

Oracle® Database Lite
Oracle Lite Client Guide

Release 10.3
E12548-02

February 2010

Oracle Database Lite Oracle Lite Client Guide Release 10.3

E12548-02

Copyright © 1997, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Send Us Your Comments .. xvi

1 The Oracle Database Lite RDBMS
1.1 Oracle Lite Database Overview .. 1-1
1.2 Execution Models for Applications that Use the Oracle Lite Database 1-2
1.2.1 Embedded Application in Single Process .. 1-2
1.2.2 Mobile Option for a Client in a Single Process.. 1-2
1.2.3 Multiple Processes Accessing the Same Database .. 1-3
1.2.4 Multiple Embedded Application Clients Accessing Remote Database....................... 1-4
1.2.5 Multiple Clients Accessing Remote Database ... 1-4

2 System Requirements for the Oracle Lite Database as the Mobile Client
2.1 System Requirements for the Oracle Lite Database as the Mobile Client on Windows... 2-1
2.1.1 Hardware Requirements for the Oracle Lite Database as the Mobile Client on

Windows .. 2-1
2.1.1.1 What File System and External Memory Media Should You Use for Windows CE?

.. 2-2
2.1.2 Software Requirements for the Oracle Lite Database as the Mobile Client on Windows.

.. 2-2
2.1.2.1 Certified Operating Systems and Other Software Requirements 2-3
2.1.2.2 Supported and Certified Technologies for Windows Mobile Clients 2-4
2.1.2.3 Supported Platforms for Oracle Database Lite WinCE... 2-5
2.1.2.4 Windows Mobile Client Notes ... 2-5
2.2 System Requirements for the Oracle Lite Database as the Mobile Client on Linux 2-6
2.2.1 Certified Platforms and Supported Technologies for Linux Mobile Clients 2-6
2.2.2 Software and Hardware Requirements for the Oracle Lite Database as the Mobile

Client on Linux... 2-7
2.2.3 Setting Environment Variables Before Installing the Linux Mobile Client................. 2-7

3 Installing the Oracle Lite Database
3.1 Preparing the Device for a Mobile Application.. 3-2
3.2 Installing the Oracle Lite Mobile Client Software.. 3-2

iv

3.2.1 Installing Web-to-Go on Linux .. 3-6
3.2.2 Installing Standard SDK WinCE 5.0 CAB Files for Your Mobile Client...................... 3-7
3.2.2.1 Defining the INI File .. 3-9
3.2.3 Installing Tools CAB Files for Java, MSQL, and Utility Support............................... 3-10
3.2.3.1 Defining the Tools CAB as an Application in Packaging Wizard...................... 3-10
3.2.3.2 Assigning the Tools CAB to the User ... 3-11
3.3 Configuring for Default Sync When Installing the Client ... 3-11
3.4 Configuring the Client for Secure Socket Layer (SSL).. 3-12
3.5 Specifying Whether the Client Uses a Static or Dynamic (DHCP) IP Address 3-12
3.6 Using Offline Instantiation to Distribute Multiple Mobile Clients................................... 3-12

4 Building an Embedded Application
4.1 Creating the Oracle Lite Database .. 4-1
4.1.1 Creating a Data Source Name with ODBC Administrator.. 4-1
4.1.1.1 Creating DSN on a Windows System.. 4-1
4.1.1.2 Creating DSN on a LINUX System .. 4-2
4.1.2 Creating a New Oracle Lite Database .. 4-4
4.2 Creating Users for the Oracle Lite Database... 4-4
4.2.1 Pre-Defined Roles .. 4-5
4.2.2 Building and Populating Demo Tables .. 4-5
4.3 Packaging Your Embedded Application With the Oracle Database Lite Runtime........... 4-6
4.3.1 Packaging an Embedded Application on Windows... 4-6
4.3.2 Packaging an Embedded Application on Linux ... 4-7
4.4 Connecting to the Oracle Lite Database .. 4-8
4.5 Using Oracle Database Lite Samples.. 4-9
4.5.1 Executing the Visual Basic Sample Application... 4-10
4.5.1.1 Open the Sample Application.. 4-10
4.5.1.2 View and Manipulate the Data in the EMP Table .. 4-10

5 Building a Client/Server Environment
5.1 Overview of the Multi-User Service... 5-1
5.2 Administration for the Multi-User Service on the Windows Platform............................... 5-3
5.2.1 Installation and Configuration on Windows... 5-3
5.2.2 Starting the Multi-User Service on Windows.. 5-4
5.2.3 Stopping the Multi-User Service on Windows.. 5-4
5.2.4 Querying the Multi-User Service on Windows... 5-4
5.3 Administration for the Multi-User Service on the Linux Platform 5-5
5.3.1 Starting and Stopping the Multi-User Service on Linux.. 5-5
5.3.2 Querying the Multi-User Service on Linux.. 5-6
5.4 Debugging the Multi-User Service ... 5-7
5.5 Creating DSNs... 5-7
5.6 Accessing the Database .. 5-7
5.7 Verifying the Connection Using mSQL ... 5-7

6 Managing Your Oracle Lite Mobile Client
6.1 Start the Mobile Client.. 6-1

v

6.2 Log on to Mobile Client Workspace... 6-2
6.3 Synchronize or Execute Applications on the Mobile Client ... 6-3
6.4 Manage the Mobile Client.. 6-4
6.4.1 Manage Your Clients Locally With the Mobile Client Workspace............................... 6-5
6.4.1.1 Instructions for Using the Mobile Client Workspace ... 6-5
6.4.1.1.1 Display Installed Applications .. 6-5
6.4.1.1.2 Configure the Mobile Client .. 6-5
6.4.1.1.3 Enable Remote Access for Mobile Client ... 6-9
6.4.1.1.4 Configure Application Synchronization Default... 6-10
6.4.1.1.5 Initiate Manual Synchronization.. 6-10
6.4.1.1.6 Log Off ... 6-11
6.4.1.2 Execute Mobile Applications Installed on Your Mobile Client 6-11
6.4.1.3 Customize the Mobile Client Workspace... 6-11
6.4.1.4 Schedule Data Synchronization Jobs .. 6-11
6.4.2 Use the mSync GUI to Initiate Synchronization of Your Linux, WinCE, and Win32

Applications ... 6-12
6.4.2.1 Network Options for MSync Tool... 6-13
6.4.2.2 Sync Options for MSync Tool .. 6-13
6.4.2.3 Set User Context for Member .. 6-14
6.4.2.4 Sync to a File Using File-Based Sync .. 6-15
6.4.2.5 Use Mobile Client Tools on Linux... 6-15
6.4.3 Reset the Mobile User Password .. 6-15
6.4.4 Use the Device Manager Client GUI to Manage the Client-Side Device.................. 6-16
6.4.5 Initiate Updates for the Oracle Lite Client .. 6-16
6.4.6 Configure JAVA_HOME for Web-to-Go Clients ... 6-16
6.4.7 Defragmentation and Reducing Size of the Client Application Databases 6-17
6.4.8 Communicate Between the Internet and Intranet Through a Reverse Proxy 6-17

7 Managing the Oracle Lite Database
7.1 Moving Your Client Data Between an Oracle Lite Database and an External File 7-1
7.1.1 Move Data Between an Oracle Lite Database and an External File Using Programmatic

APIs .. 7-1
7.1.2 Oracle Database Lite Load Utility (OLLOAD) .. 7-1
7.2 Backing Up an Oracle Lite Database.. 7-2
7.3 Encrypting a Database ... 7-2
7.4 Support for Linguistic Sort .. 7-2
7.4.1 Creating Linguistic Sort Enabled Databases.. 7-2
7.4.2 How Collation Works ... 7-3
7.4.3 Collation Element Examples .. 7-3
7.4.3.1 Sorting Normal Characters ... 7-3
7.4.3.2 Reverse Sorting of French Accents... 7-4
7.4.3.3 Sorting Contracting Characters .. 7-4
7.4.3.4 Sorting Expanding Characters.. 7-4
7.4.3.5 Sorting Numeric Characters ... 7-4
7.5 Discovering Oracle Lite Database Version Number.. 7-4
7.6 Row Sort Limitations of the Oracle Lite Database ... 7-4
7.7 Troubleshooting the Source of a Checksum Error Against Database 7-5

vi

7.8 Enable Tracing for the Oracle Lite Database .. 7-5
7.8.1 Enabling Trace Output.. 7-5
7.8.2 Description of Trace Information .. 7-6
7.8.2.1 Table Name Output.. 7-7

8 Oracle Database Lite Data Access APIs
8.1 ODBC.. 8-1
8.2 JDBC.. 8-2
8.3 ADO.NET... 8-2
8.4 SODA .. 8-2

9 ODBC Drivers
9.1 Supported ODBC Drivers for Oracle Database Lite .. 9-1
9.2 Executing the ODBC Examples... 9-2
9.2.1 ODBCTBL ... 9-2
9.2.2 ODBCVIEW .. 9-2
9.2.3 ODBCFUNC ... 9-2
9.2.4 ODBCTYPE... 9-2
9.2.5 LONG .. 9-3

10 JDBC Programming
10.1 JDBC Compliance .. 10-1
10.2 JDBC Environment Setup ... 10-1
10.3 JDBC Drivers to Use When Connecting to the Oracle Lite Database............................... 10-2
10.3.1 Type 2 Driver... 10-2
10.3.2 Type 4 (Pure Java) Driver Connection URL Syntax... 10-4
10.4 DataSource Connection... 10-4
10.5 Java Datatypes and JDBC Extensions ... 10-5
10.5.1 Mapping Datatypes Between Java and Oracle ... 10-5
10.5.2 Datatype Extensions... 10-6
10.5.3 Data Access Extensions.. 10-7
10.5.3.1 Reading from a BLOB Sample Program.. 10-8
10.5.3.2 Writing to a CLOB Sample Program .. 10-8
10.6 Limitations .. 10-8
10.7 New JDBC 2.0 Features ... 10-9
10.7.1 Interface Connection .. 10-9
10.7.1.1 Methods .. 10-9
10.7.2 Interface Statement ... 10-10
10.7.3 Interface ResultSet .. 10-10
10.7.3.1 Fields ... 10-10
10.7.3.2 Methods .. 10-11
10.7.3.3 Methods that Return False ... 10-12
10.7.4 Interface Database MetaData .. 10-13
10.7.4.1 Methods .. 10-13
10.7.4.2 Methods that Return False ... 10-13
10.7.5 Interface ResultMetaData .. 10-14

vii

10.7.5.1 Methods .. 10-14
10.7.6 Interface PreparedStatement... 10-14
10.7.6.1 Methods .. 10-14
10.7.6.1.1 Limitation .. 10-14
10.8 J2ME Support.. 10-15
10.8.1 JDBC Drivers for J2ME CDC and CLDC... 10-15
10.8.1.1 JDBC Driver for J2ME CDC .. 10-15
10.8.1.2 JDBC Driver for J2ME CLDC .. 10-15
10.8.2 J2ME Support for Windows CE.. 10-17
10.8.2.1 Using IBM J9... 10-17
10.8.2.2 Using Creme 4.1... 10-18

11 Oracle Database Lite ADO.NET Provider
11.1 Discussion of the Classes That Support the ADO.NET Provider 11-1
11.1.1 Establish Connections With the OracleConnection Class... 11-1
11.1.2 Transaction Management .. 11-2
11.1.3 Create Commands With the OracleCommand Class .. 11-2
11.1.4 Maximize Performance Using Prepared Statements With the OracleParameter Class

.. 11-3
11.1.4.1 SQL String Parameter Syntax .. 11-3
11.1.5 Large Object Support With the OracleBlob Class .. 11-3
11.1.5.1 Using BLOB Objects in Parameterized SQL Statements...................................... 11-4
11.1.5.2 Query Tables With BLOB Columns.. 11-4
11.1.5.3 Read and Write Data to BLOB Objects ... 11-4
11.2 Limitations for the ADO.NET Provider ... 11-4
11.2.1 Partial Data Returned with GetSchemaTable... 11-5
11.2.2 Creating Multiple DataReader Objects Can Invalidate Each Other.......................... 11-5
11.2.3 Calling DataReader.GetString Twice Results in a DbNull Object............................. 11-5
11.2.4 Thread Safety... 11-5

12 Using Simple Object Data Access (SODA)
12.1 Getting Started With SODA ... 12-1
12.1.1 Overview of the SODA Classes .. 12-1
12.1.2 Demonstrating Frequently-Used SODA Classes ... 12-2
12.2 Using SQL Queries in SODA Code for PocketPC Platforms... 12-3
12.3 Virtual Columns and Object-Relational Mapping .. 12-4
12.4 Behavior of Reference-Counted and Copy-By-Assignment Objects 12-5
12.5 Another Library for Exceptions (ALE) ... 12-6
12.5.1 Decorating Classes With ALE... 12-6
12.5.2 New Operator and ALE... 12-8
12.5.3 Global Variables.. 12-8
12.5.4 Exceptions and Inheritance ... 12-8
12.5.5 Using ALE with PocketPC ARM Compilers .. 12-9
12.5.6 Troubleshooting ALE Runtime Errors... 12-9
12.5.7 Compiling Your Program With ALE ... 12-9
12.5.8 ALE Code on Systems That Support Exceptions ... 12-9

viii

13 Using Stored Procedures and Triggers
13.1 Overview of Stored Procedures and Triggers ... 13-1
13.2 Using Java Stored Procedures in Oracle Database Lite.. 13-1
13.2.1 Load and Define Java Stored Procedures in an Oracle Lite Database 13-3
13.3 Creating Java Stored Procedures ... 13-3
13.3.1 Using Load and Define for Java Stored Procedures .. 13-3
13.3.1.1 Loading Java Stored Procedure Classes Into the Oracle Lite Database............. 13-4
13.3.1.1.1 loadjava.. 13-4
13.3.1.1.2 Using CREATE JAVA.. 13-7
13.3.1.2 Defining Stored Procedures to SQL Using Create Function or Create Procedure......

.. 13-7
13.3.1.3 Calling Defined Stored Procedures... 13-9
13.3.1.4 Dropping Defined Stored Procedures .. 13-9
13.3.1.4.1 Using dropjava.. 13-10
13.3.1.4.2 Using SQL Commands .. 13-11
13.3.1.5 Example Using the Load and Define Model ... 13-11
13.3.2 Using Attach to Define the Java Stored Procedure.. 13-12
13.3.2.1 Attaching a Java Class to a Table .. 13-13
13.3.2.2 Table-Level Stored Procedures.. 13-13
13.3.2.3 Row-Level Stored Procedures ... 13-14
13.3.2.4 Calling Attached Stored Procedures... 13-14
13.3.2.5 Dropping Attached Stored Procedures .. 13-14
13.3.2.6 Example of An Attached Java Stored Procedure .. 13-15
13.3.3 Calling Java Stored Procedures From a Multithreaded C or C++ Application..... 13-16
13.4 Using Triggers With Java Stored Procedures .. 13-16
13.4.1 Statement-Level vs. Row-Level Triggers... 13-17
13.4.2 Creating Triggers .. 13-17
13.4.2.1 Enabling and Disabling Triggers... 13-18
13.4.3 Dropping Triggers .. 13-18
13.4.4 Trigger Example Using the Attach Method.. 13-18
13.4.5 Trigger Arguments ... 13-19
13.4.6 Trigger Arguments Example Using Create Procedure ... 13-20
13.5 Tutorial for a Java Stored Procedure Invoked By a Trigger .. 13-21
13.5.1 Start mSQL... 13-22
13.5.2 Create a Table .. 13-22
13.5.3 Create a Java Class.. 13-22
13.5.4 Load the Java Class File .. 13-24
13.5.5 Define the Stored Procedure .. 13-24
13.5.6 Populate the Database.. 13-24
13.5.7 Execute the Procedure.. 13-24
13.5.8 Verify the Email Address .. 13-25
13.5.9 Create a Trigger... 13-25
13.5.9.1 Testing the Trigger .. 13-25
13.5.9.2 Verify the Email Address ... 13-25
13.5.10 Commit or Roll Back .. 13-25
13.6 Converting Datatypes Between Java and SQL For Stored Procedures.......................... 13-25
13.6.1 Declaring Parameters for Java Stored Procedures ... 13-26

ix

13.6.2 Using Stored Procedures to Return Multiple Rows .. 13-27
13.6.2.1 Returning Multiple Rows in ODBC.. 13-27
13.6.2.2 Example... 13-27
13.7 Executing Java Stored Procedures from JDBC .. 13-28
13.7.1 Using the executeQuery Method.. 13-28
13.7.2 Using a Callable Statement.. 13-29
13.8 Using C++ Stored Procedures.. 13-29
13.8.1 Creating C++ Stored Procedures.. 13-30
13.8.1.1 C++ Stored Procedure Include File and Procedure Definition 13-30
13.8.1.2 Access SODA Objects Within Your C++ Stored Procedure 13-30
13.8.2 Building Your C++ Stored Procedures .. 13-31
13.8.2.1 Linking in Appropriate Libraries.. 13-31
13.8.2.2 Automatically Build Your Stored Procedure .. 13-31
13.8.2.3 Manually Building Your Stored Procedure ... 13-32
13.8.3 Define Your C++ Stored Procedure ... 13-32
13.8.4 C++ Stored Procedure Example ... 13-33
13.8.4.1 C++ Stored Procedure and Trigger Example One.. 13-33
13.8.4.2 C++ Stored Procedure and Trigger Example Two ... 13-34
13.8.4.3 JDBC Calling a C++ Stored Procedure Example .. 13-34
13.9 Using .Net Stored Procedures .. 13-35
13.9.1 Creating the .Net Source for Your Stored Procedure .. 13-35
13.9.1.1 Defining Methods, Imports and Namespace .. 13-36
13.9.1.2 Access and Modify Database Using .Net Extension Classes In Stored Procedures ...

... 13-37
13.9.1.3 Access and Modify Database Using OracleSPManager Inside Triggers......... 13-38
13.9.2 Building Your .Net Stored Procedures .. 13-39
13.9.3 Define Your .Net Stored Procedure ... 13-39
13.9.3.1 Create the .Net Class Object in the Oracle Lite Database 13-39
13.9.3.2 Define Methods With a Call Specification ... 13-40
13.9.4 Dropping .Net Stored Procedures.. 13-40
13.9.5 .Net Stored Procedure Example ... 13-41
13.9.5.1 .Net Stored Procedure and Trigger Example One.. 13-41
13.9.5.2 .Net Stored Procedure and Trigger Example Two ... 13-41
13.10 Loading and Defining C, C++ or C# Stored Procedures.. 13-42

14 Configure Security for the Oracle Lite Database
14.1 Providing Security for the Mobile Client ... 14-1
14.2 Encrypting the Oracle Lite Database... 14-2
14.2.1 Configuring for Automatic Encryption of the Oracle Lite Database 14-2
14.2.2 Create a Command to Initiate Automatic Encryption of the Oracle Lite Database 14-2
14.2.3 Execute EncrypDB Command to Encrypt Database.. 14-3
14.3 Providing Your Own Encryption Module for the Client Oracle Lite Database 14-3
14.3.1 Encryption Module APIs ... 14-3
14.3.1.1 Initialize the Encryption Module .. 14-3
14.3.1.2 Delete Encryption Context ... 14-4
14.3.1.3 Create the Encryption Key ... 14-4
14.3.1.4 Encrypt Data... 14-4

x

14.3.1.5 Decrypt Data .. 14-4
14.3.2 Plug-In Custom Encryption Module ... 14-5
14.4 Pre-Configure Branch Office Passwords .. 14-5

15 Oracle Database Lite Transaction Support
15.1 Locking .. 15-1
15.2 What Are the Transaction Isolation Levels? .. 15-1
15.3 Configuring the Isolation Level ... 15-3
15.4 Supported Combinations of Isolation Levels and Cursor Types...................................... 15-3

16 Improving SQL Query Performance for the Oracle Lite Database
16.1 Determining Performance of Client SQL Queries With the EXPLAIN PLAN 16-1
16.2 Determine SQL Query Execution Through Oracle Database Lite Tracing...................... 16-2
16.3 Optimizing SQL Queries for the Oracle Lite Database .. 16-2
16.3.1 Optimizing Single-Table Queries ... 16-3
16.3.2 Optimizing Join Queries .. 16-3
16.3.2.1 Create an Index on the Join Column(s) of the Inner Table.................................. 16-3
16.3.2.2 Bypassing the Query Optimizer.. 16-3
16.3.3 Optimizing with Order By and Group By Clauses.. 16-4
16.3.3.1 IN Subquery Conversion.. 16-4
16.3.3.2 ORDER BY Optimization with No GROUP BY .. 16-4
16.3.3.3 GROUP BY Optimization with No ORDER BY .. 16-5
16.3.3.4 ORDER BY Optimization with GROUP BY... 16-5
16.3.3.5 Cache Subquery Results ... 16-5
16.3.4 Advanced Optimization Techniques for SQL Queries in Oracle Database Lite 16-5
16.3.4.1 Oracle Lite Database Application Architecture .. 16-6
16.3.4.1.1 ODBC Application ... 16-6
16.3.4.1.2 SQLRT .. 16-6
16.3.4.1.3 DB Engine.. 16-6
16.3.4.2 Overview of SQL Runtime... 16-7
16.3.4.2.1 Compilation... 16-8
16.3.4.2.2 Query Tree Transformations or Query Re-write Examples......................... 16-9
16.3.4.3 Execution Plan Generation... 16-10
16.3.4.3.1 Statistics ... 16-11
16.3.4.3.2 Access Methods .. 16-12
16.3.4.3.3 Single Table I/O Cost .. 16-13
16.3.4.3.4 Join Query Optimization... 16-13
16.3.4.4 Query Execution Engine... 16-15
16.3.4.4.1 Join Query Execution ... 16-15
16.3.4.4.2 Nested View Execution ... 16-15
16.3.4.5 Optimization Tips.. 16-16
16.3.4.5.1 Index Access Method... 16-16
16.3.4.5.2 Identifying The Bottleneck.. 16-16
16.3.4.5.3 Single Table Query Blocks .. 16-17
16.3.4.5.4 Query Blocks Containing Multiple Tables ... 16-17
16.3.4.5.5 Known Limitations .. 16-18
16.3.4.6 Glossary .. 16-18

xi

16.3.4.7 References ... 16-19

A POLITE.INI Parameters for the Oracle Lite Database
A.1 POLITE.INI File Overview ... A-1
A.2 All Databases Section .. A-1
A.2.1 CACHE_SIZE .. A-2
A.2.2 DATA_DIRECTORY .. A-2
A.2.3 DATABASE_ID... A-2
A.2.4 DB_CHAR_ENCODING ... A-2
A.2.5 EXTERNAL_ENCRYPTION_DLL ... A-3
A.2.6 FLUSH_AFTER_WRITE .. A-3
A.2.7 MAX_INDEX_COLUMNS .. A-4
A.2.8 MAX_ROWS.. A-4
A.2.9 MESSAGE_FILE.. A-4
A.2.10 NLS_DATE_FORMAT... A-4
A.2.10.1 Date Format.. A-5
A.2.10.2 Date Format Examples.. A-5
A.2.11 NLS_LOCALE... A-6
A.2.12 NLS_SORT ... A-7
A.2.13 OLITE_SERVER_LOG.. A-8
A.2.14 OLITE_SERVER_TRACE... A-8
A.2.15 OLITE_SQL_TRACE .. A-8
A.2.16 OLITE_WRITE_VERIFY .. A-9
A.2.17 OLITE_READ_VERIFY.. A-9
A.2.18 SQLCOMPATIBILITY.. A-9
A.2.19 TEMP_DB... A-10
A.2.20 TEMP_DIR ... A-10
A.2.21 SERVICE_PORT.. A-10
A.2.22 SERVICE_WDIR ... A-10
A.2.23 PAGE_FILL_FACTOR ... A-10
A.3 Sample POLITE.INI File.. A-11

B Catalog Views for the Oracle Lite Client
B.1 ALL_COL_COMMENTS .. B-2
B.2 ALL_CONSTRAINTS ... B-2
B.3 ALL_CONS_COLUMNS .. B-2
B.4 ALL_DEPENDENCIES ... B-3
B.5 ALL_INDEXES .. B-3
B.6 ALL_IND_COLUMNS ... B-3
B.7 ALL_OBJECTS ... B-3
B.8 ALL_PRIVILEGES .. B-4
B.9 ALL_SEQUENCES .. B-4
B.10 ALL_SYNONYMS .. B-4
B.11 ALL_TABLES .. B-5
B.12 ALL_TAB_COLUMNS ... B-6
B.13 ALL_TAB_COMMENTS... B-6

xii

B.14 ALL_USERS ... B-6
B.15 ALL_VIEWS ... B-7
B.16 POL__ALLOBJ ... B-7
B.17 POL__COLUSAGE ... B-7
B.18 POL__COMMENT .. B-7
B.19 POL__CONS .. B-8
B.20 POL__DATABASE_PARAMETERS ... B-8
B.21 POL__INDICES ... B-8
B.22 POL__INDICESDT ... B-9
B.23 POL__PROCEDURES ... B-9
B.24 POL__PROCEDURE_COLUMNS... B-9
B.25 POL__SCHEMATA .. B-10
B.26 POL__SEQ .. B-10
B.27 POL__SYNONYM .. B-10
B.28 POL__TBLCONS ... B-10
B.29 POL__TBLUSAGE .. B-11
B.30 POL__TRIGGERS .. B-11
B.31 POL__VIEWS.. B-11
B.32 POL__USERS ... B-12

C Oracle Lite Database Utilities
C.1 The mSQL Tool .. C-2
C.1.1 The mSQL Tool for Windows 32 .. C-2
C.1.1.1 Starting mSQL.. C-2
C.1.1.2 Populating your Database Using mSQL .. C-3
C.1.1.3 SET TERM {ON|OFF}... C-3
C.1.1.4 SET TIMING {ON|OFF}... C-3
C.1.1.5 SET VERIFY {ON|OFF}.. C-3
C.1.1.6 SET AUTO {ON|OFF} ... C-3
C.1.1.7 DESC <table_name> .. C-4
C.1.1.8 DIR .. C-4
C.1.2 The mSQL Tool for Windows CE... C-4
C.1.2.1 The mSQL GUI Tool.. C-4
C.1.2.1.1 Connect to the Oracle Lite Database.. C-4
C.1.2.1.2 Execute SQL Statement Against Oracle Lite Database C-5
C.1.2.1.3 Create or Encrypt the Oracle Lite Database ... C-5
C.1.2.1.4 Table Contents of the Oracle Lite Database.. C-6
C.1.2.1.5 Views of the Oracle Lite Database ... C-6
C.1.2.1.6 Sequences of the Oracle Lite Database.. C-7
C.1.2.2 Manage Snapshots Using mSQL ... C-7
C.2 CREATEDB... C-8
C.3 REMOVEDB.. C-9
C.4 ENCRYPDB... C-10
C.5 DECRYPDB... C-12
C.6 BACKUPDB .. C-13
C.7 DefragDB to Defragment and Reduce Size of the Oracle Lite Database C-14
C.7.1 Execute DefragDB... C-14

xiii

C.7.2 Pause or Cancel Defragmentation ... C-16
C.7.3 Execute DefragDB With Command-Line ... C-16
C.8 ODBC Administrator and the Oracle Database Lite ODBC Driver C-17
C.8.1 Adding a DSN Using the ODBC Administrator .. C-19
C.8.2 Adding a DSN which points to Read-Only Media (CD-ROM) C-19
C.9 ODBINFO.. C-19
C.10 VALIDATEDB .. C-21
C.11 Transferring Data Between a Database and an External File .. C-23
C.11.1 OLLOAD.. C-23
C.11.1.1 Syntax .. C-23
C.11.1.2 Keywords and Parameters ... C-23
C.11.1.2.1 Options... C-24
C.11.2 Oracle Database Lite Load Application Programming Interfaces (APIs) C-25
C.11.2.1 Overview .. C-26
C.11.2.2 Oracle Database Lite Load APIs.. C-26
C.11.2.2.1 Connecting to the Database: olConnect .. C-26
C.11.2.2.2 Disconnecting from the Database: olDisconnect ... C-27
C.11.2.2.3 Deleting All Rows from a Table: olTruncate .. C-27
C.11.2.2.4 Setting Parameters for Load and Dump Operations: olSet.......................... C-27
C.11.2.2.5 Loading Data: olLoad .. C-28
C.11.2.2.6 Dumping Data: olDump.. C-28
C.11.2.2.7 Compiling.. C-29
C.11.2.2.8 Linking ... C-29
C.11.2.3 File Format.. C-29
C.11.2.3.1 Header Format.. C-29
C.11.2.3.2 Parameters ... C-29
C.11.2.3.3 Data Format... C-30
C.11.2.4 Limitations.. C-32

Index

xiv

xv

Preface

This preface introduces you to the Oracle Database Lite Client Guide discussing the
intended audience, documentation accessibility, and structure of this document.

Audience
This manual is intended for application developers as the primary audience and for
database administrators who are interested in application development as the
secondary audience.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

xvi

Send Us Your Comments
Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: olitedoc_us@oracle.com

■ FAX: (650) 506-7355. Attn: Oracle Database Lite

■ Postal service:

Oracle Corporation
Oracle Database Lite Documentation
500 Oracle Parkway, Mailstop 4op2
Redwood Shores, CA 94065
U.S.A.

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

The Oracle Database Lite RDBMS 1-1

1
The Oracle Database Lite RDBMS

The following sections describe the Oracle Database Lite Relational Database
Management System (RDBMS):

■ Section 1.1, "Oracle Lite Database Overview"

■ Section 1.2, "Execution Models for Applications that Use the Oracle Lite Database"

1.1 Oracle Lite Database Overview
The Oracle Lite database is compliant to the SQL92 standard and compatible to Oracle
databases. In addition, it is compliant to the ACID requirements for transaction
support. Because it is a small database specifically designed for a client device, it has a
small footprint and is easy to administer. The Oracle Lite database can be installed on
the following platforms: Linux, UNIX, Windows (Win32) and WinCE platforms.

You can use the Oracle Lite database that contains client data in a file with an ODB
extension; any BLOB objects—either binary or character—and the indexes are stored in
a file with an OBS extension. The Oracle Lite database exists solely to store and
retrieve the user data specific to this device. It is not a replication of the entire Oracle
database.

Because BLOB data and indexes are stored in an OBS file, there is no limit for BLOB
data or indexes. The limitation for BLOB data and indexes is the space limitations of
the operating system or 16 terabytes. There still exists a 4 GB limitation for the ODB
file; however, this is not as much of an issue now that BLOB data can be stored in the
OBS files.

The Oracle Lite database is an RDBMS that supports ODBC, JDBC, ADO.NET and
SODA interfaces. SODA is an Oracle Database Lite specific C++ object API created to
access the Oracle Lite database. SODA provides access to SQL as well as
object-oriented functionality. See Chapter 8, "Oracle Database Lite Data Access APIs"
for more information on each language.

Note: If you have been using the Oracle Lite database prior to the
10.3 release, you can upgrade your database to remove all BLOB data
from within it and transfer the BLOB objects to OBS files by using the
defragdb utility, which is documented in Section C.7, "DefragDB to
Defragment and Reduce Size of the Oracle Lite Database".

Execution Models for Applications that Use the Oracle Lite Database

1-2 Oracle Database Lite Oracle Lite Client Guide

1.2 Execution Models for Applications that Use the Oracle Lite Database
When building an application that only uses the Oracle Lite database, you can build it
for one of the following purposes:

■ For an application that uses the Oracle Lite database to store data solely for a
single application, use the embedded application option. See Section 1.2.1,
"Embedded Application in Single Process" for more information.

■ You can design an application where the data is stored in a back-end Oracle
database, but only the data that the user needs to see or update is downloaded to
the client device. When either side modifies the data, it is synchronized between
the client device and the back-end database. See Section 1.2.2, "Mobile Option for a
Client in a Single Process" for more information.

■ For multiple applications accessing the same database, use the client/server
option. See Section 1.2.3, "Multiple Processes Accessing the Same Database" for
more information.

■ For any application that accesses the database remotely, use the client/server
option. See Section 1.2.4, "Multiple Embedded Application Clients Accessing
Remote Database" for more information.

■ For an application that must access the database remotely and include the ability
to synchronize the client data using Branch Office. See Section 1.2.5, "Multiple
Clients Accessing Remote Database" for more information.

1.2.1 Embedded Application in Single Process
Figure 1–1 demonstrates an application that embeds the Oracle Lite database within
the application. When the application is launched, the Oracle Lite database libraries
are loaded into the same process as the application.

Figure 1–1 Embedded Application With ODB Libraries in Single Process

See Chapter 4, "Building an Embedded Application" for more information on how to
embed an Oracle Lite database into an application.

1.2.2 Mobile Option for a Client in a Single Process
If you chose to install the Mobile client and synchronized your user on a single device,
then when you launch your application, the Oracle Lite database libraries are loaded
into the same process as your application. This scenario is demonstrated in Figure 1–2.

Application

 Oracle Lite�
database

Embedded Application Process

Oracle Lite�
Engine

Execution Models for Applications that Use the Oracle Lite Database

The Oracle Database Lite RDBMS 1-3

Figure 1–2 Diagram of Mobile Client and ODB Libraries in SIngle Process

For details of how to create a Mobile application using the Oracle Lite database, see
Section 2.2, "Creating and Managing the Database for a Mobile Client" in the Oracle
Database Lite Administration and Deployment Guide.

1.2.3 Multiple Processes Accessing the Same Database
Figure 1–3 shows how you can configure multiple application processes to share the
same database on the same machine. Thus, when each application is launched, each
application exists in its own process and can access the same database independently.
In this scenario, Oracle Database Lite libraries use shared memory to coordinate
locking between both processes.

Local �
Database �
ODB file

PROCESS

Mobile�
Client

Mobile Server

Oracle Lite �
 Driver

Oracle Lite�
 Engine

Database�
Server

Execution Models for Applications that Use the Oracle Lite Database

1-4 Oracle Database Lite Oracle Lite Client Guide

Figure 1–3 Applications in Multiple Processes Accessing Single Database

For more details, see Chapter 4, "Building an Embedded Application".

1.2.4 Multiple Embedded Application Clients Accessing Remote Database
If you are embedding a database into your application software, but you want the
applications to be located on clients that are remote from the data within the Oracle
Lite database, then use the client/server embedded approach with the multi-user
service, as described in Chapter 5, "Building a Client/Server Environment".

1.2.5 Multiple Clients Accessing Remote Database
If you have several remote clients accessing the same data, you can use Branch Office
to facilitate the remote applications. Figure 1–4 demonstrates how multiple remote
Branch Office clients access the data through the Branch Office machine to the Mobile
Server and finally accessing the back-end Oracle database.

The Branch Office machine contains the Branch Office executables and the local Oracle
Lite database, which all clients access for their information. When a synchronization is
requested, information is communicated between the Branch Office and the back-end
database through the Mobile Server.

Note: This scenario is not available on WinCE.

Note: Oracle Database Lite is not identical to the Oracle database;
thus, it is not designed for large amounts of transferred data or a large
number of concurrent transactions.

 Oracle Lite�
database

Multiple Processes Accessing Database

Application

Application

Execution Models for Applications that Use the Oracle Lite Database

The Oracle Database Lite RDBMS 1-5

Figure 1–4 Using Branch Office for Managing Multiple Clients that Access a Remote
Database

See Chapter 9, "Manage Your Branch Office" in the Oracle Database Lite Administration
and Deployment Guide for more information.

Local �
Database �
ODB file

Branch�
Office

Branch Office �
machine

Database�
Server

Mobile�
Server

Branch Office�
 Client

Branch Office�
 Client

Branch Office�
 Client

Branch Office�
 Client

Execution Models for Applications that Use the Oracle Lite Database

1-6 Oracle Database Lite Oracle Lite Client Guide

System Requirements for the Oracle Lite Database as the Mobile Client 2-1

2
System Requirements for the Oracle Lite

Database as the Mobile Client

Before you install, you must check to see that you have the correct hardware and
software necessary for using Oracle Lite as your Mobile client on your device. The
requirements for the Oracle Lite client are detailed in the following sections:

■ Section 2.1, "System Requirements for the Oracle Lite Database as the Mobile
Client on Windows"

■ Section 2.2, "System Requirements for the Oracle Lite Database as the Mobile
Client on Linux"

2.1 System Requirements for the Oracle Lite Database as the Mobile
Client on Windows

Before you install, you must check to see that you have the correct hardware and
software necessary for Windows Mobile clients. The requirements for both are
detailed in the following sections:

■ Section 2.1.1, "Hardware Requirements for the Oracle Lite Database as the Mobile
Client on Windows"

■ Section 2.1.2, "Software Requirements for the Oracle Lite Database as the Mobile
Client on Windows"

2.1.1 Hardware Requirements for the Oracle Lite Database as the Mobile Client on
Windows

The hardware requirements for Windows Mobile clients are described in the following
table:

Table 2–1 Hardware Requirements for Mobile Clients

Component Hardware Requirements for this Component

Mobile Client for Win32 CPU: Pentium 4, 1 GHz

Disk Space: 30 MB

RAM: 256 MB

Mobile Client for
Web-to-Go

CPU: Pentium 4, 1 GHz

Disk Space: 70 MB

RAM: 512 MB

System Requirements for the Oracle Lite Database as the Mobile Client on Windows

2-2 Oracle Database Lite Oracle Lite Client Guide

2.1.1.1 What File System and External Memory Media Should You Use for Windows
CE?
When you are using a WinCE device, you will probably use some form of external
memory media, such as Compact Flash or SD cards. Of these two, the SD card is more
reliable in its method of connecting into the device. We have seen some issues of
database corruption when using Compact Flash cards, since the card can be removed
in the middle of a write without notice.

When you do choose a media, you can also decide on the type of file system you use.
We strongly recommend that you use the Transaction-Safe FAT (TFAT) file system
over the FAT system, which is the default and more widely used. FAT has some
unreliability that was not noticeable in a laptop or desktop situation. However, this
unreliability in its ability to flush its buffers fully when writing out to the removable
memory does not handle well when the media is removed in the middle of the
transaction. Thus, the shortcomings of the FAT file system is being seen more in the
WinCE environment with removable memory. The TFAT design provides
transaction-safety for data storage. That is, the data that is being written out to the
removable media is either completely committed or rolled-back. Thus, the TFAT file
system is highly recommended for any removable data—especially for the Oracle Lite
database. There is a performance consideration for using the TFAT file system. It is
slower than FAT, but also more reliable.

You need to decide whether performance or reliability is your priority. The following
is the order of reliability with 1 being the least reliable and 3 being the most reliable:

1. Compact Flash media with the FAT file system.

2. SD card media with the FAT file system.

3. Compact Flash or SD card media with the TFAT file system.

2.1.2 Software Requirements for the Oracle Lite Database as the Mobile Client on
Windows

The software requirements for Windows Mobile clients are described in the following
sections:

■ Section 2.1.2.1, "Certified Operating Systems and Other Software Requirements"

Mobile Client for
Windows CE/Windows
Mobile

CPU: ARM-based processor or Emulator

Storage Space: 8 MB

Free program memory: 16 MB

It matters what external memory media and file system you use.
See Section 2.1.1.1, "What File System and External Memory
Media Should You Use for Windows CE?" for more information.

Branch Office CPU: Pentium 4, 1 GHz

Disk Space: 70 MB

RAM: 512 MB

Note: See the Microsoft Web site for information on how to create
the TFAT file system.

Table 2–1 (Cont.) Hardware Requirements for Mobile Clients

Component Hardware Requirements for this Component

System Requirements for the Oracle Lite Database as the Mobile Client on Windows

System Requirements for the Oracle Lite Database as the Mobile Client 2-3

■ Section 2.1.2.2, "Supported and Certified Technologies for Windows Mobile
Clients"

■ Section 2.1.2.3, "Supported Platforms for Oracle Database Lite WinCE"

■ Section 2.1.2.4, "Windows Mobile Client Notes"

2.1.2.1 Certified Operating Systems and Other Software Requirements

Table 2–2 Software Requirements for Windows Mobile Clients

Mobile Client Certified Operating System Other Software Requirements

Mobile Client for
Win32

Windows Vista Ultimate, Windows
XP Professional Edition with
Service Pack 2, or Windows 2003

If using any Java APIs, including
synchronization or JDBC, use
JRE 5.0

If implementing any .NET
applications, use Compact
Framework .NET 1.1 or 2.0

Mobile Client for
Web-to-Go

Windows Vista Ultimate, Windows
XP Professional Edition with
Service Pack 2, or Windows 2003

Mobile Client for
Windows CE

Windows CE 5.0

See Section 2.1.2.3, "Supported
Platforms for Oracle Database Lite
WinCE" for full details.

If using JDBC, use either IBMJ9 or
the CrEme JDK version 4.1 from
NSIcom.com.

ActiveSync version 3.8 or higher.

Microsoft .NET Compact
Framework 1.0

Mobile Client for
Windows Mobile

Windows Mobile 2003
Windows Pocket PC 2003
Windows Mobile 2003, 2nd edition
Windows Pocket PC 2003, 2nd
edition

See Section 2.1.2.3, "Supported
Platforms for Oracle Database Lite
WinCE" for full details.

ActiveSync version 3.8 or higher.

Microsoft .NET Compact
Framework 1.1

If using JDBC, use either IBMJ9 or
the CrEme JDK version 4.1 from
NSIcom.com.

■ Windows Mobile 5

■ Windows Mobile 5 for Pocket
PC

■ Windows Mobile 5 for Pocket
PC Phone Edition

■ Windows Mobile 5 AKU2

ActiveSync version 4.1 or higher.

Microsoft .NET Compact
Framework 1.1 or 2.0

If using JDBC, use either IBMJ9 or
the CrEme JDK version 4.1 from
NSIcom.com.

■ Windows Mobile 6

■ Windows Mobile 6 Classic

■ Windows Mobile 6
Professional

ActiveSync version 4.5 or higher.

Microsoft .NET Compact
Framework 1.1 or 2.0

If using JDBC, use either IBMJ9 or
the CrEme JDK version 4.1 from
NSIcom.com.

OC4J Windows Vista Ultimate, Windows
XP Professional Edition with
Service Pack 2, or Windows 2003

Branch Office Windows XP Professional Edition
with Service Pack 2, or Windows
2003

System Requirements for the Oracle Lite Database as the Mobile Client on Windows

2-4 Oracle Database Lite Oracle Lite Client Guide

You should install all of the patches required for the JDK for the Windows operating
system. This is constantly under review and published on the JDK download page on
the Sun Microsystems Web site.

2.1.2.2 Supported and Certified Technologies for Windows Mobile Clients
The following are the supported and certified technologies for Mobile clients:

Note: Ensure that after you install the required software, that they
the appropriate directories are included in the PATH. For example,
after you install the JDK, ensure that the JAVA_HOME is included in
the PATH.

Table 2–3 Supported and Certified Technologies for Windows Mobile Clients

Mobile Client Supported Technologies Certified Technologies

Mobile Client for Win32 ■ Sun Microsystems Java Runtime
Edition 5.0

■ JDBC 1.2

■ ADO.Net 1.1 – requires Microsoft
.Net Framework 1.1 or 2.0

■ ADO.Net 2.0 – requires Microsoft
.Net Framework 2.0

■ ODBC 2.0 and 3.5

■ SQL92

Mobile Client for
Web-to-Go

■ Sun Microsystems Java Runtime
Edition 5.0

■ Java Servlets 2.2

■ JDBC 1.2

■ Oracle Java Server Pages Version
9.0.2.0.0

■ Oracle UIX version 2.1.7

■ Oracle XML Parser 9.0.3.0.0

Struts version 1.1 is certified for use with
Oracle Database Lite Web-to-Go.

System Requirements for the Oracle Lite Database as the Mobile Client on Windows

System Requirements for the Oracle Lite Database as the Mobile Client 2-5

2.1.2.3 Supported Platforms for Oracle Database Lite WinCE
Table 2–4 provides the full list of supported platforms for Pocket PC and Windows
Mobile:

If you wish to use Java, mSQL and utilities, you must also install the Tools CAB files
after installation of the olite.cab file, which is described in Section 3.2.3, "Installing
Tools CAB Files for Java, MSQL, and Utility Support".

2.1.2.4 Windows Mobile Client Notes
For Mobile Client Web-to-Go, Win32, Branch Office and BC4J:

■ Internet Explorer 6.0 is required when using SSL to synchronize with the Mobile
Server.

Mobile Client for
Windows CE

■ ODBC 2.0 and 3.5

■ JDBC 1.2

■ ADO.Net 1.1 (Requires Microsoft
Compact .Net Framework 1.0 +
Service Pack 2) or 2.0

■ ADO.Net 2.0 – requires Microsoft
.Net Compact Framework 2.0

■ Microsoft ActiveSync version 3.8 or
for Windows CE 5.0, use Microsoft
ActiveSync version 4.1 or higher.

Oracle Database Lite is certified with the
following JVMs on Windows Mobile 2003
Second Edition:

■ IBM J9 Websphere Everyplace Micro
Environment for Windows Mobile
2003 ARM Personal Profile

■ Creme JVM 4.1, which can be
obtained at
http://www.nsicom.com

NOTE: Java Stored Procedures are not
supported on Windows CE.

OC4J ■ Sun Microsystems Java Runtime
Edition 5.0

■ Java Servlets 2.4

■ JDBC 1.2

■ Oracle Java Server Pages Version
10.1.3.0.0

■ Oracle UIX version 2.2.24

■ Oracle XML Parser 10.1.3.0.0

■ Struts version 1.1

■ JDeveloper 10.1.3

Branch Office Struts version 1.1

Table 2–4 Pocket PC and Windows Mobile Supported Platforms

Product Name WinCE Version Chipsets Oracle Lite Client CAB file download from Setup page

Pocket PC 2003
Windows Mobile
2003

4.20.1081 ARMV4 Oracle Lite PPC2003 ARMV4, which uses the
<language>\ppc2003\armv4\olite.cab

Windows Mobile
2003 2nd Edition

4.21.1088 ARMV4 Oracle Lite PPC2003 ARMV4, which uses the
<language>\ppc2003\armv4\olite.cab

Windows Mobile 5
and Windows
Mobile 5 AKU2

5.0 and 5.1.465 ARMV4I Oracle Lite PPC50 ARMV4I, which uses the
<language>\ppc50\armv4i\olite.cab

Windows Mobile 6 5.2.1236 ARMV4I Oracle Lite PPC60 ARMV4I, which uses the
<language>\ppc60\armv4i\olite.cab

Table 2–3 (Cont.) Supported and Certified Technologies for Windows Mobile Clients

Mobile Client Supported Technologies Certified Technologies

System Requirements for the Oracle Lite Database as the Mobile Client on Linux

2-6 Oracle Database Lite Oracle Lite Client Guide

■ The product requires the Microsoft C Runtime Library 7.1 (msvcrt71.dll),
which you can download off the Microsoft site or other sites on the Web.

2.2 System Requirements for the Oracle Lite Database as the Mobile
Client on Linux

The Mobile Server installation includes the following Mobile Clients for Linux:

■ Mobile Client for Linux x86

■ Mobile Client for Linux Web-to-Go

Before you install, you must check to see that you have the requirements necessary for
Linux Mobile clients. The requirements for both are detailed in the following sections:

■ Section 2.2.1, "Certified Platforms and Supported Technologies for Linux Mobile
Clients"

■ Section 2.2.2, "Software and Hardware Requirements for the Oracle Lite Database
as the Mobile Client on Linux"

■ Section 2.2.3, "Setting Environment Variables Before Installing the Linux Mobile
Client"

2.2.1 Certified Platforms and Supported Technologies for Linux Mobile Clients
Table 2–5 provides the full list of certified and supported platforms for Linux Mobile
clients:

Note for Oracle Lite Linux WEB: Mozilla version 1.7.x is the preferred internet
browser on Linux.

Note: The Device Manager agent (DMagent) must be running to
successfully uninstall the Linux Client.

Table 2–5 Certified Platforms and Supported Technologies for Linux Mobile Clients

Mobile Client Certified Platforms Supported Technologies

Oracle Lite Linux
Web-to-Go

RedHat Enterprise Linux
AS release 4

■ JavaSoft Java Runtime Edition 1.4.2

■ Java Servlets 2.2

■ JDBC 1.2

■ Oracle Java Server Pages Version
9.0.2.0.0

■ Oracle UIX version 2.1.7

■ Oracle XML Parser 9.0.3.0.0

Oracle Lite Linux x86 RedHat Enterprise Linux
AS release 4

■ JavaSoft Java Runtime Edition 1.4.2

■ JDBC 1.2

■ ODBC 2.0

■ SQL92

System Requirements for the Oracle Lite Database as the Mobile Client on Linux

System Requirements for the Oracle Lite Database as the Mobile Client 2-7

2.2.2 Software and Hardware Requirements for the Oracle Lite Database as the Mobile
Client on Linux

Table 2–6 provides the software and hardware requirements for Linux Mobile clients:

2.2.3 Setting Environment Variables Before Installing the Linux Mobile Client
peSet the following environment variables:

■ Set OLITE_HOME to where Oracle Database Lite is installed, such as
/home/<user>/olite

■ Set JAVA_HOME to the Java installation directory

■ Add the following to the LD_LIBRARY_PATH

$JAVA_HOME/jre/lib/i386$JAVA_HOME/jre/lib/i386/server
$OLITE_HOME/bin

■ Add $OLITE_HOME/bin to the PATH

Table 2–6 Software and Hardware Requirements for Linux Mobile Clients

Mobile Client Hardware Requirement Software Requirements

Mobile Client for Linux
Web-to-Go

CPU: Pentium III 360 MHz

Disk Space: 40 MB

RAM: 128 MB

Redhat Enterprise Linux AS
Release 4

JDK 1.4.2 must be installed

Mobile Client for Linux x86 CPU: Pentium III 360 MHz

Disk Space: 30 MB

RAM: 128 MB

Redhat Enterprise Linux AS
Release 4

JDK 1.4.2 must be installed

System Requirements for the Oracle Lite Database as the Mobile Client on Linux

2-8 Oracle Database Lite Oracle Lite Client Guide

Installing the Oracle Lite Database 3-1

3
Installing the Oracle Lite Database

One of the benefits of Oracle Database Lite is that you can have an application
downloaded onto a device, where data can be synchronized between the device and
the back-end Oracle database.

In general, you can install the Oracle Lite database on the following Mobile client
platforms:

■ Windows clients (such as OC4J, Web-to-Go, Branch Office, and BC4J): The
applications built for these clients use a Java browser.

■ Linux, Win32, WinCE, and Windows Mobile clients: These applications are
client/server applications. Thus, start the application as you would start any
application on these platforms.

When you install the Mobile client, Oracle Database Lite installs an Oracle Lite
database within ODB and OBS files with an automatic name and assigns a data source
name (DSN). For details on the client Oracle Lite database, see Section 2.1, "Oracle
Database Lite Overview" in the Oracle Database Lite Administration and Deployment
Guide.

The following sections detail how to install Mobile Client software on your client
machine:

■ Section 3.1, "Preparing the Device for a Mobile Application"

■ Section 3.2, "Installing the Oracle Lite Mobile Client Software"

■ Section 3.3, "Configuring for Default Sync When Installing the Client"

■ Section 3.4, "Configuring the Client for Secure Socket Layer (SSL)"

■ Section 3.5, "Specifying Whether the Client Uses a Static or Dynamic (DHCP) IP
Address"

■ Section 3.6, "Using Offline Instantiation to Distribute Multiple Mobile Clients"

See Chapter 6, "Managing Your Oracle Lite Mobile Client" for instructions on how to
perform certain functions on the client. See Chapter 1, "Oracle Database Lite
Management With the Mobile Server" in the Oracle Database Lite Administration and
Deployment Guide for information on how to manage functionality from the Mobile
Server.

Note: You can configure only one device for a particular user. For
example, it is not possible to have two devices both executing a
Mobile client for the user JOHN.

3-2 Oracle Database Lite Oracle Lite Client Guide

3.1 Preparing the Device for a Mobile Application
In order for a device to execute Mobile applications, you must do the following:

1. Install the Oracle Lite Mobile client software that is appropriate to the client
platform on your client machine. For example, install either the Mobile Client for
Win32, Mobile client for OC4J or Web-to-Go on a Windows 32 client machine.

See Section 3.2, "Installing the Oracle Lite Mobile Client Software" for a full
description.

2. Download the user applications and its associated data.

Synchronize the Mobile client for the first time. Sign in with the
username/password of the Mobile user who owns the Mobile applications. The
data for each application is retrieved.

3. You can now launch your applications from your client machine or from your
Mobile device.

3.2 Installing the Oracle Lite Mobile Client Software
Before you install the Oracle Lite Mobile client on your device, make sure that there is
1 MB of space available to download the setup.exe.

We do not support the following configuration scenarios:

■ An Oracle Lite Mobile client and the Mobile Development Kit (MDK) cannot be
installed on a single system.

■ A client user cannot have more than one device.

To install the Mobile client software, perform the following tasks.

Note: Install the Mobile client for any application after the
application is published.

Notes: For the restrictions on creating the username and
password, see Section 5.3.1.2.1, "Defining Username and Password"
in the Oracle Database Lite Administration and Deployment Guide.

For more information about synchronization, see Chapter 6,
"Managing Synchronization" in the Oracle Database Lite
Administration and Deployment Guide. .

Note: If you are installing a Mobile Client for Web-to-Go, follow the
instructions provided in Section 3.2.1, "Installing Web-to-Go on Linux"
before downloading the setup.exe.

Note: Any developer can modify how the client is installed before
the installation with the INF file. For details on how to customize your
Mobile client, see Section 7.1, "Customize the Mobile Client Software
Installation for Your Mobile Device" in the Oracle Database Lite
Administration and Deployment Guide.

Installing the Oracle Lite Mobile Client Software

Installing the Oracle Lite Database 3-3

1. On the client, open a browser to point to the Mobile Server using the following
URL.

http://<mobile_server>:<port>/webtogo/setup

Figure 3–1 displays the Mobile Client setup page, which contains links to install
Mobile Client software for multiple platforms and languages. You can select
another language than English on the Language pulldown.

For viewing platforms, you can choose to see all available platforms for the
indicated language, or only those platforms for Windows or Windows CE with the
Platform pull-down menu.

For the Windows and WinCE platforms, the Pocket PC 2003 (PPC2003), Pocket PC
SDK 5.0 (PPC50), and Windows Mobile 6 Professional SDK (PPC60) client
platforms are provided in the Mobile client setup page. In addition, these client
CAB files are optimized for size to minimize the footprint on your device; thus,
they exclude Java, msql or utility support. Thus, you may have to perform one or
more of the additional steps:

■ If you are using a client with the Standard SDK for WinCE 5.0 platforms for
Windows Mobile 5 (WCESTDSDK), then use the appropriate CAB files that
are provided in the MDK install. For information on how to install the
WCESTDSDK CAB files, see Section 3.2.2, "Installing Standard SDK WinCE 5.0
CAB Files for Your Mobile Client".

■ If you want the Java, msql, or utility support on any Windows or WinCE
Mobile client; then install the tools CAB file for that platform as described in
Section 3.2.3, "Installing Tools CAB Files for Java, MSQL, and Utility Support".

When you select the language, the collation sequence for the Oracle Lite database
is also preconfigured for you. You can also specify the collation sequence with the
NLS_SORT parameter. You can only perform a linguistic sort on Oracle Lite
databases that have the collation sequence of FRENCH, GERMAN, CZECH, OR
XCZECH. You cannot do a linguistic sort on a BINARY collation sequence, which
is used with all languages, except the three previously listed. For more details on
linguistic sort, see Section 4.4, "Support for Linguistic Sort" in the Oracle Database
Lite Client Guide.

Note: Substitute https if using HTTP over SSL.

Note: Only the Mobile Development Kit has the full National
Language Support for (Traditional and Simplified) Chinese, Japanese,
and Korean (CJK). All other components, including Mobile clients,
support CJK without the Traditional Chinese language. However, the
Simplified Chinese language is supported.

3-4 Oracle Database Lite Oracle Lite Client Guide

Figure 3–1 Mobile Client Setup Page

2. Click the Mobile client for your language and client platform.

3. The Save As dialog box appears. The file name field displays the setup executable
file for the selected platform as an .exe file type. Save the executable file to a
directory on the client machine.

4. Install the Mobile client. For all platforms, except installing WinCE on ActiveSync,
go to the directory where you saved the setup executable file. Double-click the file
to execute it.

5. Enter the username and password for the Mobile user.

Note: Available clients may differ from what is shown above.

Note: There are two client versions for the Web-to-Go model. The
Oracle Lite WEB and the Oracle Lite WEB OC4J. Use Oracle Lite WEB
OC4J when you need full J2EE 1.3 compliance. The original Oracle
Lite Web client uses the Oracle Lite Servlet engine, which does not
support all features for J2EE 1.3. The Oracle Lite WEB OC4J uses the
OC4J stack within OracleAS; thus, you have full J2EE 1.3 support.
However, you also must create the client according to OC4J/J2EE
specifications.

Note: For WinCE, you install any of the Oracle Lite Windows
Mobile platforms to ActiveSync. Then, when the device is put into
the cradle, ActiveSync installs the Oracle Database Lite onto the
device when it synchronizes.

Installing the Oracle Lite Mobile Client Software

Installing the Oracle Lite Database 3-5

6. You may be required to select the type of privilege under which to install the
Mobile client. This may already be designated by the administrator in the INF file
before installation or the current user may have a privilege that defaults to a
certain privilege for the installation.

■ All Users—The user installing this Mobile client has administrator privileges
and can install the Mobile client for itself as well as any members that may be
associated with the user.

■ Current User—Selecting this option designates that the user does not have
administrator privileges, but can install and use the Mobile client as a single
user.

Figure 3–2 Select Installation Privileges

7. Provide the client directory name where to install the Mobile client.

8. Once installed, synchronize the Mobile client for the first time. During the first
synchronization, all applications and data for this user is brought down and
installed on your Mobile client.

Note: For the restrictions on creating the username and password,
see Section 5.3.1.2.1, "Defining Username and Password" in the Oracle
Database Lite Administration and Deployment Guide.

Note: After installing a user with administrative privileges, you can
add member users to allow multiple users on a Mobile client. The
member user has its own username/password, but executes any
synchronization and modifications under the user’s authority. For
information on how to install and use member users, see Section 5.3.3,
"Adding New Members and Associating Them With Their User" in
the Oracle Database Lite Administration and Deployment Guide.

Note: For details on how to designate the user privilege and for
more information on user installation types, see Section 7.1,
"Customize the Mobile Client Software Installation for Your Mobile
Device" in the Oracle Database Lite Administration and Deployment
Guide.

3-6 Oracle Database Lite Oracle Lite Client Guide

9. Each platform has further steps. See Table 3–1 for a description of the steps for
each platform.

3.2.1 Installing Web-to-Go on Linux
Perform the following to install and run Web-to-Go on Linux.

Note: See Section 3.3, "Configuring for Default Sync When Installing
the Client" for directions on how to enable a default synchronization
after any client installation on your device.

Table 3–1 Initializing the First Synchronization for Each Mobile Client Platform

Oracle Mobile Client Initial Synchronization Details

Oracle Lite WEB or Oracle
Lite WEB OC4J, both for
Web-to-Go support

The synchronization step takes place when you click Next, after
executing the setup.exe. This prompts you to login to the
Mobile client for OC4J or Web-to-Go. If you want to synchronize
at another time, do the following:

1. Open a browser to the Mobile client. For example, if you
install a Web client with port 8080, point the browser to
http://localhost:8080/webtogo.

2. Log in with the username/password for the Mobile user.

3. Click Sync on the tabs in the upper right corner.

Oracle Lite PocketPC for
WinCE devices

Perform the following steps.

1. If you install the PocketPC platform to ActiveSync, insert
the WinCE device in the cradle. ActiveSync performs a
synchronization to install Oracle Database Lite on the
device.

2. After Oracle Database Lite is installed on the device, then
start the Device Manager Agent on the device by either
selecting Oracle DM in the programs group or by executing
dmagent.exe, which is in the orace directory.

3. Enter the username, password and Mobile Server URL.

You can either enter the complete URL of the Mobile Server,
the IP address or the hostname of the Mobile Server. If left
off, the prefix "http://" is added automatically. Only use
the hostname if the device is properly configured to use
DNS name resolution. Otherwise, enter the IP address.

The device is now registered with the Mobile Server and ready
to be used.

All other platforms Perform the following steps.

1. Locate the directories where you installed the runtime
libraries, and launch the Mobile Sync application.

2. The mSync dialog appears. Enter the user name and
password of the Mobile user. If you do not know your user
name and password, ask your system administrator, who
creates users and assigns passwords to each user. In the
Server field, enter the URL for your Mobile Server. Click
Apply and click Sync.

Installing the Oracle Lite Mobile Client Software

Installing the Oracle Lite Database 3-7

1. Download the Web-to-Go setup executable by clicking the "Oracle Lite Linux
WEB" link on the Mobile Server setup page.

2. After the download is complete, set execution permissions on the setup executable
with chmod 755 setup.

3. Execute the setup command, as follows:

./setup

4. To start Web-to-Go in the debug mode, do the following:

cd $OLITE_HOME/bin
./webtogo -d0

To start Web-to-Go in the daemon mode, do the following:

cd $OLITE_HOME/bin
./webtogo

To kill Web-to-Go, which is in the daemon mode, do the following:

cd $OLITE_HOME/bin
./webtogo -k

To uninstall Web-to-Go and delete the database files, perform the following:

cd $OLITE_HOME
./uninst

The dmagent is automatically launched in a daemon mode when setup is executed.
However if you want to restart it, first kill the current process and then perform the
following:

cd $OLITE_HOME/bin
./dmagent

3.2.2 Installing Standard SDK WinCE 5.0 CAB Files for Your Mobile Client
By default, the Windows 2003, Windows Mobile 5 and Mobile 6 CAB files are installed
with the Mobile Server and thus, are displayed as options on the Mobile client setup
page. These CAB files are registered with the Mobile Server. However, if your Mobile
client is a Standard SDK WinCE 5.0 platform, use one of the WCESTDSDK CAB files
contained in the MDK install.

WARNING: If you are testing the Oracle Database Lite on Suse
Linux, you must do the following before installation:

ln -s /usr/lib/libssl.so.0.9.7 /usr/lib/libssl.so.4
ln -s /usr/lib/libcrypto.so.0.9.7 /usr/lib/libcrypto.so.4

Once the installation is complete, perform your tests and then
remove the soft links, as these may cause problems with other
programs you have installed on your machine. This instruction is
only for testing and should not be a permanent option.

3-8 Oracle Database Lite Oracle Lite Client Guide

An Oracle Database Lite client platform consists of a CAB file, an Installation
Configuration File (INF file) that describes how to install the files, and an INI file that
specifies the platform.

The following steps describe how to install the Standard SDK WinCE platform:

1. The WCESTDSDK CAB file must be copied from the MDK install to either the
Mobile Server or the Mobile client, as described below:

■ Option One: Register the WCESTDSDK CAB file on the Mobile Server. The
Mobile Server client setup page displays the predefined client platforms that
you can download and install on your Mobile client device.

If you want the Standard SDK WinCE CAB files to be displayed on the Mobile
Server client setup page, then register the desired platform in the Mobile
Server. After registration, the Mobile client can download the SDK CAB file
from the Client setup page.

Find the unregistered CAB file for the desired platform and language in the
MDK installation in the following directory:

<ORACLE_HOME>\Mobile\SDK\wince\<platform>\cabfiles

Copy and rename the CAB file. The CAB files are named
olite.<language>.<platform>.<chipset>.CAB. Rename the CAB file
to olite.cab and copy it into a subdirectories according to language and
client platform type relative to the <ORACLE_HOME>\mobile_
oc4j\j2ee\mobileserver\applications\mobileserver\setup\
directory. Take note of the directory path as you will provide the location of
the CAB file in the INF file. in the INF file.

■ Option Two: Copy the desired WCESTDSDK CAB file directly to the Mobile
client from the <ORACLE_
HOME>\Mobile\SDK\wince\<platform>\cabfiles\ directory. Each
CAB file is named olite.<language>.<platform>.<chipset>.cab.

2. On the Mobile Server, create an INF file and place it in the appropriate
subdirectory according to the language and platform type in the ORACLE_
HOME\mobile_
oc4j\j2ee\mobileserver\applications\mobileserver\setup\dmc
directory. The INF file provides the instructions for installing the CAB file on the
client platform. You can copy one of the existing INF files, such as the
std500.inf file. If you want to add additional instructions, copy the file and
make sure the INI file refers to the new INF file.

If you have to modify it for the new platform, make sure that you give it a new
name to avoid changing an existing platform. Provide the location of the CAB
file—which you found in step 1—in the <file><item><src> and <des> tags,
which are described in Section 7.10, "Installation Configuration (INF) File"in the
Oracle Database Lite Administration and Deployment Guide.

