col2>,<col3>.

public String getPubItemPK() throws Throwable

2.6.3.5 Retrieve All Base Tables With the getBaseTables Method
Returns all the base tables for the publication item in an array of two-string arrays.
Each two-string array contains the base table schema and name. The parent table is
always the first base table returned, in other words, baseTables[0].

public string [][] getBaseTables() throws Throwable

2.6.3.6 Retrieve the Primary Key With the getBaseTablePK Method
Returns the primary key for the listed base table in comma separated format, in the
form of <col1>, col2>,<col3>.

public String getBaseTablePK (String owner, String baseTable) throws Throwable

The parameters for getBaseTablePK are listed in Table 2–18:

2.6.3.7 Discover If Base Table Has Changed With the baseTableDirty Method
Returns the a boolean value for whether or not the base table has changes to be
synchronized.

public boolean baseTableDirty(String owner, String store)

The parameters for baseTableDirty are listed in Table 2–19:

2.6.3.8 Retrieve the Name for DML Log Table With the getBaseTableDMLLogName
Method
Returns the name for the physical DML log table or DML log table view for a base
table.

public string getBaseTableDMLLogName(String owner, String baseTable)

The parameters for getBaseTableDMLLogName are listed in Table 2–20:

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for Update.

Table 2–18 getBaseTablePK Parameters

Parameter Definition

owner The schema name of the base table owner.

baseTable The base table name.

Table 2–19 baseTableDirty Parameters

Parameter Definition

owner The schema name of the base table.

store The base table name.

Table 2–17 (Cont.) getPubItemDMLTableName View Structure Parameters

Parameter Definition

Customize the Compose Phase Using MyCompose

2-52 Oracle Database Lite Developer's Guide

You can embed the returned value into dynamic SQL statements. There may be
multiple physical logs if the publication item has multiple base tables. The parent base
table physical primary key corresponds to the primary key of the publication item. The
structure of the log is as follows:

<Base Table PK> DMLTYPE$$

The parameters for getBaseTableDMLLogName view structure are listed in
Table 2–21:

2.6.3.9 Retrieve View of the Map Table With the getMapView Method
Returns a view of the map table which can be used in a dynamic SQL statement and
contains a primary key list for each client device. The view can be an inline view.

public String getMapView() throws Throwable

The structure of the map table view is as follows:

CLID$$CS <Pub Item PK> DMLTYPE$$

The parameters of the map table view are listed in Table 2–22:

2.6.4 Register the User-Defined Class With the Publication Item
Once you have created your sub-class, it must be registered with a publication item.
The Consolidator Manager API now has two methods registerMyCompose and
deRegisterMyCompose to permit adding and removing the sub-class from a
publication item.

■ The registerMyCompose method registers the sub-class and loads it into the
Mobile Server repository, including the class byte code. By loading the code into
the repository, the sub-class can be used without having to be loaded at runtime.

■ The deRegisterMyCompose method removes the sub-class from the Mobile
Server repository.

Table 2–20 getBaseTableDMLLogName Parameters

Parameter Definition

owner The schema name of the base table owner.

baseTable The base table name.

Table 2–21 getBaseTableDMLLogName View Structure Parameters

Parameter Definition

Base Table PK The primary key of the parent base table.

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for Update.

Table 2–22 getMapView View Structure Parameters

Parameter Definition

CLID$$CS This is the client ID column.

Base Table PK The primary key columns of the publication item.

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for
Update.

Customize What Occurs Before and After Synchronization Phases

Synchronization 2-53

2.7 Customize What Occurs Before and After Synchronization Phases
You can customize what happens before and after certain synchronization processes
by creating one or more PL/SQL packages. The following sections detail the different
options you have for customization:

■ Section 2.7.1, "Customize What Occurs Before and After Every Phase of Each
Synchronization"

■ Section 2.7.2, "Customize What Occurs Before and After Compose/Apply Phases
for a Single Publication Item"

2.7.1 Customize What Occurs Before and After Every Phase of Each Synchronization
You can customize the MGP phase of the synchronization process through a set of
predefined callback methods that add functionality to be executed before or after
certain phases of the synchronization process. These callback methods are defined in
the CUSTOMIZE PL/SQL package. Note that these callback methods are called before
or after the defined phase for every publication item.

Manually create this package in the Mobile Server repository and any remote database
that has publication items that are relevant for the customization. For more
information on remote databases, see Section 3.2, "Register a Remote Oracle Database
for Application Data".

The methods and their respective calling sequence are as follows:

■ Section 2.7.1.1, "NullSync"

■ Section 2.7.1.2, "BeforeProcessApply"

■ Section 2.7.1.3, "AfterProcessApply"

■ Section 2.7.1.4, "BeforeProcessCompose"

■ Section 2.7.1.5, "AfterProcessCompose"

■ Section 2.7.1.6, "BeforeProcessLogs"

■ Section 2.7.1.7, "AfterProcessLogs"

■ Section 2.7.1.8, "BeforeClientCompose"

■ Section 2.7.1.9, "AfterClientCompose"

■ Section 2.7.1.10, "BeforeSyncMapCleanup"

■ Section 2.7.1.11, "AfterSyncMapCleanup"

■ Section 2.7.1.12, "Example Using the Customize Package"

Note: If you want to customize certain activity for only a specific
publication item, see Section 2.7.2, "Customize What Occurs Before
and After Compose/Apply Phases for a Single Publication Item" for
more information.

Note: Some of the procedures in the package are invoked for each
client defined in your Mobile Server, such as the
BeforeClientCompose and AfterClientCompose methods.

Customize What Occurs Before and After Synchronization Phases

2-54 Oracle Database Lite Developer's Guide

■ Section 2.7.1.13, "Error Handling For CUSTOMIZE Package"

2.7.1.1 NullSync
The NullSync procedure is called at the beginning of every synchronization session.
It can be used to determine whether or not a particular user is uploading data.

procedure NullSync (clientid varchar2, isNullSync boolean);

2.7.1.2 BeforeProcessApply
The BeforeProcessApply procedure is called before the entire apply phase of the
MGP process.

procedure BeforeProcessApply;

2.7.1.3 AfterProcessApply
The AfterProcessApply procedure is called after the entire apply phase of the
MGP process.

procedure AfterProcessApply;

2.7.1.4 BeforeProcessCompose
The BeforeProcessCompose procedure is called before the entire compose phase of
the MGP process.

procedure BeforeProcessCompose;

2.7.1.5 AfterProcessCompose
The AfterProcessCompose procedure is called after the entire compose phase of
the MGP process.

procedure AfterProcessCompose;

2.7.1.6 BeforeProcessLogs
The BeforeProcessLogs procedure is called before the database log tables (CLG$)
are generated for the compose phase of the MGP process. This log tables capture
changes for MGP and should not be confused with the trace logs.

procedure BeforeProcessLogs;

2.7.1.7 AfterProcessLogs
The AfterProcessLogs procedure is called after the database log tables (CLG$) are
generated for the compose phase of the MGP process. This log tables capture changes
for MGP and should not be confused with the trace logs.

procedure AfterProcessLogs;

2.7.1.8 BeforeClientCompose
The BeforeClientCompose procedure is called before each user is composed
during the compose phase of the MGP process.

procedure BeforeClientCompose (clientid varchar2);

2.7.1.9 AfterClientCompose
The AfterClientCompose procedure is called after each user is composed during
the compose phase of the MGP process.

Customize What Occurs Before and After Synchronization Phases

Synchronization 2-55

procedure AfterClientCompose (clientid varchar2);

2.7.1.10 BeforeSyncMapCleanup
For every publication item, Oracle Database Lite maintains a map table, where the
MGP inserts the DML operations to be carried out on the Oracle Lite database or new
records to be inserted in the case of a complete refresh. At the end of the every
synchronization session, the map tables are cleaned up where all old entries are
deleted.

During this cleanup, if the connection properties are not ideal, then you may have
performance issues. The callbacks added before and after the map cleanup operation
enable you to optimize the connection properties and revert back to old connection
properties after the operation is complete.

The BeforeSyncMapCleanup procedure is called at the beginning of the cleanup; the
AfterSyncMapCleanup procedure is called after cleanup is finished. You can
configure the connection settings can be changed in the BeforeSyncMapCleanup
and reverted back in the AfterSyncMapCleanup procedure. These methods are
invoked only once during the synchronization cycle.

The properties you can manage in these callback procedures are as follows:

■ Any session level hints

■ You can set the OPTIMIZER_INDEX_CACHING and OPTIMIZER_INDEX_COST_
ADJ session parameters, as follows:

■ ALTER SESSION SET OPTIMIZER_INDEX_CACHING=0;

■ ALTER SESSION SET OPTIMIZER_INDEX_COST_ADJ=100;

2.7.1.11 AfterSyncMapCleanup
The AfterSyncMapCleanup procedure is called at the end of the map cleanup. If
you set any parameters in the BeforeSyncMapCleanup callback, you can set them back
to the original settings in this procedure. See Section 2.7.1.10,
"BeforeSyncMapCleanup" for more information.

2.7.1.12 Example Using the Customize Package
If a developer wants to use any of the procedures listed above, perform the following:

■ Manually create the CUSTOMIZE package in the Mobile Server schema.

■ Define all of the methods with the following specification:

create or replace package CUSTOMIZE as
 procedure NullSync (clientid varchar2, isNullSync boolean);

Note: In the CONSOLIDATOR section of the webtogo.ora file, you
may want to modify the MAX_U_COUNT parameter before the
synchronization starts.

The MAX_U_COUNT parameter controls the number of SQL statements
that are executed together in a SQL batch statement while performing
the map cleanup. The default value for the MAX_U_COUNT parameter
is 256. However, if the value is 256 during the map cleanup, then a
maximum of 256 SQL statements can be executed together in a batch.
Modify this parameter and restart the Mobile Server to enable a larger
batch of SQL statements to be processed during map cleanup.

Customize What Occurs Before and After Synchronization Phases

2-56 Oracle Database Lite Developer's Guide

 procedure BeforeProcessApply ;
 procedure AfterProcessApply ;
 procedure BeforeProcessCompose ;
 procedure AfterProcessCompose ;
 procedure BeforeProcessLogs ;
 procedure AfterProcessLogs ;
 procedure BeforeClientCompose(clientid varchar2);
 procedure AfterClientCompose(clientid varchar2);
 end CUSTOMIZE;

2.7.1.13 Error Handling For CUSTOMIZE Package
Errors are logged for the CUSTOMIZE package only if logging is enabled for the MGP
component for the finest level for all event types. Thus, you should set the logging
level to ALL and the type to ALL.

If any errors occur due to an invalid CUSTOMIZE package, they are logged only on the
first MGP cycle after the Mobile Server restarts. On subsequent synchronizations, the
errors are not re-written to the logs, sine the MGP does not attempt to re-execute the
CUSTOMIZE package until the Mobile Server is restarted.

To locate these errors easily within the MGP_<x>.log files, search for the
MGP.callBoundCallBack method. Another option is to restart the Mobile Server
and check the MGP log right after the next synchronization.

2.7.2 Customize What Occurs Before and After Compose/Apply Phases for a Single
Publication Item

When creating publication items, the user can define a customizable PL/SQL package
that MGP calls during the Apply and Compose phase of the MGP background process
for that particular publication item. To customize the compose/apply phases for a
publication item, perform the following:

1. Create the PL/SQL package with the customized before/after procedures.

2. Register this PL/SQL package with the publication item.

Then when the publication item is being processed, MGP calls the appropriate
procedures from your package.

Client data is accumulated in the In Queue prior to being processed by the MGP. Once
processed by the MGP, data is accumulated in the Out Queue before being pulled to
the client by Mobile Sync.

WARNING: It is the developer’s responsibility to ensure that the
package is defined properly and that the logic contained does not
jeopardize the integrity of the synchronization process.

Note: One requirement is that the CUSTOMIZE package can only be
executed as user mobileadmin.

Note: If you are using a remote database for application data, then
the callbacks must be defined on the same database as the application.
See Section 3.2.4, "Using Callbacks on Remote Databases" for more
details.

Customize What Occurs Before and After Synchronization Phases

Synchronization 2-57

You can implement the following PL/SQL procedures to incorporate customized code
into the MGP process. The clientname and tranid are passed to allow for
customization at the user and transaction level.

■ The BeforeApply method is invoked before the client data is applied:

procedure BeforeApply(clientname varchar2)

■ The AfterApply method is invoked after all client data is applied.

procedure AfterApply(clientname varchar2)

■ The BeforeTranApply method is invoked before the client data with tranid is
applied.

procedure BeforeTranApply(tranid number)

■ The AfterTranApply method is invoked after all client data with tranid is
applied.

procedure AfterTranApply(tranid number)

■ The BeforeCompose method is invoked before the Out Queue is composed.

procedure BeforeCompose(clientname varchar2)

■ The AfterCompose method is invoked after the Out Queue is composed.

procedure AfterCompose(clientname varchar2)

The following is a PL/SQL example that creates a callback package and registers it
when creating the P_SAMPLE3 publication item. The BeforeApply procedure
disables constraints before the apply phase; the AfterApply procedure enables these
constraints. Even though you are only creating procedures for the before and after
apply phase of the MGP process, you still have to provide empty procedures for the
other parts of the MGP process.

1. Create PL/SQL package declaration with callback owner/schema name of
SAMPLE3 and callback package name of SAMP3_PKG.

2. Create the package definition, with all MGP process procedures with callback
owner.callback package name of SAMPLE3.SAMP3_PKG. Provide a null procedure
for any procedure you do not want to modify.

3. Register the package as the callback package for the SAMPLE3 publication item. If
you are creating the publication item, provide the callback schema/owner and the
callback package names as input parameters to the createPublicationItem
method. If you want to add the callback package to an existing publication item,
do the following:

a. Retrieve the template metadata with getTemplateItemMetaData for the
publication item.

b. Modify the attributes that specify the callback owner/schema (cbk_owner)
and the callback package (cbk_name).

c. Register the package by executing the setTemplateItemMetaData method.

// create package declaration
 stmt.executeUpdate("CREATE OR REPLACE PACKAGE SAMPLE3.SAMP3_PKG as"
 + " procedure BeforeCompose(clientname varchar2);"
 + " procedure AfterCompose(clientname varchar2);"
 + " procedure BeforeApply(clientname varchar2);"
 + " procedure AfterApply(clientname varchar2);"

Customize What Occurs Before and After Synchronization Phases

2-58 Oracle Database Lite Developer's Guide

 + " procedure BeforeTranApply(tranid number);"
 + " procedure AfterTranApply(tranid number);"
 + " end;"
);
// create package definition
 stmt.executeUpdate("CREATE OR REPLACE PACKAGE body SAMPLE3.SAMP3_PKG as"
 + " procedure BeforeTranApply(tranid number) is"
 + " begin"
 + " null;"
 + " end;"
 + " procedure AfterTranApply(tranid number) is"
 + " begin"
 + " null;"
 + " end;"
 + " procedure BeforeCompose(clientname varchar2) is"
 + " begin"
 + " null;"
 + " end;"
 + " procedure AfterCompose(clientname varchar2) is"
 + " begin"
 + " null;"
 + " end;"
 + " procedure BeforeApply(clientname varchar2) is"
 + " cur integer;"
 + " ign integer;"
 + " begin"
 + " cur := dbms_sql.open_cursor;"
 + " dbms_sql.parse(cur,'SET CONSTRAINT SAMPLE3.address14_fk DEFERRED',
 dbms_sql.native);"
 + " ign := dbms_sql.execute(cur);"
 + " dbms_sql.close_cursor(cur);"
 + " end;"
 + " procedure AfterApply(clientname varchar2) is"
 + " cur integer;"
 + " ign integer;"
 + " begin"
 + " cur := dbms_sql.open_cursor;"
 + " dbms_sql.parse(cur, 'SET CONSTRAINT SAMPLE3.address14_fk IMMEDIATE',
 dbms_sql.native);"
 + " ign := dbms_sql.execute(cur);"
 + " dbms_sql.close_cursor(cur);"
 + " end;"
 + " end;"
);

Then, register the callback package with the createPublicationItem method call,
as follows:

// register SAMPLE3.SAMP3_PKG as the callback for MGP processing of
// P_SAMPLE3 publication item.

cm.createPublicationItem("P_SAMPLE3","SAMPLE3","ADDRESS", "F",
 "SELECT * FROM SAMPLE3.ADDRESS", "SAMPLE3", "SAMP3_PKG");

In the previous code example, the following is required:

■ stmt, which is used when creating the package definition, is an instance of
java.sql.Statement

■ cm, which is used when registering the callback package, is an instance of
oracle.lite.sync.ConsolidatorManager

Initiating Client Synchronization With Synchronization APIs

Synchronization 2-59

■ The callback package must have the following procedures defined:

■ BeforeCompose (clientname varchar2);

■ AfterCompose (clientname varchar2);

■ BeforeApply (clientname varchar2);

■ AfterApply (clientname varchar2);

■ BeforeTranApply (tranid number);

■ AfterTranApply (tranid number);

2.8 Initiating Client Synchronization With Synchronization APIs
You can modify the client-side application to start the synchronization
programmatically. This section describes how to perform the synchronization upload
and download phases for the client using the Synchronization APIs.

To execute the upload portion of synchronization from the client (see steps 1 and 2 in
Figure 2–1) from within your C, C++, or Java application, perform the following steps:

1. Initialize the synchronization parameters.

2. Set up the transport parameters.

3. Initialize the synchronization options and environment, such as username,
password, and selective synchronization.

4. Perform the synchronization.

The following sections demonstrates how you can perform these steps in each of the
allowed programming languages:

■ Section 2.8.1, "Starting Synchronization Upload and Download Phases With C or
C++ Applications"

■ Section 2.8.2, "Starting Synchronization Upload and Download Phases With Java
Applications"

■ Section 2.8.3, "Starting Synchronization Upload and Download Phases With the
ADO.NET Provider"

2.8.1 Starting Synchronization Upload and Download Phases With C or C++
Applications

You can initiate and monitor synchronization from a C or C++ client application. The
synchronization methods for the C/C++ interface are contained in ocapi.h and
ocapi.dll, which are located in the <ORACLE_HOME>\Mobile\bin directory. See
Section 4.1, "Synchronization APIs For C or C++ Applications" for full details.

2.8.2 Starting Synchronization Upload and Download Phases With Java Applications
You can initiate and monitor synchronization from a Java client application. See
Section 4.2, "Synchronization API for Java Applications" for more information.

Note: Currently, there are no APIs to perform the upload activity on
the UNIX platforms.

Understanding Your Refresh Options

2-60 Oracle Database Lite Developer's Guide

2.8.3 Starting Synchronization Upload and Download Phases With the ADO.NET
Provider

You can initiate and monitor synchronization from an ADO.NET provider application.
See Section 5.1.4, "ADO.NET" for full details.

2.9 Understanding Your Refresh Options
The Mobile Server supports several refresh options. During a fast refresh, incremental
changes are synchronized. However, during a complete refresh, all data is refreshed
with current data. The refresh mode is established when you create the publication
item using the createPublicationItem API call. In order to change the refresh
mode, first drop the publication item and recreate it with the appropriate mode.

The following sections describe the types of refresh for your publication item that can
be used to define how to synchronize:

■ Fast Refresh: The most common method of synchronization is a fast refresh
publication item where changes are uploaded by the client, and changes for the
client are downloaded. Meanwhile, the MGP periodically collects the changes
uploaded by all clients and applies them to database tables. It then composes new
data, ready to be downloaded to each client during the next synchronization,
based on predefined subscriptions.

■ Complete Refresh: During a complete refresh, all data for a publication is
downloaded to the client. For example, during the very first synchronization
session, all data on the client is refreshed from the client database. This form of
synchronization takes longer because all rows that qualify for a subscription are
transferred to the client device, regardless of existing client data.

■ Queue-Based: The developer creates their own queues to handle the
synchronization data transfer. This can be considered the most basic form of
publication item, for the simple reason that there is no synchronization logic
created with it. The synchronization logic is left entirely in the hands of the
developer. A queue-based publication item is ideally suited for scenarios that do
not require actual synchronization, but require something somewhere in between.
For instance, data collection on the client. With data collection, there is no need to
worry about conflict detection, client state information, or server-side updates.
Therefore, there is no need to add the additional overhead normally associated
with a fast refresh or complete refresh publication item.

■ Forced Refresh: This is actually NOT a refresh option; however, we discuss it here
in order to inform you of the consequences of performing a forced refresh. When a
Forced Refresh is initiated all data on the client is removed. The client will then
bring down an accurate copy of the client data from the enterprise database to
start fresh with exactly what is currently stored in the enterprise data store.

The following sections describe the refresh options in more detail:

■ Section 2.9.1, "Fast Refresh"

■ Section 2.9.2, "Complete Refresh for Views"

■ Section 2.9.3, "Queue-Based Refresh"

■ Section 2.9.4, "Forced Refresh"

Understanding Your Refresh Options

Synchronization 2-61

2.9.1 Fast Refresh
Publication items are created for fast refresh by default. Under fast refresh, only
incremental changes are replicated. The advantages of fast refresh are reduced
overhead and increased speed when replicating data stores with large amounts of data
where there are limited changes between synchronization sessions.

The Mobile Server performs a fast refresh of a view if the view meets the following
criteria:

■ Each of the view base tables must have a primary key.

■ All primary keys from all base tables must be included in the view column list.

■ If the item is a view, and the item predicate involves multiple tables, then all tables
contained in the predicate definition must have primary keys and must have
corresponding publication items.

The view requires only a unique primary key for the parent table. The primary keys of
other tables may be duplicated. For each base table primary key column, you must
provide the Mobile Server with a hint about the column name in the view. You can
accomplish this by using the primaryKeyHint method of the Consolidator Manager
object. See the Javadoc in the Oracle Database Lite API Specification for more
information.

2.9.2 Complete Refresh for Views
A complete refresh is simply a complete execution of the snapshot query. When
application synchronization performance is slow, tune the snapshot query. Complete
refresh is not optimized for performance. Therefore, to improve performance, use the
fast refresh option. The Consperf utility analyzes only fast refresh publication items.

Publication items can be created for complete refresh using the C refresh mode in the
createPublicationItem API from the Consolidator Manager API. When this
mode is specified, client data is completely refreshed with current data from the server
after every sync. An administrator can force a complete refresh for an entire
publication through an API call. This function forces complete refresh of a publication
for a given client.

See the Javadoc in the Oracle Database Lite API Specification for more information.

The following lists what can cause a complete refresh, ordered from most likely to
least likely:

1. The same Mobile user synching from multiple devices on the same platform, or
synching from different platforms when the publications are not platform specific.

2. Republishing the application.

3. An unexpected server apply condition, such as constraint violations, unresolved
conflicts, and other database exceptions.

4. Modifying the application, such as changing subsetting parameters or
adding/altering publication items. This refresh only affects the publication items.

5. A force refresh requested by server administrator or a force refresh requested by
the client.

6. On Oracle Lite Mobile clients, restoring an old Oracle Lite database (ODB file).

7. Two separate applications using the same backend store.

8. An unexpected client apply conditions, such as a moved or deleted database,
database corruption, memory corruption, other general system failures.

Synchronizing With Database Constraints

2-62 Oracle Database Lite Developer's Guide

9. Loss of transaction integrity between the server and client. The server fails post
processing after completing the download and disconnects from the client.

10. Data transport corruptions.

2.9.3 Queue-Based Refresh
You can create your own queues. Mobile Server uploads and downloads changes from
the user. Perform customized apply/compose modifications to the back-end database
with your own implementation. See the Section 2.13, "Customizing Synchronization
With Your Own Queues" for more information.

2.9.4 Forced Refresh
This is actually NOT a refresh option; however, we discuss it here in order to inform
you of the consequences of performing a forced refresh. Out of all the different
synchronization options, the Forced Refresh synchronization architecture is probably
the most misunderstood synchronization type. This option is commonly confused
with the Complete Refresh synchronization. This confusion may result in tragic
consequences and the loss of critical data on the client.

The Forced Refresh option is an emergency only synchronization option. This option is
for when a client is so corrupt or malfunctioning so severely that the determination is
made to replace the Mobile client data with a fresh copy of data from the enterprise
data store. When this option is selected, any data transactions that have been made on
the client are lost.

When a Forced Refresh is initiated all data on the client is removed. The client will
then bring down an accurate copy of the client data from the enterprise database to
start fresh with exactly what is currently stored in the enterprise data store.

2.10 Synchronizing With Database Constraints
When you have database constraints on your table, you must develop your application
in a certain way to facilitate the synchronization of the data and keeping the database
constraints.

The following sections detail each constraint and what issues you must take into
account:

■ Section 2.10.1, "Synchronization And Database Constraints"

■ Section 2.10.2, "Primary Key is Unique"

■ Section 2.10.3, "Foreign Key Constraints"

■ Section 2.10.4, "Unique Key Constraint"

■ Section 2.10.5, "Not Null Constraint"

■ Section 2.10.6, "Generating Constraints on the Mobile Client"

Note: For more details on database constraints in Oracle Database
Lite, refer to Section 1.10, "Database Constraints" in the Oracle Database
Lite SQL Reference.

Synchronizing With Database Constraints

Synchronization 2-63

2.10.1 Synchronization And Database Constraints
Oracle Database Lite does not keep a record of the SQL operations executed against
the database; instead, only the final changes are saved and synchronized to the
back-end database.

For example, if you have a client with a unique key constraint, where the following is
executed against the client database:

1. Record with primary key of one and unique field of ABC is deleted.

2. Record with primary key of 4 and unique field of ABC is inserted.

When this is synchronized, according the Section 2.4.1.7.2, "Using Table Weight"
discussion, the insert is performed before the delete. This would add a duplicate field
for ABC and cause a unique key constraint violation. In order to avoid this, you
should defer all constraint checking until after all transactions are applied. See
Section 2.10.3.2, "Defer Constraint Checking Until After All Transactions Are Applied".

Another example of how synchronization captures the end result of all SQL
modifications is as follows:

1. Insert an employee record 4 with name of Joe Judson.

2. Update employee record 4 with address.

3. Update employee record 4 with salary.

4. Update employee record 4 with office number

5. Update employee record 4 with work email address.

When synchronization occurs, all modifications are captured and only a single insert is
performed on the back-end database. The insert contains the primary key, name,
address, salary, office number and email address. Even though the data was created
with multiple updates, the Sync Server only takes the final result and makes a single
insert.

2.10.2 Primary Key is Unique
When you have multiple clients, each updating the same table, you must have a
method for guaranteeing that the primary key is unique across all clients. Oracle
Database Lite provides you a sequence number that you can use as the primary key,
which is guaranteed to be unique across all Mobile clients.

For more information on the sequence number, see Section 2.4.1.8, "Creating
Client-Side Sequences for the Downloaded Snapshot".

2.10.3 Foreign Key Constraints
A foreign key exists in a details table and points to a row in the master table. Thus,
before a client adds a record to the details table, the master table must first exist.

For example, two tables EMP and DEPT have referential integrity constraints and are an
example of a master-detail relationship. The DEPT table is the master table; the EMP
table is the details table. The DeptNo field (department number) in the EMP table is a
foreign key that points to the DeptNo field in the DEPT table. The DeptNo value for
each employee in the EMP table must be a valid DeptNo value in the DEPT table.

Note: If you want these constraints to apply on the Mobile client, see
Section 2.10.6, "Generating Constraints on the Mobile Client".

Synchronizing With Database Constraints

2-64 Oracle Database Lite Developer's Guide

When a user adds a new employee, first the employee’s department must exist in the
DEPT table. If it does not exist, then the user first adds the department in the DEPT
table, and then adds a new employee to this department in the EMP table. The
transaction first updates DEPT and then updates the EMP table. However, Oracle
Database Lite does not store the sequence in which these operations were executed.

Oracle Database Lite does not keep a record of the SQL operations executed against
the database; instead, only the final changes are saved and synchronized to the
back-end database. For our employee example, when the user replicates with the
Mobile Server, the Mobile Server could initiate the updates the EMP table first. If this
occurs, then it attempts to create a new record in EMP with an invalid foreign key
value for DeptNo. Oracle database detects a referential integrity violation. The Mobile
Server rolls back the transaction and places the transaction data in the Mobile Server
error queue. In this case, the foreign key constraint violation occurred because the
operations within the transaction are performed out of their original sequence.

In order to avoid this violation, you can do one of two things:

■ Section 2.10.3.1, "Set Update Order for Tables With Weights"

■ Section 2.10.3.2, "Defer Constraint Checking Until After All Transactions Are
Applied"

2.10.3.1 Set Update Order for Tables With Weights
Set the order in which tables are updated on the back-end Oracle database with
weights. To avoid integrity constraints with a master-details relationship, the master
table must always be updated first in order to guarantee that it exists before any
records are added to a details table. In our example, you must set the DEPT table with
a lower weight than the EMP table to ensure that all records are added to the DEPT
table first.

You define the order weight for tables when you add a publication item to the
publication. For more information on weights, see Section 2.4.1.7.2, "Using Table
Weight".

2.10.3.2 Defer Constraint Checking Until After All Transactions Are Applied
You can use a PL/SQL procedure avoid foreign key constraint violations based on
out-of-sequence operations by using DEFERRABLE constraints in conjunction with the
BeforeApply and AfterApply functions. DEFERRABLE constraints can be either
INITIALLY IMMEDIATE or INITIALLY DEFERRED. The behavior of DEFERRABLE
INITIALLY IMMEDIATE foreign key constraints is identical to regular immediate
constraints. They can be applied interchangeably to applications without impacting
functionality.

The Mobile Server calls the BeforeApply function before it applies client transactions
to the server and calls the AfterApply function after it applies the transactions.
Using the BeforeApply function, you can set constraints to DEFFERED to delay
referential integrity checks. After the transaction is applied, call the AfterApply
function to set constraints to IMMEDIATE. At this point, if a client transaction violates
referential integrity, it is rolled back and moved into the error queues.

To prevent foreign key constraint violations using DEFERRABLE constraints:

1. Drop all foreign key constraints and then recreate them as DEFERRABLE
constraints.

2. Bind user-defined PL/SQL procedures to publications that contain tables with
referential integrity constraints.

Synchronizing With Database Constraints

Synchronization 2-65

3. The PL/SQL procedure should set constraints to DEFERRED in the BeforeApply
function and IMMEDIATE in the AfterApply function as in the following
example featuring a table named SAMPLE3 and a constraint named address.14_
fk:

 procedure BeforeApply(clientname varchar2) is
 cur integer;
 begin
 cur := dbms_sql.open_cursor;
 dbms_sql.parse(cur,'SET CONSTRAINT SAMPLE3.address14_fk
 DEFERRED', dbms_sql.native);
 dbms_sql.close_cursor(cur);
 end;
 procedure AfterApply(clientname varchar2) is
 cur integer;
 begin
 cur := dbms_sql.open_cursor;
 dbms_sql.parse(cur, 'SET CONSTRAINT SAMPLE3.address14_fk
 IMMEDIATE', dbms_sql.native);
 dbms_sql.close_cursor(cur);
 end;

2.10.4 Unique Key Constraint
A unique key constraint enforces uniqueness of data. However, you may have
multiple clients across multiple devices updating the same table. Thus, a record may
be unique on a single client, but not across all clients. Enforcing uniqueness is the
customer’s reponsibility and depends on the data.

How do you guarantee that the records added on separate clients are unique? You can
use the sequence numbers generated on the client by Oracle Database Lite. See
Section 2.4.1.8, "Creating Client-Side Sequences for the Downloaded Snapshot" for
more information.

2.10.5 Not Null Constraint
When you have a not null constraint on the client or on the server, you must ensure
that this constraint is set on both sides.

■ On the server—Create a NOT NULL constraint on the back-end server table using
the Oracle database commands.

■ For the client—Set a column as NOT NULL by executing the
setPubItemColOption method in the ConsolidatorManager API. Provide
Consolidator.NOT_NULL as the input parameter for nullType. The constraint
is then enforced on the table in the client Oracle Lite database.

2.10.6 Generating Constraints on the Mobile Client
The Primary Key, Foreign Key, Not Null and Default Value constraints can be
synchronized to the Mobile client; the Unique constraints cannot be synchronized. For
foreign key constraints, you decide if you want the foreign key on the Mobile client.
That is, when you create a foreign key constraint on a table on the back-end server,
you may or may not want this constraint to exist on the Mobile client.

■ Each publication that is defined is specific to a certain usage. For example, if you
have a foreign key constraint between two tables, such as department and
employee, your publication may only specify that information from the employee

Resolving Conflicts with Winning Rules

2-66 Oracle Database Lite Developer's Guide

table is downloaded. In this situation, you would not want the foreign constraint
between the employee and department table to be enforced on the client.

■ If you do have a master-detail relationship or other constraint relationships
synchronized down to the client, then you would want to have the constraint
generated on the client.

In order to generate the constraints on the Mobile client, perform the following:

1. Within the process for creating or modifying an existing publication using the
APIs, invoke the assignWeights method of the ConsolidatorManager object,
which does the following tasks:

a. Calculates a weight for each of the publication items included in the
publication.

b. Creates a script that, when invoked on the client, generates the constraints on
the client. This script is automatically added to the publication.

2. On the Mobile client, perform a synchronization for the user, which brings down
the snapshot and the constraint script. The script is automatically executed on the
Mobile client.

Once executed on the client, all constraints on the server for this publication are also
enforced on the Mobile client.

2.10.6.1 The assignWeights Method
The assignWeights method automatically calculates weights for all publication
items belonging to a publication. If a new publication item is added or if there is a
change in the referential relationships, the API should be called again.

The following defines the assignWeights method and its parameters:

public void assignWeights(java.lang.String pub, boolean createScripts)
 throws ConsolidatorException

Where:

■ pub - Publication name

■ createScripts - If true, creates refrential constraints scripts and adds them to
the publication to be propagated to subscribed clients.

2.11 Resolving Conflicts with Winning Rules
When you have a conflict, you need to determine which party wins. The following are
the settings that you can choose for conflict resolution on the server:

■ Client wins—When the client wins, the Mobile Server automatically applies client
changes to the server. And if you have a record that is set for INSERT, yet a record
already exists, the Mobile Server automatically modifies it to be an UPDATE.

■ Server wins—If the server wins, the client updates are not applied to the
application tables. Instead, the Mobile Server automatically composes changes for
the client. The client updates are placed into the error queue, just in case you still
want these changes to be applied to the server—even though the winning rules
state that the server wins.

The Mobile Server uses internal versioning to detect synchronization conflicts. A
separate version number is maintained for each client and server record. When the
client updates are applied to the server, then the Mobile Server checks the version
numbers of the client against the version numbers on the server. If the version does

Resolving Conflicts with Winning Rules

Synchronization 2-67

not match, then the conflict resolves according to the defined winning rules—such as
client wins or server wins, as follows:

The Mobile Server does not automatically resolve synchronization errors. Instead, the
Mobile Server rolls back the corresponding transactions, and moves the transaction
operations into the Mobile Server error queue. It is up to the administrator to view the
error queue and determine if the correct action occurred. If not, the administrator must
correct and re-execute the transaction. If it did execute correctly, then purge the
transaction from the error queue.

One type of error is a synchronization conflict, which is detected in any of the
following situations:

■ The client and the server update the same row.

■ The client deletes the same row that the server updates.

■ The client updates a row at the same time that the server deletes it when the
"server wins" conflict rule is specified. This is considered a synchronization error
for compatibility with Oracle database advanced replication.

■ Both the client and server create rows with the same primary key values.

■ Two separate clients update the same row.

■ Two clients insert a row with the same primary key.

■ One client deletes a row that a second client updates.

■ For systems with delayed data processing, where the client data is not directly
applied to the base table—for instance, in a three-tiered architecture—a situation
could occur when a client inserts a row and then updates the same row, while the
row has not yet been inserted into the base table. In that case, if the DEF_APPLY
parameter in C$ALL_CONFIG is set to TRUE, an INSERT operation is performed,
instead of the UPDATE. It is up to the application developer to resolve the resulting
primary key conflict. If, however, DEF_APPLY is not set, a "NO DATA FOUND"
exception is thrown.

All the other errors, including nullity violations and foreign key constraint violations
are synchronization errors. See Section 2.10, "Synchronizing With Database
Constraints" for more information.

On the server, synchronization errors and conflicts are placed into the error queue. For
each publication item created, a separate and corresponding error queue is created.
The purpose of this queue is to store transactions that fail due to unresolved conflicts.
The administrator can attempt to resolve the conflicts, either by modifying the error
queue data or that of the server, and then attempt to re-apply the transaction.

The administrator can resolve the errors, and then re-execute or purge transactions
from the error queue using either of the following:

■ Resolve errors and conflicts in the error queue using the Mobile Manager
GUI—See Section 6.10.4.3, "Viewing Transactions in the Error Queue" in the Oracle
Database Lite Administration and Deployment Guide on how to update the client
transaction in the error queue and re-execute the statement using the Mobile
Manager GUI.

Note: In the case where two clients conflict, then the client whose
data gets applied first effectively becomes the server and the other
client becomes the client in resolving this conflict.

Resolving Conflicts with Winning Rules

2-68 Oracle Database Lite Developer's Guide

■ Resolve errors and conflicts programmatically with the Consolidator Manager
API. You can access the Mobile Server error queue tables directly and customize
the conflict rules, as described in the following sections:

■ Section 2.11.1, "Resolving Errors and Conflicts on the Mobile Server Using the
Error Queue"

■ Section 2.11.2, "Viewing Client-Side Synchronization Conflicts from Automatic
Synchronization"

■ Section 2.11.3, "Customizing Synchronization Conflict Resolution Outcomes"

2.11.1 Resolving Errors and Conflicts on the Mobile Server Using the Error Queue
The error queue stores transactions that fail due to synchronization errors or
unresolved conflicts. For unresolved conflicts, only the "Server Wins" conflicts are
reported. If you have set your conflict rules to "Client Wins", then these are not
reported. The administrator can do one of the following:

■ Attempt to correct the error by modifying the error queue data or that of the
server, and re-apply the transaction through the executeTransaction method
of the Consolidator Manager object.

■ If a conflict was reported and resolved to your satisfaction, then you can purge the
transaction from the error queue with the purgeTransaction method of the
Consolidator Manager object. Otherwise, you can override the default conflict
resolution by modifying the error queue data and re-apply the transaction.

View the error queue through the Mobile Manager GUI, where you can see what the
conflict was. You can fix the problem and reapply the data by modifying the DML
operation appropriately and then re-executing. See Section 6.11.4.3 "Viewing
Transactions in the Error Queue" in the Oracle Database Lite Administration and
Deployment Guide for directions.

2.11.2 Viewing Client-Side Synchronization Conflicts from Automatic Synchronization
For automatic synchronization publication items only, any synchronization conflict
error information that occurs on the client is stored in the CONF$<snapshot> table in
the same client database as the snapshot.

This table has the same columns and the snapshot, plus some additional columns.
Some of the additional columns in this table are reserved, but the columns that you
can use to determine what course to take in resolving the conflict are as follows:

■ MSG$PRIO—Lists the priority of the data where priority 0 is the highest.

Oracle Database Lite adds the MSG$PRIO column to all automatic synchronization
snapshots to designate if this data has a higher priority for synchronization if
conditions are right. If users need to indicate that a particular record is high
priority, they can set the column value to (0). Then Sync Agent automatically
schedules a high priority synchronization for the transaction that contains this
record.

■ MSG$TYPE—I for insert, U for update, or D for delete DML.

Note: The rules for the client conflict resolution is the same as what
was set for the server. These tables show the errors that occured on the
client during automatic synchronization.

Using the Sync Discovery API to Retrieve Statistics

Synchronization 2-69

■ MSG$CONFTYPE—S for server-side DML or C for client-side DML.

2.11.3 Customizing Synchronization Conflict Resolution Outcomes
You can customize synchronization conflict resolution by doing the following:

1. Configure the winning rule to Client Wins.

2. Perform only ONE of the following:

– Create and attach one or more triggers on the back-end Oracle database base
tables to execute before the INSERT, UPDATE, or DELETE DML statements.
The triggers should be created to evaluate the data and handle the conflict.
Triggers are created to compare old and new row values and resolve client
changes as defined by you. See the Oracle Database documentation for full
details on how to create and attach triggers.

– Create a custom DML procedure. See Section 2.4.1.13, "Callback
Customization for DML Operations" for an example of how to create a custom
DML procedure.

You can use the generateMobileDMLProcedure to generate the procedure
specification for a given publication item. This specification can be used as a
starting point in creating your own custom DML handling logic in a PL/SQL
procedure. You use the addMobileDMLProcedure API to attach the PL/SQL
procedure to the publication item. See the Oracle Database Lite API Specification
for more information.

2.12 Using the Sync Discovery API to Retrieve Statistics
The Sync Discovery feature is used to request an estimate of the size of the download
for a specific client, based on historical data. The following statistics are gathered to
maintain the historical data:

■ The total number of rows send for each publication item.

■ The total data size for these rows.

■ The compressed data size for these rows.

The following sections contain methods that can be used to gather statistics:

■ Section 2.12.1, "getDownloadInfo Method"

■ Section 2.12.2, "DownloadInfo Class Access Methods"

■ Section 2.12.3, "PublicationSize Class"

2.12.1 getDownloadInfo Method
The getDownloadInfo method returns the DownloadInfo object. The
DownloadInfo object contains a set of PublicationSize objects and access
methods. The PublicationSize objects carry the size information of a publication
item. The method Iterator iterator() can then be used to view each
PublicationSize object in the DownloadInfo object.

DownloadInfo dl = consolidatorManager.getDownloadInfo("S11U1", true, true);

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Using the Sync Discovery API to Retrieve Statistics

2-70 Oracle Database Lite Developer's Guide

2.12.2 DownloadInfo Class Access Methods
The access methods provided by the DownloadInfo class are listed in Table 2–23:

2.12.3 PublicationSize Class
The access methods provided by the PublicationSize class are listed inTable 2–24:

Table 2–23 DownloadInfo Class Access Methods

Method Definition

iterator Returns an Iterator object so that the user can traverse through
the all the PublicationSize objects that are contained inside
the DownloadInfo object.

getTotalSize Returns the size information of all PublicationSize objects
in bytes, and by extension, the size of all publication items
subscribed to by that user. If no historical information is
available for those publication items, the value returned is '-1'.

getPubSize Returns the size of all publication items that belong to the
publication referred to by the string pubName. If no historical
information is available for those publication items, the value
returned is '-1'.

getPubRecCount Returns the number of all records of all the publication items
that belong to the publication referred by the string pubName,
that will be synchronization during the next synchronization.

getPubItemSize Returns the size of a particular publication item referred by
pubItemName. It follows the following rules in order.

1. If the publication item is empty, it will return '0'.

2. If no historical information is available for those
publication items, it will return '-1'.

getPubItemRecCount Returns the number of records of the publication item referred
by pubItemName that will be synced in the next
synchronization.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Table 2–24 PublicationSize Class Access Methods

Parameter Definition

getPubName Returns the name of the publication containing the publication
item.

getPubItemName Returns the name of the publication item referred to by the
PublicationSize object.

getSize Returns the total size of the publication item referred to by the
PublicationSize object.

getNumOfRows Returns the number of rows of the publication item that will be
synchronized in the next synchronization.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Using the Sync Discovery API to Retrieve Statistics

Synchronization 2-71

Sample Code
import java.sql.*;
import java.util.Iterator;
import java.util.HashSet;

import oracle.lite.sync.ConsolidatorManager;
import oracle.lite.sync.DownloadInfo;
import oracle.lite.sync.PublicationSize;

public class TestGetDownloadInfo
{

 public static void main(String argv[]) throws Throwable
 {
// Open Consolidator Manager connection
 try
 {
// Create a ConsolidatorManager object
 ConsolidatorManager cm = new ConsolidatorManager ();
// Open a Consolidator Manager connection
 cm.openConnection ("MOBILEADMIN", "MANAGER",
 "jdbc:oracle:thin:@server:1521:orcl", System.out);
// Call getDownloadInfo
 DownloadInfo dlInfo = cm.getDownloadInfo ("S11U1", true, true);
// Call iterator for the Iterator object and then we can use that to transverse
// through the set of PublicationSize objects.
 Iterator it = dlInfo.iterator ();
// A temporary holder for the PublicationSize object.
 PublicationSize ps = null;
// A temporary holder for the name of all the Publications in a HashSet object.
 HashSet pubNames = new HashSet ();
// A temporary holder for the name of all the Publication Items in a HashSet
// object.
 HashSet pubItemNames = new HashSet ();
// Traverse through the set.
 while (it.hasNext ())
 {
// Obtain the next PublicationSize object by calling next ().
 ps = (PublicationSize)it.next ();

// Obtain the name of the Publication this PublicationSize object is associated
// with by calling getPubName ().
 pubName = ps.getPubName ();
 System.out.println ("Publication: " + pubName);

// We save pubName for later use.
 pubNames.add (pubName);

// Obtain the Publication name of it by calling getPubName ().
 pubItemName = ps.getPubItemName ();
 System.out.println ("Publication Item Name: " + pubItemName);

// We save pubItemName for later use.
 pubItemNames.add (pubItemName);

// Obtain the size of it by calling getSize ().
 size = ps.getSize ();
 System.out.println ("Size of the Publication: " + size);

// Obtain the number of rows by calling getNumOfRows ().

Using the Sync Discovery API to Retrieve Statistics

2-72 Oracle Database Lite Developer's Guide

 numOfRows = ps.getNumOfRows ();
 System.out.println ("Number of rows in the Publication: "
 + numOfRows);
 }

// Obtain the size of all the Publications contained in the
// DownloadInfo objects.
 long totalSize = dlInfo.getTotalSize ();
 System.out.println ("Total size of all Publications: " + totalSize);

// A temporary holder for the Publication size.
 long pubSize = 0;

// A temporary holder for the Publication number of rows.
 long pubRecCount = 0;

// A temporary holder for the name of the Publication.
 String tmpPubName = null;

// Transverse through the Publication names that we saved earlier.
 it = pubNames.iterator ();
 while (it.hasNext ())
 {
// Obtain the saved name.
 tmpPubName = (String) it.next ();

// Obtain the size of the Publication.
 pubSize = dlInfo.getPubSize (tmpPubName);
 System.out.println ("Size of " + tmpPubName + ": " + pubSize);

// Obtain the number of rows of the Publication.
 pubRecCount = dlInfo.getPubRecCount (tmpPubName);
 System.out.println ("Number of rows in " + tmpPubName + ": "
 + pubRecCount);
 }

// A temporary holder for the Publication Item size.
 long pubItemSize = 0;

// A temporary holder for the Publication Item number of rows.
 long pubItemRecCount = 0;

// A temporary holder for the name of the Publication Item.
 String tmpPubItemName = null;

// Traverse through the Publication Item names that we saved earlier.
 it = pubItemNames.iterator ();
 while (it.hasNext ())
 {
// Obtain the saved name.
 tmpPubItemName = (String) it.next ();

// Obtain the size of the Publication Item.
 pubItemSize = dlInfo.getPubItemSize (tmpPubItemName);
 System.out.println ("Size of " + pubItemSize + ": " + pubItemSize);

// Obtain the number of rows of the Publication Item.
 pubItemRecCount = dlInfo.getPubItemRecCount (tmpPubItemName);
 System.out.println ("Number of rows in " + tmpPubItemName + ": "
 + pubItemRecCount);

Customizing Synchronization With Your Own Queues

Synchronization 2-73

 }
 System.out.println ();

// Close the connection
 cm.closeConnection ();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

2.13 Customizing Synchronization With Your Own Queues
Application developers can manage the synchronization process programmatically by
using queue-based publication items. By default on the server-side, the MGP manages
both the In Queues and the Out Queues by gathering all updates posted to the In
Queue, applying these updates to the relevant tables, and then composing all new
updates created on the server that are destined for the client and posting it to the Out
Queue. This is described in Section 2.1, "How Oracle Database Lite Synchronizes".

However, you can bypass the MGP and provide your own solution for the apply and
compose phases on the server-side for selected publication items. You may wish to
bypass the MGP for the publication item if one or more of the following are true:

■ If you want to facilitate synchronous data exchange, use queue-based publication
items.

■ If you have complex business rules for data subsetting, in how you decide what
data each user receives, then use queue-based publication items. You can
incorporate these business rules into generation of the client’s queue data. This is
especially true if the rules are dynamically evaluated during runtime.

■ If your client collects large amounts of data only for upload to the server, never
receives data from the server, and it does not require conflict resolution, then use
the data collection queues.

Figure 2–4 shows how the Sync Server invokes the UPLOAD_COMPLETE PL/SQL
procedure when the client upload is complete. And before it downloads all composed
updates to the client, the Sync Server invokes the DOWNLOAD_INIT PL/SQL
procedure.

Customizing Synchronization With Your Own Queues

2-74 Oracle Database Lite Developer's Guide

Figure 2–4 Queue-Based Synchronization Architecture

To bypass the MGP, do the following:

1. Define your publication item as queue-based or data collection. Then, the MGP is
not aware of the queues associated with this publication item. You can do this
when creating the publication item either through MDW or Consolidator APIs.

2. If queue-based, then create a package, either PL/SQL or Java, that implements the
queue interface callback methods. This includes the following callback methods:

■ UPLOAD_COMPLETE to process the incoming updates from the client.

■ DOWNLOAD_INIT to complete the compose phase.

■ DOWNLOAD_COMPLETE if you have any processing to perform after the
compose phase.

3. Create the queues. The In Queue, CFM$<publication_item_name> is created
by default for you. Create the Out Queue as CTM$<publication_item_name>.

The following sections describe the methods for customizing the server-side
apply/compose phases-++:

■ Section 2.13.1, "Customizing Apply/Compose Phase of Synchronization with a
Queue-Based Publication Item"—You can define both the apply and compose
phases using queue-based publication items.

■ Section 2.13.2, "Creating Data Collection Queues for Uploading Client Collected
Data"—You use the data collection queue for uploading data from the client. The
queues are optimized for when a client collects data to upload to the server and
never receives data from the server.

■ Section 2.13.3, "Selecting How/When to Notify Clients of Composed Data"—You
can notify a client that there is new data on the server ready to be downloaded to
initiate a synchronization.

2.13.1 Customizing Apply/Compose Phase of Synchronization with a Queue-Based
Publication Item

Note: The sample for queue-based publication items is located in
<OLITE_HOME>/Mobile/Sdk/samples/Sync/win32/QBasedPI.

�

Mobile Client

1. Synchronize�
Client �

Database (ODB)
Sync�
Client

Sync�
Server

Mobile Server

2. Upload �
changes

3. Place client �
transaction in�
the In Queue

4. PL/SQL procedure�
UPLOAD_COMPLETE�

executed when�
data is�

available.

6. PL/SQL procedure�
DOWNLOAD_INIT�
executed when �

SyncServer �
looks for �

composed data

9. Grab transaction �
for client ODB

10. Download�
changes

11. Execute changes�
 against ODB

Steps 1-3 and 9-11 occur between�
the Mobile Server and the client

Steps 4-8 occur between�
the Mobile Server �
and the Database�

when the Sync Server �
invokes the PL/SQL package

�

8. PL/SQL procedure�
DOWNLOAD_COMPLETE�
executed after compose�

phase is complete

In Queue
Database

Out Queue

 5. PL/SQL procedure�
 applies client �
transaction to�

application tables

7. PL/SQL procedure�
composes �

updates destined�
for the client

Customizing Synchronization With Your Own Queues

Synchronization 2-75

When you want to substitute your own logic for the apply/compose phase of the
synchronization process, use a queue-based publication item. The following briefly
gives an overview of how the process works internally when using a queue-based
publication item:

■ When data arrives from the client it is placed in the publication item In Queues.
The Sync Server calls UPLOAD_COMPLETE, after which the data is committed. All
records in the current synchronization session are given the same transaction
identifier. The Queue Control Table (C$INQ) indicates which publication item In
Queues have received new transactions with the unique transaction identifier.
Thus, this table shows which queues need processing.

■ If you have a queue-based publication item, you must implement the compose
phase, if you have one. The MGP is unaware of queue-based publication items and
so will not be able to perform any action for this publication item. When you
implement your own compose logic, you decide when and how the compose logic
is invoked. For example, you could do the following:

– You could have a script execute your compose logic at a certain time of the
day.

– You could schedule the compose procedure as a job in the Job Scheduler.

– You could include the compose logic as part of the DOWNLOAD_INIT function,
so that it executes before the client downloads.

Before the Sync Server begins the download phase of the synchronization session,
it calls DOWNLOAD_INIT. In this procedure, you can customize the compose or
develop any pre-download logic for the client. The Sync Server finds a list of the
publication items, which can be downloaded based on the client's subscription. A
list of publication items and their refresh mode, ('Y' for complete refresh, 'N' for
fast refresh) is inserted into a temporary table (C$PUB_LIST_Q). Items can be
deleted or the refresh status can be modified in this table since the Sync Server
refers to C$PUB_LIST_Q to determine the items that are downloaded to the client.

Similar to the In Queue, every record in the Out Queue should be associated with it a
transaction identifier (TRANID$$). The Sync Server passes the last_tran parameter
to indicate the last transaction that the client has successfully applied. New Out Queue
records that have not been downloaded to the client are be marked with the value of
curr_tran parameter. The value of curr_tran is always greater than that of last_
tran, though not sequential. The Sync Server downloads records from the Out
Queues when the value of TRANID$$ is greater than last_tran. When the data is
downloaded, the Sync Server calls DOWNLOAD_COMPLETE.

When you decide to use queue-based publication items, you need to do the following:

1. Create both the In and Out Queues used in the apply and compose phases.

■ You can use the default In Queue, which is named CFM$<publication_
item_name>. Alternatively, you can create the queue of this name manually.

Note: If you decide to implement the compose phase independent of
the DOWNLOAD_INIT function; then once the compose is finished, you
may want the client to receive the data as soon as possible. In this
case, invoke the EN_QUEUE_NOTIFICATION function to start an
automatic synchronization from the client. For more information on
this function, see Section 2.13.3, "Selecting How/When to Notify
Clients of Composed Data".

Customizing Synchronization With Your Own Queues

2-76 Oracle Database Lite Developer's Guide

For example, if you wanted the In Queue to be a view, then you would create
the In Queue manually.

■ Create the Out Queue for the compose phase as CTM$<publication_item_
name>.

2. Create the publication item and define it as a queue-based publication item. This
can be done either through MDW or the Consolidator APIs.

3. Create the PL/SQL or Java callback methods for performing the apply and
compose phases. Since the MGP has nothing to do with the queues used for these
phases, when you are finished processing the data, you must manage the queues
by deleting any rows that have completed the necessary processing.

4. Register the package to be used for all of the queue processing for a particular
publication item.

2.13.1.1 Queue Creation
If a queue-based publication item is created, it will always use a queue by the name of
CFM$<publication_item_name>. However, if you want to customize how the In
Queue is defined—for example, by defining certain rules, making it a view or
designating the location of the queue—then you can create your own In Queue. The
Out Queue is never defined for you, so you must create an Out Queue named
CTM$<publication_item_name> in the Mobile Server repository manually using
SQL.

These queues are created based upon the publication item tables. For example, the
following table ACTIVESTATEMENT has five columns, as follows:

create table ACTIVESTATEMENT(
 StatementName varchar2(50) primary key,
 TestSuiteName varchar2(50),
 TestCaseName varchar2(50),
 CurrLine varchar2(4000),
 ASOrder integer) nologging;

The application stores its data in these five columns. When synchronization occurs,
this data must be uploaded and downloaded. However, there is also meta-information
necessary for facilitating the synchronization phases. Therefore, the Out Queue that
you create contains the meta-information in the CLID$$CS, TRANID$$ and
DMLTYPE$$ columns, as well as the columns from the ACTIVESTATEMENT table, as
follows:

create table CTM$AUTOTS_PUBITEM(
CLID$$CS VARCHAR2 (30),
StatementName varchar2(50) primary key,
TestSuiteName varchar2(50),
TestCaseName varchar2(50),
CurrLine varchar2(4000),
ASOrder integer,
TRANID$$ NUMBER (10),

Note: Normally, you define the package on the Main database where
the Mobile repository is located. However, if you are using a remote
database for your application data, then the package must be defined
on the remote database. For more information on remote databases,
see Section 3.2, "Register a Remote Oracle Database for Application
Data".

Customizing Synchronization With Your Own Queues

Synchronization 2-77

DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'))) nologging;

Thus, before you can create the queues, you must already know the structure of the
tables for the publication item, as well as the publication item name.

The following shows the structure and creation of the queues:

■ In Queue

■ Out Queue

■ Queue Control Table

■ Temporary Table

In Queue
All In Queues are named CFM$<name> where name is the publication item name. It
contains the application publication item table columns, as well as the fields listed in
Table 2–25:

The following designates the structure when creating the In Queue:

create table 'CFM$'+name
(
CLID$$CS VARCHAR2 (30),
TRANID$$ NUMBER (10),
SEQNO$$ NUMBER (10),
DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'),
publication item column definitions
)

Out Queue
All Out Queues are named CTM$<name> where name is the publication item name. It
contains the application publication item table columns, as well as the fields listed in
Table 2–26:

Table 2–25 In Queue Interface Creation Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

TRANID$$ A unique number identifying the transaction.

SEQNO$$ A unique number for every DML language operation per transaction in the
inqueue (CFM$) only.

DMLTYPE$$ Checks the type of DML instruction:

■ 'I' - Insert

■ 'D' - Delete

■ 'U' - Update

Note: You must have the parameters in the same order as shown
above for the In Queue. It is different than the ordering in the Out
Queue.

Customizing Synchronization With Your Own Queues

2-78 Oracle Database Lite Developer's Guide

The following designates the structure when creating the In Queue:

create table 'CTM$'+name
(
CLID$$CS VARCHAR2 (30),
publication item column definitions
TRANID$$ NUMBER (10),
DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'),
)

Another example of creating an Out Queue is in the FServ example, which uses the
default In Queue of CFM$PI_FSERV_TASKS and creates the CTM$PI_FSERV_TASKS
Out Queue for the PI_FSERV_TASKS publication item, as follows:

create table CTM$PI_FSERV_TASKS(
 CLID$$CS varchar2(30),
 ID number,
 EMP_ID number,
 CUST_ID number,
 STAT_ID number,
 NOTES varchar2(255)
 TRANID$$ number(10),
 DMLTYPE$$ char(1) check(DMLTYPE$$ in ('I','U','D')),
);

Queue Control Table
The Sync Server automatically creates a queue control table, C$INQ, and a temporary
table, C$PUB_LIST_Q. You will process the information in the queue control table in
the PL/SQL or Java callout methods to determine which publication items have
received new transactions.

The parameters for the control table queue are listed in Table 2–27:

Table 2–26 Out Queue Interface Creation Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

TRANID$$ A unique number identifying the transaction.

DMLTYPE$$ Checks the type of DML instruction:

■ 'I' - Insert

■ 'D' - Delete

■ 'U' - Update

Note: You must have the parameters in the same order as shown
above for the Out Queue. It is different than the ordering in the In
Queue.

Note: The application publication item table for the FServ example
contains columns for ID, EMP_ID, CUST_ID, STAT_ID, and NOTES.

Customizing Synchronization With Your Own Queues

Synchronization 2-79

The control table has the following structure:

'C$INQ'
(
CLIENTID VARCHAR2 (30),
TRANID$$ NUMBER,
STORE VARCHAR2 (30),
)

Temporary Table
The DOWNLOAD_INIT procedure uses the Temporary Table C$PUB_LIST_Q for
determining what publication items to download in the compose phase.

'C$PUB_LIST_Q'
(
NAME VARCHAR2 (30),
COMP_REF CHAR(1),
CHECK(COMP_REF IN('Y','N'))
)

The parameters for the manually created queues are listed in Table 2–28:

2.13.1.2 Queue-Based PL/SQL Callouts
The PL/SQL package for the queue-based publication callouts is in a package where
the UPLOAD_COMPLETE, DOWNLOAD_INIT, DOWNLOAD_COMPLETE, and POPULATE_
Q_REC_COUNT procedures are defined. The signatures for both callout procedures are
as follows:

CREATE OR REPLACE PACKAGE CONS_QPKG AS
/*
 * notifies that In Queue has a new transaction by providing the client
 * identifier and the transaction identifier.
*/
PROCEDURE UPLOAD_COMPLETE(
 CLIENTID IN VARCHAR2,
 TRAN_ID IN NUMBER -- IN queue tranid
);
/*
 * initializes client data for download. provides the compose phase for the
 * client. The input data for this procedure is the client id, the last
 * and current transaction markers and the priority.
*/
PROCEDURE DOWNLOAD_INIT(

Table 2–27 Queue Control Table Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

TRANID$$ A unique number identifying the transaction.

STORE Represents the publication item name in the queue control table.

Table 2–28 Queue Interface Creation Parameters

Parameter Description

NAME The publication item name that is to be downloaded from the
repository to the Out Queue.

COMP_REF This value is 'Y' for complete refresh.

Customizing Synchronization With Your Own Queues

2-80 Oracle Database Lite Developer's Guide

 CLIENTID IN VARCHAR2,
 LAST_TRAN IN NUMBER,
 CURR_TRAN IN NUMBER,
 HIGH_PRTY IN VARCHAR2
);
/*
 * notifies when all the client's data is sent
*/
PROCEDURE DOWNLOAD_COMPLETE(
 CLIENTID IN VARCHAR2
);

PROCEDURE POPULATE_Q_REC_COUNT(
 CLIENTID IN VARCHAR2
);

END CONS_QPKG;
/

2.13.1.2.1 In Queue Apply Phase Processing Within the UPLOAD_COMPLETE procedure,
you should develop a method of applying all changes from the client to the correct
tables in the repository. The FServ example performs the following:

1. From the Master Table C$INQ, locates the rows for the designated client and
transaction identifiers that have been marked for update.

2. Retrieves the application publication item data and the DMLTYPE$$ from the In
Queue, based on the client and transaction identifiers.

3. Performs insert, update, or delete (determined by the value in DMLTYPE$$) for
updates in the application tables in the repository.