The following demonstrates how to specify a CAB file located in the
WINCE/<language>/stdsdk500/<cpu> directory, which is relative to the
setup directory, and the destination for the CAB file.

Note: All CAB files on either the Mobile Server or MDK do not
include Java, mSQL or utility support. For information on how to
install these utilities, see Section 3.2.3, "Installing Tools CAB Files for
Java, MSQL, and Utility Support".

Installing the Oracle Lite Mobile Client Software

Installing the Oracle Lite Database 3-9

<file>
 <item type='WINCE'>
 <src>/OS_LANG/stdsdk500/CPU/olite.cab</src>
 <des>APP_DIR\olite.cab</des>
 </item>
</file>

3. On the Mobile Server, create an INI file that refers to the INF file for this platform.
See Section 3.2.2.1, "Defining the INI File" for details.

4. On the Mobile Server, register the new platform with the device manager resource
loader, which uses the INI script to create a new Platform.

ORACLE_HOME\mobile\server\admin\dmloader
 <repository_owner>/<repository_password>@jdbc_url <ini_filename>

For example, to load the std500.ini file as shown in step 3, perform the
following:

ORACLE_HOME\mobile\server\admin\dmloader
 <repository_owner>/<repository_password>@jdbc_url std500.ini

5. On the Mobile Server, copy the setup_<language>.exe files to the following
directory on the Mobile Server:

<ORACLE_HOME>\mobile_oc4j\j2ee\mobileserver\applications\mobileserver
\setup\dmc\wince\<platform>\<chipset>\

For example, registering the wcestd500_sdk CAB file, the setup files should be
copied to the following directory:

ORACLE_HOME\mobile_oc4j\j2ee\mobileserver\applications\mobileserver
\setup\dmc\wince\ppcstd500\armv4i

6. Restart the Mobile Server to see the newly registered platform in the setup GUI.

7. On the client, open a new browser that points to the setup page to select the newly
registered platform with the SDK CAB file.

3.2.2.1 Defining the INI File
Create an INI file that refers to the INF file, as well as other attributes. The following
shows how the INI file is organized:

List platforms to be created in the [Platform] section
#
Format: platform_name;language
[PLATFORM]
Provide string to be displayed in the setup UI
PLATFORM1;LANGUAGE
#
Platform details. One entry for each platform listed in the
#[PLATFORM] Section. Provide the same info but prepend with "PLATFORM."
[PLATFORM.PLATFORM1;LANGUAGE]
TYPE=OS_CPU_LANGUAGE_NAME

Note: if you supply a RAC URL as the JDBC URL, then enclose it
within two double-quotes as the operating system treats the equal
sign (=) as a delimiter, which truncates the RAC URL and throws the
syntax error: unexpected token ‘(‘. error

3-10 Oracle Database Lite Oracle Lite Client Guide

INF=file.inf
BOOTSTRAP=dmcommand
ATTRIBUTES=attribute1=value1&attribute2=value2

Where the tags define the following:

■ PLATFORM: Provide the platform type and language separated by a semi-colon.

■ TYPE: Provide a name for the platform that is a concatenation of the operating
system, CPU, language, and name—where each are separated by an
underscore—such as WINCE_ARMV4I_US_OLITE_STD500.

■ INF: Provide the name of the INF file.

■ BOOTSTRAP: You can find a list of the bootstrap commands in a pull-down in the
Mobile Devices page.

■ ATTRIBUTES: The attributes are separated by an ampersand (&). These are the
same attributes that are discussed in Section 7.4.3.2, "Create a Custom Platform By
Extending an Existing Platform" in the Oracle Database Lite Administration and
Deployment Guide and are as follows:

– Can the device be updated: update=true|false

– Is the platform enabled: enabled=true|false

– Can applications on the device be updated: app_upgrade=true|false

– Should the device manager on the client be started automatically: dmc=auto

For example, the following is an INI file that describes the WinCE Standard SDK 5.00
for ARMV4I:

Platforms
#
[PLATFORM]
Windows CE Standard SDK 5.00 - ARMV4I
Provide string to be displayed in the setup UI
Oracle Lite WCESTD500 ARMV4I;US
#
Windows CE Standard SDK 5.00 ARM V4i
[PLATFORM.Oracle Lite WCESTD500 ARMV4I;US]
TYPE=WINCE_ARMV4I_US_OLITE_STD500
INF=std500.inf
BOOTSTRAP=DeviceInfo
ATTRIBUTES=dmc=auto&update=true&enabled=true

3.2.3 Installing Tools CAB Files for Java, MSQL, and Utility Support
The Tools CAB file provides Java, msql, and utility support on the client devices. If
you want to use tools on your Mobile client, then install the tools CAB file. This CAB
file is installed as an application on your Mobile client.

The following sections describe the steps to create and publish the tools CAB file as an
application for the Mobile client:

■ Section 3.2.3.1, "Defining the Tools CAB as an Application in Packaging Wizard"

■ Section 3.2.3.2, "Assigning the Tools CAB to the User"

3.2.3.1 Defining the Tools CAB as an Application in Packaging Wizard
Perform the following to install the Tools CAB, if must be published as an application:

1. Start the Packaging Wizard.

Configuring for Default Sync When Installing the Client

Installing the Oracle Lite Database 3-11

2. Select Create New Application Definition. Click OK

3. Select the platform for the specific CAB—such as Oracle Lite PPC60
ARMV4I: US. Click Next.

4. Fill in the CAB file details. The following example provides CAB file details for the
Oracle Lite PPC60 ARMV4I: US platform.

■ Application Name: tools cab ppc60 armv4i

■ Virtual Path: /toolscab_ppc60_armv4i

■ Description: ppc60 armv4i tools cab

■ Local Application Directory: Click Browse. Select the path where the tools
CAB file exists.

Click Next. The files are now listed under the specified directory.

5. Delete the file entries other than those for the tools CAB.

6. Click Next until you reach the DDL panel.

7. Click Finish.

8. Publish the application through one of the following options:

■ Select Create Files option to create a JAR file.

■ Select Publish the Current Application option on the server.

3.2.3.2 Assigning the Tools CAB to the User
Once published, assign the application containing the Tools CAB to the Mobile client
user:

1. Select the Applications tab in the Mobile Manager.

2. Click on the Tools CAB file description. In our previous example, this was tools
cab ppc60.armv4i.

3. Select the Access tab.

4. Select the user or group to which this application should be available for
download.

5. Click Save to save the preferences.

3.3 Configuring for Default Sync When Installing the Client
In the default configuration, all Mobile clients do not automatically synchronize after
you install the client. However, you can modify your configuration to automatically
sync each client after it is installed, as follows:

1. Logon to the Mobile Server as an Administrator and launch the Mobile Manager
tool.

2. Click on Mobile Devices, followed by Administration.

3. Click on Command Management.

4. Edit the Command Device Info (Retrieve device information).

5. Insert 'Synchronize' as a Selected Command and click Apply to accept the
changes.

3-12 Oracle Database Lite Oracle Lite Client Guide

See Section 7.6, "Sending Commands to Your Mobile Devices" in the Oracle Database
Lite Administration and Deployment Guide for more details on sending commands to
your Mobile device.

3.4 Configuring the Client for Secure Socket Layer (SSL)
As the end user, you can configure the Mobile client for OC4J or Web-to-Go to
establish an SSL connection between the Mobile client and the Mobile Server. A
complete description of how to configure your Mobile client to use SSL is described in
Section 11.4.6, "Client-Side Configuration for Secure Socket Layer (SSL)" in the Oracle
Database Lite Administration and Deployment Guide.

3.5 Specifying Whether the Client Uses a Static or Dynamic (DHCP) IP
Address

Use the IP_CONFIG parameter in the server webtogo.ora file to specify the method
the client uses to retrieve its IP address. Your client device can use either a static IP
address or a dynamic (DHCP) method in retrieving an IP address. If you are using
DHCP, then you need to set this parameter to DYNAMIC; the default is STATIC.

If you are using DHCP, then the underlying code needs to know to not use the IP
address that was used for the previous connection/synchronization. If you are using
DHCP and have set this parameter to STATIC, your synchronization may never occur,
since it is probably trying to synchronize to an IP address that is no longer valid for
this device.

You set this parameter in the server webtogo.ora file, so that the Mobile Server
knows if the client is DHCP, then may have a different IP address each time.

For more information, see Section A.2, "WEBTOGO" in the Oracle Database Lite
Administration and Deployment Guide.

3.6 Using Offline Instantiation to Distribute Multiple Mobile Clients
You can enable your users to install their client using a distribution method, such as a
CD, through the network, or email. To install the Mobile client and perform the first
synchronization to retrieve the applications (with the initial data) can be a
performance issue. In this case, the administrator pre-creates the Mobile binaries with
the user ODB files (includes the applications and data for the user) to the client. The
download of this package is faster than having each user perform the first
synchronization on their device. Thus, this procedure helps users avoid an expensive
performance hit when creating and synchronizing the Mobile client for the first time.

Offline instantiation is a tool that enables an administrator to gather and package the
Mobile client binaries and the user applications and data into a single directory.
Offline instantiation is part of the Mobile Development Kit, which can be installed
only on a Windows platform. Thus, you create all of your user distribution files on a
Windows machine and you can only create multiple user distribution files for OC4J,
Web-to-Go, Branch Office, Win32, and WinCE Mobile clients. We recommend that you
use the same Windows environment where a Mobile server exists to create your
distribution files.

See Chapter 10, "Offline Instantiation" in the Oracle Database Lite Administration and
Deployment Guide for full instructions on how to use the Offline Instantiation engine to
create and deploy multiple clients.

Building an Embedded Application 4-1

4
Building an Embedded Application

Perform the following when building an application with an embedded Oracle Lite
database:

■ Create the Oracle Lite database.

■ Create the users.

■ Package your application.

The following sections describe how to perform these tasks:

■ Section 4.1, "Creating the Oracle Lite Database"

■ Section 4.2, "Creating Users for the Oracle Lite Database"

■ Section 4.3, "Packaging Your Embedded Application With the Oracle Database
Lite Runtime"

■ Section 4.4, "Connecting to the Oracle Lite Database"

■ Section 4.5, "Using Oracle Database Lite Samples"

4.1 Creating the Oracle Lite Database
To create the Oracle Lite database, you must first create a data source name (DSN) for
the database and then create the database. This is described in the following sections:

■ Section 4.1.1, "Creating a Data Source Name with ODBC Administrator"

■ Section 4.1.2, "Creating a New Oracle Lite Database"

4.1.1 Creating a Data Source Name with ODBC Administrator
The data source name (DSN) points to the physical location of the ODB file. The DSN
is used when creating the Oracle Lite database (ODB) file. How you create the DSN is
platform-dependent, as described in the following sections:

■ Section 4.1.1.1, "Creating DSN on a Windows System"

■ Section 4.1.1.2, "Creating DSN on a LINUX System"

4.1.1.1 Creating DSN on a Windows System
Create the DSN on a Windows system through the Microsoft ODBC Administrator,
which is a tool that manages the ODBC.INI file and associated registry entries in
Windows 2003/XP. Within this tool, add the data source name for your ODB file and
specify the database file you want to dedicate as the default for the data source name.

Creating the Oracle Lite Database

4-2 Oracle Database Lite Oracle Lite Client Guide

The ODBC.INI file is available in Windows under %WINDIR%. For more information
on DSN properties, see Table 4–1 and Table 4–2.

4.1.1.2 Creating DSN on a LINUX System
In order to create a DSN on a LINUX platform, add the DSN in the ODBC.INI file. In
this file, add the DSN in its own section, where the section name is the DSN name. The
ODBC.INI file is available in Linux under $OLITE_HOME/bin. For the Linux
platform, you must have write permissions on the directory where this is located to be
able to modify them.

For example, the following ODBC.INI example contains two DSN configurations:

■ The Polite DSN configuration is for a single Oracle Lite database installed on the
client.

■ The Politecl DSN configuration describes a multi-user service DSN, as shown
with the ServerHostName and ServerPortNumber elements. This service is
described further in Chapter 5, "Building a Client/Server Environment".

[Polite]
Description=Oracle Lite 40 Data Source
Data_Directory=/home/olite
Database=polite
IsolationLevel=Read Committed
Autocommit=Off
CursorType=Forward Only

[Politecl]
Description=Oracle Lite 40 Data Source
Data_Directory=/home/olite
ServerHostName=localhost
ServerPortNumber=1160
Database=polite
IsolationLevel=Read Committed
Autocommit=Off
CursorType=Static

The default port number is 1160.

The parameters that you can use are listed in Table 4–1:

Note: The name of the ODB file is used in the next step: Section 4.1.2,
"Creating a New Oracle Lite Database". For more information on the
ODBC Administrator, and for instructions on creating a data source
name using the tool, refer to Appendix C.8, "ODBC Administrator and
the Oracle Database Lite ODBC Driver".

Table 4–1 ODBC.INI DSN Parameters

DSN Parameter Description

Description An optional description for the data source. Use only for Windows
environment.

Data Directory The path to the data directory where the database resides. This is an
existing path.

Database Oracle Database Lite database name to be created. Do not include
the .ODB extension.

Creating the Oracle Lite Database

Building an Embedded Application 4-3

If your DSN connects to a multi-user service—see Chapter 5, "Building a Client/Server
Environment"—then the DSN entries have the following additional parameters:

Default Isolation
Level

Determines the degree to which operations in different transactions
are visible to each other. For more information on the supported
isolation levels, refer to Section 15.2, "What Are the Transaction
Isolation Levels?". The default level is Read Committed. Other
options are Repeatable Read, Single User, and
Serializable.

Autocommit Commits every database update operation in a transaction when
that operation is performed. Auto-commit values are Off and On.
The default value is Off.

■ On: DML and DDLs are automatically committed.

■ Off: An application has to explicitly issue the transaction
commit or rollback commands.

Note: In the Microsoft ODBC SDK, the ODBC driver defaults to
auto-commit mode. However, the default for Oracle Database Lite
is manual-commit mode. In this environment, if you execute
SQLEndTrans / SQLTransact call with SQL_COMMIT option using
the ODBC driver, you receive a SQL_SUCCESS, because ODBC
believes that auto-commit is on. However, no commit actually
occurs, because ODBC transfers the transaction to Oracle Database
Lite, whose default is manual-commit. You must configure the
Microsoft ODBC Driver Manager to transfer control of the
SQLEndTrans / SQLTransact API call to Oracle Database Lite by
explicitly setting autocommit to OFF in ODBC. When you do this,
ODBC does not try to autocommit, but gives control of the
transaction to Oracle Database Lite.

To set auto-commit to off, execute either the SQLSetConnectAtrr
or SQLSetConnectOption method with SQL_AUTOCOMMIT_OFF
as the value of the SQL_AUTOCOMMIT option. Then, the
SQLEndTrans / SQLTransact calls will commit as defaulted
within Oracle Database Lite. Thus, if you want auto-commit on,
turn it on only within Oracle Database Lite.

Cursor Type ■ Forward Only: Default. A non-scrollable cursor which only
moves forward but not backward through the result set. As a
result, the cursor cannot go back to previously fetched rows.

■ Dynamic: Capable of detecting changes to the membership,
order, or values of a result set after the cursor is opened. If a
dynamic cursor fetches rows that are subsequently deleted or
updated by another application, it detects those changes when
it fetches those rows again.

■ Keyset Driven: Does not detect change to the membership or
order of a result set, but detects changes to the values of rows
in the result set.

■ Static: Does not detect changes to the membership, order or
values of a result set after the cursor is opened. If a static cursor
fetches a row that is subsequently updated by another
application, it does not detect the changes even if it fetches the
row again.

See Section 15.4, "Supported Combinations of Isolation Levels and
Cursor Types" for details on the restrictions when combining cursor
types and isolation levels.

Table 4–1 (Cont.) ODBC.INI DSN Parameters

DSN Parameter Description

Creating Users for the Oracle Lite Database

4-4 Oracle Database Lite Oracle Lite Client Guide

4.1.2 Creating a New Oracle Lite Database
To create a new Oracle Lite database, use the CREATEDB command-line utility
providing the DSN name, the database name, and the system user password, as
follows:

CREATEDB myDSN myDBname sysPwd

For example, if the name of the DSN is POLITE, the ODB name is myDB, and the
system user password is MANAGER:

CREATEDB polite mydb manager

See Appendix C.2, "CREATEDB" for more information.

The new database file is located in the <ORACLE_HOME>\Mobile\Sdk\oldb40
directory. For ease of maintenance, it is recommended that you use one database
directory for all of your Oracle Lite databases.

4.2 Creating Users for the Oracle Lite Database
When you create a user, Oracle Database Lite creates a schema with the same name
and automatically assigns it to that user as the default schema. Thus, the user can
access database objects in its schema without prefixing them with the schema name.
Users with the appropriate privileges can create additional schemas with the CREATE
SCHEMA command.

You connect to the database with the username. All schemas are owned by the user
who created them. If the schema name is different from the username, you must
provide the schema name prefix in order to access objects in that schema.

When you create a database using the CREATEDB utility or the CREATE DATABASE
command, Oracle Database Lite creates a special user called SYSTEM, which has all
database privileges.

To access data and perform operations in another user schema, a user must grant you
DBA or ADMIN privileges. The SYSTEM user can access all data, as it automatically
holds DBA and ADMIN privileges.

Table 4–2 DSN Configuration Parameters for Multi-User Service on LINUX

Parameter Description

ServerHostName Provide the server machine hostname or IP address where the
database service is running.

ServerPortNumber The port number where the database service is listening for
incoming requests. The default port number is 1160.

ServerDSN The server-side DSN. Thus, the client DSN name on the client
machine can be different from the DSN on the server mahcine.
This is required only if the client and server machines are not the
same and the Database Directory and Database
parameters are not required.

Note: For more information on the CREATEDB utility, see
Appendix C.2, "CREATEDB".

Creating Users for the Oracle Lite Database

Building an Embedded Application 4-5

You can create multiple users in your Oracle Lite database for your embedded
application with the CREATE USER command. See the Oracle Database Lite SQL
Reference for information on how to manage your user through SQL commands.

While most information you need to understand about SQL and your Oracle Lite
database can be gathered from the Oracle Database manuals and the Oracle Database
Lite SQL Reference, the following sections help you understand concepts related
specifically to the Oracle Lite database.

■ Section 4.2.1, "Pre-Defined Roles"

■ Section 4.2.2, "Building and Populating Demo Tables"

4.2.1 Pre-Defined Roles
Oracle Database Lite combines some privileges into pre-defined roles for convenience.
In many cases it is easier to grant a user a pre-defined role than to grant specific
privileges in another schema. Oracle Database Lite does not support creating or
dropping roles. Following is a list of Oracle Database Lite pre-defined roles:

4.2.2 Building and Populating Demo Tables
Oracle Database Lite comes with a script called POLDEMO.SQL, which enables you to
build the same tables that are in your Oracle Lite default starter database
(POLITE.ODB).

Note: Both username and passwords are limited to a maximum of 28
characters.

Table 4–3 Pre-Defined Roles

Role Name Privileges Granted To Role

ADMIN Enables the user to create other users and grant privileges other than DBA
and ADMIN on any object in the schema:

CREATE SCHEMA, CREATE USER, ALTER USER, DROP USER, DROP
SCHEMA, GRANT, REVOKE

DBA Enables the user to issue the following DDL statements which otherwise can
only be issued by SYSTEM:

All ADMIN privileges, CREATE TABLE, CREATE ANY TABLE, CREATE
VIEW, CREATE ANY VIEW, CREATE INDEX, CREATE ANY INDEX, ALTER
TABLE, ALTER VIEW, DROP TABLE, DROP VIEW, and DROP INDEX.

RESOURCE The RESOURCE role grants the same level of control as the DBA role, but only
over the user’s own schema. The user can execute any of the following
commands in a SQL statement:

CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE CONSTRAINT,
ALTER TABLE, ALTER VIEW, ALTER INDEX, ALTER CONSTRAINT, DROP
TABLE, DROP VIEW, DROP INDEX, DROP CONSTRAINT, and GRANT or
REVOKE privileges on any object under a user's own schema.

General Note: Unlike the Oracle database server, Oracle Database
Lite does not commit data definition language (DDL) commands
until you explicitly issue the COMMIT command.

Packaging Your Embedded Application With the Oracle Database Lite Runtime

4-6 Oracle Database Lite Oracle Lite Client Guide

You can use SQL scripts to create tables and schema, and to insert data into tables. A
SQL script is a text file, generally with a .SQL extension, that contains SQL commands.
You can run the following SQL script from the Mobile SQL prompt.

SQL> @<ORACLE_HOME>Mobile\DBS\Poldemo.sql

You can also enter:

SQL> START Poldemo.sql

4.3 Packaging Your Embedded Application With the Oracle Database Lite
Runtime

In order to use the Oracle Lite database and embed it into your application, you must
include not only the Oracle Lite database, but certain libraries in your application.

The following sections describe what libraries to include for each operating system
platform:

■ Section 4.3.1, "Packaging an Embedded Application on Windows"

■ Section 4.3.2, "Packaging an Embedded Application on Linux"

4.3.1 Packaging an Embedded Application on Windows
To package an embedded application on Windows, perform the following:

1. Copy the following files from the Mobile Development Kit library, which is
located in ORACLE_HOME/Mobile/Sdk, into the directory in your PATH where
your application DLLs are located.

■ olite40.msb: Oracle Database Lite message file

■ oljdbc40.dll: JDBC JNI library

■ olobj40.dll: Oracle Database Lite object kernel

■ olod2040.dll: Oracle Database Lite ODBC driver

■ olsql40.dll: Oracle Database Lite SQL runtime library

■ olstddll.dll: Oracle Lite Common library

2. If you are using the Multi-User Service, copy olsv2040.exe, olcl2040.dll,
and olsvmsg.dll into your PATH where your application DLLs are located.

3. To use any Java program with Oracle Database Lite, make sure that the
olite40.jar file, which is installed in OLITE_HOME/bin, is in the application
CLASSPATH. If the Java program uses the multi-user service, also place this JAR
file in the SYSTEM CLASSPATH. This JAR file contains the JDBC driver for Oracle
Database Lite. Your environment must provide a Java Runtime Environment from
Sun, version JDK 1.4.2 version or higher.

4. If you want to support the mSQL command-line tool for querying and managing
the Oracle Lite database, then you must place the following files in the PATH:

■ msql.dll

■ msql.exe

Note: You do not need to include the .SQL file extension when
running the script.

Packaging Your Embedded Application With the Oracle Database Lite Runtime

Building an Embedded Application 4-7

■ msql.jar

5. Manage ODBC for creating the DSN and registering the ODBC driver. On Linux,
modify the ODBC.INI file. On Windows, perform the following:

a. To use Microsoft ODBC for the ODBC environment—including DSN creation
support—or to create and manage DSN names programmatically, place the
olad2040.dll, olAES.dll, olCast5.dll, olil125x.dll,
olr24US.dll, mfc71.dll, msvcp71.dll, and msvcr71.dll in the PATH.
The olad2040.dll provides a plug-in to programmatically access the ODBC
administration tool—odbcad32—that is used to create DSNs.

b. Register the ODBC driver for the product in the Windows Registry, as follows:

KEY:HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI\Oracle Lite 40 ODBC
Driver
VALUE:32Bit = 1
VALUE:ApiLevel = 0
VALUE:ConnectFunctions = YYN
VALUE:Driver = <path to olod2040.dll>
VALUE:DriverODBCVer = 02.00
VALUE:SQLLevel = 0
VALUE:Setup = <path_to_olad2040.dll>
KEY:HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI\ODBC DRIVERS
VALUE:Oracle Lite 40 ODBC Driver = Installed

6. Configure the POLITE.INI file and place it in the system Windows directory,
such as c:\winnt, as follows:

[All Databases]
NLS_LANGUAGE=ENGLISH
NLS_LOCALE=ENGLISH
DB_CHAR_ENCODING=Native
DATA_DIRECTORY=<default_directory_to_create_database_files>

4.3.2 Packaging an Embedded Application on Linux
To package an embedded application on Linux, perform the following:

1. Define OLITE_HOME as the installation directory where your application resides.
All Oracle Database Lite files are located in the OLITE_HOME/bin directory.
Include the OLITE_HOME/bin directrory in the PATH variable as well as in the
LD_LIBRARY_PATH variable.

2. Copy the following files from the Mobile Development Kit library located in
ORACLE_HOME/Mobile/Sdk into OLITE_HOME/bin.

olite40.msb
liboljdbc40.so
libokapi.so
libolobj40.so
libolodbc.so
libolsql.so
libolstd.so
libolutil.so
libolaes.so

Note: See Appendix A, "POLITE.INI Parameters for the Oracle Lite
Database" for more information on how to configure the POLITE.INI
file.

Connecting to the Oracle Lite Database

4-8 Oracle Database Lite Oracle Lite Client Guide

libolcast5.so
libolil125x.so

3. If you are using the multi-user service, copy the following into the OLITE_
HOME/bin directory:

olsv
oldaemon
libolsv2040.so

4. To use any Java program with Oracle Database Lite, include the olite40.jar
file, which is installed in OLITE_HOME/bin, in the application CLASSPATH. If the
Java program uses the multi-user service, also place this JAR file in the
CLASSPATH. The olite40.jar file contains the JDBC driver for Oracle Database
Lite. Your environment must provide a Java Runtime Environment from Sun,
version 1.4.2 or higher.

5. To provide the mSQL command-line tool for querying and managing the Oracle
Lite database, place the following files in the OLITE_HOME/bin:

libmsql.so
msql
msql.jar

6. Create the DSN and register the ODBC driver by modifying the OLITE_
HOME/bin/odbc.ini file.

7. Configure the POLITE.INI file and place it in OLITE_HOME/bin as follows:

[All Databases]
NLS_LANGUAGE=ENGLISH
NLS_LOCALE=ENGLISH
DB_CHAR_ENCODING=Native
DATA_DIRECTORY=<default_directory_to_create_database_files>

4.4 Connecting to the Oracle Lite Database
Connect to the file-based Oracle Lite database using your application or mSQL, which
is a command line interface. See Appendix C.1, "The mSQL Tool" for full details.

When connecting to the database from an application, use the DSN name that you
created in Section 4.1.1, "Creating a Data Source Name with ODBC Administrator".
and the database name (ODB name) that you defined in Section 4.1.2, "Creating a New
Oracle Lite Database".

To connect to a database with the POLITE database (ODB) name, SYSTEM user,
MANAGER password, and the mydsn data source name, perform the following:

C:>msql system/manager@jdbc:polite:mydsn

Note: See Appendix A, "POLITE.INI Parameters for the Oracle Lite
Database" for more information on how to configure the POLITE.INI
file.

Note: On WinCE, the mSQL utility is a GUI installed on your
platform.

Using Oracle Database Lite Samples

Building an Embedded Application 4-9

You can replace mydsn with a previously defined ODBC data source name. To connect
to the default DSN POLITE, the mSQL statement would be as follows:

C:>msql system/manager@jdbc:polite:polite

The Oracle Lite database has its own JDBC driver, which you can use to connect to the
client Oracle Lite database.

■ Local Connection—Use the following URL syntax to initiate a local connection to
a client database:

jdbc:polite:<DSN>

The following example connects to a client Oracle Lite database with the default
DSN: polite:

jdbc:polite:polite

■ Remote Connection—Use the following JDBC URL to initiate a remote connection
to the client Oracle Lite database:

jdbc:polite[@<hostname>]:[<port>]:<DSN>

The hostname and port are optional. The following example connects to the local
machine on port 1000 to the polite database.

jdbc:polite@:1000:polite

These URLs default to using the type 2 JDBC driver. You can specify that the
connection uses a type 4 JDBC driver. For full details on both drivers and all options
for connection, see Section 10.3, "JDBC Drivers to Use When Connecting to the Oracle
Lite Database".

4.5 Using Oracle Database Lite Samples
After you perform a complete installation of Oracle Database Lite, the samples are
available in your <ORACLE_HOME>\Mobile\Sdk directory. The tools, locations for
samples, and descriptions are listed in Table 4–4.

Note: Review the Oracle Database Lite SQL Reference before using
the starter database to understand the SQL used to manage
information in Oracle Database Lite.

Table 4–4 Sample File Directory

Tool Location of Sample Applications Description

Java <ORACLE_
HOME>\Mobile\Sdk\samples\jdbc

Demonstrates programming with JDBC.
See Chapter 10, "JDBC Programming"
for more information.

ODBC <ORACLE_
HOME>\Mobile\Sdk\samples\odbc
\win32\c_samples

Provides ODBC programs written in C
See Section 9.2, "Executing the ODBC
Examples".

Visual
Basic

<ORACLE_
HOME>\Mobile\Sdk\samples\odbc
\win32\update

Demonstrates the ease of querying tables
in Oracle Database Lite with Visual Basic
application. See Section 4.5.1, "Executing
the Visual Basic Sample Application" for
more information.

Using Oracle Database Lite Samples

4-10 Oracle Database Lite Oracle Lite Client Guide

4.5.1 Executing the Visual Basic Sample Application
The Visual Basic Sample application example uses Visual Basic 2005 to demonstrate
how to develop a Visual Basic application with Oracle Database Lite. It uses the ODBC
DSN, POLITE. To use the AddNew, Update, and Delete macros, you need a unique
EMPNO column of the EMP table. This is the default condition when you connect to the
default database.

The following instructions for installing and running the Visual Basic sample
application assume that you have already installed Oracle Database Lite and Visual
Basic.

1. Section 4.5.1.1, "Open the Sample Application"

2. Section 4.5.1.2, "View and Manipulate the Data in the EMP Table"

4.5.1.1 Open the Sample Application
1. To open the sample application, select Open Project from the File menu of Visual

Studio 2005.

2. In the dialog box, navigate to the <ORACLE_
HOME>\Mobile\Sdk\samples\odbc\win32\update directory.

3. Select update.vbproj, and click Open.

4. Follow the instructions in readMe.txt in the same location to execute the
sample.

4.5.1.2 View and Manipulate the Data in the EMP Table
1. To view data in the EMP table:

■ Click Show to show the EMP table data.

■ Click Next to show the next record.

■ Click Previous to show the previous record.

2. To manipulate data in the EMP table, use the Add, Update, and Delete features.

Multiple
Field
Service

<ORACLE_
HOME>\Mobile\Sdk\samples\odbc
\win32\mfs

The Multiple Field Service sample uses
ODBC to access the Oracle Lite database.

Note: Most examples use the data source name (DSN) POLITE. If
you need to drop and recreate, use the REMOVEDB and CREATEDB
utilities, which are documented in Appendix B.2, "CREATEDB" or
Appendix B.3, "REMOVEDB" in the Oracle Database Lite Client
Guide.

Table 4–4 (Cont.) Sample File Directory

Tool Location of Sample Applications Description

Building a Client/Server Environment 5-1

5
Building a Client/Server Environment

If you want multiple clients to access an Oracle Lite database, you need to configure a
client/server environment. The following sections describe how to configure this
environment with the multi-user service:

■ Section 5.1, "Overview of the Multi-User Service"

■ Section 5.2, "Administration for the Multi-User Service on the Windows Platform"

■ Section 5.3, "Administration for the Multi-User Service on the Linux Platform"

■ Section 5.4, "Debugging the Multi-User Service"

■ Section 5.5, "Creating DSNs"

■ Section 5.6, "Accessing the Database"

■ Section 5.7, "Verifying the Connection Using mSQL"

5.1 Overview of the Multi-User Service
Multiple clients can execute an application that accesses the same database. You can
protect all of your data on a centralized machine and allow clients to remotely access
the information within the database.

Figure 5–1 demonstrates how to centralize multiple Oracle Lite databases (ODB files)
by installing them on a Windows or Linux host machine. The Oracle Database Lite
multi-user service facilitates the communication between the remote application
clients by starting the multi-user service, which opens the designated ports, and then
translates the DSNs to the appropriate database.

Overview of the Multi-User Service

5-2 Oracle Database Lite Oracle Lite Client Guide

Figure 5–1 Diagram of Multi-User Service

The multi-user service enables you to use up to sixty-four concurrent client
connections, each of which can connect to up to five ODB database files on the remote
machine. All clients and server must install the same binary with the same NLS. The
server machine with the multi-user service and each of the clients can be installed on
either Windows or Linux platforms.

When you implement the client/server data access for your application, the flow of
events is as follows:

1. Remote client sends the connect request to the multi-user service.

The client connection can use the ODBC 2.0 client driver, the JDBC Type 2 MU
driver, or the JDBC Type 4 driver. In addition, the client provides the following in
the connection string: remote host and port where the multi-user service is
listening for incoming calls and the DSN of the Oracle Lite database (ODB file)
where the data is stored. The default port number is 1160.

2. Multi-user service receives incoming call with the DSN from the remote client.

3. The multi-user service parses the DSN name and completes the request by
connecting to the Oracle Lite database that maps to the DSN name.

You can provide a client/server environment for multiple users accessing a single
entry point for the Oracle Lite database with the multi-user service. For the multi-user
service, you first create the application and the database in the same manner as the
embedded application, as described in Chapter 4, "Building an Embedded

ODB file: �
Oracle Lite �
Database

ODB file: �
Oracle Lite �
Database

ODB file: �
Oracle Lite �
Database

Oracle Database Lite�
Multi-User Service

TCP/IP port opened�
 by the MU listener

Windows or Linux �
machine that hosts the �

Multi-User Service

ClientClientClientClient

Client applications�
use one of the �

Oracle Lite drivers: �
Type 2 MU or Type 4 JDBC �

drivers or the client �
ODBC driver

Oracle Database Lite Engine

Application

Oracle Lite�
Driver

Application

Oracle Lite�
Driver

Application

Oracle Lite�
Driver

Application

Oracle Lite�
Driver

Administration for the Multi-User Service on the Windows Platform

Building a Client/Server Environment 5-3

Application". Then, configure for a client/server environment and set up a listener to
receive requests from each of these clients. The difference between an embedded
application and the client/server options is that you will configure two DSNs: one for
the client and one for the server. The DSN for the server is the same as the one
configured for the embedded application.

5.2 Administration for the Multi-User Service on the Windows Platform
The following sections describe how to install, start, stop and query the multi-user
service on Windows:

■ Section 5.2.1, "Installation and Configuration on Windows"

■ Section 5.2.2, "Starting the Multi-User Service on Windows"

■ Section 5.2.3, "Stopping the Multi-User Service on Windows"

■ Section 5.2.4, "Querying the Multi-User Service on Windows"

5.2.1 Installation and Configuration on Windows
To install and configure the Oracle Database Lite multi-user service, perform the
following steps:

1. Ensure that you install the olsv2040.exe in the following directory.

<OLITE_HOME>\Mobile\Sdk\bin

If not already available, re-install the MDK to retrieve the component. A sample
<OLITE_HOME> location is C:\Olite.

2. To install the service, start the Command Prompt and enter the following
command.

olsv2040.exe /install [/account=AccountName][/password=ValidPassword]
 [/wdir=WorkingDirectory] [/port=ServicePort]

where the optional parameters can be as follows:

■ AccountName: Provide either the DomainName\UserName or .\UserName.

■ ValidPassword: If you specify an account, but don't want to give out the
password in command prompt during service installation. You can provide
the password to the "Log On" page of "Oracle Lite Multiuser Service
Properties" dialog box which can be found in Services.

■ WorkingDirectory: If you use ’.’ in SQL scripts that load Java classes, you
must specify a working directory.

■ ServicePort: The default port number is 1160.

3. If you are using Java Stored Procedures, then perform the following to set up the
environment for Java Stored Procedures:

a. If you have the JDK installed on your PC, ensure that the system PATH
variable includes the following:

<JDK_HOME>\bin
<JDK_HOME>\jre\bin
<JDK_HOME>\jre\bin\hotspot

Note: This directory must also be included in your system PATH.

Administration for the Multi-User Service on the Windows Platform

5-4 Oracle Database Lite Oracle Lite Client Guide

b. If you have JRE installed on your PC, ensure that the system PATH variable
includes the following:

<JRE_HOME>\bin
<JRE_HOME>\bin\hotspot

c. Ensure that your system CLASSPATH variable includes the following:

<OLITE_HOME>\bin\Olite40.jar and '.'

4. You may change the startup type from the Windows service console. Highlight the
Oracle Database Lite multi-user service and select Properties. When required,
change the startup type to manual. The property also contains startup parameters,
but has not been tested.

5. Reboot your PC.

5.2.2 Starting the Multi-User Service on Windows
The Oracle Database Lite multi-user service can be started in many ways. By default,
the service property "Startup Type" is automatic; thus, the service is started every time
you reboot the machine. If you modify the "Startup Type" to "Manual", then you start
Oracle Lite multi-user service by entering any one of the following startup commands
from the Command Prompt:

■ olsv2040.exe /start

■ net start "Oracle Lite Multiuser Service"

5.2.3 Stopping the Multi-User Service on Windows
To stop the multi-user service, use one of the following commands:

■ olsv2040.exe /stop

■ net stop "Oracle Lite Multiuser Service"

5.2.4 Querying the Multi-User Service on Windows
You can query the multi-user status for the following details:

■ current status

■ current startup parameters

■ configuration

■ installed startup parameters

Issue the following command to see these details:

olsv2040.exe /query

The results of this command are as follows:

Note: JRE does not include the Java compiler. Therefore, attempts to
load a Java source into the database with the CREATE JAVA SOURCE
command and the loadjava utility will fail without the Java
compiler.

Administration for the Multi-User Service on the Linux Platform

Building a Client/Server Environment 5-5

OliteService reports the following status:
 The service is running...
 port= 1160
 wdir = C:\WINDOWS\SYSTEM32

The current status of Oracle Lite Multiuser Service:
 Current State : SERVICE_RUNNING
 Acceptable Control Code : (0x1) SERVICE_ACCEPT_STOP

The configuration of Oracle Lite Multiuser Service:
 Service Type : (0x10) SERVICE_WIN32_OWN_PROCESS
 Start Type : SERVICE_AUTO_START
 Error Control : SERVICE_ERROR_NORMAL
 Binary Path : C:\Oracle\product\Mobile\Sdk\bin\olsv2040.exe
 Display Name : Oracle Lite Multiuser Service
 Start Name : LocalSystem

Installed Service startup parameters
 port = 1160
 wdir = \%WINDIR%\SYSTEM32

where the port number is 1160 and the working directory is C:\WINDOWS\SYSTEM32.
The service is installed under the LocalSystem account, where the startup
parameters for installation are port = 1160 and working directory =
\%WINDIR%\SYSTEM32. In addition, the Start Type is SERVICE_AUTO_START and
the binary path as C:\Oracle\product\Mobile\Sdk\bin\olsv2040.exe,
which is where you installed the Oracle Database Lite multi-user service.

You can also set the default for the service port and working directory by modifying
the SERVICE_PORT and SERVICE_WDIR parameters in the polite.ini file.
However, if you do so, then it overrides any of the command-line options for port and
working directory.

5.3 Administration for the Multi-User Service on the Linux Platform
The following sections describe how to start, stop and query the multi-user service on
Linux:

■ Section 5.3.1, "Starting and Stopping the Multi-User Service on Linux"

■ Section 5.3.2, "Querying the Multi-User Service on Linux"

5.3.1 Starting and Stopping the Multi-User Service on Linux
The Oracle Database Lite multi-user service can be started or stopped with the olsv
executable. To see all of the options, execute olsv -help, which displays the
following:

Note: When you execute the multi-user service with the /debug
option, then the result of the current status from the /query shows
that the service is stopped. Since the /debug option is executed in a
console, the Service Control Manager does not know that the service is
running.

Note: There is no need to install this service on Linux.

Administration for the Multi-User Service on the Linux Platform

5-6 Oracle Database Lite Oracle Lite Client Guide

$ olsv -h
Usage: olsv [option]
Options are:
-start start the server as daemon
-stop | -s stop the server
-debug | -d start the server as console app for debugging
-query | -q get the server status
-kill | -k equivalent to kill -s SIGKILL PID
-port | -p PORT execute the server on the specified port——default port is 10000
-wdir | -w DIR run/debug the server in the specified dir
-help | -h display this message
if no option specified, -start by default

To stop the multi-user service, use the following command:

olsv -stop

5.3.2 Querying the Multi-User Service on Linux
You can query the multi-user status with olsv -query which provides the following
information:

■ process id (PID)

■ environment variables

■ current status

Issue the following command to see these details:

olsv -query

The results of this command are as follows:

Oracle Lite Multiuser Server is running, PID = 2619
--
Environment:
TERM=xterm
SHELL=/bin/csh
OLITE_HOME=/scratch/myuser/oracle/OraHome/mobile/sdk
JDKDIR=/usr/local/packages/jdk14
MOBILE_CLIENT=/scratch/myuser/mobileclient
USER=myuser
LD_LIBRARY_
PATH=/usr/local/packages/jdk14/jre/lib/i386:/usr/local/packages/jdk14/jre/lib/i386
/server:/scratch/myuser/olite/lib
HOSTTYPE=i386-linux
JAVA_HOME=/usr/local/packages/jdk14
LANG=en_US.UTF-8
HOME=/home/myuser
OSTYPE=linux
LOCAL_PACK=/usr/local/packages/icc_remote
JAVA_HOME=/usr/local/packages/jdk14
VENDOR=intel
MACHTYPE=i386
ORACLE_HOME=/scratch/user/oracle/OraHome
CLASSPATH=.:/scratch
--
Status Summary:
Database Version: 10.3.0
Time Started: 11-27-2006 17:58:15
Listening Port: 10000

Verifying the Connection Using mSQL

Building a Client/Server Environment 5-7

Total Connections: 0
Current Connections: 0
No errors encountered

You can also set the default for the service port and working directory by modifying
the SERVICE_PORT and SERVICE_WDIR parameters in the polite.ini file.
However, if you do so, then it overrides any of the command-line options for port and
working directory.

5.4 Debugging the Multi-User Service
If the service the does not start, debug the service using the following method:

1. Edit the POLITE.INI file, which is available in Windows under
%WINDIR%\POLITE.INI and in Linux under $OLITE_HOME/bin, to add the
following entries in the [ALL_DATABASES] section:

■ OLITE_SERVER_TRACE=TRUE

■ OLITE_SERVER_LOG=<filename>. This is used for the LINUX platform
only.

2. Should the service fail, the multi-user service generates the olsv.log file in the
current working directory. Ensure that the PATH and CLASSPATH variables are
accurate and that the PATH includes the directory that contains jvm.dll.

3. Correct the cause and retry.

5.5 Creating DSNs
To access the database using an ODBC or Visual Basic application, you must create the
DSN enabled from the embedded connection. When you add a DSN using the ODBC
Administration tool, choose the Oracle Lite 40 ODBC Driver(Client), which creates a
client DSN. If you are executing the service on the same machine where the client
application is running, leave the Database Host Name, Database Port Number, and
Database Host DSN value empty. The remaining values must be included in the same
manner as the 'Oracle Lite ODBC Driver' DSN. If you start the service on a port other
than 1160, then you must specify the Database Port Number.

5.6 Accessing the Database
To access the database, you need not make any changes to the ODBC or VisualBasic
application. The DSN automatically routes the request to the service through the
ODBC driver olcl2040.dll. For a JDBC application, change the URL for the connect
string, which is similar to the one used while connecting to the database using mSQL.

5.7 Verifying the Connection Using mSQL
Using the Command Prompt, verify the connection to the multi-user service in the
following ways:

Connect to A-DSN on a Windows local host on port 1160.

Note: For more details on these parameters, see Section A.2, "All
Databases Section".

Verifying the Connection Using mSQL

5-8 Oracle Database Lite Oracle Lite Client Guide

msql system/passwd@jdbc:polite@::a-dsn

Connect to A-DSN on the local host on port 1000.

msql system/passwd@jdbc:polite@:1000:a-dsn

Connect to A-DSN on a Windows local host on port 1160 using the Type4 JDBC driver.

msql system/passwd@jdbc:polite4@::a-dsn

For more information on Type 2 and Type 4 JDBC drivers connecting to Oracle
Database Lite, see Chapter 10, "JDBC Programming". For details on mSQL, see
Chapter C.1, "The mSQL Tool".

Note: Oracle Database Lite supports Type2 and Type4 JDBC drivers.
Type4 is a pure Java JDBC driver that communicates with the service
in the Oracle Database Lite network protocol.

Managing Your Oracle Lite Mobile Client 6-1

6
Managing Your Oracle Lite Mobile Client

One of the benefits of Oracle Database Lite is that you can have an application
downloaded onto a device, where data can be synchronized between the device and
the back-end Oracle database.

In general, the types of Oracle Lite Mobile clients are as follows:

■ Web clients (such as Windows Web-to-Go over OC4J, Linux Web-to-Go, Windows
Web-to-Go, Branch Office, and BC4J): The application built for these clients uses a
Java browser.

■ Linux, Win32, and WinCE clients: These applications are client/server
applications. Thus, start the application as you would start any application on
these platforms.

The following sections detail how to set up your Mobile client device and how to use
the Oracle Database Lite technology on that device:

■ Section 6.1, "Start the Mobile Client"

■ Section 6.2, "Log on to Mobile Client Workspace"

■ Section 6.3, "Synchronize or Execute Applications on the Mobile Client"

■ Section 6.4, "Manage the Mobile Client"

6.1 Start the Mobile Client
The following details how to start the Oracle Lite Mobile client:

■ Web clients (such as Windows Web-to-Go over OC4J, Windows Web-to-Go, Linux
Web-to-Go, Branch Office, and BC4J): The application built for these clients uses a
Java browser. You can initiate the application or synchronization using the Mobile
Workspace GUI.

■ Linux, Win32, and WinCE clients: These applications are client/server
applications. Thus, start the application as you would start any application on
these platforms. You can initiate synchronization either by implementing it within
your application using the synchronization APIs (see Chapter 2, "Synchronization"
and Chapter 3, "Invoking Synchronization APIs from Applications" in the Oracle
Database Lite Developer's Guide for more information) or by executing the msync
executable, described in Section 6.4.2, "Use the mSync GUI to Initiate
Synchronization of Your Linux, WinCE, and Win32 Applications".

For Win32 and WinCE devices, you do not have to perform anything extra to start the
Mobile client. However, for the Linux and Windows-based clients (OC4J and
Web-to-Go), you may have to perform an extra step.

6-2 Oracle Database Lite Oracle Lite Client Guide

When you installed the Mobile client on Linux or Windows, it configured that the
Mobile client should always be started automatically when the device is initiated. So,
most of the time, you do not have to do anything to start the Mobile client. However, if
you have a failure, you can manually start the Mobile client, as follows:

■ Web Mobile client: If using the OC4J container for your Web applications, then
start the Web OC4J Mobile client and its OC4J container by executing
runmobileclient. If you want to use the Oracle Database Lite servlet container
that was used prior to Release 10.3, then start the Web-to-Go Mobile client by
executing the webtogo executable.

Both executables are located in the <mobile_client>/bin directory.

■ Linux Mobile client: Start the Linux Mobile client by executing the webtogo.sh
file in the <mobile_client>/bin.

6.2 Log on to Mobile Client Workspace
If you are using a Windows or Linux Web Mobile client, then you must have installed
the appropriate Mobile client on your client machine. Upon machine startup, the
Mobile client is automatically started. Then, you can connect to the Mobile Client
Workspace with a browser by connecting to one of the following:

■ http://<client_machine>/webtogo

■ http://localhost/webtogo.

If the Windows Mobile client is unexpectedly terminated, you can start the client by
double-clicking on the following icon in the corner of your Windows desktop:

For all other scenarios, launch the Mobile client by accessing your Oracle Database Lite
program group and choosing the Mobile client.

Figure 6–1 displays the Mobile Client Workspace Logon page.

Figure 6–1 The Mobile Workspace Logon Page

Enter the username and password for the Mobile user and click Logon.

However, if a member logs on who is attached to more than one user, the member
must identify the user under whose context the member is acting. As shown in
Figure 6–2, the member provides its name, password and selects the user under whose

Synchronize or Execute Applications on the Mobile Client

Managing Your Oracle Lite Mobile Client 6-3

context he/she is acting. The user owns the data and the application, so this is
required. Click Logon.

Figure 6–2 Member Logon Page

6.3 Synchronize or Execute Applications on the Mobile Client
The following details how to synchronize each Mobile client stack type:

■ Web clients (such as OC4J, Windows Web-to-Go, Linux Web-to-Go, Branch Office,
and BC4J): Synchronization can be configured to be automatic or manual. For
manual synchronization, use the Sync Tab in the Mobile Workspace GUI, as
described in Section 6.4.1.1.5, "Initiate Manual Synchronization".

■ Linux Web-to Go clients: Synchronization can be configured to be automatic or
manual. For manual synchronization, use one of the following methods:

■ Use the Sync Tab in the Mobile Workspace GUI, as described in
Section 6.4.1.1.5, "Initiate Manual Synchronization"

■ Execute the msync executable, described in Section 6.4.2, "Use the mSync GUI
to Initiate Synchronization of Your Linux, WinCE, and Win32 Applications".

■ Implement synchronization within your application using the synchronization
APIs (see Chapter 2, "Synchronization" and Chapter 3, "Invoking
Synchronization APIs from Applications" in the Oracle Database Lite
Developer's Guide for more information)

■ Linux, Win32, and WinCE clients: Initiate synchronization through one of the
following methods:

■ Execute the msync executable, described in Section 6.4.2, "Use the mSync GUI
to Initiate Synchronization of Your Linux, WinCE, and Win32 Applications".

■ Implement synchronization within your application using the synchronization
APIs (see Chapter 2, "Synchronization" and Chapter 3, "Invoking
Synchronization APIs from Applications" in the Oracle Database Lite
Developer's Guide for more information)

Note: The Mobile client device clock must be accurate for the time
zone set on the device before attempting to synchronize. An
inaccurate time may result in the following exception during
synchronization: CNS: 9026 "Wrong username or password.
Please enter correct value and reSync."

6-4 Oracle Database Lite Oracle Lite Client Guide

When you initiate a synchronization from the client, either manually or by scheduling
a job, the synchronization cannot occur if there is an active connection with an
uncommitted transaction opened from another source. This could be from scheduling
two jobs to synchronize at the same time, from mSync, mSQL, Web-to-Go or the client
synchronization APIs.

The first synchronization for the Mobile client creates several Oracle Lite database
(ODB) files on your client device for storing either Oracle Database Lite information or
your application information. These ODB files are stored in the <ORACLE_
HOME>\Mobile\SDK\Oldb40 directory, as follows:

consroot.odb
webtogo.odb
<username>\acl.odb
 \conscli.odb
 \A<number>.odb

The following describes the purpose and access for these ODB files:

■ The consroot, acl, and conscli ODB files are used for Oracle Database Lite
data. The webtogo.odb file is only present when using a Web-to-Go application.
If you want to access the information within these ODB files, use
SYSTEM/MANAGER as the username/password.

■ The snapshot data for the application is contained within the A<number>.odb
file, where <number> is a randomly-generated number. You can specify the name
of this ODB file when you create your publication; see Chapter 5, "Using Mobile
Database Workbench to Create Publications" in the Oracle Database Lite Developer's
Guide for details.

If you want to access the snapshot data directly using msql or any other SQL tool,
use SYSTEM as the username and provide the password for the user that owns the
snapshot. For example, if the user John/Foo initiated the synchronization, to
access the A<number>.odb file for this snapshot, you would use SYSTEM/Foo as
the username/password.

6.4 Manage the Mobile Client
There are several tools that you can use on the client to manage functionality. The
following sections describe other tools that you can use in each platform:

■ Section 6.4.1, "Manage Your Clients Locally With the Mobile Client Workspace"

■ Section 6.4.2, "Use the mSync GUI to Initiate Synchronization of Your Linux,
WinCE, and Win32 Applications"

■ Section 6.4.3, "Reset the Mobile User Password"

■ Section 6.4.4, "Use the Device Manager Client GUI to Manage the Client-Side
Device"

■ Section 6.4.5, "Initiate Updates for the Oracle Lite Client"

■ Section 6.4.6, "Configure JAVA_HOME for Web-to-Go Clients"

■ Section 6.4.7, "Defragmentation and Reducing Size of the Client Application
Databases"

■ Section 6.4.8, "Communicate Between the Internet and Intranet Through a Reverse
Proxy"

Manage the Mobile Client

Managing Your Oracle Lite Mobile Client 6-5

6.4.1 Manage Your Clients Locally With the Mobile Client Workspace
Start the Mobile Client Workspace GUI tool for managing OC4J, Windows Web-to-Go,
Linux Web-to-Go, BC4J, or Branch Office Mobile clients. The Mobile Client Workspace
displays only the relevant functionality for the user that logs in. Use the Mobile Client
Workspace to manage the application or to initiate synchronization on the client-side
device.

■ Section 6.4.1.1, "Instructions for Using the Mobile Client Workspace"

■ Section 6.4.1.2, "Execute Mobile Applications Installed on Your Mobile Client"

■ Section 6.4.1.3, "Customize the Mobile Client Workspace"

■ Section 6.4.1.4, "Schedule Data Synchronization Jobs"

6.4.1.1 Instructions for Using the Mobile Client Workspace
The Mobile Client Workspace provides you access to your Mobile applications
through hyperlinks in a Web browser. The following tabs are available when you use
the Mobile Client Workspace for a Mobile client:

■ Section 6.4.1.1.1, "Display Installed Applications"

■ Section 6.4.1.1.2, "Configure the Mobile Client"

■ Section 6.4.1.1.3, "Enable Remote Access for Mobile Client"

■ Section 6.4.1.1.4, "Configure Application Synchronization Default"

■ Section 6.4.1.1.5, "Initiate Manual Synchronization"

■ Section 6.4.1.1.6, "Log Off"

6.4.1.1.1 Display Installed Applications The Applications tab displays the list of
applications that have been installed on the client, which you can execute. To access a
Mobile application, click the icon or application name. The Mobile Client Workspace
allows you to execute multiple applications concurrently in separate browsers.

6.4.1.1.2 Configure the Mobile Client To modify your Workspace configuration, select the
Configuration tab.

The configuration options appear on the left as shown in Figure 6–3:

Note: When you log on as an Administrator, the Mobile Manager is
listed as the available application.

Note: When you select the Configuration tab, maximize the window
to your display. If you do not, you might not be able to see all of the
configuration options on the left.

6-6 Oracle Database Lite Oracle Lite Client Guide

Figure 6–3 Configuration Options for Client Workspace

These options are described in the following sections:

■ Automatic Sync History

■ Workspace Settings

■ Application Settings

■ Change Password

■ List Jobs

■ Member Initialization

Automatic Sync History
This screen shows you the history for all automatic synchronization events that
occurred for your Mobile client. The following information is displayed about each
event:

Note: For member users, only the Change Password option is
shown.

Table 6–1 History of Automatic Synchronization Events for Mobile Client

Label Description

Event code An internal code that supplies more information to Oracle
Support, if called.

Event type An icon showing the outcome of the synchronization, as follows:

■ An X demonstrates there was an error.

■ An exclamation point indicates a warning.

■ An i indicates the synchronization was successful.

Timestamp Date and time of the automatic synchronization.

Event Description A message that describes the outcome of the automatic
synchronization between your Mobile client and the back-end
Oracle database.

Manage the Mobile Client

Managing Your Oracle Lite Mobile Client 6-7

In addition, you can perform the following:

■ If you have more than a single page of events listed, click Previous and Next to
view all events.

■ To delete one or more events, select the Delete checkbox of these items and then
click Save.

■ To delete all events on this screen, click Select All and then click Save.

■ To deselect all Delete checkboxes, click Clear All.

This screen displays what automatic synchronization events took place in the past and
the results of these events.

Workspace Settings
Configure your Mobile Client Workspace settings, such as display options and client
options. Table 6–2 discusses the Web client settings:

Delete Check the delete checkbox and click Save if you no longer wish
to see the history for this event.

Note: To configure an application to use the default setting for
automatic synchronization, see Section 6.4.1.1.4, "Configure
Application Synchronization Default".

Table 6–2 Workspace Configuration Options

Label Description

Display icons? Enables you to display Web application icons. To display Web
application icons, select Yes. If you do not want to display Web
application icons, select No.

Display description? Enables you to display Web application descriptions. To display
Web application descriptions, select Yes. If you do not want to
display Web application descriptions, select No.

Applications per row Enables you to specify the number of applications arranged in a
horizontal row in the Workspace.

Use default settings for
synchronization?

If you select this option, all applications (including new
applications) are synchronized at once. If you de-select this
option, then you can choose which applications synchronize—
for manual synchronization only. Using this list, you can reduce
sychronization time by selecting which applications you want to
synchronize. In this mode, you are notified when new
applications become available.

Mobile Client for OC4J or
Web-to-Go Mode

Selecting Always Offline enables you to work continuously. If
you want to use the backwards compatible option of
offline/online, select the Online/Offline option.

Ask before ugrading the
Mobile Client for OC4J or
Web-to-Go?

Selecting this option instructs the Mobile client to ask you before
downloading newer software versions for the Mobile client. If
you do not select this option, your Mobile client is automatically
upgraded the next time you synchronize if a new version is
available.

Table 6–1 (Cont.) History of Automatic Synchronization Events for Mobile Client

Label Description

6-8 Oracle Database Lite Oracle Lite Client Guide

Application Settings
Select the applications that you want to synchronize by default. In the default
synchronization mode, the Mobile Server synchronizes your client applications
automatically with the Mobile Server. See Section 6.4.1.1.4, "Configure Application
Synchronization Default" for full details.

Change Password
The password is stored on both the client and the Mobile server. To ensure that the
password is modified on both the client and the Mobile server, only change the
password using the Client Workspace when you have a connection to the Mobile
Server. See Section 6.4.3, "Reset the Mobile User Password" for more details.

List Jobs
You can schedule a time when synchronization is to be initiated on the client. This is
configured as a job initiated by the client. There is a small job engine on the client, so
when you set up a job to execute at a certain time and interval, it initiates the
application at the specified time. The only job that you can schedule on the client is for
synchronization. You should not schedule multiple client synchronization jobs for the
same time on the client. In fact, you should make sure that all other connections to the
database, such as mSQL, JDBC, and so on, are closed before starting the
synchronization. For more information on scheduling jobs on the server-side, see
Chapter 6, "Managing Jobs with the Job Scheduler" in the Oracle Database Lite
Administration and Deployment Guide.

Scheduled replication jobs will not run on client if there are any pending transactions
that have not been committed on that client.

Member Initialization
After the Mobile client is installed and the user completes the first synchronization,
you can use the member initialization screen to perform a batch initialization of any
selected members. Each of these members belong the the user that logged into the
client Workspace. This can be performed at any time after the first synchronization
assuming that there is an available network connection to the Mobile Server.

Enable Automatic Sync? By default, this is enabled. If checked, then automatic sync is
automatically enabled. Uncheck if you want to manually
synchronize this client yourself.

Number of Automatic Sync
History Messages to be
displayed per page.

This defines the number of history records to display on the
Automatic Sync History page. By default, this value is 25.

Enable File-Based Sync? By default, this is disabled. If checked, then file-based sync is
enabled. Uncheck if you want to synchronize this client over the
network. For details about file-based synchronization, see
Section 5.8, "Synchronizing to a File with File-Based Sync" in the
Oracle Database Lite Administration and Deployment Guide.

Note: The other method for member initialization is automatically
performed when the member requests a manual synchronization.

Table 6–2 (Cont.) Workspace Configuration Options

Label Description

Manage the Mobile Client

Managing Your Oracle Lite Mobile Client 6-9

After the successful authentication of each user, the schema for that user will be
created in the database using the password provided by the user. Once the schema is
created, the member may login to the system without requiring any connectivity to the
Mobile Server.

This is useful where connectivity to the Mobile Server is not always readily available;
thus, this option enables you to initialize all desired members at the most opportune
time.

To initialize one or more members of this user, perform the following:

1. Select the checkbox for all members you want to initialize.

2. Enter the password for all selected members, where the password of the member
should be same as the one set during creation of the member.

3. Click Save.

If any of the members fail to initialize, the confirmation page displays the members
that failed to initialize. The only reason that this can occur is if the incorrect password
is provided. Provide the correct password and try again.

If the user, the owner of these members, wishes to disable any member, then this user
should perform the following:

1. Select the Disable checkbox next to each member that you want to disable.
Alternatively, if you want to enable any disabled member, unclick the Disable
checkbox next to the desired members.

2. Click Save.

The Reset link discards any options selected on the Members Initialization page and
reload the first page.

6.4.1.1.3 Enable Remote Access for Mobile Client To block a remote machine from getting
access to the Mobile Client for Web, set the DISABLE_REMOTE_ACCESS parameter in
the client-side webtogo.ora file to YES. Once this parameter is set to YES and the
Mobile client is restarted, only the request coming from the local machine is served by
the Mobile client listener. Any other request is blocked and not served.

For Mobile Client for OC4J, this parameter will not turn off remote access, as the
access is controlled by the OC4J layer, not the Oracle Database Lite layer. For Branch
Office clients, this parameter must be set to NO, as all clients must have remote access.
For more information on the DISABLE_REMOTE_ACCESS parameter, see Section A.2,
"[WEBTOGO]" in the Oracle Database Lite Administration and Deployment Guide.

However, if you want to disable the remote access for the Mobile client for OC4J, then
perform the following in the OC4J configuration file on the Mobile client:

Open the <mobile_client_home>\mobile_client_
oc4j\j2ee\mobileclient\application-deployments\mobileclient\webt
ogo\orion-web.xml file.

Add the following lines after the the <orion-web-app> section:

<access-mask default="deny">
 <ip-access ip=<ip_address> mode="allow"/>
 <host-access domain="localhost" mode="allow"/>

Note: The DISABLE_REMOTE_ACCESS parameter only works for
Web-to-Go and Branch office clients.

6-10 Oracle Database Lite Oracle Lite Client Guide

</access-mask>

6.4.1.1.4 Configure Application Synchronization Default The Application Settings option
allows you to select the applications that you want to assign to the default
synchronization setting. In the default mode, the Mobile client synchronizes your
client application with the Mobile Server when the user requests synchronization.
Selecting fewer applications decreases the amount of data to download and speeds up
the synchronization process.

To select the applications for synchronization, click Application Settings. The
application settings page appears in the right frame of the Mobile Workspace and
displays the following information:

Table 6–3 describes the Application Settings page.

Select the Synchronize check box next to the application and click Save. If you make
an error, click Reset to return to the previous settings.

6.4.1.1.5 Initiate Manual Synchronization The Sync tab enables you to synchronize data
with the Oracle database. By default, when you click Sync, the Mobile Client for
Web-to-Go is connected to the Mobile Server and synchronizes data between them. In
addition, application updates and new applications accessible to the user are
downloaded from Mobile Server.

In this mode, you can work continuously whether you have a connection or not. You
only need a connection to the Mobile Server when you synchronize your data and
applications.

However, if you do not have connectivity, you can perform a file-based
synchronization. That is, if you are not able to synchronize because of a lack of
network availability, you can save your transactions in an encrypted file, which can be
manually copied over to the Mobile Server. Then, when the Mobile Server has updates
for the client, these updates are also saved to an encrypted file which are manually
uploaded by you.

To perform a file-based sync, do the following:

1. Enable File Based Sync on the Configuration->Workspace Settings page.

2. On the Sync page, click Sync. This causes the screen shown in Figure 6–4 to
appear.

Figure 6–4 Provide Filename for File-Based Sync

Table 6–3 Application Settings Page Description

Label Description

Synchronize If selected, the Mobile client synchronizes your client application
with the Mobile Server when the user initiates synchronization.

Manage the Mobile Client

Managing Your Oracle Lite Mobile Client 6-11

3. To send or receive synchronization data between the client and the Mobile Server,
perform the following:

■ To download synchronization transactions to an encrypted file, select the Send
radio button and enter the directory and filename for the destination file

■ To upload the synchronization file from the Mobile Server, select the Receive
radio button and browse for the encrypted file that was copied to the client.

For information on setting synchronization options, see Section 6.4.1.1.2, "Configure
the Mobile Client".

6.4.1.1.6 Log Off The Log Off tab automatically closes all running applications and
returns you to the logon page.

6.4.1.2 Execute Mobile Applications Installed on Your Mobile Client
Web-to-Go and OC4J applications appear in the Mobile Workspace with an icon,
name, and description.

The icon and application name are both hyperlinks. To execute a Web-to-Go or OC4J
application, click either the icon or application name.

The Web Mobile clients, such as OC4J or Web-to-Go, enable you to work disconnected
from the Mobile Server. You need a connection to the Mobile Server only when you
choose to synchronize any data changes from the client with the Oracle database.

The Web Mobile client propagates the tables that your applications use on the Mobile
Server to the Mobile client as database snapshots. When you define your snapshot,
you can use the SQL WHERE clause to specify a parameterized SQL query, where only
the row data that your application uses is downloaded to the client. Thus, you can
define what is downloaded to the client: the entire contents of the table or the subset of
information that is relevant to the specific user. Most applications specify a particular
subset of data that is relevant only to the user to be downloaded.

You can work continuously with Web Mobile clients storing your data changes in the
Oracle Lite database. When you click the Sync tab, the Web Mobile client updates the
Oracle database with any data changes you made on your client. The Mobile Server
downloads any new applications, application changes, or data changes to your client.

6.4.1.3 Customize the Mobile Client Workspace
You can customize the Mobile Client Workspace. See Section 4.5.2.10, "Customizing
the Workspace Application" in the Oracle Database Lite Developer's Guide.

6.4.1.4 Schedule Data Synchronization Jobs
The Mobile Workspace enables you to create data synchronization jobs for your site
from the OC4J or Web-to-Go Mobile client. This synchronization job automatically
triggers synchronization with the Mobile Server at the start date and at the specified
time for this job that you set using the Mobile Workspace. See Section 6.4.1.1.2,
"Configure the Mobile Client" for more information.

6-12 Oracle Database Lite Oracle Lite Client Guide

6.4.2 Use the mSync GUI to Initiate Synchronization of Your Linux, WinCE, and Win32
Applications

You can initiate synchronization of the client using the mSync GUI for Linux, WinCE
and Win32 clients, as shown in Figure 6–5.

Figure 6–5 Using the mSync GUI to Initiate Synchronization

To bring up the mSync GUI, execute msync.exe on WinCE and Win32 or msync on
Linux, which is located in the /bin subdirectory under the directory where you
installed the Mobile client. Modify the following supplied values, if incorrect:

■ Username and password for the user that is starting the synchronization.

■ Check if you want the password saved for future requests.

■ Host name where the Mobile Server is installed.

Click Sync to start the Synchronization. Click Apply to save any modifications you
made to the entries. Click Exit to leave the tool.

If there are software updates that are waiting to be downloaded to the client, then the
update tool is automatically executed after the end of the synchronization process. See
Section 6.4.5, "Initiate Updates for the Oracle Lite Client" for more information.

You can also modify the tool options by selecting the Tools Selection at the bottom of
the UI, as shown in Figure 6–6.

Note: See Section 4.3.1.2.1, "Define Username and Password" in the
Oracle Database Lite Administration and Deployment Guide for
conventions for creating the username or password.

Note: The only time that the client does not check for software
updates is if you are using Branch Office or the Synchronization APIs.
If you want to launch the update UI, then enter update on the
command line.

Manage the Mobile Client

Managing Your Oracle Lite Mobile Client 6-13

Figure 6–6 The mSync Tools Selection

The following sections describe the Tools options:

■ Section 6.4.2.1, "Network Options for MSync Tool"

■ Section 6.4.2.2, "Sync Options for MSync Tool"

■ Section 6.4.2.3, "Set User Context for Member"

■ Section 6.4.2.4, "Sync to a File Using File-Based Sync"

■ Section 6.4.2.5, "Use Mobile Client Tools on Linux"

6.4.2.1 Network Options for MSync Tool
Figure 6–7 displays the Network options screen where you can specify a proxy if your
network provider requires that you use a proxy server to access the internet. . Click
Use Proxy to use a proxy and then enter the proxy server and port number.

Figure 6–7 The mSync Network Options Selection

6.4.2.2 Sync Options for MSync Tool
Figure 6–8 displays the Sync Options screen where you can specify the following:

■ Mobile User Password—Modify the existing password. The Mobile user password
is stored on both the client and the Mobile Server. To ensure that both are
modified, only change the password when connected to the Mobile Server. See
Section 6.4.3, "Reset the Mobile User Password" for details.

6-14 Oracle Database Lite Oracle Lite Client Guide

■ High Priority—Select this checkbox to specify synchronizing only High Priority
data. This specifies under what conditions the different priority records are
synchronized. By default, the value is LOW, which is synchronized last. If you
have a very low network bandwidth and a high ping delay, you may only want to
synchronize your HIGH priority data.

When you select this checkbox, you are enabling pre-defined high priority records
to be synchronized first. This only for those publication items that have specified a
restricting predicate. See Section 1.2.10, "Priority-Based Replication" in the Oracle
Database Lite Troubleshooting and Tuning Guide for more information.

■ Force Refresh—The force refresh option is an emergency only synchronization
option. Check this option when a client is corrupt or malfunctioning, so that you
decide to replace the Mobile client data with a fresh copy of data from the
enterprise data store with the forced refresh. When this option is selected, any data
transactions that have been made on the client are lost.

When a force refresh is initiated all data on the client is removed. The client then
brings down an accurate copy of the client data from the enterprise database to
start fresh with exactly what is currently stored in the enterprise data store.

Figure 6–8 The mSync Options Selection

6.4.2.3 Set User Context for Member
If a member is attached to more than one user, then you must specify the user, also
known as the data owner, under which the member is synchronizing. Select the
appropriate user as the data owner under which to perform the synchronization.

Figure 6–9 Setting the User Context

Manage the Mobile Client

Managing Your Oracle Lite Mobile Client 6-15

6.4.2.4 Sync to a File Using File-Based Sync
Once you select File Based Sync off the Tools menu, the screen shown in Figure 6–10 is
displayed. To synchronize to a file, click on the File based sync checkbox and perform
the following:

■ If you select the send radio button, then browse for a directory where you want
the client to save the upload data file from the Mobile client for the Mobile Server.

■ If you select the receive radio button, then provide the location for the download
data file from the Mobile Server.

For full details on File-Based Sync, see Section 5.8, "Synchronizing to a File with
File-Based Sync" in the Oracle Database Lite Administration and Deployment Guide.

Figure 6–10 File Sync Options

6.4.2.5 Use Mobile Client Tools on Linux
The Mobile Client for Linux supports the msync, dmagent and update tools. To use
the UI-based tools, use the following executables: msync, dmagent, or update.

To synchronize on a Linux client with the command line tool, use the msync
executable for synchronization, as follows:

./msync username/password@server[:port][@proxy:port]

For example,

./msync john/john@testserver:8000

The other msync options, such as -save, -a, -password and -force currently will
not result in a successful sync. This is a limitation only for the msync executable in the
MDK installation on Linux.

6.4.3 Reset the Mobile User Password
Because the Mobile user password is stored on both the client and the Mobile Server,
modify the password as follows:

■ Modify the password on the client using either mSync UI or Client Workspace.
Only modify the password using these tools if you are connected to the Mobile
Server to ensure that the user password change is propagated to the Mobile
repository.

■ Modify the Mobile user password in the Mobile Manager in the User Properties
page. If you simply want to invalidate the Mobile user, then you only have to
modify the password on this screen; however, if you want to reset the password
on both the Mobile Server and the Mobile user, then also send a Reset Password

6-16 Oracle Database Lite Oracle Lite Client Guide

command from the Device Management section in the Mobile Manager to the
Mobile client.

After sending the Reset Password command, you need to perform a
synchronization on the client with the new password. Then, you will be able to
connect to the client database using the new password.

See Section 11.2, "Which Password is Which" in the Oracle Database Lite Administration
and Deployment Guide for details on all Oracle Lite Database passwords.

6.4.4 Use the Device Manager Client GUI to Manage the Client-Side Device
On any client, you can manage the Mobile device client software using the Oracle Lite
Device Manager. See Section 7.8, "Using the Device Manager Agent (dmagent) on the
Client" in the Oracle Database Lite Administration and Deployment Guide for a full
description.

6.4.5 Initiate Updates for the Oracle Lite Client
You can initiate a request for software updates from the Mobile Server by executing
the Oracle Database Lite Update tool. For details, see Section 7.7.3, "Initiate Updates of
Oracle Database Lite Software for Mobile Clients" in the Oracle Database Lite
Administration and Deployment Guide.

6.4.6 Configure JAVA_HOME for Web-to-Go Clients
Web-to-Go clients can execute against the Java version you specify, either J2SDK or
J2RE. You can specify the JAVA_HOME that points to the desired JVM or JRE
installation using one of the following methods:

■ You can pre-configure a default JAVA_HOME value for all users by editing the
WEBTOGO.INF file on the server before the Web-to-Go client is installed. When
you invoke the setup.exe file on the Mobile client device, the entries in the
pre-configured WEBTOGO.INF file are placed in the webtogo.ora file, which is
installed on the Mobile client.

You can only specify the location of the Java environment on the Web-to-Go
Mobile clients if you know the install location of Java on the device where the
client will be installed. This would apply to devices that are pre-imaged
specifically for Web-to-Go Mobile clients. For full details on how to pre-configure
the JAVA_HOME value, see Section 7.2, "Configuring Mobile Clients Before
Installation" in the Oracle Database Lite Administration and Deployment Guide.

■ For Web-to-Go clients that have already been installed on a Win32 platform, you
can set the JAVA_HOME parameter in the webtogo.ora file on the Mobile client to
point to a specific Java environment with the setjavahome.bat utility.

For example, the following sets the JAVA_HOME parameter in the webtogo.ora
file to point to the C:\jdk1.5 directory:

setjavahome.bat <JAVA_HOME>

Note: If you modify the password on the server and do not send the
Reset Password, then the client cannot synchronize. In this case, either
send the Reset Password or return the password back to its original
value on the server before retrying the synchronization.

Manage the Mobile Client

Managing Your Oracle Lite Mobile Client 6-17

The following examples show how the setjavahome.bat utility sets the JAVA_
HOME parameter on the Web-to-Go Mobile client to C:\jdk1.5 and to
C:\program files\jdk1.5. The second execution shows that when you have
a path name that includes white spaces, you must wrap the directory path within
double quotes.

setjavahome.bat C:\jdk1.5
setjavahome.bat "C:\program files\jdk1.5"

6.4.7 Defragmentation and Reducing Size of the Client Application Databases
On each client device, an Oracle Lite database stores the application data—either as an
embedded database that exists solely for the application or as a repository for data for
a specific user that is synchronized with a back-end Oracle database.

You can use the DefragDB utility on your database to perform the following
optimizations:

■ Reduce size of Oracle Lite databases by defragmenting the Oracle Lite database.

■ Remove any BLOB data from the Oracle Lite database. All BLOB data—both
binary and character— and indexes are stored in separate files with the extension
of .obs for Oracle Blob Store. This changes the size limit on your device to either
the operating system file size limitations or 16 terabytes.

Before executing this tool, you must stop ALL applications, as the database is erased
during this process. This includes the Oracle Lite applications, such as the Sync Agent,
Web-to-Go, and so on. To stop the Sync Agent, see Section 5.4.2, "Start, Stop, or Get
Status for Automatic Synchronization" in the Oracle Database Lite Administration and
Deployment Guide.

For full details on the DefragDB tool, see Section C.7, "DefragDB to Defragment and
Reduce Size of the Oracle Lite Database" in the Oracle Database Lite Client Guide.

6.4.8 Communicate Between the Internet and Intranet Through a Reverse Proxy
If your Mobile client is on either side of the firewall, you can set up a proxy or reverse
proxy to facilitate communication between the Mobile client and Mobile Server. See
Section 11.6, "Using a Firewall Proxy or Reverse Proxy" in the Oracle Database Lite
Administration and Deployment Guide.

6-18 Oracle Database Lite Oracle Lite Client Guide

Managing the Oracle Lite Database 7-1

7
Managing the Oracle Lite Database

The following sections describe how to manage the Oracle Lite Relational Database
Management System (RDBMS):

■ Section 7.1, "Moving Your Client Data Between an Oracle Lite Database and an
External File"

■ Section 7.2, "Backing Up an Oracle Lite Database"

■ Section 7.3, "Encrypting a Database"

■ Section 7.4, "Support for Linguistic Sort"

■ Section 7.5, "Discovering Oracle Lite Database Version Number"

■ Section 7.6, "Row Sort Limitations of the Oracle Lite Database"

■ Section 7.7, "Troubleshooting the Source of a Checksum Error Against Database"

■ Section 7.8, "Enable Tracing for the Oracle Lite Database"

7.1 Moving Your Client Data Between an Oracle Lite Database and an
External File

You can move data between an Oracle Lite database and an external file either
through programmatic APIs or the Load Utility (OLLOAD). The following sections
describe both methods:

■ Section 7.1.1, "Move Data Between an Oracle Lite Database and an External File
Using Programmatic APIs"

■ Section 7.1.2, "Oracle Database Lite Load Utility (OLLOAD)"

7.1.1 Move Data Between an Oracle Lite Database and an External File Using
Programmatic APIs

Using the Oracle Database Lite Load APIs, you can develop applications to load data
from an external file into a table in Oracle Database Lite, or to unload (dump) data
from a table in Oracle Database Lite to an external file. The details of the APIs and file
formats are provided in Appendix C.11.2, "Oracle Database Lite Load Application
Programming Interfaces (APIs)".

7.1.2 Oracle Database Lite Load Utility (OLLOAD)
The Oracle Database Lite Load Utility enables you to load data from an external file
into a table in Oracle Database Lite, or to unload (dump) data from a table in Oracle

Backing Up an Oracle Lite Database

7-2 Oracle Database Lite Oracle Lite Client Guide

Database Lite to an external file. For more information on the OLLOAD utility, see
Appendix C.11.1, "OLLOAD".

7.2 Backing Up an Oracle Lite Database
You can backup the Oracle Lite database either by using the backupdb utility or by
copying the files to another location.

Oracle Database Lite uses the ODB and OBS files with dependent log files that can be
backed up by copying to another location. Before any files can be copied, disconnect
all applications that access the database and shut down the multi-user service, if
running. Once that has been accomplished, execute the backupdb utility, which
copies the *.odb, *.obs, and *.opw files to the filename of your choice to make a
backup of the database.

backupdb DSN|NONE DBName backup_filename [DB_password]

For full details, see Appendix C.6, "BACKUPDB".

7.3 Encrypting a Database
You can encrypt the Oracle Lite database. Once encrypted, the data stored in the
database files cannot be interpreted by examining the files. A password is used to
derive a 128-bit encryption key. Oracle Database Lite uses the Advanced Encryption
Standard (AES) encryption.

For information on encrypting the database used by the client, see Appendix C.4,
"ENCRYPDB".

If you do not want to use AES encryption, then you can insert your own encryption
module to supplant AES; see Section 14.3, "Providing Your Own Encryption Module
for the Client Oracle Lite Database" for complete details.

7.4 Support for Linguistic Sort
Linguistic sort is a feature for the ASCII version of the Oracle Lite database. It
produces culturally acceptable order of strings for a specified language or collation
sequence. The ASCII version supports several code pages defined by single-byte 8-bit
encoding schemes. Each of these code pages is a super set of 7-bit ASCII, and the
additional accented characters necessary to support certain European languages are
included in the upper 128 bytes.

A new string comparison mechanism is provided that produces strings in a
linguistically correct order by mapping each collation element of a string to the
corresponding 8-bit value of the supported code page.

The only supported languages for linguistic sort are French, German, Czech and
XCzech. The collation sequence for these Oracle Lite databases can be specified with
the NLS_SORT parameter.

All other languages use the BINARY collation sequence, which does not enable
linguistic sort.

7.4.1 Creating Linguistic Sort Enabled Databases
The linguistic sort capability must be enabled when the database is created using the
CREATEDB command line utility with the <collation_sequence> enabled.

Support for Linguistic Sort

Managing the Oracle Lite Database 7-3

The behavior of the ORDER_BY clause and the WHERE condition are determined by
how the NLS_SORT parameter is implemented. Binary sorting is the default setting,
and is used unless the <collation_sequence> parameter is set to use the linguistic
sort ordering rules.

NLSRT is not supported in the current version of Oracle Database Lite. Therefore,
NCHAR data type is not yet available.

7.4.2 How Collation Works
Collation refers to ordering of strings into a culturally acceptable sequence. A collation
sequence is a sequence of all collation elements from an alphabet from smallest
collation order to the largest. Once a collation sequence is given, orders of all strings
from the same alphabet are fixed. As such, the collation sequence encodes the
linguistic requirements on collation. A collation element is the smallest sub-string that
can be used by the comparison function to determine the order of two strings.

7.4.3 Collation Element Examples
Normally, a collation element is just one character. In binary sorting, only one
property, the code value that represents a character, is used. But in linguistic sorting,
usually three properties. The primary level of difference is the base character. The
secondary level of difference is for diacritical marks on a given base character. The
tertiary level of difference is for the case of a given character. Punctuation can function
as a fourth level of difference, but comparisons for punctuation occur last and are
made at the binary rather than the linguistic level. These are used for each collation
element. The following sections contain examples that demonstrate sorting priorities.

7.4.3.1 Sorting Normal Characters
This section lists a set of examples that describe how to sort normal characters.

Example 1

'a' < 'b'. There is a primary difference between them on the character level.

Example 2

'À' > 'a'. This difference occurs on the secondary level. Note that 'À'and 'a' are
considered "equal" on the primary level.

Example 3

'À' < 'à' in FRENCH but 'À' > 'à' in GERMAN. This difference on the tertiary level.
Note that 'À' and 'à' are considered being "equal" on the primary and secondary level.
Also note that the case convention may be different for different language.

Example 4

'às' < 'at'. This is a difference on the primary level. This example shows the role of
difference levels: the lower level differences are ignored if there is a primary level
difference anywhere in the strings.

Example 5

Note: For more information on the CREATEDB utility, see
Section C.2, "CREATEDB".

Discovering Oracle Lite Database Version Number

7-4 Oracle Database Lite Oracle Lite Client Guide

'+data' < '-data' <'data' <'data-'. If strings are compared and present no
difference on the primary, secondary, or tertiary levels, they are compared for
punctuation.

7.4.3.2 Reverse Sorting of French Accents
Some languages, particularly French, require words to be ordered on the secondary
level according to the last accent difference. This behavior is known as French
secondary sorting or French accent ordering.

Example

'côte' < 'coté' in FRENCH but 'coté' < 'côte' in GERMAN. Note that the secondary
difference of 'e' and 'é' occurred later than those of 'ô' and 'o'.

7.4.3.3 Sorting Contracting Characters
There are some special cases where two or more characters in a group can function as
a single collation element. These types of collation elements are called 'contracting
characters' or 'group characters'. In these cases each of these characters properties are
assigned appropriate values.

Example

'h' < 'ch' < 'i' in XCZECH. Here 'ch' is assigned a primary property value which
differentiates it from 'h' and 'i', such that 'h' < 'ch' < 'i'. Note that 'ch' is treated as a
single character.

7.4.3.4 Sorting Expanding Characters
If a letter sorts as if it were a sequence of more than one letter, it is called an
'expanding character'. For example, in German the sharp s (ß) is treated as if it were a
string of two characters 'ss' when comparing with other letters.

7.4.3.5 Sorting Numeric Characters
Only sorting of single digit characters from '0' to '9' is currently supported. For the
supported European languages a digit character is always sorted as greater than any
alphabetic character. For other languages this may be not the same. Other numeric
characters such as Roman numeric characters and counting sequences, such as "one",
"two", "three", are not supported at this time.

Example

'1' > 'z' in any European language, '1' < 'a' in LATVIAN. Note that this difference
occurs on the primary level.

7.5 Discovering Oracle Lite Database Version Number
Use the ODBINFO utility to discover the version number and volume identifier of the
Oracle Lite database. See Section C.9, "ODBINFO" for full details.

7.6 Row Sort Limitations of the Oracle Lite Database
Currently, the Oracle Database Lite engine cannot sort any row that exceeds 4040
bytes in length. If the selected columns exceed this length, then the database engine
issues an error. Therefore, you cannot recover queries that use the UNION operation
where both select clauses sort intermediate results, where the returned results are long
rows with size greater than 4040 bytes.

Enable Tracing for the Oracle Lite Database

Managing the Oracle Lite Database 7-5

7.7 Troubleshooting the Source of a Checksum Error Against Database
You can perform diagnostics if you experience database corruption due to file system
write errors, I/O errors, or a media device problem. If you receive a POL-3207 error,
you may wish to execute the validatedb tool to see if it is a checksum error. Then,
setting OLITE_WRITE_VERIFY to TRUE generates error reporting if a checksum error
occurs on the device for the Mobile client.

For more information, see Section A.2.16, "OLITE_WRITE_VERIFY".

7.8 Enable Tracing for the Oracle Lite Database
When an unexpected error is reported, users need to identify the location and cause of
the error. Errors can be caused due to problems in the application code, Oracle
tools—such as forms, SQLJ—or in the Oracle Lite database. Errors also occur in simple
environments where a user application talks directly to the Oracle Lite database
through JDBC or ODBC drivers. It may not be obvious which component is at
fault—whether it is the user application, JDBC or ODBC drivers, or the core database
runtime system.

If the optimizer spends too much time evaluating alternative plans or collecting index
statistics, a query may take a long time for compilation. If the execution plan selected
by the optimizer is not optimal, the query may also take a long time during execution.
Based on these criteria, the tracing facility provides the compilation time and the
execution plan.

The following sections describe how to set and use tracing.

■ Section 7.8.1, "Enabling Trace Output"

■ Section 7.8.2, "Description of Trace Information"

7.8.1 Enabling Trace Output
By setting the parameter OLITE_SQL_TRACE = YES in the polite.ini or
polite.txt file on the client device, Oracle Database Lite generates a trace file
named oldb_trc.txt that shows the following:

■ The order tables are accessed by a query.

■ The table scan access method used.

■ The value of any bind variables utilized by the query.

■ The time it takes for the first record to be retrieved.

These are the main items reported that you can use to tune the majority of SQL
queries.

If the trace file identifies that a full table scan is occurring, the most common way to
get better performance from the query is to add an index that accommodates that
query.

When you enable tracing, the trace information is dumped to a file named oldb_
trc.txt in the current working directory of the database process. If the file already

Note: Any value other than YES disables the tracing feature. The
parameter value is checked once during database startup. Hence,
users must set this value before connecting to the database.

Enable Tracing for the Oracle Lite Database

7-6 Oracle Database Lite Oracle Lite Client Guide

exists, then the trace output is appended to the end. If it does not exist, then a new file
is automatically created. For a database service on Windows or the Oracle Lite
database daemon for a Linux platform, the current working directory is specified by
the wdir parameter during startup of the database service or daemon.

7.8.2 Description of Trace Information
The following trace information is provided:

Note: To implement the tracing feature, the database process must
contain permissions to create the trace file in the current working
directory.

Table 7–1 Trace Output

Trace Output Description

Statement Text Each time a SQL statement is prepared, its text is dumped into
the trace file. The SQL statement itself is output without any
formatting. If a SQL statement contains a new line character, it is
also included in the SQL statement output.

Compilation Time After the SQL statement is compiled, the compilation time is
printed.

Execution Plan If there are no errors, the execution plan is printed when
available. Only statements that contain a WHERE clause generate
an execution plan. The printed plan contains the execution order
of tables for each sub-select.

Bind Value If a SQL statement contains markers, then the bind value is
printed for every line. Each value for the marker or bind variable
is printed on a separate line in the following format.

Marker [<number>]: <Value>

Where, <number> is the number of the marker and <value>
denotes the value of the marker before execution.

Temporary Table Created Each time a temporary table is created, its name is dumped into
the trace file.

Table Access Each time a table is accessed, the following information is
dumped into the trace file:

■ Table Name: The name of the table been accessed is
dumped into the trace file.

■ Access Method: The access method used by the database is
dumped into the trace file.

For a description of how this information is presented, see
Section 7.8.2.1, "Table Name Output".

Temporary Table Sorted Each time a temporary table is sorted, its name and sorting time
(in milliseconds) are dumped into the trace file.

First Fetch Time If the SQL statement is a SELECT statement, the time spent on
fetching the first row is dumped into the trace file.

Tid The thread ID is dumped into the trace file in front of some of
the dumped information. The thread is displayed in the
following format:

Tid: <thread id>

Enable Tracing for the Oracle Lite Database

Managing the Oracle Lite Database 7-7

7.8.2.1 Table Name Output
The name of the table that is currently being accessed and the method used to access
the table are printed in the following formats.

■ If the table is accessed sequentially, the format is:

Table Name: <table name>

Access Method: Sequential

Where <table name> is the name of the table being accessed.

■ If indices are used, the format is:

Table Name: <table name>

Access Method: Term[<number>], Index No: <index number>,
 IndexName: <index name>

<table name> is the name of the table being accessed.

Term[<number>] is the internal representation of the conjunct search conditions
in the WHERE clause.

<index number> is the index number. Each index has an unique number in the
database.

<index name> is the name of the index if any.

Enable Tracing for the Oracle Lite Database

7-8 Oracle Database Lite Oracle Lite Client Guide

Oracle Database Lite Data Access APIs 8-1

8
Oracle Database Lite Data Access APIs

To access the data within the ODB file from your application through one of the
following APIs:

■ For relational database development:

■ ODBC—See Section 8.1, "ODBC" for more information.

■ JDBC—See Section 8.2, "JDBC" for more information.

■ ADO.NET—See Section 8.3, "ADO.NET" for more information.

Any interface that supports ODBC or JDBC data sources, such as ADO.Net,
can also be used to access Oracle Database Lite. The interfaces can be used
either independently or in combination.

■ For object and relational database development:

■ Simple Object Data Access (SODA)—See Section 8.4, "SODA" for more
information.

The following sections describe the different development interfaces that you can use
to store and retrieve data from the file-based Oracle Lite database:

■ Section 8.1, "ODBC"

■ Section 8.2, "JDBC"

■ Section 8.3, "ADO.NET"

■ Section 8.4, "SODA"

8.1 ODBC
The Microsoft Open Database Connectivity (ODBC) interface is a procedural, call-level
interface for accessing any SQL database, and is supported by most database vendors.
It specifies a set of functions that allow applications to connect to the database, prepare
and execute SQL statements at runtime, and retrieve query results.

You can call ODBC from within C or C++ applications.

Oracle Database Lite supports Level 3 compliant ODBC 2.0 and the ODBC 3.5 drivers
through Oracle Database Lite ODBC drivers with some restrictions. The ODBC 2.0
driver is installed by default. The ODBC 3.5 driver should be used solely for the
standalone application that uses an embedded Oracle Lite database.

To use the ODBC 3.5 driver, you need to configure the ODBC.INI file. On Windows,
you can modify the ODBC driver either with the odbcad32 command-line tool or by
executing the ODBC Administrator GUI tool by clicking Control Panel ->
Administrative Tools -> Data Sources (ODBC).

JDBC

8-2 Oracle Database Lite Oracle Lite Client Guide

For a full description of using the ODBC drivers on the client, see Chapter 9, "ODBC
Drivers". For an example, see the Oracle Database Lite ODBC sample application, as
described in Section 9.2, "Executing the ODBC Examples".

8.2 JDBC
The Java Database Connectivity (JDBC) interface specifies a set of Java classes that
provide an ODBC-like interface to SQL databases for Java applications. JDBC, part of
the JDK core, provides an object interface to relational databases. Oracle Database Lite
conforms to the JDBC 1.2 API specification standard. You can use JDBC to access data
from within your Java applications.

Oracle Database Lite supports JDBC through an Oracle Database Lite Type 2 and Type
4 JDBC drivers that interpret the JDBC calls and pass them to Oracle Database Lite.
The Type 4 JDBC driver can only be used for the multi-user service, as described in
Chapter 5, "Building a Client/Server Environment".

For your applications, you must include the correct binaries when you package the
application, as described in Section 4.3, "Packaging Your Embedded Application With
the Oracle Database Lite Runtime".

See Chapter 10, "JDBC Programming" for more information on using JDBC.

8.3 ADO.NET
The Oracle Database Lite ADO.NET Provider implements the Microsoft ADO.NET
specification. Use this programming interface to access data in .NET applications. The
Oracle Database Lite ADO.NET data provider supports both .NET and Compact .NET
frameworks. You can access data within your database using ADO.Net from within
C# applications.

The Oracle Database Lite ADO.NET provider resides in the
Oracle.DataAccess.Lite namespace. The ADO.Net classes that enable you to
connect to the Oracle Lite database, to manage transactions, create commands, manage
performance and manage BLOB objects are described in Chapter 11, "Oracle Database
Lite ADO.NET Provider".

8.4 SODA
SODA is an interface for Oracle Database Lite development using C++. It provides
object-oriented data access using method calls, relational access using SQL and
object-relational mapping to bridge the gap between the two.

Object functionality is approximately three times faster than ODBC for simple
operations. It allows rich datatypes—such as arrays, object pointers, and standard SQL
columns. A programmer can store any data structure in the database and not worry
about relational design or performing joins.

A C++ developer can use the interface for executing SQL statements. The resulting
code is shorter and clearer than ODBC code. SQL queries can return objects, which can
be examined and modified directly through the object-oriented layer without calling
any additional SQL statements.

Note: You cannot use ODBC 3.5 for any multi-user listener
application.

SODA

Oracle Database Lite Data Access APIs 8-3

Finally, object-relational mapping enables the application to access relational data as if
it was an object hierarchy. This is essential for replicating rich data types or object
pointers to the Oracle database server.

For more information, see Chapter 12, "Using Simple Object Data Access (SODA)".

SODA

8-4 Oracle Database Lite Oracle Lite Client Guide

ODBC Drivers 9-1

9
ODBC Drivers

The following sections describe the support for ODBC and samples:

■ Section 9.1, "Supported ODBC Drivers for Oracle Database Lite"

■ Section 9.2, "Executing the ODBC Examples"

9.1 Supported ODBC Drivers for Oracle Database Lite
The Microsoft Open Database Connectivity (ODBC) interface is a procedural, call-level
interface for accessing any SQL database, and is supported by most database vendors.
It specifies a set of functions that allow applications to connect to the database, prepare
and execute SQL statements at runtime, and retrieve query results.

Oracle Database Lite supports Level 3 compliant ODBC 2.0 and the ODBC 3.5 drivers
through Oracle Database Lite ODBC drivers with the following restrictions:

■ ODBC 2.0 driver: The default driver for all Oracle Database Lite components. This
will be installed by default, unless otherwise configured.

■ ODBC 3.5 driver : If you want to use the ODBC 3.5 driver, you must configure the
ODBC.INI file to use the olod3540.dll as the ODBC driver. Configure the
ODBC.INI file by executing the ODBC administrator. On Windows, you can
modify the ODBC driver either with the odbcad32 command-line tool or by
executing the ODBC Administrator GUI tool by clicking Control Panel ->
Administrative Tools -> Data Sources (ODBC).

If your application uses the ODBC 3.5 driver, link with the olod3540.lib, which
is the ODBC 3.5 driver library. The data sources that use the ODBC 3.5 driver for
each connection must specify the correct library in the Driver32 field.

If you want to use the Visual Studio 2005 built-in features to design database
applications, then you must use the ODBC 3.5 driver.

For more information on ODBC, see the following:

■ Microsoft ODBC documentation.

■ Using ODBC within a stored procedure, as described in Section 13.6.2, "Using
Stored Procedures to Return Multiple Rows".

Note: A sample for using ODBC to access the Oracle Lite database is
in the <ORACLE_HOME>\Mobile\Sdk\samples\odbc\win32\
c_samples directory.

Executing the ODBC Examples

9-2 Oracle Database Lite Oracle Lite Client Guide

9.2 Executing the ODBC Examples
The ODBC examples are located in <ORACLE_HOME>\Mobile\Sdk\Samples and
must be compiled using a C++ complier. To build them, use nmake.

There are five ODBC examples: odbctbl, odbcview, odbcfunc, odbctype, and
long. You use the POLITE DSN to execute these examples. The POLITE DSN is
automatically created during the Mobile Development Kit installation.

The first four examples have their own output windows listing the activity log.
Closing the current example window causes the next example to be run. The output
displayed in the example windows is also printed in the following log files:
odbctbl.log, odbcview.log, odbcfunc.log, odbctype.log. The long
example output is collected in the output file: long.out.

The following sections describe the functionality of the samples:

■ Section 9.2.1, "ODBCTBL"

■ Section 9.2.2, "ODBCVIEW"

■ Section 9.2.3, "ODBCFUNC"

■ Section 9.2.4, "ODBCTYPE"

■ Section 9.2.5, "LONG"

9.2.1 ODBCTBL
This is an ODBC SQL table example, which shows how to manipulate tables using the
ODBC API. It creates the EMP table with columns ID, NAME, START_DATE, SALARY.
After creation, it populates this table with data, performs an update on the salary
column, selectively deletes some rows, then selects from the resulting table and shows
the results of the fetch operation. At the end, the EMP table is dropped.

9.2.2 ODBCVIEW
This is an ODBC SQL view example, which demonstrates how to manipulate views
using the ODBC API. It creates the EMP table and the HIGH_PAID_EMP view, selecting
the full name (using the CONCAT scalar function), HIRE_DATE and SALARY from the
EMP table. Then, the example populates the EMP table and selects from the HIGH_
PAID_EMP view to show the populated data. The salary column of EMP is updated,
some rows are delete, and a select from HIGH_PAID_EMP is issued to demonstrate
how the changes are reflected in the view. Finally, the view and the table are dropped.

9.2.3 ODBCFUNC
This is an ODBC SQL scalar functions example, which shows you how to use scalar
functions in the ODBC API. It creates table EMP, populates it with the data, then
performs a select on ID, FULL_NAME from EMP. When it calculates the full name, it
uses the ODBC scalar function CONCAT—with last and first names as arguments. The
example updates the table, converting the last name to uppercase and first name to
lowercase for IDs less than three using ODBC scalar functions UCASE and LCASE. The
new data is selected and displayed again. Finally, the table EMP is dropped.

9.2.4 ODBCTYPE
This is ODBC SQL types example, which shows you how to manipulate different data
types using the ODBC API. This test creates the EMP table, populates it with data,
selects all the rows and displays the result. However, the columns are bound

Executing the ODBC Examples

ODBC Drivers 9-3

differently from the previous tests. First, it calls SQLNumResultCols to find the
number of result columns. Then, for each result column, it calls SQLDescribeCol to
retrieve all of the information about that column, such as column name, column name
length, column type, column length, column scale, and so on. This information is used
to bind the column. Thus, you can see how you can retrieve the type information from
the database using the ODBC API.

9.2.5 LONG
This example exercises the basic read/write functions of SQL LONG VARCHAR. It first
drops, then creates the LONG_DATA table with one LONG VARCHAR column and inserts
the data into the table. For each row the data is put in frames, where each frame
represents a buffer of long varchar data (of length 4096). The example uses
SQLParamData and SQLPutData to send each frame to populate the row. Then,
issues a select to fetch the rows and read long varchar data from the table. For each
row, the data is also read in frames, using SQLGetData until SQL_NO_DATA_FOUND is
returned. These actions are logged into the long.out file.

Executing the ODBC Examples

9-4 Oracle Database Lite Oracle Lite Client Guide

JDBC Programming 10-1

10
JDBC Programming

The following sections describe the Oracle Database Lite support for JDBC
programming:

■ Section 10.1, "JDBC Compliance"

■ Section 10.2, "JDBC Environment Setup"

■ Section 10.3, "JDBC Drivers to Use When Connecting to the Oracle Lite Database"

■ Section 10.4, "DataSource Connection"

■ Section 10.5, "Java Datatypes and JDBC Extensions"

■ Section 10.6, "Limitations"

■ Section 10.7, "New JDBC 2.0 Features"

■ Section 10.8, "J2ME Support"

10.1 JDBC Compliance
Oracle Database Lite provides a native JDBC driver that allows Java applications to
communicate directly with the Oracle Database Lite object relational database engine.
The Oracle Database Lite implementation of JDBC complies with JDBC 1.2. In
addition, Oracle Database Lite provides certain extensions specified by JDBC 2.0,
which are compatible with the Oracle database JDBC implementation. For a complete
JDBC reference, see the Sun Microsystems Web site.

10.2 JDBC Environment Setup
For your Java applications using the client/server model, include the olite40.jar,
which is located in OLITE_HOME/bin, in the system CLASSPATH on the server
machine and in the user CLASSPATH on the client machine.

When using the Oracle Lite JDBC driver in your OC4J application, use the default
classloader instead of a per-application classloader, which many J2EE containers use.
Ensure that the olite40.jar is in the OC4J CLASSPATH when OC4J initiates and not
in the /lib subdirectory of your application WAR file.

Note: A sample for using JDBC to access the Oracle Lite database is
in the <ORACLE_HOME>\Mobile\Sdk\samples\jdbc directory.

JDBC Drivers to Use When Connecting to the Oracle Lite Database

10-2 Oracle Database Lite Oracle Lite Client Guide

10.3 JDBC Drivers to Use When Connecting to the Oracle Lite Database

Oracle Database Lite supports Type 2 and Type 4 drivers.

■ The Type 2 driver uses native code on the client side through which it interfaces
with the Oracle Database Lite ODBC driver.

■ The Type 4 JDBC driver is a pure Java driver and uses the Oracle Database Lite
network protocol to communicate with the Oracle Database Lite service. Before
using this driver, ensure that you start Oracle Database Lite. Any Java applet can
use the Type 4 JDBC driver.

The supported Type 2 and Type 4 drivers are described in the following sections:

■ Section 10.3.1, "Type 2 Driver"

■ Section 10.3.2, "Type 4 (Pure Java) Driver Connection URL Syntax"

10.3.1 Type 2 Driver
For most applications, use the type 2 driver for connecting to the database. You can
use the type 2 driver to connect either to the local Oracle Lite database or to the server
where a Multi-User Service is managing the Oracle Lite databases.

■ To connect to the local Oracle Lite database, use the following URL syntax:

jdbc:polite[:uid / pwd]:localDSN[;key=value]*

where the localDSN is the DSN name for the local Oracle Lite database (the ODB
file on the local machine) and the optional key=value pairs are listed in Table 10–1.

The following example retrieves a connection to the local Oracle Lite database,
where the DSN name is polite:

DriverManager.getConnection("jdbc:polite:polite","system","admin");

■ To access the Oracle Lite database on a remote host where a Multi-User Service or
Branch Office is located, use the following URL syntax:

jdbc:polite[:uid / pwd]@[host]:[port]:serverDSN [;key=value]*

where the host, port, and serverDSN identify the host, port and DSN of the remote
host where the Oracle Lite database (the ODB file on the local machine) and the
multi-user service is located. The optional key=value pairs are listed in Table 10–1.

For more information on how to install and start the Multiuser Oracle Database
Lite Service, refer to Chapter 5, "Building a Client/Server Environment".

You can provide additional configuration information in the JDBC driver URL within
key-value pairs, as specified in Table 10–1, each of which are separated by a

Note: For more information on how to start the Multiuser Oracle
Database Lite Database Service, see Chapter 5, "Building a
Client/Server Environment".

Note: JDK 1.4.2 or 5.0 is required to connect to the Oracle Lite
database.

JDBC Drivers to Use When Connecting to the Oracle Lite Database

JDBC Programming 10-3

semi-colon. The information specified within the key-value pairs always overrides the
information that is specified in the URL.

Example of Using JDBC Type 2 Connection for Local Oracle Lite Database
String ConnectMe=("jdbc:polite:SCOTT/tiger:polite;
Data_Directory=<ORACLE_HOME>;Database=polite;IsolationLevel=SINGLE USER;
Autocommit=ON;CursorType=DYNAMIC")

try
 {Class.forName("oracle.lite.poljdbc.POLJDBCDriver")

Table 10–1 Key/Value Pairs for JDBC Connect URL

Argument Description

jdbc Identifies the protocol as JDBC.

polite Identifies the subprotocol as polite.

uid / pwd The optional user ID and password for Oracle Database Lite, each of
which are limited to 28 characters. If specified, this overrides the
specification of a username and password defined in the UID and
PWD arguments. If the database is encrypted, you must include the
password in the key-value pair.

host The name of the machine that hosts the Multi-User Service or Branch
Office and on which the Oracle Database Lite service olsv2040.exe
runs. This host name is optional. If omitted, it defaults to the local
machine on which the JDBC application runs.

port The port number at which the Multi-User or Branch Office service
listens. The port number is optional. If omitted, the port number
defaults to port 1160.

dsn Identifies the data source name (DSN) entry in the odbc.ini file.
This entry contains all the necessary information to complete the
connection to the server.

Note: For a JDBC program, you need not create a DSN if you have
supplied all the necessary values for the data directory and database
through key=value pairs.

On the windows platform, you can use the ODBC administrator to
create a DSN. For more information, see Section 5.5, "Creating DSNs".

Data_Directory= Directory in which the .odb file resides.

Database= Name of database as given during its creation.

IsolationLevel= Transaction isolation level: READ COMMITTED, REPEATABLE
READ, SERIALIZABLE or SINGLE USER. For more information on
isolation levels, see Section 15.2, "What Are the Transaction Isolation
Levels?".

Note: If you are retrieving a large object, such as a BLOB, within a
READ COMMITTED transaction, see Section 4.3.46.9, "Select
Statement Behavior When Retrieving BLOBs in a READ
COMMMITTED transaction" section in the Oracle Database Lite SQL
Reference.

Autocommit= Commit behavior, either ON or OFF.

CursorType= Cursor behavior: DYNAMIC, FORWARD ONLY, KEYSET DRIVEN or
STATIC. For more information on cursor types, see Section 15.4,
"Supported Combinations of Isolation Levels and Cursor Types".

UID= User name

PWD= Password

DataSource Connection

10-4 Oracle Database Lite Oracle Lite Client Guide

 Connection conn = DriverManager.getConnection(ConnectMe)
 }
catch (SQLException e)
{
...
}

Example of Using Type 2 in Multi-User Service Situation
An example of this type of connection is given below.

try {
Connection conn = DriverManager.getConnection(
 "jdbc:polite@yourhostname
 ;Data_Directory=<ORACLE_HOME>
 ;Database=polite
 ;IsolationLevel=SINGLE USER
 ;Autocommit=ON
 ;CursorType=DYNAMIC", "Scott", "tiger")
}
catch (SQLException e)
{ }

10.3.2 Type 4 (Pure Java) Driver Connection URL Syntax
Use the JDBC Type 4 driver for any pure Java application that uses the Multi-User or
Branch office services. The URL syntax for the type 4 driver as follows:

jdbc:polite4[:uid/pwd]@[host]:[port]:serverDSN[;key=value]*

The parameter polite4 indicates that the JDBC type 4 driver is being used. For the
rest of the parameters, see the definitions of those parameters for the type 2 driver, as
described in Table 10–1.

10.4 DataSource Connection
In JDBC 2.0, the DataSource object is an alternative to the DriverManager facility.
The DataSource object is the preferred method for retrieving a connection and is
typically registered with a naming service based on the JNDI API. A driver that is
accessed through a DataSource object does not register itself with the
DriverManager.

The Oracle Database Lite JDBC driver contains the basic DataSource implementation
to produce a standard Connection object. The retrieved connection is identical to a
connection obtained through the DriverManager.

Oracle Database Lite implements javax.sql.DataSource interface with the
POLJDBCDataSource class in the oracle.lite.poljdbc package.

As with any class that implements the DataSource interface, the
POLJDBCDataSource object defines properties for connecting to a specific database.
In addition to the standard DataSource properties, the POLJDBCDataSource class
has one additional property, which is a String to define the URL of the database
connection string, as described in Section 10.3.1, "Type 2 Driver" and Section 10.3.2,
"Type 4 (Pure Java) Driver Connection URL Syntax".

Note: The URL works with the Oracle Database Lite service only.

Java Datatypes and JDBC Extensions

JDBC Programming 10-5

■ The URL can include username and password, which then overrides any previous
individual property settings. The following URL specifies a username and
password of system/manager:

jdbc:polite4:system/manager@::polite

■ You must have a username and password defined either in the URL or in the
getConnection method. If defined in both places, then the username and
password in the getConnection takes precedence over the URL definitions.

See the JDBC example—JDBCEXJSR169—on the CD for how to use the
POLJDBCDataSource object.

10.5 Java Datatypes and JDBC Extensions
The Oracle Database Lite JDBC driver supports JDBC 1.2 and provides extensions that
support certain features defined in JDBC 2.0. The extensions include support for BLOB
(large binary object) and CLOB (large character object) datatypes and scrollable result
sets. The Oracle Database Lite JDBC extensions are compatible with the Oracle
database JDBC implementation. However, Oracle Database Lite does not support the
following Oracle database JDBC datatype extensions: Array, Struct, or REF.

The following sections list and describe the Oracle Database Lite datatypes and data
access extensions. For details regarding function syntax and call parameters, see the
Sun Microsystems Java 2 specification at the Sun Microsystems Web site.

■ Section 10.5.1, "Mapping Datatypes Between Java and Oracle"

■ Section 10.5.2, "Datatype Extensions"

■ Section 10.5.3, "Data Access Extensions"

10.5.1 Mapping Datatypes Between Java and Oracle
Oracle Database Lite performs type conversions between Java and Oracle datatypes as
indicated by the following table. Table 10–2 lists the Java datatypes and the
corresponding SQL datatypes that result from the type conversion.

Table 10–2 Datatype Conversions

Java Datatype SQL Datatype

byte[], byte[][], Byte[] BINARY, RAW, VARBINARY, BLOB

boolean, Boolean BIT

String, String[] CHAR, VARCHAR, VARCHAR2,
CLOB

short, short[], short[][], Short, Short[] SMALLINT

int,int[], int[][], Integer, Integer[] INT

float, float[], float[][], Float, Float[] REAL

double, double[], double[][], Double,
Double[]

DOUBLE, NUMBER (without
precision)

BigDecimal, BigDecimal[] NUMBER(n)

java.sql.Date, java.sql.Date[] DATE

java.sql.Time, java.sql.Time[] TIME

java.sql.Timestamp, java.sql.Timestamp[] TIMESTAMP

Java Datatypes and JDBC Extensions

10-6 Oracle Database Lite Oracle Lite Client Guide

10.5.2 Datatype Extensions
BLOBs and CLOBs store data items that are too large to store directly in a database
table. Rather than storing the data, the database table stores a locator that points to the
location of the actual data. BLOBs contain a large amount of unstructured binary data
items and CLOBs contain a large amount of fixed-width character data items
(characters that require a fixed number of bytes per character).

You can select a BLOB or CLOB locator from the database using a standard SELECT
statement. When you select a BLOB or CLOB locator using SELECT, you acquire only
the locator for the large object, not the data itself. Once you have the locator, however,
you can read data from or write data to the large object using access functions.

Note: If you are retrieving a large object, such as a BLOB, within a READ
COMMITTED transaction, see Section 4.3.46.9, "Select Statement Behavior When
Retrieving BLOBs in a READ COMMMITTED transaction" section in the Oracle
Database Lite SQL Reference.

Table 10–3 lists the methods included in the Oracle Database Lite BLOB class and their
descriptions:

Table 10–4 lists the methods included in the Oracle Database Lite CLOB class and their
descriptions.

java.sql.Connection Default JDBC connection to database

Table 10–3 Methods in the Oracle Database Lite BLOB Class

Function Description

length Returns the length of a BLOB in bytes.

getBinaryOutputStream Returns BLOB data.

getBinaryStream Returns a BLOB instance as a stream of bytes.

getBytes Reads BLOB data, starting at a specified point, into a buffer.

getConnection Returns the current connection.

isConvertibleTo Determines if a BLOB can be converted to a particular class.

putBytes Writes bytes to a specified point in the BLOB data.

makeJdbcArray Returns the JDBC array representation of a BLOB.

toJdbc Converts a BLOB to a JDBC class.

trim Trims to length.

Table 10–4 Methods in the Oracle Database Lite CLOB Class

Function Description

length Returns the length of a CLOB in bytes.

getSubString Retrieves a substring from a specified point in the CLOB data.

getCharacterStream Returns CLOB data as a stream of Unicode characters.

getAsciiStream Returns a CLOB instance as an ASCII stream.

Table 10–2 (Cont.) Datatype Conversions

Java Datatype SQL Datatype

Java Datatypes and JDBC Extensions

JDBC Programming 10-7

10.5.3 Data Access Extensions
Oracle Database Lite provides access functions to set and return values of the CLOB
and BLOB datatypes. In addition, stream classes provide functions that enable
stream-format access to large objects.

The large object access functions are located in the OraclePreparedStatement, the
OracleCallableStatement, and the OracleResultSet class.

Table 10–5 lists the data access functions included in the OracleResultSet class.

The stream format access classes are POLLobInputStream, POLLobOutputStream,
POLClobReader, and POLClobWriter.

The POLLobInputStream class includes the following data access function.

The POLLobOutputStream class includes this data access function.

The POLClobReader class extends the class java.io.reader. It includes these data
access functions.

getChars Retrieves characters from a specified point in the CLOB data
into a character array.

getCharacterOutputSt
ream

Writes CLOB data from a Unicode stream.

getAsciiOutputStream Writes CLOB data from an ASCII stream.

getConnection Returns the current connection.

putChars Writes characters from a character array to a specified point in
the CLOB data.

putString Writes a string to a specified point in the CLOB data.

toJdbc Converts a CLOB to a JDBC class.

isConvertibleTo Determines if a CLOB can be converted to a particular class.

makeJdbcArray Returns a JDBC array representation of a CLOB.

trim Trims to length.

Table 10–5 Data Access Functions in the OracleResultSet Class

Function Description

getBLOB Returns a locator to BLOB data.

getCLOB Returns a locator to CLOB data.

Function Description

read Reads from a large object into an array.

Function Description

write Writes from an output stream into a large object.

Table 10–4 (Cont.) Methods in the Oracle Database Lite CLOB Class

Function Description

Limitations

10-8 Oracle Database Lite Oracle Lite Client Guide

The POLClobWriter class extends the class java.io.writer. It includes these data
access functions:

10.5.3.1 Reading from a BLOB Sample Program
The following sample uses the getBinaryStream method to read BLOB data into a
byte stream. It then reads the byte stream into a byte array, and returns the number of
bytes read.

// Read BLOB data from BLOB locator.
InputStream byte_stream = my_blob.getBinaryStream();
byte [] byte_array = new byte [10];
int bytes_read = byte_stream.read(byte_array);

10.5.3.2 Writing to a CLOB Sample Program
The following sample reads data into a character array, then uses the
getCharacterOutputStream method to write the array of characters to a CLOB.

java.io.Writer writer;
char[] data = {'0','1','2','3','4','5','6','7','8','9'};

// write the array of character data to a CLOB
writer = ((CLOB)my_clob).getCharacterOutputStream();
writer.write(data);
writer.flush();
writer.close();

10.6 Limitations
If data truncation occurs during a write, a SQL data truncation exception is thrown. A
SQL data truncation warning results if data truncation occurs during a read.

The Oracle Database Lite JDBC classes and the JDBC 2.0 classes use the same name for
certain datatypes (for example, oracle.sql.Blob and java.sql.Blob). If your

Function Description

read Reads characters from a CLOB into a portion of an array.

ready Indicates whether a stream is ready to read.

close Closes a stream.

markSupported Indicates whether the stream supports the mark operation.

mark Marks the current position in the stream. Subsequent calls to the
reset function reposition the stream to the marked location.

reset Resets the current position in the stream to the marked location.
If the stream has not been marked, this function attempts to
reset the stream in a way appropriate to the particular stream,
such as by repositioning it at its starting point.

skip Skips characters in the stream.

Function Description

write Writes an array of characters to the output stream.

flush Writes any characters in a buffer to their intended destination.

close Flushes and closes the stream.

New JDBC 2.0 Features

JDBC Programming 10-9

program imports both oracle.sql.* and java.sql.*, attempts to access the
overlapping classes without fully qualifying their names may result in compiler errors.
To avoid this problem, use one of the following steps:

1. Use fully qualified names for BLOB, CLOB, and data classes.

2. Import the class explicitly (for example, import oracle.sql.Blob).

Class files always contain fully qualified class names, so the overlapping datatype
names do not cause conflicts at runtime.

10.7 New JDBC 2.0 Features
This section describes JDBC 2.0 methods or interfaces that are supported by the Oracle
Database Lite JDBC driver. Topics include:

■ Section 10.7.1, "Interface Connection"

■ Section 10.7.2, "Interface Statement"

■ Section 10.7.3, "Interface ResultSet"

■ Section 10.7.4, "Interface Database MetaData"

■ Section 10.7.5, "Interface ResultMetaData"

■ Section 10.7.6, "Interface PreparedStatement"

10.7.1 Interface Connection
This section describes the JDBC 2.0 Interface methods that are implemented by the
Oracle Database Lite JDBC driver.

10.7.1.1 Methods

Statement createStatement(int resultSetType, int resultSetConcurrency)
Creates a statement object that generates ResultSet objects with the given type and
concurrency.

Map getTypeMap()
Gets the TypeMap object associated with this connection.

CallableStatement prepareCall(String sql, int resultSetType, int
resultSetConcurrency)
Creates a CallableStatement object that generates ResultSet objects with the given type
and concurrency.

PreparedStatement prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)
Creates a PreparedStatement object that generates ResultSet objects with the
given type and concurrency.

void setTypeMap(Map map)
Installs the given type map as the type map for this connection.

New JDBC 2.0 Features

10-10 Oracle Database Lite Oracle Lite Client Guide

10.7.2 Interface Statement
This section describes the JDBC 2.0 Interface Statement methods that are implemented
by the Oracle Database Lite JDBC driver.

Connection getConnection()
Returns the Connection object that produced this Statement object.

int getFetchDirection()
Retrieves the direction for fetching rows from database tables that is the default for
result sets generated from this Statement object. Only FETCH_FORWARD is
supported for now.

int getFetchSize()
Retrieves the number of result set rows that is the default fetch size for result sets
generated from this Statement object. Only fetch size = 1 is supported for now.

int getResultSetConcurrency()
Retrieves the result set concurrency. Only CONCUR_READ_ONLY is supported for
now.

int getResultSetType()
Determine the result set type. Only TYPE_FORWARD_ONLY and TYPE_SCROLL_
INSENSITIVE are supported for now.

void setFetchDirection(int direction)
Gives the driver a hint as to the direction in which the rows in a result set will be
processed.

void setFetchSize(int rows)
Gives the JDBC driver a hint as to the number of rows that should be fetched from the
database when more rows are needed.

10.7.3 Interface ResultSet
This section describes the JDBC 2.0 Interface ResultSet methods that are implemented
by the Oracle Database Lite JDBC driver.

10.7.3.1 Fields
The following fields can be used to implement the Interface ResultSet feature.

static int CONCUR_READ_ONLY
The concurrency mode for a ResultSet object that may NOT be updated.

static int CONCUR_UPDATABLE
The concurrency mode for a ResultSet object that may be updated. Not supported for
now.

static int FETCH_FORWARD
The rows in a result set will be processed in a forward direction; first-to-last.

New JDBC 2.0 Features

JDBC Programming 10-11

static int FETCH_REVERSE
The rows in a result set will be processed in a reverse direction; last-to-first. Not
supported for now.

static int FETCH_UNKNOWN
The order in which rows in a result set will be processed is unknown.

static int TYPE_FORWARD_ONLY
The type for a ResultSet object whose cursor may move only forward.

static int TYPE_SCROLL_INSENSITIVE
The type for a ResultSet object that is scrollable but generally not sensitive to changes
made by others.

static int TYPE_SCROLL_SENSITIVE
The type for a ResultSet object that is scrollable and generally sensitive to changes
made by others. Not supported for now.

10.7.3.2 Methods
This section describes the JDBC 2.0 ResultSet method implemented by the Oracle
Database Lite JDBC driver.

boolean absolute(int row)
Moves the cursor to the given row number in the result set.

void afterLast()
Moves the cursor to the end of the result set, just after the last row.

void beforeFirst()
Moves the cursor to the front of the result set, just before the first row.

boolean first()
Moves the cursor to the first row in the result set.

Array getArray(String colName)
Gets an SQL ARRAY value in the current row of this ResultSet object.

BigDecimal getBigDecimal(int columnIndex)
Gets the value of a column in the current row as a java.math.BigDecimal object with
full precision.

BigDecimal getBigDecimal(String columnName)
Gets the value of a column in the current row as a java.math.BigDecimal object with
full precision.

int getConcurrency()
Returns the concurrency mode of this result set.

New JDBC 2.0 Features

10-12 Oracle Database Lite Oracle Lite Client Guide

Date getDate(int columnIndex, Calendar cal)
Gets the value of a column in the current row as a java.sql.Date object.

int getFetchDirection()
Returns the fetch direction for this result set.

int getFetchSize()
Returns the fetch size for this result set.

int getRow()
Retrieves the current row number.

Statement getStatement()
Returns the Statement that produced this ResultSet object.

int getType()
Returns the type of this result set.

boolean isAfterLast()

boolean isBeforeFirst()

boolean isFirst()

boolean isLast()

boolean last()
Moves the cursor to the last row in the result set.

boolean previous()
Moves the cursor to the previous row in the result set.

void refreshRow()
Refreshes the current row with its most recent value in the database. Currently does
nothing.

boolean relative(int rows)
Moves the cursor a relative number of rows, either positive or negative.

10.7.3.3 Methods that Return False
The following three methods always return false because this release does not support
deletes, inserts, or updates.

boolean rowDeleted()
Indicates whether a row has been deleted.

boolean rowInserted()
Indicates whether the current row has had an insertion.

New JDBC 2.0 Features

JDBC Programming 10-13

boolean rowUpdated()
Indicates whether the current row has been updated.

void setFetchDirection(int direction)
Gives a hint as to the direction in which the rows in this result set will be processed.

void setFetchSize(int rows)
Gives the JDBC driver a hint as to the number of rows that should be fetched from the
database when more rows are needed for this result set.

10.7.4 Interface Database MetaData
This section describes the JDBC 2.0 Interface Database MetaData methods that are
implemented by the Oracle Database Lite JDBC driver.

10.7.4.1 Methods
The following methods can be used to implement the Interface Database MetaData
feature.

Connection getConnection()
Retrieves the connection that produced this metadata object.

boolean upportsResultSetConcurrecny(int type, int concurrency)
Supports the concurrency type in combination with the given result set type.

boolean supportsResultSetType(int Type)
Supports the given result set type.

10.7.4.2 Methods that Return False
The following methods return false, because this release does not support deletes or
updates.

boolean deletesAreDetected(int Type)
Indicates whether or not a visible row delete can be detected by calling
ResultSet.rowDeleted().

boolean insertsAreDetected(int Type)
Indicates whether or not a visible row insert can be detected by calling
ResultSet.rowInserted().

boolean othersDeletesAreVisible(int Type)
Indicates whether deletes made by others are visible.

boolean othersInsertsAreVisible(int Type)
Indicates whether inserts made by others are visible.

boolean othersUpdatesAreVisible(int Type)
Indicates whether updates made by others are visible.

New JDBC 2.0 Features

10-14 Oracle Database Lite Oracle Lite Client Guide

boolean ownDeletesAreVisible(int Type)
Indicates whether a result set's own deletes are visible.

boolean ownInsertsAreVisible(int Type)
Indicates whether a result set's own inserts are visible.

boolean ownUpdatesAreVisisble(int Type)
Indicates whether a result set's own updates are visible.

boolean updatesAreDetected(int Type)
Indicates whether or not a visible row update can be detected by calling the method
ResultSet.rowUpdated.

10.7.5 Interface ResultMetaData
This section lists methods that can be implemented using the Interface ResultMetaData
feature.

10.7.5.1 Methods
The following method can be used to implement the Interface ResultMetaData feature.

String getColumnClassName(int column)
Returns the fully-qualified name of the Java class whose instances are manufactured if
the method ResultSet.getObject is called to retrieve a value from the column.

10.7.6 Interface PreparedStatement
This section describes methods that can be implemented using the Interface
PreparedStatement feature.

10.7.6.1 Methods
The following methods can be used to implement the Interface PreparedStatement
feature.

Result SetMetaDatagetMetaData()
Gets the number, types and properties of a ResultSet's columns.

void setDate(int parameter Index, Date x, Calendar cal)
Sets the designated parameter to a java.sql.Date value, using the given Calendar
object.

void setTime(int parameterIndex, Time x, Calendar cal)
Sets the designated parameter to a java.sql.Time value, using the given Calendar
object.

void setTimestamp(int parameter Index, Timestamp x, Calendar cal)
Sets the designated parameter to a java.sql.Timestamp value, using the given
Calendar object.

10.7.6.1.1 Limitation currently, the option setQueryTimeOut is not supported.

J2ME Support

JDBC Programming 10-15

10.8 J2ME Support
The following sections describe what Oracle Database Lite supports for J2ME:

■ Section 10.8.1, "JDBC Drivers for J2ME CDC and CLDC"

■ Section 10.8.2, "J2ME Support for Windows CE"

10.8.1 JDBC Drivers for J2ME CDC and CLDC
Oracle Database Lite JDBC drivers for J2ME are supported in a limited capacity. The
following sections describe what are supported in Oracle Database Lite JDBC/J2ME
drivers:

■ Section 10.8.1.1, "JDBC Driver for J2ME CDC"

■ Section 10.8.1.2, "JDBC Driver for J2ME CLDC"

10.8.1.1 JDBC Driver for J2ME CDC
You can use the olite40.jar file for JDBC J2ME CDC application development.
However, the Oracle Database Lite JDBC driver for J2ME CDC does not implement all
classes and methods of the Sun Microsystems "JSR-000169 JDBC Optional Package for
CDC/Foundation Profile".

The JDBC definition classes (java.sql.*) are an optional package for
CDC/Foundation profile based JVMs, as defined by the Javasoft JSR 169 specification.
Obtain these classes from your JVM vendor. If your JVM vendor does not supply these
classes, then use the sample implementation provided with Oracle Database Lite,
which can be found in the <OLITE_HOME>\Mobile\Sdk\samples\j2me directory.

See Section 10.1, "JDBC Compliance" and Section 10.5, "Java Datatypes and JDBC
Extensions" for what is supported in this JAR file for the JDBC driver on J2ME CDC.

10.8.1.2 JDBC Driver for J2ME CLDC
Oracle Database Lite provides the JDBC driver for J2ME CLDC application
development. Only a subset of the JDBC APIs are available. The JDBC APIs for J2ME
CLDC are provided in the oracle.lite.jdbc package, which is included in the
olitejdbccldc.jar file. You must include this JAR file in your application to use
JDBC for J2ME CLDC. The interface is a subset of features available in the Oracle Lite
JDBC driver.

See Section 10.1, "JDBC Compliance" and Section 10.5, "Java Datatypes and JDBC
Extensions" for what is supported in this JAR file for the JDBC driver on J2ME CDC.

The following lists what is NOT currently implemented for the JDBC API:

■ You cannot use any methods requiring floating point data types, such as
ResultSet.getDouble.

■ You cannot use any methods requiring java.sql.Date, java.sql.Time or
java.sql.Timestamp data types. When working with SQL date, time and
timestamp data, consider using one of the following methods instead:
ResultSet.getString, PreparedStatement.setString and other string
getter and setter methods.

■ You cannot use any DatabaseMetaData objects.

■ The JDBC driver has no finalize() methods. Applications must explicitly close
database objects when done.

J2ME Support

10-16 Oracle Database Lite Oracle Lite Client Guide

■ Since the java.math library is omitted from MIDP, you may not use the
BigDecimals object. Use the appropriate java.lang.String getter or setter
method.

Table 10–6 details the classes and exceptions available in this package. For more
information on these classes, such as the supported methods, see the Javadoc in the
Oracle Database Lite API Specification.

For the JDBC/J2ME/CLDC driver, only the JDBC Type 4 connection URL syntax is
supported. The following example demonstrates how to create a Connection object
using the OLiteDataSource object.

import oracle.lite.jdbc.OLiteDataSource;
import oracle.lite.jdbc.Connection;
import oracle.lite.jdbc.Statement;

Table 10–6 J2ME CLDC Class and Exception Summary

Classes and Exceptions Description

BLOB The representation (mapping) in the Java programming
language of an SQL BLOB value.

CLOB The representation (mapping) in the Java programming
language of an SQL CLOB value.

Connection Connection represents a JDBC connection to an Oracle Lite
database.

PreparedStatement A PreparedStatement contains a pre-compiled SQL
statement which may have parameter markers.

ResultSet Represents a result set which is usually generated by
executing a statement that queries the database.

ResultsSetMetaData The ResultSetMetaData class can be used to get
information about the types and properties of the columns in
a ResultSet object.

OliteDataSource OLiteDataSource partially implements the
javax.sql.DataSource interface. It is for retrieving a
Connection object.

OracleConnection Provides the same functional support as the Connection
object and also provides support for BLOB/CLOB objects.

OraclePreparedStatement Provides the same functional support as the
PreparedStatement object and also provides support for
BLOB/CLOB objects.

OracleResultSet Provides the same functional support as the ResultSet
object and also provides support for BLOB/CLOB objects.

Statement A Statement object is used for executing a static SQL
statement and obtaining the results produced by it.

Types The class that defines the constants that are used to identify
generic SQL types, called JDBC types. This class is never
instantiated.

DataTuncation An exception that reports a DataTruncation warning (on
reads) or throws a DataTruncation exception (on writes)
when JDBC unexpectedly truncates a data value.

SQLException An exception that provides information on a database access
error or other errors.

SQLWarning An exception that provides information on database access
warnings.