4. After updates are complete, delete the rows in the C$INQ and the In Queue that
you just processed.

PROCEDURE UPLOAD_COMPLETE(CLIENTID IN VARCHAR2, TRAN_ID IN NUMBER) IS
/*create cursors for execution later */
/* PI_CUR locates the rows for the client out of the master table */
CURSOR PI_CUR(C_CLIENTID VARCHAR2, C_TRAN_ID NUMBER) IS
 SELECT STORE FROM C$INQ
 WHERE CLID$$CS = C_CLIENTID AND TRANID$$ = C_TRAN_ID FOR UPDATE;
/* TASKS_CUR retrieves the values for the client data to be updated */
/* from the In Queue */
CURSOR TASKS_CUR(C_CLIENTID varchar2, C_TRAN_ID number) IS
 SELECT ID, EMP_ID, STAT_ID, NOTES, DMLTYPE$$ FROM CFM$PI_FSERV_TASKS
 WHERE CLID$$CS = C_CLIENTID AND TRANID$$ = C_TRAN_ID FOR UPDATE;
/* create variables */
TASK_OBJ TASKS_CUR%ROWTYPE;
PI_OBJ PI_CUR%ROWTYPE;
INSERT_NOT_ALLOWED EXCEPTION;
DELETE_NOT_ALLOWED EXCEPTION;
UNKNOWN_DMLTYPE EXCEPTION;

BEGIN

 OPEN PI_CUR(CLIENTID, TRAN_ID);
 /* C$INQ is used to find out which publication items have received data
 from clients. The publication item name is available in the STORE column
 */
 LOOP
 FETCH PI_CUR INTO PI_OBJ;

Customizing Synchronization With Your Own Queues

Synchronization 2-81

 EXIT WHEN PI_CUR%NOTFOUND;

 /* Locate the updates for the publication item PI_FSERV_TASKS */
 IF PI_OBJ.STORE = 'PI_FSERV_TASKS' THEN
 OPEN TASKS_CUR(CLIENTID, TRAN_ID);
 LOOP
 /* Process the In Queue for PI_FSERV_TASKS */
 FETCH TASKS_CUR INTO TASK_OBJ;
 EXIT WHEN TASKS_CUR%NOTFOUND;

 /* Discover the DML command requested. For this publication, only
 updates are allowed.
 IF TASK_OBJ.DMLTYPE$$ = 'I' THEN
 RAISE INSERT_NOT_ALLOWED;
 ELSIF TASK_OBJ.DMLTYPE$$ = 'U' THEN
 FSERV_TASKS.UPDATE_TASK(TASK_OBJ.ID, TASK_OBJ.EMP_ID,
 TASK_OBJ.STAT_ID, TASK_OBJ.NOTES);
 ELSIF TASK_OBJ.DMLTYPE$$ = 'D' THEN
 RAISE DELETE_NOT_ALLOWED;
 ELSE
 RAISE UNKNOWN_DMLTYPE;
 END IF;

 /* after processing, delete the update request from the In Queue */
 DELETE FROM CFM$PI_FSERV_TASKS WHERE CURRENT OF TASKS_CUR;
 END LOOP;
 close TASKS_CUR;
 END IF;

 /* after completing all updates for the client apply phase, delete from
 master queue */
 DELETE FROM C$INQ WHERE CURRENT OF PI_CUR;
 END LOOP;
END;

2.13.1.2.2 Out Queue Compose Phase Processing Within the DOWNLOAD_INIT procedure,
develop a method of composing all changes from the server that are destined for the
client from the publication item tables in the repository. The FServ example performs
the following:

1. From the Temporary Table C$PUB_LIST_Q, discover the publication items that
you should download data for the user using the client id, current and last
transaction.

2. Retrieves the application publication item data into the Out Queue. This example
always uses complete refresh.

PROCEDURE DOWNLOAD_INIT(CLIENTID IN VARCHAR2,
 LAST_TRAN IN NUMBER,
 CURR_TRAN IN NUMBER,
 HIGH_PRTY IN VARCHAR2) IS
 /*create cursor used later in procedure which retrieves the publication name
 from the temporary table to perform compose phase.*/
 CURSOR PI_CUR IS SELECT NAME from C$PUB_LIST_Q;
 /*create variables*/
 PI_NAME VARCHAR2(50);
 STATID_CLOSE NUMBER;

 BEGIN

 OPEN PI_CUR;

Customizing Synchronization With Your Own Queues

2-82 Oracle Database Lite Developer's Guide

 /* C$PUB_LIST_Q (the temporary table) is used to find out which pub items
 have data to download to clients through the publication item Out Queue.
 The publication item name is available in the NAME column
 */
 LOOP
 FETCH PI_CUR INTO PI_NAME;
 EXIT WHEN PI_CUR%NOTFOUND;

 /* Populate the Out Queue of pub item PI_FSERV_TASKS with all
 unclosed tasks for the employee with this CLIENTID using a complete
 refresh. COMP_REF is always reset to Y since partial refresh has
 not been implemented.
 */
 /* if the PI_FSERV_TASKS publication item has data ready for the client,
 then perform a complete refresh and place all data in the Out Queue */
 IF PI_NAME = 'PI_FSERV_TASKS' THEN
 UPDATE C$PUB_LIST_Q SET COMP_REF='Y' where NAME = 'PI_FSERV_TASKS';
 SELECT ID INTO STATID_CLOSE FROM MASTER.TASK_STATUS
 WHERE DESCRIPTION='CLOSED';
 INSERT INTO CTM$PI_FSERV_TASKS(CLID$$CS, ID, EMP_ID, CUST_ID,
 STAT_ID, NOTES, TRANID$$, DMLTYPE$$)
 SELECT CLIENTID, a.ID, a.EMP_ID, a.CUST_ID, a.STAT_ID, a.NOTES,
 CURR_TRAN, 'I' FROM MASTER.TASKS a, MASTER.EMPLOYEES b
 WHERE a.STAT_ID < STATID_CLOSE AND b.CLIENTID = CLIENTID
 AND a.EMP_ID = b.ID;
 END IF;
 END LOOP;
 END;

If, however, you want to perform another type of refresh than a complete refresh, such
as an incremental refresh, then do the following:

1. Read the value of COMP_REF

2. If the value is N, insert only the new data into the Out Queue.

In this situation, the LAST_TRAN parameter becomes useful.

2.13.1.3 Create a Publication Item as a Queue
You create the publication item as you would normally, with one change: define the
publication item as queue-based. See Section 6.4, "Create a Publication Item" for
directions on how to define the publication item as queue-based when using MDW.

If you are using the Consolidator APIs, then the createQueuePublicationItem
method creates a publication item in the form of a queue. This API call registers the
publication item and creates CFM$<name> table as an In Queue, if one does not exist.

You must provide the Consolidator Manager with the primary key, owner and name
of the base table or view in order to create a queue that can be updated or refreshed
with fast-refresh. If the base table or view name has no primary key, one can be
specified in the primary key columns parameter. If primary key columns parameter is
null, then Consolidator Manager uses the primary key of the base table.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Customizing Synchronization With Your Own Queues

Synchronization 2-83

2.13.1.4 Register the PL/SQL Package Outside the Repository
Once you finish developing the PL/SQL package, register the package in the
MOBILEADMIN schema with the registerQueuePkg method. This method registers
the package separately from the Mobile Server repository; although it refers to the In
Queues, Out Queues, queue control table and temporary table that are defined in the
repository.

The following methods register or remove a procedure, or retrieve the procedure
name.

■ The registerQueuePkg method registers the string pkg as the current
procedure. The following registers the FServ package.

 /* Register the queue package for this publication */
 consolidatorManager.registerQueuePkg(QPKG_NAME, PUB_FSERV);

■ The getQueuePkg method returns the name of the currently registered
procedure.

■ The unRegisterQueuePkg method removes the currently registered procedure.

2.13.2 Creating Data Collection Queues for Uploading Client Collected Data
If you have an application that collects data on a client, such as taking inventory or the
amount collected on a parking meter, then you can use data collection queues to
improve the performance of uploading the data collected to the server. Since the data
only flows from the client to the server, then synchronous communication is the best
method for uploading massive amounts of data.

Data collection queues can be used for the following two types of data collection:

■ New records that are inserted on the client.

■ Existing records that are downloaded to the client in order that the user can
modify and upload these records.

An example of the second type is a supply counting application. If you want to count
the number of items in stock, then you could design the application table with the
columns: Item and Count. Initially, populate the Item column and synchronize the
data to the device, as follows:

Note: The developer used Consolidator Manager APIs to create the
subscription, so this was included in the Java application that created
the subscription.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Note: If you are collecting data on the client, but still need updates
from the server, you can use the default method for synchronization
or create your own queues. See Section 2.13.1, "Customizing
Apply/Compose Phase of Synchronization with a Queue-Based
Publication Item" for more information.

Customizing Synchronization With Your Own Queues

2-84 Oracle Database Lite Developer's Guide

The user on the client updates each item with the inventory amount, as follows:

The Data Collection Queue is lightweight and simple to create. Data collection queues
are the same as regular queues with the exception that they provide automatic apply
of the data uploaded by the client. However, you can customize whether the data is
implicitly applied or not. This queue does not require the MGP to apply the changes. It
does not create objects in the application schema or map data.

Data Collection Queues are easier to implement than a Queue-Based publication item.
There is no need to create a package with callback methods, as Oracle Database Lite
takes care of automatically uploading any new data from the client. In addition, you
configure how Oracle Database Lite handles if there is any data to be downloaded or if
you want the data on the client to be erased when it is uploaded to the server.

When you create the Data Collection Queue, the following is performed for you:

■ Automatically generates the in-queue when the publication item is created, which
is named as follows: CFM$<publication_item_name>.

■ Optionally, enables the developer to choose automatic removal of client data once
captured to the server. This is specified when you create the publication item.

■ Optionally, if you need an out-queue, then the developer can specify the
out-queue or to have Oracle Database Lite automatically generate an out-queue,
which would be named as follows: CTM$<publication_item_name>.

Just like for regular queues, users can create their own Out Queue logic. By default,
the Out Queue created is an empty view with the name of (CTM$<publication_
item>). An empty view is a view that selects zero records. Therefore, by default, data
collection queues do not pick up any data from the server.

You can modify how the data collection queue behaves when you create it using the
ConsolidatorManager.createDataCollectionQueue method. The following
parameters effect the behavior of your data collection queue:

■ Specify an Out Queue—Out Queue creation is affected by the isOutView boolean
input parameter. If isOutView is TRUE, then creates the Out Queue as an empty
view; if FALSE, then creates the Out Queue as a table.

■ Automatic Removal of Data on the Client—Users can customize the default
behavior of data purging on the client by setting the purgeClientAfterSync
parameter to either true or false.

Table 2–29 Stock Inventory Table

Item Count

Apples -

Pears -

Oranges -

Table 2–30 Stock Inventory Table

Item Count

Apples 2

Pears 3

Oranges 1

Customizing Synchronization With Your Own Queues

Synchronization 2-85

■ If TRUE, then the client uploads its data changes and removes the records
from the client database. At this point, the table on the client is empty. If the
Out Queue on the server is empty, the client will no longer have any records.
If the Out Queue is not empty, the client downloads these records and the
table on the client contains only these records.

■ If FALSE, then the client records remain on the device after synchronization
unless the server explicitly sends the DELETE command, in the same manner
as a normal publication item.

2.13.2.1 Creating a Data Collection Queue
When you create a data collection queue, you perform the following:

1. Create the table(s) for the data that the queue updates on the back-end Oracle
database.

2. Create the data collection queue and its publication item using the
ConsolidatorManager createDataCollectionQueue method, where the
input parameters are as follows:

■ name—A character string specifying a new publication item name.

■ owner—A string specifying the base schema object owner.

■ store—A string specifying the table name that it is based on.

■ inq_cols—A string specifigying columns in the order in which to replicate
them. If null, then defaults to *, which makes the SQL statement, select *
from <table>.

■ pk_columns—A string specifying the primary keys.

■ purgeClientAfterSync—If true, removes client data from the Mobile
device when uploaded to the server.

■ isOutView—If true, then creates Out Queue as an empty view, otherwise
creates Out Queue as a table.

The following creates the PI_CUSTOMERS data collection queue:

cm.createDataCollectionQueue("PI_CUSTOMERS", /* Publication Item name */
 MYSCHEMA, /* Schema owner */
 "CUSTOMERS", /* store */
 null, /* inqueue_columns
 null, /* null selects all pk_columns
 true, /* removes old data after sync
 true); /* isOutView */

3. Create the publication that is to be used by the data collection queue. Use the
ConsolidatorManager createPublication method. The following creates
the PUB_CUSTOMERS publication that is used by the PI_CUSTOMERS data
collection queue:

cm.createPublication("PUB_CUSTOMERS",0, "sales.%s", null);

Note: All ConsolidatorManager methods are fully documented
in the Oracle Database Lite API Javadoc. This section provides context
of the order in which to execute these methods.

Customizing Synchronization With Your Own Queues

2-86 Oracle Database Lite Developer's Guide

4. Add the publication item created within step 1 within this publication with the
ConsolidatorManager addPublicationItem method. The following adds a
publication item to the publication:

cm.addPublicationItem("PUB_CUSTOMERS", "PI_CUSTOMERS", null, null,
 "S", null, null);

5. If you want to have data download from the server to the Mobile client, create an
Out Queue with a name that consists of CTM$<publication_item_name>. The
following replaces the default Out Queue view for CUSTOMER with a view that
selects all customers assigned to the EMP_ID associated with current sync session.

stmt.executeUpdate(
 "CREATE OR REPLACE VIEW CTM$"+pubIs[0]+" (CLID$$CS, TRANID$$,
 DMLTYPE$$,"+" CUST_ID, CNAME, CCOMPANY, CPHONE, CCONTACT_DATE)"+"\n
 AS SELECT CONS_EXT.GET_CURR_CLIENT, 999999999, 'I',cust.*
 FROM CUSTOMERS cust "+"\n
 WHERE cust.CUST_ID IN (SELECT CUST_ID
 FROM CUSTOMER_ASSIGNMENT WHERE EMP_ID IN "+"\n
 (SELECT EMP_ID FROM SESSION_EMP
 WHERE SESSION_ID = DBMS_SESSION.UNIQUE_SESSION_ID))"
);

2.13.3 Selecting How/When to Notify Clients of Composed Data
If you have created your own compose logic, such as in the queue-based publications,
then you may want the server to notify the client that there is data to be downloaded.
You can take control of starting an automatic synchronization from the server using
the enqueue notification APIs.

There are other situations where you may want to control how and when clients are
notified of compose data from the synchronization process. For example, if you have
so many clients that to notify all of them of the data waiting for them would overload
your system, you may want to control the process by notifying clients in batches.

In the normal synchronization process, when the compose phase is completed, all
clients that have data in the Out Queue are notified to download the data. If, for
example, you have 2000 clients, having all 2000 clients request a download at the same
time could overrun your server and cause a performance issue. In this scenario, you
could take control of the notification process and notify 100 clients at a time over the
span of a couple of hours. This way, all of the clients receive the data in a timely
fashion and your server is not overrun.

You can use the enqueue notification functionality, as follows:

■ If you implement queue-based publications for the compose phase, you can notify
the clients with the EN_QUEUE_NOTIFICATION function within the Queue-based
DOWNLOAD_INIT function.

■ If you write your own compose function, use the enQueueNotification
method to notify the client that there is data to download.

This starts an automatic synchronization process for the intended client.

Note: See the Oracle Database Lite samples page for the full data
collection queue example from which these snippets were taken. The
example demonstrates both a regular queue and a data collection
queue.

Customizing Synchronization With Your Own Queues

Synchronization 2-87

The enqueue notification APIs enable the server to tell the client that there is data to be
downloaded and what type of data is waiting. Notifying the client of what type of
data is waiting enables the client to evaluate whether it conforms to any automatic
synchronization rules. For example, if the server has 10 records of low priority data,
but the client has set the Server MGP Compose rule to only start an automatic
synchronization if 20 records of low priority data exist, then the automatic
synchronization is not started. So, the notification API input parameters include
parameters that enable the server to describe the data that exists on the server.

A notification API is provided for you in both PL/SQL and Java, as follows:

■ Java: the ConsolidatorManager enQueueNotification method

public long enQueueNotification(java.lang.String clientid,
 java.lang.String publication,
 java.lang.String pubItems,
 int recordCount,
 int dataSize,
 int priority)
 throws ConsolidatorException

■ PL/SQL: the EN_QUEUE_NOTIFICATION function

FUNCTION EN_QUEUE_NOTIFICATION(
 CLIENTID IN VARCHAR2,
 PUBLICATION IN VARCHAR2,
 PUB_ITEMS IN VARCHAR2,
 RECORD_COUNT IN NUMBER,
 DATA_SIZE IN NUMBER,
 PRIORITY IN NUMBER)
RETURN NUMBER;

Where the parameters for the above are as follows:

The enqueue notification API returns a unique notification ID, which can be used to
query notification status in the isNotificationSent method, which is as follows:

■ JAVA

public boolean isNotificationSent(long notificationId)

Table 2–31 Enqueue Notification Parameters

Parameters Description

clientid Consolidator client id, which is normally the username on the
client device. This identifies the client to be notified. If the client
does not have any automatic synchronization rules, this is the
only required paramter for an automatic synchronization to
start.

publication Name of the publication for which you want notification control.
This tells the client for which publication the data is destined.

pubItems One or more publication items for which you want notification.
Separate multiple publication items with a comma. This notifies
the clients for which publication items the data applies.

recordCount This notifies the client how many records exist on the server for
the download.

dataSize Reserved for future expansion.

priority This notifies the client of the priority of the data that exists on
the server. The value is 0 for high and 1 for low.

Synchronization Performance

2-88 Oracle Database Lite Developer's Guide

 throws ConsolidatorException

■ PL/SQL

FUNCTION NOTIFICATION_SENT(
 NOTIFICATION_ID IN NUMBER)
RETURN BOOLEAN;

If the notification has been sent, a boolean value of TRUE is returned.

2.14 Synchronization Performance
There are certain optimizations you can do to increase performance. See Section 1.2
"Increasing Synchronization Performance" in the Oracle Database Lite Troubleshooting
and Tuning Guide for a full description.

2.15 Troubleshooting Synchronization Errors
The following section can assist you in troubleshooting any synchronization errors:

■ Section 2.15.1, "Foreign Key Constraints in Updatable Publication Items"

2.15.1 Foreign Key Constraints in Updatable Publication Items
Replicating tables between Oracle database and clients in updatable mode can result
in foreign key constraint violations if the tables have referential integrity constraints.
When a foreign key constraint violation occurs, the server rejects the client transaction.

■ Section 2.15.1.1, "Foreign Key Constraint Violation Example"

■ Section 2.15.1.2, "Avoiding Constraint Violations with Table Weights"

■ Section 2.15.1.3, "Avoiding Constraint Violations with BeforeApply and After
Apply"

2.15.1.1 Foreign Key Constraint Violation Example
For example, two tables EMP and DEPT have referential integrity constraints. The
DeptNo (department number) attribute in the DEPT table is a foreign key in the EMP
table. The DeptNo value for each employee in the EMP table must be a valid DeptNo
value in the DEPT table.

A Mobile Server user adds a new department to the DEPT table, and then adds a new
employee to this department in the EMP table. The transaction first updates DEPT and
then updates the EMP table. However, the database application does not store the
sequence in which these operations were executed.

When the user replicates with the Mobile Server, the Mobile Server updates the EMP
table first. In doing so, it attempts to create a new record in EMP with an invalid
foreign key value for DeptNo. Oracle database detects a referential integrity violation.
The Mobile Server rolls back the transaction and places the transaction data in the
Mobile Server error queue. In this case, the foreign key constraint violation occurred
because the operations within the transaction are performed out of their original
sequence.

Avoid this violation by setting table weights to each of the tables in the master-detail
relationship. See Section 2.15.1.2, "Avoiding Constraint Violations with Table Weights"
for more information.

Troubleshooting Synchronization Errors

Synchronization 2-89

2.15.1.2 Avoiding Constraint Violations with Table Weights
Mobile Server uses table weight to determine in which order to apply client operations
to master tables. Table weight is expressed as an integer and are implemented as
follows:

1. Client INSERT operations are executed first, from lowest to highest table weight
order.

2. Client DELETE operations are executed next, from highest to lowest table weight
order.

3. Client UPDATE operations are executed last, from lowest to highest table weight
order.

In the example listed in Section 2.15.1.1, "Foreign Key Constraint Violation Example", a
constraint violation error could be resolved by assigning DEPT a lower table weight
than EMP. For example:

(DEPT weight=1, EMP weight=2)

You define the order weight for tables when you add a publication item to the
publication. For more information on setting table weights in the publication item, see
Section 2.4.1.7.2, "Using Table Weight".

2.15.1.3 Avoiding Constraint Violations with BeforeApply and After Apply
You can use a PL/SQL procedure to avoid foreign key constraint violations based on
out-of-sequence operations by using DEFERRABLE constraints in conjunction with the
BeforeApply and AfterApply functions. See Section 2.10.3.2, "Defer Constraint
Checking Until After All Transactions Are Applied" for more information.

Troubleshooting Synchronization Errors

2-90 Oracle Database Lite Developer's Guide

APIs for Client and Database Administration 3-1

3
APIs for Client and Database Administration

The Mobile client database contains a subset of data stored in the Oracle database.,
which are synchronized with the Oracle database.

The following sections describe how you can programmatically configure the features
for the back-end Oracle database.

■ Section 3.1, "Deleting a Client Device"

■ Section 3.2, "Register a Remote Oracle Database for Application Data"

■ Section 3.3, "Create a Synonym for Remote Database Link Support For a
Publication Item"

■ Section 3.4, "Parent Tables Needed for Updateable Views"

■ Section 3.5, "Manipulating Application Tables"

■ Section 3.6, "Facilitating Schema Evolution"

■ Section 3.7, "Set DBA or Operational Privileges for the Mobile Server"

■ Section 3.8, "Datatype Conversion Between the Oracle Server and the Oracle Lite
Database"

3.1 Deleting a Client Device
If you want to delete a device, use the delete method from the Device class. To
retrieve the Device object, use either the getDevice or getDeviceByName
methods, as demonstrated below.

If the device id is available, the following can be directly used:

if (oracle.lite.resource.ResourceManager.getInstance() == null)
oracle.lite.resource.ResourceManager.initialize(JDBC_URL, USER, PASSWORD);

oracle.lite.resource.Device d =
 oracle.lite.resource.ResourceManager.getInstance().getDevice(deviceId);

d.delete();

If the device id is not available, then you can provide the device name, which is shown
on the Mobile Manager UI in the
oracle.lite.resource.User.getDeviceByName(deviceName) method. Once
retrieved, use the delete method of the Device object as demonstrated above.

Register a Remote Oracle Database for Application Data

3-2 Oracle Database Lite Developer's Guide

3.2 Register a Remote Oracle Database for Application Data
By default, the Mobile repository metadata and the application schemas are present in
the same database. However, it is possible to place the application schemas in a
database other than the MAIN database where the Mobile repository exists. This can
be an advantage from a performance or administrative viewpoint.

Thus, you can spread your application data across multiple databases.

This section describes how to register a remote Oracle database containing application
schemas, using the ConsolidatorManager APIs. However, it is recommended that
you use the Oracle Database Lite GUI tools for this task unless you have a specific
need to use the API. For concepts and description of how to perform this with the
Oracle Database Lite GUI tools, see Section 6.6, "Register or Deregister an Oracle
Database for Application Data" in the Oracle Database Lite Administration and
Deployment Guide.

To use an Oracle database other than the Oracle database used for the Mobile
repository, perform the following:

1. Use the apprepwizard script to setup a remote application repository. See
Section 3.2.1, "Set up a Remote Application Repository With the APPREPWIZARD
Script" for details.

2. Register the Oracle database as described in Section 3.2.2, "Register or Deregister a
Remote Oracle Database for Application Data".

3. When creating the publication and publication items, specify the name of the
registered Oracle database that contains the application schemas. All data for a
single application—that is, all publication items for the publication—must be
contained in the same Oracle database.

3.2.1 Set up a Remote Application Repository With the APPREPWIZARD Script
Use the apprepwizard script to setup a remote application repository. This script
creates and initializes an administrator schema with the same name as the
adminstrator schema in the Main database. For example, if the administrator schema
name in the Main database is mobileadmin, then the apprepwizard script will
create a mobileadmin schema on the remote database.

The apprepwizard script is located in the ORACLE_HOME/Mobile/Server/admin.
The usage of this script is as follows:

apprepwizard.bat <MAIN_Repository_Schema_Name> <MAIN_Repository_Schema_Password>
 <Application_Database_Administrator_User_Name>
 <Application_Database_Administrator_Password>
 <Application_Database_JDBC_URL> <Application_Database_Schema_Password>
 [<DB_name>]

Where each parameter is as follows:

Note: We refer to the database where the application schema resides
as remote because it is separate from the MAIN database that contains
the Mobile repository. It does not mean that the database is
geographically remote. It can be local or remote. For performance
reasons, the Mobile Server must have connectivity to all databases
involved in the synchronization—MAIN and remote.

Register a Remote Oracle Database for Application Data

APIs for Client and Database Administration 3-3

■ MAIN_Repository_Schema_Name: Provide the Mobile repository schema name,
which exists on the Main database. The default is MOBILEADMIN.

■ MAIN_Repository_Schema_Password: Provide the password for the Mobile
repository administrator schema.

■ Application_Database_Administrator_User_Name: Any user with
administrator privileges at the application database. such as SYSTEM.

■ Application_Database_Administrator_Password: Password of the
administrator user for the application database.

■ Application_Database_JDBC_URL: JDBC URL of the application database.

■ Application_Database_Schema_Password: Password of the schema, which
will be created at the application database. The username is the same as the
Mobile repository schema name.

■ DB_Name: Optionally, the user can provide a name to identify this database. This
name is used in logging. By default, the log is sent to the console. If this name is
provided as the last parameter, then the log is generated in the By default, the log
is sent to the console. If the database name is provided as the last parameter, then
the log is generated in the ORACLE_HOME/Mobile/Server/<DB_
NAME>/apprepository.log file.

This script installs silently. Thus, If you execute this script without any arguments,
nothing is performed.

3.2.2 Register or Deregister a Remote Oracle Database for Application Data
Use the following ConsolidatorManager APIs to register, deregister, or alter the
properties of the remote Oracle database:

void registerDatabase(String name, Consolidator.DBProps props)
void deRegisterDatabase(String name)
void alterDatabase(String name, Consolidator.DBProps props)

Where:

■ Name—An identifying name for the database where the application schema
resides. Once defined, this name cannot be modified. This name must be unique
across all registered database names.

■ DBProps—A class that contains the JDBC URL, password and description, as
follows:

public static class DBProps {
 public String jdbcUrl;
 public String adminPassword;
 public String description;
}

■ JDBC URL—The JDBC URL can be one of the following formats:

* The URL for a single Oracle database has the following structure:
jdbc:oracle:thin:@<host>:<port>:<SID>

* The JDBC URL for an Oracle RAC database can have more than one address
in it for multiple Oracle databases in the cluster and follows this URL
structure:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=

Register a Remote Oracle Database for Application Data

3-4 Oracle Database Lite Developer's Guide

 (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
)
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME)))

■ Password—The administrator password is used to logon to the database. The
administrator name is the same as what was defined for the main database.

When defining, the password must conform to the following restrictions:

– not case sensitive

– cannot contain white space characters

– maximum length of 28 characters

– must begin with an alphabet

– can contain only alphanumeric characters

– cannot be an Oracle database reserved word

■ Description—A user-defined description to help identify this database.

Refer to the ConsolidatorManager Javadoc in the Oracle Database Lite API
Specification for more details.

The following code example registers a database as APP1. The registerDatabase
API stores access information for the application repository and provides a name so
that publications, publication items, and MGP Jobs can be created against this
repository. It does not define the administrator schema.

Consolidator.DBProps props = new Consolidator.DBProps();
props.jdbcUrl = "jdbc:oracle:thin:@apphost:1521:app1";
props.description="App database 1"
props.adminPassword = "secret";
consMgr.registerDatabase("APP1", props);

The following code example deregisters the APP1 database.

consMgr.deRegisterDatabase("APP1");

You can retrieve the names of all of the registered databases with the
getDatabaseInstances method, which is as follows:

Map getDatabaseInstances()

The Map returned by getDatabaseInstances method contains a keyset of the
application database names and the entry for each key is a Consolidator.DBProps
class where the adminPassword is always null for security purposes.

3.2.3 Create Publication, Publication Item, Hints and Virtual Primary Keys on a Remote
Database

You must have already registered the remote database before defining publications,
publication items, hints, and virtual primary keys that use the application data
schemas and tables on the remote database. In the ConsolidatorManager API calls,
the registered name of the remote database is required.

Note: The publication and publication item names are unique
irrespective of where the data resides.

Register a Remote Oracle Database for Application Data

APIs for Client and Database Administration 3-5

All publication items within a publication must be defined on tables within the same
database.

The following example illustrates the creation of a publication and a publication item
against a remote database registered as APP1. Refer to the ConsolidatorManager
Javadoc in the Oracle Database Lite API Specification for more details.

ConsolidatorManager consMgr = new ConsolidatorManager();
consMgr.openConnection("mobileadmin", "mobileadmin",
 "oracle:jdbc:thin:@host1:1521:master");
consMgr.createPublication("PUB1","APP1",Consolidator.DFLT_CREATOR_ID,
 "ddb.%s", null);

Consolidator.PubItemProps taskPIProps = new Consolidator.PubItemProps();
taskPIProps.db_inst = "APP1"; // Remote App database name as registered
taskPIProps.owner = "APPUSER1";
taskPIProps.store = "TASKS";
taskPIProps.refresh_mode = "F";
taskPIProps.select_stmt = "select id, emp_id, cust_id, stat_id, notes
 from APPUSER1.TASKS";
taskPIProps.cbk_owner = "MOBILEADMIN";
taskPIProps.cbk_name = "TASKSPI_PKG";
consMgr.createPublicationItem("PI_1_TASKS", taskPIPProps);

consMgr.addPublicationItem("PUB1", "PI_1_TASKS", null, null, "S", null, null);
consMgr.createSubscription("PUB1", "USER1");
consMgr.instantiateSubscription("PUB1", "USER1");
consMgr.closeConnection();

Other API calls for managing data collection queues, hints, and virtual primary keys
that require the remote database name are shown below. Refer to the
ConsolidatorManager Javadoc in the Oracle Database Lite API Specification for more
details.

■ Data Collection Queue

void createDataCollectionQueue(String name, String db_inst,
 String owner, String store, String inq_cols, String pk_columns,
 boolean purgeClientAfterSync, boolean isOutView)

■ Hint

void parentHint(String db_inst, String owner, String store, String owner_d,
 String store_d)
void dependencyHint(String db_inst, String owner, String store,
 String owner_d, String store_d)
void removeDependencyHint(String db_inst, String owner, String store,
 String owner_d, String store_d)

■ Virtual Primary Key

public void createVirtualPKColumn(String db_inst, String owner,
 String store, String column)
public void dropVirtualPKColumns(String db_inst, String owner,
 String store)

The APIs used for creating a publication and publication item is the same except for
the addition of the remote database name. Following is an example that provides the
remote database name, APP1, in bold for creating a publication and publication item:

ConsolidatorManager consMgr = new ConsolidatorManager();
consMgr.openConnection("mobileadmin", "mobileadmin",

Register a Remote Oracle Database for Application Data

3-6 Oracle Database Lite Developer's Guide

"oracle:jdbc:thin:@host1:1521:master");
consMgr.createPublication("PUB1","APP1",Consolidator.DFLT_CREATOR_ID,
 "ddb.%s", null);
Consolidator.PubItemProps taskPIProps = new Consolidator.PubItemProps();
taskPIProps.db_inst = "APP1"; // Remote APP instance name as registered
taskPIProps.owner = "APPUSER1";
taskPIProps.store = "TASKS";
taskPIProps.refresh_mode = "F";
taskPIProps.select_stmt = "select id, emp_id, cust_id, stat_id, notes from
APPUSER1.TASKSî;
taskPIProps.cbk_owner = "MOBILEADMIN";
taskPIProps.cbk_name = "TASKSPI_PKG";
consMgr.createPublicationItem("PI_1_TASKS", taskPIPProps);
consMgr.addPublicationItem("PUB1", "PI_1_TASKS", null, null, "S", null, null);
consMgr.createSubscription("PUB1", "USER1");
consMgr.instantiateSubscription("PUB1", "USER1");
consMgr.closeConnection();

3.2.4 Using Callbacks on Remote Databases
The following sections describe how the synchronization callbacks, described in
Section 2.7, "Customize What Occurs Before and After Synchronization Phases", must
be handled for the remote database:

■ Section 3.2.4.1, "Customize Callbacks on the Remote Database"

■ Section 3.2.4.2, "Publication Item Level Callbacks for the MGP Apply/Compose
Phases"

3.2.4.1 Customize Callbacks on the Remote Database
The Customize callbacks, as described in Section 2.7.1, "Customize What Occurs
Before and After Every Phase of Each Synchronization", are created to perform
defined tasks before or after any phase of synchronization.

Most of the callbacks pertain to MGP processing. Since an MGP Job executes against a
database, these callbacks are invoked separately by each job against the corresponding
database. Callbacks that are not related to the MGP are invoked against the MAIN
database. Thus, the callback PL/SQL package must be created on the MAIN database
as well as on the appropriate remote databases.

3.2.4.2 Publication Item Level Callbacks for the MGP Apply/Compose Phases
Define the MGP publication item level callbacks on the database against which the
publication item is defined. Then, these can access the base tables on that database.

For full details on the MGP publication item level callbacks, see Section 2.7.2,
"Customize What Occurs Before and After Compose/Apply Phases for a Single
Publication Item".

3.2.4.3 Customizing the Apply/Compose Phase for a Queue-Based Publication Item
on a Remote Database
When you customize the apply/compose phase for a queue-based publication item, as
described in Section 2.13.1, "Customizing Apply/Compose Phase of Synchronization
with a Queue-Based Publication Item", then these packages must be defined on the
database where the queue-based publication item base tables exist. Thus, if the base
tables exist on a remote database, then the packages must be defined on the remote
database.

Create a Synonym for Remote Database Link Support For a Publication Item

APIs for Client and Database Administration 3-7

3.3 Create a Synonym for Remote Database Link Support For a
Publication Item

Publication items can be defined for database objects existing on remote databases
outside of the Mobile Server repository. Local private synonyms of the remote objects
can be created in the Oracle database. However, we recommend that you use the
remote database functionality as described in Section 3.2, "Register a Remote Oracle
Database for Application Data".

If you still decide to use database links for defining publication items on remote
databases, then you can execute the following SQL script located in the <ORACLE_
HOME>\Mobile\server\admin\consolidator_rmt.sql directory on the remote
schema in order to create Consolidator Manager logging objects.

The synonyms should then be published using the createPublicationItem
method of the ConsolidatorManager object. If the remote object is a view that
needs to be published in updatable mode and/or fast-refresh mode, the remote parent
table must also be published locally. Parent hints should be provided for the synonym
of the remote view similar those used for local, updatable and/or fast refreshable
views.

Two additional methods have been created, dependencyHint and
removeDependencyHint, to deal with non-apparent dependencies introduced by
publication of remote objects.

Remote links to the Oracle database must be established prior to attempting remote
linking procedures, please refer to the Oracle SQL Reference for this information.

The following sections describe how to manage remote links:

■ Section 3.3.1, "Publishing Synonyms for the Remote Object Using
CreatePublicationItem"

■ Section 3.3.2, "Creating or Removing a Dependency Hint"

3.3.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem
The createPublicationItem method creates a new, stand-alone publication item
as a remote database object. If the URL string is used, the remote connection is
established and closed automatically. If the connection is null or cannot be established,
an exception is thrown. The remote connection information is used to create logging
objects on the linked database and to extract metadata.

consolidatorManager.createPublicationItem(
 "jdbc:oracle:oci8:@oracle.world",
 "P_SAMPLE1",
 "SAMPLE1",
 "PAYROLL_SYN",

Note: The performance of synchronization from remote databases
is subject to network throughput and the performance of remote
query processing. Because of this, remote data synchronization is
best used for simple views or tables with limited amount of data.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Parent Tables Needed for Updateable Views

3-8 Oracle Database Lite Developer's Guide

 "F"
 "SELECT * FROM sample1.PAYROLL_SYN"+"WHERE SALARY >:CAP", null, null);

3.3.2 Creating or Removing a Dependency Hint
Use the dependencyHint method to create a hint for a non-apparent dependency.

Given remote view definition
 create payroll_view as
 select p.pid, e.name
 from payroll p, emp e
 where p.emp_id = e.emp_id;

Execute locally
 create synonym v_payroll_syn for payroll_view@<remote_link_address>;
 create synonym t_emp_syn for emp@<remote_link_address>;

Where <remote_link_address> is the link established on the Oracle database. Use
dependencyHint to indicate that the local synonym v_payroll_syn depends on
the local synonym t_emp_syn:

consolidatorManager.dependencyHint("SAMPLE1","V_PAYROLL_SYN","SAMPLE1","T_EMP_
SYN");

Use the removeDependencyHint method to remove a hint for a non-apparent
dependency.

3.4 Parent Tables Needed for Updateable Views
For a view to be updatable, it must have a parent table. A parent table can be any one
of the view base tables in which a primary key is included in the view column list and
is unique in the view row set. If you want to make a view updatable, provide the
Mobile Server with the appropriate hint and the view parent table before you create a
publication item on the view.

To make publication items based on a updatable view, use the following two
mechanisms:

■ Parent table hints

■ INSTEAD OF triggers or DML procedure callouts

3.4.1 Creating a Parent Hint
Parent table hints define the parent table for a given view. Parent table hints are
provided through the parentHint method of the Consolidator Manager object, as
follows:

consolidatorManager.parentHint("SAMPLE3","ADDROLRL4P","SAMPLE3","ADDRESS");

See the Javadoc in the Oracle Database Lite API Specification for more information.

Note: Within the select statement, the parameter name for the
data subset must be prefixed with a colon, for example :CAP.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Manipulating Application Tables

APIs for Client and Database Administration 3-9

3.4.2 INSTEAD OF Triggers
INSTEAD OF triggers are used to execute INSTEAD OF INSERT, INSTEAD OF
UPDATE, or INSTEAD OF DELETE commands. INSTEAD OF triggers also map these
DML commands into operations that are performed against the view base tables.
INSTEAD OF triggers are a function of the Oracle database. See the Oracle database
documentation for details on INSTEAD OF triggers.

3.5 Manipulating Application Tables
If you need to manipulate the application tables to create a secondary index or a
virtual primary key, you can use ConsolidatorManager methods to
programmatically perform these tasks in your application, as described in the
following sections:

■ Section 3.5.1, "Creating Secondary Indexes on Client Device"

■ Section 3.5.2, "Virtual Primary Key"

3.5.1 Creating Secondary Indexes on Client Device
The first time a client synchronizes, the Mobile Server automatically enables a Mobile
client to create the database objects on the client in the form of snapshots. By default,
the primary key index of a table is automatically replicated from the server. You can
create secondary indexes on a publication item through the Consolidator Manager
APIs. See the Oracle Database Lite API Javadoc for specific API information. See
Section 2.4.1.6, "Create Publication Item Indexes" for an example.

3.5.2 Virtual Primary Key
You can specify a virtual primary key for publication items where the base object does
not have a primary key defined. This is useful if you want to create a fast refresh
publication item on a table that does not have a primary key.

A virtual primary key must be unique and not null. A virtual primary key can consist
of a single or multiple columns, where each column included in the virtual primary
key must not null. If a null value is entered into any column of a virtual primary key,
this results in an error. If the virtual primary key is on a single column, it must be
unique; if the virtual primary key consists of a composite of multiple columns, then
the composite must be unique.

If you want to create a virtual primary key for more than one column, then the API
must be called separately for each column that you wish to assign to that virtual
primary key.

Use the createVirtualPKColumn method to create a virtual primary key column.

consolidatorManager.createVirtualPKColumn("SAMPLE1", "DEPT", "DEPT_ID");

Use the dropVirtualPKColumns method to drop a virtual primary key.

consolidatorManager.dropVirtualPKColumns("SAMPLE1", "DEPT");

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Facilitating Schema Evolution

3-10 Oracle Database Lite Developer's Guide

3.6 Facilitating Schema Evolution
You can use schema evolution when adding or altering a column in the application
tables for updatable publication items. You do not use schema evolution for read-only
publication items.

If you do alter the schema, then the client receives a complete refresh on the modified
publication item, but not for the entire publication.

The following types of schema modifications are supported:

■ Add new columns

■ Change the type of a column—You can only modify the type of a column in
accordance to the Oracle Database limitations. In addition, you CANNOT modify
a primary key or virtual primary key column

■ Increase the width of a column

For facilitating schema evolution, perform the following:

1. If necessary, modify the table in the back-end Oracle database.

2. Modify the publication item directly on the production Mobile repository through
MDW or the alterPublicationItem API. Modifying the SQL query of the
publication item causes the schema evolution to occur.

A schema evolution only occurs if the SQL query is modified. If the SQL query
does not change, then the evolution does not occur. If your modification only
touched the table, then you must modify the SQL query by adding an additional
space to force the schema evolution to occur.

3. Once you alter the SQL query, then either use Mobile Manager to refresh the
metadata cache or restart the Mobile Server. To refresh the metadata cache
through the Mobile Server, select Data Synchronization->Administration->Reset
Metadata Cache or execute the resetCache method of the
ConsolidatorManager class.

Note: You should stop all synchronization events and MGP activity
during a schema evolution.

Note: You cannot modify the definition of any primary key or
virtual primary key using this method. Instead, use the directions
provided in Section 3.6.1, "Schema Evolution Involving a Primary
Key".

Note: If you decide to republish the application to a different Mobile
repository, then update the publication definition in the packaging
wizard.

Note: Use of the high priority flag during synchronization will
override any schema evolution, as a result, the new table definition
will not come to the client.

Facilitating Schema Evolution

APIs for Client and Database Administration 3-11

When you modify the table in the Mobile repository, the client snapshot is no longer.
Thus—by default—a complete refresh occurs the next time you synchronize, because a
new snapshot must be created on the client.

3.6.1 Schema Evolution Involving a Primary Key
What if you want to perform a schema evolution that does include a modification to
the primary key. Normally, you would drop the entire publication and recreate it.
However, there is a way that you can modify the primary key constraint and recreate
the publication item without dropping the entire publication.

The following steps describe how to remove the primary key constraint, add a new
column and identify it as the primary or virtual primary key and then recreate the
publication item. The steps below must be followed in the order listed:

1. Using MDW, remove the publication item from the publication and drop the
publication item from the repository.

2. Modify the table in the back-end Oracle database, as described in the following
steps:

a. Drop the Primary Key constraint. For example, if table1 has primary key
constraint of pk_constraint, then drop this constraint, as follows:

alter table table1 drop constraint pk_constraint;

b. Add a new column to perform as the new primary key or virtual primary key,
as follows:

alter table table1 add my_new_col number(5,0) not null;

c. Populate the new column with values that can be used (solely or as part of)
the new the primary key or virtual primary key.

d. Alter the table to create a primary key or virtual primary key constraint on the
new column. If you want to create the primary key constraint on the new
column my_new_col for table1, use the ALTER TABLE SQL command. If
you want to define a virtual primary key on my_new_col for table1, use
MDW.

3. In MDW, create a new publication item for table1. This should be a duplicate of
the previously dropped publication item, but with teh new column included.
When creating the publication item, verify the my_new_col appears as teh
primary key.

4. Add the publication item to the publication.

5. Reset the Metadata Cache using the Mobile Manager by selecting Data
Synchronization -> Administration -> Reset Metadata Cache.

6. Verify in the Parent Table Primary Key and Base table Primary Key fields in the
Publication Item detail screen in the Mobile Manager that the new primary key is
in effect.

7. Synchronize on the existing client device to bring down the new publication.

8. After the synchronization is complete, then verify that the new column is present
and that it is functioning as the primary key on the client device.

Set DBA or Operational Privileges for the Mobile Server

3-12 Oracle Database Lite Developer's Guide

3.7 Set DBA or Operational Privileges for the Mobile Server
You can set either DBA or operational privileges for the Mobile Server with the
following Consolidator Manager API:

void setMobilePrivileges(String dba_schema, String dba_pass, int type)
 throws ConsolidatorException

where the input parameter are as follows:

■ dba_schema—The DBA schema name

■ dba_pass—The DBA password

■ type—Define the user by setting this parameter to either Consolidator.DBA or
Consolidator.OPER

If you specify Consolidator.DBA, then the privileges needed are those necessary for
granting DBA privileges that are required for publish/subscribe functions of the
Mobile Server.

If you specify Consolidator.OPER type, then the privileges needed are those
necessary for executing the Mobile Server without any schema modifications. The
OPER is given DML and select access to publication item base objects, version, log,
and error queue tables.

The Mobile Server privileges are modified using the C$MOBILE_PRIVILEGES
PL/SQL package, which is created for you automatically after the first time you use
the setMobilePrivileges procedure. After the package is created, the Mobile
Server privileges can be administered from SQL or from this Java API.

3.8 Datatype Conversion Between the Oracle Server and the Oracle Lite
Database

Before you publish your application, create the tables for your applications in the
Oracle database. Thus, when the first synchronization occurs for an Oracle Lite Mobile
client, Oracle Database Lite takes the Oracle database datatypes and converts them to
corresponding allowed datatypes in the Oracle Lite database on the client. Table 3–1
lists the Oracle database datatypes in the left column and displays how the datatype
can be mapped to the Oracle Lite database datatypes across the top row.

Note: For Oracle Database Lite Datatypes, see Appendix E, "Oracle
Database Lite Datatypes" in the Oracle Database Lite SQL Reference.

Table 3–1 Conversion of Oracle Database Datatypes to Oracle Database Lite Datatypes

Oracle
Database
Lite
Datatypes 1 B 2 B 4 B Float Double Number

Date
Time

Long
Var
Binary Varchar Char BLOB CLOB

INTEGER X

VARCHAR2 X

VARCHAR X

CHAR X

SMALLINT X

Datatype Conversion Between the Oracle Server and the Oracle Lite Database

APIs for Client and Database Administration 3-13

"X" indicates that the datatype can be mapped to this Oracle Lite database datatype. To
save on space, signed 1 byte represents TINYINT, signed 2 byte represents
SMALLINT, and signed 4 byte represents INTEGER.

For conversion of the NUMBER datatype, if the precision is less than 5, then the
number maps to a signed 2 byte (SMALLINT) datatype. If the precision is less than 10,
then it maps to a signed 4 bytes (INTEGER) datatype. Even though the numbers are
not equivalent on the client and the server, we still guarantee that valid numbers from
the server will transfer to the client, and invalid numbers from the client are rejected
by the server.

While the TIMESTAMP data type is supported; the TIMESTAMP WITH TIME ZONE is
not supported for publication items.

FLOAT X

DOUBLE
PRECISION

X

NUMBER X X X

DATE X

LONG RAW X

LONG X

BLOB X

CLOB X

Note: Oracle Database Lite does not support creating publication
items for synchronization on a table with object type columns, even if
the publication item query does not include any of the object type
columns. However, it is possible to define a view which selects only
columns of supported data types and then create a publication item
using the view definition.

Table 3–1 (Cont.) Conversion of Oracle Database Datatypes to Oracle Database Lite Datatypes

Oracle
Database
Lite
Datatypes 1 B 2 B 4 B Float Double Number

Date
Time

Long
Var
Binary Varchar Char BLOB CLOB

Datatype Conversion Between the Oracle Server and the Oracle Lite Database

3-14 Oracle Database Lite Developer's Guide

Invoking Synchronization in Applications With the Mobile Sync APIs 4-1

4
Invoking Synchronization in Applications

With the Mobile Sync APIs

The following sections describe the Mobile Sync APIs available to start
synchronization programmatically within your application on the Mobile client,
whether the application is C, C++, C#, or Java:

■ Section 4.1, "Synchronization APIs For C or C++ Applications"

■ Section 4.2, "Synchronization API for Java Applications"

■ Section 4.3, "Synchronization API for Java Applications on SQLite Mobile Clients"

■ Section 4.4, "Synchronization API for C#"

■ Section 4.5, "mSync/OCAPIs/mSyncCom"

4.1 Synchronization APIs For C or C++ Applications
You can initiate and monitor synchronization from a C or C++ client application. The
synchronization methods for the C/C++ interface are contained in ocapi.h and
ocapi.dll, which are located in the <ORACLE_HOME>\Mobile\bin directory.

A C++ example is provided in the <ORACLE_
HOME>\Mobile\Sdk\Samples\sync\msync\src directory. The source code is
contained in SimpleSync.cpp. The executable—SimpleSync.exe—is in the
<ORACLE_HOME>\Mobile\Sdk\Samples\sync\msync\bin directory.

The functions available for setting up and initiating the synchronization are as follows:

1. Section 4.1.1, "Overview of C/C++ Synchronization API"

2. Section 4.1.2, "Initializing the Environment With ocSessionInit"

3. Section 4.1.3, "Managing the C/C++ Data Structures"

4. Section 4.1.4, "Retrieving Publication Information With ocGetPublication"

5. Section 4.1.5, "Managing User Settings With ocSaveUserInfo"

6. Section 4.1.6, "Manage What Tables Are Synchronized With ocSetTableSyncFlag"

7. Section 4.1.7, "Configure Proxy Information"

8. Section 4.1.8, "Start the Synchronization With the ocDoSynchronize Method"

9. Section 4.1.9, "Clear the Synchronization Environment Using ocSessionTerm"

10. Section 4.1.10, "Retrieve Synchronization Error Message with ocGetLastError"

11. Section 4.1.11, "Enable File-Based Synchronization through C or C++ APIs"

Synchronization APIs For C or C++ Applications

4-2 Oracle Database Lite Developer's Guide

4.1.1 Overview of C/C++ Synchronization API
For starting synchronization, the application should perform the following:

1. Create, memset, and initialize the ocEnv structure.

2. Invoke the ocSessionInit() method.

3. Set any optional fields in the ocEnv structure, such as username and password. If
you want to preserve all optional fields set in the ocEnv structure for future
synchronization sessions, then execute the ocSaveUserInfo method.

4. Optionally, you can set proxy information with the ocSetSyncOption method
or specify the synchronization type for each table with the
ocSetTableSyncFlag function.

5. Invoke the ocDoSynchronize() method, which returns after the
synchronization completes, an error occurs, or the user interrupts the process.
While executing, the ocDoSynchronize function invokes any callback function
set in the ocEnv.fnProgress field. The callback function must not call any
blocking functions, as this process is not reentrant or threaded.

6. Once synchronization completes, then invoke the ocSessionTerm() method to
clear the ocEnv data structure.

7. If synchronization failed, then use the ocGetLastError function to retrieve the
error message.

For an example, see the SimpleSync.cpp sample code.

4.1.2 Initializing the Environment With ocSessionInit
The ocSessionInit function initializes the synchronization environment—which is
contained in the ocEnv structure or was created with ocSaveUserInfo. For more
information, see Section 4.1.5, "Managing User Settings With ocSaveUserInfo".

Syntax
int ocSessionInit(ocEnv env);

Table 4–1 lists the ocSessioninit parameter and its description.

This call initializes the ocEnv structure—which holds context information for the
synchronization engine—and restores any user settings that were saved in the last
ocSaveUserInfo call, such as username and password (See Section 4.1.5, "Managing
User Settings With ocSaveUserInfo"). An ocEnv structure is passed as the input
parameter. Perform the following to prepare the ocEnv variable:

1. Create the ocEnv by allocating a variable the size of ocEnv.

Note: Every time you invoke the ocSessionInit function, you
must also clean up with ocSessionTerm. These functions should
always be called in pairs. See Section 4.1.9, "Clear the Synchronization
Environment Using ocSessionTerm" for more information.

Table 4–1 ocSessionInit Parameters

Name Description

env An ocEnv class, which contains the synchronization environment.

Synchronization APIs For C or C++ Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-3

2. Memset the ocEnv variable before invoking the ocSessionInit function. If you
do not perform a memset on the ocEnv variable, then the ocSessionInit
function will not perform correctly.

3. Set all required fields in the ocEnv structure before passing it to ocSessionInit.
If you want to save the user preferences for future sessions, then invoke the
ocSaveUserInfo method.

For a full description of ocEnv, see Section 4.1.3.1, "ocEnv Data Structure".

The following example allocates a new ocEnv, which is then passed into the
ocSessionInit call.

env = new ocEnv;
// Reset ocenv
memset(env, 0, sizeof(ocEnv));

// init OCAPI
ocError rc = ocSessionInit(env);

4.1.3 Managing the C/C++ Data Structures
Two data structures—ocEnv Data Structure and ocTransportEnv Data Structure—are
used for certain functions in the Mobile Sync API.

4.1.3.1 ocEnv Data Structure
The ocEnv data structure holds internal memory buffers and state information. Before
using this structure, the application initializes it by passing it to the ocSessionInit
method.

Table 4–2 lists the field name, type, usage, and corresponding description of the
ocEnv structure parameters.

■ Required—If the usage is required, then you either set before calling the
ocSessionInit function or you have saved these parameters previously with
the ocSaveUserInfo function.

■ Optional—If the usage is optional, then optionally set after calling the
ocSessionInit function and before the ocDoSynchronize function.

■ Read Only.

Table 4–2 ocEnv Structure Field Parameters

Field Type Usage Description

username char[32] Required. Name of the user to authenticate. This name
is limited to 28 characters, because of other
parts of the product.

password char[32] Required. User password (clear text). This name is
limited to 28 characters, because of other
parts of the product.

trType Enum Required. If set to OC_BUILDIN_HTTP, then use HTTP
built-in transport driver. This is the default.

If set to OC_USER_METHOD, then use user
provided transport functions.

If set to OC_FILE_TRANSPORT, then the
synchronization uses file-based sync. See
Section 4.1.11, "Enable File-Based
Synchronization through C or C++ APIs" for
more information.

Synchronization APIs For C or C++ Applications

4-4 Oracle Database Lite Developer's Guide

newPassword char[32] Optional. If first character of this string is not null—in
otherwords (char) 0—this string is sent to the
server to change the user password; the
password change is effective on the next
synchronization session.

savePassword Short Optional. If set to 1, the password is saved locally and
is loaded the next time ocSessionInit is
called.

appRoot char[32] Optional. Directory to where the application will be
copied. If first character is null, then it uses
the default directory.

priority Short Optional. 0= OFF (default)

1= ON; Only high priority table or rows are
synchronized when turned on.

You can only use fast refresh with a high
priority restricting predicate. If you use any
other type of refresh, the high priority
restricting predicate is ignored.

See Section 1.2.10, "Priority-Based
Replication" in the Oracle Database Lite
Troubleshooting and Tuning Guide for more
information.

secure Short Optional. If set to 0, then AES is used on the transport.
If set to OC_SSL_ENCRYPTION, use SSL
synchronization (SSL-enabled device only).

syncDirection Enum Optional. If set to 0 (OC_SENDRECEIVE), then sync is
bi-directional (default).

If set to OC_SENDONLY, then push changes
only to the server. This stops the sync after
the local changes are collected and sent. User
must write own transport method (like
floppy bases) when using this method.

If set to OC_RECEIVEONLY, then send no
changes and only receive update from
server. This only performs the receive and
allow changes function to local database
stages.

exError ocError Read-only. Extended error code - either OS or OKAPI
error code.

transportEnv ocTransportEnv Transport buffer. See Section 4.1.3.2,
"ocTransportEnv Data Structure".

progressProc fnProgress Optional. If not null, points to the callback for progress
listening. See Section 4.1.8.1, "See Progress of
Synchronization with Progress Listening".

totalSendDataLen Long Reserved

totalRecieveDataLen Long Reserved

userContext Void* Optional. Can be set to anything by the caller for
context information (such as progress dialog
handle, renderer object pointer, and so on.

ocContext Void* Reserved.

logged Short Reserved.

Table 4–2 (Cont.) ocEnv Structure Field Parameters

Field Type Usage Description

Synchronization APIs For C or C++ Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-5

The environment structure contains fields that the caller can update to change the way
Mobile Sync module works. The following example demonstrates how to set the fields
within the ocEnv structure.

typedef struct ocEnv_s {
 // User info
char username[MAX_USERNAME]; // Mobile Sync Client id, limited to 28 characters

bufferSize Long Reserved (for Wireless/Nettech only).

pushOnly Short Optional. If set to 1, then only push changes to the
server.

syncApps Short Optional. Set to 1 (by default), performs application
deployment.

If set to 0, then no applications will be
received from the server.

syncNewPublications Short Optional. If set to 1 (default), receives any new
publication created from the server since last
synchronization.

If set to 0, only synchronizes existing
publications (useful for slow transports like
wireless).

clientDbMode Enum Optional. If set to OC_DBMODE_EMBEDDED (default), it
uses local Oracle Database Lite ODBC
driver.
If set to OC_DBMODE_CLIENT, it uses the
Branch Office driver.

syncTimeLog Short Optional. If set to 1, log sync start time is recorded in
the conscli.odb file.

updateLog Short Optional. Debug only. If set to 1, logs server-side insert
and update row information to the
publication odb.

options Short Optional. Debug only. A bitset of the following flags:

■ OCAPI_OPT_SENDMETADATA

Sends meta-info to the server.

■ or OCAPI_OPT_DEBUG

Enables debugging messages.

■ OCAPI_OPT_DEBUG_F

Saves all bytes sent and received for
debugging.

■ OCAPI_OPT_NOCOMP

Disables compression.

■ OCAPI_OPT_ABORT

If set, OCAPI will try to abort the
current sync session.

■ OCAPI_OPT_FULLREFRESH

Forces OCAPI to purge all existing data
and do a full refresh.

cancel Short Caller can set to 1 on next operation.
ocDoSynchronize returns with -9032.

Table 4–2 (Cont.) ocEnv Structure Field Parameters

Field Type Usage Description

Synchronization APIs For C or C++ Applications

4-6 Oracle Database Lite Developer's Guide

char password[MAX_USERNAME]; // Mobile Sync Client password for
 // authentication during sync, limited to 28 chars
char newPassword[MAX_USERNAME]; // resetting Mobile Sync Client password
 // on server side if this field is not blank
short savePassword; // if set to 1, save password
char appRoot[MAX_PATHNAME]; // dir path on client device for deploying files
short priority; // High priority table only or not
short secure; // if set to 1, data encrypted over the wire
enum {
OC_SENDRECEIVE = 0, // full step of synchronize
OC_SENDONLY, // send phase only
OC_RECEIVEONLY, // receive phase only
OC_SENDTOFILE, // send into local file | pdb
OC_RECEIVEFROMFILE // receive from local file | pdb
}syncDirection; // synchronize direction

enum {
OC_BUILDIN_HTTP = 0, // Use build-in HTTP transport method
OC_USER_METHOD // Use user defined transport method
}trType; // type of transport

ocError exError; // extra error code

ocTransportEnv transportEnv; // transport control information

 // GUI related function entry
progressProc fnProgress; // callback to track progress; this is optional

 // Values used for Progress Bar. If 0, progress bar won't show.
long totalSendDataLen; // set by Mobile Sync API informing transport total number
 // of bytes to send; set before the first fnSend() is called
long totalReceiveDataLen; // to be set by transport informing Mobile Sync API
 // total number of bytes to receive;
 // should be set at first fnReceive() call.
void* userContext; // user defined context
void* ocContext; // internal use only
short logged; // internal use only
long bufferSize; // send/receive buffer size, default is 0
short pushOnly; // Push only flag
short syncApps; // Application deployment flag
short cancel; // cancel
} ocEnv;

4.1.3.2 ocTransportEnv Data Structure
You can configure the HTTP URL, proxy, proxy port number and other HTTP-specific
transport definitions in the ocTrHttp structure. This structure is an HTTP public
structure defined in octrhttp.h.

You access the ocTrHttp structure from within the ocTransportEnv data structure,
which is provided as part of the ocEnv data structure. The following demonstrates the
fields within the ocTransportEnv structure:

typedef struct ocTransportEnv_s {
void* ocTrInfo; // transport internal context

The ocTrInfo is a pointer that points to the HTTP parameters in the ocTrHttp
structure. The following code example retrieves the ocTrInfo pointer to the HTTP
parameters and then modifies the URL, proxy, and proxy port number to the input
arguments:

Synchronization APIs For C or C++ Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-7

ocTrHttp* http_params = (ocTrHttp*)(env->transportEnv.ocTrInfo);
// set server_name
strcpy(http_params->url, argv[3]);
// set proxy
strcpy(http_params->proxy, argv[4]);
// set proxy port
http_params->proxyPort = atoi(argv[5])

4.1.4 Retrieving Publication Information With ocGetPublication
This function gets the publication name on the client from the Web-to-Go application
name. The Web-to-Go user knows only the application name, which happens when
the Packaging Wizard is used to package an application before publishing it. If the
Web-to-Go application needs the publication name in order to interact with the
database, then this function is used to retrieve that name, given the application name.

Syntax
ocError ocGetPublication(ocEnv* env, const char* application_name,
 char* buf, int buf_len);

The parameters for the ocGetPublication function are listed in Table 4–3 below.

Return value of 0 indicates that the function has been executed successfully. Any other
value is an error code.

The following code example demonstrates how to get the publication name.

void sync()
{
 ocEnv env;
 int rc;

 // Clean up ocenv
 memset(&env 0, sizeof(env));

 // init OCAPI
 rc = ocSessionInit(&env);

 strcpy(env.username, "john");
 strcpy(env.password, "john");

 // We use transportEnv as HTTP paramters
 ocTrHttp* http_params = (ocTrHttp*)(env.transportEnv.ocTrInfo);
 strcpy(http_params->url, "your_host");

 // Do not sync webtogo applicaton "Sample3"
 char buf[32];

Table 4–3 ocGetPublication Parameters

Name Description

ocEnv* env Pointer to an ocEnv structure buffer to hold the return
synchronization environment.

const char* application_
name(in)

The name of the application.

char* buf(out) The buffer where the publication name is returned.

int buf_len(in) The buffer length, which must be at least 32 bytes.

Synchronization APIs For C or C++ Applications

4-8 Oracle Database Lite Developer's Guide

 rc = ocGetPublication(&env, "Sample3", buf, sizeof(buf));
 rc = ocSetTableSyncFlag(&env, buf, NULL, 0);

 // call sync
 rc = ocDoSynchronize(&env);
 if (rc < 0)
 fprintf(stderr, "ocDoSynchronize failed with %d:%d\n",
 rc, env.exError);
 else
 printf("Sync compeleted\n");

 // close OCAPI session
 rc = ocSessionTerm(&env);
 return 0;
}

4.1.5 Managing User Settings With ocSaveUserInfo
Saves user settings for the ocEnv structure. These settings can be used for the current
session or used by the ocSessionInit function to initialize the environment when
next invoked.

Syntax
int ocSaveUserInfo(ocEnv *env);

Table 4–4 lists the ocSaveUserInfo parameter and its description.

This saves or overwrites the user settings into a file or database on the client side. The
following information provided in the environment structure is saved:

■ username

■ password

■ savePassword

■ newPassword

■ priority

■ secure

■ pushOnly

■ syncApps

■ syncNewPublications

If you use the HTTP default transport set in the ocTransportEnv structure, then the
following is also saved:

■ url

Table 4–4 ocSaveUserInfo Parameters

Name Description

env Pointer to the synchronization environment.

Note: See Section 4.1.3.1, "ocEnv Data Structure" or Section 4.1.3.2,
"ocTransportEnv Data Structure" for more information.

Synchronization APIs For C or C++ Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-9

■ useProxy

■ proxy

■ proxyPort

For more information on how to use these fields, see Section 4.1.3, "Managing the
C/C++ Data Structures".

4.1.6 Manage What Tables Are Synchronized With ocSetTableSyncFlag
Update the table flags for selective sync. Call this for each table to specify whether it
should be synchronized(1) or not (0) for the next session. Selective sync only works if
you have first performed at least one synchronization for the client. Then, set the flag
so that on the next synchronize—that is, before the next invocation of the
ocDoSynchronize method—a selective sync occurs.

The default sync_flag setting for ocSetTableSyncFlag is TRUE (1) for all the
tables; that is, all tables are flagged to be synchronized. If you want to selectively
synchronize specific tables, you must first disable the default setting for all tables and
then enable the synchronization for only the specific tables that you want to
synchronize.

Syntax
ocSetTableSyncFlag(ocEnv *env, const char* publication_name,
 const char* table_name, short sync_flag)

Table 4–5 lists the name and description of parameters for the ocSetTableSyncFlag
function.

Note: Automatic synchronization is based on a different model than
manual synchronization. Automatic synchronization operates on a
transactional basis. Thus, the selective sync option is not supported
when you use automatic synchronization for a publication, since we
are no longer concerned with synchronization of only a subset of data.

Table 4–5 ocSetTableSyncFlag Parameters

Name Description

env Pointer to the synchronization environment.

publication_name The name of the publication which is being synchronized. If the
value for the publication_name is NULL, it means all
publications in the database. This string is the same as the client_
name_template parameter of the Consolidator Manager
CreatePublication method. In most cases, you will use NULL
for this parameter. For more information, see Section 2.4, "Creating
Publications Using Oracle Database Lite APIs".

table_name This is the name of the snapshot. It is the same as the name of the
store, the third parameter of CreatePublicationItem(). For
more information, see Section 2.4, "Creating Publications Using
Oracle Database Lite APIs".

sync_flag If the sync_flag is set to 1, you must synchronize the publication.
If the sync_flag is set to 0, then do not synchronize. The value for
the sync_flag is not stored persistently. Each time before
ocDoSynchronize(), you must call ocSetTableSyncFlag().

Synchronization APIs For C or C++ Applications

4-10 Oracle Database Lite Developer's Guide

This function allows client applications to select the way specific tables are
synchronized.

Set sync_flag for each table or each publication. If sync_flag = 0, the table is not
synchronized.

To synchronize specific tables only, you must perform the following steps:

1. Disable the default setting, which is set to 1 (TRUE) for all the tables.

Example:

ocSetTableSyncFlag(&env, <publication_name>,null,0)

Where <publication_name> must be replaced by the actual name of your
publication, and where the value null is specified to mean all the tables for that
publication without exception.

2. Enable the selective sync for specific tables.

Example:

ocSetTableSyncFlag(&env, <publication_name>,<table_name>,1)

4.1.7 Configure Proxy Information
If you are using a firewall and need to configure proxy information, perform the
following before you execute the ocDoSynchronize method:

1. Configure the proxy URL, IP address and/or port number through the
ocSaveUserInfo function. See Section 4.1.5, "Managing User Settings With
ocSaveUserInfo" for more information.

2. If required, configure the proxy username and password. To configure the proxy
username and password, use the ocSetSyncOption and provide the following:

ocSetSyncOption(env, "HTTPUSER=<username>;HTTPPASS=<password>");

Where the ocSetSyncOption syntax is as follows:

int ocSetSyncOption(ocEnv *env, const char *str);

You can set one or more name/value pairs searated by a semi-colon in the string. The
previous example shows the HTTPUSER and HTTPPASS name/value pairs. You can
also set the URL string as follows: URL=www.myhost.com.

4.1.8 Start the Synchronization With the ocDoSynchronize Method
Starts the synchronization process.

Syntax
int ocDoSynchronize(ocEnv *env);

Table 4–6 lists the name and description of the ocDoSynchronize parameter.

Note: The username and password are limited to 28 characters.

Synchronization APIs For C or C++ Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-11

This starts the synchronization cycle. A round trip synchronization is activated if
syncDirection is OC_SENDRECEIVE (default). If syncDirection is OC_
SENDONLY or OC_RECEIVEONLY, then the developer must implement a custom
transport. If the developer wishes to upload only changes, then set pushonly=1. You
cannot only download changes under the existing synchronization architecture.

This method returns when the synchronize completes. A return value of 0 indicates
that the function has been executed successfully. If an error occurred, local errors are
returned by ocDoSynchronize, which are defined in ocerror.h. For errors
returned by the server, see the ol_sync.log error log file, which is written into the
working directory of the application. Each line in the error file has the following
format:

<type>, <code>, <date>, <message>

Where:

■ <type>: The type of the message, which can either be set to ERROR or SUCCESS.

■ <code>: Error code of the last operation of the synchronization.

■ <date>: Date and timestamp for when the synchronization completes. This is in
the format of dd/mm/yyyy hh:mm:ss.

■ <message>: A readable message text.

4.1.8.1 See Progress of Synchronization with Progress Listening
If you create and set the progress callback function, then Oracle Database Lite invokes
this callback function at different times while the ocDoSynchronize method is
executing. Create the callback function, as follows:

void myProgressProc (void *env, int stage, int present);

When the ocDoSynchronize invokes your myProgressProc function, it provides
the following information as input to your function:

■ env—A pointer to the environment (ocEnv structure) for the synchronization
session. This provides the function to retrieve the userContext pointer.

■ stage—A number that denotes the stage in the synchronization process, which is
one of the following values, where these values are defined in ocapi.h:

Table 4–6 ocDoSynchronize Parameters

Name Description

env Pointer to the synchronization environment.

Table 4–7 Description of the Stage Values

Stage Value Description

OC_PREPARE_START Start of the prepare stage, which collects all internal data from
the database and prepares to send the data to the server.

OC_PREPARING Progress in the prepare stage.

OC_PREPARE_FINISH Prepare stage is completed.

OC_SEND_START Starting to send the data to the server.

OC_SENDING Sending the data.

OC_SEND_FINISH Completed sending the data.

Synchronization APIs For C or C++ Applications

4-12 Oracle Database Lite Developer's Guide

■ present—The percentage completed in the particular stage that synchronization
is in from 0 to 100.

If the function is a member of a class, then it must be defined as static.

After you create the callback function, set the function pointer in the
ocEnv.fnProgress (Table 4–2) to the address of your callback function. Save this
with the ocSaveUserInfo or ocSessionInit methods.

4.1.9 Clear the Synchronization Environment Using ocSessionTerm
Clears and performs a cleanup of the synchronization environment and buffers. This
function must be invoked for every ocSessionInit, even if the ocDoSynchronize
function is not performed.

Syntax
int ocSessionTerm(ocEnv *env);

Table 4–8 lists the ocSessionTerm parameter and its description.

De-initializes all the structures and memory created by the ocSessionInit() call.
Users must ensure that they are always called in pairs.

4.1.10 Retrieve Synchronization Error Message with ocGetLastError
Retrieves the synchronization error message and code.

Syntax
int ocGetLastError(ocEnv *env, char *buf, int buf_size);

Table 4–9 lists the ocGetLastError parameters.

OC_RECEIVE_START Starting to receive data.

OC_RECEIVING Receiving data from the server.

OC_RECEIVE_FINISH Completed receiving data from the server.

OC_PROCESS_START Starting to process received data.

OC_PROCESSING Processing received data.

OC_PROCESS_FINISH Completed processing. Synchronization is finished.

OC_RETRY_CALL Resume synchronization is restarted.

OC_SYNC_FINISH Last callback after the synchronization.

Table 4–8 ocSessionTerm Parameters

Name Description

env Pointer to the environment structure returned by
ocSessionInit.

Table 4–7 (Cont.) Description of the Stage Values

Stage Value Description

Synchronization APIs For C or C++ Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-13

4.1.11 Enable File-Based Synchronization through C or C++ APIs
When you want to use file-based synchronization, you must enable file-based
synchronization. Once enabled, then when you initiate manual synchronization, then
the synchronization file is created. See Section 6.8, "Synchronizing to a File Using
File-Base Sync" in the Oracle Database Lite Administration and Deployment Guide for more
details on file-based synchronization.

To enable file-based synchronization programmatically with the ocEnv structure,
perform the following:

1. Ensure that any previous settings of the File-Based Sync properties are set to
NULL.

2. Initialize the environment with the ocSessionInit method.

3. Set the username and password for the user that is initializing the
synchronization.

4. Specify the synchronization direction and directory and filename for the
synchronization file. The synchronization direction is either send, which creates
the synchronization file, or receive, which takes in a file from the Mobile Server.
These are configured in the SEND_FILE_PROP and RECEIVE_FILE_PROP
properties with the ocSetSyncProperty method.

■ When you set the SEND_FILE_PROP property, specify the
filename—including the relative or full path—where you want the Mobile
client to save the upload data for the Mobile Server. This file is created with
the Mobile client transactions destined for the Mobile Server.

■ When you set the RECEIVE_FILE_PROP property, specify the
filename—including the relative or full path—where the data file that was
received from the Mobile Server. This file is loaded and processed within the
Mobile client.

The following code example sets the direction, filename, username and password.
Notice that the ocEnv structure is memset to zero to ensure that if a previous direction
and filename were specified, then these are invalidated for the next file-based
synchronization. The SEND_FILE_PROP property is set with the filename and
direction, which tells the Sync Client to marshall the Mobile client transactions that are
to be uploaded to the Mobile Server into this file. If you were receiving a
synchronization file from the Mobile Server, you would have set the RECEIVE_FILE_
PROP property with the location and name of this file.

Finally, the ocEnv structure is provided to the ocDoSynchronize method, which
performs the file-based synchronization.

ocEnv env;
memset(&env, 0, sizeof(ocEnv));
ocSessionInit(&env);
strcpy(env.username, "S11U1");
strcpy(env.password, "manager");

Table 4–9 ocGet Parameters

Name Description

env Pointer to the environment structure returned by
ocSessionInit.

buf A string with the error message.

buf_size The size of the error message string.

Synchronization API for Java Applications

4-14 Oracle Database Lite Developer's Guide

ocSetSyncProperty(&env, SEND_FILE_PROP, "C:\\temp\\send1.bin");
ocDoSynchronize(&env);
ocSessionTerm(&env);

4.2 Synchronization API for Java Applications
The following sections describe how you can use Java API to build your own client
synchronization initiation:

■ Section 4.2.1, "Overview"

■ Section 4.2.2, "Sync Class"

■ Section 4.2.3, "SyncException Class"

■ Section 4.2.4, "SyncOption Class"

■ Section 4.2.5, "Java Interface SyncParam Settings"

■ Section 4.2.6, "Java Interface TransportParam Parameters"

■ Section 4.2.7, "SyncProgressListener Service"

■ Section 4.2.8, "Manage What Tables Are Synchronized With Selective Sync"

■ Section 4.2.9, "Enable File-Based Synchronization through Java APIs"

4.2.1 Overview
The Java interface for Mobile Sync client-side synchronization resides in the
oracle.lite.msync package.

The Java interface provides for the following functions:

■ Setting client side user profiles containing data such as user name, password, and
server

■ Starting the synchronization process

■ Tracking the progress of the synchronization process

The Java interface consists of two files, olite40.jar and msync_java.dll. To use
the Java interface, the olite40.jar file must be included in the CLASSPATH. These
files are located in the <ORACLE_HOME>\Mobile\Sdk\bin directory.

The following are the classes and interface for the Java API:

■ Sync Class

■ SyncException Class

■ SyncOption Class

■ SyncProgressListener Interface

4.2.2 Sync Class
This class initiates synchronization by using the provided synchronization options.
The parameters for the constructor are listed in Table 4–10.

Constructors
Sync(SyncOption option)

Synchronization API for Java Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-15

Public Methods
To monitor the progress of the synchronization process, the public method
SyncProgressListener adds a progress listener to the object.

SyncProgressListener add(ProgressListener listener)

The parameters for the SyncProgressListener method are described in
Table 4–11.

The following code demonstrates how to start a session using the default settings.

try
{
 Sync mySync = new Sync(new SyncOption());
 mySync.doSync();
}
catch (SyncException e)
{
 System.err.println("Sync Error:"+e.getMessage());
}

4.2.3 SyncException Class
This class signals a non-recoverable error during the synchronization process. The
SyncException() class constructs a clear object. The parameters for the
constructor are listed inTable 4–12:

Constructors
SyncException()

SyncException(int errorCode, string errorMessage)

Public Methods
The methods for the SyncException are listed in Table 4–13.

Table 4–10 Sync Class Constructor

Parameter Description

option Instance of the SyncOption Class. This contains all the parameters
needed to perform synchronization.

Table 4–11 Sync Class Public Method

Parameter Description

listener An object that implements the ProgressListener interface. The
synchronization object calls the progress() function of this object
to notify it of the synchronization progress.

void doSync () Starts a synchronization session and blocks that thread until
synchronization is complete.

void abort () Aborts the synchronization session.

Table 4–12 syncException Constructor Parameter Description

Parameter Description

errorCode The error. Refer the Oracle Database Lite Message Reference.

errorMessage A readable text message that provides extra information.

Synchronization API for Java Applications

4-16 Oracle Database Lite Developer's Guide

4.2.4 SyncOption Class
The SyncOption class is used to define the parameters for the synchronization
process. It can either be constructed manually, or can save or load data from the user
profile.

Constructors
SyncOption()

SyncOption
 (String user,
 String password,
 String syncParam,
 String transportType,
 String transportParam)

The parameters for the SyncOption constructor are listed in Table 4–14:

Public Methods
These methods load and save the user profile. The parameters of the public methods
are listed in Table 4–15:

Table 4–13 SyncExceptionClass Public Methods

Parameters Description

int getErrorCode() Gets the error code.

String getErrorMessage Gets the error message.

Table 4–14 SyncOption Constructors

Parameter Description

user A string containing the name used for authentication by the
Mobile Server.

password A string containing the user password.

syncParam A string which defines an optional list of parameters for the
synchronization session. See Section 4.2.5, "Java Interface
SyncParam Settings" for more information.

transportType A string containing the name of the transport driver. Currently,
only HTTP or FILE are supported.

transportParam A string containing all the parameters needed for the specified
driver to operate. See Section 4.2.6, "Java Interface
TransportParam Parameters" for more information.

Table 4–15 Sync Option Public Method Parameters

Parameter Description

void load(String username) This loads the profile for the specified user name.
If the user name is left null, the profile is loaded
for the last user to synchronize.

void save() This saves the settings to the profile for the active
user.

void setUser(String username) This is used to set and get the current user.

String getuser()

Synchronization API for Java Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-17

Example 1
The following code example demonstrates how to start a synchronization session
using the default settings:

SyncOption opt = new SyncOption("sam","lion","pushonly",
 "HTTP","server=server1;proxy=www-proxy.us.oracle.com;proxyPort=80");
opt.save();

Example 2
The following example is of a client that creates the SyncOption class and then
performs the synchronization with the doSync method.

import oracle.lite.mSync.*;

public class JavaSyncClient{
 String user = "SALES1";
 String password = "MANAGER";
 //Set the Sync params
 //Set syncParam to fullrefresh
 String syncParam = "";//fullrefresh;
 // Set the Transport params
 String transportType = "HTTP";
 String trasportParam = "server=localhost";

 /**
 * Constructor
 */
 public JavaSyncClient() throws Exception{
 //Create the SyncOption class
 SyncOption syncOpt = new SyncOption(user, password,
 syncParam, transportType, trasportParam);
 syncOpt.setSyncFlag("MYORDERS", "", (short) 0);
 //Save the options before the sync
 syncOpt.save();
 //Create the Sync class
 Sync mySync = new Sync(syncOpt);
 //Perform the synchronization
 mySync.doSync();
 }

void setPassword(String
password)

String getPassword()

This is used to set and get the password.

void setSyncParam(String
syncParam)

string getSyncParam()

This is used to set and get the synchronization
parameters.

void setTransportType(String
driverName)

String getTransportType()

This is used to set and get the driver name, which
defaults to HTTP. Set to FILE if using file-based
synchronization.

void setTransportParam(String
transportParam)

String getTransportParam()

Set and get the transport parameters.

Table 4–15 (Cont.) Sync Option Public Method Parameters

Parameter Description

Synchronization API for Java Applications

4-18 Oracle Database Lite Developer's Guide

 /**
 * main
 */
 public static void main(String[] args) throws Exception {
 JavaSyncClient JavaSyncClient = new JavaSyncClient();
 }
}

4.2.5 Java Interface SyncParam Settings
The syncParam is a string that can be passed when creating the SyncOption object.
It allows support parameters to be specified to the synchronization session. The string
is constructed of name-and-value pairs. For example:

"name=value;name2=value2;name3=value3, ...;"

The names are not case sensitive, but the values are. The field names which can be
used are listed in Table 4–16.

Table 4–16 Java Interface SyncParamSettings

Name Value/Options Description

"reset" N/A Clear all entries in the environment before
applying any remaining settings.

"security" SSL or AES Use the appropriate selection to choose either
SSL or AES stream encryption.

"highPriority" String A string parameter that forces the server to
append a restricting predicate to the
publication item querys where restricting
predicate exists. This limits the number of
records client downloads and should be used
in combination with selective sync which
selects only high priority snapshots.

You can only use fast refresh with a high
priority restricting predicate. If you use any
other type of refresh, the high priority
restricting predicate is ignored.

See Section 1.2.10, "Priority-Based Replication"
in the Oracle Database Lite Troubleshooting and
Tuning Guide for more information.

"pushOnly" A boolean value
which makes
synchronization
push only.

Use this setting to upload changes from the
client to the server only, do not download. This
is useful when data transfer is one way, client
to server.

"noapps" N/A Do not download any new or updated
applications. This is useful when synchronizing
over slow connection or on a slow network.

"syncDirection" "sendonly"
"receiveonly"

"SendOnly" is the same as "pushonly".

"ReceiveOnly" allows no changes to be posted
to the server.

"noNewPubs" N/A This setting prevents any new publications
created since the last synchronization from
being sent, and only synchronizes data from
the current publications.

"tableFlag" "enable" The "enable" setting allows [Publication.Item]
to be synchronized, "disable" prevents
synchronization.

Synchronization API for Java Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-19

Example 1
The first example enables SSL security and disables application deployment for the
current synchronization session:

"security=SSL; noapps;"

Example 2
The second example resets all previous settings, activates upload for the Dept table
only:

"reset;pushOnly;tableFlag[TestApp.Emp]=disable;tableFlag[TestApp.Dept]=enable;"

4.2.6 Java Interface TransportParam Parameters
The format of the TransportParam string is used to set specific parameters using a
string of name-and-value pairs, for example:

"name=value;name2=value2;name3=value3, ...;"

The names are not case sensitive, but the values are. The field names which can be
used are listed in Table 4–17.

Example
The example directs the Mobile Sync Agent to use the server at "test.oracle.com"
through the proxy "proxy.oracle.com" at port 8080:

"server=test.oracle.com;proxy=proxy.oracle.com;proxyPort=8080;"

4.2.7 SyncProgressListener Service
The SyncProgressListener is an interface that allows progress updates to be
trapped during synchronization.

This class initiates synchronization by using the provided synchronization options.
The parameters for the method are listed in Table 4–18:

[Publication.Item] "disable"

"fullrefresh" N/A Forces a complete refresh.

"clientDBMode" "EMBEDDED" or
"CLIENT"

If set to "EMBEDDED", access to the database is
by conventional ODBC, if set to "CLIENT"
access is by multi-client ODBC.

Table 4–17 TransportParam Parameters

Name Value Description

"reset" N/A Clear all entries in the environment before applying the rest
of the settings.

"server" server hostname The hostname or IP address of the Mobile Server.

"proxy" proxy server
hostname

The hostname or IP address of the proxy server.

"proxyPort" port number The port number of the proxy server.

"cookie" cookie string The cookie to be used for transport.

Table 4–16 (Cont.) Java Interface SyncParamSettings

Name Value/Options Description

Synchronization API for Java Applications

4-20 Oracle Database Lite Developer's Guide

Method
void progress

 (int progressType,
 int completed);

The names of the constants which report the synchronization progress are listed in
Table 4–19.

Example
This simple class implements the SyncProgressListener.

class myProgressTracker implements SyncProgressListener;

{
 public void progress
 (int progressType,
 int completed)
 {
 System.out.println("Status: "+progressType+"="+ completed+"%");
 } //progress
 }

Table 4–18 SyncProgressListener Abstract Method

Parameter Description

progressType This is set to one of the constants listed in Table 4–19.

completed This is the percentage of completion for specific progressType.

Table 4–19 SyncProgressListener Interface Constants

Constant Name Progress Type

PT_INT States that the synchronization engine is in the initializing stage.
The current and total counts are set to 0.

PT_PREPARE_SEND States that the synchronization engine is preparing local data to
be sent to the server. This includes getting locally modified data.
For streaming implementations this takes a shorter amount of
time.

PT_SEND States that the synchronization engine is sending data to the
network.

The total count equals the number of bytes to be sent, and the
current count equals the byte count being sent currently.

PT_RECV States that the synchronization engine is receiving data from the
server.

The total count equals the number of bytes to be received, and
the current count equals the byte count being received currently.

PT_PROCESS_RECV States that the synchronization engine is applying the newly
received data from the server to the local data stores.

PT_COMPLETE States that the synchronization engine has completed the
synchronization process.

Note: Some codes are returned from the OCI layer. If you receive a
status code not listed here, see Table 4–7.

Synchronization API for Java Applications

Invoking Synchronization in Applications With the Mobile Sync APIs 4-21

4.2.8 Manage What Tables Are Synchronized With Selective Sync
Update the table flags for selective sync. Call this for each table to specify whether it
should be synchronized (1) or not (0) for the next session. Selective sync only works if
you have first performed at least one synchronization for the client. Then, set the flag
so that on the next synchronize—that is, before the next invocation of the
doSynchronize method—a selective sync occurs.

The default setting is TRUE (1) for all the tables; that is, all tables are flagged to be
synchronized. If you want to selectively synchronize specific tables, you must first
disable the default setting for all tables and then enable the synchronization for only
the specific tables that you want to synchronize.

Syntax
public void setSyncFlag(java.lang.String publication_name,
 java.lang.String table_name,
 short sync_flag) throws SyncException

Table 4–5 lists the name and description of parameters for the setSyncFlag function.

This function allows client applications to select the way specific tables are
synchronized.

Set sync_flag for each table or each publication. If sync_flag = 0, the table is not
synchronized. To synchronize specific tables only, you must perform the following
steps:

1. Disable the default setting, which is set to 1 (TRUE) for all the tables.

Example:

setSyncFlag(<publication_name>,null,0)

Note: Automatic synchronization is based on a different model than
manual synchronization. Automatic synchronization operates on a
transactional basis. Thus, the selective sync option is not supported
when you use automatic synchronization for a publication, since we
are no longer concerned with synchronization of only a subset of data.

Table 4–20 setSyncFlag Parameters

Name Description

publication_name The name of the publication which is being synchronized. If the
value for the publication_name is NULL, it means all
publications in the database. This string is the same as the client_
name_template parameter of the Consolidator Manager
createPublication method. In most cases, you will use NULL
for this parameter. For more information, see Section 2.4, "Creating
Publications Using Oracle Database Lite APIs".

table_name This is the name of the snapshot. It is the same as the name of the
store, the third parameter of createPublicationItem(). For
more information, see Section 2.4, "Creating Publications Using
Oracle Database Lite APIs".

sync_flag If the sync_flag is set to 1, you must synchronize the publication.
If the sync_flag is set to 0, then do not synchronize. The value for
the sync_flag is not stored persistently. Each time before
doSynchronize(), you must call setSyncFlag().

Synchronization API for Java Applications

4-22 Oracle Database Lite Developer's Guide

Where <publication_name> must be replaced by the actual name of your
publication, and where the value null is specified to mean all the tables for that
publication without exception.

2. Enable the selective sync for specific tables.

Example:

setSyncFlag(<publication_name>,<table_name>,1)

Alternatively, see the following code snippet on how to enable the selective sync flag
for EVERY table EXCEPT the OrdersODB.TEST table.

SyncOption op = new SyncOption(user, passwd,
 "noNewPubs","HTTP",server.toString());
op.setSyncFlag("","",(short)1); //turn on sync flag for all the tables
op.setSyncFlag("","OrdersODB.TEST",(short)0);
 //turn off sync flag for OrdersODB.TEST

4.2.9 Enable File-Based Synchronization through Java APIs
When you want to use file-based synchronization, you must enable file-based
synchronization. Once enabled, then when synchronization occurs—either through
automatic or manual synchronization—then the synchronization file is created. See
Section 6.8, "Synchronizing to a File Using File-Base Sync" in the Oracle Database Lite
Administration and Deployment Guide for more details on file-based synchronization.

To enable file-based synchronization programmatically with the SyncOption class,
specify the following:

1. Create the SyncOption class with the username and password.

2. Specify the synchronization direction and directory and filename for the
synchronization file with the setSyncProperty method of the SyncOption
class. The synchronization direction is either send, which creates the
synchronization file, or receive, which takes in a file from the Mobile Server. These
are configured in the SEND_FILE_PROP and RECEIVE_FILE_PROP properties
with the setSyncProperty method.

■ When you set the RECEIVE_FILE_PROP property with the filename and
directory, the intended file is uploaded and processed within the Mobile
client.

■ When you set the SEND_FILE_PROP property with the filename and
directory, the intended file is created with the Mobile client transactions
destined for the Mobile Server.

The following code example sets the direction, filename, username and password. In
this example, the SEND_FILE_PROP property is set with the filename and direction,
which tells the Sync Client to marshall the Mobile client transactions that are to be
uploaded to the Mobile Server into this file. If you were receiving a synchronization
file from the Mobile Server, you would have set the RECEIVE_FILE_PROP property
with the location and name of this file.

Finally, the Sync class is instantiated with the SyncOption settings and a
synchronization is performed.

SyncOption sync_op = new SyncOption("S11U1", "manager", "", "", "");

op.setSyncProperty(SyncOption.SEND_FILE_PROP,"C:\\temp\\send1.bin");
Sync mSync = new Sync(op);
mSync.doSync();

Synchronization API for Java Applications on SQLite Mobile Clients

Invoking Synchronization in Applications With the Mobile Sync APIs 4-23

4.3 Synchronization API for Java Applications on SQLite Mobile Clients
The following sections describe how you can use Java APIs to build your own client
synchronization initiation on SQLite Mobile clients:

■ Section 4.3.1, "Overview"

■ Section 4.3.2, "OSESession Class"

■ Section 4.3.3, "OSEProgressListener Interface"

■ Section 4.3.4, "Enable Selective Synchronization"

■ Section 4.3.5, "OSEException Class"

4.3.1 Overview
The Java interface for SQLite Mobile client synchronization resides in the
oracle.opensync.ose package.

The Java interface provides for the following functions:

■ Setting client-side user profiles containing data such as user name, password, and
server

■ Starting the synchronization process

■ Tracking the progress of the synchronization process

For Win32, Windows Mobile, and Linux clients, the Java interface is implemented
using JNI and consists of two files: jsync.jar and msync_java.dll. The pure Java
interface is implemented in the msync.jar file. To use the JNI synchronization
interface, include the jsync.jar file in the CLASSPATH and msync_java.dll file in
the PATH. These files are located in the <ORACLE_HOME>\Mobile\Sdk\sqlite
directory.

The pure Java library for the Blackberry RIM platform is located in the <ORACLE_
HOME>\Mobile\Sdk\sqlite\rim\lib directory; the pure Java library for the
Android platform is located in the <ORACLE_
HOME>\Mobile\Sdk\sqlite\android\lib directory.

The following are the classes and interface for the Java API for SQLite Mobile clients:

■ OSESession Class

■ OSEProgressListener Interface

4.3.2 OSESession Class
OSESession enables setting synchronization parameters and options. This class
exposes APIs to invoke and control synchronization by using the provided
synchronization options.

Synchronization progress is reported through the OSEProgressListener interface,
which is set by the OSESession setProgress(OSEProgressListener) method.

The parameters for the constructor are listed in Table 4–10.

Constructors
OSESession()

OSESession(String user)

OSESession(String user, char[] pwd)

Synchronization API for Java Applications on SQLite Mobile Clients

4-24 Oracle Database Lite Developer's Guide

Public Methods
The public methods and their parameters for the OSESession class are listed in
Table 4–22:

Table 4–21 OSESession Class Constructor

Parameter Description

user A string containing the name used for authentication by the Mobile Server.

password A character array containing the user password.

Table 4–22 OSESession Class Public Method Parameters

Parameter Description

void cancelSync() Attempts to cancel the sync process with a
non-blocking call. If successful, throws
OSEException with error code
OSEExceptionConstants.SYNC_CANCELED.

void close() Closes any active database connections that the
session maintains. This method is called before
application exits.

void setAppRoot(String appRoot)

String getAppRoot()

Sets or retrieves the current root directory, as set in
the DATA_DIRECTORY parameter, for internal
synchronization and database files for the
application.

void setEncryptionType(int
type)

int getEncryptionType()

Sets or retrieves the current encryption type.
Possible types can are as follows:

■ ENC_AES - AES encryption, which is the
default.

■ ENC_SSL - SSL over HTTP.

■ ENC_NONE - No encryption.

void setForceRefresh(boolean
on)

boolean getForceRefresh()

Set to wipe out all of the client data and replace it
with server data, if true.

Retrieves value of force refresh.

void setSavePassword(boolean
on)

boolean getSavePassword()

This is used to set and get the flag for persistently
saving the user password. If true, the password
will be saved.

void setNewPassword(char[] pwd) Allows clients to modify their password on the
server. After a successful synchronization, the
client's password on the server will be changed to
the new password.

void setPassword(char[] pwd) Provide or modify the SQLite Mobile client
password.

void setSyncNewPub()

boolean getSyncNewPub()

Sets flag for enabling synchronization of new
publications. By default, this is set to true and all
publications are synchronized. However, if you set
this to false, any new subscribed publications on
the server are not downloaded to the client.

void setURL(java.lang.String
url)

java.lang.String getURL()

Sets or retrieves the HTTP URL of the Mobile
Server.

Synchronization API for Java Applications on SQLite Mobile Clients

Invoking Synchronization in Applications With the Mobile Sync APIs 4-25

Example
The following example sets the username and password to JOHN/john. The Mobile
Server URL is identified as localhost:88. And a synchronization is initiated with
the sync method.

/* set up username and password */
String user = "JOHN";
String pwd = "john";

/* create OSESession with user John */
OSESession sess = new OSESession(user, pwd.toCharArray());

/* Identify Mobile Server URL */
sess.setURL("localhost:88");

/* Identify the progress listener, myProgressTracker */
sess.setProgress(myProgressTracker);

/* Initiate Sync */
sess.sync();

void setUseFiles(boolean on)

boolean getUseFiles()

Set flag to switch between using streaming or files
to transport synchronization data. If set to true,
synchronization stores uploaded and downloaded
data in a file; otherwise, data will be streamed.

When using files, the ose$in.bin file contains
the data received from the server. The
ose$out.bin file contains the data sent to the
server. These files are located in the
<mobileclient_root>\bin directory on
Win32, WinCE, Windows Mobile and Linux
platfoms or in the directory specified by the
SQLITE.DATA_DIRECTORY on the Android or
Blackberry platforms.

Note: streaming requires that the underlying client
transport stack implements HTTP 1.1. Thus, if a
platform does not support streaming,
setUseFiles must be congifigured as TRUE.

void saveUser()

String getUser()

The saveUser method saves user information,
such as users specific information, and the last
sync user id.

The getUser method retrieves current
synchronization client name.

void selectPub(String name) Provided the publication name, adds the
publication to the list of publications to be
synchronized selectively. See Section 4.3.4, "Enable
Selective Synchronization" for more information.

void
setProgress(OSEProgressListener
p)

Set synchronization progress listener.

void sync() Initiates a manual synchronization from within the
application.

Table 4–22 (Cont.) OSESession Class Public Method Parameters

Parameter Description

Synchronization API for Java Applications on SQLite Mobile Clients

4-26 Oracle Database Lite Developer's Guide

4.3.3 OSEProgressListener Interface
The OSEProgressListener interface enables progress updates to be trapped during
synchronization.

Sync calls the progress function to report the current stage and the percent of
completion of that stage. The parameters for the progress method are listed in
Table 4–23:

Method
void progress (int stage, int val);

The names of the constants which report the synchronization progress are listed in
Table 4–24.

Example
This simple class implements the OSEProgressListener.

class myProgressTracker implements OSEProgressListener;

{
 public void progress
 (int state,
 int val)
 {
 System.out.println("Status: "+state+"="+ val+"%");
 } //progress
 }

4.3.4 Enable Selective Synchronization
Selective sync specifies whether a publication should be synchronized or not for the
next session. Set the flag with the selectPub method to indicate whether the

Table 4–23 OSEProgress Method Parameters

Parameter Description

stage This is set to one of the constants listed in Table 4–24.

val This is the percentage of completion for specific stage.

Table 4–24 OSEProgressListener Interface Constants

Constant Name Progress Type

PREPARE States that the synchronization engine is preparing local data to
be sent to the server. This includes getting locally modified data.
For streaming implementations this takes a shorter amount of
time.

SEND States that the synchronization engine is sending data to the
network.

RECEIVE States that the synchronization engine is receiving data from the
server.

PROCESS States that the synchronization engine is applying the newly
received data from the server to the local data stores.

IDLE States that the synchronization engine has completed the
synchronization process.

Synchronization API for Java Applications on SQLite Mobile Clients

Invoking Synchronization in Applications With the Mobile Sync APIs 4-27

publication is to be synchronized on the next execution of the sync method. The
default setting is NULL for all publications.

Table 4–5 lists the name and description of parameter for the selectPub method.

4.3.5 OSEException Class
This class signals a non-recoverable error during the synchronization process. The
OSEException() class constructs a clear object. The parameters for the constructor
are listed in Table 4–26:

Constructors
OSEException()

OSEException(int errorCode, string errorMessage)

Public Methods
The methods for the OSEException are listed in Table 4–27.

Error Codes and Messages
Table 4–28 lists the error codes and messages that can be returned in the
OSEException class.

Note: Automatic synchronization selectively synchronizes only
publications that contain automatic publication items.

Table 4–25 selectPub Parameters

Name Description

publication_name The name of the publication which is being synchronized. If the
value for the publication_name is NULL, it means all
publications in the database, which turns off selective sync.

For more information, see Section 2.4, "Creating Publications Using
Oracle Database Lite APIs".

Table 4–26 OSEException Constructor Parameter Description

Parameter Description

errorCode Error codes are provided within the
OSEExceptionConstants class, which are listed in "Error
Codes and Messages". See the Javadoc for full details.

errorMessage A readable text message, which are listed in "Error Codes and
Messages", that provides extra information.

Table 4–27 OSEException Class Public Methods

Parameters Description

int getErrorCode() Gets the error code.

String getErrorMessage Gets the error message.

Synchronization API for Java Applications on SQLite Mobile Clients

4-28 Oracle Database Lite Developer's Guide

Table 4–28 OSEException Error Messages

Error Code Error Message Error number

DATABASE_NOT_FOUND Could not find database <database_name>. -12002

EMPTY_PASSWORD Blank password is not allowed. -12101

EMPTY_USER User name cannot be blank. -12105

ENCRYPTION_ID_MISMATCH Sent encryption id <id> + 1 does not match received
<id>.

-12030

ERR_CREDENTIALS Failed to get credentials from the server (the current
credentials are invalid or missing).

-12104

HTTP_RESPONSE Unsuccessful HTTP response -12035

INTERNAL_ERROR Internal error has occured (see the cause). -12039

INVALID_DML_TYPE Received invalid record DML type <dml_type>. -12005

INVALID_ENCRYPTION_TYPE Invalid encryption type specified: <encryption_
type>.

-12034

INVALID_OPCODE Received invalid opcode <opcode>. -12006

INVALID_PRIORITY Invalid priority specified: <priority>. -12047

INVALID_STRING_LENGTH Invalid string length <number> received in opcode
<opcode>.

-12103

INVALID_SYNC_DIRECTION Invalid sync direction specified: <sync_direction>. -12012

INVALID_TRANSPORT_TYPE Invalid transport type specified: <transport_type>. -12016

MISSING_DEFAULT_DATABASE Plugin is missing default database needed to create
snapshot.

-12040

OPCODE_LENGTH_UNDERRUN <numbytes> bytes for opcode <opcode> have not been
read.

-12008

OPCODE_OUT_OF_SEQUENCE Opcode <opcode> was not expected at this time. -12024

PASSWORD_NOT_SPECIFIED Password is not specified and was not saved for user
<username>.

-12004

PLUGIN_CLASS_INIT_FAILED Failed to initialize plugin class <class_name>. -12100

PLUGIN_EXCEPTION Plugin has thrown an exception, see the cause. -12011

PLUGIN_CLASS_NOT_FOUND Could not find plugin class <class_name>. -12044

PLUGIN_ID_NOT_FOUND Could not find plugin with id <id>. -12017

PUBLICATION_ID_MISMATCH Publication id <id> for snapshot with id <id> does not
match publication id <id> in the current transaction.

-12102

PUBLICATION_ID_NOT_FOUND Could not find publication with id <id>. -12043

PUBLICATION_NOT_FOUND Could not find publication <publication_name>. -12019

SERVER_ERROR Server error, id = <id>. -12038

SNAPSHOT_ID_EXISTS Snapshot with id <id> already exists. -12023

SNAPSHOT_ID_NOT_FOUND Could not find snapshot with id <id>. -12021

SYNC_CANCELED Sync was canceled. -12000

UNCOMPRESSED_DATA Received erroneous uncompressed data. -12032

UNENCRYPTED_DATA Received erroneous unencrypted data. -12031

Synchronization API for C#

Invoking Synchronization in Applications With the Mobile Sync APIs 4-29

4.4 Synchronization API for C#
The C# interface for Mobile Sync client-side synchronization resides in the
Oracle.DataAccess.Lite package.

The C# interface provides for the following functions:

■ Setting client-side user profiles containing data such as user name, password, and
server

■ Starting the synchronization process

■ Tracking the progress of the synchronization process

The C# interface is contained in the Oracle.DataAccess.Lite.dll. The
OracleSync class, defined in the OracleSync.cs file, contains the C# API for
synchronization.

The following sections describe how to use the C# API:

■ Section 4.4.1, "Use the OracleSync Class for Synchronization"

■ Section 4.4.2, "Using the OracleEngine to Synchronize"

■ Section 4.4.3, "Exception Handling and Reading Log Files"

■ Section 4.4.4, "Monitor Synchronization Progress With the SyncEventHandler"

■ Section 4.4.5, "Manage What Tables Are Synchronized With Selective Sync"

■ Section 4.4.6, "Enable File-Based Synchronization through C# APIs"

4.4.1 Use the OracleSync Class for Synchronization
You use the OracleSync class to initialize and perform synchronization using the C#
APIs.

Table 4–29 shows the properties you can set for initializing the environment before
invoking synchronization:

UNEXPECTED_BLOB_DATA Got a record with BLOBs for a plugin that does not
support BLOBs.

-12018

UNEXPECTED_OPCODE Expecting opcode <opcode>, received <opcode>. -12001

USER_NOT_SPECIFIED User is not specified and the last user was not saved. -12003

Table 4–29 OracleSync Properties

Properties Type Description

UserName String The name of the user who is initiating the synchronization.

Password String The password for the user who is initiating the
synchronization.

ServerURL String The hostname or IP address of the Mobile Server. If you want
to use SSL, set the URL using the HTTPS prefix instead of the
HTTP prefix.

ProxyHost String The hostname or IP address of the proxy server.

ProxyPort Integer The hostname or IP address of the proxy port.

Table 4–28 (Cont.) OSEException Error Messages

Error Code Error Message Error number

Synchronization API for C#

4-30 Oracle Database Lite Developer's Guide

The synchronization public methods of the OracleSync class are described in
Table 4–30.

PushOnly Boolean Upload changes from the client to the server only, do not
download. This is useful when data transfer is one way,
client to server. A boolean value which makes
synchronization push only. TRUE sets PushOnly to on;
FALSE is the default value.

HighPriority Boolean FALSE turns high priority to OFF, which is the default.

TRUE turns high priority to ON; Only high priority table or
rows are synchronized when set to TRUE.

You can only use fast refresh with a high priority restricting
predicate. If you use any other type of refresh, the high
priority restricting predicate is ignored.

See Section 1.2.10, "Priority-Based Replication" in the Oracle
Database Lite Troubleshooting and Tuning Guide for more
information.

Option Option Set one or more of the appropriate sync options with an OR
statement from the SyncOption enumerator. Provide a
bitset of the following flags:

■ FORCE_REFRESH

Forces a purge of all existing data and do a full refresh.

Secure Boolean Should not be used. To use an SSL connection, prefix the
ServerURL property with https://.

Table 4–30 OracleSync Public Methods

Method Description

void save() This saves the username, password, URL,
proxy, and proxy-port settings for the
OracleSync class. The next time that the
OracleSync class is created, it is pre-loaded
automatically with these saved settings. The
password is not saved.

void Synchronize () Starts a synchronization session and blocks that
thread until synchronization is complete.

void Close () Closes and performs clean-up for the
synchronization session.

void SetCancel() Set cancel during any synchronization. The
synchronization returns.

String GetLogFileName() Used to retrieve the error log filename. For
details, see Section 4.4.3, "Exception Handling
and Reading Log Files".

void SetTableSyncFlag (string
pubName, string tableName, bool
flag)

Used for setting selective sync. For details, see
Section 4.4.5, "Manage What Tables Are
Synchronized With Selective Sync".

Table 4–29 (Cont.) OracleSync Properties

Properties Type Description

Synchronization API for C#

Invoking Synchronization in Applications With the Mobile Sync APIs 4-31

To create the OracleSync class in preparation for the synchronization, perform the
following:

1. Instantiate the OracleSync object.

2. Set relevant properties, such as username, password and URL. The username and
password are limited to 28 characters each.

3. If you want to preserve all OracleSync properties, except for the password, then
execute the Save method. The format of the Save method is as follows:

void Save()

4. Perform the synchronization with the Synchronize method. The format of the
Synchronize method is as follows:

void Synchronize()

5. Close the OracleSync object when finished. The Close method is as follows:

void Close()

The following code demonstrates these methods by setting the properties off of user
entries on a GUI screen:

// Instantiate the object
OracleSync m_sync = new OracleSync();

// Set the appropriate sync options

int SetSyncProperty (string prop,
string val)

Used to set Sync properties. The types of Sync
properties that you can set are as follows:

■ HTTP_USER_PROP —HTTP authentication
user name.

■ HTTP_PASS_PROP — HTTP authentication
password.

■ USER_NAME_PROP —User context when a
member is synchronizing.

■ USER_PASS_PROP —User context
password, when a member is
synchronizing.

■ SEND_FILE_PROP — Send file name for
file based synchronization

■ RECEIVE_FILE_PROP —Receive file name
for file based synchronization.

For details on file-based synchronization, see
Section 4.4.6, "Enable File-Based
Synchronization through C# APIs".

int GetSyncProperty (string prop,
out string val)

Used to retrieve Sync property settings. See the
SetSyncProperty description for details.

Note: A DataException is thrown if synchronization fails. Also,
you must close all database connections before doing a
synchronization.

Table 4–30 (Cont.) OracleSync Public Methods

Method Description

Synchronization API for C#

4-32 Oracle Database Lite Developer's Guide

m_sync.UserName = userName.Text;
m_sync.Password = password.Text;
m_sync.ServerURL = url.Text;

if (enableProxy.Checked == true)
{
 m_sync.ProxyHost = proxyHost.Text;
 m_sync.ProxyPort = 80;

 try {m_sync.ProxyPort = System.Convert.ToInt32 (proxyPort.Text);}
 catch (System.ArgumentNullException) {}
}
if (forceRefresh.Checked == true)
{
 m_sync.Option = SyncOption.FORCE_REFRESH;
}
// save the options before synchronization
m_sync.Save();
//Synchronize
m_sync.Synchronize();
//Close the OracleSync object
m_sync.Close();
m_sync = null;

4.4.2 Using the OracleEngine to Synchronize
You can synchronize with the same engine that performs the synchronization for the
msync tool. You can actually launch the GUI to have the user enter information and
click Synchronize or you can enter the information programmatically and synchronize
without launching the GUI.

■ Section 4.4.2.1, "Launch the MSYNC Tool for User Input"

■ Section 4.4.2.2, "Set the Environment and Synchronize With the OracleEngine"

4.4.2.1 Launch the MSYNC Tool for User Input
You can launch the msync tool, so that the user can modify settings and initialize the
synchronization, by executing the following:

OracleEngine.Synchronize(false)

Providing the false as the input parameter tells the engine that you are not
providing the input parameters, but to bring up the msync GUI for the user to input
the information.

4.4.2.2 Set the Environment and Synchronize With the OracleEngine
You can set the information and call for a synchronization through the
OracleEngine class without bringing up the GUI.

If you accept the default synchronization settings, provide true as the input
parameter to automatically synchronize, as follows:

OracleEngine.Synchronize(true)

You can execute the synchronize method with three input parameters that define a
specific server: the server name, username and password.

OracleEngine.Synchronize("S11U1", "manager", "myserver.mydomain.com")

Synchronization API for C#

Invoking Synchronization in Applications With the Mobile Sync APIs 4-33

Alternatively, you can configure a string that contains the options listed in Table 4–31
with a single String input parameter and synchronize, as follows:

OracleEngine.Synchronize(args)

In the above example, the String args input parameter is a combination of the
options in Table 4–31.

String args = "S11U1/manager@myserver.mydomain.com /save /ssl /force"

Include as many of the options that you wish to enable in the String.

4.4.3 Exception Handling and Reading Log Files
For any synchronization error or database error that occurs during synchronization,
then the Oracle.DataAccess.Lite.OracleException is thrown. The
OracleException object contains the error code and error messages.

If an error occurs during synchronization, you can view errors returned by the server
in the error log file. To retreve the error log filename, execute the GetLogFileName
method. Then, open and evaluate the log file, which is written into the working
directory for the application. The syntax for the GetLogFileName method is as
follows:

static String GetLogFileName();

Each line in the error file has the following format:

Table 4–31 Command Line Options

Option Description

username/password@server[:port]
[@proxy:port]

Automatically synchronize to the specified
server.

/a Automatically synchronize to saved preferred
server.

/save Save user info and exit.

/proxy:(proxy_server)[:port] Connect by specific proxy server and port.

/ssl Synchronize with SSL encryption.

/force Force refresh.

/noapp:(application_name) Do not synchronize specific Web-to-Go
application data. Synchronize with other
applications.

/nopub:(publication_name) Do not synchronize specific publication data.
Synchronize with other publications.

/notable:(table_name)
/notable:(odb_name).(table_name)

Do not synchronize specific table data.
Synchronize with other tables.

/onlyapp:(application_name) Synchronize only specific Web-to-Go
application data. Do not synchronize with other
applications.

/onlypub:(publication_name) Synchronize only specific publication data. Do
not synchronize with other publications.

/onlytable:(table_name)
/onlytable:(odbc_name).
(table_name)

Synchronize only specific table data. Do not
synchronize with other tables.

/hp Enable high priority data synchronization.

Synchronization API for C#

4-34 Oracle Database Lite Developer's Guide

<type>, <code>, <date>, <message>

Where:

■ <type>: The type of the message, which can either be set to ERROR or SUCCESS.

■ <code>: Error code of the last operation of the synchronization.

■ <date>: Date and timestamp for when the synchronization completes. This is in
the format of dd/mm/yyyy hh:mm:ss.

■ <message>: A readable message text.

The following code example shows how to retrieve the filename:

String file = OracleSync.GetLogFileName();

4.4.4 Monitor Synchronization Progress With the SyncEventHandler
To monitor the progress of the synchronization process, the SetEventHandler and
SyncEventHandler methods and the SyncEventArgs object of the OracleSync
class enable the user to create an event handler to return a progress report on the state
of the synchronization.

The SyncEventArgs object is generated in the OracleSync object during the
Synchronize method.

The following sections describe and show how to use the object and the methods to
monitor the synchronization stage and progress:

■ Section 4.4.4.1, "Using the SyncEventArgs Object"

■ Section 4.4.4.2, "Executing the SetEventHandler Method"

■ Section 4.4.4.3, "Creating the SyncEventHandler Object"

4.4.4.1 Using the SyncEventArgs Object
The SyncEventArgs is an object that contains the state or the synchronization.

The following is the definition for the object:

public class SyncEventArgs : EventArgs
{
 public readonly int stage;
 public readonly int percentage;
 // Synchronization progress stages
 //
 public const int SYNC_PREPARE_START = 0;
 public const int SYNC_PREPARING = 1;
 public const int SYNC_PREPARE_FINISH = 2;
 public const int SYNC_SEND_START = 3;
 public const int SYNC_SENDING = 4;
 public const int SYNC_SEND_FINISH = 5;
 public const int SYNC_RECEIVE_START = 6;
 public const int SYNC_RECEIVING = 7;
 public const int SYNC_RECEIVE_FINISH = 8;
 public const int SYNC_PROCESS_START = 9;
 public const int SYNC_PROCESSING = 10;
 public const int SYNC_PROCESS_FINISH = 11;
}

Synchronization API for C#

Invoking Synchronization in Applications With the Mobile Sync APIs 4-35

There are two parameters, as follows:

The following code demonstrates how you can determine the state and percentage of
the synchronization from the SyncEventArgs. For each state group indicated in the
args.stage parameter, it modifies a display to show the state and the percentage of
completion by invoking the moveProgressBarDelegate method, as follows:

private void DisplayProgress (object sender, SyncEventArgs args)
{
 switch (args.stage)
 {
 case SyncEventArgs.SYNC_PREPARE_START:
 case SyncEventArgs.SYNC_PREPARING:
 case SyncEventArgs.SYNC_PREPARE_FINISH:
 this.Invoke(new moveProgressBarDelegate(moveProgressBar),
 prepareBar, args.percentage);
 break;
 case SyncEventArgs.SYNC_SEND_START:
 case SyncEventArgs.SYNC_SENDING:
 case SyncEventArgs.SYNC_SEND_FINISH:
 this.Invoke(new moveProgressBarDelegate(moveProgressBar),
 sendBar, args.percentage);
 break;
 case SyncEventArgs.SYNC_RECEIVE_START:
 case SyncEventArgs.SYNC_RECEIVING:
 case SyncEventArgs.SYNC_RECEIVE_FINISH:
 this.Invoke(new moveProgressBarDelegate(moveProgressBar),
 receiveBar, args.percentage);
 break;
 case SyncEventArgs.SYNC_PROCESS_START:
 case SyncEventArgs.SYNC_PROCESSING:

Note: Some codes are returned from the OCI layer. If you receive a
status code not listed here, see Table 4–7.

Table 4–32 SyncEventArgs Parameters

Parameter Description

stage The stage in which the synchronization is acting on the Mobile
client. The possible stages are as follows:

■ SYNC_PREPARE_START

■ SYNC_PREPARING

■ SYNC_PREPARE_FINISH

■ SYNC_SEND_START

■ SYNC_SENDING

■ SYNC_SEND_FINISH

■ SYNC_RECEIVE_START

■ SYNC_RECEIVING

■ SYNC_RECEIVE_FINISH

■ SYNC_PROCESS_START

■ SYNC_PROCESSING

■ SYNC_PROCESS_FINISH

percentage The percentage of completion for this stage.

Synchronization API for C#

4-36 Oracle Database Lite Developer's Guide

 case SyncEventArgs.SYNC_PROCESS_FINISH:
 this.Invoke(new moveProgressBarDelegate(moveProgressBar),
 processBar, args.percentage);
 break;
 }
}

4.4.4.2 Executing the SetEventHandler Method
Before you can determine the state, you must create the event handler that monitors
the synchronization progress. This is performed by executing the SetEventHandler
method and providing a new SyncEventHandler object for it to track.

The following is the definition for the method:

public void SetEventHandler (SyncEventHandler handler, bool add);

The parameters for the SetEventHandler method are described in Table 4–33.

The following code demonstrates how to create a new SyncEventHandler and
delegates the SyncEventHandler method to the DisplayProgress method, which
is the application implemented callback method that processes the state and
percentage.

The SetEventHandler takes in the SyncEventHandler delegate, which is assigned
as DisplayProgress, and whether to monitor the progress with a TRUE or to not
monitor the progress with FALSE. Then the Synchronize method is called to initiate
the synchronization.

//Create the SyncEventHandler and put it in the event handler
m_sync.SetEventHandler (new
 OracleSync.SyncEventHandler (DisplayProgress), true);
//Perform the synchronize
 m_sync.Synchronize();
//Once the synchronization is complete, remove this SyncEventHandler
 m_sync.SetEventHandler (new
 OracleSync.SyncEventHandler (DisplayProgress), false);

4.4.4.3 Creating the SyncEventHandler Object
The SyncEventHandler object is the event handler. It is also a delegate method. The
following is the definition for the method:

delegate void SyncEventHandler (object sender, SyncEventArgs args);

In the application implementation, create the delegate method with the same
arguments and how you want the delegated method to handle the event. In our
example, the DisplayProgress method is defined as follows:

void DisplayProgress (object sender, SyncEventArgs args)

Table 4–33 SetEventHandler Method Parameters

Parameter Description

object sender The SyncEventHandler object that is created for this event
handler.

boolean add This boolean, if true, registers the SyncEventHandler object. If
false, it de-registers the event handler.

Synchronization API for C#

Invoking Synchronization in Applications With the Mobile Sync APIs 4-37

It has the same arguments as the delegate definition, and is defined as the delegate
when the SyncEventHandler is created, as shown in the code below:

m_sync.SetEventHandler (new
 OracleSync.SyncEventHandler (DisplayProgress), true);

The SyncEventHandler object, and thus the DisplayProgress method, takes in
two parameters, as shown in Figure 4–34.

On each synchronization event—such as send complete, receive complete,
synchronization complete—the OracleSync object raises the SyncEventHandler
event and invokes the DisplayProgress method with the SyncEventArgs object.

4.4.5 Manage What Tables Are Synchronized With Selective Sync
Update the table flags for selective sync. Call this for each table to specify whether it
should be synchronized(1) or not (0) for the next session. Selective sync only works if
you have first performed at least one synchronization for the client. Then, set the flag
so that on the next synchronize—that is, before the next invocation of the
Synchronize method—a selective sync occurs.

The default setting is TRUE (1) for all the tables; that is, all tables are flagged to be
synchronized. If you want to selectively synchronize specific tables, you must first
disable the default setting for all tables and then enable the synchronization for only
the specific tables that you want to synchronize.

Syntax
void SetTableSyncFlag (string pubName, string tableName, bool sync_flag)

Table 4–5 lists the name and description of parameters for the setTableSyncFlag
function.

Table 4–34 SetEventHandler Method Parameters

Parameter Description

object sender The SyncEventHandler object that is created for this event
handler.

SyncEventArgs args The SyncEventArgs object that monitors the state and
progress of the synchronization.

Note: Automatic synchronization is based on a different model than
manual synchronization. Automatic synchronization operates on a
transactional basis. Thus, the selective sync option is not supported
when you use automatic synchronization for a publication, since we
are no longer concerned with synchronization of only a subset of data.

Table 4–35 setSyncFlag Parameters

Name Description

pubName The name of the publication which is being synchronized. If the
value for the pubName is NULL, it means all publications in the
database. This string is the same as the client name supplied to the
Consolidator Manager when creating the publication. In most cases,
you will use NULL for this parameter. For more information, see
Section 2.4, "Creating Publications Using Oracle Database Lite
APIs".

Synchronization API for C#

4-38 Oracle Database Lite Developer's Guide

This function allows client applications to select the way specific tables are
synchronized.

Set sync_flag for each table or each publication. If sync_flag = FALSE, the table is
not synchronized. To synchronize specific tables only, you must perform the following
steps:

1. Disable the default setting by setting it to FALSE (0). By default, the setting is set
to TRUE (1) for all the tables. Setting them all to FALSE then enables you to select
which tables are to be synchronized, which is performed in step 2.

Example:

SetTableSyncFlag(<publication_name>,null,0)

Where <pubName> must be replaced by the actual name of your publication, and
where the value null is specified to mean all the tables for that publication
without exception.

2. Enable the selective sync for specific tables.

Example:

SetTableSyncFlag(<publication_name>,<table_name>,1)

Alternatively, see the following code snippet on how to enable the selective sync flag
for EVERY table EXCEPT the OrdersODB.TEST table.

m_sync.SetTableSyncFlag("","",(short)1); //turn on sync flag for all the tables
m_sync.SetTableSyncFlag("","OrdersODB.TEST",(short)0);
 //turn off sync flag for OrdersODB.TEST

4.4.6 Enable File-Based Synchronization through C# APIs
When you want to use file-based synchronization, you must enable file-based
synchronization. Once enabled, then when synchronization occurs—either through
automatic or manual synchronization—then the synchronization file is created. See
Section 6.8, "Synchronizing to a File Using File-Base Sync" in the Oracle Database Lite
Administration and Deployment Guide for more details on file-based synchronization.

To enable file-based synchronization programmatically with the OracleSync class,
specify the following:

1. Instantiate the OracleSync class and set the username and password.

2. Specify the synchronization direction and directory and filename for the
synchronization file with the SetSyncProperty method of the OracleSync
class. The synchronization direction is either send, which creates the
synchronization file, or receive, which takes in a file from the Mobile Server. These

tableName This is the name of the snapshot. It is the same as the name of the
store, the third parameter of createPublicationItem(). For
more information, see Section 2.4, "Creating Publications Using
Oracle Database Lite APIs".

sync_flag If the sync_flag is set to TRUE, you must synchronize the
publication. If the sync_flag is set to FALSE, then do not
synchronize. The value for the sync_flag is not stored
persistently. Each time before Synchronize(), you must call
SetTableSyncFlag().

Table 4–35 (Cont.) setSyncFlag Parameters

Name Description

mSync/OCAPIs/mSyncCom

Invoking Synchronization in Applications With the Mobile Sync APIs 4-39

are configured in the SEND_FILE_PROP and RECEIVE_FILE_PROP properties
with the SetSyncProperty method.

■ When you set the RECEIVE_FILE_PROP property with the filename and
directory, the intended file is uploaded and processed within the Mobile
client.

■ When you set the SEND_FILE_PROP property with the filename and
directory, the intended file is created with the Mobile client transactions
destined for the Mobile Server.

The SetSyncProperty and GetSyncProperty methods are as follows:

int SetSyncProperty (string prop, string val)
int GetSyncProperty (string prop, out string val)

■ For SetSyncProperty, provide the property and the filename for setting the
direction of the file-based synchronization and the destination/origination
filename.

■ For GetSyncProperty, provide the direction property and receive the filename
in the OUT value.

The following code example sets the direction, filename, username and password in
the SetSyncProperty method. In this example, the SEND_FILE_PROP property is
set with the filename and direction, which tells the Sync Client to marshall the Mobile
client transactions that are to be uploaded to the Mobile Server into this file. If you
were receiving a synchronization file from the Mobile Server, you would have set the
RECEIVE_FILE_PROP property with the location and name of this file.

Finally, perform the synchronization with the Synchronize method.

OracleSync m_sync = new OracleSync();
m_sync.UserName = "S11U1";
m_sync.Password = "manager";
m_sync.SetSyncProperty(OracleSync.SEND_FILE_PROP,"C:\\temp\\send1.bin");
m_sync.Synchronize();

4.5 mSync/OCAPIs/mSyncCom
For more information, refer to the Oracle Database Lite API Specification.

Note: You can retrieve the filename with the GetSyncProperty
method.

mSync/OCAPIs/mSyncCom

4-40 Oracle Database Lite Developer's Guide

Application Development 5-1

5
Application Development

The following sections discuss how to develop applications for Oracle Database Lite:

■ Section 5.1, "Data Access APIs"

■ Section 5.2, "Supported Native APIs for Oracle Database Lite"

■ Section 5.3, "Developing Java Applications"

■ Section 5.4, "Using Stored Procedures in Oracle Database Lite"

■ Section 5.5, "Developing Mobile Web-to-Go Applications"

5.1 Data Access APIs
Table 5–1 lists the supported APIs for accessing data within the Oracle Lite database:

These data access APIs are described in Chapter 5, "Oracle Database Lite Data Access
APIs"" in the Oracle Database Lite Client Guide. The focus in the client guide is for
accessing the Oracle Lite database on the client without the Mobile Server
synchronization feature. However, if you are using the Mobile Server product and
providing synchronization, then the following sections describe the differences to take
into account for these APIs in the Mobile Server environment.

Table 5–1 Supported APIs

Native API Description

JDBC Use JDBC to access the Oracle Lite database. See Section 5.1.2,
"JDBC" or Oracle Database JDBC manuals for more information.

ODBC Use ODBC to access the Oracle Lite database. See Section 5.1.3,
"ODBC".

.NET environment Use the ADO.NET API. You can use Oracle-specific APIs for
connecting to the database, programmatic synchronization, and
other functions. See Section 5.1.4, "ADO.NET" for more
information.

SODA Simple Object Data Access (SODA) for object and relational
database development. See Chapter 12, "Using Simple Object
Data Access (SODA)" in the Oracle Database Lite Client Guide for
more information.

Visual Basic Use ODBC to access database.

.NET environment Use the ADO.NET API. You can use Oracle-specific APIs for
connecting to the database, programmatic synchronization, and
other functions. See Section 5.1.4, "ADO.NET" for more
information.

Data Access APIs

5-2 Oracle Database Lite Developer's Guide

■ Section 5.1.1, "Data Source Name"

■ Section 5.1.2, "JDBC"

■ Section 5.1.3, "ODBC"

■ Section 5.1.4, "ADO.NET"

5.1.1 Data Source Name
When you create a data source name using the ODBC Manager, you should use the
following conventions:

■ In Windows 32, the data source name is automatically created as <username_
dbname> after the first synchronization, where both the username and database
name are taken from within the publication.

■ In Windows CE, the data source name is simply the database name; that is,
<dbname>.

It is helpful to create a data source name to contain all of the properties of your
connection to the database.

5.1.2 JDBC
For Mobile clients within the Mobile Server environment, all JDBC drivers are
provided for you to use within the Oracle Database Lite binaries. See Chapter 7, "JDBC
Programming" in the Oracle Database Lite Client Guide for more information on
programming with JDBC.

5.1.3 ODBC
The Mobile Server supports Level 3 compliant ODBC 2.0 and the ODBC 3.5 drivers.
The ODBC 2.0 driver is installed and used by default for all Oracle Database Lite
components. The ODBC 3.5 driver should be used solely for the standalone
application that uses an embedded Oracle Lite database.

If you want to use the ODBC 3.5 driver for an embedded application on a Mobile
client, you must install and configure the ODBC 3.5 driver on the client in one of the
following methods:

■ Automatic installation: Configure the INF file for automatic installation and
configuration: Modify the INF file to instruct the client install to automatically
download the ODBC 3.5 DLLs to the Mobile client and register the ODBC 3.5
driver and the DSN in the ODBC.INI file. See the following sections on how to

Note: After you perform a complete installation of Oracle Database
Lite, you can view samples that show how to access data within the
Oracle Lite database. The samples are available in your <ORACLE_
HOME>\Mobile\Sdk directory. The tools, locations for samples, and
descriptions are described in Section 2.5, "Using Oracle Lite Samples"
in the Oracle Database Lite Client Guide. .

Note: You cannot use ODBC 3.5 for any multi-user listener
application or Branch Office scenario.

Supported Native APIs for Oracle Database Lite

Application Development 5-3

modify the INF file: Section 8.10.5.2, "FILE Section" and Section 8.10.5.5, "ODBC
Section" in the Oracle Database Lite Administration and Deployment Guide.

■ Manual installation: See Chapter 6, "ODBC Drivers" in the Oracle Database Lite
Client Guide on how to install and configure the ODBC 3.5 DLL from the MDK to
the Mobile client.

For a full description of the ODBC drivers, see Chapter 6, "ODBC Drivers" in the
Oracle Database Lite Client Guide.