J2ME Support

JDBC Programming 10-17

…

public class TestOLiteDataSource implements Runnable
{
 …
 public void run()
 {
 String strUrl = "jdbc:polite4:system/manager@::polite";
 try {
 OLiteDataSource olds = new OLiteDataSource();
 olds.setUrl(strUrl);
 Connection conn = olds.getConnection();
 conn.setAutoCommit(true);
 Statement stmt = conn.createStatement();
 stmt.execute("create table t1(c1 int) ");
 }
 catch (SQLException e) {
 …
 }
 }
}

10.8.2 J2ME Support for Windows CE
Oracle Database Lite is certified with the following JVMs on Windows Mobile 2003
Second Edition:

■ IBM J9 Websphere Everyplace Micro Environment for Windows Mobile 2003
ARM Personal Profile

■ Creme JVM, which can be obtained at http://www.nsicom.com

The following sections describe which class to use in connecting to an Oracle Lite
database for each JVM type:

■ Section 10.8.2.1, "Using IBM J9"

■ Section 10.8.2.2, "Using Creme 4.1"

10.8.2.1 Using IBM J9
When using IBM J9, use the DataSource class to connect to an Oracle Lite database,
as shown below:

POLJDBCDataSource dsPolite = new POLJDBCDataSource();
dsPolite.setUrl(DSN);
dsPolite.setUser(UserName);
dsPolite.setPassword(Password)
politeConnection = dsPolite.getConnection();

Perform the following to execute the ExampleClass sample class, which is part of the
ExamplePackage.jar:

j9 -jcl:ppro10 "-Xbootclasspath/p:path\classes.zip;path\jdbcjsr169.jar"
 -classpath "path\jdbcjsr169.jar;\Orace\olite40.jar;path\ExamplePackage.jar"
 ExampleClass

Note: For a full description of what is supported for each object, see
the Oracle Database Lite API Specification for the Javadoc on these
objects.

J2ME Support

10-18 Oracle Database Lite Oracle Lite Client Guide

Where the jdbcjsr169.jar file contains the optional JDBC definitions. For more
details, refer to Section 10.8.1.1, "JDBC Driver for J2ME CDC".

10.8.2.2 Using Creme 4.1
When using the Creme 4.1 JVM, use the DriverManager class to connect to an Oracle
Lite database, as shown below:

politeConnection = DriverManager.getConnection(DSN,UserName,Password);

Perform the following command at the Creme Command prompt to execute the
ExampleClass sample class, which is part of the ExamplePackage.jar file:

Creme -Of -classpath '<path>\jdbcjsr169.jar;\Oracle\olite40.jar;
 <path>\ExamplePackage.jar' ExampleClass <command_line_arguments>

Note: The jdbcjsr169.jar can be obtained from the SDK
installation in the <ORACLE_HOME>\Mobile\Sdk\samples\j2me
directory.

Note: Ensure that you replace the path with the correct path to the
required JAR and ZIP files.

Oracle Database Lite ADO.NET Provider 11-1

11
Oracle Database Lite ADO.NET Provider

The following sections discuss the Oracle Database Lite ADO.NET provider for
Microsoft .NET and Microsoft .NET Compact Framework. The Oracle Database Lite
ADO.NET provider resides in the Oracle.DataAccess.Lite namespace.

■ Section 11.1, "Discussion of the Classes That Support the ADO.NET Provider"

■ Section 11.2, "Limitations for the ADO.NET Provider"

11.1 Discussion of the Classes That Support the ADO.NET Provider
The Oracle Database Lite ADO.NET driver is implemented in the following DLLs:

■ Windows—Oracle.DataAccess.Lite.dll

■ Windows CE—Oracle.DataAccess.Lite_wce.dll

If you are building an application that uses the ADO.Net driver, you must package the
driver with the application files. The assembly DLL must be located in the same
directory as your application executable (*.exe file). Alternatively, you can add the
driver to the Windows global assembly cache. See the Microsoft documentation on
how to add this DLL to the Global Assembly Cache.

The following sections describe classes for the Oracle Database Lite ADO.NET
provider:

■ Section 11.1.1, "Establish Connections With the OracleConnection Class"

■ Section 11.1.2, "Transaction Management"

■ Section 11.1.3, "Create Commands With the OracleCommand Class"

■ Section 11.1.4, "Maximize Performance Using Prepared Statements With the
OracleParameter Class"

■ Section 11.1.5, "Large Object Support With the OracleBlob Class"

11.1.1 Establish Connections With the OracleConnection Class
The OracleConnection interface establishes connections to Oracle Database Lite.
This class implements the System.data.IDBConnection interface. When
constructing an instance of the OracleConnection class, implement one of the
following to open a connection to the back-end database:

■ Pass in a full connection string as described in the Microsoft ODBC
documentation for the SQLDriverConnect API, which is shown below:

OracleConnection conn = new OracleConnection
 ("Data_Directory=\\orace;Database=polite;DSN=*;uid=system;pwd=manager");

Discussion of the Classes That Support the ADO.NET Provider

11-2 Oracle Database Lite Oracle Lite Client Guide

conn.Open();

■ Construct an empty connection object and set the ConnectionString property
later.

With an embedded database, we recommended that you open the connection at the
initiation and leave it open for the life of the program. When you close the connection,
all of the IDataReader cursors that use the connection are also closed.

11.1.2 Transaction Management
By default, Oracle Database Lite connection uses the autocommit mode. If you do not
want the autocommit to be on, then you can start a transaction with the
BeginTransaction method in the OracleConnection object. The
BeginTransaction method returns a reference to the IDbTransaction object.
Then, when finished, execute either the Commit or Rollback methods on the
returned IDbTransaction, which either commits or rolls back the transaction. Once
the transaction is completed, the database is returned to autocommit mode.

Whenever you rollback a transaction, it rolls back all the operations that you have
performed before. Sometimes you need to undo the transaction to a certain point. For
this scenario, you can use the Save Points functionality. Save Points allows you to
rollback a transaction to a certain point. Oracle Lite supports Save Points. Within a
transaction, you can set up, remove or undo any number of Save Points using SQL
statements. Using save points gives you better granular control over the transaction.
Within the transaction, use SQL syntax to set up, remove and undo savepoints.

For WinCE devices, Oracle Database Lite supports only one process to access a given
database. When a process tries to connect to a database that is already in use, the
OracleConnectionOpen method throws an OracleException. To avoid this
exception being thrown, close a connection to allow another process to connect.

The following is an example in turning off autocommit for a C# application:

OracleConnection conn = new OracleConnection ("DSN=consroot;uid=system");
conn.Open();
IDbTransaction trans = conn.BeginTransaction(); // Turn off AUTOCOMMIT
OracleCommand cmd = (OracleCommand)conn.CreateCommand();
cmd.CommandText = "create table TEST1 (c0 number)";
cmd.ExecuteNonQuery();
trans.Commit(); // AutoCommit is 'ON'
cmd.Dispose();
conn.Close();

The following is an example in turning off autocommit for a VB.NET application:

conn = New Oracle.DataAccess.Lite.OracleConnection(("DSN=consroot;uid=system")
conn.Open()
IDbTransaction trans = conn.BeginTransaction()
OracleCommand cmd = New OracleCommand (conn)
cmd.CommandText = "create table TEST1 (c0 number)"
cmd.ExecuteNonQuery()
trans.Commit()
cmd.Dispose()
conn.Close()

11.1.3 Create Commands With the OracleCommand Class
The OracleCommand class implements the System.Data.IDBCommand interface.
Create any commands through the CreateCommand method of the

Discussion of the Classes That Support the ADO.NET Provider

Oracle Database Lite ADO.NET Provider 11-3

OracleConnection class. The OracleCommand has constructors recommended by
the ADO.NET manual, such as OracleCommand(OracleConnection conn,
string cmd).

However, if you use the OracleCommand constructors, it is difficult to port the code
to other platforms, such as the ODBC provider on Windows 32. Instead, create the
connection and then use interface methods to derive other objects. With this model,
you can either change the provider at compile time or use the reflection API at
runtime.

11.1.4 Maximize Performance Using Prepared Statements With the OracleParameter
Class

Parsing a new SQL statement can take significant time; thus, use prepared statements
for any performance-critical operations. Although, IDbCommand has an explicit
Prepare method, this method always prepares a statement on the first use. You can
reuse the object repeatedly without needing to call Dispose or change the
CommandText property.

11.1.4.1 SQL String Parameter Syntax
Oracle Database Lite uses ODBC-style parameters in the SQL string, such as the ?
character. Parameter names and data types are ignored by the driver and are only for
the programmer's use.

For example, assume the following table:

create table t1(c1 int, c2 varchar(80), c3 data)

You can use the following parameters in the context of this table:

IDbCommand cmd = conn.CreateCommand();
cmd.CommandText = "insert into t1 values(?,?,?);"
cmd.Parameters.Add("param1", 5);
cmd.Parameters.Add("param2", "Hello");
cmd.Parameters.Add("param3", DateTime.Now);
cmd.ExecuteNonQuery();

11.1.5 Large Object Support With the OracleBlob Class
The OracleBlob class supports large objects. Create a new OracleBlob object to
instantiate or insert a new BLOB object in the database, as follows:

OracleBlob blob = new OracleBlob(conn);

Since the BLOB is created on a connection, you can use the Connection property of
OracleBlob to retrieve the current OracleConnection.

Functions that you can perform with a BLOB are as follows:

■ Section 11.1.5.1, "Using BLOB Objects in Parameterized SQL Statements"

■ Section 11.1.5.2, "Query Tables With BLOB Columns"

■ Section 11.1.5.3, "Read and Write Data to BLOB Objects"

Note: The relevant class names are OracleParameter and
OracleParameterCollection.

Limitations for the ADO.NET Provider

11-4 Oracle Database Lite Oracle Lite Client Guide

11.1.5.1 Using BLOB Objects in Parameterized SQL Statements
You can use the BLOB object in parameterized SQL statements, as follows:

OracleCommand cmd = (OracleCommand)conn.CreateCommand();
cmd.CommandText = "create table LOBTEST(X int, Y BLOB)";
cmd.ExecuteNonQuery();
cmd.CommandText = "insert into LOBTEST values(1, ?)";
cmd.Parameters.Add(new OracleParameter("Blob", blob));
cmd.ExecuteNonQuery();

11.1.5.2 Query Tables With BLOB Columns
You can retrieve the OracleBlob object using the data reader to query a table with a
BLOB column, as follows:

cmd.CommandText = "select * from LOBTEST";
IDataReader rd = cmd.ExecuteReader();
rd.read();
OracleBlob b = (Blob)rd["Y"];

Or you can write the last line of code, as follows:

OracleBlob b = (OracleBlob)rd.getvalue(1);

11.1.5.3 Read and Write Data to BLOB Objects
The OracleBlob class supports reading and writing to the underlying BLOB, and
retrieving and modifying the BLOB size. Use the Length property of OracleBlob to
get or to set the size. Use the following functions to read and write to the BLOB, as
follows:

public long GetBytes(long blobPos, byte [] buf, int bufOffset, int len);
public byte [] GetBytes(long blobPos, int len);
public void SetBytes(long blobPos, byte [] buf, int bufOffset, int len);
public void SetBytes(long blobPos, byte [] buf);

For example, the following appends data to a BLOB and retrieves the bytes from
position five forward:

byte [] data = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
 blob.SetBytes(0, data); //append data to the blob
byte [] d = blob.GetBytes(5, (int)blob.Length - 5); //get bytes from position 5 up
to the end
blob.Length = 0; //truncate the blob completely

Use the GetBytes method of the data reader to read the BLOB sequentially, but
without accessing it as a OracleBlob object. You should not, however, use the
GetBytes method of the reader and retrieve it as a OracleBlob object at the same
time.

11.2 Limitations for the ADO.NET Provider
The following are limitations to the Oracel Database Lite ADO.NET provider:

■ Section 11.2.1, "Partial Data Returned with GetSchemaTable"

■ Section 11.2.2, "Creating Multiple DataReader Objects Can Invalidate Each Other"

■ Section 11.2.3, "Calling DataReader.GetString Twice Results in a DbNull Object"

■ Section 11.2.4, "Thread Safety"

Limitations for the ADO.NET Provider

Oracle Database Lite ADO.NET Provider 11-5

11.2.1 Partial Data Returned with GetSchemaTable
The Oracle Database Lite ADO.NET provider method—GetSchemaTable—only
returns partial data. For example, it claims that all of the columns are primary key,
does not report unique constraints, and returns null for BaseTableName,
BaseSchemaName and BaseColumnName. Instead, to retrieve Oracle Database Lite
meta information, use ALL_TABLES and ALL_TAB_COLUMNS instead of this call to get
Oracle Database Lite meta information.

11.2.2 Creating Multiple DataReader Objects Can Invalidate Each Other
The Oracle Database Lite ADO.NET provider does not support multiple concurrent
DataReader objects created from a single OracleCommand object. If you need more
than one active DataReader objects at the same time, create them using separate
OracleCommand objects.

The following example shows how if you create multiple DataReader objects from a
single OracleCommand object, then the creation of reader2 invalidates the reader1
object.

OracleCommand cmd = (OracleCommand)conn.CreateCommand();
cmd.CommandText = "SELECT table_name FROM all_tables";
cmd.Prepare();
IDataReader reader1 = cmd.ExecuteReader();
IDataReader reader2 = cmd.ExecuteReader();

11.2.3 Calling DataReader.GetString Twice Results in a DbNull Object
Calling the GetString method of DataReader twice on the same column and for
the same row results in a DbNull object. The following example demonstrates this in
that the second invocation of GetString results in a DbNull object.

 IDataReader dr = cmd.ExecuteReader();
 String st = null;
 while(dr.Read())
 {
 st = dr.GetString (1);
 st = dr.GetString (1);
 }

11.2.4 Thread Safety
To build a thread-safe program, make sure that different threads use separate
IDbCommand and IDataReader objects. The OracleConnection and
IDbTransaction methods can be called concurrently, except for when used to open
and close the connection.

Limitations for the ADO.NET Provider

11-6 Oracle Database Lite Oracle Lite Client Guide

Using Simple Object Data Access (SODA) 12-1

12
Using Simple Object Data Access (SODA)

SODA is an interface used in Oracle Database Lite C++ development that provides
object-oriented data access using method calls, relational access using SQL and
object-relational mapping to bridge the gap between the two. Object functionality is
roughly three times faster than ODBC for simple operations. It enables rich
datatypes—such as arrays and object pointers—as well as standard SQL columns. A
programmer can store any data structure in the database and not think about
relational design or performing joins.

A C++ developer can also use an interface for executing SQL statements. The resulting
code is shorter and cleaner than ODBC. SQL queries can return objects to be examined
and modified directly through the object-oriented layer, without calling any additional
SQL statements.

Object-relational mapping enables the application to access relational data as if it was
object hierarchy. Thus, your application can replicate rich data types or object pointers
to the Oracle database server.

The SODA API method calls are documented in the SODA: Simple Object Data Access
API Reference, which is located off the <ORACLE_HOME>/Mobile/index.htm page.
The full sample code that is demonstrated in this chapter is located in the <ORACLE_
HOME>/Mobile/doc/soda/sodadoc/html/sodasimple_8cpp-source.html
file.

■ Section 12.1, "Getting Started With SODA"

■ Section 12.2, "Using SQL Queries in SODA Code for PocketPC Platforms"

■ Section 12.3, "Virtual Columns and Object-Relational Mapping"

■ Section 12.4, "Behavior of Reference-Counted and Copy-By-Assignment Objects"

■ Section 12.5, "Another Library for Exceptions (ALE)"

12.1 Getting Started With SODA
In order to get started with SODA quickly, the following sections discuss the most
frequently used classes:

■ Section 12.1.1, "Overview of the SODA Classes"

■ Section 12.1.2, "Demonstrating Frequently-Used SODA Classes"

12.1.1 Overview of the SODA Classes
When developing your C++ application, you would use the following classes the
most:

Getting Started With SODA

12-2 Oracle Database Lite Oracle Lite Client Guide

■ DBSession connects to the database and find and create classes.

■ DBClass creates new database objects.

■ DBObject modifies existing objects.

■ DBData wraps an attribute value and is used for type conversion.

■ DBQueryExpr builds single-table queries supported by SODA.

■ DBString (olString) is a C string wrapper used by SODA.

■ DBList (olList) is a template to store lists of values.

■ DBColList and DBDataList instantiate these objects.

For example, implement the DBObject method, as follows:

DBObject obj;
...
obj["NAME"] = "Jack"

For full documentation for the SODA API method calls, see the SODA APIs, which
you can find off the <ORACLE_HOME>/Mobile/index.htm page.

12.1.2 Demonstrating Frequently-Used SODA Classes
The following example demonstrates most of the SODA object-oriented functionality,
as discussed in Section 12.1.1, "Overview of the SODA Classes".

void helloSODA() {
 puts("Hello SODA");
 try {
 DBSession sess("POLITE"); // Connect to the DSN, creating it if necessary

 // Find or create our class
 DBClass cls;
 try {
 cls = sess["PEOPLE"];
 } catch(DBException e) {
 cls = sess.createClass("PEOPLE", DBAttrList() <<
 DBAttr("ID", DB_INT) << DBAttr("NAME", DB_STRING));
 }
 // Create several objects. We can identify columns by name or positions
 DBObject o = cls.create("ID", 10, "NAME", "Alice");

 // The previous syntax of col1, val1, col2, val2 ... works for up to
// 32 columns. This version works for any number of columns
 cls.create(DBSetList() << "ID" << 10 << "NAME" << "Alice");
 cls.create(0, 20, 1, "Bob");

 // Note the automatic type conversion
 cls.create("ID", "314", 1, 3.14159265358);

 // Execute a query (will return two objects)
 DBCursor c = cls.createCursor(DBColumn("ID") == 10 ||
 DBColumn("NAME") == "Bob");

 DBObject ob;

 while (ob = ++c) {
 DBString s = ob["NAME"];
 puts(s);

Using SQL Queries in SODA Code for PocketPC Platforms

Using Simple Object Data Access (SODA) 12-3

 o["ID"] = (int)o["ID"]+1;
 }

 // Delete an object
 o.remove();

 // Clean up so that create class is successful next time
 sess.rollback();
 } catch(DBException e) {
 DBString s = e.getMessage();
 printf("Error: %s\n", (const char *)s);
 }
}

12.2 Using SQL Queries in SODA Code for PocketPC Platforms
To add SQL queries to your SODA code for PocketPC platforms, do the following:

1. Include sodasql.h, instead of soda.h.

2. Link your program with sodasql.lib.

3. Install sodasql.dll at runtime.

4. Create a DBSqlSession object instead of the DBSession object. Execute
relational queries and other SQL statements with the help of DBSqlStmt and
DBSqlCursor classes. Query results can be returned either as column values or as
DBObjects for matching rows.

The following is a sample that uses the SODA relational interface:

void helloSQL() {
 try {
 puts("Hello SQL");
 DBSqlSession sess("POLITE");
 sess.execute("create table odtest(c1 int, c2 varchar(80))");
 DBSqlStmt stmt = sess.prepare("insert into odtest values(?,?)");

 // The values stand in for two ?'s in the statement above
 stmt.execute(5, "John");
 stmt.execute(10, "Mike");
 stmt.execute(15, "Alice");

 // Execute a single-table query that will return DBObject's for matching
 // rows. Use a standard SODA interface to access the objects
 DBSqlCursor c = sess.execute("odtest", "c1 < 15");
 while (++c) {
 DBObject o = c.getObject();
 DBString s = o["c2"];
 int val = o["c1"];
 printf("%d %s\n", val, (const char *)s);
 o["c1"] = val+1; // Can modify objects in addition to just reading them
 }

 // Execute a usual relational query
 c = sess.execute("select * from odtest");
 while (++c) {
 DBString s = c["c2"];
 printf("%d %s\n", (int)c["c1"], (const char *)s);
 }
 } catch(DBException e) {
 DBString s = e.getMessage();

Virtual Columns and Object-Relational Mapping

12-4 Oracle Database Lite Oracle Lite Client Guide

 printf("Error: %s\n", (const char *)s);
 }
}

12.3 Virtual Columns and Object-Relational Mapping
A programmer does not view the data as column values that are stored in the
database. For example, a master-detail relationship might be expressed as matching
values in two tables, but for a program it is more natural to access a column in the
master object, which contains an array of pointers to details.

The DBVirtualCol class enables the translation between the conceptual view of the
data and the actual data in the tables. You can create a column that is completely
under programmer’s control through the get, set and remove methods and adding
it to a class at runtime.

In fact, SODA contains a specialized DBValueRel class that extends the
DBVirtualCol class to map master-detail relationships to object pointers. The
following sample builds a binary search tree in the database using object-relational
mapping:

struct HelloVirtual {
 int lpos, rpos, vpos;
 void visit(DBObject o);
 HelloVirtual();
};

void HelloVirtual :: visit(DBObject o) {
 while (o) {
 visit(o[lpos]);
 printf("%d\n", (int)o[vpos]);
 o = o[rpos];
 }
}

HelloVirtual :: HelloVirtual() {
 try {
 DBSession sess("POLITE");
 // TreeNode represent a binary tree with left and right pointers
 // that point back to parent's id column
 DBClass cls = sess.createClass("TreeNode",
 DBAttrList() << DBAttr("val", DB_INT) << DBAttr("id", DB_INT)
 << DBAttr("lchild", DB_INT) << DBAttr("rchild", DB_INT));
 // Create an index on id to speed up search
 cls.createIndex("i1", DBColList() << "id", true);
 // Set a sequence as a default value of id, so that we don't have to set it
 // explicitely
 DBSequence seq = sess.createSequence("s1");
 cls.defaultVal("id", seq);
 // Create the virtual columns
 DBValueRel lref("left", DBSrcCol(cls, "lchild") -> DBDstCol(cls, "id"),
 DB_UPD_DETAIL);
 DBValueRel rref("right", DBSrcCol(cls, "rchild") -> DBDstCol(cls, "id"),
 DB_UPD_DETAIL);
 // Cache column positions for frequent access
 lpos = cls["left"], rpos = cls["right"], vpos = cls["val"];
 // Root of the binary tree
 DBObject root;
 // Insert some random numbers into our binary search tree
 for (int i = 0; i < 50; i++) {

Behavior of Reference-Counted and Copy-By-Assignment Objects

Using Simple Object Data Access (SODA) 12-5

 int v = rand();
 DBObject o = cls.create(vpos, v); // Note automatically generated ids
 DBObject par; int dir;
 for(DBObject cur = root; cur; par = cur, cur = cur[dir])
 dir = (int)cur[vpos] >= v ? lpos : rpos;
 if (par) par[dir] = o; else root = o;
 }
 // Do in-order traversal of the tree, printing out numbers in sorted order
 visit(root);
 } catch(DBException e) {
 DBString s = e.getMessage();
 puts(s);
 }
}

12.4 Behavior of Reference-Counted and Copy-By-Assignment Objects
Most C++ classes in SODA are reference-counted, which means that assigning one
variable of one type to another cannot copy an object, but creates another way to refer
to the same object. For example, the DBData class represents values that can be stored
in persistent objects.

The following example demonstrates reference-counting:

DBData d = 5; // Create a new object containing value 5
 // and make a reference to it
DBData d2 = d; // Both reference the same object
d << 20; // Add another value to existing object.
 // Both d and d2 reference the new array
d2 = 10; // d references the array, d2 is reassigned to the new data.
d.clear(); // Clear the last reference to the array of 5 and 20
 //and free the array

The programmer does not need to free objects when they are no longer used.
However, this method is relatively expensive and not practical for objects that are
created and destroyed often, such as when new lists of values, such as DBSetList,
are allocated for each SODA call. Various lists in SODA, such as DBSetList,
DBDataList and so on, are copy-on-assignment rather than reference-counted
objects.

The following example demonstrates copy-by-assignment:

DBSetList ls << "cost" << 1000;
DBSetList ls2 = ls; // Created a copy of ls
ls << "value" << "priceless" // Only ls is changed
ls2.clear(); // Just set this copy to size 0

You can optimize your implementation by not creating an unnecessary copy by
passing a reference or a const reference to the object, rather than an object, for both
reference-counted and copy-on-assignment classes when calling a function. For
example, void func(const DBData &v) avoids creating an unnecessary copy.

Note: SODA includes non-database classes and templates for your
convenience, which have names that start with ol rather than
DB—such as olHash. Avoid making unnecessary copies of these
classes.

Another Library for Exceptions (ALE)

12-6 Oracle Database Lite Oracle Lite Client Guide

12.5 Another Library for Exceptions (ALE)
Many embedded compilers, such as Visual C++ for PocketPC, do not support C++
exceptions. Oracle Database Lite includes ALE, which is a library that closely mimics
C++ exceptions. The following sections describe how to use ALE:

■ Section 12.5.1, "Decorating Classes With ALE"

■ Section 12.5.2, "New Operator and ALE"

■ Section 12.5.3, "Global Variables"

■ Section 12.5.4, "Exceptions and Inheritance"

■ Section 12.5.5, "Using ALE with PocketPC ARM Compilers"

■ Section 12.5.6, "Troubleshooting ALE Runtime Errors"

■ Section 12.5.7, "Compiling Your Program With ALE"

■ Section 12.5.8, "ALE Code on Systems That Support Exceptions"

12.5.1 Decorating Classes With ALE
A decorated class is one that uses ALE for handling its exceptions. If your embedded
compiler does not support exception handling, then use ALE, which relies on careful
accounting of all objects that are already constructed or are being constructed. ALE
supports stack unwinding and catching exceptions based on object type.

To use ALE, C++ source code needs to be modified where the try, catch and throw
blocks are replaced with the ALE macros, which is known as decorating classes. The
following is an example of a decorated class:

#include "ale.h"
struct Error {
 const char *msg;
 Error(const char *msg) :msg(msg) {}
};

aleTry {
 olArray<char> a(5);
 aleThrow(Error,Error("Adios"));// Or aleThrowObj(Error,("Adios"));
} aleCatch(Error,e) {
 puts(e.msg);
} aleCatch(aleBadAlloc,e) {
 puts("Tough!");
} aleCatchAll {
 puts("Some other exception happened\n");
 aleReThrow;
} aleEnd;

Note: The clear method only nullifies a particular reference to
reference-counted objects. DBSession and DBCursor classes provide
a close method that releases the underlying database resources, even
while the objects are still referenced. Using anything that relies on a
closed cursor or database connection throws a DBException.

Another Library for Exceptions (ALE)

Using Simple Object Data Access (SODA) 12-7

If your embedded compiler does not support exception handling, then use ALE, which
relies on careful accounting of all objects that are already constructed or are being
constructed. Your class is involved in exception handling if the class is on the stack
when an exception is thrown, its constructor may throw an exception, or it has a
decorated superclass and member—even if the class does not do any additional
exception-related processing.

When you decorate one class with ALE, you must decorate all classes involved with
this class. If you omit a decoration in one of the classes, then the program might fail.
Therefore, it is best to decorate all your classes except for plain C-style structures that
do not have any constructors or destructors.

If your class does not have any constructors with a body that throws exceptions (it is
OK if the superclass or member constructor does), then you can use a simple form of
class decoration by adding ALELAST(ClassName), without a semicolumn, at the end
of class declaration. ALELAST informs the library to register the class and clean-up if
an error occurs. The following demonstrates how to use ALELAST:

template<class T> class PtrHolder {
 T *ptr;
public:
 ~PtrHolder() { delete ptr; }
 operator T *() { return ptr; }
 ALELAST(PtrHolder)
};

If any of the constructors throw exceptions, then you need to do the following:

1. Add ALECLAST(ClassName), rather than ALELAST to the end of the class body.

2. Add ALECONS(ClassName) in the beginning of the body of each constructor.

This is demonstrated, as follows:

template<class T> class Array {
 T *a;
 size_t len;
public:

Table 12–1 ALE Macros for C++ Exceptions

Macro Action

aleTry Equivalent to C++ try. Use to enclose the code that might
encounter any exception.

aleCatch (type,
varName)

Catch exception of a given type and store it in the variable
varName, which is local to the block. Unlike the regular C++
exceptions, the type name string must match the argument of the
throw exactly.

aleThrow (type, obj) Throw an exception contained in obj of type. ALE supports
single inheritence of exceptions, as described in Section 12.5.4,
"Exceptions and Inheritance".

aleThrowObj (type,
arg1, arg2,)

Construct a new object of type with the specified arguments and
throw it as an exception.

aleCatchAll Catch any exceptions that are not handled explicitly.

aleReThrow Rethrow the exception that is caught in the innermost aleCatch
or aleCatchAll block.

aleEnd Close the exception handling construct. Add a semi-colon ; after
aleEnd.

Another Library for Exceptions (ALE)

12-8 Oracle Database Lite Oracle Lite Client Guide

 Array(size_t len=0} : len(len) {
 ALECONS(Array);
 a = new T[len];
 }
 Array(const Array &arr) : len(arr.len) {
 ALECONS(Array);
 for (size_t i = 0; i < len; i++)
 a[i] = arr.a[i];
 }
 ...
 ALECLAST(Array)
};

In this example, the class contains an explicit copy constructor. If your class does not
contain an explicit copy constructor and instances can be copied, then you need to
explicitly write a copy constructor and add ALECONS(ClassName); rather than
using a copy constructor that is generated by the compiler. If you need a more
complicated initialization than a default or copy constructor, then use a global
pointer—which can be initialized by another global object, rather than a global
instance.

12.5.2 New Operator and ALE
Decorated classes can be safely used with the new and delete functions, including
using new and delete for array and placement new. However, systems that do
not support exceptions usually do not declare std::bad_alloc and std::no_
throw types. Use aleBadAlloc and aleNoThrow instead of using std::bad_
alloc and std::no_throw types.

One design decision is whether to decorate classes with constructors that only throw
bad::alloc if they run out of memory using ALELAST or ALECLAST. If you are
writing classes for a single application that does not allocate much memory, you might
dispense with error checking and just use ALELAST. Your program might crash
because of incorrect cleanup calls if it runs out of memory. If your class allocates a lot
of memory or you are writing a highly-reusable framework, then it is best to use
ALECLAST and decorate all the constructors.

12.5.3 Global Variables
If you need a global or static variable to be decorated with ALE, declare it using
aleGlobal template, as follows:

aleGlobal<MyType> myGlobal; // Initialized with default constructor
aleGlobal<MyType> myGlobal1(MyType("Hello", 5")); // Initialized with copy
constructor.
...
MyType *t = myGlobal; // Declared variables behave as pointers

Declare all global or static decorated instances using aleGlobal or you may receive
runtime errors.

12.5.4 Exceptions and Inheritance
Unlike regular C++ exception handling, ALE requires that class names in aleThrow
and aleCatch match exactly. Typedef names, throwing a subclass, and catching a
superclass will not work. To build a hierarchy of exceptions, add ALEPARENT
declaration to the subclass, as follows:

Another Library for Exceptions (ALE)

Using Simple Object Data Access (SODA) 12-9

class BaseE {
 ALELAST(BaseE)
};
class DerivedE : public BaseE {
 ALELAST(DerivedE)
 ALEPARENT(BaseE)
};

DerivedE can be caught as BaseE. If you use multiple inheritance, then the first base
class must be declared as a parent.

12.5.5 Using ALE with PocketPC ARM Compilers
The Microsoft Embedded Visual C++ for ARM has a bug that is triggered when an
ALE-decorated object (or any object with embedded pointers) is passed by value to a
function or method. The affected code receives an ALE fatal error message at runtime.
To avoid this problem, always pass SODA objects and instances of other classes that
use ALE as a constant reference rather than value. For example, modify the following
code:

void createName(DBClass cls, DBString name) {
cls.create("name", name);
}

to the following implementation:

void createName(const DBClass &cls, const DBString &name) {
cls.create("name", name);

12.5.6 Troubleshooting ALE Runtime Errors
If your classes are not decorated properly, then you will receive runtime errors. On
PocketPC, ALE displays a message box explaining the problem, and then the program
terminates. In addition, the error and the dump of the ALE stack is appended to
aleDump.txt, which exists in the root directory of the device. In simple cases, the
error message pinpoints the exact problem; for example ALECONS is missing for
class MyArray. Usually, one of the classes found near the top of the ALE stack is
not decorated properly. If you do not decorate a class and its superclasses or members
are decorated, then you may receive a runtime error and see the
superclasses/members on the stack.

12.5.7 Compiling Your Program With ALE
To build a program that uses ALE, include ale.h from the Oracle Database Lite SDK
and link with the olStdDll.lib library. You need olStdDll.dll at runtime.

12.5.8 ALE Code on Systems That Support Exceptions
For systems that already support C++ exceptions, like Win32, Oracle Lite includes a
dummy ale.h that defines the same macros, but uses regular C++ exceptions to
implement them. If you are writing code that must execute on both Win32 and
PocketPC, remember to test the code with the actual ALE library to ensure that all
your classes are decorated correctly. ALELAST, ALECLAST or ALECONS have no effect
on the Win32 platform.

Another Library for Exceptions (ALE)

12-10 Oracle Database Lite Oracle Lite Client Guide

Using Stored Procedures and Triggers 13-1

13
Using Stored Procedures and Triggers

Oracle Database Lite enables you to use stored procedures written in Java, C, C++ and
C#. The following sections describe how you can load and define these stored
procedures in the Oracle Lite database:

■ Section 13.1, "Overview of Stored Procedures and Triggers"

■ Section 13.2, "Using Java Stored Procedures in Oracle Database Lite"

■ Section 13.3, "Creating Java Stored Procedures"

■ Section 13.4, "Using Triggers With Java Stored Procedures"

■ Section 13.5, "Tutorial for a Java Stored Procedure Invoked By a Trigger"

■ Section 13.6, "Converting Datatypes Between Java and SQL For Stored Procedures"

■ Section 13.7, "Executing Java Stored Procedures from JDBC"

■ Section 13.8, "Using C++ Stored Procedures"

■ Section 13.9, "Using .Net Stored Procedures"

■ Section 13.10, "Loading and Defining C, C++ or C# Stored Procedures"

13.1 Overview of Stored Procedures and Triggers
A stored procedure is a method that is stored in Oracle Database Lite. The procedure
can be invoked by applications that access the database. Stored procedures can return
a single value, a row, or multiple rows.

A trigger is a stored procedure that executes when a specific event occurs, such as a
row update, insertion, or deletion. An update of a specific column can also fire a
trigger. Triggers, however, cannot return a value. A trigger can operate at the
statement-level or row-level.

■ A statement-level trigger fires once per triggering statement, no matter how many
rows are affected.

■ A row-level trigger fires once for every row affected by the triggering statement.

13.2 Using Java Stored Procedures in Oracle Database Lite
To create a Java stored procedure, perform the following:

Note: For more information on general knowledge of creation and
management of stored procedures, see the Oracle Database
documentation.

Using Java Stored Procedures in Oracle Database Lite

13-2 Oracle Database Lite Oracle Lite Client Guide

1. Create the class that you want to store in Oracle Database Lite. You can use any
Java IDE to write the procedure, or you can simply reuse an existing procedure
that meets your needs.

When creating the class, consider the following restrictions on calling Java stored
procedures from SQL DML statements:

■ When called from an INSERT, UPDATE, or DELETE statement, the method
cannot query or modify any database tables modified by that statement.

■ When called from a SELECT, INSERT, UPDATE, or DELETE statement, the
method cannot execute SQL transaction control statements, such as COMMIT or
ROLLBACK.

2. Provide your class with a unique name for its deployment environment, since only
one Java Virtual Machine is loaded for each Oracle Database Lite application. If
the application executes methods from multiple databases, then the Java classes
from these databases are loaded into the same Java Virtual Machine. We
recommend that you prefix the Java class name with the database name to ensure
that the Java class names are unique across multiple databases.

3. If you are executing any DML statements in your Java stored procedure, then—in
order for these statements to exist within the same transaction—you must pass an
argument of type java.sql.Connection as the first argument in the method.
You must have the Connection object in order to prepare and execute any
statements. Oracle Database Lite supplies the appropriate argument value of the
Oracle Lite database Connection object for you; the application executing the
method does not need to provide a value for this parameter.

Once created, Java stored procedures must be loaded into any database—including the
Oracle Lite database—with either the loadjava Java utility or with the SQL
command, CREATE JAVA. In Oracle Database Lite, once the Java stored procedure is
loaded, you define how the table can use the methods of the stored procedure in one
of the following ways:

■ The table can invoke the methods within the Java stored procedure directly when
you attach it to the table with with the ALTER TABLE ATTACH JAVA SQL
command. When you attach the Java stored procedure, then the table inherits all
methods of the Java stored procedure class.

When you attach the Java class to a table then the static methods in the class
become table-level stored procedures of the table and the non-static (instance)
methods become row-level stored procedures.

■ Execute the CREATE FUNCTION or CREATE PROCEDURE SQL command defines a
call specification which declares a Java method so that it can be called from SQL.
The call specification tells Oracle which Java method to invoke when a call is
made.

■ Execute the CREATE TRIGGER SQL command which specifies that the Java stored
procedure executes when a specific event occurs on the table, such as an insert,
update, or delete.

Note: Any SQL statement in a stored procedure that violates a
restriction produces an error at run time.

Creating Java Stored Procedures

Using Stored Procedures and Triggers 13-3

13.2.1 Load and Define Java Stored Procedures in an Oracle Lite Database
When you want to use Java stored procedures in an Oracle Lite database, the
administrator must manually load and define the stored procedures either through
utilities or within a SQL script, as follows:

1. Load the Java class into the Oracle Lite database with either the loadjava
command-line utility or the SQL statement CREATE JAVA.

The loadjava utility automates the task of loading Java classes into the database.
Using loadjava, you can load Java class, source, and resource files, individually
or in archives.

2. Define the methods in the class that you want to call from SQL. As described in
Section 13.2, "Using Java Stored Procedures in Oracle Database Lite", you can
attach the entire stored procedure for all methods to be defined, or create the call
specification with either the CREATE FUNCTION or CREATE PROCEDURE
commands.

13.3 Creating Java Stored Procedures
Oracle Database Lite supports the following development models for creating Java
stored procedures:

■ Section 13.3.1, "Using Load and Define for Java Stored Procedures"

■ Section 13.3.2, "Using Attach to Define the Java Stored Procedure"

In addition, see the following sections for additional information about managing your
Java stored procedures:

■ Section 13.3.3, "Calling Java Stored Procedures From a Multithreaded C or C++
Application"

13.3.1 Using Load and Define for Java Stored Procedures
You only need to define procedures that should be callable from SQL. Many stored
procedures are only called by other stored procedures, and do not need to be defined.
Only static methods are supported when you do load and define Java stored
procedures.

As referred to in previous sections, perform the following to create Java stored
procedures:

1. Develop a Java class that contains the methods you want to store. Make sure that
the class compiles and executes without errors.

2. Load the Java class into Oracle Database Lite with either the loadjava utility or
the SQL CREATE JAVA command.

3. Define any static methods in the Java class that you want to make accessible to
SQL by creating call specifications for these methods. By defining a method, you
associate a SQL name to the method. SQL applications use this name to invoke the
method.

This model is supported by Oracle database, which enables you to utilize skills
and resources you have already developed in implementing Oracle database
enterprise applications and data. There is the following difference:

Note: For more information, see Section 13.3.1, "Using Load and
Define for Java Stored Procedures".

Creating Java Stored Procedures

13-4 Oracle Database Lite Oracle Lite Client Guide

■ In Oracle Database Lite, you cannot define a method that is mapped to a main
method.

■ In the Oracle database, call specs that define main methods are permitted.

4. Invoke the stored procedure through a SQL DML statement.

5. If you no longer intend to use the stored procedure, you can drop it from the
database.

The following sections describe in detail how to perform these functions:

■ Section 13.3.1.1, "Loading Java Stored Procedure Classes Into the Oracle Lite
Database"

■ Section 13.3.1.2, "Defining Stored Procedures to SQL Using Create Function or
Create Procedure"

■ Section 13.3.1.3, "Calling Defined Stored Procedures"

■ Section 13.3.1.4, "Dropping Defined Stored Procedures"

■ Section 13.3.1.5, "Example Using the Load and Define Model"

13.3.1.1 Loading Java Stored Procedure Classes Into the Oracle Lite Database
To load Java classes into the Oracle Database Lite database, you can use one of the
following:

■ Section 13.3.1.1.1, "loadjava"—The loadjava database command-line utility
automates the task of loading Java classes into Oracle Database Lite and Oracle
databases.

■ Section 13.3.1.1.2, "Using CREATE JAVA"—The SQL statement CREATE JAVA
loads Java classes manually.

13.3.1.1.1 loadjava The loadjava command-line utility creates schema objects from
files and loads them into the database. Schema objects can be created from Java source
files, class files, and resource files. Resource files may be image files, resources, or
anything else a procedure may need to access as data. You can pass files to loadjava
individually, or as ZIP or JAR archive files.

Oracle Database Lite does not keep track of class dependencies. Make sure that you
load into the database, or place in the CLASSPATH, all supporting classes and resource
files required by a stored procedure. To query the classes that are loaded in the
database, you can query the okJavaObj meta class.

Syntax
loadjava {-user | -u} username/password[@database]
 [-option_name -option_name ...] filename filename ...

Note: The load and define development model only supports Java
static methods. To store static and non-static (instance) methods,
you must attach the class to database tables, as described in
Section 13.3.2, "Using Attach to Define the Java Stored Procedure".

Note: The table name and column names are case sensitive.

Creating Java Stored Procedures

Using Stored Procedures and Triggers 13-5

Arguments
This section discusses the loadjava arguments in detail.

User
The user argument specifies a username, password, and database directory in the
following format:

<user>/<password>[@<database>]

For example:

scott/tiger@ ORACLE_HOME\Mobile\Sdk\OLDB40\Polite.odb

Options
Oracle Database Lite supports the following options that are listed and described in
Table 13–1.

When specifying multiple options, you must separate the options with spaces. For
example:

-force -verbose

The Oracle database supports additional options. If used with Oracle Database Lite,
the additional options are recognized but not supported. Using them does not result in
an error.

To view the options supported by Oracle database, see the loadjava help
information using the following syntax.

loadjava {-help | -h}

Filenames
On the command line, you can specify as many class, source, JAR, ZIP, and resource
files as you like, in any order. You must separate multiple file names with spaces, not
commas. If passed a source file, loadjava invokes the Java compiler to compile the
file before loading it into the database. If passed a JAR or ZIP file, loadjava processes
each file in the JAR or ZIP. It does not create a schema object for the JAR or ZIP
archive. The loadjava utility does not process a JAR or ZIP archive within another
JAR or ZIP archive.

The best way to load files is to place them in a JAR or ZIP and then load the archive.
Loading archives avoids the complications associated with resource schema object
names. If you have a JAR or ZIP that works with the JDK, then you can be sure that
loading it with loadjava also works, and you can avoid the complications associated
with resource schema object naming.

As it loads files into the database, loadjava must create a name for the schema
objects it creates for the files. The names of schema objects differ slightly from

Table 13–1 Options

Option Description

-force | -f Forces files to be loaded, even if a schema object with the same
name already exists in the database.

-verbose | -v Directs loadjava to display detailed status messages while
running.

-meta | -m Creates the meta information in the database but does not load
the classes. This is useful when the classes are in a .jar file and
are not loaded into the database.

Creating Java Stored Procedures

13-6 Oracle Database Lite Oracle Lite Client Guide

filenames, and different schema objects have different naming conventions. Class files
are self-identifying, so loadjava can map their filenames to the names of schema
objects automatically. Likewise, JAR and ZIP archives include the names of the files
they contain.

However, resource files are not self-identifying; loadjava derives the names of Java
resource schema objects from the literal names you enter on the command-line (or the
literal names in a JAR or ZIP archive). Because classes use resource schema objects
while executing, it is important that you specify the correct resource file names on the
command line.

The best way to load individual resource files is to run loadjava from the top of the
package tree, specifying resource file names relative to that directory. If you decide not
to load resource files from the top of the package tree, you must be aware of how
loadjava derives a name for your resource.

When you load a resource file, loadjava derives the name of the resource schema
object from the file name that you enter on the command line. Suppose you type the
following relative and absolute pathnames on the command line:

cd \scott\javastuff
loadjava options alpha\beta\x.properties
loadjava options \scott\javastuff\alpha\beta\x.properties

Although you have specified the same file with a relative and an absolute pathname,
loadjava creates two schema objects:

■ alpha\beta\x.properties

■ \scott\javastuff\alpha\beta\x.properties.

The loadjava utility generates the resource schema object's name from the file names
you enter.

Classes can refer to resource files relatively (for example, b.properties) or
absolutely (for example, \a\b.properties). To ensure that loadjava and the class
loader use the same name for a schema object, pass loadjava the name of the resource
that the class passes to the java.lang.Object.getResource or
java.lang.Class.getResourceAsStream method.

Instead of remembering whether classes use relative or absolute resource names and
changing directories so that you can enter the correct name on the command line, you
can load resource files into a JAR file, as follows:

cd \scott\javastuff
jar -cf alpharesources.jar alpha*.properties
loadjava options alpharesources.jar

Or, to simplify further, put both the class and resource files in a JAR, which makes the
following invocations equivalent:

loadjava options alpha.jar
loadjava options \scott\javastuff\alpha.jar

Example
The following loads a class and resource file into Oracle Database Lite. It uses the
force option; if the database already contains objects with the specified names,
loadjava replaces them.

c:\> loadjava -u scott/tiger@c:\Olite\Mobile\Sdk\OLDB40\Polite.odb -f Agent.class\
images.dat

Creating Java Stored Procedures

Using Stored Procedures and Triggers 13-7

13.3.1.1.2 Using CREATE JAVA

To load Java classes manually, use the following syntax:

CREATE [OR REPLACE] [AND RESOLVE] [NOFORCE]
 JAVA {CLASS [SCHEMA <schema_name>] |
 RESOURCE NAMED [<schema_name>.]<primary_name>}
 [<invoker_rights_clause>]
 RESOLVER <resolver_spec>]
 USING BFILE ('<dir_path>', '<class_name>')

The following apply to the CREATE JAVA parameters:

■ The OR REPLACE clause, if specified, recreates the function or procedure if one
with the same name already exists in the database.

■ For compatibility with the Oracle database, Oracle Database Lite recognizes but
ignores the <resolver_spec> clause. Unlike the Oracle database, Oracle
Database Lite does not resolve class dependencies. When loading classes
manually, be sure to load all dependent classes.

■ Oracle Database Lite recognizes, but ignores, <invoker_rights_clause>.

Example
The following demonstrates a CREATE JAVA statement. It loads a class named
Employee into the database.

CREATE JAVA CLASS USING BFILE ('c:\myprojects\java',
 'Employee.class');

13.3.1.2 Defining Stored Procedures to SQL Using Create Function or Create
Procedure
After loading the Java class into the Oracle Lite database using loadjava or CREATE
JAVA, define any static method in the class that you want to call from SQL by creating
a call specification for it. The call specification maps the Java method's name,
parameter types, and return types to SQL counterparts.

You do not need to define every stored procedure, only those that serve as entry
points for your application. In a typical implementation, many stored procedures are
called only by other stored procedures, not by SQL users.

To create a call spec, use the SQL commands CREATE FUNCTION for methods that
return a value or CREATE PROCEDURE for methods that do not return a value. The
CREATE FUNCTION and CREATE PROCEDURE statements have the following syntax:

CREATE [OR REPLACE]
 { PROCEDURE [<schema_name>.]<proc_name> [([<sql_parms>])] |
 FUNCTION [<schema_name>.]<func_name> [([<sql_parms>])]
 RETURN <sql_type> }
 <invoker_rights_clause>
 { IS | AS } LANGUAGE JAVA NAME
 '<java_fullname> ([<java_parms>])
 [return <java_type_fullname>]';

Note: Another method to define the Java stored procedure is to
attach it, as described in Section 13.3.2, "Using Attach to Define the
Java Stored Procedure". The attach method defines the entire stored
procedure and you can store both class-level (static) methods and
object-level (non-static) methods.

Creating Java Stored Procedures

13-8 Oracle Database Lite Oracle Lite Client Guide

 /

The following apply to this statement's keywords and parameters:

■ <sql_parms> has the following format:

<arg_name> [IN | OUT | IN OUT]
 <datatype>

■ <java_parms> is the fully qualified name of the Java datatype.

■ For compatibility with the Oracle database, Oracle Database Lite recognizes but
ignores the <invoker_rights_clause> clause.

■ <java_fullname> is the fully qualified name of a static Java method.

■ IS and AS are synonymous.

For example, assume the following class has been loaded into the database:

import java.sql.*;
import java.io.*;

public class GenericDrop {
 public static void dropIt (Connection conn, String object_type,
 String object_name) throws SQLException {
 // Build SQL statement
 String sql = "DROP " + object_type + " " + object_name;
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(sql);
 stmt.close();
 } catch (SQLException e) {
 System.err.println(e.getMessage());}
 } // dropIt
} // GenericDrop

Class GenericDrop has one method named dropIt, which drops any kind of
schema object. For example, if you pass the arguments "table" and "emp" to dropIt,
the method drops the database table EMP from your schema.

The following call specification defines the method to SQL:

CREATE OR REPLACE PROCEDURE drop_it (
 obj_type VARCHAR2,
 obj_name VARCHAR2)
 AS LANGUAGE JAVA
 NAME 'GenericDrop.dropIt(java.sql.Connection,
 java.lang.String, java.lang.String)';
 /

Given that you have a table named TEMP defined in your schema, you can execute the
drop_it procedure from SQL Plus as follows.

Select drop_it('TABLE', 'TEMP') from dual;

You can also execute the drop_it procedure from within a ODBC application using
an ODBC CALL statement. For more information, refer Section 13.3.3, "Calling Java
Stored Procedures From a Multithreaded C or C++ Application".

Note: You must fully qualify the Java datatype parameters.

Creating Java Stored Procedures

Using Stored Procedures and Triggers 13-9

13.3.1.3 Calling Defined Stored Procedures
After defining the stored procedure to SQL, call it with a SQL DML statement. For
example, assume that this class is stored in the database:

public class Formatter {
 public static String formatEmp (String empName, String jobTitle) {
 empName = empName.substring(0,1).toUpperCase() +
 empName.substring(1).toLowerCase();
 jobTitle = jobTitle.trim().toLowerCase();
 if (jobTitle.equals("analyst"))
 return (new String(empName + " is an exempt analyst"));
 else
 return (new String(empName + " is a non-exempt " + jobTitle));
 }
}

Class Formatter has one method named formatEmp, which returns a formatted
string containing an employee's name and job status. Create a call specification for
Formatter as follows:

CREATE OR REPLACE FUNCTION format_emp (ename VARCHAR2, job VARCHAR2)
 RETURN VARCHAR2
 AS LANGUAGE JAVA
 NAME 'Formatter.formatEmp (java.lang.String, java.lang.String)
 return java.lang.String';
 /

The call specification defines the method formatEmp as format_emp. Invoke it as
follows:

SELECT FORMAT_EMP(ENAME, JOB) AS "Employees" FROM EMP
 WHERE JOB NOT IN ('MANAGER', 'PRESIDENT') ORDER BY ENAME;

This statement produces the following output:

Employees
--
Adams is a non-exempt clerk
Allen is a non-exempt salesman
Ford is an exempt analyst
James is a non-exempt clerk
Martin is a non-exempt salesman
Miller is a non-exempt clerk
Scott is an exempt analyst
Smith is a non-exempt clerk
Turner is a non-exempt salesman
Ward is a non-exempt salesman

13.3.1.4 Dropping Defined Stored Procedures
Oracle Database Lite provides tools and SQL commands for dropping stored
procedures. You should use caution when dropping procedures from the database,
since Oracle Database Lite does not keep track of dependencies between classes. You

Note: Oracle Database Lite does not support the Oracle database
SQL CALL statement for invoking stored procedures.

For information on calling stored procedures from C and C++
applications, see Section 13.3.3, "Calling Java Stored Procedures
From a Multithreaded C or C++ Application".

Creating Java Stored Procedures

13-10 Oracle Database Lite Oracle Lite Client Guide

must ensure that the stored procedure you drop is not referenced by other stored
procedures. Dropping a class invalidates classes that depend on it directly or
indirectly.

To remove Java stored procedure classes from Oracle Database Lite that were loaded,
use either of the following:

■ Section 13.3.1.4.1, "Using dropjava" for directions on how to use the dropjava
utility

■ Section 13.3.1.4.2, "Using SQL Commands" for directions on how to use the SQL
DROP JAVA statement

To drop call specifications, use either DROP FUNCTION or DROP PROCEDURE.

13.3.1.4.1 Using dropjava The dropjava command-line utility automates the task of
dropping Java classes from Oracle Database Lite and Oracle databases. dropjava
converts file names into the names of schema objects and drops the schema objects.
Use the following syntax to invoke dropjava:

dropjava {-user | -u} username/password[@database]
 [-option] filename filename ...

Arguments
This section describes the arguments to dropjava.

User
The user argument specifies a username, password, and absolute path to the database
file in the following format:

<user>/<password>[@<database>]

For example:

scott/tiger@c:\Olite\Mobile\Sdk\OLDB40\Polite.odb

Option
By specifying the verbose option (-verbose | -v), you can direct dropjava to
produce detailed status messages while running.

Oracle database supports additional options. If used with Oracle Database Lite, the
additional options are recognized but not supported. Using them does not result in an
error.

For a complete list of supported and recognized options, from the command prompt
type:

dropjava -help

Filename
For the filename argument, you can specify any number of Java class, source, JAR,
ZIP, and resource files, in any order. JAR and ZIP files must be uncompressed.
dropjava interprets most file names the same way loadjava does:

■ For class files, dropjava finds the class name in the file and drops the
corresponding schema object.

■ For source files, dropjava finds the first class name in the file and drops the
corresponding schema object.

■ For JAR and ZIP files, dropjava processes the archived file names as if they had
been entered on the command line.

Creating Java Stored Procedures

Using Stored Procedures and Triggers 13-11

If a file name has an extension other than .java, .class, .jar, or .zip, or has no extension,
then dropjava assumes that the file name is the name of a schema object, then drops
all source, class, and resource schema objects with that name. If dropjava encounters
a file name that does not match the name of any schema object, it displays an error
message and then processes the remaining file names.

13.3.1.4.2 Using SQL Commands To drop a Java class from Oracle Database Lite
manually, use the DROP JAVA statement, which has the following syntax:

DROP JAVA { CLASS | RESOURCE } [<schema-name> .]<object_name>

To drop a call specification, use the DROP FUNCTION or DROP PROCEDURE statement:

DROP { FUNCTION | PROCEDURE } [<schema-name>.]<object_name>

The schema name, if specified, is recognized but ignored by Oracle Database Lite.

13.3.1.5 Example Using the Load and Define Model
The following example creates a Java stored procedure using the load and define
model.

In this example, you store the Java method paySalary in the Oracle Database Lite.
paySalary computes the take-home salary for an employee.

This example covers the following steps.

■ Step 1: Create the Java Class

■ Step 2: Load the Java Class into the Database

■ Step 3: Define the Function

■ Step 4: Execute the Function

More examples of Java stored procedures are located in the <ORACLE_
HOME>\Mobile\SDK\samples\jdbc directory.

Step 1: Create the Java Class
Create the Java class Employee in the file Employee.java. The Employee class
implements the paySalary method:

import java.sql.*;
public class Employee {
 public static String paySalary(float sal, float fica, float sttax,
 float ss_pct, float espp_pct) {
 float deduct_pct;
 float net_sal;
 // compute take-home salary
 deduct_pct = fica + sttax + ss_pct + espp_pct;
 net_sal = sal * deduct_pct;
 String returnstmt = "Net salary is " + net_sal;
 return returnstmt;
 } // paySalary
}

Note: The keyword "public class" should not be used in a
comment before the first public class statement.

Creating Java Stored Procedures

13-12 Oracle Database Lite Oracle Lite Client Guide

Step 2: Load the Java Class into the Database
From mSQL, load the Java class using CREATE JAVA, as follows:

CREATE JAVA CLASS USING BFILE ('c:\myprojects\doc',
'Employee.class');

This command loads the Java class located in c:\myprojects\doc into the Oracle
Database Lite.

Step 3: Define the Function
Create a call specification for the paySalary method. The following call specification
defines the Java method paySalary as function pay_salary:

CREATE FUNCTION pay_salary (
sal float, fica float, sttax float, ss_pct float, espp_pct float)
RETURN VARCHAR2
AS LANGUAGE JAVA NAME
'Employee.paySalary(float, float, float, float, float)
return java.lang.String';
/

Step 4: Execute the Function
To execute pay_salary in mSQL:

SELECT pay_salary(6000.00, 0.2, 0.0565, 0.0606, 0.1)
FROM DUAL;

To execute pay_salary in ODBC:

SQLExecDirect(hstm,
 "SELECT pay_salary(6000.00,0.2,0.0565,0.0606,0.1)
 FROM DUAL);

Because the arguments to pay_salary are constants, the FROM clause specifies the
dummy table DUAL. This SELECT statement produces the following output:

Net salary is 2502.6

13.3.2 Using Attach to Define the Java Stored Procedure
You can create Java stored procedures by attaching classes to a table and invoking
methods in the class by name. Using this model, you can store both class-level (static)
methods and object-level (non-static) methods.

For this model, follow these steps:

1. Develop a Java class with the methods you want to store. Make sure that the class
compiles and executes without errors.

2. Attach the class to a table using the SQL ALTER TABLE command. Once the class
is attached, then the methods in the class become table-level or row-level stored
procedures of the table.

3. Invoke methods in the class directly from SQL. Identify the method with table_
name.method_name.

This information is specific to Oracle Database Lite; you cannot attach classes to Oracle
database tables as described here. The load and define model for developing stored
procedures, described in Section 13.3.1, "Using Load and Define for Java Stored
Procedures", only supports class (static) methods. By attaching classes to tables,
however, you can store and call Java class and instance methods.

Creating Java Stored Procedures

Using Stored Procedures and Triggers 13-13

The following sections describe the details for attaching and using Java stored
procedures:

■ Section 13.3.2.1, "Attaching a Java Class to a Table"

■ Section 13.3.2.2, "Table-Level Stored Procedures"

■ Section 13.3.2.3, "Row-Level Stored Procedures"

■ Section 13.3.2.4, "Calling Attached Stored Procedures"

■ Section 13.3.2.5, "Dropping Attached Stored Procedures"

■ Section 13.3.2.6, "Example of An Attached Java Stored Procedure"

13.3.2.1 Attaching a Java Class to a Table
To attach a Java class to a table, use the SQL command ALTER TABLE, which has the
following syntax:

ALTER TABLE [schema.]table
 ATTACH JAVA {CLASS|SOURCE} "cls_or_src_name "
 IN {DATABASE|'cls_or_src_path '}
 [WITH CONSTRUCTOR ARGS (col_name_list)]

Where:

■ The cls_or_src_name variable specifies a fully qualified name of a class or
source file. This includes the package name followed by class name, such as
Oracle.lite.Customer. Do not include the file extension in the class or source
file name. The name is case-sensitive. If you use lowercase letters, enclose the
name in double quotes (" "). Make sure that the source or class is in the package
specified by cls_or_src_name. For example, the source file of the example class
Customer should contain the line "package Oracle.lite;". The class file is
stored in the database in the same package. Oracle Database Lite creates the
package if it does not already exist.

■ If you have already attached the Java class to another table in the database, you
can use the IN DATABASE clause. If the class has not yet been attached, specify the
directory location of the class or source file in cls_or_src_path.

■ Prior to executing a row-level stored procedure, Oracle Database Lite creates a
Java object for the row, if one does not already exist. If the ALTER TABLE
statement includes a WITH CONSTRUCTOR clause, then Oracle Database Lite
creates the object using the class constructor that is the best match given the
datatypes of the columns included in col_name_list. If the ALTER TABLE
statement does not include a WITH CONSTRUCTOR clause, then Oracle Database
Lite uses the default constructor.

You can use the ODBC functions SQLProcedures and SQLProcedureColumns to
retrieve information about methods defined in a table.

13.3.2.2 Table-Level Stored Procedures
Table-level stored procedures are the static methods of the attached Java class.
Therefore, when executing the method, Oracle Database Lite does not instantiate the
class to which it belongs. In a call statement, you refer to table-level stored procedures
as table_name.method_name.

Note: You can attach either a source file or a class file. Source files
are compiled by the Java compiler found in the system path.

Creating Java Stored Procedures

13-14 Oracle Database Lite Oracle Lite Client Guide

Statement-level triggers and BEFORE INSERT and AFTER DELETE row-level triggers
(see "Section 13.4.1, "Statement-Level vs. Row-Level Triggers") must be table-level
stored procedures.

13.3.2.3 Row-Level Stored Procedures
Row-level stored procedures are the non-static methods in the attached Java class. To
execute a row-level stored procedure, Oracle Database Lite instantiates the class to
which the procedure belongs. The arguments to the class constructor determine which
column values the constructor uses as parameters to create the class instances. In a call
statement, you refer to row-level stored procedures as method_name (without the
table qualifier). Row-level triggers can indirectly execute row-level stored procedures.

13.3.2.4 Calling Attached Stored Procedures
After attaching the class to a table using the ALTER TABLE statement, you can call it
with a SELECT statement. Refer to table-level stored procedures as table_name.method_
name and row-level procedures as method_name.

For example, to execute a table-level stored procedure:

SELECT table_name.proc_name[arg_list]
 FROM {DUAL|[schema.]table WHERE condition};

The proc_name is the name of the table-level stored procedure. Each argument in
arg_list is either a constant or a reference to a column in the table. If all the
arguments of arg_list are constants, the FROM clause should reference the dummy
table DUAL.

Execute a row-level stored procedure as follows:

SELECT [schema.]proc_name[arg_list]
 FROM [schema.]table
 WHERE condition;

If you call a procedure in the form table_name.method_name, and a table or method with
that name does not exist, Oracle Database Lite assumes that table_name refers to a
schema name and method_name refers to a procedure name. If you reference method_
name only, Oracle Database Lite assumes that the referenced method is a row-level
procedure. If there is no such procedure defined, however, Oracle Database Lite
assumes that method_name refers to a procedure in the current schema.

13.3.2.5 Dropping Attached Stored Procedures
Oracle Database Lite provides tools and SQL commands for dropping stored
procedures. You should use caution when dropping procedures from the database,
since Oracle Database Lite does not keep track of dependencies between classes. You
must ensure that the stored procedure you drop is not referenced by other stored
procedures. Dropping a class invalidates classes that depend on it directly or
indirectly.

Note: Oracle Database Lite does not support the Oracle8i SQL
CALL statement for invoking stored procedures.

You can use a callable statement to execute a procedure from
ODBC or JDBC applications. For more information, see Chapter 10,
"JDBC Programming" or Section 13.3.3, "Calling Java Stored
Procedures From a Multithreaded C or C++ Application".

Creating Java Stored Procedures

Using Stored Procedures and Triggers 13-15

You use the ALTER TABLE command to drop stored procedures, which has the
following syntax:

ALTER TABLE [schema.]table
 DETACH [AND DELETE] JAVA CLASS "class_name"

Detaching the Java class does not delete it from the database. To delete the Java class
file from the database, use the DETACH AND DELETE statement.

If you delete a Java class from the database after invoking it as a stored procedure or
trigger, the class remains in the Java Virtual Machine attached to the application. To
unload the class from the Java Virtual Machine, commit changes to the database, if
necessary, and close all applications connected to the database. To replace a Java class,
you must close all connections to the database and reload the class.

13.3.2.6 Example of An Attached Java Stored Procedure
The following example shows how to create a Java stored procedure in Oracle
Database Lite. In this example, you attach the Java method paySalary to the table
EMP. paySalary computes the take-home salary for an employee.

This example covers the following steps:

■ Step 1: Create the Table

■ Step 2: Create the Java Class

■ Step 3: Attach the Java Class to the Table

■ Step 4: Execute the Method

Step 1: Create the Table
Create the table using the following SQL command:

CREATE TABLE EMP(Col1 char(10));

Step 2: Create the Java Class
Create the Java class Employee in the file Employee.java. The Employee class
implements the paySalary method:

import java.sql.*;
public class Employee {
 public static String paySalary(float sal, float fica, float sttax,
 float ss_pct, float espp_pct) {
 float deduct_pct;
 float net_sal;
 // compute take-home salary
 deduct_pct = fica + sttax + ss_pct + espp_pct;
 net_sal = sal * deduct_pct;
 String returnstmt = "Net salary is " + net_sal;
 return returnstmt;
 } // paySalary
}

Step 3: Attach the Java Class to the Table
From mSQL, attach the Java class using the ALTER TABLE command:

Note: You must enclose the class name in double quotes (" ") if it
contains lowercase letters.