5.1.4 ADO.NET
The Oracle Database Lite ADO.NET provider resides in the
Oracle.DataAccess.Lite namespace. Use this programming interface to access
Oracle Database Lite and trigger data synchronization in .NET applications. The
ADO.Net classes are described in Chapter 11, "Oracle Database Lite ADO.Net
Provider" in the Oracle Database Lite Client Guide. However, since the Oracle Database
Lite Client Guide describes only the Oracle Lite client, it does not include any details on
how to enable the client as a Mobile client with synchronization. The following
sections describe the ADO.Net classes that enable synchronization and create a client
database for testing:

■ Section 5.1.4.1, "Data Synchronization With the OracleSync or Oracle Engine
Classes"

■ Section 5.1.4.2, "Creating a Database for Testing"

■ Section 5.1.4.3, "Developing an ADO.NET Application on WinCE"

5.1.4.1 Data Synchronization With the OracleSync or Oracle Engine Classes
You can perform a synchronization programatically with the OracleSync or
OracleEngine classes. For full details, see Section 4.4, "Synchronization API for C#".

5.1.4.2 Creating a Database for Testing
In a non-production environment, you may want to create a database to test your
ADO.NET application against. In the production environment, the database is created
when you perform the OracleEngine.Synchronize method (see Section 4.4.2,
"Using the OracleEngine to Synchronize" for more information). However, to just
create the database without synchronization, you can use the CreateDatabase
method of the OracleEngine class. To remove the database after testing is complete,
use the RemoveDatabase method. These methods are only supported when you
install the Mobile Development Kit (MDK).

The following is the signature of the CreateDatabase method:

OracleEngine.CreateDatabase (string dsn, string db, string pwd)

5.1.4.3 Developing an ADO.NET Application on WinCE
For an example of how to develop an ADO.NET application, see Chapter 14, "Tutorial
for Building Mobile Applications for Windows CE".

5.2 Supported Native APIs for Oracle Database Lite
The C, C++, C# APIs use ODBC to access the Oracle Lite database. Use Oracle-specific
APIs for programmatic synchronization. See Section 4.1, "Synchronization APIs For C
or C++ Applications" for more information.

Developing Java Applications

5-4 Oracle Database Lite Developer's Guide

5.3 Developing Java Applications
The following sections describe how to develop and test Java applications:

■ Section 5.3.1, "Java Support for Applications"

■ Section 5.3.2, "Oracle Database Lite Java Development Environment"

■ Section 5.3.3, "Java Development Tools"

5.3.1 Java Support for Applications
Table 5–2 lists the Java support provided for each platform in Oracle Database Lite.

For programmatically synchronizing from a Java application, see Chapter 2,
"Synchronization".

5.3.1.1 JDBC Drivers
The Oracle Database Lite JDBC driver is JDBC 1.2 compliant. Oracle Lite provides a
limited number of extensions specified by JDBC 2.0. These extensions are compatible
with the Oracle Database JDBC implementation.

Oracle Database Lite offers the following JDBC drivers:

Table 5–2 Java Support

Category
Web-to-Go
(both Windows and Linux)

Windows
32 Native Windows CE Linux Native

For More
Information...

JDBC Yes

Oracle Database Lite offer
three JDBC drivers. Refer to
Section 5.3.1.1, "JDBC Drivers".

Yes Yes Yes

On Linux,
only JDBC
and ODBC
access is
supported.

 Chapter 7, "JDBC
Programming" in
the Oracle Database
Lite Client Guide

Java Stored
Procedures
/Triggers

Yes

Java Stored
Procedures/Triggers are not
supported in the Web-to-Go
application model. However
Java Stored Procedures can be
replicated using the
Consolidator Manager API.

Yes N/A Yes See Chapter 10,
"Using Stored
Procedures and
Triggers" in the
Oracle Database Lite
Client Guide

Java Server
Pages

1.1 N/A N/A N/A Section 5.5.2.4,
"Developing Java
Server Pages"

Java Servlet 2.2 N/A N/A N/A Section 5.5.2.5,
"Developing Java
Servlets for
Web-to-Go" and
Section 5.5.2.8,
"Developing Applet
Servlet
Communication"

BC4J Yes

Latest version of Oracle
JDeveloper 10g.

N/A N/A N/A

Struts Yes N/A N/A N/A

Developing Java Applications

Application Development 5-5

■ Type 2 driver: There are two types of type 2 driver: one provides an embedded,
direct connnection. This driver allows Java applications to communicate directly
with the Oracle Lite database. The other type 2 driver provides a remote
connection and requires Multi-User service support.

■ Type 4 driver : 100% Java implementation. Requires the multi-user database
version.

5.3.2 Oracle Database Lite Java Development Environment
To develop Java applications, you need to set up your development environment to
create Oracle Database Lite applications, as follows:

■ You must have the Sun Microsystems Java Development Kit (JDK), version 1.4.2
(or higher).

■ To enable Oracle Database Lite to work with the JDK, set your PATH and
CLASSPATH environment variables after you install Oracle Database Lite. See
Section 5.3.2.1, "Setting Variables for the JDK" for full details.

5.3.2.1 Setting Variables for the JDK
The directory with the JDK 1.4.2 or 5.0 Java compiler (javac.exe) should be in the
PATH variable before any other directories that contain other Java compilers.

Add the directory that contains the Classic Java Virtual Machine (JVM) shared library,
jvm.dll, to the PATH. jvm.dll should be in your JDK_Home\jre\bin\classic
directory.

For example,

set PATH=C:\JDK_Home\bin;c:\JDK_Home\jre\bin\classic
set CLASSPATH=c:\JDK_Home\jrc\lib\rt.jar;c:\OLITE_HOME\bin\olite40.jar

As an alternative to using the Classic JVM, you can use the HotSpot JVM. HotSpot is a
JDK add on module provided by Sun Microsystems. HotSpot is available from the Sun
Microsystems Web site.

After installing HotSpot, set your PATH as given below.

set PATH=c:\jdk\bin;c:\jdk\jre\bin\hotspot;%PATH%

In the example above, your installation of the JDK and HotSpot is on Drive C:\. Verify
the location of your installation before amending your PATH statement. To test
whether your system is set up correctly, run the Java examples in the <ORACLE_
HOME>\Mobile\Sdk\Samples\JDBC directory.

Note: If your environment includes a CLASSPATH user variable
before you install Oracle Database Lite and the user variable does not
include the CLASSPATH system variable (is not specified as
CLASSPATH=...;%CLASSPATH%), then you must modify the
CLASSPATH user variable to include the olite40.jar file in the
OLITE_HOME\bin directory.

Note: All command prompt windows must be closed and
reopened to reflect changes made to your CLASSPATH.

Using Stored Procedures in Oracle Database Lite

5-6 Oracle Database Lite Developer's Guide

5.3.3 Java Development Tools
To write and debug Java programs, you can use any Java development tool. However,
you must ensure that you set the CLASSPATH and PATH correctly.

5.4 Using Stored Procedures in Oracle Database Lite
A stored procedure is a method that is stored in Oracle Database Lite. The procedure
can be invoked by applications that access the database. Stored procedures can return
a single value, a row, or multiple rows.

A trigger is a stored procedure that executes when a specific event occurs, such as a
row update, insertion, or deletion. An update of a specific column can also fire a
trigger. Triggers, however, cannot return a value. A trigger can operate at the
statement-level or row-level.

The description of how to create, load and define stored procedures for the Mobile
client are contained in Chapter 10, "Using Stored Procedures and Triggers" in the
Oracle Database Lite Client Guide. However, if you are using the Mobile Server, then
there are a few instructions on how to load and define stored procedures when using
the Mobile Server.

The following sections describe how to load and define stored procedures in a Mobile
Server environment.

■ Section 5.4.1, "Load and Define Java Stored Procedures"

■ Section 5.4.2, "Load and Define C, C++, or C# Stored Procedures"

5.4.1 Load and Define Java Stored Procedures
You can either use Java stored procedures in a standalone Oracle Lite database or
integrated within an enterprise Mobile system that uses synchronization. Each of these
require a different method to load and define the Java stored procedure, as described
in the following sections:

■ Section 5.4.1.1, "Load and Define Java Stored Procedures on the Mobile Client in
an Oracle Lite Database"

■ Section 5.4.1.2, "Load and Define Java Stored Procedures in an Enterprise Mobile
Server Environment"

5.4.1.1 Load and Define Java Stored Procedures on the Mobile Client in an Oracle
Lite Database
The methods for loading and defining the Java stored procedures are described in
Section 10.2.1, "Load and Define Java Stored Procedures" in the Oracle Database Lite
Client Guide.

5.4.1.2 Load and Define Java Stored Procedures in an Enterprise Mobile Server
Environment
When you are in an enterprise environment where you are using the Mobile option
including synchronization between the Mobile Server and the Mobile clients, then you
can have the Java stored procedure automatically downloaded to each client and
loaded into the client Oracle Lite database.

You can load and define the Java stored procedure in an enterprise Mobile
environment in one of following ways:

■ Section 5.4.1.2.1, "Using MDW to Store Java Stored Procedure in the Repository"

Using Stored Procedures in Oracle Database Lite

Application Development 5-7

■ Section 5.4.1.2.2, "Using the Consolidator Manager API to Store the Java Stored
Procedure in the Repository"

5.4.1.2.1 Using MDW to Store Java Stored Procedure in the Repository When you are
creating the publication using MDW, part of the process is a section to load the Java
stored procedure, as detailed below:

1. Archive the Java stored procedure into a JAR file. You cannot upload the CLASS
file to MDW.

2. Upload the JAR file as a Resource for the publication within MDW. Once loaded
as a Resource, then it will be loaded into the Oracle Lite database on the client on
the first synchronization.

3. Create a SQL script with DDL that uses one of the definition methods on the Java
stored procedure: ATTACH, CREATE METHOD, CREATE PROCEDURE or CREATE
TRIGGER. Once created, add the script to the publication as a Script. The script is
automatically executed after download to the client.

5.4.1.2.2 Using the Consolidator Manager API to Store the Java Stored Procedure in the
Repository On the server, you can invoke the following ConsolidatorManager APIs to
create the Java stored procedure and to add it to the publication.

1. Invoke the createStoredProc API to load and define the Java stored procedure
in the server. Provide the name of the Java class and the method that you want
defined.

The Consolidator loads the Java stored procedure into the repository and creates
the call specification for defining the method on the client within the repository.

2. Invoke the addJavaResourceAndScripts API to add the Java stored
procedure to the publication.

When the client first synchronizes, the application and Java stored procedure
contained within the publication are downloaded onto the client. The Java stored
procedure is then loaded into the Oracle Lite database and the call specification is used
to define the method within the Java stored procedure.

5.4.2 Load and Define C, C++, or C# Stored Procedures
Once you create the C, C++ and C# stored procedures, you still need to load and
define them on the client Oracle Lite database. This section describes how to perform
this manually for a standalone client Oracle Lite database or how you can implement a
solution for automatically loading and defining these stored procedures to multiple
clients.

■ Section 5.4.2.1, "Defining the C, C++, or C# Stored Procedure"

Note: You can also perform these functions through the
Consolidator Manager API. See the Oracle Database Lite API
Specification documentation for more information.

Note: You cannot use the attach for definition; this method creates
the call specification only with CREATE FUNCTION or CREATE
PROCEDURE.

Developing Mobile Web-to-Go Applications

5-8 Oracle Database Lite Developer's Guide

■ Section 5.4.2.2, "Loading the C, C++ or C# Stored Procedure to the Oracle Lite
Database"

5.4.2.1 Defining the C, C++, or C# Stored Procedure
For details on how to define the C, C++, or C# stored procedure, see Section 10.10,
"Defining the C, C++, or C# Stored Procedures" in the Oracle Database Lite Client Guide.

5.4.2.2 Loading the C, C++ or C# Stored Procedure to the Oracle Lite Database
When you have a standalone client, then you can load the stored procedure by
copying it directly to the client. Define the stored procedure by executing the CREATE
statements on the Mobile device directly, as described in Section 5.4.2.1, "Defining the
C, C++, or C# Stored Procedure".

However, if you are using the Mobile Server and have multiple clients on which you
want to install and use these stored procedures, then you may want to automate the
load and definition process for these stored procedures.

Use one of the following methods to download the DLL containing the stored
procedures and to define the stored procedures:

■ Option 1: Extend the Client Platform and Use Scripts

1. To download the DLL, extend the client platform and adding the required
DLL. When the users download the setup.exe for your extended platform,
then the DLL is automatically downloaded and installed. When you use this
option, then you should install the DLL in the same directory as the
msync.exe and ocapi.dll files on the client.

2. Create a script that issues the CREATE commands, as defined in Section 5.4.2.1,
"Defining the C, C++, or C# Stored Procedure", that defines the stored
procedures or triggers. Once you create the SQL script, then you can load the
script into the publication using either the Add Script function within MDW
or the Consolidator APIs. Once added to the publication, then the
synchronization downloads the script with the application and it is executed
upon completion of the download. In this case, the DLL containing the stored
procedures must already be loaded onto the device before the script is
executed. When loading the DLL, ensure that it is within the PATH or for C#,
within the Global Assembly Cache.

■ Option 2: Issue the Definition From Within Your Application

1. Package the DLL containing the stored procedures with the other application
files. Then, when you load the package, the DLL is loaded when the
application is loaded.

2. Implement the application to issue the definition CREATE statements within
an initialization routine that is executed the first time the application runs.

This option is simpler than extending an existing platform, because the DLL can
be part of the application itself.

5.5 Developing Mobile Web-to-Go Applications
The following sections describe how to develop and test Web-to-Go applications:

■ Section 5.5.1, "Choose the Type of Web-to-Go Mobile Client to Use"

■ Section 5.5.2, "Developing and Testing the Application"

Developing Mobile Web-to-Go Applications

Application Development 5-9

5.5.1 Choose the Type of Web-to-Go Mobile Client to Use
To install and set up the Mobile Client, see Section 11.5.1, "Install the Mobile Client for
Web-to-Go".

There are two types of Web-to-Go applications:

■ The original Oracle Database Lite Web-to-Go application that uses an Oracle
Database Lite Servlet stack. You can still use this type of application, but the
Oracle Database Lite Server stack is not J2EE 1.3 compatible.

■ A Web-to-Go application built upon the OracleAS OC4J stack. Since the OC4J
product is continually updated, then building your Web-to-Go application using
the J2EE standards is better if you want to use future J2EE standards. This
application is known as the OC4J Web-to-Go application.

To build the OC4J Web-to-Go application, follow the J2EE standards specified by
Sun Microsystems and then create the snapshot with MDW and publish the
application with the EAR or WAR file within the Packaging Wizard.

5.5.2 Developing and Testing the Application
Web-to-Go provides a Java API for developers of Mobile applications. Using this API,
developers no longer need to write code for such functions as replication of database
tables, database connections, security, directory locations, or deployment of
applications to client devices.

In addition, the Mobile Development Kit enables developers to develop and debug
Web-to-Go applications that contain Java applets, Java servlets, and JavaServer Pages
(JSP).

Figure 5–1 displays the development architecture of the Mobile Server and the Oracle
database.

Figure 5–1 Development Architecture

The following sections provide a discussion on how to develop Mobile applications for
Web-to-Go. Topics include:

■ Section 5.5.2.1, "Building Web-to-Go Applications"

■ Section 5.5.2.2, "Database Connections"

■ Section 5.5.2.3, "Application Roles"

Developing Mobile Web-to-Go Applications

5-10 Oracle Database Lite Developer's Guide

■ Section 5.5.2.4, "Developing Java Server Pages"

■ Section 5.5.2.5, "Developing Java Servlets for Web-to-Go"

■ Section 5.5.2.6, "Using Web-to-Go Applets"

■ Section 5.5.2.7, "Developing Applets to use JDBC Communication"

■ Section 5.5.2.8, "Developing Applet Servlet Communication"

■ Section 5.5.2.9, "Debugging Web-to-Go Applications"

■ Section 5.5.2.10, "Customizing the Workspace Application"

■ Section 5.5.2.11, "Using the Mobile Server Admin API"

5.5.2.1 Building Web-to-Go Applications
Web-to-Go applications adhere to Web standards and use browsers to display user
interface elements in a graphical user interface. Generally, Web-to-Go applications
access and manipulate data stored in databases. These applications contain static,
dynamic, and database components. You can create static and dynamic components
using development tools and use the Packaging Wizard to store them in the Mobile
Server Repository. You can create and store the application's database components in
an object relational database (Oracle Database Lite or Oracle). The following table
provides examples of each component type.

Table 5–3 provides examples of each database component type.

5.5.2.2 Database Connections
Database connections are both application based and session based. For a given
session, Web-to-Go maintains a separate connection for each application. If an
application runs multiple servlets simultaneously, they use the same connection
object. This may occur if the application uses multiple frames or if a user accesses the
application with two separate browser windows.

5.5.2.3 Application Roles
It is common for applications to behave differently depending on the type of user
executing the application. For example, an application may display different menu
items depending on whether manufacturing managers or shipping clerks are running
the application.

Table 5–3 Database Component Types

Component
Type

Example

Static
Component

Static components are HTML files that do not change, such as graphical
elements (GIF files and JPG files), and textual elements (HTML files and
templates).

Dynamic
Component

Java Applets, Java Servlets, and JavaServer Pages (JSP) are dynamic
components that create dynamic Web pages. Java applets, create a rich
graphical user interface, while Java servlets and JSPs extend server side
functionality.

Database
Component

Snapshots and sequences are the two database components that Web-to-Go
supports. On the Mobile Server, the snapshot definition incorporates
information about the table whose snapshot was taken. Web-to-Go also
executes custom DDLs (Data Definition Language) statements, enabling the
creation of such database objects as views and indexes.

Note: DDLs are only supported on Win32 and WinCE platforms.

Developing Mobile Web-to-Go Applications

Application Development 5-11

You can accomplish this in Web-to-Go by defining application roles. The application
behavior then changes depending on whether or not a user has a specific role.

In the above example, you can define the application role of MANAGER. In your
application code, where you generate the menu, you must check if the user has the
role MANAGER, and display the correct menu items.

Use the Packaging Wizard to define application roles in Web-to-Go. You can assign
roles to users and groups through the Mobile Manager. However, it is up to the
application developer to determine and implement application behavior, if the user
has a specific role.

You can query the Web-to-Go user context to retrieve a list of roles that are created for
users.

5.5.2.4 Developing Java Server Pages
Web-to-Go handles HTTP requests for Java Server Pages (JSP) using the Mobile Client
Web Server, Mobile Server, and Mobile Client for Web-to-Go, as described in the
following sections:

■ Section 5.5.2.4.1, "Mobile Server or Mobile Development Kit Web Server"

■ Section 5.5.2.4.2, "Mobile Client for Web-to-Go"

5.5.2.4.1 Mobile Server or Mobile Development Kit Web Server After the Mobile Server
receives an HTTP request for a JSP, it checks if the JSP source file and corresponding
class file exist. If the class file exists and is newer than the JSP source file, the Mobile
Server loads the Java class and executes the servlet.

If the class file does not exist, or is older than the JSP source file, the Mobile Server
automatically converts the JSP source file into a Java source file and compiles it into a
Java class under the APP_HOME/_pages. After the JSP has been converted and
compiled, the Mobile Server (or the Mobile Development Kit Web Server) loads the
Java class and executes the servlet.

5.5.2.4.2 Mobile Client for Web-to-Go After the Mobile Client for Web-to-Go receives the
HTTP request for a JavaServer page, the corresponding Java class is loaded from the
APP_HOME/_pages directory and is executed. Since the Mobile Client for Web-to-Go
assumes that the corresponding class file exists, you must convert the JSP source file
into a class file. While deploying the application using the Packaging Wizard, you
must include both the JSP source file and the corresponding class file. You can create
the class files using the Packaging Wizard tool or manually, using the Oracle JSP
(OJSP) command line translator.

List your JSP files in the Files panel of the Packaging Wizard and click Compile under
the Files tab. The Packaging Wizard automatically locates all the JSP files that you
have listed and automatically compiles all of them. The Packaging Wizard adds the
compile class to the application package.

5.5.2.5 Developing Java Servlets for Web-to-Go
The following sections describe how to develop a Java Servlet for Web-to-Go:

■ Section 5.5.2.5.1, "Using Mobile Development Kit for Web-to-Go for Development"

■ Section 5.5.2.5.2, "Creating a Servlet"

■ Section 5.5.2.5.3, "Obtaining Database Connectivity from a Servlet"

■ Section 5.5.2.5.4, "Web-to-Go User Context for Authentication"

Developing Mobile Web-to-Go Applications

5-12 Oracle Database Lite Developer's Guide

■ Section 5.5.2.5.5, "Web-to-Go Servlet Uses Applet Package When Communicating
With an Applet"

■ Section 5.5.2.5.6, "Accessing the Mobile Server Repository from a Servlet"

■ Section 5.5.2.5.7, "Debugging the Servlet Using WTGDEBUG.EXE"

5.5.2.5.1 Using Mobile Development Kit for Web-to-Go for Development Develop Web-to-Go
Java servlets with the Mobile Development Kit, which simplifies the process of writing
Mobile Server servlets. Before using the Mobile Development Kit for Web-to-Go, first
install it on the development client. The Mobile Development Kit for Web-to-Go
contains a Web server called the Mobile Client Web Server that executes Java servlets.
You can use the Mobile Client Web Server to run and debug Java servlets.

The Mobile Development Kit for Web-to-Go Web server is a scaled down version of
the Mobile Server and has the following limitations.

■ No application repository. As a result, the Mobile Development Kit for Web-to-Go
Web server loads all files and classes directly from the file system.

■ Security and access control are disabled.

■ Clients that connect to the Mobile Development Kit for Web-to-Go Web server
cannot go off-line.

■ Provides connection management only to Oracle Database Lite. It connects the
user to the schema SYSTEM in the Oracle Database Lite named webtogo.

You can access applications on the Mobile Development Kit for Web-to-Go Web server
by performing the following steps.

1. To launch the Mobile Development Kit for Web-to-Go Web server, start the
Command Prompt and enter the following.

cd <ORACLE_HOME>\mobile\sdk\bin
wtgdebug.exe

2. Use your browser to connect to the Mobile Development Kit for Web-to-Go Web
server using the following URL.

http://machine_name:7070/

The Mobile Development Kit for Web-to-Go page displays icons that represent an
application in the Mobile Client Web Server. Note that port 7070 is the default port
for debugging Web-to-Go. For more information, see the file webtogo.ora
under the following location.

<ORACLE_HOME>\mobile\sdk\bin\webtogo.ora

3. Click the icon of the application that you want to access.

5.5.2.5.2 Creating a Servlet Web-to-Go uses servlets to handle HTTP client requests.
Servlets handle HTTP client requests by performing one of the following tasks.

■ Creating dynamic HTML content and returning it to the browser.

■ Processing and submitting HTML forms using an HTTP POST request.

Servlets must extend the HttpServlet abstract class defined in the Java Servlet API.
The following is a Servlet example:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

Developing Mobile Web-to-Go Applications

Application Development 5-13

public class HelloWorld extends HttpServlet{
 /**
 * Process the HTTP POST method
 */
 public void doPost (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 writeOutput("doPost", request, response);
 }
 /**
 * Process the HTTP GET method
 */
 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 writeOutput("doGet", request, response);
 }
 /**
 * Write the actual output
 */
 public void writeOutput (String method, HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 PrintWriter out;
 // set content type
 response.setContentType("text/html");
 // Write the response
 out = response.getWriter();
 out.println("<HTML><HEAD><TITLE>");
 out.println("Hello World");
 out.println("</TITLE></HEAD><BODY>");
 out.println("<P>This is output from HelloWorld "+method+"().");
 out.println("</BODY></HTML>");
 out.close();
 }
}

5.5.2.5.3 Obtaining Database Connectivity from a Servlet The Mobile Development Kit for
Web-to-Go automatically creates a database connection to Oracle Database Lite. This
database connection connects to the database schema SYSTEM. Within your servlet
code, you can obtain this connection from the HTTP request.

HttpSession sess = request.getSession();
WTGUser user = (WTGUser)sess.getAttribute("x-mobileserver-user");
Connection conn = user.getConnection();

You can also connect to Oracle Database Lite directly using ODBC. Connecting to
Oracle Database Lite directly by using ODBC is helpful for performing the following
tasks.

■ Creating schema objects such as tables, view and sequences

■ Manually checking the contents table

On the command-line on the client, you can connect to the Oracle Lite database locally
outside the realm of the application with the mSQL command, as follows:

msql system/manager@jdbc:polite:webtogo

Developing Mobile Web-to-Go Applications

5-14 Oracle Database Lite Developer's Guide

5.5.2.5.4 Web-to-Go User Context for Authentication Web-to-Go creates a user context (or
user profile) for every user who logs in to Web-to-Go. Web-to-Go applications always
run within the user's specific context. Servlets, which are always part of an application,
can use the user context (in which it is running) to access the services provided by
Web-to-Go. The user context can then be used to obtain the following information.

■ Name of the user

■ Application that a user is accessing

■ The database connection

■ Roles that the user has for this application

■ Name or value pairs stored in the registry for the user

Servlets can access the user profile through the standard named
java.security.Principal obtained through the getUserPrincipal method of
the javax.servlet.http.HttpServletRequest class.

This object can also be obtained from the HttpSession object. For example,

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
 // Retrieve the database connection from the User Profile,
 // which can be accessed from the HttpRequest
 HttpSession session = request.getSession(true);
 OraUserProfile profile =
 (OraUserProfile)session.getAttribute("x-mobileserver-user");
 ...
}

5.5.2.5.5 Web-to-Go Servlet Uses Applet Package When Communicating With an Applet The
oracle.lite.web.applet package provided by Web-to-Go contains the classes to
be used with Web-to-Go applets. It contains the AppletProxy class which is used as
a proxy for Web-to-Go applets requiring JDBC connections or communicating with a
servlet on the Mobile Server. It also contains a few more classes which are used by the
AppletProxy class to communicate with the Mobile Server. For more information,
see the oracle.lite.web.applet package as documented in the Oracle Database
Lite API Specification.

5.5.2.5.6 Accessing the Mobile Server Repository from a Servlet Servlets can open or create
a new file in the application repository. Access to the Mobile Server Repository is
provided through the servlet context, which can be obtained by calling the
getServletContext method from within the servlet.

For example:

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
{
 // Retrieve the servlet context
 ServletContext ctxt = getServletContext();

 // Open an input stream to the file input.html in the Mobile Server Repository
 // All file names are relative to the application's repository directory
 InputStream in = ctx.getResourceAsStream("input.html");

 // Open an output stream to the file output.html in the Mobile Server Repository
 // All file names are relative to the application's repository directory
 URL url = ctxt.getResource ("output.html");

Developing Mobile Web-to-Go Applications

Application Development 5-15

 URLConnection conn = url.openConnection();
 OutputStream out = conn.getOutputStream();
 ...
}

5.5.2.5.7 Debugging the Servlet Using WTGDEBUG.EXE Perform the following to debug
your application with the wtgdebug executable:

1. Using the Command Prompt, enter wtgdebug.exe.

2. Use a browser to connect to the Mobile Client Web Server located at the following
URL.

http://machine_name:port

This Mobile Client Web Server displays the list of applications that are currently
known to the Mobile Client Web Server. The Mobile Client Web Server retrieves
this list from the XML file. By default, this list includes the sample applications
Servlet Runner and Sample.

3. Select the application to debug. This action launches a new browser window
which you can use to step through the application.

5.5.2.6 Using Web-to-Go Applets
Web-to-Go supports Java applets. For security reasons, Web-to-Go applets must
communicate with the Mobile Server or the Oracle database by using a proxy class.
The AppletProxy class acts as a proxy for Web-to-Go applets and provides the
applet with the required methods for communicating with the Web-to-Go servlet or
for making a JDBC connection. An instance of the AppletProxy should be created
while instantiating the applet. Once the instance of the AppletProxy class is created,
the AppletProxy object communicates with the Mobile Server and derives all the
requisite information to connect to the server or to make a JDBC connection to the
Oracle database.

■ Section 5.5.2.6.1, "Creating the Web-to-Go Applet"

■ Section 5.5.2.6.2, "Creating the HTML Page for the Applet"

5.5.2.6.1 Creating the Web-to-Go Applet The Web-to-Go applet extends the
java.applet.Applet. When the init method initializes the Web-to-Go applet, it
creates an instance of the AppletProxy class by passing the Applet reference as the
parameter. Once you create an instance of the AppletProxy class, you can use
different methods of the AppletProxy class for communicating with the servlet or
for establishing a JDBC connection with the Oracle database. For example,

import oracle.lite.web.applet.*;
public class AppApplet extends Applet
{

 public void init()
 {
 ...
 // Create Instance and pass Reference of applet as parameter
 proxy = new AppletProxy(this);
 }
 AppletProxy proxy;

Note: If you change and recompile your servlet, you need to restart
the Web server. You can stop the Web server by pressing Control+C.

Developing Mobile Web-to-Go Applications

5-16 Oracle Database Lite Developer's Guide

}
The applet can use the following methods to communicate with the servlet. Each
method requires an instance of the AppletProxy class.

■ getResultObject()

■ setSessionId()

■ showDocument()

The applet can use the getConnection() method to establish a JDBC connection
with the database.

5.5.2.6.2 Creating the HTML Page for the Applet The Web-to-Go applet is launched from
an HTML page that contains the following tags:

<html>
<body>
<applet ARCHIVE="/webtogo/wtgapplet.jar" CODE="MyApplet.class" WIDTH=200
HEIGHT=100>
<PARAM NAME="ORACLE_LITE_WEB_SESSION_ID" VALUE="123">
</applet>
</body>
</html>

The AppletProxy class uses the value of the ORACLE_LITE_WEB_SESSION_ID
parameter to obtain the SessionID from the Mobile Server. The SessionID is
subsequently added to every request an applet makes to a servlet. You can write the
HTML code in a static HTML page or you can generate it from a servlet.

Static HTML Page
Web-to-Go can automatically add the parameter to any static page containing the
APPLET tag. For this option, you must change the HTML page's extension to .ahtml
as demonstrated in the following syntax.

page_name.ahtml

When the client accesses the HTML page, a Web-to-Go system servlet adds the
required <PARAM> tag for the ORACLE_LITE_WEB_SESSION_ID parameter, to the
HTML output. For example,

<PARAM NAME="ORACLE_LITE_WEB_SESSION_ID" VALUE="123">

The Web-to-Go system servlet sets the VALUE attribute to your Web-to-Go
SessionID.

HTML Page Generated from a Servlet
You can also dynamically generate the HTML page that contains the <APPLET> tag.
When you generate the HTML page dynamically, you must add the SessionID
parameter manually. You can retrieve the SessionID information from the
oraUserProfile as follows.

import oracle.lite.web.html.*;
import oracle.lite.web.servlet.*;

public class AppServlet extends HttpServlet
{
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 {
 PrintWriter out = new PrintWriter(resp.getOutputStream());
 out.println("<HTML>");

Developing Mobile Web-to-Go Applications

Application Development 5-17

 out.println("<BODY>");
 out.println("<APPLET ARCHIVE="/webtogo/wtgapplet.jar"
 CODE='MyApplet.class' WIDTH=200 HEIGHT=100>");
 // Add these lines to add one more PARAM tag in html page
 // This code should be added in-between <APPLET> and </APPLET> tag
 OraHttpServletRequest ora_request = (OraHttpServletRequest) req;
 OraUserProfile oraUserProfile = ora_request.getUserProfile();
 out.println(" <PARAM NAME=\"ORACLE_LITE_WEB_SESSION_ID\" VALUE=\""
 +oraUserProfile.getAppletSessionId(req)+"\"> ");
 out.println("</APPLET>");
 out.println("</BODY>");
 out.println("</HTML>");
 out.close();
 }
}

5.5.2.7 Developing Applets to use JDBC Communication
You can develop Java applets that access the database using a JDBC connection. Once
you create an instance of the AppletProxy class, you must use the getConnection
method of the AppletProxy class to obtain a JDBC connection. The getConnection
method returns the JDBCConnection object.

You can use the getConnection method to obtain a JDBCConnection. The
getConnection method determines whether the connection is connected or
disconnected and provides access to the Oracle database, if connected, or to the Oracle
Database Lite, if disconnected, to the user.

Example
import oracle.lite.web.applet.*;
public class AppApplet extends Applet
{
 public void init()
 {
 ...
 // Create Instance and pass Reference of applet as parameter
 proxy = new AppletProxy(this);
 }
 public java.sql.Connection getDataBaseConnection()
 {
 java.sql.Connection dBConnection = proxy.getConnection();
 return dBConnection;
 }
 AppletProxy proxy;
}

The Web-to-Go applet holds the database connection even after the user exits
Web-to-Go. The applet maintains the connection even if the user types a new URL in
the browser or clicks the Back button. Web-to-Go application designers must ensure
that their applications explicitly close the database connection when the user exits
Web-to-Go.

You can close the connection by calling the following statement.

dBConnection.close()

Note: The AppletProxy class is described in Section 5.5.2.6.1,
"Creating the Web-to-Go Applet".

Developing Mobile Web-to-Go Applications

5-18 Oracle Database Lite Developer's Guide

5.5.2.8 Developing Applet Servlet Communication
You can develop Java applets that communicate with Java servlets in the Web-to-Go
environment. When a client first connects to the Mobile Server, the server generates a
SessionID and sends it back to the client. Each subsequent client request to the
server contains this SessionID. The Mobile Server authenticates the SessionID
before executing the client's request. When applets communicate with Web-to-Go
servlets, each applet request must also contain this SessionID. The setSessionId
method in the AppletProxy class can be used to add the SessionID to each applet
request. The AppletProxy class also contains other methods that provide
communication between applets and servlets.

5.5.2.8.1 Extend HttpServlet Class When creating a servlet, it must extend the
HttpServlet abstract class defined in the Java Servlet API. The following example
creates a servlet called HelloWorld that extends the HttpServlet class. The servlet
sends the Hello World string to the applet that calls it as an object.

Example
public class HelloWorld extends HttpServlet
{
 public void doGet (HttpServletRequest request, HttpServletResponse response)
 {
 ObjectOutputStream out = new ObjectOutputStream (resp.getOutputStream());
 Object obj = (Object) "Hello World" ;
 out.writeObject(obj);
 out.close();
 }
}

5.5.2.8.2 Communicate With the getResultObject Method The Web-to-Go applet uses the
getResultObject() method to communicate with the Web-to-Go servlet by
passing the servlet URL and the ServletParameter object as parameters. The
servlet responds to the applet request with a text string. The ServletParameter
object can be either an object that can be serialized or a string containing name/value
pairs. If the servlet accepts parameters, you can call the getResultObject method
and pass the servlet parameters as one of the arguments.

Example
public Object getResult()
{
 java.net.URL url = new URL("http://www.foo.com/EmpServlet");
 String ServletParameter = "empname=John";
 Object resultObject = proxy.getResultObject(url, ServletParameter);
 return resultObject;
}

5.5.2.8.3 Add SessionID With the setSessionID Method You can use the setSessionID
method for adding a SessionID to an existing URLConnection object. When you
write the applet-servlet communication mechanism, call setSessionID

Note: The getResultObject and showDocument methods can
be used to communicate with the Java servlet. Use the
setSessionID method if you want to create your own URL
connection object.

Developing Mobile Web-to-Go Applications

Application Development 5-19

(URLConnection) at the end of the method. The method adds a SessionID to the
passed URLConnection object and then returns the URLConnection object.

Example
public void YourMethod()
{
 java.net.URL url = new URL("http://www.foo.com/MyServlet");
 java.net.URLConnection con = url.URLConnection();
 ...
 // pass the URLConnection to the method setSessionId
 con = proxy.setSessionID(con);
 // Do whatever you want to do with this URLConnection object
 ObjectOutputStream out = new ObjectOutputStream(con.getOutputStream());
 out.writeObject(obj);
 out.flush();
 out.close();
}

5.5.2.8.4 Display Static Documents With the showDocument Method The showDocument
method displays any static document including those with a suffix of .html, .doc,
.xls, or any other one defined by the user. The showDocument method retrieves
these documents from the Mobile Server and displays them in the client browser. To
display documents, a user must have access permissions for the document and must
have the correct MIME type set in the Mobile Server. The showDocument (String
relativeDocUrl, String winName) method displays the document in a different
browser window identified by a window name that is passed in the winName
parameter. The following method launches the help file from the server in a browser
window named 'helpwin'.

Example
public void showHelp()
{
 String relativeDocUrl = "Help/HelpIndex.html";
 proxy.showDocument (url, helpWin);
}

To show the document in the same browser window as your applet, use call
showDocument(url) as given below.

public void showHelp()
{
 String relativeDocUrl = "Help/HelpIndex.html";
 proxy.showDocument (url);
}

5.5.2.9 Debugging Web-to-Go Applications
You can run Web-to-Go applications inside a Java debugger if you have already
installed the Mobile Development Kit for Web-to-Go and a Java debugger, such as
JDeveloper, Borland's JBuilder, or Visual J++. The example in this section assumes you
are using JDeveloper. However, most of the information provided is also relevant to
other debuggers.

The following sections describe how to configure JDeveloper to run the Sample 1
application that is bundled with the Mobile Development Kit for Web-to-Go. For
detailed information and full documentation on how to use JDeveloper, consult the
online help in JDeveloper and the JDeveloper documentation.

Developing Mobile Web-to-Go Applications

5-20 Oracle Database Lite Developer's Guide

■ Section 5.5.2.9.1, "Creating a Debug Project"

■ Section 5.5.2.9.2, "Creating a Library"

■ Section 5.5.2.9.3, "Adding Files to the Project"

■ Section 5.5.2.9.4, "Running and Debugging"

■ Section 5.5.2.9.5, "Troubleshooting"

5.5.2.9.1 Creating a Debug Project To create a new debug project in Oracle9i JDeveloper,
perform the following steps.

1. Start JDeveloper.

2. To create a new project in JDeveloper, click File, then click New (assuming you
have defined a workspace in JDeveloper).

3. From the Directories menu in the left panel, select Projects, as displayed in
Figure 5–2, then select Empty Project.

Figure 5–2 Creating a New Project

4. Set the Project Settings for your new project. Right click on Project to retrieve
Project Settings. In the Project Settings dialog, expand Common in the left panel
and select Input Paths. In the right panel, enter the following information in the
Java Source Path field, as displayed in Figure 5–3.

<ORACLE_HOME>\mobile\sdk\wtgsdk\src\sample1\servlets

Leave the Default Package field blank. Do not change the default HTML Root
Directory.

Developing Mobile Web-to-Go Applications

Application Development 5-21

Figure 5–3 Project Settings - Input Paths

5. Expand Configurations and then Development in the left panel. Select Paths,
which appears below Development in the left panel. In the Output Directory field,
in the right panel, enter the following information.

<ORACLE_HOME>\mobile\sdk\wtgsdk\root\sample1\servlets

5.5.2.9.2 Creating a Library Oracle9i JDeveloper makes it easier to manage sets of JAR
files by using libraries instead of CLASSPATH settings.

Files for the WTGSDK Library
Create a WTGSDK library with the following JAR files and add this library to your
project.

<ORACLE_HOME>\mobile\classes\ojsp.jar

<OLITE_HOME>\bin\olite40.jar

<ORACLE_HOME>\mobile\sdk\bin\webtogo.jar

<ORACLE_HOME>\mobile\classes\servlet.jar

<ORACLE_HOME>\mobile\classes\xmlparser.jar

<ORACLE_HOME>\mobile\classes\classgen.jar

<ORACLE_HOME>\mobile\classes\wtgpack.jar

Creating a WTGSDK Library
Perform the following steps to create a WTGSDK library.

1. Select Libraries in the left panel, then click New in the right panel.

2. The New Library dialog appears, as illustrated in Figure 5–4. In the Library Name
field, enter WTGSDK.

Developing Mobile Web-to-Go Applications

5-22 Oracle Database Lite Developer's Guide

Figure 5–4 The New Library Dialog

3. Click Edit... next to the Class Path field. The File dialog appears.

4. From the appropriate directory, select the six .jar files that are listed above.

5. To add the files, click OK.

5.5.2.9.3 Adding Files to the Project To add the Sample1 files to your project, perform
the following steps.

1. Click the green plus-sign in the Oracle9i JDeveloper System-Navigator to add the
Java sources to the project. The File dialog appears.

2. Select the Java source file Helloworld.java in the directory <ORACLE_
HOME>\mobile\sdk\wtgsdk\src\sample1\servlets, and click Open.

3. Also, add the file RunWebServer.java, which is located in the directory
<ORACLE_HOME>\mobile\sdk\wtgsdk\src, to the project.

4. A dialog appears prompting you to update the project source path. Click No.

5.5.2.9.4 Running and Debugging Set one or more breakpoints in your code by
right-clicking at the statement where you want to break. Select Toggle breakpoint.
The background of the statement becomes red, indicating the breakpoint.

1. Select the file RunWebServer.java in the System-Navigator window.

2. Choose Debug by right clicking on the file that you selected to start the Mobile
Server inside the debugger.

The Mobile Server is now ready for use. You can access it through your Web browser,
by accessing the following URL.

http://<machine_name>

Where <machine_name> is the host name of the computer on which you are running
Oracle9i JDeveloper.

5.5.2.9.5 Troubleshooting This section describes troubleshooting options that you can
implement.

Developing Mobile Web-to-Go Applications

Application Development 5-23

Improving Performance
When you run the Mobile Server inside the Java debugger and access it using a Web
browser, performance may decrease. To improve performance, perform the following
tasks.

1. Run the Web browser on a different machine.

2. Using the Task Manager, set the priority of the Web browser process to LOW after
you start the Web browser.

5.5.2.10 Customizing the Workspace Application
The Mobile Development Kit for Web-to-Go includes a set of APIs that contain a basic
Web-to-Go workspace application. Developers can use these APIs to replace the
standard Web-to-Go workspace application with a customized version with the
following restrictions:

■ This can only be customized for the Web-to-Go client only. This is not supported
for the Web-to-Go OC4J client.

■ You cannot customize the workspace if both the Web-to-Go client and Web-to-Go
OC4J client are used.

■ The customized workspace is part of the Windows version of the MDK only.

■ The Mobile Server and MDK must be installed in the same <ORACLE_HOME>.

These APIs provide the following functionality.

■ Login

■ Logoff

■ Synchronize

■ List User Applications

■ Change User's Password

For more information on the APIs used to build a customized Web-to-Go workspace
application, see the Oracle Database Lite API Specification, which you can view off the
main documentation index, which is located at the following:

<ORACLE_HOME>\mobile\index.htm

1. Develop the customized Web-to-Go workspace application using the Web-to-Go
APIs.

2. Create an Oracle Database Lite database called webtogo and load the new
Web-to-Go workspace application into it. The database acts as the Mobile Server
Repository in the Mobile Client for Web-to-Go. For more information, refer to the
file crclient.bat, which is included in the sample Web-to-Go workspace
application.

3. Create a webtogo.ora file for the Mobile Client for Web-to-Go, which instructs
the Mobile Server to use the customized Web-to-Go workspace application. For
the correct parameter settings in the webtogo.ora file, refer the section,
Section 5.5.2.10.1, "Web-to-Go Parameters".

4. Load the webtogo.odb file, which is created by the Mobile Client for Web-to-Go,
the webtogo.ora file for the Mobile Client for Web-to-Go, and the Web-to-Go
workspace into the Mobile Server Repository. For more information, refer to the
file crserver.bat, which is included in the sample Web-to-Go workspace
application.

Developing Mobile Web-to-Go Applications

5-24 Oracle Database Lite Developer's Guide

5. Instruct the Mobile Server to use the new Web-to-Go workspace application by
modifying the webtogo.ora file on the server. For the correct parameter settings
in the webtogo.ora, refer the section Section 5.5.2.10.1, "Web-to-Go Parameters".

5.5.2.10.1 Web-to-Go Parameters To instruct Web-to-Go to use a customized Web-to-Go
workspace application, you must set the following parameters in the [WEBTOGO]
section of the webtogo.ora file.

Table 5–4 describes webtogo.ora parameter settings.

5.5.2.10.2 Sample Workspace The Mobile Development Kit for Web-to-Go includes a
sample Web-to-Go workspace application that illustrates how to use the Web-to-Go
workspace API. Developers can use this sample application as a starting point when
developing their Web-to-Go workspace applications. The sample Web-to-Go
workspace application is written using JavaServer Pages (JSP) and .html files. The
JSP files are located in the myworkspace/out directory in the Mobile Development
Kit for Web-to-Go. These files are compiled into class files that are copied into
myworkspace/out directory. This directory also contains all .html files and image
files that are used by the sample Web-to-Go workspace application.

The Mobile Development Kit for Web-to-Go includes the following scripts that
compile the JSP files, create the Oracle Database Lite named webtogo for the Mobile
Client for Web-to-Go, and load all necessary files into the Mobile Server Repository.

Table 5–5 describes scripts available for JSP compilation.

Table 5–4 Setting webtogo.ora Parameters

Parameter Setting

CUSTOM_WORKSPACE YES

CUSTOM_DIRECTORY Repository directory of the Web-to-Go workspace application. For
example, /myworkspace.

DEFAULT_PAGE The entry point of the Web-to-Go workspace application. For
example, myfirstpage.html.

CUSTOM_FIRSTSERVLET The name of the servlet that you want to use in your customized
workspace. For example, CUSTOM_
FIRSTSERVLET=HelloWorld;/hello

Note: Web-to-Go supports only one workspace application per
Mobile Server.

Table 5–5 Scripts for JSP Compilation

Script Name Description

compile.bat Compiles .jsp files and copies the class files to the
myworkspace/out directory.

crclient.bat Copies all files in the myworkspace/out directory into
the webtogo.odb file.

crserver.bat Copies all files in the myworkspace/webtogo
directory to the Mobile Server Repository, including the
webtogo.odb and webtogo.ora files.

Developing Mobile Web-to-Go Applications

Application Development 5-25

5.5.2.11 Using the Mobile Server Admin API
The Mobile Server Admin API enables an administrator to manage the application
resources programmatically. Using the Mobile Server Admin API set, administrators
can potentially create their own customized Mobile Manager application to perform
the following functions.

■ Creating and modifying users and user groups

■ Including users and excluding users from group level access to applications

■ Assigning snapshot variables to the user

■ Suspending and resuming applications

■ Publishing a pre-packaged Web-to-Go application

■ Customizing an application's underlying database connections

For more information on using the API to build the Mobile Manager, see the Oracle
Database Lite API Specification.

Note: Administrators cannot use the open API set to change the
basic properties of an application, such as snapshot definitions or
servlets. This can only be done through MDW. For more information,
see Chapter 6, "Using Mobile Database Workbench to Create
Publications".

Developing Mobile Web-to-Go Applications

5-26 Oracle Database Lite Developer's Guide

Using Mobile Database Workbench to Create Publications 6-1

6
Using Mobile Database Workbench to Create

Publications

The following sections describe how to use the Mobile Database Workbench (MDW) to
create publications. When using MDW, you first create a project and then create the
other objects contained within a publication.

■ Section 6.1, "Use MDW to Create Publications"

■ Section 6.2, "Create a Project"

■ Section 6.3, "Use the Quick Wizard to Create Your Publication"

■ Section 6.4, "Create a Publication Item"

■ Section 6.5, "Define the Rules Under Which the Automatic Synchronization Starts"

■ Section 6.6, "Create a Sequence"

■ Section 6.7, "Create and Load a Script Into The Project"

■ Section 6.8, "Load a Resource Into the Project"

■ Section 6.9, "Create a Publication"

■ Section 6.10, "Import Existing Publications and Objects from Repository"

■ Section 6.11, "Create a Virtual Primary Key"

■ Section 6.12, "Test a Publication by Performing a Synchronization"

■ Section 6.13, "Deploy the Publications in the Project to the Repository"

6.1 Use MDW to Create Publications
The Mobile Database Workbench (MDW) is a new tool that enables you to iteratively
create and test publications—testing each object as you add it to a publication.
Publications are stored within a project, which can be saved and restored from your
file system, so that you can continue to add and modify any of the contained objects
within it.

All work is created within a project, which can be saved to the file system and
retrieved for further modifications later. Once you create the project, start creating the
publication items, sequences, scripts and resources that are to be associated with the
publication. You can create the publication and associated objects in any order, but
you always associate an existing object with the publication. Thus, it saves time to start
with creating the objects first and associating it with the publication afterwards.

The following describes how to launch MDW:

Create a Project

6-2 Oracle Database Lite Developer's Guide

■ Section 6.1.1, "Set Access Privileges to SYSTEM Tables for Your Application
Schema"

■ Section 6.1.2, "Launch MDW"

6.1.1 Set Access Privileges to SYSTEM Tables for Your Application Schema
Before you start up MDW, ensure that the application schema has the correct
privileges to the following SYSTEM tables:

■ all_views

■ all_objects

■ all_synonyms

■ all_tables

■ all_constraints

■ all_dependencies

When you create a SQL statement in a publication item using MDW, then MDW
checks the dependencies using the SYSTEM tables. So, if you have not set the
privileges for the application schema to the SYSTEM tables, you may receive the
ORA-1031 "Insufficient privileges" error message.

6.1.2 Launch MDW
To launch MDW, execute oramdw, which is located in $ORACLE_
HOME\Mobile\Sdk\bin.

6.2 Create a Project
Create a new project with MDW. The project is the vehicle that contains your iterative
approach to defining publications, publication items, sequences, scripts and resources.
The project can be saved and restored from your file system, so that you can continue
to modify any of the contained objects within it.

You cannot perform any action on developing your publications without first creating
the project.

You must have access to the back-end database with the Oracle Mobile Repository and
already defined the tables and schema that you are going to be using in your
publication items before entering the project wizard.

Perform the following to create the project:

1. Click File->New->Project to start the Project Wizard.

2. An Introductory screen appears. If you do not want this introductory screen to
display each time you start a new project, check the "Skip This Page Next Time"
box.

3. Define the project name. Enter the project name and location for your new project,
as follows:

■ Project name: This name can be any valid Java identifier. The name cannot
contain any spaces. For example, your project name may be something like
MY_NEW_PROJECT.

■ Project location: Enter a valid location in the directory on your machine that
has write permission to store the project. On a Windows machine, you could

Create a Project

Using Mobile Database Workbench to Create Publications 6-3

enter the location as c:\myprojects. To browse for a directory, click
Browse.

■ Mobile client database type: Select the type of the Mobile client, which can be
either the SQLite Mobile client or Oracle Lite Mobile client.

Click Next to move to the next step in the wizard.

4. Provide the Mobile Repository access information. Because you are interacting
with the repository to create and manipulate synchronization objects, including
the SQL scripts for the publication items, you need access to the Mobile
Repository. Enter the following access information:

Username and Password

Specify the Mobile Server repository username and password (with administrator
privilege). This is the same username and password with which the repository
was originally created. For example, the default Mobile Server repository user
name and password is mobileadmin/manager.

The administrator username and password are used to connect to the back-end
database, create the schema and assign database privileges for the Mobile Server.
In order to perform these actions, the administrator user must have the following
privileges:

– The following privileges are required with the Admin option:

ALTER ANY TABLE, ALTER SESSION, ALTER SYSTEM, ANALYZE ANY,
CREATE SESSION, CREATE ANY SEQUENCE, CREATE ANY VIEW,
CREATE ANY TRIGGER, CREATE ANY INDEX, CREATE ANY TABLE,
CREATE ANY SYNONYM, CREATE ANY PROCEDURE, CREATE
PROCEDURE, CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE,
CREATE VIEW, CREATE INDEXTYPE, DELETE ANY TABLE, DROP ANY
SEQUENCE, DROP ANY PROCEDURE, DROP ANY VIEW, DROP ANY
SYNONYM, DROP ANY TRIGGER, DROP ANY INDEX, DROP ANY TABLE,
INSERT ANY TABLE, SELECT ANY TABLE, SELECT ANY DICTIONARY,
SELECT_CATALOG_ROLE, UPDATE ANY TABLE

Specify the Connection

When you define the connection, you have two options:

■ Simple connection definition. For a connection to a single back-end Oracle
database, select the Oracle JDBC Thin driver and provide the host (or IP
address), port and SID for the Oracle database that contains the Mobile
repository.

This creates a connect string which will be as follows:

jdbc:oracle:thin:@<host>:<port>:<SID>

■ RAC connection definition. If you are connecting to a RAC configuration, then
select the Oracle JDBC Thin driver—Advanced. Selecting this option enables
the Connect String field where you can enter the tnsnames connect string that
defines all databases included in the RAC configuration. For example, the
following is a tnsnames connect string definition that includes two Oracle
databases in the RAC configuration:

(DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=-ON)
 (ADDRESS=(PROTOCOL=TCP)(HOST=HOST1)(PORT=1555))
 (ADDRESS=(PROTOCOL=TCP)(HOST=HOST2)(PORT=1555)))
 (CONNECT_DATA=(SERVICE_NAME=ORCL.TW.ORACLE.COM)
 (FAILOVER_MODE=(TYPE=SELECT)(METHOD=BASIC)(RETRIES=180)(DELAY=5))))

Use the Quick Wizard to Create Your Publication

6-4 Oracle Database Lite Developer's Guide

Click Next to move to the next step in the wizard. Once you click Next, the wizard
verifies that the database connection information is correct. If incorrect, the wizard
prompts you to re-enter the information. You can only advance if you enter the
correct information where the Mobile Server Repository is located.

5. Specify the application information, as follows:

a. Specify the application schema username and password, each of which are
limited to 28 characters. The Mobile application schema contains all database
tables, views, synonyms used to build the snapshots for the application.

b. Use the Database Instance pull-down to select the database where the
application is to be deployed. In this database, the application schema will be
created. You can select the Main database, where the Mobile repository is
stored, or any registered remote databases meant solely for application data.

Once selected, the JDBC URL for the selected database is displayed in the
Connect String field.

Click Next to move on to the last screen in the Project Wizard. As you click Next,
MDW verifies that the username and password that you entered are valid for
connecting to the application schema in the back-end database. If these are not
valid, you cannot advance until you supply a valid username and password.

6. A summary page appears. Once the creation of the project is completed, this page
displays all of the information about your new project.

■ Click Back to modify any of the information supplied.

■ Click Finish to complete the project creation.

■ Click Cancel to abort creation of this project.

At this point, you can create your publication within this project.

6.3 Use the Quick Wizard to Create Your Publication
The Quick Start Wizard enables you to create a simple publication in just a few steps.
It generates the publication items within your publication by assuming that you want
the default settings. In addition, the snapshot defaults to select all items within the
table. For example, if the table selected is EMP, then the select statement defaults to
select * from emp.

You can associate a publication item in a publication, which is then associated in an
application. The publication item is the vehicle that defines the SQL to retrieve data
from the database for the application users. When you execute the quick wizard, it
creates a publication item for each table you wish to include in the publication. In

Note: All schema objects for an application exist in the same
back-end repository, which is why the Oracle database host, port and
SID are only read-only on this screen.

Note: For more information on using and registering remote
databases for application data, see Section 3.2, "Register a Remote
Oracle Database for Application Data".

Use the Quick Wizard to Create Your Publication

Using Mobile Database Workbench to Create Publications 6-5

addition, the wizard defaults the SQL statement used to define the data subset for each
table as select * from <table_name>.

The publication item name defaults to the following: <table_name>_PI<number>
where <number> is sequential between 1 and 9. For example, the first publication item
created on table EMP would be named EMP_PI1. If, in a separate publication, you have
already defined a publication item for EMP_PI1, then the next time you execute the
wizard for the table EMP, it will be named EMP_PI2.

After creating this publication item, this wizard enables you to test it immediately.
When the wizard completes, you can always return to the main menu and modify any
of the default settings or specify a more specific data subset with your own SQL
statement.

For each of the screens in the wizard, click Next to advance to the next screen.

1. To start the quick wizard, select the Quick Wizard button.

2. An introductory screen appears. If you do not want this introductory screen to
display each time you start a new project, check the "Skip This Page Next Time"
box.

Figure 6–1 Welcome Screen for Quick Wizard to Create a Publication

3. Provide a name for the client Oracle Lite database. This is the database that exists
on the device to contain the downloaded snapshot information. The name that you
choose will also be used as the name of the publication.

Note: Since this tool is a quick wizard, it associates a single
publication item for each table you include in the publication. In order
to create a more complex snapshot—such as one that enables
automatic synchronization, creates multiple publication items based
on the same table or a more complex SQL statement—see Section 6.4,
"Create a Publication Item".

Use the Quick Wizard to Create Your Publication

6-6 Oracle Database Lite Developer's Guide

When this publication is finished, a client database is created on your device and
the first synchronization to retrieve the snapshot from the back-end Oracle
database is initiated.

Figure 6–2 Define Client Oracle Lite Database Name

4. Select the table(s) to be included in the publication item, as follows:

Figure 6–3 Define the Tables to Include in the Publication

■ Choose the application schema to associate with this publication item: The
application schema is the schema from which the publication item retrieves

Use the Quick Wizard to Create Your Publication

Using Mobile Database Workbench to Create Publications 6-7

data. All available schemas in the database are listed in the pull-down list. You
must have created the schema prior to starting this wizard.

■ Click Search to display all tables within this schema in the Available column.
To search for a specific table or tables, enter the name or partial name with
wild charaters in the Object Filter field and then click Search. You can use any
of the standard Oracle wild card characters.

■ Select the table(s) that you want in the publication item and click the arrow
buttons to move one or all tables into the Selected column. You can move
these tables back and forth using the arrow buttons.

■ When you are satisfied with the list of the tables in this publication item, then
click Next.

5. Once the creation of the publication item is completed, a Summary page displays
the defaults used for each table included in this publication item, as follows:

Figure 6–4 Modify the Table Properties for Synchronization

■ Table name: Displays the schema and name of the table included in this
publication item.

■ Updatable: This is checked if the table is listed as updatable. You can toggle
this item to read-only by double-clicking on the field. However, if it is
unchecked, you should only enable it if the table has a virtual primary key.

Note: If the schema you want is not in this list, cancel the wizard,
create the schema in the back-end database, and then re-start this
wizard.

Note: If you do not see the object that you expect to see, verify that
you created the table in this schema in the back-end Oracle database.

Use the Quick Wizard to Create Your Publication

6-8 Oracle Database Lite Developer's Guide

For more information on Read-Only or Updatable options, see Section 2.3.1.1,
"Manage Snapshots".

■ Refresh Type: By default, all tables use fast refresh. If the table does not have
a primary key, then the table uses complete refresh. Double-click on this field
to change the refresh type.

For more information on Fast or Complete refresh types, see Section 2.9,
"Understanding Your Refresh Options".

■ Virtual Primary Key: This field displays the virtual primary key for the table.
If you want to have the table be updatable or use the fast refresh type, then the
table must have a virtual primary key. If the table does not have a primary
key, but it does contain a field with UNIQUE constraints, then you can specify
this field as the virtual primary key to be able to use fast refresh or updatable.

To specify a column in the table as your virtual primary key, double-click on
the Virtual Primary Key field to list all of the UNIQUE fields. If you select one
of them to be the virtual primary key, then you can use the Updatable or fast
refresh options for this table.

6. Decide if you want to test this publication.

Figure 6–5 Decide to Test the Publication

You can specify that you want to test this publication as soon as the wizard exits.
By default, Yes is selected. This provides a test of the publication against the
back-end Oracle database.

In order to perform this test, a valid client username must be provided. From the
drop-down list, select the client username that you would like to use. You will be
prompted for the password during synchronization.

7. You can end the wizard by performing one of the following:

Note: Any virtual primary key added must be unique and not null.

Create a Publication Item

Using Mobile Database Workbench to Create Publications 6-9

■ Click Back to modify any of the information supplied.

■ Click Finish to complete the project creation.

■ Click Cancel to abort creation of this project.

8. If you clicked Yes for testing the publication, then the Test Publication screen is
brought up. Click the Synchronize button to start the test.

This creates a basic publication, which you can now view in the project in the MDW
main screen. You can modify this publication in any way.

6.4 Create a Publication Item
The Publication Item Wizard steps you through the process of creating a publication
item in the project. A publication item encapsulates a snapshot definition. It can be
based on a table, view or synonym in the Master Application schema in the back-end
database. If you use a synonym for a remote object to build a publication item, then
you are required to provide the JDBC connection information to the remote database
where the remote object resides.

After you create the publication items in the project, then you can associate multiple
publication items with a publication, which is then associated with an application. See
Section 6.9.2, "Publication Item Tab Associates Publication Items With the Publication"
for details.

You can create a publication item through the publication item wizard by clicking
File->New->Publication Item.

1. The publication item wizard introduction appears. If you do not want this
introductory screen to display each time you start a new project, check the "Skip
This Page Next Time" box.

Click Next to advance to the next screen.

2. Define name, refresh type, and automatic synchronization, as follows:

■ Publication item name: This name can be any valid Java identifier. The name
cannot contain any spaces. Publication item names are limited to twenty-six
characters and must be unique across all publications. For example, your
publication item name may be something like MY_PUBLICATION_ITEM.

■ Refresh type: The refresh mode of the publication item is specified during
creation to be either fast or complete refresh. See the Section 2.9,
"Understanding Your Refresh Options" for more information.

From the drop-down list choose one of the following refresh types:

– Complete: All data is refreshed with current data. Everytime you
synchronize, all data in the snapshot is retrieved. This can be performance
intensive.

– Fast: This is the recommended mode. Only incremental changes are
synchronized. Thus, you are not downloading the complete data snapshot
each time a synchronization is requested. The advantages of fast refresh
are reduced overhead and increased speed when replicating data stores
with large amounts of data where there are limited changes between
synchronization sessions.

– Queue-based: You can create your own queue. Mobile Server will upload
and download changes from the user. You perform the activity of the
MGP and apply/compose the modifications to the back-end database. See

Create a Publication Item

6-10 Oracle Database Lite Developer's Guide

the Section 2.13, "Customizing Synchronization With Your Own Queues"
for more information.

Once you create the publication item with a particular refresh type, the only
way to modify the publication item to have a different refresh type is to delete
is and recreate it with the desired refresh type.

■ Enable Automatic Synchronization checkbox: This defines the publication
item to use Automatic Synchronization, where synchronization for this
publication item occurs automatically and in the background. That is, you do
not have to manually press the Sync button as it occurs automatically. You can
have several publication items in a single publication where some use
automatic synchronization and others require the user to manually request
synchronization.

If you have multiple publication items within a publication, you can specify
which are to be automatically synchronized within each publication item.
However, if you have multiple publication items where these contain tables
with a master-detail relationship, then ALL of these publications items must
be either enabled or disabled for automatic synchronization.

Step 7 shows you how to specify—with a SQL statement—which users receive
the automatic synchronization. Section 6.5, "Define the Rules Under Which the
Automatic Synchronization Starts" shows you how to define automatic
synchronization rules that will apply to this publication item.

3. Designate the publication item object with the appropriate schema, as follows:

■ Choose the application schema to associate with this publication item: The
application schema is the schema from which the publication item retrieves
data. All available schemas in the database are listed in the pull-down list. You
must have created the schema prior to creating the publication item.

If the schema you want is not in this list, cancel this publication item, create
the schema in the back-end database, and then associate the schema with the
publication item.

■ Designate the object type as a table, view, or synonym.

■ To choose the table, view or synonym from within the schema that you wish
to base this publication item on, click Search on the Object Filter. This brings
up several items in the Object List. Select the object that you are interested in
and click Next.

Note: If, after you have published the application, you want to turn
off automatic synchronization, you can only disable automatic
synchronization as follows:

1. Execute the API to disable the automatic synchronization. Use the
reCreatePublicationItem method to disable automatic
synchronization. For more information on modifying a publication item
using the APIs, see Section 2.4.1.12, "Modifying a Publication Item".

2. Execute a manual synchronization on the device.The manual
synchronization restarts the automatic Sync Agent, which will then use
the new rules The new settings will NOT be downloaded automatically
during automatic synchronization.

Create a Publication Item

Using Mobile Database Workbench to Create Publications 6-11

4. Choose columns to add to the publication item. When you are adding columns to
the publication item, you should first verify what data types are supported and
how others are modified when brought down to the Oracle Lite database. For
example, the TIMESTAMP data type is supported, but the TIMESTAMP WITH
TIME ZONE data type is not. For details, see Section 3.8, "Datatype Conversion
Between the Oracle Server and the Oracle Lite Database".

There are two tabs to enable you to structure your publication item, as follows:

■ Column Selection: Choose the columns from within the object that you will
use to retrieve information for the application. To choose the appropriate
columns, select the column name and click the left or right arrow buttons to
move between the Available and Selected windows. To move all columns, use
the double arrows.

■ Structure: If you are not sure what columns you want, you can see the entire
table structure by clicking this tab.

If you have specified a fast refresh, you must provide a primary key. If you have
specified a table or view that does not have a primary key, exit out of this wizard
and create a virtual primary key specifying one of the columns in the table or
view. If you do not create a virtual primary key before specifying this publication
item, then any future synchronization of this primary key will fail.

5. Create indexes and associate them with the publication item. These indexes will
display in the Index Selection window. The index name, index type and the index
columns are shown. If you want to add or remove an index in the publication
item, use the following options:

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter is
case-sensitive; use upper-case characters.

Note: The primary key defaults to being in the Selected window, as
it is required if you are using Fast Refresh and Updateable option.
Since most publication items use these options, MDW places the
primary key as Selected. You can move it back to the Available
window.

The publication item query must select primary keys in the same
order as they are defined in the base table.

Note: Oracle Database Lite does not support creating publication
items for a table with object type columns, even if the publication item
query does not include any of the object type columns. However, it is
possible to define a view which selects only columns of supported
data types and then create a publication item using the view
definition.

Note: Any virtual primary key must be unique and not null.

Create a Publication Item

6-12 Oracle Database Lite Developer's Guide

■ Add: Click Add to create a new index and associate it with the publication
item. You will need to provide the index name, type and snapshot columns for
the new index.

■ Remove: Removes an existing index from the publication item by selecting the
index in the Index Selection window and clicking Remove.

By default, Oracle Database Lite creates a primary key index for every publication
item and is created on the primary key of the snapshot table. This index is named
<piName>_PK. You cannot remove the primary key index from the publication
item within this screen. If you want to remove the primary key index, use the
dropPublicationItemIndex method. For more details, see Section 2.4.1.6,
"Create Publication Item Indexes".

If a snapshot is based on a table without a primary key, then the primary key
index will not be created and the Index Selection box is empty.

When the desired indexes have been added or removed for this publication item,
click Next to advance to the next window.

6. Modify the SQL statement for the publication item. From the columns that you
selected in the previous screen, this simple SQL statement is available as a
template for you to modify. You can add any qualifiers and complexity to this
base statement. To view the structure of the schema object, select the Structure tab.

■ Perform Iterative Modifications

See Section 6.4.1, "Create SQL Statement for Publication Item" for directions on
how to edit and execute the SQL statement for this publication item.

■ Apply/Compose Callbacks

When creating publication items, the user can specify a customized package to
be called during the Apply and Compose phase of the MGP background
process. Client data is accumulated in the in queue prior to being processed by
the MGP. Once processed by the MGP, data is accumulated in the out queue
before being pulled to the client by Mobile Sync. See Section 2.7.2, "Customize
What Occurs Before and After Compose/Apply Phases for a Single
Publication Item" for more information on how to create the callbacks.

Provide the schema and package names for any apply/compose callbacks.

■ Dependency Hint

Click Add to add a dependency hint. All existing dependency hints are shown
in the window. See Section 6.4.2, "Create a Dependency Hint" for more
information.

7. If you specified a view, then you may need to define parent table and primary key
hints. See Section 6.4.3, "Specify Parent Table and Primary Key Hints" for
directions on how to define these hints.

8. If you specified automatic synchronization for this publication item, then the
Automatic Synchronization Query page is shown, which includes the following:

■ By default, all users are included in the Compose, which means that all users
receive the data that is being retrieved from the server and brought down to

Note: You can only modify an index by removing and creating it
again.

Create a Publication Item

Using Mobile Database Workbench to Create Publications 6-13

the Mobile clients. If you want to specify that only certain users that subscribe
to this application receive the application data, then check this box.

■ If you clicked the checkbox, then specify which users are to receive the
Compose data with a SQL query.

For example, if you only want MADAUSER within the mobileadmin schema to
receive the Compose data, then type in select name from
mobileadmin.users where name =’MADAUSER’. Click Run to verify
that the SQL query returns what you want; click Next to advance to the next
page.

9. Summary page provides an overview of the publication item that you just created.
To view any dependency hints, click Advanced. If you have used a view as the
base for your publication item and you created Parent Table or Primary Key hints,
click Hint to view these hints. The Parent Table and Primary Key hints are only
valid on views.

To modify any part of the publication item, click Back to return to the previous
screens.

Click Finish if you are satisfied with the publication item. Click Cancel to
eliminate all work in creating this publication item.

6.4.1 Create SQL Statement for Publication Item
You can compose your SQL statement through iterative steps to ensure that you are
creating a valid statement. You have the following options:

■ Modify the query by clicking Edit.

■ Execute the statement against the schema in the back-end database by clicking
Run. You will be notified directly if the statement fails or view the data from the
schema object is retrieved for you to view.

When you click Run, then the query of the publication item is validated by
executing the query against the back-end database. A dialog is displayed with the
returned snapshot that this publication item would generate. If there is more than
one page, then click Previous and Next to move between the pages. Click Close to
return to the publication item screen.

If the publication item SQL statement requireds an input value, then a dialog
appears for you to input the value for the SQL query. You can modify this value or
the SQL query until you receive the results that you desire.

■ To return the query to the original statement, click Reset.

■ When finished, click Next.

6.4.2 Create a Dependency Hint
If the updates to this publication item effects another table, use the dependency hint to
notify the synchronization engine to update the other table. For example, if the
publication item updates the employee table, and these updates should also apply to
the department table, add a dependency hint notifying the synchronization engine of
the relationship with the department table.

For your dependency hint, specify whether the hint is based upon a table or synonym.
Then, use the pulldown lists to select the schema and table/synonym names. Click OK
to save the hint or Cancel to return to the Advanced screen.

Define the Rules Under Which the Automatic Synchronization Starts

6-14 Oracle Database Lite Developer's Guide

For more information on dependency hints, see Section 3.3.2, "Creating or Removing a
Dependency Hint".

6.4.3 Specify Parent Table and Primary Key Hints
When you use a view, you may need to specify a parent table and primary key hints.
A view can be composed of one or more tables joined together. If you have specified
fast refresh, then you must specify which table is the parent table and which column is
the primary key.

■ To create a parent table hint, select the base table from the Base Table(s)
drop-down list and check the Parent Table Hint checkbox.

■ To create a primary key hint, click Add. Identify the primary key hint for this
view, as follows:

1. From the View Columns drop-down list, select the view column that you want
to be the primary key. This column name may be an alias of the actual
table.column name.

2. From the Base Tables drop-down list, select the base table where the actual
column exists that is to be the primary key.

3. From the Primary Key Columns drop-down list, all primary key columns from
the base table are shown, select the appropriate column for the primary key. If
you have a composite primary key, iteratively add each column within the
composite primary key.

Click OK to accept this primary key hint.

6.5 Define the Rules Under Which the Automatic Synchronization Starts
Once you have enabled a publication item to use automatic synchronization, you must
define the rules under which the automatic synchronization executes. The
circumstances under which an automatic synchronization occurs is defined within the
synchronization rules. There are two types of automatic synchronization rules: events
and conditions. If an event is true, it starts a synchronization; however, the
synchronization cannot occur unless all conditions are true, as well. This evaluates as
follows:

when EVENT and if (CONDITIONS) then sync;

If an event is true, then a synchronization can start—but only if all conditions are true.

Thus, event and condition rules are as follows:

Note: If you do not check the Parent Table Hint checkbox, then the
hint is not created when you click Next.

Note: If you do not provide accurate details in regards to the view,
base table, and primary key to which the view column maps, the
publication item may save, but the execution of the publication item
will fail. For example, if you choose a view column which does not
map to the primary key column, MDW will allow the action, but any
execution of the publication item will result in failure.

Define the Rules Under Which the Automatic Synchronization Starts

Using Mobile Database Workbench to Create Publications 6-15

■ Events—An event is variable, as follows:

■ Data events: For example, you can specify that a synchronization occurs when
there are a certain number of modified records in the client database.

■ System events: For example, you can specify that if the battery drops below a
predefined minimum, you want to synchronize before the battery is depleted.

■ Conditions—A condition is an aspect of the client that needs to be present for a
synchronization to occur. This includes conditions such as battery life or network
availability.

For example, if the event for new data inserted and the condition specified is that the
network must be available, then a synchronization only occurs when the network is
available and there is new data.

When you define the rules for the synchronization, you can define them in two places:

■ Publication level: You specify the rules under which the synchronization occurs at
the publication level for all publication items in that publication.

■ Platform level: Some of the rules are very specific to the platform of the client,
such as battery life, network bandwidth, and so on.

If after defining these rules and publishing the application, you want to modify the
rules, you can do so through MDW. However, you must perform a manual
synchronization. The manual synchronization restarts the automatic Sync Agent,
which will then use the new rules The new settings will NOT be downloaded
automatically during automatic synchronization.

The following sections detail all of the rules you can configure for automatic
synchronization:

■ Section 6.5.1, "Configure Publication-Level Automatic Synchronization Rules"

■ Section 6.5.2, "Configure Platform-Level Automatic Synchronization Rules"

6.5.1 Configure Publication-Level Automatic Synchronization Rules
When you are creating the publication, you can define data events that will cause an
automatic synchronization. Although these are defined at the publication level, they
apply only to the publication items within this publication that have automatic
synchronization enabled.

For full details of how to configure these data events, see Section 6.9.6, "Event Tab
Configures Automatic Synchronization Rules for this Publication".

Table 6–1 describes the publication level data events that trigger automatic
synchronization. The lowest value you can specify is 1.

Note: This section describes how to do this through MDW; see
Section 2.2.3, "Define the Rules Under Which the Automatic
Synchronization Starts" for directions on how to perform this
programmatically.

Define the Rules Under Which the Automatic Synchronization Starts

6-16 Oracle Database Lite Developer's Guide

6.5.2 Configure Platform-Level Automatic Synchronization Rules
The platform-level synchronization rules apply to a selected client platform and all
publications that exist on that platform. You can specify both platform events and
conditions using either MDW or the Mobile Manager. This section describes MDW;
see Section 6.4.1, "Specifying Platform Rules for Automatic Synchronization" in the
Oracle Database Lite Administration and Deployment Guide for directions on how to
define these rules using Mobile Manager.

To assign platform-level automatic synchronization rules, perform the following in
MDW:

1. Click Platform.

2. Select either the Win32 or WINCE platform, which brings up a page with two tabs:
Events and Conditions. These rules will apply to all publications for this platform.

3. You can modify the following for each platform:

■ Event Rules—See Section 6.5.2.1, "Define System Event Rules for the
Platform".

■ Conditions—See Section 6.5.2.2, "Define Automatic Synchronization
Conditions for the Platform".

6.5.2.1 Define System Event Rules for the Platform
When you choose the Event tab, select the checkbox for each event that you want to
enable. If the event requires a value, enter the value you desire. This initiates the
automatic synchronization the first time the event occurs. For example, if the battery

Table 6–1 Automatic Events for the Publication

Events Description

Client commit Upon commit to the Oracle Lite database, the Mobile client detects the total
number of record changes in the automatic synchronization log. If the number
of modifications is equal to or greater than your pre-defined number,
automatic synchronization occurs.

Server MGP
compose

If after the MGP compose cycle, the number of modified records for a user is
equal to or greater than your pre-defined number, then an automatic
synchronization occurs. Thus, if there are a certain number of records
contained in an Out Queue destined for a client on the server, these
modifications are synchronized to the client.

Note: If you want to modify the publication-level automatic
synchronization rules after you publish the appliation, you can do so
through the Mobile Manager, as follows:

1. Click Data Synchronization.

2. Click Repository.

3. Click Publications.

4. Select the publication and click Automatic Synchronization Rules.

Note: You can only modify the network settings for the platform
using Mobile Manager, see Section 6.4.1, "Specifying Platform Rules
for Automatic Synchronization" in the Oracle Database Lite
Administration and Deployment Guide for more information.

Define the Rules Under Which the Automatic Synchronization Starts

Using Mobile Database Workbench to Create Publications 6-17

runs below the percentage you specified, the automatic synchronization occurs. As the
battery continues to deplete, you will not trigger another synchronization.

The following system events will trigger an automatic synchronization if true.

■ Network Bandwidth: Synchronize when the network bandwidth is greater than
<number> bits/second. Where <number> is an integer that indicates the
bandwidth bits/seconds. When the bandwidth is at this value, the
synchronization occurs.

■ Battery Life: Synchronize when the battery level drops to <number>%, where
<number> is a percentage. Often you may wish to synchronize before you lose
battery power. Set this to the percentage of battery left, when you want the
synchronization to automatically occur.

■ AC Power: Synchronize when the AC power is detected. Select this checkbox if
you want the synchronization to occur when the device is plugged in.

6.5.2.2 Define Automatic Synchronization Conditions for the Platform
When you choose the Condition tab, you can set under what conditions the automatic
synchronization is allowed or disallowed, as follows:

■ Battery Level: Specify the minimum battery level required in order for an
automatic synchronization to start. The battery level is specified as a percentage.

■ Network Availability: Network quality can be specified using several properties.
For example, if you have a very low network bandwidth and a high ping delay,
you may only want to synchronize your high priority data. To add network
quality condition for a specified data priority, click the Add button, which brings
up a screen where you can specify a minimum value for the following network
properties:

– Data Priority: You could have defined records in the snapshot with a data
priority number. Use this condition to specify under what conditions the
different data priority records are synchronized. Data priority can be either
one or zero, where zero is high priority. By default, all records are entered
with a value of NULL, which is the lowest priority.

– Minimum Network Bandwidth (bits/sec): Configure the minimum bandwidth
(bits/second) in which the automatic synchronization can occur for records
with this data priority.

– Maximum Ping Delay (ms): Configure the maximum ping delay
(milliseconds) in which the automatic synchronization can occur for records
with this data priority.

– Include Dial-up Networks?: The always-on network is used if available.
However, if this network is not available, select YES if you want to use any of
the dial-up networks for this data priority.

Note: You can only use fast refresh with a high priority restricting
predicate. If you use any other type of refresh, the high priority
restricting predicate is ignored.

See Section 1.2.10, "Priority-Based Replication" in the Oracle Database
Lite Troubleshooting and Tuning Guide for more information.

Create a Sequence

6-18 Oracle Database Lite Developer's Guide

6.6 Create a Sequence

A sequence is a database object, from which you can generate unique integers. You
can use sequences to automatically generate primary key values. However, when you
have multiple clients accessing a single server, you need a method to guarantee
unique identifying numbers for new records from multiple clients. Oracle Database
Lite provides a method for unique sequence numbers.

After creating a sequence, you can use it to generate unique sequence numbers for
transaction processing. These unique integers can include primary key values. If a
transaction generates a sequence number, the sequence is incremented immediately
whether you commit or roll back the transaction.

For Oracle Database Lite, you can add a sequence to a publication; then, the sequence
is created on all subscribed clients during the initial synchronization. On each client
Oracle Lite database, the sequence can be used independently. However, since the
sequences are used to generate primary key and unique key values for snapshot
tables, it is important to ensure that different clients do not generate the same
sequence values. If they did, then conflicts may occur when the clients synchronize
their changes to the server tables.

The Sync Server guarantees uniqueness across all clients. During synchronization, the
Sync Server assigns separate sequence ranges, known as a window, to each client
when necessary. A client cannot increment a sequence beyond its current window.
Once a client exhausts its window, the Sync Server assigns a new window on the next
synchronization. All windows are unique and never reassigned.

Since the sequence windows are obtained from the Sync Server only during
synchronization, there is a chance that the client could exhaust all available sequence
numbers in its window in between synchronization events. To prevent this from
happening, the administrator can configure clients to obtain a new window before the
current one is exhausted by setting the threshold value. A threshold is less than the
window size. If the range of values left in the window is less than the threshold size,
then during the next synchronization, a new window will be assigned to the client. For
example, you set the window to 200 and the threshold to 25. During a synchronization
event, the Sync Server notices that the current sequence value is greater than or equal
to 175, then it allocates the next window for the client.

The following describes how to use Oracle Database Lite sequences:

■ Only clients use the sequence: If you have more than a single client, you want each
client to use a specific range of unique sequence numbers, so that none of the
records have duplicate sequence numbers.

Specify the start value and the window size. When you define the size of the
window, you provide the Sync Server the number of assigned identifiers for each
client and the range of values never overlaps with those of other clients.

■ Server and clients use the same sequence: If you want the server and one or more
clients to share a sequence, then the server and the client use every other
number—the identifiers are generated where the server uses all even numbers and
the clients use odd numbers—or vice versa, if the start value of the sequence is an
even number. Specify the start value, window size and select the "Generate
Server-side Sequence" option that tells Oracle Database Lite to generate a
server-side sequence. The increment value always defaults to 2 for this case, even

Note: There is no support for sequences on a SQLite Mobile client.

Create a Sequence

Using Mobile Database Workbench to Create Publications 6-19

if you specify another number. If you have more than one client, configure the
window size to ensure that the client sequence numbers do not conflict.

6.6.1 Configuring Sequences in MDW
Within Oracle Database Lite, you configure how you want sequence numbers
generated in the sequence definition. In MDW, create a sequence by clicking
File->New->Sequence. When you are creating your publication, configure the
following values to instruct how the sequence is generated for all clients and the
server:

■ Name: This sequence name must be a valid database identifier.

■ Starts With: Enter the number with which you want this sequence to start.

■ Increment: Specify the increment from the starting value for the next value in the
sequence.

■ Window Size: Provide the size of the window that the Sync Server assigns to the
client. For each client, the Sync Server assigns the initial range of sequence values
at the time of subscription. For example, if you set the window size to 100 and the
Starts With value to 1, then the Sync Server assigns the client windows as follows:

■ Client A: sequence numbers 1 through 100

■ Client B: sequence numbers 101 through 200

■ Client C: sequence numbers 201 through 300

If any client exhausts their window, they are assigned another 100, which is the
defined window size in our example, during the next synchronization. If you also
click the Generate Server-Side Sequence checkbox, then the sequence numbers
used by the clients are the odd numbers in their range, such as 1, 3, 5, 7 and so on.

■ Threshold: When the number of identifiers left in the window is less than the
threshold, a new window of sequence numbers is assigned to the client on the next
synchronization. For example, if you have a window size of 200 and threshold of
25, then when the current sequence number is equal to or greater than 175, the
Sync Server assigns the next window of values to the client.

■ Description: A description of the sequence.

■ Generate server-side sequence: If you want the client and the server-sides to share
a sequence, where one side has all even numbers and the other has the odd
numbers, check this box. If unchecked, then the sequence is created solely for the
client.

Note: If you have checked the Generate server-side sequence
checkbox and set the increment value to 1, then this value is ignored
and is set to 2. When you specify the server-side sequence, then both
the client and the server use every other number in the sequence.
Thus, you cannot increment by 1 on the client.

Note: If the window size is 100 and the threshold is 25, then no
matter what the increment is, the next window is assigned when the
sequence numbers are equal to or greater than 75. It is based on the
window size, not on the number of sequence values left for the client.

Create a Sequence

6-20 Oracle Database Lite Developer's Guide

When you check the Generate Server-Side Sequence checkbox, then no matter
what value is specified for Increment, it will always be set to 2. A sequence of the
supplied name is created automatically on the server in the mobileadmin schema
to use all even numbers. Specify a 1 as the Starting Value, so that on the server
side, the sequence uses even values starting with 2 and on the clients, the odd
values are used. Thus, the server and client sequence values are unique.

If there are multiple clients, then to ensure that the clients use unique numbers, set
up separate windows for each client. There is no window for the server, because
the server uses all even numbers in the whole range of the sequence.

For example, the sequence number for the first client starts at 1 and increments by
2 for all of its sequence numbers. The first client still has a window size, which in
this example is 100, but it starts with an odd number within that window and
always increments by 2 to avoid any even numbers. Thus, client A has the
window of 1 to 100, but the sequence numbers would be 1, 3, 5, and so on up to 99.

Oracle Database Lite creates and maintains the sequence based on the sequence
definition in the publication. Once you create a sequence in the project, you can
associate it with a publication. See Section 6.9.3, "Sequence Tab Associates Existing
Sequences With the Publication" for details.

See the Section 2.4.1.8, "Creating Client-Side Sequences for the Downloaded Snapshot"
for more information on sequences.

6.6.2 Configuration Scenarios for Sequence Generation
When setting up a sequence, you can configure one of the following three scenarios:

■ Multiple Clients: In this case, always define Start Value and the Window Size
parameters. When you define the size of the window, you provide the Sync Server
the number of assigned identifiers for each client and the range of values never
overlaps with those of other clients. Also, set the starting value for each client.

■ Server and Clients Use Same Sequence: If you want the server and one or more
clients to share a sequence, select the "Generate Server-Side Sequence" checkbox. If
you have multiple clients, set the Start Value and the Window Size. The checkbox
tells Oracle Database Lite to create a sequence on the server side, where the clients
use the Start Value and the server uses Start Value +1. The identifiers are
generated where the server or the client uses either all odd numbers or even
numbers. The window ensures that the clients do not use the same sequence
window.

6.6.3 Example of a Sequence
For this example, the sequence is defined as follows:

Table 6–2

Parameter Definition

Name audiodb_seq

Start Value 1

Increment 1

Window size 200

Threshold 25

Create and Load a Script Into The Project

Using Mobile Database Workbench to Create Publications 6-21

The first client starts at 1 with an increment of 1. The full range of sequential values
provided to client 1 is 200 and a new set of sequential numbers is assigned during
synchronization by the Sync Server when the unused portion of the window is less
than 25.

Oracle Database Lite creates the sequence locally on the Mobile client by executing the
following SQL statement:

create sequence audiodb_seq start with 1 maxvalue 200 increment by 1;

On the second client, the Sync Server adjusts the numbers appropriately to
accommodate what was created on client 1 and creates the sequence locally with the
following SQL statement:

create sequence audiodb_seq start with 201 maxvalue 400 increment by 1;

During each synchronization, the Sync Server tracks the number of assigned windows
to ensure that each client has a unique range. When the Sync Server assigns a new set
of sequential numbers as identifiers for the client, it recreates the sequence, as follows:

drop sequence audiodb_seq;
create sequence audiodb_seq start with 401 maxvalue 600 increment by 1;

6.6.4 Example of a Client and Server Sharing a Sequence
You can define a sequence to provide unique sequence values by assigning all odd or
even sequence numbers to either the client or the server. The value specified in the
Start Value sets the starting value for the clients. If the server is sharing a sequence
with a client, then the start value also determines the values for the server. If the
starting value is odd, then the server will use all even numbers; if the starting value is
even, then the server uses all odd numbers.

The following example demonstrates how to set up a sequence where the odd
numbers are for the client and the even numbers for the server.

Enter the following sequence definitions for the client in MDW when defining the
publication:

The sequence on the server starts at 2 and uses all even numbers; within the
publication, you specified that all clients use odd numbers starting at 1.

6.7 Create and Load a Script Into The Project
You can add a script to this project. Create the script on your file system and then
upload it to MDW. Before you add the script to the project, you can use MDW to test
the script. See the following sections for more information:

Table 6–3

Parameter Definition

Name audiodb_seq

Start Value 1

Increment 2

Window size 200

Threshold 25

Generate server-side sequence Check on

Create and Load a Script Into The Project

6-22 Oracle Database Lite Developer's Guide

■ Section 6.7.1, "Writing SQL Scripts"

■ Section 6.7.2, "Test SQL Scripts"

■ Section 6.7.3, "Load the Script Into the Project"

6.7.1 Writing SQL Scripts
When you write and upload a SQL script to the project, each script is executed
independently by Oracle Database Lite in no specified order. Therefore, if you have
dependencies and need the DDL statements to be executed in a certain order, include
all statements in the correct order in a single script, where each DDL statement is
separated by a semicolon (";").

Alternatively, you can specify the weight for the script when loading them to specify
the order in which each script is executed on the client. See Section 6.7.3, "Load the
Script Into the Project" for more details.

If a SQL script fails upon execution, Oracle Database Lite will execute it once more, in
case the failure was due to a dependency of a later script. However, if you have a
script with a dependency on another script, you could effect your performance while
Oracle Database Lite re-executes all of the scripts to resolve dependencies.

6.7.2 Test SQL Scripts
You can test a SQL script that resides on your file system by selecting Tool->SQL
Window. Through the SQL Wizard, perform the following:

1. Connect to the correct database—whether it is an Oracle database or a device
Oracle Lite database.

2. Load the SQL script from your file system.

3. Execute the script. You can execute the current script or re-execute scripts that are
on the history page. You can choose to have the results displayed on the screen or
spooled to a file.

The following sections describe how to accomplish these tasks:

■ Section 6.7.2.1, "Connect to the Database"

■ Section 6.7.2.2, "Load and Execute SQL Scripts"

6.7.2.1 Connect to the Database
1. Select type of database—Select the radio button next to the type of database to

which you are connecting—an Oracle database or the client Oracle Lite database.
If you selected the client Oracle Lite database, you must also specify the Mobile
client platform and protocol with the drop-down lists. Only currently installed
platforms and protocols are displayed in these drop-down lists.

2. Specify database authentication and destination connection information—Part of
the information necessary for completing the database connection is the
authentication user name and password and the database destination information,

Note: If you upload scripts using one of the Consolidator APIs, you
must also ensure that the order of execution for these scripts does not
matter. Include all dependent DDL statements in a single script and in
the order necessary for clean resolution.

Create and Load a Script Into The Project

Using Mobile Database Workbench to Create Publications 6-23

which can include either the DSN of the Mobile client Oracle Lite database or the
host, port, and SID for the Oracle database.

3. Review database connection values—The final screen displays a summary of all of
the configured values for the database connection. Verify that the information is
correct and then click Finish. You can return to any page to modify the
information by clicking Back.

6.7.2.2 Load and Execute SQL Scripts
You can test any SQL scripts against the database defined in the previous portion of
this wizard.

■ Click Load Script to browse your file system for the script that you want to test.
Define if you want this script to be spooled or auto-committed.

■ Click Execute to run the script on the destination database. The results show up in
the bottom results screen.

If you want, you can spool the results to a file by checking the spool checkbox
before you click Execute. When you check Spool, a dialog appears for you to
define the location and name of the file to receive the output from the script.
Check the Overwrite checkbox if you want this file overwritten each time that the
script is executed.

Check the Autocommit checkbox if you want the SQL committed automatically
after the script completes.

The Results and History tabs show the current results and all past results respectively.
Clear the Results screen by either clicking Clear Results or by checking the Auto Clear
checkbox. Clear the historical information by clicking the Clear History button on the
History page.

6.7.3 Load the Script Into the Project
Define the script on your machine. Once defined, perform the following:

1. Bring the script into the project by clicking File->New->Script.

2. Provide a user-defined name to identify the script and browse for the script in
your file system.

3. Specify the weight, if necessary. You can specify the weight for the script when
loading them to specify the order in which each script is executed on the client.
For example, when creating a master detail table on the client, you must create
first the master table and then the detail table. The client does not know which
script should be executed first, unless you specify a weight to let the client know
the order in which to execute the scripts.

4. Click OK to accept the definition and Cancel to return to the previous screen.

Once you include a script in the project, you can associate it with a publication. See
Section 6.9.4, "Script Tab Associates Existing Scripts With the Publication" for more
information.

Note: Any SQL on the History page can be executed by selecting the
corresponding row and clicking Execute.

Load a Resource Into the Project

6-24 Oracle Database Lite Developer's Guide

6.8 Load a Resource Into the Project
You can load a JAR file that contains Java class files as a resource in a project. Once
loaded as a resource, the JAR file is downloaded to the client on the first
synchronization. In addition, if this resource is modified, it will be sent down on the
next synchronization.

To specify an existing resource, click File->New->Resource.

Provide the JAR file on your machine. Specify a user-defined name to identify the
resource and browse for the JAR file in your file system. Click OK to accept the
definition and Cancel to return to the previous screen.

Once you include a resource in the project, you can associate it with a publication. See
Section 6.9.5, "Resource Tab Associates Existing Resources With the Publication" for
more information.

6.9 Create a Publication
Create a publication by clicking File->New->Publication. You can create the
publication at any time. This starts the dialog for creating a publication.

There are six tabs included for configuring information about the new publication. On
configures general information about the publication, one defines event rules for
automatic synchronization, and the others enable you to associate different objects
with the publication.

If you click OK, then you can associate the objects by selecting the publication name
and then selecting the appropriate tab.

When you are finished creating the publication, click File->Save to save the
publication.

■ Section 6.9.1, "General Tab Configures Publication Name"

■ Section 6.9.2, "Publication Item Tab Associates Publication Items With the
Publication"

■ Section 6.9.3, "Sequence Tab Associates Existing Sequences With the Publication"

■ Section 6.9.4, "Script Tab Associates Existing Scripts With the Publication"

■ Section 6.9.5, "Resource Tab Associates Existing Resources With the Publication"

■ Section 6.9.6, "Event Tab Configures Automatic Synchronization Rules for this
Publication"

6.9.1 General Tab Configures Publication Name
The General tab provides the following information about your new publication
within your project:

Note: You can only load JAR files as resources, not individual class
files. Once you load a JAR file, the only way you can replace it is by
dropping the JAR and then loading the new JAR file.

Note: You cannot add resources for a SQLite Mobile client.

Create a Publication

Using Mobile Database Workbench to Create Publications 6-25

■ Publication name: Enter a valid Java identifier for the publication name. The name
cannot contain any spaces or special characters.

■ Optional description: You can add a description to remind you of the content of
this publication.

■ Client database name: This defaults to the same name as the publication name.
However, you can modify it. The purpose of this name is to specify the name of
the client Mobile database, which is created during the first synchronization.

6.9.2 Publication Item Tab Associates Publication Items With the Publication
Selecting the Publication Item tab from within the publication enables you to associate
any existing publication item to this publication.

Manage Publication Items In This Publication
■ To add an existing publication item to this publication, Click Add.

■ To remove a publication item from this publication, select the desire publication
item from the list and click Remove.

■ To edit the details of the association for the publication item, select the desired
publication item and click Edit.

To accept the current changes, click OK.

6.9.2.1 Associating a Publication Item to this Publication
To associate any publication item to this publication, the publication item must first
exist. Thus, all of the information requested on this screen is about existing publication
items.

Provide the following information to identify the publication item to associate to this
publication:

Identify Existing Publication Item
From the Name drop-down list, select the name of the publication item.

Updatable or Read-Only Snapshot
Select if the snapshot is updatable or read-only. See Section 2.3.1.1, "Manage
Snapshots" for more details.

■ Read-only snapshots are used for querying purposes. Changes made to the master
table are replicated to the snapshot by the Mobile client.

■ Updatable snapshots provide updatable copies of a master table. You can define
updatable snapshots to contain a full copy of a master table or a subset of rows in
the master table that satisfy a value-based selection criteria. You can make changes
to the snapshot which the Mobile Sync propagates back to the master table.

A snapshot can only be updated when all the base tables that the snapshot is
based on have a primary key. If the base tables do not have a primary key, a
snapshot cannot be updated and becomes read-only.

Conflict Resolution
When adding a publication item to a publication, the user can specify winning rules to
resolve synchronization conflicts in favor of either the client or the server. A Mobile
Server synchronization conflict is detected under any of the following situations:

Create a Publication

6-26 Oracle Database Lite Developer's Guide

■ The same row was updated on the client and on the server.

■ Both the client and server created rows with equal primary keys.

■ The client deleted a row and the server updated the same row.

■ The client updated a row and the server deleted the same row. This is considered
a synchronization error for compatibility with Oracle database advanced
replication.

■ For systems with delayed data processing, where a client's data is not directly
applied to the base table (for instance in a three tier architecture) a situation could
occur when first a client inserts a row and then updates the same row, while the
row has not yet been inserted into the base table. In that case, if the DEF_APPLY
parameter in C$ALL_CONFIG is set to TRUE, an INSERT operation is performed,
instead of the UPDATE. It is up to the application developer to resolve the resulting
primary key conflict. If, however, DEF_APPLY is not set, a "NO DATA FOUND"
exception is thrown (see below for the synchronization error handling).

■ All the other errors including nullity violations and foreign key constraint
violations are synchronization errors.

■ If synchronization errors are not automatically resolved, the corresponding
transactions are rolled back and the transaction operations are moved into Mobile
Server error queue in C$EQ, while the data is stored in CEQ$. Mobile Server
database administrators can change these transaction operations and re-execute or
purge transactions from the error queue.

Choose the type of conflict resolution you want for this publication item, as follows:

■ Client wins—When the client wins, the Mobile Server automatically applies client
changes to the server. And if you have a record that is set for INSERT, yet a record
already exists, the Mobile Server automatically modifies it to be an UPDATE.

■ Server wins—If the server wins, the client updates are not applied to the
application tables. Instead, the Mobile Server automatically composes changes for
the client. The client updates are placed into the error queue, just in case you still
want these changes to be applied to the server—even though the winning rules
state that the server wins.

■ Custom—You have created your own callbacks to resolve the conflict resolution.

All synchronization errors are placed into the error queue. For each publication item
created, a separate and corresponding error queue is created. The purpose of this
queue is to store transactions that fail due to unresolved conflicts. The administrator
can attempt to resolve the conflicts, either by modifying the error queue data or that of
the server, and then attempt to re-apply the transaction.

See Section 2.11, "Resolving Conflicts with Winning Rules" for more information.

DML Callback
A user can use Java to specify a customized PL/SQL procedure which is stored in the
Mobile Server repository to be called in place of all DML operations for this
publication item. There can be only one mobile DML procedure for each publication
item. See Section 2.4.1.13, "Callback Customization for DML Operations" for more
information on how to specify a DML Callback.

Enter a string for the schema and package of the DML callback, such as
schema.package_name.

Create a Publication

Using Mobile Database Workbench to Create Publications 6-27

Grouping Function
If you know that two tables should share a map, but Oracle Database Lite would not
normally associate these tables, provide a grouping function that denotes the shared
publication item data between the tables.

The grouping function is a PL/SQL function with the following signature.

(
CLIENT in VARCHAR2,
PUBLICATION in VARCHAR2,
ITEM in VARCHAR2
) return VARCHAR2.

The returned value must uniquely identify the client's group.

In this field, provide the PL/SQL grouping function fully-qualified, either with
schema.package.function_name or schema.function_name.

See the Section 1.2.7, "Shared Maps" in the Oracle Database Lite Troubleshooting and
Tuning Guide for more information.

Priority Condition
Provide a string that is to be added to the publication item query statement to limit
what is returned based on priority.

See Section 1.2.10, "Priority-Based Replication" in the Oracle Database Lite
Troubleshooting and Tuning Guide for more information.

MyCompose Class
Provide a string with the full path and classname of the location and name of the
MyCompose Class. See Section 2.6, "Customize the Compose Phase Using
MyCompose" for more information on this class.

Weight
You can rate the order in which each publication item in this publication is executed
by specifying the weight. This should be a number. Each publication item must have a
unique number in ascending order. The first publication item executed is the one with
the weight of one.

6.9.3 Sequence Tab Associates Existing Sequences With the Publication
You can only associate an existing sequence with the publication on this screen. To
add an existing sequence, click Add.

Click on the drop-down list and select one of the existing sequences to add to the
publication. Click OK to add the sequence; click Cancel to go back to the previous
screen.

Note: The Mobile Server schema owner needs to be granted execute
privilege on the defined grouping function.

Note: You can create a sequence through the File->New->Sequence
screen.

Import Existing Publications and Objects from Repository

6-28 Oracle Database Lite Developer's Guide

6.9.4 Script Tab Associates Existing Scripts With the Publication
You can only associate an existing script with the publication on this screen. To add an
existing script, click Add.

Click on the drop-down list and select one of the existing scripts to add to the
publication. Click OK to add the script; click Cancel to go back to the previous screen.

It is important that all scripts follow the instructions listed in Section 6.7.1, "Writing
SQL Scripts".

6.9.5 Resource Tab Associates Existing Resources With the Publication
You can only associate an existing resource with the publication on this screen. To add
an existing resource, click Add.

Click on the drop-down list and select one of the existing resources to add to the
publication. Click OK to add the resource; click Cancel to go back to the previous
screen.

6.9.6 Event Tab Configures Automatic Synchronization Rules for this Publication
When you select the Event Tab, you can configure data event rules for this publication,
which apply to all automatic synchronization enabled publication items associated in
this publication.

Data events define when an automatic synchronization is triggered.

■ Client Data Events—Synchronize if the client database contains more than
<number> modified records, where you specify the <number> of modifed records
in the client database to trigger an automatic synchronization.

■ Server Data Events—Synchronize if the out queue contains more than <number>
modified records, where you specify the <number> of modifed records in the
client database to trigger an automatic synchronization.

The lowest value that can be provided in these fields is 1. Specify a high value if you
want the synchronization to occur based upon other rules. Click Apply when finished.

6.10 Import Existing Publications and Objects from Repository
You can import existing publications, publication items, sequences, scripts or
resources that already exist within the repository by choosing the Project->Add From
Repository option, as described in the following sections:

■ Section 6.10.1, "Import Existing Publication from Repository"

■ Section 6.10.2, "Import Existing Publication Item From the Repository"

■ Section 6.10.3, "Import Existing Sequence From the Repository"

Note: You can import a script through the File->New->Script
screen.

Note: You can import a resource through the File->New->Resource
screen.

Import Existing Publications and Objects from Repository

Using Mobile Database Workbench to Create Publications 6-29

■ Section 6.10.4, "Import Existing Resource From the Repository"

■ Section 6.10.5, "Import an Existing Script From the Repository"

6.10.1 Import Existing Publication from Repository
You can add an existing publication that already exists in the repository to this project
by selecting Project->Add From Repository->Publication. All associated
objects—publication items, sequences, scripts, resources—are also pulled into the
project with the publication.

To view all publications in the repository, click Search. All publications are shown in
the left-hand screen. To limit the displayed publications to only those with a certain
string as part of the name, provide this string in the Filter and then click Search. Only
those publications that match the filter are shown.

Select the desired publications and either double-click or select the right arrow to
move them to the right window. Once all desired publications are in the right
window, click OK to move these publications into the project.

6.10.2 Import Existing Publication Item From the Repository
You can add an existing publication item that already exists in the repository to this
project by selecting Project->Add From Repository->Publication Item.

To view all publication items in the repository, click Search. All publication items are
shown in the left-hand screen. To limit the displayed publication items to only those
with a certain string as part of the name, provide this string in the Filter and then click
Search. Only those publication items that match the filter are shown.

Select the desired publication items and either double-click or select the right arrow to
move them to the right window. Once all desired publication items are in the right
window, click OK to move these publication items into the project.

Once added into the project, you still must associate them with the publication if you
want to test the synchronization of the publication item. See Section 6.9.2, "Publication
Item Tab Associates Publication Items With the Publication" for more information.

6.10.3 Import Existing Sequence From the Repository
You can add an existing sequence that already exists in the repository to this project by
selecting Project->Add From Repository->Sequence.

To view all sequences in the repository, click Search. All sequences are shown in the
left-hand screen. To limit the displayed sequences to only those with a certain string as

Note: In the Search Filter, you can use the same pattern matching
characters in a valid SQL WHERE clause. The filter is case-sensitive;
use upper-case characters.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter
is case-sensitive; use upper-case characters.

Import Existing Publications and Objects from Repository

6-30 Oracle Database Lite Developer's Guide

part of the name, provide this string in the Filter and then click Search. Only those
sequences that match the filter are shown.

Select the desired sequences and either double-click or select the right arrow to move
them to the right window. Once all desired sequences are in the right window, click
OK to move these sequences into the project.

Once added into the project, you still must associate them with a publication if you
want to test it with a synchronization. See Section 6.9.3, "Sequence Tab Associates
Existing Sequences With the Publication" for more information.

6.10.4 Import Existing Resource From the Repository
You can add an existing resource that already exists in the repository to this project by
selecting Project->Add From Repository.

To view all resources in the repository, click Search. All resources are shown in the
left-hand screen. To limit the displayed resources to only those with a certain string as
part of the name, provide this string in the Filter and then click Search. Only those
resources that match the filter are shown.

Select the desired resources and either double-click or select the right arrow to move
them to the right window. Once all desired resources are in the right window, click
OK to move these resources into the project.

Once added into the project, you still must associate them with a publication if you
want to test it with a synchronization. See Section 6.9.5, "Resource Tab Associates
Existing Resources With the Publication" for more information.

6.10.5 Import an Existing Script From the Repository
You can add an existing script that already exists in the repository to this project by
selecting Project->Add From Repository->Script.

To view all scripts in the repository, click Search. All scripts are shown in the left-hand
screen. To limit the displayed scripts to only those with a certain string as part of the
name, provide this string in the Filter and then click Search. Only those scripts that
match the filter are shown.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter is
case-sensitive; use upper-case characters.

Note: You cannot add resources for a SQLite Mobile client.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter
is case-sensitive; use upper-case characters.

Test a Publication by Performing a Synchronization

Using Mobile Database Workbench to Create Publications 6-31

Select the desired scripts and either double-click or select the right arrow to move
them to the right window. Once all desired scripts are in the right window, click OK
to move these scripts into the project.

Once added into the project, you still must associate them with a publication if you
want to test it with a synchronization. See Section 6.9.4, "Script Tab Associates Existing
Scripts With the Publication" for more information.

6.11 Create a Virtual Primary Key
For fast refresh, you must have a primary key. If the table, view, or synonym does not
currently have a primary key, you can designate one of the columns as the virtual
primary key through this screen, as follows:

1. Using the drop-down lists, choose the following:

■ Schema name

■ Object type: table, view or synonym type

■ Any string that exists within the object name, if desired

2. Click Search, which brings up a list of available objects.

3. From the object list, choose the appropriate table, view, or synonym. Once chosen,
the available columns are listed.

4. Select the column(s) that you wish to be the primary key and click OK.

If you have a composite primary key, iteratively add each column within the
composite primary key.

6.12 Test a Publication by Performing a Synchronization
You can create a test to perform a synchronization of the designated publication. Click
Project->Test Publication. When you create the test, MDW automatically creates the
subscription for the user.

1. Click Create to design the test and provide the following information:

■ Name: If the test is remote, then the user name is populated with the
registered owner of the remote target device. If the test is local, then the user
name should be a valid Mobile user in the repository.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter
is case-sensitive; use upper-case characters.

Note: All scripts added to the project must follow the guidelines as
described in Section 6.7.1, "Writing SQL Scripts".

Note: Any virtual primary key must be unique and not null.

Deploy the Publications in the Project to the Repository

6-32 Oracle Database Lite Developer's Guide

■ Publication: From the drop-down list, select one of the available publications
in this project for this test.

■ Client type: Designate if the client is local or remote. Default is local. If Active
Sync is not installed, the remote option is not available.

■ Specify a user that is defined in Mobile Manager.

Click OK to save the test; click Cancel to revert back to the previous screen.

2. Once created, click Synchronize to perform a synchronization for the designated
publication. On the pop-up dialog, provide the password for the given username
and the URL of the Mobile Server. The URL for the Mobile Server should be the
hostname/webtogo.

Click Option to specify priority of the publication items, as follows:

■ High Priority: Limits synchronization to server tables flagged as high priority,
otherwise all tables are synchronized.

■ Push Only: Upload changes from the client to the server only, do not
download. This is useful when data transfer is one way, client to server.

■ Complete Refresh: All data is refreshed from the server to the client.

■ Debug: Turn on debugging when synchronizing.

■ Selective Synchronization: Determine which publication and publication items
are allowed to synchronize. When you click this option, move the publication
items that you want to synchronize from the left window to the right window
using the arrow buttons. For details on how selective synchronization
performs, see Section 4.1.6, "Manage What Tables Are Synchronized With
ocSetTableSyncFlag" and Section 4.2.8, "Manage What Tables Are
Synchronized With Selective Sync".

Click OK to save the synchronization options or Cancel to return to the previous
screen.

6.13 Deploy the Publications in the Project to the Repository
You can deploy one or more of the publications in the current project from the
development/test Mobile Server repository to a target production Mobile Server
repository by clicking File->Deploy. You should adequately test all publications
before deploying to the production Mobile Server repository.

All available publications are displayed in the project publications section. To limit the
displayed publications to only those with a certain string as part of the name, provide
this string in the Filter and then click Search. Only those publications that match the
filter are shown.

Note: To remove any tests, select the test and click Remove.

Note: You can only use fast refresh with a high priority restricting
predicate. If you use any other type of refresh, the high priority
restricting predicate is ignored.

See Section 1.2.10, "Priority-Based Replication" in the Oracle Database
Lite Troubleshooting and Tuning Guide for more information.

Deploy the Publications in the Project to the Repository

Using Mobile Database Workbench to Create Publications 6-33

Select the desired publications and click OK to deploy these publications into the
repository. A dialog appears where you specify the remote database connection
information, as follows:

■ User name and password for database connection authentication.

■ JDBC Driver type: Based on the type of the JDBC driver, different information is
required. At this time, you can only use the JDBC Thin driver. Provide the host
name, port, and SID for the remote database.

Click OK to accept the input values for the remote database; click Cancel to return to
the previous screen.

Note: In the Search Filter, you can use the same pattern matching
characters in a valid SQL WHERE clause. The filter is case-sensitive;
use upper-case characters.

Deploy the Publications in the Project to the Repository

6-34 Oracle Database Lite Developer's Guide

Using the Packaging Wizard 7-1

7
Using the Packaging Wizard

The following sections enable you to package and publish your Mobile application
definitions using the Packaging Wizard.

■ Section 7.1, "Using the Packaging Wizard"

■ Section 7.2, "Packaging Wizard Synchronization Support"

7.1 Using the Packaging Wizard
After you have completed the code implementation for your application, you need to
define the SQL commands that retrieve the data for the user snapshot—also known as
a publication. MDW (as described in Chapter 6, "Using Mobile Database Workbench
to Create Publications") is a graphical tool that enables you to define the publications
for your application. Then, use the Packaging Wizard to package the application and
publish the final application product to the Mobile Server to complete the
subscription.

In general, you can create a publication—or components of a publication—using one
of the following methods:

■ SQL on the back-end Oracle database

■ Consolidator APIs

■ MDW

■ Packaging Wizard

■ mSQL on the Mobile Client against the Oracle Lite database

If you create the publication using any method other than the Packaging Wizard, you
can import the definition into the Packaging Wizard. However, these tools and the
Packaging Wizard are separate. Thus, once the publication is published by the
Packaging Wizard, you can only modify it through the Packaging Wizard.

Important: If you modify the publication or any component of the publication using
any method other than the Packaging Wizard, then it will not show up in your
published application.

The following is the recommended method for creating the publication for the
application:

Note: If you create your publication using the Packaging Wizard,
you cannot use remote databases for your application.

Using the Packaging Wizard

7-2 Oracle Database Lite Developer's Guide

■ Create a new Mobile application definition—An application definition is more
than the code that you have implemented. It consists of the implementation, the
publication with its publication items, and other components. Use the Mobile
Database Workbence (MDW) tool (as described in Chapter 6, "Using Mobile
Database Workbench to Create Publications" for performing an iterative approach
to defining your publications.

■ Edit an existing Mobile application definition within the Packaging Wizard—You
can always go back and edit an existing Mobile application definition for tuning
purposes, to modify the publication, or other reasons.

■ Package a Mobile application definition for easy deployment within the Packaging
Wizard—Once the application is finished with development, you need to package
the components into either a WAR or JAR file before you can publish the
application definition.

■ Publish an application definition to the Mobile Server—You can either publish
your application definition to the Mobile Server with the Packaging Wizard or
through the Mobile Manager.

The following sections describe how to use the Packaging Wizard tool:

■ Section 7.1.1, "Starting the Packaging Wizard"

■ Section 7.1.2, "Specifying New Application Definition Details"

■ Section 7.1.3, "Listing Application Files"

■ Section 7.1.4, "Adding Servlets (For OC4J and Web-to-Go Applications Only)"

■ Section 7.1.5, "Entering Database Information"

■ Section 7.1.6, "Defining Application Roles"

■ Section 7.1.7, "Defining Snapshots for Replication"

■ Section 7.1.8, "Defining Sequences for Replication"

■ Section 7.1.9, "Defining Application DDLs"

■ Section 7.1.10, "Editing Application Definition"

■ Section 7.1.11, "Troubleshooting"

7.1.1 Starting the Packaging Wizard
To launch the Packaging Wizard, enter the following using a Command Prompt
window.

runwtgpack

Note: If you enable the Mobile Server to be SSL-Enabled, then you
have to change the configuration on the host where the Packaging
Wizard is located in order for it to successfully communicate with the
Mobile Server.

In order for Packaging Wizard to be SSL-Enabled, set the SSL
parameter to TRUE in the webtogo.ora file located on the host where
the MDK is installed.

Using the Packaging Wizard

Using the Packaging Wizard 7-3

Figure 7–1 shows the Welcome screen for the Packaging Wizard, which enables you to
create, edit, or remove the Mobile application definition as described fully in
Table 7–1.

Figure 7–1 Packaging Wizard - Make A Selection Dialog

Using the ’Select a Platform’ dialog, select the platform for which you want to package
your application definition. As Figure 7–2 displays, this dialog enables you to specify a
platform. If you are packaging a WAR file, this dialog only displays Web based
platforms.

Table 7–1 Make a Selection Dialog

Feature Description

Create a new
application
definition

Define a new Mobile application definition with the application
implementation, publication items, and so on.

Edit an existing
application
definition

Edit an existing Mobile application definition. When selected, all existing
application definitions are presented in a drop-down box. Users can
select the desired Mobile application definition from the list.

All applications listed in this list have been created or published using
the Packaging Wizard. Any application definition created by MDW will
not appear in this list.

Remove an existing
application
definition

Remove an existing Mobile application definition. When selected, all
existing application definitions are presented in a drop-down box. Users
can select the desired Mobile application definition from the list.

This option removes the application definition from the Packaging
Wizard; it does not delete the application from within the Mobile Server.

Creating a new
application
definition using a
WAR file

Create an application definition using a Web Application Archive (WAR)
file. You can enter the name of the WAR file or locate it using the
’Browse’ button.

Open a Packaged
application
definition

Select an application definition that has been packaged a JAR file. You
can enter the name of the packaged application or locate it using the
’Browse’ button.

Using the Packaging Wizard

7-4 Oracle Database Lite Developer's Guide

Figure 7–2 Select a Platform Dialog

7.1.2 Specifying New Application Definition Details
Using the Application dialog, you can name a new application and specify its storage
location on the Mobile Server. As Figure 7–3 displays, the Application dialog includes
the following fields.

Using the Packaging Wizard

Using the Packaging Wizard 7-5

Figure 7–3 Application Dialog

Table 7–2 describes the Application dialog.

Table 7–2 Application Dialog Description

Field Name Description Required

Application Name The name of the new Mobile application definition.

When packaging a WAR file, the application name must
be set to the value of the element <display-name>,
which can be found under the main element <web-app>
in the file web.xml.

Yes

Using the Packaging Wizard

7-6 Oracle Database Lite Developer's Guide

Virtual Path A path that is mapped from the root directory of the
server repository to the Mobile application itself. The
virtual path eliminates the need to refer to the application
entire directory structure. It indicates that all of the
subdirectories and all of the files that are in the virtual
path will be uploaded exactly as they are in the directory
structure to the Mobile Server Repository when the
application is published. It also provides the application
with a unique identity.

Application Root Directory

As Figure 7–3 displays, the name /tutorial indicates
the virtual path of the application. The name that you
enter as the virtual path of the application becomes the
application root directory within the Mobile Server
Repository, when the application is published.
Consequently, you can specify the application root
directory by the name that you enter in the virtual path
field. This name can be different from the application
name, but should not contain spaces. For example, your
application name can be ’Sales Office’ and your virtual
path ’/Admin’. In this case, ’/Admin’ becomes the name
of the application root directory within the Mobile Server
Repository. The application root directory is the location
where the actual application files are stored within the
Mobile Server Repository.

When the administrator publishes the application, the
Packaging Wizard automatically uses the name that you
entered in the virtual path as the name of the application
root directory in the Mobile Server Repository. However,
the administrator can change the name of the application
root directory in the Mobile Server Repository by entering
a different name for it when the administrator publishes
the application.

Yes

Description A brief description of the Mobile application.

When packaging a WAR file, the description must be set
to the value of the element <description> found under
the main element <web-app> in the web.xml file.

Yes

Table 7–2 (Cont.) Application Dialog Description

Field Name Description Required

Using the Packaging Wizard

Using the Packaging Wizard 7-7

7.1.3 Listing Application Files
Use the Files panel to list your application files and to specify their location on the
local machine. The Packaging Wizard analyzes the contents of the Local Application

Application
Classpath

(OC4J and
Web-to-Go
Applications Only)

The application classpath specifies where the classes
(servlets, beans) for the application are located. The
default application classpath is always the application root
directory. To specify additional locations that the Mobile
Server can search for application classes, add other
directories or JAR and ZIP files to the application
classpath for Web applications.

Entries must be separated by semicolons (;)

In addition, Web-to-Go automatically appends the
following to the application classpath:

1. Application root directory

2. Classpath as specified in the ’Application’ dialog in
the Packaging Wizard

3. Classes located under WEB-INF/classes

4. All JAR and ZIP files located in the directory
WEB-INF/lib

5. Classes located under the directory
/shared/WEB-INF/classes

6. All jar and zip files located in the directory
/shared/WEB-INF/lib

7. SYSTEM classpath

No

Default Page

(Web Applications
Only)

The server location of the Web page that functions as the
Mobile application's entry point. This is a relative path to
the repository directory. For example, if the server
directory is /apps and the default page is index.htm,
the Default Page is /apps/index.htm. The default page
can be a servlet. A generic page is issued if the user does
not specify a default page.

When packaging a WAR file, the default page must be set
to the value of the element <welcome-file-list> in
the web.xml file.

Yes

Local Application
Directory

The directory on the local machine that contains all
components of the application. You can type this location
or locate it using the ’Browse’ button.

During development, the application root directory is set
to the local application directory.

Yes

Icon

(Web Applications
Only)

The GIF image of the Mobile application is used as the
application icon in the Mobile workspace. Users may enter
the icon name in the corresponding field or locate it using
the ’Browse’ button.

When packaging a WAR file, the description field must be
set to the value of the element <large-icon> as a
primary choice or <small-icon> as a secondary choice
found under the main element <web-app> in the
web.xml file.

Publication Name Publication name of an existing application in the Mobile
Server repository. You can enter the publication name or
locate it using the Browse button.

No

Table 7–2 (Cont.) Application Dialog Description

Field Name Description Required

Using the Packaging Wizard

7-8 Oracle Database Lite Developer's Guide

Directory and displays each file's local path. As Table 7–3 describes, the Files tab
contains the following field.

Figure 7–4 displays the Files tab.

Figure 7–4 Files Tab

You can add, remove, load, or compile any of the files that are listed in the ’Files’
dialog. If you are creating a new application, the Packaging Wizard automatically
analyzes and loads all files listed under the local directory when you proceed to the
’Files’ dialog. If you are editing an existing application, upload your individual
application files using the ’Load’ button.

If you are importing a WAR file into an existing application, click the Import WAR
File button on the ’Files’ tab. Once you have specified the location of the WAR file, the
’Files’ tab displays content of the WAR file.

7.1.3.1 Compile JSP (For Web-to-Go Applications Only)
The ’Compile JSP’ button enables you to compile your JSP files for deployment. If you
click the ’Compile JSP’ button, the following ’Compile JSP’ dialog appears with
detailed compilation information. If there are any errors, you should correct the JSP
files before proceeding.

Figure 7–5 displays the Compile JSP Dialog.

Table 7–3 Files Tab Description

Field Description Required

Local Path The absolute path of each Mobile application file.
Each entry on the list includes the complete path
of the individual file or directory.

Yes

Using the Packaging Wizard

Using the Packaging Wizard 7-9

Figure 7–5 Compile JSP Dialog

You can sort the files by their extensions or by the directory in which they are located.
To sort files, click the ’By Extension’ or ’By Directory’ options.

7.1.3.2 Filters
When you click the ’Load’ button, the ’Input’ dialog appears. You can use the ’Input’
dialog to create a comma-separated list of filters that either include or exclude
application files from the upload process. To exclude a file, type a preceding minus
sign (-) before the file name. For example, to load all files but exclude files with the
.bak and .java suffixes, enter the following.

,-.bak,-*.java

Figure 7–6 displays the Input dialog.

Figure 7–6 Input Dialog

7.1.4 Adding Servlets (For OC4J and Web-to-Go Applications Only)
The Packaging Wizard analyzes servlets in the File tab and defines them on the Mobile
Server. As displayed in Figure 7–7, you can view your application's servlets in the
Servlets tab.

Using the Packaging Wizard

7-10 Oracle Database Lite Developer's Guide

Figure 7–7 Servlets Tab

As described in Table 7–4, the ’Servlets’ tab includes the following fields.

Using the ’Servlets’ tab, you can add, remove, or load any servlets that are listed under
the ’Servlets’ tab. If you are creating a new application, the Packaging Wizard
automatically lists all ’Servlets’ based on files that are listed in the ’Files’ tab. If you are
editing an existing application, use the ’Load’ button to locate and load individual
servlets.

7.1.5 Entering Database Information
Using the Database tab, you can provide connection information and specify how the
Mobile application user connects to the replication master groups on the Oracle server.

Figure 7–8 displays the Database tab.

Table 7–4 Servlets Tab Description

Field Description Required

Servlet Name The servlet's name. For example: DeleteDetail. You will then
refer the servlet as:

application_virtualpath/servlet name

Yes

Servlet Class The fully qualified class of the servlets to be added. Yes

Using the Packaging Wizard

Using the Packaging Wizard 7-11

Figure 7–8 Database Tab

Enter the database name that you want to create on the client side. For example, a
native Windows 32 application accesses the client database with this name. However,
this is not required for Web applications.

7.1.6 Defining Application Roles
Use the ’Roles’ tab to define the Mobile Server application's roles. Developers create
roles in the application's code and the Packaging Wizard re-declares them for the
Oracle database. After you publish the application to the Mobile Server, you can
assign roles to users and groups, using the Mobile Manager.

Figure 7–9 displays the Roles tab.

Using the Packaging Wizard

7-12 Oracle Database Lite Developer's Guide

Figure 7–9 Roles Tab

As described in Table 7–5, the Roles tab includes the following field.

All Web-to-Go/Mobile Server applications contain a default role. You can add or
remove roles from the Roles dialog using the ’New’ or ’Delete’ button.

7.1.7 Defining Snapshots for Replication
If you did not use MDW to create a subscription, then you can use the Snapshots tab to
create replication snapshots for your application. A snapshot must have the same
name as the database object such as a table or view. It must be unique across all
applications. However, you must ensure that you use unique names when creating
database objects. The Packaging Wizard enables you to create snapshots for the chosen
platform. When you specify a view as the base object type, the Packaging Wizard
enables you to specify the Parent Hint, Virtual Primary Hint, and the Primary Key
Hint. For Web-to-Go, use the Windows 32 platform.

Figure 7–10 displays the Snapshots tab.

Table 7–5 Roles Tab Description

Field Description

Roles Assigns roles to the Web-to-Go/Mobile Server application.

Note: You cannot create snapshots for a SQLite Mobile client.

Using the Packaging Wizard

Using the Packaging Wizard 7-13

Figure 7–10 Snapshots Tab

Table 7–6 describes the Snapshots tab.

You can add or remove snapshots from the Snapshots tab using the ’New’ or ’Delete’
button. You can also import or edit snapshots using the ’Import’ or ’Edit’ button.

Note: Once you have specified a database connection, it is used for
the remainder of your Packaging Wizard session. If you need to
switch between an Oracle database and Oracle Database Lite, but have
already established a connection, you must quit the Packaging Wizard
application completely and run runwtgpack.bat again.

Table 7–6 Snapshots Tab Description

Field Description Required

Name The name(s) of the snapshot(s) associated with the
Web-to-Go/Mobile Server application. It must be the same
name as the underlining database object.

Yes

Template Lists available snapshot templates. The template is a SQL
statement that is used to create the snapshot. The template
may contain variables. After you publish the template to the
Mobile Server, you can specify user-specific template
variables using the Mobile Manager. However, you cannot
modify snapshots in the Mobile Manager.

Yes

Weight This is the order of tables to be replicated. For tables with a
master-detail relationship, the master table needs to be
replicated first and therefore should have a lower weight.

No

Using the Packaging Wizard

7-14 Oracle Database Lite Developer's Guide

7.1.7.1 Creating New Snapshots
To create new snapshots, click ’New’. The ’New Snapshots’ dialog appears. As
Figure 7–11 displays, if you click the Server tab, the Server dialog appears, which
contains fields for snapshot name, weight, owner, and SQL, as well as a check box for
generating SQL.

Figure 7–11 New Snapshots Dialog - Server Tab

For a description of Weight, see Section 7.1.7, "Defining Snapshots for Replication".

By default, Generate SQL is enabled, which automatically generates the SQL statement
for you. Use the Win32 tab for the Mobile Client for Web-to-Go.

If you click the Win32 tab, the following dialog appears.

Note: You can import multiple snapshots from the Snapshots tab or
import one when you create a new table from the ’New Table Dialog’.

Using the Packaging Wizard

Using the Packaging Wizard 7-15

Figure 7–12 Edit Snapshots Dialog - Win32 Tab

Create a new snapshot on the Mobile Client for Web-to-Go by modifying the following
features in the New Snapshots dialog.

As Figure 7–7 describes, the New Snapshots dialog displays the following information.

7.1.7.2 Creating Indexes for Snapshots
To create an index for a snapshot using the Packaging Wizard, use the following
procedure.

Table 7–7 New Snapshots Dialog Description

Field Description

Updatable When selected, this check box creates an updatable snapshot of the named
table.

Template Displays the snapshot template for the named table. You can modify the
snapshot template. Administrators can instantiate variables for different users
to this template using the Mobile Manager. For more information about
template variables, see Section 7.1.7, "Defining Snapshots for Replication".

Using the Packaging Wizard

7-16 Oracle Database Lite Developer's Guide

1. From the Snapshots dialog, select the Edit button to create an index from an
existing snapshot, or the New button for creating a new snapshot and new index.