Using Triggers With Java Stored Procedures

13-16 Oracle Database Lite Oracle Lite Client Guide

ALTER TABLE EMP ATTACH JAVA SOURCE "Employee" IN 'C:\tmp';

This command attaches the Java source file for the Employee class, which resides in
the directory C:\tmp, to the EMP table.

Step 4: Execute the Method
To execute the paySalary method in mSQL, type the following statement:

SELECT EMP."paySalary"(6000.00,0.2,0.0565,0.0606,0.1)
 FROM DUAL;

To execute paySalary from ODBC, invoke SQLExecDirect:

SQLExecDirect(hstm,
 "SELECT EMP.\"paySalary\"(6000.00,0.2,0.0565,0.0606,0.1)
 FROM DUAL);

This statement produces the following result:

Net salary is 2502.6

13.3.3 Calling Java Stored Procedures From a Multithreaded C or C++ Application
When invoking a Java stored procedure from a multithreaded C or C++ application,
you should load jvm.dll from the application's main function. This resolves a
problem that occurs with the Java Virtual Machine's garbage collection when a C or
C++ application creates multiple threads that invoke a stored procedure directly or
indirectly. The Java Virtual Machine runs out of memory because the threads do not
detach from the Java Virtual Machine before exiting. Since Oracle Database Lite cannot
determine whether the Java Virtual Machine or the user application created the thread,
it does not attempt to detach them.

The main function should load the library before taking any other action, as follows:

int main (int argc, char** argv)
{
 LoadLibrary("jvm.dll");
 ...
}

The library loads the Java Virtual Machine into the application's main thread. It
attempts to detach any thread from the Java Virtual Machine if the thread detaches
from the process. The jvm.dll behaves correctly even if the thread is not attached to
a Java Virtual Machine.

13.4 Using Triggers With Java Stored Procedures
Triggers are stored procedures that execute, or "fire", when a specific event occurs. A
trigger can fire when a column is updated, or when a row is added or deleted. The
trigger can fire before or after the event.

Triggers are commonly used to enforce a database's business rules. For example, a
trigger can verify input values and reject an illegal insert. Similarly, a trigger can
ensure that all tables depending on a particular row are brought to a consistent state
before the row is deleted.

■ Section 13.4.1, "Statement-Level vs. Row-Level Triggers"

■ Section 13.4.2, "Creating Triggers"

Using Triggers With Java Stored Procedures

Using Stored Procedures and Triggers 13-17

■ Section 13.4.3, "Dropping Triggers"

■ Section 13.4.4, "Trigger Example Using the Attach Method"

■ Section 13.4.5, "Trigger Arguments"

■ Section 13.4.6, "Trigger Arguments Example Using Create Procedure"

13.4.1 Statement-Level vs. Row-Level Triggers
There are two types of triggers: row-level and statement-level. A row-level trigger is
fired once for each row affected by the change to the database. A statement-level
trigger fires only once, even if multiple rows are affected by the change.

The BEFORE INSERT and AFTER DELETE triggers can only fire table-level stored
procedures, since a row object cannot be instantiated to call the procedures. The
AFTER INSERT, BEFORE DELETE, and UPDATE triggers may fire table-level or
row-level stored procedures.

13.4.2 Creating Triggers
Use the CREATE TRIGGER statement to create a trigger. The CREATE TRIGGER
statement has the following syntax:

CREATE [OR REPLACE] TRIGGER trigger_name {BEFORE | AFTER} [{INSERT | DELETE |
 UPDATE [OF column_list]} [OR]] ON table_reference
 [FOR EACH ROW] procedure_ref
 (arg_list)

In the CREATE TRIGGER syntax:

■ Use the OR clause to specify multiple triggering events.

■ Use FOR EACH ROW to create a row-level trigger. For a table-level trigger, do not
include this clause.

■ Use procedure_ref to identify the stored procedure to execute.

You can create multiple triggers of the same kind for a table if each trigger has a
unique name within a schema.

In the following example, assume that you have stored and defined a procedure as
PROCESS_NEW_HIRE. The trigger AIEMP fires every time a row is inserted into the
EMP table.

CREATE TRIGGER AIEMP AFTER INSERT ON EMP FOR EACH ROW
 PROCESS_NEW_HIRE(ENO);

UPDATE triggers that use the same stored procedure for different columns of a table
are fired only once when a subset of the columns is modified within a statement. For
example, the following statement creates a BEFORE UPDATE trigger on table T, which
has columns C1, C2, and C3:

CREATE TRIGGER T_TRIGGER BEFORE UPDATE OF C1,C2,C3 ON T
 FOR EACH ROW trigg(old.C1,new.C1,old.C2,new.C2,
 old.C3,new.C3);

This update statement fires T_TRIGGER only once:

UPDATE T SET C1 = 10, C2 = 10 WHERE ...

Using Triggers With Java Stored Procedures

13-18 Oracle Database Lite Oracle Lite Client Guide

13.4.2.1 Enabling and Disabling Triggers
When you create a trigger, it is automatically enabled. To disable triggers, use the
ALTER TABLE or ALTER TRIGGER statement.

To enable or disable individual triggers, use the ALTER TRIGGER statement, which
has the following syntax:

ALTER TRIGGER <trigger_name> {ENABLE | DISABLE}

To enable or disable all triggers attached to a table, use ALTER TABLE:

ALTER TABLE <table_name> {ENABLE | DISABLE} ALL TRIGGERS

13.4.3 Dropping Triggers
To drop a trigger, use the DROP TRIGGER statement, which has the following syntax:

DROP TRIGGER [schema.]trigger

13.4.4 Trigger Example Using the Attach Method
This example creates a trigger that is defined using the attach method, as described in
Section 13.3.2, "Using Attach to Define the Java Stored Procedure". For an example of
creating triggers using the SQL CREATE FUNCTION or CREATE METHOD, see
Section 13.4.6, "Trigger Arguments Example Using Create Procedure". In the example,
you first create a table and a Java class. Then you attach the class to the table. And
finally, you create and fire the trigger.

The SalaryTrigger class contains the check_sal_raise method. The method
prints a message if an employee gets a salary raise of more than ten percent. The
trigger fires the method before updating a salary in the EMP table.

Since check_sal_raise writes a message to standard output, use mSQL to issue the
mSQL commands in the example. To start mSQL, invoke the Command Prompt and
enter the following.

msql username/password@connect_string

connect_string is JDBC URL syntax. For example, to connect to the default
database as user SYSTEM, at the Command Prompt.

msql system/passwd@jdbc:polite:polite

At the mSQL command line, create and populate the EMP table as follows.

CREATE TABLE EMP(E# int, name char(10), salary real,
 Constraint E#_PK primary key (E#));

INSERT INTO EMP VALUES (123,'Smith',60000);
INSERT INTO EMP VALUES (234,'Jones',50000);

Place the following class in SalaryTrigger.java:

class SalaryTrigger {
 private int eno;
 public SalaryTrigger(int enum) {
 eno = enum;
 }
 public void check_sal_raise(float old_sal,
 float new_sal)
 {
 if (((new_sal - old_sal)/old_sal) > .10)

Using Triggers With Java Stored Procedures

Using Stored Procedures and Triggers 13-19

 {
 // raise too high do something here
 System.out.println("Raise too high for employee " + eno);
 }
 }
}

The SalaryTrigger class constructor takes an integer, which it assigns to attribute
eno (the employee number). An instance of SalaryTrigger is created for each row
(that is, for each employee) in the table EMP.

The check_sal_raise method is a non-static method. To execute, it must be called
by an object of its class. Whenever the salary column of a row in EMP is modified, an
instance of SalaryTrigger corresponding to that row is created (if it does not
already exist) with the employee number (E#) as the argument to the constructor. The
trigger then calls the check_sal_raise method.

After creating the Java class, you attach it to the table, as follows:

ALTER TABLE EMP ATTACH JAVA SOURCE "SalaryTrigger" IN '.'
 WITH CONSTRUCTOR ARGS(E#);

This statement directs Oracle Database Lite to compile the Java source file
SalaryTrigger.java found in the current directory, and attach the resulting class
to the EMP table. The statement also specifies that, when instantiating the class, Oracle
Database Lite should use the constructor that takes as an argument the value in the E#
column.

After attaching the class to the table, create the trigger as follows:

CREATE TRIGGER CHECK_RAISE BEFORE UPDATE OF SALARY ON EMP FOR EACH ROW
 "check_sal_raise"(old.salary, new.salary);
/

This statement creates a trigger called check_raise, which fires the check_sal_
raise method before any update to the salary column of any row in EMP. Oracle
Database Lite passes the old value and the new value of the salary column as
arguments to the method.

In the example, a row-level trigger fires a row-level procedure (a non-static method).
A row-level trigger can also fire table-level procedures (static methods). However,
because statement-level triggers are fired once for an entire statement and a statement
may affect multiple rows, a statement-level trigger can only fire a table-level
procedure.

The following command updates the salary and fires the trigger:

UPDATE EMP SET SALARY = SALARY + 6100 WHERE E# = 123;

This produces the following output:

Raise too high for employee 123

13.4.5 Trigger Arguments
If using attached stored procedures, as described in Section 13.3.2, "Using Attach to
Define the Java Stored Procedure", row-level triggers do not support Java-to-SQL type
conversion. Therefore, the Java datatype of a trigger argument must match the
corresponding SQL datatype (shown in section Section 13.6, "Converting Datatypes
Between Java and SQL For Stored Procedures") of the trigger column. However, if you
are using the load and define model, Oracle Database Lite supports datatype casting.

Using Triggers With Java Stored Procedures

13-20 Oracle Database Lite Oracle Lite Client Guide

Table 13–2 describes how trigger arguments work in each type of column.

13.4.6 Trigger Arguments Example Using Create Procedure
The following example shows how to create triggers that use IN/OUT parameters.

1. First, create the Java class EMPTrigg.

import java.sql.*;

public class EMPTrigg {
 public static final String goodGuy = "Oleg";

 public static void NameUpdate(String oldName, String[] newName)
 {
 if (oldName.equals(goodGuy))
 newName[0] = oldName;
 }

 public static void SalaryUpdate(String name, int oldSalary,
 int newSalary[])
 {
 if (name.equals(goodGuy))
 newSalary[0] = Math.max(oldSalary, newSalary[0])*10;
 }

 public static void AfterDelete(Connection conn,
 String name, int salary) {
 if (name.equals(goodGuy))
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(
 "insert into employee values('" + name + "', " +
 salary + ")");
 stmt.close();
 } catch(SQLException e) {}
 }
 }

2. Create a new table EMPLOYEE and populate it with values.

CREATE TABLE EMPLOYEE(NAME VARCHAR(32), SALARY INT);
INSERT INTO EMPLOYEE VALUES('Alice', 100);
INSERT INTO EMPLOYEE VALUES('Bob', 100);
INSERT INTO EMPLOYEE VALUES('Oleg', 100);

3. Next, load the class into Oracle Database Lite.

Table 13–2 Trigger Arguments

Trigger Argument New Column Access Old Column Access

insert Yes No

delete No Yes

update Yes Yes

Note: Triggers that have a java.sql.Connection object as an
argument may be used only with applications that use the
relational model.

Tutorial for a Java Stored Procedure Invoked By a Trigger

Using Stored Procedures and Triggers 13-21

CREATE JAVA CLASS USING BFILE ('c:\myprojects', 'EMPTrigg.class');

4. Use the CREATE PROCEDURE statement to define the EMPTrigg methods that you
want to call:

CREATE PROCEDURE NAME_UPDATE(
 OLD_NAME IN VARCHAR2, NEW_NAME IN OUT VARCHAR2)
 AS LANGUAGE JAVA NAME
 'EMPTrigger.NameUpdate(java.lang.String, java.lang.String[])';
 /

CREATE PROCEDURE SALARY_UPDATE(
 ENAME VARCHAR2, OLD_SALARY INT, NEW_SALARY IN OUT INT)
 AS LANGUAGE JAVA NAME
 'EMPTrigger.SalaryUpdate(java.lang.String, int, int[])';
 /

CREATE PROCEDURE AFTER_DELETE(
 ENAME VARCHAR2, SALARY INT)
 AS LANGUAGE JAVA NAME
 'EMPTrigger.AfterDelete(java.sql.Connection,
 java.lang.String, int)';
 /

5. Now, create a trigger for each procedure:

CREATE TRIGGER NU BEFORE UPDATE OF NAME ON EMPLOYEE FOR EACH ROW
 NAME_UPDATE(old.name, new.name);

CREATE TRIGGER SU BEFORE UPDATE OF SALARY ON EMPLOYEE FOR EACH ROW
 SALARY_UPDATE(name, old.salary, new.salary);

CREATE TRIGGER AD AFTER DELETE ON EMPLOYEE FOR EACH ROW
 AFTER_DELETE(name, salary);

6. Enter the following commands to fire the triggers and view the results:

SELECT * FROM EMPLOYEE;
UPDATE EMPLOYEE SET SALARY=0 WHERE NAME = 'Oleg';
SELECT * FROM EMPLOYEE;

DELETE FROM EMPLOYEE WHERE NAME = 'Oleg';
SELECT * FROM EMPLOYEE;

UPDATE EMPLOYEE SET NAME='TEMP' WHERE NAME = 'Oleg';
DELETE FROM EMPLOYEE WHERE NAME = 'TEMP';

SELECT * FROM EMPLOYEE;

13.5 Tutorial for a Java Stored Procedure Invoked By a Trigger
In this tutorial, you create a Java class EMAIL, load the class into Oracle Database Lite,
define its method to SQL, and create a trigger for the method. The EMAIL class
appears in the source file EMAIL.java, and is available in the Java examples directory
at the following location.

<ORACLE_HOME>\Mobile\Sdk\Samples\JDBC

EMAIL has a method named assignEMailAddress, which generates an email
address for an employee based on the first letter of the employee's first name and up
to seven letters of the last name. If the address is already assigned, the method

Tutorial for a Java Stored Procedure Invoked By a Trigger

13-22 Oracle Database Lite Oracle Lite Client Guide

attempts to find a unique email address using combinations of letters in the first and
last name.

After creating the class, you load it into Oracle Database Lite using mSQL. For this
example you use the SQL statement CREATE JAVA. Alternatively, you can use the
loadjava utility to load the class into Oracle Database Lite. After loading the class,
you define the assignEMailAddress method to SQL.

Finally, you create a trigger that fires the assignEMailAddress method whenever a
row is inserted into T_EMP, the table that contains the employee information.

As arguments, assignEMailAddress takes a JDBC connection object, the
employee's identification number, first name, middle initial, and last name. Oracle
Database Lite supplies the JDBC connection object argument. You do not need to
provide a value for the connection object when you execute the method.
assignEMailAddress uses the JDBC connection object to ensure that the generated
e-mail address is unique.

■ Section 13.5.1, "Start mSQL"

■ Section 13.5.2, "Create a Table"

■ Section 13.5.3, "Create a Java Class"

■ Section 13.5.4, "Load the Java Class File"

■ Section 13.5.5, "Define the Stored Procedure"

■ Section 13.5.6, "Populate the Database"

■ Section 13.5.7, "Execute the Procedure"

■ Section 13.5.8, "Verify the Email Address"

■ Section 13.5.9, "Create a Trigger"

■ Section 13.5.10, "Commit or Roll Back"

13.5.1 Start mSQL
Start mSQL and connect to the default Oracle Database Lite. Since the Java application
in this tutorial prints to standard output, use the DOS version of mSQL. From a DOS
prompt, type:

msql system/mgr@jdbc:polite:polite

The SQL prompt should appear.

13.5.2 Create a Table
To create a table, type:

CREATE TABLE T_EMP(ENO INT PRIMARY KEY,
 FNAME VARCHAR(20),
 MI CHAR,
 LNAME VARCHAR(20),
 EMAIL VARCHAR(8));

13.5.3 Create a Java Class
Create and compile the Java class EMAIL in the file EMAIL.java in C:\tmp.
EMAIL.java implements the assignEMailAddress method. The code sample
given below lists the contents of this file. You can copy this file from the following
location.

Tutorial for a Java Stored Procedure Invoked By a Trigger

Using Stored Procedures and Triggers 13-23

<ORACLE_HOME>\Mobile\Sdk\Samples\JDBC

import java.sql.*;

public class EMAIL {
 public static void assignEMailAddress(Connection conn,
 int eno, String fname,String lname)
 throws Exception
 {
 Statement stmt = null;
 ResultSet retset = null;
 String emailAddr;
 int i,j,fnLen, lnLen, rowCount;

 /* create a statement */
 try {
 stmt = conn.createStatement();
 }
 catch (SQLException e)
 {
 System.out.println("conn.createStatement failed: " +
 e.getMessage() + "\n");
 System.exit(0);
 }
 /* check fname and lname */
 fnLen = fname.length();
 if(fnLen > 8) fnLen = 8;
 if (fnLen == 0)
 throw new Exception("First name is required");
 lnLen = lname.length();
 if(lnLen > 8) lnLen = 8;
 if (lnLen == 0)
 throw new Exception("Last name is required");
 for (i=1; i <= fnLen; i++)
 {
 /* generate an e-mail address */
 j = (8-i) > lnLen? lnLen:8-i;
 emailAddr =
 new String(fname.substring(0,i).toLowerCase()+
 lname.substring(0,j).toLowerCase());
 /* check if this e-mail address is unique */
 try {
 retset = stmt.executeQuery(
 "SELECT * FROM T_EMP WHERE email = '"+
 emailAddr+"'");
 if(!retset.next()) {
 /* e-mail address is unique;
 * so update the email column */
 retset.close();
 rowCount = stmt.executeUpdate(
 "UPDATE T_EMP SET EMAIL = '"
 + emailAddr + "' WHERE ENO = "
 + eno);
 if(rowCount == 0)
 throw new Exception("Employee "+fname+ " " +
 lname + " does not exist");
 else return;
 }
 }
 catch (SQLException e) {
 while(e != null) {

Tutorial for a Java Stored Procedure Invoked By a Trigger

13-24 Oracle Database Lite Oracle Lite Client Guide

 System.out.println(e.getMessage());
 e = e.getNextException();
 }
 }
 }
 /* Can't find a unique name */
 emailAddr = new String(fname.substring(0,1).toLowerCase() +
 lname.substring(0,1).toLowerCase() + eno);
 rowCount = stmt.executeUpdate(
 "UPDATE T_EMP SET EMAIL = '"
 + emailAddr + "' WHERE ENO = "
 + eno);
 if(rowCount == 0)
 throw new Exception("Employee "+fname+ " " +
 lname + " does not exist");
 else return;
 }
}

13.5.4 Load the Java Class File
To load the EMAIL class file into Oracle Database Lite, type:

CREATE JAVA CLASS USING BFILE
 ('c:\tmp', 'EMAIL.class');

If you want to make changes to the class after loading it, you need to:

1. Drop the class from the database, using dropjava or DROP JAVA CLASS

2. Commit your work

3. Exit mSQL

4. Restart mSQL

This unloads the class from the Java Virtual Machine.

13.5.5 Define the Stored Procedure
You make the stored procedure callable from SQL by creating a call specification (call
spec) for it. Since assignEMailAddress does not return a value, use the CREATE
PROCEDURE command, as follows:

CREATE OR REPLACE PROCEDURE
 ASSIGN_EMAIL(E_NO INT, F_NAME VARCHAR2, L_NAME VARCHAR2)
 AS LANGUAGE JAVA NAME 'EMAIL.assignEMailAddress(java.sql.Connection,
int, java.lang.String,
 java.lang.String)';

13.5.6 Populate the Database
Insert a row into T_EMP:

INSERT INTO T_EMP VALUES(100,'John','E','Smith',null);

13.5.7 Execute the Procedure
To execute the procedure, type:

SELECT ASSIGN_EMAIL(100,'John','Smith')
 FROM dual

Converting Datatypes Between Java and SQL For Stored Procedures

Using Stored Procedures and Triggers 13-25

13.5.8 Verify the Email Address
To see the results of the ASSIGN_EMAIL procedure, type:

SELECT * FROM T_EMP;

This command produces the following output:

 ENO FNAME M LNAME EMAIL
 ---- ------------------ - -------------------- --------
 100 John E Smith jsmith

13.5.9 Create a Trigger
To make ASSIGN_EMAIL execute whenever a row is inserted into T_EMP, create an
AFTER INSERT trigger for it. Create the trigger as follows:

CREATE TRIGGER EMP_TRIGG AFTER INSERT ON T_EMP FOR EACH ROW
 ASSIGN_EMAIL(eno,fname,lname);

A trigger named EMP_TRIGG fires every time a row is inserted into T_EMP. The actual
arguments for the procedure are the values of the columns eno, fname, and lname.

You do not need to specify a connection argument.

13.5.9.1 Testing the Trigger
Test the trigger by inserting a row into T_EMP:

INSERT INTO T_EMP VALUES(200,'James','A','Smith',null);

13.5.9.2 Verify the Email Address
Issue a SELECT statement to verify that the trigger has fired:

SELECT * FROM T_EMP;
 ENO FNAME M LNAME EMAIL
 --- -------------------- - -------------------- --------
 100 John E Smith jsmith
 200 James A Smith jasmith

13.5.10 Commit or Roll Back
Finally, commit your changes to preserve your work, or roll back to cancel changes.

13.6 Converting Datatypes Between Java and SQL For Stored
Procedures

Oracle Database Lite performs type conversion between Java and SQL datatypes
according to standard SQL rules. For example, if you pass an integer to a stored
procedure that takes a string, Oracle Database Lite converts the integer to a string. For
information about row-level triggers arguments, see Section 13.4.5, "Trigger
Arguments". For a complete list of Java to SQL datatype mappings, see Section 10.5.1,
"Mapping Datatypes Between Java and Oracle".

Converting Datatypes Between Java and SQL For Stored Procedures

13-26 Oracle Database Lite Oracle Lite Client Guide

Java does not allow a method to change the value of its arguments outside the scope of
the method. However, Oracle Database Lite supports IN, OUT, and IN/OUT
parameters.

Many Java datatypes are immutable or do not support NULL values. To pass NULL
values and use IN/OUT parameters for those datatypes, a stored procedure can use an
array of that type or use the equivalent object type. Table 13–3 shows the Java integer
datatypes you can use to enable an integer to be an IN/OUT parameter or carry a NULL
value.

You can use mutable Java datatypes, such as Date, to pass a NULL or an IN/OUT
parameter. However, use a Date array if a stored procedure needs to change the NULL
status of its argument.

13.6.1 Declaring Parameters for Java Stored Procedures
The return value of a Java method is the OUT parameter of the procedure. A primitive
type or immutable reference type can be an IN parameter. A mutable reference type or
array type can be an IN/OUT parameter. Table 13–4 shows the Java type to use to
make the corresponding Oracle Database Lite parameter an IN/OUT parameter.

If the stored procedure takes a java.sql.Connection, Oracle Database Lite
automatically supplies the argument using the value of the current transaction or row.
This argument is the first argument passed to the procedure.

Note: In Oracle database, DATE columns are created as
TIMESTAMP. Also, note that TIMESTAMP WITH TIME ZONE data
type is not supported.

You must specify trigger methods accordingly.

Table 13–3 The Java Integer Datatypes

Java Argument Can Be IN/OUT Can Be NULL

int No No

int[] Yes Yes

Integer No Yes

Integer[] Yes Yes

int[][] Yes Yes

Note: Passing a NULL when the corresponding Java argument
cannot be NULL causes an error.

Table 13–4 Java Types for Oracle Database Lite IN/OUT Parameters

For IN/OUT parameters
of type... Use...

Number Integer[] or int[]

Binary byte[] or byte[][]

String string[]

Converting Datatypes Between Java and SQL For Stored Procedures

Using Stored Procedures and Triggers 13-27

13.6.2 Using Stored Procedures to Return Multiple Rows
You can use stored procedures to return multiple rows. You can invoke stored
procedures that return multiple rows only from JDBC or ODBC applications, however.
For a stored procedure to return multiple rows, its corresponding Java method must
return a java.sql.ResultSet object. By executing a SELECT statement, the Java
method obtains a ResultSet object to return. The column names of the ResultSet
are specified in the SELECT statement. If you need to address the result columns by
different names than those used in the table, the SELECT statement should use aliases
for the result columns. For example:

SELECT emp.name Name, dept.Name Dept
 FROM emp, dept
 WHERE emp.dept# = dept.dept#;

Because the return type of a stored procedure that returns multiple rows must be
java.sql.ResultSet, the signature of that stored procedure cannot be used to
obtain the column names or types of the result. Consequently, you should design
additional tables to track the column names or result types for the stored procedures.
For example, if you embed the preceding SELECT statement in a Java method, the
method return type should be java.sql.ResultType, not char Name and char
Dept.

13.6.2.1 Returning Multiple Rows in ODBC
To execute a stored procedure that returns multiple rows in an OBDC application, use
the following CALL statement, in which P is the name of the stored procedure and a1
through an are arguments to the stored procedure.

{CALL P(a1,...,an)}

You use a marker (?) for any argument that should be bound to a value before the
statement executes. When the statement executes, the procedure runs and the cursor
on the result set is stored in the statement handle. Subsequent fetches using this
statement handle return the rows from the procedure.

After you execute the CALL statement, use SQLNumResultCols to find the number of
columns in each row of the result. Use the SQLDescribeCol function to return the
column name and datatype.

13.6.2.2 Example
The following example shows how to use ODBC to execute a stored procedure that
returns multiple rows. This example does not use the SQLNumResultCols or
SQLDescribeCol functions. It assumes that you have created a stored procedure,
which you have defined to SQL as PROC. PROC takes an integer as an argument.

rc = SQLPrepare(StmtHdl, "{call PROC(?)}", SQL_NTS);
CHECK_STMT_ERR(StmtHdl, rc, "SQLPrepare");

rc = SQLBindParameter(StmtHdl, 1, SQL_PARAM_INPUT_OUTPUT,
 SQL_C_LONG,SQL_INTEGER, 0, 0, &InOutNum, 0, NULL);
CHECK_STMT_ERR(StmtHdl, rc, "SQLBindParameter");

Note: You can only create Java stored procedures that return
multiple rows using the attached stored procedure development
model, described in Section 13.3.2, "Using Attach to Define the Java
Stored Procedure".

Executing Java Stored Procedures from JDBC

13-28 Oracle Database Lite Oracle Lite Client Guide

rc = SQLExecute(StmtHdl);
CHECK_STMT_ERR(StmtHdl, rc, "SQLExecute");

/* you can use SQLNumResultCols and SQLDescribeCol here */

rc = SQLBindCol(StmtHdl, 1, SQL_C_CHAR, c1, 20, &pcbValue1);
CHECK_STMT_ERR(StmtHdl, rc, "SQLBindCol");

rc = SQLBindCol(StmtHdl, 2, SQL_C_CHAR, c2, 20, &pcbValue2);
CHECK_STMT_ERR(StmtHdl, rc, "SQLBindCol");

while ((rc = SQLFetch(StmtHdl)) != SQL_NO_DATA_FOUND) {
 CHECK_STMT_ERR(StmtHdl, rc, "SQLFetch");
 printf("%s, %s\n", c1, c2);
}

13.7 Executing Java Stored Procedures from JDBC
After creating a Java stored procedures, you can execute the procedure from a JDBC
application by performing one of the following:

■ Pass a SQL SELECT string, which executes the stored procedure, to the
Statement.executeQuery method.

■ Use a JDBC CallableStatement.

The executeQuery method executes table-level and row-level stored procedures.
CallableStatement currently only supports execution of table-level stored
procedures.

13.7.1 Using the executeQuery Method
To call a stored procedure using the executeQuery method, perform the following:

1. Create a Statement object and assign the value returned by the
createStatement method with the current connection object.

2. Execute the Statement.executeQuery method, passing the SQL SELECT
string that invokes the Java stored procedure.

The following example executes a row-level procedure SHIP on a table named
INVENTORY with the argument value stored in the variable q. The variable p contains
the product ID for the product (row) for which you want to execute the stored
procedure.

int res = 0;
Statement s = conn.createStatement();
ResultSet r = s.executeQuery("SELECT SHIP(" + q + ")" +
 "FROM INVENTORY WHERE PID = " + p);
if(r.next()) res = r.getInt(1);
r.close();
s.close();
return res;

If you need to execute a procedure repeatedly with varying parameters, use
PreparedStatement instead of Statement. Because the SQL statements in a
PreparedStatement are pre-compiled, a PreparedStatement executes more
efficiently. Additionally, a PreparedStatement can accept IN parameters,
represented in the statement with a question mark (?). However, if the
PreparedStatement takes a long type parameter, such as LONG or LONG RAW, you

Using C++ Stored Procedures

Using Stored Procedures and Triggers 13-29

must bind the parameter using the setAsciiStream, setUnicodeStream, or
setBinaryStream methods.

In the preceding example, if the SHIP procedure updates the database and the
isolation of the transaction that issues the above query is READ COMMITTED, then you
must append the FOR UPDATE clause to the SELECT statement, as follows:

"SELECT SHIP(" + q + ")" +
 FROM INVENTORY WHERE PID = " +
 p + "FOR UPDATE");

13.7.2 Using a Callable Statement
To execute the stored procedure using a callable statement, create a
CallableStatement object and register its parameters, as follows:

CallableStatement cstmt = conn.prepareCall(
 "{?=call tablename.methodname() }");
cstmt.registerOutParameter(1, ...);
cstmt.executeUpdate();
cstmt.get..(1);
cstmt.close();

The following restrictions apply to JDBC callable statements:

■ JDBC callable statements can only execute table-level stored procedures.

■ Both IN and OUT parameters are supported. However, not all Java datatypes can
be used as OUT parameters. For more information, see Section 13.6, "Converting
Datatypes Between Java and SQL For Stored Procedures".

■ Procedure names correspond to the Java method names, and are case-sensitive.

■ As with prepared statements, if the callable statement has a "long" type, such as:
LONG, LONG VARBINARY, LONG VARCHAR, LONG VARCHAR2, or LONG RAW, you
must bind the parameter using the setAsciiStream, setUnicodeStream, or
setBinaryStream methods.

13.8 Using C++ Stored Procedures
A C++ stored procedure is a C++ procedure or function that exists in a DLL outside of
Oracle Database Lite. The procedure can be invoked by applications that access the
database. C++ stored procedures can return a single value, a row, or multiple rows.

The following sections describe how to create, build, and define a C++ stored
procedure:

■ Section 13.8.1, "Creating C++ Stored Procedures"

■ Section 13.8.2, "Building Your C++ Stored Procedures"

■ Section 13.8.3, "Define Your C++ Stored Procedure"

■ Section 13.8.4, "C++ Stored Procedure Example"

Note: When no longer needed, you should reclaim system
resources by closing JDBC objects, such as Resultset and
Statement objects.

Using C++ Stored Procedures

13-30 Oracle Database Lite Oracle Lite Client Guide

13.8.1 Creating C++ Stored Procedures
When you are creating a C++ stored procedure, you use SODA APIs to access the
database and transaction objects. This section demonstrates how to develop your C++
stored procedures.

■ Section 13.8.1.1, "C++ Stored Procedure Include File and Procedure Definition"

■ Section 13.8.1.2, "Access SODA Objects Within Your C++ Stored Procedure"

13.8.1.1 C++ Stored Procedure Include File and Procedure Definition
When you create the C++ source file, remember to do the following:

■ Include the olcsp.h include file.

■ The following defines the stored procedure or function prototypes. For each, you
can have up to 32 parameters.

– C++ stored procedure prototype:

OL_CSP_CALL void cproc (const DBData &d1, const DBData &d2, ... , DBData
&dN)

– C++ stored function prototype:

OL_CSP_CALL DBData cproc (const DBData &d1, const DBData &d2, ... , DBData
&dN)

■ Use OL_CSP_CALL before all of your procedures and functions, as it defines these
as extern "C" __declspec(dllexport). This enables the procedures and
functions to be called from outside the DLL. For example, the following sum
procedure uses this declaration:

OL_CSP_CALL void sum (const DBData &a, const DBData &b, DBData &r)

■ You can use the DBData object to represent almost any database type. In addition,
it is easily cast to the correct datatype. For input parameters in the procedures, you
can use const DBData &. For input/output parameters, use DBData & as the
definition of the parameter.

Once inside the procedure, cast the parameters as shown below:

OL_CSP_CALL void sum (const DBData &a, const DBData &b, DBData &r)
{ r = (int)a + (int)b; }

13.8.1.2 Access SODA Objects Within Your C++ Stored Procedure
We use SODA, instead of ODBC, to provide a reliable access to the database and
transaction objects. To access the SODA API objects, use the methods defined in the
olcsp.h include file, as follows:

■ After you retrieve the session object, do not close the connection in side the
procedure.

■ Retrieve the SODA API DBSession object with the olCSPGetSession()
method, as follows:

DBSession &sess = olCSPGetSession();

Note: For details on the SODA API, see Chapter 12, "Using Simple
Object Data Access (SODA)".

Using C++ Stored Procedures

Using Stored Procedures and Triggers 13-31

■ Retrieve the SODA API DBSqlSession object, which is used in preparing and
executing SQL statements, with the olCSPGetSqlSession method. Once you
retrieve the DBSqlSession object, you can prepare the SQL statement within a
DBSqlStmt object. The returned DBSqlSession object is created based on the
existing ODBC handle. The following example retrieves the SQL Session, prepares
and executes a statement:

DBSqlSession sess = olCSPGetSqlSession();
DBSqlStmt stmt = sess.prepare("insert into testsql values(?)");
stmt.execute(DBDataList() << v);

■ If this procedure was executed within the trigger, you can retrieve the object on
which the trigger was invoked with the olCSPGetObject method. This returns a
DBObject of the trigger object. This will not work for BEFORE CREATE or
AFTER DELETE triggers.

■ If you want to use ODBC instead of SODA, you can retrieve the ODBC connection
handle with the olCSPGetODBCHdl method.

■ All C++ stored procedures can throw DBException. This exception is
automatically thrown if any SODA/SODASQL operation fails inside your stored
procedure. If you are using a WinCE device, then you must use the ALE library
for exceptions. See the ALE documentation for more information.

13.8.2 Building Your C++ Stored Procedures
You can either build your stored procedure manually or by using the olsp.mak
makefile. The following describes both processes:

■ Section 13.8.2.1, "Linking in Appropriate Libraries"

■ Section 13.8.2.2, "Automatically Build Your Stored Procedure"

■ Section 13.8.2.3, "Manually Building Your Stored Procedure"

13.8.2.1 Linking in Appropriate Libraries
When you build your procedure, link in one or more of the following libraries:

■ For all builds, link in olobj40.lib, which exists in <Mobile_
Server>Mobile/SDK/lib.

■ If you are using SODASQL in your stored procedure, then link in sodasql.lib.

13.8.2.2 Automatically Build Your Stored Procedure
If you have only a single source file, then you can use the olsp.mak makefile to build.
The resulting DLL is named the same as the source file. This makefile supports
building procedures for both the desktop and Windows CE platforms. Set up the
following within the makefile before you execute to ensure a proper build:

1. Place the olsp.mak makefile in the same location as your source file.

2. If you build C++ stored procedures for a Windows CE device, then before you
execute the makefile, you need to run the batch file from embedded visual C++.
This sets the appropriate build environment for your windows CE platform. The
following example shows execution of the wcearmv4.bat batch file:

 C:\EVC4.0\EVC\wce420\bin\WCEARMV4.BAT

Using C++ Stored Procedures

13-32 Oracle Database Lite Oracle Lite Client Guide

3. Set the MOBILESDK environment variable—which defines the Oracle Lite Mobile
SDK directory. For example,

MOBILESDK=C:\oracle\ora90\mobile\sdk

4. Within the makefile, define CDEFINE (compiler defines) and LFL (linker flags)
macros for your Windows CE platform.

5. If you are building .Net procedures, then set the NETFRKDIR environment
variable in the makefile to point to your .Net Framework directory

6. If building for the Compact Framework, then define the CFK macro and set the
CFSDKDIR environment variable in the makefile to point to your Compact
Framework SDK directory.

7. Execute the makefile, as follows:

nmake -f olsp.mak MyProc.dll [macros] [options]

The macros that you can use are as follows:

■ For debug mode, use the macro DEBUG=/DDEBUG.

■ For compact framework, use the macro CFK=1.

8. Copy the new DLL, such as MyProc.dll, into a directory on the system path. If
your platform is a WinCE device, copy this DLL into the \Windows directory.

For example, if your source file is MyProc.cpp or MyProc.cs, then this makefile
builds MyProc.dll for you.

13.8.2.3 Manually Building Your Stored Procedure
If you have more than one source file for the stored procedure, then you must
manually build. Keep in mind the following:

1. Because you are using the export "C" declaration on the stored procedure,
which supports the procedure being able to throw exceptions, use the /EHc-
compiler flag when building the stored procedure.

2. If you are using the SODASQL in the procedure, then link with either the
olobj40.lib and sodasql.lib.

13.8.3 Define Your C++ Stored Procedure
Define the methods in the class that you want to call from SQL with a call
specification, which is created with either the CREATE FUNCTION or CREATE
PROCEDURE commands.

Perform the following to define C++ stored procedures:

1. Define any methods in the C++ class that you want to make accessible to SQL by
creating call specifications for these methods. By defining a method, you associate
a SQL name to the method. SQL applications use this name to invoke the method.

2. Invoke the stored procedure through a SQL DML statement.

Define any static method in the class that you want to call from SQL by creating a call
specification for it. The call specification maps the method's name, parameter types,
and return types to SQL counterparts.

To create a call spec, use the SQL commands CREATE FUNCTION for methods that
return a value or CREATE PROCEDURE for methods that do not return a value. The
CREATE FUNCTION and CREATE PROCEDURE statements have the following syntax:

Using C++ Stored Procedures

Using Stored Procedures and Triggers 13-33

CREATE [OR REPLACE]
 { PROCEDURE <proc_name> [([<sql_parms>])] |
 FUNCTION <func_name> [([<sql_parms>])]
 RETURN <datatype> }
 AS LANGUAGE CPLUSPLUS NAME
 ’<lib_name>::<func_name>)’;
 /

Where:

■ <proc_name> is a SQL procedure name; <func_name> is the name of the
function in the DLL used for this procedure.

■ <sql_parms> can be a maximum of 32 arguments. All arguments passed to the
procedures are given as DBData values to the function, which must cast the
arguments to the appropriate data type. The syntax has the following format:

<arg_name> [IN | OUT | IN OUT] <datatype>

■ <datatype> is the datatype.

■ <lib_name> is the name of the DLL where the function is delcared, without the
.dll extension.

For example:

The following call specification defines the method to SQL:

CREATE PROCEDURE bu1 (
 oc1 int,
 nc1 int,
 oc2 int,
 nc2 int)
 AS LANGUAGE CPLUSPLUS
 NAME 'CSPLib::bu1';
 /

13.8.4 C++ Stored Procedure Example
The following examples show how to create, build and define the stored procedures.

■ Section 13.8.4.1, "C++ Stored Procedure and Trigger Example One"

■ Section 13.8.4.2, "C++ Stored Procedure and Trigger Example Two"

■ Section 13.8.4.3, "JDBC Calling a C++ Stored Procedure Example"

13.8.4.1 C++ Stored Procedure and Trigger Example One
The following example does the following:

1. Creates the t1 table.

2. Creates the call specification of bu1 for the C++ stored procedure bu1 in the
CSPLib.dll.

3. Creates a BEFORE UPDATE trigger, foo, which calls the bu1 C++ stored procedure
before the values of c1 and c2 in the table are updated.

create table t1(c1 int, c2 int);

create procedure bu1(oc1 int, nc1 int, oc2 int, nc2 int)
 as language cplusplus name 'CSPLib::bu1';

create trigger foo before update of c1,c2 on t1

Using C++ Stored Procedures

13-34 Oracle Database Lite Oracle Lite Client Guide

 for each row bu1(old.c1,new.c1,old.c2,new.c2);

The following demonstrates how the trigger is executed, which in turn invokes the
C++ stored procedure:

insert into t1 values(1,2);
insert into t1 values(10,2);

--trigger fired here
update t1 set c1 = 10, c2 = 20 where c1 = 1;
update t1 set c1 = 100 where c1 = 10;

13.8.4.2 C++ Stored Procedure and Trigger Example Two
The following example does the same as Example 1, but with a more complicated
trigger. The trigger and procedure are dropped at the end of this example.

create table t3(c1 int, c2 int);

create procedure bc2(tabref varchar, tranid int, opseq int, c1 int, c2 int) as
language cplusplus name 'CSPLib::bc2';

--special trigger columns here
create trigger foo2 before insert on t3 for each row bc2(OL__TABLEREF, OL__
TRANSID, OL__OPSEQ, new.c1,new.c2);

--trigger fired here
insert into t3 values(1,2);
insert into t3 values(10,20);
insert into t3(c1) values(100);
insert into t3(c2) values(100);

drop trigger foo2;
drop procedure bc2;

13.8.4.3 JDBC Calling a C++ Stored Procedure Example
The following example shows JDBC invoking a C++ stored procedure through the
CallableStatement.

//The following statement creates the procedure TESTINOUT1 with in out parameters
stmt.execute("CREATE OR REPLACE PROCEDURE TESTINOUT1(A IN OUT INT,
 B IN OUT DOUBLE PRECISION, C IN OUT VARCHAR, D IN OUT DATE,
 E IN OUT TIME, F IN OUT BINARY) AS LANGUAGE CPLUSPLUS
 NAME CSPLib::testInOut");

CallableStatement cstmt =
 conn.prepareCall("{call TESTINOUT1(?, ?, ?, ?, ?, ?)}");

cstmt.registerOutParameter(1, Types.INTEGER);
cstmt.registerOutParameter(2, Types.DOUBLE);
cstmt.registerOutParameter(3, Types.VARCHAR);
cstmt.registerOutParameter(4, Types.DATE);
cstmt.registerOutParameter(5, Types.TIME);
cstmt.registerOutParameter(6, Types.BINARY);

//setting parameters to null values
cstmt.setNull(1, Types.INTEGER);
cstmt.setNull(2, Types.DOUBLE);
cstmt.setNull(3, Types.VARCHAR);
cstmt.setNull(4, Types.DATE);
cstmt.setNull(5, Types.TIME);

Using .Net Stored Procedures

Using Stored Procedures and Triggers 13-35

cstmt.setNull(6, Types.BINARY);

for(int i = 0; i < 5; i++) {
 //executing the procedure. The parameters will be modified inside the procedure
 cstmt.execute();
 int a = cstmt.getInt(1);
 double b = cstmt.getDouble(2);
 String c = cstmt.getString(3);
 Date d = cstmt.getDate(4);
 Time e = cstmt.getTime(5);
 byte [] f = cstmt.getBytes(6);
}

13.9 Using .Net Stored Procedures
The .Net environment enables you to create stored procedures from any .Net
language, such as C++, C#, C, and Visual Basic .Net. You create procedures and
functions based on methods of a .Net class that is stored in an external DLL. Unlike
C++ procedures, you don’t need a fixed signature. Instead, the procedure can receive
arguments and return values for any supported data type.

The following sections detail how to build your .Net stored procedures:

■ Section 13.9.1, "Creating the .Net Source for Your Stored Procedure"

■ Section 13.9.2, "Building Your .Net Stored Procedures"

■ Section 13.9.3, "Define Your .Net Stored Procedure"

■ Section 13.9.4, "Dropping .Net Stored Procedures"

■ Section 13.9.5, ".Net Stored Procedure Example"

13.9.1 Creating the .Net Source for Your Stored Procedure
When you are creating a .Net stored procedure, you can use Oracle-specific .Net
extension classes to access the database and transaction objects. The .Net extension
classes discussed in the following sections are OracleData, OracleDataRow, and
OracleSPManager.

The following sections demonstrate how to develop your .Net stored procedures:

■ Section 13.9.1.1, "Defining Methods, Imports and Namespace"

■ Section 13.9.1.2, "Access and Modify Database Using .Net Extension Classes In
Stored Procedures"

■ Section 13.9.1.3, "Access and Modify Database Using OracleSPManager Inside
Triggers"

Note: Windows CE devices have the following limitations:

■ You cannot pass delegates to native code when using the Compact
Framework.

■ You cannot start the .Net runtime from native code. The only way
to use .Net on a Windows CE device is to start it within a C#
application before the stored procedures are invoked.

Using .Net Stored Procedures

13-36 Oracle Database Lite Oracle Lite Client Guide

13.9.1.1 Defining Methods, Imports and Namespace
1. When you create your .Net source file, be sure to import the

Oracle.DataAccess.Lite namespace.

2. All stored procedures are declared as public static methods of the class.

The following example defines public static methods and includes the
Oracle.DataAccess.Lite namespace:

using System;
using Oracle.DataAccess.Lite;

public class SPClass
{
 //function which multiplies two integers
 public static int multiply(int a, int b)
 {
 return a * b;
 }

 //returns string length, as in C++ procedure example
 public static int strlen(string s)
 {
 return s.Length;
 }

//stores sum of first two arguments in the third argument
//as in C++ procedure example
 public static void trigSum(int a, int b, out int c)
 {
 c = a + b;
 }
public static void testInOut1(ref int dInt, ref double dDouble,
 ref string dStr, ref DateTime dDate, ref DateTime dTime,
 ref byte [] dBin)
 {
 dInt += 10;
 dDouble += 12.34;
 dStr += "aaaaa";

 dDate = dDate.AddYears(1);
 dDate = dDate.AddMonths(1);
 dDate = dDate.AddDays(1);

 dTime = dTime.AddMinutes(1);
 dTime = dTime.AddSeconds(1);

 int len = dBin == null ? 0 : dBin.Length;
 byte [] newBin = new byte[len + 5];
 if (dBin != null)
 Array.Copy(dBin, 0, newBin, 0, len);
 for(int i = len; i < newBin.Length; i++)
 newBin[i] = (byte)'x';
 dBin = newBin;
 }
}
}

Using .Net Stored Procedures

Using Stored Procedures and Triggers 13-37

13.9.1.2 Access and Modify Database Using .Net Extension Classes In Stored
Procedures
The following are Oracle-specific .Net extension classes:

■ OracleData—A .Net version of the SODA DBData class.

■ OracleDataRow—encapsulates and Oracle Lite database row.

OracleData
The OracleData object is a .Net version of the SODA DBData class.

Data types that are supported by Oracle Database Lite can be used in the OracleData
object. These types can be implicitly cast to other compatible types; the cast must still
follow normal database SQL casting rules. Casting between scalar types are implicit;
casting to array types are explicit. If you try to cast an incompatible type, and
OracleException is thrown.

This includes the following data types:

For example, the following code shows how you can cast a String to an Integer
using the OracleData object:

string s = "10";
OracleData d = new OracleData(s);
int i = d;

OracleDataRow
The OracleDataRow object encapsulates and Oracle Lite database row. You can
query and modify column values in place, instead of using SQL. The OracleDataRow
implements indexes on the row, which returns an OracleData object.

To create an object query on a table, implement OracleDataReader, an Oracle
extension of the ADO.Net DataReader object, to return OracleDataRow objects.
The following example uses the GetDataRow method of the OracleDataReader
object to retrieve the desired rows. To set up the query more efficiently, set the
RowQuery attributes of Table and Filter before executing the query, as follows:

OracleConnection conn =
 new OracleConnection("DSN=POLITE;UID=SYSTEM;PWD=MANAGER");
conn.Open();
OracleCommand cmd = (OracleCommand)conn.CreateCommand();
//set properties for row query of table name and where clause
cmd.RowQuery.Table = "T1"; //table name

Table 13–5 Data Type For OracleData Object

Data Type

int, int[] byte, byte[]
database type binary

short, short[] bool, bool []

long, long[] double, double[] string, string[]

DateTime, DateTime[] OracleDataRow,
OracleDataRow[]

OracleBlob, Oracle
Blob[] (Oracle Lite
Blob object)

Note: For more information on the ADO.Net classes, see Chapter 11,
"Oracle Database Lite ADO.NET Provider".

Using .Net Stored Procedures

13-38 Oracle Database Lite Oracle Lite Client Guide

cmd.RowQuery.Filter = "C1 < 10"; //where clause

//execute the query and retrieve the desired rows
OracleDataReader rd = (OracleDataReader)cmd.ExecuteQuery();

//While there are rows, process each row
while(rd.Read())
{ //Retrieve each row with the GetDataRow method into the OracleDataRow object
 OracleDataRow row = rd.GetDataRow();
 //query and modify in place columns C1 and C2 of the row.
 //implicit conversion to and from OracleData
 // Retrieve the integer in column C1
 int i = row["C1"];
 // Add 5 to the value in C1 and store it in column C2
 row["C2"] = i + 5;
 //convert the value to a string and write it out
 string s = row["C2"];
 Console.WriteLine(s);
}
rd.Close();
conn.Close()

You can retrieve and modify the row by performing the following:

1. Retrieve the row with the GetDataRow method of the OracleDataReader class.

2. Query and modify the retrieved row within the OracleDataRow object.

13.9.1.3 Access and Modify Database Using OracleSPManager Inside Triggers
When you have a stored procedure that is executed by a trigger, the actual row that
caused the trigger is accessible through the OracleSPManager. Thus, you do not
have to create a SQL statement to retrieve the desired row. Instead, use the
GetDataRow method of the OracleSPManager object. Also, you can use the
GetConnection method of this object to retrieve the current Connection object.

The OracleSPManager class contains the following static methods, which you can
ues to retrieve the connection or the row:

public static OracleConnection GetConnection();
public static OracleDataRow GetDataRow();

The following example uses the OracleSPManager static methods to retrieve the
connection and row:

public static void log1(int a, int b, int c)
{
 //get current connection from .Net procedure manager
 OracleConnection conn = OracleSPManager.GetConnection();

 //get current row for trigger
 OracleDataRow r = OracleSPManager.GetDataRow();

 if (r[0] != a || r[1] != b || r[2] != c)
 throw new OracleException(“Invalid row”);

 if (ia == 0 && ib == 0 && ic == 0)
 throw new OracleException(“Invalid row”);

 OracleCommand cmd = (OracleCommand)conn.CreateCommand();
 cmd.CommandText = “INSERT INTO T1_LOG VALUES(?, ?)”;
 cmd.Parameters.Add(new OracleParameter(a));

Using .Net Stored Procedures

Using Stored Procedures and Triggers 13-39

 cmd.Parameters.Add(new OracleParameter(a + b + c));
 cmd.ExecuteNonQuery();
 //do not close connection here
 }
}

13.9.2 Building Your .Net Stored Procedures
You can either build your stored procedure using Visual Studio .Net or by using the
olsp.mak makefile. See the Visual Studio documentation for how to build using
Visual Studio .Net.

If you want to build using the olsp.mak file, follow the directions as given for the
C++ stored procedures in Section 13.8.2.2, "Automatically Build Your Stored
Procedure". There are a few directions in that section that are specific to the .Net
environment, as follows:

1. If you are building .Net procedures, then set the NETFRKDIR environment
variable in the makefile to point to your .Net Framework directory

2. If building for the Compact Framework, then define the CFK macro and set the
CFSDKDIR environment variable in the makefile to point to your Compact
Framework SDK directory.

3. When building the SPClass.dll C# class, use the following syntax for the make:

nmake -f olsp.mak SPClass.dll

4. Move the resulting DLL into the appropriate place, which is either the application
directory or in the global assembly cache. Use the gacutil.exe executable if you
want to install this DLL in the global assembly cache.

13.9.3 Define Your .Net Stored Procedure
When you want to define your .Net stored procedure, perform the following:

■ Section 13.9.3.1, "Create the .Net Class Object in the Oracle Lite Database"

■ Section 13.9.3.2, "Define Methods With a Call Specification"

13.9.3.1 Create the .Net Class Object in the Oracle Lite Database
Before you can create the call specification for the .Net stored procedure, you must
first create the class within the Oracle Lite database. Use the following syntax:

CREATE [OR REPLACE] DOTNET CLASS USING BFILE(’AssemblyName’, ’ClassName’);

Where:

■ AssemblyName is the assembly file name, such as SPClass.DLL.

■ ClassName is the name of the class, such as SPClass. However, if the class is
defined within a namespace, prefix the namespace name before the classname, as
follows: MyNameSpace.SPClass.

For example, the following creates the SPClass within the Oracle Lite database.

create dotnet class using bfile(’SPClass.dll’, ’SPClass’);

Using .Net Stored Procedures

13-40 Oracle Database Lite Oracle Lite Client Guide

13.9.3.2 Define Methods With a Call Specification
Define the methods in the class that you want to call from SQL with a call
specification, which is created with either the CREATE FUNCTION or CREATE
PROCEDURE commands.

Perform the following to define your .Net stored procedures:

1. Define any methods in the .Net class that you want to make accessible to SQL by
creating call specifications for these methods. By defining a method, you associate
a SQL name to the method. SQL applications use this name to invoke the method.

2. Invoke the stored procedure through a SQL DML statement.

Define any static method in the class that you want to call from SQL by creating a call
specification for it. The call specification maps the method's name, parameter types,
and return types to SQL counterparts.

To create a call spec, use the SQL commands CREATE FUNCTION for methods that
return a value or CREATE PROCEDURE for methods that do not return a value. The
CREATE FUNCTION and CREATE PROCEDURE statements have the following syntax:

CREATE [OR REPLACE]
 { PROCEDURE <proc_name> [([<sql_parms>])] |
 FUNCTION <func_name> [([<sql_parms>])]
 RETURN <datatype> }
 AS LANGUAGE DOTNET NAME
 ’<class_name>.<method_name>)’;
 /

Where:

■ <proc_name> is a SQL procedure name; <func_name> is the name of the
function in the DLL used for this procedure.

■ <sql_parms> can be a maximum of 32 arguments. All arguments passed to the
procedures are given as DBData values to the function, which must cast the
arguments to the appropriate data type. The syntax has the following format:

<arg_name> [IN | OUT | IN OUT] <datatype>

■ <datatype> is the datatype.

■ <class_name>.<method_name> is the name of the class and method that is
used for the procedure or function.

For example:

The following call specification defines the method to SQL:

CREATE PROCEDURE bu1 (
 oc1 int,
 nc1 int,
 oc2 int,
 nc2 int)
 AS LANGUAGE DOTNET
 NAME 'SPClass.bu1';
 /

13.9.4 Dropping .Net Stored Procedures
To drop a .Net class object from the database, delete it with the following drop
statement:

drop dotnet class ’ClassName’;

Using .Net Stored Procedures

Using Stored Procedures and Triggers 13-41

13.9.5 .Net Stored Procedure Example
The following examples show how to create, build and define the stored procedures.

■ Section 13.9.5.1, ".Net Stored Procedure and Trigger Example One"

■ Section 13.9.5.2, ".Net Stored Procedure and Trigger Example Two"

13.9.5.1 .Net Stored Procedure and Trigger Example One
The following example does the following:

1. Creates the .Net SPClass.

2. Creates the t1 table.

3. Creates the call specification of bu1 for the .NET stored procedure bu1 in the
class.method: SPClass.bu1.

4. Creates a BEFORE UPDATE trigger, foo, which calls the bu1 .Net stored procedure
before the values of c1 and c2 in the table are updated.

create dotnet class using bfile(’SPClass.dll’, ’SPClass’);

create table t1(c1 int, c2 int);

create procedure bu1(oc1 int, nc1 int, oc2 int, nc2 int)
 as language dotnet name 'SPClass.bu1';

create trigger foo before update of c1,c2 on t1
 for each row bu1(old.c1, new.c1, old.c2, new.c2);

The following demonstrates how the trigger is executed, which in turn invokes the
.Net stored procedure:

insert into t1 values(1,2);
insert into t1 values(10,2);

--trigger fired here
update t1 set c1 = 10, c2 = 20 where c1 = 1;
update t1 set c1 = 100 where c1 = 10;

13.9.5.2 .Net Stored Procedure and Trigger Example Two
The following example does the same as Example 1, but with a more complicated
trigger. The trigger and procedure are dropped at the end of this example.

create table t3(c1 int, c2 int);

create procedure bc2(tabref varchar, tranid int, opseq int, c1 int, c2 int) as
language dotnet name 'SPClass.bc2';

--special trigger columns here
create trigger foo2 before insert on t3 for each row bc2(OL__TABLEREF, OL__
TRANSID, OL__OPSEQ, new.c1, new.c2);

--trigger fired here
insert into t3 values(1,2);
insert into t3 values(10,20);
insert into t3(c1) values(100);
insert into t3(c2) values(100);

drop dotnet class ’SPClass’;

Loading and Defining C, C++ or C# Stored Procedures

13-42 Oracle Database Lite Oracle Lite Client Guide

13.10 Loading and Defining C, C++ or C# Stored Procedures
Once you create the C, C++ and C# stored procedures, you still need to load and
define them on the client Oracle Lite database. Since C, C++ and C# languages are
native code, any stored procedure created from these languages cannot be loaded into
the database. However, you still need to perform the following against the Oracle Lite
database for these stored procedures to be loaded and defined:

1. Load the stored procedure by copying it directly to the client.

2. For C# .Net stored procedures, create the class within the Oracle Lite database
with the CREATE DOTNET CLASS SQL command.

3. Define the stored procedures similar to the Java stored procedures by using one of
the following methods:

■ Execute the CREATE FUNCTION or CREATE PROCEDURE SQL command to
define a call specification, which declares a method so that it may be called
from SQL. The call specification tells Oracle which method to invoke when a
call is made.

■ Execute the CREATE TRIGGER SQL command to specify that the stored
procedure executes when a specific event occurs on the table, such as an
insert, update, or delete.

Note: Attach is not supported for C, C++ and C# stored procedures.

Configure Security for the Oracle Lite Database 14-1

14
Configure Security for the Oracle Lite

Database

The following sections detail how to encrypt the Oracle Lite database:

■ Section 14.1, "Providing Security for the Mobile Client"

■ Section 14.2, "Encrypting the Oracle Lite Database"

■ Section 14.3, "Providing Your Own Encryption Module for the Client Oracle Lite
Database"

■ Section 14.4, "Pre-Configure Branch Office Passwords"

14.1 Providing Security for the Mobile Client
The introduction of handheld devices within the corporate environment can pose a
security threat to an organization. Devices are now used to store not only company
contacts; but, with external cards, may store up to 60 gigabytes of information or more.
Devices also provide a mobile point of entry into the organizational network that is
located outside the network security perimeter. It is essential to secure this data if a
device is lost or compromised.

Securing a device involves a layered approach. You must secure not only access to the
device, but data stored on the device and communications across the network. Most
aspects of security for a mobile device must be incorporated before Oracle Database
Lite is even involved within the security infrastructure.

1. Security needs to start with the device itself. Authentication on the device must be
implemented through pin or password authentication, biometric readers, secure
digital media for storage, and even how the device is stored, transported, and
accounted for.

2. Once access is gained to the device, further security needs to be implemented
within the mobile application to prevent the application from being able to
retrieve invalid data. Technologies, such as the Microsoft.Net Compact
Framework, incorporate API calls that may be used to encrypt and decrypt any
data that will be stored or retrieved from the device.

Oracle Database Lite provides several security features that may be utilized to help in
securing data. These features aid in protecting information during both
synchronization, and once access to a device has been obtained. The two most
important aspects of security provided by Oracle Database Lite for the mobile
infrastructure are the following:

1. Use Secure Socket Layer (SSL) to protect the transmission of data during the
synchronization process. For full details, see Section 11.4, "Configuring for Secure

Encrypting the Oracle Lite Database

14-2 Oracle Database Lite Oracle Lite Client Guide

Socket Layer (SSL) Communication" in the Oracle Database Lite Administration and
Deployment Guide.

2. Use one of the Oracle Database Lite encryption options to protect the actual
database files. See Section 14.2, "Encrypting the Oracle Lite Database" for full
details.

14.2 Encrypting the Oracle Lite Database
When you encrypt the Oracle Lite database using any of the encryption techniques in
this section, the Oracle Lite database is encrypted using a 128 bit Advanced Encryption
Standard (AES) encryption. This does not encrypt the data stored within the Oracle
Lite database itself; it only encrypts the database as a whole.

In the default server configuration, Mobile clients do not automatically encrypt the
snapshot ODB files. The following sections demonstrate how to encrypt the Oracle
Lite database:

■ Section 14.2.1, "Configuring for Automatic Encryption of the Oracle Lite Database"

■ Section 14.2.2, "Create a Command to Initiate Automatic Encryption of the Oracle
Lite Database"

■ Section 14.2.3, "Execute EncrypDB Command to Encrypt Database"

14.2.1 Configuring for Automatic Encryption of the Oracle Lite Database
The synchronization engine can automatically encrypt the Oracle Lite database used
with the Mobile client. To configure for automatic encryption of the snapshot ODB
files after initial synchronization, set the ENCRYPTDB parameter in the SYNC section in
the POLITE.INI/POLITE.TXT file.

For details on what value to use for the ENCRYPTDB parameter in the
POLITE.INI/POLITE.TXT file, see Section E.2.12, "ENCRYPTDB" in the Oracle
Database Lite Administration and Deployment Guide.

14.2.2 Create a Command to Initiate Automatic Encryption of the Oracle Lite Database
On the server, you can configure for automatic encryption of the snapshot ODB files
after initial synchronization by performing the following:

1. Logon to the Mobile Server as an Administrator and launch the Mobile Manager
tool.

2. Click on Mobile Devices, followed by Administration.

3. Click on Command Management.

4. Click Create Command.

5. Create the following new Command:

Name: EncryptDB
Command: updt_conf.otl
Description: Encrypt Database

6. Edit the newly created command EncryptDB, as follows:

Command: updt_conf?app=sync&key=ENCRYPTDB&val=1

7. Apply the changes.

Providing Your Own Encryption Module for the Client Oracle Lite Database

Configure Security for the Oracle Lite Database 14-3

8. Edit the DeviceInfo Command. Insert the new Command EncryptDB and click
OK.

For more information on sending commands to the Mobile device, see Section 7.6,
"Sending Commands to Your Mobile Device" in the Oracle Database Lite Administration
and Deployment Guide.

14.2.3 Execute EncrypDB Command to Encrypt Database
As described in Section C.4, "ENCRYPDB", you can execute the encrypdb command
on the client to encrypt the Oracle Lite database. If you are using the database as an
embedded database and not for synchronization, then you can provide the Mobile
user password for the encryption. However, if you are using this database with the
Mobile Server for synchronization, do not provide a password, as modifying this
password will create an issue for synchronization.

14.3 Providing Your Own Encryption Module for the Client Oracle Lite
Database

The database on the client—also known as the Oracle Lite database—uses Advanced
Encryption Standard (AES) for encrypting the database. However, you can provide
your own encryption module for the client database.

The following sections describe how to implement and plug-in your own encryption
module.

■ Section 14.3.1, "Encryption Module APIs"

■ Section 14.3.2, "Plug-In Custom Encryption Module"

14.3.1 Encryption Module APIs
Oracle Database Lite invokes your encryption APIs when performing encryption
duties, instead of the internal AES encryption module. Thus, you must develop and
include the following APIs in your customized encryption module:

■ Section 14.3.1.1, "Initialize the Encryption Module"

■ Section 14.3.1.2, "Delete Encryption Context"

■ Section 14.3.1.3, "Create the Encryption Key"

■ Section 14.3.1.4, "Encrypt Data"

■ Section 14.3.1.5, "Decrypt Data"

14.3.1.1 Initialize the Encryption Module
Implement the encCreateCtxt function to initialize the external encryption module.
Oracle Database Lite invokes this function when initializing encryption. This function
returns an encryption context handle to Oracle Database Lite, which it passes back on
all subsequent API calls. The context handle is displayed as a void*, so that you can
make it any type of structure you desire.

extern "C" __declspec(dllexport) void* encCreateCtxt()

Note: All of the functions in this section are in Windows format.
Adjust appropriately if developing on a UNIX environment.

Providing Your Own Encryption Module for the Client Oracle Lite Database

14-4 Oracle Database Lite Oracle Lite Client Guide

14.3.1.2 Delete Encryption Context
When Oracle Database Lite is finished with the encryption module, it invokes the
encDeleteCtxt function to delete the encryption context—which was created with
the encCreateCtxt function.

extern "C" __declspec(dllexport) void encDeleteCtxt(void * ctx)

14.3.1.3 Create the Encryption Key
Oracle Database Lite invokes your encCreateKey function to create the encryption
key within the encryption context, as follows:

extern "C" __declspec(dllexport) void encCreateKey (void* ctx,
 const unsigned char* key, int len, int dir)

Where the input parameters are as follows:

■ ctx—The encryption context, which is created in the encCreateCtxt function.

■ key—Pointer to the key to be created.

■ len—Length of the encryption key.

■ dir—Encryption direction or type, where 1: encryption, 2: decryption, 3: both
encryption and decryption.

14.3.1.4 Encrypt Data
Oracle Database Lite invokes your encEncryptData function to encrypt the data that
is to be sent, as follows:

extern "C" __declspec(dllexport) int encEncryptData (void* ctx,
 const unsigned char* data, int len, unsigned char* out)

Where the input parameters are as follows:

■ ctx—The encryption context, which is created in the encCreateCtxt function.