2. Select the platform tab on the dialog which appears, for example Win 32. The SQL
statement which defines your snapshot appears in the ’Template’ field. Below that
is an ’Indices’ table; to create a new index, select the ’New’ button beneath this
table.

As Table 7–8 describes, enter values in the Win32 tab of the Edit Snapshots dialog.

3. There are three columns in the ’Indices’ table:

a. Name - This is the name of the index.

b. Type - Indexes can be Regular, Primary, or Unique. There is a drop down
menu to select this.

c. Columns - Enter the column name which the index uses.

Table 7–8 Win32 Tab - Edit Snapshots Dialog

Field Description

Create on Client If selected, creates the snapshot on the client machine.

Updatable If selected, creates an updatable snapshot of the specified table or
view.

Base Object Type Select Table to include a table as the base object type.

or

Select View to include a view as the base object type.

Conflict Resolution Select Server Wins to specify conflict resolution in favour of the
server.

or

Select Client Wins to specify conflict resolution in favour of the client.

DML Procedure To specify the DML procedure, enter the name of the Callout Package
for DML operation.

Refresh Type Select Fast Refresh to specify a quick refresh of the snapshot.

or

Select Complete Refresh to specify a complete refresh of the snapshot.

Parent Hint To specify the parent hint, enter the Parent Table Name.

Virtual Primary Hint To specify the virtual primary hint, enter the Base Object Name and
Base Object Column in the corresponding fields.

Template Displays the snapshot template for the named table. You can modify
the snapshot template. Administrators can instantiate variables for
different users to this template using the Mobile Manager. For more
information about template variables, see Section 7.1.7, "Defining
Snapshots for Replication".

Primary Key Hint This section displays the table name, column name, and mapping
column name of the snapshot.

Indices This section displays the name, type, and column name of indices
used in a snapshot.

Using the Packaging Wizard

Using the Packaging Wizard 7-17

7.1.7.3 Importing Snapshots
To import snapshots from an Oracle database or from Oracle Database Lite, click the
’Import’ button. As Figure 7–13 describes, the database connection window appears if
you have not specified a connection.

Figure 7–13 Connect to Database Dialog

Enter the user name, password, and database URL for the Oracle database, or Oracle
Database Lite from which you are importing your snapshot(s).

Where:

■ Username and password: The Mobile Server repository administrator username
and password.

■ Database URL: You can specify the JDBC URL of an Oracle Lite database, an
Oracle database or an Oracle RAC database, as follows:

■ If on a client, specify the Oracle Lite database with jdbc:polite:webtogo.

■ The URL for a back-end Oracle database has the following structures:
jdbc:oracle:thin:@<host>:<port>:<SID> or
jdbc:oracle:thin:@<oracle_net_or_tnsnames_entry>

■ The JDBC URL for an Oracle RAC database can have more than one address
in it for multiple Oracle databases in the cluster and follows this URL
structure:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
)
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME
)))

The Tables window appears.

Note: For full details on specifying JDBC URLs, see Chapter 2,
"Connecting to the Oracle Lite and Oracle Databases" in the Oracle
Database Lite Administration and Deployment Guide.

Note: See Chapter 2, "Connecting to the Oracle Lite and Oracle
Databases" in the Oracle Database Lite Administration and Deployment
Guide for directions on how to construct the JDBC URL for either the
Oracle database or the client Oracle Lite database.

Using the Packaging Wizard

7-18 Oracle Database Lite Developer's Guide

Figure 7–14 displays the Tables dialog.

Figure 7–14 Tables Dialog

Click the Schema list and choose the required schema from the list displayed. The
Tables dialog displays views associated with the chosen schema. Select the view that
you need to import. Click Add and click Close.

7.1.7.4 Editing Snapshots
To edit a snapshot, select the snapshot from the Snapshots dialog and click Edit. As
displayed in Figure 7–15, the Edit Snapshots dialog appears.

Using the Packaging Wizard

Using the Packaging Wizard 7-19

Figure 7–15 Edit Snapshots Dialog - Win32 Tab

As described in Table 7–9, edit the snapshot by modifying the following features of the
Edit Table window:

Table 7–9 Edit Snapshots Dialog - Win32 Tab Description

Feature Description

Create on Client When selected, the checkbox allows you to edit the snapshot on
the Mobile Client for Web-to-Go.

Updatable When selected, this check box creates an updatable snapshot of
the named table.

Template Displays the snapshot template for the named table. You can
modify the snapshot template. Administrators can instantiate
variables for different users to this template using the Mobile
Manager.

Using the Packaging Wizard

7-20 Oracle Database Lite Developer's Guide

7.1.8 Defining Sequences for Replication
Use the Sequences dialog to define sequence support for the application, which uses
sequences as unique primary key value. Sequences are important because they
eliminate replication conflicts by preventing duplicate primary key values across
disconnected applications. For full details of how to use and create sequences within
Oracle Database Lite, see Section 6.6, "Create a Sequence".

Figure 7–16 displays the Sequences tab.

Figure 7–16 Sequences Tab

As described in Table 7–10, the Sequences dialog includes the following fields.

Table 7–10 Sequences Dialog Description

Field Description Required

Name The name of the sequence used by the Web-to-Go
application in disconnected mode.

Yes

Type The type of sequence used by the Web-to-Go
application in disconnected mode.

Window. The window sequence assigns a unique
range of values to each client. Window sequences are
unique to each client and never overlap with those of
other clients. When a client uses all the values in its
sequence range, Web-to-Go recreates the sequence
with a new, unique range of values the next time the
client disconnects from the back-end Oracle database.

Yes

Start Value The sequence's start value on the Mobile Client for
Web-to-Go. The sequence begins at this number and
then increments according to the increment number
you define.

Yes

Using the Packaging Wizard

Using the Packaging Wizard 7-21

You can add or remove sequences from the Sequences dialog by clicking the Add or
Remove button.

7.1.8.1 Importing Sequences
To import sequences from an Oracle database, click the Import button. As Figure 7–17
displays, the Sequences dialog appears.

Figure 7–17 Sequences Dialog

Select the sequence you want to import, click Add, and then click Close.

To edit a sequence, select the sequence from the Sequences dialog and click Edit. As
Figure 7–18 displays, the Edit Sequences dialog appears.

Increment The number by which the sequence increments on the
Mobile Client for Web-to-Go, beginning at its start
value.

Yes

Window Size Defines the range of numbers in a window sequence. Yes

Threshold Defines the minimum range of required numbers in a
window sequence. Web-to-Go creates a new sequence
when the existing one reaches this range and when
the client disconnects from the back-end database.

Yes

Server Start The sequence's start value on the Oracle database. The
sequence begins at this number and then increments
according to the increment number you define. This
number must be different from the sequence start
value on the Mobile Client for Web-to-Go.

No

Server Increment The number by which the sequence increments on the
Oracle database, beginning at its start value.

No

Server Minimum The minimum start value for an ascending sequence
on the Oracle database. For example, an ascending
sequence could start at 1 and continue on in ascending
order.

No

Server Maximum The maximum start value for a descending sequence
on the Oracle database. For example, a descending
sequence could start at -1 and continue in descending
order.

No

Table 7–10 (Cont.) Sequences Dialog Description

Field Description Required

Using the Packaging Wizard

7-22 Oracle Database Lite Developer's Guide

Figure 7–18 Edit Sequences Dialog

As Table 7–11 describes, edit the sequence by modifying the following features of the
Edit Sequences dialog.

Table 7–11 Edit Sequences Dialog Description

Feature Description

Name The name of the sequence.

Create on Server When selected, this check box enables the options for creating a
sequence on the Oracle database. Information entered by the
user is used to generate a SQL script to create the sequence on
the Oracle server.

Start Value The start value of the sequence on the Oracle database.

Increment The increment of the sequence on the Oracle database,
beginning with its start value.

Minimum The minimum start value for an ascending sequence on the
Oracle database. For example, an ascending sequence could start
at 1 and continue in ascending order.

Maximum The maximum start value for a descending sequence on the
Oracle database. For example, a descending sequence could start
at -1 and continue in descending order.

Create on Client When selected, this check box enables the options for creating a
sequence on the Mobile Client for Web-to-Go.

Type Defines the type of sequence on the Mobile Client for
Web-to-Go. Options include the window and leapfrog
sequences.

Start Value The sequence start value on the Mobile Client for Web-to-Go.

Increment The increment of the sequence on the Mobile Client for
Web-to-Go, beginning with its start value.

Window Size The range of numbers that constitute a window sequence on the
Mobile Client for Web-to-Go. This information is not used by the
leapfrog sequence.

Using the Packaging Wizard

Using the Packaging Wizard 7-23

7.1.9 Defining Application DDLs
Use the DDLs dialog to define any DDL (Data Definition Language) statements that
the Web-to-Go application can execute. DDLs are only supported on Windows 32 and
Windows CE platforms. All DDL statements must have a unique name and the weight
must be specified for every DDL. One way to accomplish this is to modify your DDL
names by preceding them with your application name. After you publish the
application to the Mobile Server, you can create additional DDL statements using the
Mobile Manager.

Figure 7–19 displays the DDLs dialog.

Figure 7–19 DDLs Dialog

As described in Table 7–12, the DDLs dialog includes the following fields.

Threshold The minimum range of required numbers in a window
sequence. Web-to-Go creates a new sequence when the existing
one reaches this range and when the client disconnects from the
back-end Oracle database. This information is not used by the
leapfrog sequence.

Table 7–12 DDLs Dialog Description

Field Description

Name The DDL name.

DDL Statement Defines DDL statements with the Web-to-Go application. These
DDL statements will be executed when the Web-to-Go
application runs on the client.

Table 7–11 (Cont.) Edit Sequences Dialog Description

Feature Description

Using the Packaging Wizard

7-24 Oracle Database Lite Developer's Guide

You can add or remove DDLs from the DDLs dialog by clicking the Add or Remove
button. When you click the ADD button, the New DDL dialog appears, as described in
Figure 7–20.

Figure 7–20 New DDL Dialog

7.1.9.1 Importing Views and Index Definitions
To import views and index definitions from an Oracle database, click the Import
button. As displayed in Table 7–21, the Import DDLs dialog appears.

Figure 7–21 Import DDLs Dialog

To import an index definition, click the Indexes tab and then click the schema from
which you want to import an index. Select the index you want to import, click Add,
and then click Close.

Weight The order of DDLs to be executed on the Mobile Client.

Table 7–12 (Cont.) DDLs Dialog Description

Field Description

Packaging Wizard Synchronization Support

Using the Packaging Wizard 7-25

To import a view definition, click the Views tab and then click the schema from which
you want to import a view. Select the view you want to import, click Add, and then
click Close.

7.1.10 Editing Application Definition
You can edit application definitions by launching the Packaging Wizard and selecting
"Edit an existing application definition."

7.1.11 Troubleshooting
The Packaging Wizard also supports development mode. In this mode, the Packaging
Wizard only enables you to define Web application information, list the application
files, compile JSPs, add servlets, and make registry changes. Since the application is
packaged to your local machine, it requires neither connectivity nor database
information.

To launch the Packaging Wizard in development mode, enter the following using the
Command Prompt.

runwtgpack -d

7.2 Packaging Wizard Synchronization Support
The Packaging Wizard and the Mobile Manager provide the ability to perform the
most commonly used functions of the publish and subscribe model, package and
publish applications, create or drop users, and create or drop subscriptions. More
sophisticated functionality is provided by the Consolidator Manager and Resource
Manager APIs. Table 7–13 describes basic features.

Table 7–13 Packaging Wizard Synchronization Support

Function Packaging Wizard
Mobile
Manager API

Open Connection No No Yes

Create User No Yes Yes

Drop User No Yes Yes

Create Publication Yes No Yes

Create Publication Item Yes No Yes

Create Publication Item Index Yes No Yes

Drop Publication No Yes Yes

Drop Publication Item Special - See the Packaging
Wizard documentation for
more details.

No Yes

Drop Publication Item Index Yes No Yes

Create Sequence Yes No Yes

Create Sequence Partition Yes No Yes

Drop Sequence Yes No Yes

Drop Sequence Partition Yes No Yes

Add Publication Item Yes No Yes

Remove Publication Item No No Yes

Packaging Wizard Synchronization Support

7-26 Oracle Database Lite Developer's Guide

More advanced features of Data Synchronization are only generally available by using
the Consolidator Manager and Resource Manager APIs. Table 7–14 describes these
features.

Create Subscription No Yes Yes

Deinstantiate Subscription No No Yes

Set Subscription Parameter No Yes Yes

Drop Subscription No Yes Yes

Commit Transaction No No Yes

Rollback Transaction No No Yes

Close Connection No No Yes

Table 7–14 Data Synchronization Advanced Function Description

Function Packaging Wizard
Mobile
Manager API

Create Virtual Primary Key Column Yes No Yes

Drop Virtual Primary Key Column Yes No Yes

Add Mobile DML Procedure Yes No Yes

Remove Mobile DML Procedure Yes No Yes

Reinstantiate Publication Item No No Yes

Parent Hint Yes No Yes

Dependency Hint Yes No Yes

Remove Dependency Hint Yes No Yes

Enable Publication Item Query Cache No No Yes

Disable Publication Item Query Cache No No Yes

Primary Key Hint Yes No Yes

Purge Transaction No No Yes

Execute Transaction No No Yes

Complete Refresh Yes Yes Yes

Execute Statement No No Yes

Generate Metadata No No Yes

Reset Cache No No Yes

Cache Dependencies No No Yes

Remove Cache Dependencies No No Yes

Get Current Time No No Yes

Authenticate No Yes Yes

Set Restricting Predicate No No Yes

Alter Publication Yes No Yes

Table 7–13 (Cont.) Packaging Wizard Synchronization Support

Function Packaging Wizard
Mobile
Manager API

Create and Manage Jobs with APIs 8-1

8
Create and Manage Jobs with APIs

The following sections describe how you can manage and create jobs with
ConsolidatorManager APIs:

■ Section 8.1, "Managing Scheduled Jobs Using ConsolidatorManager APIs"

■ Section 8.2, "Start a Standalone Job Engine In Separate JVM"

■ Section 8.3, "Using the ConsolidatorManager APIs to Create Jobs"

8.1 Managing Scheduled Jobs Using ConsolidatorManager APIs
Application developers can define, submit, and manage jobs programmatically based
on a pre-determined time and interval. For example, jobs can be scheduled to run
repeatedly for a specified duration on any specified day or days of the week or month.
Administrators can schedule jobs to run repeatedly for a specified number of months,
weeks or specified days of the month or week.

The Job Scheduler API schedules and executes jobs using a job engine. It is a generic
component which enables apply and compose functions for MGP, device manager
jobs, and custom jobs.

■ Using the class oracle.lite.sync.ConsolidatorManager, application
developers can register or de-register a job class, create, drop, enable or disable a
job, search, and delete a job execution log.

■ Use other supporting classes, such as Job, Schedule, ExecutionResult and
ExecutionLog in the oracle.lite.sync.job package to manage your
scheduled jobs.

For more information on these classes and their methods, refer to the Oracle Database
Lite API JavaDoc.

8.2 Start a Standalone Job Engine In Separate JVM
If you want to execute a Standalone Job engine in a separate JVM from any of the
Mobile Servers in the farm, then perform the following:

1. Retrieve a connection to the database with the Consolidator Manager
openConnection method. Pass in the Mobile Manager administrator username,
password and optionally, the JDBC URL to the back-end Oracle database.

2. Create a new Job engine with the JobEngine class and start it with the startUp
method. The Standalone Job engine executes in a separate thread, which you can
terminate from the main thread.

3. Define how long the thread is to sleep between execution of all jobs.

8-2 Oracle Database Lite Developer's Guide

4. Terminate the Standalone Job engine when you have completed all activities.

JobEngine JobEngine = new JobEngine();
JobEngine.startUp();
if (JobEngine.runnerThreadException != null){
 System.out.println("runnerThreadException:");
 JobEngine.runnerThreadException.printStackTrace();
}

Thread.currentThread().sleep(60*1000);

if (JobEngine.runnerThreadException != null){
 System.out.println("runnerThreadException:");
 JobEngine.runnerThreadException.printStackTrace();
}
JobEngine.shutDown();

8.3 Using the ConsolidatorManager APIs to Create Jobs
Within the oracle.lite.sync.ConsolidatorManager class, there are several
APIs, which are documented fully in the Oracle Database Lite API JavaDoc, that enable
you to create, register, and schedule your job.

While these methods are described fully in the JavaDoc, the following demonstrates
the order in which you would execute the methods:

1. Create your job class by implementing the oracle.lite.job.Job interface.
Implement the Job interface methods, as follows:

■ init method—This method is invoked by the Job Scheduler when the job is
loaded.

■ execute method—This method is invoked by the Job Scheduler when the job
is scheduled to execute. Put a call into your application within this method.
The Job Scheduler passes in the input parameter that was provided when the
job is created—either with the createJob method or within the Mobile
Manager Job Scheduler screen. When finished, the execute method returns
an object of class type ExecutionResult containing whether the job was a
success or failure.

■ destroy method—This method is invoked after the job completes.

2. After you have created your job class, register it with the registerJobClass
method.

3. Create the job in the Job Scheduler by executing the createJob method. One of
the input parameters is an object of class type Schedule, which defines when the
job is executed. There are also other management methods that correspond to the
Mobile Manager GUI, such as dropJob, enableJob, and disableJob.

4. If you want to retrieve any logs, execute the getJobExecutionLogs method,
which retrieves objects of ExecutionLog class.

Note: The following example demonstrates how to start up a
Standalone Job engine in its own thread. It executes all of the jobs that
have been scheduled either through the API or through the Mobile
Manager Job Scheduler screens, because the Job Scheduler retrieves
the scheduled job information from the repository.

Using Symbian Devices 9-1

9
Using Symbian Devices

Symbian support is a relatively new addition to the supported devices in Oracle
Database Lite. As such, not all functionality that exists for other devices is available for
Symbian devices. Supported functionality includes the client Oracle Lite database,
access to the database through ODBC and JDBC and synchronization. However, at this
time, no device management is supported.

This chapter helps to describe the supported features and how to use them on
Symbian devices. You can read the rest of the Oracle Database Lite documentation for
more details on these areas.

■ Section 9.1, "Installing Oracle Database Lite on Symbian Devices"

■ Section 9.2, "Developing Applications for Symbian Devices to Use Oracle Database
Lite"

■ Section 9.3, "Using CSQL, ODBC or JDBC to Access Oracle Database Lite"

■ Section 9.4, "Invoking Synchronization from Applications on Symbian Devices"

■ Section 9.5, "Use the Utility Tools on Symbian Devices"

9.1 Installing Oracle Database Lite on Symbian Devices
The following sections describe the pre-requisites and installation steps for Symbian
devices:

■ Section 9.1.1, "Supported Platforms and Environment"

■ Section 9.1.2, "Prerequisites for Installation"

■ Section 9.1.3, "Installing Oracle Database Lite"

9.1.1 Supported Platforms and Environment
Your development environment must include Oracle Database Lite 10g as the
encompassing platform. For developing native applications with Oracle Database Lite
10g on a Symbian platform, see the following:

■ Section 9.1.1.1, "Supported Devices for Symbian Platform"

■ Section 9.1.1.2, "Symbian Operating System Support"

■ Section 9.1.1.3, "Supported Development Environments for the Symbian Platform"

9.1.1.1 Supported Devices for Symbian Platform
The following devices are supported for the Symbian 7.x platform:

Installing Oracle Database Lite on Symbian Devices

9-2 Oracle Database Lite Developer's Guide

■ Nokia 6620

■ Nokia 9500

■ Motorola M1000

■ Sony Ericsson P910

The following devices are supported for the Symbian 8.x platform:

■ Nokia 6630, which is also known in Japan as V702NK

■ Nokia 6680

The following devices are supported for the Symbian 9.x platform:

■ Nokia E61

9.1.1.2 Symbian Operating System Support
We support Symbian Operating System versions 7.x, 8.x, 9.x, UIQ 2.0, 2.1.

9.1.1.3 Supported Development Environments for the Symbian Platform
The following are the supported development environments for Symbian 7 or 8:

■ Microsoft Visual Studio 6.0

■ Microsoft Visual Studio .Net

The supported development environment for Symbian 9 is Carbide.C++ Version 1.1 or
Version 1.2.

9.1.2 Prerequisites for Installation
We assume that you have a basic Symbian OS development knowledge to develop
your application.

Before installing Oracle Database Lite, perform the following:

■ Installing the SDK:

■ You must install the SDK for the target device on the development machine.
For example, if you are using a Motorola device, go to www.motorola.com
and download the M1000 SDK on the development machine.

■ To build any application, install the S60 3rd Edition SDK for building and
testing on the emulator. In addition, to build for the target device, install the
CSL Toolchain (GCCE), which is a plug-in with the S60 3rd Edition SDK. The
Toolchain has to be separately installed even though it has been downloaded
with the SDK.

■ Browsing, installation and uninstallation on the target device: Install the target
device development suite, which is named as either "PC Suite" or "Desktop suite."

■ Using command-line prompts on your device: Install eshell.exe on the device.
In addition, we recommend that you purchase a hardware keyboard to connect to
your phone to type in the eshell.exe window.

Table 9–1 Symbian Support

Platform
Programming
Languages Operating System Hardware

Symbian OS on Nokia
and Motorola

C, C++ Symbian OS versions
7.0, 8.0 and 9.0

ARM

Installing Oracle Database Lite on Symbian Devices

Using Symbian Devices 9-3

■ Using JDBC: JDBC applications use the Multi-User (MU) component to connect to
the Oracle Lite database. For Symbian 9, MU requires the Open-C library supplied
by Nokia Open-C forum. Install Open-C sis files, such as openc_glib.sis,
openc_ssl.sis and pips_s60_wp.sis, on the device.

9.1.3 Installing Oracle Database Lite
The following sections describe how to install Oracle Database Lite for the Symbian
platform for the development environment or the Symbian device:

■ Section 9.1.3.1, "Installing Oracle Database Lite for Symbian on the Development
PC"

■ Section 9.1.3.2, "Installing Oracle Database Lite on the Symbian Device"

9.1.3.1 Installing Oracle Database Lite for Symbian on the Development PC
The following sections describe how to install for each type of Symbian platform:

■ Section 9.1.3.1.1, "For the Symbian 7 or 8 Development Environment"

■ Section 9.1.3.1.2, "For Symbian 9 Development Environment"

9.1.3.1.1 For the Symbian 7 or 8 Development Environment Within the Oracle Universal
Installer, perform the following to install the Symbian Development Kit on the
developement PC:

1. Select Custom.

2. Select Oracle Database Lite MDK for Symbian 7 & 8.

3. Enter the directory where you installed the Symbian SDK, which is the same as the
EPOCROOT.

When you complete the installation, the following files are unzipped:

■ Header files are placed in the epoc32\include\olite directory.

■ ARMI (urel) .lib files are placed in the epoc32\release\armi\urel
directory.

■ THUMB (urel) .lib files are place in the epoc32\release\thumb\urel
directory.

■ WINS (udeb) binaries and .lib files are copied into the
epoc32\release\wins\udeb directory.

■ Initial configuration files are copied into the epoc32\wins\c\System\Data
directory.

■ Samples are copied into the OliteEx directory.

9.1.3.1.2 For Symbian 9 Development Environment Within the Oracle Universal Installer,
perform the following to install the Symbian Development Kit on the developement
PC:

1. Select Custom.

2. Select Oracle Database Lite MDK for Symbian 9.

3. Enter the directory where you installed the Symbian SDK, which is the same as the
EPOCROOT.

When you complete the installation, the following files are unzipped:

Installing Oracle Database Lite on Symbian Devices

9-4 Oracle Database Lite Developer's Guide

■ Header files are placed in the epoc32\include\olite directory.

■ Initial configuration files are copied into the epoc32\winscw\c\System\Data
directory.

■ Samples are copied into the OliteEx directory.

■ The ARMV5 (lib) .dso files are placed in the epoc32\release\winscw\udeb
directory.

■ The WINSCW (udeb) binaries and .lib files are placed in the
epoc32\release\winscw\udeb directory.

9.1.3.2 Installing Oracle Database Lite on the Symbian Device
When you build your application, you need to include the header files and link against
the libraries.

Once your application is built and tested, install the application and Oracle Database
Lite on the Symbian platform as follows:

1. For most devices, copy and install the correct SIS olite_core.sis file to the
device using PC Suite, Desktop Suite, or an external memory card. This installs all
of the Oracle Database Lite files, including the DLLs and executables.

The following lists the correct SIS file for each platform:

■ For the Symbian 7 or 8 platform, install the following SIS files:

a. Use the olite_core.sis file or for the Sony Ericsson P910 device, the
olite_core_uiq2.sis file.

b. If using JDBC, then also install the olite_server.sis or for the Sony
Ericsson P910 device, the olite_server_uiq2.sis file

■ For the Symbian 9 platform, install the olite_core.sis file.

This installs the Oracle Database Lite binaries into the target drive. The default
location is the !:\System\Libs\ directory.

If the configuration files do not already exist on the device, then the following files
are copied into the C:\System\Data\ directory: polite.ini, odbc.ini, and
olite40.msb.

2. For Symbian 7 or 8, you have the option to install the Oracle Database Lite 10g
Utility Tools. The Symbian 9 installation automatically installs all tools with the
base install.

a. For most devices, copy the olite_tools.sis file to the target device using
PC Suite, Desktop Suite, or a memory card. If you are using a Sony Ericsson
P910, then copy the olite_tools_uiq2x.sis file.

b. Install either the olite_tools.sis file or if using the Sony Ericsson P910
device, the olite_tools_uiq2x.sis file. This copies the following files

Note: You may chose a different target directory during installation.

Note: These utility tools are command line based programs; thus,
you need to install and use the eshell.exe program to execute
them.

Using CSQL, ODBC or JDBC to Access Oracle Database Lite

Using Symbian Devices 9-5

into the target directory (which by default is the !:\System\Programs\
directory): CREATEDB.EXE, REMOVEDB.EXE, ENCRYPDB.EXE,
DECRYPDB.EXE, and ODBINFO.EXE.

3. Install your application.

9.2 Developing Applications for Symbian Devices to Use Oracle
Database Lite

Symbian applications that need a standard interface and work with multiple database
engines can use either the JDBC interface, the ODBC interface or some other interface
built on top of ODBC, as follows:

■ Your application can use ODBC to access the database directly.

■ To use JDBC, then the application must access the database through the multi-user
service for the JDBC connection. Therefore, if you plan to use JDBC, you must also
install and configure for the multi-user service.

When you are developing applications for the Symbian environment, you can use the
following:

■ For your development language, you can use C, C++, or Java APIs.

■ Symbian applications that need a standard interface and work with multiple
database engines can use either the JDBC interface, the ODBC interface or some
other interface built on top of ODBC.

Your application can use ODBC to access the database directly; however, if you
want to use JDBC, then you must access the database using the multi-user service
for the JDBC connection.

9.3 Using CSQL, ODBC or JDBC to Access Oracle Database Lite
The following sections describe how to use ODBC or JDBC to access the Oracle Lite
database on the Symbian device:

■ Section 9.3.1, "Using CSQL to Connect to the Database on Symbian"

■ Section 9.3.2, "Using ODBC to Connect to the Database on Symbian"

■ Section 9.3.3, "Using JDBC to Connect to the Database on Symbian"

9.3.1 Using CSQL to Connect to the Database on Symbian
CSQL is a sample application provided in the Oracle Database Lite installation for
Symbian. It is an ODBC-based application with which the user can perform SQL
operations on the Oracle Lite database. The application can be built for the target
device as well as the emulator.

You can configure how CSQL accesses the Oracle Lite database in the polite.ini
and odbc.ini configuration files.

9.3.2 Using ODBC to Connect to the Database on Symbian
When you are developing ODBC based applications, perform the following:

Note: You may chose a different target directory during installation.

Using CSQL, ODBC or JDBC to Access Oracle Database Lite

9-6 Oracle Database Lite Developer's Guide

1. Include sql.h and sqlext.h in your source code, as follows:

#include <sql.h>
#include <sqlext.h>

2. Add the include path SYSTEMINCLUDE \epoc32\include\olite in the .mmp
file.

3. Add the library LIBRARY olod2040.lib in the .mmp file.

4. Oracle Database Lite uses STDLIB resources. You need to call CloseSTDLIB()
after all database operations to free up resources.

5. Character data stored in Oracle Database Lite must be in UTF-8 encoding.

If you write APP application, then you might need to convert between UCS and
UTF-8 encodings back and forth. For more information, refer the Symbian API
reference.

You can use the following two functions to convert between encodings:

■ CnvUtfConverter::ConvertFromUnicodeToUtf8()

■ CnvUtfConverter::ConvertToUnicodeFromUtf8()

6. Oracle Database Lite uses STDLIB; thus, you must release all resources after you
finish any ODBC operations. To release all resources, perform the following:

a. Add #include <sys/reent.h>.

b. Invoke the CloseSTDLIB() method after each SQLFreeEnv() call.

9.3.3 Using JDBC to Connect to the Database on Symbian
On the Symbian platform, only one JDBC connection is supported. You can use a
JDBC driver for J2ME CLDC—in a limited capacity—for Java applications to connect
and update the database. The CLDC compliant JDBC driver for the Oracle Lite is
located in the olitejdbccldc.jar file. The API documentation is available in the
Oracle Lite SDK for Symbian. Otherwise, you can see Section 7.8.1.2, "JDBC Driver for
JDBC CLDC" in the Oracle Database Lite Client Guide for more details.

When you use JDBC for connecting to the Oracle Lite database, you have to use the
Multi-User listener. Symbian does not support JNI to map the Java request into native
code. Therefore, as shown in Figure 9–1, JDBC accesses the Oracle Lite database in
client/server mode using a TCP/IP connection. The default TCP/IP port for the
Multi-User listener is port 1160 .

Note: For an example, see the CSQL example for Symbian in the
<EPOCROOT>\OliteEx\CoreDB\CSQL directory.

Note: To use these functions, include utf.h and link
charconv.lib.

Invoking Synchronization from Applications on Symbian Devices

Using Symbian Devices 9-7

Figure 9–1 Java Application on Symbian Accessing Database

Within the main Oracle Database Lite documentation, there is a discussion on how to
configure and start the Multi-User service. However, for the Symbian platform, as
soon as the SIS file is installed, the Multi-User service automatically starts and receives
all incoming requests on port 1160.

9.4 Invoking Synchronization from Applications on Symbian Devices
The following sections describes how to set up your application to use the
synchronization APIs for use on a Symbian device. Also, see Section 4.1,
"Synchronization APIs For C or C++ Applications" for information on how to use the
C or C++ APIs available to start synchronization programmatically within your
application.

■ Section 9.4.2.1, "Prepare Your Application for Synchronization"

■ Section 9.4.2.2, "How to Use the Synchronization API for Symbian Devices"

9.4.1 Using MSync UI to Invoke Synchronization
MSync is a sample application provided in the Oracle Lite installation. This can be
used to synchronize the Oracle Lite database on the Symbian device with the Mobile
Server. Msync is included in the binary for Symbian 9 devices.

Before you can use MSync on the Symbian 9 device, you must configure the following
parameters in the msync.ini configuration file:

■ USER=<username>

■ PASS=<password>

■ URL=<url or IP address>

The msync.ini file is located on the same drive where you installed Oracle Database
Lite.

For example, the following parameters show that the Mobile Server IP address is
192.168.1.2, the application user is S11U1, and the password is abcd.

USER=S11U1
PASS=abcd
URL=192.168.1.2

9.4.2 Invoking Synchronization through Programmatic APIs
The following sections describe how to invoke synchronization from within the
application:

■ Section 9.4.2.1, "Prepare Your Application for Synchronization"

Use the Utility Tools on Symbian Devices

9-8 Oracle Database Lite Developer's Guide

■ Section 9.4.2.2, "How to Use the Synchronization API for Symbian Devices"

9.4.2.1 Prepare Your Application for Synchronization

1. Include ocapi.h in your source code, as follows: #include <ocapi.h>.

2. Add the include path SYSTEMINCLUDE \epoc32\include\olite in your
.mmp file.

3. Add the library LIBRARY ocapi.lib in your .mmp file.

9.4.2.2 How to Use the Synchronization API for Symbian Devices
The Synchronization API does not run under the eshell.exe. For starting
synchronization, the application performs the following:

1. Invoke the ocSessionInit() method.

2. Invoke the ocDoSynchronize() method, which will return before the
synchronization completes.

3. To determine if the synchronization is complete, the GUI application continues to
invoke the ocGetLastError() method. If it returns -1, then synchronization is
still executing. With any other value, the synchronization is complete.

4. Once synchronization completes, then invoke the ocSessionTerm() method.

For an example, see the msync.cpp sample code.

9.5 Use the Utility Tools on Symbian Devices
The utility tools that are available for Symbian are as follows: csql, msync,
createdb, removedb, encryptdb, decryptdb, and odbinfo.

To be able to use the utility tools, see the appropriate section based upon the Symbian
platform that you are using:

■ Section 9.5.1, "Using Utility Tools on Symbian 7 and 8"

■ Section 9.5.2, "Using Utility Tools on Symbian 9"

9.5.1 Using Utility Tools on Symbian 7 and 8
To use the database utility tools on the emulator, perform the following:

1. Open a command prompt window.

2. Change directory to the <EPOCROOT>\epoc32\release\wins\udeb directory.

3. Type the tool name with appropriate arguments. See the Oracle Database Lite 10g
documentation for more information.

Note: For an example, see the mSync example in the
<EPOCROOT>\OliteEx\Sync\mSync directory.

Note: Before you can use any utility tools, ensure that they are
installed on the device, as described in Section 9.1.3, "Installing Oracle
Database Lite". For Symbian 9, all tools are automatically installed.

Use the Utility Tools on Symbian Devices

Using Symbian Devices 9-9

To use the database utility tools on the device, perform the following:

1. Open eshell.exe on the device. Consult with the device manufacturer for the
eshell.exe program.

2. Type the tool name with appropriate arguments. See the Oracle Database Lite 10g
documentation for more information.

9.5.2 Using Utility Tools on Symbian 9
To use the database utility tools on the emulator or device for Symbian 9, perform the
following:

1. Click the installation folder on the emulator or device and then select the utility
icon.

2. Follow the UI menu and provide the appropriate arguments for the tools.

Use the Utility Tools on Symbian Devices

9-10 Oracle Database Lite Developer's Guide

Customizing Oracle Database Lite Security 10-1

10
Customizing Oracle Database Lite Security

Managing the provided security within Oracle Database Lite is described in Chapter
12, "Configuring Security in Oracle Database Lite" in the Oracle Database Lite
Administration and Deployment Guide. This chapter describes how to customize
authentication to provide your own mechanisms to be used within Oracle Database
Lite.

The following section details security issues for Oracle Database Lite:

■ Section 10.1, "Providing Your Own Authentication Mechanism for Authenticating
Users for the Mobile Server"

10.1 Providing Your Own Authentication Mechanism for Authenticating
Users for the Mobile Server

You can provide an external authenticator for the Mobile Server to authenticate users
with passwords as well as their access privileges to applications. For example, in an
enterprise environment, you may have your user data, such as employee information,
stored in a LDAP-based directory service. The Mobile Server can retrieve the user
information from the LDAP directory—or from any custom User Management
System—if configured with your own implementation of an external authenticator.
The Mobile Server links the external user information to the Mobile Server repository.

The following sections describe how to implement and use an external authentication
method for Oracle Database Lite:

■ Section 10.1.1, "Implementing Your External Authenticator"

■ Section 10.1.2, "Registering External Authenticator"

■ Section 10.1.3, "User Initialization Scripts"

10.1.1 Implementing Your External Authenticator
In order to use an external authenticator, you must implement the
oracle.lite.provider.Authenticator JAVA interface and configure the
implementation in the webtogo.ora file.

Note: Samples SampleAuthenticator.java and
OIDAuthenticator.java demonstrate how to implement an
external authenticator. These samples can be found in the <ORACLE_
HOME>\Mobile\Server\demos\devmgr\
java\ directory.

Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile Server

10-2 Oracle Database Lite Developer's Guide

Implement the following methods in your external authenticator. The Mobile Server
invokes each of these methods as appropriately.

■ Section 10.1.1.1, "Initialization for the External Authenticator"

■ Section 10.1.1.2, "Destruction of the External Authenticator"

■ Section 10.1.1.3, "The Authentication Method for the External Authenticator"

■ Section 10.1.1.4, "The User Instantiation Method for the External Authenticator"

■ Section 10.1.1.5, "Retrieve the User Name or the User Global Unique ID"

■ Section 10.1.1.6, "Log Off User"

■ Section 10.1.1.7, "Change User Password"

10.1.1.1 Initialization for the External Authenticator
Mobile Server invokes the initialize method before calling any other method of
provider class. This method will be called only once when the provider is initialized.

Method: void initialize (String metaData) throws Exception
Parameter: String metaData (Reserved for future use)

10.1.1.2 Destruction of the External Authenticator
Mobile Server invokes the destroy method when the system shutdowns. Provider
implementation should implement all the cleanup code in this method.

Method: void destroy() throws Exception
Parameter: None

10.1.1.3 The Authentication Method for the External Authenticator
Authenticate a user and return a session handle with the authenticate method. The
returned session handle is passed to the logOff method when the user logs off from
the system. Note that the logOff method may not be called for each successful
authenticate method call. Some of the Mobile Server clients may use the
authenticate method to verify the user credential and not for logging on to the
system.

Method: Object authenticate (String uid, String pwd) throws SecurityException
Parameter: User Id (or User Name) and password string
Return: Session handle or null

You can pass error and warning information, as follows:

■ Failure: Pass along any error information, such as why the authentication failed.
Use the AuthException class, available in the package
oracle.lite.provider.auth, to pass along failure information.

■ Warning: Pass along any warnings, such as the situation when the user's password
is about to expire. Use the ExtAuthResult class, available in the package
oracle.lite.provider.auth, to pass along warning information.

Refer to the Oracle Database Lite API Specification for more details on these exception
classes.

10.1.1.4 The User Instantiation Method for the External Authenticator
If the user has not been instantiated in the Mobile Server repository, then the Mobile
Server invokes the getInitializationScripts method—after authenticating the
user—to retrieve the initialization scripts for the user. The Mobile Server uses the

Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile Server

Customizing Oracle Database Lite Security 10-3

initialization scripts to instantiate the user in the Mobile Server and assign access
rights to applications and data. See Section 10.1.3, "User Initialization Scripts" for more
information.

Method: StringBuffer getInitializationScripts (Object sid)
Parameter: Session handle returned by 'authenticate' method
Return: 'StringBuffer' containing User's initialization scripts

10.1.1.5 Retrieve the User Name or the User Global Unique ID
Return the user name or GUID (Globally Unique Id) of the user if there is one. Usually,
LDAP-based User Management systems maintain a GUID for each user. In case your
authentication mechanism does not support GUID, then the getUserGUID method
returns NULL.

Method: String getFullName (Object sid)
Parameter: Session handle returned by 'authenticate' method
Return: User's full name

Method: String getUserGUID (Object sid)
Parameter: Session handle returned by 'authenticate' method
Return: User's GUID or null

10.1.1.6 Log Off User
Log off the User from the back-end system. Note that the logOff method may not be
called for each successful authenticate method call. Some of the Mobile Server
clients may use the authenticate method to verify the user credential and not for
logging on to the system.

Method: void logOff (Object sid) throws SecurityException
Parameter: Session handle returned by 'authenticate' method

10.1.1.7 Change User Password
Method: void changePassword (Object sid, String pwd) throws SecurityException
Parameter: Session handle returned by the authenticate method and new password
string

10.1.2 Registering External Authenticator
The EXTERNAL_AUTHENTICATION parameter in the WEBTOGO.ORA file
facilitates the authentication of existing external users with the specified external
authenticator class. To register your external authenticator class, modify the
webtogo.ora file and set your external Authenticator JAVA class name in the
EXTERNAL_AUTHENTICATION section, as follows:

[EXTERNAL_AUTHENTICATION]
CLASS = SampleAuthenticator
EXPIRATION = 1800

The Mobile Server caches the user instantiated through the external authenticator for a
period of time in order to improve efficiency. The default expiration time for the
cached user object is 30 minutes (or 1800 seconds). Customize this value by setting a
new value for the EXPIRATION parameter.

In addition, you must configure the EXTERNALUSER parameter in the WSH.INI
script, which notifies the server that the user being created is external and does not
require a password in the WSH.INI script. Instead, the new user will be authenticated
by the external authenticator specified in the WEBTOGO.ORA file. For more
information on EXTERNALUSER parameter, see Appendix C, "Write Scripts for the

Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile Server

10-4 Oracle Database Lite Developer's Guide

Mobile Server with the WSH Tool" in the Oracle Database Lite Administration and
Deployment Guide.

10.1.3 User Initialization Scripts
Mobile Server invokes the getInitializationScripts method to retrieve the user
initialization script that instantiates user-specific objects in the Mobile Repository. The
external authenticator can perform the following actions during the initialization
process:

1. Assign access rights to applications

2. Set data subscription parameters.

3. Optionally, add the user to a user group.

The syntax of the initialization script is based on the INI format. The first section in
the script is as follows.

[MAIN]
VERSION=2

The following example performs these actions for a user whose id is USER1.

1. Assigning access rights to applications.

Assign access rights to Application1 and Application2 for USER1, where
Application1 has two publication items and three subscription parameters.

List the applications we want access to
#
[ACL]
Application1
Application2
List Access details for 'Application1'
#
[ACL.Application1]
NAME=USER1
TYPE=USER
DATA=LOCATION, ITEMS
List Access details for 'Application2'
#
[ACL.Application2]
NAME=USER1
TYPE=USER

2. Setting data subscription parameters.

[SUBSCRIPTION.USER1.Application1.LOCATION]
NAME=ZIP, USR_ID
VALUE=12345, USER1
[SUBSCRIPTION.USER1.Application1.ITEMS]
NAME=WEIGHT
VALUE=20

3. Adding a User to a User Group

[GROUP]
User's Group
[GROUP.User's Group]
USER=USER1

Tutorial for Building Mobile Web-to-Go Applications 11-1

11
Tutorial for Building Mobile Web-to-Go

Applications

There are two types of Web-to-Go applications:

■ The original Oracle Database Lite Web-to-Go application that uses an Oracle
Database Lite Servlet stack. You can still use this type of application, but the
Oracle Database Lite Server stack is not J2EE 1.3 compatible.

■ A Web-to-Go application built upon the OracleAS OC4J stack. Since the OC4J
product is continually updated, then building your Web-to-Go application using
the J2EE standards is better if you want to use future J2EE standards. This
application is known as the OC4J Web-to-Go application.

To build the OC4J Web-to-Go application, follow the J2EE standards specified by
Sun Microsystems and then create the snapshot with MDW and publish the
application with the EAR or WAR file within the Packaging Wizard.

This tutorial demonstrates how to build, package and publish the original Oracle
Database Lite Web-to-Go application with the "To Do List" demo. For details on how
to create an OC4J Web-to-Go application, refer to the OC4J documentation or to the
Sun Microsystems J2EE specification.

The "To Do List" application maintains a list of "To Do" items with status for each item
indicating its completion. All items are stored in the Oracle database. Multiple users
can access the "To Do List" application to display their corresponding To Do items.

The following sections in this tutorial guide you through the phases of implementing a
Web-to-Go application for Mobile devices:

■ Section 11.1, "Develop the Application"

■ Section 11.2, "Create Publication for Application"

■ Section 11.3, "Package the Application Using the Packaging Wizard"

■ Section 11.4, "Administer the Application"

■ Section 11.5, "Execute the Application on the Mobile Client for Web-to-Go"

Note: For more information on developing Web-to-Go applications,
see Section 5.5, "Developing Mobile Web-to-Go Applications".

11-2 Oracle Database Lite Developer's Guide

11.1 Develop the Application
The first step is to develop and test the "To Do List" application using the Mobile
Development Kit for Web-to-Go. Table 11–1 shows the components for the "To Do
List" application:

The source code for the "To Do List" application is installed along with the Mobile
Development Kit. It can be found at the following location.

<ORACLE_HOME>\Mobile\Sdk\wtgsdk\src\tutorial

■ The JavaServer Page—The ToDoList.jsp generates an HTML page which
displays the list of items that must be completed.

■ The JavaBean—The ToDoBean.java JSP uses a JavaBean to perform operations
with the Oracle database. Y

■ The Java Servlet—The InsertToDo.java Java Servlet inserts a new To Do Item
in the Oracle database, and uses the "To Do List" JSP to regenerate the HTML
page.

In this section, the following tasks are discussed.

■ Section 11.1.1, "Create Database Objects in the Oracle Server"

■ Section 11.1.2, "Compile the Application"

The Mobile Development Kit for Web-to-Go always uses Oracle Database Lite as the
development database and a Web-to-Go server, which is known as the Mobile Client
Web Server.

11.1.1 Create Database Objects in the Oracle Server
During deployment, the Mobile Server automatically creates the Oracle Database Lite
database in the client device along with the requisite tables and data. To publish the
application, users must create the database objects used by the application in the
back-end Oracle database.

The "To Do List" application uses the following database objects.

■ The TODO_ITEMS table—The application stores To Do Items in this database table.
Table 11–2 shows the To Do Items table columns.

Table 11–1 "To Do List" Application Components

Component Function

Java Servlet Accesses the database and inserts To Do items.

Java Server Page (JSP) Provides the "To Do List" application user interface in HTML.

JavaBean Provides database access to the JSP.

Table 11–2 The TODO_ITEMS Table

Column Function

ID Primary key

TODO_ITEM Text describing the To Do item

USERNAME Owner of the To Do item

DONE Indicates whether or not the To Do item has been completed

Develop the Application

Tutorial for Building Mobile Web-to-Go Applications 11-3

■ The TODO_SEQ sequence—Each time a user inserts a new record in the TODO_
ITEMS table, the TODO_SEQ sequence generates a primary key value for the new
record.

11.1.1.1 Create the Table Owner Account
Create the database user who will own the "To Do List" application objects in the
Oracle database. If you have installed the samples during your Mobile Server
installation, you can skip this step and continue with the next step. If you have not
installed the samples, enter the following commands using the Command Prompt.

sqlplus system/<sys_password>@<CONNECT_STRING>
create user master identified by master;
grant CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE SESSION,
CREATE INDEXTYPE to master;

11.1.1.2 Create the Database Objects in the Oracle Database
In order to execute the To Do List demo, set up the schema and the database objects.
We have provided a SQL script that creates the database objects in the back-end
database.

To create the database objects, run the tutorial.sql SQL script against the
back-end Oracle database, as follows:

> cd <ORACLE_HOME>\Mobile\Sdk\wtgsdk\src\tutorial
> msql system/<sys_pwd>@jdbc:oracle:thin:@<host>:<port>:
 <oracle_sid> @tutorial.sql
> msql master/master>@jdbc:oracle:thin:@<host>:<port>:
 <oracle_sid> @tutorial.sql

When you execute the tutorial.sql command against the system schema, it
creates the TODO_ITEMS and TODO_SEQUENCE in the back-end server database. When
you execute the tutorial.sql command against the master schema, then it creates
the TODO_ITEMS table and the TODO_SEQUENCE sequence in the user schema also,
which in this example is master. This is necessary in order to create the publication
item in the master schema.

Where:

■ <sys_pwd> is the system password. This is required if you are creating the
master schema. However, if you have eliminated the statements that create the
schema, you can use master/master for username/password.

■ <host>:<port> refers to the name and listening port of the machine where the
back-end Oracle database is installed.

This script creates the TODO_ITEMS table and the TODO_SEQUENCE sequence on the
Oracle database.

Note: The CONNECT_STRING is the entry where the database
resides, as defined in the tnsnames.ora file, which is used to locate
the back-end Oracle database.

Note: While entering the above command to create database
objects, you must include a mandatory space between
"<oracle_sid>" and "@tutorial.sql".

11-4 Oracle Database Lite Developer's Guide

11.1.2 Compile the Application
Compile the application by performing the following tasks:

1. Set the CLASSPATH.

You must set the CLASSPATH to include the required Java Servlet Development
Kit and Mobile Server libraries. To include these libraries, this tutorial provides a
script called setenv.bat. Using the Command Prompt, enter the following
commands.

cd <ORACLE_HOME>\Mobile\Sdk\wtgsdk\bin
setenv.bat

2. Compile the application.

You can compile the application manually or by running the compile.bat script.
To run the script, start the Command Prompt and enter the following commands.

<ORACLE_HOME>\Mobile\Sdk\wtgsdk\src\tutorial
compile.bat

To compile the application manually, perform the following tasks.

a. Compile the Java Servlet—Using the command prompt, enter the following
commands:

cd <ORACLE_HOME>\Mobile\Sdk\wtgsdk\src\tutorial
javac -d ..\..\root\tutorial\WEB-INF\classses\InsertToDo.java

This creates the following servlet class file.

<ORACLE_HOME>\Mobile\Sdk\wtgsdk\root\tutorial\
WEB-INF\classses\InsertToDo.class

b. Compile the Java Bean—Using the command prompt, enter the following
command:

javac -d ..\..\root\tutorial\WEB-INF\classes ToDoBean.java

c. Install the JSP—Using the command prompt, enter the following command:

copy ToDoList.jsp
 <ORACLE_HOME>\Mobile\Sdk\wtgsdk\root\tutorial\ToDoList.jsp

11.2 Create Publication for Application
As described fully in Chapter 6, "Using Mobile Database Workbench to Create
Publications", you can use MDW to create your publication. Launch MDW by
executing oramdw from <ORACLE_HOME>/Mobile/Sdk/bin. The following sections
detail how to use MDW to create a publication for the application in this tutorial.

■ Section 11.2.1, "Create a Project"

■ Section 11.2.2, "Create Publication Items"

Note: While creating this publication, use Chapter 6, "Using Mobile
Database Workbench to Create Publications" for a deeper
understanding of how to use MDW and the type of information that
you must provide.

Create Publication for Application

Tutorial for Building Mobile Web-to-Go Applications 11-5

■ Section 11.2.3, "Create Publication"

11.2.1 Create a Project
Create a new project for this application by selecting File->New->Project. This brings
up a wizard where you enter the following information:

1. Define a name and location for the project.

2. Enter the username, password, JDBC driver type, database host, database port and
database SID for the Mobile repository.

Provide the Mobile Repository access information. Because you are interacting
with the repository to create and manipulate synchronization objects, including
the SQL scripts for the publication items, you need access to the Mobile
Repository. For example, the Mobile Repository username and password is
mobileadmin/welcome123. The JDBC driver type used is the Oracle Thin
driver. The back-end Oracle database host, port, and SID are
mobile-qa11.oracle.com:1521:orcl.

3. Specify schema username and password. Enter the user and password of the
schema owner for the schema that you are using for the Mobile application. The
Mobile application schema contains all database tables, views, synonyms used to
build the snapshots for the application.

4. Verify the information that you entered and click Finish.

11.2.2 Create Publication Items
For this project, you need to create the todo_items publication item and a todo_seq
sequence.

The following sections describe how to create the publication item, the sequence, and
an optional script for this publication:

■ Section 11.2.2.1, "Create Publication Item"

■ Section 11.2.2.2, "Create Sequence"

■ Section 11.2.2.3, "Create Script"

11.2.2.1 Create Publication Item
Perform the following to create the publication item:

1. Start the new publication item wizard by selecting File->New->Publication Item.

2. Enter the name as todo_items and the type as Fast. If you want this publication
item to use automatic synchronization, make sure that the "Enable Automatic
Synchronization" checkbox is checked. Uncheck to use manual synchronization.
Click Next.

Note: For more information, see Section 6.2, "Create a Project".

Note: For more information, see Section 6.4, "Create a Publication
Item".

11-6 Oracle Database Lite Developer's Guide

3. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select todo_items from the
object list. Click Next.

4. Click >> to select all of the columns in the todo_items table. Click Next.

5. In the Query tab, select Edit to edit the query, as follows:

select * from master.todo_items where username=:username

Click Next.

6. If you checked the ’Enable Automatic Synchronization’ checkbox, then an
additional screen comes up. This screen enables you to specify users included in
the compose. By default, all users are included. Leave checkbox unchecked and
click Next.

7. The Summary page displays. Click Finish.

11.2.2.2 Create Sequence
Create the todo_seq sequence for the To Do List demo, as follows:

1. Start the new sequence wizard by selecting File->New->Sequence.

2. Enter the name as todo_seq and that the sequence starts with 1, increment of 2,
window size of 500, and threshold of 50.

3. Uncheck the offline only checkbox, if already checked.

11.2.2.3 Create Script
Optionally, if you want members to have access to this tutorial on the Mobile client,
then create the scripts for the To Do List demo, as follows:

1. Start the script wizard by selecting File->New->Script.

2. Enter the name as todo_script

3. Click Browse and select todo_scripts.sql from the following location:

<ORACLE_HOME>\Mobile\Sdk\wtgsdk\src\tutorial

4. Click OK.

11.2.3 Create Publication
When you have completed the creation of the publication items, create the publication
within the project by selecting File->New->Publication.

1. In the General tab, enter the name as todo, which becomes part of the DSN for the
client-side database.

2. In the Publication Item tab, click Add to add the publication item that you just
created with the following configuration:

Name: todo_items
Updatability: Updatable
Conflict Resolution: Server Wins
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 1
Description: Blank

Package the Application Using the Packaging Wizard

Tutorial for Building Mobile Web-to-Go Applications 11-7

3. In the Sequence tab, click Add to add the todo_seq that you just created and
click OK.

4. If you added the script described in Section 11.2.2.3, "Create Script", then in the
Script tab, click Add to add the todo_script. Click OK.

5. Optionally, if you do want to set some of the event rules for the publication, then
you can select the Events tab to configure the thresholds for Automatic
Synchronization rules, such as the following:

■ Sync if number of modified records in database exceeds threshold value

■ Sync if number of modified records in out queue exceeds threshold value

6. Save the publication by selecting File->Save and exit MDW.

7. If a window displays with the text: "Apply changes to Repository window," then
click Select All. Click OK to apply the selected changes to the Repository.

11.3 Package the Application Using the Packaging Wizard
Using the Packaging Wizard, you can package and publish the To Do List application
into the Mobile Server. For more information on how to use the Packaging Wizard, see
Chapter 7, "Using the Packaging Wizard".

You can select and describe the To Do List application by launching the Packaging
Wizard, as follows:

1. Start the Packaging Wizard, as follows:

cd <ORACLE_HOME>\Mobile\Sdk\bin
wtgpack

The Packaging Wizard appears and provides you with the option to create a new
application, edit an existing application, delete an existing application, or open a
packaged application, as displayed in Figure 11–1.

Note: Deleting an existing application merely deletes the application
from the XML file and does not remove the application from the
Mobile Server.

11-8 Oracle Database Lite Developer's Guide

Figure 11–1 Make a Selection Dialog

2. Select the Create a new application option and click OK.

3. The Select a Platform panel appears. As Figure 11–2 displays, this panel enables
you to specify the platform for your application. Select Oracle Lite WEB;US from
the Available Platform list. Click Next.

Figure 11–2 Selecting a Platform

4. As Figure 11–3 displays, the Application panel appears. Use the Application panel
to modify "To Do List" application settings. As Table 11–3 describes, enter the
specified values in the corresponding fields.

Package the Application Using the Packaging Wizard

Tutorial for Building Mobile Web-to-Go Applications 11-9

Figure 11–3 Application Panel

5. Click Next. As Figure 11–4 displays, the Files panel appears. Using the Files panel,
you can select files that are part of the application. The Packaging Wizard uploads
the selected files from the local application directory to the application repository
on the Mobile Server.

The Files panel identifies files that the Packaging Wizard uploads from the local
application directory to the application repository on the Mobile Server.

Table 11–3 The "To Do List" Application Values

Field Value

Application Name ToDoList

Virtual Path /tutorial

Description This is the To Do List Application

Application Classpath (Leave this field blank)

Default page ToDoList.jsp (this is case sensitive)

Local Application
Directory

<ORACLE_HOME>\mobile\sdk\wtgsdk\root\tutorial

Publication Name Click on Browse. The ’Connect to database’ window appears.
Enter the following:

■ username: mobiladmin

■ password: welcome123

■ database URL:
jdbc:oracle:thin:@<hostname>:<port>:<SID>

The next window shows the available publications. Select
todo.

Icon tutorial.gif

11-10 Oracle Database Lite Developer's Guide

Figure 11–4 Uploading Application Files

6. Click Compile JSP. The Packaging Wizard compiles all your JSP files to Java
Servlet classes. As Figure 11–5 displays, the following confirmation page appears.
Click OK.

Figure 11–5 JSP Compilation Completion Message

7. The generated files are automatically added to the list of application files.

Package the Application Using the Packaging Wizard

Tutorial for Building Mobile Web-to-Go Applications 11-11

Figure 11–6 Including Generated Files to Application Files

8. To view "To Do List" application servlets, click Next. To register with the Mobile
Client Web Server, the Packaging Wizard automatically detects and selects
servlets in your Local Application Directory. These servlets are registered with the
Mobile Client Web Server.

As Figure 11–7 displays, you can view the "To Do List" application servlet in the
Servlets panel. Since the "To Do List" application contains only one servlet, the
Servlets panel displays a single line.

The Servlets panel enables you to map virtual paths (servlet name) to the
corresponding Java classes (servlet class).

Change the servlet name to insert by selecting the field, which turns white when
selected. The servlet name is case sensitive, and must be in lower case. Leave the
servlet class as InsertTodo.

Note: Ensure that you change the servlet name.

11-12 Oracle Database Lite Developer's Guide

Figure 11–7 Registering Servlets

9. Click Next till you arrive at the Application Definition Completed Dialog as
shown in Figure 11–8.

Figure 11–8 Application Definition Completed Dialog

Using the Application Definition Completed panel, you can package the "To Do
List" application into a JAR file. The Application Definition Completed Dialog
remains open for you to initiate application packaging.

a. Select the Create files option and select both the Package Application into a
JAR file and Generate SQL scripts for database objects boxes.

b. At this stage, the Save the Application dialog prompts you for the name of the
JAR file, as Figure 11–9 displays. The default location is given below.

Administer the Application

Tutorial for Building Mobile Web-to-Go Applications 11-13

<ORACLE_HOME>\Mobile\Sdk\wtgsdk\root\ToDoList.jar

Figure 11–9 Save the Application Dialog

After choosing the JAR file, click OK. The JAR file is created and contains the
application files and definition.

c. Back in the Application Definition Completed dialog, select the Publish the
Current Application option and click OK.

The Publish the Application dialog appears. As Table 11–4 describes, enter the
specified values.

d. To publish the application in the Mobile Server Repository, click OK. A dialog
displays the application publishing status. You must wait until the application
is published.

e. To confirm that the application is published successfully, click OK.

f. To exit the Packaging Wizard, click Exit.

You have now completed all development tasks that are required for packaging your
application. Your application is packaged.

11.4 Administer the Application
This section describes how to administer the application that you created and
deployed through the following tasks.

■ Section 11.4.1, "Start the Mobile Server and the Mobile Manager"

Note: The Mobile Server must be up for successful publishing.

Table 11–4 Publish the Application Dialog Description

Field Description Value

Mobile Server URL URL or IP Address of the machine where the
Mobile Server is running.

<Mobile
Server>/webtogo

Mobile Server User
Name

User name of the Mobile Server user with
administrative privileges.

Administrator

Mobile Server
Password

Password of the Mobile Server user with
administrative privileges.

admin

Repository Directory Directory name where all files for this application
will be stored inside the Mobile Server
Repository.

/tutorial

Public Application Do not select this check box unless you want to
make this application available to all users.

Clear

11-14 Oracle Database Lite Developer's Guide

■ Section 11.4.2, "Using the Mobile Manager to Create a New User"

■ Section 11.4.3, "Setting Application Properties"

■ Section 11.4.4, "Granting User Access to the Application"

■ Section 11.4.5, "Defining Snapshot Template Values for the User"

For more information about Mobile Manager tasks described in this tutorial, see the
Oracle Database Lite Administration and Deployment Guide.

11.4.1 Start the Mobile Server and the Mobile Manager
The Mobile Manager is a Web-based application that enables you to administer Mobile
Server applications. To start the Mobile Manager, perform the following steps.

1. Using the command prompt, go to the following directory.

<ORACLE_HOME>\Mobile\Server\bin

2. To start the Mobile Server for the first time and subsequent occasions, execute the
runmobileserver command.

3. Start your Web browser and connect to the Mobile Server by enter the following
URL:

http://<mobile_server>/webtogo

4. Log on as the Mobile Server Administrator using administrator as the User
Name and admin as the Password.

5. To launch the Mobile Manager, click the Mobile Manager link in the workspace.

6. Click the Mobile Server link.

7. Click the Applications link. As Figure 11–10 displays, the Applications page
appears. Locate the To Do List application, which should be there since you
published it.

Figure 11–10 Applications Page

Note: Replace <mobile_server> with the host name of your
Mobile Server.

Administer the Application

Tutorial for Building Mobile Web-to-Go Applications 11-15

11.4.2 Using the Mobile Manager to Create a New User
To create a new Mobile Server user, perform the following steps.

1. On the Mobile Manager home page, click the Users link. As Figure 11–11 displays,
the Users page appears.

Figure 11–11 Users Page

2. Click Add User. As Figure 11–12 displays, the Add User page appears.

Figure 11–12 Add User Page

3. As described in Table 11–5, enter the following information in the Add User page
and click Save.

11-16 Oracle Database Lite Developer's Guide

11.4.3 Setting Application Properties
To set the "To Do List" application properties, perform the following steps.

1. On Mobile Manager home page, click the Applications link. The Applications
page appears.

2. To search for the application that you just published, enter To Do List in the
Application Name field and click Search. The "To Do List" application appears in
the workspace.

3. Click the To Do List application link. As Figure 11–13 displays, the Application
Properties page lists application properties and database connectivity details.

Table 11–5 Add User Page Description

Field Value

Display Name tutorial

User Name tutorial

Password tutorial

Password Confirm tutorial

Privilege User

Register Device True

Software Update Select all updates

Note: To display all the available applications, leave the search
field blank and click Search. This action generates a list of all the
available Mobile Server applications in the workspace.

Administer the Application

Tutorial for Building Mobile Web-to-Go Applications 11-17

Figure 11–13 Application Properties Page

4. In the Database Password field type master. This is the default password for the
Web-to-Go demo schema. Click Apply. The Mobile Manager displays a
confirmation message.

11.4.4 Granting User Access to the Application
To grant the user TUTORIAL access to the "To Do List" application, perform the
following steps.

1. Navigate to the Application Properties page and click the Access link. As
Figure 11–14 displays, the Access page lists groups and users that are associated
with the application. The check boxes on this page indicate whether or not the user
or group has access to the application.

11-18 Oracle Database Lite Developer's Guide

Figure 11–14 Access Page

2. Under the Users table, locate the user TUTORIAL and select the check box
displayed against the user, TUTORIAL.

3. Click Save. The Mobile Manager displays a confirmation message. The user
TUTORIAL has now been granted access to the "To Do List" application.

11.4.5 Defining Snapshot Template Values for the User
Define the snapshot template variable for the user, TUTORIAL. Each Mobile Client for
Web-to-Go downloads the same application data when it synchronizes. In some cases,
you may want to specify the data your application downloads for each user. You can
accomplish this by modifying the user's snapshot template variable.

To modify a user's Data Subsetting parameters, perform the following steps.

1. Navigate to the Applications page and click the ToDoList application link. The
Application Properties page appears. Click the Data Subsetting link. As
Figure 11–15 displays, the Data Subsetting page appears.

Execute the Application on the Mobile Client for Web-to-Go

Tutorial for Building Mobile Web-to-Go Applications 11-19

Figure 11–15 Data Subsetting Page

2. Under the User Name column, click the user name link tutorial. As
Figure 11–16 displays, the Data Subsetting Parameters page appears.

Figure 11–16 Data Subsetting Parameters Page

3. Select the Username parameter and enter the value tutorial. Click Save.

For more information about snapshots, refer the Oracle Database Lite Administration and
Deployment Guide.

11.5 Execute the Application on the Mobile Client for Web-to-Go
This section describes how to set up a Mobile client to use the application that you
created and tested in the Development section, deployed in the Deployment section,
and then administered in the Administration section. In this section, you will perform
the following tasks.

■ Section 11.5.1, "Install the Mobile Client for Web-to-Go"

■ Section 11.5.2, "Log into the Mobile Client for Web-to-Go"

■ Section 11.5.3, "Manually Synchronize the Mobile Client for Web-to-Go"

11.5.1 Install the Mobile Client for Web-to-Go
You must install the Mobile client before you can use the application that you created
and deployed.

To install the Mobile Client for Web-to-Go, perform the following actions.

1. Start your Web browser and connect to the Mobile Server by entering the
following URL.

Note: You must install the application and test it on a separate
machine from the Mobile Server.

Note: You must install the Mobile Client on a machine which does
not host the Mobile Server installation.

11-20 Oracle Database Lite Developer's Guide

http://<mobile_server>/webtogo/setup

2. As Figure 11–17 displays, the Mobile Client Setup page lists a set of Mobile clients
by platform. To download the Mobile Client for Web-to-Go setup program, click
the corresponding Mobile Client link.

Figure 11–17 Mobile Client Setup Page

3. If you are using Netscape, choose a location to save the setup program and click
OK. In Windows Explorer, double-click setup.exe to run the setup program.

If you are using Internet Explorer, run the setup program from your browser
window.

4. While installing the Mobile Client, you will be prompted for the user name and
password. Enter tutorial as the user name and tutorial as the password.

5. The setup program prompts you to choose an installation directory such as
D:\mobileclient and downloads all the required components and starts the
Mobile Client for Web-to-Go on your machine. After completing the installation,
the Mobile Manager login page appears as Figure 11–18 displays.

Note: While installing the Mobile Client, you will be prompted for
the User name and Password. Enter tutorial as the user name and
tutorial as the password.

Execute the Application on the Mobile Client for Web-to-Go

Tutorial for Building Mobile Web-to-Go Applications 11-21

Figure 11–18 Mobile Manager Login Page

11.5.2 Log into the Mobile Client for Web-to-Go
Complete the Mobile Client for Web-to-Go setup process. Your browser displays the
Web-to-Go logon page. If your browser does not display the Web-to-Go login page,
enter the following URL.

http://localhost/webtogo

1. Log on to Web-to-Go using tutorial as the User Name and tutorial as the
password.

2. As you are logging into the Mobile Client for Web-to-Go for the first time, you
must complete the initial setup process. The client initialization page appears and
displays a confirmation message. "The Web-to-Go Client was installed
successfully! Web-to-Go client will now synchronize your computer with the
Mobile Server."

3. To start downloading your applications and data, click Next. The data
synchronization page appears. This page displays the data synchronization status.

4. Once the synchronization process is finished, the Mobile Client for Web-to-Go is
restarted automatically. The Mobile Server displays the following message: "New
or updated application files have been downloaded. Please wait while Mobile
Client for Web-to-Go is being restarted."

5. After restarting the Mobile Client for Web-to-Go, the workspace portal appears
with a single icon for the "To Do List" application and a link labeled ToDoList.

6. Click the To Do List application icon. As Figure 11–19 displays, Web-to-Go
launches the "To Do List" application in your browser.

11-22 Oracle Database Lite Developer's Guide

Figure 11–19 The "To Do List" Application

7. Enter a new To Do item and save it in the database. Click Add.

8. Exit the application by closing the browser window. This action returns you to the
workspace.

11.5.3 Manually Synchronize the Mobile Client for Web-to-Go
If you set up automatic synchronization, you can skip this section. To manually
synchronize the Mobile Client for Web-to-Go with the Mobile Server, perform the
following steps.

1. As Figure 11–20 displays, click the Sync tab in the upper right corner of the
workspace.

Figure 11–20 Sync Tab Location

The Mobile Client for Web-to-Go synchronizes the application and all of your data to
the Oracle 10g Database. The workspace appears when the synchronization process
has completed.

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-1

12
Tutorial for Building Mobile Web

Applications Using ADF/BC4J

The following sections use a tutorial to describe how to create, deploy, and use an
ADF/BC4J application:

■ Section 12.1, "Overview"

■ Section 12.2, "Creating a Database Connection"

■ Section 12.3, "Develop the ADF/BC4J Application"

■ Section 12.4, "Package the ADF/BC4J Application"

■ Section 12.5, "Publish and Configure the ADF/BC4J Application from the Mobile
Manager"

■ Section 12.6, "Test the ADF/BC4J Application"

■ Section 12.7, "Run the ADF/BC4J Application on the Mobile Client for Oracle Lite
WEB OC4J"

12.1 Overview
The Oracle Application Development Framework (Oracle ADF) is an end-to-end a
application framework that builds on J2EE standards and open-source technologies to
simplify and accelerate implementing service-oriented applications. If you develop
enterprise solutions that search, display, create, modify and validate data using Web,
wireless, desktop or Web services interfaces, then Oracle ADF can simplify your job.

Oracle Business Components for Java (BC4J) is a part of the Oracle JDeveloper IDE
(Integrated Development Environment), and provides Java developers with tools to
create and manage reusable Java components.

ADF/BC4J offers a standards-based, server-side Java and XML framework for
developers. You can build and deploy reusable business components for high
performance Internet applications, such as e-commerce and business-to-business
systems. Applications, which are created using ADF/BC4J, comprise five basic
framework components: Entity Objects, Associations, View Objects, View Links, and
Application Modules. Each of these components is interrelated to the other
components, which enables you to establish views into database tables. You can
combine, filter, and sort data as needed.

When used in application development, ADF/BC4J automatically generates database
oriented components, so that you can focus on the business logic instead of on
database related components.

Creating a Database Connection

12-2 Oracle Database Lite Developer's Guide

The ADF/BC4J sample application used in this tutorial maintains employee details
and stores all items in a relational database.

12.1.1 Before You Start
Ensure that the computer you are using for your development meets the requirements
specified in this section. Table 12–1 lists configuration and installation requirements
for the development computer.

12.2 Creating a Database Connection
When using ADF/BC4J, you need to define the database connection in both
JDeveloper and Oracle Database Lite, which is shown in the following sections:

■ Section 12.2.1, "Creating a Database Connection to Oracle Database"

■ Section 12.2.2, "Specify The Connection To The Oracle Lite Database"

12.2.1 Creating a Database Connection to Oracle Database
Java Database Connectivity (JDBC) is a standard application-programming interface
(API) that is used for connecting a Java application to relational databases. JDeveloper
uses a connection navigator to maintain connection information for your application.
The connection navigator makes it easy to create, manage, and test database
connections. If you have not already established a connection to the database, then
perform the following steps:

1. Connect to Oracle Database as the master user and execute the adf_main.sql
script, which is located in the <ORACLE_LITE_
HOME>\Mobile\Sdk\wtgsdk\src\bc4jtutorial directory.

2. Start Oracle10g JDeveloper Release 3 (10.1.3) Studio.

3. Select the Connections tab on the Applications Navigator.

Table 12–1 Development Computer Requirements

Requirement Description

Windows User Login The Windows login user must have Administrator privileges on the
development computer.

Installed Java
Components

■ Java Development Kit 1.4.2 or higher for the Mobile Server and
Jdeveloper.

■ JRE 1.5.x or higher for the OC4J client.

Installed Oracle
Components

Mobile Server or Mobile Development Kit (Oracle Database Lite
CD-ROM)

Oracle 9i or higher with the default Master schema installed.

Oracle10g JDeveloper Release 3 (10.1.3.0.4) Studio.
Studio Edition Version 10.1.3.0.4.3673
BUILD JDEVADF_10.1.3_NT_060125.0900.3673

Note: This tutorial is written and certified using the
above-mentioned version of Jdeveloper.

Note: If the Connections tab is not showing, choose View ->
Connection Navigator from the JDeveloper main menu.

Creating a Database Connection

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-3

Figure 12–1 JDeveloper Connection tab on the Connection Navigator

4. Right-click the Database folder and select New Database Connection. This starts
the Create Database Connection Wizard.

Figure 12–2 JDeveloper Connection tab on the Connection Navigator, New Database
Connection

5. Perform the following in the Create Database Connection Wizard:

a. Review the information on the Welcome page and click Next.

b. In the Connection Name field, enter adfconn. Click Next.

Creating a Database Connection

12-4 Oracle Database Lite Developer's Guide

Figure 12–3 Connection Wizard - Step 1 of 4: Type Panel

c. On the Authentication page, enter master/master for the
username/password fields. Select Deploy password.

Figure 12–4 Connection Wizard - Step 2 of 4: Authentication Panel

d. On the Connections page, the default values for the connection is as follows:

– Driver: thin

– Host name: <mobileserver_host>

– JDBC Port: <mobileserver_port>

Creating a Database Connection

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-5

– SID: <repository_SID>

e. Click Next and Test Connection. One of the following occurs:

– If the database is available and the connection details are correct, then
Success! displayed in the Status window.

– If an error occurs, verify the connection settings. Click Back to make any
necessary changes, and then retest the connection.

– If the connection is successful, click Finish to complete the connection.

12.2.2 Specify The Connection To The Oracle Lite Database
The Oracle Database Lite connection is used for synchronization between the two
databases—the back-end Oracle database and the local Oracle Lite database. Once you
specify the connection within JDeveloper, then modify the application to use this
connection.

For this example, we will create the WTGJdbc connection, which uses the
oracle.lite.web.WTGJdbcDriver.

To create the WTGJdbc connection, do the following:

1. In JDeveloper, configure the project settings and include the Oracle Database Lite
user library named webtogo.jar, as follows:

a. Copy the olite40.jar and webtogo.jar files from the Oracle Lite MDK
into the <JDEV_HOME>\bc4j\lib.

b. Click Tools->Manage Libraries.

c. Select the Libraries tab.

d. Select User.

e. Create the library dialogs for both the webtogo.jar and olite40.jar files,
as follows:

– Click New Button. The "Create Library Dialog" displays.

– Enter webtogo.jar for the library name.

– Select Deployed by default.

– Click Add Entry and browse for the webtogo.jar file.

– Click OK.

– The Manage Libraries screen displays. Click OK.

f. Repeat step e for the olite40.jar file.

2. Select the Connections tab on the Application Navigator.

Note: Leave the fields set to these default values.

Note: The WTGJdbc connection must be used within the application
as well as configured in the project settings. However, during
development, you may have used the adfconn JDBC connection for
testing. Once development is complete for the application, make sure
that you modify your application to use the WTGJdbc connection
before you deploy it.

Creating a Database Connection

12-6 Oracle Database Lite Developer's Guide

3. Right-click the Database folder and select New Database Connection.

Figure 12–5 JDeveloper Connection tab on the Connection Navigator, New Database
Connection

The Create Database Connection Wizard starts. Perform the following in creating
a new database connection using this wizard:

a. Click Next on the Welcome screen.

b. Enter WTGJdbc as the Connection Name and choose Third Party JDBC Driver
as the JDBC Connection Type.

c. Click Next.

Figure 12–6 Connection Wizard - Step 1 of 4: Type Panel

Note: If you do not see the Connections tab, select
View->Connection Navigator.

Creating a Database Connection

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-7

4. The Connection Wizard - Step 2 of 4: Authentication panel appears. Do not enter
any values in this panel. Click Next.

5. The Connection Wizard - Step 3 of 4: Connection panel appears. Click New.

Figure 12–7 Connection Wizard - Step 3 of 4: Connection Panel

6. The Register JDBC Driver dialog appears, as Figure 12–8 displays. Perform the
following:

a. Enter oracle.lite.web.WTGJdbcDriver as the Driver Class. Choose
webtogo from the Library list and click OK.

Creating a Database Connection

12-8 Oracle Database Lite Developer's Guide

Figure 12–8 JDBC Driver Dialog

b. Enter the following jdbc:oracle:webtogo URL and click Next.

Figure 12–9 Enter URL for Database Connection

7. The Connection Wizard - Step 4 of 4: Click Finish. Do not test the Connection
since you do not have any Client database to test the connection at this point.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-9

12.3 Develop the ADF/BC4J Application
The following sections describe the steps to develop the ADF/BC4J application for
Oracle Database Lite:

■ Section 12.3.1, "Build the Data Model with ADF Business Components"

■ Section 12.3.2, "Customize the Business Components Views"

■ Section 12.3.3, "Create a Master-Detail JavaServer Faces Page"

■ Section 12.3.4, "Run the JSF Page"

■ Section 12.3.5, "Configure the ADF/BC4J Application for the Oracle Database Lite
Environment"

12.3.1 Build the Data Model with ADF Business Components
The data model provides data access and validation for an application. The data is
validated by the model, regardless of the client implementation. This separates the
validation and business rules from the user interface.

The following sections describe the steps to create an application in JDeveloper and
create a Business Components model for your applications.

■ Section 12.3.1.1, "Create a New Application and Projects"

■ Section 12.3.1.2, "Create Business Components"

12.3.1.1 Create a New Application and Projects
In JDeveloper, you work with projects contained in an application. The application is
the highest point in the control structure.

A JDeveloper project is an organizational structure that logically groups related files.
You can add multiple projects to your application to easily organize, access, modify,
and reuse your source code. In the Applications Navigator, projects are displayed as
the second level in the hierarchy, under the application.

Before you create any components, you must first create the application and a project.
Perform the following steps:

1. Select the Applications tab to go back to the Applications Navigator.

2. Right-click the Applications node and select New Application from the context
menu.

Develop the ADF/BC4J Application

12-10 Oracle Database Lite Developer's Guide

Figure 12–10 New Application

3. In the Create Application dialog box, enter the Application Name OrderEntry.
Notice that the directory name changes automatically.

Enter orderentry as the Application Package Prefix. For the Application
Template, select the Web Application [JSF, ADF BC] value from the
Application Template drop-down list.

Figure 12–11 Create Application

Click OK.

4. The Application should contain two projects: Model and ViewController.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-11

Figure 12–12 OrderEntry in JDeveloper

You now have an application and projects to contain and manage your application.

12.3.1.2 Create Business Components
In this section, you create ADF Business Components based on tables in the database.
For this example, use the adfconn database connection, which you created earlier.
You create these objects in the Model project.

1. In the Applications Navigator, right-click the Model project and select New from
the context menu.

Figure 12–13 New Object in Model Project

2. In the New Gallery, expand Business Tier and select ADF Business Components
in the Categories list.

Select Business Components from Tables in the Items list.

Develop the ADF/BC4J Application

12-12 Oracle Database Lite Developer's Guide

Figure 12–14 Select ADF Business Components from Tables

Click OK.

3. In the Business Components Project Initialization window, select the adfconn
connection from the Connection list. Change SQL Flavor to OLite and Type Map
to Java, and then click OK.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-13

Figure 12–15 Initialize Business Components Project

4. If the Welcome page of the Create Business Components wizard appears, click
Next. If no package name is specified when creating the application, by default it
takes the project name, which is model.

5. Select the tables for the business component, as follows:

a. Select MASTER from the Schema drop down list.

b. Click Query to populate the list of available tables.

c. Control-click to select both CUSTOMERS and ORDERS in the Available list.

d. Click the right arrow to move both tables to the Selected list.

Note: An ADF Entity Object is a Java component that represents a
row in an underlying database table as a domain business object in
your J2EE application. It encapsulates the business rules for that
domain object and automatically handles saving any change made by
the user back to the database. If you are familiar with Oracle Forms,
the entity object provides functionality similar to the Oracle Forms
record manager, but with the ability to associate encapsulated
business rules with each type of 'business record' structure.

Develop the ADF/BC4J Application

12-14 Oracle Database Lite Developer's Guide

Figure 12–16 Select Tables for Business Components

e. Click Next to continue.

6. On the Updatable View Objects page of the Create Business Components Wizard,
select both Entity objects and click the right arrow button to move both tables to
the Selected list.

Note: An ADF View Object is a Java component that represents a
SQL query against one or more underlying tables. It allows you to
project, join, filter, and sort business information in exactly the way
the end-user needs to see it for the user interface you need to provide
to your end users. When related to underlying ADF Entity Objects, the
view object allows users to create, update, and remove rows with
automatic enforcement of business rules. If you are familiar with
Oracle Forms, the view object provides functionality similar to the
Oracle Forms Data Block, but adds the flexibility to finely tune the
SQL query and to automatically leverage centralized business rules
encapsulated by the entity object.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-15

Figure 12–17 Updatable View Objects

Click Next.

7. Skip the Read-only View Objects page of the wizard by clicking Next. You will
only be using view objects that can be updated.

Figure 12–18 Read-Only View Objects

8. On the Application Module page of the wizard, name the application module
OrderEntryAM.

Note: An ADF Application Module is a Java component that
represents a transactional data model of master/detail-related view
object queries. It allows client interface technologies of any kind in a
service-oriented architecture to easily manipulate the business
information exposed by the view object instances contained in its data
model. If you are familiar with Oracle Forms, the application module
provides the functionality of a transactional data container similar to
the Oracle Forms Form object, but is designed to allow any kind of
user interface to work with the data in its view object 'data blocks'.

Develop the ADF/BC4J Application

12-16 Oracle Database Lite Developer's Guide

Figure 12–19 Application Module

Click Next.

9. JDeveloper provides several different techniques for managing components. One
is to use a diagram of the components and their relationships. In this step,
JDeveloper provides such a diagram option.

For this tutorial, you will not use this option. Click Next to continue.

Figure 12–20 Diagram

10. The final page of the Business Components Wizard shows the objects and
relationships that will be created.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-17

Click Finish to complete the wizard actions.

Figure 12–21 Finish

11. Using the far right button of the toolbar in the navigator pane, sort elements by
type.

Figure 12–22 Sort by Type

12.3.2 Customize the Business Components Views
In the previous sections, you created some default Business Components from two
tables (Customers and Orders). The default view objects expose all of the columns
from those tables. For your application, you want to expose only a few of those
columns. ADF BC allows you to easily customize hose objects to fit your specific
application needs.

Develop the ADF/BC4J Application

12-18 Oracle Database Lite Developer's Guide

In the following steps, you will add an Order By clause to the CustomersView to make
sure the returned data is sorted by customer ID.

1. In the Applications Navigator, right-click the CustomersView node and select Edit
CustomersView from the context menu.

Figure 12–23 Edit CustomersView

2. Select SQL Statement and add an Order By clause to the CustomersView to
make sure the returned data is sorted by customer ID.

Figure 12–24 View Object Editor

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-19

Click OK to apply the changes and exit the View Object Editor.

3. Click the Save All icon on the JDeveloper menu bar, or select File > Save All from
the menu. You have now customized the Customers view to meet the specific
needs of your application.

12.3.3 Create a Master-Detail JavaServer Faces Page
Conforming to the JSF standards, ADF Faces lets you concentrate on the application
and layout rather than markup language and tags. Due to the integration of ADF Faces
and ADF Business Components, you can easily change the default field labels for the
user interface from within ADF Business Components.

In the next few steps, you create an ADF Faces application based on the ADF BC
model that you just built. You also modify some of the ADF BC default settings to help
enhance the default UI.

1. When you created the application, two projects were defined: Model and
ViewController. The Model project contains the business components that
serve as the data model for your application. The ViewController project will
include the View portion of your application, which defines the user interface.

Collapse the Model node so that the Applications Navigator appear as follows:

Figure 12–25 OrderEntry in JDeveloper

2. Create a new JSF by right-clicking ViewController in the Applications Navigator
and selecting New from the context menu.

Develop the ADF/BC4J Application

12-20 Oracle Database Lite Developer's Guide

Figure 12–26 New Object Under ViewController

3. Select JSF JSP from the JSF Category.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-21

Figure 12–27 New JSF JSP

4. Selecting a new JSF opens the Create JSF JSP Wizard. Perform the following for
creating the CustomerOrders.jsp:

a. Click Next to skip the Welcome page of the JSF JSP Wizard, if it appears.

b. Name the new JSP CustomerOrders.jsp. Accept the other defaults and
click Next to continue.

Develop the ADF/BC4J Application

12-22 Oracle Database Lite Developer's Guide

Figure 12–28 Step 1 of Creating JSP

c. On the next page, Component Binding, select the Do Not Automatically
Expose UI Components option. Leave other default values and click Next.

Figure 12–29 Step 2 of Creating JSP

d. Select libraries in the Available Libraries window, and use the Add button to
move them into the Selected Libraries section, as needed. Make sure the
following libraries appear in Selected Libraries:

– JSF Core 1.0

– JSF HTML 1.0

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-23

– ADF Faces Components

– ADF Faces HTML

Figure 12–30 Step 3 of Creating JSP

Click Next to accept these libraries.

e. Click Finish to accept the default HTML options and create the new JSP.

Figure 12–31 Step 4 of Creating JSP

Develop the ADF/BC4J Application

12-24 Oracle Database Lite Developer's Guide

You now have an empty CustomerOrders.jsp page. In the next few steps, add a
data-bound ADF Faces component to the page. This component displays a customer
along with the orders that the customer has placed.

When you created the CustomerOrders.jsp page, JDeveloper opened it in a visual
editor in the center of the JDeveloper IDE. You add the ADF Faces components by
dragging them from either the Component Palette or the Data Control Palette to the
visual editor. Here you will drop some databound components based on the view
objects you created earlier using the Data Control Palette.

1. Expand OrderEntryDataAMControl in the Data Control palette.

Figure 12–32 Data Control Palette

2. Expand CustomersView1.

Figure 12–33 Expand CustomersView1

3. Drag OrdersView2 to the visual editor. JDeveloper opens a context menu with
the available options for that data control.

Note: By default, the Business Components from Tables wizard
noticed the foreign key relationships between the ORDERS and
CUSTOMER tables and created a default data model in the
OrderEntryDataAM data model that features both an OrdersView1,
allowing us to see all orders, as well as an OrdersView2 that is
linked with the OrdersView1 showing all of the customers. In this
scenario, we'll use the CustomersView1 and the OrdersView2 that
displays customers and their set of orders.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-25

Figure 12–34 Visual Editor

4. Place your cursor over the Master-Details option, and then select ADF Master
Form, Detail Table.

Figure 12–35 Master-Details Selection

5. JDeveloper adds the ADF Master Detail component to your JSF page.

Develop the ADF/BC4J Application

12-26 Oracle Database Lite Developer's Guide

Figure 12–36 Add ADF Master-Detail to JSP

6. In the JSF Page in the OrderView2, eliminate the Submit button by selecting the
Component Submit and click the Delete key on your keyboard. The page should
look as follows:

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-27

Figure 12–37 Submit Components

You now have a complete JSF that is databound to your ADF BC business services.

12.3.4 Run the JSF Page
Now that you have built your new ADF Faces application, you need to test it.
JDeveloper makes it easy to test JSF through a built-in OC4J server. The server is
automatically launched when you test a page from within JDeveloper.

The next few steps take you through the testing process.

1. To test the page, right-click CustomerOrders.jsp in the Applications Navigator
and select Run from the context menu. Alternatively, you can right-click inside the
visual editor and select Run from that context menu.

Develop the ADF/BC4J Application

12-28 Oracle Database Lite Developer's Guide

Figure 12–38 Test the Page

2. After execution, the results page should be as follows:

Figure 12–39 Results Page

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-29

3. Navigate through the customer rows to see the differences in the orders that each
customer has placed. Note that the first few customers in the list have multiple
orders.

When you are finished, close the browser. Make sure you stop the JDeveloper OC4J
Server before proceeding to next section. To stop the JDeveloper OC4J Server, select
Run -> Terminate -> Embedded OC4J Server.

12.3.5 Configure the ADF/BC4J Application for the Oracle Database Lite Environment
Using JDeveloper, configure the application to use the Oracle Database Lite
environment, as described in the following sections:

Change the application configuration to use the WTGJdbcConnection, as follows:

1. In the JDeveloper Applications Navigator, right-click the OrderEntryAM node and
select Configurations.

Figure 12–40 Selecting Configurations in JDeveloper

2. Select JDBCName and edit the connection. The Oracle Business Component
Configuration window is displayed.

3. Select WTGJdbc for Connection Name and click OK twice.

Note: JDeveloper will open your default web browser and display
the page. If this doesn't happen, visit the Tools -> Preferences and
select the Web Browser and Proxy category. Here you can enter the
command line to your preferred browser. Then, try running the page
again after setting this preference.

Package the ADF/BC4J Application

12-30 Oracle Database Lite Developer's Guide

Figure 12–41 Business Component Configuration Window

4. Save your project.

The ADF/BC4J application has been configured to use Oracle Database Lite
connection

12.3.6 Deploy the Application as WAR file
 To deploy the application, create a deployment profile and then deploy the
application as a WAR file, as follows:

1. In the Application Navigator, select the CustomerOrders.jsp.

2. Choose Run -> Deploy -> New Deployment Profile and create a new deployment
profile.

3. Choose Run -> Deploy and then select the deployment profile created in step 2.

12.4 Package the ADF/BC4J Application
In order to package the ADF/BC4J application, you must perform the following:

■ Section 12.4.1, "Include the ADF Runtime Libraries with the ADF/BC4J
Application"

■ Section 12.4.2, "Package the Application from the Packaging Wizard"

12.4.1 Include the ADF Runtime Libraries with the ADF/BC4J Application
In order for the application to execute correctly, the ADF runtime libraries must be
included. Perform the following to include these libraries in your ADF/BC4J
application:

Package the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-31

1. Unarchive the WAR file with the ADF/BC4J application into a temporary
directory, such as adftutapp. This explodes the CustomerOrders.jsp and the
WEB-INF directory into the adftutapp directory.

2. Navigate to the WEB-INF\lib directory and copy all ADF/BC4J runtime libraries
to this directory.

12.4.2 Package the Application from the Packaging Wizard
To package the JSP application, perform the following steps.

1. Copy the adftutapp directory and its contents into the following location:

<Mobile_ServerHome>\Mobile\Sdk\wtgsdk\root

2. Using the Command Prompt window, run the Packaging Wizard and provide the
screen inputs that are listed and described in Table 12–2.

3. Retain the default values for Files, Servlet, Database and Roles screens.

Note: For information regarding list of libraries to be copied, refer to
Chapter 22.12.3 “Installing the ADF Runtime Libraries Manually” in
the Oracle Application Framework, Developer’s Guide, 10g Release 3
(10.1.3).

Table 12–2 Packaging Wizard Input Details for BC4J Application

Screen Input Details

Platform Oracle Lite Web OC4J; US N/A

Application Application Name ADF BC4J Oracle Database Lite
Tutorial Application

Application Virtual Path /bc4jtutorial

Application Description Oracle Lite Tutorial Application

Application Application Classpath no input

Application Default Page faces/CustomerOrders.jsp

Application Local Application Directory <ORACLE_HOME>\Mobile\SDK
\wtgsdk\root\adftutapp

Files The Packaging Wizard loads all
files into the directory under the
local application directory.

N/A

Note: For all ADF-based applications, you need to also perform the
following:

■ For Platform input, the user should select the correct language for
the Oracle Lite Web OC4J; <lang>.

■ For the Default page Input for the application screen, always
prepend the faces/ directory before the default page name.

If you miss these steps, your application will not perform correctly.

Publish and Configure the ADF/BC4J Application from the Mobile Manager

12-32 Oracle Database Lite Developer's Guide

4. On the Snapshots screen, click Import. You can now connect to the Oracle
Database by providing the values shown in Table 12–3 in the "Connect to
Database" dialog:

5. After specifying the Database Connection values, select CUSTOMERS from the list
of tables and click Add.

6. Select ORDERS from the list of tables. Click Add and then click Close.

7. From the snapshot panel, select Customers and change the weight from 0 to 1.

8. From the snapshot panel, select ORDERS and click Edit. Change the weight from
0 to 2.

9. Retain the default values for Sequences and DDLs.

10. Package the ADF/BC4J application into a JAR file.

12.5 Publish and Configure the ADF/BC4J Application from the Mobile
Manager

To publish and configure the JSP application from the Mobile Manager, perform the
following steps:

1. Using the Command Prompt window, enter runmobileserver to start the
Mobile Server.

2. Using the following URL, browse the local host.

http://<localhost>:<portnumber>/webtogo

3. Login into the Mobile Server using the administrator username and password.

4. Click Mobile Manager. Select the Mobile Server tab and then click Host name.

5. Click Applications and publish the JAR file that you just created.

12.6 Test the ADF/BC4J Application
Perform the following to test your ADF/BC4J application:

1. Log on to the Mobile Server with the administrator username and password.

2. Select Mobile Manager.

3. Click on the Mobile Server tab.

4. Select the host.

Table 12–3 Connect to Database Dialog

Field Description

Username master

Password master

Database URL jdbc:oracle:thin:@<database_
hostname>:<port>:<SID>

Note: If the above port number is other than 80, specify the
appropriate port number.

Run the ADF/BC4J Application on the Mobile Client for Oracle Lite WEB OC4J

Tutorial for Building Mobile Web Applications Using ADF/BC4J 12-33

5. Click Users.

6. Create a new user called tutorial and grant permission to this user for the
"ADF/BC4J Oracle Database Lite Tutorial Application."

7. Test the application by executing the ADF/BC4J application on the Mobile Client
for Oracle Lite WEB OC4J, as described in Section 12.7, "Run the ADF/BC4J
Application on the Mobile Client for Oracle Lite WEB OC4J".

12.7 Run the ADF/BC4J Application on the Mobile Client for Oracle Lite
WEB OC4J

Before you execute, you must have JRE 1.5.x or higher installed for the OC4J client.

To execute the ADF/BC4J application on the Mobile Client for Oracle Lite WEB OC4J,
perform the following steps:

1. Point the client machine browser to the following URL:

http://<Server_IP_Address>/setup

where Server_IP_Address is your server machine IP address.

2. Download and install the Mobile Client for Oracle Lite WEB OC4J

3. Point the client machine browser to the following URL:
http://<localhostname>, where localhostname is the client machine host
name.

4. Log in to the client machine-using tutorial as both the username and password.

5. After the client machine synchronizes the application and data from the server,
click the “ADF/BC4J Oracle Database Lite Tutorial” Application link to test the
application on the client machine.

Run the ADF/BC4J Application on the Mobile Client for Oracle Lite WEB OC4J

12-34 Oracle Database Lite Developer's Guide

Tutorial for Building Mobile Applications for Win32 13-1

13
Tutorial for Building Mobile Applications for

Win32

To demonstrate the steps involved in building Mobile applications for the Win32
platform, this tutorial presents a simplified Mobile field service example. The
following sections guide you through the Mobile application development process for
the Win32 platform. When developing, you can use Visual Studio.Net 2003 or 2005. If
you use Visual Studio.Net 2005, you must install the ODBC 3.5 driver. See
Section 5.1.3, "ODBC" for details.

■ Section 13.1, "Plan the Mobile Application Demo for Win32"

■ Section 13.2, "Description of Tasks for Win32 Demo"

■ Section 13.3, "Administer the Application"

■ Section 13.4, "Execute the Application on the Mobile Client for Web-to-Go"

13.1 Plan the Mobile Application Demo for Win32
Let us assume that you have a TASK table on the server that contains information
about tasks that must be accomplished by your Mobile field service technicians for a
day. Listed below is the TASK table structure. Each row in the TASK table describes
work to be done at a customer site.

■ TASK(ID number(4) primary key

■ Description varchar(40) not null

■ CustName varchar(30) not null

■ CustPhone varchar(12)

■ CustStAddr varchar(40) not null

■ CustCity varchar(40) not null

■ Notes varchar(100)

Let us also assume that you have three service technicians, Tom, Dick, and Harry. You
want to assign all the tasks in the City of Cupertino to Tom, those in the City of
Mountain View to Dick, and those in the City of Palo Alto to Harry. You envision your
application to work as follows:

Each service technician has a laptop that he uses to obtain his task list in the morning.
He will perform the task during the day and will update the Notes column of a task
with information about its status or what he has done. At the end of his work day, the
service technician uploads his changes to the server.

Description of Tasks for Win32 Demo

13-2 Oracle Database Lite Developer's Guide

We will assume the following environment for your application.

■ The Mobile Server is installed on the machine called mserver.

■ The test Oracle database that is used to store the application data and the Mobile
Server Repository is installed on the machine oradbserver with the listener on
port 1521. The Oracle database name is orcl. We will assume that you can log in
to the database with the user name master and password master. You can
substitute any user for master so long as the user has the right privileges.

■ You have already installed the Mobile Development Kit on your development
machine.

Our implementation plan is as follows. The exact sequence of commands for each step
is given later.

1. Create the TASK table in the oradbserver and insert some rows into it. This step
is not needed if you already have a database that contains a table similar to TASK.

2. Use MDW to create a publication that contains a single publication item based on
the TASK table.

3. Use the Packaging Wizard to define and publish the Mobile Field Service
application to the Mobile Server.

4. Use the Mobile Manager to create users Tom, Dick, and Harry on the Mobile
Server. Grant all users the privilege to execute the Mobile Field Service application
and create a subscription for each of them.

5. Install the Oracle Database Lite 10g client on your development machine in a
separate directory (emulating a technician's machine). Run the Mobile Sync
application to download the Mobile Field Service application (which is currently
empty) and data.

6. On your development machine, use mSQL to look at the rows in the TASK
snapshot and update the rows by entering notes in the Notes column.

7. Synchronize the changes you made in the snapshot with the server database by
running the Mobile Sync application again.

8. Connect to the server database and check that your changes are there. Modify the
Description of one of the rows for the customer in Cupertino.

9. Run the Mobile Sync application again. You will see the changes that you made on
the server are in the snapshot in the client database.

10. Develop a C or C++ program against Oracle Database Lite to:

■ show the tasks to the technician, and

■ let the technician choose a task and enter notes for it

11. Use the Packaging Wizard to update the application to include the above
program.

The Mobile Server is now ready for real life testing.

13.2 Description of Tasks for Win32 Demo
The following sections describe the command sequence for successfully creating the
Win32 demo:

1. Section 13.2.1, "Create TASK Table on the Server Database"

2. Section 13.2.2, "Create Publication for Application"

Description of Tasks for Win32 Demo

Tutorial for Building Mobile Applications for Win32 13-3

3. Section 13.2.3, "Package the Application Using the Packaging Wizard"

13.2.1 Create TASK Table on the Server Database
We will use the Oracle 10g thin JDBC driver to connect to the Oracle database running
in the oradbserver machine. Ensure that the thin JDBC driver (<ORACLE_
HOME>\jdbc\lib\ojdbc14.jar) file is included in your CLASSPATH environment
variable. Connect as master with password master.

D:>msql master/master@jdbc:oracle:thin:@oradbserver:1521:orcl

Now create the TASK table in this database. The SQL script to create and populate the
server database is provided in the following directory.

<ORACLE_HOME>\mobile\sdk\samples\odbc\win32\MFS

SQL>create table TASK(

1> ID number(4) primary key,
2> Description varchar(40) not null,
3> CustName varchar(30) not null,
4> CustPhone varchar(12),
5> CustStAddr varchar(40) not null,
6> CustCity varchar(40) not null,
7> Notes varchar(100));

We will now insert four rows into this table.

SQL> insert into task values(1,'Refrigerator not
working','Able','408-999-9999','123 Main St.','Cupertino',null);
SQL> insert into task values(2,'Garbage Disposal
broken','Baker','408-888-8888','234 Central Ave','Cupertino',null);
SQL> insert into task values(3,'Refrigerator makes
noise','Choplin','650-777-7777','1 North St.','Mountain View',null);
SQL> insert into task values(4,'Faucet leaks','Dean','650-666-6666','10 University
St.','Palo Alto','Beware of dogs');
SQL> commit;
SQL> exit

13.2.2 Create Publication for Application
As described fully in Chapter 6, "Using Mobile Database Workbench to Create
Publications", you can use MDW to create your publication. Launch MDW by
executing oramdw from <ORACLE_HOME>/Mobile/Sdk/bin. The following sections
detail how to use MDW to create a publication for the application in this tutorial.

■ Section 13.2.2.1, "Create a Project"

■ Section 13.2.2.2, "Create Publication Item"

■ Section 13.2.2.3, "Create Publication"

Note: While creating this publication, use Chapter 6, "Using Mobile
Database Workbench to Create Publications" for a deeper
understanding of how to use MDW and the type of information that
you must provide.

Description of Tasks for Win32 Demo

13-4 Oracle Database Lite Developer's Guide

13.2.2.1 Create a Project
Create a new project for this application by selecting File->New->Project. This brings
up a wizard where you enter the following information:

1. Define a name and location for the project.

2. Enter the username, password, JDBC driver type, database host, database port and
database SID for the Mobile repository. Username and password are
MOBILEADMIN/<mobileadmin_password>, and the database URL is
jdbc:oracle:thin:@oradbserver:1521:orcl.

Provide the Mobile Repository access information. Because you are interacting
with the repository to create and manipulate synchronization objects, including
the SQL scripts for the publication items, you need access to the Mobile
Repository.

3. Specify schema username and password. Enter the user and password of the
schema owner for the schema that you are using for the Mobile application. The
Mobile application schema contains all database tables, views, synonyms used to
build the snapshots for the application.

4. Verify the information that you entered and click Finish.

13.2.2.2 Create Publication Item
For this project, you need to create the taskpi publication item.

Perform the following to create the publication item:

1. Start the new publication item wizard by selecting File->New->Publication Item.

2. Enter the name as taskpi and the type as Fast. If you want this publication item
to use automatic synchronization, make sure that the "Enable Automatic
Synchronization" checkbox is checked. Uncheck to use manual synchronization.
Click Next.

3. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select the task table from the
object list. Click Next.

4. Click >> to select all of the columns in the task table. Click Next.

5. In the Query tab, select Edit to edit the query, as follows:

select * from master.task where CustCity = :city

Click Next.

6. If you checked the ’Enable Automatic Synchronization’ checkbox, then an
additional screen comes up. This screen enables you to specify users included in
the compose. By default, all users are included. Leave checkbox unchecked and
click Next.

7. The Summary page displays. Click Finish.

Note: For more information, see Section 6.2, "Create a Project".

Note: For more information, see Section 6.4, "Create a Publication
Item".

Description of Tasks for Win32 Demo

Tutorial for Building Mobile Applications for Win32 13-5

13.2.2.3 Create Publication
When you have completed the creation of the publication items, create the publication
within the project by selecting File->New->Publication.

1. In the General tab, enter the name as task, which becomes part of the DSN for the
client-side database.

2. In the Publication Item tab, click Add to add the publication item that you just
created with the following configuration:

Name: taskpi
Updatability: Updatable
Conflict Resolution: Server Wins
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 1
Description: Blank

3. In the Events tab, set the thresholds for Automatic Synchronization rules, as
follows:

■ Sync if number of modified records in database exceeds threshold value

■ Sync if number of modified records in out queue exceeds threshold value

4. Save the publication by selecting File->Save.

13.2.3 Package the Application Using the Packaging Wizard
Using the Packaging Wizard, you can package and publish the Task application into
the Mobile Server.

You can select and describe the Task application by launching the Packaging Wizard,
as follows:

1. Start the Packaging Wizard, as follows:

cd <ORACLE_HOME>\Mobile\Sdk\bin
runwtgpack

The Packaging Wizard appears and provides you with the option to create a new
application, edit an existing application, delete an existing application, or open a
packaged application, as displayed in Figure 13–1.

Note: For full details on how to use the Packaging Wizard, see
Chapter 7, "Using the Packaging Wizard".

Note: Deleting an existing application merely deletes the application
from the XML file and does not remove the application from the
Mobile Server.

Description of Tasks for Win32 Demo

13-6 Oracle Database Lite Developer's Guide

Figure 13–1 Make a Selection Dialog

2. Select the Create a new application option and click OK.

3. The Select a Platform panel appears. As Figure 13–2 displays, this panel enables
you to specify the platform for your application. Select Oracle Lite WIN32;US
from the Available Platform list. Click Next.

Figure 13–2 Selecting a Platform

4. As Figure 13–3 displays, the Application panel appears. Use the Application panel
to modify "Mobile Field Service" application settings. As Table 13–1 describes,
enter the specified values in the corresponding fields.

Description of Tasks for Win32 Demo

Tutorial for Building Mobile Applications for Win32 13-7

Figure 13–3 Application Panel

5. Click Next. As Figure 13–4 displays, the Files panel appears. Using the Files panel,
you can select files that are part of the application. The Packaging Wizard uploads
the selected files from the local application directory to the application repository
on the Mobile Server.

The Files panel identifies files that the Packaging Wizard uploads from the local
application directory to the application repository on the Mobile Server.

Table 13–1 The Task Application Values

Field Value

Application Name Mobile Field Service

Virtual Path /MFS

Description Field Service Task Assignment

Local Application Directory D:/MFSDEV

Publication Name Click on Browse. The ’Connect to database’ window appears.
Enter the following:

■ username: mobiladmin

■ password: welcome123

■ database URL:
jdbc:oracle:thin:@<hostname>:<port>:<SID>

The next window shows the available publications. Select
task.

Description of Tasks for Win32 Demo

13-8 Oracle Database Lite Developer's Guide

Figure 13–4 Uploading Application Files

6. Click Next till you arrive at the Application Definition Completed Dialog as
shown in Figure 13–5.

Figure 13–5 Application Definition Completed Dialog

Using the Application Definition Completed panel, you can package the "Task"
application into a JAR file. The Application Definition Completed Dialog remains
open for you to initiate application packaging.

a. Select the Create files option and select both the Package Application into a
JAR file and Generate SQL scripts for database objects boxes.

At this stage, the Save the Application dialog prompts you for the name of the
JAR file, which is Mobile_Field_Service.jar.

Administer the Application

Tutorial for Building Mobile Applications for Win32 13-9

Figure 13–6 Save the Application Dialog

After choosing the JAR file, click OK. The JAR file is created and contains the
application files and definition.

b. Back in the Application Definition Completed dialog, select the Publish the
Current Application option and click OK.

The Publish the Application dialog appears. As Table 13–2 describes, enter the
specified values.

c. To publish the application in the Mobile Server Repository, click OK. A dialog
displays the application publishing status. You must wait until the application
is published.

d. To confirm that the application is published successfully, click OK.

e. To exit the Packaging Wizard, click Exit.

You have now completed packaging and publishing your application.

13.3 Administer the Application
This section describes how to administer the application that you created and
deployed through the following tasks.

■ Section 13.3.1, "Start the Mobile Server and the Mobile Manager"

Note: The Mobile Server must be up for successful publishing.

Table 13–2 Publish the Application Dialog Description

Field Description Value

Mobile Server URL URL or IP Address of the machine where the
Mobile Server is running.

<Mobile
Server>/webtogo

Mobile Server User
Name

User name of the Mobile Server user with
administrative privileges.

Administrator

Mobile Server
Password

Password of the Mobile Server user with
administrative privileges.

admin

Repository Directory Directory name where all files for this application
will be stored inside the Mobile Server
Repository.

/tutorial

Public Application Do not select this check box unless you want to
make this application available to all users.

Clear

Administer the Application

13-10 Oracle Database Lite Developer's Guide

■ Section 13.3.2, "Using the Mobile Manager to Create New Users for the Task
Application"

■ Section 13.3.3, "Setting Application Properties"

■ Section 13.3.4, "Granting User Access to the Application"

■ Section 13.3.5, "Defining Snapshot Template Values for the User"

For more information about Mobile Manager tasks described in this tutorial, see the
Oracle Database Lite Administration and Deployment Guide.

13.3.1 Start the Mobile Server and the Mobile Manager
The Mobile Manager is a Web-based application that enables you to administer Mobile
Server applications. To start the Mobile Manager, perform the following steps:

1. Using the command prompt, go to the following directory.

<ORACLE_HOME>\Mobile\Server\bin

2. To start the Mobile Server for the first time and subsequent occasions, execute the
runmobileserver command.

3. Start your Web browser and connect to the Mobile Server by enter the following
URL:

http://<mobile_server>/webtogo

4. Log on as the Mobile Server Administrator using administrator as the User
Name and admin as the Password.

5. To launch the Mobile Manager, click the Mobile Manager link in the workspace.

6. Click the Mobile Server link.

7. Click the Applications link. As Figure 13–7 displays, the Applications page
appears. Locate the Task application, which shows all applications that are
published.

Figure 13–7 Applications Page

Note: Replace <mobile_server> with the host name of your
Mobile Server.

Administer the Application

Tutorial for Building Mobile Applications for Win32 13-11

13.3.2 Using the Mobile Manager to Create New Users for the Task Application
For the Task application, create users Tom, Dick and Harry. We only show how to
create the user Tom in the following steps:

1. On the Mobile Manager home page, click the Users link. As Figure 13–8 displays,
the Users page appears.

Figure 13–8 Users Page

2. Click Add User. As Figure 13–9 displays, the Add User page appears.

Figure 13–9 Add User Page

3. As described in Table 13–3, enter the following information in the Add User page
and click Save.

Administer the Application

13-12 Oracle Database Lite Developer's Guide

Repeat these steps to create the Dick and Harry users.

13.3.3 Setting Application Properties
To set the Task application properties, perform the following steps:

1. On Mobile Manager home page, click the Applications link. The Applications
page appears.

2. To search for the application that you just published, enter Task in the
Application Name field and click Search. The Task application appears in the
workspace.

3. Click the Task application link. As Figure 13–10 displays, the Application
Properties page lists application properties and database connectivity details.

Figure 13–10 Application Properties Page

Table 13–3 Add User Page Description

Field Value

Display Name Tom Jones

User Name Tom

Password tomjones

Password Confirm tomjones

Privilege User

Register Device True

Software Update Select all updates

Note: To display all the available applications, leave the search
field blank and click Search. This action generates a list of all the
available Mobile Server applications in the workspace.

Administer the Application

Tutorial for Building Mobile Applications for Win32 13-13

4. In the Database Password field, type the application demo schema password. In
the past, this password was master. Click Apply. The Mobile Manager displays a
confirmation message.

13.3.4 Granting User Access to the Application
To grant the Tom, Dick and Harry users access to the Task application, perform the
following steps:

1. Navigate to the Application Properties page and click the Access link. As
Figure 13–11 displays, the Access page lists groups and users that are associated
with the application. The check boxes on this page indicate whether or not the user
or group has access to the application.

Figure 13–11 Access Page

2. Under the Users table, locate the Tom, Dick and Harry users and select the check
boxes for these users.

3. Click Save. The Mobile Manager displays a confirmation message. The users have
now been granted access to the Task application.

13.3.5 Defining Snapshot Template Values for the User
Define the snapshot template variables for the users, Tom, Dick and Harry. For the
Mobile Field Service application, we have only one publication item and it has only
one subscription parameter called city.

To modify a user's Data Subsetting parameters, perform the following steps:

1. Navigate to the Applications page and click the Task application link. The
Application Properties page appears. Click the Data Subsetting link. As
Figure 13–12 displays, the Data Subsetting page appears.

Execute the Application on the Mobile Client for Web-to-Go

13-14 Oracle Database Lite Developer's Guide

Figure 13–12 Data Subsetting Page

2. Under the User Name column, click the user name link Tom. As Figure 13–13
displays, the Data Subsetting Parameters page appears.

Figure 13–13 Data Subsetting Parameters Page

3. Select the city parameter and enter the value Cupertino. Click Save. The
Mobile Manager displays a confirmation message. Click OK.

Repeat these steps for Dick and Harry. For more information about snapshots, refer to
the Oracle Database Lite Administration and Deployment Guide.

13.4 Execute the Application on the Mobile Client for Web-to-Go
This section describes how to set up a Mobile client to use the application that you
created and tested in the Development section, deployed in the Deployment section,
and then administered in the Administration section.

In this section, you will perform the following tasks:

■ Section 13.4.1, "Install the Mobile Client on the Win32 Device"

■ Section 13.4.2, "Browse the TASK Snapshot and Update a Row"

■ Section 13.4.3, "Develop your Mobile Field Service Application Using Oracle
Database Lite"

■ Section 13.4.4, "Republish the Application with the Application Program"

13.4.1 Install the Mobile Client on the Win32 Device
You must install the Mobile client before you can use the application that you created
and deployed.

Note: You must install the application and test it on a separate
machine from the Mobile Server.

Note: You must install the Mobile Client on a machine which does
not host the Mobile Server installation.

Execute the Application on the Mobile Client for Web-to-Go

Tutorial for Building Mobile Applications for Win32 13-15

To install the Mobile Client for Win32, perform the following actions:

1. Start your Web browser and connect to the Mobile Server by entering the
following URL.

http://<mobile_server>/webtogo/setup

2. As Figure 13–14 displays, the Mobile Client Setup page lists a set of Mobile clients
by platform. To download the Mobile Client for Win32 setup program, click the
Oracle Lite WIN32 link.

Figure 13–14 Mobile Client Setup Page

3. If you are using Netscape, choose a location to save the setup program and click
OK. In Windows Explorer, double-click setup.exe to run the setup program.

If you are using Internet Explorer, run the setup program from your browser
window.

4. While installing the Mobile Client, you will be prompted for the user name and
password. Enter Tom as the user name and tomjones as the password.

Note: While installing the Mobile Client, you will be prompted for
the User name and Password. Enter Tom as the user name and
tomjones as the password.

Execute the Application on the Mobile Client for Web-to-Go

13-16 Oracle Database Lite Developer's Guide

5. The setup program prompts you to choose an installation directory for the Mobile
client, such as D:\MFS, and downloads all the required components and starts the
Mobile client on your machine. Browse the directory and familiarize yourself with
its structure.

6. Perform the initial synchronization to bring down the first snapshot and create the
Oracle Lite database. Start the Command Prompt and enter the following:

D:\MFS\Mobile\bin>msync

This executes the Mobile Sync application, downloaded as part of the application
installation. You can also execute the Mobile Sync application located in the
\sdk\bin directory.). When the dialog appears, enter the following information:

User Name: Tom

Password: tomjones

Server: mserver

Click the Sync button. A message box appears showing the progress of
synchronization. When the synchronization process is complete, click the Cancel
button on the Mobile Sync application dialog.

You now have an Oracle Database Lite database on your development machine. It
contains a snapshot called TASK which has two rows in it; both rows have Cupertino
for the CustCity column. These are the service requests by customers in Cupertino
and Tom has been assigned these tasks.

The initial synchronization process also created an ODBC data source name (DSN)
called tom_mfs (the user name followed by the underscore character followed by the
database name).

13.4.2 Browse the TASK Snapshot and Update a Row
You can update a row in the Task snapshot, as follows:

D:>MFS\Mobile\bin>msql system/manager@jdbc:polite:tom_mfs
SQL> select * from task;

The following two rows are displayed.

SQL> update task set Notes ='Replaced the motor:$65' where ID = 1;
1 row(s) updated
SQL> commit;
commit complete
SQL> exit

You have successfully updated a row of the TASK snapshot. Perform another
synchronization to upload the changes to the server.

13.4.3 Develop your Mobile Field Service Application Using Oracle Database Lite
An example ODBC program called MFS.exe is provided with the Mobile
Development Kit in the following directory:

<ORACLE_HOME>\Mobile\Sdk\samples\odbc\win32\mfs\

The\src directory contains the source and the makefile for it.

This example displays the task list and prompts the user to enter the Task ID for the
chosen task, before entering notes. When the user enters the Task ID value as -1, the
program terminates. For any valid Task ID, the MFS application prompts the user to

Execute the Application on the Mobile Client for Web-to-Go

Tutorial for Building Mobile Applications for Win32 13-17

enter notes. Enter notes without using quotes. You can try to improve the example as
required.

To republish this program to the Mobile Server, copy the mfs.exe file into the
directory D:\MFSDEV\Win32.

13.4.4 Republish the Application with the Application Program
Use the Packaging Wizard to republish the application, as follows:

1. From the Command Line, enter the following:

D:>runwtgpack

2. Select the "Edit an existing application" option. From the drop down list, select
"Mobile Field Service" and click the OK button.

3. Click the Files tab. As shown in Figure 13–15, verify that the mfs.exe file is listed
in the "File Name" window and click Finish.

Figure 13–15 Load the MFS.EXE File.

4. Select the "Publish the current application" option and click OK. You will be
prompted to enter the login information for the Mobile Server. Click OK after
entering the information. A message box warns you that the application already
exists on the Mobile Server and asks whether you want to overwrite it. Click YES.

Execute the Application on the Mobile Client for Web-to-Go

13-18 Oracle Database Lite Developer's Guide

Figure 13–16 Republish the Application

5. If you get the message "Application Published Successfully", click OK and then
click EXIT. You have successfully republished an application that has a file called
mfs.exe and one publication item.

6. Test your application by using a fresh Windows 32 machine. Follow Step 4 to
install the Oracle Database Lite 10g client and the Mobile Field Service application
on the machine. Then execute the Mobile Field Service application by executing
the D:\MFS\Mobile\oldb40\TOM\mfs.exe program, as follows:

D:\MFS\Mobile\oldb40\TOM\mfs.exe TOM_MFS system manager

7. When TOM is the user. Enter notes for one of the tasks. Then execute
D:\MFS\Mobile\bin\msync.exe to synchronize your changes with the server.

Tutorial for Building Mobile Applications for Windows CE 14-1

14
Tutorial for Building Mobile Applications for

Windows CE

You can implement Mobile applications with Oracle Database Lite for WinCE. Oracle
Database Lite supports various application models for the Windows Mobile/Pocket
PC device, such as ODBC, JDBC, and ADO.NET. When developing your own WinCE
application, you can use Visual Studio.Net 2003 or 2005.

This chapter uses a tutorial to demonstrate how to create, deploy, administer, and use
a Windows CE application. The tutorial shows a Visual Basic.NET (Visual
Studio.NET) application that uses the Oracle Database Lite ADO.NET interface for
Windows Mobile.

The following sections detail the development process:

■ Section 14.1, "Overview of the WinCE Sample Application"

■ Section 14.2, "Develop the Application"

■ Section 14.3, "Create Publication for Application"

■ Section 14.4, "Package and Publish the Application"

■ Section 14.5, "Administer the Application"

■ Section 14.6, "Run the Application on the Windows Mobile/Pocket PC Device"

14.1 Overview of the WinCE Sample Application
The sample WinCE application details typical activities of delivery personnel in the
Transportation and Logistics industry, which includes package pick-up and delivery.

1. Before he leaves the dispatch center, the delivery person collects the complete
delivery package list and the package delivery destination information for the day
on his device.

2. As he delivers and picks-up packages, the delivery person updates the package
pick-up and delivery status on his client device.

3. When he returns to the dispatch center, he synchronizes his updated information
with the central server running in the dispatch center over any wireless network.

Note: If you use Visual Studio.Net 2005 and/or ADO.Net, you must
install the ODBC 3.5 driver. See Section 5.1.3, "ODBC" for details.

Develop the Application

14-2 Oracle Database Lite Developer's Guide

14.1.1 Before You Start
Before starting the Mobile application development process, you must ensure that the
development computer and the client device meet the requirements specified below.

■ Section 14.1.1.1, "Application Development Computer Requirements"

■ Section 14.1.1.2, "Client Device Requirements"

14.1.1.1 Application Development Computer Requirements
Table 14–1 lists the configuration and installation requirements for the Mobile
application development computer.

14.1.1.2 Client Device Requirements
You must connect the client device to the desktop and install the Oracle Database Lite
client for Pocket PC on the device. For more information on how to install the Mobile
Client on the device, see Section 14.6.1, "Install the Oracle Database Lite Mobile client
for Pocket PC".

14.2 Develop the Application
This section explains how to develop and test the WinCE Transport application using
the Mobile Development Kit. The WinCE Transport application is written in Visual
Basic.NET (Visual Studio.NET).

To develop and test the WinCE Transport application, perform the following tasks.

1. Section 14.2.1, "Create Database Objects in the Oracle Server"

2. Section 14.2.2, "Write the Application Code"

3. Section 14.2.3, "Compile the Application"

14.2.1 Create Database Objects in the Oracle Server
During deployment, the Mobile Server automatically creates the Oracle Database Lite
database in the client device along with the requisite tables and data. To publish the
application, users must create the database objects used by the application in the
back-end Oracle database.

14.2.1.1 The WinCE Transport Application Database Objects
The WinCE Transport application uses the following database objects:

Table 14–1 Application Development Computer Requirements

Requirement Description

Windows User Login The login user on the Windows development computer
must have "Administrator" privileges.

Installed Java Components Java Development Kit 1.4.2 or higher.

Installed Oracle Database Lite 10g
Components

Oracle Database 9.2 or higher.

The Mobile Server (Oracle Database Lite CD-ROM).

The Mobile Development Kit (Oracle Database Lite
CD-ROM).

Installed Windows Mobile/Pocket
PC Components

Microsoft Active Sync 3.8 or higher.

Develop the Application

Tutorial for Building Mobile Applications for Windows CE 14-3

■ Packages Table

■ Routes Table

■ Trucks Table

Table 14–2 lists the columns for the Packages table for storing information about the
package.

Table 14–3 lists the columns for the Routes table for storing information about a route.

Table 14–4 lists columns for the Trucks table for storing information about the
availability status and destination information for a truck.

Table 14–2 Packages Table

Column Description

DID Package ID

DDSC Package Description

DWT Package Weight

DSTR Destination Street

DCTY Destination City

DST Destination State

DRTNR Route Number

DRTNM Route Name

DESN Signature

DSTS Package Status

TID Truck Number

PRTY Priority

PTNO Point Number

TIND Delivery 'D', or Pick-up 'P'

Table 14–3 Routes Table

Column Description

ROUTE_NO Route Number (Primary Key)

ROUTE_NM Route Name

EST_TIME Estimated Time

Table 14–4 Trucks Table

Column Description

TRUCK_NO Truck Number (Primary Key)

TRUCK_STATUS Status of the Truck

ALERT_ADDRESS Mobile or Pager address to send alert to
(Portal User Interface)

DRIVER_ID ID of the Truck Driver

Develop the Application

14-4 Oracle Database Lite Developer's Guide

To Create Database Objects
In order to execute the Transport demo, you must set up the schema and the database
objects. We have provided a SQL script that will create the master schema and the
database objects in the back-end. However, if the master schema is already created,
then remove the statements that create this schema from the create.sql script.

Execute the create.sql script, as follows:

> cd ORACLE_HOME\Mobile\Sdk\samples\ado.net\wince\Transport\sql

> msql system/<sys_pwd>@jdbc:oracle:thin:@<host>:<port>:<oracle_sid> @create.sql

Where:

■ <sys_pwd> is the system password. This is required if you are creating the
master schema. However, if you have eliminated the statements that create the
schema, you can use master/master for username/password.

■ <host>:<port> refers to the name and listening port of the machine where the
back-end Oracle database is installed.

14.2.2 Write the Application Code
The WinCE Transport application, located in cd ORACLE_
HOME\Mobile\Sdk\samples\ado.net\wince\Transport, uses Visual
Basic.NET (Visual Studio.NET), which is available with the sample application. The
following sections describe the Transport application code:

■ Section 14.2.2.1, "Transport Module (Transport.vb)"

■ Section 14.2.2.2, "Main Form (frmMain.vb)"

■ Section 14.2.2.3, "View Packages (frmView.vb)"

■ Section 14.2.2.4, "Create Package (frmNew.vb)"

14.2.2.1 Transport Module (Transport.vb)
To open a database connection, you must declare a connection object,. which—in this
tutorial—is called conn. The scope of the connection object is project level. The
Connect sub-routine in the transport.vb module establishes a connection to the
local Oracle Lite database with the DSN transport; the Disconnect sub-routine
releases the connection.

Within the Connect sub-routine, the DSN is initialized as follows:

Dim dsn As String = "dsn=transport;uid=system;pwd=" & pwd
conn = New Oracle.DataAccess.Lite.OracleConnection(dsn)
conn.Open()

The DSN username and password are system and the user password; thus, only the
user can connect since the user password is used.

Note: Ensure that the CLASSPATH includes ojdbc14.jar.

Note: While entering the above command to create database
objects, you must include a mandatory space between
"<oracle_sid>" and "@create.sql".

Develop the Application

Tutorial for Building Mobile Applications for Windows CE 14-5

14.2.2.2 Main Form (frmMain.vb)
The frmMain.vb file implements the main form of the Transport Tutorial application.
This form connects to Oracle Database Lite on Load time and invokes the Create
Package and View Packages forms, using the appropriate command buttons.

If the synchronization button is pushed, notice that the following is executed:

Disconnect()
OracleEngine.Synchronize(True)
Connect(UserName, Password)

In order to retrieve information from the database, the connection was established at
the start of the application. Since you can only have a single connection to the
back-end database—and the OracleEngine.Synchronization method creates a
connection to the database as part of its functionality—the original connection is
disconnected before the synchronization is invoked. Once synchronization is
complete, the original connection is re-established. See Section 4.4.2, "Using the
OracleEngine to Synchronize" for more information on this class.

14.2.2.3 View Packages (frmView.vb)
This form displays existing packages from the database. It also allows the user to
modify and save existing packages. This form demonstrates the usage of the
OracleDataAdapter and DataSet classes.

When this form is loaded, it creates an instance of the OracleDataAdapter object
and sets the appropriate OracleCommand objects namely, Select, Update, and
Delete. These OracleCommand objects are created by the transport.vb module
during the main form loading process. Once an OracleAdapter object has been
created successfully, this form creates a Dataset object and populates it with data
from Oracle Database Lite, using the OracleDataAdapter object that was created.

dba = New OracleDataAdapter
dba.SelectCommand = cmdSel
dba.DeleteCommand = cmdDel
dba.UpdateCommand = cmdUpd

' Fill dataset
'
dset = New DataSet
dba.Fill(dset)

Once the Dataset is filled with Oracle Database Lite data, this form populates the UI
controls using data from the DataSet object.

Dim table As DataTable = dset.Tables(0)
Dim rows As DataRowCollection = table.Rows

Note: The OracleDataAdapter is the same as the Microsoft
ADO.Net DataAdapter class. For more information on
DataAdapter and DataSet classes, see the Microsoft ADO.Net
documentation.

Note: For more information on the OracleCommand class, see
Section 8.1.3, "Create Commands With the OracleCommand Class" in
the Oracle Database Lite Client Guide.

Develop the Application

14-6 Oracle Database Lite Developer's Guide

Dim row As DataRow = rows.Item(index)

Me.packDesc.Text = row.Item(1).ToString()
Me.packWeight.Text = row.Item(2).ToString()
Me.packStreet.Text = row.Item(3).ToString()
Me.packCity.Text = row.Item(4).ToString()
Me.packState.Text = row.Item(5).ToString()
Me.packRoute.Text = row.Item(7).ToString()

When users make changes to the package data, this form uses the OracleAdapter
Update method to save the changes to Oracle Database Lite.