■ data—Pointer to the data to be encrypted.

■ len—Length of the data in bytes.

■ out—Output buffer.

This function returns the number of bytes copied to the output buffer.

14.3.1.5 Decrypt Data
Oracle Database Lite invokes your encDecryptData function to decrypt the data that
it receives. This function copies the result to the output buffer.

extern "C" __declspec(dllexport) int encDecryptData (void* ctx,
 const unsigned char* data, int len, unsigned char* out)

Where the input parameters are as follows:

■ ctx—The encryption context, which is created in the encCreateCtxt function.

■ data—Pointer to the data to be decrypted.

■ len—Length of the data in bytes.

■ out—Output buffer.

This function returns the number of bytes copied to the output buffer.

Pre-Configure Branch Office Passwords

Configure Security for the Oracle Lite Database 14-5

14.3.2 Plug-In Custom Encryption Module
Once implemented, you can plug-in your custom encryption module by adding the
[All Databases] section to the POLITE.INI configuration file. You must either
implement your encryption module into a DLL for the Windows environment or into
a Shared Object (.SO) for the UNIX environment.

For example, if you created the encryption module as a DLL called my_enc.dll,
which is located in the C:\my_dir directory, then you would add this module as the
default encryption module in the POLITE.INI configuration file, as follows:

[All Databases]
EXTERNAL_ENCRYPTION_DLL=C:\my_dir\my_enc.dll

14.4 Pre-Configure Branch Office Passwords
When you install the Branch Office Manager on the Windows machine, it creates the
OracleDatabaseLite user account with the minimum set of privileges required to
execute the Oracle Database Lite software. This prevents Oracle Database Lite Branch
Office executing under the SYSTEM account, which has broad privileges within the
system and can make the system vulnerable.

Both the ’Oracle Lite Multiuser Service’ is created as well as the normal Web-to-Go
service executes under the privileges of the OracleDatabaseLite user. The Oracle
Lite Multiuser Server enables remote clients to connect to the Oracle Lite database.

Normally, when installed, the password for the OracleDatabaseLite user is
randomly generated during the setup. You can either pre-configure this password
before the Branch Office installation or modify it after the configuration. See Section
3.5.3, "Defining Password for OracleDatabaseLite User for Branch Office on Windows
Machine" in the Oracle Database Lite Getting Started Guide.

Pre-Configure Branch Office Passwords

14-6 Oracle Database Lite Oracle Lite Client Guide

Oracle Database Lite Transaction Support 15-1

15
Oracle Database Lite Transaction Support

When an application connects to the local client database—Oracle Database Lite—it
begins a transaction with the database. There can be a maximum of 64 connections to
Oracle Database Lite. Each connection to Oracle Database Lite maintains a separate
transaction, which conform to ACID requirements.

A transaction can include a sequence of database operations, such as SELECT,
UPDATE, DELETE, and INSERT. All operations either succeed and are committed or
are rolled back. Oracle Database Lite only updates the database file when the commit
is executed. If an event, such as a power outage, interrupts the commit, then the
database is restored during the next connection.

■ Section 15.1, "Locking"

■ Section 15.2, "What Are the Transaction Isolation Levels?"

■ Section 15.3, "Configuring the Isolation Level"

■ Section 15.4, "Supported Combinations of Isolation Levels and Cursor Types"

15.1 Locking
Oracle Database Lite supports row-level locking. Whenever a row is read, it is read
locked. Whenever a row is modified, it is write locked. If a row is read locked, then
different transactions can still read the same row. However, a transaction cannot
access a row if it is a write locked row by another transaction.

15.2 What Are the Transaction Isolation Levels?
Each transaction is isolated from another. Even though many transactions run
concurrently, transaction updates are concealed from other transactions until the
transaction commits. You can specify what level of isolation is used within the
transaction, as listed in Table 15–1:

What Are the Transaction Isolation Levels?

15-2 Oracle Database Lite Oracle Lite Client Guide

Refer to the documentation for ODBC for more information on isolation levels.

Table 15–1 Isolation Levels

Isolation Level Description

Read Committed In Oracle Database Lite, a READ COMMITTED transaction first acquires a
temporary database level read lock, places the result of the query into a
temporary table, and then releases the database lock. During this time,
no other transaction can perform a commit operation. No data objects
are locked. All other transactions are free to perform any DML
operation—except commit—during this time. Since a commit operation
locks the database in intent exclusive mode, a read committed
transaction, while gathering the query result, will block another
transaction that is trying to commit or vice versa. A READ COMMITTED
transaction provides the highest level of concurrency, as it does not
acquire any data locks and does not block any other transaction from
performing any DML operations. In addition, the re-execution of the
same query (SELECT statement) may return more or less rows based on
other transactions made to the data in the result set of the query.

Note: A SELECT statement containing the FOR UPDATE clause is
always executed as if it is running in a REPEATABLE READ isolation
level.

A SELECT statement can execute Java stored procedures. If the
transaction executing the Java stored procedure is in the READ
COMMITTED isolation level and the Java stored procedure updates the
database, then the SELECT statement that executes the Java stored
procedure must have a FOR UPDATE clause. Otherwise, Oracle
Database Lite issues an error.

Note: If you are retrieving a large object, such as a BLOB, within a
READ COMMITTED transaction, see Section 4.3.46.9, "Select Statement
Behavior When Retrieving BLOBs in a READ COMMMITTED
transaction" section in the Oracle Database Lite SQL Reference.

Repeatable Read In this isolation level, a query acquires read locks on all of the returned
rows. More rows may be read locked because of the complexity of the
query itself, the indexes defined on its tables, or the execution plan
chosen by the query optimizer. The REPEATABLE READ isolation level
provides less concurrency than a READ COMITTED isolation level,
transaction because the locks are held until the end of the transaction.

A "phantom" read is possible in this isolation level, which can occur
when another transaction inserts rows that meet the search criteria of
the current query and the transaction re-executes the query.

If a FOR UPDATE clause is used in a query, a short-term update lock is
acquired on the current row(s) being selected. If a row is updated, the
lock is converted into an exclusive lock. An exclusive lock prevents any
other transaction running in an isolation level other than READ
COMMITTED to access this row. If the row is not updated but the next
row is fetched, the update lock is downgraded to a read lock,
permitting other transactions to read the row.

Serializable This isolation level acquires shared locks on all tables participating in
the query. The same set of rows is returned for the repeated execution
of the query in the same transaction. Any other transaction attempting
to update any rows in the tables in the query is blocked.

SingleUser In this isolation level only one connection is permitted to the database.
The transaction has no locks and consumes less memory.

Supported Combinations of Isolation Levels and Cursor Types

Oracle Database Lite Transaction Support 15-3

15.3 Configuring the Isolation Level
The default isolation level is READ COMMITTED. You can modify the isolation level for
a data source name (DSN) by using the ODBC Administrator—which you can bring
up by executing odbcad32—or by manually editing the ODBC.INI file. We
recommend that you use the odbcad32 tool, as it will inform you if you have an
incorrect combination of isolation level and cursor type. See Section 15.4, "Supported
Combinations of Isolation Levels and Cursor Types" for more information.

When you bring up the ODBC Administrator, under the User DSN tab, double-click
the Oracle Lite 40 ODBC driver for which you want to modify the isolation level.
Select the default cursor type from the pull-down list.

If you decide to edit the ODBC.INI file by hand, then set the isolation level as follows:

IsolationLevel = XX

where the value for XX is Read Committed, Repeatable Read, Serializable, or Single
User.

Alternatively, you can define the isolation level of a transaction by using the following
SQL statement:

SET TRANSACTION ISOLATION LEVEL <ISOLATION_LEVEL>;

where ISOLATION_LEVEL is READ COMMITTED, REPEATABLE READ,
SERIALIZABLE, or SINGLE USER.

See Section 15.4, "Supported Combinations of Isolation Levels and Cursor Types", for
information on how certain isolation levels and scrollable cursors sometimes cannot be
used in combination.

15.4 Supported Combinations of Isolation Levels and Cursor Types
If you use the ODBC Administrator—which you can bring up by executing
odbcad32—then this tool informs you if you are using an incorrect combination of
isolation level and cursor type.

We support these types of cursors

■ Forward only cursors allow you to only move forward through the returned result
set. You cannot go backwards, nor can you view any additional modifications. To
return to a row, you would have to close the cursor, reopen it and then move to
the row you wanted to see. However, it is the fastest cursor for moving through a
result set.

■ Scrollable cursors are the most flexible as they allow you to go forward and
backward through the returned result set, but are also expensive. The other
advantage of using a scrollable cursor is you can see modifications directly after
they occur.

The three supported types of scrollable cursors are as follows:

Note: The ODBC.INI file is available in Windows under %WINDIR%
and in Linux under $OLITE_HOME/bin. For the Linux platform, you
must have write permissions on the directory where this is located to
be able to modify them.

Supported Combinations of Isolation Levels and Cursor Types

15-4 Oracle Database Lite Oracle Lite Client Guide

■ Static—The result set appears to be static; that is, it does not detect modifications
made to the membership, order, or values of the result set after the cursor is
opened. This cursor can detect its own modifications, just not the modifications of
others.

■ Dynamic—Any modifications to the result set can be detected and viewed when
the row is re-fetched.

■ Keyset Driven—The abilities of this cursor is between the static and dynamic. It
can detect modifications to the values in the rows of the result set; however, it
cannot detect changes to the membership and order of the result set.

Refer to the documentation for ODBC for more information on cursor types.

For some cursors, you cannot combine them with certain isolation levels. Table 15–2
shows the supported combinations of isolation levels and cursor types. Unsupported
combinations generate error messages.

Table 15–2 Supported Combinations

Forward
Only
Cursor

Scrollable
Static
Cursor

Scrollable
Keyset Driven
Cursor

Scrollable
Dynamic
Cursor

Isolation Level

Read Committed Supported Supported Unsupported Unsupported

Repeatable Read Supported Unsupported Supported Supported

Serializable Supported Unsupported Supported Supported

Single User Supported Supported Supported Supported

Improving SQL Query Performance for the Oracle Lite Database 16-1

16
Improving SQL Query Performance for the

Oracle Lite Database

The following sections describe the methods you can manage the performance of your
SQL Queries against the Oracle Lite database:

■ Section 16.1, "Determining Performance of Client SQL Queries With the EXPLAIN
PLAN"

■ Section 16.2, "Determine SQL Query Execution Through Oracle Database Lite
Tracing"

■ Section 16.3, "Optimizing SQL Queries for the Oracle Lite Database"

16.1 Determining Performance of Client SQL Queries With the EXPLAIN
PLAN

To improve performance when accessing data on the local client Oracle Lite database,
use the EXPLAIN PLAN. The EXPLAIN PLAN to determine the performance of your
SQL query execution on the Oracle Lite database. To execute a SQL statement, Oracle
might need to perform several steps. Each of these steps either physically retrieves
rows of data from the database or prepares them in some way for the user issuing the
statement. The combination of the steps Oracle uses to execute a statement is called an
execution plan, which includes an access path for each table that the statement
accesses and an ordering of the tables (the join order) with the appropriate join
method. The execution plan shows you exactly how Oracle Database Lite executes
your SQL statement.

The components of an execution plan include the following:

■ An ordering of the tables referenced by the statement.

■ An access method for each table mentioned in the statement.

■ A join method for tables affected by join operations in the statement.

The EXPLAIN PLAN command stores the execution plan chosen by the Oracle
Database Lite optimizer for SELECT, UPDATE, INSERT, and DELETE statement.

For information on how to generate an Explain Plan, see the Section 1.11 "Tuning SQL
Statement Execution with the EXPLAIN PLAN" in the Oracle Database Lite SQL
Reference.

Determine SQL Query Execution Through Oracle Database Lite Tracing

16-2 Oracle Database Lite Oracle Lite Client Guide

16.2 Determine SQL Query Execution Through Oracle Database Lite
Tracing

By setting the parameter OLITE_SQL_TRACE = YES in the polite.ini or
polite.txt file on the client device, Oracle Database Lite generates a trace file
named oldb_trc.txt that shows the following:

■ The order tables are accessed by a query.

■ The table scan access method used.

■ The value of any bind variables utilized by the query.

■ The time it takes for the first record to be retrieved.

See Section 7.8, "Enable Tracing for the Oracle Lite Database" for full details.

16.3 Optimizing SQL Queries for the Oracle Lite Database
 You can optimize the following SQL queries in your application:

■ Single-table queries

■ Join queries

■ Order By and Group By clauses

The following sections provide tips on improving the performance of the application
SQL queries against the Oracle database:

■ Section 16.3.1, "Optimizing Single-Table Queries"

■ Section 16.3.2, "Optimizing Join Queries"

■ Section 16.3.3, "Optimizing with Order By and Group By Clauses"

■ Section 16.3.4, "Advanced Optimization Techniques for SQL Queries in Oracle
Database Lite"

The tip examples use the database schema listed in Table 16–1:

Table 16–1 Database Schema Examples

Tables Columns Primary Keys Foreign Keys

LOCATION LOC#

LOC_NAME

 LOC#

EMP SS#

NAME

JOB_TITLE

WORKS_IN

 SS#

WORKS_IN references DEPT (DEPT#)

DEPT DEPT#

NAME

BUDGET

LOC

MGR

DEPT#

LOC references LOCATION (LOC#)

MGR references EMP (SS#)

Optimizing SQL Queries for the Oracle Lite Database

Improving SQL Query Performance for the Oracle Lite Database 16-3

16.3.1 Optimizing Single-Table Queries
To improve the performance of a query that selects rows of a table based on a specific
column value, create an index on that column. For example, the following query
performs better if the NAME column of the EMP table has an index.

SELECT *
FROM EMP
WHERE NAME = 'Smith';

An index may ruin performance if selecting more than 10% of the rows of the indexing
columns is poor. For example, an index on JOB_TITLE may not be a good choice even
if the query is as follows.

SELECT *
FROM EMP
WHERE JOB_TITLE='CLERK'

16.3.2 Optimizing Join Queries
The following can improve the performance of a join query (a query with more than
one table reference in the FROM clause).

16.3.2.1 Create an Index on the Join Column(s) of the Inner Table
In the following example, the inner table of the join query is DEPT and the join column
of DEPT is DEPT#. An index on DEPT.DEPT# improves the performance of the query.
In this example, since DEPT# is the primary key of DEPT, an index is implicitly created
for it. The optimizer will detect the presence of the index and decide to use DEPT as
the inner table. In case there is also an index on EMP.WORKS_IN column the optimizer
evaluates the cost of both orders of execution; DEPT followed by EMP (where EMP is the
inner table) and EMP followed by DEPT (where DEPT is the inner table) and picks the
least expensive execution plan.

SELECT e.SS#, e.NAME, d.BUDGET
FROM EMP e, DEPT d
WHERE e.WORKS_IN = DEPT.DEPT#
AND e.JOB_TITLE = 'Manager';

16.3.2.2 Bypassing the Query Optimizer
Normally, the optimizer selects the best execution plan, an optimal order of tables to
be joined. In case the optimizer is not producing the best execution plan, you can
control the order of execution using the HINTS feature. For more information, see the
Oracle Database Lite SQL Reference.

For example, if you want to select the name of each department along with the name
of its manager, you can write the query in one of two ways. In the first example which
follows, the hint /*+ordered*/ says to do the join in the order the tables appear in
the FROM clause.

SELECT /*+ordered*/ d.NAME, e.NAME
FROM DEPT d, EMP e
WHERE d.MGR = e.SS#

or:

SELECT /*+ordered*/ d.NAME, e.NAME
FROM EMP e, DEPT d
WHERE d.MGR = e.SS#

Optimizing SQL Queries for the Oracle Lite Database

16-4 Oracle Database Lite Oracle Lite Client Guide

Suppose that there are 10 departments and 1000 employees, and that the inner table in
each query has an index on the join column. In the first query, the first table produces
10 qualifying rows (in this case, the whole table). In the second query, the first table
produces 1000 qualifying rows. The first query will access the EMP table 10 times and
scan the DEPT table once. The second query will scan the EMP table once but will
access the DEPT table 1000 times. Therefore the first query performs better. As a rule of
thumb, tables should be arranged from smallest effective number of rows to largest
effective number of rows. The effective row size of a table in a query is obtained by
applying the logical conditions that are resolved entirely on that table.

In another example, consider a query to retrieve the social security numbers and
names of employees in a given location, such as New York. According to the sample
schema, the query would have three table references in the FROM clause. The three
tables could be ordered in six different ways. Although the result is the same
regardless of which order you choose, the performance could be quite different.

Suppose the effective row size of the LOCATION table is small, for example select
count(*) from LOCATION where LOC_NAME = 'New York' is a small set.
Based on the above rules, the LOCATION table should be the first table in the FROM
clause. There should be an index on LOCATION.LOC_NAME. Since LOCATION must be
joined with DEPT, DEPT should be the second table and there should be an index on
the LOC column of DEPT. Similarly, the third table should be EMP and there should be
an index on EMP#. You could write this query as:

SELECT /*+ordered*/ e.SS#, e.NAME
FROM LOCATION l, DEPT d, EMP e
WHERE l.LOC_NAME = 'New York' AND
l.LOC# = d.LOC AND
d.DEPT# = e.WORKS_IN;

16.3.3 Optimizing with Order By and Group By Clauses
Various performance improvements have been made so that SELECT statements run
faster and consume less memory cache. Group by and Order by clauses attempt to
avoid sorting if a suitable index is available.

16.3.3.1 IN Subquery Conversion
Converts IN subquery to a join when the select list in the subquery is uniquely
indexed.

For example, the following IN subquery statement is converted to its corresponding
join statement. This assumes that c1 is the primary key of table t2:

SELECT c2 FROM t1 WHERE
c2 IN (SELECT c1 FROM t2);

becomes:

SELECT c2 FROM t1, t2 WHERE t1.c2 = t2.c1;

16.3.3.2 ORDER BY Optimization with No GROUP BY
This eliminates the sorting step for an ORDER BY clause in a select statement if ALL of
the following conditions are met:

1. All ORDER BY columns are in ascending order or in descending order.

2. Only columns appear in the ORDER BY clause. That is, no expressions are used in
the ORDER BY clause.

Optimizing SQL Queries for the Oracle Lite Database

Improving SQL Query Performance for the Oracle Lite Database 16-5

3. ORDER BY columns are a prefix of some base table index.

4. The estimated cost of accessing by the index is less than the estimated cost of
sorting the result set.

16.3.3.3 GROUP BY Optimization with No ORDER BY
This eliminates the sorting step for the grouping operation if GROUP BY columns are
the prefix of some base table index.

16.3.3.4 ORDER BY Optimization with GROUP BY
When ORDER BY columns are the prefix of GROUP BY columns, and all columns are
sorted in either ascending or in descending order, the sorting step for the query result
is eliminated. If GROUP BY columns are the prefix of a base table index, the sorting
step in the grouping operation is also eliminated.

16.3.3.5 Cache Subquery Results
If the optimizer determines that the number of rows returned by a subquery is small
and the query is non-correlated, then the query result is cached in memory for better
performance. For example:

select * from t1 where
t1.c1 = (select sum(salary)
from t2 where t2.deptno = 100);

16.3.4 Advanced Optimization Techniques for SQL Queries in Oracle Database Lite

Unlike procedural languages—such as Java or C—SQL is a declarative language. It
states what to do, but does not tell how to do it. This frees developers from writing
navigation code to retrieve data. The responsibility of navigation falls on the database
management system (DBMS).

The query optimizer—a component of the DBMS—is responsible to come up with an
efficient plan to execute the query. Since there are several ways to perform a query, the
query optimizer and query execution engine decide how to deliver the result in the
quickest time. In a perfect world, the query optimizer will always be right and the
database will always be infallible. However, this is not the case. The developer needs
to think about the characteristics and peculiarities of the query optimizer. When you
do run into performance issues, you can improve the performance as simply as
creating some indexes, dropping additional indexes, or re-writing the query. Oracle
Database Lite constantly improves the optimizer, so that you do not have to re-write
the query.

This section introduces you to the Oracle Database Lite Query Optimizer, briefly
covers the architecture of Oracle Lite database, and then provides details of the query
compilation and optimization. Lastly, we provide tips on improving query
performance. For further information, there are several excellent articles in technical
journals that cover SQL query optimization in great technical detail. Some of these
journals are listed in the reference section of this document.

Note: This section is provided for those administrators and
developers who are already very familiar with optimization
techniques for SQL queries. Thus, this material is advanced and not
for a beginner.

Optimizing SQL Queries for the Oracle Lite Database

16-6 Oracle Database Lite Oracle Lite Client Guide

■ Section 16.3.4.1, "Oracle Lite Database Application Architecture"

■ Section 16.3.4.2, "Overview of SQL Runtime"

■ Section 16.3.4.3, "Execution Plan Generation"

■ Section 16.3.4.4, "Query Execution Engine"

■ Section 16.3.4.5, "Optimization Tips"

■ Section 16.3.4.6, "Glossary"

■ Section 16.3.4.7, "References"

16.3.4.1 Oracle Lite Database Application Architecture
The basic database architecture components from the point of view of the application
developer are outlined below:

Figure 16–1 Components in applications using ODBC or JDBC

16.3.4.1.1 ODBC Application The ODBC application is usually written in C, or C++, or
Visual Basic. Third party tools, such as Power Builder, can also generate code that
invokes ODBC. The ODBC driver implements ODBC API semantics and uses internal
SQLRT APIs to call into SQLRT.

16.3.4.1.2 SQLRT SQLRT, the Oracle Lite SQL engine, is implemented in the
olsql40.dll. SQLRT implements SQL functionality using the capabilities of
underlying database engine. This is covered in some detail in the following sections.

16.3.4.1.3 DB Engine The Oracle Lite database engine implements the object kernel API
(also known as OKAPI). The database engine implements an object view of the world;
that is, it implements classes, attributes, and iterators.

Table 16–2 Architecture Components

Component Description

<< Indicates a request and response information flow.

ODBC application Typically a C or C++ application that issues ODBC API calls.

Java Application A piece of code written in Java that uses JDBC API to
manipulate the database.

ODBC driver The driver that implements the ODBC API. It calls into the SQL
runtime engine (SQLRT).

SQLRT The SQL Runtime Engine that implements SQL functionality
using the capabilities of the underlying database engine.

DB engine and DB Database engine and Database

JDBC �
Driver�

ODBC�
Driver

ODBC�
Application

SQLRT

ODBC Application:

ODBC �
Driver

DB�
Engine

DB

Java�
Application

SQLRT DB�
Engine

DB

Java Application

Optimizing SQL Queries for the Oracle Lite Database

Improving SQL Query Performance for the Oracle Lite Database 16-7

■ Instead of creating a table—which contains a set of columns—you create a class
containing a set of attributes.

■ Instead of creating a cursor on a table, you create an iterator on a class or a group.

All classes belong to a group, which is a collection of classes.

The DB Engine maintains its own set of Meta catalogs (Meta classes) to store
declarative information about classes, attributes, and indexes. For example, see the
table below:

16.3.4.2 Overview of SQL Runtime
The SQL Runtime is responsible for providing a SQL interface to the database. It maps
SQL entities to the appropriate object kernel entities and translates all SQL operations
into a sequence of basic object kernel primitives. For example, a table is mapped to a
class; its table columns are mapped to attributes within the class. The mapping
between SQL operations and object kernel APIs is not defined here, as this is not the
focus of the document.

Execution of a SQL statement involves the following steps:

1. Compile

You can compile a SQL statement into an internal representation that is easy and
efficient to execute. A SQL statement can be one of the following:

■ DDL (data definition language): An example of a DDL statement is "CREATE
INDEX emp_last_name ON employee (last_name, first_name)".

■ DML (data manipulation) statement: Examples of DML statements are
SELECT, INSERT, UPDATE, DELETE and COMMIT statements.

2. Bind

A SQL statement may contain markers (such as "?"), which are used as
placeholders for parameters that can be supplied before execution of the
statement. Binding sets the value for each marker in the SQL statement.

3. Execute

This is when a previously compiled statement is executed. Execution involves
interpretation of the internal representation of the SQL statement and making all
calls into the database engine to achieve the desired result. The following are
examples of what the execution means for particular statements:

■ For an index creation statement, the index is created.

Table 16–3 Database Engine Meta Classes

Class Description

okClass Information about every class

okAttribute Information for every attribute in all classes

okIndex Information for every index created in the database

okGroup Information about every group in the database

Note: All object kernel Meta classes belong to the MetaGroup group,
which is case sensitive. The DB Engine is responsible to implement the
ACID properties of a transaction.

Optimizing SQL Queries for the Oracle Lite Database

16-8 Oracle Database Lite Oracle Lite Client Guide

■ For an INSERT statement, the row is inserted into the table. In the object
terminology, a new object is created.

■ For a SELECT statement, the statement is executed, where a row is available
for retrieval. The execution of a SELECT statement produces a result set,
which is a set of rows. It is not necessary that all rows be materialized.
However, for a READ COMMITED isolation level transaction, all rows are
materialized at this step.

4. Fetch

This step is required for a SELECT statement. Every fetch call returns one row to
the caller.

5. Close

Close the result set created in the execute step. Any remaining rows, if any, are
discarded and any resources tied to the processing of the statement are freed up.

16.3.4.2.1 Compilation Compilation is somewhat like translating a JAVA program into
byte code. In SQLRT, we translate a SQL statement into an internal data structure
called a tree. The following are the steps SQLRT goes through to generate the
execution tree, which determines the best method to execute that statement:

1. Parsing: The input statement is scanned and is converted into an abstract syntax
tree. Grammatically incorrect statements are flagged and any syntax error is
returned.

2. Normalization: The tree is walked, normalized and decorated. Transformation is
carried out and semantic information is added to the tree nodes. Any tautologies
are evaluated.

For Example ((1 = 0) AND C1 > 5 OR C2 = 7) is evaluated to (C2 = 7). Any
semantic error is caught during the tree traversal, such as Data type mismatches in
expressions or SQL operations, references to non existing tables, or columns,
unsupported SQL operations, and so on.

3. View expansion: Any references to views are expanded in line and the view tree is
walked.

4. View Optimization: If possible, the view expansions are collapsed into the main
queries. For example, the statement "SELECT * FROM v1,v2 where v1.c1=v2.c2" is
resolved to a query on the base tables in v1 and v2. The transformation takes place
on the query tree. This merging may not be possible. For example, if a view selects
aggregate functions (COUNT, AVG, and so on.) or contains UNION or MINUS
operators, it cannot be collapsed.

5. Subquery optimization: You can re-write the query to eliminate the subquery. This
technique is called subquery un-nesting. The tables and filter conditions in the
where clause are moved to the parent query block. This is possible only when the
subquery does not contains any aggregates, UNION, or MINUS operations and
SQLRT can make sure that the subquery does not return any duplicate rows.

6. Transitive Closure of Predicates: Predicates are analyzed and extra inferences are
added to the WHERE clause, which helps the optimizer in selecting the best
execution plan.

7. Predicate Push: The predicates are pushed down from top to bottom, which helps
the queries on top of views. When a view contains any UNION, MINUS and GROUP
BY clauses, it helps to push the filtering condition to the source of data or base
tables.

Optimizing SQL Queries for the Oracle Lite Database

Improving SQL Query Performance for the Oracle Lite Database 16-9

8. Execution Plan Generation: The query is now analyzed to generate the best
execution plan, which is based on a cost-based approach.

9. Query Execution: The execution plan generated is used to execute the query.

16.3.4.2.2 Query Tree Transformations or Query Re-write Examples These are examples of
query tree transformations or query re-writes.

■ View Optimization Example for View Replacement or Merging

■ View Expansion and Predicate Push

■ Subquery Transformation

View Optimization Example for View Replacement or Merging
Consider the following statements:

1. SQL> CREATE VIEW v_dept_emp AS SELECT emp.*, dept.dname, loc
FROM emp, dept WHERE emp.deptno=dept.deptno;

2. SELECT * FROM v_dept_emp WHERE loc = ‘DALLAS’;

The query tree transformation process substitutes the definition of view v_dept_emp
into the select query and collapses the query into single level query. The query then
becomes as follows:

SELECT emp.*, dept.dname, dept.loc FROM emp, dept WHERE emp.deptno=dept.deptno
and loc = ‘DALLAS’

View Expansion and Predicate Push
Consider the following example:

SQL> CREATE VIEW v_sal_expense (dno, name, total_sal) AS SELECT dept.deptno,
dept.dname, sum(sal) FROM emp, dept WHERE emp.deptno=dept.deptno group by
dept.deptno, dname;

SELECT * FROM v_sal_expense WHERE total_sal > 10000;

Since the query involves aggregation, it cannot be collapsed into the main query and
the query after re-write is as follows:

SELECT * FROM (
 SELECT dept.deptno, dept.dname, sum(sal) total_sal
 FROM emp, dept
 WHERE emp.deptno=dept.deptno
 group by dept.deptno, dname) temp_view
WHERE temp_view.total_sal > 10000;

Consider the following query on the same view:

SELECT * FROM v_sal_expense WHERE dno = 10;

The query after the re-write is as follows:

Note: The final query does not refer to the view.

Note: The predicate total_sal > 10000 was not pushed into the
inner query block as total_sal refers to an aggregate sum(sal)
column in the view definition.

Optimizing SQL Queries for the Oracle Lite Database

16-10 Oracle Database Lite Oracle Lite Client Guide

SELECT * FROM (
 SELECT dept.deptno, dept.dname, sum(sal) total_sal
 FROM emp, dept
 WHERE emp.deptno=dept.deptno and
 dept.deptno = 10
 group by dept.deptno, dname) temp_view
WHERE dno=10;

The predicate dept.deptno = 10 is pushed down into the nested view expansion,
which demonstrates the Predicate Push optimization. The aggregation is performed
for the department number 10 only; therefore, this query performs better.

Subquery Transformation
Consider the following query:

SELECT * FROM emp WHERE emp.deptno IN (SELECT deptno
 FROM dept WHERE loc = 'DALLAS’);

Since the subquery selects a unique key column (deptno), it can be converted into a
join query. In general, a join query provides more flexibility in optimization and
performs better. This query could be transformed as follows:

SELECT emp.* FROM emp, dept
 WHERE emp.deptno = dept.deptno AND dept.loc = 'DALLAS’;

16.3.4.3 Execution Plan Generation
Execution plan generation is the last step of query compilation. It is the responsibility
of the query optimizer to find the least expensive plan. It generates all plausible
execution plans and picks the least expensive plan. As the number of tables in a query
increases, the cost of evaluating all possible orders of execution increases
exponentially. The optimizer uses its own heuristics to reduce the search space. The
query optimizer considers only I/O costs for comparing the different execution plans.
It does not consider the CPU time used to perform different operations. The I/O cost is
computed based on the statistical information available to it; therefore, the quality of
cost estimation depends upon the quality of statistics available.

■ Section 16.3.4.3.1, "Statistics"

■ Section 16.3.4.3.2, "Access Methods"

■ Section 16.3.4.3.3, "Single Table I/O Cost"

■ Section 16.3.4.3.4, "Join Query Optimization"

Note: The above subquery is a non-correlated subquery; that is, the
subquery does not make a reference to columns from the tables in the
outer query. For a non-correlated query, Oracle Database Lite does not
always transform it to a join query. Instead, sometimes it decides to
cache the query result into memory and perform the IN operation at
run-time. A correlated subquery, if it meets the correctness
requirements, is always transformed into a join query, as follows:

SELECT * FROM emp WHERE emp.deptno IN (SELECT deptno FROM dept
WHERE loc = 'DALLAS’ AND emp.deptno = dept.depno);

Which is transformed into the following:

SELECT emp.* FROM emp, dept WHERE emp.deptno = dept.deptno AND
dept.loc = 'DALLAS’ AND emp.deptno = dept.depno;

Optimizing SQL Queries for the Oracle Lite Database

Improving SQL Query Performance for the Oracle Lite Database 16-11

16.3.4.3.1 Statistics The Oracle Database Lite engine maintains the following statistics
at all times. You do not have to run a separate command to update the statistics.

Selectivity Factor
To estimate I/O cost, the optimizer estimates the number of pages that will be read or
written to satisfy the query. It evaluates the disk I/O costs for different execution
plans before selecting the best one. It assigns a selectivity factor to each predicate (also
called a factor in boolean algebra), which is defined as an expected fraction of rows
and satisfies the predicate. That is, the selectivity factor is defined as follows:

Selectivity factor = (expected-number-rows)/(total-number-of-rows)

The current values of the selectivity factor are as follows:

Like: A like predicate is transformed into a range and like. The range predicate is then
appropriately optimized. For example, Name like ‘S%’ is converted into Name like
‘S%’ AND Name >= ‘S’ AND Name < ‘T’. Now the range (‘S’, ‘T’) for Name can be
used to calculate the selectivity.

Not Equal: Selectivity factor for not equal is as follows: (1-Selectivity factor for the
equal operator).

Caveat With Bind Variables
When bind variables are present, then the selectivity factor for "range", "between" and
"like" cannot be correctly estimated and the default selectivity factor is used.

Table 16–4 Oracle Database Lite Engine Statistic Parameters

Parameter Description

npg Number of data pages allocated to each table.

nrows Number of rows in the table.

ndk For each index, number of distinct keys.

nrangeSize For each index, OKAPI supports an API to estimate the number of rows
selected for a given range of key values.

nMaxKey Maximum value of a key (an OKAPI call is used to estimate it).

nMinKey Minimum value of a key (an OKAPI call is used to estimate it).

Note: The values are subject to change without any notice.

Table 16–5 Selectivity Factor Values

Condition Example Default With Index

Equality Name = ‘Smith’ 1/5 1/ndk

Range C1 > 5 1/2 Pretty good estimate

Between C1 between (4,10) orC1 > 4 and
C1 < 10

1/3 Pretty good estimate

Is Null C1 is NULL 1/10 1/10

Like Name Like ‘Sm%’ 1/3 Estimate*

Optimizing SQL Queries for the Oracle Lite Database

16-12 Oracle Database Lite Oracle Lite Client Guide

16.3.4.3.2 Access Methods An important component of an execution plan is the "access
method" used for each table involved in the execution plan. The Oracle Lite database
engine supports the following access methods:

1. A Full table scan: All pages of the table are searched. Therefore, the cost of
retrieval is equal to npg (the number pages) in the table.

2. Index access method: A key value or key range—such as, price between (10,15)—is
used to retrieve the qualifying rows. The key or key range is used to find the
row-ids of the matching rows. Each row-id uniquely identifies the location of the
row in the database. The rows are fetched in increasing or decreasing order of the
key, which is useful when optimizing queries containing order by or group by
clauses.

Cost of Access Methods
The I/O Cost can be computed in terms of the following parameters:

Since the values for "h" and "nlf" are not available, its values are improvised based on
nrows and estimated key size.

Cost of a Full Table Scan
The cost of a full table scan is the number of data pages, as follows: Cost = npg.

Cost of an Index Scan
The cost of an index scan is approximated to be as follows:

Cost = the number of index pages read + the number of data pages read

Where: number of index pages read = (h-2) + ceil(nlf * sf). The
value for h is calculated based on the estimated key size and number of rows.

It is assumed that the root of index tree is always in memory. Thus, the cost of reading
the root page is ignored. Assuming that only a small number of rows are selected by
the index access method, we approximate the number of leaf pages read to be one.
This is performed sine we do not have information about nlf. Even for a range scan,
we approximate it to be one.

For a primary key index or for an index with ndk/nrows close to one, we assume the
data to be clustered on the key column values and we estimate the number of data
pages read as follows:

Number of data pages read = ceil(sf * npg)

If the index is not a primary key index, then there is a good chance that the
consecutive key values will not be on the same data page. Each new row access can
potentially read a new page. The number of data pages read will be in between sf

Table 16–6 I/O Access Method Cost

Parameter Description

npg Number of data pages.

nrows Number of rows in the table.

h Height of the index. It is also called depth of an index tree.

nlf Number of leaf pages in an index tree.

sf Expected Fraction of the number of rows selected. It is between 0 and 1.

Optimizing SQL Queries for the Oracle Lite Database

Improving SQL Query Performance for the Oracle Lite Database 16-13

*npg and sf * nrows. We use the following formula as an approximation to actual
number of data pages read:

Number of data pages read = ceil (sf * sqrt (npg, nrows))

Therefore, the cost of index access is as follows:

■ For a clustered index, the cost is = (h-1) + ceil(sf * npg).

■ For a non-clustered index, the cost is =
 (h-1) + ceil(sf*sqrt(npg,nrows)).

16.3.4.3.3 Single Table I/O Cost To find the optimal execution plan for a single table
query, the costs for each possible access methods are evaluated and the least expensive
access method is picked. For example:

SELECT * FROM T1 where C1 between 1 and 5 AND C2 > 5 and C2 < 100;

Assuming that the indexes exist on C1 and C2, then the optimizer estimates the
selectivity for predicates "C1 between 1 and 5" and "C2 > 5 and C2 < 100". It then
computes the I/O cost for retrieving the rows using a full table scan, an index scan on
C1, and an index scan on C2. The access method that produces the least amount of I/O
is chosen.

Interesting Order Optimization
For a single table query that contains "order by" or "group by" clause, the interesting
order optimization technique is used to influence which access method is chosen. The
result set size and sorting cost are estimated. Sorting can be avoided, if an index is
available that can return the rows in the right order. If it is less costly to use an
execution plan that does not involve any sort, then it will be chosen. The size of the
result set is given by the following:

Number of rows in the result set =
 nrows * min(selectivity values for each predicate in the where clause)

16.3.4.3.4 Join Query Optimization The join query optimization involves evaluation of a
large number of query execution plans. The number of possible plans increases
exponentially with the number of tables. The following query illustrates this:

SELECT e.empno, e.ENAME, d.dname
FROM EMP e, DEPT d
WHERE e.deptno = DEPT.DEPTNO
AND e.JOB = 'MANAGER'
AND e.sal > 2000;

Here both possible orders of (EMP, DEPT) or (DEPT, EMP) exist for the execution. If
EMP is chosen as the driving table, then the rows qualifying (EMP.JOB_TITLE =
‘Manager’ AND EMP.sal > 5000) are retrieved one by one from the EMP table.
The optimizer considers the three possible access methods for EMP table, as follows:

1. Sequential scan of EMP table.

2. Index access using index on EMP.JOB_TITLE if one exists.

3. Index access using index on EMP.SAL if one exists.

The optimizer picks the method that produces least amount of I/O. Based on the
selectivity factor assigned to each predicate, it estimates the number of rows selected
for the EMP table. Then, it estimates the cost of retrieving a set of matching rows for
each outer row in the EMP table. The total cost of execution using this order is as
follows:

Optimizing SQL Queries for the Oracle Lite Database

16-14 Oracle Database Lite Oracle Lite Client Guide

Cost = npgemp + est_rowemp * (cost_per_row_dept)

Where:

The same calculation is repeated for the order DEPT, EMP. Whichever order produces
the lowest cost is chosen. As the number of predicates and tables increase the cost of
computing, the different possibilities grow exponentially. To reduce the compilation
time, Oracle Lite uses aggressive heuristics to prune the search space, thereby
sometimes landing into a sub-optimal execution plan. Also, unreliable statistics values,
skewed data, and unavailability of selectivity factors for non-index columns can
contribute to sub-optimal execution plan generation.

The following are the main tasks performed during a join query optimization:

1. The optimizer isolates local predicates (the predicates on a single table) from join
predicates. In addition, the optimizer estimates the effective table sizes by the
applying the selectivity factor of local predicates to the table. Local predicates are
predicates that refer to columns from one table only. Whenever an index is
available, the calculation of selectivity factor is fairly accurate. Oracle Lite assumes
that the data is uniformly distributed; however, when the data is skewed, the
estimate can go wrong and the execution plan chosen may not be optimal. When
an index is not available, it uses default selectivity for computation.

2. A driving table—the table with the smallest effective cardinality—is picked first.
Its optimal access method is picked. The table is put in the set of "outer" tables.

3. The query is examined to discover which possible tables can be joined to the tables
in the current outer tables. The cross product is not considered. The I/O cost is
estimated for all possible joins. The least costly join is chosen and is added, along
with the chosen table, to the outer table set. The step is repeated until it has
selected all tables in the query. By the end, it has computed the execution order
and access methods for each table in the query.

4. The optimizer saves the current execution plan and picks a new driving table,
whose effective cardinality is the second lowest. It repeats step 3 and selects the
least expensive execution plan of the two plans. Again, it repeats step 3 with the
third, fourth and fifth smallest table—always keeping a copy of the current least
expensive execution plan.

5. The optimizer creates hints for when to create an index for intermediate results of
a view. This is useful when joining a view that is not collapsed to another table or
view.

6. When two tables are outer joined, the master table has to be scanned before the
slave table (the table whose column has "+" in the joining column).

Interesting Order Optimization
An interesting order optimization eliminates the final sorting step for queries
containing order by or group by clauses. If a suitable index exists that can eliminate
the sorting step, then the cost is estimated the following ways:

1. Sorting + the best execution plan.

Table 16–7

Parameter Description

est_rowemp Estimated number of rows fetched from EMP table

cost_per_row_dept Cost of index access into DEPT to retrieve matching department rows
for each row fetched from EMP

Optimizing SQL Queries for the Oracle Lite Database

Improving SQL Query Performance for the Oracle Lite Database 16-15

2. Pick a drive table that has columns from order by or group by clause, such that an
index can be used to retrieve the data in the right order. Estimate the execution
plan cost.

The least expensive plan is then chosen.

16.3.4.4 Query Execution Engine
The SQL Runtime engine relies on the database engine to implement simple data
filtering, access methods, and sorting. A single table query execution of a query
involves the following steps:

1. Decide if a temporary table is necessary to store the result. For a READ COMMITED
isolation level transaction, a temporary table is required to store the result. While
the result is being materialized, all other transactions are blocked from committing
to preserve the read committed semantics. A temporary table is necessary when
sorting is required. The DBE can only sort full tables.

2. Create the iterator on the table. Push the maximum number filter conditions to the
database engine. This way, the smaller result set is returned to SQLRT.

3. If there are any complex filters that cannot be evaluated by DBE, evaluate them
now and reject any rows that do not qualify. Examples of complex filters are SQL
functions and subquery operators, such as UPPER(NAME) = ‘SMITH’, or
zipcode IN (SELECT zipcode from TX where ….).

4. If the temporary table is created, then store all qualifying rows into this table.
Once all rows are inserted into the temporary table, then the result is returned
from this table.

16.3.4.4.1 Join Query Execution The SQLRT implements the join operation by executing
the query in a nested loop fashion. The optimizer has already picked the optimal order
of tables. The execution begins with the first (outer most) table in the list. An iterator is
created on this table. A qualifying row is retrieved. The next table is picked from the
list and a new iterator is created using the qualifying values from the row already
fetched. A new qualifying row is retrieved from the second table. If there are more
tables in the list, then the process continues until you reach end of the list. This
provides the first matching row for the SELECT statement. Find the next matching
row from the last table. If you do not find any qualifying rows, then return to the
previous table in the list and repeat the process. Every time you advance to the next
table in the list, you create a new iterator. Every time you do not find any more
matching rows on a table, then close the iterator and return to the previous table in the
list. If you exhaust all rows in the outer most table, then you have found all rows. The
execution is analogous to nested loops execution in a programming language, which is
why it is called a nested loop join.

16.3.4.4.2 Nested View Execution Oracle Database Lite does not distinguish between
dynamic views (the query block in the FROM clause) or a view table being used in the
FROM clause. Both are processed in the same way. If a nested view cannot be merged
with the containing query and it is not the first to be picked in the execution order,
then SQLRT materializes the view into a temporary table and creates a temporary
index on the joining column(s). The index is used for joining outer tables with the
view. Since the index is created at runtime, the optimizer does not have access to
selectivity factors for view columns. The order chosen by the optimizer is based on
default selectivity factors and estimated number of rows in the view.

Optimizing SQL Queries for the Oracle Lite Database

16-16 Oracle Database Lite Oracle Lite Client Guide

16.3.4.5 Optimization Tips
This section provides guidelines to debug performance problems and helps you
design better queries for the Oracle Lite database. Query optimization refers to the
techniques used to find best execution plan.

■ Section 16.3.4.5.1, "Index Access Method"

■ Section 16.3.4.5.2, "Identifying The Bottleneck"

■ Section 16.3.4.5.3, "Single Table Query Blocks"

■ Section 16.3.4.5.4, "Query Blocks Containing Multiple Tables"

■ Section 16.3.4.5.5, "Known Limitations"

16.3.4.5.1 Index Access Method An index access method can be used for equality, as
well as range predicates. A predicate has to be one of the following forms in order for
it to be considered for index access:

■ column_1 = value1

■ column_1 rel-op value

■ column_1 = value1 AND column_2 = value2 AND …

■ column_1 = value1 AND column_2 = value2 AND … column_n rel-op value-n

Where:

■ rel-op—One of "=". ">", "<", ">=", <="

■ column_n—Prefix columns of an index key. The value is an expression that can be
evaluated to a constant value. For example, UPPER(name) = ‘TOM’ cannot be
used with an index access method, UPPER(name) is not a column name, but an
expression on the column name. Whereas name = UPPER(’TOM’) can be used as
an index predicate; the right hand side is a constant expression.

16.3.4.5.2 Identifying The Bottleneck The largest problem of solving a query optimization
problem is identifying the performance bottlenecks. Where is the CPU spending time?
A typical customer query contains multiple tables, predicates, and subqueries. It may
also contain outer joins and UNION operations. We recommend the following steps to
debug the problem:

1. Replace all synonyms with base objects. Expand all views by corresponding view
definitions. Imagine how SQLRT processes the query and carries out all possible
transformations. Identify all query blocks, where each query block contains one
SELECT statement.

2. Experiment with different query blocks one by one and find the slowest
performing query block.

3. Optimize the problematic query block by examining the indexes already existing
on columns involved in the query block. Determine if creating new indexes or
dropping some indexes improves the performance. Check the order of tables
selected by the optimizer (See the "Tools" section). Can it be improved if the query
is executed using a different execution order? You can use a HINT to force the
execution order of tables.

4. Once the bottleneck is resolved, repeat the process for the next bottleneck.

Note: You should not create indexes on a column that has multiple
duplicate values; that is, the ratio of nrows/ndk to ndk is large.

Optimizing SQL Queries for the Oracle Lite Database

Improving SQL Query Performance for the Oracle Lite Database 16-17

Tools
In Oracle Database Lite, you can dump query execution plan information by enabling
SQL TRACING, which is enabled by including the following line in the polite.ini
configuration file.

OLITE_SQL_TRACE= yes

This creates an oldb_trc.txt file in the current working directory of the process
accessing the database. If the file already exists, then it opens the file for appending the
dump information. The dump contains the following basic information:

1. Text of the SQL statement and every views in the SQL statement.

2. The time taken to compile the query.

3. The value of each bind variables.

4. Order of joining the tables.

5. Temporary tables created.

6. Access method used for each table. For an index access method, it prints the index
name and index number. If the index name is blank, then you can use
idxinfo.exe to discover the index information.

16.3.4.5.3 Single Table Query Blocks For a single table query, the query optimizer does
not select the best available access method. However, it does collect statistics for all
available indexes. The job for selecting the best index is left to the DBEngine, which
uses a rule-based approach to select the appropriate index. Ensure that the index is
available for the highest selective columns, as shown in the following example:

SELECT * FROM EMP WHERE NAME = ’Smith’ and EmpNo between 1 and 1000;

Assuming that the total number of employees is a few thousand, then we would
expect the predicate NAME = ‘Smith’ to return fewer rows than the predicate EmpNO
between 1 and 1000. Therefore, we should create an index on the NAME column.

16.3.4.5.4 Query Blocks Containing Multiple Tables Due to limitations of availability of
statistics, and inherent assumptions made about the distribution of data, the execution
plan chosen is not always optimal. Also, when suitable indexes are not present, the
Oracle Lite Database Engine uses a sequential scan, as opposed to an index access
method. To illustrate the importance of the index, see the following query:

SELECT e.empno, e.ENAME, d.dname FROM EMP e, DEPT d
WHERE e.deptno = DEPT.DEPTNO AND e.JOB = 'MANAGER' AND e.sal > 2000;

cost = npgemp + est_rowemp * (cost_per_row_dept)

Let us assume that EMP has 1000 rows with 50 rows per page; that is, the npgemp =
20. Let us assume that the est_rowemp is 50, npgdept = 10 and the cost of the index
access into the department is 2. The cost calculation is tabulated, as follows:

Note: Since the DBEngine is following a rule-based approach and
EMPNO is a primary key column, it may not select the index on the
NAME column.

Optimizing SQL Queries for the Oracle Lite Database

16-18 Oracle Database Lite Oracle Lite Client Guide

The cost of execution changes dramatically when an index is present. Therefore, the
biggest challenge to improve the performance of a query in an Oracle Lite database is
as follows:

1. Find the right set of indexes.

2. Optimal order for execution of tables.

There is no easy answer to the above tasks. It requires a deep understanding of the
query that you are writing. The first action is to figure out the driving table, which is
usually a table with many conditions involving constant values. For example, in the
above table, it is most likely the EMP table. On the other hand, if there are only couple
of rows in the DEPT table, then the DEPT table is a good candidate for the driving
table. Once you select a driving table, the next task is to figure out the possible tables
that can be joined to this table. What indexes will help in joining the current result set
to the new table? Try joining these two tables and test if the time you receive makes
sense. Now, add the third table and repeat the process. To force a specific join order,
you can use the HINT clause supported by the Oracle Lite Database. Refer to the
Oracle Database Lite SQL Reference for more information.

16.3.4.5.5 Known Limitations 1.In the process of finding the maximum and minimum
values for an index key, the optimizer can spend too much time if there are large
number of duplicates values near maximum and minimum values.

2. Sorting cost calculation is arbitrary.

3. In the presence of host variables, the selectivity for a range or like predicate cannot
be correctly estimated.

16.3.4.6 Glossary
■ API - Application Programming Interface

■ ACID - ACID properties refer to atomicity, consistency, isolation, and durability

■ A Correlated Subquery - A subquery that references columns from tables that are
not present in its own "from" clause.

■ Cross Product - When you join two tables without any joining condition, you
produce a cross product. The cross product of a table containing m rows with
another table containing n rows produces (m x n) rows.

■ OKAPI -- Object Kernel Application Program Interface is implemented by the
Oracle Lite Database Engine, which you can use to program your database
application.

■ Predicate – A boolean condition that evaluates to "true", "false" or unknown.
Examples are: (Emp.Salary > 50000), (Dept.DepNo = 10 AND Emp.HireDate >
’17-Nov-2001’)

■ SQLRT – Oracle Lite SQL Runtime Engine that is responsible for implementing
SQL functionality on top of Oracle Lite database engine.

Table 16–8 Cost Calculation Tabulation

npgemp est_rowemp npgdept

Access Method
dept cost_per_row_dept cost

20 50 10 Sequential 10 520 pages

20 50 10 Indexed 2 120 pages

Optimizing SQL Queries for the Oracle Lite Database

Improving SQL Query Performance for the Oracle Lite Database 16-19

16.3.4.7 References
1. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,Price T.G. Access

Path Selection in a Relational Database System. In Readings in Database Systems.
Morgan Kaufman. This is a classical paper and must read for any one who wants
to learn about query optimization.

2. Surajit Chaudhuri, An Overview of Query Optimization in Relational Systems,
Microsoft Research

Optimizing SQL Queries for the Oracle Lite Database

16-20 Oracle Database Lite Oracle Lite Client Guide

POLITE.INI Parameters for the Oracle Lite Database A-1

A
POLITE.INI Parameters for the Oracle Lite

Database

You can customize Oracle Database Lite by modifying the parameter values defined in
your POLITE.INI file, which is available in Windows under
%WINDIR%\POLITE.INI and in Linux under $ORACLE_HOME/bin. You must have
write permissions on the directory where this file is located to be able to modify the
POLITE.INI file.

The following discusses the parameters in the different sections in the POLITE.INI
file:

■ Section A.1, "POLITE.INI File Overview"

■ Section A.2, "All Databases Section"

■ Section A.3, "Sample POLITE.INI File"

A.1 POLITE.INI File Overview
The POLITE.INI file centralizes database volume ID assignments and defines
parameters for all databases on a system. When you install Oracle Database Lite, the
installation creates the POLITE.INI file in your Windows home directory. On
Windows CE and EPOC, the file name is POLITE.TXT.

The installation automatically sets the parameters in your POLITE.INI file, but you
can modify them to customize the product behavior. To modify the POLITE.INI file,
use an ASCII text editor.

A.2 All Databases Section
The All Databases section describes the behavior of your Oracle Lite database. The
following describes these parameters:

■ Section A.2.1, "CACHE_SIZE"

■ Section A.2.2, "DATA_DIRECTORY"

■ Section A.2.3, "DATABASE_ID"

■ Section A.2.4, "DB_CHAR_ENCODING"

Note: On the WinCE and EPOC platforms, this file is named
POLITE.TXT, so that you can double-click on it to open the file.

All Databases Section

A-2 Oracle Database Lite Oracle Lite Client Guide

■ Section A.2.5, "EXTERNAL_ENCRYPTION_DLL"

■ Section A.2.6, "FLUSH_AFTER_WRITE"

■ Section A.2.7, "MAX_INDEX_COLUMNS"

■ Section A.2.8, "MAX_ROWS"

■ Section A.2.9, "MESSAGE_FILE"

■ Section A.2.10, "NLS_DATE_FORMAT"

■ Section A.2.11, "NLS_LOCALE"

■ Section A.2.12, "NLS_SORT"

■ Section A.2.13, "OLITE_SERVER_LOG"

■ Section A.2.14, "OLITE_SERVER_TRACE"

■ Section A.2.15, "OLITE_SQL_TRACE"

■ Section A.2.16, "OLITE_WRITE_VERIFY"

■ Section A.2.17, "OLITE_READ_VERIFY"

■ Section A.2.18, "SQLCOMPATIBILITY"

■ Section A.2.19, "TEMP_DB"

■ Section A.2.20, "TEMP_DIR"

■ Section A.2.21, "SERVICE_PORT"

■ Section A.2.22, "SERVICE_WDIR"

■ Section A.2.23, "PAGE_FILL_FACTOR"

A.2.1 CACHE_SIZE
Specifies the size of the object cache in kilobytes. The minimum is 128. If not set, the
default is 4096 (4 megabytes).

A.2.2 DATA_DIRECTORY
On the WinCE platform, you may wish to define where the Oracle Lite database is
installed. By default, the storage card is used—to preserve memory—and the storage
card with the maximum free space is used. At least 32 MB of free space must be
available. If there is not enough memory on the storage card, then the directory
defaults to \Orace. If you want to specify the directory where the database is created,
specify the directory in the DATA_DIRECTORY parameter, as follows:

DATA_DIRECTORY=\Orace

A.2.3 DATABASE_ID
Defines the next Database Volume ID number to be assigned the CREATE DATABASE
SQL command. DATABASE_ID numbers must be unique for each database file on the
system.

A.2.4 DB_CHAR_ENCODING
Specifies the Oracle Database Lite character set. If set to NATIVE, the default is the
system default character set.

All Databases Section

POLITE.INI Parameters for the Oracle Lite Database A-3

Table A–1 lists the supported code pages and their corresponding values of DB_CHAR_
ENCODING for all supported languages.

A.2.5 EXTERNAL_ENCRYPTION_DLL
You can plug-in a custom encryption module for the Oracle Lite database by adding
the EXTERNAL_ENCRYPTION_DLL parameter to the POLITE.INI configuration file.
Use this if you do not want to use the default AES encryption provided for the client
database.

You must either implement your encryption module into a DLL for the Windows
environment or into a Shared Object (.SO) for the UNIX environment.

For example, if you created the encryption module as a DLL called my_enc.dll,
which is located in the C:\my_dir directory, then you would add this module as the
default encryption module in the POLITE.INI configuration file, as follows:

[All Databases]
EXTERNAL_ENCRYPTION_DLL=C:\my_dir\my_enc.dll

For more information, see Section 14.3, "Providing Your Own Encryption Module for
the Client Oracle Lite Database".

A.2.6 FLUSH_AFTER_WRITE

Syntax
FLUSH_AFTER_WRITE=TRUE|FALSE

Table A–1 Supported Code Pages and Values

Code Page
DB_CHAR_
ENCODING Language

N/A UTF8 All languages

(1250) ee8mswin1250 (Croatian, Czech, Hungarian, Polish, Romanian, Slovak,
and Slovenian)

(1251) c18mswin1251 (Bulgarian, Russian, and Ukranian)

(1252) we8mswin1252 (English (United States), Catalan, Danish, Dutch
(Netherlands), English (United Kingdom), Finish, French
(France), German (Germany), Icelandic, Italian (Italy),
Malay (Malaysia), Norwegian (Bokmal), Portuguese
(Brazil), Portuguese (Portugal), Spanish (Mexico), Spanish
(Spain), and Swedish)

(1253) el8mswin1253 (Greek)

(1254) tr8mswin1254 (Turkish)

(1255) iw8mswin1255 (Hebrew)

(1256) ar8mswin1256 (Arabic (Egypt), and Arabic (UAE))

(1257) blt8mswin1257 (Estonian and Lithuanian)

(932) ja16sjis (Japanese)

(936) zhs16gbk (Chinese (PRC) and Chinese (Singapore))

(949) ko16mswin949 (Korean)

(950) zht16mswin950 (Chinese (Taiwan) and Chinese (Hong Kong))

All Databases Section

A-4 Oracle Database Lite Oracle Lite Client Guide

Default Value
FALSE

By default, the parameter FLUSH_AFTER_WRITE is disabled. Hence, writes to a
database are not flushed. The last write operation during a COMMIT operation always
flushes file buffers, thereby eliminating the danger of losing data. For devices that are
unreliable, users can enable this flag and set the parameter to TRUE. When enabled,
every write action flushes file buffers. However, this setting degrades the database
COMMIT performance.

A.2.7 MAX_INDEX_COLUMNS
Defines the number of columns used in the index creation statement. For more
information, see "Index Creation Options" in the Oracle Database Lite SQL Reference.

A.2.8 MAX_ROWS
This parameter only applies for WinCE only.

The number of rows displayed in the msql GUI tool in the tables tab. By default, this
value is 20. If you want more than 20 rows displayed at a time, modify this value.

A.2.9 MESSAGE_FILE
Use the MESSAGE_FILE parameter to specify the location of the message file used for
the client Oracle Lite database. The default is where the binaries are installed. You
may want to modify where the message file is located if you want to test another
language. Modifying the MESSAGE_FILE parameter means that you do not have to
move files around to test other languages.

Configure the path and the name of the message file, as follows:

MESSAGE_FILE=C:\Olite\Mobile\Sdk\BIN\OLITE40.MSB

A.2.10 NLS_DATE_FORMAT
Allows you to use a date format other than the Oracle Database Lite default. When a
literal character string appears where a date value is expected, the Oracle Database
Lite tests the string to see if it matches the formats of Oracle, SQL-92, or the value
specified for this parameter in the POLITE.INI file. Setting this parameter also
defines the default format used in the TO_CHAR or TO_DATE functions when no other
format string is supplied.

For Oracle, the default is dd-mon-yy or dd-mon-yyyy. For SQL-92, the default is
yy-mm-dd or yyyy-mm-dd.

Using RR in the format forces two digit years less than or equal to 49 to be interpreted
as years in the 21st century (2000–2049), and years 50 and over, as years in the 20th
century (1950–1999). Setting the RR format as the default for all two digit year entries
allows you to become year-2000 compliant. For example,

NLS_DATE_FORMAT=’RR-MM-DD’

You can also modify the date format using the ALTER SESSION command. For more
information, see the Oracle Database Lite SQL Reference.

Note: This parameter applies to the WinCE platform only.

All Databases Section

POLITE.INI Parameters for the Oracle Lite Database A-5

A.2.10.1 Date Format
A date format includes one or more of the elements listed in the following table.
Elements that represent similar information cannot be combined, for example, you
cannot use SYYYY and BC in the same format string. Table A–2 lists date formats and
their corresponding description.

A.2.10.2 Date Format Examples
Listed below are sample variations of the NLS_DATE_FORMAT parameter.

1. YYYY-MONTH-DAY:HH24:MI:P.M.

Table A–2 Date Formats

Format Description

AM or P.M. Meridian indicator, periods are optional.

PM or P.M. Meridian indicator, periods are optional.

CC or SCC Century, "S" prefixes BC dates with "-".

D Day of week.

DAY Name of day, padded with blanks to length of 9 characters.

DD Day of month (1-31).

DDD Day of year (1-366).

DY Abbreviate name of day.

IW Week of year (1-52 or 1-53) based on the ISO standard.

IYY, IY, or I Last 3, 2, or 1 digit(s) of the ISO year, respectively.

IYYY 4-digit year, based on the ISO standard.

HH or HH12 Hour of the day (1-12).

HH24 Hour of the day (0-23).

MI Minute (0-59).

MM Month (01-12, for example, JAN=01).

MONTH Name of the month, padded with blanks to length of 9
characters.

MON Abbreviated name of the month.

Q Quarter of the year, (1,2,3,4, for example, JAN-MAR=1).

RR Last 2 digits of the year, for years in other countries. This forces
two-digit years less than or equal to 49 to be interpreted as years
in the 21st century (2000-2049), and years 50 and over, as years
in the 20th century (1950-1959).

WW Week of the year (1-53), where 1 starts on the first day of the
year and continues to the seventh day of the year.

SS Second (0-59).

SSSSS Seconds past midnight (0-86399).

Y or YYY Year with comma in this position.

YEAR or SYEAR Year, spelled out. "S" prefixes BC dates with "-".

YYYY or SYYYY 4-digit year. "S" prefixes BC dates with "-".

YYY, YY, or Y Last 3, 2, or 1 digit(s) of the year.

All Databases Section

A-6 Oracle Database Lite Oracle Lite Client Guide

2. YYYY/MONTH/DD, HH24:MI A.M.

3. YYYY-MONTH-DAY:HH24:MI:PM

4. MM D, YYY, HH:MI A.M.

5. MM, WW, RR, HH:MI A.M.

6. MM, IW, RR, HH:M1 A.M.

7. MM, DY, RR, HH:MI A.M.

8. MM; DY; IYY, HH:MI A.M.

9. MON WW, RR, HH:MI A.M.

10. MONTH.DD, SYYYY, HH:MI A.M.

11. MONTH/DD, YYYY, HH:MI A.M.

12. MONTH|DD, YYYY, HH:MI A.M.

13. MONTH DD, YYYY, HH:SSSSS:MI A.M.

14. MONTH DD, HH:SS::MI CC

15. MONTH DD, HH:SS:MI SCC

16. MONTH W, YYYY, HH:MI A.M.

17. MONTH WW, YYYY, HH:MI A.M.

18. MONTH WW, RR, HH:MI A.M.

19. MONTH WW, Q, HH:MI A.M.

20. MONTH WW, RR, HH:MI A.M.

A.2.11 NLS_LOCALE
Defines the NLS_LOCALE parameter in the POLITE.INI file to specify the locale data
of Oracle Database Lite. Oracle Database Lite locale data includes the following items:

■ Decimal character and group separator

■ Locale currency symbol and ISO currency symbol

■ Day, week, month names, and their abbreviations

For example, NLS_LOCALE=FRENCH_FRANCE specifies the locale data of FRENCH_
FRANCE in Oracle Database Lite. Table A–3 describes the supported locale and
corresponding values of the NLS_LOCALE setting.

Table A–3 Supported Locales and Values

Locale NLS_LOCALE

English (United States) AMERICAN_AMERICA

Arabic (Egypt) ARABIC_EGYPT

Arabic (UAE) ARABIC_UNITED ARAB EMIRATES

Bulgarian BULGARIAN_BULGARIA

Catalan CATALAN_CATALONIA

Chinese (PRC) SIMPLIFIED CHINESE_CHINA

Chinese (Singapore) SIMPLIFIED CHINESE_SINGAPORE

All Databases Section

POLITE.INI Parameters for the Oracle Lite Database A-7

A.2.12 NLS_SORT
This parameter can be used to define the collation sequence for databases created on
the Oracle Database Lite instance. Collation is referred as ordering strings into a

Chinese (Taiwan) TRADITIONAL CHINESE_TAIWAN

Chinese (Hong Kong) TRADITIONAL CHINESE_HONG KONG

Croatian CROATIAN_CROATIA

Czech CZECH_CZECH REPUBLIC

Danish DANISH_DENMARK

Dutch (Netherlands) DUTCH_THE NETHERLANDS

English (United Kingdom) ENGLISH_UNITED KINGDOM

Estonian ESTONIAN_ESTONIA

Finnish FINNISH_FINLAND

French (France) FRENCH_FRANCE

German (Germany) GERMAN_GERMANY

Greek GREEK_GREECE

Hebrew HEBREW_ISRAEL

Hungarian HUNGARIAN_HUNGARY

Icelandic ICELANDIC_ICELAND

Italian (Italy) ITALIAN_ITALY

Japanese JAPANESE_JAPAN

Korean KOREAN_KOREA

Lithuanian LITHUANIAN_LITHUANIA

Malay (Malaysia) MALAY_MALAYSIA

Norwegian (Bokmal) NORWEGIAN_NORWAY

Polish POLISH_POLAND

Portuguese (Brazil) BRAZILIAN PORTUGUESE_BRAZIL

Portuguese (Portugal) PORTUGUESE_PORTUGAL

Romanian ROMANIAN_ROMANIA

Russian RUSSIAN_CIS

Slovak SLOVAK_SLOVAKIA

Slovenian SLOVENIAN_SLOVENIA

Spanish (Mexico) MEXICAN SPANISH_MEXICO

Spanish (Spain) SPANISH_SPAIN

Swedish SWEDISH_SWEDEN

Turkish TURKISH_TURKEY

Ukrainian UKRANIAN_UKRAINE

Table A–3 (Cont.) Supported Locales and Values

Locale NLS_LOCALE

All Databases Section

A-8 Oracle Database Lite Oracle Lite Client Guide

culturally acceptable sequence. A collation sequence is a sequence of all collation
elements from an alphabet from the smallest collation order to the largest.

NLS_SORT=[collation sequence]

When this parameter is used, all databases created with the CREATEDB command line
utility or those that are replicated from the Mobile Server are enabled for the collation
sequence unless a different collation sequence is specified when using the utility.
Collation sequences currently supported are BINARY (default), FRENCH, GERMAN,
CZECH, and XCZECH. You can only perform a linguistic sort on Oracle Lite databases
that have the collation sequence of FRENCH, GERMAN, CZECH, OR XCZECH. You
cannot do a linguistic sort on a BINARY collation sequence, which is used with all
languages, except the three previously listed.

For a complete description of this feature, see Section C.2, "CREATEDB" and
Section 7.4, "Support for Linguistic Sort".

A.2.13 OLITE_SERVER_LOG
The server log file contains the status of oldaemon processes including start, launch
time, abort time, and executed processes. If any errors occurred, then the exception
information is included. To forward all log information for a Multi-User Service on a
LINUX machine, designate the filename of the logfile, as follows:

OLITE_SERVER_LOG = <path_and_filename>

A.2.14 OLITE_SERVER_TRACE
To debug the multi-user service, set this parameter to true, as follows:

OLITE_SERVER_TRACE = TRUE

A.2.15 OLITE_SQL_TRACE
Generates the SQL statement text, compilation time, execution plan, and the bind
value.

For example:

OLITE_SQL_TRACE = TRUE

SQL trace output is dumped to a trace file named oldb_trc.txt in the current
working directory of the database process. For a database service on Windows,
Windows NT or the Oracle Database Lite daemon for a Linux platform, the current
working directory is specified by the wdir parameter during the database startup
service or daemon. Applications that use an embedded connection to connect to the
database contain a working directory. This working directory is the application
working directory. To implement the tracing feature, the database process must
contain permissions to create the trace file in the current working directory. The trace

Note: Unless you require your databases to have linguistic sort
enabled for a supported collation sequence, it is recommended that
you use the CREATEDB utility with the NLS_SORT <collation
sequence> parameter, which overrides this POLITE.INI parameter.
Setting the NLS_SORT using the POLITE.INI file means that your
databases have the specified collation sequence enabled. There is
currently no way to convert a database from one collation sequence to
another.

All Databases Section

POLITE.INI Parameters for the Oracle Lite Database A-9

output is always included in the trace file. If the trace file does not exist, it is created
automatically.

To modify the working directory, see Section A.2.22, "SERVICE_WDIR".

A.2.16 OLITE_WRITE_VERIFY
You can perform diagnostics if you experience database corruption due to file system
write errors, I/O errors, or a media device problem. Setting OLITE_WRITE_VERIFY to
TRUE generates error reporting if a checksum error occurs on the device for the client.

If you receive a POL-3207 error, then you may wish to execute the validatedb tool
to see if the error message came about because of a checksum error. The validatedb
tool deciphers if a checksum error has occurred. To further diagnose the checksum
error, you can set OLITE_WRITE_VERIFY to perform further diagnostics to see if it is
a filesystem, I/O, or media problem. After you set this to true on the client, then all
write operations are verified that the checksum is valid. If not, then an error is written
to a log file named <odb_file>.odb_fserr.log in the same directory as the Oracle
Lite database (ODB). At this point, only metadata is written to this log file. However, if
the file has a size greater than zero, then you know that a checksum error has occurred
and there is a problem on your client device.

For example:

OLITE_WRITE_VERIFY = TRUE

A.2.17 OLITE_READ_VERIFY
This parameter specifies whether the checksum calculation is enabled or disabled
during reading the database into the internal memory. This can be set to either TRUE
or FALSE. The performance of the database improves notably if the checksum
calculation is disabled.

Syntax:

OLITE_READ_VERIFY=TRUE | FALSE

Default Value

FALSE

A.2.18 SQLCOMPATIBILITY
Oracle Database Lite supports both Oracle SQL and SQL-92 features. For more
information on Oracle SQL and SQL-92, see the Oracle Database Lite SQL Reference.

If there is a conflict between Oracle SQL and SQL-92, the SQLCOMPATIBILITY flag is
referenced. If you specify ORACLE for the parameter, Oracle SQL is favored, and if you
specify SQL92, SQL-92 is favored. If you do not include this parameter in the
POLITE.INI, Oracle SQL is favored, by default.

Note: Be careful in setting this parameter to TRUE, that you only use
it while performing your diagnostic tests and that you change it back
to FALSE when the problem is found. The error checking performed
for this diagnostic effects your performance.

All Databases Section

A-10 Oracle Database Lite Oracle Lite Client Guide

A.2.19 TEMP_DB
The temporary database is created by default in virtual memory. This improves the
performance of some queries that require the use of temporary tables. Unless you
explicitly choose to create the temporary database in the file system with the TEMP_DB
parameter, the poltempx.odb files are not created. The *.slx files that are
sometimes used to store savepoint information are also not created. If you plan to
create a large result set, you must either have enough swap space to hold the result, or
choose the file option for the temporary database.

You can specify that the temporary database files are written to the file system either
with the TEMP_DB or TEMP_DIR parameters. The TEMP_DB parameter enables you to
define the name of the database files; the TEMP_DIR parameter allows you only to
specify the directory to which the temporary database files are written.

To include this option, use the following syntax in the POLITE.INI file.

TEMP_DB=<path_and_temporary_database_name>

For example,

TEMP_DB=c:\temp\olite_

As a result of the example setting, Oracle Database Lite creates temporary databases as
given below.

c:\temp\olite_0.odb, c:\temp\olite_1.odb, ...

A.2.20 TEMP_DIR
Specifies the directory where the temporary database poltemp.odb is created. If not
set, the default is any TEMP, TMP or WINDIR setting defined in your environment. See
Section A.2.19, "TEMP_DB" for more information.

A.2.21 SERVICE_PORT

Syntax
SERVICE_PORT=<port_number>

Default Value
The default port number is 1160.

Modify the default port of the multi-user service with this parameter.

A.2.22 SERVICE_WDIR

Syntax
SERVICE_WDIR=C:\WINDOWS\SYSTEM32

Modify the default working directory of the multi-user service with this parameter.

A.2.23 PAGE_FILL_FACTOR
The page fill factor for the database can be configured with this parameter. The higher
the page fill factor, the smaller is the size of the database. The optimum value for this
parameter is 80. The page fill factor determines the size of the database file, the

Sample POLITE.INI File

POLITE.INI Parameters for the Oracle Lite Database A-11

performance of the database for a full table scan and how quickly an existing table can
be updated.

Syntax:

PAGE_FILL_FACTOR=<page_fill_factor>

Default value: 80

A.3 Sample POLITE.INI File
The following content is displayed from a sample POLITE.INI file.

[All Databases]
DATABASE_ID=128
DB_CHAR_ENCODING=NATIVE
CACHE_SIZE=4096
MAX_INDEX_COLUMNS=5
SQLCOMPATIBILITY=SQL92
NLS_DATE_FORMAT=RR/MM/DD H24,MI,SS
NLS_LOCALE=ENGLISH
TEMP_DB=c:\temp\olite_
TEMP_DIR=D:\TMP

Sample POLITE.INI File

A-12 Oracle Database Lite Oracle Lite Client Guide

Catalog Views for the Oracle Lite Client B-1

B
Catalog Views for the Oracle Lite Client

The following are the SQLRT and other system catalogs that are included in the client
Oracle Lite database:

■ Section B.1, "ALL_COL_COMMENTS"

■ Section B.2, "ALL_CONSTRAINTS"

■ Section B.3, "ALL_CONS_COLUMNS"

■ Section B.4, "ALL_DEPENDENCIES"

■ Section B.5, "ALL_INDEXES"

■ Section B.6, "ALL_IND_COLUMNS"

■ Section B.7, "ALL_OBJECTS"

■ Section B.8, "ALL_PRIVILEGES"

■ Section B.9, "ALL_SEQUENCES"

■ Section B.10, "ALL_SYNONYMS"

■ Section B.11, "ALL_TABLES"

■ Section B.12, "ALL_TAB_COLUMNS"

■ Section B.13, "ALL_TAB_COMMENTS"

■ Section B.14, "ALL_USERS"

■ Section B.15, "ALL_VIEWS"

■ Section B.16, "POL__ALLOBJ"

■ Section B.17, "POL__COLUSAGE"

■ Section B.18, "POL__COMMENT"

■ Section B.19, "POL__CONS"

■ Section B.20, "POL__DATABASE_PARAMETERS"

■ Section B.21, "POL__INDICES"

■ Section B.22, "POL__INDICESDT"

■ Section B.23, "POL__PROCEDURES"

■ Section B.24, "POL__PROCEDURE_COLUMNS"

■ Section B.25, "POL__SCHEMATA"

■ Section B.26, "POL__SEQ"

ALL_COL_COMMENTS

B-2 Oracle Database Lite Oracle Lite Client Guide

■ Section B.27, "POL__SYNONYM"

■ Section B.28, "POL__TBLCONS"

■ Section B.29, "POL__TBLUSAGE"

■ Section B.30, "POL__TRIGGERS"

■ Section B.31, "POL__VIEWS"

■ Section B.32, "POL__USERS"

B.1 ALL_COL_COMMENTS

B.2 ALL_CONSTRAINTS

B.3 ALL_CONS_COLUMNS

Table B–1 ALL_COL_COMMENTS Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NOT NULL Owner

TABLE_NAME VARCHAR(128) NOT NULL Name of the table

COLUMN_NAME VARCHAR(128) NOT NULL Name of the column

COMMENTS VARCHAR(4096) NULL Description

Table B–2 ALL_CONSTRAINTS Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NOT NULL Owner

CONSTRAINT_NAME VARCHAR(128) NOT NULL Constraint name

CONSTRAINT_TYPE VARCHAR(128) NOT NULL Constraint type

TABLE_NAME VARCHAR(128) NOT NULL Name of the table

SEARCH_CONDITION VARCHAR(1000) NULL Search condition

R_OWNER VARCHAR(128) NULL Owner of Referenced Primary Key
Constraint

R_CONSTRAINT_NAME VARCHAR(128) NULL Reference Name of Primary Constraint

DELETE_RULE VARCHAR(128) NULL Delete rule

STATUS VARCHAR(20) NOT NULL Status

VALIDATED VARCHAR(13) NOT NULL Validated

Table B–3 ALL_CONS_COLUMNS Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NULL Owner

CONSTRAINT_NAME VARCHAR(128) NULL Constraint name

TABLE_NAME VARCHAR(128) NULL Table name

COLUMN_NAME VARCHAR(128) NULL Column name

POSITION VARCHAR(10) NULL Position

Catalog Views for the Oracle Lite Client B-3

B.4 ALL_DEPENDENCIES

B.5 ALL_INDEXES

B.6 ALL_IND_COLUMNS

B.7 ALL_OBJECTS

Table B–4 ALL_DEPENDENCIES Parameters

Column Datatype Null Description

OWNER VARCHAR(30) NOT NULL Owner

NAME VARCHAR(30) NOT NULL Name

TYPE VARCHAR(16) NULL Type

REFERENCED_OWNER VARCHAR(30) NULL Referenced owner

REFERENCED_NAME VARCHAR(30) NOT NULL Referenced name

REFERENCED_TYPE VARCHAR(16) NULL Referenced type

Table B–5 ALL_INDEXES Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NOT NULL Owner

INDEX_NAME VARCHAR(128) NOT NULL Index name

TABLE_OWNER VARCHAR(128) NOT NULL Table owner

TABLE_NAME VARCHAR(128) NOT NULL Table name

TABLE_TYPE VARCHAR(10) NULL Table type

UNIQUENESS VARCHAR(128) NOT NULL Index Uniqueness

Table B–6 ALL_IND_COLUMNS Parameters

Column Datatype Null Description

INDEX_OWNER VARCHAR(128) NOT NULL Index owner

INDEX_NAME VARCHAR(128) NOT NULL Index name

TABLE_OWNER VARCHAR(128) NOT NULL Table owner

TABLE_NAME VARCHAR(128) NOT NULL Table name

COLUMN_NAME VARCHAR(128) NOT NULL Column name

COLUMN_POSITION VARCHAR(10) NOT NULL Column position

Table B–7 ALL_OBJECTS Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NOT NULL Owner

OBJECT_NAME VARCHAR(128) NOT NULL Object name

ALL_PRIVILEGES

B-4 Oracle Database Lite Oracle Lite Client Guide

B.8 ALL_PRIVILEGES

B.9 ALL_SEQUENCES

B.10 ALL_SYNONYMS

OBJECT_TYPE VARCHAR(128) NULL Object type

CREATED DATE NULL When object was created

STATUS VARCHAR(128) NULL Status

Table B–8 ALL_PRIVILEGES Parameters

Column Datatype Null Description

SCHEMA VARCHAR(128) NOT NULL Schema

TABLE VARCHAR(128) NOT NULL Table

COLUMN NUMBER(11) NOT NULL Column

GRANTOR1 VARCHAR(128) NOT NULL Grantor

GRANTEE1 UNKNOWN(8) NOT NULL Grantee

OBJTYPE TINYINT(3) NOT NULL Object type

GTYPE TINYINT(3) NOT NULL Grant type

GTABLE TINYINT(3) NOT NULL Grant table

TO UNKNOWN(8) NOT NULL Not used

Table B–9 ALL_SEQUENCES Parameters

Column Datatype Null Description

SEQUENCE_OWNER VARCHAR(128) NOT NULL Sequence owner

SEQUENCE_NAME VARCHAR(128) NOT NULL Sequence name

MIN_VALUE VARCHAR(10) NOT NULL Minimum value

MAX_VALUE VARCHAR(10) NOT NULL Maximum value

INCREMENT_BY VARCHAR(10) NOT NULL Increment value for sequence

Table B–10 ALL_SYNONYMS Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NULL Owner

SYNONYM_NAME VARCHAR(128) NULL Synonym name

TABLE_OWNER VARCHAR(128) NULL Table owner

TABLE_NAME VARCHAR(128) NULL Table name

DB_LINK VARCHAR(128) NULL Database link

Table B–7 (Cont.) ALL_OBJECTS Parameters

Column Datatype Null Description

Catalog Views for the Oracle Lite Client B-5

B.11 ALL_TABLES
Table B–11 ALL_TABLES Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NOT NULL Owner

TABLE_NAME VARCHAR(128) NOT NULL Table name

TABLESPACE_NAME VARCHAR(128) NULL Tablespace name

CLUSTER_NAME VARCHAR(128) NULL Cluster name

PCT_FREE NUMBER(10) NULL Minimum percentage of free space in a
block

PCT_USED NUMBER(10) NULL Minimum percentage of used space in
a block. Note: If the space in data block
is less than PCT_FREE, no new rows
will be added in that block until
amount of space in table is less than
PCT_USED

INI_TRANS NUMBER(10) NULL Initial number of transactions

MAX_TRANS NUMBER(10) NULL Maximum number of transactions

INITIAL_EXTENT NUMBER(10) NULL Set of Contiguous blocks in a database
segment that is automatically allotted
when a segment is created

NEXT_EXTENT NUMBER(10) NULL Block allocated after initial extent

MIN_EXTENTS NUMBER(10) NULL Minimum number of extents allowed
in the segment

MAX_EXTENTS NUMBER(10) NULL Maximum extent that can be allocated

PCT_INCREASE NUMBER(10) NULL Default percentage increase in extent
size

BACKED_UP VARCHAR(1) NULL Has table being backed up since last
modification

NUM_ROWS NUMBER(10) NULL Number of rows

BLOCKS NUMBER(10) NULL Number of used blocks in the table

EMPTY_BLOCKS NUMBER(10) NULL Number of empty blocks in the table

AVG_SPACE NUMBER(10) NULL Average available free space in the
table

CHAIN_CNT NUMBER(10) NULL Number of rows in the table that are
chained from one data block to
another or that have migrated to a new
block, requiring a link to preserve the
old rowid

AVG_ROW_LEN NUMBER(10) NULL Average row length, including row
overhead

ALL_TAB_COLUMNS

B-6 Oracle Database Lite Oracle Lite Client Guide

B.12 ALL_TAB_COLUMNS

B.13 ALL_TAB_COMMENTS

B.14 ALL_USERS

Table B–12 ALL_TAB_COLUMNS Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NOT NULL Owner

TABLE_NAME VARCHAR(128) NOT NULL Table name

COLUMN_NAME VARCHAR(128) NOT NULL Column name

DATA_TYPE VARCHAR(30) NULL Data type

DATA_LENGTH NUMBER(10) NULL Data length

DATA_PRECISION NUMBER(10) NULL Data precision

DATA_SCALE NUMBER(10) NULL Data scale

NULLABLE VARCHAR(1) NULL Nullable

COLUMN_ID NUMBER(10) NOT NULL Column ID

DEFAULT_LENGTH NUMBER(10) NULL Default length

DATA_DEFAULT VARCHAR(4096) NULL Default value for column

NUM_DISTINCT NUMBER(10) NULL Number of distinct values this column
holds

LOW_VALUE NUMBER(10) NULL Low value

HIGH_VALUE NUMBER(10) NULL High value

IS_HIDDEN VARCHAR(1) NULL If item is hidden

Table B–13 ALL_TAB_COMMENTS Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NOT NULL Owner

TABLE_NAME VARCHAR(128) NOT NULL Table name

TABLE_TYPE VARCHAR(128) NOT NULL Table type

COMMENTS VARCHAR(4096) NOT NULL Description

Table B–14 ALL_USERS Parameters

Column Datatype Null Description

USERNAME VARCHAR(30) NOT NULL Username

USER_ID NUMBER(11) NOT NULL User ID

CREATED DATE NOT NULL When user was created

Catalog Views for the Oracle Lite Client B-7

B.15 ALL_VIEWS

B.16 POL__ALLOBJ

B.17 POL__COLUSAGE

B.18 POL__COMMENT

Table B–15 ALL_VIEWS Parameters

Column Datatype Null Description

OWNER VARCHAR(128) NOT NULL Owner

VIEW_NAME VARCHAR(128) NOT NULL View name

TEXT_LENGTH NUMBER(10) NOT NULL Text length

TEXT VARCHAR(1000) NOT NULL Text

Table B–16 POL__ALLOBJ Parameters

Column Datatype Null Description

CATALOG_NAME VARCHAR(128) NOT NULL Catalog name

SCHEMA_NAME VARCHAR(128) NOT NULL Schema name

OBJECT_NAME VARCHAR(128) NOT NULL Object name

OBJECT_ID NUMBER(10) NOT NULL Object ID

OBJECT_TYPE SMALLINT(5) NOT NULL Object type

CREATED DATE NOT NULL Date when created

LAST_DDL_TIME DATE NOT NULL Timestamp for the last modification of
the object resulting from a DDL
command

Table B–17 POL__COLUSAGE Parameters

Column Datatype Null Description

COLUMN VARCHAR(128) NOT NULL Column

TBLUSAGEREF UNKNOWN(8) NOT NULL Reference to its POL__TBLUSAGE
object

POSITION NUMBER(11) NOT NULL Column position in Constraint
definition. Used to identify order of
column in the key

Table B–18 POL__COMMENT Parameters

Column Datatype Null Description

COLREF UNKNOWN(8) NOT NULL Column Reference

COMMENTS VARCHAR(4096) NOT NULL Comment

POL__CONS

B-8 Oracle Database Lite Oracle Lite Client Guide

B.19 POL__CONS

B.20 POL__DATABASE_PARAMETERS

B.21 POL__INDICES

Table B–19 POL_CONS Parameters

Column Datatype Null Description

CATALOG VARCHAR(128) NOT NULL Catalog

SCHEMA VARCHAR(128) NOT NULL Schema

CONSTRAINT VARCHAR(128) NOT NULL Constraint

TYPE NUMBER(11) NOT NULL Type

TBLCONS UNKNOWN(8) NOT NULL Reference to POL__TBLCONS that
points to constrained table

ASSERTCONS UNKNOWN(8) NOT NULL Reserved

DOMAINCONS UNKNOWN(8) NOT NULL Reserved

FLAGS NUMBER(11) NOT NULL For update rules

TO UNKNOWN(8) NOT NULL Used by foreign key constraint to point
to parent table primary key constraint
object

EXTENSIONS TINYINT(3) NOT NULL Not used

Table B–20 POL__DATABASE_PARAMETERS Parameters

Column Datatype Null Description

PARAMETER VARCHAR(30) NOT NULL Parameter

TYPE TINYINT(3) NOT NULL Type

VALUE VARCHAR(128) NULL Value

Table B–21 POL__INDICES Parameters

Column Datatype Null Description

CATALOG_NAME VARCHAR(128) NOT NULL Catalog name

SCHEMA_NAME VARCHAR(128) NOT NULL Schema name

INDEX_NAME VARCHAR(128) NOT NULL Index name

TABLE_SCHEMA VARCHAR(128) NOT NULL Table schema

TABLE_NAME VARCHAR(128) NOT NULL Table name

FLAGS NUMBER(11) NOT NULL Options for Index

INDEXOBJ UNKNOWN(8) NOT NULL Index object

EXTENSIONS TINYINT(3) NOT NULL Not used

Catalog Views for the Oracle Lite Client B-9

B.22 POL__INDICESDT

B.23 POL__PROCEDURES

B.24 POL__PROCEDURE_COLUMNS

Table B–22 POL__INDICESDT Parameters

Column Datatype Null Description

COLUMN_NAME VARCHAR(128) NOT NULL Column name

DIRECTION TINYINT(3) NOT NULL Ascending or descending direction

INDEX_POSITION NUMBER(10) NOT NULL Relative position in index

MASTER UNKNOWN(8) NOT NULL Master index table

EXTENSIONS TINYINT(3) NOT NULL Not used

Table B–23 POL__PROCEDURES Parameters

Column Datatype Null Description

CATALOG_NAME VARCHAR(128) NOT NULL Catalog name

SCHEMA_NAME VARCHAR(128) NOT NULL Schema name

PROCEDURE_NAME VARCHAR(128) NOT NULL Procedure name

TABLE_CLASS UNKONWN(8) NOT NULL Table class

PROCEDURE_TYPE SMALLINT(5) NOT NULL Procedure type

PROCEDURE_REF UNKNOWN(8) NOT NULL Procedure reference

Table B–24 POL__PROCEDURE_COLUMNS Parameters

Column Datatype Null Description

MASTER UNKNOWN(8) NOT NULL Master Index table

COLUMN_TYPE SMALLINT(5) NOT NULL Column type

DATA_TYPE SMALLINT(5) NOT NULL Data type

TYPE_NAME VARCHAR(128) NOT NULL Type name

PRECISION NUMBER(10) NOT NULL Significant digits for Column

LENGTH NUMBER(10) NOT NULL Length

SCALE SMALLINT(5) NOT NULL Significant digits right of decimal

RADIX SMALLINT(5) NOT NULL Base of the system

POSITION SMALLINT(5) NOT NULL Position

POL__SCHEMATA

B-10 Oracle Database Lite Oracle Lite Client Guide

B.25 POL__SCHEMATA

B.26 POL__SEQ

B.27 POL__SYNONYM

B.28 POL__TBLCONS

Table B–25 POL__SCHEMATA Parameters

Column Datatype Null Description

NAME VARCHAR(128) NOT NULL Name

OWNER VARCHAR(128) NOT NULL Owner

SCHEMA_ID NUMBER(11) NOT NULL Schema ID

CREATED DATE NOT NULL Date when created

Table B–26 POL__SEQ Parameters

Column Datatype Null Description

SCHEMA_NAME VARCHAR(128) NOT NULL Schema name

SEQ_NAME VARCHAR(128) NOT NULL Sequence name

SEQ_REF UNKNOWN(8) NOT NULL Sequence reference

INC_BY NUMBER(10) NOT NULL Increment by value

START_WITH NUMBER(10) NOT NULL Number to start sequence with

MIN_VALUE NUMBER(10) NOT NULL Minimum value for sequence

MAX_VALUE NUMBER(10) NOT NULL Maximum value for sequence

IS_ACCESSED TINYINT(3) NOT NULL if accessed

Table B–27 POL__SYNONYM Parameters

Column Datatype Null Description

SYN VARCHAR(128) NOT NULL Synonym

OBJECT VARCHAR(128) NOT NULL Object

Table B–28 POL__TBLCONS Parameters

Column Datatype Null Description

CATALOG VARCHAR(128) NOT NULL Fully qualified database file name

SCHEMA VARCHAR(128) NOT NULL Schema

TABLE VARCHAR(128) NOT NULL Table

CONSREF UNKNOWN(8) NOT NULL Reference to POL__CONS object

FLAGS NUMBER(11) NOT NULL Reserved

TYPE NUMBER(11) NOT NULL Type

SEARCH VARCHAR(128) NOT NULL Used by Check constraint to store user
constraint string

Catalog Views for the Oracle Lite Client B-11

B.29 POL__TBLUSAGE

B.30 POL__TRIGGERS

B.31 POL__VIEWS

SEARCHTREE TINYINT(3) NOT NULL Internal representation of constraint
clause

EXTENSIONS TINYINT(3) NOT NULL Not used

CLASSREF UNKNOWN(8) NOT NULL Reference to Class Object for the table

GROUPREF UNKNOWN(8) NOT NULL Reference to Group Object for the table

Table B–29 POL_TBLUSAGE Parameters

Column Datatype Null Description

CATALOG VARCHAR(128) NOT NULL Catalog

SCHEMA VARCHAR(128) NOT NULL Schema

TABLE VARCHAR(128) NOT NULL Table

TBLCONSREF UNKNOWN(8) NOT NULL Reference to POL__TBLCONS Object

DOMCONSREF UNKNOWN(8) NOT NULL Not used

ASSERTCONSREF UNKNOWN(8) NOT NULL Not used

EXTENSIONS TINYINT(3) NOT NULL Not used

Table B–30 POL__TRIGGERS Parameters

Column Datatype Null Description

TRIGGER_NAME VARCHAR(128) NOT NULL Trigger name

TABLE_CLASS UNKNOWN(8) NOT NULL Table class

TRIGGER_KIND SMALLINT(5) NOT NULL Trigger kind

METHOD UNKNOWN(8) NOT NULL Method

Table B–31 POL__VIEWS Parameters

Column Datatype Null Description

NAME VARCHAR(30) NOT NULL View name

VIEWDEF VARCHAR(128) NOT NULL
V i e w d e f i n i t i o n

POSMAPS NUMBER(11) NOT NULL Position Map

Table B–28 (Cont.) POL__TBLCONS Parameters

Column Datatype Null Description

POL__USERS

B-12 Oracle Database Lite Oracle Lite Client Guide

B.32 POL__USERS
Table B–32 POL__USERS Parameters

Column Datatype Null Description

USERNAME VARCHAR(30) NOT NULL User name

PASSWORD VARCHAR(30) NOT NULL Password

USER_ID NUMBER(11) NOT NULL User ID

CREATED DATE NOT NULL Date when created

Oracle Lite Database Utilities C-1

C
Oracle Lite Database Utilities

This appendix describes how to use the following Oracle Lite database utilities for the
Windows 32 and Windows CE platforms. Table C–1 lists all of the utility names:.

Table C–1 Database Tools and Utilities

Utility Description

Section C.1, "The mSQL Tool" Allows users to execute SQL statements against the Oracle
Lite database.

Section C.2, "CREATEDB" Use this to create your Oracle Lite database.

Section C.3, "REMOVEDB" Use this to remove your Oracle Lite database.

Section C.4, "ENCRYPDB" Use this to encrypt your Oracle Lite database.

Section C.5, "DECRYPDB" Use this to decrypt your Oracle Lite database.

Section C.6, "BACKUPDB" Use this to backup your Oracle Lite database.

Section C.7, "DefragDB to
Defragment and Reduce Size of
the Oracle Lite Database"

Defragmenting to reduce the size of the OracleLite
database.

Section C.8, "ODBC
Administrator and the Oracle
Database Lite ODBC Driver"

Use this to manage ODBC connections by creating data
source names (DSNs) that associate the Oracle Database Lite
ODBC Driver with the Oracle Database Lite that you want
to access through the driver.

Section C.9, "ODBINFO" Use this utility to find out the version number and volume
ID of an Oracle Database Lite database.

Section C.10, "VALIDATEDB" Use this to validate the structure of an Oracle Lite database
and find any corruption of the database.

Section C.11, "Transferring Data
Between a Database and an
External File"

Use either the command-line tool or programmatic APIs to
load data from an external file into a table in Oracle
Database Lite, or to unload (dump) data from a table in
Oracle Database Lite to an external file.

Support for Linguistic Sort Allows databases to be created with linguistic sort
capability enabled. See Section 7.4, "Support for Linguistic
Sort" for full details.

Section 13.3.1.4.1, "Using
dropjava"

The dropjava command-line utility removes Java classes
from Oracle Database Lite.

Section 13.3.1.1.1, "loadjava" The loadjava command-line utility loads a Java class into
Oracle Database Lite.

The mSQL Tool

C-2 Oracle Database Lite Oracle Lite Client Guide

C.1 The mSQL Tool
Mobile SQL (mSQL) is a GUI-based application that runs on the client device (laptop
and Windows CE). It allows the user to execute SQL statements against the local
database. It is a development tool that enables users to execute SQL statements to the
Oracle Lite database.

Using mSQL you can accomplish the following:

■ Create databases

■ View tables

■ Execute SQL statements

The following sections describe how to use the mSQL tool on two platforms:

■ Section C.1.1, "The mSQL Tool for Windows 32"

■ Section C.1.2, "The mSQL Tool for Windows CE"

C.1.1 The mSQL Tool for Windows 32
On Windows 32 platform, the mSQL tool accesses the database through JDBC. The
following sections describe how to use the mSQL command-line to access the database
for the Windows 32 platform:

■ Section C.1.1.1, "Starting mSQL"

■ Section C.1.1.2, "Populating your Database Using mSQL"

■ Section C.1.1.3, "SET TERM {ON|OFF}"

■ Section C.1.1.4, "SET TIMING {ON|OFF}"

■ Section C.1.1.5, "SET VERIFY {ON|OFF}"

C.1.1.1 Starting mSQL
Start mSQL by opening the ORACLE_HOME\Mobile\SDK\Bin directory and
double-click the msql.exe file. This starts the command-line interface that accepts
standard SQL commands.

You can also start mSQL from the command-line, as follows:

msql <username>/<password>[@<JDBC_URL>]

Where:

■ <username>/<password>: The client username and password for the Oracle
Lite database.

■ <jdbc_url>: The JDBC URL is optional. If not specified, then the JDBC URL
defaults to the URL defined in the webtogo.ora file. You can specify the JDBC
URL of a single Oracle database or an Oracle RAC database, as follows:

■ The URL for a single Oracle database has the following structure:
jdbc:oracle:thin:@<host>:<port>:<SID>

■ The JDBC_URL for an Oracle Lite database using embedded JDBC connection
is jdbc:polite:<localDSN>

Note: UTF8 SQL Scripts are not supported in mSQL.

The mSQL Tool

Oracle Lite Database Utilities C-3

■ The JDBC_URL for an Oracle Lite database using Type 2 JDBC driver and the
Multi-User (MU) service is
jdbc:polite@<host>:<PortNo>:<serverDSN>, where the Multi-User
Oracle Lite database is on the <host>, the MU is listening on <PortNo> and
the DSN is <ServerDSN>.

The JDBC_URL for an Oracle Lite database using Type 4 JDBC driver and the
Multi-User service is jdbc:polite4@<host>:<PortNo>:<serverDSN>

■ The JDBC URL for an Oracle RAC database can have more than one address
in it for multiple Oracle databases in the cluster and follows this URL
structure:

jdbc:oracle:thin:@(DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_NODE_HOSTNAME)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=SECONDARY_NODE_HOSTNAME)(PORT=1521))
)
 (CONNECT_DATA=(SERVICE_NAME=DATABASE_SERVICENAME)))

For more information on commands you can execute within the mSQL command, see
the Oracle Database Lite SQL Reference.

C.1.1.2 Populating your Database Using mSQL
You can use SQL scripts to create tables and schema, and to insert data into tables. A
SQL script is a text file, generally with a .sql extension, that contains SQL commands.
You can run a SQL script from the mSQL prompt, as follows:

msql> @<ORACLE_HOME>\DBS\Poldemo.sql

You can also type:

msql> START <filename>

C.1.1.3 SET TERM {ON|OFF}
Controls the display of output generated by commands executed from a script. OFF
suppresses the display so that you can spool output from a script without seeing the
output on the screen. ON displays the output. TERM OFF does not affect output from
commands you enter interactively.

C.1.1.4 SET TIMING {ON|OFF}
Controls the display of timing statistics. ON displays timing statistics on each SQL
command. OFF suppresses timing of each command.

C.1.1.5 SET VERIFY {ON|OFF}
Controls whether to list the text of a SQL statement or PL/SQL command before and
after replacing substitution variables with values. ON lists the text; OFF suppresses the
listing.

C.1.1.6 SET AUTO {ON|OFF}
Controls whether auto-commit is enabled or not.

Note: You do not need to include the .sql file extension when
running the script.

The mSQL Tool

C-4 Oracle Database Lite Oracle Lite Client Guide

C.1.1.7 DESC <table_name>
Describes the table columns displaying the column name, type and whether it can be
null.

C.1.1.8 DIR
Displays the list of tables and the owners.

C.1.2 The mSQL Tool for Windows CE
The mSQL tool allows the user to execute SQL statements against the local database.
You can use either the mSQL tool as a command-line or GUI tool.

The following sections describe the GUI or the command-line tool:

■ Section C.1.2.1, "The mSQL GUI Tool"

■ Section C.1.2.2, "Manage Snapshots Using mSQL"

C.1.2.1 The mSQL GUI Tool
Start the mSQL GUI tool by double-clicking on msql.exe. The mSQL GUI tool
provides you the ability to perform the following tasks:

■ Section C.1.2.1.1, "Connect to the Oracle Lite Database"

■ Section C.1.2.1.2, "Execute SQL Statement Against Oracle Lite Database"

■ Section C.1.2.1.3, "Create or Encrypt the Oracle Lite Database"

■ Section C.1.2.1.4, "Table Contents of the Oracle Lite Database"

■ Section C.1.2.1.5, "Views of the Oracle Lite Database"

■ Section C.1.2.1.6, "Sequences of the Oracle Lite Database"

C.1.2.1.1 Connect to the Oracle Lite Database Select the Connect tab to connect to the
Oracle Lite database on the device.

1. If you have more than one Oracle Lite database on the device, select the
appropriate database from the pull-down.

2. Provide the username and password for this database.

3. Click Connect.

The mSQL Tool

Oracle Lite Database Utilities C-5

Figure C–1 Connect to the Oracle Lite Database

C.1.2.1.2 Execute SQL Statement Against Oracle Lite Database Select the SQL tab to execute
a SQL statement against the Oracle Lite database. After connecting, enter your SQL
statement and click Execute. The statement and any results are displayed in the
bottom window. For more information, see the Oracle Database Lite SQL Reference.

Figure C–2 Execute a SQL Statement

C.1.2.1.3 Create or Encrypt the Oracle Lite Database The Tools tab enables you to create an
Oracle Lite database or to encrypt or validate and existing database.

■ Create Database: You can create an Oracle Lite database to use embedded within a
standalone application.

■ Encrypt/Decrypt/Validate: Select the Oracle Lite database that you want to
execute the EncrypDB, DecrypDB or ValidateDB commands against. The
password that you provide is the user password. Click on the appropriate button
for each of these functions.

See the following sections for details on EncryptDB, DecryptDB or ValidateDB:

– Section C.5, "DECRYPDB"

The mSQL Tool

C-6 Oracle Database Lite Oracle Lite Client Guide

– Section C.6, "BACKUPDB"

– Section C.10, "VALIDATEDB"

Figure C–3 Create, Encrypt, Decrypt, or Validate the Oracle Lite Database

C.1.2.1.4 Table Contents of the Oracle Lite Database When you select the Tables tab, you
can select any of the tables in the Oracle Lite database and click Describe. The
structure and contents of this table is displayed.

Figure C–4 Table Description for Oracle Lite Database

C.1.2.1.5 Views of the Oracle Lite Database When you select the Views tab, you can select
any of the views in the Oracle Lite database and click Describe. The view definition is
displayed.

The mSQL Tool

Oracle Lite Database Utilities C-7

Figure C–5 Show Views of Oracle Lite Database

C.1.2.1.6 Sequences of the Oracle Lite Database When you select the Sequences tab, you
can select any of the sequences in the Oracle Lite database and click Describe. The
sequence definition is displayed.

Figure C–6 Display Sequence Definition of Oracle Database Lite

C.1.2.2 Manage Snapshots Using mSQL
The Oracle Lite database format is the same on Windows 32 and Windows CE
platforms. Manage your snapshots, as follows:

1. Create and test your snapshots on Windows 32 using the Windows 32 mSQL
command-line utility.

2. Copy the database to the Windows CE platform.

3. Use the Windows CE mSQL tool to manipulate the database that is on your
device.

CREATEDB

C-8 Oracle Database Lite Oracle Lite Client Guide

The mSQL tool enables the user to execute SQL statements against the local database
and access functionality provided by the interfaces of the underlying Oracle Lite
database engine.

C.2 CREATEDB

Description
Utility for creating a database.

Syntax
CREATEDB DataSourceName DatabaseName Database_SysUser_Password [[[VolID] DATABASE_
SIZE] EXTENT_SIZE] [collation sequence]

Keywords and Parameters
DataSourceName

Data source name, used to look up the ODBC.INI file for the default database
directory.

DatabaseName

Name of the database to be created. It can be a full path name or just the database
name. If only the database name is given, the database is created under the Data
Directory for the data source name specified in the ODBC.INI file. The extension for
the database name must always be .ODB. If a name without the .ODB is given, the
.ODB is appended.

DATABASE_SysUser_Password

The database system user password.

VolID

When specified, the VolID is used as the database ID, instead of the database ID from
the POLITE.INI file. The ID must be unique for each database. If you specify a
volumn id, then you also specify the database and extent sizes. Thus, the createdb
executable knows that the volume id, database size and extent size are being specified
when three numbers are provided in a row.

DATABASE_SIZE

The database size in bytes. If you want to specify the database size, then you also must
specify the volume id and extent size.

Note: If you specify an invalid DSN, Oracle Database Lite ignores
the DSN and creates the database in the current directory. To access
this database through ODBC, you must create a DSN for the database
that points to the directory in which the database resides. For
instructions on adding a DSN, see Section C.8.1, "Adding a DSN
Using the ODBC Administrator".

Note: For the volume id, database size, and extent size, specify only
the number; do not specify name=value. See the examples for more
information.

REMOVEDB

Oracle Lite Database Utilities C-9

EXTENT_SIZE

An incremental amount of pages in a database file. When a database runs out of pages
in the current file, it extends the file by this number of pages. If you want to specify the
extent size, then you also must specify the volume id and database size.

COLLATION_SEQUENCE

This parameter is a string constant which creates the database as enabled for linguistic
sorting when a value other than the default is used. A collation sequence specified
here overrides a collation sequence set using the NLS_SORT [collation_
sequence] parameter in the POLITE.INI file. The string can also be one of the
options listed in Table C–2:

Examples
Create the db1 database with DSN of polite and password manager: createdb
polite db1 manager

Create the db2.odb database with DSN polite and password manager300:
createdb polite c:\testdir\db2.odb manager300

Create polite database with DSN polite, password of manager, and a collation
sequence of french: createdb polite polite manager french

Create polite database with DSN polite, password manager, volume id of 199,
database size of 1000, and extent size of 1:
createdb polite polite manager 199 1000 1

C.3 REMOVEDB

Description
Utility for deleting a database.

Syntax
REMOVEDB DataSourceName Database Name

Table C–2 Collation Sequence Values

Collation Sequence Description

BINARY Default. Two strings are compared character by character and the
characters are compared using their binary code value. You cannot
perform a linguistic sort with an Oracle Lite database that has a binary
collation sequence.

FRENCH Two strings are compared according to the collation sequence of French.
Supported by ISO 8859-1 or IBM-1252.

GERMAN Two strings are compared according to the collation sequence of
German. Supported by ISO 8859-1 or IBM-1252.

CZECH Two strings are compared according to the collation sequence of Czech.
Supported by ISO 8859-2 or IBM-1250.

XCZECH Two strings are compared according to the collation sequence of
Xczech. Supported by ISO 8859-2 or IBM-1250.

Note: There is no way to alter a collation sequence after the database
is created.

ENCRYPDB

C-10 Oracle Database Lite Oracle Lite Client Guide

Keywords and Parameters

DataSourceName
Data source name of the database you want to remove. The DSN can be a dummy
argument such as none, in which case the database name must be a fully qualified
filename.

DatabaseName
The name of the database to delete. It can be a full path name or just the database
name. If only the database name is given, the database is deleted from the Data
Directory for the data source name specified in the ODBC.INI file.

Examples
removedb polite db1

removedb none c:\testdir\db2.odb

C.4 ENCRYPDB

Description
Enables you to encrypt Oracle Database Lite with a password, which prevents
unauthorized access to the database and encrypts the database, so that the data stored
in the database files cannot be interpreted. To decrypt the database, see Section C.5,
"DECRYPDB".

This tool is used by embedded applications to encrypt the database used by the
application. You provide the user password for the encryption.

This is more difficult on a handheld as it is sometimes difficult for users to find the
RUN option in order to execute the command with arguments.

ENCRYPDB uses AES-128 encryption.

Syntax
ENCRYPDB DSN | NONE DBName [New_Password [Old_Password]]

Keywords and Parameters
■ DSN—Data Source Name of Oracle Database Lite that you want to encrypt. If you

specify NONE, DBName must be a fully qualified database name with the full path
name (without the .ODB extension). If the DSN is a value other than NONE, then the
name must appear as a data source name in the ODBC.INI file.

■ DBName—Name of the database to be encrypted. If DSN was specified as NONE,
DBName must be entered with the full path name.

■ New_Password and Old_Password—Optional, the password (or previously
used password) for encrypting the database. This password can be 128 characters
in length. If you do not enter a password, ENCRYPDB prompts you to enter one.
Since both passwords are optional in the command line to invoke the utility, the
command line could have three different forms:

■ No password given: If the database is already encrypted, then ENCRYPDB
assumes that the user is trying to change the password of the database. It
prompts the user for the old password once and new password twice, and
encrypts the database using the new password. If the database is not already

ENCRYPDB

Oracle Lite Database Utilities C-11

encrypted, ENCRYPDB prompts for the new password twice and encrypts the
database using this new password.

■ One password given: This password is assumed to be the new password. If
the database is already encrypted, ENCRYPDB prompts for the old password
and encrypts the database using the new password.

■ Both passwords given: ENCRYPDB assumes that the first password is the new
password and the second is the old password.

To run from the command line, you must pass in the DSN name and the database
name. The following encrypts the employee database with DSN of Employee with
the test password:

Encrypdb Employee employee test test

Comments
If you call this utility from another program, the possible values returned are listed in
Table C–3:

The default Oracle Database Lite (POLITE.ODB) is not encrypted. After encrypting an
Oracle Database Lite, every user that attempts to establish a connection to the
encrypted Oracle Database Lite must provide the valid password. If the password is
not provided, Oracle Database Lite returns an error. An Oracle Database Lite database
cannot be encrypted if there are any open connections to the database.

You should consider the following when encrypting and decrypting Oracle Database
Lite:

■ You cannot decrypt an encrypted database without the password. Make sure you
back up your database in a secure place before you encrypt it. Another user of the
same database can create a copy with a new user name for a user who loses their
password, otherwise, there is no method to recover a database where the
passwords are lost.

■ A password encrypts the entire database. It is not a user-specific password.

■ Database encryption does not prevent a third party from removing an Oracle Lite
Database. That is, removedb and rmdb remove a database without checking the
password. Use tools that protect unauthorized users from manipulating your file
system.

■ ODBC applications that connect to an encrypted Oracle Database Lite database
need to specify a valid password. It is customary to prompt for the password at
runtime rather than to code it in the application. Most ODBC applications can use
the SQLDriverConnect function with the DRIVER= option, rather than the
SQLConnect function, if the applications require the Oracle Database Lite ODBC
driver to prompt for the password at runtime.

Table C–3 ENCRYPDB Return Codes

Return Code Description

EXIT_SUCCESS Success

EXIT_USAGE Command line arguments are not properly used or are in error

EXIT_PATH_TOO_LONG Path is too long

EXIT_SYSCALL I/O error while making new encrypted copy on disk

EXIT_BAD_PASSWD Incorrect password supplied

DECRYPDB

C-12 Oracle Database Lite Oracle Lite Client Guide

■ All sample applications provided with this release of Oracle Database Lite are
designed to run against a database that is not encrypted.

■ You can use DECRYPDB and ENCRYPDB (in this order) to change the password of a
database. However, DECRYPDB creates an Oracle Database Lite database in plain
text before ENCRYPDB encrypts it. This results in a database in plain text form, for
a short period of time, and is not recommended.

■ For encrypted databases, all user names and passwords are written to a file named
DSN.OPW. Each user can then use the password as a "key" to unlock the .OPW file
before the .ODB file is accessed. When you copy or back up the database, you
should include the .OPW file.

C.5 DECRYPDB

Description
This tool allows you to decrypt an encrypted Oracle Lite database used with an
embedded application. For more information, see Section C.6, "BACKUPDB".

This tool is used by embedded applications to decrypt the database used by the
application. To encrypt an Oracle Lite database used by a client, see the ENCRYPDB
executable in the Section C.4, "ENCRYPDB".

SYNTAX
DECRYPDB DSN | NONE DBName [Password]

Keywords and Parameters
DSN

Data Source Name of Oracle Database Lite that you want to decrypt. If you specify
NONE, you must the enter the DBName with the full path name (without the .ODB
extension).

DBName

Name of the database to be decrypted. If DSN was specified as NONE, the DBName
must be entered with the full path name.

Password

Optional. The password used previously to encrypt Oracle Database Lite. If you do
not enter the password, DECRYPDB prompts you to enter it.

Comments
An Oracle Database Lite database cannot be decrypted if there is any open connection
to the database.

If you call this utility from another program, the possible values returned are listed in
Table C–4:

Table C–4 DECRYPDB Return Codes

Return Code Description

EXIT_SUCCESS Success

EXIT_USAGE Command line arguments are not properly used or are in error

EXIT_PATH_TOO_LONG Path is too long

BACKUPDB

Oracle Lite Database Utilities C-13

For more information, see the comments in Section C.6, "BACKUPDB".

C.6 BACKUPDB

Description
You can back up the Oracle Lite database either by using the backupdb utility or by
copying the files to another location.

Oracle Database Lite uses the ODB and OBS files with dependent log files that can be
backed up by copying to another location. Before any files can be copied, disconnect
all applications that access the database and shut down the multi-user service, if
running. Once that has been accomplished, execute the backupdb utility, which
copies the *.odb, *.obs, and *.opw files to the filename of your choice to make a
backup of the database.

BACKUPDB DSN|NONE DBName backup_filename [DB_password]

If you want to restore the backup, then execute the backupdb executable, with NONE
and reversing the filename and the dbname, as follows:

BACKUPDB NONE backup_filename DBName

This is more difficult on a handheld as it is sometimes difficult for users to find the
RUN option in order to execute the command with arguments.

Syntax
BACKUPDB DSN | NONE DBName <backup_filename> [<DB_password>]]

Keywords and Parameters
■ DSN—Data Source Name of Oracle Database Lite that you want to backup. If you

specify NONE, DBName must be a fully qualified database name with the full path
name (without the .ODB extension).

■ DBName—Name of the database to be encrypted. If DSN was specified as NONE,
DBName must be entered with the full path name.

■ backup_filename—File where you want the backup to be stored. This can
include an absolute or relative path. If no path is included, then the file is stored in
the directory where the command is executed.

■ DB_password—The password you used for encrypting the database. This is only
required if the database you are backing up is encrypted. You can either supply
this password on the command line or when prompted during execution.

To run from the command line, you must pass in the DSN name and the database
name. The following backs up the employee database with DSN of Employee into
the backupemployee file:

Backupdb Employee employee backupemployee

EXIT_SYSCALL I/O error while making new decrypted copy on disk

EXIT_BAD_PASSWD Incorrect password supplied

Table C–4 (Cont.) DECRYPDB Return Codes

Return Code Description

DefragDB to Defragment and Reduce Size of the Oracle Lite Database

C-14 Oracle Database Lite Oracle Lite Client Guide

C.7 DefragDB to Defragment and Reduce Size of the Oracle Lite Database
On each client device, an Oracle Lite database stores the application data. You can
optimize the Oracle Lite database with the DefragDB utility, as follows:

■ Reduce size of Oracle Lite databases by defragmenting the Oracle Lite database.

■ Remove any BLOB data from the Oracle Lite database. All BLOB data—both
binary and character— and indexes are stored in separate files with the extension
of .obs for Oracle Blob Store. This changes the size limit on your device to either
the operating system file size limitations or 16 terabytes.

Use the DefragDB tool to defragment Oracle Lite databases, which reduces their size
by compacting them and removing any Blob data from within the database into its
own .obs file. The DefragDB tool is a UI dialog which allows you to choose which
databases to defragment. This tool defragments databases by dumping each database
into a file and then reloading it from this file. Alternatively, you can use the
command-line interface: olmig.exe. Both tools exist in the <ORACLE_
HOME>/Mobile/Sdk/bin on your desktop or in \OraCE on a WinCE device.

The following sections describe this tool:

■ Section C.7.1, "Execute DefragDB"

■ Section C.7.2, "Pause or Cancel Defragmentation"

■ Section C.7.3, "Execute DefragDB With Command-Line"

C.7.1 Execute DefragDB
To start the tool, either double-click on the Oracle Database Lite Degramentation icon
or execute DefragDB.exe, which brings up the following screen:

You can execute the Oracle Database Lite Defragmentation tool on the client for all
applications. Before executing this tool, you must stop ALL applications, as the
database is erased during this process.

Note: This tool removes any Blob data currently in your Oracle Lite
database and stores it in its own .obs file. However, if you do not run
this tool, you can continue to work seamlessly. Any new Blob data is
stored in an .obs file; any pre-existing Blob data can continue to
reside in the .odb file.

Note: Currently the tool runs on Win32 desktop and Windows CE
devices.

DefragDB to Defragment and Reduce Size of the Oracle Lite Database

Oracle Lite Database Utilities C-15

Figure C–7 DefragDB GUI

All application databases are listed on this screen. Select the existing databases on
your PC (or WinCE device) on which you want to perfrom the deframentation.

■ Click Defragment to defragment all databases. This tool performs a
defragmentation on one database at a time.

■ To defragment specific databases, select the databases desired from the list and
click Defragment.

In addition, select the following checkboxes, as appropriate:

■ Create backup: provides a backup of the original copy of the database before
defragmentation. The backup copy has the same name with a .bak extension. For
example, C:\orant\oldb40\polite.odb becomes
C:\orant\oldb40\polite.odb.bak. Thus, you can restore the database if an
error occurs during defragmentation. In addition, the blob storage file (.obs) is
backed up. To restore to the original version, rename these files back to the
original names without the .bak extensions.

■ Create log: provides a log, defragdb.log, of the defragmentation process, which
is useful for the developer in diagnosing any problems that may occur during the
defragmentation.

When you click Defragment, the process initiates, which brings up a window that
displays messages about the progress of the defragmentation. This same log can be
saved in the defradb.log file. See the status bar at the bottom for the final status:
defragmenting, success, or fail.

Note: In the worse case scenario, the defragmentation process
requires three times the space of the database to complete the process.
Thus, if you do not have enough space to defragment your larger
databases, you will receive a warning notice about the database that is
too large to complete the process. In order to continue, either free up
enough space to enable the process to complete or return to the main
screen and select all databases except for the offending one.

Note: To cancel out without performing any defragmentation, click
Cancel. See Section C.7.2, "Pause or Cancel Defragmentation" for more
information.

DefragDB to Defragment and Reduce Size of the Oracle Lite Database

C-16 Oracle Database Lite Oracle Lite Client Guide

If your database is encrypted, another dialog prompts for the user name and password
for the encrypted database. Select the user name from the list of users and enter the
password for that user. You only need to enter the password once if all databases are
encrypted with the same password.

There are 2 files created during the defrag which should be deleted automatically by
DefragDB when it finishes:

■ The dump file, which has the same name as the database, but with a .dmp
extension.

■ The newly loaded database, which has the same name as the database, but witha _
defrag suffix. This file is renamed to the database name once the load completes.

C.7.2 Pause or Cancel Defragmentation
If you are defragmenting large databases, this may take some time. For example, it
takes about 5 minutes on a desktop to defragment a 200 MB database; however, on
WinCE devices, the defragmentation performs slower than the desktop machine. The
amount of time this process takes is proportional to the size of the database. Thus, if
you need to pause or cancel this process by clicking the Cancel button. This pauses the
process. To continue the defragmentation, select No on the Cancel/Continue prompt.
Select Yes on this prompt to stop the process entirely. If you cancel, the database
remains in the original state, so your applications still perform normally.

C.7.3 Execute DefragDB With Command-Line
You can use automatic defragmentation, execute defragmentation within your
application, or use additional options only available with the command-line tool. The
following shows two examples: the first deframents all databases, the second
defragments a specific database identified by name.

olmig -defrag all
or
olmig -defrag dbname

The usage for olmig.exe is as follows:

olmig -dump|-load|-defrag|-restore <dbName>|all [options]

Where:

■ -dump : dump the database to a dump file (default dbName.odb.dmp). You can
separate the functionality of the defragmentation into the dumping and loading.
You can perform these functions at separate times, if desired.

■ -load : load database from the dump file. This completes the defragmentation
process and should only be executed after a dump is performed.

■ -defrag : defragment database, which performs both the dump and load for the
database.

■ -restore : restore a database from a backup. If an error occurred, restore the
saved original database.

■ <dbName> or all : perform the actions on a specfic database or on all Oracle Lite
databases on the machine or device.

Options include:

ODBC Administrator and the Oracle Database Lite ODBC Driver

Oracle Lite Database Utilities C-17

■ -auto : exit the dialog when upgrade is done. When you invoke the
command-line, a GUI is initiated. If you want this screen to exit when finished,
provide the -auto option.

■ -backup : backup the database to dbName.odb.bak

■ -readonly : connect to a database that is read-only. During a dump only, you
can dump a read-only database, such as one that may exist on a CD-ROM. Since
the dump normally is written to the same location as the database, you must also
provide the directory location and filename for the output. Thus, this option is
only valid if used in combination with the -dump and -file options.

■ -nosingle : do not enter single-user mode. Normally, only a single user can
connect to the database while performing a dump, load, or defragmentation. That
way, other users are not allowed to update an Oracle Lite database that is
currently in the middle of a defragmentation, dump, or load activity. However, if
you are performing a dump, you can use this option to enable other users to
continue to execute their applications against the database. This cannot be allowed
during any load activity.

■ -log logfile : append messages to the specified file

■ -file dumpfile : use the specified dump file, instead of the default file

■ -dot interval : print a dot after processing the number of objects designated
by interval; set the interval to 0 to disable this option.

■ -commit interval : during the load process, this designates the number of
rows after which to perform a commit; set the interval to 0 for no commit.

■ -passwd passwd : specify a connect password for encrypted databases

C.8 ODBC Administrator and the Oracle Database Lite ODBC Driver
A Data Source Name (DSN) associates the Oracle Database Lite ODBC Driver with the
Oracle Database Lite database that you want to access through the driver. The Oracle
Database Lite installation process creates a default DSN, POLITE, for the Oracle
Database Lite database. You can also create additional DSNs for the additional Oracle
Database Lite databases that you create.

Microsoft provides the ODBC Administrator, a tool for managing the ODBC.INI file
and associated registry entries in Windows 2003/XP. The ODBC.INI file and the
Windows registry store the DSN entries captured through the ODBC Administrator.
Using the ODBC Administrator, you can relate a DSN to the Oracle Database Lite
ODBC Driver.

In the ODBC Administrator, in addition to the DSN, you must specify the parameters
listed in Table C–5:

Note: This document does not provide instructions on using the
ODBC Administrator. See the ODBC Administrator tool online help
for this information.

Table C–5 ODBC Administrator DSN Parameters

DSN Parameter Description

Data Description An optional description for the data source.

ODBC Administrator and the Oracle Database Lite ODBC Driver

C-18 Oracle Database Lite Oracle Lite Client Guide

For example, the DSN entry for POLITE in the ODBC.INI file may contain:

[POLITE]
Description=Oracle Lite Data Source
Data_Directory=C:\ORANT\OLDB40
Database=POLITE
IsolationLevel=Repeatable Read
CursorType=Dynamic

Database Directory The path to the data directory where the database resides. This is
an existing path.

Database Oracle Database Lite database name to be created. Do not
include the .ODB extension.

Default Isolation
Level

Determines the degree to which operations in different
transactions are visible to each other. For more information on
the supported isolation levels, refer the Oracle Database Lite
Developer’s Guide. The default level is "Read Committed".

Autocommit Commits every database update operation in a transaction when
that operation is performed. Autocommit values are Off and On.
The default value is Off.

Note: In the Microsoft ODBC SDK, the ODBC driver defaults to
auto-commit mode. However, the default for Oracle Database
Lite is manual-commit mode. In this environment, if you execute
SQLEndTrans / SQLTransact call with SQL_COMMIT option
using the ODBC driver, you receive a SQL_SUCCESS, because
ODBC believes that auto-commit is on. However, no commit
actually occurs, because ODBC transfers the transaction to
Oracle Database Lite, whose default is manual-commit. You
must configure the Microsoft ODBC Driver Manager to transfer
control of the SQLEndTrans / SQLTransact API call to Oracle
Database Lite by explicitly setting autocommit to OFF in ODBC.
When you do this, ODBC does not try to autocommit, but gives
control of the transaction to Oracle Database Lite.

To set auto-commit to off, execute either the SQLSetConnectAtrr
or SQLSetConnectOption method with SQL_AUTOCOMMIT_
OFF as the value of the SQL_AUTOCOMMIT option. Then, the
SQLEndTrans / SQLTransact calls will commit as defaulted
within Oracle Database Lite. Thus, if you want auto-commit on,
turn it on only within Oracle Database Lite.

Default Cursor Type ■ Forward Only: Default. A non-scrollable cursor which only
moves forward but not backward through the result set. As
a result, the cursor cannot go back to previously fetched
rows.

■ Dynamic: Capable of detecting changes to the membership,
order, or values of a result set after the cursor is opened. If a
dynamic cursor fetches rows that are subsequently deleted
or updated by another application, it detects those changes
when it fetches those rows again.

■ Keyset Driven: Does not detect change to the membership or
order of a result set, but detects changes to the values of
rows in the result set.

■ Static: Does not detect changes to the membership, order or
values of a result set after the cursor is opened. If a static
cursor fetches a row that is subsequently updated by
another application, it does not detect the changes even if it
fetches the row again.

Table C–5 (Cont.) ODBC Administrator DSN Parameters

DSN Parameter Description

ODBINFO

Oracle Lite Database Utilities C-19

C.8.1 Adding a DSN Using the ODBC Administrator
To add a DSN using the ODBC Administrator:

1. Start the ODBC Administrator, either by selecting its icon in the Oracle Database
Lite program group, or by typing the following at a DOS prompt:

C:\>ODBCAD32

2. Click Add.

3. Double-click the Oracle Database Lite nn ODBC Driver, where nn is the release
number, from the list of Installed ODBC Drivers.

4. Next, add the DSN name and define the parameters in the ODBC driver setup
dialog. Refer the preceding table for help in defining the parameters.

C.8.2 Adding a DSN which points to Read-Only Media (CD-ROM)
1. Create the DSN as explained in Section C.8.1, "Adding a DSN Using the ODBC

Administrator".

2. Add the following line to the new DSN in the ODBC.INI file:

ReadOnly = True

C.9 ODBINFO

Description
You can use ODBINFO to find out the version number and volume ID of an Oracle
Database Lite database. ODBINFO can also display and set several parameters.

Note: The ODBC.INI file is available in Windows under %WINDIR%
and in Linux under $OLITE_HOME/bin. For the Linux platform, you
must have write permissions on the directory where this is located to
be able to modify them.

Note: You can define a DSN which points to a file on a CD-ROM.
Simply point the DSN to the CD-ROM drive and directory and
provide the file name of the database file. Then modify the ODBC.INI
file to add the line ReadOnly=True to the data source definition.
ODBC programmers can call the following before opening the
database to enable this feature (instead of adding the line to the
ODBC.INI file):

SQLSetConnectOption(hdbc, SQL_ACCESS_MODE, SQL_
MODE_READ_ONLY)

Setting a database file to read-only suppresses the creation of log files.
Updates, insertions, deletions, or commits appear to work on the
in-memory image of tables. However, when you commit, these
changes are not written to the database file. If you exit your
application, reconnect, and issue your query, you see your original
data.

ODBINFO

C-20 Oracle Database Lite Oracle Lite Client Guide

Syntax
To display current information without making any changes use the syntax:

odbinfo [-p passwd]DSN DBName

You can also use:

odbinfo [-p passwd] NONE dbpath\dbanme.odb

For example:

odbinfo -p tiger polite polite

odbinfo NONE c:\orant\oldb40\polite.odb

If your database is encrypted you need to include the password.

Parameters
To set or clear parameters, use one or more "+" or "-" parameter arguments before the
DSN or NONE. For example:

odbinfo +reuseoid -pagelog -fsync polite polite

You can use the parameters listed in Table C–6 with the ODBINFO utility:

Table C–6 ODBINFO Parameters

Parameter Description

pagelog By default, a commit backs up modified database pages to
filename.plg before actually writing the changes to
filename.odb. If an application or the operating system
experiences a failure during a commit, the transaction is cleanly
rolled back during the next connect. If -pagelog is specified, no
backup is created and the database can become corrupted if a
failure occurs.

fsync Oracle Database Lite generally forces the operating system to
write all the modified buffers associated with the database back
to disk during a commit. If this option is disabled (-fsync), the
operating system can keep the changes in memory until a later
time. If the system (but not the application) crashes before the
buffers are flushed, the database can become corrupted.

Using odbinfo -fsync -pagelog improves the performance
of applications that use many small transactions (with
autocommit on) or ones with massive updates. However, if the
database is corrupted, there is no straightforward way to repair
it or recover the data. Therefore these two options should only
be cleared during initial loading of the database, if (1) the .ODB
file is backed up on regular basis, or (2) the data in the database
can be recovered from some other source.

Using this option has no effect on applications that seldom
update the database. Setting the transaction isolation level to
SINGLE USER has more impact in this case.

VALIDATEDB

Oracle Lite Database Utilities C-21

C.10 VALIDATEDB
This command-line tool validates the structures within the database file and if the
database structure is found to be corrupted, lists the errors found in a file designated
by the user. The tool checks the following:

■ Objects - Header information for database objects. Flags are checked for
consistency in case the object was moved or compressed. Object length is checked
against a valid range. If the object is a BLOB, the object's frames are checked
against the volume page bitmap.

■ Index page entries - Checks that the creation of an index page entry results in the
correct number of nodes or list of object identifiers.

■ Index pages - Checks that all key values on the page are sorted. All objects
contained on the page are validated. Page descriptor information such as the
number of objects, the number of free bytes, and the number of entries are checked
against the actual objects on the page.

■ Groups - As each page is validated, the group descriptor information is checked
against the actual number of pages and objects.

reuseoid By default, Oracle Database Lite does not reuse the ROWID of
any row that exists in a table until the table is dropped. The "Slot
Deleted" error is returned when accessing a deleted object. This
uses two bytes of storage for each deleted object, causing
performance and disk space usage to degrade over time if rows
are constantly inserted and deleted.