Dim row As DataRow = table.Rows(index)
row.BeginEdit()
row(6) = Me.packPriority.SelectedItem.ToString()
row(8) = Me.packStatus.SelectedItem.ToString()
row.EndEdit()
dba.Update(table)

14.2.2.4 Create Package (frmNew.vb)
This form allows users to create a new package entry in Oracle Database Lite. During
the Load duration, this form creates a unique Package ID and populates the drop
down list controls with truck numbers and route names.

When the user saves this form, it uses the OracleCommand and OracleParameter
classes to save user changes in Oracle Database Lite.

cmd = GetConnection().CreateCommand()
rts = Me.packRoute.SelectedItem.ToString()

' Obtain route number
'
cmd.CommandText = "SELECT ROUTE_NO FROM ROUTES where ROUTE_NM='" & rts & "'"
res = cmd.ExecuteReader()
 While res.Read() = True
 rtn = res.GetString(0)
 End While
res.Close()

cmd.CommandText = "INSERT INTO PACKAGES (
 (DID,DDSC,DWT,DSTR,DCTY,DST,DRTNR,DRTNM,DSTS,TID,PRTY,PTNO,TIND) values
 (?,?,?,?,?,?,?,?,'NEW',?,?,'1','P')"

' Set DID
'
par = cmd.CreateParameter()
par.DbType = DbType.String
par.Direction = ParameterDirection.Input
par.Value = id
cmd.Parameters.Add(par)

 ' Set DDSC
 '
par = cmd.CreateParameter()

Note: For more information on the OracleCommand class, see
Section 8.1.3, "Create Commands With the OracleCommand Class" in
the Oracle Database Lite Client Guide.

Create Publication for Application

Tutorial for Building Mobile Applications for Windows CE 14-7

par.DbType = DbType.String
par.Direction = ParameterDirection.Input
par.Value = Me.packDesc.Text
cmd.Parameters.Add(par)
...
cmd.ExecuteNonQuery()
cmd.Dispose()

14.2.3 Compile the Application
To install the application on the device, you must create a CAB file. The CAB file is
uploaded into the Mobile Server Repository during the application's publish phase.
You can create a CAB file using the Visual Basic.NET (Visual Studio.NET).

14.2.3.1 Create CAB Files
To create the CAB file for this demo, perform the following:

1. Start the Visual Studio.NET and click on File->Select Open

2. Browse for the Transport.sln file, which is located in the ORACLE_
HOME\Mobile\SDK\samples\ado.net\wince\Transport directory. Ignore
the warning message, "The .NET assembly
’Oracle.DataAccess.Lite.dll’ could not be found."

3. Right click on References.

4. Select Add Reference.

5. Click Browse and choose Oracle.DataAccess.Lite.dll from the ORACLE_
HOME\Mobile\SDK\ado.net\wince\v1.x or v2.x directory.

6. In the ’Solution Configuration’ list box, select Release instead of Debug.

7. Click Build->Build CAB File, which will build the CAB file for you.

14.2.3.2 Install the Application from the CAB File
You can download and install the application on the device after packaging and
publishing the application. See Section 14.4, "Package and Publish the Application" for
directions on how to package and publish the application.

14.3 Create Publication for Application
As described fully in Chapter 6, "Using Mobile Database Workbench to Create
Publications", you can use MDW to create your publication. Launch MDW by
executing oramdw from $ORACLE_HOME/Mobile/Sdk/bin. The following sections
detail how to use MDW to create a publication for the application in this tutorial.

■ Section 14.3.1, "Create a Project"

■ Section 14.3.2, "Create Publication Items"

■ Section 14.3.3, "Create Publication"

Note: While creating this publication, use Chapter 6, "Using Mobile
Database Workbench to Create Publications" heavily for a deeper
understanding of how to use MDW and the type of information that
you must enter.

Create Publication for Application

14-8 Oracle Database Lite Developer's Guide

14.3.1 Create a Project
Create a new project for this application by selecting File->New->Project. This brings
up a wizard where you enter the following information:

1. Define a name and location for the project.

2. Enter the username, password, JDBC driver type, database host, database port and
database SID for the Mobile repository.

Provide the Mobile Repository access information. Because you are interacting
with the repository to create and manipulate synchronization objects, including
the SQL scripts for the publication items, you need access to the Mobile
Repository.

3. Specify schema username and password. Enter the user and password of the
schema owner for the schema that you are using for the Mobile application. The
Mobile application schema contains all database tables, views, synonyms used to
build the snapshots for the application.

4. Verify the information that you entered and click Finish.

14.3.2 Create Publication Items
For this project, you need to create three publication items for packages, routes, and
trucks. Start the new publication item wizard by selecting File->New->Publication
Item.

14.3.2.1 Create Packages Publication Item
1. Enter the name as packages and the type as Fast.

2. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select Packages from the object
list.

3. Click ’>>’ to select all of the columns in the Packages table.

4. In the Query tab, select Edit if you want to edit the query.

5. Click Run to test.

6. Verify and click Finish.

14.3.2.2 Create Routes Publication Item
1. Enter the name as routes and the type as Fast.

2. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select Routes from the object
list.

3. Click ’>>’ to select all of the columns in the Routes table.

4. In the Query tab, select Edit if you want to edit the query.

Note: For more information, see Section 6.2, "Create a Project".

Note: For more information, see Section 6.4, "Create a Publication
Item".

Create Publication for Application

Tutorial for Building Mobile Applications for Windows CE 14-9

5. Click Run to test.

6. Verify and click Finish.

14.3.2.3 Create Trucks Publication Item
1. Enter the name as trucks and the type as Fast.

2. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select Trucks from the object
list.

3. Click ’>>’ to select all of the columns in the Trucks table.

4. In the Query tab, select Edit if you want to edit the query.

5. Click Run to test.

6. Verify and click Finish.

14.3.3 Create Publication
When you have completed the creation of the publication items, create the publication
within the project by selecting File->New->Publication.

1. In the General tab, enter the name as transport, which is the DSN for the
client-side database.

2. In the Publication Item tab, add the three publication items that you just created
with the following configuration:

Name: PACKAGES
Updatability: Updatable
Conflict Resolution: Server Wins
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 1
Description: Blank

Name: ROUTES
Updatability: Read Only
Conflict Resolution: Custom
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 2
Description: Blank

Name: TRUCKS
Updatability: Read Only
Conflict Resolution: Custom
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 3
Description: Blank

3. Save the publication by selecting File->Save.

Package and Publish the Application

14-10 Oracle Database Lite Developer's Guide

14.4 Package and Publish the Application
The following sections describe how to package the application and prepare it for
publishing into the Mobile Server:

1. Section 14.4.1, "Define the Application Using the Packaging Wizard"

2. Section 14.4.2, "Publish the Application"

14.4.1 Define the Application Using the Packaging Wizard
Using the Packaging Wizard, you can select and describe the Transport application.

14.4.1.1 Create a New Application
Using the Mobile Server Packaging Wizard, you can publish the WinCE application
into the Mobile Server. For more information on how to use the Packaging Wizard, see
Chapter 7, "Using the Packaging Wizard".

You can select and describe the WinCE Transport application by launching the
Packaging Wizard in regular mode.

To launch the Packaging Wizard in regular mode, perform the following steps.

1. Using the Command Prompt, enter the following.

cd ORACLE_HOME\Mobile\SDK\bin

wtgpack

As Figure 14–1 displays, the Packaging Wizard displays the Welcome panel. Select
the Create a new application option and click OK.

Figure 14–1 Welcome Dialog

2. The Select Platforms panel appears. Choose ’Oracle Lite PPC50 ARMV4I;US’
from the list displayed and click Next.

3. The Application panel appears. As Table 14–5 describes, enter the WinCE
Transport application settings. Figure 14–2 displays the Applications panel.

Package and Publish the Application

Tutorial for Building Mobile Applications for Windows CE 14-11

Figure 14–2 Applications Panel

4. Click Next. As Figure 14–3 displays, the Files panel appears.

Table 14–5 The WinCE Transport Application Settings

Field Value

Application
Name

Transport

Virtual Path /Transport

Description Transport and Logistics Management

Local
Application
Directory

<ORACLE_
HOME>\Mobile\Sdk\samples\ado.net\wince\Transport\cab\Release

Publication
Name

Select Browse to locate the publication that was created by MDW, named
transport. This pops up a "Publication Name" screen where you can select the
publication and click Add.

Package and Publish the Application

14-12 Oracle Database Lite Developer's Guide

Figure 14–3 Files Panel

The Files panel automatically lists all files that reside in the directory, based on the
'Local Application Directory' specified in the previous Application panel. Ensure
that you select the correct CAB file.

For example, in this tutorial, you must select the Transport_PPC.ARMV4.CAB
and Transport_PPC.ARMV4.DAT, because your target device is Pocket PC with
the ARM chipset. If other .CAB and .DAT files are in this listing, then use the
Delete button in the Files panel to delete these files from the list.

After selecting the appropriate CAB file, you must define the application connection
details to the Oracle Lite database.

On the Files panel, click Next.

14.4.2 Publish the Application
Using the Application Definition Completed dialog, you can package and publish the
WinCE Transport application.

To publish the Transport application, perform the following steps.

1. In the Application Definition Completed dialog, select the Publish the Current
Application option and click OK.

2. The Publish the Application dialog appears. As Table 14–6 describes, enter the
specified values.

Table 14–6 Publish the Application Dialog Description

Field Description Value

Mobile Server URL URL or IP Address of the machine where the
Mobile Server is running.

<Mobile
Server>/webtogo

Administer the Application

Tutorial for Building Mobile Applications for Windows CE 14-13

3. To publish the application in the Mobile Server Repository, click OK. A dialog
displays the application's publishing status. You must wait until the application is
published.

4. To confirm that the application is published successfully, click OK.

5. To exit the Packaging Wizard, click Exit.

At this stage, you have completed all the development tasks required for packaging or
publishing the application.

14.5 Administer the Application
This section describes how to administer the Mobile application published by you into
the Mobile Server. To administer the application, perform the following tasks.

1. Section 14.5.1, "Start the Mobile Server"

2. Section 14.5.2, "Launch the Mobile Manager"

3. Section 14.5.3, "Create a New User"

4. Section 14.5.4, "Set the Application Properties"

5. Section 14.5.5, "Grant User Access to the Application"

For more information on the Mobile Manager see the Oracle Database Lite
Administration and Deployment Guide.

14.5.1 Start the Mobile Server
To start the Mobile Server in standalone mode, enter the following command using the
Command Prompt.

> runmobileserver

14.5.2 Launch the Mobile Manager
Using the login user name and password, you can log in to the Mobile Server and
launch the Mobile Manager.

To start the Mobile Manager, perform the following steps.

1. Open your Web browser and connect to the Mobile Server by entering the
following URL.

http://<mobile_server>/webtogo

Mobile Server User
Name

User name of the Mobile Server user with
administrative privileges.

Administrator

Mobile Server
Password

Password of the Mobile Server user with
administrative privileges.

admin

Repository Directory Directory name where all files for this application
will be stored inside the Mobile Server
Repository.

/transport

Public Application Do not select this check box unless you want to
make this application available to all users.

Clear

Table 14–6 (Cont.) Publish the Application Dialog Description

Field Description Value

Administer the Application

14-14 Oracle Database Lite Developer's Guide

2. Log in as the Mobile Server administrator using administrator as the User
Name and admin as the Password.

3. To launch the Mobile Manager, click the Mobile Manager link in the workspace.
The Mobile Server farms page appears. To display your Mobile Server's home
page, click your Mobile Server link.

Figure 14–4 displays the Mobile Server home page.

Figure 14–4 Mobile Server Home Page

14.5.3 Create a New User
To create a new Mobile Server user, perform the following steps.

1. In the Mobile Manager, click the Users tab.

2. Click Add User.

3. Enter data as described in Table 14–7.

4. Click Save. The Mobile Manager displays a confirmation message.

5. Click OK.

Table 14–7 lists the values that you must enter in the Add User page.

Note: You must replace the <mobile_server> variable with
your Mobile Server's host name.

Table 14–7 The Add User Page Description

Field Value

Display Name bob

User Name bob

Administer the Application

Tutorial for Building Mobile Applications for Windows CE 14-15

14.5.4 Set the Application Properties
To set the WinCE Transport Application properties, perform the following steps.

1. In the Mobile Manager, click the Applications tab. As Figure 14–5 displays, The
Applications page appears. You can search the list of available applications by
application name.

Figure 14–5 Applications Page

2. Click Transport. The Transport application page appears. It displays an
application's properties and database connectivity details.

3. In the Platform Name, select Oracle Lite PPC50 ARMV4I; US. In the Database
User field, enter master for the master schema. In the Database Password field,
enter master. This is the default password for the master user schema of the
Oracle Server Database.

4. Click Apply.

14.5.5 Grant User Access to the Application
To grant user access to the Transport application, perform the following steps.

1. In the Transport application page, click the Access link. As Figure 14–6 displays,
the Access page lists application users and application groups. To grant access to a
user or a group of users to the Transport application, select the corresponding
boxes.

For example, to provide access to a user named BOB, locate the user name "BOB"
in the Users list and select the corresponding box.

2. Click Save. The user "BOB" is granted access to the Transport application.

Figure 14–6 displays the Access page of the Transport application.

Password bobhope

Password Confirm Re-enter the password for
confirmation

System Privilege Select the "User" option

Table 14–7 (Cont.) The Add User Page Description

Field Value

Run the Application on the Windows Mobile/Pocket PC Device

14-16 Oracle Database Lite Developer's Guide

Figure 14–6 Access Page

14.6 Run the Application on the Windows Mobile/Pocket PC Device
The following sections describe how to run the application after creating, testing,
deploying, and administering the application:

1. Section 14.6.1, "Install the Oracle Database Lite Mobile client for Pocket PC"

2. Section 14.6.2, "Install and Synchronize the Transport Application and Data"

14.6.1 Install the Oracle Database Lite Mobile client for Pocket PC
To install the Oracle Database Lite Mobile client for Pocket PC, perform the following
actions.

1. Open your desktop browser and enter the following URL to connect to the Mobile
Server.

http://<mobile_server>/webtogo/setup

A Web page appears displaying links to various Oracle Database Lite Mobile
clients with different platforms. You can filter the selection by Language and
Platform.

2. Click the hyperlink Oracle Lite PPC50 ARMV4I;US to access the setup program
for the Pocket PC device with the ARM chipset.

Figure 14–7 displays the Mobile Client Setup page.

Note: You must replace the <mobile_server> variable with the
host name or IP address of your Mobile Server.

Run the Application on the Windows Mobile/Pocket PC Device

Tutorial for Building Mobile Applications for Windows CE 14-17

Figure 14–7 Mobile Client Setup Page

3. If you are using Netscape as your browser, choose a location on your desktop to
save the setup program and click OK. Open the Windows Explorer program and
locate the "setup.exe". To run the setup program, double-click "setup.exe".

If you are using Internet Explorer, run the "setup" program from your browser
window. Once started, the setup program asks you to provide the user name and
password to log on to the Mobile Server. Enter BOB as the User Name and
bobhope for the Password. Click OK.

4. The setup program asks you to provide an install directory. Enter the directory
where you want to install the client, such as C:\mobileclient\. Click OK. To
confirm your install directory, click Yes.

5. The setup program automatically downloads all the required components to the
specified destination on your desktop computer.

6. Assume that you have a Pocket PC device attached to your desktop computer and
are connected with Microsoft ActiveSync. The installation for your Pocket PC
device starts automatically.

7. Click Yes to confirm installing Oracle Lite PPC ARM; US to the default
application directory. The application installation starts on the device. Once
completed, the Mobile Client for Pocket PC is installed on your device under the
\ORACE directory.

Run the Application on the Windows Mobile/Pocket PC Device

14-18 Oracle Database Lite Developer's Guide

14.6.2 Install and Synchronize the Transport Application and Data
To install the Transport application and data, perform the following steps.

1. On the device, locate and tap the msync application icon in the programs group.

2. The msync dialog appears. To download the Transport application and snapshots
for user BOB, enter data as described in Table 14–8.

Figure 14–8 displays the msync dialog on the Pocket PC.

Figure 14–8 Running msync on Pocket PC

3. To save these values, click Apply.

4. To synchronize your application and data to the device, click Sync. If you receive
an error message for invalid username/password, re-enter the clear text password
in the login window.

5. Once the synchronization is complete, click Exit. The Update window appears.

6. Click Install to install the application. Click Exit.

7. Using the Start menu on the device, locate the Transport application in the
Programs menu.

Table 14–8 Values You Must Enter in the msync Dialog

Name Value

UserName bob

Password bobhope (all lowercase)

Save password box Select

Server Machine name or IP address

Note: Ensure that the device is connected to the desktop or the
network and that the Mobile Server is running.

Note: After the synchronization process is complete, a
transport.odb file is created under the \OraCE directory.

Run the Application on the Windows Mobile/Pocket PC Device

Tutorial for Building Mobile Applications for Windows CE 14-19

8. To run the Transport application, click the Transport icon.

Run the Application on the Windows Mobile/Pocket PC Device

14-20 Oracle Database Lite Developer's Guide

Index-1

Index

A
addMobileDMLProcedure API, 2-44
addPublicationItem method, 2-86
addSyncRule method, 2-38
ADF/BC4J

tutorial, 12-1
administration, 11-13, 13-9, 14-13

defining snapshot values, 11-18, 13-13
granting user access, 11-17, 13-13
setting properties, 11-16, 13-12

ADO.NET, 1-1, 2-60, 5-3
creating database for test, 5-3
synchronization, 5-3
testing application, 5-3

AfterSyncMapCleanup callback, 2-55
alterPublicationItem method, 2-40
API

admin API, 5-25
Mobile Sync, 4-1
usage, 1-18

applet
development, 5-15, 5-17

application
administration, 11-13, 13-9, 14-13
API, 1-18
building Web applications, 11-1
clean synchronization environment, 4-12
deployment, 1-2, 1-19
design, 1-13

steps, 1-13
development, 1-1, 5-8, 5-9

applet, 5-17, 5-18
DSN, 5-2
Java, 5-4
Java servlets for Web-to-Go, 5-11
packaging wizard, 7-1
roles, 5-10
Web-to-Go, 5-9, 5-15, 11-2
workspace, 5-23

initiate synchronization, 4-10
installation steps, 1-7
managing snapshots, 2-25
model, 1-3
models, 1-8
packaging, 13-5

programmatic synchronization, 4-1
publish, 1-6, 1-19

create database account, 11-3
publishing, 1-2
register database, 3-2
scheduling to execute, 8-1
selective synchronization, 4-9, 4-21, 4-26, 4-37
supported interfaces, 1-1
supported Java functions, 5-4
testing, 5-9
using BC4J, 12-2
Web-to-Go, 5-10, 11-19, 13-14

debug, 5-19
Win32, 13-1
Windows CE, 14-1, 14-2

Application Development Framework, see ADF
apply phase

callback, 6-12
development, 2-75

apprepwizard script, 3-2
architecture, 1-3, 5-9

MGP, 1-7
Mobile Development Kit, 1-11
Mobile Server, 1-5
msync, 1-5
Oracle Lite database, 1-5
repository, 1-8
supported platforms, 9-1

authentication
external, 10-1

AUTO_COMMIT_COUNT parameter, 2-9
automatic synchronization

C APIs, 2-14
C# APIs, 2-14
C++ APIs, 2-14
client conflict resolution, 2-68
data event rules, 6-28
disable, 2-12, 2-13
enabling, 2-11

C APIS, 2-14
C# APIs, 2-14
C++ APIs, 2-14
Java APIs, 2-15
MDW, 6-10

event notification, 2-19
high priority, 2-19

Index-2

Java APIs, 2-15
objects not synchronized, 2-7
publication item level, 2-12
publication rules, 6-28
retrieving status, 2-22, 2-23
rules, 2-15
scheduling, 2-19
start, 2-12
status, 2-22
stop, 2-12

B
bandwidth

designing application, 1-14
BC4J, 12-2

overview, 12-1
tutorial, 12-1

BeforeSyncMapCleanup callback, 2-55
BGSyncControl class, 2-15
BGSyncMsg class, 2-20
BLOB

synchronizing, 2-11

C
C API, 4-1

develop applications, 1-1
file-based synchronization, 4-13
get publication name, 4-7
setting HTTP parameters, 4-6
synchronization, 2-59

initialize environment, 4-2
C# API

file-based synchronization, 4-38
synchronization, 4-29

C++ API, 4-1
develop applications, 1-1
file-based synchronization, 4-13
get publication name, 4-7
programmatic synchronization, 4-1
setting HTTP parameters, 4-6
synchronization, 2-59

intialize environment, 4-2
callback

customization, 2-43
client

conflict resolution, 2-68
constraint, 2-65
device

delete, 3-1
executingDDL, 2-45
notification, 2-86
processing downloaded data, 2-9
subscribing to publications, 2-42

column
set default column options, 2-35

command
send, 1-6

commit
automatic commit count, 2-9

complete refresh, 2-8, 2-61
defined in MDW, 6-9

compose phase
callback, 6-12
development, 2-75
extend MyCompose, 2-46
notify clients, 2-86

condition rule, 2-15
conflict resolution

client, 2-68
overview, 1-10
synchronization rules, 6-25

conflict rules
defining, 2-40

Consolidator Manager, 2-85
API, 1-18
modifying publication item, 2-42
overview, 1-6

Consolidator Manager APIs, 2-28
ConsolidatorManager class, 8-1, 8-2

job creation API, 8-1
consperf utility

performance, 1-2
constraint

foreign key
client, 2-65

Mobile client, 2-65
CreateDatabase method, 5-3
createDataCollectionQueue method, 2-85
createPublication method, 2-85
createSyncRule method, 2-38

D
data

processing download on client, 2-9
requirements, 1-3
synchronization, 2-10
update, 2-10

Data Collection Queues, 2-83
data source

name creation, 5-2
database

client
creation, 2-4

objects
creating, 11-2, 14-2

register for application, 3-2
types, 1-4

datatypes
mapping, 3-12

DDL
adding to client, 2-45
definition, 7-23
dependencies, 6-21

debug
Web-to-Go, 5-19

dependency hint, 3-8
creating for publication item, 6-12
creating in MDW, 6-13

Index-3

deployment
application, 1-2, 1-19

design
architecture, 1-1
overview, 1-13

development
architecture, 5-9
compiling, 11-4
interfaces

for object database development, 5-1
for relational database development, 5-1
JDBC, 5-2
ODBC, 5-2
SODA, 5-1

RDBMS, 5-1
registration, 11-7

device
delete, 3-1
management, 1-6
send command, 1-6

Device Manager
overview, 1-8

DML
callback, 6-26
callback customization, 2-43
PL/SQL procedure, 2-44, 2-69

doCompose method, 2-48
download_complete method

signature, 2-79
download_init method, 2-75

example, 2-81
signature, 2-79

DownloadInfo class method, 2-70
dropSyncRule method, 2-38

E
enqueue notification APIs, 2-19
error message

synchronization, 4-12
Error queue

synchronization, 2-3
event handler

C# API, 4-34
event rule, 2-15
execution model, 1-1

F
fast refresh, 2-8, 2-61

defined in MDW, 6-9
requirements, 6-11
virtual primary key, 6-31

file-based synchronization, 2-9
C API, 4-13
C# API, 4-38
C++ API, 4-13
Java API, 4-22

firewall
configure proxy information, 4-10

forced refresh, 2-8

foreign key
behavior, 1-11
constraint, 2-64, 2-89

client, 2-65
constraints, 2-88

violations, 2-88

G
generateMobileDMLProcedure API, 2-44, 2-69
getDownloadInfo method, 2-69
GetMessage method, 2-20
getMessage method, 2-20
getPublicationNames method, 2-38
getQueuPkg method, 2-83
GetStatus method, 2-23
getSyncRule method, 2-38
group

create, 1-6

H
high priority

automatic synchronization, 2-19
HTTP

setting parameters, 4-6

I
inconsistent datatype

SQL exception, 2-43
index

creating, 7-15
definition

import, 7-24
using, 1-14

In-Queue
synchronization, 2-3

installation
considerations, 1-2

INSTEAD OF Triggers, 3-9
interfaces

supported, 1-1
isSyncRuleModified method, 2-38

J
Java

API
file-based synchronization, 4-22
OSEException class, 4-27
OSESession class, 4-23
overview, 4-14, 4-23
Sync class, 4-14
SyncException class, 4-15
SyncOption class, 4-16

application
development, 5-4

development
environment, 5-5
tools, 5-6

Index-4

native application usage, 5-4
OSEProgressListener service, 4-26
support, 5-5
Windows CE

SyncParam settings, 4-18
SyncProgress listener service, 4-19
TransportParam parameters, 4-19

Java Server Pages, see JSPs
JDBC, 1-1

driver, 5-2
description, 5-1

used within applets, 5-17
JDeveloper

ADF/BC4J tutorial, 12-1
JDK

setting variables, 5-5
job

create using API, 8-1
create using APIs, 8-2
manage using APIs, 8-1
scheduling, 8-1

Job engine
Standalone, 8-1
start from API, 8-1

Job Scheduler, 8-1
separate thread from Mobile Server, 8-1

JobEngine class, 8-1
JSP

developing, 5-11

M
map

cleanup, 2-55
MAX_U_COUNT parameter, 2-55
MDK

Packaging Wizard, 1-12, 1-13
MDW

automatic synchronization, 6-10
create project, 6-2
create publication, 2-28
create publication item, 6-9
dependency hint, 6-12, 6-13
deploy publication, 6-32
overview, 1-12, 6-1
parent table hint, 6-12, 6-14
primary key hint, 6-12, 6-14
project, 1-13, 6-1

definition, 6-2
publication

creation, 6-24
publication item

creating SQL statement, 6-13
define refresh mode, 6-9

resource
loading into project, 6-24

script, 6-21
loading into project, 6-23

sequence, 6-18
test

publication, 6-31, 6-32
wizard, 6-4

member
batch initialization, 2-32
initialization, 2-32

member user
create, 2-31

memory
desiging application, 1-14

Message Generator and Processor, see MGP
metadata cache

reset, 2-40
MGP

apply phase, 1-7
callback, 6-12

applying changes to the database, 1-7
compose phase, 1-7

callback, 6-12
notify client, 2-86

composing transaction, 2-4
execution process, 2-3
overview, 1-3, 1-7

Mobile client
architecture, 1-1
constraint, 2-65
database, 1-4
execution model, 1-1
Oracle Lite database, 1-5
processing downloaded data, 2-9
synchronization, 11-22

C# API, 4-29
Mobile Database Workbench, see MDW
Mobile Development Kit, 1-11

mSQL, 1-12
Mobile Manager

application properties, 11-16, 13-12
overview, 1-2
start, 11-14

Mobile Server
configuration, 1-6
overview, 1-6
start, 11-14, 13-10

Mobile Sync API, 4-1
model

architecture, 1-1
execution, 1-1

msync
architecture, 1-5
synchronization, 1-3

MyCompose, 2-46
doCompose method, 2-48
extend, 2-46
needCompose method, 2-47

MyCompose class, 6-27
myProgressProc callback function, 4-11

N
native application

data source name, 5-2

Index-5

development, 4-1, 5-3
saving user settings, 4-8

needCompose method, 2-47
not null fields

behavior, 1-11
notification

client, 2-86

O
OC4J, 1-6
ocDoSynchronize function

determine progress, 4-11
ocDoSynchronize method, 4-10
ocEnv class, 4-2
ocEnv structure, 4-3
ocGetLastError function, 4-12
ocGetPublication function, 4-7
ocGetPublication method, 4-7
ocSaveUserInfo function, 4-10
ocSaveUserInfor method, 4-8
ocSessionInit function, 4-2
ocSessionTerm method, 4-12
ocSetSyncOption function, 4-10
ocTransportEnv structure, 4-6
ODBC, 1-1

2.0 driver, 5-2
3.5 driver, 5-2

install, 5-2
development interfaces, 5-2
driver, 5-2

OID, 1-6
olGetSyncMsg method, 2-19
olGetSyncOptions method, 2-14
olGetSyncStatus method, 2-22
olSyncMsg class, 2-19
Oracle Application Development Framework, see

ADF
Oracle Database Lite

application model and architecture, 1-3, 1-8
introduction, 1-1

Oracle Lite database, 1-4
architecture, 1-5
client, 1-5

OracleAS, 1-6
OracleEngine class

CreateDatabase method, 5-3
OracleSync class, 4-29, 4-38, 5-3
OSEException class, 4-27
OSEProgressListener interface, 4-26
OSESession class, 4-23
Out-Queue

synchronization, 2-3

P
packaging, 13-5
Packaging Wizard, 1-12, 1-13, 11-7, 13-5, 14-10

adding servlets, 7-9
database information, 7-10
defining application DDLs, 7-23

defining roles, 7-11
defining sequences, 7-20
defining snapshot, 7-12
editing application definition, 7-25
listing applications, 7-7
new application, 7-4
package application, 2-28
publish application, 2-28
starting, 7-25

parent table hint, 3-8
creating in MDW, 6-14

password
modify, 2-31

performance
considerations, 1-2
consperf utility, 1-2
scripts, 6-21

PL/SQL procedure
DML operations, 2-44, 2-69

primary key
behavior, 1-11
composite

query rule, 2-43
creating virtual, 6-31
hint

creating in MDW, 6-14
index, 2-39, 3-9
virtual, 3-9

privileges
setting, 3-12

project
MDW, create, 6-2

properties
setting, 11-16, 13-12

proxy
setting proxy information for

synchronization, 4-10
publication

add publication item, 2-40
adding servlets, 7-9
altering, 2-40
associate

publication item, 6-25
resource, 6-28
script, 6-28
sequence, 6-27

automatic synchronization, 6-28
rule, 2-36

create, 2-32
APIs, 2-28
MDW, 2-28

create using MDW, 1-12, 6-1
creation, 1-19, 6-24
deploy, 6-32
import existing from repository, 6-28
overview, 1-3, 1-9
setting order execution for publication

items, 6-27
specifying conflict resolution rules, 6-25
subscribing clients to, 2-42

Index-6

test synchronization, 6-32
test using MDW, 6-31
use Quick Wizard, 6-4

publication item
add to publication, 2-40
altering, 2-40
associate with publication, 6-25
attach PL/SQL procedure, 2-44
automatic synchronization, 2-12
conflict resolution, 1-10
create, 2-34

APIs, 2-28
create using MDW, 6-9
creating SQL query, 6-12
creating SQL statement, 6-13
dependency hint, 6-12
DML procedure, 2-44
execution order, 6-27
import from repository, 6-28
modifying, 2-42
overview, 1-3, 1-9
queue-based, 2-75, 2-76, 2-82, 2-83, 6-9

create, 2-82
register package, 2-83
setting priority, 6-27
use Quick Wizard, 6-4
weight, 1-10

publishing
application, 1-2

create database objects, 11-3

Q
query

rule
composite primary key, 2-43

queue-based, 2-83
notify clients, 2-86
publication item, 2-75

create queues, 2-76
creation, 2-82

refresh, 2-8
defined in MDW, 6-9

replication, 2-73
queues

data collection, 2-83
involved in synchronization, 2-3

R
RDBMS

development interfaces, 5-1
read-only

snapshots, 2-26
refresh

complete, 2-8, 2-61
defined in MDW, 6-9
fast, 2-8, 2-60, 2-61
forced, 2-8
queue-based, 2-8
snapshot, 2-26

synchronization, 2-7
registerQueuePkg method, 2-83
removeSyncRule method, 2-38
repository

architecture, 1-8
resetCache method, 2-40
resource

associate with publication, 6-28
import from repository, 6-28
limitations, 1-14
loading into MDW project, 6-24

Resource Manager
API, 1-18
description, 1-6

Resource Manager APIs, 2-28
restricting predicate, 2-45
role, 5-10

definition, 7-11
RuleInfo class, 2-36
rules

automatic synchronization, 2-15
publication, 2-36, 6-28

conflict, 2-40
Rules class, 2-36

S
scalability

designing application, 1-14
measures, 1-2

schema
change

primary key, 3-11
evolution, 3-10

script
adding to publication in MDW, 6-21
associate with publication, 6-28
DDL dependencies, 6-21
import from repository, 6-28
testing, 6-22

security
designing application, 1-14
measures, 1-2

sequence
associate with publication, 6-27
create, 2-41
creating in MDW, 6-18
defining, 7-20
definition, 6-18
import from repository, 6-28
import snapshot, 7-21
synchronization, 2-42

servlets
adding to publication, 7-9
development, 5-11
registering, 11-7

setDfltColOptions flag, 2-35
SetEventHandler method, 4-34
setSyncRuleParams method, 2-36
shared maps

Index-7

grouping function to force sharing, 6-27
snapshot

defining, 7-12
definition, 1-8, 7-14
edit, 7-18
import, 7-17
import sequence, 7-21
index definition, 7-15
manage, 2-25
overview, 1-3, 1-9
read-only, 2-26, 6-25
refresh, 2-26
template, 11-18
template variables, 2-27
updatable, 2-26, 6-25

snapshot definitions
declarative, 2-25
programmatic, 2-28

SODA, 1-2
SQL exception

inconsistent datatypes, 2-43
SQLite

set default column options, 2-35
SQLite database, 1-4

overview, 1-4
SQLite Mobile client

overview, 1-4
Standalone Job engine, 8-1
stored procedures

description, 5-6
subscription

create, 1-6
instantiate, 2-42
overview, 1-3, 1-9

Symbian
application

development, 9-5
ODBC, 9-5
support, 1-2, 9-1
synchronization, 9-7
utility tools, 9-8

Sync class, 4-14
constructors, 4-14, 4-23, 4-29
public methods, 4-15, 4-24, 4-34

Sync Client
downloading data, 2-3

Sync Server
execution process, 2-3
uploading data, 2-3

SyncEventArgs class, 4-34
SyncEventHandler class, 4-34
SyncException class, 4-15

constructors, 4-15, 4-27
public methods, 4-15, 4-27

synchronization
ADO.NET, 5-3
application

initiate, 4-10
automatic

C APIs, 2-14

C# APIs, 2-14
C++ APIs, 2-14
disable, 2-13
enabling, 2-11, 2-12
Java APIs, 2-15
overview, 2-5
start, 2-12
stop, 2-12

BLOB, 2-11
C API, 2-59
C++ API, 2-59
change password, 2-31
clean environment, 4-12
complete refresh

overview, 2-8
compose phase customization, 2-46
composing transaction, 2-4
conflicts, 2-66
DDL Operations, 3-9
defining

conflict rules, 2-40
publication items, 2-36

determine progress, 4-11
downloaded data processed, 2-9
DownloadInfo class, 2-70
downloading data, 2-3
errors, 2-66, 6-26
execution steps, 2-3
extending MyCompose, 2-46, 2-47, 2-50, 2-52
fast refresh

overview, 2-8
file-based, 2-9, 4-13, 4-22, 4-38
first, 1-3
forced refresh

overview, 2-8
getDownloadInfo method, 2-69
initiation, 1-3
Java API, 4-14
management, 1-6
manual

overview, 2-5
Mobile client, 11-22
no network, 2-9
overview, 2-1, 2-3
programmatic, 4-1
propagation, 2-10
PublicationSize class, 2-70
publish and subscribe model, 2-28
publishing synonyms, 3-7
queue-based refresh

overview, 2-8
queues, 2-3
refresh option, 2-7
remote database link support, 3-7, 3-8
retrieve error message, 4-12
selective, 4-21, 4-26, 4-37
separate databases, 3-2
sequences, 2-42
SQLite Java API, 4-23
subscribing users, 2-42

Index-8

Sync Discovery API, 2-69
uploading data, 2-3
using APIs, 1-18, 2-59, 4-29
Windows CE, 14-18

SyncOption class, 4-16
constructors, 4-16
public methods, 4-16

SyncParam
settings, 4-18

SyncProgress
listener service, 4-19, 4-20, 4-26

synonym
publish, 3-7

T
tables

users sharing, 6-27
testing

applets, 5-18
roles, 5-10
Web-to-Go applets, 5-15
workplace, 5-23

TransportParam
parameters, 4-19

triggers
description, 5-6

troubleshooting
sequences, 2-42
synchronization conflicts, 2-66

U
unRegisterQueuePkg method, 2-83
upload_complete method, 2-75

example, 2-80
signature, 2-79

Use, 2-12
user

create, 1-6
APIs, 2-30

defining snapshot values, 11-18, 13-13
granting access, 1-2, 11-17, 13-13
management, 1-6
member

create, 2-31
operations, 1-3
provisioning, 1-19
subscribing, 2-42

V
view

fast refresh, 2-60
importing, 7-24
parent table hint, 6-12, 6-14
primary key hint, 6-12, 6-14

virtual primary key, 3-9
Visual Studio

versions for development, 1-20
Windows CE, 1-20

W
Web-to-Go

client installation, 11-19, 13-14
debug, 5-19
development, 5-9, 5-10, 11-2
get publication name, 4-7
install the client, 11-19, 13-14
servlet development, 5-11
using the Packaging Wizard, 11-7

weight
publication item

overview, 1-10
Win32

using the Packaging Wizard, 13-5
Visual Studio

version, 1-20
Windows CE

compilation, 14-7
creating database object, 11-2, 14-2
developing applications, 14-2
installing, 14-16
packaging, 11-7, 13-5, 14-10
publishing, 11-7, 13-5, 14-10
synchronizing, 14-18
using the Packaging Wizard, 14-10
Visual Studio

version, 1-20
writing application code, 14-4

Workspace
application, 5-23

	Contents
	Preface
	Audience
	Documentation Accessibility
	Send Us Your Comments

	1 Overview for Designing Mobile Applications
	1.1 Introduction
	1.2 Oracle Database Lite 10g Application Model and Architecture
	1.2.1 Mobile Client Database
	1.2.1.1 SQLite Database
	1.2.1.2 Oracle Lite Database

	1.2.2 Mobile Sync
	1.2.3 Mobile Server
	1.2.4 Message Generator and Processor (MGP)
	1.2.5 Mobile Server Repository
	1.2.6 Device Manager

	1.3 Creating the Publish-Subscribe Model for Mobile Users
	1.3.1 Defining the Weight and Conflict Resolution for Publication Items
	1.3.2 Behavior and Requirements for Primary Keys, Foreign Keys and Not Null Fields in Publication Items

	1.4 Mobile Development Kit (MDK)
	1.4.1 Mobile SQL (mSQL)
	1.4.2 Using the Mobile Database Workbench
	1.4.3 Using the Packaging Wizard

	1.5 Mobile Application Design
	1.5.1 Steps for Designing Your Mobile Application
	1.5.1.1 Read the Documentation Before Design
	1.5.1.2 Gather Mobile Requirements
	1.5.1.3 Proof of Concept
	1.5.1.4 Prototype
	1.5.1.5 Design for Data Subsets
	1.5.1.6 Design for Indexing
	1.5.1.7 Design for Sequences
	1.5.1.8 Design for Synchronization
	1.5.1.9 Design for Administration
	1.5.1.10 Design for the Language Utilized for Handheld Devices

	1.5.2 Application Programming Interfaces
	1.5.3 Application Deployment into the Mobile Environment

	1.6 Supported Languages for Application Development
	1.6.1 Native Applications
	1.6.2 Standalone Java Applications
	1.6.3 Web Applications

	2 Synchronization
	2.1 How Oracle Database Lite Synchronizes
	2.1.1 Oracle Lite Mobile Client Database Created on First Synchronization
	2.1.2 Using Multiple Databases for Application Data
	2.1.3 Deciding on Automatic or Manual Synchronization
	2.1.4 Deciding on Synchronization Refresh Option
	2.1.4.1 Fast Refresh
	2.1.4.2 Complete Refresh
	2.1.4.3 Queue-Based Refresh
	2.1.4.4 Forced Refresh

	2.1.5 Synchronizing to a File With File-Based Sync
	2.1.6 How Downloaded Data is Processed on the Mobile Client
	2.1.7 How Updates Are Propagated to the Back-End Database
	2.1.8 How Modified BLOB Data is Synchronized

	2.2 Enabling Automatic Synchronization
	2.2.1 Enable Automatic Synchronization at the Publication Item Level
	2.2.2 Enable/Disable Automatic Synchronization on the Mobile Client
	2.2.2.1 Start or Stop Automatic Synchronization
	2.2.2.2 Enable or Disable Automatic Synchronization
	2.2.2.3 Sync Control APIs to Start or Enable Automatic Synchronization

	2.2.3 Define the Rules Under Which the Automatic Synchronization Starts
	2.2.3.1 Configure Publication-Level Automatic Synchronization Rules
	2.2.3.2 Configure Platform-Level Automatic Synchronization Rules

	2.2.4 Setting Data as High Priority in Automatic Synchronization
	2.2.5 Enable the Server to Notify the Client to Initiate a Synchronization to Download Data
	2.2.6 Notify Application on Completion of Automatic Synchronization Cycle
	2.2.7 Request Status for Automatic Synchronization Cycle

	2.3 What is The Process for Setting Up a User For Synchronization?
	2.3.1 Creating a Snapshot Definition Declaratively
	2.3.1.1 Manage Snapshots

	2.3.2 Creating the Snapshot Definition Programmatically

	2.4 Creating Publications Using Oracle Database Lite APIs
	2.4.1 Defining a Publication With Java Consolidator Manager APIs
	2.4.1.1 Create the Mobile Server User
	2.4.1.2 Create Publications
	2.4.1.3 Create Publication Items
	2.4.1.4 Define Publication-Level Automatic Synchronization Rules
	2.4.1.5 Data Subsetting: Defining Client Subscription Parameters for Publications
	2.4.1.6 Create Publication Item Indexes
	2.4.1.7 Adding Publication Items to Publications
	2.4.1.8 Creating Client-Side Sequences for the Downloaded Snapshot
	2.4.1.9 Subscribing Users to a Publication
	2.4.1.10 Instantiate the Subscription
	2.4.1.11 Bringing the Data From the Subscription Down to the Client
	2.4.1.12 Modifying a Publication Item
	2.4.1.13 Callback Customization for DML Operations
	2.4.1.14 Restricting Predicate

	2.5 Client Device Database DDL Operations
	2.6 Customize the Compose Phase Using MyCompose
	2.6.1 Create a Class That Extends MyCompose to Perform the Compose
	2.6.2 Implement the Extended MyCompose Methods in the User-Defined Class
	2.6.2.1 Implement the needCompose Method
	2.6.2.2 Implement the doCompose Method
	2.6.2.3 Implement the init Method
	2.6.2.4 Implement the destroy Method

	2.6.3 Use Get Methods to Retrieve Information You Need in the User-Defined Compose Class
	2.6.3.1 Retrieve the Publication Name With the getPublication Method
	2.6.3.2 Retrieve the Publication Item Name With the getPublicationItem Method
	2.6.3.3 Retrieve the DML Table Name With the getPubItemDMLTableName Method
	2.6.3.4 Retrieve the Primary Key With the getPubItemPK Method
	2.6.3.5 Retrieve All Base Tables With the getBaseTables Method
	2.6.3.6 Retrieve the Primary Key With the getBaseTablePK Method
	2.6.3.7 Discover If Base Table Has Changed With the baseTableDirty Method
	2.6.3.8 Retrieve the Name for DML Log Table With the getBaseTableDMLLogName Method
	2.6.3.9 Retrieve View of the Map Table With the getMapView Method

	2.6.4 Register the User-Defined Class With the Publication Item

	2.7 Customize What Occurs Before and After Synchronization Phases
	2.7.1 Customize What Occurs Before and After Every Phase of Each Synchronization
	2.7.1.1 NullSync
	2.7.1.2 BeforeProcessApply
	2.7.1.3 AfterProcessApply
	2.7.1.4 BeforeProcessCompose
	2.7.1.5 AfterProcessCompose
	2.7.1.6 BeforeProcessLogs
	2.7.1.7 AfterProcessLogs
	2.7.1.8 BeforeClientCompose
	2.7.1.9 AfterClientCompose
	2.7.1.10 BeforeSyncMapCleanup
	2.7.1.11 AfterSyncMapCleanup
	2.7.1.12 Example Using the Customize Package
	2.7.1.13 Error Handling For CUSTOMIZE Package

	2.7.2 Customize What Occurs Before and After Compose/Apply Phases for a Single Publication Item

	2.8 Initiating Client Synchronization With Synchronization APIs
	2.8.1 Starting Synchronization Upload and Download Phases With C or C++ Applications
	2.8.2 Starting Synchronization Upload and Download Phases With Java Applications
	2.8.3 Starting Synchronization Upload and Download Phases With the ADO.NET Provider

	2.9 Understanding Your Refresh Options
	2.9.1 Fast Refresh
	2.9.2 Complete Refresh for Views
	2.9.3 Queue-Based Refresh
	2.9.4 Forced Refresh

	2.10 Synchronizing With Database Constraints
	2.10.1 Synchronization And Database Constraints
	2.10.2 Primary Key is Unique
	2.10.3 Foreign Key Constraints
	2.10.3.1 Set Update Order for Tables With Weights
	2.10.3.2 Defer Constraint Checking Until After All Transactions Are Applied

	2.10.4 Unique Key Constraint
	2.10.5 Not Null Constraint
	2.10.6 Generating Constraints on the Mobile Client
	2.10.6.1 The assignWeights Method

	2.11 Resolving Conflicts with Winning Rules
	2.11.1 Resolving Errors and Conflicts on the Mobile Server Using the Error Queue
	2.11.2 Viewing Client-Side Synchronization Conflicts from Automatic Synchronization
	2.11.3 Customizing Synchronization Conflict Resolution Outcomes

	2.12 Using the Sync Discovery API to Retrieve Statistics
	2.12.1 getDownloadInfo Method
	2.12.2 DownloadInfo Class Access Methods
	2.12.3 PublicationSize Class

	2.13 Customizing Synchronization With Your Own Queues
	2.13.1 Customizing Apply/Compose Phase of Synchronization with a Queue-Based Publication Item
	2.13.1.1 Queue Creation
	2.13.1.2 Queue-Based PL/SQL Callouts
	2.13.1.3 Create a Publication Item as a Queue
	2.13.1.4 Register the PL/SQL Package Outside the Repository

	2.13.2 Creating Data Collection Queues for Uploading Client Collected Data
	2.13.2.1 Creating a Data Collection Queue

	2.13.3 Selecting How/When to Notify Clients of Composed Data

	2.14 Synchronization Performance
	2.15 Troubleshooting Synchronization Errors
	2.15.1 Foreign Key Constraints in Updatable Publication Items
	2.15.1.1 Foreign Key Constraint Violation Example
	2.15.1.2 Avoiding Constraint Violations with Table Weights
	2.15.1.3 Avoiding Constraint Violations with BeforeApply and After Apply

	3 APIs for Client and Database Administration
	3.1 Deleting a Client Device
	3.2 Register a Remote Oracle Database for Application Data
	3.2.1 Set up a Remote Application Repository With the APPREPWIZARD Script
	3.2.2 Register or Deregister a Remote Oracle Database for Application Data
	3.2.3 Create Publication, Publication Item, Hints and Virtual Primary Keys on a Remote Database
	3.2.4 Using Callbacks on Remote Databases
	3.2.4.1 Customize Callbacks on the Remote Database
	3.2.4.2 Publication Item Level Callbacks for the MGP Apply/Compose Phases
	3.2.4.3 Customizing the Apply/Compose Phase for a Queue-Based Publication Item on a Remote Database

	3.3 Create a Synonym for Remote Database Link Support For a Publication Item
	3.3.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem
	3.3.2 Creating or Removing a Dependency Hint

	3.4 Parent Tables Needed for Updateable Views
	3.4.1 Creating a Parent Hint
	3.4.2 INSTEAD OF Triggers

	3.5 Manipulating Application Tables
	3.5.1 Creating Secondary Indexes on Client Device
	3.5.2 Virtual Primary Key

	3.6 Facilitating Schema Evolution
	3.6.1 Schema Evolution Involving a Primary Key

	3.7 Set DBA or Operational Privileges for the Mobile Server
	3.8 Datatype Conversion Between the Oracle Server and the Oracle Lite Database

	4 Invoking Synchronization in Applications With the Mobile Sync APIs
	4.1 Synchronization APIs For C or C++ Applications
	4.1.1 Overview of C/C++ Synchronization API
	4.1.2 Initializing the Environment With ocSessionInit
	4.1.3 Managing the C/C++ Data Structures
	4.1.3.1 ocEnv Data Structure
	4.1.3.2 ocTransportEnv Data Structure

	4.1.4 Retrieving Publication Information With ocGetPublication
	4.1.5 Managing User Settings With ocSaveUserInfo
	4.1.6 Manage What Tables Are Synchronized With ocSetTableSyncFlag
	4.1.7 Configure Proxy Information
	4.1.8 Start the Synchronization With the ocDoSynchronize Method
	4.1.8.1 See Progress of Synchronization with Progress Listening

	4.1.9 Clear the Synchronization Environment Using ocSessionTerm
	4.1.10 Retrieve Synchronization Error Message with ocGetLastError
	4.1.11 Enable File-Based Synchronization through C or C++ APIs

	4.2 Synchronization API for Java Applications
	4.2.1 Overview
	4.2.2 Sync Class
	4.2.3 SyncException Class
	4.2.4 SyncOption Class
	4.2.5 Java Interface SyncParam Settings
	4.2.6 Java Interface TransportParam Parameters
	4.2.7 SyncProgressListener Service
	4.2.8 Manage What Tables Are Synchronized With Selective Sync
	4.2.9 Enable File-Based Synchronization through Java APIs

	4.3 Synchronization API for Java Applications on SQLite Mobile Clients
	4.3.1 Overview
	4.3.2 OSESession Class
	4.3.3 OSEProgressListener Interface
	4.3.4 Enable Selective Synchronization
	4.3.5 OSEException Class

	4.4 Synchronization API for C#
	4.4.1 Use the OracleSync Class for Synchronization
	4.4.2 Using the OracleEngine to Synchronize
	4.4.2.1 Launch the MSYNC Tool for User Input
	4.4.2.2 Set the Environment and Synchronize With the OracleEngine

	4.4.3 Exception Handling and Reading Log Files
	4.4.4 Monitor Synchronization Progress With the SyncEventHandler
	4.4.4.1 Using the SyncEventArgs Object
	4.4.4.2 Executing the SetEventHandler Method
	4.4.4.3 Creating the SyncEventHandler Object

	4.4.5 Manage What Tables Are Synchronized With Selective Sync
	4.4.6 Enable File-Based Synchronization through C# APIs

	4.5 mSync/OCAPIs/mSyncCom

	5 Application Development
	5.1 Data Access APIs
	5.1.1 Data Source Name
	5.1.2 JDBC
	5.1.3 ODBC
	5.1.4 ADO.NET
	5.1.4.1 Data Synchronization With the OracleSync or Oracle Engine Classes
	5.1.4.2 Creating a Database for Testing
	5.1.4.3 Developing an ADO.NET Application on WinCE

	5.2 Supported Native APIs for Oracle Database Lite
	5.3 Developing Java Applications
	5.3.1 Java Support for Applications
	5.3.1.1 JDBC Drivers

	5.3.2 Oracle Database Lite Java Development Environment
	5.3.2.1 Setting Variables for the JDK

	5.3.3 Java Development Tools

	5.4 Using Stored Procedures in Oracle Database Lite
	5.4.1 Load and Define Java Stored Procedures
	5.4.1.1 Load and Define Java Stored Procedures on the Mobile Client in an Oracle Lite Database
	5.4.1.2 Load and Define Java Stored Procedures in an Enterprise Mobile Server Environment

	5.4.2 Load and Define C, C++, or C# Stored Procedures
	5.4.2.1 Defining the C, C++, or C# Stored Procedure
	5.4.2.2 Loading the C, C++ or C# Stored Procedure to the Oracle Lite Database

	5.5 Developing Mobile Web-to-Go Applications
	5.5.1 Choose the Type of Web-to-Go Mobile Client to Use
	5.5.2 Developing and Testing the Application
	5.5.2.1 Building Web-to-Go Applications
	5.5.2.2 Database Connections
	5.5.2.3 Application Roles
	5.5.2.4 Developing Java Server Pages
	5.5.2.5 Developing Java Servlets for Web-to-Go
	5.5.2.6 Using Web-to-Go Applets
	5.5.2.7 Developing Applets to use JDBC Communication
	5.5.2.8 Developing Applet Servlet Communication
	5.5.2.9 Debugging Web-to-Go Applications
	5.5.2.10 Customizing the Workspace Application
	5.5.2.11 Using the Mobile Server Admin API

	6 Using Mobile Database Workbench to Create Publications
	6.1 Use MDW to Create Publications
	6.1.1 Set Access Privileges to SYSTEM Tables for Your Application Schema
	6.1.2 Launch MDW

	6.2 Create a Project
	6.3 Use the Quick Wizard to Create Your Publication
	6.4 Create a Publication Item
	6.4.1 Create SQL Statement for Publication Item
	6.4.2 Create a Dependency Hint
	6.4.3 Specify Parent Table and Primary Key Hints

	6.5 Define the Rules Under Which the Automatic Synchronization Starts
	6.5.1 Configure Publication-Level Automatic Synchronization Rules
	6.5.2 Configure Platform-Level Automatic Synchronization Rules
	6.5.2.1 Define System Event Rules for the Platform
	6.5.2.2 Define Automatic Synchronization Conditions for the Platform

	6.6 Create a Sequence
	6.6.1 Configuring Sequences in MDW
	6.6.2 Configuration Scenarios for Sequence Generation
	6.6.3 Example of a Sequence
	6.6.4 Example of a Client and Server Sharing a Sequence

	6.7 Create and Load a Script Into The Project
	6.7.1 Writing SQL Scripts
	6.7.2 Test SQL Scripts
	6.7.2.1 Connect to the Database
	6.7.2.2 Load and Execute SQL Scripts

	6.7.3 Load the Script Into the Project

	6.8 Load a Resource Into the Project
	6.9 Create a Publication
	6.9.1 General Tab Configures Publication Name
	6.9.2 Publication Item Tab Associates Publication Items With the Publication
	6.9.2.1 Associating a Publication Item to this Publication

	6.9.3 Sequence Tab Associates Existing Sequences With the Publication
	6.9.4 Script Tab Associates Existing Scripts With the Publication
	6.9.5 Resource Tab Associates Existing Resources With the Publication
	6.9.6 Event Tab Configures Automatic Synchronization Rules for this Publication

	6.10 Import Existing Publications and Objects from Repository
	6.10.1 Import Existing Publication from Repository
	6.10.2 Import Existing Publication Item From the Repository
	6.10.3 Import Existing Sequence From the Repository
	6.10.4 Import Existing Resource From the Repository
	6.10.5 Import an Existing Script From the Repository

	6.11 Create a Virtual Primary Key
	6.12 Test a Publication by Performing a Synchronization
	6.13 Deploy the Publications in the Project to the Repository

	7 Using the Packaging Wizard
	7.1 Using the Packaging Wizard
	7.1.1 Starting the Packaging Wizard
	7.1.2 Specifying New Application Definition Details
	7.1.3 Listing Application Files
	7.1.3.1 Compile JSP (For Web-to-Go Applications Only)
	7.1.3.2 Filters

	7.1.4 Adding Servlets (For OC4J and Web-to-Go Applications Only)
	7.1.5 Entering Database Information
	7.1.6 Defining Application Roles
	7.1.7 Defining Snapshots for Replication
	7.1.7.1 Creating New Snapshots
	7.1.7.2 Creating Indexes for Snapshots
	7.1.7.3 Importing Snapshots
	7.1.7.4 Editing Snapshots

	7.1.8 Defining Sequences for Replication
	7.1.8.1 Importing Sequences

	7.1.9 Defining Application DDLs
	7.1.9.1 Importing Views and Index Definitions

	7.1.10 Editing Application Definition
	7.1.11 Troubleshooting

	7.2 Packaging Wizard Synchronization Support

	8 Create and Manage Jobs with APIs
	8.1 Managing Scheduled Jobs Using ConsolidatorManager APIs
	8.2 Start a Standalone Job Engine In Separate JVM
	8.3 Using the ConsolidatorManager APIs to Create Jobs

	9 Using Symbian Devices
	9.1 Installing Oracle Database Lite on Symbian Devices
	9.1.1 Supported Platforms and Environment
	9.1.1.1 Supported Devices for Symbian Platform
	9.1.1.2 Symbian Operating System Support
	9.1.1.3 Supported Development Environments for the Symbian Platform

	9.1.2 Prerequisites for Installation
	9.1.3 Installing Oracle Database Lite
	9.1.3.1 Installing Oracle Database Lite for Symbian on the Development PC
	9.1.3.2 Installing Oracle Database Lite on the Symbian Device

	9.2 Developing Applications for Symbian Devices to Use Oracle Database Lite
	9.3 Using CSQL, ODBC or JDBC to Access Oracle Database Lite
	9.3.1 Using CSQL to Connect to the Database on Symbian
	9.3.2 Using ODBC to Connect to the Database on Symbian
	9.3.3 Using JDBC to Connect to the Database on Symbian

	9.4 Invoking Synchronization from Applications on Symbian Devices
	9.4.1 Using MSync UI to Invoke Synchronization
	9.4.2 Invoking Synchronization through Programmatic APIs
	9.4.2.1 Prepare Your Application for Synchronization
	9.4.2.2 How to Use the Synchronization API for Symbian Devices

	9.5 Use the Utility Tools on Symbian Devices
	9.5.1 Using Utility Tools on Symbian 7 and 8
	9.5.2 Using Utility Tools on Symbian 9

	10 Customizing Oracle Database Lite Security
	10.1 Providing Your Own Authentication Mechanism for Authenticating Users for the Mobile Server
	10.1.1 Implementing Your External Authenticator
	10.1.1.1 Initialization for the External Authenticator
	10.1.1.2 Destruction of the External Authenticator
	10.1.1.3 The Authentication Method for the External Authenticator
	10.1.1.4 The User Instantiation Method for the External Authenticator
	10.1.1.5 Retrieve the User Name or the User Global Unique ID
	10.1.1.6 Log Off User
	10.1.1.7 Change User Password

	10.1.2 Registering External Authenticator
	10.1.3 User Initialization Scripts

	11 Tutorial for Building Mobile Web-to-Go Applications
	11.1 Develop the Application
	11.1.1 Create Database Objects in the Oracle Server
	11.1.1.1 Create the Table Owner Account
	11.1.1.2 Create the Database Objects in the Oracle Database

	11.1.2 Compile the Application

	11.2 Create Publication for Application
	11.2.1 Create a Project
	11.2.2 Create Publication Items
	11.2.2.1 Create Publication Item
	11.2.2.2 Create Sequence
	11.2.2.3 Create Script

	11.2.3 Create Publication

	11.3 Package the Application Using the Packaging Wizard
	11.4 Administer the Application
	11.4.1 Start the Mobile Server and the Mobile Manager
	11.4.2 Using the Mobile Manager to Create a New User
	11.4.3 Setting Application Properties
	11.4.4 Granting User Access to the Application
	11.4.5 Defining Snapshot Template Values for the User

	11.5 Execute the Application on the Mobile Client for Web-to-Go
	11.5.1 Install the Mobile Client for Web-to-Go
	11.5.2 Log into the Mobile Client for Web-to-Go
	11.5.3 Manually Synchronize the Mobile Client for Web-to-Go

	12 Tutorial for Building Mobile Web Applications Using ADF/BC4J
	12.1 Overview
	12.1.1 Before You Start

	12.2 Creating a Database Connection
	12.2.1 Creating a Database Connection to Oracle Database
	12.2.2 Specify The Connection To The Oracle Lite Database

	12.3 Develop the ADF/BC4J Application
	12.3.1 Build the Data Model with ADF Business Components
	12.3.1.1 Create a New Application and Projects
	12.3.1.2 Create Business Components

	12.3.2 Customize the Business Components Views
	12.3.3 Create a Master-Detail JavaServer Faces Page
	12.3.4 Run the JSF Page
	12.3.5 Configure the ADF/BC4J Application for the Oracle Database Lite Environment
	12.3.6 Deploy the Application as WAR file

	12.4 Package the ADF/BC4J Application
	12.4.1 Include the ADF Runtime Libraries with the ADF/BC4J Application
	12.4.2 Package the Application from the Packaging Wizard

	12.5 Publish and Configure the ADF/BC4J Application from the Mobile Manager
	12.6 Test the ADF/BC4J Application
	12.7 Run the ADF/BC4J Application on the Mobile Client for Oracle Lite WEB OC4J

	13 Tutorial for Building Mobile Applications for Win32
	13.1 Plan the Mobile Application Demo for Win32
	13.2 Description of Tasks for Win32 Demo
	13.2.1 Create TASK Table on the Server Database
	13.2.2 Create Publication for Application
	13.2.2.1 Create a Project
	13.2.2.2 Create Publication Item
	13.2.2.3 Create Publication

	13.2.3 Package the Application Using the Packaging Wizard

	13.3 Administer the Application
	13.3.1 Start the Mobile Server and the Mobile Manager
	13.3.2 Using the Mobile Manager to Create New Users for the Task Application
	13.3.3 Setting Application Properties
	13.3.4 Granting User Access to the Application
	13.3.5 Defining Snapshot Template Values for the User

	13.4 Execute the Application on the Mobile Client for Web-to-Go
	13.4.1 Install the Mobile Client on the Win32 Device
	13.4.2 Browse the TASK Snapshot and Update a Row
	13.4.3 Develop your Mobile Field Service Application Using Oracle Database Lite
	13.4.4 Republish the Application with the Application Program

	14 Tutorial for Building Mobile Applications for Windows CE
	14.1 Overview of the WinCE Sample Application
	14.1.1 Before You Start
	14.1.1.1 Application Development Computer Requirements
	14.1.1.2 Client Device Requirements

	14.2 Develop the Application
	14.2.1 Create Database Objects in the Oracle Server
	14.2.1.1 The WinCE Transport Application Database Objects

	14.2.2 Write the Application Code
	14.2.2.1 Transport Module (Transport.vb)
	14.2.2.2 Main Form (frmMain.vb)
	14.2.2.3 View Packages (frmView.vb)
	14.2.2.4 Create Package (frmNew.vb)

	14.2.3 Compile the Application
	14.2.3.1 Create CAB Files
	14.2.3.2 Install the Application from the CAB File

	14.3 Create Publication for Application
	14.3.1 Create a Project
	14.3.2 Create Publication Items
	14.3.2.1 Create Packages Publication Item
	14.3.2.2 Create Routes Publication Item
	14.3.2.3 Create Trucks Publication Item

	14.3.3 Create Publication

	14.4 Package and Publish the Application
	14.4.1 Define the Application Using the Packaging Wizard
	14.4.1.1 Create a New Application

	14.4.2 Publish the Application

	14.5 Administer the Application
	14.5.1 Start the Mobile Server
	14.5.2 Launch the Mobile Manager
	14.5.3 Create a New User
	14.5.4 Set the Application Properties
	14.5.5 Grant User Access to the Application

	14.6 Run the Application on the Windows Mobile/Pocket PC Device
	14.6.1 Install the Oracle Database Lite Mobile client for Pocket PC
	14.6.2 Install and Synchronize the Transport Application and Data

	Index