If you use odbinfo +reuseoid, new rows can reuse ROWIDs
of previously deleted rows. However, this may not free all the
space in a table that already has many deleted objects. For best
results, you should set this option immediately after you create
your database.

This option is safe for pure relational applications. However,
SQL applications that use ROWID and OKAPI applications that
use direct pointers between objects need to verify that all
references to an object are set to NULL before the object is
deleted. Otherwise, dangling references may eventually point to
some other, unrelated object.

compress This option (which is "on" by default) enables run-length
compression of objects. Run-length compression takes very little
CPU time, so you should only deselect (-compress) this option
if:

■ Operating system-level file compression is used, such as
DriveSpace or a NTFS compressed attribute. In this case
not compressing the same data twice provides a better
compression ratio.

■ Most objects in the database are frequently updated to a
highly compressible state (for example, all columns set to
NULL), and the data cannot be compressed well (such as
binary columns with random data). In these cases, using
this option (+compress) can result in highly fragmented
tables.

Changing this option does not compress or decompress any
existing objects in the database.

Table C–6 (Cont.) ODBINFO Parameters

Parameter Description

VALIDATEDB

C-22 Oracle Database Lite Oracle Lite Client Guide

■ Indexes - All the pages are validated against the btree. The tool also validates all
page pointers. All levels of the btree are checked to validate that key values are in
the sorted order as a whole. For leaf elements of the btree, all OIDs from the leaf
page entries are checked for consistency with the actual group objects.

Syntax
validatedb DSName DBName [-p password] [-l username:password] [-t schemaname.tablename] -file
outputfilename

Keywords and Parameters

DSName
The data source name. This can also be NONE if no DSN is present.

DBName
If there is a DSN present, this is the database file name (without the .odb extension) if
it is different from the default filename for the DSN. If there is no DSN, then
VALIDATEDB uses the current directory unless the full path is specified. If there is a
log file in the same directory as the database file, it is also validated.

-p password
Password for an encrypted database.

-l username:password
Optional. Provide the username/password to log into the Oracle Lite database that
you are validating with the -l username:password option.

The following details the behavior of this option:

1. If the database is encrypted, and the encryption password (the -p option) is not
supplied, then the password included in the login (-l) option is used as the
encryption password.

2. If you do supply an encryption password in the -p option as well as a login
password with the -l option, then the login password is used to verify that the
encryption password is correct.

-t schemaname:tablename
Optional.

■ schema name. The default schema name is used unless this is specified.

■ table name. The specified table is validated along with all of its indexes. If no table
name is specified, the entire database is validated.

-file outputfilename
Optional filename for the text file where all errors and other related information
revealed by VALIDATEDB are saved. The default is stdout.

Examples
validatedb polite polite -t emp -file out.txt

Note: This is not available on Windows CE.

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities C-23

C.11 Transferring Data Between a Database and an External File
You can transfer data between an external file and the Oracle Lite database through
either a command-line tool or programmatic APIs, as described in the following
sections:

■ Section C.11.1, "OLLOAD"

■ Section C.11.2, "Oracle Database Lite Load Application Programming Interfaces
(APIs)"

C.11.1 OLLOAD
The Oracle Database Lite Load Utility (OLLOAD) is a command-line tool, which enables
you to load data from an external file into a table in Oracle Database Lite or to unload
(dump) data from a table in Oracle Database Lite to an external file. Unlike
SQL*Loader, OLLOAD does not use a control file in which you supply all data
parameters and format information on the command-line.

When loading data, OLLOAD takes an input file that contains one record per line with a
separator character between fields. The default field separator is a comma (,). These
records can also include fields with values that are quoted strings. The default value is
single quote (’). For more information on data parsing, see "Data Parsing".

Before executing this tool, you must stop all applications. This includes the Oracle
Database Lite applications, such as the Sync Agent, DM agent, and so on. To stop the
Sync Agent, see Section 5.4.2, "Start, Stop, or Get Status for Automatic
Synchronization" in the Oracle Database Lite Administration and Deployment Guide.

C.11.1.1 Syntax

Loading a Datafile
To load a datafile, use the following syntax.

olload [options] -load dbpath tbl [col1 col2 ...] [<datafile]

Unloading (dump) to an Outfile
olload [options] -dump dbpath tbl [col1 col2 ...] [>outfile]

C.11.1.2 Keywords and Parameters
This section describes keywords and parameters that are available for the OLLOAD
utility.

[options]
For a list of options, see Section C.11.1.2.1, "Options".

-load
To use the load utility.

-dump
To use the unload (dump) utility.

dbpath
The path to the Oracle Database Lite (.odb) file.

Transferring Data Between a Database and an External File

C-24 Oracle Database Lite Oracle Lite Client Guide

tbl
The table name. OLLOAD first attempts to find a table name in the user-specified case.
If this fails, it searches for the upper-case of the user-specified name.

col1 col2
The column names. OLLOAD first attempts to find a column name in the user-specified
case. If this fails, it searches for the upper-case of the user-specified name.

[datafile] [outfile]
The source or destination file for the load or unload operations. If you do not specify a
datafile or outfile, OLLOAD displays the output on the screen.

C.11.1.2.1 Options This section describes keyword and parameter options that are
available for the OLLOAD utility.

-sep character
The field separator. If you do not specify this option, OLLOAD assumes that the
separator character is a comma (,).

-quote character
The quote character. If you do not specify this option, OLLOAD assumes that the quote
character is a single quote (’).

-file filename
Use this option when loading and unloading data to specify the source or destination
file name. When loading data, filename specifies the source file to load into Oracle
Database Lite. When unloading (dumping) data, it is the destination file for the
unloaded data.

-log logfile
Specify this option if you want to produce a log file listing rows that OLLOAD could
not insert during load. If you do not specify a log file, loading stops at the first error.

-passwd passwd
The connection password for an encrypted database. You need to supply this
password so that loading and unloading can occur.

-nosingle
Specify this option when you do not want to use single user mode. This degrades
performance but allows other connections to the database.

Note: The default user is SYSTEM. To specify an OLLOAD operation
for another user name's tables, prefix the tbl parameter with the user
name and a dot (.).

Note: To unload data from Oracle Database Lite and load (or pipe) it
to another Oracle Database Lite, do not specify a file name for this
option. For a description of sample syntax, see "Examples".

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities C-25

-readonly
Specify this option when unloading data from a read-only Oracle Database Lite, for
example, one located on a CD-ROM.

-commit count
Use this option if you want OLLOAD to commit after processing a specified number
of rows. The default is 10000. OLLOAD prints an asterisk (*) to the screen each time it
commits the specified number of rows. To disable the commit operation specify 0.

-mark count
Use this option if you want OLLOAD to print a dot on the screen after processing the
specified number of records. The default is 1000. To disable this feature specify 0.

Data Parsing
Table C–7 lists examples for OLLOAD data parsing.

If there are more values than database columns, extra values are ignored. Any missing
values at the end of the line are set to NULL.

OLLOAD Utility Restrictions
OLLOAD does not support tab-delimited input files and LONG datatypes.

Examples
olload -quote \" -file p_kakaku.csv -load c:\orant\oldb40\polite.odb skkm01
olload -dump c:\orant\oldb40\polite.odb emp empno ename | olload -load myfile.odb
myemp

C.11.2 Oracle Database Lite Load Application Programming Interfaces (APIs)
This document describes the Oracle Database Lite Load APIs. Each section of this
document presents a different topic. These topics include:

■ Section C.11.2.1, "Overview"

■ Section C.11.2.2, "Oracle Database Lite Load APIs"

■ Section C.11.2.3, "File Format"

■ Section C.11.2.4, "Limitations"

Table C–7 Data Parsing Examples

Input Data Explanation

’Redwood Shores,
CA’

Redwood Shores CA Enclosing the input string in quotes preserves
spaces and punctuations within a string.

’O"Brien’ O’Brien Represent a single quote with its escape
sequence, two single quotes.

fire fly firefly Spaces in data that is not quoted is ignored.

, NULL,NULL Empty fields are NULL.

1,,3 1,NULL,3,NULL Empty fields are NULL.

[no row inserted] Completely empty lines are ignored.

Transferring Data Between a Database and an External File

C-26 Oracle Database Lite Oracle Lite Client Guide

C.11.2.1 Overview
The Oracle Database Lite Load APIs allow you to load data from an external file into a
table in Oracle Database Lite, or to unload (dump) data from a table in Oracle
Database Lite to an external file. For information on using the command line tool
OLLOAD, see Section C.11.1, "OLLOAD". You can use the API calls presented in this
document to make your own customizations.

C.11.2.2 Oracle Database Lite Load APIs
The Oracle Database Lite Load APIs include:

■ Section C.11.2.2.1, "Connecting to the Database: olConnect"

■ Section C.11.2.2.2, "Disconnecting from the Database: olDisconnect"

■ Section C.11.2.2.3, "Deleting All Rows from a Table: olTruncate"

■ Section C.11.2.2.4, "Setting Parameters for Load and Dump Operations: olSet"

■ Section C.11.2.2.5, "Loading Data: olLoad"

■ Section C.11.2.2.6, "Dumping Data: olDump"

■ Section C.11.2.2.7, "Compiling"

■ Section C.11.2.2.8, "Linking"

The normal mechanism for unloading and loading a table is as follows:

1. Declare local variable, DBHandle.

2. Connect to the database using olConnect.

3. Optionally, set parameters for load or unload.

4. Dump or load the data using olDump or olLoad. You may optionally delete all
rows from a table by calling olTruncate.

5. Disconnect from the database using olDisconnect.

C.11.2.2.1 Connecting to the Database: olConnect Use this API to connect to the database.
This is the first API that you have to call. It creates a load and unload context that is
used in subsequent APIs to influence the load and unload behavior. This returns an
initialized database handle DBHandle.

Syntax
olError olConnect (char *database_path, char *password, DBHandle &dbh);

The arguments for olConnect are listed in Table C–8:

Table C–8 olConnect Arguments

Argument Description

database_path The full path to the database file (directory path and filename).

password The password used for the encrypted database, for any other
database the password = NULL.

dbh The application handle for the current database connection.
This allows multiple database connections for one application
thread (each connection has a different handle).

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities C-27

Return Values
(short) integer error code

Values from -1 to -8999 are used for the error codes returned by the database, values
from -9000 and below are used for olLoad-specific error codes.

C.11.2.2.2 Disconnecting from the Database: olDisconnect Disconnects from the database.

Syntax
olError olDisconnect (DBHandle dbh);

The arguments for olDisconnect are listed in Table C–9:

Return Value
(short) integer error code

C.11.2.2.3 Deleting All Rows from a Table: olTruncate This API can be used to delete all
rows from an existing table.

Syntax
olError olTruncate (DBHandle dbh, char* table);

The arguments for olTruncate are listed in Table C–10:

Return Value
(short) integer error code

C.11.2.2.4 Setting Parameters for Load and Dump Operations: olSet This is an optional API.
This sets optional parameters for load and unload.

Syntax
olError olSet (DBHandle dbh, char * parameter_name, char *parameter_value);

The arguments for olSet are listed in Table C–11:

Table C–9 olDisconnect Arguments

Argument Description

dbh The current application handle.

Note: Records removed from the server through a truncate
command will not be removed from the client unless a complete
refresh is triggered. The truncate command is considered a DDL
operation. Consequently, the necessary DML triggers do not fire and
therefore the operations are not logged for fast refresh.

Table C–10 olTruncate Arguments

Argument Description

dbh The current application handle.

tablename The name of the table in the form: owner_name.table_name.

where owner_name is the name of the owner of the table.

Transferring Data Between a Database and an External File

C-28 Oracle Database Lite Oracle Lite Client Guide

Return Value
(short) integer error code

C.11.2.2.5 Loading Data: olLoad OlLoad loads data from a file into a table using current
parameter settings.

Syntax
olError olLoad (DBHandle dbh, char *table, char *file);

The arguments for olLoad are listed in Table C–12:

Return Value
(short) integer error code

C.11.2.2.6 Dumping Data: olDump OlDump dumps data from a table into a file using
current parameter settings.

Syntax
olError olDump (DBHandle dbh, char *table, char *file);

The arguments for olDump are listed in Table C–13:

Table C–11 olSet Arguments

Argument Description

dbh The current application handle.

parameter_name The name of the given parameter. This is not case sensitive. See
Section C.11.2.3.2, "Parameters" for a list of parameter names
and their default values.

parameter_value The value to be set. This is not case sensitive for most
parameters.

Table C–12 olLoad Arguments

Argument Description

dbh The current application handle.

table The table information in the form: owner_name.table_
name(col1,col2,...)

where col1,col2,... is the list of column names to load.

This allows you to load and dump certain columns instead of
the entire table. If the entire table is to be dumped, the column
list need not be specified.

file The path to the file from which loading takes place.

Note: If table = NULL, olLoad tries to find the table description
in the file header.

Table C–13 olDump Arguments

Argument Description

dbh The current application handle.

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities C-29

Return Value
(short) integer error code

C.11.2.2.7 Compiling The declarations for the DBHandle, parameter constants and
flags, and error message codes are given in the file olloader.h in the ORACLE_
HOME\Mobile\SDK\include directory. For compilation of your product include
olloader.h in your main source file.

C.11.2.2.8 Linking Linking use the file olloader40.dll and the library file
olloader40.lib. Include these files in your project settings.

C.11.2.3 File Format
The Oracle Database Lite Load APIs support three file formats FIXEDASCII, BINARY
and CSV. Each file contains an optional header followed by zero or more rows of data.

C.11.2.3.1 Header Format The header has the following format (comments are in bold):

$$OL_BH$$ [begins header]
VERSION=xx.xx.xx.xx [version number]
TABLE=T1(C1, C2, ...)... [table name with list of column names dumped]
FILEFORMAT=FIXEDASCII
SEPARATOR=,
[any other parameters in the parameter list can be listed here]
$$OL_EH$$ [ends header]

The following is a header example:

$$OL_BH$$
VERSION=01.01.01.01
TABLE=T1(EMPNO,SALARY)
FILEFORMAT=BINARY
BITARRAY=TRUE
HEADER=TRUE
RDONLY=FALSE
LOGFILE=
COMMITCOUNT=-1
NOSINGLE=TRUE
$$OL_EH$$

The header lines can be in any order and all lines except $$OL_BH$$ and $$OL_EH$$
can be considered optional. Although, during the dump, if the header flag is on, table
information and all parameter settings are dumped into the header.

When executing load, parameter information in the header overwrites current
parameter settings. If the table argument in olLoad is NULL, the table name and list
of columns in the header prevails, otherwise the table argument of olLoad prevails
over the header.

C.11.2.3.2 Parameters Header file parameters listed in Table C–14 are not case
sensitive.

table The table information in the same form as olLoad.

file The file to which dump data is written.

Table C–13 (Cont.) olDump Arguments

Argument Description

Transferring Data Between a Database and an External File

C-30 Oracle Database Lite Oracle Lite Client Guide

C.11.2.3.3 Data Format The data format can be comma separated value (CSV), fixed
ASCII, or binary. The following cases apply:

■ CSV Format: Each row of the table is represented as a separate line in the file. Each
line is separated by a carriage return and a line feed character on the Windows
platform. Each value in the row is separated by a separator character which by
default is a comma.

Each value is also quoted by a quote character. Nulls are represented by an empty
quoted string " ". The number of quoted strings in the file should be the same as
the number of columns in the table, olLoad gives an error otherwise.

■ FixedAscii Format: Each row of the table is represented as a separate line in the
file. Each line is separated by a carriage return and a line feed character on the
Windows platform. Each line is of the same size. The datatype of a column
governs its format or representation in the file. Nulls are represented by a string of
n '\0' (null) characters, where n is the fixed size of the field. Table C–15 describes
data representation for each data type. The total record length for each line in the

Table C–14 Parameters

Parameter Description

FILEFORMAT Input and output file format. The following formats are supported:

■ FixedASCII - text file with fixed field width for each datatype.

■ CSV – comma separated values format.

■ Binary - binary file format.

These key word values are not case sensitive.

SEPARATOR The separator between the values (one character), comma by default.

QUOTECHAR The quote character for the string datatype values in the file, single quote (')
by default.

LOGFILE The log file name. NULL by default (no log file produced and loading stops at
the first error).

NOSINGLE FALSE for single user mode (the default), or TRUE for no single user mode.

READONLY FALSE (the default). TRUE to dump the data from read-only database (such
as CD-ROM).

COMMITCOUNT The number of rows processed after which olLoad, olDump, and
olTruncate commit. The default value is -1, not to commit at all. Value 0
commits at the end of the operation, and values above 0 commit after the
specified number of rows.

HEADER FALSE (the default). TRUE to create a header in the beginning of the file
during olDump.

BITARRAY TRUE (the default) to support writing and reading nulls in binary format.
During the dump, a bit array with the null information is dumped before each
row. For FALSE olDump provides an error trying to write nulls in binary.

NONULL TRUE (the default) when trying to read or write nulls olLoad and olDump
return an error. When the flag is set to FALSE nulls are supported, including
binary format since the default BITARRAY value is TRUE.

DATEFORMAT The string for which date and timestamp columns should be written into the
file and read from the file in FIXED ASCII and CSV formats. Such formats as
"YYYYMMDD", "YYYY-MM-DD", and "YYYY/MM/DD" are supported. The
default value is empty string (which can also be set using NULL), and the
default date format is "YYYY-MM-DD". (In Oracle mode, date is treated the
same as timestamp so that the date format is the default timestamp format
which is "YYYY-MM-DD HH:MM:SS.SSSSSS".)

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities C-31

file should be the same as the sum of field lengths (precision) of each column,
otherwise olLoad returns an error.

Table C–15 Datatypes

Datatype Description

CHAR(n) Length of the field in n characters. Data is left aligned and padded with
blanks on the right.

VARCHAR(n) Length of the field in n characters. Data is left aligned. It is padded with a
null byte ('\0').

NUMERIC(p,s) The default mode: length of the field is p+1 characters if scale s is zero or is
not present. Otherwise, the length of the field is (p+2) characters. The value
is right aligned in the output field. Format is optional negative sign,
followed by zeros if required, followed by significant digits. If there is no
negative sign, then '0' instead, for example, Number(5,2)

12.3 -> ' 012.30'

-12.3 -> '-012.30'

1.23 -> ' 001.23'

-1.23 -> '-001.23'

The custom mode: the field length is one less: p if scale is not present, or
zero and p+1 otherwise. The actual number stored in the file is of type
NUMERIC(p-1, s). Correspondingly, olDump gives an error trying to insert
a number within the range of NUMERIC(p, s), but out of the range of
NUMERIC(p-1, s). Therefore, the first character in the NUMERIC field
must be '0' or '-'; olLoad gives an error otherwise.

DECIMAL(p,s) The same as NUMERIC(p,s).

INTEGER Length of the field is 11 characters. A negative sign or space followed by 10
digits.

Leading digits are filled with zeros.

SMALLINT Field length is 6 characters. Minus sign or space followed by 5 digits.

FLOAT Field length is 23 characters. In Oracle mode, it is minus sign or space,
followed by leading zeroes, followed by some number of digits, followed
by dot, followed by some number of digits. For example:

0 -> ' 0000000000000000000000'

-12.34 -> '-0000000000000000012.34'

In SQL92 mode the E (exponent) is always present and there is only 1 digit
before the decimal point. For example:

0 -> ' 00000000000000000000E0'

-12.34 -> '-000000000000001.234E10'

REAL The same format as for double precision except that the total field length is
only 16 characters instead of 23.

Transferring Data Between a Database and an External File

C-32 Oracle Database Lite Oracle Lite Client Guide

C.11.2.4 Limitations
Currently olLoad does not support the following features:

■ Columns of the datatype Interval, Time with time zone, Timestamp with time
zone, BLOB, and CLOB.

■ Binary data is not supported.

■ The only "var" type supported is varchar.

DOUBLE
PRECISION

Field length is 23 characters. Minus sign or space followed by 22 characters
which are digits, dot, or E, floating point number followed by E, followed
by the exponent digits. In Oracle mode, if the number is small enough to fit
in the field without using the exponent, E is not used. In SQL92 mode, E is
always used. There is always one meaningful digit before the floating
point, except 0.

For example, in SQL92 mode:

0 -> ' 00000000000000000000E0'

-1.79E10 -> '-0000000000000001.79E10'

12 -> ' 00000000000000001.2E10'

For example, in Oracle mode:

1.2E75 -> ' 00000000000000001.2E75'

-1.33333 -> '-0000000000000001.33333'

-1.79E10 -> '-0000000000017900000000'

DATE In SQL92 mode: YYYY-MM-DD, 10 characters long, for example:

October 1, 1999 -> 1999-10-01

In Oracle mode the date is dumped as timestamp.

If it is not the default date format parameter, the date format corresponds
to the specified date format string, for example:

DATEFORMAT = "YYYYMMDD"

October 1, 1999 -> 19991001

TIME HH:MM:SS, 8 characters long, for example:

5:01:58 p.m. is 17:01:58

TIMESTAMP Date format, space, time format, dot, 6 digits after dot (precision of
microseconds), total length of 26 characters:

YYYY-MM-DD HH:MM:SS.SSSSSS

If it is not the default date format parameter, the timestamp format
corresponds to the specified date format string. If no time is specified in
the date format string, the time information in the timestamp is omitted
when dumping into a file.

Note: TIMESTAMP WITH TIME ZONE is not supported.

Table C–15 (Cont.) Datatypes

Datatype Description

Index-1

Index

A
ACID compliance, 1-1
ADMIN role, 4-5
ADO.NET provider, 1-1, 8-1, 8-2, 11-3

classes, 11-1
creating commands, 11-2
DataReader.GetString method, 11-5
DbNull object, 11-5
establishing connections, 11-1
GetSchemaTable method, 11-5
large object support, 11-3
limitations, 11-4
OracleBlob class, 11-3
OracleCommand, 11-2
OracleConnection class, 11-1
performance, 11-3
thread safety, 11-5
transactions, 11-2

Advanced Encryption Standard, see AES
AES, see encryption
All Databases section

parameters, A-1
SQL compatibility, A-9

ALTER TABLE statement, 13-13, 13-15, 13-18
ALTER TRIGGER statement, 13-18
application

accessing through Workspace, 6-5
client-server, 1-3
component architecture, 16-6
database only, 1-2
download, 3-2
embedded, 1-2

packaging, 4-6
executing

Workspace, 6-11
execution models, 1-2
security, 14-1
synchronization, 6-3, 6-10

configuration, 6-8
terminate, 6-11

architecture
applications, 16-6

automatic synchronization, 6-6
enable, 6-8

B
BACKUPDB, 7-2, C-13
BC4J

remote access, 6-9
BLOB, 10-6, 10-9

ADO.NET provider, 11-3
file size limitations, 6-17, C-14
getting values, 10-7
query tables, 11-4
read, 10-8
read and write data, 11-4
setting values, 10-7
SQL, 11-4
storage, 1-1, C-14
storing, 6-17

BOS.INF file, 14-5
Branch Office

OracleDatabaseLiteUser
password, 14-5

remote access, 6-9
services installed, 14-5
user account, 14-5

C
C++ stored procedures, 13-29

access database, 13-30
building, 13-31
exceptions, 13-31
JDBC, 13-34
ODBC, 13-31
publish, 13-32
triggers, 13-33

CAB file
registering, 3-8
SDK version, 3-3, 3-7, 3-8, 3-10

cache
size, A-2

CACHE_SIZE parameter, A-2
call specifications

creating, 13-7, 13-24, 13-32, 13-40
sample, 13-8, 13-9, 13-12, 13-33, 13-40

callable statement, 13-29
CallableStatement class, 13-29
catalog views

Index-2

Mobile client, B-1
CDC

JDBC driver, 10-15
character set

specifying, A-2
checksum error

diagnosing, 7-5, A-9
classes

loading with CREATE JAVA, 13-7
loading with loadjava, 13-4

CLDC
JDBC driver, 10-15

client
automatic synchronization, 3-11, 6-6
catalog views, B-1
clock, 6-3
configuration, 6-5, 6-7
custom platform, 3-8
device management, 6-16
distributing multiple clients, 3-12
download software, 3-2
hardware requirements, 2-1
initiated, 6-10
install, 3-1, 3-2
Java support, 3-3, 3-7, 3-8, 3-10
language, 3-4
managing, 6-1, 6-4

Web, 6-5
member

initialization, 6-8
mSQL, 3-3, 3-7, 3-8, 3-10
ODB filename, 6-3
platforms, 3-1, 3-6
remote access, 6-9

disable, 6-9
software requirements, 2-2
software update request, 6-16
SSL, 3-12
start, 6-1
synchronization, 6-3, 6-10

GUI, 6-12
job, 6-8
scheduling, 6-11

system requirements, 2-1, 2-6
Web-to-Go

JAVA_HOME, 6-16
Workspace, 6-2

client-server
application, 1-3
multi-user service, 1-4
overview, 5-1
start, 6-1

CLOB, 10-6, 10-9
getting values, 10-7
setting values, 10-7
storage, 1-1
write, 10-8

clock, 6-3
close method, 10-8
collation

element, 7-3
sequence, 7-3

data, A-7
columns

defining number of, A-4
Compact Flash, 2-2
connect

local, 4-9
remote, 4-9

Connection object, 13-26
connections

ADO.NET provider, 11-1
Consperf utility

EXPLAIN PLAN, 16-1
CREATE DATABASE command, 4-4
CREATE FUNCTION statement, 13-7, 13-32, 13-40
CREATE JAVA statement, 13-7, 13-12
CREATE PROCEDURE statement, 13-7, 13-32, 13-40
CREATE SCHEMA command, 4-4
CREATE TRIGGER statement, 13-17
CREATE USER command, 4-5
CREATEDB, 4-4, C-8

syntax, C-8
CREATEDB command, 7-2
createStatement method, 13-28
Creme

DriverManager class, 10-18
J2ME, 10-18

cursors
restrictions with isolation levels, 15-3

D
data

access extensions, 10-7
read BLOB, 10-8
writing to a CLOB, 10-8

export, 7-1
Data Source Name, see DSN
DATA_DIRECTORY parameter, A-2
database

accessing, 5-1, 5-7
ACID, 1-1
backup, 7-2
building demo tables, 4-5
connect, 4-8

JDBC, 4-9
local, 4-9
remote, 4-9

connection
verification using mSQL, 5-7

create, 4-1
creating, 4-4
creating users, 4-4
creation, 6-4
decryption, 7-2
defragment, 6-17, C-14
DSN, 4-1
embedded, 1-2, 4-1, 4-6
encryption, 7-2, 14-2

Index-3

engine, 16-6
overview, 16-6

execution models, 1-2
export data, 7-1
flushing file buffers, A-4
install, 3-1
interfaces, 8-1
linguistic sort, 7-2
location, 4-4
management, 7-1
ODB extension, 1-1
overview, 1-1
platforms, 1-1, 3-1
row-level locking, 15-1
sort

limitations, 7-4
SQL92, 1-1
starter, 4-5
storage limitation, 1-1
supported interfaces, 1-1
temporary directory location, A-10
version, 7-4
volume id, A-2

Database MetaData interface, 10-13
methods, 10-13

DATABASE_ID parameter, A-2
DataReader object

limitations, 11-5
DataSource object, 10-4
datatypes, 10-5

extensions, 10-6
Java, 10-5, 13-25
JDBC, 10-5

date
format definition, A-4

DB_CHAR_ENCODING parameter, A-2
DBA role, 4-5
DBData, 13-30
DBException, 13-31
DBSession object, 13-30
DECRYPDB, C-12
decryption

database, 7-2
defragdb utility, 6-17, C-14
defragment, C-14

Oracle Lite database, 6-17
DETACH AND DELETE statement, 13-15
device

authentication, 14-1
client management, 6-16
clock, 6-3
install, 3-2
multiple users, 3-5
remote access

disable, 6-9
security, 14-1

device manager
client, 6-16

directory
temporary directory, A-10

DISABLE_REMOTE_ACCESS parameter, 6-9
dmagent, 6-15
DROP FUNCTION statement, 13-11
DROP JAVA statement, 13-11
DROP PROCEDURE statement, 13-11
DROP TRIGGER statement, 13-18
dropjava, 13-10

arguments, 13-10
options, 13-10
specifying filenames to, 13-10

DSN
adding, C-19
creating, 4-1, 5-7

Linux, 4-2
Windows, 4-1

multi-user service, 4-3

E
encCreateCtxt method, 14-3
encCreateKey method, 14-4
encDecryptData method, 14-4
encDeleteCtxt method, 14-4
encEncryptData method, 14-4
ENCRYPDB, C-10
ENCRYPTDB parameter, 14-2
encryption, 14-2

APIs, 14-3
create key, 14-4
database, 7-2, 14-2
decrypt data, 14-4
delete encryption context, 14-4
encrypt data, 14-4
initializing custom module, 14-3
plug-in custom module, 14-5, A-3
provide custom module, 14-3
snapshot, 14-2

EncyrptDB, 14-2
executeQuery method, 13-28
execution plan, 16-10

access methods, 16-12
EXPLAIN PLAN, 16-1
EXTERNAL_ENCRYPTION_DLL parameter, 14-5,

A-3

F
file-based synchronization

enabling, 6-8, 6-15
initiating, 6-10

firewall, 6-17
flush method, 10-8
FLUSH_AFTER_WRITE parameter, A-4
force refresh

synchronization, 6-14

G
getAsciiOutputStream, 10-7
getAsciiStream, 10-6
getBinaryOutputStream, 10-6

Index-4

getBinaryStream, 10-6
getBLOB, 10-7
getBytes, 10-6
getCharacterOutputStream, 10-7
getCharacterStream, 10-6
getChars, 10-7
getCLOB, 10-7
getConnection, 10-6, 10-7
GetSchemaTable method

returns partial data, 11-5
getSubString, 10-6

H
hardware requirements

Mobile clients, 2-1
HINTS feature

performance, 16-3

I
IBM J9, 10-17

DataSource class, 10-17
index

access method
query optimization, 16-16

defining number of columns, A-4
stored in OBS file, 1-1

install, 3-1, 3-2
distributing multiple clients, 3-12
Linux Web-to-Go, 3-6
Mobile client, 3-1
system requirements, 2-1, 2-6
unsupported configurations, 3-2

interface
database development, 8-1
JDBC, 8-2
object development, 8-1
ODBC, 8-1, 9-1
SODA, 8-2

isConvertibleTo, 10-6, 10-7
isolation level, 15-1

configuration, 15-3
restrictions with cursors, 15-3
transaction, 13-29

J
J2ME

CDC
JDBC driver, 10-15

CLDC
JDBC driver, 10-15

Creme, 10-18
IBM J9, 10-17
support, 10-15
WinCE, 10-17

JAR files, loading, 13-6
Java

datatypes, 10-5
declaring parameters, 13-26

example, 13-27
return multiple rows, 13-27

non-static methods, 13-12
static methods, 13-12
stored procedures, 13-16

Java stored procedures, 13-16
calling, 13-14
create Java class, 13-22
create table, 13-22
create trigger, 13-25
development model, 13-12
dropjava, 13-10
dropping, 13-9, 13-14
example, 13-11
Java datatypes, 13-25
JDBC, 13-28, 13-29
load Java class, 13-24
ODBC, 13-16
publish, 13-24
publishing to SQL, 13-24
return multiple rows, 13-27
row-level, 13-14
SELECT statement, 13-14
SQL commands, 13-11
start mSQL, 13-22
table-level, 13-13
tutorial, 13-21

Java Stored Procedures (JSPs), see JSP
Java support

Mobile client, 3-3, 3-7, 3-8, 3-10
Java Virtual Machine (JVM), 13-2, 13-15, 13-16, 13-24
JAVA_HOME

Web-to-Go, 6-16
JDBC, 1-1, 8-1

2.0 features, 10-9
2.0 interface, 10-9
callable statement, 13-29
calling C++ stored procedures, 13-34
connect, 10-2
Database MetaData interface, 10-13
DataSource, 10-4
datatype, 10-5
description, 10-1
driver, 8-2, 10-1

local connect, 4-9
remote connect, 4-9

environment setup, 10-1
extensions, 10-5
interface, 8-2
J2ME, 10-15
Java stored procedures, 13-28
limitations, 10-8
methods, 10-9
PreparedStatement interface, 10-14
ResultMetaData interface, 10-14
ResultSet, 10-10
Statement, 10-10
type 2 driver, 10-2
type 4 driver, 10-4

job

Index-5

client, 6-8
join query

optimizing, 16-3
JSP, 13-3

load, 13-3, 13-4
publish, 13-3, 13-7
triggers, 13-3

jvm.dll, 13-16

L
length method, 10-6
linguistic sort, 3-3, 7-2, A-7
Linux

Web-to-Go client install, 3-6
Load APIs, 7-1, C-26
Load utility, 7-1

overview, C-23
loading

JAR files, 13-6
ZIP files, 13-6

loadjava, 13-4
options, 13-5
specifying filenames to, 13-5
syntax, 13-4

locale data
specification, A-6

locking
row-level, 15-1

M
makeJdbcArray, 10-6, 10-7
mark method, 10-8
markSupported method, 10-8
MAX_INDEX_COLUMNS parameter, A-4
MDK

Mobile client compatibility, 3-2
member

batch initialization, 6-8
login, 6-2
synchronization, 6-14
user context, 6-14

MESSAGE_FILE parameter, A-4
Mobile client

platform, 3-4
Mobile Manager

password
modify, 6-15

Mobile Workspace
Web client, 6-5

mSQL, C-2
connect, 4-8
DESC command, C-4
DIR command, C-4
Mobile client, 3-3, 3-7, 3-8, 3-10
SET AUTO, C-3
SET TERM {ON|OFF}, C-3
SET TIMING {ON|OFF}, C-3
SET VERIFY {ON|OFF}, C-3

starting, C-2
using, 6-4
verifying database connection, 5-7
Windows 32, C-2
Windows CE

populating database, C-3
msync executable, 6-3, 6-12, 6-15

password
modify, 6-15

multithreaded programs
Java stored procedures, 13-16

multi-user service, 1-4, 5-1
debug, 5-7, A-8
DSN, 4-3
limitations, 5-2
Linux

administration, 5-5
configuration, 5-5
install, 5-5

logging, A-8
start, 5-4
status, 5-4
stop, 5-4
Windows

administration, 5-3
configuration, 5-3
install, 5-3

N
naming stored procedures, 13-2
.Net stored procedures, 13-35
network provider, 6-13
NLS

support, 3-3
NLS_DATE_FORMAT parameter, A-4
NLS_LOCALE parameter, A-6
NLS_SORT parameter, 7-2, 7-3, A-7

O
object

cache size, A-2
OBS file, 6-17, C-14

store BLOB data, 1-1
OC4J

install Mobile client, 3-6
ODB file, 6-3

download, 6-4
naming, 6-4

ODBC, 1-1, 8-1, 9-1
2.0 driver, 8-1, 9-1
3.5 driver, 8-1, 9-1

install, 8-1, 9-1
adding DSN, C-19
administration, C-17
Administrator, 4-1
driver, 8-1

description, 8-1, 9-1
interface, 8-1, 9-1

Index-6

Java stored procedures, 13-16
ODBC.INI file, 4-1

Linux
location, 4-2
parameters, 4-2

location, 4-2
ODBINFO utility, 7-4, C-19
offline instantiation, 3-12
OKAPI

overview, 16-6
olcSPGetObject method, 13-31
olCSPGetSession method, 13-30
OLITE_READ_VERIFY parameter, A-9
OLITE_SERVER_LOG parameter, A-8
OLITE_SERVER_TRACE parameter, A-8
OLITE_SQL_TRACE parameter, 7-5, A-8
OLITE_WRITE_VERIFY parameter, 7-5, A-9
OLLOAD, 7-1, C-23
olmig executable, 6-17, C-14
Oracle Lite database, see database
Oracle Lite Mobile client, see client
OracleBlob class, 11-3
OracleCommand class, 11-2
OracleConnection class, 11-1
OracleData, 13-35, 13-37
OracleDatabaseLite user

setting password, 14-5
OracleDataRow, 13-35, 13-37
OracleParameter class

ADO.NET provider
PreparedStatement interface, 11-3

OracleResultSet class, 10-7
OracleSPManager, 13-35, 13-38

P
PAGE_FILL_FACTOR parameter, A-10
password

limitations, 4-5
modify, 6-8, 6-13
OracleDatabaseLite user, 14-5
reset, 6-15
stored, 6-13

performance
ADO.NET provider, 11-3
advanced SQL query techniques, 16-5
EXPLAIN PLAN, 16-1
optimizing SQL queries, 16-2
temporary tables, A-10
WinCE, A-2

platform
client, 3-4
custom, 3-8
supported, 3-1

POL-3207 message, A-9
POLClobReader class, 10-7
POLClobWriter class, 10-8
polite.ini, 14-2
polite.ini file

All Databases section, A-1

overview, A-1
parameters, A-1
service_port parameter, A-10
service_wdir parameter, A-10

POLITE.ODB, 4-5
polite.txt

description, A-1
POLJDBCDataSource object., 10-4
POLLobInputStream class, 10-7
POLLobOutputStream class, 10-7
PreparedStatement interface, 10-14, 11-3, 13-28

methods, 10-14
privileges

roles, 4-5
proxy, 6-17

server, 6-13
publishing stored procedures, 13-24
putBytes, 10-6
putChars, 10-7
putString, 10-7

Q
query

JDBC, 13-28
optimizer

bypassing, 16-3
optimizing, 16-2

join queries, 16-3
order by and group by, 16-4
single-table, 16-3

tree transformations, 16-9

R
ready method, 10-8
REMOVEDB, C-9
reset method, 10-8
RESOURCE role, 4-5
ResultMetaData interface, 10-14

methods, 10-14
ResultSet interface, 10-10

fields, 10-10
methods, 10-11, 10-12

reverse, 6-17
reverse proxy, 6-17
roles

granting, 4-5
pre-defined, 4-5

row-level triggers, 13-1

S
samples, 4-9
schema

creating, 4-4
schema object names, 13-5
security

designing application, 14-1
SELECT statement

Java stored procedures, 13-14

Index-7

sequence
collation, A-7

SERVICE_PORT parameter, A-10
SERVICE_WDIR parameter, A-10
setup.exe, 3-2
skip method, 10-8
snapshot

accessing ODB, 6-3
encryption, 14-2
ODB files, 6-4

SODA, 1-1, 8-1, 8-2
access database, 13-30
C++ stored procedures, 13-30
classes, 12-1
overview, 12-1

software
Mobile client requirements, 2-2
request update, 6-16
update, 6-12

SQL
BLOB, 11-4
compatibility, A-9
create database volume id, A-2
EXPLAIN PLAN, 16-1
mSQL, C-2
parsing in ADO.NET provider, 11-3
query

advanced optimization techniques, 16-5
execution steps, 16-15
index access method optimization, 16-16
join query optimization, 16-13
optimizing, 16-2
optimizing join queries, 16-3
optimizing order by and group by, 16-4
optimizing single-table queries, 16-3
predicate push, 16-9
single table, 16-17
tracing, 16-17
tree transformations, 16-9
view expansion, 16-9
view merging, 16-9
view replacement, 16-9

query optimization, 16-2
tracing, A-8

SQL92 compliance, 1-1
SQLCOMPATIBILITY parameter, A-9
SQLDescribeCol, 13-27
SQLNumResultCols, 13-27
SQLRT

definition, 16-6
generating execution tree, 16-8

SSL, 14-1
Mobile client, 3-12

Statement interface, 10-10
statement-level triggers, 13-1
stored procedures, 13-1

C++, 13-29
calling, 13-9, 13-29
description, 13-1
naming, 13-2

.Net, 13-35
parameters, 13-29
triggers, 13-16

swap space
temporary tables, A-10

Symbian
J2ME, 10-15

synchronization, 6-10
APIs, 6-3
application, 6-10
automatic, 3-11, 6-6, 6-8, 6-10

enable, 6-8
client, 6-3
client configuration, 6-7
client GUI, 6-12
client job, 6-8
file-based

enabling, 6-8, 6-15
initiating, 6-10

first, 6-4
force refresh, 6-14
Linux, 6-15
member, 6-14
msync executable, 6-3
options, 6-13
priority, 6-13
scheduling, 6-11

system requirements, 2-1, 2-6
hardware, 2-1
software, 2-2

system user, 4-4

T
table

attaching a Java class, 13-13
building, 4-5
temporary, A-10

TEMP_DB parameter, A-10
TEMP_DIR parameter, A-10
TFAT, 2-2
threads

invoking Java stored procedures, 13-16
safety

ADO.NET provider, 11-5
time zone, 6-3
TO_CHAR

format definition, A-4
TO_DATE

format definition, A-4
toJdbc method, 10-6, 10-7
tracing, 7-5

enabling, 7-5
SQL, A-8
trace file, 7-5

transactions, 15-1
ADO.NET provider, 11-2
configuring isolation level, 15-3
isolation levels, 13-29, 15-1
locking, 15-1

Index-8

triggers, 13-1
arguments, 13-19

example, 13-20
creating, 13-17, 13-25
description, 13-1
dropping, 13-18
enabling and disabling, 13-18
example, 13-18
Java stored procedures, 13-16
row-level, 13-1
statement-level, 13-1
statement-level vs. row-level, 13-17
testing, 13-25
using C++ stored procedures, 13-33

truncate command, C-27

U
update utility, 6-15
user

authentication, 6-12, 6-13
context

member, 6-14
creating, 4-4
login, 6-2
logoff, 6-11
member

initiation, 6-8
multiple, 4-5, 5-1
multiple devices, 3-2
password

reset, 6-15
system, 4-4

username
limitations, 4-5

users
multiple users on one device, 3-5

UTF8 encoding, A-3

V
VALIDATEDB, C-21
version

database, 7-4
volume id

database, A-2

W
Web

Workspace options, 6-7
Web application

install Mobile client, 3-6
Web client

remote access, 6-9
Web-to-Go

JAVA_HOME, 6-16
SSL, 3-12
synchronization options, 6-7

Web-to-Go applications
install Mobile client, 3-6

WinCE
define database location, A-2
external memory card recommendation, 2-2
J2ME, 10-17
TFAT, 2-2

Workspace
Applications tab, 6-5
configuration, 6-5
Configuration tab, 6-5
customize, 6-11
directions, 6-5
executing applications, 6-11
Log Off tab, 6-11
logging on, 6-2
password, 6-8
scheduling synchronization, 6-11
Sync tab, 6-10
Web client, 6-5

write method, 10-7, 10-8

Z
ZIP files, loading, 13-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Send Us Your Comments

	1 The Oracle Database Lite RDBMS
	1.1 Oracle Lite Database Overview
	1.2 Execution Models for Applications that Use the Oracle Lite Database
	1.2.1 Embedded Application in Single Process
	1.2.2 Mobile Option for a Client in a Single Process
	1.2.3 Multiple Processes Accessing the Same Database
	1.2.4 Multiple Embedded Application Clients Accessing Remote Database
	1.2.5 Multiple Clients Accessing Remote Database

	2 System Requirements for the Oracle Lite Database as the Mobile Client
	2.1 System Requirements for the Oracle Lite Database as the Mobile Client on Windows
	2.1.1 Hardware Requirements for the Oracle Lite Database as the Mobile Client on Windows
	2.1.1.1 What File System and External Memory Media Should You Use for Windows CE?

	2.1.2 Software Requirements for the Oracle Lite Database as the Mobile Client on Windows
	2.1.2.1 Certified Operating Systems and Other Software Requirements
	2.1.2.2 Supported and Certified Technologies for Windows Mobile Clients
	2.1.2.3 Supported Platforms for Oracle Database Lite WinCE
	2.1.2.4 Windows Mobile Client Notes

	2.2 System Requirements for the Oracle Lite Database as the Mobile Client on Linux
	2.2.1 Certified Platforms and Supported Technologies for Linux Mobile Clients
	2.2.2 Software and Hardware Requirements for the Oracle Lite Database as the Mobile Client on Linux
	2.2.3 Setting Environment Variables Before Installing the Linux Mobile Client

	3 Installing the Oracle Lite Database
	3.1 Preparing the Device for a Mobile Application
	3.2 Installing the Oracle Lite Mobile Client Software
	3.2.1 Installing Web-to-Go on Linux
	3.2.2 Installing Standard SDK WinCE 5.0 CAB Files for Your Mobile Client
	3.2.2.1 Defining the INI File

	3.2.3 Installing Tools CAB Files for Java, MSQL, and Utility Support
	3.2.3.1 Defining the Tools CAB as an Application in Packaging Wizard
	3.2.3.2 Assigning the Tools CAB to the User

	3.3 Configuring for Default Sync When Installing the Client
	3.4 Configuring the Client for Secure Socket Layer (SSL)
	3.5 Specifying Whether the Client Uses a Static or Dynamic (DHCP) IP Address
	3.6 Using Offline Instantiation to Distribute Multiple Mobile Clients

	4 Building an Embedded Application
	4.1 Creating the Oracle Lite Database
	4.1.1 Creating a Data Source Name with ODBC Administrator
	4.1.1.1 Creating DSN on a Windows System
	4.1.1.2 Creating DSN on a LINUX System

	4.1.2 Creating a New Oracle Lite Database

	4.2 Creating Users for the Oracle Lite Database
	4.2.1 Pre-Defined Roles
	4.2.2 Building and Populating Demo Tables

	4.3 Packaging Your Embedded Application With the Oracle Database Lite Runtime
	4.3.1 Packaging an Embedded Application on Windows
	4.3.2 Packaging an Embedded Application on Linux

	4.4 Connecting to the Oracle Lite Database
	4.5 Using Oracle Database Lite Samples
	4.5.1 Executing the Visual Basic Sample Application
	4.5.1.1 Open the Sample Application
	4.5.1.2 View and Manipulate the Data in the EMP Table

	5 Building a Client/Server Environment
	5.1 Overview of the Multi-User Service
	5.2 Administration for the Multi-User Service on the Windows Platform
	5.2.1 Installation and Configuration on Windows
	5.2.2 Starting the Multi-User Service on Windows
	5.2.3 Stopping the Multi-User Service on Windows
	5.2.4 Querying the Multi-User Service on Windows

	5.3 Administration for the Multi-User Service on the Linux Platform
	5.3.1 Starting and Stopping the Multi-User Service on Linux
	5.3.2 Querying the Multi-User Service on Linux

	5.4 Debugging the Multi-User Service
	5.5 Creating DSNs
	5.6 Accessing the Database
	5.7 Verifying the Connection Using mSQL

	6 Managing Your Oracle Lite Mobile Client
	6.1 Start the Mobile Client
	6.2 Log on to Mobile Client Workspace
	6.3 Synchronize or Execute Applications on the Mobile Client
	6.4 Manage the Mobile Client
	6.4.1 Manage Your Clients Locally With the Mobile Client Workspace
	6.4.1.1 Instructions for Using the Mobile Client Workspace
	6.4.1.1.1 Display Installed Applications
	6.4.1.1.2 Configure the Mobile Client
	6.4.1.1.3 Enable Remote Access for Mobile Client
	6.4.1.1.4 Configure Application Synchronization Default
	6.4.1.1.5 Initiate Manual Synchronization
	6.4.1.1.6 Log Off

	6.4.1.2 Execute Mobile Applications Installed on Your Mobile Client
	6.4.1.3 Customize the Mobile Client Workspace
	6.4.1.4 Schedule Data Synchronization Jobs

	6.4.2 Use the mSync GUI to Initiate Synchronization of Your Linux, WinCE, and Win32 Applications
	6.4.2.1 Network Options for MSync Tool
	6.4.2.2 Sync Options for MSync Tool
	6.4.2.3 Set User Context for Member
	6.4.2.4 Sync to a File Using File-Based Sync
	6.4.2.5 Use Mobile Client Tools on Linux

	6.4.3 Reset the Mobile User Password
	6.4.4 Use the Device Manager Client GUI to Manage the Client-Side Device
	6.4.5 Initiate Updates for the Oracle Lite Client
	6.4.6 Configure JAVA_HOME for Web-to-Go Clients
	6.4.7 Defragmentation and Reducing Size of the Client Application Databases
	6.4.8 Communicate Between the Internet and Intranet Through a Reverse Proxy

	7 Managing the Oracle Lite Database
	7.1 Moving Your Client Data Between an Oracle Lite Database and an External File
	7.1.1 Move Data Between an Oracle Lite Database and an External File Using Programmatic APIs
	7.1.2 Oracle Database Lite Load Utility (OLLOAD)

	7.2 Backing Up an Oracle Lite Database
	7.3 Encrypting a Database
	7.4 Support for Linguistic Sort
	7.4.1 Creating Linguistic Sort Enabled Databases
	7.4.2 How Collation Works
	7.4.3 Collation Element Examples
	7.4.3.1 Sorting Normal Characters
	7.4.3.2 Reverse Sorting of French Accents
	7.4.3.3 Sorting Contracting Characters
	7.4.3.4 Sorting Expanding Characters
	7.4.3.5 Sorting Numeric Characters

	7.5 Discovering Oracle Lite Database Version Number
	7.6 Row Sort Limitations of the Oracle Lite Database
	7.7 Troubleshooting the Source of a Checksum Error Against Database
	7.8 Enable Tracing for the Oracle Lite Database
	7.8.1 Enabling Trace Output
	7.8.2 Description of Trace Information
	7.8.2.1 Table Name Output

	8 Oracle Database Lite Data Access APIs
	8.1 ODBC
	8.2 JDBC
	8.3 ADO.NET
	8.4 SODA

	9 ODBC Drivers
	9.1 Supported ODBC Drivers for Oracle Database Lite
	9.2 Executing the ODBC Examples
	9.2.1 ODBCTBL
	9.2.2 ODBCVIEW
	9.2.3 ODBCFUNC
	9.2.4 ODBCTYPE
	9.2.5 LONG

	10 JDBC Programming
	10.1 JDBC Compliance
	10.2 JDBC Environment Setup
	10.3 JDBC Drivers to Use When Connecting to the Oracle Lite Database
	10.3.1 Type 2 Driver
	10.3.2 Type 4 (Pure Java) Driver Connection URL Syntax

	10.4 DataSource Connection
	10.5 Java Datatypes and JDBC Extensions
	10.5.1 Mapping Datatypes Between Java and Oracle
	10.5.2 Datatype Extensions
	10.5.3 Data Access Extensions
	10.5.3.1 Reading from a BLOB Sample Program
	10.5.3.2 Writing to a CLOB Sample Program

	10.6 Limitations
	10.7 New JDBC 2.0 Features
	10.7.1 Interface Connection
	10.7.1.1 Methods

	10.7.2 Interface Statement
	10.7.3 Interface ResultSet
	10.7.3.1 Fields
	10.7.3.2 Methods
	10.7.3.3 Methods that Return False

	10.7.4 Interface Database MetaData
	10.7.4.1 Methods
	10.7.4.2 Methods that Return False

	10.7.5 Interface ResultMetaData
	10.7.5.1 Methods

	10.7.6 Interface PreparedStatement
	10.7.6.1 Methods

	10.8 J2ME Support
	10.8.1 JDBC Drivers for J2ME CDC and CLDC
	10.8.1.1 JDBC Driver for J2ME CDC
	10.8.1.2 JDBC Driver for J2ME CLDC

	10.8.2 J2ME Support for Windows CE
	10.8.2.1 Using IBM J9
	10.8.2.2 Using Creme 4.1

	11 Oracle Database Lite ADO.NET Provider
	11.1 Discussion of the Classes That Support the ADO.NET Provider
	11.1.1 Establish Connections With the OracleConnection Class
	11.1.2 Transaction Management
	11.1.3 Create Commands With the OracleCommand Class
	11.1.4 Maximize Performance Using Prepared Statements With the OracleParameter Class
	11.1.4.1 SQL String Parameter Syntax

	11.1.5 Large Object Support With the OracleBlob Class
	11.1.5.1 Using BLOB Objects in Parameterized SQL Statements
	11.1.5.2 Query Tables With BLOB Columns
	11.1.5.3 Read and Write Data to BLOB Objects

	11.2 Limitations for the ADO.NET Provider
	11.2.1 Partial Data Returned with GetSchemaTable
	11.2.2 Creating Multiple DataReader Objects Can Invalidate Each Other
	11.2.3 Calling DataReader.GetString Twice Results in a DbNull Object
	11.2.4 Thread Safety

	12 Using Simple Object Data Access (SODA)
	12.1 Getting Started With SODA
	12.1.1 Overview of the SODA Classes
	12.1.2 Demonstrating Frequently-Used SODA Classes

	12.2 Using SQL Queries in SODA Code for PocketPC Platforms
	12.3 Virtual Columns and Object-Relational Mapping
	12.4 Behavior of Reference-Counted and Copy-By-Assignment Objects
	12.5 Another Library for Exceptions (ALE)
	12.5.1 Decorating Classes With ALE
	12.5.2 New Operator and ALE
	12.5.3 Global Variables
	12.5.4 Exceptions and Inheritance
	12.5.5 Using ALE with PocketPC ARM Compilers
	12.5.6 Troubleshooting ALE Runtime Errors
	12.5.7 Compiling Your Program With ALE
	12.5.8 ALE Code on Systems That Support Exceptions

	13 Using Stored Procedures and Triggers
	13.1 Overview of Stored Procedures and Triggers
	13.2 Using Java Stored Procedures in Oracle Database Lite
	13.2.1 Load and Define Java Stored Procedures in an Oracle Lite Database

	13.3 Creating Java Stored Procedures
	13.3.1 Using Load and Define for Java Stored Procedures
	13.3.1.1 Loading Java Stored Procedure Classes Into the Oracle Lite Database
	13.3.1.2 Defining Stored Procedures to SQL Using Create Function or Create Procedure
	13.3.1.3 Calling Defined Stored Procedures
	13.3.1.4 Dropping Defined Stored Procedures
	13.3.1.5 Example Using the Load and Define Model

	13.3.2 Using Attach to Define the Java Stored Procedure
	13.3.2.1 Attaching a Java Class to a Table
	13.3.2.2 Table-Level Stored Procedures
	13.3.2.3 Row-Level Stored Procedures
	13.3.2.4 Calling Attached Stored Procedures
	13.3.2.5 Dropping Attached Stored Procedures
	13.3.2.6 Example of An Attached Java Stored Procedure

	13.3.3 Calling Java Stored Procedures From a Multithreaded C or C++ Application

	13.4 Using Triggers With Java Stored Procedures
	13.4.1 Statement-Level vs. Row-Level Triggers
	13.4.2 Creating Triggers
	13.4.2.1 Enabling and Disabling Triggers

	13.4.3 Dropping Triggers
	13.4.4 Trigger Example Using the Attach Method
	13.4.5 Trigger Arguments
	13.4.6 Trigger Arguments Example Using Create Procedure

	13.5 Tutorial for a Java Stored Procedure Invoked By a Trigger
	13.5.1 Start mSQL
	13.5.2 Create a Table
	13.5.3 Create a Java Class
	13.5.4 Load the Java Class File
	13.5.5 Define the Stored Procedure
	13.5.6 Populate the Database
	13.5.7 Execute the Procedure
	13.5.8 Verify the Email Address
	13.5.9 Create a Trigger
	13.5.9.1 Testing the Trigger
	13.5.9.2 Verify the Email Address

	13.5.10 Commit or Roll Back

	13.6 Converting Datatypes Between Java and SQL For Stored Procedures
	13.6.1 Declaring Parameters for Java Stored Procedures
	13.6.2 Using Stored Procedures to Return Multiple Rows
	13.6.2.1 Returning Multiple Rows in ODBC
	13.6.2.2 Example

	13.7 Executing Java Stored Procedures from JDBC
	13.7.1 Using the executeQuery Method
	13.7.2 Using a Callable Statement

	13.8 Using C++ Stored Procedures
	13.8.1 Creating C++ Stored Procedures
	13.8.1.1 C++ Stored Procedure Include File and Procedure Definition
	13.8.1.2 Access SODA Objects Within Your C++ Stored Procedure

	13.8.2 Building Your C++ Stored Procedures
	13.8.2.1 Linking in Appropriate Libraries
	13.8.2.2 Automatically Build Your Stored Procedure
	13.8.2.3 Manually Building Your Stored Procedure

	13.8.3 Define Your C++ Stored Procedure
	13.8.4 C++ Stored Procedure Example
	13.8.4.1 C++ Stored Procedure and Trigger Example One
	13.8.4.2 C++ Stored Procedure and Trigger Example Two
	13.8.4.3 JDBC Calling a C++ Stored Procedure Example

	13.9 Using .Net Stored Procedures
	13.9.1 Creating the .Net Source for Your Stored Procedure
	13.9.1.1 Defining Methods, Imports and Namespace
	13.9.1.2 Access and Modify Database Using .Net Extension Classes In Stored Procedures
	13.9.1.3 Access and Modify Database Using OracleSPManager Inside Triggers

	13.9.2 Building Your .Net Stored Procedures
	13.9.3 Define Your .Net Stored Procedure
	13.9.3.1 Create the .Net Class Object in the Oracle Lite Database
	13.9.3.2 Define Methods With a Call Specification

	13.9.4 Dropping .Net Stored Procedures
	13.9.5 .Net Stored Procedure Example
	13.9.5.1 .Net Stored Procedure and Trigger Example One
	13.9.5.2 .Net Stored Procedure and Trigger Example Two

	13.10 Loading and Defining C, C++ or C# Stored Procedures

	14 Configure Security for the Oracle Lite Database
	14.1 Providing Security for the Mobile Client
	14.2 Encrypting the Oracle Lite Database
	14.2.1 Configuring for Automatic Encryption of the Oracle Lite Database
	14.2.2 Create a Command to Initiate Automatic Encryption of the Oracle Lite Database
	14.2.3 Execute EncrypDB Command to Encrypt Database

	14.3 Providing Your Own Encryption Module for the Client Oracle Lite Database
	14.3.1 Encryption Module APIs
	14.3.1.1 Initialize the Encryption Module
	14.3.1.2 Delete Encryption Context
	14.3.1.3 Create the Encryption Key
	14.3.1.4 Encrypt Data
	14.3.1.5 Decrypt Data

	14.3.2 Plug-In Custom Encryption Module

	14.4 Pre-Configure Branch Office Passwords

	15 Oracle Database Lite Transaction Support
	15.1 Locking
	15.2 What Are the Transaction Isolation Levels?
	15.3 Configuring the Isolation Level
	15.4 Supported Combinations of Isolation Levels and Cursor Types

	16 Improving SQL Query Performance for the Oracle Lite Database
	16.1 Determining Performance of Client SQL Queries With the EXPLAIN PLAN
	16.2 Determine SQL Query Execution Through Oracle Database Lite Tracing
	16.3 Optimizing SQL Queries for the Oracle Lite Database
	16.3.1 Optimizing Single-Table Queries
	16.3.2 Optimizing Join Queries
	16.3.2.1 Create an Index on the Join Column(s) of the Inner Table
	16.3.2.2 Bypassing the Query Optimizer

	16.3.3 Optimizing with Order By and Group By Clauses
	16.3.3.1 IN Subquery Conversion
	16.3.3.2 ORDER BY Optimization with No GROUP BY
	16.3.3.3 GROUP BY Optimization with No ORDER BY
	16.3.3.4 ORDER BY Optimization with GROUP BY
	16.3.3.5 Cache Subquery Results

	16.3.4 Advanced Optimization Techniques for SQL Queries in Oracle Database Lite
	16.3.4.1 Oracle Lite Database Application Architecture
	16.3.4.1.1 ODBC Application
	16.3.4.1.2 SQLRT
	16.3.4.1.3 DB Engine

	16.3.4.2 Overview of SQL Runtime
	16.3.4.2.1 Compilation
	16.3.4.2.2 Query Tree Transformations or Query Re-write Examples

	16.3.4.3 Execution Plan Generation
	16.3.4.3.1 Statistics
	16.3.4.3.2 Access Methods
	16.3.4.3.3 Single Table I/O Cost
	16.3.4.3.4 Join Query Optimization

	16.3.4.4 Query Execution Engine
	16.3.4.4.1 Join Query Execution
	16.3.4.4.2 Nested View Execution

	16.3.4.5 Optimization Tips
	16.3.4.5.1 Index Access Method
	16.3.4.5.2 Identifying The Bottleneck
	16.3.4.5.3 Single Table Query Blocks
	16.3.4.5.4 Query Blocks Containing Multiple Tables
	16.3.4.5.5 Known Limitations

	16.3.4.6 Glossary
	16.3.4.7 References

	A POLITE.INI Parameters for the Oracle Lite Database
	A.1 POLITE.INI File Overview
	A.2 All Databases Section
	A.2.1 CACHE_SIZE
	A.2.2 DATA_DIRECTORY
	A.2.3 DATABASE_ID
	A.2.4 DB_CHAR_ENCODING
	A.2.5 EXTERNAL_ENCRYPTION_DLL
	A.2.6 FLUSH_AFTER_WRITE
	A.2.7 MAX_INDEX_COLUMNS
	A.2.8 MAX_ROWS
	A.2.9 MESSAGE_FILE
	A.2.10 NLS_DATE_FORMAT
	A.2.10.1 Date Format
	A.2.10.2 Date Format Examples

	A.2.11 NLS_LOCALE
	A.2.12 NLS_SORT
	A.2.13 OLITE_SERVER_LOG
	A.2.14 OLITE_SERVER_TRACE
	A.2.15 OLITE_SQL_TRACE
	A.2.16 OLITE_WRITE_VERIFY
	A.2.17 OLITE_READ_VERIFY
	A.2.18 SQLCOMPATIBILITY
	A.2.19 TEMP_DB
	A.2.20 TEMP_DIR
	A.2.21 SERVICE_PORT
	A.2.22 SERVICE_WDIR
	A.2.23 PAGE_FILL_FACTOR

	A.3 Sample POLITE.INI File

	B Catalog Views for the Oracle Lite Client
	B.1 ALL_COL_COMMENTS
	B.2 ALL_CONSTRAINTS
	B.3 ALL_CONS_COLUMNS
	B.4 ALL_DEPENDENCIES
	B.5 ALL_INDEXES
	B.6 ALL_IND_COLUMNS
	B.7 ALL_OBJECTS
	B.8 ALL_PRIVILEGES
	B.9 ALL_SEQUENCES
	B.10 ALL_SYNONYMS
	B.11 ALL_TABLES
	B.12 ALL_TAB_COLUMNS
	B.13 ALL_TAB_COMMENTS
	B.14 ALL_USERS
	B.15 ALL_VIEWS
	B.16 POL__ALLOBJ
	B.17 POL__COLUSAGE
	B.18 POL__COMMENT
	B.19 POL__CONS
	B.20 POL__DATABASE_PARAMETERS
	B.21 POL__INDICES
	B.22 POL__INDICESDT
	B.23 POL__PROCEDURES
	B.24 POL__PROCEDURE_COLUMNS
	B.25 POL__SCHEMATA
	B.26 POL__SEQ
	B.27 POL__SYNONYM
	B.28 POL__TBLCONS
	B.29 POL__TBLUSAGE
	B.30 POL__TRIGGERS
	B.31 POL__VIEWS
	B.32 POL__USERS

	C Oracle Lite Database Utilities
	C.1 The mSQL Tool
	C.1.1 The mSQL Tool for Windows 32
	C.1.1.1 Starting mSQL
	C.1.1.2 Populating your Database Using mSQL
	C.1.1.3 SET TERM {ON|OFF}
	C.1.1.4 SET TIMING {ON|OFF}
	C.1.1.5 SET VERIFY {ON|OFF}
	C.1.1.6 SET AUTO {ON|OFF}
	C.1.1.7 DESC <table_name>
	C.1.1.8 DIR

	C.1.2 The mSQL Tool for Windows CE
	C.1.2.1 The mSQL GUI Tool
	C.1.2.2 Manage Snapshots Using mSQL

	C.2 CREATEDB
	C.3 REMOVEDB
	C.4 ENCRYPDB
	C.5 DECRYPDB
	C.6 BACKUPDB
	C.7 DefragDB to Defragment and Reduce Size of the Oracle Lite Database
	C.7.1 Execute DefragDB
	C.7.2 Pause or Cancel Defragmentation
	C.7.3 Execute DefragDB With Command-Line

	C.8 ODBC Administrator and the Oracle Database Lite ODBC Driver
	C.8.1 Adding a DSN Using the ODBC Administrator
	C.8.2 Adding a DSN which points to Read-Only Media (CD-ROM)

	C.9 ODBINFO
	C.10 VALIDATEDB
	C.11 Transferring Data Between a Database and an External File
	C.11.1 OLLOAD
	C.11.1.1 Syntax
	C.11.1.2 Keywords and Parameters

	C.11.2 Oracle Database Lite Load Application Programming Interfaces (APIs)
	C.11.2.1 Overview
	C.11.2.2 Oracle Database Lite Load APIs
	C.11.2.3 File Format
	C.11.2.4 Limitations

	Index

